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CHAPTER I 

 

BACKGROUND AND RESEARCH OBJECTIVES 

 

Introduction 

In theory, pathogen-specific T cell responses are capable of recognizing virtually 

every potential antigen (1); thus, appropriately tuned T cell responses can be an 

incredibly powerful component in the defense against infection. T cell responses 

are governed by myriad cellular signals which inform them to ‘go’ or ‘stop’ or 

‘speed up’ or ‘slow down.’ In chronic human immunodeficiency virus (HIV) 

infection, T cell responses are often unable to function normally upon stimulation. 

Understanding the cellular signaling networks that influence immune responses 

in chronic infections like HIV is crucial to our broader understanding how T cell 

immunity is initially generated and subsequently maintained over time. 

 

 

The context of HIV disease and research 

HIV remains a pressing public health concern in communities large and small. 

Advances in antiretroviral therapy (ART) (2-6), findings from vaccine trials (7, 8), 

detailed genetic studies (9), mathematical models of epidemiology (10, 11), as 

well as improvements in animal model systems (12, 13) have led us closer to an 

understanding of how HIV causes disease in humans. Ultimately, these 
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advances serve to highlight not only deficiencies in immune protection against 

HIV but also in our understanding of the processes which govern immunity. 

 

In the majority of natural HIV infections, the immune response is characterized by 

systemic immune activation and progressive immune dysfunction leading to the 

eventual collapse of the immune response and acquired immunodeficiency 

syndrome (AIDS) (14). There do exist a small number of infected individuals who 

suppress viral replication to very low levels for long periods of time in the 

absence of drug therapies (15-17), and so we presume that natural immune 

control of HIV replication is possible. Despite mammoth research efforts over 

nearly 30 years, concrete correlates of immune protection in HIV, such as 

minimum antibody titers or consistent T cell responses remain elusive. In HIV 

disease, the study of natural and effective immune responses and results from 

vaccine trials may be our best hope to establish useful correlates of protection. 

 

We can note that one recent human vaccine trial had high expectations for 

success and generated immune responses, but had no impact on infection rates 

(7) and another human trial with lower expectations for success actually 

conferred a modest degree of protection from HIV infection (8). The 

immunological and molecular details of these trials are being investigated 

intensely (18, 19). Even without achieving fully protective immunity, the data from 

these vaccine trials and others will provide useful insights into HIV 

immunopathogenesis.  
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Human HIV infection has likely been under greater scrutiny than any other 

disease system in history, and this intensive focus has advanced our 

understanding of immunology, virology, and host-pathogen interactions as well 

as diverse fields in the social, economic, and interventional sciences. The impact 

of this scrutiny on academic research is undeniable, far-reaching, and mostly 

comprised of independent searchers and researchers seeking to fit small pieces 

of knowledge into a rapidly advancing picture of human health and disease (20). 

My work is a piece of this puzzle directed toward understanding the molecular 

characteristics of the HIV-specific cytotoxic T lymphocyte (CTL) response in 

natural HIV infection as well as the molecular mechanisms that contribute to T 

cell dysfunction over time. These data also may provide useful insight into the 

immunopathogenesis of HIV infection.  

 

The host – pathogen interface 

The composition of immune systems in diverse mammals is stunningly similar 

(21), speaking to the long evolutionary history behind its current iteration in 

humans. The immune systems of mice are, in large part, representative of those 

found in primates, and immunity in non-human primates is an even better 

representative of human immunology. Thus, much of the foundational knowledge 

of immune function is derived from experiments conducted in small animal 

models which are more amenable to manipulation and experimentation than 

humans (22). The immune system, at its most basic level, is rooted in the idea 

that keeping self and non-self separate confers advantage to the host organism. 
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The segregation of self is of greatest import when considering the non-self actors 

represented by microbial pathogens seeking to infect (or invade) and parasitize a 

host.  

 

Compared to the human host, HIV has an incredibly short generational time and 

a capacity for very rapid evolution (23). The host immune response, on the other 

hand, has a great diversity of cells and corresponding functions to draw upon. An 

organism’s immune system is comprised of a variety of leukocytes (white blood 

cells) resident in tissues, circulating in the periphery, and stashed away in 

replenishing organs. The constant tension between microbes seeking to 

reproduce within a host and the host immune cells seeking to maintain the host’s 

integrity by denying pathogens a suitable environment for reproduction lends 

itself to military analogies. We often portray microbes as attackers and the 

immune system as the body’s defender. In anthropomorphized evolutionary 

terms, the pathogen and host are simply pawns as each organism attempts to 

maximize its reproductive potential which sometimes comes at the expense of 

the other (24). With HIV cast as the attacker in this case, and the human immune 

system acting as defender with many small but critical units, the stage is set to 

discuss this host-pathogen pair in more detail. 
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Innate and adaptive immune responses 

Innate immune responses are comprised of cells which have the capacity to 

recognize self from non-self at a relatively low level of resolution by identifying 

pathogens on the basis of common molecular characteristics. In a normal 

immune response, the sum of these initial immune responses either eliminates a 

pathogen and clears infection or slows its growth while also working to prime the 

development of an adaptive immune response. In this way, non-specific innate 

immune responses act as a bridge from initial pathogen recognition to the 

initiation of a pathogen-specific adaptive immune response.  

 

HIV has evolved several mechanisms to subvert innate responses, which 

indicates how important these initial steps are in the development of immune 

responses to the virus (25). Innate immune responses on their own are not likely 

to protect individuals from acquisition of HIV in many, if any, cases (26), and 

some features of the innate response may even contribute to increased viral 

replication (27, 28). Infection of host cells is but one of the tactics HIV employs 

(as do all viruses) to avoid recognition by parts of the innate immune response 

and impair subsequent host immune responses. 

 

In contrast to innate immune responses which are non-specific but recognize 

invading pathogens rapidly, adaptive T cell responses are somewhat slower in 

their initiation, but they identify pathogens at a much higher level of resolution. T 

cells (leukocytes expressing an immunoglobulin T cell receptor) are activated in 
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response to specific physical and chemical signals from innate cells which have 

come in contact with a pathogen. T cells recognize pathogen-derived peptide 

antigens (epitopes), mount a defense which is diverse in function, eradicate the 

pathogen, and eventually, and ideally, contract to form memory cells which can 

reactivate more rapidly and defend more vigorously upon secondary infection or 

re-exposure to the pathogen (29). The ideal process of antigen recognition, 

expansion, clearance, and contraction is marked by dysfunction on a number of 

levels in natural HIV infection (30-33), and some of the factors which contribute 

to impaired T cell immunity form the basis for this dissertation research.  

 

Antigen presentation and epitope variability 

A critical component of the adaptive immune response is successful antigen 

presentation on the surface of cells which have been exposed to or infected by a 

pathogen. Antigen presenting cells (APC) can be professional leukocytes 

dedicated to the task of scouring the body for antigens and activating 

lymphocytes (specialized leukocytes) with specific signals or they might be non-

leukocyte, pathogen-infected cells. Often, professional APCs comprise part of the 

innate immune response itself. In the case of viral infections like HIV, antigen 

presentation takes place on the surface of HIV-infected cells, which also often 

happen to be a specific sub-set of T cells. HIV-infected cells can harbor actively 

replicating virus, and if replication is allowed to proceed, infected cells can 

produce millions of infectious viral particles per day (23). Subsequent recognition 

of HIV-infected cells by HIV-specific T cells can lead to killing of the infected cell 
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before the viral life-cycle is complete and results in suppression of viral 

replication.  

 

As a part of cellular protein synthesis, especially synthesis of viral proteins in 

infected cells, small peptide fragments are produced and are presented on the 

cell’s surface in complex with surface molecules known as major 

histocompatibility complex (MHC) proteins. MHC-I molecules are immunoglobulin 

cell-surface proteins specifically recognized by T cells expressing the CD8 co-

receptor. A binding cleft in the membrane distal domain of the MHC-I protein can 

bind small peptide epitopes from protein synthesis. Each different MHC-I 

molecule is derived from a distinct MHC-I gene and is capable of binding a set of 

protein peptide epitopes. Figure 1-1 provides a schematic diagram of the MHC-I 

molecule.  

 

Epitopes bound in MHC-I molecules are usually between 8-14 amino acids in 

length and restricted in structure and sequence such that they can make stable 

molecular interactions with amino acids lining the MHC-I binding cleft. The 

complex comprised of a peptide epitope bound within the cleft of the MHC-I 

molecule is known as a peptide-MHC-I complex (pMHC).
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Plasma  
membrane 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-1 – Class I Major Histocompatibility Complex. 3 alpha-subunits are 
shown with the B-microglobulin protein.  At the membrane distal region the 
epitope binding cleft is formed by the alpha-1 and alpha-2 subunits. Graphic 
adapted from atropos235, Wikimedia commons. 
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Human populations retain an exceptional diversity of and in MHC genes, 

especially in the MHC-I family of genes which number in the thousands of alleles 

and likely represent a necessity for the population to preserve the capacity to 

present many different peptide antigens. Every individual expresses several 

different MHC-I genes, and it is this complement of surface proteins which allows 

for a distinct set of pathogen peptides to be displayed. Genetic studies indicate 

that the expression of MHC alleles and their role in moderating T cell responses 

are critically linked to disease outcome [9, 34] which serves to reinforce the 

importance of T cell responses in the defense against HIV infection.  

 

Suppression of viral replication by T cells represents a powerful selective force in 

the evolution of viral genetic sequences which can be observed in both the global 

HIV population as well as within intra-individual HIV populations. The HIV-

reverse transcriptase protein is responsible for copying HIV RNA into viral DNA, 

and it makes many errors as it transcribes the genetic information (34, 35). Many 

of these errors result in the production of viruses which cannot replicate, 

however, random errors sometimes result in mutations that improve viral fitness 

and provide advantage under selection pressure. Recent research indicates that 

up to two thirds of viral mutations may occur as a result of T cell selection 

pressure (36, 37). Considering the potential variability of T cell epitope 

sequences in HIV, T cells with a capacity to cross-react with multiple viral 

epitopes may be valuable as the immune response seeks to recognize and 

suppress viral variants. 
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Development of T cells 

T lymphocyte progenitors are found in the bone marrow and migrate to the 

thymus for maturation through a course of proliferation, differentiation, and 

positive and negative selection events. The T cell receptor (TCR) complex on the 

cell surface is the defining structure for T lymphocytes, and in ~95% of circulating 

T cells, it is comprised of a set of dimerized alpha (α) chain and beta (β) chain 

immunoglobulin superfamily proteins. TCR α and β chain genes are rearranged 

during the maturation process to produce variable and unique protein surface 

dimers capable of recognizing pathogen epitopes. 

 

The initial expression of a TCRβ chain and the successful pairing of that 

molecule with a TCRα chain forms a functional TCR that locks the T cell into 

expression of a single TCRαβ dimer. Future activation and clonal expansion of 

this T cell will result in a genetically and structurally identical population of sister 

T cells. T cells expressing unique, clonal TCR are selected in the thymus through 

a series of deterministic events which ensure that the TCR can recognize and be 

activated by non-self antigens presented in the context of an individual’s 

expressed MHC molecules, but that these cells are not overly reactive in 

response to self-antigens. This process is repeated millions of times and 

produces a diverse population of T cells with the ability to recognize many 

different pathogen epitopes. 
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Through selection and recombination from various germline sequences during T 

cell maturation, and with the addition of random nucleotides between the 

recombined and rearranged TCR gene segments, each chain of the αβTCR has 

a similar structural backbone but also encodes a unique sequence of amino 

acids in its three hypervariable, complementarity determining region (CDR) 

loops. The first and second CDR loops are responsible for most of the TCR's 

affinity for major histocompatibility complex (MHC) molecules while the third CDR 

loop (CDR3) is primarily responsible for discrimination of different peptides bound 

by the MHC. The unique amino acid sequences within the CDR3 can be used to 

determine T cell clonality. The research reported in this dissertation focuses on 

the properties of expansions of epitope-specific clonotypes identified in this 

manner.  

 

Appropriate recognition of the host’s MHC molecules is a critical component of 

the T cell selection process and is concurrent with selection for T cells that 

recognize pMHC-I in a relatively narrow range of affinities (29, 38). The TCR 

complex found on the surface of functional T cells is comprised of several 

invariant CD3 and co-receptor molecules, that aid in the physical connection 

between the TCR and pMHC (TCR:pMHC). These molecules also coordinate 

and carry signals from the exterior of the cell across the membrane and into the 

cell where the signals are distributed into a variety of signaling pathways with 

overlapping and unique functions. Figure 1-2 provides a schematic diagram of 

the TCR molecule. 
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Figure 1-2 – The TCR antigen receptor/CD3 signaling complex in proximity 
to pMHC. Schematic diagram of the TCR dimer (red box) with invariant CD3 
signaling complex (blue boxes). Figure adapted from Paul WE, Fundamental 
Immunology, 2008. 
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T cell antigen recognition and activation 

T cell activation is an extraordinarily complex series of physical connections 

between T cell and APC. Bi-directional signal transduction events originate at the 

cell surface and cascade through each cell with broad effect, eventually initiating 

distinct transcriptional programs leading to protein production and phenotypic 

changes. The CD8 co-receptor on T cells serves to enhance and stabilize the 

physical TCR:pMHC connection and likely also serves to recruit intracellular 

signaling molecules proximal to the TCR complex on the inner surface of the 

membrane (29). 

 

Initial T cell activation has been simplified into a 'two signal' hypothesis (39, 40) 

whereby an initial signal derived from the binding of a T cell’s antigen receptor to 

its cognate pMHC complex confers specificity to the ensuing response. A 

second, TCR independent, signal is transduced through one or more 

immunoregulatory receptor molecules which license T cell activation and 

enhance function, clonal expansion, and differentiation (41). Importantly and 

recently, investigators discovered that many T cells also express inhibitory 

immunoregulatory receptors which serve to attenuate or limit cellular activation 

(42-46). Figure 1-3 provides a schematic diagram of the two signal paradigm for 

T cell activation.
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CD80/CD86

CD28

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1-3 – Productive activation of T cells requires an antigen 
independent co-stimulatory signal. Schematic diagram depicting TCR:pMHC 
contacts, signal 1 (red box), and the prototypical CD28/CD80(86) co-stimulatory 
signal 2 (blue box). Figure adapted from Paul WE, Fundamental Immunology, 
2008. 
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The TCR-CDR3 loops (especially that of the TCRβ chain) confer much of the 

specificity a particular TCR, and thus a particular T cell, has for its optimally 

preferred (cognate) peptide antigen – Signal 1 (38). In reality, a single TCR can 

recognize many peptide epitopes that are structurally similar but may differ in 

sequence known as the T cell’s capacity for cross-reactivity. The strength with 

which the TCR binds to pMHC influences T cell function and phenotype and, to a 

large degree, ability to suppress viral replication (47). 

 

A prototypical stimulatory second signal occurs between the CD28 receptor 

molecule expressed on activated T cells and CD80 (B7.1) and CD86 (B7.2) 

ligand molecules expressed on the APC surface (41, 48). Ligation of the CD28 

molecule triggers a signaling cascade that has far-reaching effects including 

intracellular calcium release. Calcium release enhances cell trafficking, 

proliferation, and differentiation programs, phosphorylation of intracellular 

signaling molecules which eventually initiate T cell specific gene production in 

support of continued function, and even cytoskeletal rearrangements which 

promote and enhance cell contact and formation of a long-lived immune 

synapse. Activation of T cells also often triggers the release of granules 

containing pre-loaded with cytokines and cytotoxic molecules necessary for 

effector function and for the killing of virally-infected cells (29). In fact, strong 

expression, production, and release of cytolytic granules has been linked to 

control of viral replication (49), and poor expression has been linked to T cell 

dysfunction in chronic HIV infection (33). 



16 

More recent advances in the understanding of immunoregulatory molecules and 

signaling networks downstream of the initial TCR signal suggest that the ‘two 

signal’ model is likely oversimplified, although it remains a useful point of 

reference (50). An early finding, which helped to launch the field of inhibitory 

receptor signaling, was that activated T cells also express the cytotoxic T 

lymphocyte antigen-4 (CTLA-4) surface receptor.  CTLA-4 is structurally related 

to CD28, expressed shortly after cellular activation, and like CD28, also binds 

CD80 and CD86 but transduces an inhibitory signal which reduces T cell 

activation and proliferation (44-46). The notion that second signals could inhibit 

antigen-specific T cell activity suggested a molecular mechanism which could 

mediate immune tolerance, autoimmunity, and immunopathology. Since the 

discovery of CTLA-4 as an inhibitory immunoregulatory receptor, several other 

molecules have been identified and characterized which have similar T cell 

regulatory properties, among them, Programmed Death-1 (PD-1) (51, 52). 

 

T cell responses in HIV infection 

HIV infection results in high viral loads and widespread immune activation, each 

of which likely contributes to a progressively dysfunctional immune response. 

Numerous studies in human and non-human primate models confirm that CD4+ 

T cells in the mucosa are almost completely depleted in early infection and are 

not repleted as fully as those in the periphery (53-55). The incurred loss of gut 

immunity allows for the translocation of microbes and microbial products such as 

lipo-polysaccharide (LPS) across the intestine which contributes to further 
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increases in immune activation.  Increased activation, in turn, exacerbates HIV 

infection as greater numbers of activated T cells serve as targets for viral 

infection and replication (56). Peak viremia of millions to tens of millions of copies 

of HIV RNA per mililitre of peripheral blood occurs within about 14 days of initial 

infection (57). Studies of the relatively benign natural infection of sooty mangabys 

with SIVsm indicate that the enhanced immune activation seen in humans may 

play an important role in the progressive acquisition of immunodeficiency not 

seen in natural hosts (58, 59). One of the few direct immune correlates of 

disease progression in humans is the positive association between the activation 

marker CD38 and viral load and its negative correlation with CD4 T cell counts 

(60, 61). 

 

T cell responses appear in vivo coincident with initial reductions in HIV viremia 

and several studies indicate that they contribute directly to suppression of viral 

replication (62-65). The extent of their contribution to initial control remains 

incompletely defined in large part due to the recent discovery that the CD4+ T 

cell compartment is decimated very early in infection and thus the cells HIV 

replicates within are gone (53-56, 66). Depletion of CD8+ T cells in SIV infection 

of macaques results in increasing viral loads, and decreases in viral loads are 

associated with the repletion of those cells (63, 64). Specific viral immune escape 

mutations are temporally associated with loss of control of viremia as the 

recognition of viral epitopes by TCR is abrogated (36, 62, 67).  
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Several additional lines of evidence suggest that epitope-specific T cell 

responses drive HIV genetic evolution to escape T cell recognition (68, 69) and 

that individuals expressing rare MHC alleles have delayed disease progression 

that is related to expression of specific MHC alleles (9, 70, 71). Much of this 

evidence supports the idea that epitope-specific CD8+ T cell responses are a 

major component to the initial control of HIV viremia in acute infection as well as 

the primary contributor to suppression of ongoing viral replication during chronic 

HIV infection. 

 

T cell dysfunction and impaired memory development in the setting of poor or 

incomplete CD4+ T cell help have been described for some time (72-74), 

although the exact mechanisms by which CD4+ T cells ‘help’ CTL are not 

precisely known (75). T cell dysfunction in the setting of chronic viral infection 

and ongoing antigen exposure and not always as a result of the loss or absence 

of CD4+ T cells has been noted in numerous infection systems including mouse 

LCMV (76-78), SIV infection in macaques (59), as well as in human HIV and 

HCV infections (33, 72, 79, 80) and represents a pressing issue in natural 

infection. 

 

Dysfunctional or exhausted T cells are partially or wholly impaired for cytokine 

production, granule release, proliferation, and survival (80-83). It remains unclear 

whether T cell dysfunction in HIV is directly attributable to the dramatic loss of 

CD4+ T cells and the help they provide or to the persistence of viral antigen 
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exposure, but both features of HIV immunopathogenesis likely play major roles. 

Progressive T cell dysfunction occurs over time in many chronic infections and 

results in a hierarchical and predictable loss of effector T cell functions (77) 

beginning with high level functions like proliferation and production of IL-2 and 

ending with full functional exhaustion and eventual deletion. The inhibitory 

receptor molecule PD-1 has recently been identified as playing a significant and 

partially reversible role in regulating T cell function in chronic infections like HIV 

(78, 84-86). 

 

Structure, function, and signaling in the PD-1 pathway  

A role for the 288-amino acid programmed death-1 (PD-1 also CD279) in 

regulating apoptosis was determined through a genetic screen of B cell 

hybridomas undergoing cell death (51). Subsequent investigations of genetically 

engineered mice without the gene encoding PD-1 (Pdcd1) (knockout mouse = 

Pdcd1-/- ) suffer from various T cell mediated autoimmune disorders and Pdcd1-/- 

on autoimmune-prone backgrounds have accelerated immunopathological 

phenotypes (87, 88). Continued study of these phenotypes revealed PD-1’s 

important role in mediating T cell function, especially in autoimmunity and T cell 

tolerance (89). Further characterization of polymorphisms in the human Pdcd1 

gene brought to light associations with rheumatoid arthritis and systemic lupus 

erythematosus (90, 91). The identification of the primary ligand molecules for PD-

1 (PD-L1 and PD-L2) and subsequent characterization of their tissue distribution 

throughout the periphery on cells within epithelial and endothelial tissues as well 
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as wide expression within the immune compartment suggests that the PD-1 

pathway is involved in both peripheral and central tolerance (92). 

 

The extracellular domain of PD-1 shares close structural similarity with other 

immunoregulatory CD28-superfamily members CD28, CTLA-4, and BTLA (B and 

T lymphocyte attenuator) and has no intrinsic enzymatic activity. Rather, it seems 

to serve as an adapter molecule receiving its extracellular signal in ligand binding 

and then functioning to recruit other signaling molecules to the intracellular side 

of the immune synapse (93). 

 

Natively monomeric, PD-1 is a 288 amino acid transmembrane immunoglobulin 

(Ig) surface protein. The extracellular, N-terminal Ig-variable-like domain binds 

with its two ligands, PD-L1 (B7H1) and PD-L2 (B7H2). PD-L1 is widely 

expressed and is thought to be the ligand most responsible for PD-1’s influence 

attenuating autoimmunity. PD-L1 knockout mice have a severe and early 

autoimmune phenotype. PD-L2 expression is limited to APC and activated 

lymphocytes and is responsible for attenuating active, antigen-specific immune 

responses (92). Interestingly, the crystal structure of PD-1 bound to PD-L1 has 

extremely high homology to the antigen binding domain of antibodies (94) 

perhaps suggesting that the receptor:ligand complex could have an independent 

affinity for a third molecule further complicating this signaling pathway. 
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PD-1 is thought to discharge its inhibitory role by recruiting phosphatase 

enzymes to the inner cell membrane during an active immune response. Putative 

phosphatases would subsequently interact with signaling proteins downstream of 

the activated TCR and dephosphorylate activated proteins, thereby dampening 

the early immune response (95). Recruitment activity has been localized to the 

~70 amino acid cytoplasmic tail, which contains two canonical signaling motifs, a 

membrane proximal immunoreceptor tyrosine-based inhibitory motif (ITIM) and 

membrane distal immunoreceptor tyrosine-based switch motif (ITSM) in an 

identical arrangement to the CD33-related sialic acid binding Ig-like lectin (Siglec) 

proteins. The inhibitory motifs may recruit protein tyrosine phosphatases Src 

homology region 2 domain-containing phosphatase-1 (SHP-1, PTPN6) and SHP-

2 (PTPN11) in addition to other unknown inhibitory factors (96). The SHP-1 and 

SHP-2 phosphatases, although likely active in PD-1 signal inhibition, have not 

been directly demonstrated in concert with PD-1 signaling, which suggests that 

PD-1 may recruit these as well as yet unidentified inhibitory molecules to the 

membrane (93). 

 

Upon the engagement of PD-1 with its ligands, various phosphatases are 

recruited to the cytoplasmic face of the membrane. While the specific 

phosphatase molecules remain unknown, inhibitory signaling pathways 

downstream of PD-1 ligation are better defined. PD-1 engagement blocks 

phosphoinositol-3-kinase, and through inhibition of PI3k, PD-1 decreases 

resistance to apoptosis and reduces the cell’s capacity to utilize glucose, two 
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global pathways which negatively influence T cell activation. PI3k induces 

expression of Bclxl, which itself is an inhibitor of apoptosis, and experimental 

evidence suggests that increased PD-1 expression is associated with increased 

cell death. Furthermore, PI3k also induces expression of Akt, which upregulates 

proteins necessary for glucose metabolism and provides experimental evidence 

linking expression of PD-1 to reduced proliferative capacity (95). Recent gene 

expression analysis in epitope-specific T cells also suggests that PD-1 ligation 

also serves to upregulate basic leucine transcription factor ATF-like (BATF) 

which inhibits AP-1 and downstream events including differentiation and 

proliferation (97). Thus, the PD-1 signaling pathway negatively influences T cell 

activation through diverse mechanisms that inhibit activation networks and 

upregulate transcription of inhibitory elements. Figure 1-4 depicts a schematic of 

PD-1 signaling inhibition. 
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Figure 1-4 – PD-1-mediated signaling inhibition. PD-1 Ligation recruits 
intracellular phosphatases and dampens TCR signaling by inhibiting PI3K activity 
which influences glucose metabolism and cell survival. Adapted from Keir et al. 
2008, Annual Review of Immunology. 
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PD-1 expression in disease 

The PD-1 pathway has been implicated as a factor exacerbating disease in 

several chronic infections including Helicobacter pylori, schistosomiasis, and 

leishmania (89, 98). Recent studies have shed more light on the manner in which 

PD-1 influences antigen-specific immune responses in chronic viral infections. 

Lymphocytic choriomeningitis virus (LCMV) infection in mice has been an 

important model system in the study of immune dysfunction in chronic infection 

for many years (99). The infection characteristics of two related LCMV strains are 

altered such that the Armstrong strain causes acute infection, which is rapidly 

cleared, and the clone 13 strain causes chronic infection that persists without 

clearance. As in other chronic infections with persistent antigen exposure, 

immune responses exhibit features consistent with immune exhaustion and 

dysfunction (76, 100). The availability of genetically similar viruses with distinct 

patterns of immunopathogenesis makes possible experiments comparing the 

same epitope-specific T cell responses in the context of acute or chronic 

infection…and so these experiments came to pass. 

 

Recently, a seminal study utilized the acute/chronic LCMV infection system to 

investigate the influence of PD-1 signaling in T cell dysfunction (78). Microarray 

analysis indicated dramatic upregulation of PD-1 in chronic LCMV infection. 

Subsequent analysis of ex vivo expression levels of PD-1 on the surface of T 

cells from acute and chronic infections confirmed that T cells in chronic infection 

expressed high levels which were sustained over time whereas PD-1 expression 
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on T cells in acute infection was downregulated within a few days after clearance 

of virus. Further experiments demonstrated that interruption of the PD-1 signaling 

pathway using antibodies to block PD-L1 was sufficient to induce modest 

reductions in viral load and restore some degree of T cell function in vitro, in vivo, 

and in the absence of CD4+ T cell help. A final interesting note from the study 

indicated that Pdcd1-/- mice could clear infection by the Armstrong strain with 

normal kinetics and immune responses but that Pdcd1-/- mice infected with the 

chronic clone 13 strain died of overwhelming immunopathology in less than 7 

days. Together, these results suggested for the first time that immunomodulation 

of the PD-1 pathway could lead to improved outcomes in chronic viral infection 

and that the inhibitory signals from the PD-1 pathway likely also play a role in 

limiting immunopathological damage from an overactive immune response in 

situations of persistent antigen exposure. 

 

Following initial characterizations in LCMV, several groups showed that PD-1 

expression was upregulated on T cells in various chronic viral infections in 

humans, including Hepatitis B (101)and C (102) (HBV and HCV), 

cytomegalovirus (CMV) (103), HIV (84-86), and simian immunodeficiency virus 

(SIV) infection (104). These groups noted that in ART-naïve individuals, PD-1 

expression correlates positively with viral load and negatively with CD4 counts, 

both of which are standards for measuring disease progression. Further 

experiments indicated positive correlations between PD-1 expression and 

apoptosis and inverse correlations between PD-1 expression and proliferation 
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potential. Importantly, and as shown previously in the mouse model, interrupting 

the PD-1 signaling pathway alleviated T cell dysfunction, reduced apoptosis, and 

increased proliferation and cytokine production in epitope-specific T cells from 

humans and non-human primates. 

 

Recent evidence implicates the exposure of epitope-specific T cells to their 

cognate antigen to increased PD-1 expression (105, 106) and suggests that the 

PD-1 signaling pathway may be an intrinsic and protective mechanism that works 

to reduce immunopathology in infections with ongoing immune activation and 

exposure. The expression patterns of PD-1 on clonotypes within epitope-specific 

responses were unknown and unexplored prior to this dissertation work. 

 

The immunomodulatory role of Interleukin-7 and its surface receptor  

Direct cell contact between receptor and ligand molecules on the surface of 

APCs and T cells is but one method of cell signaling which can influence T cell 

responses, development, and maintenance. Cytokines are immunomodulatory 

signaling proteins that play a central role in lymphocyte development, 

proliferation, survival, and function (107). These (mostly) unbound signaling 

molecules are produced and released by numerous cell types (many of them 

leukocytes), and they can have local paracrine or autocrine (108) effects as well 

as systemic pyrogenic effects (109). Mutations in cytokine genes or the genes for 

their receptors have wide-ranging deleterious effects on leukocyte and 

lymphocyte development and function. Many cytokines share common structural 
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motifs and thus receptor molecules for structurally related cytokines are similar in 

their own structures (110). The γc family cytokines derive their name from the 

fact that the cell surface receptors for each molecule share a common element in 

their γc receptor subunit. This family of cytokines includes interleukin-7 (IL-7), 

which is known to transmit essential and potent signals promoting naïve T cell 

development and effector T cell survival and development of memory (111).  

 

While evidence is clear that IL-7 signals influence immature lymphocyte 

development, we also know that IL-7 has an additional role in regulating T cell 

homeostasis in naïve and effector populations, even in the absence of antigen 

exposure (82, 110). Stromal and epithelial cells in the bone marrow and thymus 

and fibroblasts in the secondary lymphatics constitutively produce and secrete IL-

7. Investigations of IL-7 signaling and its influence on cell survival have been 

approached by assessing the distribution of the IL-7-specific receptor (CD127) on 

different cell populations (112). 

 

The IL-7 receptor is comprised of the common y-chain (CD132) and the IL-7 

receptor alpha subunit (CD127) (110). The shared y-chain receptor subunit 

invokes the recruitment of the Jak-Stat and PI3k pathways for cellular activation. 

The unique CD127 subunit, on the other hand, seems most responsible for the 

upregulation of anti-apoptosis molecules such as B cell lymphoma-2 (Bcl-2) and 

for the downregulation of pro-apoptotic factors like Bcl-2 associated X protein 

(BAX). Reduced cell surface expression of CD127 and susceptibility to apoptosis 
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has been noted in sub-populations of recently activated and short-lived effector T 

cells.  

 

Blattman et. al. studied epitope-specific responses in LCMV in the context of viral 

mutation, epitope escape, and subsequent reduction of exposure to cognate 

epitopes. They describe an inverse relationship between the expression of 

CD127 and PD-1 on epitope-specific T cells after the appearance of epitope 

escape variants and concurrent reduction in antigen exposure (106). My work 

demonstrates a similar pattern of CD127 and PD-1 expression on dominant and 

sub-dominant epitope-specific clonotypes in chronic HIV infection. 

 

Polyclonal epitope-specific T cell responses 

Clonal selection theory is a fundamental concept in immunobiology (113) and 

informs the existence of epitope-specific CTL populations that express 

genetically and structurally unique antigen receptors (T cell clonotypes) but which 

recognize the same pMHC molecule. T cells with broad reactivity for many 

peptide antigens are generated in the thymus, and it is thought that the human 

body has as many as a hundred or so T cells that recognize every peptide 

antigen potentially bound by that individual’s MHC molecules (1).  

 

Upon viral infection, circulating T cell clonotypes with a range of antigen affinities 

may each recognize, receive co-stimulation, and clonally expand in response to 

the same HIV peptide epitope (114). Concurrent expansion of these clonotypes 
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yields an eventual polyclonal population, which can be defined by its recognition 

of a single viral peptide epitope and comprises an epitope-specific population. 

Epitope-specific populations include at least one clonotype and often contain 

many clonotypes. Distinct T cell populations within epitope-specific responses 

can be identified by their usage of a finite number of TCRβ elements and 

corresponding genetic analysis of the TCRβ can establish clonality by confirming 

the expression of a unique CDR3 (115, 116). Statistical models can quantify the 

diversity of the epitope-specific TCR repertoire in terms of clonotype number and 

frequency (117) as well as in terms of the variety in amino acid sequences within 

TCRβ-CDR3 (118, 119). Research from different groups and studying different 

viral infections supports the notion that clonotypic and repertoire diversity plays a 

role in improved recognition of viral epitope variants (120, 121). 

 

T cell clonotypes – fundamental units of the T cell response 

Cytotoxic T lymphocytes are defined by their antigen receptors and their 

interaction with pMHC molecules. As such, T cell clonotypes form the 

fundamental units of T cell immunity (47). Daughter/sister cells within a 

clonotypic population have structurally identical T cell receptors. In this way, a 

polyclonal epitope-specific T cell response contains clonotypic populations that 

differ in their avidity for antigen and thus their capacity for functional responses 

and in their cell surface phenotypes. A significant body of literature describes 

HIV-epitope-specific T cell populations (84, 112, 122-126), and in this work, 

epitope-specific responses are often treated as homogenous populations of T 
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cells. However, a relatively small amount of research has been conducted to 

establish the important relationships between clonotypic recognition of epitope 

antigens, their function and phenotype, maintenance of the repertoire, or the 

manner in which individual clonotypic constituents might influence the epitope-

specific response (127-133). The data presented in this dissertation defines 

some of the relationships which mediate the phenotype and function of epitope-

specific clonotypes. 

 

Identifying epitope-specific T cell Clonotypes 

In the relatively recent past, multiple discoveries in monoclonal antibodies have 

been combined and applied using various technologies like flow cytometry to 

revolutionize the way immunobiology research is conducted (20, 134). 

Lymphocyte populations express patterns of surface proteins that are consistent 

and exclusive to different, distinct cell-type lineages these surface protein 

expression patterns define. The distribution of many of these populations is 

perturbed in HIV+ individuals compared to HIV- individuals (30, 135, 136). 

Monoclonal antibodies have been developed which bind specifically to various 

cell surface proteins. The conjugation of these monoclonal antibodies to 

fluorescent molecules allows immunologists to label cells with multiple ‘colors’ 

that can be used to define their lineage and cell surface phenotype. Multi-

parameter flow cytometry is used to analyze the presence or expression of many 

different fluorescent labels on single cells. In this way, peripheral blood cells from 

individuals can be labeled with a variety of fluorescently-tagged antibodies and 
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populations and sub-populations of their cells can be identified and compared to 

one another. 

 

Epitope-specific T cells in peripheral circulation can be positively identified 

through the use of MHC-I tetramer reagents (137). ‘Tetramers’ are comprised of 

4 MHC-I molecules, each of which have been loaded with a peptide and bound to 

one another and to a fluorescently-labeled molecule. By incubating T cells 

specific for the pMHC complex with cognate tetramers, epitope-specific cells can 

be fluorescently labeled and analyzed using flow cytometry. Epitope-specific 

populations can then be isolated using flow assisted cell sorting (FACS) or their 

sub-populations can be analyzed via multi-parameter flow cytometry (138). 

 

Individual T cell clonotypes within an epitope-specific response can be 

determined using several methods. Sorting epitope-specific populations and 

sequencing and analyzing the TCRβ chain CDR3 region is one method (127). A 

second method uses monoclonal antibodies to evaluate TRBV usage, but this 

cannot conclusively determine clonality within a TRBV population. Using flow 

cytometry and antibodies to identify TRBV usage as presented in the following 

research, clonotypes identified through genetic analyses can be confirmed and 

their surface phenotypes can be measured. 
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The ideal vaccine 

Successful vaccines stimulate acute immune responses that then contract into 

memory responses and subsequently protect the host from infection or 

pathogenesis. The discovery of adjuvants allowed enhancement of the immune 

response to many vaccine antigens and resulted in increased vaccine 

effectiveness (139). For many years, adjuvants have improved immune 

responses to vaccination with broad action and without a tremendous degree of 

specificity. Now, with a deeper understanding of the signaling networks which 

govern immune responses, the notion that vaccines and adjuvants could be 

designed to stimulate immune responses in a disease- or pathology-specific 

manner has finally come within reach.  

 

An optimal vaccine for HIV would generate an immune response that completely 

blocks infection by providing sterilizing cellular and humoral immunity. While 

these features might be ideal, vaccines that manage to provide sub-optimal 

responses and protection from pathology could also be beneficial in the absence 

of sterilizing immunity. Controlling infection by reducing symptoms to sub-clinical 

levels or decreasing viral replication and reducing subsequent transmission 

would both be favorable outcomes (140). Future vaccines may incorporate 

features to inhibit the PD-1 signaling network on epitope-specific T cells or 

enhance memory development or homeostatic proliferation stimulating the IL-7 

receptor molecule in order to directly influence specific cell types.  
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Thus far, HIV vaccines in humans have not elicited strong, durable immune 

responses that provide lasing immunity (7, 8, 18, 19). With few exceptions, 

experimental vaccines have also not shown efficacy in reducing viral loads to a 

great enough extent to influence disease outcomes. Research in SIV vaccination 

systems shows promise for approaches using electroporation of plasmid DNA 

encoding viral proteins (141). Recent investigations using T cell stimulatory 

cytokines to alleviate immune inhibition in concert with DNA or protein 

vaccination also provide encouraging results (142).  

 

Experimental evidence in mouse model systems of chronic LCMV infection 

suggest that interruption of the PD-1 signaling pathway can alleviate immune 

impairment and improve epitope-specific proliferation and cytokine production 

(143, 144). Subsequent vaccination protocols using PD-1 in the SIV infection 

macaque model provide similar results more relevant to HIV infection in humans 

(145). Strategies that incorporate PD-1 blockade into human papilloma virus 

(HPV) vaccination also show promise for enhancing T cell responses against 

HPV-mediated tumor cells (146). These successful experimental vaccination 

protocols, including concurrent stimulation of immune responses alongside 

interruption of immune inhibitory signaling, demonstrate that immune responses 

can be tuned to be more specific, robust, and durable than with stimulatory 

vaccination alone. My research will help inform the immunological effects these 

strategies may impart on the epitope-specific TCR repertoire. 
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Research Objectives 

My research defines the relationships between clonotypic dominance in the 

epitope-specific TCR repertoire and surface and functional phenotypes on 

epitope-specific clonotypes. These data provide insight into the immunological 

consequences of constant antigen exposure in chronic HIV infection and the 

influence of antiretroviral therapy and subsequent antigen reduction on clonotypic 

repertoire diversity and phenotype.  

 

In Chapter II, my work defines the relationship between high expression of the 

inhibitory marker PD-1 and low expression of the memory marker CD127 on 

dominant clonotypes within the epitope-specific TCR repertoire during chronic 

HIV infection. Furthermore, this work indicates that PD-1 expression on individual 

clonotypes may be influenced by avidity for cognate antigen, but that TCR avidity 

is not a singular mediator of clonotypic dominance within the epitope-specific 

TCR repertoire. Finally, this work shows that sub-dominant clonotypes retain 

higher levels of function compared to dominant clonotypes and suggests that 

they may play a role in the suppression of viral epitope variants. 

 

My work described in Chapter III represents data derived from longitudinal 

studies of TCR repertoire diversity and clonotypic phenotype within epitope-

specific T cell responses before and after the initiation of ART. These data clearly 

indicate that immune responses undergo several levels of remodeling after 

initiation of ART; the frequency of epitope-specific responses is reduced, memory 
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distribution is altered on T cell populations, and activation levels are reduced 

although the clonotypic hierarchy remains intact in most epitope-specific 

responses studied. Additional analysis of TCR repertoire diversity indicates a 

distinct pattern of TCR repertoire narrowing after initiation of ART. Despite 

unambiguous immunological changes after initiation of ART, pre-ART PD-1 

expression patterns on dominant and sub-dominant clonotypes remain durable 

even after the initiation of ART.  Taken together, these data suggest that overall 

maintenance of repertoire diversity may depend on high levels of generalized 

antigen exposure, but that epitope-specific T cells may still remain activated even 

during viral suppression as a result of low level antigen sensing. 

 

The prospect of enhancing the quantity and quality of immune responses to HIV 

through manipulation of immunomodulatory signaling pathways is a tantalizing 

goal. My findings better clarify the immunomodulatory networks which influence 

the generation, function, and survival of epitope-specific clonotypic T cells in 

chronic infection. As a result, this work provides insight into the potential effects 

of immunomodulatory therapies on the epitope-specific T cell receptor repertoire. 
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CHAPTER II 

 

DOMINANT CLONOTYPES WITHIN HIV-SPECIFIC T CELL RESPONSES ARE 

PD-1HI AND CD127LOW AND DISPLAY REDUCED VARIANT CROSS-

REACTIVITY 

 

Abstract 

 

HIV-epitope-specific T cell responses are often comprised of clonotypic 

expansions with distinct functional properties. In HIV+ individuals, we measured 

PD-1 and IL-7Rα expression, MHC-I tetramer binding, cytokine production, and 

proliferation profiles of dominant and sub-dominant T cell receptor clonotypes to 

evaluate the relationship between the composition of the HIV-specific T cell 

repertoire and clonotypic phenotype and function. Dominant clonotypes are 

characterized by higher PD-1 expression and lower C127 expression compared 

to sub-dominant clonotypes and TCR avidity positively correlates with PD-1 

expression. At low peptide concentrations, dominant clonotypes fail to survive in 

culture. In response to stimulation with peptides representing variant epitopes, 

sub-dominant clonotypes produce higher relative levels of cytokines and display 

greater capacity for cross-recognition compared to dominant clonotypes. These 

data indicate that dominant clonotypes within HIV-specific T cell responses 

display a phenotype consistent with ongoing exposure to cognate viral epitopes 

and suggest that cross-reactive, sub-dominant clonotypes may retain greater 
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capacity to suppress replication of viral variants as well as to survive in the 

absence of strong antigenic signaling. 

 

Introduction 

 

Evidence indicates that CD8+ T cell responses are a critical component of the 

natural immune responses to HIV (63, 64, 68). Epitope-specific CD8+ T cell 

responses appear to be impaired as a result of unique conditions present in HIV 

infection, namely constant antigen exposure (147) and overwhelming immune 

activation leading to exhaustion and eventual deletion of HIV-specific T cell 

responses (14). Our understanding of the mechanisms that underlie impaired T 

cell responses and their contributions to viral control remains incomplete. 

 

Reversible T cell exhaustion has been associated with the expression of high 

levels of Programmed Death-1 receptor (PD-1), especially on epitope-specific 

CD8+ T cells (78). PD-1 is a surface-expressed transmembrane signaling protein 

with extracellular homology to CD28 superfamily molecules and is upregulated 

on activated lymphocytes (89). The role of PD-1 in the development of functional 

T cell memory and resolution of acute infections is increasingly well defined using 

model systems such as lymphocytic choriomeningitis virus (LCMV) and in human 

infections such as human hepatitis B (78, 101). In the setting of chronic viral 

infection, however, the immunomodulatory role of PD-1 signaling becomes more 
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complex as the necessity to limit immunopathology can also dampen effective T 

cell responses that might contribute to viral clearance (31, 143). 

 

In HIV infection, PD-1 expression on T cell populations correlates positively with 

viral load (84) and likely contributes to increased sensitivity to apoptosis (85, 

148). PD-1 signaling blockade has been shown to restore some T cell function in 

LCMV infection as well as in vitro with T cells from HIV+ individuals (78, 86). A 

reduction in the expression of cytokine receptor molecules such as IL-7Rα 

(CD127) on epitope-specific T cells may also play an important role in the natural 

control of HIV (106, 149). Reduced T cell capacity to respond to homeostatic 

cytokines such as IL-7 represents a point of dysregulation in the maintenance of 

functional, long-lived antigen-specific memory (112, 150).  

 

Both quantitative and qualitative features of T cell responses are likely important 

for control of chronic viremia. The frequency of T cells that produce cytokine or 

proliferate in response to activation by cognate antigen is an important measure 

of the magnitude of the immune response (49, 122, 151), but qualitative aspects 

of CD8+ T cell responses such as the composition of the HIV-specific T cell 

receptor repertoire have been shown to be important in chronic viral infections 

such as hepatitis C virus infection (120) and HIV-1 infection (127). Activation or 

antigen exposure profiles of T cell subsets (80, 106), differentiation (67), or 

clonotypic antigen sensitivity (47) continue to provide important insight into 

potential mechanisms governing the generation and maintenance of optimal T 
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cell responses to chronic viral infections. Our previous work suggests that 

individual T cell clonotypes within HIV-epitope-specific responses are capable of 

responding independently to changes in viral load (127) and recognizing 

circulating viral variants (129).  

 

The relationship between the composition of the clonotypic T cell receptor 

repertoire and clonotypic phenotype or function has not been clearly defined in 

model systems or natural infections. We found that dominant clonotypes express 

relatively higher levels of PD-1 and relatively lower levels of CD127 in 

comparison to corresponding sub-dominant clonotypes. PD-1 expression 

correlated strongly with the ability of clonotypes to bind MHC-I tetramers, and 

while dominant and sub-dominant clonotypes were able to respond to stimulation 

with HIV peptide epitopes matching circulating sequence, sub-dominant 

clonotypes were more cross-reactive in response to common variant peptide 

epitopes. Additionally, dominant clonotypes displayed an impaired ability to 

survive in culture at low levels of antigen stimulation. These data provide insight 

into the relationships between the structural composition of HIV-specific CD8+ T 

cell responses, the relative antigen exposure of clonotypes within the epitope-

specific TCR repertoire, and the functional capacity of these clonotypes in 

ongoing HIV infection. 
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Materials and Methods 

 

Individual Cohort and HLA-typing. This cohort was organized within the 

Vanderbilt-Meharry CFAR and was comprised of anti-retroviral therapy naïve 

patients recruited through the Comprehensive Care Center (Nashville, TN). All 

individuals were typed for HLA Class I by DCI Tissue Typing Laboratory 

(Nashville, TN). This study was approved by the Institutional Review Board at 

Vanderbilt University, and all participating individuals provided written informed 

consent.  

Flow cytometric evaluation of lymphocyte surface molecules. Lymphocyte 

subsets were evaluated using fresh and cryopreserved peripheral blood 

mononuclear cells and a combination of monoclonal antibodies. CD3-AlexaFluor-

700 (BD), CD4-PE-Texas Red (Caltag), CD8-Pacific Orange (Caltag), CD14-

PerCP (BD), CD19-PerCP (BD), CD56-PE-Cy5 (BD), Viaprobe (BD), CD127-

biotin (eBioScience), Streptavidin-APC-Cy7 (BD), PD-1-pure (Mouse IgG1, clone 

EH12:2H7, BioLegend), goat-anti-mouse IgG-Pacific Blue (Molecular Probes), 

anti-TRBV-PE/FITC (Beckman-Coulter) and MHC-I tetramers-PE/APC. MHC-I 

tetramers: HLA-B*08-EI8 (EIYKRWII), HLA-B*08-FL8 (FLKEKGGL), HLA-B*15-

GY9 (GLNKIVRMY), HLA-B*15-TY11 (TQGYFPDWQNY), HLA-B*27-KK10 

(KRWIILGLNK) – synthesized by the NIH Tetramer Core Facility, Atlanta, GA. 

HLA-B*57-KF11 (KAFSPEVIPMF), HLA-B*57-IW9 (ISPRTLNAW), and HLA-

B*57-QW9 (QASQEVKNW) – synthesized by Beckman-Coulter.  
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Cells were labeled with MHC-I tetramers at 21ºC for 10 minutes. Anti-PD-1 

antibody was added to the suspension and incubated for a further 20 minutes. 

Cells were washed and labeled in separate steps with intervening washes with 

pacific blue conjugated goat anti-mouse antibody, normal goat Ig blocking 

antibody, anti-CD127-biotin, streptavidin APC-Cy7, and the remaining directly 

conjugated surface antibodies listed above. Gating strategy shown in Figure 2-1. 

Identification of dominant and sub-dominant clonotypes and TRBV 

populations. The phenotype of T cell clonotypes was determined by a 

combination of labeling with tetramer, anti-TRBV antibodies, and antibodies to 

cell surface markers. Single TCR clonotypes identified by sequencing, and which 

comprised more than 50% of the epitope-specific population were considered 

dominant. In TCR repertoires where no clonotype comprised more than 50% of 

the total, the largest population was considered dominant, and the remaining 

populations were considered sub-dominant. Monoclonal antibodies are not 

available to label TRBV7, so in the five cases where the dominant TRBV7 

clonotype was not directly labeled, TCR beta chain sequence data informed the 

identification of sub-dominant populations that were directly labeled. In these 

cases the unlabeled fraction of tetramer+ cells represented the dominant 

clonotypes. We determined TRBV repertoires for 11 epitopes in this study by 

using TRBV antibody panels (IOTest Beta Mark, TCR V-beta repertoire kit, 

Beckman Coulter). Dominant TRBV populations were definitively labeled within 

these responses, and sub-dominant populations were defined as 

tetramer+/TRBV-. 
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cDNA synthesis and TCR sequencing. Epitope-specific T cells were labeled 

with appropriate MHC-I tetramers and sorted by FACS to >95% purity on a 

FACSAria cell sorter (BD). RNA was extracted from sorted cells and anchored 

RT-PCR was performed with total RNA as previously described (128). PCR 

product was cloned into E.coli and sequenced on an ABI 3130xl automated 

sequencer (PE Applied Biosystems, Norwalk, CT). After editing and alignment 

using Sequencher (Gene Codes Corp., Ann Arbor, MI), TRBV/TRBJ usage was 

determined using the human TCR gene database (http://imgt.cines.fr/). T cell 

receptor variable region classification system of the ImMunoGeneTics database 

(IMGT) is used throughout this manuscript. 

Sequencing of autologous virus. Population viral sequence was obtained 

using viral RNA isolated from plasma (Qiagen) and reverse transcribed in one 

step (Qiagen) using HIV-Gag and HIV-Nef specific primers. DNA was amplified 

by PCR with the following primers: 5gag5–28 5’-GCG AGA GCG TCA GTA TTA 

AGC G-3’, 3gag1668–1693 5’-TCT GAG GGA AGC TAA AGG ATA CAG TT-3’, 

3gag1398-1420 5’-AAA ATT AGC CTG TCT CTC CCC AT-3’, 5nef1-19 5’-ATG 

GGT GGC AAG TGG TCA A-3’, 3nef691-708 5’-TGC TAG GCG GCT GTC AAA-

3’. Resulting PCR fragments were gel purified (Qiagen) and sequenced bi-

directionally on an ABI 3130xl automated sequencer using the same primers. 

Sequencher (Gene Codes) was used to edit and align sequences and 

identification was made using the Los Alamos HIV Sequence Database 

(http://www.hiv.lanl.gov/). 
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Intracellular Cytokine Staining. Intracellular cytokine staining assays were 

performed using 10ug/ml of indicated peptide, anti-CD28 and anti-CD49d MAbs 

(1 ug/mL each; BD) and GolgiPlug at 1ug/mL (BD). Cells were stimulated for 6 

hours and labeled with surface and intracellular antibodies. Surface staining 

panel: CD3 (AlexaFluor-700, BD), CD4 (PE-Texas Red, Caltag), CD8 (Pacific 

Blue, BD), CD14/CD19/CD56 (PerCP, BD), Fixable Live-Dead Aqua (Invitrogen). 

Intracellular cytokine production: IFN-γ (PE-Cy7, BD) and TNF-α (APC, BD). 

Positive (Staphylococcus enterotoxin B) and negative (unstimulated/media) 

controls were included for each individual. Reported cytokine production was 

subtracted from negative control values. Epitope variant panels: B*08-FL8 

[Consensus-FLKEKGGL, Variant 1-FLrEKGGL, Variant 2-FLKdKGGL], B*08-EI8 

[Consensus-EIYKRWII, Variant 1-dIYKRWII, Variant 2-EIYKRWIv], B*27-KK10 

[Consensus-KRWIILGLNK, Variant 1-KRWIImGLNK, Variant 2-KRWIvLGLNK], 

B*57-QW9 [Consensus-QASQEVKNW, Variant 1-QAtQdVKNW, Variant 2-

QAtQEVKNW] (peptide synthesis – Genemed, CA). 

Tetramer binding analysis. PBMC were washed in FACS buffer, resuspended, 

aliquoted, and labeled for 30 minutes at RT with tetramer (APC-conjugated) at 

the following dilutions from manufactured stock – 1:25, 1:50, 1:100, 1:200, 1:400 

final concentrations (~16uM to 4uM). With 5 minutes remaining for tetramer 

incubation, Live/Dead Fixable Aqua Dead Cell stain (Invitrogen) was added to 

each aliquot of PBMC. At 30 minutes, labeled cells were immediately washed 

with PBS and resuspended. Cells were fixed with 2% paraformaldehyde and 

washed in PBS. Fixed PBMC were first labeled with anti-TRBV-FITC conjugated 
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antibodies and subsequently with antibodies to surface markers CD3, CD4, CD8, 

and CD14/19/56 (fluorescent antibodies and manufacturers as detailed above) 

for 30 minutes at room temperature. Surface antibodies were fixed to cells a final 

time and analyzed immediately. 

In vitro culture and proliferation. PBMC were labeled with CFSE and cultured 

for 4 days in the presence or absence of peptide epitopes at the indicated 

concentrations. Cell culture media was supplemented with 1U/ml IL-2. Epitope-

specific and clonotypic proliferation was assessed by co-staining live cells with 

tetramer and anti-TRBV antibodies and measuring CFSE dilution. 

Statistical analysis. Comparisons between whole CD4+, CD8+, and epitope-

specific T cell populations were performed using Mann-Whitney tests. All paired 

comparisons were made using Wilcoxon matched pairs test. Fisher’s exact test 

for proportions was used to determine significance between PD-1 and CD127 

expression on dominant and sub-dominant populations. Spearman rank 

correlation was used to test for the relationship between PD-1 expression and 

avidity for tetramer. All statistics were calculated using GraphPad Prism, v5.01. 

Flow cytometry. All samples were sorted and data acquired on a FACSAria 

(BD) cell sorter. Data was analyzed using FACSDiva (BD) software. Plots shown 

using log10 fluorescence; histograms are log10 fluorescence vs. count. 
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Results 

 

Epitope-specific T cell populations express high levels of PD-1 

We evaluated the degree of PD-1 expression on total CD4+, CD8+, and HIV-

specific CD8+ T cell populations in 22 chronic HIV+ patients off anti-retroviral 

therapy (Figure 2-2). These individuals had varying levels of disease progression 

(Table 2-1, median VL=2474 copies/ml, range=<50-382,000; median CD4=688, 

range=132-1374). PD-1 expression (Mean fluorescence intensity, MFI) was 

measured on CD4+, CD8+, and 35 CD8+, HIV-epitope-specific T cell populations 

identified by MHC class I tetramers (Table 2-1, mean 1.6 epitopes/individual, 

range 1-5 epitopes/individual). As has been observed by other groups (84, 85), 

we found PD-1 expression to be higher on HIV-specific CD8+ T cell populations 

when compared to total CD4+ (p=0.007, mean 2.4 fold higher) and CD8+ 

(p=0.0003, mean 1.9 fold higher) T cell populations (Figure 2-2A and 2-2B).  

 

PD-1 expression on CD4+, CD8+, and HIV-specific CD8+ T cell populations was 

often bi-modal, and we were able to measure the percentage of PD-1high cells 

within a given T cell population. Tetramer+, HIV-specific populations have a 

larger fraction of PD-1high cells than CD4+ or parent CD8+ T cell populations 

(p=0.0001 and p<0.0001, Figure 2-2A and 2-2C). Despite overall high levels of 

PD-1 expression on epitope-specific T cells, we observed PD-1 expression as 

low as 40% on some epitope-specific populations, which may represent a subset 

of epitope-specific cells capable of greater function than PD-1high populations.  
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Figure 2-2 – PD-1 is highly expressed in a bi-modal pattern on epitope-
specific T cells in HIV+ individuals. Histograms showing PD-1 expression on T 
cell populations in a single individual, PD-1 MFI and percentage PD-1high values 
are provided in the corner of each histogram, CD8+ (top panel, purple), CD4+ 
(top panel, blue), and HIV-specific, tetramer+ (bottom panel, orange), A. PD-1 
MFI is higher on tetramer+ cells compared to CD4+ T cells (p=.007) and CD8+ T 
cells (p=.0003), B. Percentage of tetramer+ PD-1high cells is higher than the 
percentage CD4+ PD-1high T cells (p=.0001) and CD8+ PD-1high T cells (p<.0001), 
C. N=35 epitope-specific responses in 22 HIV+ individuals.
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Table 2-1 – PD-1 Study Cohort Demographic Data 
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10001** 2 378 1539 32030 M W 32 2 2, 2, 14, 15 

10002†** 3 664 1199 94 M W 43 21 3, 31, 27, 57 

10004†** 2 203 1091 50 M W 59 21 3, 30, 7, 57 

10015** 1 717 1462 98778 M W 42 3 1, 3, 8, 52 

10022†** 2 724 1254 292 M W 36 16 1, 31, 8, 27 

10027†** 5 775 1300 1893 M W 66 14 1, 2, 8, 57 

10035 1 429 663 2679 M AA 52 21 3, 33, 27, 44 

10038 1 510 646 1888 M W 48  9 2, 2, 27, 44 

10040 2 1161 972 50 F W 49 14 1, 31, 44, 57 

10060 1 688 1042 722 M AA 30 4 1, 33, 42, 57 

10069 1 1032 2005 2474 M AA 45 4 1, 30, 53, 57 

10070** 1 782 391 7115 F AA 28 10 23, 74, 57, 58 

10071† 2 743 414 50 F AA 45 14 1, 66, 8, 57 

10076 1 700 1500 21339 M AA 54 6 2, 30, 35, 57 

10086** 1 132 876 76427 M W 39 17 1, 29, 8, 44 

10094 1 546 928 14621 M W 44 8 1, 3, 7, 8 

10105†** 2 289 513 35050 F AA 54 4 1, 23, 8, 44 

10138** 2 231 NA 46800 M W 46 6 24, 29, 15, 44 

10141** 1 542 NA 382000 M W 46 6 1, 2, 15, 37 

20002 1 612 578 1556 M W 56 2 1, 2, 7, 27 

20004 1 720 1094 3714 M W 42 1 3, 32, 18, 27 

20018** 1 1374 1035 1886 M AA 24 2 2, 26, 40, 57 

# W - white, AA - African American      
† subjects followed longitudinally      

** subjects in CD127 sub-cohort      

NA - not available      
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Dominant TRBV populations within HIV-specific T cell responses are 
predominantly clonotypic and express higher levels of PD-1 and lower 
levels of CD127 compared to sub-dominant TRBV populations 
We next evaluated TRBV usage and clonotypic composition within HIV-specific 

PD-1high and PD1low populations. To identify T cell receptor usage within HIV-

specific CD8+ T cell populations, we sequenced FACS-isolated HIV-specific 

CD8+ T cell in combination with direct staining of PBMCs with HIV-epitope-

specific MHC-I tetramers and an anti-TRBV monoclonal antibody panel as 

previously described (67, 129). Twenty-one of 35 HIV-specific CD8+ T cell 

responses were sequenced to determine TRBV, CDR3, and corresponding TRBJ 

regions (Table 2-2) with subsequent repertoire confirmation using monoclonal 

anti-TRBV antibodies. Within each epitope-specific TCR repertoire, we identified 

a single, dominant CDR3 clonotype, although sometimes this dominant clonotype 

was found with other clonotypes within a single TRBV family (Table 2-2). For 

example, subject 10002 recognizes the HLA B*5701-restricted epitope IW9. 

Although we identified 8 clonotypes responding to this epitope, one TRBV27-

TRJ27 clonotype comprises 64% of the sequences. Two other clonotypes also 

use TRBV27, but combined, they only contribute to 6% of the total sequences. In 

this case, staining with anti-TRBV27 antibody was used to identify the dominant 

T cell clonotype for phenotypic analysis. We noted highly significant concordance 

between our two methods for repertoire determination (Figure 2-3A, r=0.86, 

p<0.0001). 
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Table 2-2 - TRBV CDR3 Sequences of Epitope-specific Populations 
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10001 TY11 TRBV10-3 CAISERAIRGTSGLTDTQYF TRBJ2-3 56 Vb12 64 50/67 

  TRBV10-3 CAISECAIRGTSGLTDTQYF TRBJ2-3 2   1/67 

  TRBV10-3 CAISERAIRGTSGLTDTQYL TRBJ2-3 2   1/67 

  TRBV4-2 CASSQAAGGRAFF TRBJ1-1 25 Vb7.1 36 11/67 

  TRBV4-2 CASSQAEGGQNHF TRBJ2-7 9   1/67 

  TRBV4-2 CASSLAPGGIAFF TRBJ1-1 5   3/67 

  TRBV4-2 CASSQAAGGRAIF TRBJ1-1 2   1/67 

10001 GY9 TRBV11-2 CASSLDSGFLEQYF TRBJ2-7 44 Vb21.3 44 18/36 

  TRBV10-3 CAISESGGRVDEQYF TRBJ2-7 36 Vb12 21 13/36 

  TRBV12-3 CASSPPSSYNEQFF TRBJ2-7 3 Vb8 11 1/36 

  TRBV4-3 CASSLQGAPEQFF TRBJ2-1 8 Vb7.2  3/36 

  TRBV11-3 CTSRLDPGFLEQYF TRBJ2-7 3 Vb21  1/36 

10002 KK10 TRBV7-2 CASSLYGEYEQYF TRBJ2-7 79 Ab unavailable 30/38 

  TRBV13 not identified by seq Vb23 4  

  TRBV6-6 CASSQGTTDTQYF TRBJ2-3 21   8/38 

10002 IW9 TRBV27 CASRPGQGGYEQY TRBJ2-7 64 Vb14 62 29/45 

  TRBV27 CASSSSTGQQPQH TRBJ1-5 4   2/45 

  TRBV27 CASRTQRWETQY TRBJ2-5 2   1/45 

  TRBV7-9 CASSLAQGWKTQY TRBJ2-5 20 Ab unavailable 9/45 

  TRBV7-9 CASSIQGLRATNEKLF TRBJ1-4 2   1/45 

  TRBV7-8 CASRSPLGYEQY TRBJ2-7 2   1/45 

  TRBV12-4 CASSSGTSGSAGYNEQF TRBJ2-1 2   1/45 

  TRBV5-1 CASSTNNEQF TRBJ2-1 2   1/45 

10002 QW9 TRBV27 CASRTQRWETQY TRBJ2-5 100 Vb14 93 13/13 

  TRBV4 not identified by seq Vb7.2 7  

10004 QW9 TRBV3-1 CASSQGPGERAGFNYEQY TRBJ2-7 56 Vb9 55 4/16 

  TRBV28 CASSLGYGYT TRBJ1-2 19 Vb3 29 3/16 

  TRBV27 CASSKGRYNEQF TRBJ2-1 25 Vb14 12 9/16 

10004 KF11 TRBV7-9 CASPHPDRPNYGYT TRBJ1-2 78 Ab unavailable 39/50 

  TRBV7-9 CASGGEFYGYT TRBJ1-2 16   8/50 

  TRBV19 CASSLTYGYT TRBJ1-2 2 Vb17 26 1/50 

  TRBV19 CASSSRTGGYGYT TRBJ1-2 2   1/50 

  TRBV24 CATSDRMDNEQF TRBJ2-1 2   1//50 

10022 KK10 TRBV12-4 CASSIAGGGEDTQY TRBJ2-3 31 Vb8 45 26/84 

  TRBV6-5 CASRKGQGDWEAF TRBJ1-1 5 Vb13.1 35 4/84 

  TRBV20-1 CSARGWVSNNQETQY TRBJ2-5 57 Vb2 20 48/84 

  TRBV20-1 CSARDPLPEASGGAGTDTQY TRBJ2-3 2 Vb2  1/84 

  TRBV19 CASTPPGF TRBJ1-2 1 Vb17  2/84 
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Table 2-2 (continued) - TRBV CDR3 Sequences of Epitope-specific Populations 

  TRBV27 CASSQWTGELF TRBJ2-2 4 Vb14  1/84 

10022 FL8 TRBV6-2 CASSFIPGQGTHYSNQPQH TRBJ1-5 78 Vb13.2 75 7/9 

  TRBV10-3 CAIRPFLGQDDNYGYT TRBJ1-2 11 Vb12 11 1/9 

  TRBV28 CASSLRGTGELF TRBJ2-2 11 Vb3 14 1/9 

10027 KF11 TRBV10-3 CAIGGHDYGYT TRBJ1-2 45 Vb12 54 40/88 

  TRBV6-5 CASSSLVNTGELF TRBJ2-2 23 Vb13.1 10 20/88 

  TRBV6-5 CALTGGDYGYT TRBJ1-2 7   6/88 

  TRBV20-1 CSARGWVSNNRETQY TRBJ2-5 14 Vb2 10 12/88 

  TRBV20-1 CAASTSAVLGKKGSQETQY TRBJ2-5 2   2/88 

  TRBV20-1 CSAREKGSQETQY TRBJ2-5 8   7/88 

  TRBV28-1 CASSGPGGEQY TRBJ2-7 1   1/88 

10027 FL8 TRBV2 CASSELGARVYEQYF TRBJ2-7 67 Vb22 70 37/42 

  TRBV10-1 CASSESSREVSYNSPLHF TRBJ1-6 6 Vb12 11 3/42 

  TRBV4-2 CASKEELSNTGELFF TRBJ2-2 23   1/42 

  TRBV29-1 CSVGDQGGSEQYF TRBJ2-7 4   1/42 

10027 EI8 TRBV13-6 CASTGGRGSPLHF TRBJ1-6 100 Vb13.1 95 45/45 

  TRBV9 Not identified by sequence Vb1 2  

  TRBV20 Not identified by sequence Vb2 1  

  TRBV28 Not identified by sequence Vb3 1  

10060 IW9 TRBV7-8 CASSQDRIHTEAF TRBJ1-1 94 Ab unavailable 52/54 

  TRBV13-2 CASSLGLDETQYF TRBJ2-5 6  5 2/54 

10070 KF11 TRBV7-9 CASSLGGGYT TRBJ1-2 50 Ab unavailable 22/44 

  TRBV7-8 CASEDFKNIQY TRBJ2-4 16   7/44 

  TRBV7-9 CASSPGQTNYGYT TRBJ1-2 14   6/44 

  TRBV7-9 CATPGEVLSPNYGYT TRBJ1-2 2   1/44 

  TRBV7-9 CASSLGGGQNGYT TRBJ1-2 2   1/44 

  TRBV7-6 CASSSMGGGTDTQY TRBJ2-2 2   1/44 

  TRBV7-9 CASSLAGGYT TRBJ2-2 2   1/44 

  TRBV11-2 CASSDGTGVGLGYT TRBJ1-2 5 Vb21.3 12 2/44 

  TRBV11-2 CASSDGQGRLGYT TRBJ1-2 2   1/44 

  TRBV14 CASSPRDSQETQY TRBJ2-5 2 Vb16 8 1/44 

10071 KF11 TRBV5-1 CASYNFGQYGYT TRBJ1-2 75 Vb5 67 20/25 

  TRBV7-6 CASSPMDLLDEQY TRBJ2-7 25 Ab unavailable 5/25 

10071 FL8 TRBV2 CASSELGATIYEQY TRBJ2-7 40 Vb22 46 8/20 

  TRBV4-1 CASSQEMNRVVGNEQF TRBJ2-1 25 Vb7.1 26 7/20 

  TRBV6-9 CASTRPGQGTYNEFQ TRBJ2-1 35 Ab unavailable 5/20 

10076 KF11 TRBV2 CASRGGSGELF TRBJ2-2 63 Vb22 87 34/54 

  TRBJ7-9 CASSGFRDRVNEQY TRBJ2-7 33 Ab unavailable 18/54 

10086 EI8 TRBV9 CASSVVGDSRETQYF TRBJ2-5 52 Vb1 80 24/46 

  TRBV9 CGSSVVGDSRETQYF TRBJ2-5 2   1/46 

  TRBV9 CASSTLRDSREKLFF TRBJ1-4 4   2/46 

  TRBV9 CASSTLGDSREKLFF TRBJ1-4 7   3/46 

  TRBV9 CASSADGSFYEQYF TRBJ2-7 2   1/46 

  TRBV27 CASSLVGQGARQPQHF TRBJ1-5 2 Vb14 9 1/46 
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Table 2-2 (continued) - TRBV CDR3 Sequences of Epitope-specific Populations 

  TRBV27 CASSLGSAKNIQYF TRBJ2-4 2   1/46 

  TRBV2 CASSEPPGVRGEAFF TRBJ1-1 9   4/46 

  TRBV4-1 CAGSQEFLNRRYF TRBJ2-5 7   3/46 

  TRBV5-1 CASSLSGSGWQETQYF TRBJ2-5 9   4/46 

  TRBV7-2 CASSLLPDPRSSGGYTF TRBJ1-2 2   1/46 

  TRBV7-8 CASSLLDGTRDQQYF TRBJ2-7 2   1/46 

10138 GY9 TRBV5-1 CASSEAGGTEAFF TRBJ1-1 46 Vb5.1 47 21/46 

  TRBV9 CASSVEGTILTDTQYF TRBJ2-3 13 Vb1 47 6/46 

  TRBV9 CASSVEGTIHTDTQYF TRBJ2-3 9   4/46 

  TRBV13 CASSLQQTLGAFF TRBJ1-1 9 Vb23.1 3 4/46 

  TRBV13 CASSPQQTLGAFF TRBJ1-1 9   4/46 

  TRBV20-1 CSALVEGDEQFF TRBJ2-1 4   2/46 

  TRBV20 CSAIVGSAYEQYF TRBJ2-7 2   1/46 

  TRBV29 CSVDGPTGGYTF TRBJ1-2 4   2/46 

  TRBV29 CASSQGLAGDEQYF TRBJ1-2 2   1/46 

  TRBV29 CSASLGGRISGANVLTF TRBJ1-2 2   1/46 

  TRBV14 CASSQDLRGARGYTF TRBJ1-2 2   1/46 

  TRBV14 CASSQGTGSTDTQYF TRBJ2-3 2   1/46 

  TRBV4-2 CASSQDSSGRVTGELFF TRBJ2-2 2   1/46 

10141 GY9 TRBV27 CASSDNGGDRSPGELFF TRBJ2-2 54 Vb14.1 67 21/39 

  TRBV27 CASSPSFPPDTQYF TRBJ2-3 10   4/39 

  TRBV27 CASSPGGGELFF TRBJ2-2 3   1/39 

  TRBV6-6 CASSSPGGVTEAFF TRBJ1-1 10 Vb13.6 10 4/39 

  TRBV6-6 CASSYSVVEAAAEAFF TRBJ1-1 2   1/39 

  TRBV20-1 CSARDRADRVLIPDTQYF TRBJ2-3 8 Vb2.1 6 3/39 

  TRBV20-1 CSASPVGGAYEQYF TRBJ2-7 5   2/39 

  TRBV6-5 CASRLGRLAYEQYF TRBJ2-7 3 1/39 

  TRBV6-5 CASSTLTGEDSGPQHF TRBJ1-5 3 
  

1/39 

  TRBV3-1 CASSQGLAGDEQFF TRBJ2-1 3   1/39 

20018 KF11 TRBV7-9 CASELSGNTIY TRBJ1-3 70 Ab unavailable 35/51 

  TRBV7-9 CASSYLNTIY TRBJ1-3 2   1/51 

  TRBV7-9 CASEGGNTIY TRBJ1-3 2   1/51 

  TRBV7-9 CATEASGNTIY TRBJ1-3 12   6/51 

  TRBV7-9 CASEITRDRRNTIY TRBJ1-3 2   1/51 

  TRBV7-6 CASSSWTGQDEQF TRBJ2-1 2   1/51 

  TRBV7-9 CASSGFTGFANEAF TRBJ2-6 2   1/51 

  TRBV28-1 CATSDLMDNEQF TRBJ2-1 4 Vb3 7 2/51 

  TRBV24-1 CATSDLMDNEQF TRBJ2-1 2   1/51 

  TRBV5-6 CASILTSGRNEQF TRBJ2-1 2 Vb5.2 3 1/51 

a Dark shading identifies dominant clonotype 

b Light shading identifies sub-dominant population(s) used for comparison (unshaded clonotypes were unlabeled) 

c TRBV populations directly labeled with antibodies are bordered 

d IMGT nomenclature for TRBV designation is used throughout the table and accompanying text 
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Figure 2-3 – Correlation between methods of repertoire determination. 
Epitope-specific TRBV repertoires were determined using two methodologies as 
described in Materials and Methods (sort/sequence and antibody labeling). 
Comparison of TRBV repertoire composition using these methodologies 
correlated strongly (r=0.86) and with high significance (p<0.0001, Spearman 
correlation), A.  
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We show representative plots of PD-1 expression on corresponding dominant 

and sub-dominant TRBV populations in a single HIV-epitope-specific T cell 

response (Figure 2-4A). Within HIV-epitope-specific responses, PD-1 expression 

is higher on dominant TRBV populations compared to sub-dominant TRBV 

populations when measured by MFI (p=0.001, Figure 2-4B) or frequency of PD-

1high cells (p=0.0001, Figure 2-4C). We evaluated multiple HIV-epitope-specific 

populations in 9 of 22 individuals studied (range 2-5 epitopes/individual, Table 2-

1 and Table 2-3). We did not find a correlation between the degree of dominance 

within the repertoire and the degree of PD-1 expression on dominant and sub-

dominant clonotypes within epitopes, suggesting that the magnitude of expansion 

within a parent population is not the sole determinant of PD-1 expression. 

 

If we limit our phenotypic analysis to those epitopes for which we have sequence 

confirmation that the dominant TRBV population is monoclonal, the relationships 

we highlight between clonotypic dominance and PD-1 and CD127 expression 

remain statistically significant (PD-1 MFI, p=0.0398; CD127 MFI, p=0.0342). 

Additionally, there are several ways to define clonotypic dominance within 

epitope-specific TCR repertoires in the absence of a single, highly dominant 

clonotype.  
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Figure 2-4 – PD-1 expression is higher on dominant TRBV compared to 
sub-dominant TRBV populations within epitope-specific responses. Dot plot 
and histogram showing PD-1 expression on dominant (blue) and sub-dominant 
(green) TRBV populations in a single epitope-specific response. PD-1 MFI and 
percentage PD-1high values are provided in the upper corner histogram for the 
dominant and sub-dominant TRBV populations, A. PD-1 expression is higher on 
dominant TRBV compared to subdominant TRBV as measured by MFI, B 
(p=0.001) and percentage PD-1high , C (p=0.0001). N= 35 epitope-specific 
populations in 22 HIV+ individuals. 
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Table 2-3 - TRBV Repertoire Data 

PID Epitope 
% of 
CD8 TRBV Repertoirea Methodb,c 

10001 TY11 2.2 10-3 (64%), 4-2 (36%) sort-sequence 

  GY9 1.5 11-2 (44%), 10-3 (21%), 12 (11%) 
sort-sequence 

10002 KK10 5.6 13-1 (4%), 7-2 (96%) 
sort-sequence 

 IW9 2.9 27 (62%), 7-9, 12-4, 5-1 (38%) 
sort-sequence 

 QW9 1.6 27 (92%), 4 (7%) 
sort-sequence 

10004 KF11 1.4 19 (26%), 7-9, 24 (74%) 
sort-sequence 

  QW9 1.1 3-1 (55%), 28 (29%), 27 (12%) 
sort-sequence 

10015 EI8 1.2 9 (71%), 2 (10%), 4 (5%) TRBV 

10022 KK10 19 12 (45%), 6-5 (40%), 2 (15%) sort-sequence 

  FL8 1.3 6-2 (75%), 10-3 (11%), 28 (14%) sort-sequence 

10027 KF11 0.5 10-3 (54%), 6-5 (10%, mult cdr3), 20-1 (10% multi cdr3) sort-sequence 

 FL8 0.8 22 (70%), 12 (11%) sort-sequence 

 EI8 0.4 6 (95%), 9 (2%) sort-sequence 

 QW9 0.8 28 (85%) TRBV 

 IW9 0.7 27 (86%), 4 (5% multi-Vb) TRBV 

10035 KK10 5.5 6 (62%), 19 (16%), 20 (15%), 12 (4%), 27 (3%) TRBV 

10038 KK10 1.3 6-2 (32%), 3 (24%), 4-2 (11%), 19 (20%) TRBV 

10040 QW9 2 6 (95%) TRBV 

  KF11 2 9 (94%) TRBV 

10060 IW9 1.5 13-1 (4%), 7-8 (96%) sort-sequence 

10069 QW9 2.6 6 (90%) TRBV 

10070 KF11 10 11-2 (12%), 27 (8%), 7 (80%) sort-sequence 

10071 KF11 1.8 5 (67%), 7 (33%) sort-sequence 

  FL8 3.7 2 (46%), 4-1 (26%) sort-sequence 

10076 KF11 7.4 2 (87%), 7 (13%) sort-sequence 

10086 EI8 1.8 9 (80%), 27 (9%) sort-sequence 

10094 FL8 3.7 27 (77%), 28 (7%) TRBV 

10105 FL8 1.8 6-2 (70%) sort-sequence 

  EI8 1.8 8-1 (45%) sort-sequence 

10138 GY9 2.1 5-1 (47%), 9 (47%), 13 (3%) sort-sequence 

 TY11 2.2 29 (52%), 9 (13%), 5-1 (12%), 13-2 (10%), 12 (8%) sort-sequence 

10141 GY9 0.8 27 (67%), 6-6 (10%), 20 (6%) sort-sequence 

20002 KK10 5.3 5-2 (45%) TRBV 

20004 KK10 2.4 27 (68%), 4-3 (12%) TRBV 

20018 KF11 11.2 28-1 (7%), 5-6 (3%), 7 (90%) sort-sequence 
a TRBV Repertoire - as determined by antibody labeling  
b sort-sequence - tetramer+, epitope-specific cells were sorted and subjected to TCR 
sequence analysis before co-staining with anti-TRBV antibodies  
c TRBV - tetramer+, epitope-specific cells were co-stained with anti-TRBV antibodies  
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However, even using a more stringent criterion that dominant clonotypes must 

comprise more than 70% of the TRBV repertoire (19 epitope-specific responses 

in 14 individuals fit this criteria), comparison between dominant and sub-

dominant clonotypes yields significant relationships for MFI and % PD-1high 

(p=0.03, MFI and p=0.001, % PD-1high, figure 2-5A and 2-5B). These data 

support our observations that dominant clonotypes express higher levels of PD-1 

despite relative differences in dominance within the clonotypic repertoire. 

 

We also evaluated CD127 expression on dominant and sub-dominant TRBV 

populations in a sub-cohort of 12 individuals, which included analysis of 19 

epitope-specific responses (noted in Table 2-1). In contrast to higher PD-1 

expression observed on dominant TRBV populations, CD127 expression was 

lower on dominant TRBV populations as measured by MFI (p=0.007, Figure 2-

6B) and frequency of CD127hi (p=0.05, Figure 2-6C) compared to corresponding 

sub-dominant TRBV populations. The PD-1 expression pattern described above 

on dominant and sub-dominant TRBV populations remains intact in this smaller 

cohort (p=0.006, PD-1 MFI). 
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Figure 2-5 – Alternative analysis of PD-1 expression on dominant 
clonotypes. PD-1 expression was measured by MFI (upper charts) and 
percentage PD-1high (lower charts) was compared between dominant and sub-
dominant TRBV populations when dominant populations comprised more than 
70%, B (n=19, p=0.03, p=0.001), or less than 70%, C (n=16, p=0.01 and p=0.03) 
of the overall epitope-specific repertoire (Wilcoxon matched pairs test was used 
for these comparisons). 
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Figure 2-6 – CD127 expression is lower on dominant TRBV compared to 
sub-dominant TRBV populations within epitope-specific responses. Dot plot 
and histogram showing CD127 expression on dominant (blue) and sub-dominant 
(green) TRBV populations for a single epitope-specific response. MFI and 
percentage CD127high values are provided in the corner of the histogram for the 
dominant and sub-dominant TRBV populations, A. CD127 expression is lower on 
dominant TRBV compared to sub-dominant TRBV as measured by MFI, B 
(p=0.007) and percentage CD127high, C (p=0.05). Measurements from 19 
epitope-specific populations in 12 HIV+ individuals. 
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Within this sub-cohort of epitopes labeled with PD-1 and CD127, 15 of 19 

dominant TRBV populations displayed a PD-1high phenotype and 15 of 19 

displayed a CD127low phenotype compared to their corresponding sub-dominant 

population.  

 

However, there was not complete concordance between these populations. The 

majority of dominant clonotypes (11 of 19) displayed the combination of higher 

PD-1 expression and lower CD127 expression. In contrast, there were no 

instances (0 of 19) in which the sub-dominant clonotype had both higher PD-1 

expression and lower CD127 expression (p<.0001). In summary, our data 

suggest that clonotypic dominance within the epitope-specific TCR repertoire is 

associated with a PD-1high/CD127low phenotype. 

 

PD-1high/CD127low phenotype on dominant clonotypes in HIV-specific 
responses is stable over time 
 
To characterize the stability of PD-1 and CD127 expression on dominant and 

subdominant TRBV population, we performed a longitudinal analysis of HIV-

specific responses from 3 individuals. Figure 2-7 details longitudinal viral load 

and CD4+ and CD8+ T cell number (Figure 2-7A), epitope-specific CD8+ T cell 

frequency and corresponding TRBV repertoire composition (Figure 2-7B), and 

PD-1 and CD127 expression (Figure 2-7C and 2-7D) on TRBV populations for 

the dominant clonotype within the HLA-B*08-FL8 response in 10022, the 

dominant TRBV population within the HLA-B*57-QW9 response in 10027 (this 

epitope-specific T cell population was not sequenced), and the dominant 
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clonotype within the HLA-B*57-KF11 response in 10071 for the most recent 6 

years of their infections (duration of infection 16, 16, and 15 years, respectively). 

10022 and 10071 are long-term controllers with stable viral loads and CD4+ T 

cell counts and 10027 is a chronically infected individual with progressive 

disease (increasing viral load and decreasing CD4+ T cell counts). 

 

Although expression levels of PD-1 and CD127 on the TRBV clonotypes within 

these HIV-specific responses are dynamic, the association of higher PD-1 

expression and lower CD127 expression with TRBV dominance remains 

consistent over the 6 years of our analysis. The B*08-FL8-specific TRBV 

repertoire in 10022 is relatively stable over time. The dominant TRBV2 

population in this individual maintains higher PD-1 expression over time whereas 

the sub-dominant TRBV populations have higher and increasing CD127 levels 

over the same period. The B*57-KF11-specific TRBV repertoire in 10071 is 

characterized by an increasingly dominant TRBV5 population and a 

corresponding increase in PD-1 expression compared to the subdominant 

TRBV7 population. 
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 In 10027, the B*57-QW9-specific TCR repertoire fluctuates early in our 

observations and as the TRBV28 population becomes dominant, its PD-1 

expression levels increase. Over this time period, 10027 experienced declining T 

cell counts and increasing viral load with an overall increase in PD-1 expression 

on CD8+ T cells. The dominant circulating viral sequence in 10022 and 10027 

was determined for the B*27-FL8 and B*57-QW9 epitopes at a midpoint in this 

analysis and corresponded to the peptide sequence within the tetramers in each 

case. 10071 maintained viral loads of <50 copies/ml during this study, and we 

were unable to generate viral sequences from this individual. 

 

We also evaluated mean PD-1 and CD127 expression levels at early and late 

timepoints on 10 additional epitope-specific responses and determined a similar 

and statistically significant expression pattern on dominant and sub-dominant 

TRBV populations (Figure 2-8). These longitudinal data suggest that dominance 

within the epitope-specific TRBV repertoire is associated with a more 

pronounced PD-1hi/CD127lo phenotype over time and may be related to the 

course of disease. 
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Figure 2-8 – PD-1high/CD127low phenotype on dominant TRBV populations is 
a stable relationship over time.  PD-1 and CD127 expression levels (MFI) were 
measured at multiple time points on dominant and sub-dominant TRBV 
populations and mean values were calculated for these populations over all time 
points.  Dominant populations had higher average expression of PD-1 MFI 
(p=.005), A, and lower average expression of CD127 MFI (p=0.003), B.  
Measurements from 13 (12 for the CD127 comparison) epitope-specific 
populations in 6 HIV+ individuals. 
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Tetramer binding characteristics of TRBV populations correlate with PD-1 
expression but are not directly related to dominance within the epitope-
specific TCR repertoire 
 
We next investigated whether differences in tetramer binding characteristics were 

related to dominance within the TRBV repertoire. Our group and others have 

previously described differential tetramer binding on epitope-specific T cell 

clonotypes (127, 133) and we observed a similar phenomenon in this study 

(Figure 2-9A). Several groups have previously used differential levels of tetramer 

binding to define T cell receptor avidity (133, 152), and so we measured tetramer 

binding (MFI) on TRBV populations over a 16-fold range of tetramer 

concentration and determined tetramer-binding curves for dominant and sub-

dominant clonotypes of 9 epitope-specific responses in 4 individuals (Figure 2-9B 

and Table 2-4). Non-linear regression analysis indicated that TRBV populations 

with lower half-maximal values have higher maximal binding values in 8 of the 9 

epitopes tested. Thus, we used tetramer MFI on labeled TRBV populations as a 

surrogate measure of TCR avidity for tetramer complexes. 

We compared tetramer binding levels on corresponding dominant and sub-

dominant TRBV populations. While there was a trend suggesting that dominant 

TRBV populations have higher avidity for tetramer than corresponding sub-

dominant populations, this pairing was not statistically significant (Figure 2-9C, 

p=.09). We found a positive and significant correlation between clonotypic avidity 

for tetramer and clonotypic PD-1 expression (Figure 2-9D, r=0.34, p=0.004). 

These data indicate that while clonotypic avidity for tetramer does not strictly 
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govern dominance within the repertoire, it may influence the degree of PD-1 

expression. 
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Table 2-4 - Tetramer Binding Characteristics 
  TRBV 

  

Tetramer 
concentration at 
1/2 Bmax(uM) Bmax (MFI) 

PID Epitope Dom Sub-dom Dom Sub-dom 
10004 KF11 6.64 3.40 9899 6596 
 QW9 1.26 1.58 7985 6329 
10022 KK10 0.13 0.35 2370 930 
 FL8 0.36 0.23 3009 2340 
10027 FL8 5.30 11.00 6542 5116 
 QW9 0.12 0.36 3910 2760 
 KF11 3.28 3.34 7811 3701 
10071 FL8 0.62 2.38 915 2323 
 KF11 0.12 0.28 4107 2678 
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Sub-dominant TRBV populations display greater cytokine production 
capacity and cross-recognition in responses to epitope variant peptides 
 
We assessed the capacity of dominant and sub-dominant TRBV populations to 

produce cytokines after stimulation with consensus and variant peptides. Two 

common viral sequence variants for each of 4 HIV-epitopes were tested in 7 

individuals. We performed viral sequencing in these individuals and found that 

circulating viral sequence matched the consensus epitopes used in the tetramer 

reagents in each individual except for 10094, who harbored a circulating 

sequence variant at the FL8 epitope which matched the FLKdKGGL variant we 

used in our functional assay (Table 2-5). 

 

Taking our analysis of the B*27-KK10 response in 10022 as an example, the 

dominant TRBV12 clonotype comprises 45% of the B*27-KK10 response which 

is 19% of total CD8+ T cells. The maximal possible cytokine production by the 

TRBV12 clonotype is therefore 8.6% of total CD8+ T cells. Likewise, maximal 

cytokine production for the sub-dominant clonotypes (TRBV6-5 and TRBV20-1, 

together 55% of the KK10-tetramer+ population) is 10.4% of total CD8+ T cells. 

We determined the relative cytokine capacity (RCC) of dominant and sub-

dominant TRBV populations by dividing cytokine production of the TRBV 

population by the frequency of that TRBV population within the tetramer 

population. By virtue of being a ratio, the RCC value for each TRBV population 

illustrates the extent to which it reaches its own maximal cytokine production 

potential without regard to its absolute percentage within the TCR repertoire. 
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Table 2-5 – Circulating Viral Sequence 

  Subject ID Epitope  
epitope 
sequence 

WT epitope  10022 B*27-KK10 KRWIILGLNK 
circulating 
epitope    ---------- 

  B*08-FL8  FLKEKGGL 
   -------- 

 10027 B*57-KF11  KAFSPEVIPMF 
   ----------- 

  B*57-QW9  QASQEVKNW 
   --------- 

 10071 B*57-KF11  KAFSPEVIPMF 

   
not 
determined 

 10086 B*08-EI8  EIYKRWII 
   -------- 

 10094 B*08-FL8  FLKEKGGL 

   ---D---- 

 20002 B*27-KK10 KRWIILGLNK 
   ---------- 

 20004 B*27-KK10 KRWIILGLNK 
   ---------- 
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Representative plots are shown in Figure 2-10A detailing cytokine production 

(IFN-γ – upper plots; TNF-α – lower plots) by the dominant TRBV12 clonotype 

and the sub-dominant clonotypes in response to stimulation with consensus and 

variant peptides for the HLA-B*27-KK10 epitope. In response to stimulation with 

consensus peptide, the TRBV12 clonotype reached absolute cytokine production 

levels of 8.1% (IFN-γ) and 3.4% (TNF-α) of total CD8+ T cells and the sub-

dominant clonotypes reached cytokine production levels of 8.1% (IFN-γ) and 

3.3% (TNF-α) of total CD8+ T cells. TRBV12 RCC values are 95% (IFN-γ) and 

40% (TNF-α). The sub-dominant clonotypes together comprise a larger part of 

the TCR repertoire than the dominant TRBV12 clonotype, and so despite similar 

levels of absolute cytokine production, their corresponding RCC values are lower 

at 78% (IFN-γ) and 31% (TNF-α). The strong cytokine response and high RCC 

values for the dominant TRBV12 clonotype suggest that these cells recognize 

consensus peptide more effectively than the sub-dominant clonotypes. 

Stimulation with the KRWIImGLNK variant peptide yielded similar results to those 

from consensus stimulation. In response to stimulation with the KRWIvLGLNK 

peptide, the dominant TRBV12 clonotype reached lower levels of absolute 

cytokine production and had lower RCC ratios for both IFN-γ and TNF-α 

compared to the sub-dominant clonotypes. The sub-dominant clonotypes 

preferentially recognized the KRWIvLGLNK peptide, produced their highest 

levels of absolute cytokine at 8.6% (IFN-γ) and 3.6% (TNF-α) of total CD8+ T 

cells, and reached their highest RCC ratios of 82% (IFN-γ) and 35% (TNF-α). 
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The B*08-FL8 response in this individual is represented in similar fashion in 

Figure 2-6B and yields similar results. 

 

Comparison of RCC values for the clonotypic cytokine responses in a further 8 

epitopes from 6 additional individuals (total, 10 epitopes in 7 individuals; Figure 

2-6C-D) reveals that both dominant and sub-dominant TRBV populations are 

capable of cytokine production to consensus peptides (Figure 2-6C, p>0.05 for 

IFN-γ and TNF-α production). In response to stimulation with common variant 

peptides, sub-dominant TRBV populations have higher RCC ratios for IFN-γ 

production (Figure 2-6D, p=0.04) with a trend toward higher sub-dominant RCC 

ratios for TNF-α production as well (Figure 2-6D, p=0.08). These results indicate 

that while dominant and sub-dominant clonotypes are capable of producing 

cytokines in response to stimulation with consensus and variant peptide 

epitopes, sub-dominant clonotypes seem to retain greater capacity for cross-

recognition and secretion of multiple cytokines in response to the common viral 

epitope variants we tested. 
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Figure 2-10 – Sub-dominant TRBV populations have high cytokine 
production potential in response to stimulation with variant peptides. 
IFN-γ and TNF-α production was assessed by ICS on dominant and sub-
dominant TRBV populations. Dot plots showing dominant (solid box) and sub-
dominant (dashed box) clonotypic cytokine production (IFN-γ, upper plots and 
TNF-α, lower plots) in response to stimulation with consensus and variant 
peptides for the B*27-KK10, A, and B*08-FL8, B, responses in 10022. Within 
each plot, absolute cytokine production for clonotypic populations as a 
percentage of total CD8+ T cells is shown to the right of each indicated 
population as well as relative cytokine capacity (RCC, in parentheses). Graphs 
representing cytokine production for each response are located below 
corresponding plots. Bars represent maximal cytokine production for dominant 
(grey) and sub-dominant (unfilled) clonotypes, absolute cytokine production (% 
of total CD8+ T cells) is represented by the hatched area within each bar, and 
RCC for each clonotype and condition is noted to the right of each bar, A and 
B. 
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Figure 2-10 – Sub-dominant TRBV populations have high cytokine 
production potential in response to stimulation with variant peptides.
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Figure 2-11 – Sub-dominant TRBV populations have high cytokine 
production potential in response to stimulation with variant peptides. IFN-γ 
and TNF-α production was assessed by ICS on dominant and sub-dominant 
TRBV populations. Comparison of clonotypic RCC ratios for IFN-γ and TNF-α 
production in response to stimulations using peptide matching consensus, A 
(p=0.42 IFN-γ and p=0.38 TNF-α), and variant (p=0.04 IFN-γ and p=0.08 TNF-α), 
B. Measurements from 10 epitopes in 7 HIV+ individuals.
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Dominant TRBV populations display a survival defect in culture 
 
Proliferation upon antigen exposure is an important measure of T cell function 

and has been associated with improved control of viral replication (49). We 

labeled T cells with CFSE and cultured them with varying concentrations of 

peptide for 4 days to assess changes to the epitope-specific TRBV repertoire and 

capacity for proliferation of dominant and sub-dominant TRBV populations. The 

ex vivo epitope-specific response and its clonotypic repertoire is shown for the 

B*57-restricted-QW9 response in 10002 (Figure 2-12A). Representative plots are 

shown to illustrate epitope-specific populations (Figure 2-12B) and CFSE dilution 

(Figure 2-12C) for the dominant and sub-dominant clonotypes after 4 days of 

culture with low (0.2 ng/ml) and high (200 ng/ml) concentrations of optimal 

peptide antigen. At the 200 ng/ml peptide concentration, the dominant TRBV27 

clonotype made up 91% of the total repertoire at the end of the 4 day stimulation 

period, reflecting the ex-vivo repertoire. However, at the 200 pg/ml concentration, 

the TRBV27 clonotype comprised 58% of the repertoire. Therefore while both 

dominant and sub-dominant TRBV clonotypes proliferate well in response to 

stimulation with higher concentrations of consensus peptide, the dominant 

clonotype does not survive as well at lower peptide concentrations and therefore 

does not maintain the same degree of dominance in vitro. Moreover, as 

measured by the percentage of CFSElow cells, the dominant TRBV27 clonotype 

proliferates better than the sub-dominant clonotypes in response to stimulation 

with consensus peptides, reflecting in vitro what happens naturally in vivo. 
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Aggregate data from 15 epitopes in 7 subjects indicate that dominant TRBV 

populations fail to maintain their dominance at low concentrations of peptide 

(p=0.0026, Figure 2-12D). Conversely, dominant TRBV populations more 

effectively maintain their level of dominance at higher concentrations of peptide 

stimulation (p=0.2078, Figure 2-12D). In this series of experiments, the addition 

of antibody to block PD-1/PD-L1 interaction did not significantly alter the relative 

proliferative capacity of dominant and subdominant TRBV populations over the 

short duration of this assay (data not shown). These results suggest that while 

clonotypic constituents may not expand well at low concentrations of stimulation, 

sub-dominant clonotypic populations are better able to survive culture conditions 

with low levels of antigen. 
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Figure 2-12 – Dominant epitope-specific TRBV populations display a 
survival defect at low peptide concentrations which is alleviated by 
increasing antigen stimulation. PBMC were cultured in the presence of 
peptide antigen at the indicated concentrations and TRBV repertoire 
composition was assessed by flow cytometry on day 4. Relevant percentages 
of parent are shown to the right of each population. Representative contour 
plots showing ex vivo T cell populations: B*57-QW9+ T cells (upper plot) as a 
percentage of CD8+ T cells; B*57-QW9 epitope-specific population and its 
constituent dominant (blue) and sub-dominant (green) TRBV populations 
(lower plot) as a percentage of the epitope-specific population, A. MHC-I 
tetramer labeling after 4 day culture in the presence of different concentrations 
of peptide antigen, B. TRBV repertoire composition was determined by 
antibody labeling for the dominant TRBV as a part of the B*57-QW9+ 
population. Dominant (blue) and sub-dominant (green) TRBV populations are 
indicated on each plot and their percentage composition of the B*57-QW9 
response is shown at the right of each box. CFSElow percentages are shown 
for each population in the upper left corner of each box, C. Aggregate data 
was compiled, and statistical comparisons were made between epitope-
specific TRBV repertoire composition ex vivo and after 4 days of proliferation 
in culture. Dominant populations fail to maintain dominance at low peptide 
concentrations (p=0.0026), but repertoire composition is not significantly 
altered at higher concentrations (p=0.2078), D. Wilcoxon signed rank test. 
Measurements from 15 epitope-specific populations in 7 HIV+ subjects.
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Figure 2-12 – Dominant epitope-specific TRBV populations display a 
survival defect at low peptide concentrations which is alleviated by 
increasing antigen stimulation. 
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Discussion 
 

Several groups have observed enhanced global expression of PD-1 on T cells in 

HIV+ individuals, with the highest level of PD-1 expression on HIV epitope-

specific cells (84-86). A detailed analysis by Day et al. found that different 

epitope-specific responses, even within the same individual, had differing 

degrees of PD-1 expression (84). This has led to speculation that the degree of 

PD-1 expression could be linked to the efficacy of viral control for individual 

epitopes (84, 153).  

 

In this study, we evaluated constituent clonotypes within epitope-specific 

responses and determined that clonal dominance within epitope-specific 

responses is associated with a PD-1high/CD127low phenotype, that PD-1 

expression correlates with clonotypic TCR avidity for tetramer, and that dominant 

clonotypes display defects in their ability to respond to variant peptide epitopes 

and survive in the absence of strong antigen signals. We found that the most 

dominant clonotype within an epitope-specific response tended to have the 

highest level of PD-1 expression (p=0.001) and the lowest level of CD127 

expression (p=0.007). We did not see a relationship between the overall 

magnitude of a response (or the degree of clonotypic expansion within a 

response) and PD-1 expression, suggesting that PD-1 expression may not be 

directed related to the level of T cell expansion or exhaustion, but could mark T 

cells which have recently been exposed to their cognate antigen (154).  
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In LCMV infection downregulation of PD-1 and upregulation of CD127 occurs 

after viral epitope escape (106), suggesting that ongoing antigen exposure is a 

key factor in pushing T cells toward a PD-1high/CD127low phenotype. Lichterfeld et 

al described progressive reductions in CD127 expression on high avidity HIV-

epitope-specific clonotypes which were eventually deleted (155), and more 

recent work by Steeck et. al found PD-1 expression on HIV-1 epitope-specific T 

cells decreased after in-vivo selection for escape mutations (147). While this 

recent work highlights the relationship between, PD-1, and CD127 expression on 

epitope specific responses (106, 112), the data we present here is the first to our 

knowledge which describes differential expression of these markers on individual 

T cell clonotypes and links dominance to specific differences in clonotypic 

function.  

 

We have shown that epitope-specific T cell populations are often comprised of a 

single dominant and various sub-dominant clonotypic populations that can 

respond variably to changes in viremia (127) and that these clonotypes have 

differing abilities to recognize epitope variants (129). Our more recent work 

demonstrates a relationship between TCR use and memory phenotype (128). 

Thus, our new finding that dominant and sub-dominant T cell clonotypes have 

phenotypic and functional characteristics linked to antigen sensing is yet another 

indicator that the fine-specificity of individual T cell clones plays a role in the 

evolution of epitope-specific immune responses. 
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The majority of individuals we sequenced had dominant circulating sequences 

matching HIV Clade-B consensus, with the exception of 10094 (Table  and data 

not shown), and this subject still preferentially recognized the consensus peptide 

over the circulating variant. Despite their PD-1high/CD127low phenotype, we 

present evidence that dominant T cell clonotypes able to recognize circulating 

viral sequences have the capacity to produce multiple cytokines after stimulation 

with consensus and variant peptide epitopes and that subdominant clonotypes 

have increased ability to recognize common HIV-1 epitope variants. Improved 

recognition of viral variants by sub-dominant clonotypes might also be influenced 

by the diversity of TCR clonotypes within these sub-dominant populations. Each 

of the epitope-specific responses we assessed is comprised of a single dominant 

clonotype and at least one and in some cases more than one sub-dominant 

clonotypes. Effective recognition of variant epitopes may also be a reflection of 

increased diversity within sub-dominant TRBV populations. 

 

Immune selection pressure mediated by CD8+ T cells can lead to viral mutation 

and epitope escape from immune recognition (156-158), therefore the frequency 

of circulating epitope variants and the degree to which individual clonotypes are 

able to recognize these variants may also play a role in the development and 

maintenance of the epitope-specific TCR repertoire. A recent study from van 

Bockel et. al. offers insight into the relationship between clonal evolution within 

the TCR repertoire in HIV+ individuals and viral epitope variation (131). Their 

work highlights TCR repertoire remodeling within HLA-B*27-restricted responses 
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to a viral epitope known to consistently undergo immune-mediated mutational 

escape (67). The authors in this study found that in the presence of epitopes that 

varied from consensus, dominant T cell clonotypes were maintained over time 

and expressed higher levels of CD127 compared to subdominant clonotypes. In 

contrast to van Bockel et. al. we found dominant clonotypes to have lower levels 

of CD127 compared to subdominant clonotypes. Our study was different in that 

we evaluated 35 different epitope responses (representing 8 discrete HIV 

epitopes) in 22 individuals, and in the majority of cases the circulating viral 

sequence corresponded to the tetramer peptide sequence. These findings are 

broadly complementary to our own; both data sets indicate that dominant 

clonotypes are surprisingly persistent in vivo over time and support the notion 

that broad epitope-specific TCR repertoires may contain clonotypes capable of 

recognizing and suppressing viral sequence variants. 

 

While we cannot rule out the possibility that some HIV+ individuals in our cohort 

harbored viral variants not covered by the consensus or variant epitope 

sequences we selected, the recently reported associations between PD-1 

expression and epitope escape (106) highlight the importance of this line of 

inquiry for future longitudinal in vivo and in vitro studies. The relationship 

between epitope exposure, recognition, escape, and corresponding epitope-

specific T cell phenotype and functional capacity seems to be tightly related, 

although the effects of persistent exposure to antigen and viral escape on 

repertoire composition or clonotypic impairment have yet to be determined. In 
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this cross-sectional study, we were unable to assess whether higher avidity 

clones had been deleted earlier in infection or whether circulating virus had 

already escaped immune control for all the epitopes studied.  

Despite the higher expression of PD-1 on dominant clonotypes, and the relative 

failure of these dominant clonotypes to survive at low peptide concentrations in 

vitro, blockade of the PD-1 signaling pathway did not result in significant 

enhancement of clonotypic proliferation or survival. Studies evaluating the effect 

of PD-1 blockade on proliferative capacity have typically found modest increases 

in proliferation (78, 84, 86). The lack of enhanced proliferation we saw may be 

due to the short duration of our assays, and to the inclusion of relatively healthy 

subjects with low viral loads. Future studies with combinations of PD-1/PD-L 

blockade and cytokine combinations may help us determine to what extent 

dominant clonotypes can be “rescued” in vitro.  

 

Previous reports in mouse influenza models (159) and human EBV/CMV 

infection (133) indicate that T cell avidity for antigen is positively correlated with 

dominance in the epitope-specific TRBV repertoire. Our data support the notion 

that clonotypic TCR avidity is associated with higher expression of PD-1, but 

suggest that the association between overall TCR avidity and clonal dominance 

may be weaker in the setting of chronic HIV infection. Prior studies evaluated 

either acutely resolved or chronic viral infections with limited antigen variability 

and low levels of ongoing antigen exposure during chronic infection, and those 

conditions could account for the discrepancies between our study and this 
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previously published work. It remains to be determined if the associations 

between epitope-specific clonotypic dominance, phenotype, and function which 

we report in HIV infection also apply to other infections in humans and model 

systems. 

 

T cell phenotype and function is determined not only by the fundamental 

interaction between TCR:pMHC but represents a sum of inhibitory and 

stimulatory signals emanating from surface receptor molecules such as PD-1 and 

CD127. Recent work from Almeida et al. (47) suggests that a composite measure 

for T cell function such as ‘antigen sensitivity’ might encompass not only avidity 

for antigen but a wide range of influential factors such as antigen receptor 

density, coreceptor-mediated signals, as well as activation status and expression 

of inhibitory signaling molecules. We suggest that the composition, phenotype, 

and functional profile of the clonotypic repertoire may be necessarily dynamic in 

order to respond to a highly variable pathogen such as HIV. 

 

The following model accommodates our observations and experimental results: 

dominant clonotypes preferentially expand to circulating viral epitopes in vivo. 

Dominant clonotypes express a surface phenotype consistent with ongoing 

antigen exposure and activation. Continued exposure to cognate antigen may 

erode the capacity of dominant clonotypic responses as a result of accumulated 

PD-1 signal inhibition and a reduction in homeostatic turnover from reduced 

CD127 expression. Sub-dominant clonotypes expand sub-optimally to circulating 
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viral epitopes in vivo and express a phenotype consistent with reduced exposure 

to antigen. Sub-dominant populations may recognize non-circulating or low-level 

variants more effectively than dominant populations and are exposed to relatively 

lower levels of their preferred cognate antigen resulting in lower overall antigen 

exposure and concomitant activation. This sparing effect results in the 

maintenance of a population of cells better able to survive in the absence of 

strong antigenic signaling. These data also suggest that higher avidity clonotypes 

develop a relatively PD-1high phenotype compared to lower avidity clonotypes and 

is consistent with the observation that higher avidity responses are deleted early 

in infection (155). It remains to be determined whether TCR repertoire 

composition or clonotypic phenotype in HIV is significantly different in individuals 

with confirmed viral escape or in the absence of antigen, although data from 

LCMV infection and HIV infection suggests that this might be the case (106, 131, 

147). 

 

A diverse epitope-specific TCR repertoire comprised of clonotypes capable of 

recognizing and suppressing both circulating and variant epitopes would be a 

beneficial outcome from either prophylactic vaccine strategies or for strategies 

seeking to broaden existing immune responses in established HIV infections. 

Furthermore, manipulation of immunomodulatory surface proteins such as PD-1 

or CD127 as a part of vaccination protocols could influence qualitative and 

quantitative aspects of the epitope-specific immune response including antigen 

sensitivity or clonotypic repertoire (143). Effective immunological strategies to 
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control chronic infections like HIV may require not only the generation or 

stimulation of antigen-specific cells but also a coordinated manipulation of 

inhibitory pathways. 



90 

CHAPTER III 

 

ANTI-RETROVIRAL THERAPY REDUCES THE MAGNITUDE AND T CELL 

RECEPTOR REPERTOIRE DIVERSITY OF HIV-SPECIFIC T CELL 

RESPONSES WITHOUT CHANGING T CELL CLONOTYPE DOMINANCE OR 

PHENOTYPE 

 

Abstract 

 

After initiation of highly active anti-retroviral therapy (ART), HIV viral loads 

decrease as do the magnitudes of HIV-epitope-specific immune responses. In 

chronic HIV infection, the virus-specific T cell receptor repertoire allows the host 

to respond to viral epitope diversity; however, the effects of antigen reduction on 

the T cell receptor (TCR) repertoire of epitope-specific CD8+ T cell populations 

are not well established. We determined the TCR repertoires of 14 HIV-specific 

CD8+ T cell responses from 8 HIV+ individuals before and after initiation of ART. 

We used multiparameter flow cytometry to measure the distribution of memory T 

cell subsets, and the surface expression of PD-1, CD127, and CD38 on overall T 

cell populations and T cell clonotypes within epitope-specific responses from 

these individuals. Post-ART, we noted decreases in the frequencies of circulating 

epitope specific T-cells (p=0.02), decreases in the number of T-cell clonotypes 

found within epitope-specific T cell receptor repertoires (p=0.024), and an overall 

reduction in the amino acid diversity within these responses (p<0.0001). Despite 



91 

this narrowing of the T cell response to HIV, the overall hierarchy of dominant T 

cell receptor clonotypes remained stable compared to pre-ART. CD8+ T cells 

underwent redistributions in memory phenotypes and a reduction in CD38 and 

PD-1 expression post-ART. Despite extensive remodeling at a structural and 

phenotypic level, PD-1 was expressed at higher levels on dominant clonotypes 

within epitope-specific responses before and after initiation of ART. These data 

suggest that antigen burden drives TCR diversity, and that dominant clonotypes 

are sensitive to very low levels of antigen. 

 

Introduction 

 

Successful anti-retroviral therapy (ART) reduces viral loads and decreases the 

level of T cell activation but the effect of HIV antigen reduction on the TCR 

repertoire of epitope-specific T cell responses remains poorly defined (160). The 

level of generalized T cell activation as measured by expression of CD38 is a 

strong, independent predictor of disease progression (61, 161). More recent work 

has shown a positive correlation between increased expression of PD-1 on T 

cells and the level of viremia (85, 112). In addition to being an independent risk 

factor for disease progression in the absence of ART, sustained high levels of 

immune activation in the presence of ART are associated with poorer levels of 

CD4+ T cell recovery (162). Other phenotypic markers such as CD45R0, CCR7, 

CD27, and CD28 define T cell memory subsets, which are altered as a result of 

HIV infection (32, 124, 136). After the initiation of ART, the distribution of memory 
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T cell subsets improves, indicating broad remodeling of T cell populations with 

successful treatment and antigen reduction (163). Few studies have evaluated 

the effect of ART on HIV-specific T cell populations in detail and even these have 

not analyzed the epitope-specific TCR repertoire in detail (160, 164-166).  

 

Virus-specific CD8+ T cell responses are a critical component of the natural 

immune response to HIV (63-65). However, quantitative features of T cell 

responses such as the frequency or magnitude of HIV-specific T cell responses 

do not correlate well with control of viral replication or disease progression (122, 

123). On the other hand, qualitative features of T cell responses such as epitope-

specific proliferation (49) and breadth of T cell effector function have been shown 

to correlate well with control of viremia (125) and may represent important 

determinants of disease outcome. Indeed, qualitatively superior, polyfunctional 

HIV-specific T cells have been shown to emerge after suppression of viremia 

with ART (167); however, after initiation of ART, the magnitude of HIV-epitope-

specific immune responses also contract (168). Clonotypic and amino acid 

diversity within the epitope-specific TCR repertoire is a qualitative feature of T 

cell responses that may be associated with control of viremia (120, 121), but 

there is little data to inform our understanding of how the TCR repertoire may be 

affected by ART. 

 

We hypothesized that the structural composition and clonotypic phenotype of 

epitope-specific responses may also be altered in individuals undergoing ART. In 
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this study, we compared amino acid and clonotypic diversity within the HIV-

epitope-specific TCR repertoire before and after initiation of ART. Furthermore, 

we analyzed memory phenotypes and expression of CD38 and PD-1 on 

dominant and sub-dominant clonotypes from these epitope-specific responses. 

After initiation of ART, we noted changes in memory subset distributions, and 

decreased activation of CD4+ and CD8+ T cell populations. The magnitude of 

HIV epitope-specific T cell responses decreased after ART, and this was 

accompanied by a reduction in TCR repertoire diversity as measured by the 

number of discrete clonotypes found within epitope-specific responses, as well 

as by measurement of TRBV-CDR3 amino acid diversity. However, dominant T 

cell clonotypes typically remained dominant even post ART, and these T cell 

populations retained a PD-1high phenotype compared to sub-dominant 

clonotypes. These findings provide insights into the forces which likely drive the 

evolution of the TCR repertoire, namely, that high levels of persistent antigen 

exposure may drive TCR repertoire diversity, and that even in the setting of 

sustained reduction in circulating antigen, dominant T cell clonotypes maintain a 

phenotype consistent with exhaustion. 
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Materials and Methods 

 

Individual Cohort and HLA-typing. This cohort was organized within the 

Vanderbilt-Meharry CFAR and was comprised of patients recruited through the 

Comprehensive Care Center (Nashville, TN) who underwent initiation of ART 

during the course of follow up. All individuals were typed for HLA Class I by DCI 

Tissue Typing Laboratory (Nashville, TN). This study was approved by the 

Institutional Review Board at Vanderbilt University, and all participating 

individuals provided written informed consent.  

T-cell sorting and TCR sequencing. Epitope-specific T cells were labeled with 

appropriate MHC-I tetramers and sorted by FACS to >95% purity on a FACSAria 

cell sorter (BD). TCR Repertiore Sequencing was carried out as described (169). 

Briefly, total RNA was isolated from sorted class I tetramer-specific cells with 

RNA-STAT-60 (Teltest inc., TX, USA). Anchored RT-PCR was performed using a 

modified version of the SMART (switching mechanism at 5' end of RNA 

transcript) procedure (Clontech, Mountain View, CA) and a TCRB constant 

region 3' primer (5’-ATT CCT TTC TCT TGA CCA TG-3’). cDNA amplification 

was performed using the TCR constant region based primer (5’-TTC ACC CAC 

CAG CTC AGC TC-3’) and 10X Universal Primer A Mix (Clontech, Mountainview, 

CA) . PCR products of 600–700 base pairs were gel purified (Qiagen, Valencia, 

CA), ligated into the TOPO TA vector (Invitrogen, Carlsbad, CA), and used to 

transform chemically competent Top 10 E. coli cells (Invitrogen, Carlsbad, CA). 

Bacterial colonies were selected, and screened for the presence of insert using 
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PCR with M13 primers. Selected colonies were sequenced with the Taq 

DyeDeoxy Terminator cycle sequencing kit (Applied Biosystems, Foster City CA) 

and capillary electrophoresis on a PRISM automated sequencer (Applied 

Biosystems, Foster City CA). In frame TCR Sequences were edited and aligned 

using Sequencher (Gene Codes Corp., Ann Arbor, MI) and compared to the 

human TRBV genes database (http://imgt.cines.fr) (170). The TRBV 

classification system of the international ImMunoGeneTics database (171) is 

used unless noted. 

Measurement of T cell receptor diversity: The diversity of the TCR CDR3 

region was performed was determined using the Shannon entropy (H) (118, 172) 

calculation for protein sites as described previously (119) by the formula: H = −Σ 

pilog2 pi where pi is the fraction of residues at a site that is amino acid type i. For 

amino acids in the CDR3, H can range from 0 (site contains only one amino acid 

in all sequences) to 4.32 (all amino acids are represented equally at this site). 

Positions that contained >50% gaps were excluded from analysis. Statistical 

values are expressed as mean or median plus or minus SEM. The diversity of 

TCR clonotypes was calculated using the Simpson’s Diversity Index (173) using 

the formula Ds=1- Σ ni(ni-1)/N(N-1), where ni is the TCR clone size of the 

clonotype and N is the total number of TCR sequences sampled. Comparisons 

between groups were performed using Mann-Whitney test or two-tailed Student t 

test, depending on data normality. Correlations were calculated using Spearman 

Rank test. GraphPad Prism v5.03 software was used for statistical analysis.  
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Flow cytometric evaluation of lymphocyte surface molecules. Lymphocyte 

subsets were evaluated using with anti-CD3-AlexaFluor-700 (BD), CD4-PE-

Texas Red (Caltag), CD8-Pacific Orange (Caltag), CD14-PerCP (BD), CD19-

PerCP (BD), CD38-PE-Cy7 (E-biosciences), CD45RO-PE-TexasRed (E-

biosciences), CD56-PE-Cy5 (BD), CCR7-pure (Mouse IgG2, clone 150503, R&D 

Systems), Viaprobe (BD), anti-PD-1-pure (Mouse IgG1, clone EH12:2H7, 

BioLegend), goat-anti-mouse IgG-Pacific Blue (Molecular Probes), anti-TRBV-

PE/FITC (Beckman-Coulter). Epitope-specific T cell populations were stained 

with MHC-I tetramers HLA-B*08-EI8 (EIYKRWII), HLA-B*08-FL8 (FLKEKGGL), 

HLA-B*15-GY9 (GLNKIVRMY), and HLA-B*15-TY11 (TQGYFPDWQNY) (NIH 

Tetramer Core Facility, Atlanta, GA) and HLA-B*57-KF11 (KAFSPEVIPMF), 

HLA-B*57-IW9 (ISPRTLNAW), and HLA-B*57-QW9 (QASQEVKNW) (Beckman-

Coulter). 

 

Cells were labeled with MHC-I tetramers at 21ºC for 10 minutes. Anti-PD-1 or 

anti-CCR7 antibody was added to the suspension and incubated for a further 20 

minutes. Cells were washed and labeled with pacific blue-conjugated goat anti-

mouse antibody, washed and blocked with mouse normal IgG antibodies, and 

labeled with the remaining directly conjugated surface antibodies listed above. 

Cells were then washed a final time before acquisition on a BDFACSAria 

instrument. Data was analyzed using BDDiva software v6.1. 
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Results 

 

Epitope-specific immune responses contract after ART 

ART dramatically reduces viral loads in HIV+ individuals and many individuals 

experience increases in CD4 T cell count or reductions in the phenotypic 

activation status of T cells. We determined the composition of the epitope-

specific T cell receptor (TCR) clonotypic repertoire as well as clonotypic cell 

surface phenotype of 14 epitope-specific CD8+ T cell responses from 8 HIV+ 

individuals before and after the initiation of highly active anti-retroviral therapy 

(ART) (Table 3-1). Six of eight individuals had increases in CD4+ T cell counts, 

and the cohort had a mean reduction in viral load of 2.3 log (p=.01; paired T test). 

One of the two individuals who failed to reconstitute CD4+ T cells is 10004. This 

individual had abnormally low CD4 T cell counts from his inclusion in our cohort 

in 2003, and it is not surprising to note that the CD4 compartment is not fully 

reconstituted in this individual. The mean number of days before suppression of 

viremia to below 50 copies/ml was 170. All individuals were eventually 

suppressed to below 50 copies/ml, and 5 of 8 individuals were fully suppressed 

to undetectable levels at the time of repertoire and phenotypic analysis (Table 3-

1). 
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Using MHC-I tetramer reagents, we identified and tracked 14 distinct HIV-

epitope-specific CD8+ T cell populations before and after initiation of ART. 

Overall, epitope-specific T cell populations measured post-ART contracted as a 

percentage of the parent CD8+ T cell population compared to pre-ART 

measurements (73% median decrease, Figure 3-1A, p=0.02). However, this 

effect was not universal. For example, The B*57-KF11 response in 10004 

increased as a percentage of the parent CD8+ T cell population after initiation of 

ART, while the B*57-QW9 response in the same individual did not increase to a 

similar degree indicating that individual epitope-specific responses can respond 

independently to reductions in viral load. 

 

T cell clonal dominance is maintained after ART 

Epitope-specific TCR repertoires were determined by labeling epitope-specific 

populations with MHC-I tetramers, isolating these cells using FACS, and directly 

sequencing the T cell receptor-B variable region. Clonotypic dominance within 

the repertoire was determined by sequencing and confirmed by co-labeling 

tetramer+ populations with anti-TRBV antibodies. TCR repertoire data generated 

independently using these two methods corresponds well and with a high degree 

of significance (Figure 3-2, Pearson r=0.85, p<0.0001). 
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Figure 3-1 – Epitope-specific responses contract but clonotypic dominance 
remains intact.  Epitope-specific responses contract after initiation of ART 
(p=0.021, n=14),A.  Dominant clonotypes maintain relative dominance after 
initiation of ART (p=0.6947, n=12), B. Patient identifier, epitope-specific 
response, and dominant TRBV population are indicated in the figure legend. 



101 

Several clonotypes varied in their relative frequency within the epitope-specific 

repertoire after initiation of ART, but dominant clonotypes remained dominant 

after initiation of ART in the majority of cases. No statistically significant patterns 

emerged from our analysis of changes within the TCR repertoire after initiation of 

ART (Figure 3-1B). Dominant clonotypes in the 10001 B*15-TY11 and 20023-

B*15-GY9 responses contracted significantly after initiation of ART to the point 

that they made up only minor clonotypic populations in the TCR repertoire. No 

relationship was apparent between contractions in the TCR repertoire and 

corresponding phenotypic measures in our study. We next evaluated the TCR 

repertoire of these epitope-specific immune responses in more detail.  

 

The epitope-specific T cell receptor repertoire narrows after ART 

We were interested in determining the effect of ART on the clonotypic 

composition and structural diversity of the T cell receptor repertoire within 

epitope-specific responses. Diversity within the TCR repertoire can be measured 

using several methods. Shannon entropy (H) provides a useful metric to assess 

the degree of overall amino acid diversity within the TRBV-CDR3 (118, 119) 

(120, 129). Diversity analysis using Simpson’s diversity index can account for 

both abundance of a clonotype as well as its proportion within the repertoire 

(117). We used both methods to evaluate T cell repertoire diversity before and 

after ART.  
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We calculated entropy (H) values for each amino acid position within the TRBV-

CDR3 regions of 12 epitope-specific responses in 8 individuals before and after 

initiation of ART (Figure 3-2A). Taking individual amino acid positions in each of 

the epitope-specific populations into account, post-ART entropy was reduced 

compared to pre-ART (p<0.0001). The total number of clonotypes measured 

post-ART was reduced from a mean of 6.5 clonotypes/response to 3.9 

clonotypes/ response (Figure 3-3A, p=0.02). The mean entropy values for each 

CDR3 region (i.e. the average of the individual CDR3 amino acid entropy values) 

for epitope-specific populations post-ART decreased compared to pre-ART 

values (Figure 3-3B, p=0.0269). Additionally, by measuring the number of 

clonotypes and their relative abundance in the epitope-specific TCR repertoire, 

we also show that diversity is reduced after initiation of ART (Simpson’s diversity 

index, Figure 3-3C, p=0.025). It is important to note that despite the smaller 

magnitudes of epitope-specific responses after initiation of ART, there was no 

correlation between the number of cells sorted and the number of clonotypes 

determined (Spearman correlation, r=0.33, p=0.15). This is consistent with our 

prior data (129). Taken together, these data provide compelling evidence that the 

epitope-specific TCR repertoire narrows after initiation of ART in terms of overall 

amino acid diversity as well as in the number of clonotypes within each response. 
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Figure 3-3 – TCR repertoire diversity is reduced after initiation of HAART.  
Total number of clonotypes within epitope-specific decreased after initiation of 
HAART (p=0.0205, 12 epitopes), A. Mean entropy decreased in 10/12 evaluated 
responses, (p=0.0537, 11 epitopes), B.  Reductions in diversity by Simpson’s 
diversity index (p=0.0251), C. 
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T cell populations undergo memory redistribution and reductions in 
activation status after initiation of ART 
 
T cell phenotype is governed by environmental signals and is likely influenced by 

the level of antigen burden. Compared to uninfected controls, T cell populations 

in HIV infection are associated with skewed T cell memory differentiation (32) 

and increased expression levels of CD38 and PD-1 (174). We used expression 

of CD45RO and CCR7 to measure memory distribution on T cell populations 

before and after initiation of ART. Our longitudinal analysis shows that 

CCR7+/CD45RO- (Tnaive) and CCR7+/CD45RO+ (Tcm) populations are 

reconstituted after initiation of ART. Mean Tnaive populations increase by 2.5 fold 

and Tcm populations increase by 1.8 fold (Figure 3-4A, B; Tnaive, p=0.0078 and 

Tcm, p=0.0494). However, epitope-specific populations did not undergo significant 

changes in memory phenotype after initiation of ART.  

 

In a similar fashion, we compared post-ART expression of CD38 and PD-1 to 

pre-ART expression (Figure 3-5A). Our analysis determined a 3.1 fold reduction 

in CD38 mean fluorescence intensity (MFI) and a 2.2 fold reduction in PD-1 MFI 

on CD8+ T cell populations (Figure 3-5B, CD38, p=0.0547; PD-1, p=0.0078). We 

did not observe statistically significant changes in the expression of these 

markers on epitope-specific populations. Overall, these results suggest that 

parent T cell populations in individuals receiving ART undergo phenotypic 

changes in memory distribution and activation status but that these changes are 

not directly mirrored in epitope-specific populations. 
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Figure 3-4 – CD8+ T cell memory populations are reconstituted after 
initiation of ART. CD8+ and epitope-specific T cells were co-labeled with CCR7 
and CD45RO to determine memory distribution, A. CD8+ T cell Tnaive and Tcm 
populations increased after initiation of ART (Tnaive, p=0.0078 and Tcm, 
p=0.0494). 
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Figure 3-5 – CD8+ T cell activation is reduced after ART while epitope-
specific changes are variable. CD8+ and epitope-specific T cells were co-
labeled with CD38 and PD-1 at pre-ART and post-ART timepoints, A. CD38 and 
PD-1 expression on CD8+ T cells is reduced after initiation of ART (p=0.0078), B.
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PD-1 expression patterns remain stable after initiation of ART 
 
Expression of PD-1 is closely related to antigen exposure and T cell exhaustion 

in several infection systems (93, 175, 176), and we have previously shown that 

PD-1 is more highly expressed on dominant clonotypes within epitope-specific T 

cell populations (Conrad et. al. 2011). Having demonstrated clonotypic 

remodeling after initiation of ART, we were interested in determining whether 

initiation of ART would influence the relationship between clonotypic dominance 

and PD-1 expression. 

 

Epitope-specific T cell clonotypes were identified using tetramer reagents and 

anti-TRBV antibodies and PD-1 expression was determined by co-labeling these 

populations with anti-PD-1 antibodies (Figure 3-6A). As previously reported, we 

observed a distinct pattern of PD-1 expression on dominant and sub-dominant 

clonotypes within HIV-epitope-specific T cell populations whereby dominant 

clonotypes within epitope-specific populations expressed higher levels of PD-1 

than did corresponding sub-dominant clonotypes. This pattern of higher PD-1 

expression on dominant clonotypes remained statistically significant post-ART 

(Figure 3-6B). We noted no significant relationships between clonotype 

dominance and expression of CD38, CD127, or CD57 (data not shown). These 

results indicate that while overall immune activation may decrease on the parent 

CD8+T cell population after initiation of ART, the environmental signals which 

influence PD-1 expression on epitope-specific clonotypes remain intact. 
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Discussion 

 

Clonotypes within the epitope-specific T cell receptor repertoire recognize viral 

epitopes with an exquisite specificity (115), and antigen exposure almost 

certainly drives their phenotypic qualities (106) (Conrad, Ramalingam et al. 

2011). Our data here demonstrate that after initiation of ART, epitope-specific T 

cell responses contract but that clonotypic dominance within the TCR repertoire 

is most often maintained, that the TCR repertoire narrows by number of 

clonotypes and by amino acid diversity within the repertoire, and finally that 

despite the clear effects within the immune system, dominant clonotypes remain 

PD-1high compared to sub-dominant clonotypes. While other studies have noted 

phenotypic changes on T cell populations (61, 163) and contraction of epitope-

specific responses (164, 177), this is the first report to our knowledge which 

assess diversity with in the TCR repertoire and clonotypic phenotype before and 

after initiation of ART. 

 

Our studies here analyzed the epitope-specific TCR repertoire in 14 epitopes in 8 

HIV+ individuals before and after initiation of ART using a variety of 

methodologies. The first method involved simply counting the number of 

clonotypes identified by sequencing. Method two used Simpson’s diversity index 

(117) to assess the number of clonotypes in a response and, importantly, also 

accounts for the frequency of each clonotype as a part of the whole population. 

The third method used calculations to determine entropy (H) by assessing the 
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variability of amino acids substitutions within the TCRβ-CDR3 expressed in a 

given epitope-specific TCR repertoire. Each method indicated with statistical 

significance that the clonotypic TCR repertoire narrows after initiation of ART. 

 

We have previously shown that reduced diversity within the epitope-specific T 

cell receptor (TCR) clonotypic repertoire is associated with epitope escape in 

chronic HCV infection and data from SIV-infected macaques show a similar 

effect whereby narrow TCR repertoires drive immune escape Our group has 

shown the dynamic nature of the HIV epitope-specific T cell receptor repertoire 

over the course of chronic infection (127). Individual T cell clonotypes differ in 

their fine specificity for wild-type and variant viral epitopes (115), and this extends 

to populations of T cell clonotypes to recognize circulating in-vivo epitope 

variants (127, 129). We recently demonstrated that epitope specific clonotypes 

have a skewed maturation phenotype (128), and our most recent extension of 

this work shows that dominant clonotypes express a PD-1high/CD127low surface 

phenotype and recognize circulating viral variants, whereas sub-dominant 

clonotypes are better able to recognize and suppress epitope variants [Conrad et 

al, 2011]. Taken together with the data presented here, we suggest that 

individual T cell clonotypes may preferentially contribute to recognition of discrete 

virus populations, and that a diverse T cell receptor repertoire may provide more 

effective control of viral replication. 
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We noted that epitope-specific T cell populations decreased in relative frequency 

after suppression of viral replication under ART. Presumably, and as suggested 

previously (164, 177), this contraction is a result of reductions in antigen 

exposure and corresponding decreases in antigen-mediated T cell expansion. 

Within these lower frequency epitope-specific responses, however, dominance 

within the clonotypic hierarchy was largely maintained after ART suggesting that 

the features of the immune response which are responsible for maintaining the 

clonotypic hierarchy are independent of absolute antigen levels. Various lines of 

research support the theory that TCR avidity for antigen is the driving factor in 

establishing and maintaining dominance within the TCR repertoire (133, 159) 

although clonotypic dominance may also result in deletion from the 

repertoire(155).  

 

If avidity is a primary biophysical determinant of dominance within the repertoire, 

it would fit the criteria outlined above of acting as a relative factor independent of 

absolute or systemic levels of antigen. An alternative theory to explain the 

unperturbed maintenance of the clonotypic hierarchy might be that with the 

dramatic reduction in viral antigen exposure, epitope-specific clonotypes become 

ambivalent to change and are maintained in the status quo. If this were the case, 

we might expect to observe deletion of the more highly dysfunctional dominant 

clonotypes, and indeed, in two epitope-specific TCR repertoires, we do observe a 

dramatic shift in dominance where the frequency of the pre-ART dominant 

clonotype contracts to much lower levels post-ART and previously sub-dominant 
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clonotypes increase in frequency. If, in these cases, the dominant clonotype had 

been generated in response to a viral variant epitope which had not been fixed in 

the viral population and after suppression of viremia another epitope sequence 

became predominant, even at low levels, we might expect a distinct lonotype to 

establish dominance in the TCR repertoire. Future studies should be directed at 

evaluating epitope sequence variation in the context of ART-mediated viral 

suppression as well as a further characterization of the mechanisms which 

influence maintenance of epitope-specific clonotypic hierarchies in the absence 

of antigenic activation or stimulation. 

 

We assessed cell surface phenotype on various cell populations. Activation and 

memory profiles on CD8+ T cells clearly change after initiation of ART. CD38 and 

PD-1 expression are reduced on CD8+ T cells but no pattern of overall reduction 

was apparent on epitope-specific populations in our study. In line with other 

studies indicating activation levels are strong prognostic indicators of disease 

progress and viral load (61, 163), reductions in activation are a positive indicator 

of clinical improvement in these individuals. We noted consistent redistributions 

within CD8+ T memory subsets which indicated Tnaive and Tcm repopulations 

after initiation of ART. Again, these results are in line with previously reported 

data (136, 178) which indicate that ART initiates a rebound of immune responses 

which more closely resemble those found in uninfected individuals. The changes 

we note on CD8+ T cell population support our hypothesis that these individuals 

underwent significant immune remodeling after initiation of ART. 
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While the changes we observed in activation and memory phenotype on CD8+ T 

cells after initiation of ART have been reported previously in other cohorts, the 

measurement of phenotypic changes after initiation of ART on epitope-specific 

clonotypes has not been reported. Recent findings from our group established a 

relationship between dominance in the epitope-specific TCR repertoire and a PD-

1high/CD127low phenotype (Conrad, Ramalingam et al. 2011). By assessing 

epitope-specific clonotypic T cell populations before and after initiation of ART, 

we noted that dominant clonotypes had a PD-1high phenotype compared to sub-

dominant clonotypes which had been established during chronic infection and 

which endured after initiation of ART. We did not note statistically significant 

relationships between clonotypic dominance and expression of CD38, CD127, 

CD57 or memory distribution before or after initiation of ART. The absence of 

these relationships conforms to results from a previous study in chronic HIV 

infection in the absence of ART which also found no relationships between 

dominance and CD57 expression or memory distribution (128). 

 

Our findings in regard to the durable nature of the PD-1high phenotype on 

dominant clonotypes have implications in a few different scenarios. As mentioned 

above, if dominance is established as a result of TCR avidity and if PD-1 

expression is predicated on antigen sensing as has been suggested by other 

groups in both the LCMV and SIV models as well as in naturally controlled HIV 

infection (105, 106), then, as in the maintenance of the TCR repertoire hierarchy 
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mentioned above, we might expect PD-1 expression patterns to be maintained 

by relative antigen exposure rather than as a result of absolute levels of 

circulating antigen. Furthermore, considering our observations that PD-1 and 

CD38 expression patterns were not universally reduced on epitope-specific 

populations or on their clonotypic constituents, we hypothesize that these cells 

continue to receive some level of antigen stimulation even after the dramatic 

antigen reductions seen after initiation of ART. Indeed, the increased expression 

of PD-1 and CD38 we noted on a few epitope-specific populations may suggest 

that these responses actually saw relative increases in antigen exposure after 

initiation of ART. A more detailed dissection of the mechanisms at work at the 

epitope and clonotypic level is necessary to more fully understand how epitope-

specific responses evolve over time in the context of ART-mediated suppression 

of viremia. 

 

With their expression of identical TCR, HIV-epitope-specific clonotypes represent 

the fundamental unit of the T cell response to HIV. A more complete 

understanding of how epitope-specific clonotypes are maintained over time in the 

presence and absence of their cognate antigen is of great interest as we seek to 

elicit effective, durable T cell responses via vaccination. Overall, the results we 

report here indicate that despite the dramatic decreases in viral load, increases in 

CD4 count, and decreases in systemic activation, the mechanisms which govern 

clonotypic expansion and phenotype within epitope-specific T cell responses 

remain intact at some level. While TCR avidity may be a key component, it is 
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likely not a singular determinant of clonotypic repertoire diversity or phenotype. 

Moreover, the mechanisms at work in these responses and the manner in which 

they interact remains obscure, and a more complete understanding of their 

nature requires further investigation. 
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CHAPTER IV 

 

DISCUSSION AND FUTURE OBJECTIVES 

 

Clonotypes are the fundamental units of T cell immunity 

A fine line separates immune responses which recognize, suppress, and clear 

pathogens from immune responses which are either too weak or dysfunctional to 

clear pathogens or too strong and cause immunopathology. The host immune 

response must have the capacity to recognize pathogen-derived antigens with 

exquisite specificity and mount a defense just strong enough to clear infection 

without causing collateral damage. Numerous lines of empirically- and 

experimentally-derived knowledge from cellular and genetic studies inform us 

that T cell responses are critical components of the immune response to 

suppress viral replication and control HIV disease (30, 63, 64, 68-71, 179). 

Despite this knowledge, no clear correlates for immune protection have been 

defined in HIV infection (140, 180). Recent findings, including my own work on 

epitope-specific clonotypic dominance and surface phenotype, yield insight into 

the features which regulate immune responses and mediate dysfunction in 

natural immune responses to chronic viral infections (14, 30, 33, 128, 165).  

 

Much of the work from our research group is founded on the notion that 

clonotypic diversity within the epitope-specific TCR repertoire contributes to 

improved recognition of highly variable epitopes within pathogen infections, and 
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several lines of inquiry support this (1, 120, 121, 127, 129, 181). Despite an 

unambiguous understanding that epitope-specific responses are usually 

comprised of multiple independent clonotypes which recognize antigens to 

differing degrees and with different functional outcomes (115, 127-130, 133), a 

relatively meager effort has been directed toward defining the phenotypic and 

functional nature of clonotypes within epitope-specific responses. The clonotypes 

which constitute heterogeneous epitope-specific T cell populations are the 

fundamental units of a T cell response to antigen (47). As such, studies of 

epitope-specific clonotypes can provide insight into the mechanisms which allow 

for their recognition of antigen, drive their subsequent expansion, and mediate 

their capacity to produce effector functions and proliferate in response to 

activation.  

 

Clonotypic dominance and dysfunction 

In characterizing ex vivo epitope-specific TCR repertoires in chronically infected, 

ART-naïve individuals, my work defined a marked PD-1high/CD127low phenotype 

on dominant clonotypes within CD8+ HIV-epitope-specific T cell responses 

(Conrad et. al, 2011). Functional experiments indicated that dominant clonotypes 

are primed to respond to circulating viral epitopes, that they are likely impaired 

for in vitro survival in the absence of antigen signaling, and that sub-dominant 

clonotypes may preferentially recognize and suppress variant epitopes. These 

ideas are represented graphically in Figure 4-1. 
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Figure 4-1 – Maintenance of the clonotypic hierarchy. Dominance within the 
clonotypic repertoire is established in response to circulating viral epitopes 
(clonotype A1). Sub-dominant clonotypes respond sub-optimally to circulating 
sequence (clonotype A2) and cross-react with low-level viral variant epitopes 
(clonotypes A3B2 and A4B2). 
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Furthermore, my findings indicate that clonotypic PD-1 expression patterns in 

naturally-controlled, chronic HIV infection are durable in the face of immune 

recovery, TCR repertoire narrowing, and suppression of viral replication 

subsequent to the initiation of ART. These research findings illuminate a distinct 

phenotypic and functional heterogeneity which segregates to independent 

clonotypes within epitope-specific responses, and it suggests that sensing 

cognate antigen drives clonotypic phenotype and expansion within the repertoire 

to a large degree. 

 

My work established that dominance in the HIV-epitope-specific clonotypic 

hierarchy is associated with a PD-1high/CD127low surface phenotype, one 

consistent with T cell impairment and immune exhaustion (80). Expression of 

PD-1, a co-inhibitory surface receptor, on whole T cell populations in HIV+ 

individuals has been associated with increased viral loads and decreased CD4 T 

cell count (84, 86) and expression on epitope-specific T cell populations has 

been linked directly to T cell exhaustion and ongoing antigen exposure in chronic 

infections in mouse models (106) and natural human infections (147). Moreover, 

various studies of PD-1 expression determined that interruption of PD-1 signaling 

improved cytokine production and proliferation in epitope-specific T cell 

populations (78, 84, 86) and reduced sensitivity of PD-1high populations to 

apoptosis (85). Reduced expression of CD127, a component of the IL-7 receptor 

complex, has been implicated as a marker of impaired memory differentiation in 

HIV infection (112). 
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My studies involved HLA-B-restricted HIV-epitopes from chronically infected 

individuals for reasons primarily related to reagent and sample availability. HLA-

B-restricted HIV-epitopes are more commonly recognized and exert more 

selective pressure on viral replication (68), but a few HLA-A alleles restrict highly 

immunodominant HIV epitopes which are widely recognized in human 

populations (71). Additionally, limited viral sequence data was generated in order 

to confirm that circulating viral sequences matched the consensus sequences 

used experimentally in our tetramer reagents. Finally, selection of viral epitope 

variants in my studies was based on the most common epitope variants (Los 

Alamos HIV Database) rather than informed by deep sequencing of autologous 

viral sequence to identify circulating and low level variants.  

 

In order to extend my initial findings, future research directions must be oriented 

around the strengths and expertise of our research group in characterizing 

epitope-specific TCR repertoires which arise in response to viral infection. Two 

broad lines of inquiry will enable us to better define mechanisms that underlie 

recognition of viral epitopes, development and maintenance of the TCR 

repertoire over time, and suppression of viral replication: 1 – Comprehensive 

investigation of TCR repertoires specific for consensus and variant epitopes as 

well as for the corresponding in vivo viral epitope sequences in HIV+ individuals 

over time, preferably beginning at time points prior to establishment of viral set 

point and chronic infection; 2 – Parallel determination of surface phenotype, 
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functional capacity, and signaling properties of epitope-specific clonotypes. This 

future work will require the investigation of additional HLA-A-restricted epitopes 

from HIV and other common viral infections, a more comprehensive strategy for 

establishing the presence or absence of viral sequence variants in circulation 

within an individual, as well as subsequent experiments informed by autologous 

sequence using viral variants to assess clonotypic function and signaling 

characteristics. 

 

Viral epitopes and epitope-specific TCR repertoires in HIV+ individuals 

Our research group has at its disposal many of the key elements necessary to 

expand our understanding of TCR repertoire composition and maintenance in 

diverse, natural human viral infections namely a cohort of chronically infected 

HIV+ individuals, facilities to perform ex vivo sorting of live T cell populations, and 

expertise in culture of primary T cells. Several very accessible lines of inquiry are 

possible based on the recent availability of tetramer reagents which facilitate 

identification of clonotypes within HLA-A-restricted epitope-specific responses to 

HIV, CMV, and EBV.  

 

Epitope-specific responses to two other chronic viral infections, cytomegalovirus 

(CMV) and Epstein Barr virus (EBV), are commonly detectable at relatively high 

frequencies within individuals in our HIV+ cohort. Research from other groups 

suggests that clonotypic TCR hierarchies in epitope-specific responses to CMV 

and EBV are stable over time but vary in differentiation status (182) and that T 
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cell responses to these herpesviruses may have some degree of cross-reactivity 

(183). The evolutionary history of HIV infection in humans is significantly shorter 

than that of CMV or EBV (31, 184), and comparison of T cell responses specific 

for these viruses in the context of HIV co-infection may yield useful insight into 

the mechanisms which allow for effective suppression of EBV and CMV 

replication while replication of HIV remains partially or completely uncontrolled. 

While some data has been reported using epitope-specific responses to CMV 

and EBV as convenient internal controls for investigations of HIV-epitope-specific 

responses (84-86), little is known about the phenotypic or functional nature of 

constituent clonotypes and their response to changes in corresponding viral 

antigen exposure. Moreover, a better understanding of the T cell responses to 

these viral infections in the context of HIV-mediated immunosuppression may 

provide insight into the dynamics of T cell responses and herpesvirus reactivation 

in the related field of transplant immunology (185, 186). 

 

Research groups have studied the effects of epitope variation on T cell activation 

and function (187) and have studied the dynamics of epitope-specific repertoires 

upon epitope-specific escape in a limited manner (131), but little research has 

put all the pieces of this puzzle together in a comprehensive manner. 

Experiments which carefully measure the changing composition of epitope-

specific TCR repertoires as they react to a variable antigenic epitope should be 

undertaken. This will require the occurrence of a few relatively special events - 

namely epitope-specific responses and clonotypic repertoires amenable to 
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longitudinal interrogation and viral epitopes which mutate to escape recognition 

of the TCR (as opposed to mutations which abrogate binding to the HLA 

molecule). Fortunately, recent developments in massively parallel sequencing 

technology (188, 189) show some promise in the ability to determine detailed 

analyses of both TCR repertoires and viral quasispecies. If these technologies 

are able to be scaled down to the point where small populations of sorted T cells 

or viral sequences from individuals with low levels of viremia could be 

sequenced, they may become a necessary component of future studies. 

 

In natural HIV infection, epitope-specific T cells are likely exposed to and 

activated by their specific cognate antigens as well as by related, but non-

cognate viral variants or escape mutants. The complex interplay of constant 

exposure and activation of epitope-specific clonotypes by related, but distinct 

antigens has not been well treated in the literature, and this avenue of 

investigation should be pursued. Indeed, activation as measured by CD38 

expression on T cells is a strong, independent predictor of disease progression 

(61) and is thought to be one of the underlying causes of immunopathogenesis in 

HIV disease (56, 58). Understanding how epitope variation affects the activation 

status of epitope-specific T cell populations is necessary in the assessment of T 

cell responses in the context of ongoing viral replication and immune activation 

found in chronic HIV infection. 
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Within our current and growing cohort of HIV+ individuals, a natural initial 

extension of my work would be further characterization of the phenotype and 

function of clonotypic constituents within epitope-specific T cell responses to HIV, 

CMV, and EBV in the same HIV+ individuals. These studies should include 

longitudinal investigations of TCR repertoires directed against epitopes restricted 

by HLA-A and HLA-B alleles and should be done in coordination with careful viral 

sequencing to determine not only corresponding circulating epitope sequences 

but also low frequency viral epitope escape variants. Several groups have 

demonstrated that epitope escape can influence surface expression of PD-1 and 

CD127 (106, 147, 187), but none at the clonotypic level. Van Bockel et. al. have 

recently published investigations indicating that dominant clonotypes within a 

single HIV-epitope-specific response persist over time and cross-react with 

epitope variants suggesting that exposure to circulating and low level variants 

likely impacts the composition of the clonotypic repertoire (131), findings my work 

largely agrees with. This group used novel tetramer reagents constructed using a 

common epitope variant peptide. Their findings indicated significant overlap in 

the clonotypes found within TCR repertoires which recognize both consensus 

and variant epitopes. Future experiments should include the use of both 

consensus and variant tetramer reagents to determine TCR repertoires which 

correspond to consensus and autologous variant epitopes. I hypothesize that in 

vivo dominant epitope-specific clonotypes will be directed against the 

predominant circulating viral variant, perhaps a consensus epitope, and that 

clonotypes identified as sub-dominant with consensus tetramer may actually be 
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dominant clonotypes when assessed using tetramer constructed with low-level 

autologous variant epitopes. 

 

Clonotypic dominance in the TCR repertoire 

The mechanisms which govern clonotypic dominance within the TCR repertoire 

have been scrutinized by a number of different research groups, and TCR avidity 

for cognate antigen was defined as a prominent determinant in the selection of 

dominant clones within an epitope-specific response (133, 190-192). However, 

TCR avidity for antigen seems also to be a double edged sword.  For the 

individual, maintenance of high avidity clonotypes is associated with lower viral 

set points in chronic infection, but the high avidity clonotypes themselves are the 

ones more likely to be deleted from a given response (155). Studies preceding 

establishment of HIV viral set point or simply closer to acute infection may yield 

interesting insight into the clonotypic dynamics within epitope-specific responses 

as well as show a more significant relationship between dominance and avidity. 

 

Clonotypes in my studies were defined by expression of a unique TRB-CDR3 or 

distinct TRBV usage, and statistical analysis of clonotypic PD-1 and CD127 

expression patterns shows a relationship between surface phenotype and 

dominance within the TCR repertoire.  These results imply that antigen signaling 

through unique clonotypic TCR likely influences cell surface phenotype. There 

was no statistically significant relationship to indicate that TCR avidity drove 

clonotypic dominance in our cohort, although there was a modest trend in that 
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direction. There was, however, a positive correlation between TCR avidity and 

PD-1 expression on clonotypes regardless of hierarchical status in the repertoire 

indicating that stronger recognition of antigen may be a determinant of PD-1 

mediated dysfunction on clonotypes. A similar analysis of dominance and 

memory phenotypes showed no significant relationship (128). These findings 

may be reconciled by considering that our cross-sectional study used tetramers 

constructed only with consensus peptide epitopes and might have assessed 

epitope-specific TCR repertoires in individuals for which HIV had already 

undergone escape mutation. In ‘escaped’ epitopes, the in vivo TCR repertoire 

would be primarily directed against a circulating variant epitope rather than the 

consensus peptide epitope in the tetramer. Almeida et. al. described T cell 

antigen sensitivity as a primary determinant of T cell function and suppressive 

capacity (47). These investigations, which utilized unimpaired clonal T cell 

populations that recognized the same HLA-B*27-KK10 epitope but with different 

functional sensitivities, highlight the necessity to investigate T cell responses at 

their most fundamental level, that of the epitope-specific clonotype.  

 

Future efforts to define the relationship between clonotypic antigen sensing may 

include experiments to define the functional qualities (sensitivity, proliferative, 

and suppressive capacities) of sister clonotypes within the same epitope-specific 

response. In order to have enough cells for experimentation, it may even be 

necessary to sort these clonotypic populations and grow out clones as previously 

described (47, 115, 130). We have some expertise in labeling small epitope-



129 

specific clonotypes and isolating these cells using FACS. While this is not a trivial 

task, sorting clonotypes of a given epitope-specific population and culturing these 

cells to suppress viral replication is feasible and such experiments might even be 

enhanced with the addition of reagents to inhibit or activate cell surface receptors 

like PD-1 or CD127 and thereby alter clonotype function. It would be of great 

interest if the functions of epitope-specific clonotypes could be tuned using 

exogenous signals such as cytokines or inhibitory signal blockade and might lend 

support to the notion that the epitope-specific repertoire itself could be 

manipulated in the context of artificial antigen stimulation or vaccination. 

 

Relieving clonotypic dysfunction through signaling inhibition 

Beginning with initial descriptions of CTLA-4 as a negative co-stimulatory 

molecule (44-46), our understanding of co-stimulatory networks on lymphocytes 

has developed rapidly in recent years. Other co-stimulatory molecules such as 

PD-1, BTLA (B and T lymphocyte attenuator), and ICOS (inducible co-stimulator) 

have been described since that time (42, 48, 98) and act in concert to regulate T 

cell responses through unique and overlapping functions, especially in the 

context of continuous antigen exposure and cellular activation as seen in chronic 

HIV infection. Since the seminal reports of reversible PD-1 mediated T cell 

impairment in mouse and human infections (78, 84, 86, 193), several other 

groups have investigated myriad molecules and signaling interactions which 

regulate T cell responses (95, 97, 154, 194) in chronic HIV infection. 
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It is clear that in the context of chronic HIV infection, ongoing viral replication, 

antigen exposure, and persistent immune activation, natural immune 

mechanisms are rendered dysfunctional and inadequate to the task of 

suppressing viremia (14, 31). It seems that some large part of the immune 

dysfunction may be caused by inhibitory mechanisms such as PD-1 (154, 195) 

which likely evolved to reduce autoimmunity and control runaway cellular 

activation after acute infection (78, 93, 98). The tantalizing feature of this sort of 

immune dysfunction, however, is that signaling pathways originating from ligation 

of surface receptors may be interrupted outside the cell before they are received 

and thus the dysfunction might be alleviated. With a growing understanding of 

the intracellular events differentiating signaling pathways like CTLA-4 and PD-1 

(194) and downstream transcriptional events (97), it may be possible to inhibit 

the inhibitory pathways at an intracellular level. Signaling interventions show 

promise in mouse and non-human primate vaccination systems where immune 

stimulation by vaccination in concert with interruption of the inhibitory PD-1 

signaling pathway gives rise to strong cellular immune responses which show 

improved efficacy in controlling viral replication (144, 145). Our findings indicate 

that cell surface receptor phenotypes are related to dominance within the TCR 

repertoire and TCR avidity which suggests that vaccination protocols which 

include immunomodulation might influence the clonotypic composition of the 

repertoire. 
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In conclusion, my work demonstrates that clonotypic phenotype and function are 

closely associated to expansion within the TCR repertoire and antigen sensing. 

These novel findings can inform further, more detailed investigations of epitope-

specific responses in chronic controlled viruses as well as investigations to 

provide insight into the cellular mechanisms involved in maintaining epitope-

specific clonotypic repertoires to variable and static viral epitopes. Future studies 

will seek to better understand the development, maintenance, and functional 

capacity of the TCR repertoire in the face of chronic viral infection.  The 

immunopathogenesis of HIV poses difficult questions for the field, but as we gain 

insight into how immune responses develop and are maintained, answers reveal 

themselves. Ultimately, the insights we provide can inform our approaches for 

immunomodulatory therapies for HIV and other infections. 



132 

REFERENCES 

 

1. Nikolich-Zugich, J., M. K. Slifka, and I. Messaoudi. 2004. The many 
important facets of T-cell repertoire diversity. Nature reviews. Immunology 
4:123. 

2. Bartlett, J. A., S. L. Benoit, V. A. Johnson, J. B. Quinn, G. E. Sepulveda, 
W. C. Ehmann, C. Tsoukas, M. A. Fallon, P. L. Self, and M. Rubin. 1996. 
Lamivudine Plus Zidovudine Compared with Zalcitabine Plus Zidovudine 
in Patients with HIV Infection. Annals of Internal Medicine 125:161-172. 

3. Darbyshire, J. H. 1996. Delta: a randomised double-blind controlled trial 
comparing combinations of zidovudine plus didanosine or zalcitabine with 
zidovudine alone in HIV-infected individuals. The Lancet 348:283-291. 

4. Gulick, R., J. Mellors, D. Havlir, J. Eron, C. Gonzalez, D. McMahon, D. 
Richman, F. Valentine, L. Jonas, and A. Meibohm. 1996. Potent and 
sustained antiretroviral activity of indinavir (IDV) in combination with 
zidovudine (ZDV) and lamivudine (3TC). 162. 

5. Hammer, S. M., D. A. Katzenstein, M. D. Hughes, H. Gundacker, R. T. 
Schooley, R. H. Haubrich, W. K. Henry, M. M. Lederman, J. P. Phair, and 
M. Niu. 1996. A trial comparing nucleoside monotherapy with combination 
therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per 
cubic millimeter. New England Journal of Medicine 335:1081-1090. 

6. Martinez-Picado, J., M. DePasquale, N. Kartsonis, G. Hanna, J. Wong, D. 
Finzi, E. Rosenberg, H. Günthard, L. Sutton, and A. Savara. 2000. 
Antiretroviral resistance during successful therapy of HIV type 1 infection. 
Proceedings of the National Academy of Sciences of the United States of 
America 97:10948. 

7. McElrath, M. J., S. C. De Rosa, Z. Moodie, S. Dubey, L. Kierstead, H. 
Janes, O. D. Defawe, D. K. Carter, J. Hural, and R. Akondy. 2008. HIV-1 
vaccine-induced immunity in the test-of-concept Step Study: a case-cohort 
analysis. The Lancet 372:1894-1905. 

8. Rerks-Ngarm, S., P. Pitisuttithum, S. Nitayaphan, J. Kaewkungwal, J. 
Chiu, R. Paris, N. Premsri, C. Namwat, M. de Souza, and E. Adams. 



133 

2009. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in 
Thailand. New England Journal of Medicine 361:2209-2220. 

9. Study, T. I. H. C. 2010. The Major Genetic Determinants of HIV-1 Control 
Affect HLA Class I Peptide Presentation. Science 330:1551-1557. 

10. Chakraborty, H., P. K. Sen, R. W. Helms, P. L. Vernazza, S. A. Fiscus, J. 
J. Eron, B. K. Patterson, R. W. Coombs, J. N. Krieger, and M. S. Cohen. 
2001. Viral burden in genital secretions determines male-to-female sexual 
transmission of HIV-1: a probabilistic empiric model. AIDS 15:621. 

11. Wawer, M. J., R. H. Gray, N. K. Sewankambo, D. Serwadda, X. Li, O. 
Laeyendecker, N. Kiwanuka, G. Kigozi, M. Kiddugavu, and T. Lutalo. 
2005. Rates of HIV-1 transmission per coital act, by stage of HIV-1 
infection, in Rakai, Uganda. Journal of Infectious Diseases 191:1403. 

12. Aldrovandi, G. M., G. Feuer, L. Gao, B. Jamieson, M. Kristeva, I. S. Y. 
Chen, and J. A. Zack. 1993. The SCID-hu mouse as a model for HIV-1 
infection. 

13. Valentine, L. E., and D. I. Watkins. 2008. Relevance of studying T cell 
responses in SIV-infected rhesus macaques. Trends in microbiology 
16:605-611. 

14. Douek, D., M. Roederer, and R. Koup. 2009. Emerging Concepts in the 
Immunopathogenesis of AIDS*. Annual Review of Medicine 60:471-484. 

15. Buchbinder, S. P., M. H. Katz, N. A. Hessol, P. M. O'Malley, and S. D. 
Holmberg. 1994. Long-term HIV-1 infection without immunologic 
progression. AIDS 8:1123. 

16. Sheppard, H. W., W. Lang, M. S. Ascher, E. Vittinghoff, and W. 
Winkelstein. 1993. The characterization of non-progressors: long-term 
HIV-1 infection with stable CD4+ T-cell levels. AIDS 7:1159. 

17. Walker, B. 2007. Elite control of HIV Infection: implications for vaccines 
and treatment. Topics in HIV medicine: a publication of the International 
AIDS Society, USA 15:134. 



134 

18. Bansal, G. P., A. Malaspina, and J. Flores. 2010. Future paths for HIV 
vaccine research: Exploiting results from recent clinical trials and current 
scientific advances. Current Opinion in Molecular Therapeutics 12:39. 

19. Kawalekar, O. U., D. J. Shedlock, and D. B. Weiner. 2010. Current 
strategies and limitations of HIV vaccines. Current Opinion in 
Investigational Drugs 11:192. 

20. Fauci, A. S. 2003. HIV and AIDS: 20 years of science. Nature medicine 
9:839-843. 

21. PASQUIER, L. 1992. Origin and evolution of the vertebrate immune 
system. Apmis 100:383-392. 

22. Palese, M. A., J. K. Crone, and A. L. Burnett. 2003. A Castrated Mouse 
Model of Erectile Dysfunction. J Androl 24:699-703. 

23. Perelson, A. S., A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. 
Ho. 1996. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-
span, and viral generation time. Science 271:1582. 

24. Woolhouse, M. E. J., J. P. Webster, E. Domingo, B. Charlesworth, and B. 
R. Levin. 2002. Biological and biomedical implications of the co-evolution 
of pathogens and their hosts. nature genetics 32:569-577. 

25. Borrow, P., and N. Bhardwaj. 2008. Innate immune responses in primary 
HIV-1 infection. Current Opinion in HIV and AIDS 3:36. 

26. Levy, J. A., C. E. Mackewicz, and E. Barker. 1996. Controlling HIV 
pathogenesis: the role of the noncytotoxic anti-HIV response of CD8+ T 
cells. Immunology Today 17:217-222. 

27. Geijtenbeek, T. B. H., D. S. Kwon, R. Torensma, S. J. van Vliet, G. C. F. 
van Duijnhoven, J. Middel, I. L. Cornelissen, H. S. L. M. Nottet, V. N. 
KewalRamani, and D. R. Littman. 2000. DC-SIGN, a dendritic cell-specific 
HIV-1-binding protein that enhances trans-infection of T cells. Cell 
100:587-597. 



135 

28. Kwon, D. S., G. Gregorio, N. Bitton, W. A. Hendrickson, and D. R. Littman. 
2002. DC-SIGN-mediated internalization of HIV is required for trans-
enhancement of T cell infection. Immunity 16:135-144. 

29. Smith-Garvin, J., G. Koretzky, and M. Jordan. 2009. T cell activation. 
Annual review of immunology 27:591-619. 

30. Douek, D. C., L. J. Picker, and R. A. Koup. 2003. T cell dynamics in HIV-1 
infection. Annu Rev Immunol 21:265-304. 

31. Virgin, H. W., E. J. Wherry, and R. Ahmed. 2009. Redefining chronic viral 
infection. Cell 138:30-50. 

32. Appay, V., P. R. Dunbar, M. Callan, P. Klenerman, G. M. A. Gillespie, L. 
Papagno, G. S. Ogg, A. King, F. Lechner, and C. A. Spina. 2002. Memory 
CD8+ T cells vary in differentiation phenotype in different persistent virus 
infections. Nature medicine 8:379-385. 

33. Appay, V., D. F. Nixon, S. M. Donahoe, G. M. Gillespie, T. Dong, A. King, 
G. S. Ogg, H. M. Spiegel, C. Conlon, C. A. Spina, D. V. Havlir, D. D. 
Richman, A. Waters, P. Easterbrook, A. J. McMichael, and S. L. Rowland-
Jones. 2000. HIV-specific CD8(+) T cells produce antiviral cytokines but 
are impaired in cytolytic function. J.Exp.Med. 192:63-75. 

34. Preston, B. D., B. J. Poiesz, and L. A. Loeb. 1988. Fidelity of HIV-1 
reverse transcriptase. Science 242:1168. 

35. Roberts, J. D., K. Bebenek, and T. A. Kunkel. 1988. The accuracy of 
reverse transcriptase from HIV-1. Science 242:1171. 

36. Allen, T. M., M. Altfeld, S. C. Geer, E. T. Kalife, C. Moore, K. M. 
O'Sullivan, I. DeSouza, M. E. Feeney, R. L. Eldridge, and E. L. Maier. 
2005. Selective escape from CD8+ T-cell responses represents a major 
driving force of human immunodeficiency virus type 1 (HIV-1) sequence 
diversity and reveals constraints on HIV-1 evolution. Journal of virology 
79:13239. 

37. Brumme, Z. L., C. J. Brumme, J. Carlson, H. Streeck, M. John, Q. 
Eichbaum, B. L. Block, B. Baker, C. Kadie, M. Markowitz, H. Jessen, A. D. 
Kelleher, E. Rosenberg, J. Kaldor, Y. Yuki, M. Carrington, T. M. Allen, S. 



136 

Mallal, M. Altfeld, D. Heckerman, and B. D. Walker. 2008. Marked epitope- 
and allele-specific differences in rates of mutation in human 
immunodeficiency type 1 (HIV-1) Gag, Pol, and Nef cytotoxic T-
lymphocyte epitopes in acute/early HIV-1 infection. J Virol 82:9216-9227. 

38. Marrack, P., J. P. Scott-Browne, S. Dai, L. Gapin, and J. W. Kappler. 
2008. Evolutionarily conserved amino acids that control TCR-MHC 
interaction. Annu. Rev. Immunol. 26:171-203. 

39. Bretscher, P., and M. Cohn. 1970. A theory of self-nonself discrimination. 
Science 169:1042. 

40. Bretscher, P. A. 1999. A two-step, two-signal model for the primary 
activation of precursor helper T cells. Proceedings of the National 
Academy of Sciences of the United States of America 96:185. 

41. Sharpe, A. H., and G. J. Freeman. 2002. The B7–CD28 superfamily. 
Nature Reviews Immunology 2:116-126. 

42. Chen, L. 2004. Co-inhibitory molecules of the B7–CD28 family in the 
control of T-cell immunity. Nature Reviews Immunology 4:336-347. 

43. Greenwald, R. J., Y. E. Latchman, and A. H. Sharpe. 2002. Negative co-
receptors on lymphocytes. Curr Opin Immunol 14:391-396. 

44. Lee, K. M., E. Chuang, M. Griffin, R. Khattri, D. K. Hong, W. Zhang, D. 
Straus, L. E. Samelson, C. B. Thompson, and J. A. Bluestone. 1998. 
Molecular basis of T cell inactivation by CTLA-4. Science 282:2263. 

45. Walunas, T. L., C. Bakker, and J. A. Bluestone. 1996. CTLA-4 ligation 
blocks CD28-dependent T cell activation. The Journal of Experimental 
Medicine 183:2541. 

46. Walunas, T. L., D. J. Lenschow, C. Y. Bakker, P. S. Linsley, G. J. 
Freeman, J. M. Green, C. B. Thompson, and J. A. Bluestone. 1994. 
CTLA-4 can function as a negative regulator of T cell activation. Immunity 
1:405-413. 



137 

47. Almeida, J., D. Sauce, D. Price, L. Papagno, S. Shin, A. Moris, M. Larsen, 
G. Pancino, D. Douek, and B. Autran. 2009. Antigen sensitivity is a major 
determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity. 
Blood 113:6351. 

48. Greenwald, R. J., G. J. Freeman, and A. H. Sharpe. 2005. The B7 family 
revisited. Annu Rev Immunol 23:515-548. 

49. Migueles, S. A., A. C. Laborico, W. L. Shupert, M. S. Sabbaghian, R. 
Rabin, C. W. Hallahan, D. Van Baarle, S. Kostense, F. Miedema, M. 
McLaughlin, L. Ehler, J. Metcalf, S. Liu, and M. Connors. 2002. HIV-
specific CD8+ T cell proliferation is coupled to perforin expression and is 
maintained in nonprogressors. Nat Immunol 3:1061-1068. 

50. Crawford, A., and E. J. Wherry. 2009. The diversity of costimulatory and 
inhibitory receptor pathways and the regulation of antiviral T cell 
responses. Curr.Opin.Immunol. 21:179-186. 

51. Ishida, Y., Y. Agata, K. Shibahara, and T. Honjo. 1992. Induced 
expression of PD-1, a novel member of the immunoglobulin gene 
superfamily, upon programmed cell death. The EMBO journal 11:3887. 

52. Freeman, G. J., A. J. Long, Y. Iwai, K. Bourque, T. Chernova, H. 
Nishimura, L. J. Fitz, N. Malenkovich, T. Okazaki, and M. C. Byrne. 2000. 
Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family 
member leads to negative regulation of lymphocyte activation. The Journal 
of Experimental Medicine 192:1027. 

53. Brenchley, J. M., D. A. Price, and D. C. Douek. 2006. HIV disease: fallout 
from a mucosal catastrophe? Nature immunology 7:235-239. 

54. Brenchley, J. M., T. W. Schacker, L. E. Ruff, D. A. Price, J. H. Taylor, G. J. 
Beilman, P. L. Nguyen, A. Khoruts, M. Larson, and A. T. Haase. 2004. 
CD4+ T cell depletion during all stages of HIV disease occurs 
predominantly in the gastrointestinal tract. The Journal of Experimental 
Medicine 200:749. 

55. Mattapallil, J., D. Douek, B. Hill, Y. Nishimura, M. Martin, and M. 
Roederer. 2005. Massive infection and loss of memory CD4+ T cells in 
multiple tissues during acute SIV infection. Nature 434:1093-1097. 



138 

56. Brenchley, J., D. Price, T. Schacker, T. Asher, G. Silvestri, S. Rao, Z. 
Kazzaz, E. Bornstein, O. Lambotte, and D. Altmann. 2006. Microbial 
translocation is a cause of systemic immune activation in chronic HIV 
infection. Nature medicine 12:1365-1371. 

57. McMichael, A. J., P. Borrow, G. D. Tomaras, N. Goonetilleke, and B. F. 
Haynes. 2009. The immune response during acute HIV-1 infection: clues 
for vaccine development. Nature Reviews Immunology 10:11-23. 

58. Paiardini, M., I. Pandrea, C. Apetrei, and G. Silvestri. 2009. Lessons 
learned from the natural hosts of HIV-related viruses. Annual review of 
medicine 60:485-495. 

59. Pandrea, I., D. L. Sodora, G. Silvestri, and C. Apetrei. 2008. Into the wild: 
simian immunodeficiency virus (SIV) infection in natural hosts. Trends in 
immunology 29:419-428. 

60. Giorgi, J. V., and R. Detels. 1989. T-cell subset alterations in HIV-infected 
homosexual men: NIAID Multicenter AIDS cohort study. Clinical 
Immunology and Immunopathology 52:10-18. 

61. Giorgi, J. V., L. E. Hultin, J. A. McKeating, T. D. Johnson, B. Owens, L. P. 
Jacobson, R. Shih, J. Lewis, D. J. Wiley, and J. P. Phair. 1999. Shorter 
survival in advanced human immunodeficiency virus type 1 infection is 
more closely associated with T lymphocyte activation than with plasma 
virus burden or virus chemokine coreceptor usage. The Journal of 
infectious diseases 179:859-870. 

62. Price, D., P. Goulder, P. Klenerman, A. Sewell, P. Easterbrook, M. Troop, 
C. Bangham, and R. Phillips. 1997. Positive selection of HIV-1 cytotoxic T 
lymphocyte escape variants during primary infection. National Acad 
Sciences. 1890-1895. 

63. Jin, X., D. Bauer, S. Tuttleton, S. Lewin, A. Gettie, J. Blanchard, C. Irwin, 
J. Safrit, J. Mittler, and L. Weinberger. 1999. Dramatic rise in plasma 
viremia after CD8+ T cell depletion in simian immunodeficiency virus-
infected macaques. Journal of Experimental Medicine 189:991-998. 

64. Schmitz, J. E., M. J. Kuroda, S. Santra, V. G. Sasseville, M. A. Simon, M. 
A. Lifton, P. Racz, K. Tenner-Racz, M. Dalesandro, B. J. Scallon, J. 
Ghrayeb, M. A. Forman, D. C. Montefiori, E. P. Rieber, N. L. Letvin, and K. 



139 

A. Reimann. 1999. Control of viremia in simian immunodeficiency virus 
infection by CD8+ lymphocytes. Science 283:857-860. 

65. Koup, R., J. T. Safrit, Y. Cao, C. A. Andrews, G. McLeod, W. Borkowsky, 
C. Farthing, and D. D. Ho. 1994. Temporal association of cellular immune 
responses with the initial control of viremia in primary human 
immunodeficiency virus type 1 syndrome. Journal of virology 68:4650. 

66. Almeida, J. R., D. A. Price, L. Papagno, Z. A. Arkoub, D. Sauce, E. 
Bornstein, T. E. Asher, A. Samri, A. Schnuriger, I. Theodorou, D. 
Costagliola, C. Rouzioux, H. Agut, A. G. Marcelin, D. Douek, B. Autran, 
and V. Appay. 2007. Superior control of HIV-1 replication by CD8+ T cells 
is reflected by their avidity, polyfunctionality, and clonal turnover. J Exp 
Med 204:2473-2485. 

67. Kelleher, A. D., C. Long, E. C. Holmes, R. L. Allen, J. Wilson, C. Conlon, 
C. Workman, S. Shaunak, K. Olson, and P. Goulder. 2001. Clustered 
mutations in HIV-1 gag are consistently required for escape from HLA-
B27–restricted cytotoxic T lymphocyte responses. The Journal of 
Experimental Medicine 193:375. 

68. Kiepiela, P., A. J. Leslie, I. Honeyborne, D. Ramduth, C. Thobakgale, S. 
Chetty, P. Rathnavalu, C. Moore, K. J. Pfafferott, L. Hilton, P. Zimbwa, S. 
Moore, T. Allen, C. Brander, M. M. Addo, M. Altfeld, I. James, S. Mallal, M. 
Bunce, L. D. Barber, J. Szinger, C. Day, P. Klenerman, J. Mullins, B. 
Korber, H. M. Coovadia, B. D. Walker, and P. J. Goulder. 2004. Dominant 
influence of HLA-B in mediating the potential co-evolution of HIV and HLA. 
Nature 432:769-775. 

69. Rousseau, C. M., M. G. Daniels, J. M. Carlson, C. Kadie, H. Crawford, A. 
Prendergast, P. Matthews, R. Payne, M. Rolland, D. N. Raugi, B. S. 
Maust, G. H. Learn, D. C. Nickle, H. Coovadia, T. Ndung'u, N. Frahm, C. 
Brander, B. D. Walker, P. J. Goulder, T. Bhattacharya, D. E. Heckerman, 
B. T. Korber, and J. I. Mullins. 2008. HLA class I-driven evolution of 
human immunodeficiency virus type 1 subtype c proteome: immune 
escape and viral load. J Virol 82:6434-6446. 

70. Trachtenberg, E., B. Korber, C. Sollars, T. B. Kepler, P. T. Hraber, E. 
Hayes, R. Funkhouser, M. Fugate, J. Theiler, Y. S. Hsu, K. Kunstman, S. 
Wu, J. Phair, H. Erlich, and S. Wolinsky. 2003. Advantage of rare HLA 
supertype in HIV disease progression. Nat Med 9:928-935. 



140 

71. Altfeld, M., E. T. Kalife, Y. Qi, H. Streeck, M. Lichterfeld, M. N. Johnston, 
N. Burgett, M. E. Swartz, A. Yang, G. Alter, X. G. Yu, A. Meier, J. K. 
Rockstroh, T. M. Allen, H. Jessen, E. S. Rosenberg, M. Carrington, and B. 
D. Walker. 2006. HLA Alleles Associated with Delayed Progression to 
AIDS Contribute Strongly to the Initial CD8<sup>+</sup> T Cell Response 
against HIV-1. PLoS Med 3:e403. 

72. Kalams, S. A., and B. D. Walker. 1998. The critical need for CD4 help in 
maintaining effective cytotoxic T lymphocyte responses. J Exp Med 
188:2199-2204. 

73. Shedlock, D. J., and H. Shen. 2003. Requirement for CD4 T cell help in 
generating functional CD8 T cell memory. Science 300:337. 

74. Sun, J. C., and M. J. Bevan. 2003. Defective CD8 T cell memory following 
acute infection without CD4 T cell help. Science 300:339. 

75. Bevan, M. J. 2004. Helping the CD8+ T-cell response. Nature Reviews 
Immunology 4:595-602. 

76. Zajac, A. J., J. N. Blattman, K. Murali-Krishna, D. J. D. Sourdive, M. 
Suresh, J. D. Altman, and R. Ahmed. 1998. Viral immune evasion due to 
persistence of activated T cells without effector function. The Journal of 
Experimental Medicine 188:2205. 

77. Wherry, E. J., J. N. Blattman, K. Murali-Krishna, M. R. van der, and R. 
Ahmed. 2003. Viral persistence alters CD8 T-cell immunodominance and 
tissue distribution and results in distinct stages of functional impairment. 
J.Virol. 77:4911-4927. 

78. Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. 
Sharpe, G. J. Freeman, and R. Ahmed. 2005. Restoring function in 
exhausted CD8 T cells during chronic viral infection. Nature 439:682-687. 

79. Clerici, M., N. Stocks, R. Zajac, R. Boswell, D. Lucey, C. Via, and G. 
Shearer. 1989. Detection of three distinct patterns of T helper cell 
dysfunction in asymptomatic, human immunodeficiency virus-seropositive 
patients. Independence of CD4+ cell numbers and clinical staging. Journal 
of Clinical Investigation 84:1892. 



141 

80. Wherry, E. J., S. J. Ha, S. M. Kaech, W. N. Haining, S. Sarkar, V. Kalia, S. 
Subramaniam, J. N. Blattman, D. L. Barber, and R. Ahmed. 2007. 
Molecular signature of CD8+ T cell exhaustion during chronic viral 
infection. Immunity. 27:670-684. 

81. Wherry, E. J., and R. Ahmed. 2004. Memory CD8 T-cell differentiation 
during viral infection. J.Virol. 78:5535-5545. 

82. Wherry, E. J., D. L. Barber, S. M. Kaech, J. N. Blattman, and R. Ahmed. 
2004. Antigen-independent memory CD8 T cells do not develop during 
chronic viral infection. Proc.Natl.Acad.Sci.U.S.A 101:16004-16009. 

83. Freeman, G. J., E. J. Wherry, R. Ahmed, and A. H. Sharpe. 2006. 
Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand 
blockade. J.Exp.Med. 203:2223-2227. 

84. Day, C. L., D. E. Kaufmann, P. Kiepiela, J. A. Brown, E. S. Moodley, S. 
Reddy, E. W. Mackey, J. D. Miller, A. J. Leslie, C. DePierres, Z. Mncube, 
J. Duraiswamy, B. Zhu, Q. Eichbaum, M. Altfeld, E. J. Wherry, H. M. 
Coovadia, P. J. Goulder, P. Klenerman, R. Ahmed, G. J. Freeman, and B. 
D. Walker. 2006. PD-1 expression on HIV-specific T cells is associated 
with T-cell exhaustion and disease progression. Nature 443:350-354. 

85. Petrovas, C., J. P. Casazza, J. M. Brenchley, D. A. Price, E. Gostick, W. 
C. Adams, M. L. Precopio, T. Schacker, M. Roederer, and D. C. Douek. 
2006. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV 
infection. The Journal of experimental medicine 203:2281. 

86. Trautmann, L., L. Janbazian, N. Chomont, E. A. Said, S. Gimmig, B. 
Bessette, M. R. Boulassel, E. Delwart, H. Sepulveda, R. S. Balderas, J. P. 
Routy, E. K. Haddad, and R. P. Sekaly. 2006. Upregulation of PD-1 
expression on HIV-specific CD8+ T cells leads to reversible immune 
dysfunction. Nat.Med. 12:1198-1202. 

87. Nishimura, H., N. Minato, T. Nakano, and T. Honjo. 1998. Immunological 
studies on PD-1 deficient mice: implication of PD-1 as a negative regulator 
for B cell responses. International Immunology 10:1563-1572. 

88. Nishimura, H., M. Nose, H. Hiai, N. Minato, and T. Honjo. 1999. 
Development of Lupus-like Autoimmune Diseases by Disruption of the 



142 

PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor. Immunity 
11:141-151. 

89. Sharpe, A. H., E. J. Wherry, R. Ahmed, and G. J. Freeman. 2007. The 
function of programmed cell death 1 and its ligands in regulating 
autoimmunity and infection. Nat Immunol 8:239-245. 

90. Ferreiros-Vidal, I., J. J. Gomez-Reino, F. Barros, A. Carracedo, P. 
Carreira, F. Gonzalez-Escribano, M. Liz, J. Martin, J. Ordi, J. L. Vicario, 
and A. Gonzalez. 2004. Association of PDCD1 with susceptibility to 
systemic lupus erythematosus. Arthritis & Rheumatism 50:2590-2597. 

91. Kong, E. K.-P., L. Prokunina-Olsson, W. H.-S. Wong, C.-S. Lau, T.-M. 
Chan, M. Alarcón-Riquelme, and Y.-L. Lau. 2005. A new haplotype of 
PDCD1 is associated with rheumatoid arthritis in Hong Kong Chinese. 
Arthritis & Rheumatism 52:1058-1062. 

92. Ishida, M., Y. Iwai, Y. Tanaka, T. Okazaki, G. J. Freeman, N. Minato, and 
T. Honjo. 2002. Differential expression of PD-L1 and PD-L2, ligands for an 
inhibitory receptor PD-1, in the cells of lymphohematopoietic tissues. 
Immunology Letters 84:57-62. 

93. Riley, J. 2009. PD-1 signaling in primary T cells. Immunological Reviews 
229:114. 

94. Lin, D. Y., Y. Tanaka, M. Iwasaki, A. G. Gittis, H. P. Su, B. Mikami, T. 
Okazaki, T. Honjo, N. Minato, and D. N. Garboczi. 2008. The PD-1/PD-L1 
complex resembles the antigen-binding Fv domains of antibodies and T 
cell receptors. Proceedings of the National Academy of Sciences 
105:3011. 

95. Parry, R. V., J. M. Chemnitz, K. A. Frauwirth, A. R. Lanfranco, I. 
Braunstein, S. V. Kobayashi, P. S. Linsley, C. B. Thompson, and J. L. 
Riley. 2005. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct 
mechanisms. Molecular and cellular biology 25:9543. 

96. Okazaki, T., A. Maeda, H. Nishimura, T. Kurosaki, and T. Honjo. 2001. 
PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by 
recruiting src homology 2-domain-containing tyrosine phosphatase 2 to 
phosphotyrosine. Proceedings of the National Academy of Sciences of the 
United States of America 98:13866-13871. 



143 

97. Quigley, M., F. Pereyra, B. Nilsson, F. Porichis, C. Fonseca, Q. Eichbaum, 
B. Julg, J. Jesneck, K. Brosnahan, and S. Imam. 2010. Transcriptional 
analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell 
function by upregulating BATF. Nature medicine. 

98. Keir, M. E., M. J. Butte, G. J. Freeman, and A. H. Sharpe. 2008. PD-1 and 
its ligands in tolerance and immunity. Annu Rev Immunol 26:677-704. 

99. Ahmed, R., A. Salmi, L. D. Butler, J. M. Chiller, and M. Oldstone. 1984. 
Selection of genetic variants of lymphocytic choriomeningitis virus in 
spleens of persistently infected mice. Role in suppression of cytotoxic T 
lymphocyte response and viral persistence. The Journal of Experimental 
Medicine 160:521. 

100. Salvato, M., E. Shimomaye, P. Southern, and M. Oldstone. 1988. Virus-
lymphocyte interactions IV. Molecular characterization of LCMV Armstrong 
(CTL+) small genomic segment and that of its variant, clone 13 (CTL-). 
Virology 164:517-522. 

101. Zhang, Z., B. Jin, J. Zhang, B. Xu, H. Wang, M. Shi, E. Wherry, G. Lau, 
and F. Wang. 2009. Dynamic decrease in PD-1 expression correlates with 
HBV-specific memory CD8 T-cell development in acute self-limited 
hepatitis B patients. Journal of Hepatology 50:1163-1173. 

102. Bowen, D., N. Shoukry, A. Grakoui, M. Fuller, A. Cawthon, C. Dong, D. 
Hasselschwert, K. Brasky, G. Freeman, and N. Seth. 2008. Variable 
patterns of programmed death-1 expression on fully functional memory T 
cells after spontaneous resolution of hepatitis C virus infection. Journal of 
virology 82:5109. 

103. Jagannathan, P., C. M. Osborne, C. Royce, M. M. Manion, J. C. Tilton, L. 
Li, S. Fischer, C. W. Hallahan, J. A. Metcalf, M. McLaughlin, M. Pipeling, 
J. F. McDyer, T. J. Manley, J. L. Meier, J. D. Altman, L. Hertel, R. T. 
Davey, Jr., M. Connors, and S. A. Migueles. 2009. Comparisons of CD8+ 
T cells specific for human immunodeficiency virus, hepatitis C virus, and 
cytomegalovirus reveal differences in frequency, immunodominance, 
phenotype, and interleukin-2 responsiveness. J Virol 83:2728-2742. 

104. Estes, J. D., S. N. Gordon, M. Zeng, A. M. Chahroudi, R. M. Dunham, S. I. 
Staprans, C. S. Reilly, G. Silvestri, and A. T. Haase. 2008. Early resolution 
of acute immune activation and induction of PD-1 in SIV-infected sooty 



144 

mangabeys distinguishes nonpathogenic from pathogenic infection in 
rhesus macaques. The Journal of Immunology 180:6798. 

105. Salisch, N. C., D. E. Kaufmann, A. S. Awad, R. K. Reeves, D. P. Tighe, Y. 
Li, M. Piatak, J. D. Lifson, D. T. Evans, and F. Pereyra. 2010. Inhibitory 
TCR coreceptor PD-1 is a sensitive indicator of low-level replication of SIV 
and HIV-1. The Journal of Immunology 184:476. 

106. Blattman, J. N., E. J. Wherry, S. J. Ha, R. G. van der Most, and R. Ahmed. 
2009. Impact of epitope escape on PD-1 expression and CD8 T-cell 
exhaustion during chronic infection. J.Virol. 83:4386-4394. 

107. Szabo, S. J., B. M. Sullivan, S. L. Peng, and L. H. Glimcher. 2003. 
Molecular mechanisms regulating Th1 immune responses. Annual review 
of immunology 21:713-758. 

108. Li, X. C., G. Demirci, S. Ferrari-Lacraz, C. Groves, A. Coyle, T. R. Malek, 
and T. B. Strom. 2001. IL-15 and IL-2: a matter of life and death for T cells 
in vivo. Nature medicine 7:114-118. 

109. Croft, M. 2003. Co-stimulatory members of the TNFR family: keys to 
effective T-cell immunity? Nature Reviews Immunology 3:609-620. 

110. Rochman, Y., R. Spolski, and W. J. Leonard. 2009. New insights into the 
regulation of T cells by c family cytokines. Nature Reviews Immunology 
9:480-490. 

111. Kaech, S. M., J. T. Tan, E. J. Wherry, B. T. Konieczny, C. D. Surh, and R. 
Ahmed. 2003. Selective expression of the interleukin 7 receptor identifies 
effector CD8 T cells that give rise to long-lived memory cells. Nature 
immunology 4:1191-1198. 

112. Wherry, E. J., C. L. Day, R. Draenert, J. D. Miller, P. Kiepiela, T. 
Woodberry, C. Brander, M. Addo, P. Klenerman, R. Ahmed, and B. D. 
Walker. 2006. HIV-specific CD8 T cells express low levels of IL-7Ralpha: 
implications for HIV-specific T cell memory. Virology 353:366-373. 

113. Burnet, M. 1959. The Clonal Selection Theory of Acquired Immunity. The 
Glonal Selection Theory of Acquired Immunity. 



145 

114. Goonetilleke, N., M. K. P. Liu, J. F. Salazar-Gonzalez, G. Ferrari, E. 
Giorgi, V. V. Ganusov, B. F. Keele, G. H. Learn, E. L. Turnbull, and M. G. 
Salazar. 2009. The first T cell response to transmitted/founder virus 
contributes to the control of acute viremia in HIV-1 infection. The Journal 
of Experimental Medicine 206:1253. 

115. Kalams, S. A., R. P. Johnson, M. J. Dynan, K. E. Hartman, T. Harrer, E. 
Harrer, A. K. Trocha, W. A. Blattner, S. P. Buchbinder, and B. D. Walker. 
1996. T cell receptor usage and fine specificity of human 
immunodeficiency virus 1-specific cytotoxic T lymphocyte clones: analysis 
of quasispecies recognition reveals a dominant response directed against 
a minor in vivo variant. J Exp Med 183:1669-1679. 

116. Douek, D. C., M. R. Betts, J. M. Brenchley, B. J. Hill, D. R. Ambrozak, K. 
L. Ngai, N. J. Karandikar, J. P. Casazza, and R. A. Koup. 2002. A novel 
approach to the analysis of specificity, clonality, and frequency of HIV-
specific T cell responses reveals a potential mechanism for control of viral 
escape. The Journal of Immunology 168:3099. 

117. Venturi, V., K. Kedzierska, S. J. Turner, P. C. Doherty, and M. P. 
Davenport. 2007. Methods for comparing the diversity of samples of the T 
cell receptor repertoire. Journal of immunological methods 321:182-195. 

118. Shannon Claude, E., and W. Weaver. 1948. The mathematical theory of 
communication. Bell System Technical Journal 27:379-423. 

119. Stewart, J. J., C. Y. Lee, S. Ibrahim, P. Watts, M. Shlomchik, M. Weigert, 
and S. Litwin. 1997. A Shannon entropy analysis of immunoglobulin and T 
cell receptor* 1. Molecular immunology 34:1067-1082. 

120. Meyer-Olson, D., N. H. Shoukry, K. W. Brady, H. Kim, D. P. Olson, K. 
Hartman, A. K. Shintani, C. M. Walker, and S. A. Kalams. 2004. Limited T 
cell receptor diversity of HCV-specific T cell responses is associated with 
CTL escape. J Exp Med 200:307-319. 

121. Price, D. A., S. M. West, M. R. Betts, L. E. Ruff, J. M. Brenchley, D. R. 
Ambrozak, Y. Edghill-Smith, M. J. Kuroda, D. Bogdan, and K. Kunstman. 
2004. T cell receptor recognition motifs govern immune escape patterns in 
acute SIV infection. Immunity 21:793-803. 



146 

122. Addo, M. M., X. G. Yu, A. Rathod, D. Cohen, R. L. Eldridge, D. Strick, M. 
N. Johnston, C. Corcoran, A. G. Wurcel, C. A. Fitzpatrick, M. E. Feeney, 
W. R. Rodriguez, N. Basgoz, R. Draenert, D. R. Stone, C. Brander, P. J. 
Goulder, E. S. Rosenberg, M. Altfeld, and B. D. Walker. 2003. 
Comprehensive epitope analysis of human immunodeficiency virus type 1 
(HIV-1)-specific T-cell responses directed against the entire expressed 
HIV-1 genome demonstrate broadly directed responses, but no correlation 
to viral load. J Virol 77:2081-2092. 

123. Betts, M., D. Ambrozak, D. Douek, S. Bonhoeffer, J. Brenchley, J. 
Casazza, R. Koup, and L. Picker. 2001. Analysis of total human 
immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: 
relationship to viral load in untreated HIV infection. Journal of virology 
75:11983-11991. 

124. Addo, M. M., R. Draenert, A. Rathod, C. L. Verrill, B. T. Davis, R. T. 
Gandhi, G. K. Robbins, N. O. Basgoz, D. R. Stone, and D. E. Cohen. 
2007. Fully differentiated HIV-1 specific CD8+ T effector cells are more 
frequently detectable in controlled than in progressive HIV-1 infection. 
PLoS One 2:321. 

125. Betts, M., M. Nason, S. West, S. De Rosa, S. Migueles, J. Abraham, M. 
Lederman, J. Benito, P. Goepfert, and M. Connors. 2006. HIV 
nonprogressors preferentially maintain highly functional HIV-specific CD8+ 
T cells. Blood 107:4781. 

126. Streeck, H., J. S. Jolin, Y. Qi, B. Yassine-Diab, R. C. Johnson, D. S. 
Kwon, M. M. Addo, C. Brumme, J.-P. Routy, S. Little, H. K. Jessen, A. D. 
Kelleher, F. M. Hecht, R.-P. Sekaly, E. S. Rosenberg, B. D. Walker, M. 
Carrington, and M. Altfeld. 2009. Human Immunodeficiency Virus Type 1-
Specific CD8+ T-Cell Responses during Primary Infection Are Major 
Determinants of the Viral Set Point and Loss of CD4+ T Cells. J. Virol. 
83:7641-7648. 

127. Meyer-Olson, D., K. W. Brady, M. T. Bartman, K. M. O'Sullivan, B. C. 
Simons, J. A. Conrad, C. B. Duncan, S. Lorey, A. Siddique, R. Draenert, 
M. Addo, M. Altfeld, E. Rosenberg, T. M. Allen, B. D. Walker, and S. A. 
Kalams. 2006. Fluctuations of functionally distinct CD8+ T-cell clonotypes 
demonstrate flexibility of the HIV-specific TCR repertoire. Blood 107:2373-
2383. 



147 

128. Meyer-Olson, D., B. Simons, J. Conrad, R. Smith, L. Barnett, S. Lorey, C. 
Duncan, R. Ramalingam, and S. Kalams. 2010. Clonal expansion and 
TCR-independent differentiation shape the HIV-specific CD8+ effector-
memory T-cell repertoire in vivo. Blood 116:396. 

129. Simons, B. C., S. E. Vancompernolle, R. M. Smith, J. Wei, L. Barnett, S. L. 
Lorey, D. Meyer-Olson, and S. A. Kalams. 2008. Despite biased TRBV 
gene usage against a dominant HLA B57-restricted epitope, TCR diversity 
can provide recognition of circulating epitope variants. J Immunol 
181:5137-5146. 

130. Kalams, S. A., R. P. Johnson, A. K. Trocha, M. J. Dynan, H. S. Ngo, R. T. 
D'Aquila, J. T. Kurnick, and B. D. Walker. 1994. Longitudinal analysis of T 
cell receptor (TCR) gene usage by human immunodeficiency virus 1 
envelope-specific cytotoxic T lymphocyte clones reveals a limited TCR 
repertoire. J Exp Med 179:1261-1271. 

131. van Bockel, D. J., D. A. Price, M. L. Munier, V. Venturi, T. E. Asher, K. 
Ladell, H. Y. Greenaway, J. Zaunders, D. C. Douek, D. A. Cooper, M. P. 
Davenport, and A. D. Kelleher. 2011. Persistent survival of prevalent 
clonotypes within an immunodominant HIV gag-specific CD8+ T cell 
response. J Immunol 186:359-371. 

132. Price, D. A., T. E. Asher, N. A. Wilson, M. C. Nason, J. M. Brenchley, I. S. 
Metzler, V. Venturi, E. Gostick, P. K. Chattopadhyay, and M. Roederer. 
2009. Public clonotype usage identifies protective Gag-specific CD8+ T 
cell responses in SIV infection. The Journal of Experimental Medicine 
206:923. 

133. Price, D. A., J. M. Brenchley, L. E. Ruff, M. R. Betts, B. J. Hill, M. 
Roederer, R. A. Koup, S. A. Migueles, E. Gostick, L. Wooldridge, A. K. 
Sewell, M. Connors, and D. C. Douek. 2005. Avidity for antigen shapes 
clonal dominance in CD8+ T cell populations specific for persistent DNA 
viruses. J Exp Med 202:1349-1361. 

134. Seder, R. A., P. A. Darrah, and M. Roederer. 2008. T-cell quality in 
memory and protection: implications for vaccine design. Nature Reviews 
Immunology 8:247-258. 



148 

135. Rabin, R. L., M. Roederer, Y. Maldonado, A. Petru, and L. Herzenberg. 
1995. Altered representation of naive and memory CD8 T cell subsets in 
HIV-infected children. Journal of Clinical Investigation 95:2054. 

136. Champagne, P., G. S. Ogg, A. S. King, C. Knabenhans, K. Ellefsen, M. 
Nobile, V. Appay, G. P. Rizzardi, S. Fleury, and M. Lipp. 2001. Skewed 
maturation of memory HIV-specific CD8 T lymphocytes. Nature 410:106-
111. 

137. Altman, J. D., P. A. H. Moss, P. J. R. Goulder, D. H. Barouch, M. G. 
McHeyzer-Williams, J. I. Bell, A. J. McMichael, and M. M. Davis. 1996. 
Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94. 

138. Herzenberg, L. A., D. Parks, B. Sahaf, O. Perez, and M. Roederer. 2002. 
The history and future of the fluorescence activated cell sorter and flow 
cytometry: a view from Stanford. Clinical chemistry 48:1819. 

139. Marrack, P., A. McKee, and M. Munks. 2009. Towards an understanding 
of the adjuvant action of aluminium. Nature Reviews Immunology 9:287-
293. 

140. Barouch, D. H. 2008. Challenges in the development of an HIV-1 vaccine. 
Nature 455:613-619. 

141. Hirao, L. A., L. Wu, A. Satishchandran, A. S. Khan, R. Draghia-Akli, A. C. 
Finnefrock, A. J. Bett, M. R. Betts, D. R. Casimiro, and N. Y. Sardesai. 
2010. Comparative Analysis of Immune Responses Induced by 
Vaccination With SIV Antigens by Recombinant Ad5 Vector or Plasmid 
DNA in Rhesus Macaques. Molecular Therapy. 

142. Halwani, R., J. D. Boyer, B. Yassine-Diab, E. K. Haddad, T. M. Robinson, 
S. Kumar, R. Parkinson, L. Wu, M. K. Sidhu, and R. Phillipson-Weiner. 
2008. Therapeutic vaccination with simian immunodeficiency virus (SIV)-
DNA+ IL-12 or IL-15 induces distinct CD8 memory subsets in SIV-infected 
macaques. The Journal of Immunology 180:7969. 

143. Ha, S., E. West, K. Araki, K. Smith, and R. Ahmed. 2008. Manipulating 
both the inhibitory and stimulatory immune system towards the success of 
therapeutic vaccination against chronic viral infections. Immunological 
Reviews 223:317. 



149 

144. Ha, S. J., S. N. Mueller, E. J. Wherry, D. L. Barber, R. D. Aubert, A. H. 
Sharpe, G. J. Freeman, and R. Ahmed. 2008. Enhancing therapeutic 
vaccination by blocking PD-1-mediated inhibitory signals during chronic 
infection. J.Exp.Med. 205:543-555. 

145. Velu, V., K. Titanji, B. Zhu, S. Husain, A. Pladevega, L. Lai, T. H. 
Vanderford, L. Chennareddi, G. Silvestri, G. J. Freeman, R. Ahmed, and 
R. R. Amara. 2009. Enhancing SIV-specific immunity in vivo by PD-1 
blockade. Nature 458:206-210. 

146. Song, M. Y., S. H. Park, H. J. Nam, D. H. Choi, and Y. C. Sung. 2011. 
Enhancement of Vaccine-induced Primary and Memory CD8+ T-cell 
Responses by Soluble PD-1. Journal of Immunotherapy 34:297. 

147. Streeck, H., Z. Brumme, M. Anastario, K. Cohen, J. Jolin, A. Meier, C. 
Brumme, E. Rosenberg, G. Alter, and T. Allen. 2008. Antigen load and 
viral sequence diversification determine the functional profile of HIV-1–
specific CD8 T cells. PLoS Med 5:e100. 

148. Petrovas, C., B. Chaon, D. Ambrozak, D. Price, J. Melenhorst, B. Hill, C. 
Geldmacher, J. Casazza, P. Chattopadhyay, and M. Roederer. 2009. 
Differential Association of Programmed Death-1 and CD57 with Ex Vivo 
Survival of CD8+ T Cells in HIV Infection. The Journal of Immunology 
183:1120. 

149. Radziewicz, H., C. C. Ibegbu, M. L. Fernandez, K. A. Workowski, K. 
Obideen, M. Wehbi, H. L. Hanson, J. P. Steinberg, D. Masopust, E. J. 
Wherry, J. D. Altman, B. T. Rouse, G. J. Freeman, R. Ahmed, and A. 
Grakoui. 2007. Liver-infiltrating lymphocytes in chronic human hepatitis C 
virus infection display an exhausted phenotype with high levels of PD-1 
and low levels of CD127 expression. J.Virol. 81:2545-2553. 

150. Shin, H., S. D. Blackburn, J. N. Blattman, and E. J. Wherry. 2007. Viral 
antigen and extensive division maintain virus-specific CD8 T cells during 
chronic infection. J.Exp.Med. 204:941-949. 

151. Kiepiela, P., K. Ngumbela, C. Thobakgale, D. Ramduth, I. Honeyborne, E. 
Moodley, S. Reddy, C. de Pierres, Z. Mncube, and N. Mkhwanazi. 2006. 
CD8+ T-cell responses to different HIV proteins have discordant 
associations with viral load. Nature medicine 13:46-53. 



150 

152. Slifka, M. K., and J. L. Whitton. 2001. Functional avidity maturation of 
CD8(+) T cells without selection of higher affinity TCR. Nat Immunol 
2:711-717. 

153. Hansen, T., and M. Bouvier. 2009. MHC class I antigen presentation: 
learning from viral evasion strategies. Nature Reviews Immunology 9:503-
513. 

154. Bengsch, B., B. Seigel, M. Ruhl, J. Timm, M. Kuntz, H. E. Blum, H. 
Pircher, and R. Thimme. 2010. Coexpression of PD-1, 2B4, CD160 and 
KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen 
recognition and T cell differentiation. PLoS Pathog 6:e1000947. 

155. Lichterfeld, M., X. G. Yu, S. K. Mui, K. L. Williams, A. Trocha, M. A. 
Brockman, R. L. Allgaier, M. T. Waring, T. Koibuchi, M. N. Johnston, D. 
Cohen, T. M. Allen, E. S. Rosenberg, B. D. Walker, and M. Altfeld. 2007. 
Selective depletion of high-avidity human immunodeficiency virus type 1 
(HIV-1)-specific CD8+ T cells after early HIV-1 infection. J Virol 81:4199-
4214. 

156. Savage, P. A., and M. M. Davis. 2001. A kinetic window constricts the T 
cell receptor repertoire in the thymus. Immunity 14:243-252. 

157. Paterson, A., and A. Sharpe. 2010. Taming tissue-specific T cells: CTLA-4 
reins in self-reactive T cells. Nature immunology 11:109-111. 

158. Munz, C., J. D. Lunemann, M. T. Getts, and S. D. Miller. 2009. Antiviral 
immune responses: triggers of or triggered by autoimmunity? Nat Rev 
Immunol 9:246-258. 

159. Kedzierska, K., N. L. La Gruta, M. P. Davenport, S. J. Turner, and P. C. 
Doherty. 2005. Contribution of T cell receptor affinity to overall avidity for 
virus-specific CD8+ T cell responses. Proc Natl Acad Sci U S A 
102:11432-11437. 

160. Oxenius, A., D. A. Price, P. J. Easterbrook, C. A. O'Callaghan, A. D. 
Kelleher, J. A. Whelan, G. Sontag, A. K. Sewell, and R. E. Phillips. 2000. 
Early highly active antiretroviral therapy for acute HIV-1 infection 
preserves immune function of CD8+ and CD4+ T lymphocytes. 
Proceedings of the National Academy of Sciences of the United States of 
America 97:3382. 



151 

161. Liu, Z., W. G. Cumberland, L. E. Hultin, H. E. Prince, R. Detels, and J. V. 
Giorgi. 1997. Elevated CD38 antigen expression on CD8+ T cells is a 
stronger marker for the risk of chronic HIV disease progression to AIDS 
and death in the Multicenter AIDS Cohort Study than CD4+ cell count, 
soluble immune activation markers, or combinations of HLA-DR and CD38 
expression. JAIDS Journal of Acquired Immune Deficiency Syndromes 
16:83. 

162. Hunt, P. W., J. N. Martin, E. Sinclair, B. Bredt, E. Hagos, H. Lampiris, and 
S. G. Deeks. 2003. T Cell Activation Is Associated with Lower CD4 T Cell 
Gains in Human Immunodeficiency Virus-Infected Patients with Sustained 
Viral Suppression during Antiretroviral Therapy. The Journal of infectious 
diseases 187:1534-1543. 

163. Robbins, G. K., J. G. Spritzler, E. S. Chan, D. M. Asmuth, R. T. Gandhi, B. 
A. Rodriguez, G. Skowron, P. R. Skolnik, R. W. Shafer, and R. B. Pollard. 
2009. Incomplete reconstitution of T cell subsets on combination 
antiretroviral therapy in the AIDS Clinical Trials Group protocol 384. 
Clinical infectious diseases: an official publication of the Infectious 
Diseases Society of America 48:350. 

164. Kalams, S. A., P. J. Goulder, A. K. Shea, N. G. Jones, A. K. Trocha, G. S. 
Ogg, and B. D. Walker. 1999. Levels of human immunodeficiency virus 
type 1-specific cytotoxic T-lymphocyte effector and memory responses 
decline after suppression of viremia with highly active antiretroviral 
therapy. Journal of virology 73:6721. 

165. Appay, V., P. Hansasuta, J. Sutton, R. D. Schrier, J. K. Wong, M. Furtado, 
D. V. Havlir, S. M. Wolinsky, A. J. McMichael, and D. D. Richman. 2002. 
Persistent HIV-1-specific cellular responses despite prolonged therapeutic 
viral suppression. AIDS 16:161. 

166. Oxenius, A., A. K. Sewell, S. J. Dawson, H. F. Günthard, M. Fischer, G. M. 
Gillespie, S. L. Rowland-Jones, C. Fagard, B. Hirschel, and R. E. Phillips. 
2002. Functional discrepancies in HIV-specific CD8+ T-lymphocyte 
populations are related to plasma virus load. Journal of clinical 
immunology 22:363-374. 

167. Rehr, M., J. Cahenzli, A. Haas, D. A. Price, E. Gostick, M. Huber, U. 
Karrer, and A. Oxenius. 2008. Emergence of polyfunctional CD8+ T cells 
after prolonged suppression of human immunodeficiency virus replication 
by antiretroviral therapy. Journal of virology 82:3391. 



152 

168. Ogg, G., X. Jin, S. Bonhoeffer, P. Moss, M. Nowak, S. Monard, J. Segal, 
Y. Cao, S. Rowland-Jones, and A. Hurley. 1999. Decay kinetics of human 
immunodeficiency virus-specific effector cytotoxic T lymphocytes after 
combination antiretroviral therapy. Journal of virology 73:797. 

169. Ramalingam, R. K., D. Meyer-Olson, N. H. Shoukry, D. G. Bowen, C. M. 
Walker, and S. A. Kalams. 2008. Kinetic analysis by real-time PCR of 
hepatitis C virus (HCV)-specific T cells in peripheral blood and liver after 
challenge with HCV. J Virol 82:10487-10492. 

170. Yang, H., T. Dong, E. Turnbull, S. Ranasinghe, B. Ondondo, N. 
Goonetilleke, N. Winstone, K. di Gleria, P. Bowness, and C. Conlon. 2007. 
Broad TCR usage in functional HIV-1-specific CD8+ T cell expansions 
driven by vaccination during highly active antiretroviral therapy. The 
Journal of Immunology 179:597. 

171. Lefranc, M. P., C. Pommié, M. Ruiz, V. Giudicelli, E. Foulquier, L. Truong, 
V. Thouvenin-Contet, and G. Lefranc. 2003. IMGT unique numbering for 
immunoglobulin and T cell receptor variable domains and Ig superfamily 
V-like domains. Developmental & Comparative Immunology 27:55-77. 

172. Meyer-Olson, D., K. W. Brady, J. T. Blackard, T. M. Allen, S. Islam, N. H. 
Shoukry, K. Hartman, C. M. Walker, and S. A. Kalams. 2003. Analysis of 
the TCR beta variable gene repertoire in chimpanzees: identification of 
functional homologs to human pseudogenes. J Immunol 170:4161-4169. 

173. Kvale, D., M. Holm, and F. O. Pettersen. 2008. PD-1 predicts CD4 loss 
rate in chronic HIV-1 infection better than HIV RNA and CD38 but not in 
cryopreserved samples. Current HIV Research 6:49-58. 

174. Vollbrecht, T., H. Brackmann, N. Henrich, J. Roeling, U. Seybold, J. R. 
Bogner, F. D. Goebel, and R. Draenert. 2010. Impact of changes in 
antigen level on CD38/PD-1 co-expression on HIV-specific CD8 T cells in 
chronic, untreated HIV-1 infection. Journal of medical virology 82:358-370. 

175. Brown, K. E., G. J. Freeman, E. J. Wherry, and A. H. Sharpe. 2010. Role 
of PD-1 in regulating acute infections. Current opinion in immunology. 

176. Keir, M. E., L. M. Francisco, and A. H. Sharpe. 2007. PD-1 and its ligands 
in T-cell immunity. Curr Opin Immunol 19:309-314. 



153 

177. Gray, C. M., J. Lawrence, J. M. Schapiro, J. D. Altman, M. A. Winters, M. 
Crompton, M. Loi, S. K. Kundu, M. M. Davis, and T. C. Merigan. 1999. 
Frequency of Class I HLA-Restricted Anti-HIV CD8+ T Cells in Individuals 
Receiving Highly Active Antiretroviral Therapy (HAART). The Journal of 
Immunology 162:1780-1788. 

178. Autran, B., G. Carcelain, T. Li, C. Blanc, D. Mathez, R. Tubiana, C. 
Katlama, P. Debre, and J. Leibowitch. 1997. Positive effects of combined 
antiretroviral therapy on CD4+ T cell homeostasis and function in 
advanced HIV disease. Science 277:112. 

179. Fellay, J., K. V. Shianna, D. Ge, S. Colombo, B. Ledergerber, M. Weale, 
K. Zhang, C. Gumbs, A. Castagna, A. Cossarizza, A. Cozzi-Lepri, A. De 
Luca, P. Easterbrook, P. Francioli, S. Mallal, J. Martinez-Picado, J. M. 
Miro, N. Obel, J. P. Smith, J. Wyniger, P. Descombes, S. E. Antonarakis, 
N. L. Letvin, A. J. McMichael, B. F. Haynes, A. Telenti, and D. B. 
Goldstein. 2007. A Whole-Genome Association Study of Major 
Determinants for Host Control of HIV-1. Science 317:944-947. 

180. Walker, B. D., and D. R. Burton. 2008. Toward an AIDS vaccine. Science 
320:760. 

181. Allen, T. M., D. H. O'Connor, P. Jing, J. L. Dzuris, B. R. Mothé, and T. U. 
Vogel. 2000. Tat-specific cytotoxic T lymphocytes select for SIV escape 
variants during resolution of primary viraemia. Nature 407:386-390. 

182. Iancu, E. M., P. Corthesy, P. Baumgaertner, E. Devevre, V. Voelter, P. 
Romero, D. E. Speiser, and N. Rufer. 2009. Clonotype selection and 
composition of human CD8 T cells specific for persistent herpes viruses 
varies with differentiation but is stable over time. The Journal of 
Immunology 183:319. 

183. Venturi, V., H. Y. Chin, T. E. Asher, K. Ladell, P. Scheinberg, E. Bornstein, 
D. van Bockel, A. D. Kelleher, D. C. Douek, and D. A. Price. 2008. TCR -
chain sharing in human CD8+ T cell responses to cytomegalovirus and 
EBV. The Journal of Immunology 181:7853. 

184. Stebbing, J., B. Gazzard, and D. C. Douek. 2004. Where does HIV live? 
New England Journal of Medicine 350:1872-1880. 



154 

185. Baron, C., C. Forconi, and Y. Lebranchu. 2010. Revisiting the effects of 
CMV on long-term transplant outcome. Current Opinion in Organ 
Transplantation 15:492. 

186. Reeves, M., and J. Sinclair. 2008. Aspects of human cytomegalovirus 
latency and reactivation. Human Cytomegalovirus:297-313. 

187. Ferrari, G., B. Korber, N. Goonetilleke, M. K. P. Liu, E. L. Turnbull, J. F. 
Salazar-Gonzalez, N. Hawkins, S. Self, S. Watson, M. R. Betts, C. Gay, K. 
McGhee, P. Pellegrino, I. Williams, G. D. Tomaras, B. F. Haynes, C. M. 
Gray, P. Borrow, M. Roederer, A. J. McMichael, and K. J. Weinhold. 2011. 
Relationship between Functional Profile of HIV-1 Specific CD8 T Cells and 
Epitope Variability with the Selection of Escape Mutants in Acute HIV-1 
Infection. PLoS Pathog 7:e1001273. 

188. Robins, H. S., P. V. Campregher, S. K. Srivastava, A. Wacher, C. J. 
Turtle, O. Kahsai, S. R. Riddell, E. H. Warren, and C. S. Carlson. 2009. 
Comprehensive assessment of T-cell receptor {beta}-chain diversity in 
{alpha}{beta} T cells. Blood 114:4099. 

189. Robins, H. S., S. K. Srivastava, P. V. Campregher, C. J. Turtle, J. 
Andriesen, S. R. Riddell, C. S. Carlson, and E. H. Warren. 2010. Overlap 
and effective size of the human CD8+ T cell receptor repertoire. Science 
Translational Medicine 2:47ra64. 

190. Blattman, J. N., D. J. D. Sourdive, K. Murali-Krishna, R. Ahmed, and J. D. 
Altman. 2000. Evolution of the T cell repertoire during primary, memory, 
and recall responses to viral infection. The Journal of Immunology 
165:6081. 

191. Day, E. K., A. J. Carmichael, I. J. M. ten Berge, E. C. P. Waller, J. 
Sissons, and M. R. Wills. 2007. Rapid CD8+ T cell repertoire focusing and 
selection of high-affinity clones into memory following primary infection 
with a persistent human virus: human cytomegalovirus. The Journal of 
Immunology 179:3203. 

192. Trautmann, L., M. Rimbert, K. Echasserieau, X. Saulquin, B. Neveu, J. 
Dechanet, V. Cerundolo, and M. Bonneville. 2005. Selection of T cell 
clones expressing high-affinity public TCRs within human 
cytomegalovirus-specific CD8 T cell responses. The Journal of 
Immunology 175:6123. 



155 

193. Petrovas, C., J. P. Casazza, J. M. Brenchley, D. A. Price, E. Gostick, W. 
C. Adams, M. L. Precopio, T. Schacker, M. Roederer, D. C. Douek, and R. 
A. Koup. 2006. PD-1 is a regulator of virus-specific CD8+ T cell survival in 
HIV infection. J.Exp.Med. 203:2281-2292. 

194. Kaufmann, D. E., and B. D. Walker. 2009. PD-1 and CTLA-4 inhibitory 
cosignaling pathways in HIV infection and the potential for therapeutic 
intervention. J.Immunol. 182:5891-5897. 

195. Blackburn, S. D., H. Shin, W. N. Haining, T. Zou, C. J. Workman, A. 
Polley, M. R. Betts, G. J. Freeman, D. A. Vignali, and E. J. Wherry. 2009. 
Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors 
during chronic viral infection. Nat.Immunol. 10:29-37. 

 
 


	Diss Title Page JAC for electronic upload
	Diss JAC Front Matter Final
	Diss JAC Chapters and Refs Final

