
Algorithms for Context-Sensitive Prediction, Optimization and Anomaly Detection in

Urban Mobility

By

Fangzhou Sun

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

May 11, 2018

Nashville, Tennessee

Approved:

Jules White, Ph.D.

Abhishek Dubey, Ph.D.

Douglas Schmidt, Ph.D.

Aniruddha Gokhale, Ph.D.

Hiba Baroud, Ph.D.

ACKNOWLEDGMENTS

First of all, I would like to express my deepest respect and gratitude to my advisors,

Prof. Abhishek Dubey and Prof. Jules White, for their guidance throughout my Ph.D.

research. They have patiently provided me with creative advice and comprehensive super-

vision on numerous research projects and publications.

I would like to thank my committee members, Prof. Douglas C. Schmidt, Prof. Anirud-

dha Gokhale and Prof. Hiba Baroud, for serving on the committee of my dissertation. They

have offered helpful guidance on my research in classes and projects in the past few years.

I also wish to thank Mr. Dan Freudberg from Nashville Metro Transportation Authority

(NMTA), Mr. Jacob Staples and Mr. Lee Krause from Securboration Inc, Mr. Martin

Lehofer and Dr. Monika Sturm from Siemens Corp. for their suggestions and insights.

I would like to express my special thanks to my parents, Mr. Jianhong Sun and Prof.

Yancong Shi for their sacrificial love and best wishes. I would also like to thank my fi-

ancée, Miss. Yunge Tong, for her companionship and selfless support. Special thanks also

go to Prof. Yu Sun for giving me insights and inspiring me to follow my dreams. This

research could not have been possible without the support of my friends, Chinmaya Samal,

Saideep Nannapaneni, Shashank Shekhar, Subhav Pradhan, Yao Pan, Oruganti Aparna,

Sanchita Basak, Shweta Khare, Peng Zhang, Qishen Zhang, Xiaochen Yang, Dongqing

Zhang, Shunxing Bao, Amin Ghafouri, Geoffrey Pettet and Scott Eisele, who directly en-

couraged and supported me in research and writing.

Finally, I would like to acknowledge the research funding from National Science Foun-

dation (NSF), Office of Naval Research (ONR), and Siemens Corporation for supporting

the various research projects in which I have participated.

ii

ABSTRACT

Transportation infrastructure is a complex human cyber-physical system that is cur-

rently facing significant challenges in many communities around the world. The problem

emanates from increased congestion, which results in large-scale inefficiencies, including

significant personal, health and environmental costs. The human integrated nature of this

resource constrained system allows communities to go beyond the traditional mechanisms

of adding infrastructure which is often expensive and difficult to build and embrace data-

driven smart solutions that focuses on providing a robust decision support system, which

can enable humans to use and optimize the system more efficiently. However, there are sev-

eral challenges that arise due to the heterogeneity, sparsity, and noise in the data collected

in an urban environment.

This dissertation examines a unique application platform called transit-hub that enables

(1) integration of spatially and temporally distributed sensor streams, (2) integration of

simulation-based decision support systems, and (3) development of experiments to under-

stand how advanced decision support tools improve the utilization of the transportation

infrastructure. We designed data mining and machine learning techniques for context-

sensitive prediction of long-term, short-term and real-time delays in sparse public transit

networks. In order to solve data sparsity issues, shared route segment networks and multi-

task neural networks were developed. Further, we integrated algorithms for analyzing the

performance of public transit networks and developed mechanisms to optimize the on-time

performance under uncertainty of traffic and weather conditions. Heuristic search algo-

rithms as well as sensitivity analyses of the hyper-parameters were also developed. Robust

detection of anomalous operations of transit networks over a large metropolitan area was

enabled by using deep learning techniques within the platform. A specific innovation is to

set up the problem of identifying the non-recurring traffic congestion as an image classifi-

cation task and to use convolutional neural networks to explain the congestion.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . ii

ABSTRACT . iii

LIST OF TABLES . ix

LIST OF FIGURES . x

1 INTRODUCTION . 1

1.1 Understanding the Challenges . 4

1.1.1 Challenge 1: Handling Sparsity and Quality Issues in Data 5

1.1.2 Challenge 2: Analyzing and Predicting for Multiple Timescales 6

1.1.3 Challenge 3: Detecting Contextual Anomalous Operations in Transit

Networks . 8

1.2 Overview of the Research . 9

2 BACKGROUND ABOUT DATA-DRIVEN TRANSIT SYSTEMS 14

2.1 Terminology and Concepts . 14

2.2 Data Sources . 15

2.3 Data Management . 16

3 CONTEXT-SENSITIVE PREDICTIVE MECHANISMS FOR LONG-TERM,

SHORT-TERM, AND REAL-TIME DELAYS IN TRANSIT NETWORKS 19

3.1 Problem Overview . 19

3.2 Related Work and Challenges . 26

3.2.1 Related Work about Bus Delay Prediction 26

3.2.2 Research Challenge 1: Handling Data Sparsity Issues 28

3.2.3 Research Challenge 2: Identifying the Temporal Aspects of Predictions 28

3.2.4 Research Challenge 3: Identifying the Significant Predictor Variables . . 29

iv

3.2.5 Research Challenge 4: Predicting Transit Delay in Short-term Using

Predictive Contextual Information . 29

3.3 Data Feedback . 30

3.4 Our Approach . 32

3.4.1 Building Model for Analyzing Long-term Delay Patterns 32

3.4.1.1 Clustering Analysis . 32

3.4.1.2 Normality Test and Analysis 34

3.4.1.3 Outlier Analysis . 35

3.4.1.4 Bottleneck Identification . 35

3.4.2 Real-time Data Integration . 36

3.4.2.1 Utilizing Shared Route Segment Data 36

3.4.2.2 Estimating the Arrival Time at Bus Stops 39

3.4.2.3 Updating the Travel Delay Prediction Using K-means Algo-

rithm and Smoothing Filter . 40

3.4.2.4 Example . 41

3.4.3 Short-term Context-aware Delay Prediction 42

3.4.3.1 Motivating Example . 42

3.4.3.2 Feature Engineering . 44

3.4.3.3 Multi-task Neural Networks 44

3.4.3.4 Service Alert Generation . 46

3.4.4 Significant Predictor Identification . 47

3.5 Deployed Architecture . 48

3.6 Prediction Performance Evaluation . 50

3.6.1 Experiment 1: Evaluating the Real-time Travel Time Delay Prediction . 50

3.6.2 Experiment 2: Evaluating the Real-time Arrival Time Delay Prediction . 53

3.6.3 Experiment 3: Evaluating the Short-term Arrival Time Delay Prediction 54

3.7 Conclusion . 58

v

4 ALGORITHMS FOR OPTIMIZING THE SCHEDULE OF PUBLIC TRANSIT

CONSIDERING SEASONAL DELAYS . 60

4.1 Problem Overview . 60

4.2 Related Work and Challenges . 64

4.2.1 Related Work about Transit Performance Optimization 64

4.2.2 Research Challenge 1: Setting up the Transit Performance Optimiza-

tion Problem . 66

4.2.3 Research Challenge 2: Clustering the Monthly and Seasonal Variations

in Historical Arrival Data . 66

4.2.4 Research Challenge 3: Computing Efficiently and Accurately in the

Optimization Solution Space . 67

4.3 System Model . 67

4.3.1 Problem Definition . 68

4.3.2 Assumptions and Notations . 69

4.4 Timetable Optimization Mechanisms . 71

4.4.1 Month Grouping by Clustering Analysis 72

4.4.2 Estimating On-time Performance of Transit Schedules 73

4.4.3 Timetable Optimization Using a Greedy Algorithm 76

4.4.4 Timetable Optimization Using Heuristic Algorithms 78

4.4.4.1 Genetic Algorithm . 79

4.4.4.2 Particle Swarm Optimization 82

4.4.4.3 Sensitivity Analysis on Hyper-parameters 86

4.5 Evaluation and Sensitivity Analysis Results 87

4.5.1 Experiment 1: Evaluating the Clustering Analysis 87

4.5.2 Experiment 2: Comparing Optimization Performance of Greedy, Ge-

netic, and PSO Algorithms . 88

vi

4.5.3 Experiment 3: Sensitivity Analysis on the Hyper-parameters of the Ge-

netic algorithm . 89

4.5.4 Experiment 4: Sensitivity Analysis on the Hyper-parameters of Particle

Swarm Optimization . 92

4.6 Conclusion . 95

5 DEEP NEURAL NETWORKS FOR CONTEXT-AWARE ANOMALY DETEC-

TION IN TRANSIT NETWORKS . 97

5.1 Problem Overview . 97

5.2 Related Work and Challenges . 99

5.2.1 Related Work about Traffic Anomaly Detection 100

5.2.2 Research Challenge 1: Representing Heterogeneous Traffic Data and

Event Labels Using Multi-Dimensional Images 101

5.2.3 Research Challenge 2: Training Deep Learning Models Using Limited

Data Instances . 102

5.2.4 Research Challenge 3: Modeling Traffic Patterns of Non-Recurring

Events . 103

5.3 Motivating Example . 104

5.4 Problem Formulation . 105

5.4.1 Definition . 105

5.4.2 Assumptions . 107

5.5 Our Approach . 108

5.5.1 Feature Extraction by Mapping Traffic Data to Images 109

5.5.2 Data Augmentation by Crossover Operations 110

5.5.3 Classifying Non-Recurring Congestion 111

5.5.4 Tuning the Model Sensitivity by ROC Analysis 113

5.6 Experiments . 113

5.6.1 Scenarios . 114

vii

5.6.2 Experiment 1: Identifying NRC Caused by Football Games 116

5.6.3 Experiment 2: Identifying NRC Caused by Hockey Games 117

5.6.4 Experiment 3: Identifying NRC Caused by Traffic Accidents 117

5.7 Conclusion . 118

6 CONCLUDING REMARKS . 119

6.1 Summary of the Research Contributions . 119

6.2 Future Work . 121

6.2.1 Distributed Neural Networks for Edge Computing 121

6.2.2 Context-aware Anomaly Detection with Rich Features and Fine-tuned

Bounding Boxes . 122

6.2.3 Transfer Learning as Another Potential Solution for Data Sparsity Issue 123

6.3 Summary of Publications . 123

BIBLIOGRAPHY . 127

viii

LIST OF TABLES

Table Page

1.1 Key research challenges and corresponding solutions with section locations

in the research. 11

2.1 Real-time and static datasets collected in the research. 17

3.1 Mean value of the delay data distributions for 4 time points on route 3 in

morning and afternoon in June. 35

4.1 The scheduled time and recorded actual arrival and departure time of two

sequential trips that use the same bus of route 4 on Aug. 8, 2016. The arrival

delay at the last timepoint of the first trip accumulates at the first timepoint

of the second trip. 68

4.2 List of primary symbols and definitions used in the optimization problem . . 70

4.3 The historical and estimated new departure and arrival times for a bus trip

on route 4 on Aug. 8, 2016. 76

4.4 The original and optimized on-time performance on average across all bus

routes. 88

5.1 The information of the eight football games studied in the motivating example 104

5.2 Symbols used in the formulated problem 106

5.3 Experiment results in scenario 1: identifying NRC caused by football games 117

5.4 Experiment results in scenario 2: identifying NRC caused by hockey games . 117

5.5 Experiment results in scenario 3: identifying NRC caused by traffic accidents 118

5.6 Summary of architectural decisions . 118

ix

LIST OF FIGURES

Figure Page

1.1 The daily travel demand distribution from home to work of a major em-

ployer’s employees in Nashville. 2

1.2 The sensor data that needs to be classified, structured and managed for

various smart city applications are heterogeneous and in large scale. 3

1.3 MTA provides transit schedule and status update to commuters in three

terms (i.e., long-term, short-term and real-time) to help them plan transit

trips. 6

1.4 Nashville traffic congestion patterns on two time windows: (a) morning

peak hours on Sept. 1, 2017 between 7 AM and 9 AM, (b) evening peak

hours on Sept. 1, 2017 between 4 PM and 6 PM. 8

1.5 An integrated view of the research . 10

2.1 Timepoints on bus route 5 in Nashville . 15

2.2 The colored road segments show coverage of the collected traffic data in

Nashville. 17

3.1 (a) A route segment on bus route 3 leaves downtown; (b) The variance

of actual travel time on a bus route segment is very high in time period

between Sept. 1, 2016 and Feb. 28, 2017. 21

3.2 The proposed mechanisms provide context-sensitive analytics and predic-

tions for three terms (i.e., long-term, short-term, and real-time) to help com-

muters plan transit trips. 24

3.3 Proposed DDDAS loop in Transit-Hub transportation decision support sys-

tem between MTA, Transit-Hub and end users. 31

x

3.4 Cluster historical delay data according to the delay and time in the day at

time point “HRWB” on route 3. The figure shows that there are two active

delay patterns, one before and one after 2 PM. The blue dots are outliers

identified by analysis in Section 3.4.1.3 . 33

3.5 Distribution of the clustered historical delay data at time point “HRWB” on

route 3 . 34

3.6 Finding shared route segments between two bus routes. The segment that

contains the three center points is shared by route 1 and route 2. 36

3.7 Generated shared bus route segment network in Nashville. The lines with

different colors represent the 5139 shared route segments in all 57 bus

routes in the network. The length of the segments are limited to less than 1

mile. 38

3.8 Use Case: Example of using shared route segments to predict a bus’s delay

at a bus stop . 42

3.9 The impact of football games on travel delay of bus route segments in four

one-hour time windows before 8 football games: (1) from 4 to 3 hours, (2)

from 3 to 2 hours, (3) from 2 to 1 hour, (4) within 1 hour. The green colors

are the baselines (i.e., average delay of bus route segments on non-game

days). Other colors show the difference of average delay on games days

compared to the baselines. 43

3.10 The one hot encoded feature vector for football games. 45

3.11 Proposed Multi-task Neural Network. Blue blocks are shared layers and

gray blocks are independent layers for different segments. 45

3.12 Microservice architecture of Transit Hub back-end analytics services 48

3.13 Studied road segment shared by route 3 and 5 50

xi

3.14 RMSD of travel time delay prediction for each day when comparing the

Transit-Hub model with the SVM Kalman model proposed in 2015. Our

model outperforms the SVM-Kalman model: (1) RMSD values are smaller

(2) it shows less variation on different days. 51

3.15 Arrival time delay prediction for a bus stop of a trip: (1) actual arrival

delay, (2) predicted mean value - standard deviation, (3) predicted mean,

(4) predicted mean value + standard deviation. 52

3.16 Studied segment of route 3 that starts from first bus stop (MCC5 5) to the

15th bus stop (WES23AWN) . 53

3.17 Experiment scenario. The selected bounding box is close to the Nissan

Stadium where football games play and the Bridgestone Arena that hockey

games play. 55

3.18 The F1 score between single models and multi-task models 56

3.19 The mean square error between single models and multi-task models 56

3.20 The recall using time feature vectors vs. using contextual feature vectors . . 57

3.21 The F1 score using time feature vectors vs. using contextual feature vectors 58

4.1 The proposed toolbox for bus on-time performance optimization. City

planners use bus schedule, historical trip information and desired on-time

range and layover time, and get outputs of optimized timetable as well as

estimated on-time performance. 64

4.2 The feature vectors [mean, standard deviation, median] of the travel time in

4 months of 2016 for a segment (WE23-MCC5 5) on a bus trip of route 5. . 74

4.3 Empirical cumulative distribution function (CDF) of historical travel time

between two timepoints (MCC5 5 and WE23) on route 3 in May, June, July

2016. 78

4.4 Crossover: two genes are swapped between two individuals. 81

xii

4.5 The original on-time performance and the optimized on-time performance

using greedy algorithm, genetic algorithm with/without clustering analysis

and PSO algorithm. 89

4.6 Timepoints on bus route 5 in Nashville . 90

4.7 The chart shows the on-time performance and overall execution time for

different population sizes. 90

4.8 The chart shows the on-time performance and overall execution time for

different crossover rates, which controls the exploitation ability of the GA. . 91

4.9 The chart shows the on-time performance and overall execution time for

different mutation rates, which controls the exploration ability of the GA. . 92

4.10 The chart shows the on-time performance and overall execution time for

different inertia weights, exploring new regions of search space in PSO. . . 93

4.11 The chart shows the on-time performance and overall execution time for

different cognition acceleration coefficients c1, in PSO. 94

4.12 The chart shows the on-time performance and overall execution time for

different social acceleration coefficients c2, in PSO. 94

4.13 The chart shows the on-time performance and overall execution time for

various population size, in PSO. 95

5.1 Impact of football games on traffic congestion in four one-hour time win-

dows before football games: (a) from 4 hours to 3 hours, (b) from 3 hours

to 2 hours, (c) from 2 hours to 1 hour, (d) from 1 hour to 0 hour. 104

5.2 Overall workflow of the non-recurring congestion identification system . . . 108

5.3 Our proposed convolutional neural network (CNN). 111

xiii

5.4 An example of the one-hot encoding format. Event labels are encoded using

9 classes: (1) first digit represents whether the traffic condition belongs to

recurring congestion or non-recurring congestion, (2) if it’s non-recurring

congestion, the next 8 digits represent 8 time windows before and after

events. 113

5.5 Receiver operating characteristics (ROC) curve analysis on the prediction

threshold. 114

5.6 Experimental scenarios and their coverage areas: (1) detecting NRC caused

by football games, (2) detecting NRC caused by hockey games, (3) detect-

ing NRC caused by traffic accidents. 115

xiv

CHAPTER 1

INTRODUCTION

In 2007, for the first time in world history, the global urban population exceeded the

number of people living in rural areas [1]. From 2010 to 2050, this population is expected

to grow from 3.5 billion to 6.3 billion, which is an 80% percent growth [2]. With popula-

tion booming and growing urbanization, urban mobility, which involves the movement of

people, vehicles, and data in the city, faces increasing pressure regarding accessibility and

sustainability. Urban mobility has become plagued with issues including traffic conges-

tion and transit delays. Because of traffic congestion, people in the United States traveled

an extra 6.9 billion hours and purchased an additional 3.1 billion gallons of fuel in 2014,

resulting in extra time and fuel cost of $160 billion [3].

Transportation infrastructure is a complex human cyber-physical system that is cur-

rently facing significant challenges in many around the world. The problem emanates from

the increased congestion, which results in large-scale inefficiencies, including significant

personal, health and environmental costs. The traditional solution for cities to improve

urban mobility is to build more infrastructure (e.g., roads, subways, etc.) and add more

transportation services (e.g., bus routes, service hours, etc.), which can be very expensive.

For example, it is estimated that constructing a two-lane undivided road in urban areas will

cost between $2 and $5 million per mile [4]. In 2017, Nashville unveiled a mass transit

plan that calls for $5.4 billion to build an ambitious light system that includes new and

expanded light rail, commuter rail and bus rapid transit. However, the proposal offers a 25-

year plan, which is a long period for the completion of construction. It is expected that the

renewal of old infrastructure and expansion of new infrastructure will result in trillions of

dollars in the investment over the coming decades [5]. Moreover, because of the horizontal

growth of urban road networks and the increasing costs to urban core, residents are pushed

1

out of the suburban areas and need to travel longer distances to their destinations. For ex-

ample, Figure 1.1 illustrates the daily travel demand distribution from home to work for

employees of a major employer in Nashville. The steady development of urban infrastruc-

ture increases the complexity of multi-modal traveling, route planning, and the uncertainty

of traffic accidents and travel delays on the roads.

Figure 1.1: The daily travel demand distribution from home to work of a major employer’s
employees in Nashville.

There have been a number of transportation revolutions in history, mostly caused by

major advances in transport technologies [6]. The most recent one is driven by the concepts

of Smart City and Internet of Things (IoT) 1. Various sensor devices are being developed

and deployed with a wide range of research and operational objectives in the urban envi-

ronment. It is estimated that 8.1 billion connected IoT units were in use in 2017, which is a

31% increase from 2016 [7]. As illustrated in Figure 1.2, these units generate an enormous

1The Internet of things (IoT) is the network of computing devices embedded in everyday objects, which
enables these objects to connect and exchange data.

2

amount of data to serve different applications in the transportation domain, such as weather

forecasting, traffic monitoring, vehicle locating, travel demand estimating, etc. The expo-

nential growth of data provides opportunities for urban mobility systems. Instead of relying

on individual or several limited data sources, city planners can gain in-depth knowledge of

the mobility systems by aggregating multiple data sources and applying advanced analytic

techniques such as machine learning and data mining. For example, traffic flow data and

event information can be combined together to explain the root causes of anomalous con-

gestion in the city [8, 9, 10]. City planners can also identify the bottlenecks from historical

data and make robust plans about vehicle dispatching, route designing to reduce the uncer-

tainty that operations in the real-world deviate from the schedule.

Figure 1.2: The sensor data that needs to be classified, structured and managed for various
smart city applications are heterogeneous and in large scale.

The data also creates robustness challenges for urban mobility systems. Sensors are

prone to failures. For example, a survey found that, in 2013, one-third of 27,000 traffic

sensors on California Highways were off-line [11]. Dysfunctional sensors result in erro-

neous and missing data issues, which reduce the performance of services that rely on the

data. Moreover, urban data can suffer from sparsity issue. There is a spatio-temporal un-

certainty of when and where the data is available from the mobile sensors. For example,

automatic vehicle location (AVL) and automatic passenger counter (APC) systems can pro-

3

vide real-time bus data for at-stop displays [12], bus time prediction [13, 14, 15], schedule

planning optimization [16, 17], real-time control strategies [18, 19], etc. But in some low-

density areas, the low frequency of bus trips makes the data too sparse to provide useful

information. Sensors can be expensive for large-scale deployment. For example, the induc-

tive loop surveillance, which is usually installed at intersections to track traffic condition,

cost over $800 per unit [20] in 2013. The high cost makes it impossible for these types of

units to be installed on all road intersections of a city.

Open Problem⇒ Building a data-driven transit system to improve the perception

of public transit by integrating data mining and machine learning techniques. Cities

around the world are working on various smart city projects to establish replicable, scal-

able and sustainable solutions to the urban mobility issues. For example, led by National

Institute of Standards and Technology (NIST), the Global City Teams Challenge (GCTC)

program attracts over 100 cities and communities globally to collaboratively work on smart

city projects [21], and transportation is one of the most important topics. Since the tradi-

tional way of building infrastructure and services can be expensive and time-consuming,

this research focuses on applying model-driven and data-driven algorithms and techniques

to improve the efficiency, effectiveness, and robustness of the existing urban mobility sys-

tems. The human-integrated nature of the transit systems allows the communities to go

beyond the traditional mechanisms of adding infrastructure which is often expensive and

difficult to build, and to embrace data-driven smart solutions that focus on providing a ro-

bust decision support system, which can enable humans to use the system more efficiently.

Furthermore, these smart solutions can help the stakeholders adjust the parameters of the

transportation system, making it more robust and efficient.

1.1 Understanding the Challenges

In this section, we discuss the key challenges for building a data-driven transit system,

which arise due to the heterogeneity, sparsity, and noise in the data collected in the urban

4

environment. As discussed in the previous sections, the mobility in the urban environment

is susceptible to many internal and external factors. The heterogeneity in problem domains,

applications, and hardware introduces significant uncertainty and complexity in modeling,

predicting and optimizing the mobility of people and vehicles.

1.1.1 Challenge 1: Handling Sparsity and Quality Issues in Data

Driven by the concepts of Smart City and IoT, various sensors of distributed systems

are being developed and deployed on vehicles, such as Road-Side Units (RSUs) and sta-

tions. In modern cities, numerous Wireless Sensor Networks (WSNs) have appeared in

different sub-domains of urban mobility systems, such as traffic monitoring, transit vehi-

cle tracking, passenger counting, etc. Due to the domain- and device-specific constraints

and requirements, these sensors have different features, accuracy, and energy consumption

level, and they show considerable heterogeneity in data format and sampling rates. Some

mapping and integration mechanisms are needed to synchronize the received data in terms

of unit, time and location. Collecting data for the entire city makes the datasets very large

and introduces more scalability difficulty.

Since the availability of sensors differs spatially and temporally, data sparsity is one of

the biggest issues. Sensors can be expensive, and the process of static sensor deployment is

time-consuming, which limits the number of sensors that are usable on the city scale. For

low-density cities, deploying sensors all over the city is beyond budget. Instead of using

static sensors, some novel analytic services rely on crowd sensing that collects data directly

from vehicles and end users, e.g., using embedded sensors in mobile phones. The mobility

of users introduces a significant uncertainty of when and where the user data is collected

and uploaded. In the transit domain, the data from automatic vehicle locators (AVLs) on

buses is a popular resource for tracking transit delay and traffic congestion. However, for

cities where the frequency or coverage of bus routes is low, the data sparsity issue is severe.

The data sparsity issue is one of the main challenges for data aggregation and analytics.

5

Figure 1.3: MTA provides transit schedule and status update to commuters in three terms
(i.e., long-term, short-term and real-time) to help them plan transit trips.

Furthermore, the urban data suffers from integrity issues. Data can be missing, dupli-

cated, and contains anomalies. For example, sensors used in traffic monitoring are prone

to anomalies and failures [22, 23]. Faulty data without proper cleaning will lead to the

inferior performance of systems using the data. Even though some techniques have been

developed in the related area, it remains a challenge to detect faulty data quickly without

high false positive (FP) and false negative (FN) rates.

1.1.2 Challenge 2: Analyzing and Predicting for Multiple Timescales

In transit systems, different stakeholders typically have various interests. From the

perspective of city planners and MTA engineers, they need to analyze the long-term and

short-term travel demand and performance patterns in order to better design and optimize

the transit systems in various metrics, such as on-time rates, passenger waiting, and transfer

time, etc. For residents and commuters, they need predictive information in advance for

trip planning and real-time updates when taking transit trips. These requirements motivate

advanced data-driven transit analytics in multiple timescales (illustrated in Figure 1.3).

The on-time performance of transit networks, which is mostly reflected in how much

the actual travel time differs from the scheduled time, has a great impact on the choices

6

of travelers. For example, because of the low cost of deployment and operation, as well

as relatively high capacity, the bus is usually the only transit system in many small and

mid-size cities. However, unpredictability is a major issue that prevents people from taking

buses [24]. Less public transportation use is expensive for society. Parking private cars

wastes space, and private transportation increases green gas emissions and road congestion.

The traditional way to improve mobility performance is to add new infrastructure. But it’s

not always possible because there are various infrastructure constraints, like limitations of

population density and construction cost.

Urban mobility is based on a complex transportation system which consists of multiple

modes, routes and trips. These modes interacting with each other introduce great internal

uncertainty factors. For example, the delay of one trip often has a cascading effect on the

next one. There are also many external factors affecting the actual mobility of vehicles and

leading to delay: (1) traffic congestion, (2) weather condition, (3) special events like sports

games, concerts, and (4) travel demand. The substantial impact of arrival delay (e.g., con-

sequent bus trips in a block sometimes share the same vehicle, so the delay of the previous

trip will cause departure delay of next trip) is a major internal uncertainty factor and was

found to have a substantial impact on commuter satisfaction [25]. Systematically model-

ing the uncertainty sources in urban mobility, identifying the hidden patterns in historical

data, and descriptively and predictively estimating the actual mobility for the future remain

research challenges.

Additionally, developing an effective short-term prediction for transit systems is cur-

rently an open problem to solve. Route segments typically have different delay patterns and

are affected by the contextual factors in varying degrees (see Section 3.4.3.1). Technically,

multiple historical models can be built for different contextual features. However, since

there are so many event types and their impacts on transit delay interact with each other

and have varying spatio-temporal characteristics, advanced prediction models are needed

to effectively integrate all contextual features. Additionally, due to the limited budget and

7

computation resources, it may not be feasible to create and train a single prediction model

for each separate segment in practice because of the high computation time.

1.1.3 Challenge 3: Detecting Contextual Anomalous Operations in Transit Networks

Figure 1.4: Nashville traffic congestion patterns on two time windows: (a) morning peak
hours on Sept. 1, 2017 between 7 AM and 9 AM, (b) evening peak hours on Sept. 1, 2017
between 4 PM and 6 PM.

The anomalies that we consider are traffic congestion and severe transit delay. Traffic

is probably the most important data in urban mobility systems. Wrong traffic information

will result in low-performance of many mobility services, such as arrival delay predic-

tion and on-time performance optimization. Traffic congestion in urban areas has been a

significant issue in recent years. Studies have been conducted to explore the different pat-

terns of congestion [9, 26, 27]. Congestion can be classified as recurring congestion and

non-recurring congestion [28] according to their causes and frequencies. Recurring con-

gestion is closely related to peak hours, time in the day, weekdays, and seasons [9, 29, 26],

while non-recurring congestion is caused by accidents, roadwork, special events, or adverse

weather [27, 30].

8

Figure 1.4 illustrates the traffic congestion patterns in two time windows (the speed loss

of a road segment is defined as the percentage of speed decreased from the speed limit).

Existing work usually treats traffic congestion as an independent spatio-temporal fragment

for one road segment in one time period [31, 32]. A congestion pattern will be more

meaningful if investigated among several congested road segments that are spatially and

temporally related. Many studies focus on recurring congestion, but very few investigated

the non-recurring congestion, even though non-recurring congestion has a severe impact

[33, 27, 30]. Moreover, traffic patterns are actually aggregated results of many contextual

and environmental factors (e.g., time, weather, events, etc.). It still remains an open chal-

lenge to utilize the rich urban sensor data to explore the root causes of traffic congestion,

especially the non-recurring ones. Furthermore, modeling the historical traffic patterns is

not enough — it will be more helpful if the traffic congestion for future events can be

accurately predicted.

1.2 Overview of the Research

Given the background, emerging trends and key research challenges, we are going to

present an overview of the proposed research of how algorithms and techniques can be

utilized to solve the challenges identified in Section 1.1 to improve the robustness of ur-

ban mobility systems. We develop a unique application platform called transit-hub that

enables (1) integration of spatially and temporally distributed sensor streams, (2) integra-

tion of simulation-based decision support systems, and (3) development and execution of

experiments to understand how advanced decision support tools improve the utilization of

the transportation infrastructure.

Table 1.1 shows the challenges and corresponding solutions with section locations in

the research. An integrated view of this research is illustrated in Figure 1.5, which includes

three main modules: (1) context-sensitive predictive mechanisms for long-term, short-term

and real-time delays, (2) optimization algorithms for public transit schedules considering

9

Figure 1.5: An integrated view of the research

seasonal delays, and (3) deep neural networks for context-aware anomaly detection.

Contribution 1: Robust arrival delay prediction models that solve data sparsity issue,

and a multivariate predictive model to explore the significance of contextual predic-

tors

To address the heterogeneity and sparsity issues of sensor data, we propose a robust

urban data sensing mechanism that collects sensor data from multiple sources, stores the

data in a central MongoDB database, and processes the raw sensor data to solve the data

sparsity issue. The data store enables continuous data collection and aggregation, spatio-

temporal mapping, surrogating data sensing, and accurate anomalous data identification.

The data store provides a robust foundation for improving the urban mobility.

We provide an algorithm that generates shared bus route segment networks from stan-

dard General Transit Feed Specification (GTFS) datasets. Using shared route segment

networks, we present a better real-time delay prediction model that combines clustering

analysis and Kalman filters and uses real-time data from shared route segments. We show

10

Table 1.1: Key research challenges and corresponding solutions with section locations in
the research.

Challenge Approach Section

Handling Data
Sparsity & Quality Issues

Shared Route Segment Networks Section
3.4.2.1

Multi-task Neural Networks Section
3.4.3.3

Data Augmentation by Crossover Opera-
tor

Section
5.5.2

Analyzing and Predicting
for Multi-timescales

Seasonal Variation Mitigation by Cluster-
ing

Section
4.4.1

Timetable Optimization by Greedy and
Genetic Algorithms

Section
4.4.2

Real-time Prediction by Clustering and
Kalman filters

Section
3.4.2

Microservice Architecture for Back-end
Analytics

Section
3.5

Detecting Contextual
Anomalies

Feature Extraction by Image Representa-
tion

Section
5.5.1

Classification by Convolutional Neural
Networks

Section
5.5.3

the efficacy of our real-time delay prediction model. When predicting the travel time delay

of segments 15 minutes ahead of scheduled time, our model reduced the root-mean-square

deviation (RMSD) by about 30% to 65% compared with a SVM-Kalman model [15]. In

order to predict the transit delay in the short-term when no real-time transit and traffic

data is available, we propose a generic tool-chain that takes contextual information (e.g.,

scheduled events and forecasted weather conditions) as inputs and provides service alerts

as outputs. Multi-task neural networks are trained using historical GTFS feeds as well as

contextual information. Experimental evaluation shows that the proposed tool-chain is ef-

fective at predicting severe delay with a relatively high recall of 76% and an F1 score of

55%. The details are presented in Chapter 3.

We also propose an online architecture called DelayRadar. The novelty of DelayRadar

lies in three aspects: (1) a data store that collects and integrates real-time and static data

from multiple sources, (2) a predictive statistical model that analyzes the data to make pre-

11

dictions on transit travel time, and (3) a decision-making framework to develop an optimal

transit schedule based on variable forecasts related to traffic, weather, and other impactful

factors. This research focuses on identifying the model with the best predictive accuracy to

be used in DelayRadar. According to the preliminary study results, we are able to explain

more than 70% of the variance in the bus travel time, and we can make future travel pre-

dictions with an out-of-sample error of 4.8 minutes with information on the bus schedule,

traffic, and weather.

Contribution 2: Optimizing the performance of transit networks under uncertainty

that comes from many internal and external factors

To address the challenges of reducing the uncertainty that the actual performance of

the transit network differs from the schedules, an unsupervised mechanism is proposed to

improve the on-time performance of bus services with fixed schedules at the re-planning

stage. The mechanism learns how timetables can be divided into seasonal schedule by ap-

plying outlier analysis and clustering analysis on bus travel times. The feature vectors we

use include mean, median, and standard deviation of the historical travel time aggregated

by route, trip, direction, timepoint segment, and month. In order to optimize timetables

for a month group, we present a greedy algorithm, a genetic algorithm as well as a parti-

cle swarm optimization algorithm to optimize the scheduled arrival and departure time at

timepoints to maximize the probability of bus trips that reach the desired on-time range.

Sensitivity analysis on hyper-parameters is also presented to choose the best settings. Sim-

ulations show that using the proposed genetic algorithm with clustering improved the orig-

inal performance from 57.79% to 68.93%. Details can be found in Chapter 4.

Contribution 3: Modeling traffic patterns and transit delay by Considering Contex-

tual Information to identify anomalies in the system

The third contribution of this research includes an image-based deep learning model

using contextual event information to identify non-occurring traffic congestion and classify

the causes of traffic anomalies. Non-recurring traffic congestion is caused by temporary

12

disruptions, such as accidents, sports games, adverse weather, etc. We use data related to

real-time traffic speed, jam factors (a traffic congestion indicator), and events collected over

a year from Nashville, TN to train multi-layered deep neural networks. The traffic dataset

contains over 900 million data records. The network is thereafter used to classify the real-

time data and identify anomalous operations. Compared with traditional approaches of

using statistical or machine learning techniques, our model reaches an accuracy of 98.73

percent when identifying traffic congestion caused by football games. Our approach first

encodes the traffic across a region as a scaled image. After that the image data from dif-

ferent timestamps is fused with event- and time-related data. Then a crossover operator

is used as a data augmentation method to generate training datasets with more balanced

classes. Finally, we use the receiver operating characteristic (ROC) analysis to tune the

sensitivity of the classifier. We present the analysis of the training time and the inference

time separately.

Although the proposed solution will be demonstrated to solve the problem of identify-

ing and predicting traffic congestion patterns, the core idea and mechanism can be applica-

ble to other problem domains (such as smart grid, river water management, etc.), as long

as the collected data has spatio-temporal connections and can be represented using single-

or multi-dimensional images.

Dissertation Outline. The remainder of the dissertation is organized as follows: Chap-

ter 2 introduces the basic terminology and concepts involved in data-driven transit systems;

Chapter 3 presents real-time, short-term, and long-term delay prediction mechanisms that

solve data sparsity issues as well as a multivariate predictive model that investigates the

significance of bus delay predictors; Chapter 4 presents an unsupervised bus timetable op-

timization approach that integrates clustering analysis, genetic algorithm optimization, and

sensitivity analysis; Chapter 5 proposes an image-based deep learning model for identify-

ing non-recurring traffic congestion and inferring the causes; Chapter 6 presents concluding

remarks and future work.

13

CHAPTER 2

BACKGROUND ABOUT DATA-DRIVEN TRANSIT SYSTEMS

In this chapter, we first introduce the basic terminology and concepts involved in transit

systems. Readers who are familiar with the terminology and concepts may skip this chapter.

2.1 Terminology and Concepts

There are some basic terminology and concepts that define public transportation sys-

tems:

• Route. A bus route has multiple trips that depart at different times of the day. Each

trip has the same scheduled time at different timepoints along the route.

• Stop. A stop is a bus station that is setup on a bus route. Multiple routes may use the

same stop.

• Timepoint. A timepoint is a bus stop that is designed to accurately record the times-

tamps when buses arrive and leave the stop. Bus drivers use timepoints to synchro-

nize with the scheduled time. If a bus arrives early, it will not depart until the sched-

uled time. If a bus arrives late, it will depart immediately. Not all stops are time-

points. Usually a bus route contains a handful of timepoints.

• Trip. A trip is a sequence of two or more stops that occurs along a route. Buses on a

trip are always scheduled to depart at the same time on different service days.

• Block. A block consists of a single trip or many sequential trips made using the same

vehicle. The group of trips share the same service day and block.

14

Figure 2.1: Timepoints on bus route 5 in Nashville

These concepts are illustrated in Figure 4.6. It shows route 5, a major bus route that

connects downtown Nashville and the southwest communities in Nashville. The route

contains 6 timepoints (i.e., MCC5 5, WE23, WE31, HRWB, BRCJ, and MP&R) and 5

segments between the 6 timepoints. A bus trip that departs at 11 AM from MCC5 5 and

arrives at 11:46 AM to MP&R, and another bus trip that departs at 12:02 PM from MP&R

and arrives at 12:50 PM to MCC5 5 belong to the same block, since they are designed to

use the same bus.

2.2 Data Sources

We have been collaborating with the Nashville Metropolitan Transit Authority (MTA)

for accessing the static and real-time transit data all across the Nashville city. Since October

2016, we have been continuously collecting and storing real-time traffic data from HERE

API [34] for all major roads in the Nashville area. In order to explore the impact of con-

textual events on urban mobility, we also collect the data about incidents and sports games.

We cooperate with the Nashville Fire Department [35] to access their incident datasets,

15

and manually collect the information about sports games from the web. As illustrated in

Table 2.1, the details of the datasets that we have integrated into the system are as follows:

• Static GTFS data sets: Static bus schedules and associated geographic information

in the General Transit Feed Specification (GTFS) [36] are collected. The data sets

include routes, trips, stops, stop times and physical layout.

• Real-time GTFS data feed: Real-time transit fleet feed in GTFS real-time [37] format

that contains three types of data: service alerts, trip updates and vehicle positions.

The data source of the feed includes streaming Automatic Vehicle Location (AVL)

data on operating buses.

• Time point data sets: Time point Datasets are the historical bus data at time points,

including route ID, trip ID, drive ID, actual departure and arrival time, etc. This data

is not available in real-time and is only made available at the end of the month.

• Traffic data sets: The traffic dataset provides the real-time traffic information on

road segments, such as speed limit, real-time speed, jam factor (JF), etc. The dataset

contains historical traffic data for 3049 TMC road segments in the Nashville area.

The traffic data coverage is illustrated in Figure 2.2.

• Sports game data sets: The sports game dataset contains the operation information

about sports games, such as game type, start and end time, attendance, location, etc.

• Incident data sets: The incident dataset provides the detailed records of incidents and

the responding vehicles. For each incident, it provides the coordinates, incident type,

alert time, vehicle arrival and departure time, weather condition, etc.

2.3 Data Management

Data Collection. We have to handle data from each source differently as they have

different update rates and formats. For example, (i) Bus schedule data (static GTFS) is

16

Table 2.1: Real-time and static datasets collected in the research.

Format Source Updating
Interval

Size Date Range

Bus Sched-
ule

GTFS Nashville
MTA

Every public
release

134 MB 09/2015 -
present

Real-time
Transit

GTFS-
realtime

Nashville
MTA

Every
minute

723 GB 02/2016 -
present

Timepoint Excel sheet Nashville
MTA

Every month 300,000 en-
tries/month

04/2016 -
07/2017

Weather JSON DarkSky
API

Every 5 min-
utes

82.4 MB 03/2016 -
present

Traffic TMC HERE API Every
minute

245 GB 10/2016 -
present

Accident JSON Nashville
Fire Depart-
ment

Manually 387 MB 03/2014 -
03/2017

Sports
Game

JSON ESPN and
others

Manually 28 Games 10/2016 -
01/2017

Figure 2.2: The colored road segments show coverage of the collected traffic data in
Nashville.

17

updated only when MTA modifies its bus routes or schedules; (ii) Historical time point

data set is collected by MTA at the end of the month and is then manually transferred

and imported into our MongoDB database. On an average, we collect approximately three

hundred thousand entries each month; and (iii) For the real-time transit data, our back-end

server requests the data from these real-time feeds every minute and stores the responses in

the database (see Table 2.1).

Data Cleaning. Data cleaning is a crucial step for data pre-processing to handle the

following issues:

• Duplicated data. Detecting and eliminating duplicated data is one of the major tasks

for data cleaning. We compare and remove data with the same time stamps and

key-value pairs.

• Data with logistic errors. This type of data exists mainly in the real-time bus location

data. To deal with it, for example, we remove the records where a bus’ distance from

a stop changes too fast, or if it moves in the wrong direction. This is done using some

custom filters created by us.

• Missing data. This can happen for various reasons, which are: (a) operational dis-

ruptions due to service alerts, (b) hardware failures, or (c) data transmission issues.

The missing data is filled in using linear interpolation on the sampled data.

Data Storage. The large scale of the historical and real-time transit data that are ac-

cumulated over time requires efficient storage and management methods. Also, the stored

data must be accessible to multiple clients in the system at the same time. To meet this scale

requirement, we employ JSON as the data structure and MongoDB [38] for data storage.

MongoDB is a distributed NoSQL database that can efficiently store and query data on the

scale of terabytes.

18

CHAPTER 3

CONTEXT-SENSITIVE PREDICTIVE MECHANISMS FOR LONG-TERM,

SHORT-TERM, AND REAL-TIME DELAYS IN TRANSIT NETWORKS

Unpredictability is one of the top reasons that prevent people from using public trans-

portation. In this chapter, we describe a system in use in Nashville and illustrate the analytic

methods developed by our team. These methods use both historical as well as real-time

streaming data for online bus arrival prediction. The historical data is used to build classi-

fiers that enable us to create expected performance models as well as identify anomalies.

These classifiers can be used to provide schedule adjustment feedback to the metro transit

authority. We show how these analytic services can be packaged into modular, distributed

and resilient micro-services that can deployed on both cloud back ends as well as edge

computing re- sources. We also propose a generic tool-chain that takes standard General

Transit Feed Specification (GTFS) transit feeds and contextual information (recurring de-

lay patterns before and after big events in the city and the contextual information such as

scheduled events and forecasted weather conditions) as inputs and provides service alerts

as output. Particularly, we utilize shared route segment networks and multi-task deep neu-

ral networks to solve the data sparsity and generalization issues. Experimental evaluation

shows that the proposed toolchain is effective at predicting severe delay with relatively

high recall of 76% and F1 score of 55%. The content of this chapter has appeared in two

conference papers [39, 40], a book chapter [41], and a journal paper [42].

3.1 Problem Overview

Emerging Trends. Public transit ridership in the United States increased by 37% be-

tween 1995-2015, which is roughly twice as much as the country’s population growth

19

(21%) in the same years [43]. In 2013 alone, there were 10.7 billion trips taken on U.S.

public transportation [44]. Meanwhile, people in the U.S. have been reducing the use of

personal vehicles [45]. Public transportation has become an essential part of communities

and cities.

Bus services, which is one of the most important segments of public transportation, are

vulnerable to delays and congestion due to traffic congestion, weather conditions, special

events, etc. Travel and arrival time variation was found to have a substantial impact on com-

muter satisfaction [25]. Moreover, people’s tolerance to errors in bus time predictions is

quite low [46]. Besides lack of cross-town routes and low service reliability, unpredictabil-

ity is one of the top reasons that prevent people from using public transportation 1 [25, 46].

The variance of travel time on a bus route can very high due to a number of reasons, in-

cluding passenger load and unload times, traffic congestions, weather conditions, events

such as football and hockey games. For example, Figure 3.1(a) shows a bus route segment

on route 3 departing from downtown; Figure 3.1(b) illustrates the travel times of a bus trip

(departs at the same time of day) on the same bus route segment for six months. Since

commuters want to arrive on time, they have to compromise with the unreliable transit ser-

vice and accommodate some extra time in their schedule, which causes inconvenience and

dissatisfaction to bus passengers.

Providing real-time bus schedules reduces this uncertainty and improves passenger ex-

perience and increases ridership. A direct benefit of increased ridership on public transport

is the reduced use of personal vehicles and hence reduction in both traffic congestion and

greenhouse emissions. Recently, transit agencies have been integrating real-time sensors

into public transit systems. A number of technological systems have been developed by

academic researchers and commercial companies to utilize this real-time data. For in-

stance, AVLs (Automatic Vehicle Location) and APCs (Automatic Passenger Counter) can

provide real-time data such as vehicle travel time, arrival and departure time, and passen-

1In 2015, a mass transit survey from Nashville, USA revealed that people who regularly use the transit
system focus mostly on creating a system in which buses arrive on time [47].

20

Figure 3.1: (a) A route segment on bus route 3 leaves downtown; (b) The variance of actual
travel time on a bus route segment is very high in time period between Sept. 1, 2016 and
Feb. 28, 2017.

ger boarding counts. This data can be used for at-stop displays [12], bus time prediction

[13, 14, 15], schedule planning optimization [16, 17], real-time control strategies [18, 19],

etc.

Research Gap The real-time prediction mechanisms have some open problems. Accu-

rate real-time bus arrival and departure data that many prediction systems use is not always

available. For example, in Nashville only special bus stops called timepoints are equipped

with sensor devices that record exact times. There are over 2,700 bus stops all over the city

but only 573 timepoints. In addition, the timepoint dataset is not real-time. It is available at

the end of each month when the Nashville Metropolitan Transit Authority (MTA) summa-

rizes and analyzes the historical data. APCs can help provide accurate timing of when a bus

stops at a transit stop, which can be used in analysis. On the contrary, AVLs do not provide

that. Many transit systems, including the city of Nashville, do not have APCs on buses and

use automatic vehicle location (AVL) data to estimate the arrival and departure time at bus

stops and use the estimated data for bus delay prediction in real-time. The issue with this

approach is that the lack of quality data results in worse predictive analytic performance.

21

Even for systems with APCs, real-time sensor systems can have many problems in the real

world [48, 49], due to reasons, such as low networking bandwidth and delays in uploads.

As a result, often GPS position data is noisy. A typical mechanism for handling noise is to

normalize the data. However, normalization requires large data sets, often clustered around

transit routes. This is helpful because the transit data of preceding buses may be used to

create the models for the current trip on that route. However, if a city does not have high

frequency operations across its routes, then such data is not available.

A number of strategies have been used to improve transit vehicle performance in the

long-term. For example, controlled time points [50] have been used to distribute the avail-

able slack time across the route. Periodic schedule update [51, 52, 53] and dedicated bus

travel lanes [54] have also gained attention. Commuters typically rely on timetables that

are scheduled according to long-term patterns, and delay status updated in real time to plan

transit trips. However, for short-term transit scheduling (e.g., one day before the travel

day) when there is no real-time data available yet, commuters have no clue how to choose

a proper route and departure time, and it’s even more challenging for those who do not

take public transportation on regular basis. It has been observed that there are recurrent

traffic congestion [55] and transit delay patterns associated with events happening in the

city. For example, for a given day with a big football game, the bus routes that bypass the

area around the stadium are more likely to have a more significant delay than usual. Such

contextual information (e.g., scheduled events and weather forecast conditions) could be

utilized to get a better estimation of the expected delay.

Most of the prior research work is focused on long-term delay pattern analytics [56, 57,

58, 59] and real-time delay prediction [60, 15, 15, 61, 62]. Long-term analytics provides

statistical decision supports such as the mean and confidence interval of route segment de-

lay, which are useful for city planners and metro transportation authority (MTA) engineers

to gain a deep insight into the actual transit performance for scheduling and planning. On

the other hand, real-time delay prediction utilizes real-time data such as trip updates and

22

vehicle locations to inform engineers and commuters on the expected arrival time at bus

stops. However, there are still gaps in effective prediction mechanisms that work in the

short-term phase (i.e., hours or days ahead of the scheduled travel time when real-time data

is unavailable) to help commuters make decisions by informing of possible severe delay.

Developing an effective short-term prediction for transit systems is currently an open

problem to solve. Firstly, route segments typically have different delay patterns and are

affected by the contextual factors in varying degrees (see Section 3.4.3.1 and Figure 3.9).

Technically, multiple historical models can be built for different contextual features. How-

ever, since there are so many event types and their impacts on transit delay interact with

each other and have varying spatio-temporal characteristics, advanced prediction models

are needed to effectively integrate all contextual features. Additionally, due to the lim-

ited budget and computation resources, it may not be feasible to create and train a single

prediction model for each separate segment in practice because of the high computation

time. Furthermore, the transit frequency in mid-sized cities like Nashville is relatively low

compared to the large metropolitan areas. Therefore, there is never enough data to train

the prediction models and results in data sparsity issues. Also, data samples with known

contextual information are rarer compared with other samples2 The biased datasets will

produce challenges if we try to use regression or random forest based approaches.

Solution Approach. To address the lack of quality data for transit data analytics, yet

make effective predictions for bus arrivals, we surmise that the Dynamic Data Driven Ap-

plications Systems (DDDAS) paradigm [63] holds promise as a solution approach. In

DDDAS, both real-time and/or historical data is used to learn the model of the system

that must be controlled, and subsequently a decision support system uses these learned

models to make informed decisions and control the system in a feedback loop. This is the

approach we utilize in this chapter. It integrates historical and streaming real-time bus lo-

cation data from multiple routes for short-term delay prediction as well as long-term delay

2There are a limited number of football and hockey games for example.

23

Figure 3.2: The proposed mechanisms provide context-sensitive analytics and predictions
for three terms (i.e., long-term, short-term, and real-time) to help commuters plan transit
trips.

pattern analytics. We also use the data feedback loop to provide results to city planners and

end users.

Additionally, a short-term transit decision support system is being proposed that pre-

dicts severe delay days ahead to help users to schedule transit plans. Compared to providing

just static schedules or historical patterns, the context-aware short-term delay prediction

model can identify the severe delay that does not follow normal patterns days ahead of

time and help commuters choose optimal routes, which gives them more confidence when

choosing the public transportation. This system is being currently integrated into our transit

decision support system called Transit-Hub [39, 41].

This chapter presents our research work on Transit-Hub and provides the following

contributions to the study of real-time, short-term and long-term predictive analytics for

public transportation (the mechanisms and solutions are illustrated in Figure 3.2):

24

• We provide an algorithm that generates shared bus route segment networks from

standard General Transit Feed Specification (GTFS) datasets.

• We present a better real-time delay prediction model that combines clustering analy-

sis and Kalman filters and uses real-time data from shared route segments. We show

the efficacy of our short-term delay prediction model. When predicting the travel

time delay of segments 15 minutes ahead of scheduled time, our model reduced the

root-mean-square deviation (RMSD) by about 30% to 65% compared with a SVM-

Kalman model [15]. The SVM-Kalman model that we used for comparison is a

dynamic prediction model that combines SVM and Kalman filters, two of the most

widely used models in bus delay prediction [64, 13, 60, 65].

• A generic tool-chain that takes transit feed (in standard and real-time GTFS format),

forecasted weather condition, and time as input, is developed to provide expected de-

lays and service alerts as output for short-term. A multi-task deep neural network

architecture is presented that consumes contextual information in the augmented

datasets and makes delay predictions for nearby segments in a bounding box all at

once. A threshold-based mechanism is utilized to produce service alerts. Compared

with single networks, the proposed multi-task learning architecture not only takes a

shorter time to train but also reduces the risk of over-fitting to the limited training

data. Utilizing the contextual event and weather features improves the performance

of recall by 28% and F1 score by 13%.

• We illustrate how the analytical algorithms can be packaged into independently de-

ployable and self-contained micro-services.

• We describe how the system’s data feedback loop works to provide decision support

to city planners by assisting Metro Transportation Authority (MTA) in identifying

real-time outliers and optimizing bus timetables to improve bus services and avail-

ability.

25

Furthermore, we use the data collected over several months from one such transit sys-

tem and study the effect of weather and other covariates such as traffic on the transit net-

work delay. These models can later be used to understand the seasonal variations and design

an adaptive and transient transit schedule as part of future work. Towards this goal, we also

propose an online architecture called DelayRadar. The novelty of DelayRadar lies in three

aspects: (1) a data store that collects and integrates real-time and static data from multiple

data sources, (2) a predictive statistical model that analyzes the data to make predictions

on transit travel time, and (3) a decision-making framework to develop an optimal transit

schedule based on variable forecasts related to traffic, weather, and other impactful factors

(not covered in this chapter). This chapter focuses on identifying the model with the best

predictive accuracy to be used in DelayRadar. According to the preliminary study results,

we are able to explain more than 70% of the variance in the bus travel time and we can

make future travel predictions with an out-of-sample error of 4.8 minutes with information

on bus schedule, traffic, and weather.

3.2 Related Work and Challenges

3.2.1 Related Work about Bus Delay Prediction

Statistical Models. The basic average models directly use the average delay from his-

torical data as the estimated delay for future and are often constructed for performance

comparison purposes. For example, Jeong et al. [66] developed a basic average model

and found that the basic average model was outperformed by regression models and ar-

tificial neural network (ANN) models for bus arrival time prediction. The reason is that

the basic average models only use historical data and perform simple average analysis, the

model does not reflect real-time conditions and is limited by the consistency of route delay

patterns.

Many researchers have conducted studies that utilize both historical and real-time bus

26

data. Weigang et al. [67] presented a model to estimate bus arrival time at bus stops using

the real-time GTFS data. Their model contains two sub-algorithms to determine the bus

speed using the historical average speed and the real-time speed information from GPS.

Their main algorithm utilizes the calculated real-time speed to predict the arrival time. Sun

et al. [68] proposed a prediction algorithm that combines real-time GPS data and average

travel speeds of route segments.

Regression models are also used to explain the impact of variables for delay prediction.

Since the variables in transit systems are correlated [69], regression models are typically

limited to delay prediction. Patnaik et al. [70] presented a set of regression models that

predict bus travel times on a route segment. The data they used is real-world data (number

of passengers boarding, stops, dwell time and weather) collected by Automatic Passenger

Counters (APC) installed on buses. They also found that weather did not have a significant

effect on the prediction.

Kalman Filter Models. Kalman filters have been used widely for bus delay prediction

because of their ability to filter noise and continuously estimate and update actual states

from observed real-time data. Chien et al. [65] presented a dynamic travel time prediction

model that used real-time and historical data collected on the New York State Thruway

(NYST). Shalaby et al. [71] proposed a bus delay prediction model based on two Kalman

filter algorithms: one for estimating the running time and another for estimating the dwell

time at bus stops. Yang et al. [72] developed a discrete-time Kalman filter model to predict

travel time using collected real-time Global Positioning System (GPS) data. Bai et al. [15]

proposed a dynamic travel time prediction model that employed support vector machines

to provide a base time estimate and a Kalman filter to adjust the prediction using the most

recent bus trips on multiple routes.

Machine Learning Models. Artificial Neural Network (ANN) [73, 66, 60] and sup-

port vector machine (SVM) [64, 13, 60, 15] are two of the most popularly used machine

learning techniques in bus delay prediction. For example, Jeong et al. [74] developed an

27

ANN model for bus arrival time prediction using Automatic Vehicle Location (AVL) data.

Mazloumi et al. [75] used real-time traffic flow data to develop ANN models to predict

bus travel times. Yu et al [60] proposed a machine learning model that used bus running

times of multiple routes for predicting arrival times of each bus route and proposed bus ar-

rival time prediction models that include Support Vector Machine (SVM), Artificial Neural

Network (ANN), k-nearest neighbors algorithm (k-NN) and linear regression (LR).

3.2.2 Research Challenge 1: Handling Data Sparsity Issues

Prior work emphasized long-term and short-term transit data analysis and prediction.

However, most of them, as mentioned above, focused on a single route and few noticed

that many bus routes share segments with other routes. In 2011, Yu et al. [60] recognized

that the data from multiple routes could help to improve the delay prediction. In 2015,

Bai et l. [15] proposed a dynamic travel time prediction model that combines SVM and

Kalman filter using multiple bus routes data. Even though these two works proposed the

idea to solve sparsity issue, no automated mechanisms to identify shared route segments.

On the contrary, our approach provided an efficient algorithm that generates shared bus

route segment networks from standard General Transit Feed Specification (GTFS) datasets.

3.2.3 Research Challenge 2: Identifying the Temporal Aspects of Predictions

Many bus delay prediction techniques rely on recent travel time data to make predic-

tions for the future. But they do not describe methods to identify differences in the transit

delay data. When solving the shared-segment prediction problem, they only used the actual

travel time of preceding buses and did not consider the scheduled time difference of sepa-

rate bus routes. In fact, different bus routes usually have different travel demand and delay

patterns. Also, the existing models that included the data of all recent preceding buses may

contain outliers that should be excluded.

28

Furthermore, our experience tells us that transit delay models change over time. The

recent delay data may not share the same delay patterns and trends as the predicted time.

Our solution combines clustering analysis, which is an unsupervised learning method,

with Kalman filters. Travel time data instances are clustered into different groups according

to travel time and time in the day. Then the cluster of data whose centroid is closed to now

will be used and input to Kalman filter.

3.2.4 Research Challenge 3: Identifying the Significant Predictor Variables

The prior work in this area has been primarily focused on developing models for pre-

dicting delay as a short or long-term self-contained process. While some of the approaches

have studied the effect of traffic on the travel delay, to the best of our knowledge, the ef-

fect of other environmental variables and effect of local events has not been extensively

studied. Few studies explore and compare the significance of different factors on bus delay,

such as visibility, temperature, traffic speed, etc. They arbitrarily select attributes according

to the availability. Also, the selected attributes are assumed to be independent, but they are

correlated with each other.

The prior work in this area has been primarily focused on developing models for pre-

dicting delay as a short or long term self-contained process. While some of the approaches

have studied the effect of traffic on the travel delay, to the best of our knowledge the effect

of other environmental variables and effect of local events has not been extensively studied.

In this chapter, we present models to understand the effect of weather and traffic speed on

travel delays.

3.2.5 Research Challenge 4: Predicting Transit Delay in Short-term Using Predictive

Contextual Information

The number of available historical data samples for each transit route and segment

depends on the service frequency. However, compared to the large metropolitans, mid-

29

sized cities like Nashville suffer from data sparsity issue since the frequency of bus services

is relatively low. Furthermore, the availability of event information is also limited and

constrained by the manual data collection. This limitation of contextual information (games

for example) will result in biased training data, which makes the data sparsity issue worse.

Machine learning methods have demonstrated superior performance in the transit do-

main [15, 73, 66, 13, 60]. However, the machine learning models in those works were

trained separately for a particular metric by training a single model or ensemble models,

which may suffer from insufficient training data in reality. Training deep learning mod-

els will be more challenging since they have multiple hidden layers and there are much

more parameters to optimize. This often results in overfitting issues and make the models

difficult to generalize to new data.

To solve the challenges, we utilize a data augmentation structure called shared route

segment network [42], and adopt the idea of multi-task learning to develop multi-task deep

neural networks. Neural networks, which have been studied in many related work [66, 73,

60], are effective in prediction and have the potential to be trained online. Compared with

single models, our proposed multi-task neural networks can not only produce more data

for each task (i.e., predicting travel time and delay for a route segment) and are faster to

train, but also reduces the overfitting issues for individual tasks. The details can be found

in Section 3.4.3.

3.3 Data Feedback

In this section, we present the heterogeneous data sources that the system is using and

then describe how we integrate and manage the collected data.

This section shows how data feedback in the transportation Decision Support System

can be used to help metro transportation authority (MTA) to identify real-time outliers and

perform long-term delay optimization to improve bus services and availability.

Figure 3.3 illustrates the data feedback cycle. We utilize the multi-source data from

30

Figure 3.3: Proposed DDDAS loop in Transit-Hub transportation decision support system
between MTA, Transit-Hub and end users.

Nashville MTA to conduct real-time and long-term data analytics, and the results can be

sent back to them as feedback in different ways:

• Metro Transportation Authority (MTA). By doing long-term bus data analysis, our

models can find the delay patterns that are associated with seasons, day of the week,

and time of day. This feedback can be used by MTA to identify bottlenecks within

routes and adjust the bus timetable or route layout accordingly. Also, by tracking the

real-time bus data and comparing it with the historical delay patterns, we are able to

find the outlier trips that deviate from the normal ones, which will be used to inform

MTA to investigate and avoid these in the future.

• End Users. We are collecting anonymous usage and location data from application

users. This data can be used to provide an alternative real-time data source for buses.

If a user plans to take a bus that is full of people, the system can send notifications

to advise him/her to take some other bus or routes. In addition, it can also help

to optimize the bus route network and reduce rider walking distances as it shows the

origins of users to the bus stops and helps MTA to identify areas with low/high transit

service availability.

31

3.4 Our Approach

In this section, we present how we construct the long-term delay model, short-term

travel-time model and arrival delay prediction model. In particular, we address Challenge 1

by creating a shared route segment network and utilize real-time data from multiple routes.

3.4.1 Building Model for Analyzing Long-term Delay Patterns

The section describes a long-term analytics model that constructs historical bus delay

patterns at time points. In this model, clustering methods are applied to historical arrival

delay and travel delay data.

3.4.1.1 Clustering Analysis

For each weekday, K-means clustering algorithm [76] is used to obtain the cluster of

the delay data in accordance with the delay and time of the day by minimizing the within-

cluster sum of squares (WCSS).

argmin
S

k

∑
i=1

∑
x∈Si

‖x−µi‖2 (3.1)

where µi denotes the mean of all points in the cluster Si.

Silhouete analysis [77] is an approach to measure how close each point is to others

within one cluster.

s(i) =
b(i)−a(i)

max{a(i),b(i)} (3.2)

where for each data point i in the cluster, ai is the average distance between i and the rest

of data points in the same cluster, bi is the smallest average distance between data point i

and every other cluster, and s(i) is the Silhouete score. We calculate the silhouette scores

for 2 to 5 clusters derived from K-means algorithm to find the optimal number of clusters

with the lowest silhouette score.

32

Figure 3.4: Cluster historical delay data according to the delay and time in the day at time
point “HRWB” on route 3. The figure shows that there are two active delay patterns, one be-
fore and one after 2 PM. The blue dots are outliers identified by analysis in Section 3.4.1.3

The normal distribution of the clustered data helps to identify the typical delay patterns

of previous buses, which can be given to users when they want an estimate for a future

time, or if there is no real-time data available. The time point data is imported into the

database at the end of each month. Then the data is stored according to weekday. We

subsequently generate the clusters and normal distributions for all the route segments in

each group. Meanwhile, the clustered data and normal distributions are cached and stored

in the database. Thus, when we have to query the model, there is no need to run clustering

analysis again.

Example Consider a time point ’HRWB’ on route 3 in Nashville. The historical bus

arrival delay data we select is for Wednesday, outbound direction, between June 1 2016 and

June 30 2016 (for a total of 185 points). Figure 3.4 displays the delay data for a day during

that month. In the figure, there are two obvious groups (yellow and red), one is between

5 AM - 2 PM and the other one is between 2 PM and 12 AM. The two groups reveal that

there exist two different delay patterns which happen in the morning and in the afternoon

separately. This information can be provided to end users to help them plan trips.

33

3.4.1.2 Normality Test and Analysis

The analytics is based on the assumption that historical delay data has a normal distri-

bution [78]. In order to ensure this, we perform normality test on each cluster that we get

in the previous step. We can calculate the confidence interval for long-term delay analysis

from the distribution curve.

Figure 3.5: Distribution of the clustered historical delay data at time point “HRWB” on
route 3

Example These are the two normal distributions in Figure 3.5 that we obtain after per-

forming the normality test on the clusters generated from the data described in the previous

example. The cluster for the delay in the afternoon has a higher mean value (92.0 seconds

vs. 58.0 seconds) and a wider normal distribution curve, which indicates that buses on

route 3 are more likely to be on time in the afternoon. In the afternoon, the 95% confi-

dence interval of delay is between -60.4 seconds to 244.4 seconds while in the morning the

95% confidence interval of delay is between -73.5 seconds to 189.6 seconds (the negative

seconds mean the buses are predicted to arrive earlier than scheduled time).

34

3.4.1.3 Outlier Analysis

In order to identify outliers from historical bus data, the first step is to generate the

normal distribution for each of the clustered data groups described in the former sections.

Since for a normal distribution where µ is the mean value and σ is the standard devia-

tion, 95% of all data is within the confidence interval of [µ-2σ , µ+2σ], we define that

the outliers are the historical data with delay greater than µ+2σ or less than µ-2σ in the

distribution.

Example For the dataset mentioned in the previous two examples, there exist some

outliers (blue points) in Figure 3.4. These outliers belong to the two clusters obtained from

clustering analysis and are identified by outlier analysis. The outliers mostly emerged dur-

ing rush hours in the morning and in the evening. One hypothesis is that during rush hours,

there are more passengers and more traffic congestion on the route, which will increase the

boarding time at stops and travel time on the road. Since our back-end server is monitoring

the real-time transit feeds and in the meantime records real-time data, trips that have severe

outliers and do not fit in the typical delay pattern can be easily detected and used for further

investigation.

3.4.1.4 Bottleneck Identification

After mean delay patterns of all time points and all route segments are derived, we can

then identify the bottlenecks along the routes by using those patterns. This also helps so

that actions to optimize the route performance can be taken afterwards.

Timepoints
WE23 WE31 HRWB WHBG

Morning 116.90 127.71 93.14 443.52
Afternoon 121.03 146.28 114.48 545.49

Table 3.1: Mean value of the delay data distributions for 4 time points on route 3 in morning
and afternoon in June.

There are 4 time points “WE23”, “WE31”, “HRWB” and “WHBG” on route 3 (travel-

35

ing away from downtown Nashville). Table 3.1 shows the findings that the typical arrival

delay for “WHBG” is 443.52 seconds in the morning and 545.49 seconds in the afternoon.

Considering the fact that the typical arrival delays for “WE23”, “WE31” and “HRWB”,

timepoints before “WHBG”, in the morning and afternoon are all below 150 seconds, we

can draw the conclusion that the bus stops between “HRWB” and “WHBG” are the bottle-

necks for route 3.

3.4.2 Real-time Data Integration

This section describes a short-term bus arrival delay prediction model that we have de-

veloped to address the challenges presented in Section 3.2. The model integrates real-time

bus location data of shared route segments and combines clustering analysis and Kalman

filters for delay prediction.

3.4.2.1 Utilizing Shared Route Segment Data

Figure 3.6: Finding shared route segments between two bus routes. The segment that
contains the three center points is shared by route 1 and route 2.

Challenge 1 describes the issue that real-time bus data is not always available due to

infrequency of buses. To address this challenge, the short-term delay prediction model in

Transit-Hub creates a shared bus route segment network, and uses the real-time data from

shared route segments for short-term predictive analysis.

36

Our prior work [39] was based on shared route segments, but at that time we used shared

segments that were manually selected and we did not provide a solution to automatically

identify shared route segments. In this chapter we present an algorithm to create a shared

bus route segment network for all the existing routes in the city [79]. Also, the data that the

algorithm uses is in standard GTFS format, so the algorithm can be easily applied to other

cities that use the same data format.

A route segment is defined as a maximal part of bus route that is shared by a set of bus

routes. In GTFS format, the physical path of bus routes is described using a sequence of

coordinate points (in the shapes.txt file) on the map. If there are two segments from two

bus routes that share the same sequence of coordinate points, then we can assume that the

routes share that road segment. The outline of the algorithm to generate the share route

segment network is described as below (The key steps are illustrated in Figure 3.6):

Input: Static GTFS dataset. Static bus and associated geographic information are

loaded from database.

Output: Shared route segment network. Segment layout for each bus route is saved in

the database.

Step 1: Map grid initialization. The Nashville map is divided into map grids of squares.

The length of each square is about 8.97 meters, so each grid cell covers about 80.51 square

meters on the map.

Step 2: Route path re-sampling and smoothing. The sequences of points in all bus

routes are re-sampled to the centers of grid cells if the point is covered by the cell. Also, if

the distance between adjacent points in the sequences is larger than the width of a grid cell,

points will be interpolated to fill the cells that are missing points. The re-sampled points of

each route are cached in the database for determining the shared route segments in the later

step. As shown in Figure 3.6, the paths of route 1 and 2 are re-sampled to the center points

of grid cells.

Step 3: Calculating segments for bus routes. Each cell is tagged by every route that

37

uses that cell. If a cell contains tags from multiple routes then it becomes part of a new

shared segment. For example, the three-point segments in Figure 3.6 are shared by route 1

and 2, so this segment is marked as a shared route segment. New segments are checked to

make sure no duplicated segments are generated.

Step 4: Segment length limitation. Any segment that has a length that is greater than

1 mile is divided into smaller segments because our model is based on the assumption that

the travel delay within each segment is equally distributed, and hence the division of larger

segments into smaller ones will satisfy this assumption and reduce prediction error.

Figure 3.7: Generated shared bus route segment network in Nashville. The lines with
different colors represent the 5139 shared route segments in all 57 bus routes in the network.
The length of the segments are limited to less than 1 mile.

Using Nashville’s static GTFS (version of March 9, 2016), we generated a shared route

segment network shown in Figure 3.7. The 57 bus routes in Nashville city were divided

38

into 5139 segments. The lines in different colors show different route segments. Since

the static bus schedules are updated regularly by MTA, the shared route segment network

should be updated when new schedules are released.

There are many benefits to using real-time data of shared route segments, such as: (1)

Utilizing the real-time data from other routes can greatly increase the volume of data that

are available for short-term delay prediction analysis. For example, the route 3 in Nashville

from White Bridge to Downtown has a schedule interval of 40 minutes at holiday and

weekends. Only using route 3 data means the most recent data is at least 40 minutes old,

which is not recent enough to predict the currently delay on route 3. (2) The length of

each segment in the network can be controlled by the one-mile limitation mentioned in the

last step of the algorithm Since the delay pattern varies along a bus route, segments with

longer length are divided by the algorithm to produce more accurate analytics results. (3)

By creating a shared route segment model, the divide and conquer design pattern is used.

Individual and self-maintained microservice model can then run for each of the segments

concurrently.

3.4.2.2 Estimating the Arrival Time at Bus Stops

Since the actual arrival time at bus stops are not included in the real-time GTFS feed in

Nashville, we integrate the real-time bus location data and the static bus stop locations to

estimate the arrival time of buses.

From the real-time bus location feed, we can get the bus location and timestamps in the

following array format: [(t1,d1), ...,(tk,dk), ...]. Because the update rate of the original data

varies from seconds to minutes, we first aggregate the collected data into 1-minute average

data using sliding time windows. Then, we assume that bus speed is approximately the

average of the two adjacent data points and apply the following equation to calculate the

39

bus arrival time at stops:

tstop = tk−1 +(tk− tk−1)
dstop−dk−1

dk−dk−1
(3.3)

where tstop denotes the estimated arrival time, dk is the bus’s distance from the current

location to the first bus stop of the route along the route path at time tk. Also, dk−1 <=

dstop < dk.

3.4.2.3 Updating the Travel Delay Prediction Using K-means Algorithm and Smooth-

ing Filter

Excluding the outliers. If the travel time of a preceding bus differs greatly from other

preceding buses, we consider this point an outlier and exclude it from the model computa-

tion.

To identify the outliers from the data, we employ K-means algorithm to cluster the

preceding bus data according to travel time and time in the day. The Silhouette analysis

that was introduced in equation 4.6 is also used here to find the optimal number of clusters.

We choose the cluster whose time of day is closest to the current time. The data points

from that cluster are smoothened through the filter described in the next section and used

as an estimate for the current travel time on that segment.

Smoothing the preceding bus data. By comparing the travel time of preceding buses

and the scheduled travel time within the route segment, we compute the travel delay of the

preceding buses in the segment. The travel delay data is then through a filter to eliminate

noise and predict the segment’s current travel delay. The state transition equation is:

xk = xk−1 +ωk−1 (3.4)

where the state variable xk denotes the time step for which the travel delay needs to be

predicted, ωk denotes the zero mean normal distribution noise with covariance Qk.

40

The observation equation used is:

zk = xk +νk (3.5)

where variable zk represents the observation of delay at time step k. νk represents the zero

mean Gaussian distribution observation noise with covariance Rk. ωk and νk are assumed

to be independent.

3.4.2.4 Example

In this section we use an example to explain the workflow of Transit-Hub multi-timescale

analysis services. Figure 3.8 illustrate a common scenario where a bus b1 is running along

a bus route r1 and the system needs to predict on request, the expected delay for a bus at

stop si:

1. Creating shared route segment network. From the figure we can see that routes r1

and r2 are divided into 5 segments: seg1, seg2, seg3, seg4, seg5. The segment seg2 is

shared by the routes.

2. Getting preceding buses using static bus schedules. From the static bus schedules we

find that there are many buses (b2, b3, etc.) from route r1 and r2 that have passed

through segment seg3

3. Estimating travel time of the buses in segments. Preceding buses’ travel time can be

estimated using the collected real-time bus location data.

4. Predict travel delay in segments. The data from recent buses are clustered by travel

time and time in the day. The group of data whose mean value (time in the day) is

closed to the current time will be smoothed with a Kalman filter.

5. Getting arrival delay at bus stop. The sum of the delays for each segment between

the current bus position and the target stop sn is the model’s prediction for arrival.

41

Figure 3.8: Use Case: Example of using shared route segments to predict a bus’s delay at a
bus stop

3.4.3 Short-term Context-aware Delay Prediction

3.4.3.1 Motivating Example

To unveil the delay patterns associated with events, an analytics study using real transit

and sports game data is conducted. The days between Sept. 1, 2016 and Jan. 1, 2017 are

selected as the study period and the start time, end time, and attendance of eight football

games occurred in the period are collected manually. We divide the time period before

football games into four one-hour time windows ([-4, -3], [-3, -2], [-2, -1], [-1, 0]) and

compare average bus delay on bus route segments between game days and non-game days

using the following equation:

DPI = max(avg(
T TGD−T TS

T TS
)−avg(

T TNGD−T TS

T TS
),0) (3.6)

where DPI = delay impact, T TGD = actual travel time on a game day, T TS = scheduled travel

time, T TNGD = Actual travel time on a non-game day.

The results are visualized using heatmaps (see Figure 3.9). Generally, there are two

patterns: (1) route segments have more delay as the time is closer to the game start time,

(2) route segments that are closer to the stadium have more delay.

42

Figure 3.9: The impact of football games on travel delay of bus route segments in four
one-hour time windows before 8 football games: (1) from 4 to 3 hours, (2) from 3 to 2
hours, (3) from 2 to 1 hour, (4) within 1 hour. The green colors are the baselines (i.e.,
average delay of bus route segments on non-game days). Other colors show the difference
of average delay on games days compared to the baselines.

43

3.4.3.2 Feature Engineering

The features of different data sources are represented differently using numeric or one

hot encoding according to their attributes as follows:

• Event Features: The information of scheduled events is represented by one-hot vec-

tors. The dimensionality of the vectors is the size of effective time windows before

and after events plus a numerical class for attendance and an additional class for no

event. The effective time windows when events have impact on bus delay varies on

different event types. For example, from the motivation study it was found that on av-

erage the impact of football games on bus delay starts as early as 4 hours before and

as late as 4 hours after games, so the length of the feature vectors for football games

is ten (i.e., no football game, attendance, and eight time windows). An example is

illustrate in Figure 3.10.

• Weather Features: The forecasted weather conditions contains seven features: tem-

perature, nearest storm distance, humidity, ozone, pressure, wind speed and visibility.

Each weather condition sample is converted into a seven-dimensional vector of nu-

merical features.

• Time Features: Time features contains two classes: time of day and day of week.

The 24 hours in a day is divided into 48 half hours and time of day is represented

using one hot encoding of 48 classes. Similarly, day of week is represented using a

feature vector of 7 classes.

3.4.3.3 Multi-task Neural Networks

Deep learning techniques have gained great success in various fields, such as neutral

language processing (NLP), image processing, information retrieval (IR), among others.

Researchers start to develop deep learning techniques for transportation [80, 81, 82]. Com-

pared with existing studies which focus on real-time delay prediction and rely on real-time

44

Figure 3.10: The one hot encoded feature vector for football games.

Figure 3.11: Proposed Multi-task Neural Network. Blue blocks are shared layers and gray
blocks are independent layers for different segments.

45

data feeds (e.g., transit and traffic), our model only assumes the availability of forecasted

weather conditions and information of scheduled events that have proved to have significant

impact on transit delay.

Multi-task learning (MTL) share representations between related tasks. By leveraging

the domain-specific information contained in the training signals of related tasks, MTL

improves the generalization ability on original tasks [83]. In the transit domain, the travel

delay on road segments in a nearby area is usually impacted by the same events at the same

time and show similar patterns. Therefore, we aggregate the original tasks of predicting

delay for nearby segments together in a multi-task learning architecture. We developed

multi-task deep neural networks to get more data for training since they leverage supervised

data from multiple nearby road segments. Furthermore, the use of multi-task networks can

also reduces overfitting to specific tasks and better generalizes to new data [84].

The architecture of the proposed multi-task neural network is shown in Figure 3.11.

We apply the approach of hard parameter sharing in the neural networks. Generally, it

consists of upper layers that connect directly to input feature vectors and are shared across

different segments, and lower layers that are specific to different segments. When training

the models, Adam algorithm [85] is used for optimization and mean square errors are used

as loss functions. The architecture greatly reduces the risk of overfitting and it is generally

faster to train and can predict for multiple segments at the same time.

3.4.3.4 Service Alert Generation

The predicted delay can be utilized to decide whether a service alert can be generated

for each route. Our system collects the historical travel times for each segment and sends

out a service alert if the predicted delay is larger than 90th percentile in the data.

46

3.4.4 Significant Predictor Identification

Besides bus data, there are also many contextual and environmental variables impacting

the bus delay. In order to identify the significant predictors in estimating bus delay, some

joint work [62] has been done with Aparna Oruganti, who is a master student in Civil

Engineering at Vanderbilt University. We consider regression and tree-based family of

models. Regression models have been studied [86, 70] but to the best of our knowledge,

there is no work using tree-based models to solve this problem. All models were trained

and validated using the historical bus, traffic and weather datasets. In the end, the models

with the highest fitness and predictive accuracy in the validation are analyzed to find the

significant predictors.

Modeling Approach. We first build a series of multivariate linear regression models,

in which the travel time is the outcome variable, and is modeled as a linear function of

the predictors. Linear regression models can be extended to account for non-linear rela-

tionships between the predictors and the outcome variable through polynomial regressions

[87], so we built several linear models that considered different combinations of the predic-

tors. They can account for correlations among the predictors through the consideration of

interactions between the predictors. We also train random forests using the same outcome

variable and predictors because random forests are able to capture the non-linearity in the

data by dividing the space into smaller sub-spaces.

Evaluation. We use two metrics to evaluate the model performance: (1) root mean

squared error (RMSE) [88] for assessing the predictive accuracy, (2) R2 [89] for assess-

ing the goodness of fit. 10-fold cross-validation is used to validate the model ability in

predicting using new data.

Results. We identify that the most significant predictors for bus delay prediction in-

clude the traffic speed, the visibility, the wind speed, the nearest storm distance, the speed

limit, with an interaction term between the traffic speed and the scheduled travel time.

Other predictors that are not included in the list can be expressed through these predictors.

47

3.5 Deployed Architecture

In this section, we describe the implementation architecture for the short term online

delay prediction service, which addresses problem concerning scalability and availability.

Microservice deployment is an application architectural pattern where independently

deployable and self-contained services can work together, which may be more suitable for

complicated web applications [90, 91, 92] Microservices communicate with each other via

lightweight network mechanisms, such as using REpresentational State Transfer (REST)

API, message broker, etc. Figure 3.12 illustrates the overall architecture of the Transit-Hub

analytics.

Figure 3.12: Microservice architecture of Transit Hub back-end analytics services

Microservice 1: Smoothing the real-time GTFS data. Microservice 1 first cleans the

raw real-time GTFS data by removing the duplicate and missing data, and then re-sample

it to estimate the bus arrival time on bus routes. This microservice tracks real-time bus

location and when a new bus travels through a route segment, it will inform Microservice 2

which updates the travel time delay for this route segment. Microservice 1 is activated by

a scheduler every 5 minutes.

Microservice 2: Predicting arrival delay at segments. Microservice 2 collects the

data processed by Microservice 1 and employs short-term delay prediction (Section 3.4.2)

48

to update the estimated delay for the route segments. When Microservice 2 receives a

prediction update request for a route segment, it wakes up and runs the prediction process

to update the travel delay prediction for that route segment.

Microservice 3: Predicting arrival time at bus stops. Microservice 3 combines the

current delay of all buses and the predicted travel delay for all route segments to produce

the arrival delay prediction at all bus stops for all routes. This microservice is activated

every minute and stores the prediction results in the database. Note that Microservice 2

runs per route segment whereas service 3 runs to update the arrival time for all routes.

Representational state transfer (REST) API and message broker are two of the popular

approaches for providing a communication mechanism between microservices. The REST

approach is synchronous by default and uses DNS or a registry for service discovery, and

supports load balancing by using software like Ribbon [93]. The message broker is an asyn-

chronous mechanism, which uses queues to manage message queues and can achieve load

balancing very easily. Asynchronous message passing is a better choice for microservices

because: (1) the individual microservice that sends a message will not be blocked before

the other microservice responds; (2) using asynchronous communication can help to re-

duce unnecessary duplicate computation. For example, in our architecture, microservice

1 is continuously sending the IDs of route segments that need to update prediction to mi-

croservice 2. If we find that there are two identical segment IDs in the message queue, then

the duplicate can be removed to avoid duplication of work. Based on these considerations,

we use RabbitMQ [94], which is a

The microservices are deployed on an OpenStack [95] cloud operating system. We cre-

ated a m1.large nova computing instance for the microservices which has 4 virtual CPUs,

8GB RAM and runs Ubuntu 14.04 (LTS). The microservices all together use 10.9% CPU

resources and 28% RAM on average. The performance and resource consumption of the

microservices will not be affected by user interactions. They run separately and repeatedly

in the back end and store analysis results for later use. When an end user sends a prediction

49

Figure 3.13: Studied road segment shared by route 3 and 5

request for a route, an independent service in the system will fetch the prediction results

from the database and provide the information to the end user.

3.6 Prediction Performance Evaluation

This section presents experimental results from Transit-Hub’s real-time delay predic-

tion model. These results empirically evaluate Transit-Hub’s bus travel time delay predic-

tion ability against a SVM-Kalman model [15] using real-time data collected in Nashville.

Compared to the SVM-Kalman model, our model takes the scheduled time of preceding

buses into consideration, and since we are clustering the data of preceding buses according

to time of day and delay, only clusters with an average time of day close to the current time

of day will be used. We also evaluate how well our model predicts arrival delay comparing

it against real-world data.

3.6.1 Experiment 1: Evaluating the Real-time Travel Time Delay Prediction

The first experiment is designed to evaluate Transit-Hub’s ability to predict travel time

delay, using its prediction model and comparing against other prediction models using the

same real-world data.

50

Figure 3.14: RMSD of travel time delay prediction for each day when comparing the
Transit-Hub model with the SVM Kalman model proposed in 2015. Our model outper-
forms the SVM-Kalman model: (1) RMSD values are smaller (2) it shows less variation on
different days.

Experiment Setup. Routes 3 and 5 are two of the major bus routes in Nashville. As

shown in Figure 3.13, they share the same route segment between time point WES23AWN

and time point WES31AWN along West End Avenue. We select this route segment of route

3 and 5 towards WHITE BRIDGE to test our proposed model.

The data used in this experiment is the real-time and static GTFS data for routes 3 and

5 that we collected from Nashville MTA in June 2016. We divide the data into two parts:

a training dataset and a validation dataset. The training dataset contains bus data from June

6th to June 12nd and the validation dataset contains data from Jun 13rd to Jun 15th. Our

model and the SVM-Kalman are evaluated using the same validation dataset. From our

previous paper [39] we learned that only data 120 minutes old or newer is important for

real-time delay prediction. Therefore, in this experiment we use the data for buses in the

past 2 hours.

Comparing with a SVM-Kalman Model. In order to evaluate the performance of the

proposed short-term delay prediction model, we chose and implemented a dynamic SVM-

Kalman model that was proposed by Bai, et al. in 2015 [15]. The dynamic model consists

of a support vector machines (SVM) model that uses historical data to estimate the current

51

travel time as a baseline prediction, and a Kalman filter model that uses real-time preceding

bus data to adjust the base time. The features that they use in the SVM model include: (1)

time of the day, (2) road segment ID, (3) weighted average bus travel time of preceding

buses, and (4) the travel time of the preceding buses on the same route.

Figure 3.15: Arrival time delay prediction for a bus stop of a trip: (1) actual arrival delay,
(2) predicted mean value - standard deviation, (3) predicted mean, (4) predicted mean value
+ standard deviation.

Results. Figure 3.14 shows the root-mean-square deviation (RMSD) of the travel time

delay prediction results for three days in June. The RMSD of travel time delay is calculated

using the following equation:

tact tra
i j = tact arr

j − tact dep
i

(3.7)

RMSD =

√
∑

n
i (t

act tra
i j − t pred tra

i j)2

n
(3.8)

where i and j are indexes of the timepoints along the route, and i < j. Variable tact arr
i and

tact dep
i represent the actual arrival and departure time at timepoint i, tact tra

i j and t pred tra
i j

represent the actual and predicted travel time at the segment between timepoint i and j,

respectively. n is the number of bus trips in the dataset.

52

Figure 3.16: Studied segment of route 3 that starts from first bus stop (MCC5 5) to the 15th

bus stop (WES23AWN)

Since the SVM model ignores the differences that exist in the scheduled travel of pre-

ceding buses and the model does not exclude outliers, we expect our model to outperform

the SVM model from [15]. The experimental results validate our hypothesis. When pre-

dicting the travel time delay 15 minutes ahead using collected data from Jun 12 to Jun 15,

the RSMD of the our model is about 30% to 65% lower compared to the SVM-Kalman

model.

3.6.2 Experiment 2: Evaluating the Real-time Arrival Time Delay Prediction

The second experiment is designed to evaluate the short-term prediction model’s per-

formance when the prediction horizon changes. For this experiment, we choose a trip from

route 3 on June 14th 2016. The studied segment is shown in Figure 3.16.

Results. Figure 3.15 shows the actual delay and the predicted arrival delay with confi-

dence interval as the prediction horizon decreases from 19 minutes to 0 minutes (the time

53

just before the bus arrived).

Since our model integrates the predicted the travel delay in route segments and esti-

mated arrival delay at the most recent bus stop that the bus passed, we expect the predicted

confidence interval will become smaller and the error will decrease as the prediction inter-

val reduces, i.e., as we make the prediction closer to the scheduled time of arrival.

This example shows that when predicting 19 minutes before the actual arrival time, the

confidence interval is 226.5 seconds and the interval decreases to 2.1 seconds. We notice a

27.8 seconds difference between predicted delay and actual delay when the bus arrives, we

attribute this to normal system variance.

3.6.3 Experiment 3: Evaluating the Short-term Arrival Time Delay Prediction

In this section, we evaluate the proposed model using two experiments by (1) compar-

ing the multi-task neural networks with single models, and (2) comparing different feature

vectors. Keras Python deep learning library with TensorFlow backend is used in the imple-

mentation [96].

Scenarios. The experiment scenario is illustrated in Figure 3.17. Between Oct. 1, 2016

and Jan. 1, 2017, 7 NFL football games held at the Nissan Stadium and 19 NHL hockey

games at the Bridgestone Arena in Nashville. We selected the bounding box between coor-

dinates of 36.175106, -86.760105 and 36.161903, -86.773335. Real-world bus, event and

weather data within the time period and the bounding box is used in the experiments. The

data between Oct. 1, 2016 and Dec. 11, 2016 is used for training. The data between Dec.

12, 2016 and Jan. 1, 2017 when there is at least an event happened is used for validation.

Particularly, the following decisions are used to mark if a generated service alert is positive

or not: (1) an output is considered to be positive if the delay is more than 90th percentile in

the historical (training) dataset; (2) otherwise the output is negative. Recall performance,

which indicates how many relevant items are selected in a classification task, is the key

metric for evaluating our models since the metric was selected for this study to output noti-

54

Figure 3.17: Experiment scenario. The selected bounding box is close to the Nissan Sta-
dium where football games play and the Bridgestone Arena that hockey games play.

fies users to avoid severe delays as much as possible. The models are also evaluated using

F1 score [97], which can be interpreted as a weighted average of the precision and recall,

where an F1 score reaches its best value at 1 and worst score at 0.

Comparing single models and multi-task learning models. We assume the multi-task

learning models leverage supervised data by getting more training data for each segment

and reduce overfitting for better generalization ability. To validate the assumption, we build

the same neural network layers architecture for each segment and uses the same training

and validating datasets to evaluate the single models. The difference is that the upper

layers of the single models don’t share parameters anymore and the parameters can only be

optimized using data belong to the individual segments.

The root mean square error of the two models during training epochs are illustrated in

Figure 3.19. The multi-task models are trained faster than single models. After 70 epochs,

the single models’ performance on the validating dataset becomes worse, which means it

55

Figure 3.18: The F1 score between single models and multi-task models

Figure 3.19: The mean square error between single models and multi-task models

56

starts to overfit the training dataset. On the contrary, our multi-task neural network doesn’t

have a significant overfitting problem. The F1 score of the multi-task neural network is also

higher than the single models (see Figure 3.18).

Comparing different feature vectors using multi-task deep neural networks. In

the second experiment, we compare the performance of the proposed multi-task deep neu-

ral networks using different feature vectors: (1) Time feature vectors: [day of week, time

of day], (2) Contextual feature vectors: [football game time window, football game at-

tendance, hockey game time window, weather conditions, day of week, time of day]. The

recall and F1 score are calculated using the validation dataset. As shown in Figure 3.20 and

Figure 3.21, compared with the time feature vectors, the contextual feature vector gets both

higher recall (about 0.76) and F1 score (about 0.54), which means the model predicts more

relevant (severe) delays and is more effective to warn commuters of real possible delays.

Figure 3.20: The recall using time feature vectors vs. using contextual feature vectors

57

Figure 3.21: The F1 score using time feature vectors vs. using contextual feature vectors

3.7 Conclusion

In this chapter, we presented research on a DDDAS-enabled smart public transportation

decision support system that illustrates and validates the mechanisms developed for long-

term, short-term, and real-time predictive analytic services. Our long-term delay analysis

service excludes the noise of outliers in the historical dataset and identifies the delay pat-

terns of time points and route segments that are associated with different times of day, day

of the week and seasons. The city planners can utilize the feedback data to optimize the

bus schedules and improve rider satisfaction. Residents and travelers in cities like Nashville

can also benefit from our short-term and real-time delay prediction services.

Publications. This work has been published in the following places:

• Sun, Fangzhou, Yao Pan, Jules White, and Abhishek Dubey. ”Real-time and pre-

dictive analytics for smart public transportation decision support system.” In Smart

Computing (SMARTCOMP), 2016 IEEE International Conference on, pp. 1-8. IEEE,

2016. (34% acceptance rate)

58

• Sun, Fangzhou, Abhishek Dubey, Jules White, and Aniruddha Gokhale. ”Transit-

hub: A smart public transportation decision support system with multi-timescale

analytical services.”Cluster Computing(2017).

• Oruganti, Aparna, Fangzhou Sun, Hiba Baroud, and Abhishek Dubey. ”Delayradar:

A multivariate predictive model for transit systems.” In Big Data (Big Data), 2016

IEEE International Conference on, pp. 1799-1806. IEEE, 2016.

• Shekhar, Shashank, Fangzhou Sun, Abhishek Dubey, Aniruddha Gokhale, Himanshu

Neema, Martin Lehofer, and Dan Freudberg. ”Transit hub.”Internet of Things and

Data Analytics Handbook: 597-612.

59

CHAPTER 4

ALGORITHMS FOR OPTIMIZING THE SCHEDULE OF PUBLIC TRANSIT

CONSIDERING SEASONAL DELAYS

Bus systems are the backbone of public transportation in the US. An important indi-

cator for the service quality of public transit is on-time performance at stops — the level

of success of the service remaining on the published schedule. However, there are few

stochastic optimization models that focus on optimizing bus timetables with the objective

of maximizing the probability of bus arrivals at timepoint with delay within a desired on-

time range. Furthermore, there lacks research work considering the monthly and seasonal

variations of delay patterns. This chapter provides the following contributions to the study

of transit on-time performance optimization: (1) we present an unsupervised clustering

mechanism that groups months with similar seasonal delay patterns together, (2) we show

how we formulate the problem as a single objective optimization task, and design greedy

algorithms, genetic algorithms (GA) as well as a particle swarm optimization (PSO) algo-

rithm to solve it, (3) we provide empirical results that compare the greedy, GA and PSO

algorithms and present sensitivity analysis on the hyper-parameters of the heuristic algo-

rithms, which could help other researchers and engineers as references. The content of this

chapter has appeared in a conference paper [59].

4.1 Problem Overview

Emerging Trends. Bus systems are the backbone of public transportation in the US,

carries over 47% of all public passenger trips and 19,380 million passenger miles in the

US [98]. For the majority cities in the US who don’t have enough urban forms or budget

to build expensive transit infrastructures like subways, they rely on buses as the most im-

60

portant transit systems since bus systems have advantages of relatively low cost and large

capacity. Nonetheless, bus is also one of the most unpredictable transit modes. Figure 3.1

illustrates the large variation of bus travel times (the bus trip departs at a specific time of

the day on route 3 in Nashville). Our study found that the average on-time performance

across all routes of Nashville bus system was only 57.79% (see Section 4.5.1). The unpre-

dictability of delay has been selected as the top reason why people avoid bus systems in

many cities [99].

Providing effective transit service is a critical but difficult task for all metropolis in the

world. To evaluate service reliability, transit agencies have developed various indicators to

quantify public transit systems through several key performance measurements from dif-

ferent perspectives [100]. In the past, a number of technological and sociological solutions

have helped to evaluate and reduce bus delay. Common indicators of public transit system

evaluation include schedule adherence, on-time performance, total trip travel time, etc. In

order to track the transit service status, transit agencies have installed AVL on buses to track

their real-time locations. However, the accuracy of AVL in urban areas is quite limited due

to the low sampling rate (every minute) and the impact of high buildings on GPS devices.

To have some basic controls during bus operation, public transit agencies often use time

point strategies, where special timing bus stops (time points are special public transit stops

where transit vehicles try to reach at scheduled times) are deployed in the middle of bus

routes to provide better arrival and departure time synchronizations [101].

An effective approach for improving bus on-time performance is creating timetables

that maximize the probability of on-time arrivals by examining the actual delay patterns.

When designing schedules for real-world transport systems (e.g. buses, trains, container

ships or airlines), transport planners typically adopt a tactical-planning approach [102,

103]. As such, scheduling decisions are usually performed a few weeks or months prior to

the day-of-operations. Conventionally, metro transit engineers analyze the historical data

and adjust the scheduled time from past experience, which is time consuming and error

61

prone. A number of studies have been conducted to improve bus on-time performance by

reliable and automatic timetabling. Since timetable scheduling problem is recognized to

be an NP-hard problem [104, 105], many researchers have employed heuristic algorithms

to solve the problem. The most popular solutions include ad-hoc heuristic searching al-

gorithms (e.g. greedy algorithms) [51, 52, 53, 56], neighborhood search (e.g. simulated

annealing (SA) and tabu search (TS)), evolutionary search (e.g. genetic algorithm) and

hybrid search [57, 58].

However, there are few stochastic optimization models that focus on optimizing bus

timetables with the objective of maximizing the probability of bus arrivals at timepoint

with delay within a desired on-time range (e.g. one minute early and five minutes late),

which is widely used as a key indicator of bus service quality in the US [106]. For exam-

ple, To quantity bus on-time arrival performance, many regional transit agencies use the

range of [-1,+5] min compared to the scheduled bus stop time as the on-time standard to

evaluate bus performance using historical data [106]. The actual operation of bus systems is

vulnerable to many internal and external factors. The external factors include urban events

(e.g., concerts, sporting events, etc.), severe weather conditions, road construction, passen-

ger and bicycle loading/offloading, etc. One of the most common interval factors is the

delay between two consecutive bus trips, where the arrival delay of previous trips causes

departure delay of the next trip. Furthermore, there are monthly and seasonal variation in

the actual delay patterns, but most transit agencies publish a uniform timetable for the next

several months despite the variations. How to cluster the patterns and optimize timetables

separately remains an open problem. Furthermore, heuristic optimization techniques have

attracted considerable attention, but finding the optimal values of hyper-parameters are dif-

ficult, since they depend on problem nature and the specific implementation of the heuristic

algorithms, and are generally problem specific. Furthermore, for cities that are expanding

as people keep moving in, city planners have to invest more in public transit infrastructure

and services, which results in longer and more complex bus routes. The long duration and

62

travel distance make effective and accurate schedule planning even more difficult.

Solution Approach. Heuristic searching algorithms have been studied in a wide range

of the related work for various objectives (such as minimizing the cost of both user’s and

operator’s, maximizing the simultaneous bus arrivals, etc.). However, to the best of the

authors’ knowledge, there are few stochastic optimizing models proposed focusing on op-

timizing the transit service quantified by on-time arrival range (e.g. one minute earlier and

six minute later than advertised schedule) [106]. Furthermore, the importance of identify-

ing monthly and seasonal delay patterns in helping timetabling is not recognized enough

and integrated in the optimization processes.

In this chapter, we present research on bus on-time performance optimization that sig-

nificantly extends our prior work [59]. To utilize the monthly and seasonal delay patterns,

we apply outlier analysis and clustering analysis on bus travel times to group months with

similar patterns together. The feature vectors used include mean, median and standard

deviation of the historical travel times, which are aggregated by routes, trips, directions,

timepoint segments and months. A greedy algorithm, a genetic algorithm, as well as a

particle swarm optimization (PSO) algorithm are proposed to generate new timetables for

month clusters that share similar delay patterns. Sensitivity analysis on choosing the opti-

mal hyper-parameters for the proposed heuristic optimization algorithms are also presented.

The overall workflow of the proposed optimization mechanisms is illustrated in Figure 4.1.

Particularly, we provide the following contributions to the study of on-time performance

optimization of transit systems:

• We describe an unsupervised analysis mechanism to find out how months with simi-

lar monthly and seasonal delay patterns can be clustered to generate new timetables.

• We present a greedy algorithm, a genetic algorithm, and a particle swarm optimiza-

tion (PSO) algorithm to optimize the schedule time to maximize the probability of

bus trips that reach the desired on-time range.

63

Figure 4.1: The proposed toolbox for bus on-time performance optimization. City planners
use bus schedule, historical trip information and desired on-time range and layover time,
and get outputs of optimized timetable as well as estimated on-time performance.

• Simulations of optimization performance as well as sensitivity analysis on the hyper-

parameters of the GA algorithms and PSO are conducted. The results indicate the

performance difference between the algorithms, and provide practical strategies to

select optimal hyper-parameters.

4.2 Related Work and Challenges

4.2.1 Related Work about Transit Performance Optimization

This section compares our system with related work on transit timetable scheduling. A

number of studies have been conducted to provide timetabling strategies for various ob-

jectives: (1) minimizing average waiting time [107, 108, 58, 109], (2) minimizing transfer

time and cost [110, 111, 53, 57, 109], (3) minimizing total travel time [112, 56], (4) max-

imizing number of simultaneous bus arrivals [113, 114, 115, 116], (5) minimizing the cost

of transit operation [117], (6) minimizing a mix of cost (both the user’s and the operator’s)

[51, 52].

Friedman et al. [107] formulated a mathematical model of a general transportation

network and presented a procedure to optimize bus departure times for minimizing the av-

erage waiting time of passengers by changing decision variables (i.e. bus departure time).

Chakroborty et al. [110] first used genetic algorithms to develop optimal schedules for ur-

64

ban transit systems. The problem is formulated as a mathematical program that minimizes

the sum of total time transferring from one route to another route for all transferring passen-

gers and initial waiting time for all passengers at the origin. Pattnaik et al. [51] proposed

a genetic algorithm for designing urban bus transit route network. Their research focuses

on selecting a set of optimum route sets using a GA. Ceder et al. [113] proposed a mixed

integer linear programming model to maximize the number of simultaneous bus arrivals at

transfer nodes. Charkroborty et al. [52] developed genetic algorithm based procedures for

route planning and scheduling. Eranki et al. [114] defined the synchronization problem

by considering waiting times at transfer stops and developed a model to attain maximum

synchronization. Ting et al. [117] applied a heuristic algorithm to minimize the total cost

of transit network by optimizing the headways and slack times at transfer stops. Zhao et

al. [111] presented a mathematical stochastic methodology to minimize transfer and user

cost. Wong et al. [108] presented a mixed-integer-programming optimization model to

minimize the interchange waiting times of all passengers. Yang et al. [53] proposed an im-

proved genetic algorithm to optimize timetables that passenger transfer time is minimized

using constraints of traffic demand and departure time and maximum headway. Szeto et

al. [57] proposed a genetic algorithm for route design problem and a neighborhood search

heuristic for bus frequency setting problem. Their goal is to reduce the number of transfers

and the total travel time of the users. Ibarra-Rojas et al. [115] formulate the timetabling

problem with the objective of maximizing the number of synchronizations of different bus

lines and avoiding bus bunching along the bus network. Tilahun et al. [112] modeled

single frequency route bus timetabling as a fuzzy multi-objective optimization problem us-

ing preference-based genetic algorithm. Nayeem et al. [56] presented a genetic algorithm

based optimization model for maximizing the number of satisfied passengers, minimizing

the total number of transfers and minimizing the total travel time of all served passengers.

Hora et al. [58] applied a Mixed Integer Linear Programming (MILP) model to obtain

robust bus schedules that minimize the differences between scheduled times and actual ar-

65

rival time. Their solution works on allocating the slack time of two subsequent stops. Wu

et al. [109] developed a stochastic integer programming model to minimize the total wait-

ing time cost of three types of passengers: transferring passengers, boarding passengers

and through passengers. Later, Wu et al. [116] proposed a robust schedule coordination

mechanism by combining planning and operating strategies. They addressed the stochastic

travel time issue by adding slack time in scheduling and using a safety control margin in

operation.

4.2.2 Research Challenge 1: Setting up the Transit Performance Optimization Problem

Transit performance optimization is well studied. However, to the best of the authors’

knowledge, even though the on-time arrival range (e.g. one minute earlier and six minute

later than advertised schedule) is widely used as a key transit reliability indicator by tran-

sit agencies for analyzing and timetabling in the United States [106], there no stochastic

optimization models focusing on optimizing bus timetables to increase bus trips within the

on-time performance range. In Section 4.3, we show how we formulate the problem as a

single objective optimization task with constraints and set up the solution population for

the genetic algorithm and particle swarm optimization (PSO).

4.2.3 Research Challenge 2: Clustering the Monthly and Seasonal Variations in Historical

Arrival Data

Studying the historical travel time at segments can be an effective way to set bus timeta-

bles. However, existing work doesn’t consider the monthly and seasonal variation in his-

torical monthly data, and the variation can be utilized for better scheduling. Generating one

timetable for all months may not be the best solution. The difference between existing ap-

proaches and our approach is that since traffic and delay patterns change over seasons and

different times, we generate month clusters based on unsupervised learning and develop

optimization models for these clusters. We evaluate the proposed mechanism via simula-

66

tion. The cluster-specific schedule is shown to further increase the on-time performance

compared to generating one uniform timetable.

4.2.4 Research Challenge 3: Computing Efficiently and Accurately in the Optimization

Solution Space

Transit performance optimization techniques rely on historical delay data to set up new

timetables. However, the large amount of historical data makes it a challenge to compute

efficiently. For example, Nashville MTA updates the bus schedule every 6 months but each

time there are about 160,000 historical record entries to use. Moreover, the solution space

is typically very large under constraints (e.g., sufficient dwelling time at bus stops, ade-

quate layover time between trips, etc.). A suitable optimization algorithm is necessary for

efficient and accurate computation. Since this is a discrete-variable optimization problem,

gradient-based methods cannot be used and gradient-free methods need to be considered.

A naive algorithm for discrete optimization is exhaustive search, i.e., every feasible time

is evaluated and the optimum is chosen. Exhaustive search works for a small finite num-

ber of choices, and cannot be used for high-dimensional problems. Genetic algorithm

[110, 51, 52, 111, 53], as well as particle swarm optimization [118] are used commonly

in solving heuristic problems . Thus we consider applying genetic algorithm and particle

swarm optimization (PSO) in the context. Section 4.4 describes the key steps of how we

apply greedy, genetic and PSO algorithms to solve the timetable optimization problem.

4.3 System Model

In this section, we first describe the targeted optimization problem by using a concrete

example, and then present how we formulate the problem as a single objective optimization

task, and finally give necessary assumptions and primary notations.

Typically, transit delay are not only affected by external factors (such as traffic, weather,

travel demand, etc.), but also caused by some internal factors. For example, the accumu-

67

Table 4.1: The scheduled time and recorded actual arrival and departure time of two se-
quential trips that use the same bus of route 4 on Aug. 8, 2016. The arrival delay at the last
timepoint of the first trip accumulates at the first timepoint of the second trip.

Timepoints
MCC4 14 SY19 PRGD GRFSTATO

Trip 1
Scheduled Time 10:50 AM 11:02 AM 11:09 AM 11:18 AM
Actual Arrival Time 10:36 AM 11:10 AM 11:18 AM 11:27 AM
Actual Departure Time 10:50 AM 11:10 AM 11:18 AM 11:30 AM

Trip 2
Scheduled Time 11:57 AM 11:40 AM 11:25 AM 11:20 AM
Actual Arrival Time 12:11 AM 11:51 AM 11:34 AM 11:27 AM
Actual Departure Time 12:11 AM 11:51 AM 11:34 AM 11:30 AM

lated delay occurred on previous trips may cause a delay in consecutive trips by affecting

the initial departure time of the next trip. In order to illustrate the problem context with sim-

plicity and without generality, we take two sequential bus trips of route 4 in Nashville as

an example (the scheduled time and the actual arrival and departure time recorded on Aug.

8, 2016 are shown in Table 4.1) to describe the optimization problem. On each service day,

after a vehicle of the first trip arrives at the last stop (Timepoint GRFSTATO) with sched-

uled time of 11:18 AM, the second trip is scheduled to depart using the same vehicle from

the same stop at 11:20 AM. On Aug. 8, 2016, the arrival time at the last stop (Timepoint

GRFSTATO) of the first trip is exceptionally late for 9 minutes, which contributes to the

10-minute departure delay at the beginning of the second trip. Since the scheduled layover

time between the two trips is only 2 minutes (between 11:18 AM and 11:20 AM), any large

delay at the first trip is very likely to transfer to the next trip. Therefore, the optimization

problem should involve a optimization process that considers not only the travel delay on

segments, but also the improper lay over time between trips.

4.3.1 Problem Definition

Let H = {h1,h2, ...,hm} be a set of m historical trips of a given bus trip schedule b.

Each trip passes a set of n timepoints {s1,s2, ...,sn}. The on-time performance of the bus

68

trip schedule b can be expressed as :

P =
∑

m
i=1 ∑

n
j=1 I(hi,s j)

m×n
(4.1)

where hi denotes a historical trip and s j denotes a timepoint on the trip. The indicator

function I(hi,s j) is defined as:

I(hi,s j) =


1, if di, j ∈ [tearly, tlate]

0, otherwise
(4.2)

di, j = tarrival
hi,s j

−T arrival
hi,s j

(4.3)

where di, j is the actual delay that a bus from the historical trip hi arrives at a timepoint

s j, tearly and tlate are two time parameters that transit authority has pre-defined to rate the

schedule adherence of the bus at that timepoint. The goal of the schedule optimization

problem is to generate new T departure
h,s , such that the on-time performance is maximized. A

list of primary symbols and definitions defined in the chapter can be found in Table 4.2.

4.3.2 Assumptions and Notations

To formulate the problem and facilitate the model development, some assumptions are

made as follows:

1. Assumption 1. The proposed method assumes the availability of accurate arrival

and departure timestamps in the dataset. Even though the proposed mechanisms use

timepoint datasets for evaluation purpose in the case studies, for other cities where

timepoints are not available, the mechanisms can easily adapt to other data sources,

e.g, from buses equipped with automatic passenger counters (APC).

2. Assumption 2. The scheduled departure time at the first stop of each trip will not

be changed. The scheduling of trip headways are constraint by budget and travel

69

Table 4.2: List of primary symbols and definitions used in the optimization problem

Symbol Definition Unit
[tearly, tlate] the time window that the arrival delay on-time bus should

satisfy within
min

h a bus trip that departures at the same time in different days.
In Table 4.1, there are two consecutive bus trips that sched-
uled to depart at 10:50 AM and 11:20 AM.

-

s a timepoint -
tarrival
h,s the actual arrival time at a timepoint s on trip h min

tdeparture
h,s the actual departure time at a timepoint s on trip h min

ttravel
h,si,s j

the actual travel time between two adjacent timepoints si

and s j on trip h
min

T arrival
h,s the scheduled arrival time at timepoint s on trip h min

T departure
h,s the scheduled departure time at timepoint s on trip h min

tdwell
s j

the dwell time (in simulation) at timepoint s j that caused by
riders getting on/off

min

b a bus schedule that defines the departure and arrival time at
bus stops and timepoints

-

vi, j(t) the velocity of ith particle in jth dimension at iteration t in
particle swarm optimization

-

xi, j(t) the position of ith particle in jth dimension at iteration t in
particle swarm optimization

-

pi, j(t) the best position of ith particle in jth dimension till iteration
t in particle swarm optimization

-

pg, j(t) the best position of the global best particle in jth dimension
till iteration t in particle swarm optimization

-

w inertial weight component in a particle’s velocity in particle
swarm optimization

-

c1 cognition accelaration coefficient in a particle’s velocity
component in particle swarm optimization

-

c2 social accelaration coefficient in a particle’s velocity com-
ponent in particle swarm optimization

-

r1 random number between 0 to 1 used in particle swarm opti-
mization

-

r2 random number between 0 to 1 used in particle swarm opti-
mization

-

70

demand, which doesn’t belong to the problem discussed in the chapter.

3. Assumption 3. The scheduled slack time between two adjacent bus trips that belong

to the same block must be greater than or equal to zero minute i.e. Ts′1
− Tsn ≥ 0,

where sn is the last timepoint of the current trip and s
′
1 is the first timepoint of the

next trip in the same block.

4. Assumption 4. The actual departure time at a timepoint should be greater than or

equal to the scheduled departure time i.e. tdeparture
s ≥ T departure

s .

5. Assumption 5. The scheduled departure time at a timepoint should be equal to the

scheduled arrival time at the timepoint i.e. T arrival
s = T departure

s . How we handle

dwell time at timepoints is described in Section 4.4.2.

4.4 Timetable Optimization Mechanisms

Optimizing bus timetables periodically to match the ever-changing travel delay patterns

is an effective way to improve on-time performance. This section presents mechanisms to

automatically optimize the arrival on-time performance at stops, which include: (1) a clus-

tering analysis mechanism to group months with similar delay patterns together so that

different timetables could be generated later for each month group, (2) a light evaluation

mechanism to evaluate the expected on-time performance of bus schedules, (3) a greedy

algorithm and two heuristic algorithms (i.e., genetic algorithm and particle swarm opti-

mization algorithm) to update the scheduled arrival times of fixed schedule transit vehicles.

The greedy algorithm chooses locally optimal travel time between timepoints and the op-

timized results are used as baselines. The heuristic algorithms are then compared, and

their optimal hyper-parameters are explored by sensitivity analyses. Evaluation results are

presented in Section 4.5.

71

4.4.1 Month Grouping by Clustering Analysis

When planning bus trips that depart at the same times on a specific weekday, MTA

engineers often set the same schedule times along bus routes and assign the same identifier

(e.g., trip id in GTFS) to the trips. However, transit delays on road segments often show

monthly and seasonal variations. These variations make it difficult for a trip’s timetable to

match the actual delay patterns over a long time. Thus planning a single timetable for all

months is not an optimal solution. This section introduces a clustering analysis mechanism

that groups months with similar transit delay patterns together and the results will later

be used to generate separate timetables for each group. This section first describes the

feature engineering to create effective vectors for each month, and then presents a clustering

mechanism based on K-Means algorithm.

Feature Engineering. Effective features that matches the objective of clustering is im-

portant. We assume the monthly delay patterns can be represented by the mean, median

and standard deviation that derived from historical delay data. Considering a bus trip con-

sists of n timepoints, there are n− 1 segments between the timepoints. The mean value

µ , the median value m, and the standard deviation σ of the historical travel times for each

timepoint segment in each month are integrated to generate feature vectors to represent the

historical delay data distribution:

[µ1,m1,σ1,µ2,m2,σ2, ...,µn−1,mn−1,σn−1] (4.4)

Month Clustering. Clustering is an unsupervised/supervised learning technique for

grouping similar data. We employ k-means algorithms to identify the homogeneous groups

where months share similar patterns. The trip data per month is first normalized and then

clustered using feature vectors (in Equation 4.4) by K-Means algorithm:

argmin
S

k

∑
i=1

∑
x∈Si

‖x−µi‖2 (4.5)

72

where µi denotes the mean of all points in cluster Si. Determining the optimal number

of clusters in a data set is a fundamental issue in partitioning clustering. For k-means

algorithms, the number of clusters is a hyper-parameter that needs to be set manually.

An upper bound is set in advance. Elbow [119], silhouette [77] and gap statistic [120]

methods are popular direct and statistical methods to find the optimal number of clusters.

Particularly, Silhouette analysis is employed in this study to measure how close each point

is to others within one cluster. The silhouette score s(i) is defined as:

s(i) =
b(i)−a(i)

max{a(i),b(i)} (4.6)

where for each data point with index i in the cluster, ai is the average distance between

datai and the rest of data points in the same cluster, bi is the smallest average distance

between datai and every other cluster.

Example. Figure 4.2 plots the [mean, standard deviation, median] vectors of the monthly

travel time for a segment (WE23-MCC5 5) on a bus trip of route 5 (Figure 4.6). It clearly

shows the variation between monthly data and these 5 months can be clustered into two

groups: [May, June, July] and [August]. This variation is used to produce different sched-

ule for these clusters.

4.4.2 Estimating On-time Performance of Transit Schedules

A testbed is an evaluation platform for scientific theories, computational tools and tech-

nologies. When a new timetable is generated, an evaluation testbed is needed to simulate

the bus trips using new schedule and estimate the on-time performance of new schedule.

We assume the distribution of historical travel times represent the traffic patterns and pro-

pose a simple evaluation mechanism for new timetables that only requires historical data

and a timetable as inputs.

Historical Dwell Time Estimation. Travel demand at bus stops is important statistics for

73

Figure 4.2: The feature vectors [mean, standard deviation, median] of the travel time in 4
months of 2016 for a segment (WE23-MCC5 5) on a bus trip of route 5.

setting up proper schedule times. However, for bus systems without automatic passenger

counters (APCs), historical travel demand (represented by number of commuters boarding)

is not available in original datasets. To get demand patterns, we utilize historical arrival and

departure times to estimate the dwell time caused by passengers. Particularly, we consider

the following two scenarios in historical records: (1) if a bus arrives earlier than scheduled

time, the waiting time between the scheduled time and actual departure time is used, (2)

if a bus arrives later than scheduled time, the waiting time between the actual arrival time

and departure time is used. As shown in Table 4.1, for the timepoint SY19 on trip 1 with

scheduled time of 11:02 AM:

• If a historical bus arrived earlier at 10:58 AM and departed at 11:04 AM, since the

bus would always wait there as least for 4 minutes (between the actual arrival time

10:58 AM and the schedule time 11:02 AM) regardless of there were passengers

or not, we assume the dwell time caused by passengers is the extra time after the

scheduled time (11:04 AM - 11:02 AM = 2 minutes).

• If a historical bus arrived later at 11:05 AM and departed at 11:06 AM, then the dwell

time caused by passengers is the extra time after the actual arrival time (11:06 AM -

74

11:05 AM = 1 minutes).

Arrival Time Estimation. The arrival time of a bus at a stop is impacted by two factors:

(1) travel times at segments before the stop, and (2) dwell times at the previous stops. We

assume that a bus will wait until the scheduled time if it arrives earlier than the scheduled

time, and the historical travel time between two timepoints will remain the same in the

simulation. To estimate arrival time, historical dwell time caused by passengers, which

represent the historical travel demand, is added to the simulated arrival time at a timepoint,

if the sum time is still earlier than the new scheduled time, then the simulation waits for

extra time until the new scheduled time. The simulated departure time stdepart
h,s j+1

at a timepoint

s j+1 can be calculated using the simulated departure time stdepart
h,s j

at previous timepoint s j,

the actual travel time tarrive
s j+1

− tdepart
s j between s j and s j+1, the dwell time tdwell

s j+1
. Thus the

new schedule time T depart
h,ss j+1

at s j+1 is calculated using the following equation:

stdepart
h,s j+1

= max(T depart
h,ss j+1

,stdepart
h,s j

+(tarrive
s j+1

− tdepart
s j

)+ tdwell
s j+1

) (4.7)

Example. Supposing the standard [tearly, tlate] for on-time arrivals is between 1 minute

early and 5 minutes late. In the example shown in Table 4.1, considering the three arrivals

on trip 1 after the first timepoint (MCC4 14), the original on-time performance is 0% using

Equation 4.1 (i.e., non of the arrivals are between 1 minute early and 5 minutes late). As-

suming in a new timetable, the schedule times at timepoints SY19, PRGD, and GRFSTATO

are updated (shown in Table 4.3). Since in the historical trip, the bus departed immediately

after arriving at timepoints SY19 and PRGD, the historical dwell time caused by passengers

are minimal, and arrival delays are mostly generated by travel delays on segments between

the timepoints. The estimated arrival and departure times using the new timetable and the

historical data of trip 1 are shown in Table 4.3. The estimated new on-time performance is

100%.

75

Table 4.3: The historical and estimated new departure and arrival times for a bus trip on
route 4 on Aug. 8, 2016.

Timepoints
MCC4 14 SY19 PRGD GRFSTATO

Historical
Old Schedule Time 10:50 AM 11:02 AM 11:09 AM 11:18 AM
Actual Arrival Time 10:36 AM 11:10 AM 11:18 AM 11:27 AM
Actual Departure Time 10:50 AM 11:10 AM 11:18 AM 11:30 AM

Simulated
New Schedule Time 10:50 AM 11:11 AM 11:19 AM 11:29 AM
Estimated Arrival Time 10:36 AM 11:10 AM 11:19 AM 11:28 AM
Estimated Departure Time 10:50 AM 11:11 AM 11:19 AM 11:30 AM

4.4.3 Timetable Optimization Using a Greedy Algorithm

We first come up with a greedy algorithm that is simple and fast. The basic idea of

the greedy algorithm is that it divides an entire trip into sequential optimization stages by

timepoint segments, and then select a local optimal travel time at each stage. The schedule

time at the first timepoint of each trip will remain the same. The greedy algorithm adjusts

the scheduled arrival time greedily and sequentially for the succeeding segments between

timepoints. The local optimal travel time is selected to maximize the percentage of on-time

arrival delay within range [tearly, tlate] using historical delay dataset.

Initialization The initialization step prepares the data for following steps. The actual

travel time data between any two consecutive timepoints is aggregated using the historical

dataset.

Optimization In the optimization step, the scheduled arrival time from the second time-

point to the last timepoint in a trip is optimized sequentially. Our goal is to pick new

schedule time for two consecutive timepoints that can maximize the bus arrivals with delay

within desired range [tearly, tlate]. It’s a greedy algorithm because when adjusting the sched-

ule time for a timepoint, only the on-time performance of the preceding timepoints and the

current timepoint is considered. Instead of assuming the data follows any specific distribu-

tion (e.g. Gaussian distribution), we decide to utilize the empirical cumulative distribution

function (CDF) to evaluate the percentage of historical delay in desired range.

76

Data: D← Historical timepoint datasets
Input : (1) [tearly,tlate]← on-time range, (2) h← bus trip for optimization, (3) upperLimit

← upper limit of the number of clusters
Output: Optimized schedule b at timepoints for bus trip h
[s1, ...,sn]← GetAllTimepoints(D, h);
GetHistoricalData(D, h);
monthClusters← ClusterMonthData(upperLimit);
for monthCluster ∈ monthClusters do

b← [];
for si ∈ [s1, ...,sn] do

maxCDF ← 0;
optimizedTime← 0;
for candidate schedule time set x do

if maxCDF ≤ CalculateEmpiricalCDF(x, tearly, tlate) then
maxCDF ← CalculateEmpiricalCDF(x, tearly, tlate);
optimizedTime← x

end
end
b← b+optimizedTime

end
end

Algorithm 1: Greedy algorithm for bus on-time performance optimization

An empirical CDF is a non-parametric estimator of the CDF of a random variable. The

empirical CDF of variable x is defined as:

F̂n(x) = P̂n(X ≤ x) = n−1
n

∑
n=1

I(xi ≤ x) (4.8)

where I() is an indicator function:

I(xi ≤ x) =


1, if xi ≤ x

0, otherwise
(4.9)

Then the CDF of x in range [x+ tearly,x+ tlate] can be calculated using the following equa-

tion:
F̂n(x+ tlate)− F̂n(x+ tearly)

= n−1
n

∑
n=1

I(x+ tearly ≤ xi ≤ x+ tlate)
(4.10)

77

Figure 4.3: Empirical cumulative distribution function (CDF) of historical travel time be-
tween two timepoints (MCC5 5 and WE23) on route 3 in May, June, July 2016.

Figure 4.3 illustrates an example of the empirical cumulative distribution function (CDF)

of historical travel time between two timepoints (MCC5 5 and WE23) on route 3 in May,

June, July 2016. Choosing a new scheduled travel time of 720 seconds between these two

timepoints could maximize the percentage of historical data points within range [720+

tearly,720+ tlate]. Algorithm 1 shows the greedy algorithm’s pseudo code.

4.4.4 Timetable Optimization Using Heuristic Algorithms

In classical optimization approaches driven by differential calculus, unique solutions

are obtained. While these may work well for less complex problems or for problems with

lower dimensionality, optimality for high dimensional and multimodal cost functions are

not guaranteed. For problems where effective classical methods do not converge to the

global optimum, heuristic optimization strategies provide an effective alternative approach.

With the gradual increase in computational power, nature inspired heuristics and meta-

heuristics are aimed at producing optimal or near optimal approximations of solutions in

a stochastic manner within an ever decreasing bound of time. Heuristics are known to

produce acceptable quality of approximate solutions fast when applied to NP-complete

problems and are distinctively typified by the way the traversal of promising regions of the

search hyperspace is accomplished.

The performance optimization for scheduling transit vehicles is a multidimensional

78

problem and as such the cost function is nonconvex in nature consisting of several troughs

and ridges. Hence, to compute the optimally scheduled routing strategy with acceptable

time constraints, an approach powered by high quality of solution estimation techniques

such as evolutionary algorithms and metaheuristics can be considered. One such approach

is particle swarm optimization (PSO) which is a nature inspired swarm intelligence algo-

rithm described in subsection 5.4.2. PSO can be employed to optimize a large variety of

stochastic cost functions including non-differentiable or discontinuous ones as it is less sen-

sitive to the objective function at hand [121]. The implementation of PSO does not rely on

the gradient of the underlying cost function and the particles are distributed over promising

regions in the search space. The algorithm is easy to implement with a few parameters

such as inertial weight and social and cognition acceleration coefficients, thereby making

it highly customizable and popular.

4.4.4.1 Genetic Algorithm

Genetic algorithm is a heuristic optimization algorithm that derives from biology. The

basic steps involved in genetic algorithms include initialization, selection, crossover, mu-

tation, and termination. The timetable for each trip is decided by the scheduled departure

time at the first stop as well as the scheduled travel time between any two subsequent time-

points along the trip. Since our goal is to update timetables to make the bus arrivals more

on time, we assign the scheduled travel times between timepoints as chromosomes in pop-

ulations, and use the on-time performance estimation mechanism proposed in Section 4.4.2

as cost functions. The chromosome of the individual solutions in the genetic algorithm is

a vector of integers representing travel time between subsequent timepoints. In order to re-

duce the search space and match the real-world scenarios, the travel time in each individual

is re-sampled to a multiple of 60 seconds and restricted to the unit of minutes.

Initialization For a genetic algorithm, the initialization step creates the initial state

which involves population size and initial chromosome values. A population size to de-

79

termine how many chromosomes are there in one population, which affects the ultimate

performance and computation efficiency [122]. Smaller population makes iterations faster

but less various in chromosome crossover. Larger population will have the opposite effects.

We chose 50 as the population size ps.

In order to initialize the first population, the actual travel time between timepoints is

aggregated from the historical datasets. Then the travel time in each individual is randomly

selected between the maximum and minimum of historical data. We observed that the

seeding in the initial population with heuristic solutions such as original scheduled travel

time or optimized results from the greedy algorithm (presented in Section 4.4.3) would

only affect the fitness of initial population and had little effects on the final optimality, so

the initial population is generated at random.

Selection At the beginning of each iteration step, a portion of the existing population

needs to be selected as parents to breed a new generation. A fitness function is required

to determine how fit a solution is and a selection strategy is needed to select the solutions

with better fitness. In our case, the objective function, defined in equation 4.1 is used

as the fitness function. Since the fitness function contains an indicator function I(hi,s j),

and the value of the indicator function is related to the arrival delay at timepoint s j, a

simulation mechanism is needed to evaluate the on-time performance of the new schedule

using historical data. To simulate the bus arrival and departure activities at timepoints,

historical travel times between two consecutive timepoints and historical dwell time at

timepoints are used.

Our genetic algorithm uses tournament selection [123] to randomly select new solu-

tions. Each time, we select 2 individuals at random from the current population and pick

the one with better fitness to become a parent. This process is repeated until the number of

parents reaches the population size. The specifics are:

Crossover Using crossover, sub-solutions on different chromosomes are combined at

random. A uniform crossover [124] technique is used for the crossover operation in gene

80

level. Unlike one point or multi-point crossover, uniform crossover treats each gene sep-

arately. Two parents are randomly selected and their genes are exchanged (the scheduled

travel time between two successive timepoints

with another on the same places of the solution vector. The individual travel times

between two parents are swapped with a fixed probability of 60%. An example illustrating

the crossover is shown in Figure 4.4.

Figure 4.4: Crossover: two genes are swapped between two individuals.

Mutation Mutation generates genetic diversity from one generation of a population of

chromosomes to the next. The mutation works in two steps: (1) a schedule travel time

between two timepoints in a solution is selected at random, (2) randomly add or minus 60

seconds to the time with the requirement that the new time should be within the historical

travel time distribution range. The mutation probability is set as 0.005 and the population

size ps is 50. Suppose each individual has 5 genes, 250 genes in total should lead to the

result that one gene will mutate in each iteration.

Termination The termination condition of a genetic algorithm is critical to determine

whether the algorithm should end or not. According to the study of stopping criteria for

genetic algorithm [125], the following three types of conditions are mostly employed: (1)

an upper limit of generation number is reached, (2) an upper limit of fitness function value

is reached, (3) the change or achieving significant changes in the next generation is exces-

sively low. Since the best on-time performance that the GA can achieve for each bus trip

varies, setting the upper limit of the fitness function value does not work here. We choose

1,000 as the upper generation number limit. At the same time, if the difference between

the average fitness value of the solutions in the current generation and previous generation

is below a pre-defined threshold 0.00001, then the algorithm will also terminate.

81

Data: D← Historical timepoint datasets
Input : (1) [tearly,tlate]← on-time range , (2) maxGen← maximum number of generations

maxGen, (3) pSize← number of solutions in the population pSize, (4) tt ←
termination threshold, (5) cP← crossover probability, (6) mP← mutation
probability, (7) h← bus trip for optimization, (8) upperLimit ← upper limit of the
number of clusters

Output: Optimized schedule b at timepoints for bus trip h
GetAllTimepoints(D, h);
GetHistoricalData(D, h);
monthClusters← ClusterMonthData(upperLimit);
for monthCluster ∈ monthClusters do

P← [];
for population size pSize do

P← P∪ InitialIndividual();
end
ipopulation← 0;
while maxGen is reached or AverageFitness(Pipopulation) - AverageFitness(Pipopulation−1) ≤ tt

do
P← TournamentSelect(P);
P← UniformCrossover(P, cP);
P←Mutation(P, mP);

end
end

Algorithm 2: Genetic algorithm for bus on-time performance optimization

The pseudo code of the genetic algorithm is given in Algorithm 2. We utilize histori-

cal timepoint datasets to conduct the genetic algorithm for this optimization problem. The

input includes on-time range, number of generation limit, number of solutions in the pop-

ulation, termination threshold, crossover and mutation probability, bus trip and upper limit

of number of month clusters.

4.4.4.2 Particle Swarm Optimization

Eberhert and Kennedy [118] proposed particle swarm optimization (PSO) as a stochas-

tic population based optimization algorithm which can work with non-differentiable cost

function without explicitly assuming its underlying gradient disparate from gradient de-

scent techniques, PSO has been shown to satisfactorily provide solutions to a wide array of

complex real-life engineering problems, usually out of scope of deterministic algorithms

82

[126, 127, 128]. PSO exploits the collective intelligence arising out of grouping behavior

of flocks of birds or schools of fish. This manifestation of grouping is termed as ’emer-

gence’, a phenomenon in which a cohort of individuals from a social network is aimed to

accomplish a task beyond their individual capability. Likewise, each particle in the swarm,

represents a potential solution to the multi-dimensional problem to be optimized.

Initialization Each particle has certain position which can be thought of as a collection

of co-ordinates representing the particle’s existence in a specific region in the multidimen-

sional hyperspace. As a particle is a potential solution to the problem, the particle’s position

vector has the same dimensionality as the problem. The velocity associated with each par-

ticle is the measure of the step size and the direction it should move in the next iteration.

Each particle in the swarm maintains an n-dimensional vector of travel times. At first,

the position for each particle in the population is initialized with the set of travel time

between the timepoints randomly selected between the minimum and maximum of the

aggregated actual historical data. With swarm size as p, every particle i (1<i<p) maintains

a position vector xi=(xi1,xi2,xi3,...,xin) and a velocity vector vi=(vi1,vi2,vi3,...,vin) and a set of

personal bests pi=(pi1,pi2,pi3,...,pin).

Optimization At each iteration, the position of a particle is updated, and compared with

the personal best (pbest) obtained so far. If the cost due to the position obained at current

iteration is more (as it is a cost maximization problem) than the pbest obtained upto the

previous iteration, then the current position becomes the personal best or pbest, otherwise

pbest remains unchanged. Thus the best position of a particle obtained so far is stored as

pbest. The global best or gbest is updated when the population’s overall current best, i.e.,

the best of the pbsests is better than that found in the previous iteration.

After initializing positions and velocities, each particle updates its velocity based on

previous velocity component weighted by an inertial factor, along with a component pro-

portional to the difference between its current position and pbest weighted by a cognition

acceleration coefficient, and another component proportional to the difference between its

83

current position and (gbest), weighted by a social acceleration coefficient. This is socio-

cognitive model of PSO and facilitates information exchange between members of the

swarm. Since all members are free to interact with each other, the flow of information

is unrestricted and the PSO algorithm is said to have a ’fully-connected’ topology. While

updating the velocity, a particle’s reliance on its own personal best is dictated by its cog-

nitive ability, and the reliance on the entire swarm’s best solution is dictated by its social

interactive nature. Hence those factors in the velocity component are weighted by the cog-

nition acceleration coefficient c1 and social acceleration coefficient c2. The new positions

of the particles are updated as the vector sum of the previous positions and the current

velocities. Thus the positions of the particles, are updated aiming towards intelligent ex-

ploration of the search space, and subsequent exploitation of the promising regions in order

to find the optimal solution based on cost optimization of the stated problem.

After each iteration is completed, the velocity and position of a particle are updated as

follows:

vi, j(t +1) = w.vi, j(t)+ c1.r1(t).(pi, j(t)− xi, j(t))+ c2.r2(t).(pg, j(t)− xi, j(t)) (4.11)

xi, j(t +1) = xi, j(t)+ vi, j(t +1) (4.12)

vi, j and xi, j represent the velocity and position of the i-th particle in the j-th dimension.

Cognition and social acceleration coefficients are indicated by c1 and c2, whereas r1 and

r2 are random numbers uniformly distributed between 0 to 1. pi, j represents a particle′s

personal best and pg, j represents the global best of the population. w acts as an inertial

weight factor controlling the exploration and exploitation of new positions in the search

space and t denotes the number of iterations.

The problem is formulated as fitness maximization problem in order to bring out opti-

mal travel times to improve on-time performance. Hence the personal best of a particle is

updated as follows at the end of each iteration.

84

Data: D← Historical timepoint datasets
Input : (1) [tearly,tlate]← on-time range , (2) maxIter← maximum number of iterations

maxIter, (3) npop← number of particles in the population size npop, (4) w←
inertia weight, (5) c1← cognition acceleration coefficient, (6) c2← social
acceleration coefficient, (7) h← bus trip for optimization, (8) upperLimit ← upper
limit of the number of clusters

Output: Optimized schedule b at timepoints for bus trip h
GetAllTimepoints(D, h);
GetHistoricalData(D, h);
monthClusters← ClusterMonthData(upperLimit);
for monthCluster ∈ monthClusters do

P← [];
for population size npop do

Initialize each particle with random position and velocity
P← P∪ InitialIndividual();

end
while maxIter is reached do

Evaluate the cost function (J) for each particle’s position (x)
if J(x) ¿ J(pbest), then pbest = x
gbest← Update if the population’s overall current best is better than that in previous

iteration
Update the velocity of each particle according to equation (10)
Update the position of each particle according to equation (11)

end
Give gbest as the optimal schedule b at timepoints for bus trip h

end
Algorithm 3: particle swarm optimization for bus on-time performance optimization

pi, j(t +1) =


pi, j(t), if cost(xi, j(t +1))< cost(pi, j(t))

xi, j(t +1), if cost(xi, j(t +1))≥ cost(pi, j(t))
(4.13)

As discussed earlier, our goal is to provide new schedule time for two consecutive time-

points that can maximize the bus arrivals with delay within desired range [tearly, tlate]. The

empirical cumulative distribution function (CDF) for evaluating the percentage of historical

delay in desired range is decribed in equation [7-9] which is considered in cost calculation.

All other calculations including the historical dwell time cused by the passengers, the sim-

ulated departure time, the new scheduled time are done in the same way as described in the

Genetic Algorithm and the calculations are described in the section 5.2.

85

Termination The termination condition set for PSO is the predefined maximum num-

ber of iterations. Since the optimized on-time performance is different for each trip, the

termination condition is not set as any predefined upper limit of the fitness value. With

other hyperparameters fixed PSO can produce the optimal solution approximately in 30

iterations for this problem.

The pseudo code for PSO is discussed in Algorithm 3. Historical timepoint datasets

are used to conduct the particle swarm optimization algorithm for this problem. The input

includes on-time range, maximum number of iterations, number of particles in the popu-

lation size, inertia factor, cognition and social acceleration coefficient, bus trip and upper

limit of number of month clusters.

4.4.4.3 Sensitivity Analysis on Hyper-parameters

In the context of heuristic searching algorithms, exploration ability and exploitation

ability are two contradictory criteria that must be taken into account. Exploration searches

undiscovered regions as much as possible, while exploitation tries to concentrate on regions

neighbouring possible optima. The exploration ability and exploitation ability of genetic

algorithm are controlled by the hyper-parameters such as population size, crossover rate,

and mutation rate. For example, in genetic algorithms, the exploitation is conducted by

crossover operations and the exploration is rendered by mutation. Changing the rates of

the crossover operator and the mutation operator will result in different optimization per-

formance in accuracy and time complexity.

In case of particle swarm optimization, the velocity vector is guided by three distinct

factors. It has a component of its own past velocity, weighted by the inertia factor w,

another component towards its own best so far, and another towards the global best so

far. The inertia weight w is also responsible to control the exploration exploitation ratio

of the algorithm to reach optima. Cognition and social acceleration coefficients c1 and

c2 maintain a balance in determining the direction of a particle’s next move providing a

86

measure of the extent, a particle should follow its own historical best and the global best in

order to achieve optima.

The best values of hyper-parameters depend on the nature and implementation intrica-

cies of the heuristic algorithms and are generally problem specific. In Section 4.5.3 we

discuss results of the sensitivity analysis and present suggestions.

4.5 Evaluation and Sensitivity Analysis Results

This section describes the simulation results for evaluating the proposed on-time perfor-

mance optimization mechanisms. We first setup experiments to check whether the cluster-

ing analysis could capture the monthly and seasonal delay variations, and then compare the

optimization performance of the proposed greedy, genetic and PSO algorithms. Sensitivity

analyses are performed in the end to help tune the model hyper-parameters. Our simula-

tion experiments were conducted using real-world bus data collected from the Nashville

transit system. Data leakage is a potential issue, especially for dealing with time series

data. To prevent data leakage issues when dividing original datasets into training and test-

ing datasets, we add constraints that the timestamps of the data samples in testing datasets

are always later than the data in training datasets.

4.5.1 Experiment 1: Evaluating the Clustering Analysis

Hypothesis. The clustering analysis proposed in Section 4.4.1 could identify months

with similar delay patterns and group them together. Compared with generating a single

timetable for all months, creating separate timetables for different month groups could help

improve the on-time performance further.

Simulation Setup. To evaluate the hypothesis about the clustering analysis, we de-

signed two simulations to compare the optimized on-time performance with and without a

clustering analysis step: (1) months are not clustered and a single timetable is generated

for all months, (2) month clustering is conducted at first and the optimization algorithms

87

Table 4.4: The original and optimized on-time performance on average across all bus
routes.

Origin GA without Clustering GA with Clustering PSO with Clustering
On-time Perf. 57.79% 66.24% 68.34% 68.93%

is applied on different month groups to generate separate timetables. For example, if the

historical delay patterns of a bus trip are clustered into 2 groups (e.g., group 1 contains

April, and group 2 contains May, June, July and August), then in the first simulation both

groups will get the same timetable, while in the second simulation group 1 and group 2

will get two different bus schedules. The simulations use real-world data collected from 4

months (May, June, July and August) in 2016.

Simulation Results. Table 4.4 shows the original and optimized on-time performance

on average across all bus routes. Using the genetic algorithm without clustering step im-

proved the original performance from 57.79% to 66.24%. Added the clustering step which

groups months with similar patterns improved it further to 68.34%.

4.5.2 Experiment 2: Comparing Optimization Performance of Greedy, Genetic, and PSO

Algorithms

Hypothesis. Both proposed greedy and genetic algorithms could improve the on-time

performance. However, since the genetic algorithm could optimize the schedule for all

segments for each route all together, the genetic algorithm will outperform the greedy al-

gorithm.

Simulation Setup. Two simulations are designed to evaluate the optimization ability

of the proposed greedy and genetic algorithms. For each trip, months are first clustered

according to their delay patterns, the greedy algorithm and the genetic algorithm are then

applied in the two simulations.

Simulation Results. The original on-time performance, optimized on-time perfor-

mance using greedy algorithm and genetic algorithm are illustrated in Figure 4.5. The

88

hypothesis is validated that while both algorithms can improve the on-time performance,

the genetic algorithm outperforms the greedy algorithm because it optimizes the schedule

for all timepoint segments on each trip all together. The original on-time performance of

all bus routes in origin is 57.79%. The greedy algorithm improved it to 61.42% and the

genetic algorithm improved it further to 68.34%. The PSO algorithm has a slightly better

optimized on-time performance of 68.93%.

Figure 4.5: The original on-time performance and the optimized on-time performance us-
ing greedy algorithm, genetic algorithm with/without clustering analysis and PSO algo-
rithm.

4.5.3 Experiment 3: Sensitivity Analysis on the Hyper-parameters of the Genetic algo-

rithm

Hypothesis. Changing the population size and the rates of the crossover operator and

the mutation operator will result in different optimization performance in terms of accu-

racy and time complexity. Even though the optimal hyper-parameter settings are problem-

specific, there are some rules and patterns for selecting the best values.

89

Figure 4.6: Timepoints on bus route 5 in Nashville

Simulation Setup. In this experiment, we designed three simulations that choose dif-

ferent hyper-parameters: (1) population sizes that range from 10 to 110, (2) crossover rates

that range from 0.1 to 1.0, (3) mutation rates that range from 0.1 to 1.0. Real-world data

collected from Route 5, which is one of major bus routes that connects downtown Nashville

and the southwest communities in Nashville. The route contains 6 timepoint stops and 5

segments between the 6 timepoint stops. The bus trips with direction from Downtown are

selected. The goal is to maximize the on-time performance for these trips by optimizing

the schedule time at the 6 timepoint stops.

Figure 4.7: The chart shows the on-time performance and overall execution time for differ-
ent population sizes.

90

Simulation Results. Figure 4.7 shows the simulation results of choosing different pop-

ulation sizes. Increasing the population size from 10 to 90 results a better on-time perfor-

mance, however, increasing the size ever further doesn’t help making the on-time perfor-

mance any better. On the other hand, the total time increases linearly as the population size

grows. So a population size around 90 is the optimal size to use.

Figure 4.8: The chart shows the on-time performance and overall execution time for differ-
ent crossover rates, which controls the exploitation ability of the GA.

Figure 4.8 illustrates results of using different crossover rates. The optimized on-time

performance remains almost the same for the crossover range, but there is a significant

difference in terms of the total execution time. The crossover rate impacts the exploita-

tion ability. A proper crossover rate in the middle of the range can faster the process to

concentrate on an optimal point.

Figure 4.9 show the simulation results when using different mutation rates. The total

execution time is small when the mutation rate is either very small or very large. Mutation

rates controls the exploration ability. During the optimization, a small mutation rate will

make sure the best individuals in a population do not vary too much in the next iteration

and thus is faster to get stable around the optimal points. So we suggest setting a very small

mutation rates when running the proposed algorithm.

91

Figure 4.9: The chart shows the on-time performance and overall execution time for differ-
ent mutation rates, which controls the exploration ability of the GA.

4.5.4 Experiment 4: Sensitivity Analysis on the Hyper-parameters of Particle Swarm Op-

timization

Hypothesis. Variation in the hyper-parameters like population size, inertia weight w,

cognition acceleration coefficient c1, social acceleration coefficient c2, and their ratios to

each other in the velocity update equation will lead to different solution quality with respect

to accuracy and execution time. Although the selection of optimal values of the hyperpa-

rameters are problem specific, some patterns can be observed to present an overview of the

feasible range of operation for acceptable solutions.

Simulation Setup. In this experiment, we designed four simulation setups that choose

different hyper-parameters: (1) The inertial weight factor,w that range from 1 to 8, (2) So-

cial acceleration coefficient c1 that range from 1 to 8, (3) Cognition acceleration coefficient

c2 that range from 1 to 8, and (4) Number of particles that range from 2 to 36. Real-world

data regarding bus timings is collected from Route 8, which is one of the major bus routes

that connects Music City Central Nashville and the Lipscomb University in Nashville. The

route contains 5 timepoint stops and 4 segments between the 5 timepoint stops. The goal

is to maximize the on-time performance for these trips by optimizing the schedule time at

the 5 timepoint stops.

92

Simulation Results. Figure 4.10 shows the simulation result while optimizing for the

inertial weight w by varying it. It is observed that the optimized on-time performance is

at its peak when w is nearly equal to 5 with less execution time. Performance deteriorates

along with an increase in execution time as the selection is moved away from 5. So, an

optimal value to choose for w, will be somewhere around 5.

Figure 4.10: The chart shows the on-time performance and overall execution time for dif-
ferent inertia weights, exploring new regions of search space in PSO.

Figure 4.11 shows the simulation result for optimizing the cognition acceleration coef-

ficient c1 by varying it. The particle has a velocity component towards its own best position

weighted by c1, hence the term ’cognitive’. It is observed that the optimized on-time per-

formance is improved when c1 increases from 3 to 5 with less execution time. After that

the performance deteriorates along with increase in execution time. So, an optimal value

to choose for c1, will be within the range specified.

Figure 4.12 shows the simulation result for optimizing for the social acceleration co-

efficient c2 by varying it. The particle has a velocity component towards the global best

position weighted by c2, hence the term social. It is observed that the optimized on-time

performance is improved when c2 is equal to 5 with less execution time. Also, c2 being

4 produces good results, but there is an increase in execution time at that value. But the

overall effect of parameter c2 affects the on-time performance only within a range of two

percent. Sometimes, PSO is able to produce optimal or near optimal performance, when

93

Figure 4.11: The chart shows the on-time performance and overall execution time for dif-
ferent cognition acceleration coefficients c1, in PSO.

all other hyperparameters are fixed, and thus is not sensitive to a particular hyperparameter,

which is the case considered here. So an optimal value to choose for c2, may be close to 5,

maintaining approximately a ratio near to 1:1:1 among w, c1 and c2.

Figure 4.12: The chart shows the on-time performance and overall execution time for dif-
ferent social acceleration coefficients c2, in PSO.

Figure 4.13 shows the simulation result for optimizing the number of particles by vary-

ing the population size. It is observed that the optimized on-time performance is maximized

when the number of particles reaches 30. The execution time increases with the number of

particles, so it is better to choose such number of particles that produces the best pair in the

accuracy-execution time tradeoff. So, the population size can be chosen as 30 in this case

as it yields equally efficient results with a relatively small execution time.

Although a good insight about choices of hyperparameters can be obtained from this

94

Figure 4.13: The chart shows the on-time performance and overall execution time for vari-
ous population size, in PSO.

sensitivity analysis, variations of the hyperparameters may produce better results in specific

routes.

4.6 Conclusion

In this chapter, we present research on a bus on-time performance optimization toolchain

that significantly extends our prior work [59] by proposing an optimization toolchain and

presenting sensitivity analysis on choosing the optimal hyper-parameters. Particularly, we

describe an unsupervised analysis mechanism to find out how months with similar de-

lay patterns can be clustered to generate new timetables. A genetic algorithm as well as

greedy algorithm and a classical particle swarm optimization algorithm are proposed to

optimize the schedule time to maximize the probability of bus trips that reach the desired

on-time range. Simulations of optimization performance as well as sensitivity analysis on

the hyper-parameters of the GA and PSO algorithms are conducted. The results indicate

different strategies for choosing between the genetic, PSO and heuristic algorithms, and

selecting optimal hyper-parameters.

Publication. This work has been published in the following place:

• Fangzhou Sun, Chinmaya Samal, Jules White and Abhishek Dubey, Unsupervised

Mechanisms for Optimizing On-Time Performance of Fixed Schedule Transit Vehi-

95

cles, SMARTCOMP2017: Smart Computing Technologies and Applications, May

29-31, 2017, Hong Kong, China

96

CHAPTER 5

DEEP NEURAL NETWORKS FOR CONTEXT-AWARE ANOMALY DETECTION IN

TRANSIT NETWORKS

Non-recurring traffic congestion is caused by temporary disruptions, such as accidents,

sports games, adverse weather, etc. We use data related to real-time traffic speed, jam

factors (a traffic congestion indicator), and events collected over a year from Nashville,

TN to train a multi-layered deep neural network. The traffic dataset contains over 900

million data records. The network is thereafter used to classify the real- time data and iden-

tify anomalous operations. Compared with traditional approaches of using statistical or

machine learning techniques, our model reaches an accuracy of 98.73% when identifying

traffic congestion caused by football games. Our approach first encodes the traffic across

a region as scaled images. After that the image data from different timestamps is fused

with event- and time-related data. Then a crossover operator is used as a data augmenta-

tion method to generate training datasets with more balanced classes. Finally, we use the

receiver operating characteristic (ROC) analysis to tune the sensitivity of the classifier. We

present the analysis of the training time and the inference time separately. The content of

this chapter has appeared in a conference paper [55].

5.1 Problem Overview

Emerging Trends. Traffic congestion in urban areas has become a significant issue in

recent years. Because of traffic congestion, people in the United States traveled an extra 6.9

billion hours and purchased an extra 3.1 billion gallons of fuel in 2014. The extra time and

fuel cost were valued up to 160 billion dollars [3]. Congestion that is caused by accidents,

roadwork, special events, or adverse weather is called non-recurring congestion (NRC)

97

[28]. Compared with the recurring congestion that happens repeatedly at particular times

in the day, weekday and peak hours, NRC makes people unprepared and has a significant

impact on urban mobility. For example, in the US, NRC accounts for two-thirds of the

overall traffic delay in urban areas with a population of over one million [129].

Driven by the concepts of the Internet of Things (IoT) and smart cities, various traffic

sensors have been deployed in urban environments on a large scale. A number of tech-

niques have been developed for knowledge discovery and data mining by integrating and

utilizing the sensor data. Traffic data is widely available by using static sensors (e.g., loop

detectors, radars, cameras, etc.) as well as mobile sensors (e.g., in-vehicle GPS and other

crowdsensing techniques that use mobile phones). The fast development of sensor tech-

niques enables the possibility of in-depth analysis of congestion and causes.

The problem of finding anomalous traffic patterns is called traffic anomaly detection.

Understanding and analyzing traffic anomalies, especially congestion patterns, is critical

to helping city planners make better decisions to optimize urban transportation systems

and reduce congestion conditions. To identify faulty sensors, many data-driven and model-

driven methods have been proposed to incorporate historical and real-time data [130, 22,

131, 23]. Some researchers [132, 133, 134, 135] have worked on detecting traffic events

such as car accidents and congestion using videos, traffic, and vehicular ad hoc data. There

are also researchers who have explored the root causes of anomalous traffic [8, 26, 9, 27,

30, 10].

Most existing work still mainly focuses on a road section or a small network region

to identify traffic congestion, but few studies explore non-recurring congestion and its

causes for a large urban area. Recently, deep learning techniques have gained great success

in many research fields (including image processing, speech recognition, bioinformatics,

etc.), and provide a great opportunity to potentially solve the NRC identification and clas-

sification problem. There are still many open problems: (1) using feature vectors to rep-

resent traffic conditions loses the spatial information of the road segments, (2) using small

98

and unbalanced dataset (traffic data with event labels is limited) to train neural networks

downgrades the performance, a proper data augmentation mechanism is needed to balance

the training data with different class labels, (3) building deep neural networks to model the

traffic conditions of both recurring and non-recurring congestion.

Contributions. In this chapter, we propose DxNAT, a deep neural network model to

identify non-recurring traffic congestion and explain its causes. To the best of our knowl-

edge, our work is one of the first efforts to utilize deep learning techniques to study traffic

congestion patterns and explain non-recurring congestion using events. The main contri-

butions of our research are summarized as follows:

• We present an algorithm to efficiently convert traffic data in Traffic Message Channel

(TMC) format to images

• We introduce a crossover operator as a data augmentation method for training class

balancing.

• A convolutional neural network (CNN) is proposed to identify non-recurring traffic

anomalies that are caused by events.

• We create three scenarios to evaluate the performance of the proposed model by

using real-world data of three events types (football games, hockey games, and traffic

incidents).

5.2 Related Work and Challenges

This section presents an overview of the related work on traffic anomaly detection,

which includes studies about faulty traffic sensor detection, traffic event detection, and con-

gestion cause indication. Three key research challenges and our contributions for detecting

NRC are discussed in the end.

99

5.2.1 Related Work about Traffic Anomaly Detection

Faulty Traffic Sensor Detection. Robinson et al. [130] proposed an approach that

used data from inductive loop detectors to estimate travel time on road segments. His

approach included a data cleaning method to clean the collected traffic data. Lu et al. [22]

reviewed previous work on faulty inductive loops data analysis. Widhalm et al. [136]

presented a traffic anomaly detection method that used Floating-Car Data (FCD) as an

independent information source. They developed a non-linear regression model to fit the

traffic sensor data and FCD data. Zygouras et al. [131] proposed a method comparing

correlations among nearby sensors to identify faulty sensor readings. Their system was

based on MapReduce paradigm to work for crowdsourcing data. Ghafouri et al. [23]

presented a faulty traffic sensor detection model based on Gaussian Processes. Particularly,

they provided an effective approach for computing the parameters of detectors to minimize

the loss due to false-positive and false-negative errors.

Event Detection Using Traffic Data. Monitoring traffic flow at intersections is im-

portant in the traffic event detection research. Kamijo et al. [132] developed an algorithm

based on spatiotemporal Markov random field (MRF) for processing traffic images and

tracking vehicles at intersections. Using the timeseries observed behaviors of vehicles, a

hidden Markov model for accident detection is then proposed. Veeraraghavan et al. [133]

presented a multiple cue-based approach combined with a switching Kalman filter for de-

tecting vehicle events such as turning, stopping and slow moving. Terroso-Senz et al. [137]

presented an event-driven architecture (EDA) that used vehicular ad hoc network and ex-

ternal data sources like weather conditions to detect traffic congestions. Yang et al. [134]

proposed a coupled Bayesian RPCA (BRPCA) model for detecting traffic events that used

multiple traffic data streams. Kong et al. [135] proposed LoTAD to explore anomalous re-

gions with long-term poor traffic situations. To model the traffic condition, crowd-sourced

bus data is grouped into spatiotemporal segments. The segments with high anomaly in-

dexes were combined to get anomalous regions. Wang et al. [138] proposed a two-stage

100

solution to detect road traffic anomalies: (1) a Collaborative Path Inference (CPI) model

that performs path inference incorporating static and dynamic features into a Conditional

Random Field (CRF); (2) a road Anomaly Test (RAT) model calculates the anomalous

degree for each road segment.

Congestion Cause Indication. Liu et al. [8] studied both known (planned) and un-

known (unplanned) events behaving differently from daily network traffics as anomalies,

and proposed algorithms that construct outlier causality trees based on temporal and spatial

properties of detected outliers. Xu et al. [26] introduced an approach to identify urban con-

gestion patterns based on the data cube. They proposed a multi-dimensional data analysis

method for data cube. Chow et al. [9] presented an automatic number plate recognition

technology to analyze urban traffic congestions and introduced a linear regression model

to indicate the causes of the congestions. Kwoczek et al. [30] proposed an Artificial Neu-

ral Network (ANN) based classifier to detect the road segments affected by planned events.

Mallah et al. [10] evaluated the performance of machine learning techniques for classifying

congestions into different causes.

5.2.2 Research Challenge 1: Representing Heterogeneous Traffic Data and Event Labels

Using Multi-Dimensional Images

A feature vector is an n-dimensional vector and is the most popular representation of

data objects. Besides numerical values, feature vectors can also represent texts and im-

ages. However, feature vectors may not be the best solutions for representing traffic and

corresponding event labels.

Traffic conditions are highly affected by different influencing factors [33], such as in-

cidents, sports games, road work, weather, etc. The events and their physical locations are

used as the labels. But since feature vectors have fixed length, it is not practical to manu-

ally encode the labels to a specific fixed length feature vector. More importantly, in pattern

recognition and machine learning, features matter the most. When converting an image to

101

a feature vector, you can directly convert the two-dimensional pixels to a one-dimensional

vector, or you can first take the histogram of the image and then construct a feature vector

that has several comparison metrics, such as mean, standard deviation, etc. Both methods

will lose some relative spatial information in the original images.

In contrast to feature vectors, images can preserve the original spatial relations by lo-

cating points on different pixels and can integrate multiple data sources by simply adding

layers. Kwoczek et al. [30] showed a factor representation that integrates multiple features

like event and weather into different layers in a data cube. However, though they mentioned

the idea as a possible future work, they did not present any concrete solution to it. Ma et al.

[139] proposed a CNN-based approach for traffic prediction. They represented the traffic

speed and time using a time-space matrix. The problem with the time-space matrix is that

the spatial information between segments is lost, which is important in detecting traffic

patterns because nearby roads usually show similar or related patterns. Additionally, their

model simply considered traffic data, but there are many other factors affecting the future

traffic conditions. Thus representing heterogeneous traffic and corresponding event labels

using images remains a research gap.

One of the key differences between our proposed approach and the existing ones is that

we are trying to visualize the wide area sensor data distribution as Traffic Condition Images

(TCIs), so that we can use CNN and other deep learning techniques for analytics.

5.2.3 Research Challenge 2: Training Deep Learning Models Using Limited Data In-

stances

The performance of deep learning techniques highly relies on the quality of training

data instances. However, the collected urban data may not provide enough data for training

because of the data sampling rates. For example, our proposed model first converts traffic

data to Traffic Condition Images (TCIs) and then trains different models using these images.

But the traffic data we obtain from HERE [34] is requested every minute. So for a day

102

that consists of 1440 minutes, we will only have 1440 traffic images, which are too few

for effective training purposes. The availability issue of data instances becomes worse

considering there is also limited label data. It remains a research challenge of getting more

training data using the existing data.

Traditional ways of solving this problem are: (1) waiting and collecting until enough

training data is collected, (2) manually labeling the data, (3) adding data sources, e.g.,

collecting more data from social media. Our solution uses the idea of crossover from

the genetic algorithm. We assume that traffic conditions within a short time range are

associated with the same events. So we can apply a crossover operator on the TCIs to

generate more TCIs with the same event label.

5.2.4 Research Challenge 3: Modeling Traffic Patterns of Non-Recurring Events

The existing work on traffic event detection focused on analyzing traffic videos or traf-

fic sensor data streams to detect events that are directly related to traffic, such as vehicle

stopping, car accidents, and road congestion. But few studies explored the contextual non-

recurrent events whose impacts are also highly associated with certain traffic patterns.

Recently there has been an explosion in research of using deep neural networks. But

still, few have applied deep learning on studying traffic patterns. Deep learning techniques

have gained great success in research fields like image processing, speech recognition,

bioinformatics, etc. Convolutional neural networks are similar to original neural networks

but convolutional layers are added in the front of the model to learn patterns in the original

images. If traffic and label data can be converted to images, then CNN can be employed

to learn their labeled patterns. It is still a research gap of how to develop an effective

and efficient deep learning network for identifying and classifying traffic patterns of non-

recurring events.

We formulate the problem of identifying the specific traffic patterns associated with

events in Section 5.5.1, and then present the details of our proposed approach that uses

103

Table 5.1: The information of the eight football games studied in the motivating example

Date Start Time (CST) Stadium Attendance Duration (HH:MM)
1/1/17 12:00 PM Nissan Stadium 65205 3:11
12/11/16 12:00 PM Nissan Stadium 68780 3:02
11/13/16 12:00 PM Nissan Stadium 69116 3:36
10/27/16 7:26 PM Nissan Stadium 61619 3:08
10/23/16 12:02 PM Nissan Stadium 65470 3:21
10/16/16 12:02 PM Nissan Stadium 60897 3:12
9/25/16 12:02 PM Nissan Stadium 62370 3:03
9/11/16 12:05 PM Nissan Stadium 63816 2:57

Figure 5.1: Impact of football games on traffic congestion in four one-hour time windows
before football games: (a) from 4 hours to 3 hours, (b) from 3 hours to 2 hours, (c) from 2
hours to 1 hour, (d) from 1 hour to 0 hour.

convolutional neural networks in Section 5.5.3.

5.3 Motivating Example

This section describes a motivating example in which we use the collected datasets to

study the impact of football games on the traffic congestion in the city.

The motivation for our research comes from a brief experiment, in which we study the

impact of football games on the traffic congestion in the city.

During the studied period between Sept. 1, 2016 and Jan. 1, 2017, there were eight

football games (as listed in Table 5.1) at the Nissan Stadium at downtown Nashville. During

this time, we collected data related to traffic (speed limit, real-time speed) and the football

games (date, start time, duration, location)1.

1Our dataset is larger. However, in this study we are focusing on these 4 months

104

To indicate the congestion condition, HERE [34] provides a jam factor (JF) that ranges

between 0.0 and 10.0 for each TMC road segment. In this study we compare the JF between

the days when there is a football game and the days when there is no football game, during

four one-hour time window directly before the games: [−4,−3], [−3,−2], [−2,−1], and

[−1,0] relative to the time when the game was scheduled2.

As shown in Figure 5.1, the results of the JF difference on road segments in different

time windows are visualized using heat maps. In the figure, colors ranging from green to

red are used to indicate the small and big JF differences. The results show that the impact of

football games on traffic congestion begins to increase from 4 hours before games. We have

observed this pattern across several game events in the city. Our hypothesis is that every

event has a unique pattern and we can learn that pattern over time and use it to identify if a

current congestion pattern matches with the expected pattern. If the pattern does not match

then we can classify it as an anomaly.

5.4 Problem Formulation

In this section, we first provide a formal definition of the problem and then describe the

assumptions for solving the problem.

5.4.1 Definition

The goal of this research is to model traffic patterns around the locations of non-

recurrent events so that we can use the model to identify non-recurring congestion and

its causes. The traffic pattern that we use here refers to the spatiotemporal relations of

traffic speeds on many road segments in an area, which can be modeled and detected by a

classifier. The definitions of all relative notions can be found in Table 5.2.

The inputs to the system are data about traffic and events. Since the traffic data that we

collected from HERE API is defined using Traffic Message Channel Location Code [140]

2Most football games are scheduled at 1 PM.

105

Table 5.2: Symbols used in the formulated problem

T a timestamp
tday time in the day in seconds
tweek weekdays encoded using integers (e.g., 0 for Sunday, 1 for Mon-

day, etc.)
tevent time windows relative to events (e.g., 1 for the 1-hour time window

before events)
levent indicator of whether the current time is within a time window near

the occurrence of an event
Se a set of events in the city
r a road segment
Sr a set of road segments defined by TMC location codes
St a set of traffic data that contains speed limit and real-time speed

for a set of road segments Sr
T MCkey a string representing a road segment in Sr
TCI traffic Condition Image, a gray-scale image to represent traffic

conditions in a bounding box
Iw the width of a TCI
p a pixel in TCI. Its value shows the normalized traffic speed on a

road segment
vr the real-time traffic speed (miles per hour) on a road segment r
T H a threshold for the classifier to determine whether the input traffic

data contains recurring or non-recurring congestion

106

format (a standard for encoding geographic information), the road segments used in this

study are also defined using the same TMC location codes. Event data is categorized with

labels for training and validating purposes. The labels used are as follows:

• Event-related: event indicator levent , time window relative to the event tevent

• Time-related: time in the day tday, weekday tweek

One of the key differences between our approach and the existing ones is that we are

trying to visualize the wide area sensor data distribution as Traffic Condition Images (TCI),

so that we can use CNN and other deep learning techniques to analyze and model the

spatiotemporal relations. TCI is a Iw by Iw pixels image. Each pixel p corresponds to a

road segment in the real world and the grayscale value of each pixel represents the real-

time traffic speed vr of the road segment r.

Formulation of the Non-recurring Congestion Identification Problem. Given a set

of traffic data St that contains speed limit and real-time speed for a set of road segments

Sr at a specific time tday on weekday tweek, and a set of event labels Se, the model should

determine levent that indicates whether the given traffic data contains congestion caused by

a subset S
′
e of event set Se. If levent is true, the model should also provide the time window

tevent relative to events (i.e. tevent can be used to estimate the event occurrence time).

Figure 5.2 illustrates an example of the problem. Given raw traffic data at a specific

time, the model should identify the possible non-recurring congestion and also provide an

estimation of the event occurrence time.

5.4.2 Assumptions

The following assumptions are made when we design and formulate the non-recurring

traffic congestion identification system:

• We assume the availability of both traffic speed data and event information for the

studied area and period.

107

Figure 5.2: Overall workflow of the non-recurring congestion identification system

• We assume the traffic condition on a short road segment in a direction is the same

anywhere on the segment.

• We assume that an event happening in the urban environment will affect the traffic

conditions of nearby road segments.

• We assume that there is a robust correlation between the road segments affected by

an event, and that the patterns can be identified by the image classification techniques

of deep learning.

5.5 Our Approach

In order to identify the specific traffic patterns associated with non-recurring events as

defined in Section 5.4, we present the details of our proposed approach in this section. The

overall workflow of the system is shown in Figure 5.2. There are three key components in

the system: (1) an algorithm that converts raw traffic data to images, (2) a convolutional

neural network that classifies the traffic condition images, (3) ROC analysis that tunes the

classification threshold to reduce the false positive and false negative rates.

108

5.5.1 Feature Extraction by Mapping Traffic Data to Images

Research challenge 1 describes the problem that feature vectors have limitations when

representing urban data. To solve this issue, the first step is to convert the collected traffic

data into images. We have been collecting real-time traffic data of Nashville area from Here

Traffic API [34] since Oct. 2016. The traffic data is encoded in TMC location codes. Since

the TMC database is not open to the public, here we present an algorithm to convert traffic

data for a specific time T coded by TMC locations to traffic images. In order to project

the traffic conditions to the pixels of images, we first initialize a gridded map and then

re-sample the road segments defined by TMC location codes to the grids. The algorithm’s

input, output, and step details are as follows (for a set of road segments Sr, step 1 and 2 will

run only once, but step 3 will run once for each timestamp):

Input: Traffic dataset St , road segment set Sr, and timestamp T . The raw traffic data of

road segments Sr for timestamp T is queried from Traffic dataset St in the database.

Output: A Traffic Condition Image (TCI).

Step 1: Map grid initialization. The map of the area containing the road segment set

Sr is divided into a map grid of squares. The length of each square is about 8.97 meters, so

each grid cell covers about 80.51 square meters on the map.

Step 2: Road segment path re-sampling and smoothing. The points from road seg-

ments are re-sampled to the centers of grid cells if the points are covered by the cell. Also,

if the distance between two original points is large enough that there are blank cells be-

tween the two cells projected by the two points, then points will be interpolated to fill the

blank cells. After this step, we get a two-dimensional array, in which each cell contains a

list of TMC keys T MCkey corresponding to points from road segments.

Step 3: Traffic data projection to the images. The two-dimensional array acts as

a projecting table from original road segments to the image pixels. Now we can fill the

images with traffic data by querying the traffic data using segment keys T MCkey and times-

tamp T . We use the following equation to convert a traffic speed to a pixel value:

109

p =


(80−vt

s)∗255
80 , if 0 6 vt

s 6 80

0, otherwise
(5.1)

where p denotes the pixel value (0-255) and vt
s denotes the real-time speed (miles per hour).

After getting initial projected TCI, simple image processing techniques are used to

resize TCI to the desired size (Iw by Iw).

5.5.2 Data Augmentation by Crossover Operations

TCI is our image representation of traffic speeds on road segments. Since traffic data

is collected every minute, without data augmentation we can only get 1440 (the number of

minutes in a day) TCIs for one day, which is usually not enough for training deep learning

image processing models. To address research challenge 2 (i.e., the lack of enough traffic

data with labels), we create a crossover operator to generate more labeled traffic condition

images for training deep learning models. Crossover is originally a genetic operator from

genetic algorithms to vary the chromosomes of individuals from one generation to another.

We are motivated by a similar idea and present the crossover operator for our system:

1. Getting TCI candidates. For a given timestamp T , instead of only getting one TCI

for T , we generate n TCIs for time range [T − t,T] (t denotes a time length to extend

T , e.g., 3 minutes). While these TCIs are the same in image size, they differ in the

pixel values because they correspond to traffic speeds at different times.

2. Generating new labeled TCIs. While looping through the pixels in TCI, for each

pixel row there is a probability pm that its values will mutate and randomly select

a new row from the same corresponding pixels in other TCI candidates. After the

second step, we get a new TCI. Because we assume traffic conditions within a small

time range are caused by the same events, we can give the new TCI the same event

label.

110

The crossover operator can be executed for many times to generate many new data

instances. Through crossover, we not only have more labeled data, but also reduce the

probability of over-fitting in the training phase.

5.5.3 Classifying Non-Recurring Congestion

Figure 5.3: Our proposed convolutional neural network (CNN).

In the previous section, we have described an algorithm that converts raw traffic data

to TCI. Since the inputs contain images, it makes sense to apply convolutional neural net-

works. This section introduces our CNN model to classify the TCI using event labels.

CNN is a class of deep and feed-forward artificial neural networks that have shown great

success in image analysis tasks. Here we apply CNN to our problem that assigns event and

111

congestion labels to a TCI.

CNN. The architecture of the proposed CNN is shown in Figure 5.3. Generally, the

model consists of a stack of convolutional, fully-connected neural, dropout and max-pooling

layers. Dropout layers are used throughout the model to prevent over fitting. Max pooling

layers are used for spatial down-sampling. In the middle of the CNN, feature vectors that

represent time of day and day of week that correspond to the TCI are concatenated to be

input into the CNN to help it make better decisions. Details of the layer configuration,

such as dimension, activation function, and dropout rate, can be found in the Figure 5.3.

Since we use one-hot encoding and the vectors are in categorical format (i.e., dimensional

vector is all-zeros except for a one at the index corresponding to the class of the sample),

categorical cross entropy is used as the loss function to train the model.

One-hot Encoding. In the proposed CNN model, the input feature vectors are time

in the day and weekday, and output labels are (1) whether the congestion in input TCI is

recurring or non-recurring (2) the relative time windows that the TCI belongs to if it is non-

recurring congestion. We use one-hot encoding to convert both input and output vectors to

binary class matrix. The input matrix has 31 classes, in which 24 classes correspond to 24

hours and 7 classes correspond to 7 days of the week. As illustrated in Figure 5.4, the output

matrix has several classes, of which the first class represents whether the traffic condition

belongs to recurring congestion or non-recurring congestion, and the next classes represent

time windows before and after events. The first class is tunable since it directly determines

whether the input traffic condition contains non-recurring congestion or not. If the value of

the first class output is higher than a predefined threshold T H, then the classifier will output

that the input traffic data does not contain non-recurring congestion (even if the values of

other classes are higher than the first class). The details of the tuning steps are presented in

the following section.

112

Figure 5.4: An example of the one-hot encoding format. Event labels are encoded using
9 classes: (1) first digit represents whether the traffic condition belongs to recurring con-
gestion or non-recurring congestion, (2) if it’s non-recurring congestion, the next 8 digits
represent 8 time windows before and after events.

5.5.4 Tuning the Model Sensitivity by ROC Analysis

Our approach uses receiver operating characteristic (ROC) analysis to tune the sensi-

tivity of the CNN classifier. ROC is a statistical plot that illustrates the diagnostic ability

of a classifier system [141]. The ROC curve is a fundamental tool for diagnostic test eval-

uation. In an ROC curve, the true positive rate (TPR) is plotted in a function of the false

positive rate (FPR). In machine learning, TPR represents sensitivity, recall or probability

of detection, and FPR represents fall-out or false alarm [142]. By choosing a point from

the curve, corresponding classification threshold can be decided.

In our model, the non-recurring congestion is considered as positive output and the

recurring congestion is negative output.

We use the ROC analysis to tune the classification threshold that decides whether the

traffic congestion in the input traffic data is recurring congestion or non-recurring conges-

tion. We choose thresholds that range from 0.01 to 1.00 and the corresponding FPR and

TPR of the training dataset are plotted (an example is shown in Figure 5.5). The curve’s

nearest point to the point (FPR: 0.0, TPR: 1.0) will be selected.

5.6 Experiments

In this section, we evaluate the proposed deep neural network’s ability to identify non-

recurring traffic anomalies by using real-world data of three event types: football games,

113

Figure 5.5: Receiver operating characteristics (ROC) curve analysis on the prediction
threshold.

hockey games, and traffic incidents. Keras [96] Python deep learning library is used to

construct the models and TensorFlow [143] is selected as the tensor manipulation library.

5.6.1 Scenarios

As illustrated in Figure 5.6, we create three scenarios to test the performance of the

proposed model. In each scenario, we consider one of the three event categories for training

and validating the proposed model:

• Football Games. Between Oct. 11, 2016, and Jan. 1, 2017, there were 8 NFL

football games at the Nissan Stadium in Nashville. The traffic data in the bounding

box (latitude range: [36.1120, 36.2052], longitude range: [-86.8475, -86.7543]) is

used.

• Hockey Games. Between Oct. 14, 2016, and Jan. 03, 2017, there were 20 NHL

hockey games at the Bridgestone Arena in Nashville. The traffic data in the bounding

box (latitude range: [36.1237, 36.1936], longitude range: -86.8359, -86.7660]) is

used.

114

Figure 5.6: Experimental scenarios and their coverage areas: (1) detecting NRC caused by
football games, (2) detecting NRC caused by hockey games, (3) detecting NRC caused by
traffic accidents.

115

• Traffic Accidents. Between Oct. 15, 2016, and Mar. 10, 2017, there were 23 traffic

accidents at the selected block area. The traffic data in the bounding box (latitude

range: [36.1470, 36.1586], longitude range: [-86.8126, -86.8009]) is used.

The traffic and event datasets are divided into two subsets for training and validation.

The event and time information is encoded using one-hot encoding as described in Sec-

tion 5.5. An example of the output of our model is shown in Figure 5.4. Particularly, the

following metrics are used to define if an output is positive or negative: (1) an output is con-

sidered to be positive if it determines that the input TCI contains non-recurring congestion,

(2) an output is negative if it determines the input TCI only contains recurring congestion.

5.6.2 Experiment 1: Identifying NRC Caused by Football Games

As shown in the motivating example in Section 5.3, the 8 selected NFL football games

have an average attendance of over 60,000 people, which shows a great impact on causing

non-recurring traffic congestion. In the first scenario, we use the traffic data collected

in 1-minute intervals between Oct. 11, 2016 and Jan. 1, 2017. Traffic data of 5 non-

game days and two game days are used as the training dataset, and one non-game day

and one game day are used as the validating dataset. As a comparison with the traditional

machine learning techniques, we build a random forest model that uses the same training

and validating dataset. Because random forests cannot use images directly as input, we

first convert the traffic condition images to one-dimensional vectors, and then concentrate

the traffic vectors with time of the day and day of the week vectors, and finally use the

combined feature vector as input to the random forest model.

The accuracy, false positive rate (FPR) and false negative rate (FNR) of our model and

the random forest model are shown in Table 5.5. Our model outperforms the random forest

model with higher accuracy and lower FPR and FNR.

116

Table 5.3: Experiment results in scenario 1: identifying NRC caused by football games

Accuracy FPR FNR
DxNAT 98.73% 1.57% 0.17%

Random Forest 84.06% 6.25% 2.17%

Table 5.4: Experiment results in scenario 2: identifying NRC caused by hockey games

Accuracy FPR FNR
DxNAT 90.76% 8.11% 23.19%

5.6.3 Experiment 2: Identifying NRC Caused by Hockey Games

Compared with NFL football games, NHL hockey games in Nashville usually have less

attendance (NHL 10,000 v.s. NFL 60,000). So we assume that an NHL hockey game has

less impact on traffic conditions and it will be more difficult to detect the NRC related to

hockey games.

In Scenario 2, we use traffic and hockey games data between Oct. 14, 2016, and Nov.

30, 2016, as the training dataset, and data of Dec. 15, 2016 (game day) and Dec. 16, 2016

(non-game day) as the validating dataset. The accuracy, FPR and FNR results are shown

in Table 5.4. Compared with the results in Scenario 1, the model has lower accuracy and

higher FNR. Our assumption is validated that the NRC associated with hockey games with

less attendance is harder to be detected.

5.6.4 Experiment 3: Identifying NRC Caused by Traffic Accidents

In scenario 3, we explore the model’s ability to detect NRC caused by road accidents.

For the selected block area, there were eight traffic accidents on 7 different days between

Oct. 18, 2016, and Dec. 13, 2016. We use six days with accidents as the training dataset

and one day with an accident as the validating dataset. The DxNet model archives an

accuracy of 86.59% with FPR of 13.71% and FNR of 4.44%

117

Table 5.5: Experiment results in scenario 3: identifying NRC caused by traffic accidents

Accuracy FPR FNR
DxNAT 86.59% 13.71% 4.44%

Table 5.6: Summary of architectural decisions

Challenge Approach Section
Representing Heterogeneous Traf-
fic Data and Event Labels

Using Multi-dimensional Images 5.2.2

Training Deep Learning Models
Using Limited Data Instances

Developing crossover operator on
original data

5.2.3

Modeling Traffic Patterns of Non-
Recurring Events

Employing convolutional neural
networks

5.2.4

5.7 Conclusion

In this chapter, we propose a deep neural network model to identify non-recurring traf-

fic congestion and explain its causes. To our best knowledge, our work is one of the first

efforts to utilize deep learning techniques to study traffic congestion patterns and explain

non-recurring congestion using events. Our main contributions are listed in Table 5.6. Par-

ticularly, we present an algorithm to efficiently convert traffic data in Traffic Message Chan-

nel (TMC) format to images, as well as a data augmentation mechanism using crossover

operators for class balancing. A convolutional neural network is proposed to identify non-

recurring traffic anomalies that are caused by events. We evaluate the proposed model by

using three types of events (football games, hockey games, and traffic incidents).

Publication. This work has been published in the following place:

• Fangzhou Sun, Abhishek Dubey, Hiba Baroud, Chetan S. Kulkarni, Chinmaya Samal,

Short-term Transit Decision Support System Using Multi-task Deep Neural Net-

works, The 4th IEEE International Conference on Smart Computing (SMARTCOMP

2018), June 18-20, 2018, Taormina, Sicily, Italy.

118

CHAPTER 6

CONCLUDING REMARKS

Urban mobility networks are vital for people living in the city. Communities are now

embracing data-driven smart solutions, which aim to improve the utilization, management,

and effectiveness of available transportation options. However, the current state of the art

approaches face many challenges that arise due to the heterogeneity, sparsity, and noise in

the data collected in the urban environment. This thesis identified three key research chal-

lenges to build robust urban mobility networks: (1) predicting the transit delay using data

with sparsity issues for multiple timescales, and identifying significant predictor variables

from the environment, (2) optimizing the performance of transit networks under uncertainty

in order to understand and mitigate the schedule of public transit considering seasonal de-

lays, and (3) identifying and explaining the anomalous operations of transit networks over

a large metropolitan area. A summary of research contributions are discussed below.

6.1 Summary of the Research Contributions

• Robust arrival delay prediction models that solve data sparsity issue, and a multivariate

predictive model to explore the significance of contextual predictors:

1. Presented a real-time delay prediction model that combines clustering analysis and

Kalman filters and uses real-time data from shared route segments.

2. Provided an algorithm that generates shared bus route segment networks from stan-

dard General Transit Feed Specification (GTFS) datasets.

3. Showed the efficacy of our real-time delay prediction model. When predicting the

travel time delay of segments 15 minutes ahead of scheduled time, our model reduced

119

the root-mean-square deviation (RMSD) by about 30% to 65% compared with a

SVM-Kalman model [15].

4. Proposed a generic tool-chain that takes transit feed (in standard and real-time GTFS

format), forecasted weather condition, and time as input, is developed to provide

expected delays and service alerts as output for short-term.

5. Designed a multi-task deep neural network architecture that consumes contextual

information in the augmented datasets and makes delay predictions for nearby seg-

ments in a bounding box all at once.

6. Illustrated how the analytical algorithms can be packaged into independently deploy-

able and self-contained micro-services.

7. Proposed multivariate linear regression models and random forest models that not

only utilize various factors from traffic and weather to predict bus delay but also

identify the significant predictors.

• Optimizing the performance of transit network under uncertainty that comes from many

internal and external factors:

1. Described an unsupervised mechanism to find out how months can be grouped to

generate new timetables.

2. Presented greedy, genetic and PSO algorithms to optimize the scheduled arrival and

departure time at timepoints to maximize the probability of bus trips that reach the

desired on-time range.

3. Described sensitivity analyses which provide practical strategies to select optimal

hyper-parameters.

4. Evaluated the proposed mechanisms via simulation using real data from Nashville

bus system. The average on-time performance on all bus routes was improved from

120

57.79% to 68.93%.

• Modeling traffic patterns and transit delay by considering contextual information to iden-

tify anomalies in the system:

1. Described algorithms to map traffic data (i.e. traffic speed on different road segments)

as well as event labels (i.e. event features that include type, time, location) to images.

2. Proposed a crossover operator to augment and balance the number of labeled data

samples for training purposes.

3. Designed convolutional neural networks (CNN) to identify non-recurring traffic anoma-

lies that are caused by scheduled or detected events.

4. Created three scenarios to evaluate the performance of the proposed model by us-

ing real-world data of three events types (football games, hockey games, and traffic

incidents).

6.2 Future Work

6.2.1 Distributed Neural Networks for Edge Computing

The conventional way to train a deep neural network model and infer results is usually

done on a single computation node, either on the cloud or on an edge device. However, the

traditional architecture has some drawbacks and concerns. Firstly, there is a great network

communication cost caused by transferring the raw sensor data from edge devices to the

cloud. Secondly, since the raw data usually contains sensitive information of users, there

may be security and privacy issues caused by transmitting data from edge sensors to the

cloud. Thirdly, the forward inference process may cause large latency, considering modern

neural networks are trending to become deeper and deeper. For example, compared to the

8-layer AlexNet [144] which was proposed in 2012, the ResNet that presented in 2015

121

already has 152 layers. Finally, there are also cost and scalability issues. A neural network

running on a single node is expensive to be scaled.

Distributing the neural networks to edge devices can be a solution to the drawbacks and

concerns. Existing work mostly focuses on reducing training time by utilizing CPU or GPU

clusters [145, 146, 147] on the cloud, where neural networks are not actually distributed in a

geographically distributed network. To improve the inferring efficiency of neural networks,

Teerapittayanonet et al. presented a distributed deep neural networks [148] that used dis-

tributed computing hierarchies for more efficient classification on three layers (local, edge

and cloud). Their work is based on an early exiting technique for removing the inference

time of neural networks on the cloud [149]. However, Their study simplifies the problem by

assuming (1) the architecture of local, edge and cloud nodes are pre-defined and fixed (e.g.,

in the experiment they assume there are six devices associated with an edge device) (2) the

neural networks are divided and offloaded exactly by the number of edge and local nodes.

In the real world, the nodes are usually dynamically changing and some mechanisms are

needed to offload small neural networks to the proper edge and local nodes.

6.2.2 Context-aware Anomaly Detection with Rich Features and Fine-tuned Bounding

Boxes

Integrating more contextual features. Existing work usually focuses just on traffic data,

but there are many types of urban data available to help identify traffic patterns, like real-

time bus travel time, speed, and weather. Besides events, traffic conditions are affected by

multiple environmental factors. The current work only considers time of day and day of

week as the environmental training features. In the next step, we will include various new

features like weather conditions (such as humidity, nearest storm distance, visibility, etc.).

Identifying sizes of block areas and length of time windows. For each event type (e.g.,

sports games, accidents), the size of impacting block areas as well as the number of im-

pacting time windows in the experimental scenarios are selected arbitrarily. A mechanism

122

is needed to automatically select the best impacting area size and time windows for each

event type.

6.2.3 Transfer Learning as Another Potential Solution for Data Sparsity Issue

In our research, several types of neural networks are proposed for tasks like delay pre-

diction and anomaly identification. These models are trained and tuned using months

of urban data. However, in practice very few deep neural networks (especially convolu-

tional networks) are trained completely from scratch since it is relatively difficult or takes

a long time to get sufficient training datasets. Transfer learning is a method for solving

data availability issues. In the domain of public transportation, areas that share similar

spatio-temporal characters (e.g., distance to downtown, population, demand trends, etc.)

are probably able to share the trained models and only small post-training or post-tuning

is needed. Future works related to transfer learning include: (1) pretraining models for

different types of urban environments, and then testing their performance as a baseline for

new areas that share similar characteristics, (2) using the trained models as fixed feature

extractors and re-training the last fully-connected layer for new datasets.

6.3 Summary of Publications

• Journal and Book Chapter Publications:

1. Fangzhou Sun, Abhishek Dubey, Jules White, Aniruddha Gokhale, Transit-Hub: A

Smart Public Transportation Decision Support System with Multi-Timescale Analyt-

ical Services, Journal of Cluster Computing, Special Issue on Dynamic Data Driven

Applications Systems (DDDAS)

2. Chinmaya Samal, Liyuan Zheng, Fangzhou Sun, Lillian J. Ratliff, Abhishek Dubey,

Towards a Socially Optimal Multi-Modal Routing Platform, ACM Transactions on

Cyber-Physical Systems (TCPS) (Under Review)

123

3. Yao Pan, Fangzhou Sun, Jules White, Douglas Schmidt, Jacob Staples, Lee Krause,

Detecting Web Attacks with End-to-End Deep Learning, IEEE Transactions on De-

pendable and Secure Computing (Under Review)

4. Shashank Shekhar, Fangzhou Sun, Abhishek Dubey, Aniruddha Gokhale, Himanshu

Neema, Martin Lehofer, Dan Freudberg, Transit Hub: A Smart Decision Support

System for Public Transit Operations, Internet of Things and Data Analytics Hand-

book, John Wiley & Sons, 2016

• Conference Publications:

1. Fangzhou Sun, Abhishek Dubey, Hiba Baroud, Chetan S. Kulkarni, Short-term Tran-

sit Decision Support System Using Multi-task Deep Neural Networks, The 4th IEEE

International Conference on Smart Computing (SMARTCOMP 2018) (Under Re-

view)

2. Fangzhou Sun, Abhishek Dubey, Jules White, DxNAT - Deep Neural Networks for

Explaining Non-Recurring Traffic Congestion, IEEE BigData 2017 - 3rd Special Ses-

sion on Intelligent Data Mining, December 11-14, 2017, Boston, MA, USA

3. Fangzhou Sun, Yao Pan, Jules White, and Abhishek Dubey, Real-time and Predictive

Analytics for Smart Public Transportation Decision Support System, 2016 IEEE In-

ternational Conference on Smart Computing, May 18-20, 2016, St. Louis, Missouri,

USA

4. Fangzhou Sun, Peng Zhang, Jules White, Douglas C. Schmidt, Jacob Staples, and

Lee Krause. A Feasibility Study of Autonomically Detecting In-process Cyber-

Attacks. 3rd IEEE International Conference on Cybernetics (CYBCONF-2017),

Special Session on Cyber Security, June 21-23, 2017, Exeter, UK

5. Fangzhou Sun, Chinmaya Samal, Jules White and Abhishek Dubey, Unsupervised

Mechanisms for Optimizing On-Time Performance of Fixed Schedule Transit Vehi-

124

cles, SMARTCOMP2017: Smart Computing Technologies and Applications, May

29-31, 2017, Hong Kong, China

6. Aparna Oruganti, Fangzhou Sun, Hiba Baroud, Abhishek Dubey, DelayRadar: A

Multivariate Predictive Model for Transit Systems, IEEE Big Data 2016 Conference

Special Session on Intelligent Data Mining, December 5-8, 2016, Washington D.C.

USA

• Workshop Publications:

1. Abhishek Dubey, Ali Guarneros, Fangzhou Sun, Distributed and Stacked Neural Net-

work for Anomaly Detection in Small Satellites, 15th Annual CubeSat Developers

Workshop, April 30-May 2, 2018, San Luis Obispo, CA, USA

2. Chinmaya Samal, Fangzhou Sun, Abhishek Dubey, SpeedPro: A Cluster-Based Pre-

dictive Model for Urban Traffic Speed Estimation, SmartSys2017: Second Interna-

tional Workshop on Smart Service Systems, May 29-31, 2017, Hong Kong, China

3. Shashank Shekhar, Subhav Pradhan, Fangzhou Sun, Abhishek Dubey, and Annirudha

Gokhale, Empowering the Next Generation City-Scale Smart Systems, In Proceed-

ings of the 2015 IEEE 22nd International Conference on High Performance Comput-

ing Workshops (HiPCW), December 19-22, Hyderabad, India

• Poster Publications:

1. Abhishek Dubey, Fangzhou Sun, Chinmaya Samal, Anne Zou, Baosen Zhang, Lillian

Ratliff, Liyuan Zheng, Tanner Fiez, Socially Optimal Multi-modal Routing Platform,

US Ignite Application Summit 2017

2. Fangzhou Sun, Abhishek Dubey, PhD Forum: Robust Sensing and Analytics in Ur-

ban Environment, SMARTCOMP2017: Smart Computing Technologies and Appli-

cations, 2017

125

3. Abhishek Dubey, Jules White, Fangzhou Sun, Hiba Baroud, Martin Lehofer, Pub-

lic Transportation Decision System with Multi-Timescale Analytical Services, 2016

CPS PI Meeting

4. Fangzhou Sun, Abhishek Dubey, PhD Forum: Heterogeneous and Multi-Domain

Data Analytics Platforms for Smart Cities, 2016 IEEE International Conference on

Smart Computing, May 18-20, 2016, St. Louis, Missouri, USA

5. Abhishek Dubey, Subhav Pradhan, Fangzhou Sun, Aniruddha Gokhale, Resilient

Platform for Heterogeneous Big Data Driven CPS, NSF Workshop

6. Abhishek Dubey, Subhav Pradhan, Fangzhou Sun, Aniruddha Gokhale, Gautam

Biswas, Martin Lehofer, Dan Freudberg, Platform for Enabling Optimal Multi-Modal

Transportation Planning Service, The 2016 Global City Teams Challenge (GCTC)

Expo

7. Fangzhou Sun, Shashank Shekhar, Abhishek Dubey, Himanshu Neema, Aniruddha

Gokhale, Sandeep Neema, Jules White, Transit Hub Smart Decision Support System

for Public Transportation, The 2015 Global City Teams Challenge (GCTC) Expo

126

BIBLIOGRAPHY

[1] United Nations. World urbanization prospects: The 2014 revision, highlights. de-

partment of economic and social affairs. Population Division, United Nations, 2014.

[2] U.N. Population Division. Population Distribution, Urbanization, Internal Migration

and Development: An International Perspective. page 1, 2011.

[3] David Schrank, Bill Eisele, Tim Lomax, and Jim Bak. 2015 urban mobility score-

card. 2015.

[4] Frank Elswick. How much does it cost to build a mile of road?, 2016. [Online;

accessed 12-March-2018].

[5] Elizabeth Mynatt, Jennifer Clark, Greg Hager, Dan Lopresti, Greg Morrisett,

Klara Nahrstedt, George Pappas, Shwetak Patel, Jennifer Rexford, Helen Wright,

et al. A national research agenda for intelligent infrastructure. arXiv preprint

arXiv:1705.01920, 2017.

[6] Richard Gilbert and Anthony Perl. Transport revolutions: moving people and freight

without oil. New Society Publishers, 2010.

[7] Gartner says 8.4 billion connected things will be in use in 2017, up 31 percent from

2016.

[8] Wei Liu, Yu Zheng, Sanjay Chawla, Jing Yuan, and Xie Xing. Discovering spatio-

temporal causal interactions in traffic data streams. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

1010–1018. ACM, 2011.

[9] Andy HF Chow, Alex Santacreu, Ioannis Tsapakis, Garavig Tanasaranond, and Tao

127

Cheng. Empirical assessment of urban traffic congestion. Journal of advanced

transportation, 48(8):1000–1016, 2014.

[10] Ranwa Al Mallah, Alejandro Quintero, and Bilal Farooq. Distributed classification

of urban congestion using vanet. IEEE Transactions on Intelligent Transportation

Systems, 2017.

[11] Correction: Broken traffic sensors story. http://www.sandiegouniontribune.com/

sdut-dim-traffic-sensors-dull-how-smart-freeways-are-2013nov23-story.html.

[12] Katrin Dziekan and Karl Kottenhoff. Dynamic at-stop real-time information displays

for public transport: effects on customers. Transportation Research Part A: Policy

and Practice, 41(6):489–501, 2007.

[13] Yu Bin, Yang Zhongzhen, and Yao Baozhen. Bus arrival time prediction using sup-

port vector machines. Journal of Intelligent Transportation Systems, 10(4):151–158,

2006.

[14] Cen Zhang and Jing Teng. Bus dwell time estimation and prediction: A study case

in shanghai-china. Procedia-Social and Behavioral Sciences, 96:1329–1340, 2013.

[15] Cong Bai, Zhong-Ren Peng, Qing-Chang Lu, and Jian Sun. Dynamic bus travel time

prediction models on road with multiple bus routes. Computational intelligence and

neuroscience, 2015:63, 2015.

[16] Ehsan Mazloumi, Mahmoud Mesbah, Avi Ceder, Sara Moridpour, and Graham Cur-

rie. Efficient transit schedule design of timing points: a comparison of ant colony and

genetic algorithms. Transportation Research Part B: Methodological, 46(1):217–

234, 2012.

[17] Maged Dessouky, Randolph Hall, Ali Nowroozi, and Karen Mourikas. Bus dispatch-

128

ing at timed transfer transit stations using bus tracking technology. Transportation

Research Part C: Emerging Technologies, 7(4):187–208, 1999.

[18] Liping Fu, Qing Liu, and Paul Calamai. Real-time optimization model for dynamic

scheduling of transit operations. Transportation Research Record: Journal of the

Transportation Research Board, (1857):48–55, 2003.

[19] Aichong Sun and Mark Hickman. The real–time stop–skipping problem. Journal of

Intelligent Transportation Systems, 9(2):91–109, 2005.

[20] Unit cost entry. http://www.itsknowledgeresources.its.dot.gov/ITS/benecost.nsf/ID/

1E126E4A3607BD0985257B1E00553DD5?OpenDocument&Query=CApp.

[21] NIST. Global city teams challenge, 2017. [Online; accessed 18-September-2017].

[22] Xiao-Yun Lu, Pravin Varaiya, Roberto Horowitz, and Joe Palen. Faulty loop data

analysis/correction and loop fault detection. In 15th World Congress on Intelligent

Transport Systems and ITS America’s 2008 Annual Meeting, 2008.

[23] Amin Ghafouri, Aron Laszka, Abhishek Dubey, and Xenofon Koutsoukos. Optimal

detection of faulty traffic sensors used in route planning. In Proceedings of the

2nd International Workshop on Science of Smart City Operations and Platforms

Engineering, pages 1–6. ACM, 2017.

[24] Top reasons people stop using public transit. http://www.governing.com/blogs/view/

gov-reasons-riders-abandon-public-transit.html.

[25] John Bates, John Polak, Peter Jones, and Andrew Cook. The valuation of reliability

for personal travel. Transportation Research Part E: Logistics and Transportation

Review, 37(2):191–229, 2001.

[26] Lin Xu, Yang Yue, and Qingquan Li. Identifying urban traffic congestion pattern

129

from historical floating car data. Procedia-Social and Behavioral Sciences, 96:2084–

2095, 2013.

[27] Simon Kwoczek, Sergio Di Martino, and Wolfgang Nejdl. Predicting and visualiz-

ing traffic congestion in the presence of planned special events. Journal of Visual

Languages & Computing, 25(6):973–980, 2014.

[28] Randolph W Hall. Non-recurrent congestion: How big is the problem? are trav-

eler information systems the solution? Transportation Research Part C: Emerging

Technologies, 1(1):89–103, 1993.

[29] Eric J Horvitz, Johnson Apacible, Raman Sarin, and Lin Liao. Prediction, expec-

tation, and surprise: Methods, designs, and study of a deployed traffic forecasting

service. arXiv preprint arXiv:1207.1352, 2012.

[30] Simon Kwoczek, Sergio Di Martino, and Wolfgang Nejdl. Stuck around the sta-

dium? an approach to identify road segments affected by planned special events.

In Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International Confer-

ence on, pages 1255–1260. IEEE, 2015.

[31] Xiaoyan Zhang and John A Rice. Short-term travel time prediction. Transportation

Research Part C: Emerging Technologies, 11(3):187–210, 2003.

[32] JWC Van Lint. Online learning solutions for freeway travel time prediction. IEEE

Transactions on Intelligent Transportation Systems, 9(1):38–47, 2008.

[33] Jaimyoung Kwon, Michael Mauch, and Pravin Varaiya. Components of conges-

tion: Delay from incidents, special events, lane closures, weather, potential ramp

metering gain, and excess demand. Transportation Research Record: Journal of the

Transportation Research Board, (1959):84–91, 2006.

130

[34] Here traffic api. https://developer.here.com/rest-apis/documentation/traffic/topics\

v6.1/flow.html.

[35] 2017 Metropolitan Government of Nashville and Davidson County. Nashville fire

department, 2017. [Online; accessed 30-September-2017].

[36] General transit feed specification (gtfs) static overview. https://developers.google.

com/transit/gtfs/, 2016. Accessed: 2016-09-18.

[37] General transit feed specification (gtfs) real-time overview. https://developers.

google.com/transit/gtfs-realtime/, 2016. Accessed: 2016-09-18.

[38] The mongodb 3.2 manual. https://docs.mongodb.com/manual/, 2016. Accessed:

2016-09-25.

[39] Fangzhou Sun, Yao Pan, Jules White, and Abhishek Dubey. Real-time and predic-

tive analytics for smart public transportation decision support system. 2016 IEEE

International Conference on Smart Computing (SMARTCOMP), pages 1–8, 2016.

[40] Fangzhou Sun, Abhishek Dubey, Hiba Baroud, and Chetan Kulkarni. Short-term

transit decision support system using multi-task deep neural networks (under re-

view). In Smart Computing (SMARTCOMP), 2018 IEEE International Conference

on. IEEE, 2018.

[41] Shashank Shekhar, Fangzhou Sun, Abhishek Dubey, Aniruddha Gokhale, Himanshu

Neema, Martin Lehofer, and Dan Freudberg. Transit hub. Internet of Things and

Data Analytics Handbook, pages 597–612, 2016.

[42] Fangzhou Sun, Abhishek Dubey, Jules White, and Aniruddha Gokhale. Transit-

hub: A smart public transportation decision support system with multi-timescale

analytical services. Cluster Computing, 2017.

131

[43] American Public Transportation Association (APTA). Americans took 10.6 billion

trips on public transportation in 2015, 2016.

[44] American Public Transportation Association (APTA). Record 10.7 billion trips taken

on u.s. public transportation in 2013, 2014.

[45] Federal Highway Administration. Travel monitoring and traffic volume, 2014.

[46] Aaron Gooze, Kari Watkins, and Alan Borning. Benefits of real-time transit infor-

mation and impacts of data accuracy on rider experience. Transportation Research

Record: Journal of the Transportation Research Board, (2351):95–103, 2013.

[47] nmotion 2015. https://www.surveymonkey.com/r/3KVYKVL?sm=

UBsMYkzrQRFWv3mJyRiN5Q%3d%3d, 2015. Accessed: 2017-12-31.

[48] Real-time port authority bus tracking system not always

real. http://www.post-gazette.com/news/transportation/2014/10/16/

Real-time-Port-Authority-tracking-not-always-real/stories/201410160155, 2014.

Accessed: 2016-09-30.

[49] Cota says its real-time bus-tracking system doesn’t work. http://www.dispatch.com/

content/stories/local/2014/07/23/COTA-says-its-GPS-system-doesnt-work.html,

2014. Accessed: 2016-09-30.

[50] Ceder Avishai. Public transit planning and operation theory.” modelling and practice.

Public transit planning and operation, Civil and Environmental Faculty, 2007.

[51] SB Pattnaik, S Mohan, and VM Tom. Urban bus transit route network design using

genetic algorithm. Journal of transportation engineering, 124(4):368–375, 1998.

[52] Partha Chakroborty. Genetic algorithms for optimal urban transit network design.

Computer-Aided Civil and Infrastructure Engineering, 18(3):184–200, 2003.

132

[53] Yang Hairong and Luo Dayong. Optimal regional bus timetables using improved

genetic algorithm. In Intelligent Computation Technology and Automation, 2009.

ICICTA’09. Second International Conference on, volume 3, pages 213–216. IEEE,

2009.

[54] Jing-Quan Li, Myoung Song, Meng Li, and Wei-Bin Zhang. Planning for bus rapid

transit in single dedicated bus lane. Transportation Research Record: Journal of the

Transportation Research Board, (2111):76–82, 2009.

[55] Fangzhou Sun, Abhishek Dubey, and Jules White. Dxnat - deep neural networks

for explaining non-recurring traffic congestion. In Big Data (Big Data), 2017 IEEE

International Conference on. IEEE, 2017.

[56] Muhammad Ali Nayeem, Md Khaledur Rahman, and M Sohel Rahman. Transit

network design by genetic algorithm with elitism. Transportation Research Part C:

Emerging Technologies, 46:30–45, 2014.

[57] Wai Yuen Szeto and Yongzhong Wu. A simultaneous bus route design and frequency

setting problem for tin shui wai, hong kong. European Journal of Operational Re-

search, 209(2):141–155, 2011.

[58] Joana Hora, Teresa Galvão Dias, and Ana Camanho. Improving the robustness of

bus schedules using an optimization model. In Operations Research and Big Data,

pages 79–87. Springer, 2015.

[59] Fangzhou Sun, Chinmaya Samal, Jules White, and Abhishek Dubey. Unsuper-

vised mechanisms for optimizing on-time performance of fixed schedule transit ve-

hicles. In Smart Computing (SMARTCOMP), 2017 IEEE International Conference

on, pages 1–8. IEEE, 2017.

[60] Bin Yu, William HK Lam, and Mei Lam Tam. Bus arrival time prediction at bus

133

stop with multiple routes. Transportation Research Part C: Emerging Technologies,

19(6):1157–1170, 2011.

[61] Fangzhou Sun, Yao Pan, Jules White, and Abhishek Dubey. Real-time and pre-

dictive analytics for smart public transportation decision support system. In Smart

Computing (SMARTCOMP), 2016 IEEE International Conference on, pages 1–8.

IEEE, 2016.

[62] Aparna Oruganti, Fangzhou Sun, Hiba Baroud, and Abhishek Dubey. Delayradar:

A multivariate predictive model for transit systems. In Big Data (Big Data), 2016

IEEE International Conference on, pages 1799–1806. IEEE, 2016.

[63] Frederica Darema. Dynamic Data Driven Applications Systems: A New Paradigm

for Application Simulations and Measurements. Computational Science-ICCS 2004,

pages 662–669, 2004.

[64] Chun-Hsin Wu, Jan-Ming Ho, and Der-Tsai Lee. Travel-time prediction with sup-

port vector regression. Intelligent Transportation Systems, IEEE Transactions on,

5(4):276–281, 2004.

[65] Steven I-Jy Chien and Chandra Mouly Kuchipudi. Dynamic travel time prediction

with real-time and historic data. Journal of transportation engineering, 129(6):608–

616, 2003.

[66] Ran Hee Jeong. The prediction of bus arrival time using automatic vehicle location

systems data. PhD thesis, Texas A&M University, 2005.

[67] Li Weigang, W Koendjbiharie, RC de M Juca, Yaeko Yamashita, and Andrew

MacIver. Algorithms for estimating bus arrival times using gps data. In Intelligent

Transportation Systems, 2002. Proceedings. The IEEE 5th International Conference

on, pages 868–873. IEEE, 2002.

134

[68] Dihua Sun, Hong Luo, Liping Fu, Weining Liu, Xiaoyong Liao, and Min Zhao. Pre-

dicting bus arrival time on the basis of global positioning system data. Transporta-

tion Research Record: Journal of the Transportation Research Board, (2034):62–72,

2007.

[69] Steven I-Jy Chien, Yuqing Ding, and Chienhung Wei. Dynamic bus arrival time

prediction with artificial neural networks. Journal of Transportation Engineering,

128(5):429–438, 2002.

[70] Jayakrishna Patnaik, Steven Chien, and Athanassios Bladikas. Estimation of bus

arrival times using apc data. Journal of public transportation, 7(1):1, 2004.

[71] Amer Shalaby and Ali Farhan. Bus travel time prediction model for dynamic oper-

ations control and passenger information systems. Transportation Research Board,

2, 2003.

[72] Jiann-Shiou Yang. Travel time prediction using the gps test vehicle and kalman

filtering techniques. In Proceedings of the 2005, American Control Conference,

2005., pages 2128–2133. IEEE, 2005.

[73] Mei Chen, Xiaobo Liu, Jingxin Xia, and Steven I Chien. A dynamic bus-arrival

time prediction model based on apc data. Computer-Aided Civil and Infrastructure

Engineering, 19(5):364–376, 2004.

[74] Ranhee Jeong and Laurence R Rilett. Bus arrival time prediction using artificial

neural network model. In Intelligent Transportation Systems, 2004. Proceedings.

The 7th International IEEE Conference on, pages 988–993. IEEE, 2004.

[75] Ehsan Mazloumi, Sara Moridpour, Graham Currie, and Geoff Rose. Exploring the

value of traffic flow data in bus travel time prediction. Journal of Transportation

Engineering, 138(4):436–446, 2011.

135

[76] Stuart P Lloyd. Least squares quantization in pcm. Information Theory, IEEE Trans-

actions on, 28(2):129–137, 1982.

[77] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation

of cluster analysis. Journal of computational and applied mathematics, 20:53–65,

1987.

[78] Zhenliang Ma, Luis Ferreira, Mahmoud Mesbah, and Sicong Zhu. Modeling dis-

tributions of travel time variability for bus operations. Journal of Advanced Trans-

portation, 50(1):6–24, 2016.

[79] Fangzhou Sun. Transit hub - shared route segment network generation algorithm.

https://github.com/visor-vu/thub-shared-route-segment-network, 2016.

[80] Wenhao Huang, Guojie Song, Haikun Hong, and Kunqing Xie. Deep architecture for

traffic flow prediction: deep belief networks with multitask learning. IEEE Transac-

tions on Intelligent Transportation Systems, 15(5):2191–2201, 2014.

[81] Yuan-yuan Chen, Yisheng Lv, Zhenjiang Li, and Fei-Yue Wang. Long short-term

memory model for traffic congestion prediction with online open data. In Intelligent

Transportation Systems (ITSC), 2016 IEEE 19th International Conference on, pages

132–137. IEEE, 2016.

[82] Yun Wang, Faiz Currim, and Sudha Ram. Deep learning for bus passenger demand

prediction using big data. 2016.

[83] Rich Caruana. Multitask learning. In Learning to learn, pages 95–133. Springer,

1998.

[84] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang.

Representation learning using multi-task deep neural networks for semantic classifi-

cation and information retrieval. 2015.

136

[85] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[86] Ali Abdelfattah and Ata Khan. Models for predicting bus delays. Transportation Re-

search Record: Journal of the Transportation Research Board, (1623):8–15, 1998.

[87] George AF Seber and Alan J Lee. Linear Regression Analysis. John Wiley & Sons,

2012.

[88] Tianfeng Chai and Roland R Draxler. Root mean square error (rmse) or mean ab-

solute error (mae)? Geoscientific Model Development Discussions, 7:1525–1534,

2014.

[89] Nico JD Nagelkerke. A note on a general definition of the coefficient of determina-

tion. Biometrika, 78(3):691–692, 1991.

[90] Girish Maskeri Rama and Naineet Patel. Software modularization operators. In

Software Maintenance (ICSM), 2010 IEEE International Conference on, pages 1–

10. IEEE, 2010.

[91] Santonu Sarkar, Shubha Ramachandran, G Sathish Kumar, Madhu K Iyengar,

K Rangarajan, and Saravanan Sivagnanam. Modularization of a large-scale busi-

ness application: A case study. IEEE software, 26(2):28–35, 2009.

[92] Sam Newman. Building Microservices. ” O’Reilly Media, Inc.”, 2015.

[93] Ribbon, a inter process communication (remote procedure calls) library. https://

github.com/Netflix/ribbon, 2016. Accessed: 2016-09-29.

[94] Rabbitmq. https://www.rabbitmq.com/, 2016. Accessed: 2016-09-24.

[95] Openstack documentation. http://docs.openstack.org/, 2016. Accessed: 2016-09-30.

137

[96] Keras. Keras: The python deep learning library, 2017. [Online; accessed 30-

September-2017].

[97] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, in-

formedness, markedness and correlation. 2011.

[98] John Neff and Matthew Dickens. 2016 public transportation fact book. 2017.

[99] American Public Transportation Association. Ridership report archives. 2017.

[100] HP Benn. Bus route evaluation standards, transit cooperative research program,

synthesis of transit practice 10. Transportation Research Board, Washington, DC,

1995.

[101] Yadan Yan, Qiang Meng, Shuaian Wang, and Xiucheng Guo. Robust optimization

model of schedule design for a fixed bus route. Transportation Research Part C:

Emerging Technologies, 25:113–121, 2012.

[102] James H Bookbinder and Alain Desilets. Transfer optimization in a transit network.

Transportation science, 26(2):106–118, 1992.

[103] Wei Fan and Randy B Machemehl. Optimal transit route network design problem

with variable transit demand: genetic algorithm approach. Journal of transportation

engineering, 132(1):40–51, 2006.

[104] Yinghui Wu, Hai Yang, Jiafu Tang, and Yang Yu. Multi-objective re-synchronizing

of bus timetable: Model, complexity and solution. Transportation Research Part C:

Emerging Technologies, 67:149–168, 2016.

[105] AI Diveev and OV Bobr. Variational genetic algorithm for np-hard scheduling prob-

lem solution. Procedia Computer Science, 103:52–58, 2017.

138

[106] Stephen A Arhin, Errol C Noel, and Olaoluwa Dairo. Bus stop on-time arrival

performance and criteria in a dense urban area. International Journal of Traffic and

Transportation Engineering, 3(6):233–238, 2014.

[107] Moshe Friedman. A mathematical programming model for optimal scheduling

of buses’ departures under deterministic conditions. Transportation Research,

10(2):83–90, 1976.

[108] Rachel CW Wong, Tony WY Yuen, Kwok Wah Fung, and Janny MY Leung. Op-

timizing timetable synchronization for rail mass transit. Transportation Science,

42(1):57–69, 2008.

[109] Yinghui Wu, Jiafu Tang, Yang Yu, and Zhendong Pan. A stochastic optimization

model for transit network timetable design to mitigate the randomness of traveling

time by adding slack time. Transportation Research Part C: Emerging Technologies,

52:15–31, 2015.

[110] Partha Chakroborty, Kalyanmoy Deb, and PS Subrahmanyam. Optimal scheduling

of urban transit systems using genetic algorithms. Journal of transportation Engi-

neering, 121(6):544–553, 1995.

[111] Fang Zhao and Xiaogang Zeng. Simulated annealing–genetic algorithm for transit

network optimization. Journal of Computing in Civil Engineering, 20(1):57–68,

2006.

[112] Surafel Luleseged Tilahun and Hong Choon Ong. Bus timetabling as a fuzzy multi-

objective optimization problem using preference-based genetic algorithm. Promet-

Traffic&Transportation, 24(3):183–191, 2012.

[113] Avishai Ceder, B Golany, and O Tal. Creating bus timetables with maximal synchro-

nization. Transportation Research Part A: Policy and Practice, 35(10):913–928,

2001.

139

[114] Anitha Eranki. A model to create bus timetables to attain maximum synchronization

considering waiting times at transfer stops. 2004.

[115] Omar J Ibarra-Rojas and Yasmin A Rios-Solis. Synchronization of bus timetabling.

Transportation Research Part B: Methodological, 46(5):599–614, 2012.

[116] Weitiao Wu, Ronghui Liu, and Wenzhou Jin. Designing robust schedule coordina-

tion scheme for transit networks with safety control margins. Transportation Re-

search Part B: Methodological, 93:495–519, 2016.

[117] Ching-Jung Ting and Paul Schonfeld. Schedule coordination in a multiple hub transit

network. Journal of urban planning and development, 131(2):112–124, 2005.

[118] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995.

Proceedings., IEEE International Conference on, volume 4, pages 1942–1948 vol.4,

Nov 1995.

[119] Trupti M Kodinariya and Prashant R Makwana. Review on determining number of

cluster in k-means clustering. International Journal, 1(6):90–95, 2013.

[120] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of

clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 63(2):411–423, 2001.

[121] Yannis Marinakis, Georgia-Roumbini Iordanidou, and Magdalene Marinaki. Par-

ticle swarm optimization for the vehicle routing problem with stochastic demands.

Applied Soft Computing, 13(4):1693 – 1704, 2013.

[122] John J Grefenstette. Optimization of control parameters for genetic algorithms. IEEE

Transactions on systems, man, and cybernetics, 16(1):122–128, 1986.

[123] Brad L Miller and David E Goldberg. Genetic algorithms, tournament selection, and

the effects of noise. Complex systems, 9(3):193–212, 1995.

140

[124] Gilbert Syswerda. Uniform crossover in genetic algorithms. 1989.

[125] Martı́n Safe, Jessica Carballido, Ignacio Ponzoni, and Nélida Brignole. On stopping

criteria for genetic algorithms. In Brazilian Symposium on Artificial Intelligence,

pages 405–413. Springer, 2004.

[126] S. Dhabal and S. Sengupta. Efficient design of high pass fir filter using quantum-

behaved particle swarm optimization with weighted mean best position. In Pro-

ceedings of the 2015 Third International Conference on Computer, Communication,

Control and Information Technology (C3IT), pages 1–6, Feb 2015.

[127] Asgarali Bouyer and Abdolreza Hatamlou. An efficient hybrid clustering method

based on improved cuckoo optimization and modified particle swarm optimization

algorithms. Applied Soft Computing, 67:172 – 182, 2018.

[128] Alec Banks, Jonathan Vincent, and Chukwudi Anyakoha. A review of particle

swarm optimization. part ii: hybridisation, combinatorial, multicriteria and con-

strained optimization, and indicative applications. Natural Computing, 7(1):109–

124, Mar 2008.

[129] S Lockwood. The 21st century operation oriented state dots, nchrp project 20–

24. Transportation research board, American Association of State Highway and

Transportation Officials, Washington, DC, 2006.

[130] Stephen Peter Robinson. The development and application of an urban link travel

time model using data derived from inductive loop detectors. PhD thesis, University

of London, 2006.

[131] Nikolaos Zygouras, Nikolaos Panagiotou, Nikos Zacheilas, Ioannis Boutsis, Vana

Kalogeraki, Ioannis Katakis, and Dimitrios Gunopulos. Towards detection of faulty

traffic sensors in real-time. In MUD@ ICML, pages 53–62, 2015.

141

[132] Shunsuke Kamijo, Yasuyuki Matsushita, Katsushi Ikeuchi, and Masao Sakauchi.

Traffic monitoring and accident detection at intersections. IEEE transactions on

Intelligent transportation systems, 1(2):108–118, 2000.

[133] Harini Veeraraghavan, Paul Schrater, and Nikolaos Papanikolopoulos. Switching

kalman filter-based approach for tracking and event detection at traffic intersections.

In Intelligent Control, 2005. Proceedings of the 2005 IEEE International Symposium

on, Mediterrean Conference on Control and Automation, pages 1167–1172. IEEE,

2005.

[134] Shiming Yang, Konstantinos Kalpakis, and Alain Biem. Detecting road traffic events

by coupling multiple timeseries with a nonparametric bayesian method. IEEE Trans-

actions on Intelligent Transportation Systems, 15(5):1936–1946, 2014.

[135] Xiangjie Kong, Ximeng Song, Feng Xia, Haochen Guo, Jinzhong Wang, and Amr

Tolba. Lotad: long-term traffic anomaly detection based on crowdsourced bus tra-

jectory data. World Wide Web, pages 1–23, 2017.

[136] Peter Widhalm, Hannes Koller, and Wolfgang Ponweiser. Identifying faulty traffic

detectors with floating car data. In Integrated and Sustainable Transportation System

(FISTS), 2011 IEEE Forum on, pages 103–108. IEEE, 2011.

[137] Fernando Terroso-Sáenz, Mercedes Valdés-Vela, Cristina Sotomayor-Martı́nez,

Rafael Toledo-Moreo, and Antonio F Gómez-Skarmeta. A cooperative approach to

traffic congestion detection with complex event processing and vanet. IEEE Trans-

actions on Intelligent Transportation Systems, 13(2):914–929, 2012.

[138] Hongtao Wang, Hui Wen, Feng Yi, Hongsong Zhu, and Limin Sun. Road traf-

fic anomaly detection via collaborative path inference from gps snippets. Sensors,

17(3):550, 2017.

142

[139] Xiaolei Ma, Zhuang Dai, Zhengbing He, Jihui Ma, Yong Wang, and Yunpeng Wang.

Learning traffic as images: a deep convolutional neural network for large-scale trans-

portation network speed prediction. Sensors, 17(4):818, 2017.

[140] OpenStreetMap Wiki. Tmc/location code list/location types, 2017. [Online; ac-

cessed 12-September-2017].

[141] James A Hanley and Barbara J McNeil. The meaning and use of the area under a

receiver operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[142] MathWorks. Detector performance analysis using roc curves, 2017. [Online; ac-

cessed 30-September-2017].

[143] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed systems. arXiv preprint

arXiv:1603.04467, 2016.

[144] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[145] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed deep

networks. In Advances in neural information processing systems, pages 1223–1231,

2012.

[146] Forrest N Iandola, Matthew W Moskewicz, Khalid Ashraf, and Kurt Keutzer. Fire-

caffe: near-linear acceleration of deep neural network training on compute clusters.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2592–2600, 2016.

143

[147] Jeff Dean. Large scale deep learning. In Keynote GPU Technical Conference, vol-

ume 3, page 2015, 2015.

[148] Surat Teerapittayanon, Bradley McDanel, and HT Kung. Distributed deep neural

networks over the cloud, the edge and end devices. In Distributed Computing Sys-

tems (ICDCS), 2017 IEEE 37th International Conference on, pages 328–339. IEEE,

2017.

[149] Surat Teerapittayanon, Bradley McDanel, and HT Kung. Branchynet: Fast inference

via early exiting from deep neural networks. In Pattern Recognition (ICPR), 2016

23rd International Conference on, pages 2464–2469. IEEE, 2016.

144

