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Chapter I 

 

Introduction 

 

Nuclear pores and nucleocytoplasmic transport 

The hallmark of the eukaryotic cell is compartmentalization of gene expression 

events between the nucleus and cytoplasm.  In turn, this allows for diverse signaling and 

regulatory networks that are required for proper embryo development and the 

maintenance of cellular homeostasis.  This fundamental paradigm relies on the regulated 

transport of material between the nuclear and cytoplasmic compartments.  To 

accommodate this task, eukaryotic cells have evolved to assemble large macromolecular 

structures called nuclear pore complexes (NPCs) to regulate this nucleocytoplasmic 

exchange.  NPCs are large aqueous channels that function both as a physical barrier and 

selective filter for nucleocytoplasmic transport events (Nenninger et al., 2010; Roy et al., 

2008).   

NPCs are embedded in the nuclear envelope.  These macromolecular assemblies are 

estimated to have high molecular masses of 90 to 120MDa (Papadopoulos et al., 2000; 

Rout et al., 2000).  Although NPCs vary in size between different organisms, the basic 

molecular architecture of the NPC is highly conserved.  NPCs are composed of ~30 

different proteins termed Nups.   

The basic architecture of the NPC is characterized by three structural elements: 

(1) a symmetric central core that forms a channel, (2) cytoplasmic fibrils, and (3) a 

nuclear basket (Figure 1.1).  These basic structural elements are made up of modular  
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Figure	  1.1	  Architecture	  of	  the	  NPC	  (Adapted	  from	  Beck	  et	  al.,	  2004,	  and	  Goldberg	  et	  
al.,	  1995)	  (A-‐B)	  The basic architecture of the NPC is characterized by three structural 
elements: (1) a symmetric central core that forms a channel, (2) cytoplasmic fibrils, and 
(3) a nuclear basket. (A)	  Cyro-‐electron	  tomography	  of	  NPCs	  in	  Dictyostelium	  
highlights	  the	  basic	  structural	  organization	  of	  NPC.	  (B)	  The	  cytoplasmic	  fibrils	  (Left)	  
and	  nuclear	  basket	  (Right)	  structural	  elements	  have	  been	  also	  documented	  using	  
scanning	  field	  emission	  electron	  microscopy.	  
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substructures that are composed of discrete Nup sub-complexes (Hoelz et al., 2011; Rout 

et al., 2000).  A group of Nups (termed FG-Nups) harbors domains with multiple 

phenylalanine-glycine (FG) amino acid repeats.  The FG-Nups line the innermost layer of 

the NPC channel and constitute the permeability barrier (Terry and Wente, 2009).  The 

semipermeable barrier formed by these overlapping FG repeats allows for small 

molecules (<40 kDa) to freely diffuse between the nucleus and the cytoplasm (Pante and 

Kann, 2002).  Larger proteins or protein complexes require binding to transport adapter 

proteins.  These transport adapter proteins harbor low affinity FG-repeat binding 

domains.  These binding domains allow the transport factors to interact with specific FG-

Nups and translocation of the cargo through the NPC (Terry et al., 2007).  

Nucleocytoplasmic transport of large cargo complexes occurs via a step-wise 

process.  First, shuttling transport factors called Kaps recognize specific cargo proteins 

(Weis, 2003).  To recognize potential cargos, each Kap binds to a specific peptide nuclear 

export sequence (NES) or nuclear localization sequence (NLS) that are located on the 

cargo protein (Fried and Kutay, 2003).  The Kap/cargo complex then docks with the NPC 

and translocates through the pore.  Cargo release from the Kap in the correct destination 

compartment is achieved by the nucleotide-bound state of the small GTPase Ran (Terry 

et al., 2007).  

High levels of RanGTP are maintained in the nucleus by a chromatin-associated 

Ran-specific guanine exchange factor (RanGEF), whereas in the cytoplasm, a Ran-

specfic GTPase activating protein (RanGAP) promotes RanGTP hydrolysis, keeping 

cytoplasmic levels of RanGDP high.  The contrasting environments are key for dictating 

the directionality of Kap cargo transport.  Specifically, structural rearrangements that 
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occur within the protein between its nucleotide bound states, GTP-bound (RanGTP) 

versus GDP-bound (RanGDP), allow for release of the cargo at the appropriate location 

(Fried and Kutay, 2003; Pemberton and Paschal, 2005) (Figure 1.2).   

For cargo import into the nucleus, RanGTP triggers the release of the cargo from 

the Kap in the nucleoplasm.  For protein export from the nucleus, RanGTP stabilizes the 

Kap-cargo interaction.  Following translocation through the NPC, disassembly of the 

RanGTP-Kap-cargo complex in the cytoplasm is mediated by stimulating GTPase 

activity of Ran by a RanGTPase activating protein.  The conversion of Ran GTP-bound 

to Ran GDP-bound acts as a molecular switch to promote cargo disassembly from the 

Kap in the cytoplasm (Fried and Kutay, 2003; Pemberton and Paschal, 2005).  

Most of the nucleocytoplasmic trafficking that occurs within the cell involves the 

Kap/Ran pathway.  The vast majority of messenger RNA (mRNA) however is exported 

from the nucleus in a Ran-Kap independent manner.  Instead, mRNA utilizes different 

evolutionarily conserved transport factors to facilitate export from the nucleus to the 

cytoplasm.  This paradigm along with an overview of mRNA metabolism will be 

presented. 

 

mRNA processing in the nucleus 

The central dogma of DNA to RNA to protein is one of the most fundamental 

concepts of modern biology.  This paradigm places RNA as the cellular intermediate 

between DNA and proteins.  Thus, eukaryotic gene expression has evolved regulatory 

mechanisms to ensure the proper fate of the transcribed mRNA.  At the core of this 

regulation are multifunctional RNA binding proteins (RBPs) that associate with mRNA  
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Figure	  1.2	  Nucleocytoplasmic	  protein	  transport	  is	  directed	  by	  the	  differential	  
localization	  of	  RanGTP	  and	  RanGDP.	  In	  the	  nucleus,	  high levels of RanGTP are 
maintained in the nucleus by a RanGEF), whereas in the cytoplasm, a RanGAP promotes 
Ran GTP hydrolysis, keeping cytoplasmic levels of RanGDP high. (Left Panel) In the 
nucleus RanGTP stabilizes the interaction between the Kap and it’s cognate NES-
containing cargo. The trimeric complex is transported through the NPC by interaction 
with FG-binding domains.  In the cytoplasm, RanGAP stimulates GTP hydrolysis and 
results in disassembly of the trimeric complex. (Right Panel) For the import of cargo into 
the nucleus the Kap interacts with it’s cognate cargo in the cytoplasm.  Interaction of the 
Kap-Cargo complex with the FG-domain facilitates transport through the NPC.  Upon 
arrival in the nucleus, binding of the Kap-Cargo complex by RanGTP results in cargo 
release.	  
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transcripts to form messenger ribonucleoprotein (mRNP) complexes.  In the nucleus, a 

single mRNA molecule undergoes dynamic RBP association to mediate functions such as 

splicing and nuclear export.  Further, following export to the cytoplasm, RBPs help 

specify multiple mRNP fates, including storage, translation, and degradation (Dreyfuss et 

al., 2002; Muller-McNicoll and Neugebauer, 2013).  A brief overview of these regulatory 

paradigms is presented below. 

In the nucleus, mRNAs are transcribed by the enzyme Polymerase II (Pol II).  As 

soon as Pol II begins synthesizing the precursor-mRNA (pre-mRNA), the C-terminal 

domain (CTD) of Pol II recruits factors that bind to the pre-mRNA to form an mRNP 

(Bentley, 2005; Lee and Tarn, 2013).  The first processing reaction that occurs is the 

addition of a modified guanine nucleotide to the 5’ of the new pre-mRNA.  As soon as 25 

nucleotides of pre-mRNA have been produced, the phosphate is removed from the 5’ end 

of the RNA by the phosphatase, and a guanyl transferase links a GMP nucleotide by 

reverse linkage (5’ to 5’) to the 5’ nucleotide.  A methyl transferase then adds a methyl 

group to the guanosine to complete the generation of the m7G cap (Shatkin, 1976).  The 

m7G cap recruits the cap-binding complex (CBC), which plays important roles in 

promoting mRNA stability, 3’ end formation, and translation in the cytoplasm (Lewis and 

Izaurralde, 1997).  Importantly, the m7G cap marks the 5’ end of the mRNA and acts as a 

landmark that helps the cell distinguish mRNA from other RNA molecules in the cell.  

Most pre-mRNA sequences are interrupted by noncoding sequences called 

introns.  Shortly after the 5’ capping reaction occurs, the pre-mRNA undergo a 

processing event called splicing which removes the intervening intron sequences and 

joins the exon sequences together (Licatalosi and Darnell, 2010).  The CTD of RNA Pol 
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II helps coordinate mRNA capping and splicing by co-transcriptionally loading capping 

and splicing components as the pre-mRNA emerges form the enzyme (Lee and Tarn, 

2013).  Splicing sites are marked by specific sequences in both the exons and introns.  

The splicing protein machinery recognizes these sequences and facilitates the splicing 

reaction and removal of the intron.  The splicing machinery also deposits the exon-exon 

junction complex (EJC) near the vicinity of the exon-exon junctions.  The EJCs function 

to mark the sites of intron excision and help avoid degradation by factors that target 

unspliced mRNAs (Lee and Tarn, 2013; Schoenberg and Maquat, 2012).  

The signal sequence for 3’ end cleavage is specified in the DNA.  The CTD co-

transcriptionally loads factors that are critical for 3’ end formation onto these nucleotide 

sequences as it emerges from the enzyme.  These factors in turn recruit poly-A-

polymerase that adds adenosine nucleotides to the 3’ end of the mRNA to generate the 

poly(A) tail (Proudfoot, 2011).  Once generated, poly(A) tails are recognized by poly(A) 

binding proteins (Goss and Kleiman, 2013). 

After these processing events have been completed, the mRNA will have m7G-

cap, a coding sequence that is marked with EJCs if spliced, and a 3’ untranslated region 

(UTR) followed by a poly(A) tail.  Additionally, the mRNA will be bound by a cohort of 

proteins (CBC, RNA binding proteins) that designate the mRNP competent for export to 

the cytoplasm.  Importantly, if mRNA fails to undergo one or more of these processing 

events it is retained in the nucleus and degraded by the nuclear exosome (Houseley et al., 

2006). 
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Export of mRNA through the NPC 

Proper gene expression relies on the successful completion of the nuclear 

processing events to form the mature export competent mRNP.  Of the total pre-mRNA 

that is generated during transcription, only a small fraction, the mature mRNA, is used by 

the cell.  The remaining RNA in the nucleus, which includes excised introns, aberrantly 

processed, or broken mRNAs, are potentially dangerous to the cell if exported to the 

cytoplasm.  For this reason, the process of export of mRNA through the NPC is highly 

regulated and intertwined with the nuclear processing events.  This in turn allows for the 

regulated recruitment of transport receptors only to the mature fully processed mRNAs 

(Kohler and Hurt, 2007). 

Although some RNAs utilize the Ran-dependent Kap export pathways, the vast 

majority of mRNAs utilize the evolutionarily conserved nuclear export factors NXF1 (in 

humans) or Mex67 (in S. cerevisiae) (Gruter et al., 1998; Segref et al., 1997).  S. 

cerevisiae and human cells use at least two different mechanisms to recruit Mex67/NXF1 

to the mRNA.  In S. cerevisiae, Mex67 can be recruited to the mRNA via association 

with the Serine-Arginine (SR) rich protein Npl3.  Npl3 is thought to associate with the 

mRNA in a phosphorylated state.  Further, dephosphorylation of Npl3 stimulates Mex67 

recruitment to the mRNA (Gilbert and Guthrie, 2004; Gilbert et al., 2001).  In human 

cells, the mRNA recruitment of NXF1 is also regulated by phosphorylation cycles of SR-

proteins (Huang et al., 2003; Huang et al., 2004).  Acting in a mechanism that is 

independent of SR-proteins, a complementary route for Mex67/NXF1 recruitment occurs 

by interaction with the RNA binding protein Yra1 or ALY, respectively (Strasser and 

Hurt, 2000; Stutz et al., 2000).  Both Yra1 and ALY are part of the transcription-export 
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complex (TREX) (Strasser et al., 2002).  Recruitment of the TREX complex to the 

mRNP is dependent on 5’capping and splicing processing events (Cheng et al., 2006). 

The mature mRNP that contains the transport receptor Mex67/NXF1 is then 

capable of being exported through the NPC to the cytoplasm.  Much of the information 

that is known about the actual translocation event of the mRNP through the NPC has 

been documented using high-resolution microscopy techniques.  The export of the mRNP 

was first observed from static images taken by electron microscopy of mRNPs from 

insect Balbiani Ring genes (Mehlin et al., 1992).  This seminal work demonstrated that 

the mRNP undergoes structural transitions as it docks, translocates, and is released from 

the NPC.  This work also observed that mRNPs are dynamic structures that gain and lose 

specific proteins during transcription, processing, and export (Kiseleva et al., 1997; 

Mehlin et al., 1995; Zhao et al., 2002).  Building on this, recent signal molecule 

microscopy analysis has resolved the kinetics of mRNA export in living mammalian cells 

(Grunwald and Singer, 2010; Mor et al., 2010).  Taken together, these studies propose a 

model for mRNA export that is distinguished by four fundamental events: (1) the mRNP 

docks with the nuclear face of NPC, (2) translocation of the mRNP through the channel 

of the NPC, (3) docking of the mRNP at cytoplasmic face of the NPC, and (4) release of 

the mRNP into the cytoplasm (Figure 1.3). 

A critical event that occurs during the terminal steps of every nucleocytoplasmic 

transport event is the removal of the transport receptor from the cargo in the destination 

compartment, thus imposing directionality of the transport event.  As introduced above, 

Kap mediated transport relies upon modulation of the nucleotide state (GTP-bound 

versus GDP-bound) of the small GTPase Ran to promote cargo disassembly at the correct  
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Figure 1.3: Fundamental events during mRNA export. It has been proposed that mRNA 
export is distinguished by four fundamental events: (1) docking of the mRNP at the 
nuclear basket (2) translocation of the mRNP through the NPC (3) docking of the mRNP 
at the cytoplasmic face (4) removal of the transport factor from the mRNP and 
subsequent release into the cytoplasm. 
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time and place (Weis, 2003).  Removal of the Mex67/NXF1 transport receptor from the 

mRNP in the cytoplasm occurs via a distinct molecular mechanism that is independent of 

Ran activity (Kohler and Hurt, 2007).   

The transport receptor Mex67/NXF1 is actively removed from the mRNP at the 

cytoplasmic face of the NPC by the protein Dbp5, a member of the DEAD-box helicase 

family (Lund and Guthrie, 2005; Snay-Hodge et al., 1998).  In S. cerevisiae, Dbp5 

temperature sensitive alleles have strong accumulation of poly(A)+ RNA at non-

permissive growth temperatures, suggesting that Dbp5 plays an essential role during 

mRNA export (Snay-Hodge et al., 1998; Tseng et al., 1998).  Further, Dbp5 localizes to 

the cytoplasmic face NPC by interaction with the amino terminal domain of Nup159 

(Weirich et al., 2004a).  Prior studies have documented that Dbp5 functions during 

mRNA export by dissociating RNA binding proteins and transport receptors from the 

mRNP (Tran et al., 2007).  Removal of these factors at the cytoplasmic face of the NPC 

in turn imposes the directionality of the export event.  A further introduction of DEAD-

box proteins and Dbp5 activity at the NPC is presented below.  First, a brief introduction 

to protein translation in the cytoplasm is provided. 

 

Translation of mRNA in the cytoplasm 

The conversion of DNA to RNA to protein is essential for all aspects of life.  A 

key aspect of this paradigm is the ability of the cell to convert the sequence information 

stored in the mRNA into the synthesis of a new protein molecule.  To accomplish this 

task, the information stored in the mRNA nucleotide sequence must be ‘translated’ into a 

different information medium (i.e. amino acids).  The primary sequence of the RNA 
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nucleotides is decoded as groups of three consecutive nucleotides called codons.  Each 

codon specifies an amino acid or a stop to the translation process.  The codons 

themselves do not directly recognize the amino acids, rather adapters called transfer 

RNAs (tRNAs) are used.  tRNAs are covalently linked to the amino acids after base 

pairing directly with the triplet-nucleotide codon on the mRNA.  The process of 

translation of the mRNA occurs in the ribosome, a large macromolecular complex that is 

made of many different proteins and several different RNA molecules.  The overall 

mechanism of eukaryotic translation is highly conserved and involves a complicated 

array of different proteins.  This process can be divided into three phases: initiation, 

elongation, and termination (Kapp and Lorsch, 2004).  A basic introduction of the 

primary factors involved in translation initiation and translation termination is provided 

below. 

The current model of translation initiation begins with the formation of the 

preinitiation complexes (PICs).  Here a ternary complex, which contains eukaryotic 

initiation factor-2 (eIF2), GTP, and the initiator Met-tRNAi
Met, bind to the 40S small 

ribosomal subunit to form the 43S PIC.  The 43S PIC is loaded onto the 5’ m7G cap of 

the mRNA in a reaction that is promoted by the CBP, poly(A) binding protein (PAB), 

and eIF4F complex (Hinnebusch, 2014).  Importantly, the binding requirement for CBP 

and PAB allows the translation machinery to ascertain that both ends of the mRNA are 

intact before beginning protein synthesis.  After binding to the 5’ cap the 43S PIC scans 

the mRNA for an AUG start codon.  Upon recognition of the AUG start codon and base-

pairing with the initiator Met-tRNAi
Met, the eIFs dissociate from the 43S PIC complex, 
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allowing the 60S large ribosomal subunit to bind forming the 80S initiation complex 

(Hinnebusch, 2014).  

During translation elongation, the 80S initiation complex translocates down the 

mRNA in 3 nucleotide stepwise movements.  These movements in turn allow codon base 

pairing with cognate tRNA and the addition of amino acids to the growing protein 

polypeptide (Dever and Green, 2012).  The end of the protein-coding message is 

designated by the presence of stop codons (UAA, UAG, or UGA) within the mRNA 

sequence.  Stop codons are recognized by the ribosome by base pairing with release 

factor 1 (eRF1), which in turn signals to the ribosome to stop translation and release the 

polypeptide chain and mRNA molecule (Dever and Green, 2012; Nakamura and Ito, 

2003). 

 

DEAD-box proteins 

Regulation of the life cycle of messenger RNA-protein (mRNP) complexes is 

essential for proper gene expression.  One family of enzymes, the DEAD-box proteins 

(DBPs), is intricately involved in these mechanisms and acts in nucleotide-dependent 

processes, such as RNA duplex unwinding and mRNP remodeling (altering the protein 

composition of an mRNP) (Jankowsky, 2011a; Jankowsky and Bowers, 2006; Linder, 

2006; Rocak and Linder, 2004).  DBPs are found in all classes of organisms from 

bacteria through higher plants and animals (Cordin et al., 2006; Rocak and Linder, 2004).  

By definition, DBPs contain nine canonical amino acid sequence motifs (I-VI, Ia, Ib, Q) 

that presumably confer similar enzymatic activities to all of the family members (Figure 

1.4),
 
although only a subset have been studied at the enzymological level (Linder, 2006).  



	   14	  

 
 
 
 
 

 
 
 
Figure 1.4 Structural organization of a DEAD box protein. (A) Topology model of the 
RecA-like helicase domains of a generic DEAD-box protein. The positions of the 
conserved sequence motifs within the labeled RecA helicase domains are indicated with 
Roman numerals. (B) Structure of human Dbp5 bound with ATP analog (black) [PDB 
3GOH] (Collins et al., 2009). Highlighted conserved sequence motifs include those 
involved in nucleotide binding and hydrolysis (Green); RNA binding and ATP hydrolysis 
(Pink); RNA binding (Blue).  
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The high-resolution protein structures of several DBPs are known, and while they share 

many structural features, there are also important emerging differences (Jankowsky and 

Fairman, 2007a; Schutz et al., 2010).  Common biochemical characteristics shared by 

DBPs include ATP binding and hydrolysis activity whereby ATP is converted to ADP 

and inorganic phosphate in an RNA-dependent manner (Jankowsky and Fairman, 2007a).  

Structurally, DBPs have two RecA-like domains (subdomain 1: N-terminal RecA 

domain, and subdomain 2: C-terminal RecA domain) that are joined by a flexible linker 

(Figure 1.4) (Cordin et al., 2006).  Most of the conserved motifs line the central cleft 

between the two domains and provide for conserved ATP binding and hydrolysis 

activities (Figures 1.4A and 1.4B) (Jankowsky and Fairman, 2007b).  The RNA substrate 

specificity and unique binding sites for potential co-factors and protein-protein 

interactions occur through less conserved regions, including N- and C-terminal 

extensions (Schutz et al., 2010).  Interestingly, the unique regions are likely key to the 

different functions amongst the family members.  However, for DBPs that perform the 

same function in different organisms, the regions outside the canonical motifs show 

considerable conservation (Cordin et al., 2006). 

DEAD-box proteins catalyze rearrangements of both RNA-RNA and RNA-

protein complexes through helicase and remodeling activities, respectively (Jankowsky, 

2011a).  Both of these enzymatic activities harness distinct structural changes that occur 

during the nucleotide cycle.  It is unclear, however, if these activities share similar or 

distinct molecular mechanisms.  Until recently, it was thought that all DEAD-box 

proteins require the ATP hydrolysis event for both duplex unwinding and RNP 

remodeling.  For several DBPs, this mechanism is not true: DEAD-box proteins eIF4A, 
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Msn16, and Ded1 require ATP binding but not hydrolysis to promote RNA duplex 

unwinding.  Surprisingly, it was demonstrated that ATP hydrolysis occurs primarily to 

recycle the enzyme for additional rounds of helicase activity (Chen et al., 2008; Liu et al., 

2008). 

Several studies have analyzed the in vitro ability of DBPs to remove proteins 

from RNA (Bowers et al., 2006; Fairman et al., 2004; Jankowsky et al., 2001; Tran et al., 

2007).
  
Several DBPs tested reportedly required ATP hydrolysis to remove proteins from 

RNA (Bowers et al., 2006; Fairman et al., 2004).  In contrast, it has been demonstrated 

that DBP’s remodeling activity can occur independent of ATP hydrolysis.  The RNA 

binding protein Nab2 is released from the mRNP both in vitro and in vivo by the DEAD-

box protein Dbp5 (Noble et al., 2011; Tran et al., 2007).  Further, these studies 

demonstrated that a conformational change that occurs in the transition from the Dbp5-

ATP form to the Dbp5-ADP form is required for the remodeling of the mRNP. 
 

Importantly, for Dbp5, this conformational change can be functionally driven in vitro by 

conversion from the nucleotide-free form of Dbp5 to the ADP-bound form (Noble et al., 

2011; Tran et al., 2007). 
 
Analysis of the x-ray crystal structures of Dbp5 shows that the 

RNA binding interface is dramatically changed by the transition from the ATP to the 

ADP state (Collins et al., 2009; Montpetit et al., 2011). 
 
Such a change in the RNA 

binding site during the transition from binding ATP to binding ADP may represent a 

shared mechanism utilized by many DBPs to remodel RNPs. 
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Gle1 is a multifunctional regulator of gene expression 

The DEAD-box proteins enzymes drive mRNP remodeling through ATP 

hydrolysis-induced conformational changes that alter the DBP binding to RNA and 

coincidently RNA-protein interactions (Folkmann et al., 2011; Jankowsky, 2011b; 

Jankowsky and Bowers, 2006; Jankowsky and Fairman, 2007b; Rocak and Linder, 2004).  

Factors that regulate DBP nucleotide cycles are speculated to exist, and a few have been 

reported, including ones for two eukaryotic initiation factors (eIF4A for eIF4AIII) (Ballut 

et al., 2005; Grifo et al., 1984; Nielsen et al., 2009; Rogers et al., 2001a; Wolf et al., 

2010b; Yang et al., 2003b).  One such regulatory co-factor is a protein called Gle1.  By 

directly regulating the ATPase activity of distinct DBPs at different stages of RNA 

metabolism, Gle1 is positioned as a global modulator of gene expression (Alcazar-Roman 

et al., 2006; Bolger and Wente, 2011; Weirich et al., 2006). 

A convergence of recent studies has revealed detailed models of Gle1 action at 

the NPC during mRNA export (Alcazar-Roman et al., 2006; Folkmann et al., 2013; 

Folkmann et al., 2011; Hodge et al., 2011b; Montpetit et al., 2011; Noble et al., 2011; 

Tran et al., 2007; Weirich et al., 2006).  Historically, studies to characterize these 

regulatory roles have focused on the human (h) Gle1 and Saccharomyces cerevisiae (y) 

Gle1 orthologues (Figure 1.5) (Murphy and Wente, 1996; Watkins et al., 1998).  Further 

studies have also identified additional Gle1 orthologues in S. pombe, A. thaliana and D. 

rerio (Braud et al., 2012; Jao et al., 2012; Moon et al., 1998).  Conservation of Gle1 

polypeptides was first demonstrated by multiple sequence alignment of orthologues from 

fungi to mammals (Alcazar-Roman et al., 2010; Watkins et al., 1998).  Additionally, 

analysis of yGle1 and hGle1 chimeras has demonstrated a striking degree of functional  
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Figure 1.5: Functional and structural domains of Human (Left) and S. Cerevisiae (Right) 
Gle1 proteins. Red dashes indicate the relative position of indicated gle1 alleles. Black 
arrows mark the location of the conserved IP6-coordinating residues. References cited: 
(1) Rayala et al., 2004 (2) Folkmann et al., 2013 (3) Alcazar-Roman et al., 2010 (4) 
Montpetit et al., 2011 (5) Tran et al., 2007 (6) Weirich et al., 2006, Alcazar-Roma et al., 
2010 (7) Bolger and Wente, 2011 (8) Murphy and Wente, 1996 (9) Stutz et al., 1997 (10) 
Strahm et al., 1999 (11) Kendirgi et al., 2005 (12) Kendirgi et al., 2003 (13) Nousianinen 
et al., 2008. 
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complementation, providing further evidence of conservation (Watkins et al., 1998). 

Overall, a highly complementary approach utilizing the strengths of both human and 

yeast model systems has built a rich molecular and cellular understanding of Gle1’s roles 

during gene expression (Alcazar-Roman et al., 2010; Bolger et al., 2008; Bolger and 

Wente, 2011; Folkmann et al., 2013; Hodge et al., 2011b; Kendirgi et al., 2003; Kendirgi 

et al., 2005a; Montpetit et al., 2011; Murphy and Wente, 1996; Noble et al., 2011; Rayala 

et al., 2004; Watkins et al., 1998; Weirich et al., 2006).  While technical restraints have 

limited a completely parallel or duplicative analysis in both these model systems, each 

has provided essential insight into the Gle1 function.  Specifically, x-ray crystallographic 

and biochemical analysis of yGle1 have yielded valuable details of molecular 

interactions, whereas the use of human cell lines has provided insight into the cellular 

dynamics of hGle1.  Although studies have highlighted potential subtle differences 

between orthologues, the high degree of sequence and functional conservation infers that 

Gle1 proteins across different phyla operate via a common molecular paradigm.   

Identified in a S. cerevisiae synthetic lethal screen with a nup100Δ mutant strain, 

Gle1 (GLFG lethal mutant complementation group 1) was originally documented as an 

essential mRNA export factor (Murphy and Wente, 1996).  Several studies in human 

cells have since demonstrated that the function in mRNA export is fully conserved 

(Kendirgi et al., 2003; Kendirgi et al., 2005a; Watkins et al., 1998).  Overall, the domain 

topology of hGle1B and yGle1 is generally shared (Figure 1.5), although alternative 

splicing produces two hGle1 isoforms: hGle1B is larger and spans 1-698 amino acid 

residues, whereas hGle1A lacks the proximal carboxyl (C)-terminal domain (from 655 to 

698 residues) (Kendirgi et al., 2003).  Both yGle1 and hGle1B localize at steady state to 
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the nuclear rim and specifically to the NPC; however, diffuse cytoplasmic pools are also 

observed (Kendirgi et al., 2003; Murphy and Wente, 1996; Strahm et al., 1999). 

Nucleocytoplasmic shuttling activity is conferred for hGle1 by a 39 amino acid C-

terminal region (Kendirgi et al., 2003).  While this primary amino acid motif is not 

conserved in yGle1, immuno-EM analysis shows yGle1 is localized to both sides of the 

nuclear envelope, suggesting that it also shuttles between the two cellular compartments 

(Miller et al., 2004). 

  Targeting of Gle1 to the nuclear rim for mRNA export is achieved through 

interactions with specific NPC nucleoporins (Nups) on the cytoplasmic fibrils.  At its C-

terminus, yGle1 binds to yNup42.  Likewise, the Nup42 human homologue hCG1 binds 

the C-terminal domain specific to hGle1B (Figure 1.2) (Kendirgi et al., 2005a; Murphy 

and Wente, 1996; Rayala et al., 2004; Strahm et al., 1999; Stutz et al., 1997).  Indeed, the 

hGle1A isoform that lacks the hCG1 binding region shows minimal steady state nuclear 

rim localization and is predominantly cytoplasmic (Kendirgi et al., 2005a).  Via a unique 

amino (N)-terminal 30 amino acid binding site, hGle1 also interacts with hNup155 

(Figure 1.2) (Rayala et al., 2004).  A third domain that plays an essential role in Gle1 

function and NPC dynamics is a shared predicted coiled-coil domain located in the N-

terminal half (Figure 1.2).  Acting at the terminal step of export, Dbp5 and Gle1 localize 

to the NPC cytoplasmic face of the NPC through distinct Nup interactions: hDbp5 with 

hNup214 (yNup159), and hGle1 with hCG1 (yNup42) and hNup155, respectively 

(Kendirgi et al., 2005a; Murphy and Wente, 1996; Rayala et al., 2004; Schmitt et al., 

1999; Strahm et al., 1999; Stutz et al., 1997; Weirich et al., 2004b).  Prior studies have 

documented an important role for the small molecule inositol hexakisphosphate (IP6) in 
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both mRNA export and translation termination.  Specifically, IP6 plays the critical role of 

bridging the interaction between Gle1 and Dbp5 (Alcazar-Roman et al., 2010; Montpetit 

et al., 2011; Noble et al., 2011).   

Previous studies have documented that yGle1 also functions in the cytoplasm to 

regulate translation (Bolger et al., 2008).  Specifically, yGle1 in conjunction with IP6 

activates yDbp5’s ATPase activity to remodel the mRNP of the translation termination 

complex (Alcazar-Roman et al., 2010; Bolger et al., 2008).  Additionally, yGle1 has a 

role in translation initiation, acting in this process independently of IP6 and Dbp5.  Here, 

yGle1 inhibits the ATPase activity of the DBP Ded1, enabling Ded1 to properly control 

start site selection (Bolger and Wente, 2011).  While a direct role for hGle1 in translation 

initiation or translation termination has not been documented to date, it has been shown 

that hGle1 directly interacts with eIF3f, a subunit of the translation initiation machinery 

(Bolger et al., 2008; Bolger and Wente, 2011; Rayala et al., 2004).  This suggests that the 

function of Gle1 in translation is also conserved.  

Taken together, these studies have documented that the protein Gle1 is positioned 

to impact gene expression at several stages.  Interestingly, causal mutations in the human 

GLE1 gene have been linked to several human diseases, and the work presented here 

seeks to elucidate the molecular mechanisms that underpin these disease states.  First, a 

molecular model for Gle1 regulation of Dbp5 during mRNA export at the NPC will be 

provided. 
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Mechanism of mRNP export 

Understanding how DBPs cycle through stages of nucleotide binding, hydrolysis, 

and release of products is fundamental to revealing their molecular mechanisms of action.  

Recent work from our lab and others has made significant progress towards 

understanding the molecular details for the nucleotide cycle of Dbp5 at the NPC during 

mRNA export.  Taken together, a model has been proposed whereby the nucleotide cycle 

of Dbp5 has distinct stages (Noble et al., 2011).  This is consistent with the proposed 

mechanism of several other nucleotide-dependent hydrolytic enzymes that are RNA or 

DNA helicases and is strongly supported by evidence for both S.cerevisiae and human 

Dbp5 indicating distinct nucleotide-dependent protein conformations (Collins et al., 

2009; Fan et al., 2009; Henn et al., 2008; Klostermeier, 2011; Noble et al., 2011; Tran et 

al., 2007).   

Further, there is now substantial evidence that Dbp5 protein interaction partners 

play direct roles in modulating its nucleotide cycle (Alcazar-Roman et al., 2006; 

Montpetit et al., 2011; Noble et al., 2011; Weirich et al., 2006).  Gle1 bound to IP6 

enhances ATP binding by wild-type Dbp5 approximately 2-4 fold, which could account 

for some of the reported 5-6 fold stimulation of ATPase activity by Gle1-IP6 (Alcazar-

Roman et al., 2006; Noble et al., 2011; Weirich et al., 2006).  A dominant negative (DN) 

Dbp5 protein (Dbp5-R369G) with severely diminished RNA binding inhibits yeast cell 

growth and mRNA export by sequestering Gle1 (Hodge et al., 2011a).  Suggesting that 

RNA binding functions to release Gle1 from Dbp5.  Interestingly, Dbp5 bound to ATP 

analog, AMP-PNP, has enhanced interaction with Gle1 (Alcazar-Roman et al., 2010).  

This implies that while Gle1-IP6 stabilizes ATP binding, at the same time ATP stabilizes 
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the Dbp5-Gle1-IP6 interaction, resulting in an overall priming of Dbp5 for ATP 

hydrolysis.  Cooperative binding enhancement for RNA and ATP has also been shown 

for other DBPs (Burtey et al., 2007; Polach and Uhlenbeck, 2002; Theissen et al., 2008).  

Taken together, this suggests a mechanism for Gle1-IP6 stimulation of Dbp5 ATPase 

activity whereby Gle1-IP6 binds to Dbp5 to enhance ATP binding, which then facilitates 

RNA binding to Dbp5.  RNA binding to Gle1-Dbp5-ATP complex releases Gle1 from 

Dbp5.  Overall, Gle1-IP6 promotes the likelihood of ATP hydrolysis.  It is possible that 

Gle1- IP6 also functions to inhibit ATP release.  

 Recent work has shown that following ATP hydrolysis, the bound ADP is not 

efficiently released from full-length yeast Dbp5 (Noble et al., 2011).  The release of ADP 

is critical to allow re-cycling of Dbp5.  Strikingly, it was documented that the N-terminal 

domain (NTD, residues 2-387) of Nup159 acts to promote Dbp5 release of ADP in vitro 

through direct protein-protein interaction (Noble et al., 2011).  These in vitro biochemical 

results are directly supported by predictions based on recent x-ray crystallographic 

structures of complexes assembled from combinations of Δ90dbp5L327V protein, 

Δ243gle1H337R protein, IP6, ADP, and nup159NTD (Montpetit et al., 2011).  When 

bound to nup159NTD, the relative position of the Dbp5 N-terminal RecA-like domain 

changes along with alterations in specific residues of the nucleotide binding pocket 

(Montpetit et al., 2011).  This provides a potential mechanism for promoting release of 

ADP from the nucleotide binding site in the Dbp5 interdomain cleft (Montpetit et al., 

2011).  Below a molecular paradigm for function mRNP export at the NPC is proposed. 

Targeting of the mRNP to the NPC nuclear face and through the NPC central 

channel is dependent upon the mRNA export factors Mex67 and Mtr2.  By interacting  
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Figure 1.6 Working model for Dbp5/Gle1-IP6/Nup159 mRNA export cycle. During 
export, the mRNP exits the NPC where it encounters both Gle1-IP6 and Dbp5 at the 
cytoplasmic fibrils (Steps 1–2). Gle1-IP6 binds Dbp5 and enhances ATP loading (Steps 
3–4). The ATP/Dbp5/Gle1-IP6 complex then binds to the mRNP, which stimulates both 
the release of Gle1-IP6 and the ATP hydrolysis event (Step 5). The change from ATP to 
ADP triggers a conformational change that drives both the remodeling of the mRNP and 
release of the mRNA from Dbp5 (Step 6). Dbp5-ADP is then recycled by interaction with 
Nup159 to release ADP (Step 7), and positioning for binding to Gle1 to begin the cycle 
again. The released RNA-binding proteins bind to cytoplasmic karyopherins for import 
back into the nucleus (Step 8).  
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with both the mRNP and Nups, Mex67 directly facilitates the translocation (Figure 1.6, 

Step 1).  For the terminal export step (Figure 1.6, Step 2), the essential sequence of events 

that occur at the NPC cytoplasmic face are linked to precise, localized activation of Dbp5 

ATPase activity by Gle1-IP6.  Taken together, the in vitro and in vivo data highlight a 

mechanism for efficient cycling of both Gle1 and Dbp5 at NPCs (Figure 1.6, Steps 1-8).  

During export, when the mRNP exits the NPC (Steps 1-2), it encounters both Gle1 and 

Dbp5 at the cytoplasmic fibrils (Step 2).  Gle1 binds to Dbp5 and mediates ATP loading 

(Step 3).  The ATP/Dbp5/Gle1 complex then binds to RNA (Steps 4-5).  Binding to RNA 

stimulates the ATP hydrolysis event, release of Gle1, and displacement of a protein from 

the mRNP (Steps 5-6).  It is unclear if these events happen sequentially or 

simultaneously.  The hydrolysis event triggers a conformational change within Dbp5 (as 

it goes from ATP-bound to ADP-bound) and this drives remodeling of the mRNP via 

changes in the RNA binding pocket (Steps 5-6).  Dbp5-ADP is then recycled by 

interaction with Nup159 to release ADP (Step 7).  With the overlapping RNA and 

Nup159 binding sites on Dbp5, the NPC plays a critical role in regulating remodeling 

cycles.  Overall, such a mechanism would allow a single Dbp5 molecule to remain at the 

pore and thereby to perform multiple remodeling events (Figure 1.6). 

 

Gle1 dysfunction in LCCS-1 and LAAHD pathogenesis 

Proper eukaryotic gene expression requires multiple highly orchestrated events 

centering on the fate of the transcribed mRNA.  An extensive and growing catalogue of 

human diseases are caused by alterations in components of gene expression.  Further, 

given the numerous proteins involved in gene expression, it is likely that more additional 
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causal mutations will be identified in factors involved in this complex process.  It has 

become clear that perturbations at different steps during gene expression lead to a wide 

variety of disease pathologies, and that the range of tissues and organs that are influenced 

also varies.  Although the causative genetic alterations are known, the molecular 

mechanisms underlying these deleterious diseases are poorly understood.  Thus, future 

studies are needed to further dissect the cellular and molecular basis of these disease 

mutation perturbations.  This, in turn, will provide novel insights into the functions of the 

affected proteins, and the process of gene expression in general. 

Lethal Congenital Contracture Syndrome-1 (LCCS-1) is a fetal motor neuron 

disease, with an estimated incidence of 1:25,000 births in Finland (Nousiainen et al., 

2008).  An embryonic lethal form of arthrogryposis multiplex congenita (AMC), LCCS-1 

pathology is distinguished by total immobility of the fetus.  Underlying this phenotype is 

a lack of anterior horn motor neurons, atrophy of the ventral spinal cord and nearly absent 

skeletal muscles (Hall, 1985; Herva et al., 1985).  In 2008, Nousiainen and colleagues 

reported a sequence analysis of genomic DNA from LCCS-1 cases that revealed a causal 

link between the disease and mutation of the hGLE1 gene.  In 51 of 52 cases, the h-gle1 

alleles were homozygous for a single A>G mutation in the third intron of the gene.  This 

homozygous condition is termed gle1-FinMajor for its high incidence in the Finnish 

population, and the mutation generates an illegitimate splice acceptor site that adds nine 

additional nucleotides to the coding sequence.  As such, the gle1-FinMajor allele results in 

an in-frame insertion of a proline-phenylalanine-glutamine (PFQ) tripeptide in the 

essential N-terminal coiled-coil domain of hGle1 (Figure 1.2) (Nousiainen et al., 2008).  

Studies of the gle1-FinMajor developmental phenotype in a zebrafish model of Gle1 
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depletion point to apoptosis of the neuronal precursors as the origin of LCCS-1 

motoneuron defects (Jao et al., 2012).  However, these zebrafish studies also reveal both 

neurogenic and non-neurogenic developmental defects with GLE1 depletion, for which 

expression of the wild type hGLE1 rescues but gle1-FinMajor does not.  From this work, 

LCCS-1 is likely not a motor neuron specific disease, but rather all organ precursors are 

probably impacted (Jao et al., 2012).  

 In addition to the LCCS-1 pathogenesis for those with homozygous FinMajor alleles 

(designated here as LCCS-1Fin), two other mutations have been identified in hGLE1 with 

links to the related disease lethal arthrogryposis with anterior horn cell disease (LAAHD) 

(Nousiainen et al., 2008).  LAAHD exhibits a similar but overall milder pathology 

compared to LCCS-1Fin, with the fetus typically surviving for a short period after birth 

(Vuopala et al., 1995).  In all known LAAHD cases, patients were compound 

heterozygous for the FinMajor mutation and an additional point mutation in the region 

encoding the C-terminal domain of hGle1.  Fifty percent of LAAHD cases screened 

contained a G>A substitution at nucleotide 1849 in exon 13, converting the encoded 

valine to a methionine (V617M).  The remainder of cases contained a T>C substitution at 

nucleotide 2051 of exon 16, resulting in an isoleucine to threonine substitution (I684T).  

Interestingly, a third case of compound heterozygosity with a C-terminal mutation 

occurred in a single patient whose symptoms were categorized as LCCS-1 (termed here 

LCCS-1Het).  This mutation was observed at nucleotide 1706 in exon 12, encoding a 

histidine in place of an arginine at residue 569 (R569H) (Nousiainen et al., 2008).  Each 

of these three amino acid substitutions (V617M, I684T, and R569H) apparently imparts 

very different features to the altered protein at their respective position.  However, no 
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studies have been conducted to investigate their perturbations.   

 

Concluding remarks 

 Nuclear export of mRNAs and their subsequent translation are essential steps in the 

gene expression pathway and impact all aspects of cell physiology.  There is a growing 

body of evidence suggesting that dysfunctional mRNA metabolism contributes directly to 

human disease pathology (Cooper et al., 2009; Hurt and Silver, 2008; Renoux and Todd, 

2012).  This idea is further supported by the genetic linkage of mutant human GLE1 

alleles to the fetal human diseases: LCCS-1 and LAAHD.  The work presented here 

couples fundamental basic science discovery with insights into human disease pathology.  

In short, we present critical insights into (1) understanding of fundamental principles of 

NPC structure and function during mRNA export, and (2) defining the cellular and 

molecular mechanisms underlying two lethal human disease states. 
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Chapter II 

 

Gle1 functions during mRNA export in an oligomeric complex that is altered in 

human disease LCCS-1 

 

Introduction1 

Dysregulation of messenger (m)RNA metabolism has emerged as a significant 

factor in human disease pathologies, with proper control of mRNA transcription, 

processing, nuclear export, translation and turnover being critical to cellular homeostasis, 

signaling, division, and differentiation (Cooper et al., 2009; Hurt and Silver, 2008; 

Renoux and Todd, 2012). Gle1 is an essential multi-functional protein, conserved from 

yeasts to humans, that plays a direct role in both mRNA export and translation (Bolger et 

al., 2008; Murphy and Wente, 1996; Watkins et al., 1998). Mutations in the human (h) 

GLE1 gene are responsible for the autosomal recessive Lethal Congenital Contracture 

Syndrome-1 (LCCS-1) disease (Nousiainen et al., 2008). LCCS-1 is a severe in utero 

form of a heterogeneous group of disorders, termed arthrogryposis multiplex congenita 

(AMC), that occur in 1 of 3000 human births worldwide (Hall, 1985). LCCS-1 disease 

pathology is characterized by lack of anterior horn motor neurons and severe atrophy of 

ventral spinal cord, along with joint and jaw deformities (Herva et al., 1985). Recent 

work indicates the pathological basis of this disease is attributed to a reduction in Gle1 

activity causing the apoptosis of proliferative organ precursors during early development 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
This chapter is adapted from “Gle1 functions during mRNA export in an oligomeric 
complex that is altered in human disease. Andrew W. Folkmann, Scott E. Collier, 
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(Jao et al., 2012). However, in LCCS-1, the primary molecular defects in hGle1 cellular 

roles were unknown. 

 Previous studies have revealed multiple aspects of Gle1 structure and function in 

the budding yeast (y) Saccharomyces cerevisiae and human cells (Figure 2.1A, 2.1B). 

The C-terminal domains have extensive conservation, with 27% identical and 27% 

similar residues found between the regions by reported sequence alignments (from 

residues 250-538 for yGle1 and 360-659 for hGle1) (Watkins et al., 1998). Further, both 

have significant spans in their N-terminal regions that are predicted to form coiled-coil 

structures (Watkins et al., 1998). For mRNA export, hGle1 docks at the nuclear pore 

complex (NPC) through interactions with the NPC proteins hNup155 and hCG1 (yNup42 

for yGle1) (Kendirgi et al., 2005a; Murphy and Wente, 1996; Rayala et al., 2004; Strahm 

et al., 1999; Stutz et al., 1997). hGle1 is also dynamic and its shuttling between the 

nucleoplasm and cytoplasm is essential for efficient mRNA export in human cells 

(Kendirgi et al., 2003). Although humans have a single copy of the hGLE1 gene, there 

are at least two alternatively spliced isoforms (hGle1A and hGle1B) (Kendirgi et al., 

2003). Whereas hGle1B has distinct steady state localization at the NPC, the hGle1A 

isoform lacks the C-terminal hCG1-binding domain and is predominantly cytoplasmic. 

Thus, there are potentially distinct subcellular pools of hGle1A and hGle1B that might 

reflect multiple roles in gene expression.  

During mRNA export and translation, yGle1 regulates the RNA-dependent 

ATPase activities of specific DEAD-box proteins (DBPs); thus, controlling the action of 

these DBPs in nucleotide-dependent unwinding of RNA duplexes and/or remodeling of  
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Figure 2.1: Conserved structural and functional elements of Gle1 from S. cerevisiae and 
humans. (A) Diagram depicting functional and structural domains in S. cerevisiae 
(y)Gle1. Black arrow represents the position of the y-gle1-4 mutation (G382R) (Watkins 
et al., 1998).  White arrow marks the location of conserved IP6-coordinating residues 
K377 and K378 (Alcazar-Roman et al., 2010). (B) Diagram depicting functional and 
structural domains in human (h)Gle1B (adapted from Kendirgi et al., 2005). “PFQ” 
denotes location of the FinMajor insertion after amino acid 144 in the predicted coiled-coil 
domain (Nousiainen et al., 2008). Black arrow represents the homologous position 
(Q548) of the residue mutated in y-gle1-4 (Watkins et al., 1998).  White arrow marks the 
location of conserved IP6-coordinating residues K526 and K527 (Alcazar-Roman et al., 
2010). (C) Paircoil2-generated structure predictions of Gle1 polypeptide sequences, 
showing the structural effect of h-gle1-FinMajor and y-gle1 engineered PFQ insertions. (+) 
indicates >50% probability of coiled-coil structure. PFQ insertions locations are 
designated by bold underlined typeface.  
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the mRNA-particle (mRNP) protein composition (Alcazar-Roman et al., 2006; Bolger et 

al., 2008; Bolger and Wente, 2011; Weirich et al., 2006). Efficient yGle1 function at the 

NPCrequires inositol hexakisphosphate (IP6,) binding (Alcazar-Roman et al., 2010; York 

et al., 1999), and together yGle1-IP6 triggers Dbp5-dependent mRNP remodeling events 

required for directional export through NPCs (Tran et al., 2007). Conserved residues in 

both yGle1 and hGle1 are critical for IP6 binding and Dbp5 activation (Figure 2.1A-B) 

(Alcazar-Roman et al., 2010; Montpetit et al., 2011). In translation termination, yGle1-

IP6 directly interacts with Sup45 (eRF1) and is thought to activate Dbp5 for RNP 

remodeling to promote Sup35 (eRF3) association (Bolger et al., 2008). During translation 

initiation, yGle1 and hGle1 interact with eIF3 proteins, and yGle1 is known to modulate a 

different DBP, Ded1, for efficient start site recognition (Bolger et al., 2008; Bolger and 

Wente, 2011). Thus, Gle1 serves as a multifunctional effector of distinct steps in the gene 

expression pathway.  

 The major LCCS-1 causative mutation in hGLE1 is designated FinMajor, and is a 

single nucleotide substitution that alters a splice site acceptor in the third intron 

(Nousiainen et al., 2008). This results in a three amino acid residue insertion (proline-

phenylalanine-glutamine, PFQ) in the N-terminal coiled-coil domain of hGle1.  LCCS-1 

patients are typically homozygous for the FinMajor mutation, whereas heterozygotes show 

no reported phenotype (Nousiainen et al., 2008). As noted above, the C-terminal domain 

of hGle1 is linked to DBP regulation, nucleocytoplasmic shuttling, and IP6 binding 

(Alcazar-Roman et al., 2010; Kendirgi et al., 2003; Montpetit et al., 2011; Weirich et al., 

2006). The N-terminal coiled-coil domain is also essential in vivo (Watkins et al., 1998); 

however, putative protein interaction partners for the coiled-coil domain have not been 
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defined. It is also unclear whether the coiled-coil domain is involved in mRNA export 

and/or translation or how it is functionally perturbed in human LCCS-1 disease. 

Here we investigated the function of the coiled-coil domain, and in doing so 

defined the underlying mechanism for LCCS-1 at the molecular level. We show that the 

coiled-coil domain is critical for Gle1 self-association. Moreover, both hGle1 

oligomerization and mRNA export functions are perturbed with the FinMajor protein. For 

yGle1, the coiled-coil domain is specifically required for mRNA export and not 

translation. These data reveal a novel step in the mRNA export pathway and provide 

direct evidence for a defect in hGle1 regulation of mRNA export at the NPC as the 

molecular mechanism causing the human LCCS-1 disease.  

 

Materials and methods 

HeLa cell culture and immunoblotting 

HeLa cells were cultured in complete medium (DMEM, Gibco) supplemented with 10% 

FBS (Atlanta Biologicals) at 37 °C in 5% CO2. Transient transfections of GFP expression 

vectors were performed using Fugene6 (Promega) according to manufacturer’s 

instructions. For siRNA experiments, cells were first transfected with a scrambled siRNA 

or siRNA targeting hGLE1 using HiPerFect (Qiagen). For live cell imaging experiments, 

cells were plated in 35mm No. 1.5 glass bottom dishes (Mattek). Before imaging, culture 

medium was replaced with phenol red-free DMEM (Gibco) supplemented with 10% FBS 

and 25mM HEPES. For paraformaldehyde fixation, cells were plated on No. 1.5 round 

coverslips in a 24 well plate (Fisher). For immunoblots, HeLa cells were processed as 

described (Bolger et al., 2008). Protein bands were visualized with a Li-COR scanner.  
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Yeast culture methods 

Yeast strains were grown at indicated temperatures in either YPD (2% peptone, 2% 

dextrose, 1% yeast extract) or selective minimal media lacking appropriate amino acids 

and supplemented with 2% dextrose, and 5-fluoroorotic acid (5-FOA, US Biological) as 

needed at 1.0 mg/ml.  

Translation termination 

Translation termination experiments using the tandem β-galactosidase-luciferase 

reporters were performed as described (Alcazar-Roman et al., 2010; Bolger et al., 2008). 

Biochemical analysis of recombinant proteins 

MBP-TEV-yGle1(241-528), MBP-TEV-yGle1, MBP-TEV-y-gle1-136^PFQ, MBP-TEV-

y-gle1-149^PFQ, and GST-Dbp5 were purified as described (Tran et al., 2007). The GST-

hGle1(1-362), MBP-hGle1(1-362), and MBP-h-gle1(1-365)-FinMajor were expressed in E. 

coli BL21-RIL (DE3) cells (Stratagene). Bacteria were lysed by sonication in buffer 

(200mM NaCl, 20mM Tris, pH 7.5), and the soluble fraction was used for affinity 

chromatography with either amylose resin (New England Biolabs) or glutathione-coupled 

sepharose (GE Healthcare) according to manufacturer recommendations. Size exclusion 

chromatography with a S200 column (GE Healthcare) was used to further isolate 

complexes. PK/LDH-coupled ATPase assays (Noble et al., 2011), soluble binding assays 

(Kendirgi et al., 2005), and SVAU analysis (Roberts-Galbraith et al., 2010) were 

performed as described. Velocity scans were analyzed using Sedfit (version 14.0) 

(Schuck and Rossmanith, 2000). Size distributions were determined for a confidence 

level of p = 0.95, a resolution of n = 200, and sedimentation coefficients between 0 and 

80 S.  
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Live cell microscopy  

All images were processed with ImageJ (NIH) or Adobe Photoshop CS6. Wild-type S. 

cerevisiae (W303) with plasmids harboring either y-GLE1-GFP (pBRR118b) or y-gle1-

136^PFQ-GFP (pSW3779) were imaged as described (Noble et al., 2011) using a 

microscope (BX50; Olympus), Olympus 100×/1.3 UPlanF1 oil immersion objective, and 

digital charge coupled device camera (Orca-R2; Hamamatsu). For HeLa cells, photo-

acceptor bleaching and sensitized emission FRET microscopy experiments were 

conducted on a confocal microscope (LSM710, Zeiss) using a Zeiss 40×/1.1 C-

Apochromat water objective. Photo-acceptor bleaching was performed on HeLa cells co-

transfected with: (1) pSW3775 (Cer-hGLE1B) and pSW3774 (Venus-hGLE1B), (2) 

mCerulean3-C1 and pSW3774, or (3) pSW3977 (Venus-hGle1B(362-698)) and 

pSW3775. Cell volume was bleached by exciting at 514 nm throughout the targeted 

region, and FRET efficiency was calculated. For sensitized emission FRET 

measurements, HeLa cells were co-transfected with either pSW3775 and pSW3774 or 

mCerulean3 and pSW3774. A normalized FRET (NFRET) signal for indicated regions 

was determined using standard methods. FRAP was performed on untreated HeLa cells 

co-transfected with Pom121-mCherry and either GFP-hGLE1B (pSW1831), GFP-

FinMajor (pSW3903), or GFP-h-gle1BΔCC (pSW3976), or on hGLE1 siRNA treated 

HeLa cells co-transfected with Pom121-mCherry and either siRNA-resistant GFP-

hGLE1BR (pSW3908), GFP-FinMajor
R (pSW3945), or GFP-h-gle1BΔCC (pSW3976). All 

FRAP microscopy experiments were conducted on a confocal microscope (LSM710, 

Zeiss) using a Zeiss 40×/1.1 C-Apochromat water objective configured for time-lapse 

acquisition. Bleaching was achieved by exciting at 488 nm throughout the region.   
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Electron microscopy 

Uranyl formate stained samples were prepared as described (Ohi et al., 2004). Samples 

were imaged on a FEI Morgagni electron microscope operated at an acceleration voltage 

of 100 kV. Images were recorded at a magnification of 22-36,000x and collected using a 

1K x 1K CCD camera (ATM). To prepare samples in vitrified ice, a holey carbon grid 

(Quantifoil Micro Tools GmbH, Germany) was glow-discharged and used to adsorb gel-

filtration purified human Gle1 particles. Grids were blotted and frozen in liquid ethane 

using a Vitrobot (FEI, Hillsboro, OR). Vitrified specimens were imaged under low-dose 

conditions at a nominal magnification of 100,000x at defocus values ranging from –3 to –

5 µm using a Gatan cryo-transfer holder in a FEI Tecnai 200 kV electron microscope 

equipped with a field emission electron source (FEI, Hillsboro, OR) and 4K x 4K Gatan 

Ultrascan CCD. 

Yeast two hybrid assays 

Yeast two hybrid analysis was performed as described (Clontech, Protocol #PT3024-1). 

Briefly, PJ69-4A yeast transformed with the indicated GBD an GAD fusion proteins were 

grown in selective media to an A600 of ~0.8 OD units, pelleted and suspended in assay 

buffer (60mM Na2HPO4, 40mM NaH2PO4, 10mM KCl, 1mM MgSO4, pH 7.0). Cells 

were lysed using freeze thaw cycles (4X). β-galactosidase activity was detected using 

ortho-nitrophenyl-β-galactoside as a substrate and measuring absorbance at 420 nm. 

Activities reported were normalized to GBD-hGle1B b-galactosidase levels. 

Immunoblotting 

For western blotting, HeLa cells were lysed in 1% NP-40, 150mM NaCl, 50mM Tris pH 

7.5, and protease inhibitors. Samples were resuspended with SDS buffer, separated by 
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SDS-PAGE, transferred to nitrocellulose, and immunoblotted with anti-hGle1 (Jao et al., 

2012), anti-GFP (Molecular Probes), or anti-Actin (Sigma) antibodies. Secondary 

antibodies conjugated with infrared dyes were visualized with the Li-Cor Odyssey 

scanner (Lincoln, NE). 

In situ hybridization 

S. cerevisiae cells were grown and processed as described (Wente and Blobel, 1993). To 

localize poly(A)+RNA in HeLa cells, cells were fixed seventy-two hours post siRNA 

treatment and processed as described (Watkins et al, 1998). Both human and yeast cells 

were incubated for 2 hr with 1 ng/µl Cy3-conjugated oligo d(T) in hybridization buffer 

containing 125 µg/ml tRNA, 0.5 mg/ml ssDNA and 1% BSA. DNA was stained with 0.1 

µg/ml DAPI. Yeast cells were mounted for imaging in 90% glycerol and 1 mg/ml p-

phenylenediamine, pH 8.0 (Sigma-Aldrich), with human in ProLong Gold Antifade 

media (Invitrogen). Wide field images were acquired using a microscope (BX50; 

Olympus) equipped with a motorized stage (Model 999000, Ludl), Olympus 100×/1.3 

UPlanF1 objective (Yeast samples) or Olympus 40×/1.3 UPlanF1 objective (HeLa 

samples), and digital charge coupled device camera (Orca-R2; Hamamatsu). Images were 

processed with ImageJ (NIH) or Adobe Photoshop CS6. The mean Cy3 intensity was 

determined for the nuclear and cytoplasmic compartment of individual GFP positive 

cells. Nuclear/cytoplasmic (N/C) ratios were calculated and plotted on a column vertical 

scatter plot for indicated conditions. 

siRNA depletion and rescue experiments 

Allstars Negative Control siRNA and hGLE1 siRNA 

(5’CAGCGCGTGAAGCAAGCAGAA-3’) were purchased from Qiagen. For all siRNA 
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depletion experiments, HeLa cells were reverse transfected with 20nM of indicated 

siRNAs using HiPerFect (Qiagen) reagent following manufacturer’s instructions. For live 

cell imaging experiments, sixty hours post hGLE1 siRNA treatment, cells were 

transfected with siRNA resistant (“R”) GFP-hGLE1BR, GFP-FinMajor
R

, or GFP-h-

gle1BΔCC expression vectors using Fugene 6 reagent (Promega). Seventy-two hours post 

siRNA treatment, cells were analyzed by FRAP microscopy.  For in situ hybridization 

experiments, twenty-four hours post siRNA treatment, cells were transfected with GFP, 

GFP-hGLE1BR or GFP-FinMajor
R expression vectors using Fugene 6 reagent (Promega). 

Seventy-two hours post siRNA treatment, cells were processed for detection of 

poly(A)+RNA by in situ hybridization.   

 

Results 

Gle1 self-associates in vitro via its coiled-coil domain 

To date no protein interaction partners for the Gle1 coiled-coil domain have been 

reported. Since coiled-coil domains are often utilized to mediate homotypic interactions, 

we speculated that Gle1 might self-associate. To test this, a series of in vitro biochemical 

experiments were conducted with recombinant purified proteins. First, for in vitro soluble 

binding assays, a glutathione-S-transferase (GST)-tagged N-terminal region of hGle1 

(residues 1-362; GST-hGle1(1-362)) was expressed and purified from bacteria. GST-

hGle1(1-362) or GST alone was incubated with [35S]methionine-labeled hGle1(1-362) 

generated with an in vitro rabbit reticulocyte lysate system and glutathione-Sepharose 

beads. Bound [35S]-hGle1(1-362) was eluted and analyzed by SDS-PAGE and 

autoradiography. An increased level of [35S]-hGle1(1-362) was bound with GST-
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hGle1(1-362) as compared to GST alone (Figure 2.2A). This suggested that the coiled-

coil domain is sufficient to mediate self-association. 

 As an independent assessment of Gle1 self-association, sedimentation velocity 

analytical ultracentrifugation (SVAU) was employed. For this, recombinant maltose-

binding-protein (MBP)-hGle1(1-362) was purified from bacteria (Figure 2.2B).  MBP-

hGle1(1-362) protomer itself has a predicted molecular mass of 0.084 MDa. Strikingly, 

MBP-hGle1(1-362) sedimented in a series of distinct peaks corresponding to at least 

eight species with high relative molecular masses ranging from 0.096 MDa to 2.0 MDa 

(Figure 2.3A). As controls, we examined purified MBP alone and a purified recombinant 

yGle1 polypeptide for the C-terminal domain (residues 241-538; yGle1(241-538)) by 

SVAU. For both, a single peak of low molecular mass was observed at 0.044 and 0.040 

MDa, respectively (Figure 2.3C-D). Overall, the N-terminal coiled-coil domain of hGle1 

was both necessary and sufficient to form large in vitro complexes potentially 

representing higher order oligomers.  Next, the oligomeric state of recombinant MBP-h-

gle1(1-365)-FinMajor was analyzed by SVAU. Similar to wild-type, MBP-h-gle1(1-365)-

FinMajor sedimented in a series of distinct peaks ranging from 0.097 MDa to 1.9 MDa 

(Figure 2.3B). Thus, the FinMajor protein also self-associated and formed oligomeric 

complexes. 
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Figure 2.2: The coiled-coil domain of hGle1 is sufficient to mediate self-association  
(A) hGle1 self-associates in vitro. Soluble binding is shown for 35S-labeled hGle1(1-362) 
incubated with either recombinant GST or GST-hGle1(1-362). Proteins were visualized 
by Coomassie staining and autoradiography. Gels were analyzed by densitometry to 
quantify the GST and 35S gel band intensities.  There is a 1.6-fold enrichment for 35S-
hGle1(1-362) with GST-hGle1(1-362) versus GST alone. (B) Coomassie staining of 
affinity-purified recombinant MBP-hGle1(1-362) and MBP-h-gle1(1-365)-FinMajor are 
shown, resolved by SDS-PAGE.  
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Figure 2.3: hGle1 forms large oligomeric complexes (A-B) hGle1 adopts a variety of 
higher order oligomeric states in vitro. Sedimentation velocity analytical 
ultracentrifugation (SVAU) was performed on recombinant (A) MBP-hGle1(1-362) and 
(B) MBP-h-gle1(1-365)-FinMajor. A representative trace demonstrating the formation of 
higher order oligomeric complexes is shown. ** indicates the presence of a MBP-tagged 
degradation product. Determined molecular masses and percent abundance are given for 
indicated peaks. (C-D) The coiled-coil domain is required for Gle1 self-association. 
SVAU was performed on recombinant (C) MBP and (D) yGle1(241-538). Representative 
traces are shown. Determined molecular masses and percent abundance are given for 
indicated peak. 
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hGle1 oligomers form disk structures that are disorganized with FinMajor 

To gain insight into the hGle1 oligomer structure, the high molecular mass MBP-

hGle1(1-362) complexes were analyzed using negative stain electron microscopy 

(NegEM). Purified, recombinant MBP-hGle1(1-362) samples at ~0.5 mg/ml were further 

fractionated by size exclusion chromatography. NegEM revealed that MBP-hGle1(1-362) 

formed ring/disk structures, as shown in a representative field (Figure 2.4A) and the 

montage of individual ring/disks (Figure 2.4B). Measurements of the diameter for 500 

particles ranged from ~15 nm to 60 nm, with an average size of 25.8 nm (standard 

deviation of 6.64 nm) (Figure 2.4F). To further investigate the structures, cryo-electron 

microscopy (cryo-EM) was conducted, allowing preservation of native protein structure 

and eliminating negative staining artifacts. The cryo-EM images showed that MBP-

hGle1(1-362) oligomers adopted a disk-like shape in solution (Figure 2.4G).  

We next examined recombinant MBP-h-gle1(1-365)-FinMajor protein by NegEM. 

MBP-h-gle1(1-365)-FinMajor also formed disk-shaped particles; however, these appeared 

structurally disorganized compared to wild-type disks (Figure 2.4C-D). Fields of particles 

from independent purifications were compared and individual particles binned into three 

distinct structural categories: (1) aggregates, (2) disordered disks, and (3) round disks 

(Figure 2.4E). A significantly greater proportion of the MBP-h-gle1(1-365)-FinMajor 

particle samples were disordered disks. We concluded that the PFQ-insertion perturbs the 

in vitro oligomeric complex.  
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Figure 2.4: Gle1 oligomers form disk structures (A-B) hGle1 forms large circular 
structures. (A) Representative EM image for purified MBP-hGle1(1-362). Bar, 50 nm. 
(B) Gallery of individual MBP-hGle1(1-362) particles. Bar, 25 nm. (C-E) FinMajor 
particles are malformed and disorganized. (C) Representative EM image of MBP-h-
gle1(1-365)-FinMajor. Bar, 50 nm. (D) Gallery of individual MBP-h-gle1(1-365)-FinMajor 
particles. Bar, 25 nm. (E) Quantification of particle morphology for MBP-hGle1(1-362) 
and MBP-h-gle1(1-365)-FinMajor samples, categorized as aggregates, disorganized, or 
round. (F) hGle1 particles vary in diameter. Histogram of the measured diameter of 
MBP-hGle1(1-362) particles. (G) hGle1 oligomeric particles form disk-like structures. 
CryoEM images of MBP-hGle1(1-362) disk-shaped structures in vitrified ice. Bar, 25 
nm. (H-I) Oligomeric disk structures are conserved through evolution. (H) Representative 
EM image of recombinant yGle1. Bar, 50 nm. (I) Gallery of individual yGle1 particles. 
Bar, 25 nm. 
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Gle1 oligomerization is structurally conserved 

We hypothesized that recombinant yGle1 would also form disk-like oligomeric 

structures. To investigate this, recombinant untagged full-length yGle1 was purified and 

further fractionated by size exclusion chromatography. By negative stain EM, similar to 

MBP-hGle1(1-362), yGle1 formed disk-like structures (Figure 2.4H-I). Importantly, as 

isolation of untagged full-length hGle1 was technically not possible, analysis of full-

length, untagged yGle1 provided strong evidence that disk structure formation was 

intrinsic to Gle1 and not an artifact of either the MBP tag or an isolated N-terminal 

domain. Moreover, the structural characteristics of the oligomer were conserved between 

yGle1 and hGle1.  

 

hGle1 self-associates in living cells  

To test whether hGle1 self-associates in human cells, Forster resonance energy 

transfer (FRET) microscopy was used. Plasmids expressing hGle1B tagged with mVenus 

(Venus) or mCerulean3 (Cer3) were co-transfected into HeLa cells. Twelve hours post-

transfection, FRET measurements were made in living cells using photo-acceptor 

bleaching FRET microscopy (Figure 2.5A). Strikingly, a FRET interaction of Cer3-

hGle1B and Venus-hGle1B was detected in the cytoplasm (9.19% FRET efficiency) and 

in the nucleoplasm (5.85% FRET efficiency).  In comparison, the percent FRET 

efficiency between Cer3 alone and Venus-hGle1B was low (<1.25%) in both the 

cytoplasm and nucleoplasm. As an additional control, a Venus fusion protein for only the 

hGle1B C-terminal region (residues 362 to 698) was tested. Only low FRET efficiency 

(<2.0%) for both the nucleoplasm and cytoplasm was detected with co- 
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Figure 2.5: hGle1B self-associates in living cells (A) hGle1B self-associates in living 
cells. Analysis of hGle1B interactions by acceptor photobleaching FRET microscopy in 
HeLa cells expressing the indicated fluorescent protein FRET pairs. FRET efficiencies of 
indicated regions were measured. Nucleoplasm and cytoplasm are designated by “N” and 
“C”, respectively. Error bars represent mean + 95% confidence interval (CI) with n ≥ 20 
cells from two independent experiments. (B) hGle1B self-associates at the nuclear rim. 
Analysis of sensitized emission FRET at the nuclear rim in HeLa cells expressing the 
indicated proteins. Shown are representative images of Venus-hGle1B (acceptor), Cer-
hGle1B (donor) and the normalized FRET (NFRET) intensity map signal, top. Bar, 
10µm. Bar graph depicts the NFRET signal for indicated regions, bottom. Nucleoplasm, 
cytoplasm, and nuclear rim are abbreviated as “N”,“C”, and “NR”, respectively. Error 
bars for each condition represent mean + 95% CI with n ≥ 15 cells from at least two 
independent experiments.  
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expression of Cer3-hGle1B and Venus-hGle1B(362-698) (Figure 2.5A).  Thus, the 

coiled-coil domain was required to mediate hGle1B self-association in living cells. 

During the acceptor bleaching event (~50 seconds), subtle movement of the 

nuclear rim prevented accurate FRET measurements using the photo-acceptor bleaching 

method.  Thus, sensitized emission FRET measurements were made.  In cells expressing 

Cer3-hGle1B and Venus-hGle1B, we observed a normalized FRET (NFRET) signal in 

the cytoplasm (12.9), nucleoplasm (6.22), and at the nuclear rim (12.8) (Figure 2.5B). In 

cells expressing Cer3 and Venus-hGle1B cells, low NFRET (<4.08) signal was detected 

in all respective locations (Figure 2.5B). Together, these results indicated that hGle1 has 

the capacity to self-associate, at a minimum, as a dimer pair in living cells.  

 

FinMajor perturbs essential hGle1 function in mRNA export 

 To investigate whether the FinMajor phenotype is due to perturbed mRNA export, 

translation initiation, and/or translation termination, several independent tests were 

conducted. Our previous studies found that hGle1 localization at the NPC is dependent on 

interactions with both hNup155 and hCG1 (Kendirgi et al., 2005a; Rayala et al., 2004), 

and that hGle1 interacts with the translation initiation factor eIF3f (Bolger et al., 2008). 

Using the yeast two-hybrid assay, GBD-hGle1B and GBD-FinMajor DNA-binding domain 

(BD) bait proteins were analyzed with respective activation domain (AD) GAD-hCG1, 

GAD-hNup155, or GAD-eIF3f prey proteins, with b-galactosidase expression as the 

interaction readout. In all cases, the GBD-FinMajor was similar to wild-type GBD-hGle1B 

(Figure 2.6A). This suggested that the FinMajor protein was properly folded.  
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Figure 2.6: Exogenous expression of FinMajor protein does not rescue hGLE1 siRNA 
depletion phenotype (A) Known Gle1 yeast two hybrid interactions are intact in h-gle1-
FinMajor mutant. Shown are yeast two hybrid interactions of GAD-hNup155, GAD-eIF3f, 
and GAD-hCG1 with either GBD-hGle1B or GBD-hgle1B-FinMajor, each normalized to wild-
type GBD-hGle1B β-galactosidase activity. Error bars represent standard error of the mean 
from 5 independent experiments. (B) Quantification of the nucleocytoplasmic distribution 
of poly(A)+RNA in CTRL and hGLE1 siRNA treated cells transfected with plasmids 
expressing GFP, GFP-hGLE1BR, or GFP-FinMajor

R . Total poly(A)+RNA was detected by 
in situ oligo (dT) hybridization. The mean Cy3 intensity was determined for the nuclear 
and cytoplasmic compartment of individual GFP positive cells. Nuclear/cytoplasmic 
(N/C) ratios were calculated and plotted on a column vertical scatter plot for indicated 
conditions. Error bars represent mean ± 95% confidence interval with n ≥ 175 cells from 
three independent experiments.  
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Furthermore, the hCG1, Nup155 and eIF3f interactions were not perturbed by the PFQ 

insertion (Figure 2.6A). 

 Because the LCCS-1 disease is a homozygous recessive condition, we established 

a siRNA knockdown and add-back, human cell culture model system. As confirmed by 

immunoblotting, endogenous hGle1 levels were reduced by transfection of a small 

interfering RNA (siRNA) targeting hGLE1 (Figure 2.7A, lane 2). As a control, a 

scrambled siRNA was tested in parallel (CTRL). To assay mRNA export, the cellular 

distribution of bulk poly(A)+RNA in hGLE1 and CTRL siRNA cells was monitored by in 

situ hybridization with an oligo (dT) probe. Only cells treated with the hGLE1 siRNA 

showed robust nuclear accumulation of poly(A)+RNA (Figure 2.7B).  

Rescue of the mRNA export defect was analyzed by expressing either GFP alone, 

a GFP-tagged siRNA-resistant (R) hGLE1B gene (GFP-hGLE1BR), or a GFP-tagged 

siRNA resistant FinMajor gene (GFP-FinMajor
R). For each trial, the nuclear/cytoplasmic 

(N/C) ratio of the poly(A)+RNA distribution was determined by measuring fluorescence 

intensity. For CTRL siRNA with expression of GFP, GFP-hGLE1BR, or GFP-FinMajor
R, 

the mean N/C ratio was ~1.2, with no significant difference between the three conditions. 

In contrast, the mean N/C ratio for expression of only GFP with the hGLE1 siRNA was 

~1.6, reflecting nuclear accumulation. Importantly, expression of GFP-hGLE1BR with the 

hGLE1 siRNA rescued the mRNA export defect (mean N/C ratio = 1.2) confirming that 

the hGLE1 siRNA phenotype was not due to off-target effects (Figure 2.7B, Figure 

2.6B).  However, most strikingly, expression of the GFP-FinMajor
R did not rescue the 

hGLE1 siRNA poly(A)+RNA nuclear accumulation defect (mean N/C ratio = 1.5). 

Immunoblotting confirmed expression of the GFP- 
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Figure 2.7: FinMajor has a defect in nuclear poly(A)+ RNA export (A) hGLE1 siRNA 
treatment depletes endogenous hGle1 protein levels. Immunoblot analysis of hGle1 and 
actin protein levels in scrambled control (CTRL) or hGLE1 siRNA-treated HeLa cells 
transfected with the indicated GFP-tagged proteins. (B) Nuclear poly(A)+ RNA 
accumulation in hGLE1 siRNA treated cells expressing the indicated GFP-tagged 
proteins, detected by in situ oligo-dT hybridization and direct fluorescence microscopy. 
See Figure S2.6B for quantification of the nucleocytoplasmic distribution of poly(A)+ 
RNA.  
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hGle1BR (Figure 2.7A, lane 4) and GFP-FinMajor
R (Figure 2.7A, lane 6) proteins. 

Moreover, similar to GFP-hGle1BR, the GFP-FinMajor
R

 localized to the nuclear rim in both 

the CTRL and hGLE1 siRNA cells (Figure 2.7B). Thus, we concluded that FinMajor is 

defective for function in mRNA export. 

 

FinMajor mimic insertions in yGle1 specifically alter mRNA export function 

Robust assays for Gle1 roles in translation initiation and translation termination 

have to date been established only in the yeast S. cerevisiae model. In addition, due to 

protein solubility issues, reconstitution of Gle1-IP6 activation of Dbp5 has only been 

possible with the S. cerevisiae proteins. Thus, to further analyze the potential 

perturbations of FinMajor function in mRNA export, we conducted a series of experiments 

with yGle1. First, to directly test whether the yGle1 N-terminal region impacts Dbp5 

activation, purified recombinant MPB-yGle1 proteins were assayed for in vitro Dbp5 

ATPase stimulation. As reported, the C-terminal region of yGle1 (residues 241-538; 

Δ240Gle1) with IP6 is sufficient for stimulating Dbp5’s ATPase activity (Figure 2.8) 

(Weirich et al., 2006). In side-by-side assays, the relative stimulation activity level for 

full-length yGle1 and y-Δ240Gle1were similar (Figure 2.8). Thus, in vitro activation 

Dbp5 did not require a functional yGle1 N-terminal coiled-coil domain.  

  Based on the sequence and structural homologies and the fact that the hGle1 

coiled-coil domain can partially complement the role of the yGle1 domain (Watkins et 

al., 1998), we designed FinMajor mimic insertions in yGle1 for tests of in vivo function. In 

silico analysis with the Paircoil2 coiled-coil prediction program showed that insertion of 

a three amino acid PFQ motif after amino acid 136 or 149 in yGle1 would potentially  



	   51	  

 
 
 
Figure 2.8: Stimulation of Dbp5’s ATPase activity in vitro does not require coiled-coil 
domain. y-gle1^PFQ proteins stimulate Dbp5 ATPase activity in vitro. Graph depicts Dbp5 
ATPase activities for purified recombinant wild-type yGle1 and altered y-gle1 proteins, 
normalized to Dbp5 alone. Standard error of the mean was calculated from 3 independent 
experiments.  
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disrupt coiled-coil formation in a manner that would effectively mimic the structural 

effects of the PFQ found after residue 144 in the FinMajor protein (Figure 2.1C, Table 1-2) 

(Nousiainen et al., 2008). Importantly, the modeling analysis also predicted regions of the 

yGle1 coiled-coil domain that should be impacted less by a PFQ insertion. For example, 

adding PFQ after amino acid 157 in yGle1 was not predicted to change the potential for 

the region to form a coiled-coil (Figure 2.1C, Table 2). Based on this, y-gle1-136^PFQ, y-

gle1-149^PFQ, and y-gle1-157^PFQ mutants were generated. The mutant strains showed no 

growth defects compared to wild-type yGLE1, indicating no global folding defects for the 

proteins (Figure 2.9A). Moreover, purified recombinant MBP-y-gle1-136^PFQ and MBP-

y-gle1-149^PFQ proteins activated Dbp5 to the same relative level as wild-type MBP-

yGle1 (Figure 2.8). In addition, live cell direct fluorescence microscopy of yeast cells 

showed that the GFP-tagged y-gle1^PFQ proteins localized predominantly at the nuclear 

rim in a similar manner to wild-type GFP-yGle1 (Figure 2.9D) and GFP-FinMajor in HeLa 

cells (Figure 2.7B). 

Next, synthetic fitness defects were tested for double mutants generated from the 

pairwise combination of the respective y-gle1^PFQ mutants with mRNA export and/or 

translation mutants. This included several mRNA export specific mutants (nup100Δ, 

nup42Δ, rat7-1(nup159)), a translation initiation mutant (nip1-1), a translation 

termination mutant (sup45-2), and two mutants with defects in both mRNA export and 

translation termination (rat8-2(dbp5) and ipk1Δ)  (Bolger et al., 2008; Murphy and 

Wente, 1996; Stutz et al., 1997). The y-gle1-157^PFQ mutant did not have synthetic 

fitness defects in any of the tested double mutants (Figure 2.9B, 2.10A, 2.10B), 

correlating with the prediction that it would not perturb the coiled-coil region. 
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> 50% probability of forming coiled-coil domain < 10% probability of forming coiled-coil domain 
 

S. cerevisiae wild-type Gle1 S. cerevisiae gle1-136^PFQ 
 

Position Residue Register P-value Score Position Residue Register P-value Score   Register P-value Score Position Residue Register P-value Score 
120 T g 0.29049 -3.04 110 L d 0.50957 -7.88   g 0.29049 -3.04 110 L d 0.50957 -7.88 
121 A a 0.29049 -3.04 111 L e 0.50957 -7.88   a 0.29049 -3.04 111 L e 0.50957 -7.88 
122 P b 0.29049 -3.04 112 D f 0.50957 -7.88   b 0.29049 -3.04 112 D f 0.50957 -7.88 
123 L c 0.07643 4.35 113 N g 0.50957 -7.88   c 0.07643 4.35 113 N g 0.50957 -7.88 
124 L d 0.04931 6.23 114 A a 0.50957 -7.88   d 0.04931 6.23 114 A a 0.50957 -7.88 
125 E e 0.04931 6.23 115 K b 0.50957 -7.88   e 0.04931 6.23 115 K b 0.50957 -7.88 
126 A f 0.04931 6.23 116 N c 0.50957 -7.88   f 0.04931 6.23 116 N c 0.50957 -7.88 
127 I g 0.04931 6.23 117 S d 0.50957 -7.88   g 0.04931 6.23 117 S d 0.50957 -7.88 
128 E a 0.03041 0.11 118 N e 0.50957 -7.88   a 0.03041 0.11 118 N e 0.50957 -7.88 
129 E b 0.0147 10.66 119 A f 0.50957 -7.88   b 0.0147 10.66 119 A f 0.50957 -7.88 
130 S c 0.01472 10.66 120 T g 0.50957 -7.88   c 0.01472 10.66 120 T g 0.50957 -7.88 
131 F d 0.01472 10.66 121 A a 0.50957 -7.88   d 0.01472 10.66 121 A a 0.50957 -7.88 
132 Q e 0.01472 10.66 122 P b 0.50957 -7.88   e 0.01472 10.66 122 P b 0.50957 -7.88 
133 R b 0.01437 10.73 123 L c 0.36269 -4.72   b 0.01437 10.73 123 L c 0.36269 -4.72 
134 K c 0.01437 10.73 124 L d 0.31032 -3.51   c 0.01437 10.73 124 L d 0.31032 -3.51 
135 M d 0.01437 10.73 125 E e 0.31032 -3.51   d 0.01437 10.73 125 E e 0.31032 -3.51 
136 Q e 0.01437 10.73 126 A f 0.31032 -3.51   e 0.01437 10.73 126 A f 0.31032 -3.51 
137 N f 0.01437 10.73 127 I g 0.31032 -3.51   f 0.01437 10.73 127 I g 0.31032 -3.51 
138 L g 0.01437 10.73 128 E a 0.3024 -3.32   g 0.01437 10.73 128 E a 0.3024 -3.32 
139 V a 0.01437 10.73 129 E b 0.23742 -1.67   a 0.01437 10.73 129 E b 0.23742 -1.67 
140 L f 0.01268 11.14 130 S c 0.23742 -1.67   f 0.01268 11.14 130 S c 0.23742 -1.67 
141 A g 0.00985 11.96 131 F d 0.22157 -1.23   g 0.00985 11.96 131 F d 0.22157 -1.23 
142 N a 0.00792 12.64 132 Q e 0.19536 -0.45   a 0.00792 12.64 132 Q e 0.19536 -0.45 
143 Q b 0.00576 13.59 133 R f 0.19405 -0.42   b 0.00576 13.59 133 R f 0.19405 -0.42 
144 K c 0.00536 3.81 134 K g 0.19307 -0.38   c 0.00536 3.81 134 K g 0.19307 -0.38 
145 E d 0.00381 14.79 135 M a 0.19397 -0.38   d 0.00381 14.79 135 M a 0.19397 -0.38 
146 I e 0.00247 15.98 136 P b 0.19397 -0.38   e 0.00247 15.98 136 P b 0.19397 -0.38 
147 Q f 0.00168 17.02 137 F c 0.0537 5.87   f 0.00168 17.02 137 F c 0.0537 5.87 
148 S g 0.00168 17.02 138 Q d 0.02889 8.3   g 0.00168 17.02 138 Q d 0.02889 8.3 
149 I a 0.00168 17.02 139 Q b 0.0188 9.83   a 0.00168 17.02 139 Q b 0.0188 9.83 
150 R b 0.00168 17.02 140 N c 0.0188 9.83   b 0.00168 17.02 140 N c 0.0188 9.83 
151 E c 0.00168 17.02 141 L d 0.01764 10.05   c 0.00168 17.02 141 L d 0.01764 10.05 
152 N d 0.00168 17.02 142 V e 0.01764 10.05   d 0.00168 17.02 142 V e 0.01764 10.05 
153 K e 0.00168 17.02 143 L f 0.01268 11.14   e 0.00168 17.02 143 L f 0.01268 11.14 
154 R f 0.00168 17.02 144 A g 0.00985 11.96   f 0.00168 17.02 144 A g 0.00985 11.96 
155 R g 0.00168 17.02 145 N a 0.00792 12.64           
156 V a 0.00168 17.02 146 Q b 0.00576 13.59           
157 E b 0.00168 17.02 147 K c 0.00536 13.81           
158 E c 0.00168 17.02 148 E d 0.00381 14.79           
159 Q d 0.00168 17.02 149 I e 0.00247 15.98           
160 R e 0.00168 17.02 150 Q f 0.00168 17.02           

 
 
Table 1: Paracoil2 secondary structure prediction  
Shown are the secondary structure predictions for respective yGle1 polypeptide 
sequences with the program Paracoil2 (McDonnel et al., 2006).  The scores represent the 
pairwise residue probabilities for each amino acid to reside in a coiled-coil domain 
(Berger et al. 1995).  Residues highlighted in red have greater than 50% likelihood of 
residing in a coiled-coil domain (score ≥3.24).  Residues highlighted in gray have less 
than a 10% likelihood of contributing to a coiled-coil domain (score ≤-5.04). 
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> 50% probability of forming coiled-coil domain < 10% probability of forming coiled-coil domain 
 

S. cerevisiae gle1-149^PFQ S. cerevisiae gle1-157^PFQ 
 

Position Residue Register P-value Score Position Residue Register P-value Score   Register P-value Score Position Residue Register P-value Score   Register P-value Score Position Residue Register P-value Score 
120 T G 0.29049 -3.04 120 T g 0.29049 -3.04   g 0.29049 -3.04 110 L d 0.50957 -7.88   g 0.29049 -3.04 110 L d 0.50957 -7.88 
121 A A 0.29049 -3.04 121 A a 0.29049 -3.04   a 0.29049 -3.04 111 L e 0.50957 -7.88   a 0.29049 -3.04 111 L e 0.50957 -7.88 
122 P B 0.29049 -3.04 122 P b 0.29049 -3.04   b 0.29049 -3.04 112 D f 0.50957 -7.88   b 0.29049 -3.04 112 D f 0.50957 -7.88 
123 L c 0.29049 -3.04 123 L c 0.07643 4.35   c 0.07643 4.35 113 N g 0.50957 -7.88   c 0.07643 4.35 113 N g 0.50957 -7.88 
124 L d 0.29049 -3.04 124 L d 0.04931 6.23   d 0.04931 6.23 114 A a 0.50957 -7.88   d 0.04931 6.23 114 A a 0.50957 -7.88 
125 E e 0.29049 -3.04 125 E e 0.04931 6.23   e 0.04931 6.23 115 K b 0.50957 -7.88   e 0.04931 6.23 115 K b 0.50957 -7.88 
126 A f 0.29049 -3.04 126 A f 0.04931 6.23   f 0.04931 6.23 116 N c 0.50957 -7.88   f 0.04931 6.23 116 N c 0.50957 -7.88 
127 J g 0.29049 -3.04 127 I g 0.04931 6.23   g 0.04931 6.23 117 S d 0.50957 -7.88   g 0.04931 6.23 117 S d 0.50957 -7.88 
128 E a 0.29049 -3.04 128 E a 0.04931 6.23   a 0.03041 0.11 118 N e 0.50957 -7.88   a 0.03041 0.11 118 N e 0.50957 -7.88 
129 E b 0.29049 -3.04 129 E b 0.04931 6.23   b 0.0147 10.66 119 A f 0.50957 -7.88   b 0.0147 10.66 119 A f 0.50957 -7.88 
130 S c 0.29049 -3.04 130 S c 0.04931 6.23   c 0.01472 10.66 120 T g 0.50957 -7.88   c 0.01472 10.66 120 T g 0.50957 -7.88 
131 F d 0.29049 -3.04 131 F d 0.04931 6.23   d 0.01472 10.66 121 A a 0.50957 -7.88   d 0.01472 10.66 121 A a 0.50957 -7.88 
132 Q e 0.28522 -2.91 132 Q e 0.04931 6.23   e 0.01472 10.66 122 P b 0.50957 -7.88   e 0.01472 10.66 122 P b 0.50957 -7.88 
133 R f 0.27602 -2.68 133 R f 0.04931 6.23   b 0.01437 10.73 123 L c 0.36269 -4.72   b 0.01437 10.73 123 L c 0.36269 -4.72 
134 K g 0.27602 -2.68 134 K g 0.04931 6.23   c 0.01437 10.73 124 L d 0.31032 -3.51   c 0.01437 10.73 124 L d 0.31032 -3.51 
135 M a 0.27602 -2.68 135 M a 0.04931 6.23   d 0.01437 10.73 125 E e 0.31032 -3.51   d 0.01437 10.73 125 E e 0.31032 -3.51 
136 Q b 0.27602 -2.68 136 Q b 0.04931 6.23   e 0.01437 10.73 126 A f 0.31032 -3.51   e 0.01437 10.73 126 A f 0.31032 -3.51 
137 N c 0.27602 -2.68 137 N c 0.04931 6.23   f 0.01437 10.73 127 I g 0.31032 -3.51   f 0.01437 10.73 127 I g 0.31032 -3.51 
138 L d 0.27602 -2.68 138 L d 0.04931 6.23   g 0.01437 10.73 128 E a 0.3024 -3.32   g 0.01437 10.73 128 E a 0.3024 -3.32 
139 V e 0.27602 -2.68 139 V e 0.04931 6.23   a 0.01437 10.73 129 E b 0.23742 -1.67   a 0.01437 10.73 129 E b 0.23742 -1.67 
140 L f 0.27602 -2.68 140 L f 0.04931 6.23   f 0.01268 11.14 130 S c 0.23742 -1.67   f 0.01268 11.14 130 S c 0.23742 -1.67 
141 A d 0.22016 -1.18 141 A g 0.04931 6.23   g 0.00985 11.96 131 F d 0.22157 -1.23   g 0.00985 11.96 131 F d 0.22157 -1.23 
142 N e 0.2201 -1.18 142 N a 0.04931 6.23   a 0.00792 12.64 132 Q e 0.19536 -0.45   a 0.00792 12.64 132 Q e 0.19536 -0.45 
143 Q f 0.21631 -1.07 143 Q b 0.04931 6.23   b 0.00576 13.59 133 R f 0.19405 -0.42   b 0.00576 13.59 133 R f 0.19405 -0.42 
144 K g 0.21631 -1.07 144 K c 0.04931 6.23   c 0.00536 3.81 134 K g 0.19307 -0.38   c 0.00536 3.81 134 K g 0.19307 -0.38 
145 E a 0.21631 -1.07 145 E d 0.04931 6.23   d 0.00381 14.79 135 M a 0.19397 -0.38   d 0.00381 14.79 135 M a 0.19397 -0.38 
146 I b 0.1628 0.59 146 I e 0.04931 6.23   e 0.00247 15.98 136 P b 0.19397 -0.38   e 0.00247 15.98 136 P b 0.19397 -0.38 
147 Q c 0.08813 3.71 147 Q f 0.04931 6.23   f 0.00168 17.02 137 F c 0.0537 5.87   f 0.00168 17.02 137 F c 0.0537 5.87 
148 S d 0.07374 4.51 148 S g 0.04931 6.23   g 0.00168 17.02 138 Q d 0.02889 8.3   g 0.00168 17.02 138 Q d 0.02889 8.3 
149 P e 0.04161 6.91 149 J a 0.04931 6.23   a 0.00168 17.02 139 Q b 0.0188 9.83   a 0.00168 17.02 139 Q b 0.0188 9.83 
150 F f 0.00264 15.81 150 R b 0.04931 6.23   b 0.00168 17.02 140 N c 0.0188 9.83   b 0.00168 17.02 140 N c 0.0188 9.83 
151 Q g 0.00132 17.65 151 E c 0.04931 6.23   c 0.00168 17.02 141 L d 0.01764 10.05   c 0.00168 17.02 141 L d 0.01764 10.05 
152 I a 0.00132 17.65 152 N d 0.04931 6.23   d 0.00168 17.02 142 V e 0.01764 10.05   d 0.00168 17.02 142 V e 0.01764 10.05 
153 R b 0.00132 17.65 153 K e 0.04931 6.23   e 0.00168 17.02 143 L f 0.01268 11.14   e 0.00168 17.02 143 L f 0.01268 11.14 
154 E c 0.00132 17.65 154 R f 0.06717 4.93   f 0.00168 17.02 144 A g 0.00985 11.96   f 0.00168 17.02 144 A g 0.00985 11.96 
155 N d 0.00132 17.65 155 R g 0.07031 4.72   g 0.00168 17.02 145 N a 0.00792 12.64           
156 K e 0.00132 17.65 156 V a 0.07031 4.72   a 0.00168 17.02 146 Q b 0.00576 13.59           
157 R f 0.00132 17.65 157 P g 0.08078 4.10   b 0.00168 17.02 147 K c 0.00536 13.81           
158 R g 0.00132 17.65 158 F g 0.00872 12.34   c 0.00168 17.02 148 E d 0.00381 14.79           
159 V a 0.00132 17.65 159 Q a 0.00395 14.68   d 0.00168 17.02 149 I e 0.00247 15.98           
160 E b 0.00132 17.65 160 E b 0.00183 16.80   e 0.00168 17.02 150 Q f 0.00168 17.02           

 
Table 2: Paracoil2 secondary structure prediction 
Shown are the secondary structure predictions for respective yGle1 polypeptide 
sequences with the program Paracoil2 (McDonnel et al., 2006).  The scores represent the 
pairwise residue probabilities for each amino acid to reside in a coiled-coil domain 
(Berger et al. 1995).  Residues highlighted in red have greater than 50% likelihood of 
residing in a coiled-coil domain (score ≥3.24).  Residues highlighted in gray have less 
than a 10% likelihood of contributing to a coiled-coil domain (score ≤-5.04). 
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Figure 2.9: The FinMajor mimic y-gle1^PFQ alleles have specific defects in mRNA export 
(A) y-gle1^PFQ mutants exhibit no growth defect.  Growth of the indicated strains in 5-
fold serial dilution on YPD was monitored at the temperatures shown. (B) y-gle1^PFQ 
mutants display genetic interactions with mRNA export mutants. Strains bearing the 
indicated mutation in combination with y-gle1Δ harboring a y-gle1^PFQ-LEU plasmid and 
a yGLE1/URA3 plasmid were monitored for growth at 23°C. Failure to grow on synthetic 
complete media containing 5-FOA indicates synthetic lethality. (C) The yGle1 PFQ 
insertions that mimic FinMajor perturb mRNA export, and y-gle1ΔCC expression does not 
rescue export defects. Nuclear accumulation of poly(A)+ RNA was detected by in situ 
oligo-dT hybridization following a shift to 37°C for 2 hours (ipk1Δ y-gle1Δ) or 1 hour (y-
gle1-4). Calculations were based on >100 cells/condition. (D) y-gle1-136^PFQ protein 
localizes to the nuclear rim. A y-gle1Δ strain, carrying plasmids harboring vectors 
expressing either yGLE1-GFP or y-gle1-136^PFQ-GFP were examined by live-cell direct 
fluorescence microscopy. Bar, 5 µm. 
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Figure 2.10: Synthetic growth defects are observed in double mutants of y-gle1^PFQ with 
RNA export mutants (A) Synthetic growth defects are observed in double mutants of y-
gle1^PFQ with rat8-2 (dbp5). 5-fold dilutions of the indicated strains were spotted onto 
YPD and monitored for growth at 16, 23, and 30°C. (B) Synthetic growth defects are 
observed in double mutants of y-gle1^PFQ with ipk1Δ. 5-fold dilutions of the indicated 
strains were spotted onto YPD and monitored for growth at 16, 23, and 37°C. (C) An 
ipk1Δ y-gle1Δ strain carrying plasmids harboring either yGLE1, y-gle1-136^PFQ, y-gle1-
149^PFQ, or y-gle1-157^PFQ were analyzed by in situ hybridization, under conditions of 
23° growth or shift to 37° for 2 hrs. Bar, 5µm. 
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Strikingly, the y-gle1-136^PFQ and y-gle1-149^PFQ mutants had no effect when combined 

with either nip1-1 or sup45-2. However, the y-gle1-136^PFQ and y-gle1-149^PFQ mutants 

were synthetically lethal when combined with the nup100Δ or the rat7-1(nup159) mutant 

(Figure 2.9B). The y-gle1-136^PFQ was also synthetically lethal with nup42Δ (Figure 

2.9B). This revealed a separation of function with the y-gle1-136^PFQ and y-gle1-149^PFQ 

mutants having defects in mRNA export and not in translation.  

In combination with the ipk1Δ or the rat8-2(dbp5) mutant, only the y-gle1-

136^PFQ allele showed synthetic growth defects compared to the single mutants (Figure 

2.10A-B). Given that ipk1Δ double mutants were viable at the permissive growth 

temperature and Ipk1 (for IP6 production) is required for both mRNA export and 

translation termination (Bolger et al., 2008), the y-gle1^PFQ ipk1Δ mutants were excellent 

candidates for assaying functional effects. After shifting to the nonpermissive growth 

temperature of 37°C, a significant percentage of the y-gle1-136^PFQ ipk1Δ and the y-gle1-

149^PFQ ipk1Δ cells showed nuclear poly(A)+RNA accumulation; whereas, the y-gle1-

157^PFQ ipk1Δ cells did not exhibit a defect (Figure 2.9C and 2.10D). Next, a plasmid-

based reporter assay was used to assess translation termination. By monitoring for 

production of tandem β-galactosidase/luciferase proteins that are separated by either a 

stop codon, a stem-loop, or no stop codon in their intervening linker, the level of stop 

codon read-through was determined (Stahl et al., 1995). As reported (Bolger et al., 2008; 

Alcazar-Roman et al., 2010), the ipk1Δ single mutant had ~25% read-through. In 

comparison, no enhanced defects in termination efficiency were detected for any of the 

ipk1Δ y-gle1^PFQ double mutants (Figure 2.11A). As an independent test for translation 

initiation, we investigated whether expression of a y-gle1ΔCC mutant (with an internal  
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Figure 2.11: The y-gle1^PFQ mutants do not exhibit defects in translation (A) y-gle1^PFQ 
mutants exhibit no defect in translation termination. Ratios of luciferase and b-
galactosidase activities were determined and read-through efficiency expressed as the 
percentage from the reporter with a stop codon inserted in-frame into the linker region 
between the tandem b-galactosidase and luciferase coding sequences (denoted the TMV 
reporter) compared to the reporter lacking a stop codon (the TQ control) (Stahl et al., 
1995). Standard error of the mean was calculated from 3 independent experiments. (B) y-
gle1ΔCC rescues the temperature sensitivity of y-gle1-2 nip1-1. Growth of serially 
diluted strains on –LEU media was monitored at the indicated temperatures. 
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in-frame deletion of the sequence encoding the coiled-coil domain) suppressed the 

growth defects linked to translation initiation in the y-gle1-2 nip1-1 mutant (Figure 

2.11B). This was indeed observed. In contrast, y-gle1ΔCC expression did not rescue the 

mRNA export defect in y-gle1-4 cells (Figure 2.9C). Thus, y-gle1^PFQ mutants that mimic 

FinMajor had specific defects in mRNA export that correlated with the FinMajor results. 

 

yGle1 oligomerization is required in vivo 

We previously showed that expression of a chimeric yeast-human Gle1 protein 

rescues temperature sensitive growth properties of a y-gle1-4 S. cerevisiae mutant 

(Watkins et al., 1998).  Specifically, when the sequence encoding the essential coiled-coil 

domain of yGle1 is deleted (y-gle1ΔCC), it can be replaced by an in-frame fragment 

encoding the coiled-coil domain of hGle1 (+hGLE1 CC) (Figure 2.12). We further tested 

a FinMajor coiled-coil (+FinMajor CC) chimera and it rescued growth of the y-gle1-4 strain 

at 30°C to a similar level as the hGle1-CC chimera. However, neither the hGle1-CC nor 

the FinMajor-CC chimera complemented a lethal y-gle1Δ mutant. This indicated that the y-

gle1ΔCC+hGLE1-CC was not fully functional and in the context of the chimera, the 

hGle1-CC domain was potentially perturbed in a manner similar to FinMajor.  Building on 

this, we investigated if swapping in a heterologous oligomerization domain would 

complement functionality in vivo. Expression of a chimeric protein with the coiled-coil 

region of yGle1 swapped for that of the well-characterized transcription factor Gcn4 

 (O'Shea et al., 1991) (+GCN4) partially rescued the temperature sensitive y-gle1-4  
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Figure 2.12: Oligomerization of Gle1 is required for function in vivo. Mutant y-gle1-4 
strains harboring plasmids expressing yGLE1, vector only, y-gle1ΔCC, y-
gle1ΔCC+hGLE1-CC, y-gle1ΔCC+GCN4, or y-gle1ΔCC+FinMajor-CC were monitored 
for growth in 5-fold serial dilution on -LEU media at the temperatures shown. (Left) 
Schematic representation of the coiled-coil chimeric proteins with yGle1 (red), Gcn4 
(yellow), hGle1 (Green), and FinMajor (Green with white bar indicating PFQ insertion). 
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phenotype (Figure 2.12), revealing that oligomerization is important for yGle1 function 

in vivo.  

 

Nucleocytoplasmic shuttling of FinMajor is inhibited  

  Proper hGle1 nucleocytoplasmic shuttling is critical for mRNA export and 

requires a unique 39-amino acid span in the C-terminal region (Figure 2.1B) (Kendirgi et 

al., 2003). Given that FinMajor was defective in mRNA export and oligomer structure but 

still showed steady state localization at the nuclear rim (Figure 2.7), we examined GFP-

FinMajor dynamics in living cells using fluorescence recovery after photobleaching 

(FRAP). Due to the homozygous recessive FinMajor disease phenotype, experiments were 

conducted in HeLa cells with and without hGLE1 siRNA treatment (as in Figure 2.7). 

Nuclei of cells transiently expressing a respective GFP-tagged protein were 

photobleached and the nuclear GFP fluorescence was monitored over time (Figure 2.13 

and 2.14). The FRAP data sets were fit with a one-phase exponential association model. 

Importantly, the relative t1/2 for wild-type GFP-hGle1B nuclear signal after FRAP in 

untreated HeLa cells (Figure 2.13A and 2.13C) was 12.3 min and correlated with our 

previous measurements by fluorescence loss in photobleaching (Kendirgi et al., 2003). 

When GFP-FinMajor was assayed by FRAP in untreated cells, the t1/2 was not significantly 

different from wild-type GFP-hGle1B (Figure 2.13A and 2.13C). This was expected due 

to the homozygous recessive nature of the LCCS-1 disease pathology (Nousiainen et al., 

2008).  FRAP analysis of wild-type GFP-hGle1BR in hGLE1 siRNA treated cells showed 

similar shuttling dynamics (t1/2 10.3 min) as compared to the presence of endogenous 

hGle1 (Figure 2.13B and 2.13D). However, strikingly, the shuttling  
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Figure 2.13: Nucleocytoplasmic shuttling dynamics are altered for the LCCS-1 FinMajor 
disease protein (A-B) FinMajor has altered nuclear shuttling activity. (A) FRAP analysis of 
HeLa cells expressing GFP-hGLE1B and GFP-FinMajor. (B) FRAP analysis of hGLE1 
siRNA-treated HeLa cells expressing siRNA-resistant GFP-hGLE1BR or GFP-FinMajor

R. 
Bar, 10µm. (C-D) Recovery curves of the experimentally determined bleached region, fit 
with a one-phase association model. Error bars represent mean ± 95% CI with n ≥ 12 
cells from 3 independent experiments. 
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Figure 2.14: The coiled-coil domain is required for localization to the nuclear rim 
(A-B) Deletion of the coiled-coil domain alters hGle1 nuclear shuttling activity. (A) 
HeLa cells expressing GFP-h-gle1BΔCC were analyzed by FRAP microscopy. 
Representative FRAP time series images for GFP-tagged h-gle1BDCC is shown. Bar, 
10µm. (B) FRAP analysis of hGLE1 siRNA-treated HeLa cells expressing GFP-h-
gle1BDCC. Representative FRAP time series images are shown. Bar, 10µm. (C-D) 
Recovery curves of the experimentally determined bleached region, fit with a one-phase 
association model. Error bars represent mean ± 95% confidence interval with n ≥ 9 cells 
from three independent experiments. (E) Immunoblotting for GFP-hGle1B and GFP-h-
gle1BDCC was performed with total HeLa cell lysates from respectively transfected 
cultures, and shows approximately equivalent expression levels relative to the actin levels 
in each respective lysate. (F) Deletion of the coiled-coil domain of hGle1 perturbs 
localization to the nuclear rim. HeLa cells expressing mCherry-Pom121 and either GFP-
hGLE1B or GFP-h-gle1BΔCC were visualized by direct fluorescent microscopy. Bar, 10 
µm. 
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dynamics of GFP-FinMajor
R were significantly slower (t1/2 20.6 min) in hGLE1 siRNA 

treated cells (Figure 2.13B and 2.13D).  In sum, as in the LCCS-1 disease state, when 

expressed as the only hGle1 in the siRNA treated cells, FinMajor had inhibited 

nucleocytoplasmic shuttling. Thus, the defect in mRNA export was potentially due to the 

altered FinMajor oligomer structural state impacting nucleocytoplasmic shuttling.   

 

hGle1 requires the coiled-coil domain for NPC localization 

 The hGle1 coiled-coil domain alone is not sufficient for nuclear rim localization 

(Kendirgi et al., 2005a). To test if the coiled-coil domain has a role in NPC localization 

independent of hNup155 and hCG1, we examined the subcellular localization of 

respective GFP-tagged protein lacking the coiled-coil domain (gle1ΔCC)  in HeLa or S. 

cerevisiae cells. HeLa cells were co-transfected with plasmids expressing Pom121-

mCherry and either GFP-hGle1B or a GFP-h-gle1BΔCC.  As reported, direct 

fluorescence microscopy in living cells revealed that GFP-hGle1B localized robustly to 

the nuclear rim overlapping with mCherry-Pom121 (Figure 2.14F) (Kendirgi et al., 

2003). In contrast, the nuclear rim signal intensity for GFP-h-gle1BΔCC was markedly 

reduced. Immunoblotting showed similar expression levels for both GFP-tagged proteins 

(Figure 2.14F).  

If the coiled-coil domain function is conserved, we predicted yGle1 localization to 

NPCs would also require the coiled-coil domain. In S. cerevisiae, plasmids expressing 

either wild-type yGle1-GFP or ygle1ΔCC-GFP were transformed into wild-type haploid  
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Figure 2.15: The coiled-coil domain of yGle1 is required for localization to the nuclear 
rim. Wild-type strains expressing GFP-yGle1 or GFP-ygle1ΔCC were grown to mid-log 
phase at 23°C and visualized by direct fluorescence microscopy. Bar, 5 µm. 
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cells. By live cell fluorescence microscopy, yGle1-GFP localized to the nuclear rim 

(Figure 2.15) (Strahm et al., 1999). However, similar to EGFP-hgle1BΔCC, ygle1ΔCC- 

GFP was not enriched at the nuclear rim. Thus, in both human and S. cerevisiae cells, the 

coiled-coil domain was necessary for proper nuclear rim and NPC localization (Figure 

2.15). 

We	  next	  examined	  if	  the	  deletion	  of	  the	  coiled-‐coil	  domain	  influenced	  the	  

dynamics	  of	  Gle1	  in	  the	  cell.	  FRAP	  analysis	  revealed	  that	  GFP-‐h-‐gle1BΔCC	  shuttled	  

faster	  than	  wild-‐type	  in	  both	  untreated	  (t1/2	  8.0	  min	  versus	  12.3	  min;	  Figure	  2.14C	  

and	  2.13C)	  and	  hGLE1	  siRNA	  treated	  (t1/2	  5.0	  min	  versus	  10.3	  min;	  Figure	  2.14D	  and	  

2.13D)	  cells.	  Overall,	  the	  hGle1	  oligomeric	  state	  modulated	  both	  NPC	  localization	  

and	  nucleocytoplasmic	  dynamics.	   

 

Discussion 

In this report, we document a novel requirement for Gle1 self-association during 

mRNA export and uncover molecular defects underlying a lethal human disease LCCS-1. 

Our results show that wild-type Gle1 protomers form discrete multimers and higher-order 

disk structures in vitro, with evidence for dimer formation happening in living cells. This 

self-association occurs through the essential Gle1 coiled-coil domain wherein the LCCS-

1 FinMajor disease alteration resides. Importantly, disk structures formed with the FinMajor 

coiled-coil domain are more disordered and malformed. Moreover, in HeLa cells, the 

FinMajor protein is defective in mRNA export and has slowed nucleocytoplasmic shuttling. 

We propose that LCCS-1 disease pathology is due to perturbations in Gle1 

oligomerization and shuttling that disrupt efficient nuclear export of mRNA at NPCs. 
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Coiled-coil domains are often utilized to mediate the formation of biological 

homo and hetero-oligomeric complexes and directly impact protein function (Burkhard et 

al., 2001). We speculate that the FinMajor is a distinct perturbation of the hGle1 oligomeric 

structure compared to the h-gle1-ΔCC that does not oligomerize. This is based on the 

different effects on nucleocytoplasmic shuttling and steady state NPC localization. 

FinMajor shuttles slower and is detected at the nuclear rim, contrasted with h-gle1-ΔCC 

which shuttles faster and is not rim localized. Thus, oligomerization might regulate Gle1 

residence time at the NPC, and hGle1 interactions with hNup155 and hCG1 could 

potentially facilitate Gle1 self-association. It is striking that the FinMajor analogous alleles 

in S. cerevisiae (y-gle1^PFQ) specifically disrupt mRNA export function but not yGle1 

roles in translation initiation or termination, and that expressing y-gle1ΔCC rescues 

translation initiation. Thus, proper Gle1 self-association might only be strictly required at 

the NPC.  

Our in vitro studies reveal that Gle1 forms large oligomeric disk structures with 

an average diameter of 25.8 nm (Figure 2.3). This was surprising, and such structures 

have not been previously reported with other isolated NPC associated factors. It is 

tempting to speculate that these disk structures might be present in the NPC, which 

measures ~105 nm in total diameter (Maimon et al., 2012). However, there are no reports 

of such an NPC-associated disk-like particle in the published structural studies of NPCs 

in intact cells, or of isolated NPCs or nuclear envelopes (Frenkiel-Krispin et al., 2010; 

Kiseleva et al., 2004; Maimon et al., 2012; Yang et al., 1998). In intact cells, the electron 

density of such a disk might not be detected via tomography approaches. It is also 

possible that the Gle1 oligomer dissociates (partially or fully) during NPC or nuclear 
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envelope isolation. Further studies are needed to investigate these possibilities, and to 

determine the stoichiometry within the Gle1 oligomer in vitro and in vivo. Additionally, 

the presence of Gle1 binding partners in vivo will likely play important structural and/or 

regulatory roles affecting how Gle1 self-associates. Overall, using FRET microscopy, we 

observed hGle1 self-association in living cells (Figure 2.5) and can conclude that, at a 

minimum, a dimer interaction exists at the NPC.   

Gle1/IP6 function at the NPC cytoplasmic face triggers Dbp5-mediated mRNP 

remodeling and facilitates directional mRNA export through the NPC (Alcazar-Roman et 

al., 2006; Tran et al., 2007; Weirich et al., 2006). As part of the Dbp5 ATPase cycle, 

release of ADP from Dbp5 is mediated by Nup159 binding at the NPC cytoplasmic face 

(Noble et al., 2011). Interestingly, Nup159 protomers dimerize by interaction with Dyn2 

(Stelter et al., 2007). Thus, both Dbp5 modulators at the NPC (Gle1 for ATP loading and 

ATPase activation, and Nup159 for ADP release) are at least dimers at the NPC.  

As the C-terminal yGle1 domain is sufficient in vitro for stimulating Dbp5 

ATPase activity, there are at least two working models by which Gle1 self-association 

might function in mRNA export. First, oligomerization might promote Gle1 enrichment 

at the NPC and generate a self-organized platform of multiple C-terminal Gle1 domains. 

This, in turn, could allow stimulation of the same Dbp5 molecule multiple times, or 

multiple Dbp5 molecules simultaneously, to promote efficient mRNP remodeling and 

directional mRNA export. Preliminary support for this model can be drawn from the y-

gle1ΔCC+GCN4 chimera complementation results, wherein the Gcn4 coiled-coil domain 

facilitates assembly of parallel aligned dimers (O'Shea et al., 1991).  
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Alternatively, self-association might allow multiple distinct interactions with 

individual protomers in a Gle1 oligomer. Based on structural analysis of the yGle1 C-

terminal domain (Montpetit et al., 2011), it is possible that the binding interfaces for 

Dbp5 and Nup42 are mutually exclusive. Thus, Gle1 self-association would allow a 

dimer (or higher order oligomers) to coincidentally bind the NPC and activate Dbp5 for 

mRNA export. Our ongoing studies will be aimed at investigating the Nup and Dbp5 

binding interfaces on the oligomeric complex. 

This work implicates Gle1 dysregulation of Dbp5’s mRNP remodeling activity 

during mRNA export as the key molecular pathological event in LCCS-1. As the RNA-

binding protein composition of an mRNP dictates both its regulation and function during 

gene expression (Muller-McNicoll and Neugebauer, 2013), altered mRNP remodeling 

during mRNA export likely has global cellular impacts. In addition to LCCS-1, human 

genetic linkage analysis has identified additional GLE1 causal mutations that result in the 

lethal arthrogryposis with anterior horn cell disease (Nousiainen et al., 2008). Further, 

recent deep sequencing studies report gle1 mutant alleles in other human diseases (Al-

Qattan et al., 2012; Tzschach et al., 2012). For these diseases, it is unclear whether or 

how hGle1 has cell type specific effects. Indeed, our studies of GLE1 depletion in 

zebrafish show potential impacts on multiple proliferative organ precursors (Jao et al., 

2012). With Gle1 uniquely positioned to modulate mRNP composition through 

regulation of multiple DBPs (Alcazar-Roman et al., 2006; Bolger and Wente, 2011; 

Weirich et al., 2006), we speculate that disruption of specific Gle1 mechanistic steps in 

export and/or translation results in different pathological outcomes. 
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Defective oligomerization of the SMN protein has been causally linked to some 

cases of Spinal Muscular Atrophy (SMA) (Lorson et al., 1998; Pellizzoni et al., 1999). In 

this case, defects in SMN oligomerization cause ineffective assembly of the small nuclear 

(sn)RNPs and disruption of pre-mRNA splicing (Shpargel and Matera, 2005; Wan et al., 

2005). Our analysis of Gle1 self-association extends this paradigm for perturbations of 

RNP effector oligomerization, and highlights altered mRNP remodeling as a new 

molecular disease mechanism. Taken together, this work provides new evidence for the 

cellular mechanism underlying the lethal human LCCS-1 disease, and impacts the 

broader understanding of the involvement of defective NPCs, altered mRNA transport 

and misregulated gene expression in human disease. 
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Chapter III 

 

Structure-function analysis defines molecular perturbations that underpin Gle1 

dysfunction in disease pathology 

 

Introduction2 

Proper eukaryotic gene expression requires multiple, highly orchestrated events 

centering on the fate of the transcribed messenger RNA (mRNA): from transcription to 

translation to degradation. At the core of this regulation are RNA binding proteins 

(RBPs) that associate with each mRNA transcript to form a messenger ribonucleoprotein 

(mRNP) complex. Throughout its lifecycle, each mRNP undergoes a series of dynamic 

changes to its RBP composition that mediate specific functions such as splicing, nuclear 

export, translation, and degradation (McKee and Silver, 2007; Muller-McNicoll and 

Neugebauer, 2013). Considering elaborate networks of RNA/protein and protein/protein 

interactions are coordinated to regulate RNA metabolism, it is expected that perturbing 

these interactions can have complex, if not pleiotropic, cellular phenotypes. Indeed, 

alterations in RBPs or factors that influence RBP function have been linked to many 

human disease states (Cooper et al., 2009; Hurt and Silver, 2008; Renoux and Todd, 

2012).  These pathologies cover a broad spectrum of tissues, organs, age onset, and 

severity of phenotype. Although causative biochemical and cellular alterations are known 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
This chapter is adapted from “Insights into mRNA export-linked molecular mechanisms 
of human disease through a Gle1 structure-function analysis. Adv. Biol. Regul. 2014 
54:74-91.” 
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for some of these genetic linkages, the molecular mechanisms underlying many such 

deleterious diseases are poorly understood. 

During the mRNA life cycle, mRNP compositional changes are dictated by the 

active binding and release of specific RBPs in a process collectively termed RNP 

remodeling. In several cases, this process is mediated by members of the RNA-dependent 

ATPase family termed DEAD-box proteins (DBP). The DBP enzymes drive mRNP 

remodeling through ATP hydrolysis-induced conformational changes that alter the DBP 

binding to RNA and coincidently RNA-protein interactions (Folkmann et al., 2011; 

Jankowsky, 2011b; Jankowsky and Bowers, 2006; Jankowsky and Fairman, 2007b; 

Rocak and Linder, 2004). Interestingly, some DBPs require a protein cofactor to 

stimulate and regulate their activity (Alcazar-Roman et al., 2006; Ballut et al., 2005; 

Bolger and Wente, 2011; Korneeva et al., 2005; Nielsen et al., 2009; Rogers et al., 2001b; 

Weirich et al., 2006; Wolf et al., 2010a; Yang et al., 2003a). This chapter focuses on the 

essential, conserved protein Gle1 that is required for modulating distinct DBPs during 

mRNA export and translation.  

 Gle1 is an essential mRNA export factor in eukaryotes with docking sites on 

specific nuclear pore complex (NPC) proteins (Nups), including Nup42 in yeast and 

hCG1 and Nup155 in human cells(Kendirgi et al., 2005b; Rayala et al., 2004). At the 

cytoplasmic NPC face, Gle1 bound to inositol hexakisphosphate activates Dpp5, an 

essential DEAD-box protein(Alcazar-Roman et al., 2006; Weirich et al., 2006). During 

nuclear export, the conversion of Dbp5 from the ATP to the ADP bound state triggers the 

remodeling of exported mRNA-protein complexes (Tran et al., 2007).  This remodeling 
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event is thought to function as a molecular ratchet imposing directionality on nuclear 

export (Stewart, 2007). 

In addition to the pools of Dbp5 and Gle1 functioning at the NPC, both proteins 

are also found in the cytoplasm. Consistent with this localization, others have reported a 

role for Dbp5 in translation termination (Gross et al., 2007). Prior studies have 

demonstrated that Gle1-IP6 activates yDbp5 to remodel the mRNP termination complex. 

Furthermore, Gle1 also functions during translation initiation (Bolger et al., 2008). In this 

role, yGle1 regulates the ATPase activity of the DEAD-box protein Ded1 (Bolger and 

Wente, 2011)). Unlike the mechanism of regulation for Dbp5, Gle1 acts to inhibit the 

ATPase activity of Ded1. Taken together, these studies document that the Gle1 acts as a 

multifunctional regulator that couples mRNA export to the process of translation 

  Sequence analysis of genomic DNA from LCCS-1 patient cases identified a causal 

mutation that generates an illegitimate splice acceptor site within the third intron of the 

gene GLE1. This specific mutation (FINMajor) results in an insertion of three amino acid 

residues (PFQ) in the amino-terminal domain of hGle1 (Figure 1.6). Two other mutations 

have been identified in hGLE1 with links to the related disease lethal arthrogryposis with 

anterior horn cell disease (LAAHD) (Nousiainen et al., 2008).  LAAHD exhibits a similar 

but overall milder pathology compared to LCCS-1. In all known LAAHD cases, patients 

were compound heterozygous for the FinMajor mutation and an additional point mutation 

in the region encoding the C-terminal domain of hGle1 (V617M, and I684T) (Figure 1.6). 

Interestingly, a third case of compound heterozygosity with a C-terminal mutatio n 

occurred in a single patient whose symptoms were categorized as LCCS-1 (termed here 

LCCS-1Het). Similar to the LAAHD cases, this patient was compound heterozygous for 
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the FinMajor mutation and an additional point mutation in the region encoding the C-

terminal domain (R569H). No studies have been conducted to investigate the potential 

perturbations caused by these alterations.   

 Given the pleotropic effects of the disease pathology, we speculated that hGle1 

dysfunction resulting from these mutations could be impacting any one or all of the 

known Gle1 functions. Having determined the molecular defects caused by FinMajor 

(Folkmann et al., 2013), we investigated the structural and functional perturbations 

contributed by the C-terminal domain LAAHD and LCCS-1Het disease mutations. As 

detailed below, sequence and structural comparisons suggested that these changes alter 

the stability of the C-terminal HEAT repeat domain, hCG1 binding and mRNA export 

function. Moreover, analysis of the steady-state localization of these h-gle1 mutants 

further revealed a disruption in steady state localization to the nuclear rim. Thus, these 

mutants are likely defective in mRNA export.  This is consistent with our previous 

finding that the FinMajor PFQ-insertion disrupts the function of Gle1 in mRNA export at 

the NPC.   

 

Results 

Homology model of human Gle1B C-terminal domain allows visualization of 

potential structural characteristics  

Each of the mutations contributing to compound heterozygous LAAHD and 

LCCS-1Het phenotypes occur in the sequence encoding the C-terminal domain of hGle1 

(Nousiainen et al., 2008). Previous studies have documented that this domain is necessary 

and sufficient both for ATPase stimulation of Dbp5 and for binding IP6 (Alcazar-Roman 
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et al., 2006; Montpetit et al., 2011; Weirich et al., 2006). To gain insight into the 

functional perturbations contributed by the V617M and I684T modifications in LAAHD 

as well as the single R569H compound heterozygous case of LCCS-1Het, we examined 

the spatial location of the disease variants in the context of the C-terminal HEAT repeat 

folds. To date, an atomic level structural model for any domain of hGle1 has not been 

reported. However, the crystal structure of the yGle1 C-terminal domain was recently 

determined (Montpetit et al., 2011), and the yeast C-terminal domain structure is 

primarily composed of HEAT repeat motifs.  To investigate the conservation between 

yGle1 and hGle1 C-terminal domains, we conducted a regional sequence alignment for 

the core region lying between 480-627 for hGle1 and 331-478 for yGle1. This analysis 

demonstrated a primary sequence identity of 33% and similarity of 57%, excluding loop 

regions between helices (data not shown). Based on this sequence conservation, we 

concluded that the crystal structure of yGle1 is a suitable template structure to produce a 

basic homology model of the hGle1 C-terminal region for the purpose of hypothesis 

generation.  

To generate the model, the amino acid sequence of hGle1(371-627) was 

submitted to the Phyre-2 protein fold recognition server (Kelley and Sternberg, 2009). 

The server produced three models of greater than 60% confidence in fold homology. As 

predicted from the sequence conservation between hGle1 and yGle1, the highest scoring 

model resulted from the threading of hGle1 sequence through the published structure of 

y-D241gle1H337R [PDB 3PEU]. With a reported confidence of 100% and r.m.s.d of 0.7Å, 

the model predicts that the amino acid sequence of hGle1(371-627) produces an all  
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Figure 3.1: Identification of putative IP6 coordinating residues in hGle1. (A) Structure of 
y-D243gle1H337R (GRAY) [PDB 3PEU]  is shown. (B) A homology model for 
hGle1(371-627) (YELLOW) was generated based on the crystal structure of y-
D243gle1H337R [PDB 3PEU] using the structure prediction server Phyre-2 (Keley and 
Sternberg, 2009). (C-D) This model was constructed by superposing the hGle1(371-627) 
model onto the y-D243gle1H337R molecule within the y-D90dbp5/y-D243gle1H337R 
complex (PDB 3PEU). IP6 is rendered as a gray stick molecule with orange phosphate 
and red oxygen atoms. Nitrogen atoms in Gle1 structures are in blue. (C) Conserved IP6-
coordinating polar residues in yGle1 and yDbp5 are labeled. (D) Conserved polar 
residues in hGle1 are labeled. Methods: Structural analysis and generation of the figure 
images was done using the program PyMOL (Schrödinger, Inc).  
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alpha-helix HEAT repeat fold comparable to that of y-D241gle1H337R (Figure 3.1A-B). 

The two additional models were generated based on published structures of eIF4G [PDB 

2VSX and PDB 1HU3]. The eIF4G structure is composed in part of several HEAT repeat 

motifs, further supporting the fold recognition represented in the hGle1 model 

(Marcotrigiano et al., 2001).  Taken together, these data indicated that the C-terminal 

domain of hGle1 is likely comprised of all alpha-helix HEAT repeats. 

The yGle1 protein binds to IP6 via positively charged residues located on the 

Dbp5/yGle1 binding interface (Alcazar-Roman et al., 2010; Montpetit et al., 2011). In the 

yGle1 crystal structure, the polar residues His-337/Arg-374/Lys-377/Lys-378 interact 

with the phosphate groups of IP6  (Montpetit et al., 2011). Prior reports have documented 

that these IP6 coordinating residues are conserved throughout evolution (Alcazar-Roman 

et al., 2010; Montpetit et al., 2011). We searched for additional polar contacts within the 

yGle1 structure by examining residues that were within 6Å of the IP6 phosphate groups. 

This analysis identified Lys-401 as an additional IP6 coordinating residue for yGle1. 

Importantly, structural superposition of the hGle1 model onto the yGle1-IP6-yDbp5 co-

crystal structure (PDB ID 3PEU) revealed spatial conservation of this polar charge with 

residue Gln-554 in the hGle1(371-627) model (Figure 3.1D). By analysis of the multiple 

sequence alignment, we found that the hGle1 residue Gln-554 is located at position n+1 

from yGle1 residue Lys-401 (Figure 3.2C). We speculate that this residue provides 

additional contacts for coordinating IP6 (Figure 3.1C-D). Interestingly, the multiple 

sequence alignment also revealed that several insect and plant Gle1 proteins did not show 

charge conservation for the identified IP6 coordinating residues (His-337/Arg-374/Lys-

377/Lys-378/Lys-401) (Figure 3.2A-C). These data suggested that some Gle1 proteins  
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Figure 3.2:  Charge conservation of the IP6 coordinating residues in Gle1 is observed in 
some organisms (A-C) Sequence alignment of conserved region of the C-terminal 
domain of Gle1 from selected fungal and metazoan species. (A) Red box indicates 
position of yGle1-H337 and hGle1-K486 residues. (B) Red box indicates position of 
yGle1-R374/K377/K378 and hGle1-H523/K526/K527 residues. (C) Red box indicates 
position of yGle1-K401 and hGle1-Q554 residues. 
 
 

 

 

 

 

 

 

 

 

 



	   79	  

might have diverged to have different requirements for IP6 binding or might coordinate 

IP6 via different positively charged residues.  Future studies are needed to distinguish 

between these possibilities. 

Structural superposition of the hGle1 model onto the yGle1-IP6-yDbp5 co-crystal  

structure (PDB ID 3PEU) further revealed an apparent high degree of structural 

complementarity for the hGle1 model with the Dbp5 and IP6 binding interface that was 

experimentally determined for yGle1 (Figure 3.1C-D). This molecular visualization 

supports our working hypothesis that hGle1 might coordinate the negatively charged 

IP6 molecule using conserved or highly similar molecular contact points. Biochemical 

experiments designed to examine the effects of charge substitutions (and other mutational 

analysis) of the IP6 binding site are needed to validate the hypothesis that yeast and 

human proteins recognize IP6 in a common binding model.  

 

Substitution of histidine at Arg-569 of hGle1 is predicted to disrupt a putative 

intramolecular salt-bridge 

Sequence alignment analysis revealed that the hGle1 Arg-569 residue altered in 

LCCS-1Het is highly conserved throughout evolution; however, the functional 

significance of this residue was unclear. The Arg-569 residue is located in the helical 

core of the C-terminal domain structure near the Dbp5-Gle1 interface (Figure 3.3B). The 

homologous residue in yGle1 is Arg-417. To understand the structural and functional 

significance of this position, we mapped Gle1 evolutionary sequence conservation onto  
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Figure 3.3: hGle1 homology model defines conserved structural characteristics (A) This 
model was constructed by replacing the y-Δ243gle1H337R molecule within the y-
Δ90dbp5/y-Δ243gle1H337R complex (PDB 3PEU) with the homology model of 
hGle1(371-627). (B) The results of the analysis of the y-Δ241gle1H337R by the ConSurf 
server are shown. The Gle1 structure is represented by a ribbon model, colored by the 
following conservation scale: dark purple residues are the most conserved; white residues 
are the average on the conservation scale; cyan residues are variable. (C) Sequence 
alignment of conserved region of the C-terminal domain of Gle1 from selected fungal 
and metazoan species. Sequences were aligned with ClustalX , shaded with Boxshade 
2.1.  Red boxes denote the positions of Thr-468 and Val-617 residues in yeast and human 
Gle1 respectively. Methods: Structural analysis and generation of the figure images was 
done using the program PyMOL (Schrödinger, Inc). Multiple sequence alignment 
analysis was done using the ClustalX , and shaded with Boxshade 3.21 
 

 



	   81	  

the surface of the Δ241gle1H337R structure using the Consurf server (Ashkenazy et al., 

2010; Glaser et al., 2003; Landau et al., 2005). This analysis demonstrated that the 

residues comprising the contact points for the core of the yGle1 C-terminal domain were  

also the most highly conserved evolutionarily, with yGle1 Arg-417 positioned centrally 

in the conserved region (Figure 3.3B,3.4A). While the polar side-chain of this Arg-417 

conserved residue might be important for folding and/or stability of the heat repeat  

was located near both the Dbp5 and IP6 binding interfaces, it did not make direct contact 

with either of these molecules in the crystal structure. Thus, we hypothesized that this 

tertiary motif. Further, the high degree of sequence conservation suggested that the yGle1 

Arg-417 polar side-chain might form intramolecular electrostatic interactions with 

surrounding polar residues. Indeed, a highly conserved negative polar side-chain of Glu-

340 was located within 3 Å of the Arg-417 side-chain (Figure 3.4A). This data indicated 

that the Arg-417 likely forms a hydrogen bond with the Glu-340 residue.  Furthermore, 

the homologous residues in hGle1 were conserved identically (Arg569/Glu-489).  The 

high degree of sequence conservation at these positions inferred that the intramolecular 

hydrogen bond might also be conserved in hGle1. Taken together, we speculated that this 

intramolecular hydrogen bond is a conserved determinant for the proper folding of the C-

terminal domain of Gle1. Preliminary support for this model with respect to yGle1 can be 

found in a previous study, which reported that substitution of Glutamine at Arg-417 in 

yGle1 resulted in the recombinant protein being insoluble (Alcazar-Roman et al., 2010). 

If the intramolecular salt-bridge is indeed conserved in hGle1, we further posit that 

substitution of histidine at Arg-569 would disrupt this interaction and lead to instability 

or misfolding of the hGle1 C-terminal domain. 
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Figure 3.4: Conservation of intramolecular salt-bridge in yGle1 and eIF4G. (A) 
Conserved residues in y-D243gle1H337R structure are depicted.  Dashed line indicated 
potential hydrogen bond (distance <3Å). (B) Hydrogen bond acceptor and donor residues 
are indicated in eIF4G structure (PDB 2VSX). Dashed line indicates potential hydrogen 
bond (distance <3Å). Methods: Structural analysis and generation of the figure images 
was done using the program PyMOL (Schrödinger, Inc).  
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eIF4G and Gle1 share critical structural characteristics  

Others have shown that the yGle1 C-terminal domain is structurally similar to that 

of eIF4G (14% identity, 4.1 Å r.m.s.d) (Montpetit et al., 2011). Functionally, Gle1 and 

eIF4G share homologous roles as co-factors for respective DBPs; Gle1 activates the  

Dbp5 ATPase for remodeling and eIF4G stimulates eIF4A helicase activity (Korneeva et 

al., 2005; Noble et al., 2011; Rogers et al., 2001b; Tran et al., 2007). We hypothesized 

that if yGle1-Arg-417/Glu-340 residues did in fact form an intramolecular salt-bridge 

bridge critical to the structural integrity of Gle1, a similar hydrogen bonding pair might 

also be found in the eIF4G helical structure.  To test this, a pairwise structural alignment 

of y-D241gle1H337R (PDB 3PEU) and eIF4G (PDB 2VSX) was conducted using the 

DaliLite server (Holm and Park, 2000).  This structural alignment revealed the presence 

of a predicted salt-bridge in eIF4G between residues Asp-568, Arg-742 and Arg-741, 

which are located at a similar position in the HEAT repeat structure to the proposed salt 

bridge in yGle1 (Figure 3.4B).  We concluded that an intramolecular salt-bridge in the 

core of the HEAT repeat fold is a shared structural determinant for both Gle1 and eIF4G.   

We next examined the sequence conservation of the Dbp5 and eIF4A binding 

interfaces on the respective Gle1 and eIF4G structures.  To accomplish this, eIF4G 

sequence conservation was mapped onto the eIF4G structure (PDB 2VSX) using the 

Consurf server (Figure 3.5A).  Three residues make contacts with eIF4A (Glu-659, Lys-

655, Asn-615) (Schutz et al., 2008). In our conservation analysis, we found strong 

conservation of these residues as well as Lys-611 and Arg-609, forming a cluster of polar 

contacts at the eIF4A binding interface (Figure 3.5A). In a similar fashion, examination  
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Figure 3.5: Conservation of molecular polar contact points in Gle1 and eIF4G. (A-B) 
The results of the analysis of the (B) y-D241gle1H337R [PDB 3PEU] and (C) eIF4G [PDB 
2VSX] structures by the ConSurf server are shown. A ribbon model is depicted, colored 
by the following conservation scale, represents the structures: dark purple residues are the 
most conserved; white residues are the average on the conservation scale; cyan residues 
are variable. Conserved polar residues for yGle1 and eIF4G are labeled. (C) Sequence 
alignment of conserved region of the C-terminal domain of Gle1 from selected fungal 
and metazoan species. Sequences were aligned with ClustalX, shaded with Boxshade 2.1.  
Red box denotes the position of the Iso-684 hGle1B residue. Methods: Structural analysis 
and generation of the figure images was done using the program PyMOL (Schrödinger, 
Inc). Multiple sequence alignment analysis was done using the ClustalX, and shaded with 
Boxshade 3.21 
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of	  the	  yGle1/yDbp5	  interface	  revealed	  that	  the	  yGle1	  structure	  contained	  an	  

identical	  spatial	  motif	  of	  similar	  polar	  residues	  (Gln-‐295,	  Lys-‐287,	  Glu-‐342,	  Gln-‐338,	  

Asn-‐290)	  within	  its	  C-‐terminal	  domain	  (Figure	  3.5B).	  This	  suggested	  that	  the	  

binding	  interfaces	  for	  yGle1/yDbp5	  and	  eIF4G/eIF4A	  share	  a	  specific	  motif	  of	  

molecular	  polar	  contacts.	  Together,	  these	  data	  further	  supported	  the	  hypothesis	  

that	  eIF4G	  and	  Gle1	  have	  many similar key structural characteristics and might have 

evolved from a shared ancestral DBP co-factor. 

 

Structural analysis of hGle1 Val-617 reveals linkage to defective mRNA export  

We next examined the spatial location within the hGle1(371-629) model of the 

Val-617 residue changed to methionine in LAAHD.  This residue was located near the 

Dbp5-Gle1 interface but did not make direct contact with Dbp5 (Figure 3.3A). Based on 

the fold homology, the Val-617 residue was predicted to be positioned directly behind the 

alpha-helix that contains the Arg-569 residue (Figure 3.3A).  One possible explanation 

for the pathological effects for this mutation could be that substitution of methionine at 

this position might disrupt the helical packing of the HEAT repeat motifs.  Sequence 

alignment analysis revealed that the hGle1 Val-617 residue was in a similar region to 

Thr-468 residue in yGle1 (Figure 3.3C). Further, the Thr-468 residue is located behind 

the helix that contains the hydrogen bond donor residue Arg-417 (Figure 3.3B, 3.4A). 

Previously, a y-gle1T468I mutant was found to be a loss-of-function allele, and this allele 

was originally identified based on a synthetic lethal genetic interaction in combination 

with a null mutant for NUP42 (nup42D) (Stutz et al., 1997). Importantly, these results 

suggested that altering the structure of yGle1 at this position disrupts its function in 
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mRNA export. We predict that the substitution of methionine at Val-617 results in a loss-

of-function phenotype in mRNA export for the h-gle1V617M mutant. 

 

The hGle1 Iso-684 residue altered in LAAHD is located in the conserved hCG1 

binding domain 

 Previous reports documented that hGle1 scaffolds to the NPC by binding to both 

hCG1/Nup42 and Nup155, and more recent works indicates an additional role for the 

coiled-coil domain and hGle1 self-association (Kendirgi et al., 2005a; Murphy and 

Wente, 1996; Rayala et al., 2004). These interactions are thought to position Gle1 at the 

NPC cytoplasmic face to allow for spatial activation of Dbp5’s mRNP remodeling 

activity (Tran et al., 2007). Specifically, residues 559-698 of hGle1B are both necessary 

and sufficient for the biochemical interaction with hCG1. Deletion of these residues 

results in the loss steady-state nuclear rim localization and shifts hGle1 localization to the 

cytoplasm (Kendirgi et al., 2003; Kendirgi et al., 2005a). The Iso-684 residue modified to 

threonine in LAAHD is located in the middle of this hCG1-binding motif. Further, in our 

analysis, there is high sequence conservation for a non-polar residue at this position 

(Figure 3.5C). We hypothesize that substitution of a polar residue for Iso-684 might 

electrostatically clash with hCG1 residues at the binding interface.  Alternatively, a polar 

residue at this position might cause the hCG1-binding domain to be unfolded.  In either 

case, we concluded that substitution of threonine for Iso-684 probably perturbs the 

interaction of hGle1B with hCG1. 

 



	   87	  

LAAHD/LCCS-1Het altered proteins do not localize at steady-state to the nuclear 

rim 

 Since our in silico analysis suggested that all three mutations observed in 

compound heterozygous cases potentially disrupt the function of hGle1 in mRNA export, 

we hypothesized that these disease mutants might influence the steady-state localization 

of Gle1 at the nuclear rim. We compared the subcellular localization of GFP-tagged 

hGle1 proteins with the respective changes to that of the NPC-associated integral 

membrane protein Pom121 in HeLa cells.  HeLa cells were co-transfected with plasmids 

expressing Pom121-mCherry and either GFP-hGle1B, GFP-h-gle1BR569H, GFP-h-

gle1BV617M, or GFP-h-gle1BI684T. Twelve hours post-transfection, the steady state 

localization of the GFP-tagged proteins was examined by live cell direct fluorescence 

microscopy. Wild-type GFP-hGle1B localized to the nuclear rim, overlapping completely 

with the Pom121-mCherry. In contrast, the steady-state nuclear rim signal intensity for 

GFP-h-gle1BR569H, GFP-h-gle1BV617V, and GFP-h-gle1BI684T was reduced (Figure 3.6). 

These data indicated that each of these changes disrupts the function of Gle1 in mRNA 

export possibly by inhibiting localization to the NPC.  

 

hGle1 is in a stable complex at the nuclear pore complex 

 Analysis of the steady state localization of the LAAHD and LCCS-1Het mutants 

suggested that they had altered steady state localization at the NPC.  Our prior studies 

show that hGle1B localizes to the nuclear rim and cytoplasm, and shuttles between the 

nuclear and cytoplasmic compartments (Kendirgi et al., 2003). Thus, separate pools of 

Gle1 might exist to function exclusively in either mRNA export or translation.  To  
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Figure 3.6: LAAHD and LCCS-1Het Gle1 proteins have altered steady-state NPC 
localization. HeLa cells expressing POM121-mCherry and either GFP-hGLE1B, GFP-h-
gle1BR569H, GFP-h-gle1BV617M, and GFP-h-gle1BI684T  were visualized by direct 
fluorescent live cell microscopy. Bar, 10 µm. Methods: Hela cells were cultured in 
complete medium (DMEM, Gibco) supplemented with 10% FBS (Alanta Biologicals) at 
37 °C in 5% CO2. Cells were plated in 35mm No. 1.5 glass bottom dishes (Mattek). 
Transient transfection with indicated plasmids was performed using Fugene6 (Promega) 
following manufacturer recommendations: POM121-mCherry and pSW1831 (GFP-
hGle1B), pSW3971 (GFP-h-gle1BR569H), pSW3972 (GFP-h-gle1BV617M), or pSW3973 
(GFP-h-gle1BI684T). All live-cell direct fluorescence microscopy experiments were 
performed on a confocal microscope (LSM710, Zeiss, 40X/1.1 C-Apochromat water 
objective).  
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investigate the dynamics of Gle1 at the NPC, fluorescence loss after photobleaching 

(FRAP) microscopy was performed.  HeLa cells were co-transfected with plasmids 

expressing GFP-hGle1B. Twelve hours post-transfection, the nuclear rims of cells 

transiently expressing GFP-hGle1B were photobleached and the GFP fluorescence was 

monitored over time.  Strikingly, we observed that GFP-hGle1B fluorescence recovered 

very slowly (Figure 3.7A).  This indicated that hGle1 is in a stable complex at the NPC. 

In a previous FRAP microscopy study of the dynamics for GFP-yDbp5 at the NPC, GFP-

yDbp5 was dynamically associated with the nuclear rim (t1/2 of recovery ~0.8s) (Hodge et 

al., 2011b).  To see if hDbp5 behaved similarly, we directly next examined the dynamics 

of GFP-hDbp5 at the nuclear rim using FRAP microscopy.  HeLa cells were co-

transfected with plasmids expressing GFP-hDbp5. Twelve hours post-transfection, the 

nuclear rim of cell transiently expressing GFP-hDbp5 was photobleached and the GFP 

fluorescence was monitored over time.  In contrast to GFP-hGle1B, hDbp5 recovered 

very fast.  The FRAP data set was fit with a one-phase exponential association model 

(Figure 3.7B-C).  The relative t1/2 for GFP-hDbp5 was ~0.8s which directly correlated 

with the previous yDbp5 measurement. Overall, Dbp5 more transiently associated with 

the NPC in comparison to its co-factor Gle1 that was in a more stable complex. The 

disparity of the dynamics of Dbp5 and Gle1 at the NPC is highly intriguing. One possible 

explanation is that Gle1 is bound at the NPC in a stable oligomeric complex to ensure a 

sufficiently high concentration for efficient stimulation of Dbp5’s remodeling activity. As 

such, we predict that Gle1 self-association into oligomeric complexes influences its 

residence time at the NPC. In addition, given that Gle1 also shuttles between the nucleus  
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Figure 3.7: Gle1 is a stable component of the NPC. (A) HeLa cells expressing GFP-
hGLE1B were analyzed by FRAP microscopy. Representative nuclear rim FRAP time 
series images are shown. Bar, 10 µm. (B) HeLa cells expressing GFP-hDBP5 were 
analyzed by FRAP microscopy. Representative nuclear rim FRAP time series images are 
shown. Bar, 10 µm. White box indicates imaging region of interest for FRAP acquisition 
(C) FRAP recovery curve experimental determined bleached region, fit with a one-phase 
association model. Error bars represent mean ± standard deviation with n=5 cells. 
Methods: HeLa cells were cultured and transfected as in Figure 4. FRAP microscopy 
experiments were performed on HeLa cells co-transfected with POM121-mCherry and 
either pSW1832, or pSW3253 (GFP-hDBP5). The bleaching region of interest (B-ROI) 
was set to encompass the nuclear rim. Bleaching was achieved by exciting at 488 nM 
throughout the entire B-ROI (with a LSM710, Zeiss, 40X/1.1 C-Apochromat water 
objective). Post-bleaching images were acquired every 10 minutes (GFP-hGle1) or 
200ms (GFP-hDbp5). 
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and cytoplasm, there is the potential for different subcellular pools of Gle1 being 

involved in distinct steps of the mRNA life cycle and gene expression. 

 

Discussion 

During normal gene expression, mRNP remodeling events function as distinct 

transition points that specify both the fate and function the mRNA (Muller-McNicoll and 

Neugebauer, 2013; Valkov et al., 2012). Here we investigated the potential structural and 

functional perturbations contributed by the unique changes found in the compound 

heterozygous LAAHD and LCCS-1Het.   Analysis of the steady-state localization in living 

cells revealed that the GFP-h-gle1BR569H, GFP-h-gle1BV617M, and GFP-h-gle1I684T disease 

proteins have perturbed nuclear rim localization.  Furthermore, specific structural 

perturbations potentially result. Based on in silico analysis, the R569H and V617M 

alterations might disrupt the overall fold of the Gle1 C-terminal domain; furthermore the 

I684T is positioned to disrupt Gle1 binding with hCG1. Combined with our recently 

published biochemical and in vivo analysis of the molecular defects caused by FinMajor, 

we propose a unified model of the molecular disease pathology whereby defective 

mRNA export at NPCs contributes to both the LCCS-1 and LAAHD disease states. 

Importantly, dysfunctional remodeling of the mRNP during export has emerged as a new 

molecular disease mechanism for RNA metabolism-linked disease states.  

In addition to the insights from analyzing disease mutants, important information 

is also gained from comparing conserved and divergent aspects of Gle1 orthologues. 

Previous sequence alignment and structural analysis suggested that the IP6 coordinating 

residues in Gle1 are highly conserved throughout evolution (Alcazar-Roman et al., 2010; 
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Montpetit et al., 2011). This suggested that the IP6 molecule was stringently required for 

Gle1’s regulatory activity of Dbp5 in most organisms. Our new sequence alignment data 

allows for flexibility in this regulatory paradigm. Specifically, we document that that 

several insect and plant Gle1 proteins do not apparently share the charge conservation for 

the key IP6 coordinating residues, suggesting that these proteins could function 

independent of IP6. In addition, S. cerevisiae yDbp5 utilizes Lys-477 and Lys-481 to 

coordinate IP6 binding with yGle1 (Figure 3.1 and 3.8) (Alcazar-Roman et al., 2010). 

Prior sequence alignment analysis documented that these IP6 coordinating residues in 

Dbp5 show moderate charge conservation (Figure 3.8) (Montpetit et al., 2011). It is 

important to note that the insect Dbp5 proteins examined do not show charge 

conservation at Lys-477 or Lys-481 positions. This supports our hypothesis that 

Dbp5/Gle1 might function independent of IP6 in some cases. It is unclear why the Gle1 

and Dbp5 in some organisms might not utilize IP6. Interestingly, in plant tissues, IP6 is 

present at high concentration and is the principal storage form of phosphorus (Raboy, 

2001).  Thus, it is intriguing to speculate that this high concentration of IP6 may be 

deleterious for regulation of Dbp5 and may represent the reason for why Gle1 functions 

independent of IP6 in plants. Comprehensive analysis of the sequence conservation of 

these IP6 coordinating residues and binding activity in Gle1 is needed across different 

evolutionary organism kingdoms and phyla to further our understanding. 

 It had been previously reported that eIF4G and Gle1 share a similar structural 

fold, suggesting that eIF4G and Gle1 share a similar ancestral DBP co-factor (Montpetit 

et al., 2011).  Importantly, our in silico analysis supports and expands upon this 

conclusion.  Specifically, our analysis demonstrates that eIF4G and Gle1 both harbor a  
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Figure 3.8: Charge conservation of the IP6 coordinating residues in Dbp5 is observed in 
some organisms. (A) Sequence alignment of the far C-terminal region in Dbp5 from 
selected fungal and metazoan species. Red box indicates position of yDbp5-K477/K481 
residues. 
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key intramolecular salt-bridge that has the potential to stabilize the overall HEAT repeat 

fold.  Secondly, despite lack of sequence conservation, eIF4G and Gle1 have maintained 

similar spatial positioning of conserved polar contacts in the binding interface for their 

respective DBP interaction partners.  This suggests that eIF4G and Gle1 utilize similar 

molecular contact points to regulate their respective DBP. These are important insights 

into the structural and functional aspects of DBP co-factors and will aid the identification 

of other putative co-factors that regulate DBPs and/or additional Gle1/eIF4G-like co-

factors. 

 The pathological phenotypes for LCCS-1 and LAAHD are highly pleiotropic, 

affecting multiple tissues and organs (Herva et al., 1985; Nousiainen et al., 2008; 

Vuopala et al., 1995). This is not necessarily unexpected for a case of defective mRNA 

export, as multiple defects in gene expression are likely to arise from altering such an 

essential molecular process. However, it is also perplexing that both LAAHD and LCCS-

1 pathologies are manifested at a relatively late stage in utero; for example, the LCCS-

1Fin disease results in fetal lethality at ~32 weeks gestation and not earlier (e.g. early 

embryonic development) (Herva et al., 1985). Different tissues and cell types might elicit 

different pathologies depending on specific severity of the perturbation in gene 

expression. It is intriguing to speculate that less severe changes that perturb Gle1 activity 

to a lesser extent might have specific phenotypes in adults. Further, given that Gle1 is 

positioned to influence multiple steps during gene expression, the possibility exists for 

distinct perturbations of Gle1 functions in mRNA export or translation having different 

pathological outcomes. It is also possible that only certain subcellular pools of Gle1 are 



	   95	  

impacted in discrete diseases, be it the more stable NPC-associated Gle1 oligomers, the 

cytoplasmic Gle1A form, the nuclear pool, or an actively shuttling population.  

Based on the evidence so far, we conclude that the reported disease perturbations 

of hGle1 in LCCS-1 and LAADH are all impacting mRNA export. It is possible that 

alleles specific for Gle1 translation roles might have other pathologies. Interestingly, 

mutations in hGLE1 have also been linked to a hand and foot dorsalization disease, but 

both the physiological and molecular underpinnings of this phenotype are yet to be 

resolved (Al-Qattan et al., 2012). Given the large spectrum of proteins and signaling 

factors that regulate each gene expression transition point, we predict that aberrant mRNP 

remodeling will play a role in other RNA metabolism-linked disease states. 
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Chapter IV 

 

Future directions 

 

Introduction  

Causative mutations in RNA metabolism factors have been identified for several 

human disease states.  Although genetic alterations are known, identification of the 

specific perturbations in gene expression that contribute to disease manifestation has 

remained unclear (Cooper et al., 2009; Hurt and Silver, 2008; Renoux and Todd, 2012). 

The conserved mRNA export factor GLE1 has been causally linked to the disease Lethal-

Congenital Contracture Syndrome-1 (LCCS-1)(Nousiainen et al., 2008).  The main 

causative mutation (FinMajor) is the insertion of a Proline Phenylalanine Glutamine (PFQ) 

peptide sequence within the uncharacterized coiled-coil domain of Gle1. In the first study 

presented here, biochemical and biophysical approaches demonstrated that Gle1 self-

associates to form oligomeric complexes both in vitro and in vivo. Further, structural 

analysis revealed that Gle1 oligomers form disk shaped particles that were malformed 

with the gle1-FinMajor protein. Analysis of the in vivo functional significance of self-

association revealed a specific requirement for the mRNA export mechanism. In 

summary, this work identified a novel requirement for Gle1 self-association in mRNA 

export mechanism that is perturbed in the LCCS-1 disease state. 

Mutations in human GLE1 have also been causally linked lethal arthrogryposis 

with anterior horn cell disease (LAAHD)(Nousiainen et al., 2008). In the second study, 

structure prediction and functional analysis provide strong evidence to suggest that the 
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LCCS-1 and LAAHD disease mutations disrupt the function of Gle1 in mRNA export. 

Strikingly, direct fluorescence microscopy in living cells reveals a dramatic loss of 

steady-state NPC localization for GFP-h-gle1 proteins expressed from human hgle1 

genes harboring LAAHD and LCCS-1 mutations. The potential significance of these 

residues is further clarified by analyses of sequence and predicted structural conservation. 

This work offers insights into the perturbed mechanisms underlying human LAAHD 

disease state and emphasizes the potential impact of altered mRNA transport and gene 

expression in human disease pathology. 

Taken together, our work provides the first evidence for the basic molecular 

mechanism causing the LCCS-1 and LAAHD disease states. The studies presented here 

however do not address the mechanism of why self-association is important for the 

function Gle1. Specifically, it is unclear how self-association impacts Gle1’s 

nucleocytoplasmic shuttling activity or steady-state localization to the NPC. Further, the 

functional mechanism for Gle1 self-association at the NPC remains unresolved. Attaining 

this mechanistic information is critical for understanding the molecular mechanism of 

hGLE1 linked disease pathologies. Thus future studies are needed to investigate the 

precise biochemical and cellular mechanism(s) of Gle1 self-association during the mRNA 

export mechanism.  These ideas are discussed below. 

 

Analysis of Gle1 self-association in vivo 

Our biophysical analysis of Gle1 self-association in living cells suggested that 

Gle1 self-associates at least as a dimer in the cytoplasm, nucleoplasm, and at the NPC. 

The assertion of a ‘dimer pair’ is based solely on the documented distance constraint 



	   98	  

(<10nm) for FRET energy transfer to occur between acceptor and donor molecules (Xia 

and Liu, 2001).  In contrast, our in vitro biochemical analysis using SVAU documented 

that both yeast and human Gle1 proteins form higher order oligomeric complexes. Thus, 

an important outstanding question is whether Gle1 in living cells forms these higher order 

oligomeric complexes.  

A simple experiment to examine the oligomeric state of Gle1 in living cells would 

be to use FRAP microscopy on GFP-tagged hGle1 fusion proteins to obtain a 

translational diffusion coefficient, which in turn would allow for calculation of the 

molecular mass of the GFP-tagged hGle1 and h-gle1BΔCC molecules (Nenninger et al., 

2010).  It is difficult with this approach to distinguish between monomers and dimers. 

However, molecules that exhibit large differences in molecular mass can easily 

distinguished. Comparison of the determined molecular mass for hGle1B and h-

gle1BΔCC would allow for approximation of the oligomeric state of hGle1 in living cells. 

Structural analysis of the NPC has documented that the NPC is a ring structure 

that has eight-fold rotational symmetry that is perpendicular to the nuclear envelope plane 

(Cronshaw et al., 2002, Rout et al,2000). This symmetry suggests that the NPC is 

constructed of eight identical building blocks, here termed spokes.  Thus, if each spoke 

contained one Gle1 molecule, one would expect there to be 8 Gle1 molecules total per 

NPC. If Gle1 were present as a dimer at the NPC, each spoke would have two Gle1 

molecules, with a sum total of 16 molecules per NPC. 

Prior studies in S. cerevisiae have provided estimates for both the total of NPCs 

and relative number of Gle1 molecules within single yeast cells.  Specifically, using 

quantitative western blotting it is estimated that there are ~1040 molecules of yGle1 
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within a yeast cell (Ghaemmaghami et al., 2003).  Further, it has been documented that a 

yeast nucleus has ~120 NPCs (Winey et al., 1997).  Simple arithmetic (total # Gle1/total 

# NPC) gives an estimate of ~8 Gle1 molecules per NPC (1 Gle1 molecule per spoke). 

This calculated estimate of 8 total Gle1 molecules per NPC is not compatible with our 

hypothesis that a ‘dimer pair’ of Gle1 is bound at each spoke of the NPC. 

There are several possible explanations for this incompatibility: (1) the 

measurement of yGle1 abundance is incorrect, (2) yGle1 oligomers are asymmetrically 

disturbed on the ‘spokes’ of the NPC, or (3) not every NPC contains Gle1 molecules.  

The measurement of yGle1 abundance was documented in a genome wide analysis study 

of the yeast proteome.  Repeating the measurement using updated technology and 

reagents is critical first step. yGle1 molecules may be asymmetrically distributed on a 

subset of spokes, or a subset of NPCs. New super-resolution microscopy techniques 

allows for the examination of Nup molecules on individual NPCs using light microscopy.  

Using a similar approach one could examine the distribution of yGle1 molecules on 

individual NPCs in mutant and wild-type yeast and human cells.  

 

Biochemical and structural analysis of Gle1 self-association in vitro 

The analysis presented here demonstrates that the coiled-coil domain (aa. 1-362) 

is both necessary and sufficient for hGle1 self-association in vitro and in living cells. It 

remains unclear however if the entire predicted coiled-coil domain (aa. 120-362) is 

required to mediate self-association. Alternatively, specific sub-domain(s) may alone be 

sufficient to mediate this biochemical activity.  This hypothesis can examined using by 

domain mapping the coiled-coil domain using soluble binding assays. In a parallel set of 
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studies, the identified domains could be analyzed using NegEM and SVAU, and by 

FRET microscopy.  Together, this work will uncover critical biochemical and structural 

characteristics of hGle1 self-association. Further, the information gained from these 

experiments can be used to generate mutants to test for functionality using the hGLE1-

siRNA cell-culture model system. A compelling alternative strategy would be to perform 

an identical set of studies with yGle1 protein. 

Our structural analysis using bacterially expressed recombinant protein 

documented that yGle1 forms large ordered disk-like structures in vitro.  The question of 

whether yGle1 forms these disk-like oligomeric structures in vivo remains unanswered.  

To begin to answer this question, one could assay for the ability of endogenous Gle1 

protein to form these disk-like structures. A previous study has generated a strain that 

expresses a tandem-affinity-purification (TAP) yGle1-fusion protein.  Using standard 

methods TAP-yGle1 protein could be purified from this yeast strain. The elution of TAP-

yGle1 could then be analyzed using NegEM.  As a control, a TAP-y-gle1ΔCC affinity 

purification and analysis by NegEM could be done in parallel. Together, this could 

examine if endogenously expressed yGle1 protein in vitro can self-associate to form disk-

like oligomeric structures. 

In our analysis we documented that MBP-hgle1(1-362) oligomeric disks adopt a 

variety of different diameters in solution. This observation is supported by our 

biochemical analysis by SVAU which indicated that the MBP-hgle1(1-362) protein can 

adopt a variety of oligomeric states in solution.  The heterogeneity of protein species 

within the binding isotherm did not allow for the determination of the precise molecular 

mass of individual oligomeric complexes by SVAU. Thus, the precise stoichiometry of 
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hGle1 protomer molecules within an oligomeric disk is unknown.  One prediction is that 

as the diameter of the disk increases, the number of protomer hGle1 molecules increases 

proportionally.  Alternatively, variable structural rearrangements between individual 

protomer molecules may influence disk diameter.  To distinguish between these 

possibilities it will be important to determine the precise stoichiometry of hGle1 protomer 

molecules within the oligomeric complex. To accomplish this task, the hGle1 oligomeric 

structures need to be adequately fractionated to reduce the heterogeneity of protein 

species in solution.  This, in turn, will allow precise determination of molecular mass by 

SVAU.  This fractionation could be accomplished by gel filtration chromatography using 

a Sephacryl S-1000 column. Individual fractions containing hGle1 disk oligomers of 

specific size range should then be analyzed using NegEM and SVAU.  As mentioned 

above, a compelling alterative strategy would be to perform an identical set of studies 

with yGle1 protein. 

It is intriguing to speculate that Gle1 interaction partners may somehow directly 

influence Gle1 self-association.  Alternatively, the Gle1 oligomer may function to 

optimally position binding partners for optimal biochemical activity.  To examine these 

possibilities it will be important for future studies to: (1) determine the location of the 

Gle1 protein-protein interaction domains on the disk structure, and (2) access the impact 

of interaction partners on Gle1 self-association. As a starting point, known Gle1 

interaction partners should be tested first. At the NPC yGle1 biochemically associates 

with both Dbp5 and Nup42. Additionally, the protein (Good for dead-box proteins) Gfd1 

has been documented to directly interact with the C-terminal domain of yGle1. Gfd1 was 

originally identified in a multi-copy suppressor of a dbp5 temperature sensitive allele.  
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Purified recombinant Dbp5, Nup42, or Gfd1 could be mixed with the yGle1-disk protein 

solution.  Following fractionation by size exclusion chromatography the Gle1/Nup42, 

Gle1/Dbp5, or Gle1/Dbp5 oligomeric complexes could be examined using NegEM.   

 

Functional significance of Gle1 self-association 

An exciting area of future research surrounds the investigation of the fundamental 

mechanistic role of Gle1 self-association plays during mRNA export at the NPC.  There 

are at least two working models by which self-association might function during the 

mRNA export mechanism. First, self-association might allow multiple distinct co-

incident interactions with NPC components with individual protomers in a Gle1 

oligomer. Second, self-association might promote Gle1 enrichment at the NPC and 

generate a self-organized platform of multiple C-terminal Gle1 domains.  

A prior structural analysis using X-ray crystallography has documented the 

binding interface between yGle1 and Dbp5(Montpetit et al., 2011). Biochemical analysis 

from our lab has defined the conserved region in hGle1 that is both necessary and 

sufficient for interaction with hCG1 (yeast Nup42 homologue)(Kendirgi et al., 2005a).  

Taken together, these structural and biochemical data suggested that the binding interface 

for Dbp5 and Nup42 on the Gle1 C-terminal domain may be mutually exclusive.  Thus, 

self-association would allow the Gle1 oligomer to bind the NPC (Nup42) and activate 

Dbp5 coincidentally during mRNA export. In contrast, Dbp5 and Nup42 would not be 

able to coincidentally bind to a single Gle1 protomer (i.e. y-Δ240Gle1). To test this 

hypothesis, competition binding experiments using recombinant y-Δ240Gle1, Dbp5, and 

Nup42 proteins could be conducted. This analysis will provide valuable information on 
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the possible mechanism of Gle1 oligomerization and the location of the Nup42 binding 

interface. 

Human Gle1 scaffolds to the NPC via biochemical interactions with both Nup155 

and hCG1 (Kendirgi et al., 2005a; Rayala et al., 2004). The domains within hGle1 

required for these interactions are located in the far N- and C-terminal regions 

respectively. Prior studies have documented that both these domains are required steady-

state localization of hGle1 to the NPC. Importantly, neither of these domains requires the 

presence of the coiled-coil domain for the biochemical interactions to occur with the 

respective Nups. Building on this work, we found that deletion of the coiled-coil domain 

also disrupted hGle1 steady-state localization to the NPC.  The altered GFP-hgle1BΔCC 

protein contains intact Nup155 and hCG1 interaction domains, suggesting that the self-

association is critical for hGle1 localization to the NPC.  

As mentioned above, prior structural analysis suggested that the binding interface 

on the C-terminal domain of yGle1 for Dbp5 (DDX19 is human homologue) and Nup42 

(hCG1 homologue) may be mutually exclusive. In agreement with this hypothesis, it is 

intriguing to speculate that the disruption of steady-state localization h-gle1BΔCC protein 

is due to competition between DDX19 and hCG1 for binding to the hGle1 C-terminal 

domain. Similar to y-Δ240Gle1, the h-gle1BΔCC protein does not have the biochemical 

ability to self-associate. One prediction of this hypothesis is that reducing DDX19 

binding to the C-terminal domain should restore h-gle1BΔCC steady-state NPC 

localization. This could be accomplished experimentally by: (1) depleting endogenous 

levels of DDX19 using siRNA technoglogy, or (2) generating a h-gle11BΔCC19MT 

protein that does not biochemically interact with DDX19. Using the yDbp5 and yGle1 
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co-cyrstal as a structural template, conserved polar residues that mediate critical salt-

bridge interactions between the hGle1 and DDX19 proteins can be identified (Montpetit 

et al., 2011). These residues can be altered to generate an h-gle1BΔCC19MT.  

An important experimental caveat that is not controlled for in the prior cellular 

analysis of the hCG1 and Nup155 binding domains is the presence of endogenous 

untagged hGle1. This analysis was done by exogenous expression of GFP-tagged hGLE1 

variants. The loss of steady-state localization at the nuclear rim with the domain variants 

may have occurred as a result of a competition with endogenous hGle1 for limiting NPC 

scaffold interactions.  Importantly, our recent analysis of the requirement of the coiled-

coil domain was done using our hGLE1-siRNA model system.  It will be important for 

future studies to reexamine the requirement of hCG1 and Nup155 binding domains in the 

hGLE1-siRNA model system. This analysis is critical for: (1) proper interpretation of the 

requirement hCG1/Nup155 scaffolding interactions, and (2) understanding the molecular 

function(s) self-Gle1 association plays at the NPC.  

Our hypothesis that Gle1 functions in vivo as a dimer is based on our 

complementation analysis with the yGle1 chimeric proteins. Specifically, we documented 

that expression of a chimeric protein with the coiled-coil region of yGle1 swapped for 

that of the leucine-zipper dimerization domain of the transcription factor GCN4 (y-

gle1ΔCC +GCN4) partially rescued the temperature sensitive y-gle1-4 phenotype. This 

data suggested that a dimer pair of yGle1 could partially rescue the function in vivo.  This 

chimeric protein however does not rescue as well as expression of wild-type yGle1. 

Suggesting that the y-gle1ΔCC+GCN4 protein may lack biochemical attributes that 

would allow it perform at the same level as wild-type yGle1.   



	   105	  

One intriguing possibility is that the wild-type protein rescues better because it 

can self-associate to form higher order oligomers.  To test this hypothesis one could take 

advantage of the various permutations of GCN4 leucine zipper domain that have been 

generated.  The 30 aa GCN4 leucine zipper domain has been engineered to form parallel 

tetramer complex in solution.  One prediction would that the expression y-

gle1ΔCC+GCN4tetramer protein would recue the y-gle1-4 phenotype better than the y-

gle1ΔCC+GCN4 protein or possibly to the same level as wild-type yGle1. Using a 

similar approach, chimeric h-gle1ΔCC+GCN4 variant proteins can be tested by rescue of 

functional defects in our in vitro hGLE1-siRNA cell culture model.  

The functional model that oligomerization promotes a self-organized platform of 

multiple C-terminal Gle1 domains is based on the y-gle1ΔCC+GCN4 chimera data, 

wherein the GCN4 coiled-coil domain facilitates assembly of parallel aligned dimers. In 

this chimeric protein, the C-terminal domains of yGle1 are orientated in the same 

direction. One prediction of this model is that the orientation of the yGle1 C-terminal 

domain within the dimer is critical for functionality in vivo. To test this hypothesis 

directly one could engineer yGle1 to form an anti-parallel dimer.  In this case the C-

terminal Gle1 domains would be facing in opposing directions. To accomplish this task 

one could take advantage of the anti-parallel leucine zipper domain from a protein from 

Bacillus subtilis, named MtaN (Busiek et al., 2012). It is intriguing to speculate that 

swapping in the dimerization domain of MtaN (y-gle1ΔCC+MtaN) will not rescue the 

function of coiled-coil region of yGle1.  Suggesting that the spatial orientation of the 

Gle1 C-terminal domains within the oligomer is critical for function in vivo.  Future 

studies are needed to investigate this exciting possibility. 
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Molecular pathological dissection of Gle1 disease mechanisms 

One striking characteristic of LCCS-1 and LAAHD pathology is that the patients 

survive relatively far into the pregnancy term (Nousiainen et al., 2008).  This is surprising 

given the importance of bulk mRNA export for cellular homeostasis.  There are two 

possible explanations for how dysregulation of Gle1 activity contributes to the pathology 

in these patients: (1) The FinMajor mutation is a partial loss of function allele. Only subsets 

of cell types require a high amount of Gle1 activity. Dysfunction of this subset of cells 

contributes to the disease pathology observed. (2) The FinMajor mutation is a severe loss-

of-function allele. The embryo is able to proceed far into development because only 

specific cell types strictly require Gle1 activity. While other cell-types have the ability to 

by-pass the requirement for Gle1 activity. A prior study has documented that a null GLE1 

mutation in mice results in embryonic lethality (Tsai et al., 2011).  Specifically, the 

authors find that GLE1 null mice embryos are not observed at any stage during 

development.  Further, the authors were unable to generate a GLE1 null embryonic stem 

cell line (Tsai et al., 2011).  This data indicates proper Gle1 activity is essential for proper 

embryonic development.  Given the central importance of Gle1 activity for bulk mRNA 

transport this is not unexpected.  Severe or complete loss-of-function human disease 

alleles are not common among essential genes (Goh et al, 2007).  This is because severe 

mutations in essential genes are likely to result in severe impairment of development and 

physiology, thus leading to the eventual extinction from human population.  Thus, most 

human disease mutations found in essential genes are likely to be partial loss-of-function 

(Goh et al., 2007). Taken together, these data suggest that the FinMajor is a hypomorphic 

disease allele.    
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Dysregulation of RNA metabolism has emerged as a potential key contributor to 

human disease pathology (Cooper et al., 2009). Our work builds on this paradigm 

showing that loss-of-function of Gle1 activity in mRNA export contributes directly to 

LCCS-1 and LAAHD pathologies.  Prior analysis of the disease pathology in zebrafish 

indicated that Gle1 deficiency in the developing animal negatively influenced multiple 

cell and tissue types (Jao et al., 2012).  In this study, it was documented that highly 

proliferative cells were more susceptible to Gle1 deficiency.  Further, the authors 

documented that the susceptibility of these highly proliferative cell types to Gle1 

deficiency likely constitutes the cellular basis of the pathological phenotypes observed in 

LCCS-1 patients (Jao et al., 2012).  

The molecular pathological mechanism of why highly proliferative cell types are 

more sensitive to Gle1 deficiency is unknown.  One possibility is that highly proliferative 

cells demand higher levels of Gle1 activity to maintain a high level of metabolic activity 

that is required during proliferation. Alternatively, Gle1 deficiency in these cells may 

lead to the selective retention of specific mRNAs in the nucleus that are critical for 

proliferation.  Our previous analysis indicated that the FinMajor protein is defective in 

function for the export bulk poly(A)+ RNA. From this analysis, it is unclear if all mRNA 

transcripts are retained in the nucleus in the FinMajor  cells.  In theory, subsets of 

transcripts may be selectively retained or exported in FinMajor cells.  To test this idea, one 

could utilize our established GLE1-siRNA depletion and add back cell culture system. In 

brief, the cytoplasmic and nuclear RNA pools of Gle1depleted cells expressing GFP 

alone, GFP-hGle1BR, or GFP-FinMajor
R could be isolated via the NP-40 lysis procedure 

(Greenberg and Ziff, 1984).  The nuclear and cytoplasmic pools of RNA molecules could 
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then be analyzed using next generation sequencing technology (NextGen).  Bioinformatic 

analysis of the NextGen data might reveal the identity and relative number of RNA 

molecules in the nuclear and cytoplasmic fractions in each respective sample. This 

analysis will allow for comprehensive analysis the mRNA export defect observed in the 

FinMajor cells on the level of individual transcripts.  

The FinMajor mutant is a homozygous recessive mutation.  This indicates that in 

the heterozygous state that the wild-type Gle1 protein may complement in trans the 

structural perturbation of the FinMajor protein.  Strikingly, the identified compound 

heterozygous alleles (h-gle2BI684T, h-gle1BV617M, and h-gle1BR569H) do not complement 

the FinMajor allele.  All of these mutations occur within the C-terminal region of Gle1 and 

are thought to possibly disrupt the folding of this domain. The C-terminal domain of 

yGle1 is essential for regulation of Dbp5’s ATPase activity (Weirich et al., 2006).  It is 

unclear why these h-gle1 disease alleles do not functionally complement the defect found 

with the FinMajor protein. It is possible that altered proteins fail to complement because: 

(1) The altered proteins cannot rescue the perturbed oligomerization found with the 

FinMajor protein. (2) The altered proteins are incapable of regulating DDX19 ATPase 

activity. (3) These altered proteins may have compromised oligomerization and DDX19 

activation activity.  To distinguish between these possibilities molecular 

complementation assays should be performed using our established GLE1-siRNA 

depletion and add back cell culture system.  The goal of this experiment is to define the 

minimal biochemical requirement for rescue of the functional perturbation found in 

FinMajor cells. To identify this requirement, Gle1 depleted cells could be co-transfected 

with YFP-hgle1B-FinMajor and either CFP, CFP-hGle1B, CFP-hGle1(1-362), or CFP-



	   109	  

hgle1B19Mt (gle1 DDX19 binding mutant).  Importantly, this molecular complementation 

analysis will help define the biochemical and functional constraints that needed to rescue 

FinMajor functionality. 

 

Concluding remarks 

 Nuclear export of mRNA represents an essential step during gene expression.  

Over the last several decades many of the important protein components and regulatory 

paradigms have been documented. The work presented would not have been possible 

without collaborative multidisplinary analysis. Together, these integrated approaches 

allowed us to gain mechanistic insight into the regulation of Gle1 during mRNA export. I 

am grateful my work contributes to this paradigm and look forward to future discoveries 

in our field. 
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Appendix A 

 

Yeast two hybrid screen identifies novel Gle1 interaction partners. 

 

Introduction and results 

In Chapter 2 of this thesis we documented that the coiled-coil domain mediates 

Gle1 self-association in vitro and in living cells.  Further, we showed that self-association 

is critical for the function of Gle1 in mRNA export but not in translation. In biology, 

coiIed-coil domain motifs are often utilized to mediate protein interactions (Burkhard et 

al., 2001). We hypothesized that the coiled-coil domain might facilitate additional 

biochemical interactions with unknown binding partners (in addition to Gle1 self-

association). Thus, to identify novel interactions partners for the coiled-coil domain a 

yeast two hybrid screen was conducted with a Human Fetal Brain cDNA library 

(Matchmaker).  

Previous yeast two hybrid screens utilized full-length hGle1 as the bait protein 

(Kendirgi et al., 2005a; Rayala et al., 2004). To minimize rediscovery of previous hits 

and expedite identification of coiled-coil domain interaction partners, we engineered the 

coiled-coil domain (aa. 1-362) of hGle1 to be the bait protein. Clones (n = 1.2 × 106) 

were screened for interaction with the GBD-hGle1(1-362) bait protein. An efficient 

mating based assay was used to remove false positives and identify interactions that were  
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Figure A.1: hGle1 interacts with KIF5 and Dynactin 2: (A) Two-hybrid hGle1 
interactions: Yeast transformed with hGLE1 bait vectors (blue, wild-type; gray, FinMajor) 
and noted prey plasmids were assayed for β-galactosidase levels. Error bars represent 1 
SEM above and below the mean. (B-C) hGle1 biochemically interactions with KIF5 and 
Dynactin 2. (B) GFP or GFP-hGle1B plasmids were transfected into U2OS cells, and 
immunoprecipitations were performed with α-GFP antibodies.  Samples were 
immunoblotted with either α-hGle1, α-Kinesin 5, or α-Kinesin II antibodies. (C) 
Dynactin2-GFP (abbreviated DCTN2-GFP) and mCherry-hGle1B plasmids were co-
transfected into U2OS cells, and immunoprecipitations were performed with α-GFP 
antibodies.  Samples were immunoblotted with α-GFP (bottom row) or α-hGle1 (top) 
antibodies. 
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perturbed with the FinMajor protein.  In brief, strains harboring the bait and library prey 

plasmids were selected by growth in media containing 5-FOA.  The resulting prey strain 

was then mated against bait tester strains transformed with SNF1, hGLE1B, or h-gle1B-

FinMajor bait vectors. Using this system we were able to remove false positives and 

rapidly identify candidates that were perturbed with the FinMajor protein.   

This strategy identified two novel coiled-coil interaction partners (KIF5C and 

Dynactin 2 (DCTN2)) that were specifically perturbed by the FinMajor PFQ insertion 

(Figure A1.A). Interestingly, both KIF5C and DCTN2 have documented function in the 

trafficking of cargo along microtubules (Goldstein and Yang, 2000). KIF5C is a plus-end 

directed microtubule motor, where DCTN2 is a subunit of dynactin, a macromolecular 

complex that regulates minus-end directed microtubule motor dynein (Schroer, 2004). 

Interestingly, both KIF5C and DCTN2 are important for cytoplasmic mRNA trafficking 

(Martin and Ephrussi, 2009). In neurons, where mRNPs are transported long distances, 

directional movement of RNA granules along microtubules is determined by the balance 

between the molecular motors: kinesins moving granules towards the plus ends, and 

dynein moving granules towards the minus ends (Kanai et al., 2004; Kiebler and Bassell, 

2006).  

To verify the hGle1-KIF5 and hGle1-DCTN2 interactions, we performed co-

immunoprecipitation experiments in cultured cells. A mammalian expression construct 

coding for GFP-hGle1B cDNA was transfected into U2OS cells. Immunoprecipitation 

were conducted using anti-GFP antibodies and co-isolation of endogenous KIF5B was 

detected by immunoblotting with a commercially available anti-KIF5 antibody (Figure 

A.1B). Importantly, this experiment documented that GFP-hGle1B biochemically 
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interacts with endogenous KIF5B protein. hGle1B did not interact with the abundant 

Kinesin II (Figure A.1B). Using a similar experimental strategy, we tested if hGle1 

biochemically interacted with DCTN2. GFP-tagged DCTN2 and mCherry-tagged hGLE1 

genes were co-transfected into U2OS cells. Following immunoprecipitation using anti-

GFP antibodies, the samples were separated by SDS PAGE and the hGle1 and DCTN2 

was detected by immunoblotting with anti-hGle1 and anti-GFP antibodies (Figure A.1C).  

Strikingly, we observed that hGle1B co-isolated with DCTN2.  Taken together, these 

data indicated that hGle1B biochemically interacts with both DCTN2 and KIF5C in 

cultured cells. 

 

Discussion 

Coiled-coils are one of the most common motifs found in proteins. In S. 

cerevisiae 1 of every 11 proteins is predicted to contain a coiled-coil domain.  In a prior 

study, a yeast two-hybrid screen was done using the predicted coiled-coil domains found 

in S. cerevisiae as bait and prey (Newman et al., 2000).  This study assayed 162 putative 

coiled-coil regions from 121 proteins in pairwise tests.  Doing this 213 interactions (33 

were homotypic, 175 were heterotypic) were found from 77 different proteins. Many of 

the analyzed coiled-coil domains interacted with multiple partners. The biological 

significance of these multiprotein interactions is not clear (Newman et al., 2000).  This 

raises the possibility that some of these identified interaction may not be biologically 

significant and merely represent the affinity of coiled-coil domains for a similar tertiary 

protein fold.  
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Both KIF5C and DCTN2 contain multiple coiled-coil domains (Schroer, 2004; 

Verhey and Hammond, 2009). The two-hybrid interaction with hGle1’s coiled-coil 

domain and KIF5C and DCNT2 suggests that the interaction may be direct.  The fact that 

the FinMajor PFQ insertion disrupts this interaction is additional evidence for the 

specificity of these interactions.  Using co-immunoprecipation analysis we showed that 

hGle1 biochemically interacts with both KIF5C and DCNT2.  Given the established roles 

of DCNT2/KIF5C in polarized mRNP transport, it is intriguing to speculate that Gle1 

might also be involved in this process (Martin and Ephrussi, 2009). This hypothesis, 

however, needs to be tempered with the alternative conclusion that the interaction 

between hGle1 with KIF5C or DCNT2 might represent the non-specific affinity of 

coiled-coil motifs. Future studies are needed to distinguish between these possibilities. 
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Appendix B 

 

miRNA depletion of Gle1 and DDX19 in cultured cells 

 

Introduction 

In Chapter 2 of this thesis, siRNA technology was used to deplete endogenous 

hGle1 protein levels in HeLa cells.  Additionally, we found that depletion of hGle1 

proteins levels contributed to a export defect of bulk poly(A)+ RNA.  In a parallel set of 

studies we used different technology (miRNA RNAi) to deplete hGle1 protein levels in 

cultured cells.  The results of these experiments are summarized below. 

 

Results 

The BLOCK-iT Pol II miR RNAi expression system (Invitrogen) was used to 

reduce endogenous levels of hGle1 in cultured cells. A pcDNA-GFP-miR expression 

vector was generated to express two separate engineered miRNAs with 100% homology 

to a target GLE1 sequence (CTAGATCAACCCTCATTTGTT and 

CCCAAGCTATCTTCTTATTCT). This pcDNA-GFP-miRhGle1 expression vector was 

used to knockdown endogenous hGle1 protein levels in U2OS cells. As a control, a 

pcDNA-GFP-miRCTRL vector that expresses a scrambled miRNA was tested in parallel. 

We examined the ability of our pcDNA-GFP-miRhGle1 to deplete endogenous levels of 

hGle1 protein in cultured U2OS cells. In brief, U2OS cells were transfected with either 

pcDNA-GFP-miRhGle1 or pcDNA-GFP-miRCTRL vectors.  Seventy-two hours post 

transfection, the cells were harvested and the knockdown efficiency was examined by  
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Figure B.1: miRNA technology effectively depletes Gle1 protein levels. (A).U2OS cells 
werer transfected with pcDNA-GFP-miRhGle1 or pcDNA-GFP-miRCTRL (abbreviated GFP-
miRhGle1, and GFP-miRCTRL) vectors. Immunoblot analysis of hGle1 levels in control 
GFP-miRhGle1 and GFP-miRCTRL treated cells transfected with the indicated GFP-tagged 
proteins is shown. (C-D) U2OS cells were transfected with either GFP-miRhGle1 or GFP-
miRCTRL plasmids.  Cells were processed for: (C) immunohistochemistry with α-hGle1 
antibodies to detect Gle1 protein levels.  Cells expressing the pcDNA-miRhGle1 had 
decreased levels of Gle1 protein as indicated by white arrows. (D) in situ hybridization 
with a CY3-conjugated oligo(dT) probe to detect total poly(A)+ RNA. Cells expressing 
the pcDNA-miRhGle1 shows a similar distribution of poly(A)+ RNA to the control pcDNA-
miRCTRL cells.  
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immunoblotting with anti-hGle1 antibody (Figure B.1A).  We observed that cells 

transfected with pcDNA-GFP-miRhGle1 vector but not the pcDNA-GFP-miRCTRL had 

depleted hGle1 protein levels. Further, we were able to rescue expression by co-

transfection with GFP-tagged miRNA-resistant hGLE1 vectors (Figure B.1A).   

In a parallel set of analysis, we examined the depletion of hGle1 protein levels on 

a single cell basis using fluorescence microscopy.  Co-cistronic expression of a GFP 

reporter in the pcDNA-GFP-miR vector enables visual tracking of cells expressing the 

engineered miRNAs by direct fluorescence microscopy. U2OS cells were transfected 

with either pcDNA-GFP-miRhGle1 or pcDNA-GFP-miRCTRL vectors. hGle1 protein levels 

were examined by immunohistochemistry with anti-hGle1 antibody followed by 

detection by fluorescence microscopy.  This analysis revealed that the cells transfected 

with pcDNA-GFP-miRhGle1 expression vector (marked by GFP expression)  had depleted 

Gle1 protein levels, as indicated by reduced nuclear rim signal (Figure A2.1B). In 

contrast, the cells expressing pcDNA-GFP-miRCTRL showed no effect on Gle1 level 

(Figure A2.1B).  Taken together, these data suggested that expression of the pcDNA-

GFP-miRhGle1 vector effectively depletes Gle1 protein levels in cultured U2OS cells.  It 

should be noted that similar results were found also in HeLa cells (data not shown). 

We next tested if depletion of hGle1 protein levels using the pcDNA-GFP-

miRhGle1 results in disruption of export of poly(A)+ RNA. U2OS cells were transfected 

with pcDNA-GFP-miRhGle1 or pcDNA-GFP-miRNACTRL.  Seventy-two hours post 

transfection the cells were fixed and processed for in situ hybridization with Cy3-

conjugated oligo (dT) probe. Using this approach, we were unable to detect accumulation 

of poly(A)+ RNA upon expression of either pcDNA-GFP-miRhGle1 or pcDNA-GFP-
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miRNACTRL vectors (Figure A2.1C). This suggested that these cells do not have a defect in 

mRNA export. In Chapter 2 we observed a robust accumulation of poly(A)+ RNA in our 

GLE1-siRNA treated cells.  Taken together, these data suggest that the expression of the 

pcDNA-GFP-miRhGle1 vector in cells is unable to deplete Gle1 to a level that would elicit 

a perturbation in bulk mRNA export.   

In a parallel set of studies, we utilized the BLOCK-iT Pol II miR RNAi 

expression system (Invitrogen) to reduce endogenous levels of DDX19 in cultured cells. 

A pcDNA-GFP-miR expression vector was generated to express an artificially engineered 

miRNA with 100% homology to a target DDX19 sequence 

(GAACTTAATTGCCCAATCTCA). U2OS cells were transfected with pcDNA-GFP-

miRDDX19 or pcDNA-GFP-miRNACTRL.  Seventy-two hours post transfection, the cells 

were fixed and processed for in situ hybridization with CY3-conjugated oligo(dT) probe. 

Doing this we detected robust accumulation of poly(A)+ RNA in the nucleus upon 

expression of the pcDNA-GFP-miRDDX19 vector but not with the pcDNA-GFP-miRCTRL 

vector (Figure B.2).  

 

Discussion 

In this study, we documented that expression of the pcDNA-GFP-miRDDX19 vector 

results in a robust mRNA export defect. Moving forward it is essential to analyze the 

knockdown efficiency of the pcDNA-GFP- miRDDX19 vector by immunoblotting with a 

commercially available DDX19 antibody. This analysis is critical for proper 

interpretation of the pcDNA-GFP-miRDDX19 data sets. 
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Figure B.2: Expression of pcDNA-GFP-miRDDX19 vector disrupts mRNA export.  U2OS 
cells were transfected with pcDNA-GFP-miRDDX19 or pcDNA-GFP-miRCTRL (abbreviated 
GFP-miRDDX19, and GFP-miRCTRL) vectors. Cells were processed for in situ hybridization 
with a Cy3-conjugated oligo (dT) probe to detect total poly(A)+ RNA. Cells expressing 
the GFP-miRDDX19 vector show accumulation of nuclear poly(A)+ RNA. 
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In Chapter 2 we show that depletion of hGle1 protein levels using siRNA 

technology results in the robust accumulation of poly(A)+ RNA in the nucleus.  

Expression of the pcDNA-GFP-miRhGle1 vector also effectively depleted hGle1 protein 

levels (Figure B.1A-B).  In contrast, we could not detect a robust mRNA export defect in 

pcDNA-GFP-miRhGle1 expressing cells (Figure B.1C). These results suggest that 

expression of the pcDNA-GFP-miRhGle1 vector is unable to deplete Gle1 protein to a level 

that would elicit a defect in mRNA export.  This may suggest that there is a critical 

threshold of Gle1 activity at the NPC that is required for efficient mRNA export. The 

ability to identify Gle1 depleted cells via GFP expression with the pcDNA-GFP-miR 

technology is a very powerful experimental readout. In conclusion, the pcDNA-GFP-

miRhGle1 vector is not a useful reagent for studying Gle1’s role in mRNA export.  

However, this vector may be useful in examining Gle1 functionality in other 

experimental contexts.  Future studies are needed to explore this exciting possibility. 
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Appendix C 

 

Structural analysis of the FinMajor and y-gle1-136^PFQ proteins 

 

Introduction 

In Chapter 2 of this thesis we documented that Gle1 self-associates in vitro to 

form high molecular mass disk complexes.  Further, our analysis documented that the 

MBP-h-gle1(1-365)-FinMajor disk structures appeared malformed and disordered. The 

precise nature of how the FinMajor PFQ insertion disrupts Gle1 self-association remains 

unclear. In this study we investigated the biochemical, and structural consequence of 

insertion of a PFQ peptide within the coiled-coil domain of Gle1.  To analyze the 

potential perturbations of PFQ insertion on Gle1 self-association, a series of experiments 

with human and yeast Gle1 proteins were performed.  A summary of these results is 

presented below.  

 

Results 

Structural characterization of the hgle1-FinMajor protein 

Our structural analysis using NegEM indicated that the FinMajor protein perturbs 

Gle1 self-association.  Given these structural perturbations, we hypothesized that the 

FinMajor disk structures may be sensitive to treatment with mild denaturing challenges. 

Wild-type and FinMajor samples were subjected to the following treatments: (1) flash 

freeze/thaw, (2) incubation at 40°C and 60°C, (3) incubation at 23°C or 4°C for 24 

hours,  or (4) addition of SDS to the sample. We hypothesized that challenging the 
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FinMajor disks would cause the disk structures to fall apart or aggregate in solution.  This, 

in turn, would lead to reduction in the total number of disk structures in the FinMajor 

sample after treatment.  In contrast, we predicted that the wild-type hGle1 samples would 

not be influenced by these treatments.  For all treatments described below, purified 

recombinant MBP-hGle1(1-362) and MBP-hgle1(1-365)-FinMajor proteins were used.  

The preparation of the disk samples for both wild-type and FinMajor was done as 

previously described in Chapter 2. 

For the rapid freeze/thaw treatment, protein samples were aliquoted into small 

1.5mL eppendorf tubes.  The samples were then flash frozen in liquid nitrogen and 

immediately thawed on ice.  Analysis of the samples by NegEM revealed that both wild-

type and FinMajor samples still contained disk structures after treatment. However, both 

wild-type and FinMajor samples had a significant reduction in the number of particles as 

compared to the untreated sample (Figure C.1B,F).  The reduction in total number of 

disks indicated that both wild-type and FinMajor disk structures are sensitive to rapid 

freeze/thaw treatment. 

For the temperature treatment challenges, protein samples were aliquoted into 

small 1.5mL eppendorf tube.  The samples were incubated 45°C or 60°C for 70 minutes. 

Analysis of the samples by NegEM revealed that both wild-type and FinMajor samples still 

contained disk structures after each treatment. In the 45°C treatment there was no 

significant reduction of disk number with the either wild-type or FinMajor samples (Figure 

C.1C,G). In contrast, we observed a significant reduction of the total number of disk 

structures for both wild-type and FinMajor samples after treatment at 60°C (Figure 

C.1C,G).  In a parallel set of analysis, wild-type and FinMajor samples were incubated at  
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Figure C.1: Gle1 disk structures are sensitive to harsh variations in temperature. (A-D) 
Representative EM image for purified MBP-hGle1(1-362) is shown for indicated 
treatments. (E-H) Representative EM image for purified MBP-hGle1(1-362) is shown for 
indicated treatments. Bar, 100 nm. 
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Figure C.2: hGle1 disk structures are sensitive to mild variations in temperature. (A-C) 
Representative EM image for purified MBP-hGle1(1-362) is shown for indicated 
treatments. (D-F) Representative EM image for purified MBP-h-gle1(1-362)-FinMajor is 
shown for indicated treatments. Bar, 100 nm. 
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23°C or 4°C for 24 hours. We observed increased aggregation for both wild-type and 

FinMajor samples after treatment at 4°C for 24 hours.  In contrast, we saw decreased 

numbers of aggregated disk structures for both wild-type and FinMajor samples after 

treatment at 23°C for 24 hours (Figure C.2 B,E). Taken together, these results indicate 

that the hGle1 disk structures are sensitive to both mild and severe changes in 

temperature. Importantly, this data indicated that FinMajor and wild-type disk structures 

have identical sensitivity to variations in temperature.  

For the SDS treatment challenges, only the wild-type disk structures were tested. 

In brief, the MBP-hGle1(1-362) disk sample was aliquoted into small 1.5mL eppendorf 

tube.  The samples then treated with either 0.1%, 0.05%, and 0.01% SDS on ice for 30 

minutes. Analysis of the samples by NegEM revealed wild-type samples contain no disk 

structures after treatment with 0.1%, 0.05%, and 0.01% SDS (Figure C.3).  This data 

indicated that SDS treatment caused the oligomeric complex to fall apart in solution. Of 

note, these results documented that hGle1 self-association is very sensitive to low levels 

of anionic detergents. 

 

Structural characterization of the y-gle1-136^PFQ protein 

Our in silco analysis suggested that the y-gle1-136^PFQ should behave 

biochemically similar to that of the human FinMajor protein. A prediction that stems from 

this analysis would be that the y-gle1-136^PFQ protein would also have malformed disk 

structures.  To test this, we analyzed the disk structures of the y-gle1-136^PFQ protein 

using NegEM. Recombinant untagged full-length yGle1 and y-gle1-136^PFQ disk  
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Figure C.3: hGle1 disk structures are highly sensitive to anionic detergent treatment. 
Representative EM image for purified MBP-hGle1(1-362) is shown for indicated 
treatments. Bar, 100 nm. 
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Figure C.4: Structural analysis of y-gle1-136^PFQ protein. (A-D) Representative EM 
images for specified yGle1 protein variants is shown. Bar, 100 nm 
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complexes were purified. Analysis these samples by NegEM revealed that y-gle1-136^PFQ 

formed disk structures that had identical structural characteristics to that of wild-type 

yGle1 disk structures (Figure C.4A-B). In contrast to the phenotype observed with the 

human FinMajor PFQ insertion, this data indicated that insertion of the PFQ motif after 

residue 136 in yeast Gle1 did not grossly perturb the structure of the oligomeric disk of 

the full-length yGle1 protein. 

For both wild-type and FinMajor proteins the N-terminal domain (aa. 1-362) of 

hGle1 was analyzed in vitro for self-association and disk formation.  However, in our 

initial analysis of the y-gle1-136^PFQ the full-length protein was used.  Thus we 

hypothesized that the use of the full-length yGle1 protein may have masked the possible 

perturbations found in the y-gle1-136^PFQ disk structure. We next tested if the N-terminal 

domain of Gle1 (amino acids 1-240) is sufficient for gle1 self-association and disk 

formation in vitro.  Recombinant untagged yGle1(1-240) was purified and fractionated by 

size exclusion chromatography.  Analysis by NegEM revealed that yGle1(1-240) formed 

large disk structures (Figure C.4C). We then tested if the y-gle1(1-240)-136^PFQ protein 

formed disk structures. Recombinant untagged y-gle1(1-240)-136^PFQ was purified and 

fractionated by size exclusion chromatography.  Analysis of this sample by NegEM 

revealed that y-gle1(1-240)-136^PFQ formed large disk structures that appeared identical 

to disk structures found in the wild-type yGle1(1-240) sample (Figure C3.4C-D). Taken 

together, this data indicated that insertion of PFQ at residue 136 does not grossly perturb 

the structure of yGle1(1-240) oligomeric disk structure. 
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Discussion 

 In this study we analyzed the consequence of treatment of wild-type and FinMajor 

oligomeric disk samples with mild denaturing treatments.  We had anticipated due to the 

malformed nature of the FinMajor disks that they would be more sensitive to these 

treatments.  In contrast to this hypothesis, we found that both the wild-type and FinMajor 

proteins behaved similarly in all treatments tested.  This data suggests that the FinMajor 

PFQ insertion does not influence the overall stability of the oligomeric complex.  This is 

consistent with our previously biochemical analysis of the FinMajor protein by SVAU 

(Figure 2.3). 

 Our in silco analysis indicated that the y-gle1-136^PFQ protein should 

biochemically mimic the human FinMajor protein.  In support of this conclusion, similar to 

the FinMajor protein we observed that the y-gle1-136^PFQ protein is also defective in 

mRNA export (Figure 2.9).  We hypothesized that the y-gle1-136^PFQ protein would also 

form malformed disk structures in vitro.  We were surprised to find that the structural 

characteristics of the y-gle1-136^PFQ disk structures appeared to be identical to that of the 

wild-type yGle1 protein.  This data indicates unlike the FinMajor protein the y-gle1-

136^PFQ protein does not grossly influence the overall structure of the oligomeric 

complex. However, the NegEM approach has limited resolution to resolve structural 

perturbations when observing single molecules.  Thus, future experiments are needed to 

define the structural perturbations that occur in the altered y-gle1-136^PFQ protein. 
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Appendix D: 

Plasmids used in this study 
Plasmid Description Source 
mCerulean3-C1 Mammalian expression vector (Markwardt et al., 2011) 
mVenus-C1 Mammalian expression vector (Nagai et al., 2002) 
mVenus-N1 Mammalian expression vector (Nagai et al., 2002) 
eGFP-C1 Mammalian expression vector Clontech 
pGex4T-3 GST expression vector GE Healthcare 
pMal-Cri MBP expression vector New England Biosciences 
pRS315 CEN/URA3 (Sikorski and Hieter, 1989) 
mCerulean-C1 Mammalian expression vector (Rizzo et al, 2004) 
PAGFP-C1 Mammalian expression vector Clontech 
CFP-C1 Mammalian expression vector Clontech 
YFP-C1 Mammalian expression vector Clontech 
mCherry-C1 Mammalian expression vector Clontech 
3XmCitrine-C1 Mammalian expression vector (Cai et al., 2007) 
pIRES2-DsRed2 Mammalian expression vector Clontech 
mCerulean-N1 Mammalian expression vector (Rizzo et al., 2004) 
pRS316 CEN/LEU2 (Sikorski and Hieter, 1989) 
pGBD-C Yeast two-hybrid expression vector (James et al., 1996) 
Pom121-mCherry Mammalian expression of Pom121-mCherry (Dultz et al., 2008) 
pBRR118b yGLE1-GFP/CEN/TRP1 This Study 
pSW3779 y-gle1-136^PFQ-GFP/CEN/TRP1 This Study 
pSW1482 Mammalian expression of eGFP-hGLE1B (Kendirgi et al., 2003) 
pSW3903 Mammalian expression of eGFP-h-gle1B-FinMajor This Study 
pSW3894 Mammalian expression of eGFP-h-gle1BDCC This Study 
pSW3908 Mammalian expression of eGFP-hGLE1BR This Study 
pSW3945 Mammalian expression of eGFP-h-gle1BR-FinMajor This Study 
pSW3775 Mammalian expression of mCerulean3-hGLE1B This Study 
pSW3774 Mammalian expression of mVenus-hGLE1B This Study 
pSW3932 Mammalian expression of mVenus-hGLE1(362-698) This Study 
pSW3017 GBD-hGLE1B/2µ/URA3 (Rayala et al., 2004) 
pSW3904 GBD-h-gle1B-FinMajor/2µ/URA3 This Study 
CP261         GAD-eIF3F/2µ/LEU2 (Kendirgi et al., 2005) 
pSW233 GAD-NUP155/2µ/LEU2 (Rayala et al., 2004) 
pSW3068 GAD-hCG1/2µ/LEU2 (Kendirgi et al., 2005) 
pSW3723 in vitro translation vector  hGLE1(1-360) This Study 
pSW1423 Expression plasmid for GST-hGLE1(1-362) This Study 
pSW3851 Expression plasmid for MBP-hGLE1(1-362) This Study 
pSW3852 Expression plasmid for MBP-h-gle1(1-365)-FinMajor This Study 
pSW3242 Expression plasmid for MBP-6TEV-yGLE1 (Alcázar-Román et al., 2006) 
pSW3830 Expression plasmid for MBP-6TEV-y-gle1-136^PFQ This Study 
pSW3831 Expression plasmid for MBP-6TEV-y-gle1-149^PFQ This Study 
pSW3327 Expression plasmid for MBP-6TEV-yGLE1(241-538) This Study 
pSW410 yGLE1/CEN/URA3 (Murphy et al., 1996) 
pSW399 yGLE1/CEN/LEU2 (Murphy et al., 1996) 
pSW3743 y-gle1-136^PFQ/CEN/LEU2 This Study 
pSW3742 y-gle1-149^PFQ/CEN/LEU2 This Study 
pSW3760 y-gle1-157^PFQ/CEN/LEU2 This Study 
pSW3829 y-gle1ΔCC/CEN/LEU2 (Watkins et al., 1998) 
pSW3792 y-gle1ΔCC+yCC/CEN/LEU2 This Study 
pSW3826 y-gle1ΔCC+hCC/CEN/LEU2 This Study 
pSW3828 y-gle1ΔCC+-/CEN/LEU2 This Study 
pSW3827 y-gle1ΔCC+hFinMajorCC/CEN/LEU2 This Study 
pSW3827 y-gle1ΔCC+hFinMajorCC/CEN/LEU2 This Study 
pSW3253 Mammalian expression of eGFP-DDX19 This Study 
pSW3971 Mammalian expression of eGFP-h-gle1BR569H This Study 
pSW3972 Mammalian expression of eGFP-h-gle1BV617M This Study 
pSW3973 Mammalian expression of eGFP-h-gle1BI684T This Study 
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Plasmids used in this study 
Plasmid Description Source 
pSW4033 Mammalian expression of IRES-hGLE1B-dsRED2 This Study 
pSW4034 Mammalian expression of IRES-hGLE1BmIR-

dsRED2 
This Study 

pSW4035 Mammalian expression of IRES-hGLE1A-dsRED2 This Study 
pSW4036 Mammalian expression of IRES-hGLE1B-FinMajor-

dsRED2 
This Study 

pSW4037 Mammalian expression of IRES-hGLE1BmiR-
FinMajor-dsRED2 

This Study 

pSW4038 Mammalian expression of CFP-hGLE1B This Study 
pSW4039 Mammalian expression of CFP-hgle1B-FinMajor This Study 
pSW4040 Mammalian expression of YFP-hGLE1B This Study 
pSW4041 Mammalian expression of YFP-hgle1B-FinMajor This Study 
pSW4044 Mammalian expression of mCerulean3-hgle1B-

FinMajor 
This Study 

pSW4042 Mammalian expression of mVenus-hgle1B-FinMajor This Study 
pSW4045 Mammalian expression of hGLE1B-mCerulean This Study 
pSW4046 Mammalian expression of hGLE1B-FinMajor-

mCerulean 
This Study 

pSW4047 Mammalian expression of mCherry-hGLE1B This Study 
pSW4048 Mammalian expression of mCherry-hgle1B-FinMajor This Study 
pSW4049 Mammalian expression of eGFP-hgle1(1-100) This Study 
pSW4050 Mammalian expression of mCerulean3-hgle1(1-100) This Study 
pSW4051 Mammalian expression of mVenus-hgle1(1-100) This Study 
pSW4052 Mammalian expression of eGFP-hgle1BmiR This Study 
pSW4053 Mammalian expression of eGFP-hgle1AmiR This Study 
pSW4054 Mammalian expression of eGFP-hgle1BmiR, R569G This Study 
pSW4055 Mammalian expression of eGFP-hgle1BmiR, V617M This Study 
pSW4056 Mammalian expression of eGFP-hgle1BmiR, I684T This Study 
pSW4057 GBD-hgle1(30-430)/2µ/URA3 This Study 
pSW4058 GBD-hGle1B-FinMajor/2µ/URA3 This Study 
pSW4059 in vitro translation vector  hGLE1-FinMajor(1-360) This Study 
CP3888 GAD-DCNT21/2µ/LEU2) This Study 
CP3889 GAD-KIF5C/2µ/LEU2 This Study 
pSW4069 GAD-hGle1(31-430)/2µ/URA3 This Study 
pSW4066 GAD-hGle1A-FinMajor/2µ/URA3 This Study 
pSW4073 GAD-hGle1BR569H/2µ/URA3 This Study 
pSW4074 GAD-hGle1BV617M/2µ/URA3 This Study 
pSW4075 GAD-hGle1BI684T/2µ/URA3 This Study 
pSW4064 in vitro translation vector  hgle1(1-360)-FinMajor This Study 
pSW4063 in vitro translation vector  hgle1B-FinMajor This Study 
pSW4062 Mammalian expression of IRES-hGLE1AmiR-

dsRED2 
This Study 

pSW4061 Mammalian expression of IRES-Δ30hGLE1AmiR-
dsRED2 

This Study 

pSW4067 Mammalian expression of IRES-Δ30hGLE1BmiR-
dsRED2 

This Study 

   
   
   
   
 

 

 



	   132	  

Appendix E: 

Yeast strains used in this study 

Strain Genotype Source 
W303 MATα ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 (Thomas and Rothstein, 

1989) 
PJ69-4A MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4∆ gal80∆ LYS2::GAL1-HIS3 GAL2-

ADE2 met::GAL7-lacZ 
(James et al., 1996) 

PJ69-4A MATα trp1-901 leu2-3,112 ura3-52 his3-200 gal4∆ gal80∆ LYS2::GAL1-HIS3 GAL2-
ADE2 met::GAL7-lacZ 

(This Study) 

SWY1831 MATα ade2-1 ura3-1 his3-11 leu2-3,112 trp1-1 gle1::HIS3 + pSW410 (GLE1) (Murphy et al., 1996) 
SWY1258 MATa ade2-1 ura3-1 his3-11 leu2-3,112 trp1-1 gle1::HIS3 + pSW410 (GLE1) This Study 
SWY1259 MATα ade2-1 ura3-1 his3-11 leu2-3,112 trp1-1 gle1::HIS3 + pSW410 (GLE1) This Study 
SWY1789 MATa ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 ipk1::KAN (Murphy et al., 1996) 
SWY4209 MATα ade2 ura3 his3 leu2 trp1 gle1-4 (Alcázar-Román et al., 

2006) 
SWY4605 MATα ade2 his3 leu2 trp1 gle1::HIS3 nup100::HIS3 + pSW410 (GLE1) This Study 
SWY1017 MATα ade2 ura3 his3 leu2 trp1 nup100::HIS3 (Murphy et al., 1996) 
SWY3902 MATa ade2-1 ura3-1 his3-11 leu2-3,112 trp1-1 gle1-2 nip1-1 (Bolger et al., 2008) 
B8302 MATa ura3-52 lys5-10 cyc1-NLS cyc7-67 nip1-1 (Gu et al., 1992) 
SWY3828 MATα ade2 ura3 his3 leu2 trp1 can1 gle1::HIS3 + pSW399 (GLE1) (Alcázar-Román et al., 

2006) 
SWY4908 MATα ade2-1 ura3-1 his3-11 leu2-3,112 trp1-1 gle1::HIS3 + pSW3743 (gle1-136^PFQ) This Study 
SWY4909 MATα ade2-1 ura3-1 his3-11 leu2-3,112 trp1-1 gle1::HIS3 + pSW3742 (gle1-149^PFQ) This Study 
SWY4961 MATα ade2-1 ura3-1 his3-11 leu2-3,112 trp1-1 gle1::HIS3 + pSW3760 (gle1-157^PFQ) This Study 
SWY4081 MATa ade2 ura3 his3 leu2 trp1 nip1-1 gle1::HIS3 + pSW410 (GLE1) This Study 
SWY4952 MATa ade2 ura3 his3 leu2 trp1 nip1-1 gle1::HIS3 + pSW399 (GLE1) This Study 
SWY4911 MATa ade2 ura3 his3 leu2 trp1 nip1-1 gle1::HIS3 + pSW3743 (gle1-136^PFQ) This Study 
SWY4912 MATa ade2 ura3 his3 leu2 trp1 nip1-1 gle1::HIS3 + pSW3742 (gle1-149^PFQ) This Study 
SWY4976 MATa ade2 ura3 his3 leu2 trp1 nip1-1 gle1::HIS3 + pSW3760 (gle1-157^PFQ) This Study 
SWY4059 MATα ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 sup45-2 This Study 
SWY4079 MATa ade2 ura3 his3 leu2 trp1 sup45-2 gle1::HIS3 + pSW410 (GLE1) This Study 
SWY4953 MATa ade2 ura3 his3 leu2 trp1 sup45-2 gle1::HIS3 + pSW399 (GLE1) This Study 
SWY4913 MATa ade2 ura3 his3 leu2 trp1 sup45-2 gle1::HIS3 + pSW3743 (gle1-136^PFQ) This Study 
SWY4914 MATa ade2 ura3 his3 leu2 trp1 sup45-2 gle1::HIS3 + pSW3742 (gle1-149^PFQ) This Study 
SWY5002 MATa ade2 ura3 his3 leu2 trp1 sup45-2 gle1::HIS3 + pSW3760 (gle1-157^PFQ) This Study 
CSY802 hisD300 leu2D1 ura3-52 rat8-2 gle1::HIS + pGLE1/CEN/URA3 C. Cole 
SWY4936 hisD300 leu2D1 ura3-52 rat8-2 gle1::HIS + pSW399 (GLE1) This Study 
SWY4937 hisD300 leu2D1 ura3-52 rat8-2 gle1::HIS + pSW3743 (gle1-136^PFQ) This Study 
SWY4938 hisD300 leu2D1 ura3-52 rat8-2 gle1::HIS + pSW3742 (gle1-149^PFQ) This Study 
SWY4979 hisD300 leu2D1 ura3-52 rat8-2 gle1::HIS + pSW3760 (gle1-157^PFQ) This Study 
SWY4600 MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 ipk1::KAN gle1::HIS3 + pSW410 (GLE1) This Study 
SWY5635 MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 ipk1::KAN + pSW399 (GLE1) This Study 
SWY5636 MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 ipk1::KAN gle1::HIS3 + pSW3743 (gle1-

136^PFQ) 
This Study 

SWY5637 MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 ipk1::KAN gle1::HIS3 + pSW3742 (gle1-
149^PFQ) 

This Study 

SWY5638 MATα ura3-1 his3-11,15 trp1-1 leu2-3,112 ipk1::KAN gle1::HIS3 + pSW3760 (gle1-
157^PFQ) 

This Study 

SWY4053 MATa ura3 his3 leu2 rat7-1 gle1::HIS3  + pSW410 (GLE1) This Study 
LGY101 MATα ura3-52 his3∆200 leu2∆1 rat7-1 (Gorsch et al., 1995) 
SWY3813 MATα ade2 ura3 leu2 his3 nup42::HIS3 ipk1::KAN gle1::HIS3 + pSW410 (GLE1)+ 

pSW929 (IPK1) 
This Study 
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