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CHAPTER I 

 

INTRODUCTION 

 

1.1 Challenges in Glycomics Research 

 

Carbohydrates and glycans have significant roles in biological systems 

and are associated with many diseases that are currently of great interest. This 

section discusses these biological roles, associated diseases, and how glycans 

and glycoconjugates are currently detected and characterized to determine a 

disease state. A new methodology for rapid characterization utilizing ion mobility-

mass spectrometry (IM-MS) is also proposed. 

Glycomics has progressed into a critical area of study due to the 

implications of carbohydrate participation in many biological functions, and 

variations in glycosylation being associated with many disease states.1-3 Protein 

glycosylation is one of the more intricate forms of post-translational modification 

(PTM) and is estimated to be present on 50% of eukaryotic proteins.3 

Glycoproteins have vital functions inside various organisms, and their associated 

glycans assist in the structure, function, and stability of proteins. Glycoproteins 

are involved in many important biological functions (e.g. embryonic development 

and the recognition of hormones, toxins, and other signals on the cell surface) 

and processes (e.g. coordination of immune function, cell division, and protein 

regulation and interactions).4 With all of these important tasks of glycosylation, 
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detrimental effects may occur from variation or defects in glycosylation patterns. 

Several disease states such as Alzheimer’s disease, HIV, cancer, and diabetes 

have characteristic defects in glycosylation patterns or unique glycoproteins 

associated with the disease.3 The function of carbohydrates are derived from 

their composition and structure necessitating rapid and efficient structural 

determination from complex mixtures, including glycoconjugates such as 

glycoproteins and glycolipids. 

Complete glycoprotein characterization involves the determination of: 1) 

glycosylation site or sites on the protein, 2) extent of occupancy at the site, 3) 

structure of the glycan attached at each site, and 4) all the various glycoforms 

present.5 Current techniques proceed through each step sequentially and then 

combine the results in an attempt to fully characterize the glycoprotein of interest. 

Mass spectrometry (MS) has commonly been used to perform the first three 

steps of glycoprotein characterization. Characterization of all glycoforms is rarely 

performed due to the difficulty to detect less abundant glycoforms within a 

sample. For MS-based studies of glycoproteins, the main methods used are 

high-performance liquid chromatography (HPLC) techniques combined with MS 

and tandem MS (MS/MS or MSn). Each assists in the steps to characterize the 

glycoprotein through the analysis of the digested glycopeptides, the detached 

glycans, or the complete glycoprotein. 

To determine the site of attachment, a general technique is to use 

endoprotease digestion to cleave the protein into peptide fragments and isolate 

each glycosylation site onto a different peptide. HPLC or lectin-based affinity 
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chromatography then separates the glycopeptides from their non-glycosylated 

counterparts. Lectins are highly specific carbohydrate-binding proteins or 

glycoproteins that are extracted from natural sources. After HPLC separation, the 

glycopeptides are analyzed using MSn or deglycosylated and sequenced using 

MSn, scanning particularly for one of the two consensus sites for glycosylation: 

Asn-Xxx-(Ser, Thr), where Xxx can be any amino acid except proline, known to 

be the sequence of attachment for N-linked glycans; or a serine or threonine 

residues which are the sites of attachment for O-linked glycans.5-7 

The next step is to characterize glycans attached to the glycoprotein. 

Glycans are typically removed from the protein and then analyzed separately 

because the complexity and size of the glycans typically places the glycoprotein 

in a range (e.g. >35kDa m/z) where MS resolution and sensitivity can begin to 

degrade.6 The free or derivatized glycan can be removed chemically or 

enzymatically. Enzymatic approaches are most common for removal of N-linked 

glycans due to the specificity of enzymes such as peptide-N4-(acetyl-ß-

glucosaminyl)-asparagine amidase F (PNGase F) which cleaves the glycan at 

the Asn/N-acetylglucosamine (GlcNAc) bond leaving an aspartate in place of the 

asparagine. There is no similar enzyme for O-linked glycan removal, and 

chemical deglycosylation such as hydrazinolysis or β-elimination is often used.8-

10 Another method is to use a nonspecific protease, such as Pronase, to digest 

the protein, but still leave the intact glycan with attached amino acids. The 

number of amino acids attached varies due to the possible steric hindrance by 

the glycan preventing amino acid cleavage.11-13 The use of enzymatic or 
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chemical digestion simplifies analysis of the glycans, but most digests require 

extensive purification before MS analysis can be performed which requires more 

time for each experiment. 

After removal from the protein and subsequent purification, usually with 

normal or reverse-phase HPLC, the glycans are characterized by MS. The 

choice of MS ionization source is critical when studying carbohydrates, and there 

are numerous advantages and challenges for each potential source. One of the 

advantages for electrospray ionization (ESI) is the ability to run online with HPLC 

separation. However, there are also challenges when using ESI such as the 

production of multiply-charged species which splits the already attenuated 

carbohydrate signal into several charge-state species. In addition, ESI does not 

tolerate impurities such as salts which are known to assist in the ionization and 

stabilization of the glycans.  

As an alternative method of ionization, matrix-assisted laser desorption/ 

ionization (MALDI) can be used. In contrast with ESI, MALDI produces singly-

charged ions and is more tolerant of salts leading to an abundance of metal 

cation-adducted species. However, MALDI cannot run online with HPLC and the 

laser desorption process can contribute to fragmentation of the carbohydrates in 

the source leading to a loss of signal. With these considerations, the optimal 

ionization source for each experiment can be determined.  

When using MS to determine the structure of a glycan, sequencing is 

performed by MS/MS or MSn to determine the monosaccharide units, or 

monomers, that compose the glycan. The glycans are generally constructed from 
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the same few monomers, many of which differ by linkages or stereocenters. For 

example, most glycans contain hexoses which can differ at the chiral centers (i.e. 

glucose vs. mannose) and anomeric carbons (i.e. α vs. β). To determine the 

linkages between the monomers, branching has to be taken into consideration. 

Even though many glycans have the same base structure they can vary greatly 

beyond the core.14 The branches, or “antennae”, can be dimeric, trimeric, 

tetrameric, and so on. Extensive characterization has been performed to 

determine the branching patterns of N-linked glycans leaving much to be 

discovered about the patterns that exist with other glycan types.  

N-linked glycans contain a common trimannosyl-chitobiose core and are 

categorized into three different types: 1) “high mannose” which have all mannose 

on two antennae; 2) “hybrid” which has one antenna that has been further 

processed, and 3) “complex” which have further processing on two or more 

antennae (Figure 1.1).5 The ability to separate these glycans into types is due to 

the well-characterized and more organized biosynthesis compared to O-linked 

glycans. The antennae of complex glycans can have three, four, or more 

antennae furthering the possible complexity of glycans for characterization.  

 

1.1.2 Differentiating positional and structural carbohydrate isomers 

The similarity of the monomers making up each glycan along with 

variations in branching provides the possibility for many positional and structural 

isomers. Structural or constitutional isomers have identical atomic composition 

but are arranged in different structures (i.e. identical monomer (individual  
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Figure 1.1 The N-linked glycan branching patterns which are separated into 
three types determined by the extent of processing after attachment to an 
asparagine on the glycoprotein of interest. 
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saccharide unit) linked on either of two antennae providing different topology) 

whereas positional isomers have the same number, type, sequence, and 

anomeric configurations but differ in the linkage position of a single monomer.15,16 

One method to differentiate isomeric carbohydrates is to analyze their structure 

using high-resolution techniques such as nuclear magnetic resonance (NMR) 

and X-ray crystallography. 

Three-dimensional structural and conformational details can be used to  

differentiate isobaric glycans, and the topological structural information provides 

insight about the biological function of glycoproteins. Two ways of determining 

these high-resolution structures is through the use of NMR and X-ray 

crystallography. However, these methods are difficult for glycoproteins and in 

particular the associated glycans due to their complexity. Many carbohydrate and 

glycoprotein structures presently determined required extensive manipulation for 

stabilization of the glycan for X-ray crystallography, expression of the 

glycoproteins in non-glycosylating systems due to the large amount needed for 

NMR, or analysis of many sections of the structure all of which lead to doubt in 

the structural integrity of these findings.17 

Methods for analyzing carbohydrates using MS-based methods have been 

developed due to the challenges using NMR and X-ray crystallography, but 

isomeric structures, which are also isobaric, makes the analysis of carbohydrates 

by MS challenging.  Typically, HPLC and MS/MS fragmentation patterns are 

used to differentiate carbohydrate isomers by MS. In addition to the previously 

discussed HPLC methods used to separate and purify carbohydrates  prior to MS 
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analysis (e.g. utilizing lectin, reverse-phase, or normal-phase columns18), other 

HPLC techniques such as high-pH anion-exchange (HPAE)19,20 and porous 

graphitized carbon21 have been explored to differentiate isobaric carbohydrates. 

HPAE, which is performed at a pH  of approximately 13, can be used to separate 

positional isomers, but is difficult to combine with electrospray ionization because 

of the excessive amount of salts that are used requiring post separation sample 

clean-up prior to MS analysis.19,20 Similarly, extensive and time-consuming 

sample cleanup is required after separation for many other types of HPLC such 

as lectin affinity chromatography. Although these HPLC methods can resolve 

some glycan isomers, due to a narrow range in polarity and similar carbohydrate 

size, typically tandem mass spectrometry is subsequently performed for 

complete structural elucidation.18,22,23 

Fragmentation patterns produced using MS/MS or MSn with collision-

induced dissociation (CID)24 and post-source decay25,26 can sometimes 

distinguish isomeric carbohydrates. Carbohydrate fragmentation is described by 

nomenclature coined by Domon and Costello (Figure 1.2).27 Generally two types 

of fragmentation occur in carbohydrates, glycosidic bond or cross-ring cleavages. 

Glycosidic bond cleavages are by far the most prevalent in positive-ion mode and 

provide information about sequence and branching of the monomers of the 

glycan. Cross-ring cleavages are two bond cleavages of a pyranose which 

provide information about the composition of the carbohydrate and are necessary 

to fully elucidate the structure of the glycan. However, these cleavages are not as 

abundant in positive-ion mode CID.28 Therefore studies typically combine  
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Figure 1.2 Carbohydrate fragmentation is specified in Domon-Costello 
nomenclature as depicted.27  
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multiple CID conditions such as negative-ion mode, changing the ionization or 

fragmentation energy,29 varying the timescale for metastable decay prior to 

detection,30 changing the ionizing cation, and utilizing other recently developed 

methods of ion activation (i.e. electron capture dissociation31 and electron 

transfer dissociation32). 

Collectively these challenges motivate the development of higher-

throughput, more accurate, and less sample manipulation strategies for 

carbohydrate structure elucidation. Recently, 2D ion mobility-mass spectrometry 

(IM-MS) has been applied to the field of biological analysis.33,34 Ion mobility, a 

well-developed separation technique, has been used extensively in the rapid 

detection of drugs and warfare agents due to its ease of use, low cost, speed, 

and sensitivity.35  Ion mobility separates ions based on their apparent surface 

area or ion-neutral collision cross section.36 When merged with MS, IM can 

separate gas-phase ions in one dimension based on their structure, and a 

second dimension related to their mass to charge (m/z). The advantages 

provided by IM-MS could be of great utility in the field of glycoproteomics. 

This dissertation focuses on using IM-MS technologies for the study of 

carbohydrates and glycoproteins in the pursuit of simultaneous omics. 

Identification and conformational characterization of glycoproteins is pursued 

through studies of carbohydrate standards and separation of glycoprotein digests 

provided by the structural dimension of IM-MS. In this introductory chapter, IM-

MS structural characterization will be summarized along with the theoretical 

background and instrumentation. The following sections describe an overview of 
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IM-MS instrumentation, the theory of IM separations, different types of IM 

separations, and data interpretation in IM-MS conformation space. Previous 

studies of carbohydrates and glycoproteins using IM-MS, and the specific 

questions addressed in this dissertation will also be discussed.  

 

1.2 Ion Mobility-Mass Spectrometry Overview 

 

 Although gas-phase IM separations have existed for well over a century,37 

and coupling IM with MS has existed since the early 1960s,38,39 the utility of IM-

MS for biomolecular separations was not fully realized until combined with soft 

ionization techniques, such as electrospray ionization (ESI) and MALDI.40,41 The 

first applications of IM-MS to determine peptide and protein structures were 

performed in the late 1990s.42-44 Subsequent to these pioneering studies, 

research over the past decade has extended IM-MS techniques to the study of 

complex biological samples, such as whole cell lysates,45 plasma,46-49 

homogenized tissue,45,50,51 non-covalent complexes,52-54 or directly from thin 

tissue sections.55,56 However, until very recently, IM–MS was essentially 

available in only a limited number of laboratories where custom instruments were 

constructed. The recent introduction of commercially available IM–MS 

instrumentation, in several forms, has further fueled the integration of IM–MS 

techniques into life sciences research programs.  

 Ion mobility mass spectrometers are composed of an ion source, a 

mobility separation cell, a mass analyzer, and a detector as depicted in Figure  
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Figure 1.3 (a) A block diagram of the primary components of biological IM–MS 
instrumentation. (b) A conceptual depiction of an IM drift cell. A stack of ring 
electrodes are connected via resistors in series to form a voltage divider, which is 
typically designed to generate a relatively uniform electrostatic field along the 
axis of ion propagation. Ions of larger apparent surface area experience more 
collisions with the neutral drift gas and therefore elute more slowly than ions of 
smaller apparent surface area. (c) A hypothetical IM separation for peptide ions 
exhibiting two distinct structural subpopulations corresponding to globular (left) 
and to helical (right) conformations. The arrival time distribution data (top axis), or 
the observable, can be transformed into a collision cross-section profile (bottom 
axis) using Equation (4). With kind permission from Springer Science+Business 
Media: Analytical and Bioanalytical Chemistry, “Biomolecular Structural 
Separations by IM-MS: New Prospects for Systems Biology,” 391, 2008, 905-
909, L.S. Fenn and J.A. McLean, Figure 1.  
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1.3(a). There are many variations to the general design such as different ion 

sources (i.e. ESI, MALDI) and types of ion mobility separation cells used (i.e. 

whether the ions are dispersed in space or time). For most IM-MS applications 

time-of-flight (TOF) mass analyzers are used for timescale considerations. This 

research focuses on temporal ion dispersion through the use of drift tube or 

traveling wave ion mobility (DTIM and TWIM, respectively). In contrast with high 

energy ion-neutral gas-phase collisions used in collision induced dissociation 

(CID), both DTIM and TWIM separations utilize low energy gas-phase collisions 

to separate ions on the basis of predominantly molecular surface areas. Briefly, 

ions are injected into a drift tube filled with a neutral drift gas, usually helium or 

nitrogen, and migrate under the influence of a weak electrostatic field gradient 

[Figure 1.3(b)]. Larger ions have a lower mobility than smaller ions which result in 

longer drift times versus shorter drift times, respectively. This field is electrostatic 

for drift tube and electrodynamic for traveling wave separations, respectively. The 

migration of these ions is impeded by collisions with the neutral drift gas to a 

degree that is proportional to apparent surface area or collision cross section. 

Although the experimental parameter obtained from IM separations is the ion 

arrival time distribution (tATD), or the time between ion injection and ion detection, 

it can be converted to collision cross section or apparent surface area as 

illustrated in Figure 1.3(c). The following description details how this conversion 

is performed based on the kinetic theory of gases for drift tube separations. 

Derivation of ion-neutral collision cross section theory is presented in several 

excellent texts and reviews.36,57,58  Procedures to estimate collision cross section 
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using TWIM are described elsewhere.59,60 This research will utilize only DTIM for 

collision cross section calculations and the next section will present several of the 

key equations and practical considerations for determining ion-neutral collision 

cross sections in uniform electrostatic field IM instrumentation. 

 

1.2.1 Theory of structural separations by ion mobility 

 Ion mobility rapidly separates ions on the basis of ion-neutral collision 

cross section, which in turn is related to the structure of the ion.33,61-64 Briefly, 

ions are produced by MALDI or ESI and then introduced into the IM drift cell at 

room temperature. It should be noted that ionization is performed at the pressure 

of the drift cell, which results in ion collisional cooling and reduced fragmentation 

in comparison with contemporary high vacuum MALDI. The ions migrate across 

the drift cell under the influence of a weak electrostatic field. As the ions migrate, 

they are impeded by collisions with a neutral drift gas, typically helium between 

3-10 Torr. Larger ions experience more collisions than smaller ions, which results 

in a slower velocity through the cell. The separation of ions in a weak 

electrostatic field (E) is measured as the ion drift velocity (vd) and is related by 

the proportionality constant, K, which is the mobility of the ion in a particular 

neutral gas: 

KEvd =      (1) 

The drift cell is of a fixed length (L), and the velocity of the ion packet is 

determined by measuring the drift time (td) of the packet across the drift cell. In 

evaluating K, the drift velocity of the ion packet depends not only on the 
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electrostatic field strength, but also on the pressure (p, Torr) of the neutral drift 

gas and the temperature (T, Kelvin) of separation. Therefore, it is conventional 

practice to report K as the standard or reduced mobility (K0), which normalizes 

the results to standard temperature and pressure conditions (i.e. 0 oC and 760 

Torr): 

760
p

T
273.15

Et
LK

d
0 =     (2) 

where L is the length of the drift cell (13.9 cm), E is the electrostatic-field strength 

(~90-120 V cm-1) and p and T are the pressure (~3 Torr) and temperature (~293 

K), respectively. For applications where IM is used to obtain structural 

information about the ion, such as those in structural proteomics and biophysics, 

the IM separations are performed using weak electrostatic-fields (ca. 20-30 V cm-

1 Torr-1). When the IM separations are performed in low-field conditions, the 

mobility is related to the collision cross section of the ion-neutral pair: 
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where these parameters include the charge of the ion (ze), the number density of 

the drift gas at STP (N0, 2.69 x 1019 cm-3), the reduced mass of the ion-neutral 

collision pair (ion and neutral masses of mi and mn, respectively), Boltzmann’s 

constant (kb), and the ion-neutral collision cross section (Ω). This is derived from 

the kinetic theory of gases.36 Inspection of Equation (3) shows that the mobility of 

an ion is inversely related to its collision cross section, or apparent surface area. 

Substituting for K0 in Equation (3) and rearranging to solve for the collision cross 

section yields: 
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which is the typical functional form of the equation used to solve for collision 

cross sections from IM data. Conceptually, the ion-neutral collision cross section 

can be thought of as the radius of the orientationally averaged projection of the 

ion in combination with the drift gas, i.e.:  

( )2Hei rr +=Ω         (5) 

where ri and rHe are the radii of the ion of interest and the helium buffer gas, 

respectively, as depicted in Figure 1.4.57  

 In order to ensure our drift time measurements and collision cross section 

calculations for glycans were comparable to other IM-MS studies, the collision 

cross section for α-cyclodextrin was calculated to be 200.7±0.5Å2 which is 

comparable to a previous measurement 204±5Å2 within experimental error of 

2%.65 

 Following the drift cell, ions are directed into an orthogonal time-of-flight 

mass spectrometer (TOFMS). By taking many time-of-flight (TOF) spectra (μs 

per spectra) across the IM elution profile (ms timescale), a two-dimensional plot 

of Å2 (surface area) vs. m/z is obtained.36 Details of the data acquisition strategy 

used to generate 2D plots of conformation space are analogous to those 

described elsewhere. 33 
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Figure 1.4 Visual representation of the collision cross section of a molecule that 
can be experimentally determined using IM. The radii of the ion (ri) and the 
helium atom (rHe) can be used to approximate the collision cross section (Ω) 
using Equation (5).57 
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1.2.2 Types of ion mobility 

 The two time-dispersive methods of IM separation are DTIM and TWIM. 

DTIM facilitates absolute collision cross section calculations.66-69 These data can 

then be compared to molecular simulation results to interpret analyte structural 

and conformational details. TWIM utilizes electrodynamic fields, which only 

provides estimated collision cross sections when measurements are compared to 

internal standards with previously measured DTIM absolute collision cross 

sections.59,60 This is because gas-phase theory is insufficiently developed for the 

fundamental physical processes in TWIM separations, although recent efforts in 

this regard have been reported70 along with reports comparing the values 

obtained from relative collision cross sections calculated by TWIM to the absolute 

values from DTIM.71 Nevertheless, both DTIM and TWIM instrumentation are 

increasingly used for bioanalytical IM-MS applications. 

 

 1.2.2.1 Drift tube ion mobility 

 The first ion mobility instruments were developed on a drift tube design.72 

DTIM-MS instruments are conceptually analogous to typical MS instruments with 

the exception of inserting an IM drift cell between the source and mass analyzer. 

The DTIM instrument used for these experiments was an interchangeable source 

IM-TOFMS (Ionwerks Inc., Houston, TX).73 It was equipped with a 13.9 cm ion 

mobility drift cell that is maintained at a pressure from 3-10 Torr helium and an 

orthogonal reflectron TOF-MS with a 1 m flight path maintained at 5 x 10-8 Torr 

(Figure 1.5). All collision cross section measurements were made using MALDI  
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Figure 1.5 Schematic diagram of the MALDI-DTIM-TOFMS instrument used for 
absolute collision cross section measurements.73 
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which was performed using a high pulse repetition frequency Nd:YLF (frequency 

tripled, 349 nm) laser (Spectra-Physics, Mountain View, CA) operated at 300 Hz. 

Mass calibration of the instrument was performed externally using a mixture of 

C60 (720.0 amu) and C70 (840.0 amu), which was chosen due to the differing 

mobility-mass relationship when compared to peptides. Mobility resolution in the 

DTIM is typically >30 (r=t/∆t at FWHM). 

 

1.2.2.2 Traveling wave ion mobility  

The recent commercial availability of traveling wave ion mobility (TWIM) 

instrumentation (Synapt HDMS, Waters Corp., Figure 1.6) has made IM-MS 

accessible to a large number of users. Similar to drift tube instruments, TWIM 

separates ions by time dispersion through collisions with a background buffer 

gas, but in contrast, it uses electrodynamic fields rather than electrostatic 

fields.61,74 This is accomplished by transmitting voltage pulses sequentially 

across a stack of ring electrodes, which creates the  travelling wave.75 

Conceptually, TWIM separations are performed based on the  susceptibility of 

different ions to the influence of the specific wave characteristics and have been 

described as the ability of ions to "surf" on waves.74 Adjustable wave parameters 

include: travelling wave pulse height, wave velocity, and ramping either of these 

variables. The Synapt is composed of a MALDI (200 Hz pulse repetition rate) or 

ESI source, a mass resolving quadrupole, a trapping region for injecting pulses of 

ions into the TWIM, the TWIM drift cell, an ion transfer region, and an orthogonal 

TOFMS (r=m/∆m at FWHM of >17,500, Figure 1.6). CID can be performed in the  
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regions before and after the TWIM drift cell. Generally resolution in the TWIM is 

<15 (r=t/∆t at FWHM), but this is sufficient for the separation of many molecular 

classes of interest. In addition, an updated version of the instrument (Synapt G2) 

has been recently released that has improved mobility resolution <40. For 

example TWIM has been used to separate biomolecular signals from complex 

samples76 and to study the structure of peptides following CID in the trapping 

region.77 Although protocols have been proposed to approximate collision cross 

section values using TWIM experimental data, the calculations still rely on 

absolute values obtained using drift tube instruments.59,60 

 

1.2.3 Data interpretation in conformation space  

 Data analysis in this research was performed using Data Explorer Version 

4.3 (Applied Biosystems, Foster City, CA) software for the one-dimensional 

MALDI-TOFMS spectra and custom software (Ionwerks Inc.) for the two-

dimensional MALDI-DTIM-TOFMS, which displays mobility drift time versus m/z. 

For the Synapt HDMS, MassLynx software was used for instrument control and 

data analysis (Waters Corp., Manchester, UK). All peaks are manually assigned. 

Instrument settings will be specified for each experiment performed. 

 Typical data for a 2D IM-MS separation is presented in Figure 1.7 for the 

separation of lipids and oligonucleotides. Conformation space data [Figure 

1.7(a)] is termed such because it represents biomolecular structure, or 

conformation, as a function of m/z. Since IM-MS data is actually three 

dimensions (IM arrival time distribution, m/z, signal intensity)  presented in two,  



23 

 

 

 

 

 

 

  
 

Figure 1.7 (a) IM-MS 2D plot of lipid and oligonucleotide standards show how 
the variation of the gas-phase packing efficiencies cause the separation of 
different biomolecules. Two peaks with similar masses were extracted to 
compare the different mobilities (lipid-[sphingomyelin 44:1+Na]+, 866.7 Da; 
oligonucleotide- [CGT+H]+, 860.2 Da). (b) The summed mass spectrum for all of 
the 2D data. (c) White. The IM chromatogram for the entire experiment. Grey. 
The IM arrival time distribution for the two selected peaks to demonstrate the 
separation provided by IM-MS.  
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the signal intensity is typically projected with false coloring or grey scale to 

project 3D data in a 2D plot. An integrated mass spectrum over all arrival time 

distributions is shown in Figure 1.7(b), which is what would be observed in the 

absence of IM. An integrated IM arrival time distribution is illustrated by the white 

curve of Figure 1.7(c) which would be obtained by placing the detector directly 

after the IM drift cell. By plotting the data in 2D conformation space two distinct 

correlations are observed, one for lipids and one for oligonucleotides, 

respectively. Note that either extracted mass spectra or arrival time distributions 

can be derived from conformation space data. For example, an extracted arrival 

time distribution over the m/z range of 860 to 870 is represented by the grey 

curve in Figure 1.7(c). The latter illustrates baseline resolution for a sodium-

coordinated lipid (sphingomyelin 44:1, m/z = 866.7 Da) and a protonated 

oligonucleotide (CGT, m/z = 860.2 Da) of nearly the same m/z. 

  Structural interpretation of the experimentally derived collision cross 

section is afforded through comparing molecular dynamic simulations with these 

empirically derived values. In contrast with atomic structural resolution afforded 

by methods such as X-ray crystallography or NMR, IM provides a relatively low 

resolution structure consistent with the experimental results. However, IM-MS 

can provide this information for small quantities of sample (e.g. < ng) for many 

analytes directly from complex mixtures. Structural information notwithstanding, 

IM-MS provides extremely rapid 2D gas-phase separations in comparison with 

condensed-phase separations such as those encountered in LC-MS (μs-ms 

versus min-hrs, respectively). 
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1.3 Characterization of Carbohydrates by IM-MS 

 

 When this dissertation research commenced, only few studies had used 

IM-MS for the characterization of carbohydrates.65,78-82 These include studies 

aimed at examining short linear oligosaccharides and cyclodextrins and 

comparing their collision cross sections to those obtained from molecular 

dynamic simulations.65,82,83 The next studies examined simple sugars and sugar 

alcohols using IM-MS combined with HPLC81 and variations in conformations of 

hexose complexes with zinc ligands.80  More recent studies that have been 

published since I began my research have tried to determine stereochemical 

information about monomeric or small di- and trisaccharide structures using 

DTIM,78,79,84-86 TWIM,85,87,88 or another type of relative IM known as high-field 

asymmetric waveform ion mobility spectrometry (FAIMS).89 N-linked and O-linked 

glycans removed from glycoproteins have also been characterized by IM-MS 

from purified samples90,91 after separation and extensive purification from 

serum46 or urine.76 To date, all of the previous studies had been performed using 

ESI. 

 The first glycosylation studies performed by our lab looked at the intact 

ribonuclease B (RNAse B) protein (Figure 1.8). In the study, which was 

performed in a top-down approach,92 the apo-protein without a glycan attached 

(RNAse A) and the glycoprotein with each of the five known high-mannose  
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Figure 1.8 IM-MS conformation space for a mixture of ribonuclease A and B 
(bovine pancreatic). For +1 species, well-resolved signals are observed for 
individual protein glycoforms corresponding to differences in their pendant Asn-
34 N-linked glycan. 
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glycans were identified.  In order to further characterize the protein and attached 

glycans, additional research was needed in a more comprehensive approach. 

 

1.4 Summary and Objectives 

 

 For my dissertation research, I aimed to simplify the analysis of 

glycoproteins and their associated glycans, specifically N-linked glycans, through 

the use of IM-MS. Whereas most protocols for the analysis of carbohydrates 

used derivatization and purification to enhance the ionization efficiency, one of 

my aims was to simplify this process and analyze the carbohydrates in their 

native form directly from complex mixtures. Even though this proved challenging, 

many of the protocols I developed for the characterization of carbohydrates and 

other associated biomolecules followed this goal. My research also used both 

ESI and MALDI with IM-MS which allowed the comparison of the two ionization 

sources for carbohydrate studies. Some of the specific objectives I proposed, 

and the chapters where each will be addressed, are: 

 

1. Do different biomolecular classes (i.e. oligonucleotides, carbohydrates, 

peptides, and lipids) occupy different regions of conformational space? Can 

these regions be quantified? This is addressed in Chapter 2: Separation of 

biomolecular classes in ion mobility-mass spectrometry conformation for the 

analysis of complex biological samples. 
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2. Can IM-MS be used to differentiate positional and structural isomers which 

pose a significant challenge in glycomics? This is addressed in Chapter 3: 

Structural separations of positional and structural carbohydrate isomers based on 

gas-phase ion mobility-mass spectrometry. 

 

3. Can IM-MS simultaneously differentiate carbohydrates, peptides, and lipids 

present in the same sample and in the same mass range? This is addressed in 

Chapter 4: Simultaneous glycoproteomics and glycolipidomics on the basis of 

structure using ion mobility-mass spectrometry. 

 

4. Are there ion mobility shift reagents that can be used to further separate 

carbohydrates from other biomolecules and background present in a sample 

without the need for purification? Could these ion mobility shift reagents also be 

used to assist in the ionization of carbohydrates? This is addressed in Chapter 5: 

Enhanced carbohydrate structural selectivity in ion mobility-mass spectrometry 

analyses by boronic acid derivatization. 

 
 In this dissertation research, the primary goal was to use IM-MS to 

perform simultaneous glycomics, or separate carbohydrates and glycoconjugates 

from other biomolecules present in a complex biological sample without the 

necessity for time-consuming separation and purification. In order to characterize 

all biomolecules present in a sample, first the area occupied in 2D IM-MS space 

was determined for each biomolecular class. For carbohydrates, this consisted of 

creating the first collision cross section database for 303 species from over 3500 
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measurements. Then, IM-MS was used to separate positional and structural 

carbohydrate isomers. Since these isomers have the same mass, they cannot be 

separated using MS alone but were differentiated using IM-MS. These species 

pose a significant challenge to current glycomics research. After this separation 

was accomplished, IM-MS was used to perform simultaneous glycomics and 

separate carbohydrates from peptides and lipids present in complex mixtures 

such as digests and human milk. All previous IM-MS studies of carbohydrates 

used purified samples for characterization. This research was bench-marking for 

future glycomics research using IM-MS and was the first to study carbohydrates 

using MALDI-IM-MS. 
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CHAPTER II 

 

SEPARATION OF BIOMOLECULAR CLASSES IN ION MOBILITY-MASS 

SPECTROMETRY CONFORMATION SPACE FOR THE ANALYSIS  

OF COMPLEX BIOLOGICAL SAMPLES 

 

2.1 Introduction 

 

Many contemporary biological studies center on broad-scale “omics” 

characterization of complex biological systems, e.g. genomics, glycomics, 

proteomics, lipidomics, and metabolomics. Typically, such studies are performed 

separately for each biomolecular class and then combined across classes to 

derive information about a system as a whole with the ultimate aim of 

incorporating the data into a systems biology understanding or knowledgebase.93 

Although this reductionist methodology is effective, it may underestimate the 

intricate relationships of the integrated processes.94-97 For example, when 

carbohydrates are analyzed separately from their associated glycoconjugates, it 

can be challenging to assess the interaction between specific moieties and to 

derive accurate structural information.5 Although difficult to realize 

experimentally, all biomolecular classes would ideally be characterized 

simultaneously to preserve biochemical interdependencies. There are four 

primary advantages to performing simultaneous “omics” measurements, 

including: 1) characterizing all biomolecular species simultaneously provides high 
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throughput and rapid analyses (i.e. comprehensive characterization of complex 

mixtures), 2) the ability to minimize sample losses and sample preparation 

artifacts from extensive purification procedures (e.g. in tissue imaging, 

characterizing cell exudates, lysates, etc), 3) preserving the biomolecular 

context, such as that encountered with conjugate species (e.g. biomolecular 

complexes, glycoproteins and glycolipids, etc.), and 4) ability to observe 

unpredicted biomolecular interdependencies or correlations. 

High-throughput separations on the basis of IM-MS have demonstrated 

great utility in life sciences research due to IM-MS providing gas-phase 

separations in one dimension on the basis of structure and in a second 

dimension by mass-to-charge (m/z), respectively. Prior studies utilizing IM-MS 

have focused on the characterization of different biomolecular classes and 

structural interpretation via computational strategies, for example in the analyses 

of carbon clusters,98,99 polymers,44,100  peptides,36 proteins,101,102 

carbohydrates,65 and oligonucleotides.103 IM-MS has more recently been used for 

the characterization of massive protein complexes,54 imaging directly from thin 

tissue sections,55,56 and performing comprehensive proteomics through 

combining LC-ESI-IM-MS.47-49 Importantly, because IM-MS provides separations 

on the basis of structure, different biomolecular classes can be readily 

distinguished based on differences in their gas-phase packing efficiencies: lipids 

< peptides < carbohydrates < nucleotides. In the analysis of complex samples 

this results in the separation of chemical noise from the analytes of interest, e.g. 

the separation of isobaric non-peptidic signals from peptides in proteomics, which 
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results in enhanced signal-to-noise for peptide signals and higher confidence 

level protein identification. However, this also affords the possibility of performing 

simultaneous “omics” or combining the characterization of carbohydrates (i.e. 

glycomics), peptides (i.e. proteomics), lipids (i.e. lipidomics), etc., into a single 

analysis. 

 This thesis focuses on quantifying the conformation space, or structure 

versus mass space, occupied by different biomolecular classes. This was 

explored by characterizing the conformation space occupied by a suite of 

biologically relevant species corresponding to oligonucleotides, carbohydrates, 

lipids, and peptides. A statistical treatment of the data delineates where specific 

signals are predicted to occur and the breadth of where signals are expected 

about the specific structure versus mass correlation. To illustrate the information 

contained in the fine structure of these correlations, an example of using 

structural data combined with molecular dynamics simulations is provided for 

isobaric oligonucleotide tetramers. 

 

2.2 Experimental 

 

2.2.1 Samples and Preparation 

2.2.1.1 Oligonucleotides 

 All oligonucleotide standards, matrix (2,4,6-trihydroxyacetophenone, 

THAP), and ammonium citrate were purchased from Sigma (St. Louis, MO) and 

used without further purification. Oligonucleotide standards (1 μM) were initially 
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dissolved in DDW (18 MΩ cm, Millipore). Matrix solutions were prepared fresh 

daily by mixing 50 mg/mL THAP and 50mg/mL ammonium citrate at a 9:1 ratio 

(v/v) in DDW. Samples were then prepared for MALDI by mixing 10 μL (10 nmol) 

of oligonucleotide solution with 30 μL (10,000 nmol) matrix solution. An aliquot of 

3 μL of the mixture was then spotted onto a MALDI plate and vacuum-dried prior 

to MALDI-IM-MS analysis. 

 

2.2.1.2 Carbohydrates 

 Lacto-N-fucopentaoses 1 (LNFP1) and LNFP2 from human milk were 

obtained from Dextra Laboratories (Reading, UK) and LNFP3, LNFP5, Lacto-N-

difucohexaose 1 (LNDFH1), and LNDFH2 were obtained from V Labs, Inc. 

(Covington, LA). Synthetic glycans, Galα3-type1, P1, H-type2-LN-LN, P1 antigen, 

Di-LeA, P1 penta, LNT, Lec-Lec, Tri-LacNAc, GNLNLN, and 3’SLN-Lec were 

obtained through the Carbohydrate Synthesis/Protein Expression Core of The 

Consortium for Functional Glycomics (CFG). 2,5-Dihydroxybenzoic acid (DHB), 

NaCl, and all other reagents were purchased from Sigma and used without 

further purification. The matrix used for MALDI-IM-TOFMS was saturated DHB in 

50% ethanol. The matrix and analyte were combined in a 1:1 volume ratio (or 

200:1 molar ratio). NaCl was added to make a final concentration of 0.1% for 

purposes of converting all signals to those corresponding to sodium-coordinated 

ions. The samples were prepared using the dried droplet method.104  
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2.2.1.3 Lipids 

 Five lipid extracts in powder form, two sphingolipids - sphingomyelins (SM, 

porcine brain), cerebrosides (CB, porcine brain) and three phospholipids - 

phosphatidylcholines (PC, chicken egg), phosphatidylserines (PS, porcine brain), 

phosphatidylethanolamines (PE, chicken egg), were obtained from Avanti Lipids, 

Inc. (Birmingham, AL). Each of these extracts were individually dissolved in a 2:1 

v/v CHCl3:MeOH mixture to yield 2 mM solutions. DHB was dissolved in 50% 

ethanol to yield a 200mM solution. The individual lipid extracts were premixed 

with DHB matrix solution in a 1:10 ratio (v/v) and manually spotted onto a 100 

well steel MALDI plate and flash evaporated under vacuum.104 Identification of 

lipid species was aided by information available from Avanti Lipids Inc., the 

LIPIDMAPS database,105 and previously published identification of MALDI lipid 

spectra.106 

 

2.2.2 Instrumentation 

 MALDI-DTIM-TOFMS measurements for collision cross section 

calculations were performed with the instrument as described in Chapter I, 

Section 1.2.2.1.  To confirm the identities of various signals a MALDI–TOFMS 

(Voyager DE-STR, Applied Biosystems, Foster City, CA), operated in reflectron 

mode and a MALDI–TOF/TOFMS (Ultraflex III, Bruker Daltonics, Inc., Billerica, 

MA), operated in reflectron mode with a Smartbeam frequency-tripled Nd:YLF 

(349nm) 200 Hz laser were used to obtain high mass accuracy parent ion signals 

and MS/MS fragmentation data, respectively. 
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2.2.3 Molecular Dynamics Simulations 

 Computer structures of oligonucleotide tetramers were built in LEaP, from 

the Amber 9.0107 suite of programs. Quantum mechanical (QM) minimization and 

electrostatic potential calculations were performed using Gaussian 2003.108 

Electrostatic potential output results of the QM minimized structures were used 

for atom point-charge parameterization in the molecular dynamics using the 

RESP (restrained electrostatic potential) algorithm.109 Molecular dynamics were 

further performed in Sander (Amber 9.0). Protonated phosphate parameters not 

available in Amber 9.0 were derived using the molecular dynamics parameters 

published by Cornell et al.110 Mobcal98,99 was utilized to determine the collision 

cross section of oligonucleotide structures generated from molecular dynamics 

runs. The energy information obtained from molecular dynamics and the collision 

cross-section information produced by Mobcal were combined and low energy 

structures whose collision cross-section matched the experimental value were 

chosen for cluster analysis. Superposition and clustering programs available and 

partially developed at the Vanderbilt Center for Structural Biology were used to 

separate structures into clusters based on conformational similarity.111,112 

 

2.3 Results and Discussion 

 

Studies to date have predominately focused on the utility of IM-MS 

analyses of isolated molecular classes, such as those encountered in 
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proteomics,49,113-116 glycomics,46 and metabolomics.117 The aim of this work is 

combining such studies in a common platform for performing integrated “omics” 

research. Prior research using IM-MS for the structural characterization of 

carbohydrates were discussed in Chapter I. For oligonucleotides and DNA, 

previous studies involved short single stranded (ss) oligonucleotides,103,118 short 

DNA duplexes and helix stability,119,120  DNA-metal coordination,121 and the 

thermodynamics of G-quadruplex formation.122-125 However, the preponderance 

of biological IM-MS research has focused on the study of peptide and protein ion 

structure.49,113-116 For example, research has centered on the characterization of 

peptide and protein misfolding diseases, such as those implicated in Alzheimer’s 

and Parkinson’s diseases.126-128 Furthermore, IM-MS studies on the retention of 

peptide secondary structure62-64,129 and characterization of peptide post-

translational modifications,33,67,130 have been described. Relatedly, lipids have 

been characterized through the use of profiling and imaging IM-MS of brain lipids 

(human and rat),55,56,131 and have been shown to have the least gas phase 

packing efficiency of all previously studied biomolecules, allowing reliable 

separation of their signals from peptides and other biomolecular signals.132 

 In accumulating a wide collection of the collision cross section versus m/z 

values for these isolated class systems, it has been observed that each individual 

biomolecular class, such as oligonucleotides, carbohydrates, peptides, and lipids, 

occupy a distinct region in the two-dimensional IM-MS plot also referred to as 

conformational space (i.e. arrival time distribution versus m/z). Understanding the 

positions and spread of these specific regions should give insights to predictive 
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capabilities that would be utilized for rapid molecular class identification of an 

unknown signal depending on its position in conformation space. Towards this 

aim, we have generated a large dataset (ca. 100, 200, and 60 for 

oligonucleotides, carbohydrates, and lipids, respectively) of the collision cross 

sections obtained for singly-charged species of standard materials in each 

molecular class. Details of how these collision cross sections were calculated is 

presented in Chapter I, Section 1.2.1. These data are then combined with 

previously reported values for singly-charged peptide species (ca. 600).68  A 

summary of this data is illustrated in Figure 2.1 [See Appendix A, Tables A.1 

(carbohydrates), A.2 (oligonucleotides) and A.3 (lipids) for numerical data]. 

Complementary to previous reports for a limited number of analytes61,132 the 

different molecular classes clearly occupy different regions of conformation 

space over the m/z range of 200 to 2000, which is commensurate with what is 

typically used in omics measurements. The relative collision cross sections at a 

particular m/z increase in the order of oligonucleotides<carbohydrates<peptides 

<lipids. The positions where particular signals occur depend on the prevailing 

intramolecular folding forces for the particular molecular class. The distinct 

separation of signals therefore indicates that the average packing density, or 

gas-phase packing efficiency, differs for each class. It is important to recognize 

that for a specific average density, surface area (i.e. collision cross section) 

scales as length-squared and mass scales as length-cubed. At the limit of high 

mass, the incremental increase in collision cross section resulting from further 

increase in mass should approach zero at a decreasing rate. Mathematically, this 
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Figure 2.1 (a) A plot of collision cross section as a function of m/z for different 
biologically-relevant molecular classes, including: oligonucleotides (n = 96), 
carbohydrates (n = 192), peptides (n = 610), and lipids (n = 53). All species 
correspond to singly-charged ions generated by using MALDI, where error ±1σ is 
generally within the data point. Values for peptides species are obtained from a 
previous study.68 (b) A plot of the average collision cross section versus m/z fitted 
to logarithmic regressions for the data corresponding to each molecular class. 
The specific equations for each class are: oligonucleotides y = 107.45 ln(x) - 
535.34 (R2 = 0.96), peptides y = 197.4 ln(x) - 1109.8 (R2 = 0.96), carbohydrates y 
= 103.7 ln(x) - 507.22 (R2 = 0.83), and lipids y = 164.59 ln(x) - 871.44 (R2 = 0.70), 
respectively. (c) A plot of MALDI-IM-MS conformation space obtained for a 
mixture of model species representing each molecular class (ranging from 7 to 
17 model species for each class, spanning a range of masses up to 1500 Da). 
Dashed-lines are for visualization purposes of where each molecular class 
occurs in conformation space. Signals in the vicinity of the asterisk arise from 
limited post-IM fragmentation of the parent ion species. With kind permission 
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Figure 2.1—cont. from Springer Science+Business Media: Analytical and 
Bioanalytical Chemistry, “Characterizing Ion Mobility-Mass Spectrometry (IM-MS) 
Conformation Space for the Analysis of Complex Biological Samples,” 394, 2009, 
235-244, L.S. Fenn, M. Kliman, A. Mahsut, S.R. Zhao, J.A. McLean, Figure 1. 
 

behavior is best modeled and approximated with collision cross section as a 

logarithmic function of m/z. The average correlation for each dataset is shown in 

Figure 2.1(b) for clarity. Representative arrival time distribution (ATD) IM-MS 

spectra obtained for model species of all four classes is shown in Figure 2.1(c). 

The distribution of cross section values about each of the average 

correlations is presented in Figure 2.2. Previous studies examining the peak 

capacity of conformation space for peptides (separated in He) exhibited a 

residual deviation from a linear regression with ±1σ of ca. 2.5%.133 In contrast, 

residuals from a logarithmic regression of ca. 600 peptide signals used in this 

work resulted in a relative deviation of 7.33% (±1σ). A similar treatment of 

oligonucleotide, carbohydrate, and lipid signals resulted in deviations of 3.70, 

8.81, and 2.64%, respectively. A relative ordering of these classes on the basis 

of increasing breadth of conformation space occupied is, therefore, lipids < 

oligonucleotides < peptides < carbohydrates. To rationalize the gross separation 

of these molecular classes, a basic examination of the compositional nature of 

each species is likely sufficient. For example, the narrowness of the lipid 

distribution may arise from the limited size of the dataset; however, the structural 

simplicity of the lipids examined (i.e. all possessing two relatively larger fatty acid 

moieties and a relatively smaller head group) naturally limits the distinct structural 

forms that the samples are able to adopt. Likewise, the narrowness of  
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Figure 2.2 Residual plots of each molecular class for the data shown in Fig. 
2.1(a), about the logarithmic regressions provided in Fig. 2.1(b). These plots 
illustrate the percent relative deviation (±) for all of the species reported. The 
abscissa axis is ordered by descending values of percent relative deviation. The 
calculated values of σ indicated in each of the plots are (a) 3.70, (b) 8.81, (c) 
7.33, and (d) 2.64, respectively. With kind permission from Springer 
Science+Business Media: Analytical and Bioanalytical Chemistry, “Characterizing 
Ion Mobility-Mass Spectrometry (IM-MS) Conformation Space for the Analysis of 
Complex Biological Samples,” 394, 2009, 235-244, L.S. Fenn, M. Kliman, A. 
Mahsut, S.R. Zhao, J.A. McLean, Figure 2. 
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oligonucleotide conformation space can be attributed to these molecules being 

made of a linear polymer with the potential ordering of a limited number (four) of 

monomeric units. In contrast, peptides and carbohydrates have potentially higher 

structural diversity arising from the larger number of monomeric units and the 

potential for significant branching. However, from a fundamental biophysical 

perspective, it is well understood that the prevailing intramolecular folding forces 

are what dictate the structural diversity observed for specific species (i.e. relative 

deviations within a specific class). Therefore, to better understand the structural 

diversities of a particular molecular class, in-depth molecular modeling studies to 

complement these data must be performed to assess the relative magnitude of 

the prevailing folding forces (e.g. van der Waals interactions, hydrogen bonding, 

π-π interactions, etc.), which are likely quite different both among and within 

classes, depending on the chemical composition of the molecule. 

    Figure 2.3 illustrates the residuals from each of the regressions grouped 

as histograms, to evaluate the distribution profiles. The two species with the 

smallest number of samples, oligonucleotides and lipids, appear to have more 

Gaussian distributions and exhibit the narrowest profiles. Conversely, the 

broadest profiles are observed for peptides and carbohydrates. Carbohydrates 

exhibit a larger number of signals of low collision cross section at small m/z 

values (i.e. 300-800 Da), which result in weighting of a larger number of signals 

with relatively large negative deviations. Similarly, there is a weighting bias for 

positive relative deviations in the distribution profile of peptides, i.e., a greater  
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Figure 2.3 Histogram plots of the appearance frequency of analyte signals as a 
function of the percent relative deviation from the logarithmic regressions for 
each molecular class provided in Figure 2.1. With kind permission from Springer 
Science+Business Media: Analytical and Bioanalytical Chemistry, “Characterizing 
Ion Mobility-Mass Spectrometry (IM-MS) Conformation Space for the Analysis of 
Complex Biological Samples,” 394, 2009, 235-244, L.S. Fenn, M. Kliman, A. 
Mahsut, S.R. Zhao, J.A. McLean, Figure 3. 
number of peptides occur above the regression line in the lower m/z range (300-

700 Da). Thus although theoretically a logarithmic regression is most 
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appropriate, it overestimates the relative frequency of signals positively deviating 

from the average correlation for signals in the low m/z range. Fitting of this data 

to a polynomial expression results in more Gaussian histograms, but fails to 

capture the theoretical limit of surface area with increasing mass. 

 Although this data describes the regions of conformation space occupied 

for the molecular classes presented, caution should be exercised when applying 

this treatment to biomolecular signals outside the mass range presented. The 

regression lines are derived only for the range of m/z investigated. Thus, 

correlations presented can only be extrapolated beyond the limits of this study 

(<~2kDa) with caution. Currently, there is a lack of experimental data for the 

transition region from peptides to well ordered protein complexes (from 

3kDa<m/z<200kDa). Therefore the difference between, for example, peptides (< 

3kDa m/z) and well-ordered massive protein complexes (>200 kDa m/z) has yet 

to be characterized. It is unclear at this juncture how conformation space appears 

in this transition region.  

 Nevertheless, the correlations presented for each molecular class in 

Figures 2.1-2.3 provide a guide to characterize unknown signals in the analysis 

of complex biological samples. Although the histograms in Figure 2.3 suggest 

approximately normal distributions of signals centered about the average 

correlation, it is important to recognize that specific structural deviations within 

each class (e.g. retained secondary structure in peptides,62-64,129 branching ratio 

and glycosidic linkage variation in carbohydrates,46,117 backbone and headgroup 

differences in lipids, etc.) give rise to complex probability distribution profiles. For 
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example, there exist many examples of using IM-MS for separations of isomeric 

and/or isobaric species. To illustrate the complexity that can arise in the 

probability distribution profiles, Figure 2.4 shows the separation of two 

oligonucleotides composed of the same four bases, but of permuted sequence 

(i.e. CGAT and TGCA). Although the ion species are isobaric, they are nearly 

baseline resolved on the basis of structure in the collision cross section profile 

[Figure 2.4(a)]. As indicated in Figure 2.4(b), the average structures that these 

individual species preferentially adopt are strikingly different, i.e. CGAT adopts a 

more compact structure dominated by base-stacking, while the structure for 

TGCA is more extended with extensive hydrogen bonding. For each species ca. 

21,000 structures were obtained that resulted in 666 and 1405 low-energy 

structures that correspond to within ± 2.5 Ǻ2 of the measured collision cross 

section for CGAT and TGCA, respectively. Then, a RMS analysis of the low-

energy structures was used to determine the most representative structure which 

is shown in Figure 2.4(b). Thus, although this study delineates the expected 

region in which particular signals are predicted to occur, fine structure within 

these correlations provides a further level of information that can be used. 

Studies aimed at elucidating specific compositional motifs that give rise to distinct 

fine structure in conformation space are presently underway in our laboratories. 
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Figure 2.4 (a) A plot of the collision cross section profile obtained in the 
separation of a mixture of two isobaric tetranucleotide species: CGAT and TGCA, 
respectively ([M+H]+ = 1174.3). The solid line corresponds to a mixture of the two 
components. Dashed-lines correspond to collision cross section profiles obtained 
for each ssDNA species analyzed separately with signal intensity normalized to 
the height of the major feature in the profile for the mixture. (b) Molecular 
dynamics simulations for each of the two ssDNA species. With kind permission 
from Springer Science+Business Media: Analytical and Bioanalytical Chemistry, 
“Characterizing Ion Mobility-Mass Spectrometry (IM-MS) Conformation Space for 
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Figure 2.4—cont. the Analysis of Complex Biological Samples,” 394, 2009, 235-
244, L.S. Fenn, M. Kliman, A. Mahsut, S.R. Zhao, J.A. McLean, Figure 4. 
 
 

2.4 Conclusions 

 

The data presented in this chapter allows for a broad view of the 

conformational landscape for different classes of biomolecules. This provides a  

general metric for assigning signals to particular molecular classes based on 

where the unknown signals occur in conformation space. Further understanding 

of the fine structures within conformation space might be achieved through 

utilizing computational strategies, such as molecular dynamics, to predict where 

sub-class populations would appear. These sub-class separations could be due 

to post-translational modifications to peptides, retained secondary structure, 

preferential folding owing to metal coordination, etc.  The characterization of 

conformation space for complex biological samples opens new avenues for life 

sciences research, such as rapid and integrated “omics” analysis necessary for 

the advancement of fields such as systems biology. 
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CHAPTER III 

 

STRUCTURAL RESOLUTION OF POSITIONAL AND STRUCTURAL 

CARBOHYDRATE ISOMERS BASED ON GAS-PHASE 

ION MOBILITY-MASS SPECTROMETRY 

 

3.1 Introduction 

 

 This study describes the rapid characterization of positional and 

structural carbohydrate isomers based on structural separations provided by 

ion mobility-mass spectrometry (IM-MS). To chart the structural variation 

observed in IM-MS, the ion-neutral collision cross sections for over 300 

carbohydrates are reported. This diversity can also be varied through the 

utility of using different alkali metals to tune separation selectivity via alkali 

metal-carbohydrate coordination. Furthermore, the advantages of combining 

either pre- and/or post-IM fragmentation prior to MS analysis is demonstrated 

for enhanced confidence in carbohydrate identification. 

 The characterization of glycans using mass spectrometry (MS) 

techniques is challenging due to the potential for isobaric glycan isomers that 

increases with higher numbers of carbohydrate monomers. Even with the 

addition of HPLC to MS and MSn, a high-throughput and less time-consuming 

methodology for carbohydrate structure elucidation is desired. We applied 

gas-phase ion mobility-mass spectrometry (IM-MS) to the study of 
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carbohydrates with particular attention to 3 sets of isomers, both positional 

and structural.  

  In this report we examine the utility of IM-MS for the separation of 

isobaric positional and strucutral isomers. Benchmarking studies were first 

performed for a large series of carbohydrate standards by determining their 

collision cross sections and the collision cross sections of in-source decay 

fragments. A total of over 300 carbohydrate collision cross sections are 

reported. Studies were then focused on a series of positional and structural 

carbohydrate isomers, the utility of utilizing different alkali metals to vary 

carbohydrate collision cross section, and the utility of increasing confidence in 

carbohydrate characterization through in-source fragmentation. 

 

3.2 Experimental 

 

3.2.1 Samples and preparation 

Synthetic glycans, Galβ1-4GlcNAcβ-Sp (LacNAc), Galβ1-3GlcNAcβ-Sp 

(Lec), Galβ1-4Glcβ-Sp (Lac), Galα1-3[Fucα1-2]Galβ1-3GlcNAcβ-Sp (B tetra type 

1), Galα1-3[Fucα1-2]Galβ1-4[Fucα1-3]GlcNAcβ-Sp (2’F-B type 2), Galβ1-

3[Fucα1-4]GalNAcβ1-3Galβ1-4[Fucα1-3]GlcNAcβ-Sp (LeALex), Galβ1-3[Fucα1-

4]GlcNAcβ1-3Galβ1-3[Fucα1-4]GlcNAcβ-Sp (Di-LeA), Galβ1-4GlcNAcβ1-3Galβ1-

4Glcβ-Sp (LNnT), Galα1-3Galβ1-4GlcNAcβ-Sp (B2-tri), Galα1-4Galβ1-4Glcβ-Sp 

(Pk), (Galβ1-4GlcNAcβ1-3)3β-Sp (Tri-LacNAc), Fucα1-2(Galβ1-4GlcNAcβ1-3)3β -

Sp (H-type2-LN-LN), Galb1-3GalNAcβ1-3Galα1-4Galβ1-4GlcNAcβ-Sp (P1 
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penta), Galα1-4Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ-Sp (P1 antigen), GlcNAcβ1-

3(Galβ1-4GlcNAcβ1-3)2β-Sp (GNLNLN), Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-

3GlcNAcβ-Sp (3’SLN-Lec), Galα1-3Galβ1-3GlcNAcβ-Sp [Galα3-type1(1)], 

Galα1-4Galβ1-4GlcNAcβ-Sp [P1 tri (2)], Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ-Sp 

[LNT (3)], and Galβ1-3GlcNAcβ1-3Galβ1-3GlcNAcβ-Sp [Di-Lec (4)] were 

obtained through the Carbohydrate Synthesis/Protein Expression Core of The 

Consortium for Functional Glycomics (Sp was an azide spacer not used in 

current studies). Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc [Lacto-N-fucopentaose 

(LNFP) 1 (5)] and Galβ1-3[Fucα1-4]GlcNAcβ1-3Galβ1-4Glc [LNFP2 (6)] from 

human milk were obtained from Dextra Laboratories (Reading, UK) and Galβ1-

4[Fucα1-3]GlcNAcβ1-3Galβ1-4Glc (LNFP3), Galβ1-3GlcNAcβ1-3Galβ1-4[Fucα1-

3]Glc (LNFP5), Fucα1-2Galβ1-3[Fucα1-4]GlcNAcβ1-3Galβ1-4Glc [lacto-N-

difucohexaose (LNDFH) 1], and Galβ1-3[Fucα1-4]GlcNAcβ1-3Galβ1-4[Fucα1-

3]Glc (LNDFH2) from human milk were obtained from V-Labs, Inc. (Covington, 

LA). Galβ1-4Glc (lactose), Galβ1-4GlcNAc (N-acetyl-lactosamine, LN), Glcα1-

4Glc (maltose), α-cyclodextrin, β-cyclodextrin, 2,5-dihydroxybenzoic acid (DHB), 

LiCl, NaCl, KCl, RbCl, and CsCl were purchased from Sigma (St. Louis, MO).  

  

3.2.2 MALDI-IM-TOFMS  

 Both the MALDI-DTIM-MS and MALDI-TWIM-MS instruments were 

used in these experiments as described in Chapter I.  Fragmentation of the 

carbohydrates after the IM drift cell was performed on the TWIM-MS. IM was 

performed using travelling wave separation through nitrogen gas. The ion 
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guide T-wave was operated at 300 m/s and linearly ramped in amplitude from 

5-20 V over each experiment. The Transfer guide T-wave was operated at 248 

m/s and with a constant 3 V amplitude. For IM acquisitions with no 

fragmentation, ion injection voltages into the Trap and Transfer were set at 4 

and 6 V, respectively. With fragmentation in the Transfer region, the voltage 

was set between 25 and 45 V. 

 To perform MALDI, the sample preparation procedure was the same for 

both instrumental arrangements. The matrix used was saturated DHB in 50% 

ethanol. The matrix and analyte were combined in a 1:1 volume ratio (or 200:1 

molar ratio) and then spotted on a MALDI stainless steel target and allowed to 

dry. Note that in contrast with high vacuum MALDI, both of the IM-MS 

instruments utilized in this work are combined with moderate pressure MALDI. 

Specifically, on the uniform field instrument MALDI is performed at the 

pressure of the IM drift cell or 3-5 Torr, while on the travelling wave instrument 

MALDI is performed at ca. 200-300 Torr. This is significant in the analysis of 

carbohydrates, because following ionization the ions are collisionally cooled, 

which typically results in less extensive fragmentation than MALDI performed 

at high vacuum.  

 

3.3 Results and discussion 

 

 Clearly the structural information afforded by IM separations coupled 

with MS provides a key advantage over MS alone. Initial studies were 
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performed to characterize the conformation space, or region in ion mobility-

m/z space, in which carbohydrates preferentially occur. This was 

accomplished using a series of 31 carbohydrate standards ranging from 

simple disaccarides to branched glycans. Collision cross sections were 

determined for these carbohydrate standards and carbohydrate fragment 

species arising from in-source decay. In total this resulted in obtaining 

collision cross section values for 303 carbohydrates, which are shown in 

Figure 3.1. Through the determination of the collision cross sections, the 

region of conformational space (plot of cross section versus m/z). Tabulated 

values for the specific carbohydrates and their associated masses and 

collision cross sections are provided in Appendix A, Table A.1. In Chapter II, 

we presented collision cross sections for a smaller suite of 192 carbohydrates. 

A comparison of the collision cross sections previously reported with those 

measured in this work reveals minor variations that are largely within 

measurement error. A distinction between the previously reported values and 

those in this work are that precision for many species is significantly improved 

owing to a significantly larger number of measurements. For the 303 

carbohydrate species reported, the number of collision cross section 

measurements for individual species ranges from 4 to 181. The average 

number of measurements for an individual carbohydrate in this data is ca. 12. 

Thus, the total number of carbohydrate collision cross section measurements 

in this report is in excess of 3,500 for the data reported herein. From this suite 

of carbohydrates three pairs of positional and structural isomers were  
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Figure 3.1 A plot of collision cross section as a function of m/z for carbohydrates 
(n = 303). All species correspond to singly-charged species generated by using 
MALDI, where error ±1σ is within the data point. For identifications of 
carbohydrates, masses, and associated collision cross sections, see Appendix A, 
Table A.1. 
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examined further to determine the utility of IM-MS to separate these types of 

isobaric isomers. 

 

3.3.1 Characterization of positional and structural carbohydrate isomers 

Structures for the positional and structural isomers selected are presented 

in Figure 3.2, representing trisaccharides to pentaoses. Carbohydrates 1 and 2 

both contain the same three monomers but differ in that 1 contains two 1→3 

glycosidic linkages whereas 2 has two 1→4 linkages. Carbohydrates 3 and 4 

contain the same four monomers, but vary by a difference in only one glycosidic 

linkage. Specifically, carbohydrate 3 contains three 1→3 glycosidic linkages, 

while 4 contains two 1→3 and a single 1→4 glycosidic linkage. In contrast with 

these positional isomers, both carbohydrates 5 and 6 contain the same five 

monomers and glycosidic linkages between them, with the exception of the 

placement of a single fucose, from the non-reducing end in 5 to the secondary 

GlcNAc in 6, resulting in two non-reducing ends and a branching pattern in 6 

versus a linear pentaose in 5. Thus, 5 and 6 represent isobaric structural 

isomers. 

 

3.3.2 Drift time profile comparison 

   MALDI-IM-MS measurements were taken for all carbohydrates to 

simultaneously obtain the drift time profile and m/z for each species. The drift 

time for each carbohydrate relates to its structure through the ion-neutral 

collision cross section. As a result, the drift time was used to differentiate  
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Figure 3.2 Structures of the isobaric sets of positional and structural isomers 
(left) and the associated drift time profiles (right). (Left) Notice the change in 
structure from glycans 1 to 2 being accounted to two 1→3 linkages being 
replaced with 1→4 linkages. Glycans 3 and 4 have one linkage variation, and 
glycans 5 and 6 (LNFP1 and LNFP2) vary in the location of fucose from 
galactose to N-acetylglucoseamine. (Right) Drift time profiles at lower (right- 20.6 
volts cm-1 Torr) and higher (left- 27 volts cm-1 Torr) electrostatic field strengths 
which pull the ions through the ion mobility drift cell. Structures of the 
oligosaccharides are replaced with shape representations. Drift times are related 
to the ion structure in that larger, more elongated ions experience more collisions 
with the neutral buffer gas present in the drift cell causing a longer drift time than 
more compact structures. (a) In the comparison between glycans 1 (dotted line) 
and 2 (solid line), the 1→3 linkages of glycan 1 cause it to have a shorter drift 
time which indicates a more compact structure that glycan 2, which is more 
elongated or linear. (b) Glycans 3 (dotted line) and 4 (solid line) have differing 
drift times due to the change in one glycosidic linkage. The 1→3 linkages allow 
glycan 3 to adopt a compressed conformation when compared to its positional 
isomer, which has one 1→4 linkage. (c) Drift times for glycans 5 (solid line) and 6 
(dotted line), or LNFP1 and LNFP2, respectively, are compared. LNFP2 has a 
shorter drift time than LNFP1 at both voltages. This can be accounted to the 
slight branching pattern in LNFP2 that allows the glycan to conform into a more 
compact structure. Glycan representations are as follows: - galactose; -N-
acetylglucoseamine; -fucose; with linkage information below.  
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isobaric positional and structural isomers that cannot be separated on the 

basis of mass alone. The drift time profiles for the six carbohydrates were 

compared at two different electrostatic field strengths (Figure 3.2). At both 

higher (27 V cm-1 Torr) and lower (21 V cm-1 Torr) field strengths each set of 

isobaric isomers exhibited IM separation selectivity. As the electrostatic field 

strength is decreased, the relative difference between the glycan drift times 

remained the same while the absolute difference in the drift time increased. 

Because the resolution is largely unchanged (ca. 35-40), this results in higher 

resolving power and hence a slightly better separation of the isomer pairs as 

the field strength is reduced. This is observed as the deeper valley between 

the two species at longer drift times than at shorter drift times. 

 In the drift time profiles, the smaller or more compact carbohydrates 

transversed through the drift cell at a higher velocity, or shorter drift time, than 

the larger or more elongated carbohydrates. In the drift time profiles for 

positional isomers (1) and (2), carbohydrate (1) displayed a drift time shorter 

than that of carbohydrate (2). For the positional isomers (3) and (4), 

carbohydrate (3) resulted in  shorter drift time than that for carbohydrate (4). 

The commonality between these two isomer pairs is that the carbohydrates 

containing a higher proportion of 1→3 glycosidic linkages yielded a 

subsequently more compact structure than the carbohydrates containing 1→4 

glycosidic linkages. Therefore, this suggests a relationship between different 

glycosidic linkages between carbohydrate monomers and the prevailing 

influence of specific glycosidic bonding on the resulting carbohydrate 
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structure. In the drift time profiles for the structural isomer carbohydrates (5) 

and (6), the species containing a site of branching (6) resulted in a more 

compact structure than that for the linear species (5). All of these ions 

correspond to sodium-coordinated species. Owing to the oxyphilicity of 

sodium, the more compact structure for the structural isomer with increased 

branching is attributed to the ability of the branching flexibility to coordinate 

more strongly to sodium, which likely resides at the position where branching 

occurs. This is consistent with the conclusions of Lebrilla and colleagues in 

tandem MS fragmentation studies of similar carbohydrate species.134  

 It is important to note that the extent of structural selectivity with IM is 

enhanced when the relative differences between the two species is greatest. For 

example, the relative IM resolving power is greater for the positional isomers (1) 

and (2) than it is between isomers (3) and (4), because the magnitude of 

differences in the glycosidic connectivity is greater. Namely, (1) contains two 

1→3 linkages, (2) contains two 1→4 linkages, while (3) and (4) contain three 

1→3 linkages and two 1→3 linkages/one 1→4 linkage, respectively. At the 

present IM resolution, it may be challenging to differentiate small differences in 

carbohydrates that are greater than ca. 1000 m/z. This upper limit was increased 

substantially through the use of higher resolution IM separations. Difference 

between the glycan drift times stayed the same while the absolute difference in 

the drift time increased. This accounted for the drift time profiles appearing 

further apart at the lower field strength.   
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3.3.3 Collision Cross Section Determination 

  The drift times for the isomeric carbohydrates were used to calculate 

their collision cross sections using theory outlined in Chapter I, Section 1.2.1, 

which relates the drift time to the apparent surface area (Å2). The 

aforementioned isobaric carbohydrate isomers cannot be differentiated 

through MS alone, but were separated through the determination of their gas 

phase collision cross section (Table A.1). For example, the difference in the 

drift time of the sodium-coordinated ions of (5) and (6), which are used to 

calculate collision cross section, was experimentally obtained from 

conformational plots to be 473 and 465 μs respectively at 27 V cm-1 Torr 

(Figure 3.2). This corresponds to a difference in the collision cross sections of 

the two species of ca. 3 Å2 and is likely attributed to the alakli metal 

coordination with the carbohydrate. 

  Using the same methodology, the collision cross sections of the 

positional isomers (1-4) were found to differ from their respective conjugate 

isomer by ca. 6-9 Å2. The magnitude of these differences is significant due to 

being greater than the cumulative error in the individual cross section values. 

  

3.3.4 Alkali Metal Coordination 

  Carbohydrates are typically ionized as the sodium-coordinated species, 

however, all of the alkali metals are strongly oxyphilic. Thus, other alkali 

metals of differing ionic radii can be used for ionization and can assist in 

structure stabilization and controlling the extent of fragmentation.134-138 
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Accordingly, we examined the extent of structural selectivity that would be 

afforded through the use of other alkali metals as the ionizing cation. Other 

alkali metals are known to affect the folding and conformation of 

carbohydrates, which would consequently impact the measured collision cross 

section. This was investigated by adding to the matrix 0.1% of the chloride 

salts of Li, Na, K, Rb, and Cs to shift the base peak in the spectrum to that of 

the specific alkali metal coordinated with the carbohydrate. 

 The carbohydrates (5) and (6) were coordinated to Li, Na, K, Rb, and Cs 

in separate experiments and analyzed by IM-MS to obtain drift times for each 

species at different electrostatic field strengths (Figure 3.3, Table 3.1). Collision 

cross sections varied for these two isomers with the addition of each different 

alkali metal. The difference in the collision cross section measured between the 

two isomers, i.e. resolving power, are more pronounced upon the addition of Li, 

Na, and Cs (ca. 3-4 Å2) in comparison with those observed for K and Rb 

coordination. Note however that the absolute change in collision cross section for 

each isomer across the series of alkali metals is rather small ranging from ca. 

198-205 Å2 for (5) and ca. 197-202 Å2 for (6). There also appears to be 

anomalous behavior for the two largest ionic radii alkali metals, namely Rb and 

Cs, in that the collision cross section does not monotonically increase with alkali 

metal size. This may reflect differences in the preferred coordination of these 

metals combined with the structural flexibility of the carbohydrate monomers 

comprising these species. This premise is reinforced by the studies of Lebrilla 

and colleagues, where they concluded that the minimum number of carbohydrate 
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Figure 3.3 Plot of alkali metal-coordinated LNFP1 and LNFP2.  0.1% LiCl, NaCl, 
KCl, RbCl, or CsCl was added to each glycan before MALDI analysis. Although 
the two glycans are isobaric, the addition of various metals was investigated to 
optimize their structural separation. Collision cross section differences for the 
addition of lithium, sodium, and cesium are more pronounced. Note however 
than in all cases the collision cross sections are smaller for higher branching ratio 
glycans. This is like attributed to the metal coordinating with the glycan at the 
branching site for more efficient intramolecular coordination and subsequently 
smaller structures. Error bars represent ± 1σ (n ≥ 20) measured over multiple 
days. 
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Table 3.1 Carbohydrate collision cross sections with various alkali metal 
coordination. 
 
Carbohydrate Name  species m/z (Da) Ω (Å2) σ (# of 

measurements) 
LNFP1 [M+Li]+ 859.0 203.1 1.2(20) 
LNFP2 [M+Li]+ 859.0 198.7 1.3(20) 
LNFP1 [M+Na]+ 875.0 204.4 1.4(162) 
LNFP2 [M+Na]+ 875.0 201.3 1.2(181) 
LNFP1 [M+K]+ 891.0 205.0 0.7(23) 
LNFP2 [M+K]+ 891.0 202.6 1.6(20) 
LNFP1 [M+Rb]+ 937.5 198.4 1.5(20) 
LNFP2 [M+Rb]+ 937.5 197.5 1.7(20) 
LNFP1 [M+Cs]+ 985.0 204.0 2.1(20) 
LNFP2 [M+Cs]+ 985.0 199.7 1.7(20) 
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monomers that were necessary to form a full coordination sphere for Rb and 

Cs was five. This is the same number of monomer units in (5) and (6), such 

that these species are at the minimum limit to stablize the coordination with 

these large alkali metals.134 Further investigations will examine the structure of 

larger carbohydrates with the coordination to these alkali metals and 

potentially other cationizing species.  

 

3.3.5 Carbohydrate fragmentation in IM-MS  

 Carbohydrates are known to fragment readily in MS owing to the labililty of 

glycosidic linkages. This is mitigated in these experiments through collisional 

cooling that occurs at moderate pressure MALDI. However, pre- and post-IM 

fragmentation can provide additional information for carbohydrate 

characterization. For example, by promoting in-source fragmentation through 

using elevated laser fluence results in diagnostic peaks in the IM-MS 

conformation space plot that can be used to confirm the structure of the glycan 

and also yields collision cross section data for the fragment ion species. In the 

conformation space plot for (5) and (6), the sodium-coordinated molecular ion 

was the base peak, followed by additional peaks that are identified as in-source 

decay products (Figure 3.4). These fragment peaks are labeled according to the 

nomenclature developed by Domon and Costello and corresponded to previously 

published CID fragments of (5) and (6).27 These fragment ions include cleavage 

across carbohydrate rings (X and A ions) as well as internal fragments (indicated 

using a / between two fragments).20 In this particular case, the fragmentation  
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Figure 3.4 IM-MS conformation space for glycans 5 (LNFP1, a) and 6 (LNFP2, 
b) from human milk doped with NaCl (0.1%). The in-source decay fragment ions 
correlate to those that have been identified using collision-induced dissociation 
(CID) and post-source decay using a MALDI-TOFMS. The fragments are 
identified using Domon and Costello’s nomenclature.27 
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pattern is sufficient to differentiate the two carbohydrates, but these 

assignments are reinforced through the differences in the IM separation. 

Specifically, enhanced internal fragmentation was observed for the branched 

structure of (6) relative to the linear structure of (5) as illustrated in Figure 3.5, 

which shows comparative MS data for each of the isobaric positional and 

structural isomer pairs.  

  In-source fragmentation was seen using IM-MS for all glycans analyzed 

in this study (Figure 3.5). The differences in the fragments seen and intensity 

of those fragments was compared using the one-dimensional m/z spectra. 

Due to the azide moiety on the spacer of the synthetic glycans, removal of N2 

is common which was seen in the prominent loss of 28 Da from the sodium-

coordinated molecular ion.139 Generally, cross-ring cleavages are less 

frequent and far less intense when using positive ion mode CID MS. This was 

also true in our study in that cross-ring cleavages were seen, but glycosidic 

bond cleavages were by far the most abundant. Glycan 2 has more identified 

peaks than glycan 1 which could be due to the 1→4 linkages in glycan 2 not 

providing as much stabilization as the 1→3 linkages in glycan 1 (Figure 5A). 

These A and X fragments were not as intense as cleavages of the glycosidic 

bond, but are required to differentiate glycans that differ only by a variation in 

linkage when using MSn alone. When comparing glycans 3 and 4, more 

internal cleavages are seen for glycan 4. This again could be due to the 

presence of the 1→4 linkage which causes glycan 4 to form a more elongated 

or less stable structure. The fragmentation data can be used complementary  
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Figure 3.5 In-source fragmentation was abundant in the MALDI-IM-MS. Peaks 
were identified using Domon and Costello nomenclature for carbohydrate 
fragmentation. (a) Glycans 1 (top) and 2 (bottom) fragmentation patterns are 
compared. (b) Glycans 3 (top) and 4 (bottom) fragmentation patterns are 
compared. (c) Fragmentation spectra for LNFP1 (top) and LNFP2 (bottom) are 
presented. Patterns differ between the two glycans in the type of fragmentation 
seen as well as the intensity of certain fragment peaks.  
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to the calculated collision cross section for confident and complete structural 

elucidation of glycans using IM-MS. 

  A future direction in the use of IM-MS to characterize isobaric positional 

and structural isomers is fragmentation of the carbohydrate after the ion 

mobility drift cell. Fragmentation in this means is after IM separation which 

leaves the fragments correlating with the drift time of the parent ion. An 

example of this can be seen using LNFP1 and LNFP2 (Figure 3.6). This 

method leaves the possibility to fragment many peaks simultaneously in a 

complex sample with correlation to the parent ion through the drift time. 

 

3.4 Conclusion 

 

 IM-MS is a rapid and efficient technique in differentiating carbohydrate 

positional and structural isomers. Three sets of isobaric isomers were 

differentiated based on their structure through the calculation of their collision 

cross sections. Carbohydrate branching and 1→3 versus 1→4 linkages are seen 

to cause lower values for drift time and collision cross section signifying 

branching and 1→3 linkages cause more compact carbohydrate structure. Also, 

the addition of some alkali metals is seen to further set apart the collision cross 

sections of LNFP1 and LNFP2. Additional studies will apply these findings to 

larger, more branched carbohydrates to attempt to discriminate isobaric ions 

based on their structure and determine which carbohydrate linkages lead to a 

reduction in collision cross section. 
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Figure 3.6 Fragmentation after the ion mobility drift cell but before TOF mass 
detection for (a) LNFP1 and (b) LNFP2. The fragmentation took place after 
separation in the ion mobility drift cell causing the peaks to be related back to the 
parent through the IM drift time. This opens the possibility of fragmenting many 
peaks present in a complex mixture at one time with correlation back to the 
parent without having to isolate and fragment each peak of interest. (Right) The 
1D spectra labels the carbohydrates fragments present using Domon and 
Costello nomenclature. All peaks are sodium-adducted unless specified 
otherwise. 
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CHAPTER IV 

 

SIMULTANEOUS GLYCOPROTEOMICS AND GLYCOLIPIDOMICS ON THE 

BASIS OF STRUCTURE USING ION MOBILITY-MASS SPECTROMETRY 

  

4.1 Introduction 

 

 Contemporary MS techniques for studying glycoproteins and other 

glycoconjugates are intricate and time consuming, most requiring carbohydrates, 

peptides, and lipids to be analyzed in separate experiments for the same 

sample.6 For example, most MS techniques to characterize glycoproteins involve 

extensive carbohydrate purification followed by MS/MS fragmentation studies to 

interpret glycan structure (Figure 4.1, Scheme A). It is important to recognize that 

separating the protein from the carbohydrate analysis removes the context in 

which the two are integrated. This chapter describes a new strategy to combine 

glycomic, proteomic, and lipidomic analyses in the same experiment, without the 

need for extensive sample preparation. This is accomplished on the basis of 2D 

separations by IM-MS (Figure 4.1, Scheme B). 

 Earlier chapters have demonstrated the utility of IM-MS separations on the 

basis of shape and m/z in biomolecular studies. IM-MS is performed with ions 

produced by MALDI or ESI and then introduced into the ion mobility drift cell. The 

ions are separated by structure by IM and this separation readily distinguishes 

the biomolecular class of a given signal due to their differences in gas-phase  
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Figure 4.1 Comparison of current glycomic and proteomic protocols (Scheme A) 
versus the proposed glycoproteomic strategy using IM-MS (Scheme B). L.S. 
Fenn, J.A. McLean, Molecular BioSystems 2009, 5, 1298-1302. – Reproduced by 
permission of The Royal Society of Chemistry (RSC). 
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packing efficiencies.61,140 Previous work studying carbohydrates using IM-MS 

either analyzed carbohydrate standards65,79,89 or carbohydrates separated from 

complex samples.46,76,91 In this chapter, we describe the potential of IM-MS for 

simultaneous characterization of carbohydrates, peptides, and lipids directly. The 

model glycoprotein ribonuclease B was first characterized as a proof-of-concept 

experiment using both ESI and MALDI. Then, more complex glycoproteins were 

characterized using MALDI. Finally, the lipids and glycans present in a complex 

sample, human milk, were detected using IM-MS. All experiments were 

performed without any type of purification before IM-MS analysis. This study 

demonstrates the potential IM-MS has as a high throughput methodology for the 

characterization of carbohydrates and glycans in the presence of other 

biomolecules within complex mixtures.   

 

4.2 Experimental 

 

 Bovine ribonuclease B (RNAse B), ovalbumin from chicken egg white, 

fetuin from fetal calf serum, and α1-acid glycoprotein from human plasma (HGP) 

was purchased from Sigma (St. Louis, MO) and used without further purification. 

Sequencing grade modified trypsin was purchased from Promega (Madison, WI) 

and peptide-N4-(acetyl-ß-glucosaminyl)-asparagine amidase F (PNGase F) was 

purchased from Prozyme Glyko (San Leandro, CA). All other solvents, reagents, 

and salts used were purchased from Sigma unless otherwise specified. 



70 

 The proteins were digested and deglycosylated using the following 

methodology. Briefly, the lyophilized glycoprotein was dissolved in 50 mM 

ammonium acetate solution and an aliquot (1 nmol) was thermally denatured at 

90°C for 15 minutes. The samples were then proteolytically digested with trypsin 

(approximately 20:1 wt of substrate/wt of trypsin) at 37°C for 24 hours. After 

cooling, the N-linked glycans are removed from the glycopeptides by adding 

PNGase F and incubating for 12 hours. As a control, the glycoprotein was 

digested with only PNGase F (no trypsin digestion) in the same procedure as 

above, which yields only N-linked glycans in the mass range of < 3000 Da 

without peptides due to the protein being left intact (Mr ~ 13,700 Da for RNAse 

B). The matrix used for MALDI-IM-TOFMS was saturated DHB dissolved in 1:1 

(v/v) ethanol and DDW. The matrix and analyte were combined in a 1:1 volume 

ratio (or 200:1 molar ratio). The samples were then prepared using the dried 

droplet method. For ESI analyses, the glycoprotein digest was dissolved in 50:50 

(v/v) water: methanol to a final concentration of 25 μM. 

 The human milk sample analyzed was post-term and was stored in -20°C. 

For analysis, the milk was diluted 1:10 (v/v) with DDW and then mixed 1:1 (v/v) 

with saturated DHB matrix dissolved in 1:1 ethanol and DDW then spotted on a 

stainless steel plate and allowed to air dry. 

 IM-MS experiments were performed on a Synapt HDMS instrument 

(Waters Corp., Manchester, UK) equipped with an interchangeable MALDI or ESI 

source which was further described in Chapter I. IM was performed using 

travelling wave separation through nitrogen gas that has been described in detail 
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elsewhere.74  The ion guide T-wave was operated at 300 m/s and linearly 

ramped in amplitude from 5-20 V over each experiment. The transfer guide T-

wave was operated at 248 m/s and with a constant 3 V amplitude. Ion injection 

voltages in the Trap and Transfer were set at 4 and 6 V, respectively. For 

instrument control and data analysis, MassLynx software was used (Waters 

Corp., Manchester, UK). Peak identification was assisted by Glycomod141,142 and 

PeptideMass143-145 from ExPASy.  

 

4.3 Results and discussion 

 

 Standard glycoproteins were studied using MALDI- and ESI-IM-MS for the  

characterization of the associated glycans and deglycosylated tryptic peptides. 

Also, lipids and glycans present in human milk were detected without prior 

purification. Whereas most current glycoprotein methodologies separate glycan, 

proteomic, lipidomic characterization into different steps, we present the ability to 

simultaneously characterize these signals in one IM-MS plot of conformation 

space. The advantages from each ionization method are used in a 

complimentary way to increase the information content in glycoproteomics data. 

 

4.3.1 RNAse B Characterization by MALDI and ESI-IM-MS 

 RNAse B was selected for the first benchmarking studies because it only 

has one site of glycosylation (Asn34) with the possibility of five high-mannose 

glycans (MAN5-9) being attached at this site.146  After the sequential digestion  
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Figure 4.2 MALDI-IM-MS plot and extracted mass spectra from RNAse B 
digested and deglycosylated with trypsin and PNGase F, respectively. (a) A 2D 
IM-MS plot of conformation space. Structural separations are observed for 
peptides [labeled (b)] and glycans [labeled (c)]. Since MALDI is used, all 
identified peaks correspond to singly-charged species as sodium-coordinated 
glycans and protonated peptides. (b) An extracted mass spectrum corresponding 
to peptides [along white dashed-line in (a)]. (c) An extracted mass spectrum 
corresponding to glycans [along black dashed-line in (a)]. Carbohydrate structure 
representations are as follows: ○-mannose and ■-N-acetylglucosamine. 
Unidentified peaks seen at lower masses in (c) are due to in-source 
fragmentation of the glycans present. L.S. Fenn, J.A. McLean, “Molecular 
BioSystems 2009, 5, 1298-1302. – Reproduced by permission of The Royal 
Society of Chemistry (RSC). 
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and deglycosylation of the glycoprotein using a combination of trypsin and 

PNGase F, the resulting samples were analyzed using MALDI-IM-MS (Figure 

4.2) and ESI-IM-MS (Figure 4.3) along with the PNGase F control digest (Figure 

4.4). The latter is used to validate signals in the combined conformation space 

plots. For a detailed list of identified peptides and glycans, see Appendix B, 

Tables B.1 and B.2. 

 In Figure 4.2(a), a MALDI-IM-MS plot of conformation space is presented 

for the trypsin and PNGase F digestion of RNAse B and demonstrates the 

simultaneous analysis of  glycans and peptides present in the mixture. In this 

conformation space plot, the mobility-mass correlations for singly-charged tryptic 

peptides and singly-charged glycans are illustrated with white and black dashed-

lines, respectively. Carbohydrates adopt more compact structures than those 

observed for peptides and result in shorter IM drift times at a given m/z (as 

described in Chapter II). Thus, in a single analysis, both peptide and glycan 

analytes are observed in different regions of conformation space owing to 

structure, despite isobaric overlap in the m/z dimension. In comparison with MS-

only results, chemical noise is separated from the analytes of interest in IM-MS, 

which facilitates identification of low abundance glycan signals not observed in 

MS-only approaches. The one dimensional mass spectra for these mobility-m/z 

correlations are extracted from the conformation space plot and the peaks are 

subsequently identified. In the glycan mass spectrum [Fig. 4.2(c)], all five glycans 

present on RNAse B are identified and the tryptic peptide mass spectrum [Fig. 

4.2(b)] results in a 43.5% coverage of the amino acid sequence of the protein.  
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Figure 4.3 ESI-IM-MS plot and extracted mass spectra from RNAse B digested 
and deglycosylated with trypsin and PNGase F, respectively. (a) A 2D IM-MS plot 
of conformation space. Structural separations are observed for singly-charged 
peptides [labeled (b)], singly-charged glycans [labeled (c)], doubly-charged 
peptides [labeled (d)], and higher order charged species [labeled (e)]. (b) An 
extracted mass spectrum corresponding to singly-charged peptides [along top 
white dashed-line in (a)].  (c) An extracted mass spectrum corresponding to 
singly-charged glycans with identification of fragments by Domon and Costello 
nomenclature [along  top black dashed-line in (a)].27 (d) An extracted mass 
spectrum corresponding to doubly-charged peptides [along bottom white dashed-
line in (a)]. (e) An extracted mass spectrum corresponding to higher order 
charged species [along bottom black dashed-line in (a)]. The inset illustrates the 
isotopic pattern for a triply-charged analyte. L.S. Fenn, J.A. McLean, “Molecular 
BioSystems 2009, 5, 1298-1302. – Reproduced by permission of The Royal 
Society of Chemistry (RSC). 
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Figure 4.4 Plots and extracted mass spectra from intact RNAse B that has been 
deglycosylated with PNGase F and analyzed using MALDI-IM-MS (a,b) and ESI-
IM-MS (c,d). Note that the protein was not proteolytically digested and remained 
intact (Mr ~ 13,700 Da). (a) A 2D MALDI-IM-MS plot of conformation space. 
Structural separations are observed for singly-charged glycans [labeled (b)] 
which are then compared to those identified in Figure 4.2. (b) An extracted mass 
spectrum corresponding to singly-charged glycans [along dashed-line in (a)].  (c) 
A 2D ESI-IM-MS plot of conformation space. Structural separations are noted for 
singly-charged glycans [labeled (d)] which are then compared to those identified 
in Figure 4.3. (d) An extracted mass spectrum corresponding to singly-charged 
glycans [along dashed-line in (c)]. Carbohydrate structure representations are as 
follows: ○-mannose and ■-N-acetylglucosamine. L.S. Fenn, J.A. McLean, 
“Molecular BioSystems 2009, 5, 1298-1302. – Reproduced by permission of The 
Royal Society of Chemistry (RSC). 
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The mobility-m/z correlation occurring below that for glycans is possibly from 

higher charge-state  species which were not identified in this study.  

In Figure 4.3, an ESI-IM-MS plot of conformation space is presented for 

RNAse B digested with trypsin and PNGase F to remove the N-linked glycans. In 

this plot [Figure 4.3(a)], four correlations are readily identified. Similar to that 

using MALDI, singly-charged peptide and singly-charged glycan correlations are 

noted along with doubly-charged peptides which were unique to the ESI data. 

The singly-charged peptides are annotated in the extracted mass spectrum [Fig. 

4.3(b)], but in the extracted singly-charged glycan mass spectrum [Fig. 4.3(c)], 

only fragments of the N-linked glycans are observed. In the extracted doubly-

charged peptide mass spectrum, larger peptide sequences are indentified and 

when combined with those obtained from the singly-charged peptide data this 

results in a 71.8% amino acid sequence coverage of the protein. Furthermore, 

additional data can be extracted from a correlation of higher order charged 

species (> doubly-charged) as illustrated in the extracted mass spectrum of 

Figure 4.3(e). These species exhibit isotope patterns characteristic of higher 

charge-state species as indicated for a triply-charged analyte in the inset.  

 A comparison of the MALDI and ESI data highlight the unique analytical 

aspects of both techniques and underscore the importance of combining data 

sets obtained by both MALDI (Fig. 4.2) and ESI (Fig. 4.3). Owing to the high 

propensity for glycan fragmentation, glycan fragments are observed in the lower 

mass range (<1000 Da) in both MALDI [Fig. 4.2(c)] and ESI [Fig. 4.3(c)] data, 

which include subsequent H2O and small neutral losses from the glycans. While 
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glycans were amenable to ionization by both MALDI and ESI, only MALDI 

produced intact sodium-coordinated glycan signals (1200 - 1900 Da) whereas 

ESI produced few signals corresponding to glycans > 1000 Da. The ESI glycan 

fragments that were observed are labeled using Domon and Costello 

nomenclature for CID fragmentation of carbohydrates in Fig. 4.3(c).27  A second 

difference in the glycan data is that while MALDI produced primarily sodium-

coordinated glycans, ESI produced glycan species as both protonated and 

sodium-coordinated ions and additionally as combinations of protonated and 

sodium coordinated species which could be due in part to the solvent choice and 

ion source focusing conditions. Although it is an advantage to observe intact 

glycans using MALDI, there exist many ESI glycan protocols using chemical 

derivatization (e.g. permethylation, etc.) prior to analysis to assist in reducing 

glycan fragmentation. No attempt was made here to chemically derivatize the 

glycans,  A primary advantage to using ESI is the structural separation of 

different charge states as well as through structure. This can be seen by 

obtaining protein sequence coverages of 43.5 and 71.8%, using MALDI and ESI, 

respectively. 

 

4.3.2 Ovalbumin, Fetuin, and HGP Characterization by MALDI-IM-MS 

 After the first proof-of-concept experiments detecting simultaneously the 

peptides and glycans from digests of RNAse B using MALDI and ESI-IM-MS, we 

then pursued the characterization of more complex glycoproteins. Previously 

purified glycoproteins, ovalbumin, fetuin, and HGP, were chosen for analysis 
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since they are well-characterized11-13,147-158 and have more complex glycans than 

the five high-mannose species present on RNAse B. Due to the glycans being 

detected as intact species using MALDI in the previous experiments, this 

ionization source was used for the continuing studies.  

 For comparison purposes, the glycoproteins were first deglycosylated 

using PNGase F as a control experiment (Figure 4.5). This would leave only 

glycans in the mass range of interest (<3000 Da). In Figure 4.5 (a,c,e), the IM-

MS conformation space plot is presented for each glycoprotein digest, 

ovalbumin, fetuin, and HGP, respectively. The carbohydrate mass/mobility 

correlation is represented with a black dotted line. Below this correlation shows a 

band from higher ordered species which do not have enough signal to be 

identified. In Figure 4.5 (b,d,f), the mass spectrum along each carbohydrate 

mass/mobility correlation is extracted in order to identify the carbohydrates 

present. Only the most abundant glycans are depicted (For a full list of identified 

glycans and their associated masses, see Appendix B, Table B.2). The glycans 

are labeled according to previously published structures at each mass. In Table 

B.2, carbohydrates are listed as general hexose and N-acetylhexoseamine (other 

than the trimannosyl-chitobiose core) due to MS/MS not being performed for 

each peak. In order to further characterize the glycans, MS/MS would have to be 

performed to determine each specific monomer along with the glycosidic 

linkages. Some of the identified peaks may be fragments of larger glycans 

caused by the MALDI process. This is also evident in the abundance of peaks 

below 1000 Da in all of the glycan spectra.  
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Figure 4.5 Plots and extracted mass spectra for the glycans from ovalbumin 
(a,b), fetuin (c,d), and HGP (e,f) analyzed using MALDI-IM-MS. The protein was 
deglycosylated with PNGase F to remove N-linked glycans. Note that the protein 
was not proteolytically digested and remained intact. (a) A 2D MALDI-IM-MS plot 
of conformation space for ovalbumin. Structural separations are observed for 
singly-charged glycans [labeled (b)] which are then compared to those identified 
in Figure 4.6(c). (b) An extracted mass spectrum corresponding to singly-charged 
glycans from ovalbumin [along dashed-line in (a)]. (c) A 2D MALDI-IM-MS plot of 
conformation space for fetuin. Structural separations are observed for singly-
charged glycans [labeled (d)] which are then compared to those identified in 
Figure 4.6(f). (d) An extracted mass spectrum corresponding to singly-charged 
glycans from fetuin [along dashed-line in (c)]. (e) A 2D MALDI-IM-MS plot of 
conformation space for HGP. Structural separations are observed for singly-
charged glycans [labeled (f)] which are then compared to those identified in 
Figure 4.6(i). (f) An extracted mass spectrum corresponding to singly-charged 
glycans from HGP [along dashed-line in (e)]. Carbohydrate structure 
representations are as follows: ○-mannose, ●-glucose, -sialic acid, ■-N-
acetylglucosamine, □-galactose, and ▲-fucose. 
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 While ovalbumin had all 3 types of N-linked glycans identified (high-

mannose, hybrid, and complex, Figure 1.1), fetuin and HGP had only complex 

glycans present. They also had sialic acids on many of their glycans which are 

known to readily dissociate from the glycan in the ionization process. This could  

be due to the differences between the ionization process in MALDI-IM-MS 

compared to conventional MALDI-MS. Ionization in MALDI-IM-MS is done at or 

slightly below the pressure of the drift cell (3-8 Torr) which creates the ability for 

“collisional cooling” of the ions preventing some in-source fragmentation. 

However, ionization in MALDI-MS is performed at high vacuum (~10-8 Torr) 

which does not have the buffer gas present to cool the ions and can cause 

fragmentation to labile carbohydrates especially those with sialic acid.  

 Another interesting  phenomenon due to the sialic acids is the presence of 

peaks from sequential addition of sodium and loss of a proton up to one more 

than the number of sialic acids. This was seen for all glycans which had a sialic 

acid present. After the glycans in the PNGase F control digests were identified, 

they were compared with the glycans present in digests with tryptic peptides. 

 Tryptic peptides and released N-linked glycans from ovalbumin, fetuin, 

and HGP were detected simultaneously in digests using MALDI-IM-MS as 

demonstrated in Figure 4.6. In Figure 4.6 (a,d,g), the IM-MS conformation space 

plot for each glycoprotein digest shows separate mass/mobility correlations for 

singly-charged peptides and glycans. The correlations can then be extracted to 

form the mass spectra where the peptides and glycans can be identified. As in 

the PNGase F only digests, only the most abundant peptides and glycans are 
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Figure 4.6 MALDI-IM-MS plot and extracted mass spectra from ovalbumin 
(a,b,c), fetuin (d,e,f), and HGP (g,h,i) digested and deglycosylated with trypsin 
and PNGase F, respectively. Since MALDI is used, all identified peaks 
correspond to singly-charged species as sodium-coordinated glycans and 
protonated or sodium-coordinated peptides. Unidentified peaks seen at lower 
masses in glycan mass spectra are due to in-source fragmentation of the glycans 
present. (a) A 2D IM-MS plot of conformation space for ovalbumin. Structural 
separations are observed for peptides [labeled (b)] and glycans [labeled (c)]. (b) 
An extracted mass spectrum corresponding to peptides [along white dashed-line  
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Figure 4.6—cont. in (a)]. (c) An extracted mass spectrum corresponding to 
glycans [along black dashed-line in (a)]. (d) A 2D IM-MS plot of conformation 
space for fetuin. Structural separations are observed for peptides [labeled (e)] 
and glycans [labeled (f)]. (e) An extracted mass spectrum corresponding to 
peptides [along white dashed-line in (d)]. (f) An extracted mass spectrum 
corresponding to glycans [along black dashed-line in (d)]. (g) A 2D IM-MS plot of 
conformation space for HGP. Structural separations are observed for peptides 
[labeled (h)] and glycans [labeled (i)]. (h) An extracted mass spectrum 
corresponding to peptides [along white dashed-line in (g)]. (i) An extracted mass 
spectrum corresponding to glycans [along black dashed-line in (g)]. 
Carbohydrate structure representations are as follows: ○-mannose, ●-glucose, 

-sialic acid, ■-N-acetylglucosamine, □-galactose, and ▲-fucose. 
 

identified in the figure, but a complete list of peptides and glycans are listed in 

Appendix B, Tables B.1 and B.2. Even though the glycan signal is slightly 

suppressed in the presence of the peptides, most of the glycans identified in the 

control PNGase F digests can still be identified in the mixture of peptides and 

glycans. Due to the peptides and glycans being simultaneously detected within 

these digests, the next experiment aimed to detect glycans in the presence of 

lipids within a more complex mixture, human milk. 

 

4.3.3 Simultaneous glycolipidomics by MALDI-IM-MS of human milk 

 Human breast milk research is growing in prominence due to the unique 

components comprising the milk and how each component assists in the 

development of infants. Human milk is primarily made up of lipids and 

oligosaccharides, and the lipids form globules and lactosomes which assist in the 

absorption of nutrients.159 The oligosaccharides cannot be digested by the infants 

but are a food source to bacteria present in the digestive tract.160 These bacteria 

are thought to assist in breast milk-fed infants having an improved immune 
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system compared to formula-fed infants.161 As with most current analysis 

techniques, the two biomolecular classes present in human milk are usually 

separated and purified before characterization. In this experiment, human milk 

was diluted and analyzed without any prior purification or separation using 

MALDI-IM-MS to analyze the lipids and oligosaccharides present.  

 In Figure 4.7, lipids and glycans present in human milk are separated by 

their structures in the IM dimension. In the 2D conformation space plot, a 

mass/mobility correlation is seen for both biomolecular classes [Figure 4.7(a)]. In 

Figure 4.7(b), the integrated mass spectrum over all of conformation space is 

shown to demonstrate the results that would be obtained if using MS alone to 

characterize human milk. In this spectrum, the lipids overpower the 

oligosaccharide signal causing even the most abundant carbohydrates to be lost. 

However, when IM is used, the structural separation differentiates the two 

biomolecular classes. From the correlations seen in Figure 4.7(a), mass spectra 

corresponding to each class can be extracted and particular species can be 

identified. In Figure 4.7(c), the mass spectrum for lipids is extracted. For the 

lipids present in the sample, the most likely identifications from previous human 

milk studies are given in Appendix B, Table B.3.159 In Figure 4.7(d), the 

oligosaccharide signals are extracted and identified. It is known that human milk 

glycans are composed of D-glucose, D-galactose, N-acetylglucosamine, L-

fucose, and N-acetylneuraminic acid.162 The glycans depicted have been 

identified previously in numerous publications and for a list of these 

identifications, see Appendix B, Table B.4.160-165 Similar to the glycoprotein 
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Figure 4.7 MALDI-IM-MS plot and extracted mass spectra from human milk with 
no prior purification. (a) A 2D IM-MS plot of conformation space. Structural 
separations are observed for lipids [labeled (c)] and glycans [labeled (d)]. Since 
MALDI is used, all identified peaks correspond to singly-charged species. (b) An 
integrated mass spectrum for all of conformation space. This is what would be 
seen if using MS alone to characterize the human milk sample. (c) An extracted 
mass spectrum corresponding to lipids [along top dashed-line in (a)]. (d) An 
extracted mass spectrum corresponding to glycans [along bottom dashed-line in 
(a)]. Carbohydrate structure representations are as follows: ●-glucose, -sialic 
acid, ■-N-acetylglucosamine, □-galactose, and ▲-fucose. 
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identifications, the glycan structure is given but the stereochemistry is not 

confirmed due to MS/MS not being performed. Even though the lipid signal 

overpowers the combined mass spectrum for the sample, with the added 

dimension of separation from IM, the carbohydrates are differentiated and 

identified. 

 

4.4 Conclusion 

 

 Current bottom-up methodologies for studying glycans and their 

associated glycoconjugates involve complex and time-consuming protocols with 

extensive purification and derivatization techniques prior to MS analysis. After 

using standard proteolytic digestion protocols and removal of the pendant 

glycans, we demonstrate the use of IM-MS to characterize standard 

glycoproteins by structurally separating and identifying peptides and glycans 

simultaneously without sample purification. Using both MALDI and ESI, a clear 

and distinct structural separation is observed for both peptides and glycans 

present in a digest of RNAse B. The advantages of each ionization method 

suggests the utility of combining MALDI and ESI data sets to encompass the 

unique glycoprotein information from each technique. Using MALDI alone, the 

more complex glycans present on ovalbumin, fetuin, and HGP are detected in 

the presence of tryptic peptides for complete characterization of each 

glycoprotein. Glycans and lipids present in the same complex sample, human 
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milk, were also detected for simultaneous glycolipidomics. These strategies 

should greatly facilitate high throughput glycomics in future studies. 
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CHAPTER V 

 

ENHANCED CARBOHYDRATE STRUCTURAL SELECTIVITY IN ION 

MOBILITY-MASS SPECTROMETRY ANALYSES BY  

BORONIC ACID DERIVATIZATION 

 

5.1 Introduction 

 

 In the previous chapters, the combination of IM-MS has been used for the 

characterization of carbohydrates and glycoconjugate mixtures due to it providing 

two-dimensional separations on the basis of both analyte ion structure and mass-

to-charge (m/z). Chapter II demonstrated that for singly-charged ions, the 

correlation of collision cross section versus mass is strongly dependent on the 

specific class of biomolecule. This was further demonstrated in a more complex 

sample in Chapter IV where carbohydrates and peptides were separated from 

one another in the same glycoprotein digest mixture. Another example of this is 

given in Figure 5.1 which illustrates results for the separation of singly-charged 

peptides and N-linked glycans for a model glycoprotein (ribonuclease B, 

pancreatic bovine), which was proteolytically digested with trypsin followed by 

release of N-linked glycans via PNGase F. The difference between this figure 

and those from Chapter IV is that Figure 5.1 was obtained from a DTIM-MS, 

whereas the examples in Chapter IV were from a TWIM instrument. As 

discussed in Chapter I, the DTIM instrument has a higher mobility resolution and  
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Figure 5.1 A plot of conformation space in the MALDI-IM-MS analysis of the 
glycoprotein ribonuclease B. The protein was first proteolytically digested with 
trypsin followed by N-glycan release using PNGase F. The carbohydrates 
present are from in-source decay fragmentation of the intact glycans. Dashed-
lines are to visualize qualitatively where peptide and glycan signals occur. Ion 
mobility shift agents are used to shift specific analytes into regions of 
conformation space not expected to contain signals as hypothetically illustrated 
by the parachute and the anchor. L.S. Fenn, J.A. McLean, Chemical 
Communications, 2008, 43, 5505-5507. – Reproduced by permission of The 
Royal Society of Chemistry (RSC). 
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should be able to more efficiently separate the classes. However, as illustrated in 

Figure 5.1, in the analysis of complex biological samples the correlations of 

molecular class in conformation space can sometimes be insufficient to 

distinguish to which class of molecule a particular signal corresponds. To further 

increase the information derived in IM-MS carbohydrate analyses, the feasibility 

of a new ion mobility shift reagent strategy is demonstrated. 

 Ion mobility shift reagents consist of coordinating or covalently modifying a 

selected chemical functionality. For example, the shift reagent could be lower or 

higher density than the type of molecule to be derivatized to structurally shift the 

desired signals to regions of conformation space above or below the predicted 

molecular class correlation. Noncovalent ion mobility shift strategies have been 

demonstrated for selectively shifting isomeric amines and peptides by using 

crown ethers,166,167 and shifting carbohydrates through coordination with different 

metals and metal acetates.79 In contrast with noncovalent tagging, covalently 

attached ion mobility shift reagents offer several potential advantages, including: 

(i) quantitative derivatization of the analytes of interest, (ii) relative quantitation 

using isotopically labeled tags, (iii) potential for adding affinity capture moieties 

on the tag itself, and (iv) potential for inclusion of a permanent charge carrier for 

enhanced ionization efficiencies. Boronic acid based functionalization was 

selected for carbohydrate derivatization because of its demonstrated utility in 

spectroscopic measurements.168-170 

 The use of boronic acids (BA) to covalently modify saccharides was 

known for many years prior to the first quantitative evaluation of BA chemistry 
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published by Lorand and Edwards in 1959.171 In this work they determined 

equilibrium constants for the reaction of benzene BA with various polyols 

including a suite of monosaccharides, for the latter these values ranged from 

110-4400. Thus, although the reaction of BAs with cis-diols on carbohydrates is 

slightly reversible, the selective reaction is nearly quantitative and can be tuned 

by optimizing pH. 

 A suite of carbohydrates including 3 disaccharides, 2 trisaccharides, 2 

tetraoses, and 2 pentaoses (Table 5.1 and Figure 5.2) were derivatized using two 

structurally distinct boronic acids under the reaction conditions depicted in Figure 

5.3. The collision cross sections for underivatized and derivatized species were 

calculated to evaluate the effect of derivatization on the position of the resulting 

structural shift appears in IM-MS conformation space. 

 

5.2 Experimental 

 

 The carbohydrates lacto-N-fucopentaose 1 (LNFP1) and lacto-N-

fucopentaose 2 (LNFP2) from human milk were obtained from Dextra 

Laboratories (Reading, UK); N-acetyl-D-lactoseamine, maltose, and lactose were 

obtained from Sigma (St. Louis, MO). Synthetic glycans, Galα1-3Galβ1-

3GlcNAcβ-Sp, Galα1-4Galβ1-4GlcNAcβ-Sp, Galβ1-3GlcNAcβ1-3Galβ1-

4GlcNAcβ-Sp, and Galβ1-3GlcNAcβ1-3Galβ1-3GlcNAcβ-Sp (Sp=CH2CH2N3) 

were obtained from the Carbohydrate Synthesis/Protein Expression Core of The 

Consortium for Functional Glycomics. Each carbohydrate was derivatized with
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Table 5.1 Common names, systematic names, average molecular weights, and 
derivatized mass of the carbohydrates. Abbreviations are as follows: Glc-
Glucose; Gal-Galactose; GlcNAc-N-acetylglucosamine; Fuc-fucose. 
 

  
Common 

name  
 

  
 
Systematic name 

  
Molecular 

weight 
(Mr, Da) 

 
[M+ 
Na]+ 
(Da) 

 
[M+FBA+Na]+ 

(Da) 

 
[M+PBA+Na]+ 

(Da) 

  
Maltose 

  
4-α-D-Glc-D-Glc 

  
342.3 

 
365.3 

 
559.1 

 
641.5 

  
Lactose 

  
β-D-Gal-(1→4)-α-
D-Glc 

  
342.3 

 
365.3 

 
559.1 

 
641.5 

  
LN 

  
β-D-Gal-(1→4)-D-
GlcNAc 

  
383.4 

 
383.4 

 
600.2 

 
682.5 

  
Gala3-
type1 

  
Gal-α-(1→3)-Gal-
β-(1→3)-GlcNAc-
β-azide 

  
614.6 

 
637.6 

 
831.4 

 
913.7 

  
P1 

  
Gal-α-(1→4)-Gal-
β-(1→4)-GlcNAc-
β-azide 

  
614.6 

 
637.6 

 
831.4 

 
913.7 

  
Lec-Lec 

  
Gal-β-(1→3)-
GlcNAc-β-(1→3)-
Galβ-(1→3)-
GlcNAc-β-azide 

  
817.8 

 
840.8 

 
1034.6 

 
1116.9 

  
LNT 

  
Gal-β-(1→3)-
GlcNAc-β-(1→3)-
Gal-β(1→4)-
GlcNAc-β-azide 

  
817.8 

 
840.8 

 
1034.6 

 
1116.9 

  
LNFP1 

  
Fuc-α-(1→2)-Gal-
β-(1→3)-GlcNAc-β 
-(1→3)-Gal-β -
(1→4)-Glc 
 

  
853.8 

 
876.8 

 
1070.6 

 
1152.9 

  
LNFP2 

  
Gal-β-(1→3)-[Fuc-
α-(1→4)]-β-
GlcNAc-β-(1→3)-
Gal-(1→4)-Glc 

  
853.8 

 
876.8 

 
1070.6 

 
1152.9 
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Figure 5.2 Structures of the underivatized carbohydrates. L.S. Fenn, J.A. 
McLean, Chemical Communications, 2008, 43, 5505-5507. – Reproduced by 
permission of The Royal Society of Chemistry (RSC). 
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Figure 5.3 A generalized scheme for the reaction of carbohydrates with 
substituted boronic acids used in these studies. BA prefers to attach to the 
reducing end of cis-diols forming a stable five-membered ring. The structures and 
molecular weights of the 9 carbohydrates investigated, ranging from 
disaccharides to pentaoses, are provided in Figure 5.2. L.S. Fenn, J.A. McLean, 
Chemical Communications, 2008, 43, 5505-5507. – Reproduced by permission 
of The Royal Society of Chemistry (RSC). 
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both ferrocene boronic acid (FBA) and 4-[(2’,6’-iisopropylphenoxy)phenylboronic 

acid] (PBA) obtained from Sigma. Solutions of BA were prepared in DMSO to 

final concentrations of 10-50 mM. Carbohydrate solutions were prepared in 

70:20:10 ACN:DDW:DCM to a final concentration of 0.03 mM and were adjusted 

to the optimized pH for each BA (7.5 and 9.0 for PBA and FBA, respectively).170 

The BA solution was added to the carbohydrate solution resulting in molar ratio 

of approximately 2:1 BA to carbohydrate. The reaction was then allowed to 

proceed for 12 hours, or alternatively sonicated for 5 minutes at room 

temperature.172 

 To determine collision cross sections, MALDI ionization was performed by 

mixing analytes in a 200:1 molar ratio of saturated 2,5-dihydroxybenzoic acid in 

50% ethanol with analyte. Samples were spotted onto a stainless steel plate, and 

dried under vacuum. The IM measurements were performed on the drift tube 

MALDI-IM-TOFMS as described in Chapter I, Section 1.2.2.1. The collision cross 

sections were calculated using the procedure outlined in Chapter I, Section 1.2.1. 

 

5.3 Results and discussion 

 

 In order to determine the affect of the BA derivitization with carbohydrates, 

collision cross sections where determined for both protonated and/or sodium-

coordinated species. For FBA derivatized species, both [M+H]+ and [M+Na]+ 

species were observed in nearly equal abundance; however, for PBA derivatized 

species the preponderance (>98%) of signal was for sodium-coordinated 
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species, so protonated cross sections are not reported for comparison purposes. 

The collision cross sections of the underivatized carbohydrates are provided as 

well (Table 5.2).  

 The affect of derivatization on the collision cross sections of carbohydrates 

is illustrated in Figure 5.4. FBA was selected to serve as a high density tag (i.e. 

to serve as an anchor in Figure 5.1), owing to the addition of Fe and tightly 

coordinated cyclopentadienyl groups. However, the increase in surface area and 

mass upon FBA derivatization appears to shift signals along the carbohydrate 

correlation. PBA was selected to perform as a low density tag (i.e. to serve as a 

parachute in Figure 5.1), owing to the sterically bulky diisopropylphenyl moiety. In 

this case, the desired shift in conformation space is achieved for most species as 

indicated by a greater increase in surface area than that predicted for a 

commensurate increase in underivatized carbohydrate mass. Furthermore, the 

carbohydrates studied also contain 4 pairs of isomeric carbohydrates, which is a 

serious complication when using mass spectrometry alone. However, using IM-

MS, these isobaric carbohydrates are separated on the basis of structure as was 

demonstrated in Chapter III. 

 It should be noted that there exists a diverse collection of commercially 

available BAs exhibiting a range of chemical functionality. Thus it should be 

feasible to select specific BAs to promote different but particular anhydrous 

folding forces, which in turn should result in ion mobility shift tuneability. 

Furthermore, in contrast with underivatized carbohydrates derivatization 

described herein provide three distinct advantages, which include: (i) tuneability 
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Table 5.2 Collision cross sections determined for protonated and/or sodium 
coordinated carbohydrates prior to and following boronic acid derivatization. 

 
     

Collision cross section (Å2)a 
 

  
Carbohydrate 

  
[M+Na]+ 

   
[M+FBA+Na]+ 

  
[M+PBA+Na]+ 

 
  

Maltose 
 

103.1 ± 4.1 (21) 
   

140.3 ± 7.7 (5) 
  

156.3 ± 5.7 (16) 
  

Lactose 
  

106.8 ± 5.1 (35) 
   

151.5 ± 8.4 (16) 
  

163.7 ± 3.4 (30) 
  

LN 
  

117.4 ± 1.8 (23) 
   

156.7 ± 3.4 (15) 
  

195.0 ± 1.5 (30) 
  

Gala3-type1 
 

160.2 ± 2.1 (26) 
   

197.9 ± 4.4 (31) 
  

229.8 ± 7.3 (18) 
  

P1 
 

166.9 ± 1.2 (70) 
   

200.5 ± 2.8 (39) 
 

255.4 ± 2.3 (40) 
  

Lec-Lec 
 

183.2 ± 1.6 (51) 
   

220.0 ± 2.6 (15) 
 

252.2 ± 2.1 (21) 
  

LNT 
 

195.9 ± 1.4 (42) 
   

217.9 ± 2.8 (19) 
 

254.8 ± 8.3 (19) 
  

LNFP1 
  

204.3 ± 1.4 (147) 
   

222.5 ± 3.4 (9) 
  

230.2 ± 6.1 (26) 
  

LNFP2 
 

  
201.4 ± 1.0 (166) 

   
226.1 ± 2.3 (11) 

  
233.7 ± 3.1 (21) 

 
a.  Error represents ± 1σ for n measurements indicated in parenthesis. The 
protonated form of PBA derivatized carbohydrates is not included as the 
relative abundance for [M+PBA+H]+ species was <2% of the base peak 
([M+PBA+Na]+) in the spectra. 
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Figure 5.4 A plot of collision cross section vs. m/z for underivatized carbohydrate 
species, FBA, and PBA (all present as [M+Na]+) derivatized carbohydrates. Error 
bars on the derivatized species represent ± 1σ. Refer to Table 5.2 for tabulated 
values. L.S. Fenn, J.A. McLean, Chemical Communications, 2008, 43, 5505-
5507. – Reproduced by permission of The Royal Society of Chemistry (RSC). 
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in the separation of isobaric species, (ii) enhanced ionization efficiency (e.g. upon 

FBA derivatization an ca. 2x enhancement in sensitivity is observed), and (iii) 

potential to serve as fragment labels in CID,173,174 and IR active species in 

IRMPD,172 in tandem MS studies. Owing to covalent derivatization, new classes 

of BAs incorporating moieties for affinity purification, isotopic enrichment for 

relative expression determination, and inclusion of structural standards (e.g. 

fullerenes) provide new avenues for further characterization, identification, and 

quantification of carbohydrate species in glycomics and glycoproteomics. 

 

5.4 Conclusion 

 

 This chapter has demonstrated the potential of ion mobility shift reagents 

in the detection and characterization of carbohydrates. As a specific example, 

BAs were used to attach specific moieties in order to shift them structurally either 

above or below the predicted correlation for carbohydrates. The shift reagents 

can be used for other purposes as well including enhancing ionization efficiency 

or attaching tags for quantitative measurements.  
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CHAPTER VI 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1 Summary and Conclusions 

 

 In this dissertation, the detection and characterization of carbohydrates 

while in the presence of other biomolecular classes through the structural 

separations provided by IM-MS was described. There are currently many 

complications when determining the carbohydrates present on glycoproteins and 

in complex mixtures. Current methodologies remove and purify the 

carbohydrates from the original sample which disturbs the intricate natural 

environment such as the glycan location on a glycoprotein. There are also 

complications when using MS to characterize positional and structural 

carbohydrate isomers. Even though these carbohydrates have different 

structures, they cannot be differentiated using MS alone due to having the same 

mass. Throughout this report, IM-MS was used to characterize glycans and their 

associated glycoconjugates from complex samples. This work also reviewed the 

first reported utilization of MALDI-IM-MS in the study of carbohydrates whereas 

all other published reports use ESI-IM-MS. 

 First, IM-MS was used to separate and survey the area of IM-MS 

conformation space occupied by different biomolecular classes. The 

conformation space occupied by carbohydrates lies between the more elongated 
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classes of lipids and peptides and the more compact class of oligonucleotides 

This is due to the nature of the carbohydrate itself, the types of atoms that they 

are composed of, the oxophilic interaction with alkali metals, and their preference 

for branching as their size increases. They also have the highest deviation from 

the average mass/mobility correlation which means they occupy a larger area of 

conformation space than other biomolecules. This can be attributed to the higher 

structural diversity of carbohydrates.  

 Even though carbohydrates have a high structural diversity, they form 

many for positional and structural isomers which IM-MS was able to differentiate 

due to the differences in collision cross section. The limited number of monomers 

and glycosidic linkages between these monomers cause carbohydrates to have a 

high probability for positional and structural isomerization. These isomers are 

isobaric in nature and are unable to be resolved by MS alone. In this regard, it is 

desirable to have a rapid method for differentiation for which IM-MS was used. 

IM-MS was able to differentiate three pairs of carbohydrate isomers that, even 

though they have the same mass, vary in structure. 

 The primary aim of this dissertation research was to differentiate 

carbohydrates simultaneously from other biomolecular classes in complex 

mixtures. This was demonstrated for glycoprotein digests with a range of 

complexity and in the separation of glycans from lipids in human milk. Even 

though the peptides and lipids dominate the MS spectra, the additional 

dimension of separation provided by IM-MS distinguished the glycan signals. All 

three types of N-linked glycans were detected along with sialic acids still 
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attached, which are known to readily dissociate in conventional MS. The ability to 

separate glycans, lipids, and peptides simultaneously will greatly assist in future 

characterizations of glycans in complex mixtures where rapid analysis time is 

needed. 

 Even though the peptides, glycans, and lipids were differentiated in IM-MS 

conformation space, in some situations, additional separation or ionization 

efficiency is needed. This was addressed through the use of IM shift reagents 

based on BA interactions with the cis-diols present on carbohydrates. A structural 

shift and ionization enhancement was seen for the carbohydrates and BAs 

tested. 

 Overall, this dissertation describes the first experiments to simultaneously 

characterize different biomolecules from the same sample with particular 

attention to carbohydrates. All previous studies of carbohydrates and 

glycoconjugates using IM-MS separated and purified the biomolecules of interest 

before analysis. In this dissertation research, carbohydrates were differentiated 

from peptides and lipids in the same sample without the need for time-consuming 

separation and purification. In addition, IM-MS was able to differentiate positional 

and structural carbohydrate isomers which is a significant challenge to current 

glycomics research. Since these isomers have the exact same mass, they 

cannot be separated my MS alone, no matter the resolution. The first 

carbohydrate collision cross section database with over 3500 measurements for 

303 carbohydrate species was also created. This research has made a 
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significant contribution to carbohydrate characterization using IM-MS, an area 

which will only gain attention in future endeavors. 

 

6.2 Future Directions 

 

 Through these studies, great progress was made in characterizing glycans 

within complex mixtures using IM-MS, but there are many opportunities for 

further research. The positional and structural isomer study along with 

determining the area of conformation space occupied by carbohydrates used low 

molecular weight standards (<1300 Da). For future studies, the mass/mobility 

correlation for carbohydrates could be extended for higher masses to determine 

how the glycans’ structure would change with the addition of more monomers 

along with the increasing branching probability.  

 Higher mass positional and structural isomers could also be characterized 

to determine the level of structural deviation that IM-MS can be used to 

differentiate. As is seen in the current studies, as the mass increases and  

amount of structural deviation decreases (i.e. comparing glycans with many 

glycosidic bond variations to glycans with only one bond variation), the 

differences in collision cross section decrease. This could be used to explore  

which isomers IM-MS would be the most effective at separating. The use of ESI-

IM-MS could also be explored to see how the addition of more charges would 

affect the difference in collision cross section and possibly enhance separation. 
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 For the characterization of glycoprotein digests, these studies 

concentrated predominantly on characterization of N-linked glycans and purified 

glycoproteins. For ongoing studies, O-linked glycans could be pursued using 

MALDI-IM-MS. Glycoproteins present in samples with growing complexity could 

also be explored to determine how well IM-MS will separate the glycans within 

the mixture. 

 For future studies, IM-MS would be of great use characterizing glycan-

containing species such as glycopeptides or glycans complexed with other 

biomolecules. This type of study could probe the structure of the species without 

interrupting the interactions within the natural environment, unlike conventional 

methods using separation and purification before analysis. 

 The full utility of IM shift reagents for the study of carbohydrates has not 

been realized. The use of BA-based tags could be continued with other moieties 

attached to shift the carbohydrate signal in different directions. Also, since the BA 

reaction is slightly reversible, other tagging strategies could be investigated that 

are not reversible and could be used for quantitative measurements. 
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APPENDIX A 

 

TABULAR DATA FOR COLLISION CROSS SECTIONS  
OF BIOMOLECULAR STANDARDS 

 
 
Table A.1 Collision cross sections for carbohydrate standards in Chapter II 
(denoted with *) and Chapter III.1  
 
Name (parent name if 
fragmented) 

species m/z (Da) Ω 
(Å2) 

σ (# of 
measurements) 

B1 (P1 tri) [M+Na]+ 185.1 53.6 3.8(5) 
2,4A2 (P1 tri) [M+Na]+ 245.0 72.5 1.2(5) 
2,4X0 (LeALex) [M+Na]+ 253.0 35.9 2.0(5) 
2,4X0 (Di-LeA) [M+Na]+ 253.0 94.0 0.8(7) 
Y1-N2 (B tetra type 1) [M+Na]+ 285.0 82.3 1.1(5) 
Y1-N2 (P1 tri) [M+Na]+ 285.3 85.3 2.8(5) 
Z1 (LacNAc) [M+Na]+ 295.0 96.3 7.4(5) 
Z1 (B2-tri) [M+Na]+ 295.3 89.7 2.1(5) 
Z1 (P1 tri) [M+Na]+ 295.3 88.2 7.1(5) 
0,2A2 (Pk) [M+Na]+ 305.0 96.6 4.6(5) 
1,5A2 (P1 tri) [M+Na]+ 319.3 95.7 3.1(5) 
1,5A2 (Galα3-type1) [M+Na]+ 319.3 99.0 3.2(5) 
0,2X1-N2 (Galα3-type1) [M+Na]+ 327.3 111.6 4.7(9) 
*B2 (LNFP1) [M+Na]+ 331.0 118.6 0.5(7) 
B2 (Lac) [M+Na]+ 347.0 108.4 3.5(7) 
B2 (P1 tri) [M+Na]+ 347.3 101.4 6.6(5) 
0,2X1 (P1 tri) [M+Na]+ 355.3 106.6 1.8(5) 
1,5A2 (LNnT) [M+Na]+ 360.0 106.9 2.1(5) 
*Y2 (LNFP2) [M+Na]+ 362.3 113.5 1.3(8) 
*Y2 (LNFP1) [M+Na]+ 365.0 112.8 1.3(12) 
C2 (P1 tri) [M+Na]+ 365.3 102.0 3.1(5) 
lactose [M+Na]+ 365.3 121.1 6.4(16) 
maltose [M+Na]+ 365.3 124.6 2.0(8) 
C2 (Lac) [M+Na]+ 365.4 107.5 1.4(7) 
2,4X1 (Pk) [M+Na]+ 374.0 127.3 2.8(8) 
2,4X1-N2 (P1 tri) [M+Na]+ 387.4 117.6 3.2(8) 
2,4X1-N2 (B2-tri) [M+Na]+ 387.4 105.7 1.4(5) 
B2 (Di-Lec) [M+Na]+ 388.0 111.1 1.1(7) 
B2 (LNnT) [M+Na]+ 388.0 113.6 0.9(5) 
B2 (LNT) [M+Na]+ 388.0 115.8 2.3(10) 
*B2 (P1 penta) [M+Na]+ 388.0 114.2 0.8(5) 
B2 (LacNAc) [M+Na]+ 390.0 116.9 1.7(7) 
*2,4A3 (H-type2-LN-LN) [M+Na]+ 391.0 122.3 0.5(5) 
C2 (Lec) [M+Na]+ 405.0 124.9 3.4(7) 
LN [M+Na]+ 405.0 129.2 2.1(23) 
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C2 (LacNAc) [M+Na]+ 405.0 130.6 3.0(5) 
*C2 (P1 penta) [M+Na]+ 406.0 118.3 2.1(9) 
*C2 (Di-Lec) [M+Na]+ 406.0 125.3 5.6(5) 
*C2 (GNLNLN) [M+Na]+ 406.0 118.0 4.0(5) 
M-N2 (Lac) [M+Na]+ 406.0 122.3 2.8(11) 
*C2 (LNT) [M+Na]+ 406.0 119.4 1.5(5) 
2,4A3 (Pk) [M+Na]+ 407.0 116.4 1.4(5) 
*2,4A3 (P1 antigen) [M+Na]+ 407.0 123.0 3.4(10) 
2,4A3 (P1 tri) [M+Na]+ 407.3 119.5 2.1(5) 
*2,4A3 (Galα3-type1) [M+Na]+ 407.3 118.5 0.6(8) 
*C4/Y3 (LNFP1) [M+Na]+ 409.4 129.8 1.1(17) 
*Y3β/C2 (LNFP2) [M+Na]+ 409.4 139.5 2.6(9) 
Z1α-N2 (LeALex) [M+Na]+ 413.0 108.7 4.7(5) 
Z2 (LNnT) [M+Na]+ 416.0 74.7 1.1(5) 
Y1α-N2 (2'F-B type 2) [M+Na]+ 431.0 125.0 3.0(5) 
*Y2 (P1 antigen) [M+Na]+ 434.0 131.0 1.4(5) 
Y2 (LNnT) [M+Na]+ 434.0 110.5 1.6(5) 
Lac [M+Na]+ 434.4 130.3 3.5(15) 
*0,3A3 (P1 tri) [M+Na]+ 437.0 133.0 1.2(7) 
*Z1α (Di-LeA) [M+Na]+ 441.4 132.1 2.7(13) 
*Y2-N2 (H-type2-LN-LN) [M+Na]+ 447.0 133.4 1.1(5) 
*Y2-N2 (Di-Lec) [M+Na]+ 447.0 131.3 1.8(25) 
*Y2-N2 (LNT) [M+Na]+ 447.0 127.9 8.1(26) 
M-N2 (LacNAc) [M+Na]+ 447.0 137.2 0.9(17) 
M-N2 (Lec) [M+Na]+ 447.0 136.4 1.0(10) 
*Y2-N2 (P1 penta) [M+Na]+ 447.0 134.1 0.3(8) 
Y2-N2 (Galα3-type1) [M+Na]+ 447.4 125.6 1.4(5) 
Y2-N2 (B2-tri) [M+Na]+ 447.4 137.7 0.8(9) 
*Y2-N2 (P1 tri) [M+Na]+ 447.4 133.6 0.8(17) 
*2,4A3 (GNLNLN) [M+Na]+ 448.0 115.1 0.5(8) 
0,2X2-N2 (Pk) [M+Na]+ 448.0 137.8 1.6(8) 
2,4A3 (LNnT) [M+Na]+ 448.0 132.7 2.6(5) 
*1,3A3 (Galα3-type1) [M+Na]+ 448.4 128.0 2.0(5) 
*0,2A2α (Di-LeA) [M+Na]+ 451.0 132.2 3.1(5) 
*0,2A3 (H-type2-LN-LN) [M+Na]+ 451.0 130.6 0.6(5) 
*Z2 (P1 tri) [M+Na]+ 457.0 122.1 1.3(12) 
*Z2 (Galα3-type1) [M+Na]+ 457.0 122.3 1.0(7) 
*Z2 (GNLNLN) [M+Na]+ 457.0 108.3 1.3(5) 
Y1α (LeALex) [M+Na]+ 459.0 107.5 1.4(5) 
*Y1α (Di-LeA) [M+Na]+ 459.4 126.6 1.8(12) 
*1,5X2 (P1 antigen) [M+Na]+ 462.0 121.2 0.7(9) 
0,2A3 (Pk) [M+Na]+ 467.0 127.0 2.8(5) 
*0,2A3 (Galα3-type1) [M+Na]+ 467.4 131.8 1.1(6) 
0,2A3 (P1 tri) [M+Na]+ 467.4 125.4 2.4(5) 
*Y2 (LNT) [M+Na]+ 475.0 102.5 0.5(5) 
*Y2 (Di-Lec) [M+Na]+ 475.0 138.0 1.3(5) 
*Y2 (P1 penta) [M+Na]+ 475.0 135.3 3.5(7) 
*Y2 (P1 tri) [M+Na]+ 475.4 130.0 0.5(11) 
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LacNAc [M+Na]+ 475.4 146.9 2.2(17) 
*Y2 (Galα3-type1) [M+Na]+ 475.4 133.8 0.6(7) 
Lec [M+Na]+ 475.4 138.9 2.0(14) 
Y2 (B2-tri) [M+Na]+ 475.4 145.6 1.7(7) 
*1,5X1α (Di-LeA) [M+Na]+ 487.4 125.0 2.3(12) 
*0,2X2-N2 (P1 antigen) [M+Na]+ 489.0 150.6 3.4(5) 
0,2X2-N2 (P1 tri) [M+Na]+ 489.5 139.1 3.3(5) 
B2 (B tetra type 1) [M+Na]+ 493.0 132.3 1.9(8) 
1,5X2α (B tetra type 1) [M+Na]+ 503.0 93.0 1.4(5) 
*1,5X2 (Di-Lec) [M+Na]+ 503.0 152.0 3.4(5) 
*1,5X2 (GNLNLN) [M+Na]+ 503.0 138.5 1.5(5) 
*1,5X2 (LNT) [M+Na]+ 503.0 108.1 0.7(5) 
*1,5X2 (H-type2-LN-LN) [M+Na]+ 503.0 139.3 2.4(8) 
*1,5X2 (Galα3-type1) [M+Na]+ 503.4 144.8 3.5(8) 
1,5A2α (LeALex) [M+Na]+ 506.0 107.9 2.0(5) 
0,2A3 (LNnT) [M+Na]+ 508.0 107.8 2.2(5) 
B3 (Pk) [M+Na]+ 509.0 132.1 1.3(5) 
*1,5A3 (P1 tri) [M+Na]+ 522.5 136.0 0.7(4) 
*1,5A3 (Galα3-type1) [M+Na]+ 522.5 143.9 2.5(9) 
C3 (Pk) [M+Na]+ 527.0 139.4 1.8(12) 
0,2X2-N2 (Di-Lec) [M+Na]+ 531.0 109.1 1.5(5) 
*0,2X2-N2 (LNT) [M+Na]+ 531.0 115.3 1.6(6) 
*B3 (LNFP1) [M+Na]+ 533.0 151.5 0.7(9) 
2,4X1α-N2 (B tetra type 1) [M+Na]+ 534.0 108.6 1.1(5) 
B2α (LeALex) [M+Na]+ 534.0 109.0 1.6(5) 
*B3 (H-type2-LN-LN) [M+Na]+ 534.0 143.6 1.7(8) 
*B2 (LNFP2) [M+Na]+ 534.0 152.2 0.6(5) 
*B2α (Di-LeA) [M+Na]+ 534.5 143.2 2.4(22) 
*3,5X1-N2 (Galα3-type1) [M+Na]+ 535.0 145.5 1.8(5) 
*Y3β/Z3α (LNFP2) [M+Na]+ 547.3 169.1 5.8(5) 
*0,3X1 (Galα3-type1) [M+Na]+ 547.5 160.3 3.4(10) 
2,4X2-N2 (B2-tri) [M+Na]+ 549.5 166.3 6.2(9) 
*B3 (Di-Lec) [M+Na]+ 550.0 147.7 1.8(33) 
*B3 (LNT) [M+Na]+ 550.0 142.4 1.9(9) 
*B3 (P1 penta) [M+Na]+ 550.0 150.6 0.3(13) 
*B3 (P1 antigen) [M+Na]+ 550.0 145.2 4.0(10) 
B3 (LNnT) [M+Na]+ 551.0 157.9 1.0(6) 
*C3 (LNFP1) [M+Na]+ 551.0 134.1 1.6(9) 
*C3 (H-type2-LN-LN) [M+Na]+ 552.0 129.8 3.2(8) 
*B3 (Galα3-type1) [M+Na]+ 552.5 144.0 2.0(9) 
B3 (B2-tri) [M+Na]+ 552.5 144.3 1.2(5) 
*C2α (Di-LeA) [M+Na]+ 552.5 146.0 1.7(25) 
*C3 (LNFP2) [M+Na]+ 552.5 151.3 0.9(5) 
*B3 (P1 tri) [M+Na]+ 552.5 130.7 2.1(13) 
C2α (LeALex) [M+Na]+ 553.0 146.4 1.4(8) 
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2,4X1α (Di-LeA) [M+Na]+ 561.5 121.5 2.0(5) 
*3,5X1 (Galα3-type1) [M+Na]+ 563.0 126.8 0.7(5) 
*C3 (LNT) [M+Na]+ 568.0 150.7 1.9(5) 
*C3 (P1 antigen) [M+Na]+ 568.0 148.6 1.2(6) 
*C3 (Di-Lec) [M+Na]+ 568.0 152.8 2.3(31) 
*Y3 (LNFP1) [M+Na]+ 568.0 157.4 0.4(5) 
*C3 (P1 penta) [M+Na]+ 568.0 153.4 0.8(5) 
C3 (B2-tri) [M+Na]+ 568.5 157.7 1.3(8) 
*C3 (P1 tri) [M+Na]+ 568.5 157.8 1.1(11) 
M-N2 (Pk) [M+Na]+ 568.5 148.8 1.1(17) 
*C3 (Galα3-type1) [M+Na]+ 568.5 152.2 2.5(12) 
Z2α-N2 (Di-LeA) [M+Na]+ 575.5 150.2 3.2(5) 
*2,4X2 (P1 antigen) [M+Na]+ 577.0 161.9 5.6(5) 
*2,4X2 (P1 penta) [M+Na]+ 577.0 160.5 0.8(11) 
*2,4X2 (Galα3-type1) [M+Na]+ 577.5 164.1 4.6(8) 
2,4X2 (P1 tri) [M+Na]+ 577.5 112.2 1.9(5) 
2,4X2 (LNnT) [M+Na]+ 578.0 108.8 1.2(5) 
*2,4X2-N2 (LNT) [M+Na]+ 591.0 153.7 1.8(7) 
*2,4X2-N2 (Di-Lec) [M+Na]+ 591.0 157.2 1.7(5) 
*Z3-N2 (P1 penta) [M+Na]+ 591.0 145.9 0.9(5) 
*B3 (GNLNLN) [M+Na]+ 591.5 155.8 0.4(5) 
*Y2α-N2 (Di-LeA) [M+Na]+ 593.6 157.3 1.8(24) 
Y2α-N2 (LeALex) [M+Na]+ 594.0 162.3 2.6(13) 
Y2α-N2 (B tetra type 1) [M+Na]+ 594.0 159.7 2.0(18) 
*2,4A4/Y3α (LNFP2) [M+Na]+ 594.6 174.5 2.2(5) 
Pk  [M+Na]+ 596.5 160.3 1.6(16) 
*Y3-N2 (P1 penta) [M+Na]+ 609.0 160.1 1.7(10) 
Y2β-N2 (B tetra type 1) [M+Na]+ 609.6 163.2 0.9(14) 
M-N2 (B2-tri) [M+Na]+ 609.6 170.6 1.4(18) 
*M-N2 (Galα3-type1) [M+Na]+ 609.6 154.1 2.2(24) 
*M-N2 (P1 tri) [M+Na]+ 609.6 161.9 1.2(30) 
Y3-N2 (LNnT) [M+Na]+ 610.0 165.9 2.0(12) 
*C3 (GNLNLN) [M+Na]+ 610.0 161.7 0.2(5) 
*2,4A4 (Di-Lec) [M+Na]+ 611.0 160.4 1.5(6) 
*2,4A4 (LNT) [M+Na]+ 611.0 163.4 1.3(7) 
*2,4A4 (P1 antigen) [M+Na]+ 611.0 158.8 4.1(9) 
*2,4X2 (LNT) [M+Na]+ 619.0 169.2 2.4(5) 
Y2α (B tetra type 1) [M+Na]+ 622.0 160.4 3.3(5) 
*3,5A4 (LNT) [M+Na]+ 624.0 123.6 0.7(5) 
*Z3-N2 (GNLNLN) [M+Na]+ 633.0 169.9 1.9(5) 
*Z3-N2 (Di-Lec) [M+Na]+ 633.0 166.0 1.9(5) 
*Z3-N2 (LNT) [M+Na]+ 633.0 132.9 2.8(5) 
*Y3 (P1 penta) [M+Na]+ 637.0 170.1 1.4(8) 
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B2-tri [M+Na]+ 637.6 177.8 3.7(18) 
*Galα3-type1 [M+Na]+ 637.6 162.9 3.2(63) 
*P1 tri [M+Na]+ 637.6 169.3 1.2(88) 
Y2β (B tetra type 1) [M+Na]+ 637.6 172.6 1.7(8) 
Y3 (LNnT) [M+Na]+ 638.0 168.4 3.4(5) 
Y3 (P1 antigen) [M+Na]+ 638.0 168.2 1.4(7) 
1,5X2α (Di-LeA) [M+Na]+ 649.6 168.1 2.6(5) 
*Y3-N2 (LNT) [M+Na]+ 651.0 180.3 2.5(6) 
*Y3-N2 (GNLNLN) [M+Na]+ 651.0 173.0 1.8(9) 
*Y3-N2 (Di-Lec) [M+Na]+ 651.0 172.7 1.9(28) 
0,2X2β-N2 (B tetra type 1) [M+Na]+ 651.6 171.5 3.4(5) 
*Z3 (GNLNLN) [M+Na]+ 661.0 110.4 2.2(5) 
*0,2A4 (P1 penta) [M+Na]+ 670.0 171.4 1.1(5) 
*0,2A4 (LNT) [M+Na]+ 671.0 170.1 1.6(7) 
0,2X2α-N2 (Di-LeA) [M+Na]+ 676.6 183.3 3.3(8) 
0,2X2α-N2 (LeALex) [M+Na]+ 677.0 175.6 2.5(5) 
*Y3 (GNLNLN) [M+Na]+ 679.0 177.2 5.5(5) 
*Y3 (Di-Lec) [M+Na]+ 679.0 176.5 1.9(8) 
*1,5A4 (P1 penta) [M+Na]+ 684.0 176.9 3.4(5) 
*0,2X3-N2 (P1 penta) [M+Na]+ 692.0 145.8 1.0(5) 
*0,2X3-N2 (LNT) [M+Na]+ 693.0 111.8 2.2(5) 
*B3α (Di-LeA) [M+Na]+ 696.6 175.9 1.9(27) 
B3α (LeALex) [M+Na]+ 697.0 172.0 2.7(11) 
*B4 (LNFP1) [M+Na]+ 697.0 180.4 0.5(10) 
*B3 (LNFP2) [M+Na]+ 697.0 180.1 1.5(5) 
*B4 (H-type2-LN-LN) [M+Na]+ 697.0 178.5 1.7(12) 
B3 (B tetra type 1) [M+Na]+ 697.6 170.8 1.4(10) 
*1,5X3 (Di-Lec) [M+Na]+ 707.0 144.0 5.6(5) 
*1,5X3 (LNT) [M+Na]+ 707.0 148.1 0.5(5) 
*1,5X3 (GNLNLN) [M+Na]+ 707.0 147.1 2.1(5) 
*B4 (P1 penta) [M+Na]+ 712.0 171.4 1.9(5) 
*B4 (P1 antigen) [M+Na]+ 713.0 167.2 3.0(5) 
C3 (B tetra type 1) [M+Na]+ 714.6 179.6 1.3(14) 
*C3α (Di-LeA) [M+Na]+ 715.0 176.0 1.6(18) 
C3α ( LeALex) [M+Na]+ 715.0 173.7 2.1(8) 
*C4 (LNFP1) [M+Na]+ 715.0 180.5 1.9(8) 
*C3 (LNFP2) [M+Na]+ 715.0 183.8 1.2(5) 
*C4 (P1 antigen) [M+Na]+ 731.0 169.8 1.5(5) 
C4 (LNnT) [M+Na]+ 731.0 173.3 1.8(11) 
*Y4 (LNFP1) [M+Na]+ 731.0 179.7 0.6(5) 
*Y3β (LNFP2) [M+Na]+ 731.0 176.5 0.9(5) 
Z1β-N2 (2'F-B type 2) [M+Na]+ 737.7 180.7 2.9(14) 
*1,5X3α (LNFP2) [M+Na]+ 742.0 191.3 1.1(5) 
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*2,4X3-N2 (P1 penta) [M+Na]+ 752.0 174.1 3.1(5) 
*B4 (GNLNLN) [M+Na]+ 753.0 183.9 0.9(5) 
*2,4X3-N2 (H-type2-LN-LN) [M+Na]+ 753.0 179.3 1.6(8) 
*B4 (LNT) [M+Na]+ 754.0 180.0 2.9(16) 
*B4 (Di-Lec) [M+Na]+ 754.0 182.7 3.2(30) 
Y1β-N2 (2'F-B type 2) [M+Na]+ 755.7 187.5 1.6(23) 
M-N2 (B tetra type 1) [M+Na]+ 755.7 187.1 0.8(19) 
*0,2X3α (LNFP2) [M+Na]+ 756.7 190.3 0.7(5) 
*1,5X4 (LNFP1) [M+Na]+ 758.6 192.4 0.6(7) 
Y2α’ (2'F-B type 2) [M+Na]+ 768.0 183.8 3.3(8) 
*C4 (LNT) [M+Na]+ 772.0 180.5 1.6(27) 
*C4 (Di-Lec) [M+Na]+ 772.0 180.2 2.1(32) 
M-N2 (LNnT) [M+Na]+ 772.0 182.8 1.0(22) 
*2,4A5 (P1 penta) [M+Na]+ 772.0 173.6 1.6(5) 
*2,4A5 (P1 antigen) [M+Na]+ 773.0 177.5 1.6(5) 
*Z4 (P1 antigen) [M+Na]+ 782.0 149.1 2.1(4) 
B tetra type 1 [M+Na]+ 783.7 195.6 1.9(27) 
Y1β (2'F-B type 2) [M+Na]+ 783.7 196.4 4.4(10) 
LNnT [M+Na]+ 799.7 188.0 1.3(28) 
*Y4 (P1 antigen) [M+Na]+ 800.0 146.7 3.3(8) 
*Y4-N2 (P1 penta) [M+Na]+ 812.0 178.3 0.7(13) 
*M-N2 (Di-Lec) [M+Na]+ 812.8 185.2 1.6(45) 
*M-N2 (LNT) [M+Na]+ 812.8 190.7 0.8(41) 
*Y4-N2 (GNLNLN) [M+Na]+ 813.0 191.5 0.9(8) 
*Y4-N2 (H-type2-LN-LN) [M+Na]+ 813.0 191.0 1.6(7) 
*0,2A5 (P1 penta) [M+Na]+ 832.0 183.2 0.7(5) 
*0,2A5 (P1 antigen) [M+Na]+ 833.0 185.0 3.1(5) 
*Y4 (P1 penta) [M+Na]+ 840.0 184.1 0.6(13) 
*3'SLN-Lec [M+Na]+ 840.8 188.0 0.9(5) 
*Di-Lec [M+Na]+ 840.8 187.3 1.5(76) 
*LNT [M+Na]+ 840.8 196.4 1.4(67) 
Y4 (GNLNLN) [M+Na]+ 841.0 200.1 2.1(10) 
*Y4 (H-type2-LN-LN) [M+Na]+ 841.0 198.7 2.2(6) 
B3 (2'F-B type 2) [M+Na]+ 844.0 198.0 4.1(9) 
C3 (2'F-B type 2) [M+Na]+ 861.0 198.5 2.4(15) 
*0,2A5 (GNLNLN) [M+Na]+ 874.0 172.6 2.0(8) 
*LNFP1 [M+Na]+ 875.0 204.4 1.4(162) 
*LNFP2 [M+Na]+ 875.0 201.3 1.2(181) 
*LNFP3 [M+Na]+ 875.0 199.2 1.0(17) 
*B5 (P1 antigen) [M+Na]+ 875.0 187.8 1.8(5) 
*LNFP5 [M+Na]+ 875.0 201.8 0.7(18) 
*C5 (P1 antigen) [M+Na]+ 893.0 194.4 0.8(7) 
*0,2X4-N2 (GNLNLN) [M+Na]+ 896.0 147.4 0.6(5) 
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*B5 (H-type2-LN-LN) [M+Na]+ 900.0 209.3 2.9(12) 
M-N2 (2'F-B type 2) [M+Na]+ 902.0 207.3 1.7(24) 
2,4A4 (Di-LeA) [M+Na]+ 903.0 198.7 5.2(5) 
2,4A4 (LeALex) [M+Na]+ 903.0 199.2 4.5(5) 
*B5 (P1 penta) [M+Na]+ 915.0 197.0 2.1(8) 
*C5 (H-type2-LN-LN) [M+Na]+ 918.0 206.6 2.5(12) 
2'F-B type 2 [M+Na]+ 929.8 217.3 2.7(27) 
*C5 (P1 penta) [M+Na]+ 933.0 192.3 0.7(8) 
*M-N2 (P1 antigen) [M+Na]+ 933.8 195.8 1.3(15) 
Z3α’-N2 (Di-LeA) [M+Na]+ 941.0 219.6 2.7(5) 
Y3α’-N2 (LeALex) [M+Na]+ 948.0 200.8 7.0(5) 
*2,4X4-N2 (GNLNLN) [M+Na]+ 956.0 213.3 2.6(5) 
Y1β or 3α’’-N2 (LeALex) [M+Na]+ 959.0 211.0 1.6(20) 
*Y3α’-N2 (Di-LeA) [M+Na]+ 959.0 211.0 1.8(30) 
*P1 antigen [M+Na]+ 961.8 203.4 0.9(18) 
Y3α’’ (Di-LeA) [M+Na]+ 971.0 206.3 1.4(5) 
Y3α’ (LeALex) [M+Na]+ 971.0 206.9 1.6(13) 
*M-N2 (P1 penta) [M+Na]+ 974.4 202.9 0.7(15) 
*C5 (GNLNLN) [M+Na]+ 975.0 215.3 1.3(11) 
*0,2X3α’’-N2 (LeALex) [M+Na]+ 985.0 218.3 2.2(10) 
*Y3α’ (Di-LeA) [M+Na]+ 987.0 214.7 2.3(33) 
*α-cyclodextrin [M+Na]+ 995.6 200.7 0.5(4) 
0,2X1β or 3α’’-N2 (Di-LeA) [M+Na]+ 1001.0 209.3 1.8(5) 
0,2X2α’’ or 1β-N2 (LeALex) [M+Na]+ 1001.0 217.7 2.1(9) 
*P1 penta [M+Na]+ 1002.4 206.2 0.6(30) 
*M-N2 (GNLNLN) [M+Na]+ 1015.9 220.6 2.3(24) 
*Y5-N2 (H-type2-LN-LN) [M+Na]+ 1016.0 220.2 2.2(4) 
1,5A4 (Di-LeA) [M+Na]+ 1018.0 208.6 4.0(5) 
*LNDFH1 [M+Na]+ 1023.0 225.6 1.1(18) 
*LNDFH2 [M+Na]+ 1023.0 220.6 1.0(18) 
*GNLNLN [M+Na]+ 1043.9 230.5 0.8(25) 
*B4 (Di-LeA) [M+Na]+ 1046.0 228.0 2.4(13) 
C4 (LeALex) [M+Na]+ 1064.0 225.2 2.8(17) 
*C4 (Di-LeA) [M+Na]+ 1064.0 225.4 2.4(30) 
2,4X3α’ (LeALex) [M+Na]+ 1073.0 227.3 1.4(5) 
M-N2 (LeALex) [M+Na]+ 1105.0 232.4 1.5(23) 
*M-N2 (Di-LeA) [M+Na]+ 1105.0 230.9 1.0(37) 
LeALex [M+Na]+ 1133.0 237.9 3.3(25) 
*Di-LeA [M+Na]+ 1133.0 238.9 3.1(49) 
*β-cyclodextrin [M+Na]+ 1157.0 231.4 0.6(4) 
*Y6-N2 (H-type2-LN-LN) [M+Na]+ 1178.0 232.0 1.4(7) 
*Tri-LacNAc [M+Na]+ 1206.0 232.6 0.6(5) 
*Y6 (H-type2-LN-LN) [M+Na]+ 1206.0 238.7 4.2(8) 
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*C7 (H-type2-LN-LN) [M+Na]+ 1283.0 243.2 4.0(8) 
*M-N2 (H-type2-LN-LN) [M+Na]+ 1324.2 245.5 0.4(7) 
*H-type2-LN-LN [M+Na]+ 1352.2 252.1 0.6(7) 

 
 
Footnotes on table nomenclature: 
 
1. Carbohydrate nomenclature: 
 
2’F-B type 2  Galα1-3[Fucα1-2]Galβ1-4[Fucα1-3]GlcNAcβ-Sp 
3'SLN-Lec  Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-3GlcNAcβ-Sp  
α-cyclodextrin Cyclomaltohexaose 
β-cyclodextrin Cyclomaltoheptaose 
B2-tri   Galα1-3Galβ1-4GlcNAcβ-Sp 
B tetra type 1  Galα1-3[Fucα1-2]Galβ1-3GlcNAcβ-Sp 
Di-LeA   Galβ1-3[Fucα1-4]GlcNAcβ1-3Galβ1-3[Fucα1-4]GlcNAcβ-Sp 

Di-Lec   Galβ1-3GlcNAcβ1-3Galβ1-3GlcNAcβ-Sp 
Galα3-type1  Galα1-3Galβ1-3GlcNAcβ-Sp  
GNLNLN  GlcNAcβ1-3(Galβ1-4GlcNAcβ1-3)2β-Sp 
H-type2-LN-LN Fucα1-2(Galβ1-4GlcNAcβ1-3)3β -Sp 
Lac   Galβ1-4Glcβ-Sp 
Lactose  Galβ1-4Glc 
LacNAc  Galβ1-4GlcNAcβ-Sp 
LeALex  Galβ1-3[Fucα1-4]GalNAcβ1-3Galβ1-4[Fucα1-3]GlcNAcβ-Sp 
Lec   Galβ1-3GlcNAcβ-Sp 
LN   Galβ1-4GlcNAc 
LNDFH1  Fucα1-2Galβ1-3[Fucα1-4]GlcNAcβ1-3Galβ1-4Glc 
LNDFH2  Galβ1-3[Fucα1-4]GlcNAcβ1-3Galβ1-4[Fucα1-3]Glc 
LNFP1  Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc 
LNFP2  Galβ1-3[Fucα1-4]GlcNAcβ1-3Galβ1-4Glc 
LNFP3  Galβ1-4[Fucα1-3]GlcNAcβ1-3Galβ1-4Glc 
LNFP5  Galβ1-3GlcNAcβ1-3Galβ1-4[Fucα1-3]Glc 
LNnT   Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ-Sp 
LNT   Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ-Sp 
Maltose  Glcα1-4Glc  
P1 antigen  Galα1-4Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ-Sp  
P1 penta  Galb1-3GalNAcβ1-3Galα1-4Galβ1-4GlcNAcβ-Sp 
P1 tri   Galα1-4Galβ1-4GlcNAcβ-Sp 
Pk   Galα1-4Galβ1-4Glcβ-Sp 
Tri-LacNAc  (Galβ1-4GlcNAcβ1-3)3β-Sp 
 
Fuc - Fucose 
Gal - Galactose 
Glc - Glucose 
GlcNAc - N-acetylglucosamine  
GalNAc – N-acetylgalactosamine 
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Neu5Ac - N-Acetylneuraminic Acid 
Sp – azide spacer not utilized in these studies but which readily loses N2 in the 
MS accounting for some carbohydrate fragment peaks 

 
Fragmentation is in  Domon and Costello nomenclature (Figure 1.2).27 
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Table A.2 Oligonucleotide class species and collision cross sections referred to 
in Chapter II.2 

 
Name (parent name if 
fragmented) 

species m/z 
 (Da) 

Ω 
(Å2) 

σ (# of 
measurements) 

d2-G-H2O (GACT) [M+H]+ 492.1 129.2 0.3(6) 
w2-G-H2O (TCAG) [M+H]+ 492.1 137.7 0.5(6) 
w2-C-H2O (TGAC) [M+H]+ 492.6 135.5 0.4(6) 
d2-C-H2O or x2-T-H2O (CAGT) [M+H]+ 492.9 125.7 0.5(6) 
a2 (TCGA) [M+H]+ 514.1 134.3 0.5(6) 
a2 (TCAG) [M+H]+ 514.1 138.2 0.3(6) 
a2 (TCG) [M+H]+ 514.1 150.9 0.4(6) 
a2-T (ACTG) [M+H]+ 524.1 137.9 0.5(6) 
z2 or a2 (GCAT) [M+H]+ 539.1 141.6 0.4(6) 
w2 (GCT) [M+H]+ 610.1 154.9 0.6(6) 
w2 (GTC) [M+H]+ 612.1 145.5 0.4(6) 
c2 (GCT) [M+H]+ 618.1 163.1 0.5(6) 
w2 (TGAC) [M+H]+ 621.1 153.2 0.6(6) 
w2 (TGCA) [M+H]+ 621.1 156.7 0.3(6) 
w2 (CGTA) [M+H]+ 636.1 163.5 0.1(6) 
w2 (GCTA) [M+H]+ 636.1 165.1 0.4(6) 
w2 (CGAT) [M+H]+ 636.1 152 0.4(6) 
w2 (GCAT) [M+H]+ 636.1 153.7 0.2(6) 
w2 (ACTG) [M+H]+ 652.1 142.1 0.7(6) 
w2 (CTG) [M+H]+ 652.1 161.9 0.2(6) 
w2 (TCAG) [M+H]+ 661.1 158.4 0.2(6) 
TGC-G (TGC) [M+H]+ 710.2 171 1.3(6) 
GTC-G (GTC) [M+H]+ 710.2 172.5 0.2(6) 
GCT-G (GCT) [M+H]+ 710.2 176 0.9(6) 
a3-G (ATGC) [M+H]+ 716.2 171.7 0.3(6) 
a3-C (TACG) [M+H]+ 716.2 170.5 0.4(6) 
a3-G (TAGC) [M+H]+ 716.2 173.7 0.3(6) 
a3-C (ATCG) [M+H]+ 716.2 172.2 0.1(6) 
CGT-C (CGT) [M+H]+ 750.2 170.9 0.3(6) 
TCG-C (TCG) [M+H]+ 750.2 182.9 1.0(6) 
CTG-C (CTG) [M+H]+ 750.2 176.3 1.3(6) 
x3-G or w3-G-H2O (CATG) [M+H]+ 796.1 179.8 0.4(6) 
x3-G or w3-G-H2O (CTAG) [M+H]+ 796.1 181.6 0.8(6) 
c3-G or x3-C (GATC) [M+H]+ 796.1 181.8 0.3(6) 
c3-G (GTAC) [M+H]+ 796.1 179.2 0.3(6) 
w3-C (GACT) [M+H]+ 814.1 156.1 0.4(6) 
w3-G or d3-C (CATG) [M+H]+ 814.1 179.5 0.7(6) 
w3-G or d3-C (CTAG) [M+H]+ 814.1 186.4 1.3(6) 
d3-G or w3-C (GATC) [M+H]+ 814.1 182 0.3(6) 
d3-G or w3-C (GTAC) [M+H]+ 814.1 183.1 0.3(6) 
w3-G (CTGA) [M+H]+ 814.1 170.4 0.8(6) 
w3-C (GCAT) [M+H]+ 814.1 180.3 0.4(6) 
w3-C (GTCA) [M+H]+ 814.1 172.1 0.8(6) 
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w3-G (CAGT) [M+H]+ 814.3 172 0.7(6) 
CGT [M+H]+ 861.2 187.6 0.6(6) 
TCG [M+H]+ 861.2 186.1 0.4(6) 
TGC [M+H]+ 861.2 190.2 0.3(6) 
GTC [M+H]+ 861.2 187.2 0.1(6) 
GCT [M+H]+ 861.2 198.3 0.1(6) 
CTG [M+H]+ 861.2 190.5 0.2(6) 
w3 (GCTA) [M+H]+ 925.2 187.8 0.1(6) 
w3 (GACT) [M+H]+ 925.2 191.4 0.3(6) 
w3 (GATC) [M+H]+ 925.2 193.8 0.2(6) 
w3 (GTAC) [M+H]+ 925.2 197.3 0.1(6) 
w3 (GCAT) [M+H]+ 925.2 200.6 0.5(6) 
w3 (GTCA) [M+H]+ 925.2 202.3 0.2(6) 
w3 (CAGT) [M+H]+ 965.2 197.9 0.5(6) 
w3  (CGTA) [M+H]+ 965.2 193 0.6(6) 
W3 (ACTG) [M+H]+ 965.2 199.1 0.3(6) 
w3 (CTAG) [M+H]+ 965.2 191.2 0.5(6) 
w3 (CGAT) [M+H]+ 965.2 200.5 0.3(6) 
w3 (CTGA) [M+H]+ 965.2 202.6 0.3(6) 
GACT-G (GACT) [M+H]+ 1023.2 211.9 0.4(6) 
GCTA-G (GCTA) [M+H]+ 1023.2 209.2 0.8(6) 
GATC-G (GATC) [M+H]+ 1023.2 212.5 0.4(6) 
GTAC-G (GTAC) [M+H]+ 1023.2 211.4 0.5(6) 
GCAT-G (GCAT) [M+H]+ 1023.2 215 0.6(6) 
GTCA-G (GTCA) [M+H]+ 1023.2 216.3 0.7(6) 
ATGC-C (ATGC) [M+H]+ 1063.2 213.2 0.6(6) 
CAGT-C (CAGT) [M+H]+ 1063.2 214.4 0.8(6) 
CGTA-C (CGTA) [M+H]+ 1063.2 215.7 0.8(6) 
CGAT-C (CGAT) [M+H]+ 1063.2 216.3 0.7(6) 
CGTA [M+H]+ 1174.2 234 0.5(6) 
ACGT [M+H]+ 1174.3 219.3 0.3(6) 
AGTC [M+H]+ 1174.3 214.3 0.4(6) 
ATGC [M+H]+ 1174.3 232.3 0.3(6) 
CAGT [M+H]+ 1174.3 220.7 0.5(6) 
GCTA [M+H]+ 1174.3 223.1 0.7(6) 
TACG [M+H]+ 1174.3 231.9 0.5(6) 
GACT [M+H]+ 1174.3 228.6 0.2(6) 
GCTA [M+H]+ 1174.3 223.3 0.6(6) 
TCGA [M+H]+ 1174.3 217.2 0.5(6) 
ACTG  [M+H]+ 1174.3 227.4 0.4(6) 
CATG [M+H]+ 1174.3 216.7 0.4(6) 
CTAG [M+H]+ 1174.3 231.6 0.3(6) 
GATC [M+H]+ 1174.3 210.7 0.4(6) 
GTAC [M+H]+ 1174.3 224.1 0.3(6) 
TAGC [M+H]+ 1174.3 220.3 0.4(6) 
TGAC [M+H]+ 1174.3 224.3 0.4(6) 
AGCT [M+H]+ 1174.3 232.4 0.5(6) 
ATCG [M+H]+ 1174.3 226.2 0.6(6) 
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CGAT [M+H]+ 1174.3 215.4 0.4(6) 
CTGA [M+H]+ 1174.3 231.4 0.4(6) 
GCAT [M+H]+ 1174.3 229.1 0.5(6) 
TCAG [M+H]+ 1174.3 233 0.1(6) 
TGCA [M+H]+ 1174.3 230 0.3(6) 

 
 
Footnotes on table nomenclature: 
 
2. Oligonucleotide nomenclature: 
 
 G - Guanine 
 A - Adenine 
 C - Cytosine 
 T – Thymine 
 

Oligonucleotide fragmentation is specified in McLucky nomenclature.175 In 
this table, tentative fragment ion assignments are given by the 
predominant fragmentation channels observed previously. 
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Table A.3 Lipid class species and collision cross sections referred to in Chapter 
II.3 

  
Name (parent name if 
fragmented) 

species m/z (Da) Ω 
(Å2) 

σ (# of 
measurements) 

PE 34:2 [M+H]+ 716.5 206.9 2.0(29) 
PE 34:1 [M+H]+ 718.5 205.8 4.3(29) 
SM (36:1) [M+H]+ 731.6 221.1 2.0(33) 
PE 34:2  [M+Na]+ 738.5 213.5 2.1(29) 
PE 34:1  [M+Na]+ 740.5 214.7 1.5(29) 
SM (36:1)  [M+Na]+ 753.6 221.3 2.6(33) 
PC 34:2 [M+H]+ 758.6 217.4 3.2(33) 
SM (38:1) [M+H]+ 759.7 229.8 3.4(33) 
PC 34:1 [M+H]+ 760.6 219.1 2.7(33) 
PE 36:4  [M+Na]+ 762.5 214.4 1.6(29) 
PE 36:2  [M+Na]+ 766.5 220.9 2.7(29) 
PE 36:1  [M+Na]+ 768.6 221.7 4.8(29) 
PC 34:2  [M+Na]+ 780.6 218.9 2.8(33) 
SM (38:1)  [M+Na]+ 781.6 231.3 2.5(33) 
PC 34:1  [M+Na]+ 782.6 221.7 3.2(33) 
PC 36:2  [M+H]+ 786.6 222.6 2.2(33) 
SM (40:1) [M+H]+ 787.7 232.2 5.0(33) 
PE 38:5  [M+Na]+ 788.5 220.6 5.2(29) 
PC 36:1 [M+H]+ 788.6 227.4 4.3(33) 
PE 38:4  [M+Na]+ 790.5 228.1 3.6(29) 
CB (40:1)  [M+Na]+ 806.6 232.9 2.4(33) 
PC 36:2  [M+Na]+ 808.6 226.7 4.6(33) 
CB (39:1)h [M+Na]+ 808.6 236.6 2.9(33) 
PS 36:2  [M+Na]+ 810.5 217.1 5.5(29) 
PC 36:1  [M+Na]+ 810.6 228.1 2.0(33) 
PS 36:1  [M+Na]+ 812.5 222.6 2.4(29) 
SM (42:2) [M+H]+ 813.7 241.8 2.5(33) 
SM (42:1) [M+H]+ 815.7 242.1 6.3(33) 
CB (40:2)h  [M+Na]+ 820.6 236.2 5.6(33) 
CB (40:1)h  [M+Na]+ 822.6 234.6 5.3(33) 
CB (42:6)  [M+Na]+ 824.6 237.9 1.9(33) 
CB (42:2)  [M+Na]+ 832.7 238.8 1.7(33) 
PS 38:4  [M+Na]+ 834.5 225.5 2.1(29) 
CB (42:1)  [M+Na]+ 834.7 239.3 2.6(33) 
SM (42:2)  [M+Na]+ 835.7 239.4 2.8(33) 
CB (41:1)h  [M+Na]+ 836.7 240.2 3.4(33) 
SM (42:1)  [M+Na]+ 837.7 239.3 4.7(33) 
PS 38:1  [M+Na]+ 840.6 222.6 5.5(29) 
CB (42:3)h  [M+Na]+ 846.6 238.8 2.2(33) 
CB (42:2)h  [M+Na]+ 848.7 240.3 2.7(33) 
CB (44:7)  [M+Na]+ 850.6 242.8 1.9(33) 
CB (44:6)  [M+Na]+ 852.6 243.3 3.7(33) 
PS 40:6  [M+Na]+ 858.5 231.9 2.8(29) 
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CB (44:2)  [M+Na]+ 860.7 245.9 5.2(33) 
CB (44:1)  [M+Na]+ 862.7 244.3 5.5(33) 
CB (44:8)h  [M+Na]+ 864.6 245.2 2.9(33) 
CB (44:7)h  [M+Na]+ 866.6 252.2 5.1(33) 
SM (44:1)  [M+Na]+ 866.7 247.9 4.3(33) 
CB (44:2)h  [M+Na]+ 876.7 246.7 3.7(33) 
PS 42:9  [M+Na]+ 880.5 238 1.7(29) 
PS 42:8  [M+Na]+ 882.5 230.8 3.0(29) 
PC 42:1  [M+Na]+ 894.7 238.2 2.3(33) 
PC 42:0  [M+Na]+ 896.7 246.3 2.1(33) 

 
Footnotes on table nomenclature: 
 
3.  Lipid nomenclature : 
 

Glycerophospholipids: 
 

Ex. PC X:Y 
 

PC, PE, PS = abbreviated names phosphatidylcholine, 
phosphatidylethanolamine, phosphatidylserine. 

 
X = total number of carbons in fatty acid chains 
Y = total number of double bonds in fatty acid chains 

 
Sphingolipids: 

 
Ex. SM (x:y) 

 
SM, CB = abbreviated names sphingomyelin, cerebroside 

 
x = total number of carbons in the amide linked fatty acid of 
the ceramide plus eighteen carbons from the sphingosine 
backbone 
y = total number of double bonds, one trans double bond in 
the sphingosine backbone plus the number of double bonds 
in the amide linked fatty acid of the ceramide 

 
( ) = used to distinguish sphingolipid from 

glycerophospholipid nomenclature in the table 
 

Hydroxylation on Cerebrosides: 
 

Ex. CB (x:y)h 
 

h = denotes hydroxylation on the number two carbon (from 
carbonyl) of the amide linked fatty acid. 
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APPENDIX B 
 

TABULAR DATA FOR SIMULTANEOUS  
GLYCOMICS IDENTIFICATIONS 

 
 
Table B.1 Peptide signals identified from specified glycoproteins studied in this 
work. All are using MALDI unless specified otherwise. 
 
Protein m/z (Da) Species Peptide 
RNAse B  858.4 [M+H]+ YPNCAYK 
RNAse B  880.3 [M+Na]+ YPNCAYK 
RNAse B  1447.9 [M+H]+ ETGSSKYNCAYK 
RNAse B  1470.1 [M+Na]+ ETGSSKYNCAYK 
RNAse B  2168.1 [M+H]+ HIIVACEGNPYVPVHFDASV 
RNAse B  2190.0 [M+Na]+ HIIVACEGNPYVPVHFDASV 
RNAse B  2330.6 [M+Na]+ QHMDSSTSAASSSNYCNQMMK 
RNAseB (ESI) 611.4 [M+Na]+ ETAAAK 
RNAseB (ESI) 685.4 [M+Na]+ TTQANK 
RNAseB (ESI) 858.4 [M+H]+ YPNCAYK 
RNAseB (ESI) 880.4 [M+Na]+ YPNCAYK 
RNAseB (ESI) 576.9 [M+2H]+2 KETAAAKFER 
RNAseB (ESI) 724.6 [M+2H]+2 ETGSSKYPNCAYK 
RNAseB (ESI) 1084.2 [M+2H]+2 HIIVACEGNPYVPVHFDASV 
RNAseB (ESI) 1087.2 [M+2H]+2 NGQTNCYQSYSMSITDCR 
RNAseB (ESI) 1095.2 [M+H+Na]+2 HIIVACEGNPYVPVHFDASV 
RNAseB (ESI) 1098.2 [M+H+Na]+2 NGQTNCYQSYSMSITDCR 
RNAseB (ESI) 1154.6 [M+2H]+2 QHMDSSTSAASSSNYCNQMMK 
ovalbumin 888.6 [M+H]+ IKVYLPR 
ovalbumin 1190.6 [M+H]+ ADHPFLFCIK 
ovalbumin 1209.5 [M+H]+ DEDTQAMPFR 
ovalbumin 1212.6 [M+Na]+ ADHPFLFCIK 
ovalbumin 1345.7 [M+H]+ HIATNAVLFFGR 
ovalbumin 1368.0 [M+Na]+ HIATNAVLFFGR 
ovalbumin 1465.8 [M+H]+ YPILPEYLQCVK 
ovalbumin 1488.1 [M+Na]+ YPILPEYLQCVK 
ovalbumin 1555.7 [M+H]+ AFKDEDTQAMPFR 
ovalbumin 1578.1 [M+Na]+ AFKDEDTQAMPFR 
ovalbumin 1581.7 [M+H]+ LTEWTSSNVMEER 
ovalbumin 1687.8 [M+H]+ GGLEPINFQTAADQAR 
ovalbumin 1710.2 [M+Na]+ GGLEPINFQTAADQAR 
ovalbumin 1731.9 [M+H]+ HIATNAVLFFGRCVSP 
ovalbumin 1754.3 [M+Na]+ HIATNAVLFFGRCVSP 
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ovalbumin 1773.9 [M+H]+ ISQAVHAAHAEINEAGR 
ovalbumin 1796.3 [M+Na]+ ISQAVHAAHAEINEAGR 
ovalbumin 1859.0 [M+H]+ ELINSWVESQTNGIIR 
ovalbumin 1881.8 [M+Na]+ ELINSWVESQTNGIIR 
ovalbumin 1951.0 [M+H]+ LTEWTSSNVMEERKIK 
ovalbumin 2008.9 [M+H]+ EVVGSAEAGVDAASVSEEFR 
ovalbumin 2027.1 [M+H]+ YPILPEYLQCVKELYR 
ovalbumin 2227.6 [M+H]+ LYAEERYPILPEYLQCVK 
ovalbumin 2249.8 [M+H]+ ELYRGGLEPINFQTAADQAR 
ovalbumin 2281.2 [M+H]+ DILNQITKPNDVYSFSLASR 
ovalbumin 2305.6 [M+Na]+ DILNQITKPNDVYSFSLASR 
ovalbumin 2460.3 [M+H]+ NVLQPSSVDSQTAMVLVNAIVFK 
ovalbumin 2483.4 [M+Na]+ NVLQPSSVDSQTAMVLVNAIVFK 
fetuin 522.3 [M+H]+ HLPR 
fetuin 544.3 [M+H]+ LCPGR 
fetuin 545.3 [M+Na]+ HLPR 
fetuin 557.3 [M+H]+ VWPR 
fetuin 579.3 [M+Na]+ VWPR 
fetuin 653.3 [M+Na]+ GSVIQK 
fetuin 726.4 [M+H]+ IRYFK 
fetuin 748.4 [M+Na]+ IRYFK 
fetuin 767.3 [M+Na]+ QYGFCK 
fetuin 774.4 [M+H]+ AHYDLR 
fetuin 787.4 [M+H]+ EVVDPTK 
fetuin 789.5 [M+H]+ CNLLAEK 
fetuin 809.4 [M+Na]+ EVVDPTK 
fetuin 812.4 [M+Na]+ CNLLAEK 
fetuin 816.4 [M+H]+ ALGGEDVR 
fetuin 839.5 [M+H]+ IRYFKI 
fetuin 840.4 [M+Na]+ ALGGEDVR 
fetuin 1072.9 [M+H]+ IPLDPVAGYK 
fetuin 1094.5 [M+Na]+ IPLDPVAGYK 
fetuin 1155.0 [M+H]+ HTLNQIDSVK 
fetuin 1177.0 [M+Na]+ HTLNQIDSVK 
fetuin 1253.0 [M+H]+ LCPGRIRYFK 
fetuin 1270.1 [M+H]+ QDGQFSVLFTK 
fetuin 1275.0 [M+Na]+ LCPGRIRYFK 
fetuin 1291.9 [M+Na]+ QDGQFSVLFTK 
fetuin 1431.3 [M+Na]+ CDSSPDSAEDVRK 
fetuin 1474.8 [M+H]+ TPIVGQPSIPGGPVR 
fetuin 1497.3 [M+Na]+ TPIVGQPSIPGGPVR 
fetuin 1525.1 [M+Na]+ GYKHTLNQIDSVK 
fetuin 1626.8 [M+H]+ LCPDCPLLAPLNDSR 
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fetuin 1649.7 [M+Na]+ LCPDCPLLAPLNDSR 
fetuin 1692.9 [M+H]+ HTLNQIDSVKVWPR 
fetuin 1754.9 [M+H]+ KLCPDCPLLAPLNDSR 
fetuin 1778.4 [M+Na]+ KLCPDCPLLAPLNDSR 
fetuin 1920.9 [M+H]+ QQTQHAVEGDCDIHVLK 
fetuin 1943.5 [M+Na]+ QQTQHAVEGDCDIHVLK 
fetuin 2120.9 [M+H]+ HTFSGVASVESSSGEAFHVG K 
fetuin 2142.8 [M+Na]+ HTFSGVASVESSSGEAFHVG K 
fetuin 2462.3 [M+H]+ AQFVPLPVSVSVEFAVAATD CIAK 
fetuin 2485.3 [M+Na]+ AQFVPLPVSVSVEFAVAATD CIAK 
fetuin 2531.1 [M+H]+ QDGQFSVLFTKCDSSPDSAE DVR 

fetuin 3016.7 [M+H]+ 
VVHAVEVALATFNAESNGSY 
LQLVEISR 

fetuin 3402.6 [M+H]+ 
IPLDPVAGYKEPACDDPDTE 
QAALAAVDYINK 

HGP 696.3 [M+H]+ EYQTR 
HGP 777.4 [M+H]+ ENGTISR 
HGP 806.4 [M+H]+ KQEEGES 
HGP 826.7 [M+H]+ QHEKER 
HGP 961.4 [M+H]+ DKCEPLEK 
HGP 983.6 [M+Na]+ DKCEPLEK 
HGP 994.8 [M+H]+ TEDTIFLR 
HGP 1016.5 [M+Na]+ TEDTIFLR 
HGP 1091.5 [M+H]+ ERKQEEGES 
HGP 1113.0 [M+H]+ SDVVYTDWK 
HGP 1134.5 [M+Na]+ SDVVYTDWK 
HGP 1161.0 [M+H]+ WFYIASAFR 
HGP 1182.9 [M+Na]+ WFYIASAFR 
HGP 1241.0 [M+H]+ SDVVYTDWKK or CEPLEKQHEK 
HGP 1263.0 [M+Na]+ SDVVYTDWKK or CEPLEKQHEK 

HGP 1483.0 [M+H]+ 
DKCEPLEKQHEK or  
SDVVYTDWKKDK 

HGP 1579.0 [M+H]+ IPKSDVVYTDWKK 
HGP 1671.4 [M+H]+ TEDTIFLREYQTR 
HGP 1686.2 [M+H]+ EQLGEFYEALDCLR 
HGP 1708.8 [M+H]+ NWGLSVYADKPETTK 
HGP 1730.7 [M+Na]+ NWGLSVYADKPETTK 
HGP 1753.9 [M+H]+ YVGGQEHFAHLLILR 
HGP 1773.8 [M+Na]+ YVGGQEHFAHLLILR 
HGP 1789.6 [M+H]+ DTKTYMLAFDVNDEK 
HGP 1813.6 [M+Na]+ DTKTYMLAFDVNDEK 
HGP 1858.5 [M+H]+ QDQCIYNTTYLNVQR 
HGP 1882.3 [M+Na]+ QDQCIYNTTYLNVQR 
HGP 1937.7 [M+H]+ WFYIASAFRNEEYNK 
HGP 2098.5 [M+H]+ YVGGQEHFAHLLILRDTK 
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HGP 2616.3 [M+H]+ QDQCIYNTTYLNVQRENGTI SR 
HGP 2895.7 [M+H]+ SVQEIQATFFYFTPNKTEDT IFLR 
HGP 2919.7 [M+Na]+ SVQEIQATFFYFTPNKTEDT IFLR 

HGP 3135.2 [M+H]+ 
TYMLAFDVNDEKNWGLSVYA 
DKPETTK 

HGP 3158.6 [M+Na]+ 
TYMLAFDVNDEKNWGLSVYA 
DKPETTK 
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Table B.2 Carbohydrate signals identified from specified glycoproteins studied in 
this work. All are using MALDI unless specified otherwise.1 

 
Protein m/z (Da) Species Carbohydrate 
RNAse B  1257.7 [M+Na]+ Man5GlcNAc2 
RNAse B  1271.8 [M+K]+ Man5GlcNAc2 
RNAse B  1419.9 [M+Na]+ Man6GlcNAc2 
RNAse B  1433.7 [M+K]+ Man6GlcNAc2 
RNAse B  1581.9 [M+Na]+ Man7GlcNAc2 
RNAse B  1744.0 [M+Na]+ Man8GlcNAc2 
RNAse B  1905.9 [M+Na]+ Man9GlcNAc2 
RNAseB (ESI) 603.0 [M+H]+ C2,5XMan 
RNAseB (ESI) 696.9 [M+H]+ C1,5XMan 
RNAseB (ESI) 782.9 [M+H]+ 1,5AMan 
RNAseB (ESI) 798.8 [M+Na]+ 1,5XMan 
RNAseB (ESI) 918.8 [M+Na]+ C1,5XMan 
RNAseB (ESI) 934.8 [M+Na]+ C0,2XMan 
RNAseB (ESI) 1004.9 [M+Na]+ 1,4AMan 
RNAseB (ESI) 1114.7 [M+H]+ 0,2XMan 
RNAseB (ESI) 1140.9 [M+Na]+ 2,5AGlcNAc 
RNAseB (ESI) 1234.7 [M+H]+ Man5GlcNAc2 
RNAseB (ESI) 1240.8 [M+Na]+ Man5GlcNAc2-H20 
RNAseB (ESI) 1256.7 [M+Na]+ Man5GlcNAc2 
RNAseB (ESI) 1382.8 [M+Na]+ Man6GlcNAc2-2H2O 
RNAseB (ESI) 1522.3 [M+H]+ Man7GlcNAc2-2H2O 
ovalbumin 1257.8 [M+Na]+ Hex2Man3GlcNAc2 
ovalbumin 1298.9 [M+Na]+ HexHexNAcMan3GlcNAc2 
ovalbumin 1339.8 [M+Na]+ HexNAc2Man3GlcNAc2 
ovalbumin 1419.8 [M+Na]+ Hex3Man3GlcNAc2 
ovalbumin 1501.9 [M+Na]+ HexHexNAc2Man3GlcNAc2 
ovalbumin 1542.9 [M+Na]+ HexNAc3Man3GlcNAc2 
ovalbumin 1581.8 [M+Na]+ Hex4Man3GlcNAc2 
ovalbumin 1622.6 [M+Na]+ Hex3HexNAcMan3GlcNAc2 
ovalbumin 1664.0 [M+Na]+ Hex2HexNAc2Man3GlcNAc2 
ovalbumin 1704.9 [M+Na]+ HexHexNAc3Man3GlcNAc2 
ovalbumin 1745.9 [M+Na]+ HexNAc4Man3GlcNAc2 
ovalbumin 1867.0 [M+Na]+ Hex2HexNAc3Man3GlcNAc2 
ovalbumin 1908.0 [M+Na]+ HexHexNAc4Man3GlcNAc2 
ovalbumin 1949.2 [M+Na]+ HexNAc5Man3GlcNAc2 
ovalbumin 2029.0 [M+Na]+ Hex3HexNAc3Man3GlcNAc2 
ovalbumin 2070.3 [M+Na]+ Hex2HexNAc4Man3GlcNAc2 
ovalbumin 2111.5 [M+Na]+ HexHexNAc5Man3GlcNAc2 
ovalbumin 2152.7 [M+Na]+ HexNAc6Man3GlcNAc2 
ovalbumin 2273.4 [M+Na]+ Hex2HexNAc5Man3GlcNAc2 
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ovalbumin 2314.7 [M+Na]+ HexHexNAc6Man3GlcNAc2 
ovalbumin 2476.8 [M+Na]+ Hex2HexNAc6Man3GlcNAc2 
ovalbumin 2638.0 [M+Na]+ Hex3HexNAc6Man3GlcNAc2 
fetuin 1298.8 [M+Na]+ HexHexNAcMan3GlcNAc2 
fetuin 1341.7 [M+Na]+ HexNAc2Man3GlcNAc2 
fetuin 1501.8 [M+Na]+ HexHexNAc2Man3GlcNAc2 
fetuin 1664.0 [M+Na]+ Hex2HexNAc2Man3GlcNAc2 
fetuin 1867.3 [M+Na]+ Hex2HexNAc3Man3GlcNAc2 
fetuin 1911.3 [M+Na]+ HexHexNAc4Man3GlcNAc2 
fetuin 1955.1 [M+Na]+ Hex2HexNAc2NeuAcMan3GlcNAc2 
fetuin 1977.2 [M+2Na-H]+ Hex2HexNAc2NeuAcMan3GlcNAc2 
fetuin 2029.1 [M+Na]+ Hex3HexNAc3Man3GlcNAc2 
fetuin 2244.5 [M+Na]+ Hex2HexNAc2NeuAc2Man3GlcNAc2 
fetuin 2266.3 [M+2Na-H]+ Hex2HexNAc2NeuAc2Man3GlcNAc2 
fetuin 2276.6 [M+Na]+ Hex2HexNAc5Man3GlcNAc2 
fetuin 2320.6 [M+Na]+ Hex3HexNAc3NeuAcMan3GlcNAc2 
fetuin 2342.6 [M+2Na-H]+ Hex3HexNAc3NeuAcMan3GlcNAc2 
fetuin 2611.9 [M+Na]+ Hex3HexNAc3NeuAc2Man3GlcNAc2 
fetuin 2633.8 [M+2Na-H]+ Hex3HexNAc3NeuAc2Man3GlcNAc2 
fetuin 2655.8 [M+3Na-2H]+ Hex3HexNAc3NeuAc2Man3GlcNAc2 
fetuin 2903.0 [M+Na]+ Hex3HexNAc3NeuAc3Man3GlcNAc2 
fetuin 2925.0 [M+2Na-H]+ Hex3HexNAc3NeuAc3Man3GlcNAc2 
fetuin 2947.0 [M+3Na-2H]+ Hex3HexNAc3NeuAc3Man3GlcNAc2 
fetuin 2968.9 [M+4Na-3H]+ Hex3HexNAc3NeuAc3Man3GlcNAc2 
fetuin 3193.7 [M+Na]+ Hex3HexNAc3NeuAc4Man3GlcNAc2 
fetuin 3216.1 [M+2Na-H]+ Hex3HexNAc3NeuAc4Man3GlcNAc2 
fetuin 3238.1 [M+3Na-2H]+ Hex3HexNAc3NeuAc4Man3GlcNAc2 
fetuin 3260.1 [M+4Na-3H]+ Hex3HexNAc3NeuAc4Man3GlcNAc2 
fetuin 3282.1 [M+5Na-4H]+ Hex3HexNAc3NeuAc4Man3GlcNAc2 
HGP 1298.8 [M+Na]+ HexHexNAcMan3GlcNAc2 
HGP 1321.0 [M+Na]+ HexNAc2Man3GlcNAc2 
HGP 1342.6 [M+Na]+ HexNAc2Man3GlcNAc2 
HGP 1502.0 [M+Na]+ HexHexNAc2Man3GlcNAc2 
HGP 1664.0 [M+Na]+ Hex2HexNAc2Man3GlcNAc2 
HGP 1911.2 [M+Na]+ HexHexNAc4Man3GlcNAc2 
HGP 1955.2 [M+Na]+ Hex2HexNAc2NeuAcMan3GlcNAc2 
HGP 2029.3 [M+Na]+ Hex3HexNAc3Man3GlcNAc2 
HGP 2175.4 [M+Na]+ Hex3HexNAc3DeoxyhexMan3GlcNAc2 
HGP 2246.1 [M+Na]+ Hex2HexNAc2NeuAc2Man3GlcNAc2 
HGP 2268.5 [M+2Na-H]+ Hex2HexNAc2NeuAc2Man3GlcNAc2 
HGP 2290.5 [M+3Na-2H]+ Hex2HexNAc2NeuAc2Man3GlcNAc2 
HGP 2320.6 [M+Na]+ Hex3HexNAc3NeuAcMan3GlcNAc2 
HGP 2342.6 [M+2Na-H]+ Hex3HexNAc3NeuAcMan3GlcNAc2 
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HGP 2394.7 [M+Na]+ Hex2HexNAc2DeoxyhexNeuAc2Man3GlcNAc2

HGP 2466.5 [M+Na]+ Hex3HexNAc3DeoxyhexNeuAcMan3GlcNAc2 
HGP 2488.6 [M+2Na-H]+ Hex3HexNAc3DeoxyhexNeuAcMan3GlcNAc2 
HGP 2611.8 [M+Na]+ Hex3HexNAc3NeuAc2Man3GlcNAc2 
HGP 2633.8 [M+2Na-H]+ Hex3HexNAc3NeuAc2Man3GlcNAc2 
HGP 2655.8 [M+3Na-2H]+ Hex3HexNAc3NeuAc2Man3GlcNAc2 
HGP 2686.0 [M+Na]+ Hex4HexNAc4NeuAcMan3GlcNAc2 
HGP 2707.9 [M+2Na-H]+ Hex4HexNAc4NeuAcMan3GlcNAc2 
HGP 2903.4 [M+Na]+ Hex3HexNAc3NeuAc3Man3GlcNAc2 
HGP 2925.0 [M+2Na-H]+ Hex3HexNAc3NeuAc3Man3GlcNAc2 
HGP 2947.0 [M+3Na-2H]+ Hex3HexNAc3NeuAc3Man3GlcNAc2 
HGP 2969.0 [M+4Na-3H]+ Hex3HexNAc3NeuAc3Man3GlcNAc2 
HGP 3268.1 [M+Na]+ Hex4HexNAc4NeuAc3Man3GlcNAc2 
HGP 3291.1 [M+2Na-H]+ Hex4HexNAc4NeuAc3Man3GlcNAc2 
HGP 3312.1 [M+3Na-2H]+ Hex4HexNAc4NeuAc3Man3GlcNAc2 
HGP 3334.3 [M+4Na-3H]+ Hex4HexNAc4NeuAc3Man3GlcNAc2 
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Table B.3 Most likely contributors to lipid signals in human milk sample.2 

 
Experimental 

m/z (Da) 
Expected 
m/z (Da) 

Species Lipid 

703.6 703.6 [M+Na]+ TG 39:1 
 703.6 [M+H]+ SM(d18:1/16:0) 

725.6 725.6 [M+Na]+ SM(d18:1/16:0) 
 725.6 [M+Na]+ TG 41:3 

782.6 782.6 [M+Na]+ PC 34:1 
 782.6 [M+Na]+ PE 37:1 
 781.6 [M+Na]+ TG 45:3 
 781.6 [M+Na]+ SM(d18:1/20:0) 
 782.5 [M+K]+ PC o,p34:2 
 782.5 [M+K]+ PE o,p37:2 
 782.5 [M+K]+ PC 33:2 
 782.5 [M+K]+ PE 36:2 
 782.6 [M+H]+ PC 36:4 

784.7 784.6 [M+Na]+ PC 34:0 
 784.6 [M+Na]+ PE 37:0 
 783.6 [M+Na]+ TG 45:2 
 783.6 [M+Na]+ SM(d18:0/20:0) 
 784.6 [M+K]+ PC o,p34:1 
 784.6 [M+K]+ PE o,p37:1 
 784.5 [M+K]+ PC 33:1 
 784.5 [M+K]+ PE 36:1 
 784.6 [M+H]+ PC 36:3 

786.7 786.5 [M+Na]+ PC 35:6 
 786.5 [M+Na]+ PE 38:6 
 785.7 [M+Na]+ TG 45:1 
 786.6 [M+K]+ PC o,p34:0 
 786.6 [M+K]+ PE o,p37:0 
 786.5 [M+K]+ PC 33:0 
 786.5 [M+K]+ PE 36:0 
 786.6 [M+H]+ PC 36:2 

788.7 788.5 [M+Na]+ PC 35:5 
 788.5 [M+Na]+ PE 38:5 
 787.7 [M+Na]+ TG 45:0 
 788.5 [M+K]+ PC 34:6 
 788.5 [M+K]+ PE 37:6 
 787.7 [M+H]+ SM (d18:1/22:0) 
 788.6 [M+H]+ PC 36:1 

806.6 806.6 [M+Na]+ PC o,p37:3 
 806.6 [M+Na]+ PE o,p40:3 
 806.6 [M+Na]+ PE 39:3 
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 806.6 [M+Na]+ PC 36:3 
 805.6 [M+Na]+ TG 47:5 
 806.5 [M+K]+ PC o,p36:4 
 806.5 [M+K]+ PE o,p39:4 
 806.5 [M+K]+ PC 35:4 
 806.5 [M+K]+ PE 38:4 
 806.6 [M+H]+ PC 38:6 

808.7 808.6 [M+Na]+ PC o,p37:2 
 808.6 [M+Na]+ PE o,p40:2 
 808.6 [M+Na]+ PE 39:2 
 808.6 [M+Na]+ PC 36:2 
 807.6 [M+Na]+ TG 47:4 
 808.6 [M+K]+ PC o,p36:3 
 808.6 [M+K]+ PE o,p39:3 
 808.5 [M+K]+ PC 35:3 
 808.5 [M+K]+ PE 38:3 
 808.6 [M+H]+ PC 38:5 

810.7 810.6 [M+Na]+ PC o,p37:1 
 810.6 [M+Na]+ PE o,p40:1 
 810.6 [M+Na]+ PE 39:1 
 810.6 [M+Na]+ PC 36:1 
 810.5 [M+Na]+ PE 40:8 
 809.7 [M+Na]+ TG 47:3 
 809.7 [M+Na]+ SM(d18:1/22:0) 
 810.6 [M+K]+ PC o,p36:2 
 810.6 [M+K]+ PE o,p39:2 
 810.5 [M+K]+ PC 35:2 
 810.5 [M+K]+ PE 38:2 
 810.6 [M+H]+ PC 38:4 

813.8 813.7 [M+Na]+ TG 47:1 
 813.7 [M+H]+ SM(d18:1/24:1) 

815.8 815.7 [M+Na]+ TG 47:0 
 815.7 [M+H]+ SM(d18:1/24:0) 

825.8 825.7 [M+Na]+ TG 48:2 
 825.6 [M+K]+ SM(d18:1/22:0) 

827.8 827.7 [M+Na]+ TG 48:1 
 827.6 [M+K]+ SM(d18:0/22:0) 

835.7 835.7 [M+Na]+ TG 49:4 
 835.7 [M+Na]+ SM(d18:1/24:1) 

837.8 837.7 [M+Na]+ TG 49:3 
 837.7 [M+Na]+ SM(d18:1/24:0) 

851.8 851.7 [M+Na]+ TG 50:3 
 851.7 [M+Na]+ SM(d18:1/25:0) 
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 851.6 [M+K]+ SM(d18:1/24:1) 
853.8 853.7 [M+Na]+ TG 50:2 

 853.7 [M+K]+ SM(d18:0/24:1) 
 853.7 [M+K]+ SM(d18:1/24:0) 

855.8 855.7 [M+Na]+ TG 50:1 
 855.7 [M+K]+ SM(d18:0/24:0) 

879.8 879.7 [M+Na]+ TG 52:3 
 879.7 [M+K]+ SM(d18:1/26:1) 

881.8 881.8 [M+Na]+ TG 52:2 
 881.7 [M+K]+ SM(d18:1/26:0) 
 881.7 [M+K]+ SM(d18:0/26:1) 

883.8 883.8 [M+Na]+ TG 52:1 
 883.7 [M+K]+ SM(d18:0/26:0) 
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Table B.4 Identified carbohydrates in human milk sample.1 

 
m/z (Da) Species Glycan Common Name 

511.2 [M+Na]+ FucGalGlc Fucosyl-lactose 
657.2 [M+Na]+ Fuc2GalGlc Difucosyl-lactose 
673.3 [M+K]+ Fuc2GalGlc Difucosyl-lactose 
727.1 [M+Na]+ Gal2GlcGlcNAc Lacto-N-tetraose 
743.0 [M+K]+ Gal2GlcGlcNAc Lacto-N-tetraose 
802.7 [M+Na]+ FucGalGlcNeuAc Sialyl-lactose 

876.3 [M+Na]+ FucGal2GlcGlcNAc 
Lacto-N-
fucopentaose 

1022.3 [M+Na]+ Fuc2Gal2GlcGlcNAc 
Lacto-N-
difucohexaose 

1038.4 [M+K]+ Fuc2Gal2GlcGlcNAc 
Lacto-N-
difucohexaose 

1095.4 [M+Na]+ Gal3GlcGlcNAc2 Lacto-N-hexaose 
1100.1 [M+K]+ Gal3GlcGlcNAc2 Lacto-N-hexaose 

 
 
Footnotes on table nomenclature: 
 
1. Carbohydrate nomenclature: 
 
Deoxyhex – Deoxyhexose, i.e. fucose 
Fuc – Fucose 
Hex – Hexose, i.e. glucose 
Gal – Galactose 
Glc – Glucose 
HexNAc – N-acetylhexosamine, i.e. N-acetylglucosamine 
GlcNAc – N-acetylglucosamine  
GalNAc – N-acetylgalactosamine 
NeuAc – N-Acetylneuraminic acid, i.e. sialic acid 
 
All fragmentation is in Domon and Costello nomenclature.27 
 
2. Lipid nomenclature: 
 
SM - Sphingomyelin 
TG - Triacylglycerol 
PE - Phosphatidylethanolamine 
PC - Phosphatidylcholine 
 
Glycerophospholipids: 
Ex. PC X:Y 
X = total number of carbons in fatty acyl chains 
Y = total number of double bonds in fatty acyl chains 
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Sphingolipids: 
Ex. SM (X:Y/x:y) 
X = total number of carbons in the sphingosine backbone 
x = total number of carbons in the amide linked fatty acid  
Y = total number of double bonds in the spingosine backbone 
y = total number of double bonds in the amide linked fatty acid 
 
( ) = used to distinguish sphingolipid from glycerophospholipid nomenclature in 
the table 
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APPENDIX C 

 

REFERENCES OF ADAPTATION 
FOR CHAPTERS 

 
 
Chapter I: Sections adapted from Larissa S. Fenn and John A. McLean, 
“Biomolecular Structural Separations by Ion Mobility-Mass Spectrometry: New 
Prospects for Systems Biology”, Analytical and Bioanalytical Chemistry 2008, 
391, 905-909, and John A. McLean, Larissa S. Fenn, and Jeffrey R. Enders, “Ion 
mobility-mass spectrometry Imaging”, Mass Spectrometric Imaging: History, 
Fundamentals and Protocols, Methods in Molecular Biology Series, Jonathan 
V. Sweedler and Stanislav Rubakhin, eds. September 2010.  
 
Chapter II: Adapted from Larissa S. Fenn, Michal Kliman, Ablatt Mahsut, Sophie 
R. Zhao, and John A. McLean, “Characterizing Ion Mobility-Mass Spectrometry 
Conformation Space for the Analysis of Complex Biological Samples”, Analytical 
and Bioanalytical Chemistry 2009, 394, 235-244. 
 
Chapter III: Adapted from Larissa S. Fenn and John A. McLean, “Structural 
resolution of positional and structural carbohydrate isomers based on gas-phase 
ion mobility-mass spectrometry”, submitted to Physical Chemistry & Chemical 
Physics 
 
Chapter IV: Adapted from Larissa S. Fenn and John A. McLean, “Simultaneous 
glycoproteomic strategies utilizing ion mobility-mass spectrometry”, Molecular 
BioSystems 2009, 5, 1298-1302. 
 
Chapter V: Adapted from Larissa S. Fenn and John A. McLean, “Enhanced 
carbohydrate structural selectivity by boronic acid derivitization and ion mobility-
mass spectrometry analysis”, Chemical Communications, 2008, 43, 5505-5507.  
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