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CHAPTER|
DEFINABILITY IN SUBSTRUCTURE ORDERING

1.1 Introduction

In the paper [JM09a], Jaroslavzik and Ralph McKenzie introduce the following general situation. Let
K be a fixed T-class of structures over a finite signature where T dendibesdatype of axioms such as
equations, quasi-equations, or universal sentence< Ldenote the collection of T-subclassed<oivhich
usually forms a complete lattice ordered by inclusion. We may investigate if ahg ébllowing conditions
are met by the first-order structufe:

1. the finitely generated T-subclasses are definable in the language @Slatticl each such T-subclass
is definable up to the automorphisms&f;

2. the finitely axiomatizable T-subclasses are definable in the language ofdatticd each such T-
subclass is definable up to the automorphisms,gaf

3. the classes axiomatizable by a single T-axiom is a definable sub&gt of
4. the only automorphisms dfx are the “obvious” ones.

If all of the above conditions are met we say that the T-theorids lafispositive definability
For an example of an “obvious” automorphism,Bebe a poset. Reversing the direction of the ordering
produces a new partial order over the same universe, denotetbywhere

a<pb iff a>pwh.

The mapop : P — P°P takes substructures to substructures and can be seen to preseretatioa of
embedding among posets. This meapsnduces a non-trivial automorphism of the partially ordered set
of finite isomorphism types ordered by isomorphic substructures(embiitida moreover, it is a non-
trivial automorphism when restricted to lattices and distributive lattices. Irriassef papers [JM09a],
[JM10], [JM09Db], [JM09c], Jeek and McKenzie investigated first-order definability in the substructure
relation restricted to the finite isomorphism types of various subclassederearsets. One of the principal
results gathered from the separate papers is the following.

Theorem 1.1.1. ([JM09a], [JM10], [IM09b], [JM09c]) Lell denote either the class of posets, lattices, or
distributive lattices. Le{PU, <) denote the poset of finite isomorphism types in the classdered by
embeddability. Then there exists a single tgpe PU, such that every element ¢PU, <,c) is first-order
definable; moreovenp is the only non-trivial automorphism &fUl.

If Semdenotes the poset of finite isomorphism types of meet-semilattices orderadldmddability,
then every type is first-order definable in the order relatioseif in particular, Semhas no non-trivial
automorphisms.



For meet-semilattices, posets, and distributive lattices, the Birkhoff dualeo$ubstructure poset of
finite isomorphism types is isomorphic to the lattice of universal subclassésg this isomorphism and the
previous result, Je2k and McKenzie established positive definability for these universalitds. Lattices
do not form a locally finite class, and so the question of positive definabdityfe universal theory of
lattices remains tantalizingly open.

The case of ordered sets presents an additional remarkable resuliM10][ it was shown that the
connected finite isomorphism types of ordered sets were first-ordeadédiin the substructure relation. It
is a classical result of finite model theory, that among finite posets, themyopf being connected is not
first-order finitely axiomatizable; that is, there is no first-order sent@naethe language of ordered sets
such that the finite models af are precisely the connected ordered sets. In this regard, the sinstruc
theory may capture strictly second-order properties. Indeed, it wasndly Jezek and McKenzie[JM10,
Thm. 3.8] that in a certain sense, second-order finite axiomatizability amateygivsets is equivalent to
first order definability in the poset of finite isomorphism types orderedubgtsucture.

Whereas the previous work analyzed sublasses of ordered setsesiemtpwork extends the theory of
positive definability and definability in the substructure relation to the uneddstructures of simple graphs
( which are irreflexive symmetric digraphs) in Chapter Il and equivedenelations in Chapter IV. In both
cases, positive definability of the universal theories is achieved bplisstimg an analogue of Theorem
[.1.1. We go further and characterize the expressive power of fidgraefinability in the substructure
relation as equivalent to modeling full second-order properties wrstnated to the finite members.

.2  Outline of argument

In Chapter II, we establish the relationship between the lattice of univeubalasses and the poset of finite
isomorphism types ordered by embeddability. The goal of this chapter ist@pra general template for the
investigation of positive definability of universal theories, and so weyrithe material in an abstract setting
and hope to be relatively thorough. The method does not work for anpitrdversal classes, and so the
additional assumptions we must make are those which are necessaryetwv@tas approach established in
[JM09a], [JM10], and [JMQ9b]. The chapter culminates with the prddffeeorem 11.1.9 which guarantees
positive definability of the universal theories provided we can first@each finite type is definable in the
poset of finite isomorphism types after adding a finite number of certainamsgo the poset language.

An excellent and economical introduction to those aspects of model thadrfirat-order logic which
are utilized in this dissertation can be found in the first two sections of chaptejBS81]. | will assume
the basic familiarity with first-order logic and structures which can be fouackth

In Section I1.2, we briefly introduce the long-standing Reconstructiofectures for finite ordered sets
and simple graphs. We observe, as in [JM10], that the question of modéfinability provides an excellent
application for the affirmative resolution of these conjectures.

In Chapter IllI, we explore definability for finite isomorphism types of simpiapps under the sub-
structure relation. Definability in this poset appears quite expansivewarghall be able to conclude its
elementary theory is undecidable and non-finitely axiomatizable. We estaldistytlothesis required in
Theorem 11.1.9 and thereby conclude positive definability for the usalgheories of simple graphs. This



exploration culminates in Proposition 111.7.1 of Section I11.7 where it is sheach isomorphism type is de-
finable. In the remaining part of the chapter, we establish the connectiwrdredefinability in the poset of
finite isomorphism types with the second-order language of graphs.ofmection passes through the first-
order language of a small category which is introduced and examined iioiS8¢t9. This development
follows very closely that of [JM10, Sec.3] which was the original inspirafir this work.

In Chapter IV, we turn our attention to the universal theory of equivaemlations. The poset of
finite isomorphism types ordered by the substructure relation at firseegppeite transparent, and so it is
somewhat surprising, at least to the author, that we are able to interphehetic and thereby conclude
its elementary theory is both undecidable and non-finitely axiomatizable. Rodéfinability here follows
more readily than in the case of simple graphs since Set Reconstructionfboktsuivalence relations.
In order to establish the connection between definability in the poset of fioreoigphism types and the
second-order language, we must do more work. This culminates in Se¢tton |

Then in Chapter V, we look at some questions which arise from the worlegdrévious chapters.



CHAPTER I
UNIVERSAL CLASSES

In this chapter, we are concerned with classes of structures modeleaivegysal sentences. We will
establish some conditions on a universal class for which positive défipalf the universal theories is
reduced to investigating definability in the isomorphic substructure relation firfiiks members. When we
refer to a class of structuré§ over a fixed signature, we always assume it is closed under taking isbimorp
structures.

1.1 Definability in £y

For a fixed signature, a first-order formutgx, ..., Xs) is said to be open if it contains no quantifiers. A
formula is inprenexform if it looks like

Q11 - QmymW(X1, ..., %n)

where eaclf); is a quantifier, some of thg’s may refer to the variables, ands(x, ...,X,) is an open for-
mula. A standard result guarantees that every formula is logically eqottalsome formulain prenex form,
which provides a canonical description for choosing interesting speffiesmnulas. We may define one such
species by saying that a formulausiversalif it is logically equivalent to a prenex formula with only uni-
versal quantifiers. Recall, for any positive integehere is a first-order sentenég; - - - 3X,W=n(Xg, ..., Xn)
using only existential quantifiers such that for any strucBireany signatureB = 3x; - - - Ix, W= iff |B| > n;
for example, we can take féP the following open formula

WXL, .., Xn) 1= [\ Xi % Xj.
i<j

Thenvxy - - - VX —W>n(X1,...,Xn) iS @ universal sentence which asserts a structure has ahmdstélements.

For a set of first-order sentenc@sin some fixed signature, M@®) is the class of structures in the
same signature which satisfy every sentenc®.0fVe sayll is auniversal classf U = Mod(®) for some
set of universal sentenc& Universal classes can be described in an alternate manner. Foisak¢las
S(R) will denote the class of structures isomorphic to substructures of stradtufeé The classR,(R)
will consist of those structures isomorphic to ultraproducts of structuces R. We shall make use the
following characterization of universal classes.

Theorem I11.1.1. [BS81, Thm 2.20] For any class of structures over a fixed signatueefolfowing are
equivalent:

1. X is a universal class

2. X is closed undesandR,



3. KX = SRy (X*) for some clas&C*

For a non-empty class of structurgg the universal class generated #y denoted byu(X), is by
definition the smallest universal class containi§ig The previous theorem implies we may takeX) =
SRy (X).

A classX is said to bdocally finiteif all finitely generated substructures of structuresirare finite.
ForR C K, we sayll(R) N X is the universal class generated Ryelative toX. If R =Mod(®) N X for
some set of universal sentend®sthen? is called a universal class relative 30. It is easy to see that
both simple graphs and ordered sets form locally finite universal cla&sem ordered structure in a single
binary relational signature, lattices do not form a universal class #iegeare not closed under substructure.
In the signature of two binary operations, meet and join, lattices do indesddaniversal class, but it is
not a locally finite.

Lemma 11.1.2. For a locally finite clas&C closed under substructures, the relative universal subclasses are
determined by their finite members.

Proof: Let R, P be relative universal subclassesJof If they do not have the same finite members, then
clearlyR # P.

SupposeR # P. Then without loss of generality, there exiBtg P (and also irK) such thaP ¢ R, and
so there exists a universal sentegrsuch thatP # @, but ¢ is satisfied by every structure . Since only
finitely many variables appear ip, there exist{ay, ...,a,} C P such thaD = Sgp(al, ..,an) < Pis afinite
structure an® ¥ @. This impliesD ¢ R. e

Let X+i, denote the class of finite structureskn

Lemma 11.1.3. For a classK of structures of finite signature, we haMéX) fin € S(XK) fin.

Proof: From Theorem I1.1.1, we havé(X) = SR)(X). Let B < [[yPR be a finite substructure of an
ultraproduct frontX. For all {a_]_,...,a_.n,a_n+]_,b]_,...,bm} C B, operation symbof and relation symbdRr, if
in B we have

f(a/U,...,an/U) = ay41/U and R(by /U, ....by/U),
then by definition of the ultraproduct the sets
[(a1, . an) = @] = {i 1 R E F@(0), . @n(0) = Enali)}

[R(by, ....bn)] = {i : B ER(by(i), .., bn(i)) }

all belong to the ultrafiltet). If B= {a;/U,...,a,/U}, then since the signature is finite the intersection of
all these sets fdB together withW~p(ay, ..., ap)] is non-empty and belongs té If kis a coordinate in this
intersection, then it is straightforward to see tBambeds intd¥; therefore SR (X) tin € S(X) fin. ®

For a universal clasH, the universal classes containedinmay be ordered by containment; moreover,
the order is a lattice order with meet given by intersection and the join of stfad® andV given as



KVvV =S8R (XUYV) by Theorem II.1.1. The lattice of universal subclasse¥ & denoted byly.. When
we refer to definability inCq;, we refer to relations of the latticg, definable by first-order formulas in the
language of lattice theory.

For two structured\ andB in the same signature, we write< B if A is embeddable int®8; i.e., A is
isomorphic to a substructure Bf For a non-empty clask in a finite signature, we may consider the relation
< of embeddability among the finite members. This naturally defines a quasj-arikso by passing to
the natural quotient by symmetric pairs, we arrive at the poset of finite igurismn typesPXK, <) often
denoted simply a®X. Since elements &fX denote equivalence classes of isomorphic finite structures, we
often refer to the order dPX as the substructure relation.

Recall for a poseP, the order ideals dP form a distributive lattice under the operations of set intersec-
tion and union. This lattice is the Birkhoff dual Bfand is denoted b@(P).

Corollary 11.1.4. For a locally finite universal clag$ of finite signature, we have the isomorphigin ~
o(Pw).

Proof: For a universal subclass, we mapg(X) = Kjn. SinceX is closed under substructuréssiy, is

an order ideal undex. Using Lemma 11.1.3, for any universal sublcas$éandXR we see that the join in
the lattice of universal classé8Vv R = SRy (KX UR) implies (K V R)tin = SR (K UR) tin € SKUR) tin =
S(K) 1in U S(R) 1in; therefore, the mag preserves joins. As the meet operation is just intersection in both
lattices,@ is easily seen to preserve meets. Finally, Lemma 11.1.2 guaratises bijection.e

In particular, the lattice of universal subclasse$la$ complete. An elemeratin a latticel is said to be
strictly join-irreducible if whenevea = \/ X for some set of lattice elements thena € X. For any poset
P, the strictly join-irreducible elements ¢f(P) are the principal order ideals. The property of an element
being strictly join-irreducible is preserved under isomorphism.

Lemma ll.1.5. In a complete lattice, an elemexis strictly join-irreducible iffx has a unique lower cover.
The set of strictly join-irreducible elements is first-order definable.

Proof: Let L be a complete lattice. Supposés strictly join-irreducible and set = {ze L:z<x}. If
x=\Y =b, thenx € Y; a contradiction. Sb < x, and ify < x, then by definition we have < b; therefore,
b is the unigue lower cover of.

Suppose has a unique lower covaf < x. If x=\/B, then there existg< B such thay > x*; otherwise,
VB < x* < X, a contradiction. This mearys= x and sox is strictly join-irreducible.
The property thax has a unigue lower cover can be given a first order descriptionxfonple,

(F)[Z<X)NXLDA (WY <X)A(XEY) =y <2)]

A classR of structures has thiinite embedding property for any finite set of finite structuregA;}; C
R, there is a finite structurB € R such that < B for 1 <i < n. Many classes have this property; for
example, simple graphs, groups, rings, lattices, posets, and equivaétatons.



A universal clasSR is finitely generatedf there is a finite sef of finite structures such th& = U(7J).
A universal classR is finitely axiomatizabléaf there is a finite se® of universal sentences such tifiat
Mod(®). For a positive integeN, let Ry denote the subclass Bfgenerated substructures. In general, for a
locally finite class and fixelll, all theN-generated substructures will be finite, but there is no a priori reason
that their cardinalities should have a finite bound.

From this point on, we shall assume the universal class locally finite, of finite signature, has the
finitely embedding property, aridy, is finite up to isomorphism for eadk.

Lemma I1.1.6. A universal subclas& C U is finitely generated iffX is contained in a strictly join-
irreducible universal subclass.

Proof: If X = SRy (P, ...,R), let P € Usin such that eacR — P. ThenX C Sk, ({P}) and so,p(K) =
Ktin € S({P}) = (P]; therefore X C ¢~ *((P]) which is strictly join-irreducible.

Likewise, if X C R whereR is strictly join-irreducible, themp(R) = (P] for someP € Usi,. This implies
Ktin C Rtin = S(P), and sdK iy, is finite up to isomorphism. This implies is finitely generated by Lemma
1.1.2. e

Lemmall.1.7. LetU be a finitely axiomatizable universal class. A universal subckassU is finitely ax-
iomatizable iff up to isomorphism there are only finitely many finite structures miningegiuembeddability
among structures di outside ofX.

Proof: Let © be a finite set of universal sentences such that Mod(®). Suppose there exist finitely
many finite structure®,...,P, ¢ X such that for alB ¢ X someR, < B. Let W be the sentence “| have
a substructure isomorphic to sog ..., R,". Notice thatW can be taken to be a disjunction of existential
sentences.

If AF —W, thenA does not embed arfyy and so by definition of thé, ..., P,, we must havé\ € X.

If Ae X, butAE W, then somd3 < Awhich impliesP, € X, a contradiction; thusi = —\.

Altogether we have th& = Mod({-¥,©}) and—W is universal.

Conversely, supposk =Mod(Z) whereZ is a finite set of universal sentences. We may assknsea
proper universal subclass. Th&fNU = Mod(\/{—¢: @ € £})NU. LetN denote the maximum number
of variables used img for all ¢ € Z. Then for any structuré € U, we have thaf ¢ X iff AE —¢ for some
@ € Z which implies there exists a finite substructéel A such thaB E —¢@ andB is at mostN-generated.

We have shown thak ¢ X iff S(A) N (UyNKC) # 0. This shows the minimal structureslifoutside of
X are contained ifily which, by hypothesis, is finite up to isomorphismn.

Proposition 11.1.8. Let U be a finitely axiomatizable universal class. The finitely generated and finitely
axiomatizable universal subclassedlofre first-order definable ifiy;.

Proof: By Lemma I1.1.6 and Lemma 11.1.5X such thatK C R for someXR which has a unique lower
cover” yields a first-order definition for the finitely generated univiesshclasses. The proposition will be
complete with the proof of the following claim.



Claim: X is finitely axiomatizable iff there exists a finitely generated chissuch thatyM, M ¢« X =
MAN £ XK.

Proof: SupposeX is finitely axiomatizable. By Lemma I1.1.7 I&%, ..., P, be a representative list of the
finite minimal structures outside 6. ThenN = SRy (Py, ..., R) is finitely generated. IM £ X, then there
existsR € M, butR ¢ X which implies somd? € N NM; therefore, the intersection is not empty and in
particular N AM £ K.

For the converse, suppose this is finitely generated by sonfg, ..., P,. ThenN = SR (Py,...,R,) =
S(Pi, ...,P), and without loss of generality we may further assugi®@,, ...,P,) C {Pi,...,Ph}. LetR be
the class of structures @tl N X°)¢n minimal under substructure. For eaBre R, setXg = SR ({B}).
ThenXg £ X implies Kg NN £ K, and so there exists € (XgNN)sin such thatF ¢ K. This means
F € {Pi,...,Py} up to isomorphism, and so by Lemma I1.1X js finitely axiomatizable.

This finishes the claim and the propositian.

The above proposition characterizes the finitely axiomatizable univdessles as those clasdegd=°)
whereF is a finitely generated order filter (U, <). The finitely generated universal classes are those
classedl(l) wherel is a finitely generated order ideal.

For any poseP, AutP will denote the group of automorphisms of the pd3efor any automorphism
@ € AutP andJ € O(P), the setp(J) = {@(a) : a< J} is an order ideal and sp naturally determines an
automorphism of9(P). In this way, the automorphisms of the po§&t induce automorphisms of the
down-set latticed(PU), and by using Corollary 11.1.4, automorphisms of the lattige The next theorem
provides conditions which guarantee these automorphisms are the only apitsnes ofl;.

Whenever a groufs acts on a seX there is an induced action antuples of elementéxy, ...,Xx,)9 =
(&, ....x4). To fix notation, let{(xy,..., %))} = {(X1,...,¥a)% : g € G} denote the orbit ofxy, ..., X,) under
G.

Theorem 11.1.9. [JM10, Thm 2.35] Letl be finitely axiomatizable. Suppose there exist distinct finite iso-
morphism types;, ..., Cy such that each element 811 is definable in the pointed posgtU, <,cy,...,Cm).
Suppose the set

{(ca,..., ) YW

is definable ifPU without constants. Then each finitely generated universal subcldgséaly axiomati-
zable universal subclass Ufis definable up to the automorphisms&f induced by the automorphisms of
PU; moreover, the automorphisms induced®y are the only automorphisms &f;.

Proof: By Corollary 11.1.4 and Proposition 11.1.8, we may attain the result by shgwidividual defin-
ability of those order ideals € O(PU) which are finitely generated ideals or the complements of finitely
generated filters.

Let | be an order ideal which is finitely generated or the complement of a finitelgrged filter. We
need to show thafl }""" is first order definable i) (PU). There are finitely many finite structur®s ..., P,
such that

| = {B e Usin :B<R forsome 1<i<n}



or
| ={BeUsin:B#R for 1<i<n}.

It is convenient to denote the principal order ideal generate8 bgB |. Since the mapV : PU —
O(PU) takingc to c | is an order-embedding, Lemma 11.1.5 implies e&H,, ..., P, | is definable in the
pointed latticeO(PU) with constants; J,...,cm ). This means for each £ i < n, there is a first-order
formulay (X,y1, ..., Ym) in the language of lattices such thRd, is the unique elemer such thatd (PU) =
Yi(ap,c1 4,...,Cm ). Also, by hypothesis there is a first-order formule, ..,Xm) which defines the set
{(c1 sy Cm L) P

For ease of notation, let denote the lattice join operation (PU). Let ®(x) be the formula

(3y---3ym) (- Ia) (€Y1, Ym) A\ WG YL, s Ym) AX = X1+ + X

1<i<n

andO(x) be the formula

Ay IyYm) X, - X)) [E(YL, - Ym) A\ B0y, - Ym) A (V) [z< x4 A\ X% £ 2.
1<i<n 1<i<n
The claim is that) (PU) F ®(A) iff A= ¢@(I) for somep € AutO(PU) wherel is the order ideal gen-
erated byPy,...,Py; andO(PU) E ©(B) iff B = ¢(J) for somegp € AutO(PU) whered is the largest order
ideal omitting eacliy, ..., P.
To verify the claim, suppose th&(PU) = ©(B). LetVYi,...,Yn andXy, ..., X, be the elements which
witness the satisfaction @(B). Then we have that

O(PU) F &(Ya, .., Ym)

O(PU) E Wi (X, Y1,..., Ym)

fori=1,...,n. It follows that(V1,...,Ym) = (€1 |, ...,Cm })? for some automorphisrm.

Consider the order idegi~1(B). ThenO(PU) F ©(¢~1(B)) with witnessesp~1(Y,) = ¢; | andp~1(X;)
fori=1,..,mandj=1,...,n. The factthat)(PU) F ©(¢~1(B)) impliesp~1(B) is the largest element which
fails to be above any element of the $&% |,...,P, |}; i.e., o 1(B) avoids each?, and sop~1(B) = J. So
we haveB = @(J). Since it is straightforward to see thatPU) F ©(J) andO(PU) F ©(p(J)), we have
shownJ is definable up to the automorphisms.

Suppose tha®(PU) F ®(B). Then as before, we have witnessgs...,Ym and Xy, ..., X, such that
(Y1,..,Ym) = (€1 4, ...,Cm J)? for some automorphism.

We see that) (PU) E ®(¢~1(B)) with witnessesp 1(Yi) = ¢ | and @ 1(X;) fori =1,...,mand | =
1,...,n. ThenO(PU) E (¢ 1(X),C1l,....cm 1) impliesp~(Xj) =R | fori=1,...,n. We can also see that
O(PU) E d(¢~1(B)) impliesp(B) is the join of the principal ideals generated by #e (Xy), ..., @ 1(Xy);
thus,@~1(B) = | which impliesB = ¢(1). Again, since it is clear thad(PU) F ®(1) andO(PU) E d(¢(1)),
we have shown thkis definable up to the automorphisms.

To finish the theorem, supposeis an automorphism ad (PU). Since the relatiof (c1, ...,cm)}A“t(m)



is definable, then by the above there exists sqneeAut(PU) such thato(c |) = @(c ) fori=1,...,m
where(Eis the unique automorphism 6f(PU) induced byg. Then the automorphismz?1 o o fixes each
G J.

Claim: Any automorphism o (PU) which fixes eaclt; | is the identity.
Proof: Let T be an automorphism @ (PU) which fixes eaclt; |. By the above, for each principal order
idealB there is a first-order formulgi(x, y1, ..., ym) in the language of lattices so tHats the unique element
such thatO(PU) E Y(B,c1 4, ...,Cm ). ThenO(PU) E Y(B,c1 |,...,cm ) impliesO(PU) E w(1(B),T(C1 |
), T(Cm{)) and therefore@(PU) F ¢(1(B),C1 ,...,em ). This forcest(B) = B and sor fixes every
principal order ideal. Since any order ideal is the complete join over thépginarder ideals generated by
its members, it must be the case thdixes every ideal, and so is the identity. This finishes the claim.

It follows from the claim tha’rﬁ*1 oo =id and thereforeg = qE It now follows that the automorphisms
of Ly are just the induced automorphismsiit. e

In Chapters Il and IV we will explore first-order definability in the substure relation for simple
graphs and equivalence relations. Each universal class is locally, ffiifanite signature, has the finite
embedding property, and has up to isomorphism only finitely nidfgenerated structures for eabh
Furthermore, in the respective partially ordered sets of finite isomorphiges twe will show that each
isomorphism type is definable by adding an additional constant to the lamg\&igce in each case, the
orbits of the constants under automorphism will be definable without cdsstae conditions of Theorem
11.1.9 will be satisfied, and so we will have established positive definablitgdch class.

1.2 Reconstruction

Let D be the class of digraphs; that is, structures in a single binary relationa fioite digraphA andx

a vertex ofA, we letA — x denote the substructure restricted on the remaining elements. If the di§graph
has vertex se¥ (A) and edge sdE(A), thenA— x is the digraph with vertex s&t(A)\ {x} and the edges
are exactly thoses edges®fA) which are not incident witlx. In the case of digraphs, our general notion
of substructure is often referred to as an induced subdigraph. d&btleof a digraphA is the multiset
defined adD(A) = {A—x:xeV(A)} where we allow repeated elements in the cAsex ~ A—y for

X #y; in particular, the cardinality oD(A) is equal to the cardinality oA. In the deck, we only consider
the isomorphism types of the one vertex-deleted induced subdigraplisA smdB are isomorphic finite
digraphs, then they will have the same decks. The general Reconsirgagstion asks i andB have the
same decks, then is it true that they are isomorphic?

If we consider a subclass C D closed under one-element deletions, then the reconstruction question
can be posed for the finite digraphsdi It may be that reconstruction can be answered in the affirmative
for all pairs of finite digraphs frorfk excluding a finite list of structures. In this case, we will slightly abuse
terminology and say reconstruction holds frif it is true for all structures larger than a predetermined
cardinality; consequently, it is said to fail i if it fails for an infinite family of pairs of structures.

The question of reconstruction appears in print for simple graphs in fKel&d for posets in [San85]
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(though in this paper it is mentioned the problem may stretch back almost aejebrathe case for graphs,
it is easy to see that the path on three vertices and the disjoint union of apatoorertices with an
additional isolated vertex have the same decks, but are not isomorphic. r§intila three element poset
with a unique bottom covered by two incomparable elements and its oppositéhess@me decks, but are
not isomorphic. The reconstruction conjecture for graphs and pdasts that these are the only exceptions;
that is, reconstruction holds for simple graphs and posets of cardinaligastt four. The truth of this
conjecture is known for many subclasses of posets and graphs, liull tenjecture remains quite open. A
good place to begin this topic is in the survey [RamO05].

In [Sto77] it was shown that reconstruction fails for digraphs. In fatdckmeyer showed the failure in
the particular universal class of tournaments and then modified his cotiatrin [Sto81] to give several
lists of counterexamples for other digraphs.

There is a closely related question which appears in [Har64] which waidedn the general setting
of this chapter. For any locally finite universal cldsof finite signature, také € PU and consider the
setLa = {B € PU: B < A}; that is, L, is the set of lower covers in the poset of finite isomorphism types
ordered by the substructure relation. The Set Reconstruction queskigif a

La=lg = A=B (I1.1)

Again, by an abuse of terminology, set reconstruction is said to hold in sii€kdk1) holds after excluding
finitely many counterexamples. One can see that set reconstruction impbestriction for those digraphs
closed under one-element deletions since digraphs with the same dedkéaane lower covers; posets,
simple graphs, and tournamants are particular examples. As a result, itniswmkf set reconstruction
holds for simple graphs and posets. Set reconstruction is known to hraddiovalence relations [PS04].

In the case of posets and graphs, the truth of set reconstruction mayaygelick proof of individual
definability. For this section, a countable poBes said to begradedif there exists a sequence of subsets
P1, P, .... which partitionP such that eacR is a non-empty set of incomparable elements, and every element
of P covered by some element Bf. 1 belongs taR. If PU is graded and ead® consists of precisely those
structures with cardinalitit, then we say thaPU is graded by cardinality

Lemmalll.2.1. Suppose Set Reconstruction hold#ih for structures of cardinality at least> 1, and that
PU is graded by cardinality. If all structures of cardinality at most 1 are individually definable, then
every structure is individually definable.

Proof: Since the poset is graded by cardinality, we may use induction on the alirdif types to show
each element at a given height is definable. Those structures of alityxdin— 1 serve as the base of the
induction. If each structure at height>- m— 1 is definable, then by Set Reconstruction each strué&twate
heightn+ 1 is uniquely determined by the set of lower coviegks and so inductively, is the unique element
covering that particular first-order definable kgtof elements at height. e
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CHAPTER IlI
SIMPLE GRAPHS

We consider the class of simple graghws/hich are those digraphs for which the binary edge relation is
irreflexive and symmetric. Simple graphs form a locally finite universabkclBsr two verticesl, v € G, the
edge relation fou andv is denoted as ~ v and it is said thati andv are adjacent, or are connected by an
edge.

We are concerned with the notion of embedding; that is, an injectivegnap — H such that for all
verticesu,v € G, u~ Vv iff g(u) ~ @(v). Following the notation of Chapter I, we wri® < H if there
is an embedding of G into H, and in this case, it is immediate th@{G) is a substructure off such
thatG ~ @(G). For graphs, the general model-theoretic notion of substructurespamds exactly to the
definition of induced subgraph. If Q&denotes the finite simple graphs with vertex sets over the positive
integers, then the embedding relatigrrestricted to these graphs forms a quasi-ordered@er, <). The
poset of finite isomorphism typeS ordered by substructure is then just the quotienf@6GR, <) by the
equivalence determined by isomorphism.

While we are interested in definability in the po§Y, it will be more convenient to work within the
quasi-ordered séQGR, <) where we will speak of graphs definable up to isomorphism rather tharatbéi
isomorphism types.

If G < H, but there does not exi€ < F < H, then we writeG < H and sayH coversG. It is easy
to see thaG < H iff G <H and|H| = |G|+ 1. It follows that the poseP§ is naturally graded according
to cardinality, and so for each fixed positive integethose graphs at heigint (having cardinalityn) are
definable as having a maximalelement chain in its principal order ideal. Notice this definition requires a
fixedn, and so those graph with cardinality- 1 require a different package of formulas to define them. We
shall see later in Section 111.6 how to capture the cardinality of arbitrarghgg@n a uniform manner.

The graph with a single vertex is the unique bottom elemefitdrbelow every other element. We do
not consider the graph on an empty set of vertices.

WhenA < B, we will often without mention identifyA with a particular induced subgragphof B such
thatU ~ A. For example, ifA < B, then we will say thaB is formed fromA by adding an additional vertex
vto A and possibly some additional edges connectitmvertices ofA. If vis a vertex ofG, thenG — v will
denote the induced subgraph on the vertice8 ofmitting v; that is, the induced subgraph on the vertex set
V(G) —{v}.

There is an obvious automorphism(@GR, <) (and of?S) which is defined by edge complementation
and denoted by; that is,o (G) is the graph over the same set of vertice&abutu ~ vin o(G) iff uX v
in G. We shall see in Section II1.7 that this is the only non-trivial automorphist%of

The complete graphor clique, onm vertices is denoted d€;,, and is characterized as the unique graph
having every possible edge. Tlenpty graph or trivial graph, onm vertices is denoted a¥;, and is
characterized as the unique graph having no edges. It is easy to sbetthk,, | andN, | are chains.
The pathon n vertices is denoted bi, and is a graph isomorphic to the graph~ vo ~ - -- ~ v, with no
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additional edges other than the ones specified.cleait(or cycle C, is formed from the patR, by adding
only one additional edge, ~ v;.
The set of complete or empty graphs is definable.

Lemma lll.0.2. The se{Kmn: m> 1} U{Nyn: m> 1} is definable inPg.

Proof: A graphGiis in the above set if | is a chain.
To see this, suppog@ % K, Nk for anyn, k > 1. Then|G| > 3 and so there exist verticesy, X,y such
that| {u,v,x,y} | > 3 andu ~ vandx ;¢ y. ThenK; < G andN, < G, butK; andN, are incomparablee

For two graphsG andH, we form a new grapi&é + H called the disjoint sum o6 andH by taking
the disjoint union of the two sets of vertices and allowing only those edges gdnoim G andH. This
can be visualised as placing the graptby the side ofH. By construction, ifA~ G andB ~ H, then
A+B= G+ H. We may consider the sum of more than two graphs, and so when taking aw@oss{G; }
we can write the sum g8 G;. This will yield a convenient general notation for simple graphs.

Two verticesa andb in a graphG are path-connectedf there is a path irG starting froma and ending
atb; explicitly, if there is a sequence of vertices= x1, ..., X, = bin G such thatg ~ %, fori=1,....n—1.
The graphG is connectedf every two vertices ofs are path-connected. We say an induced subgraphG
is a connected component@fif H is connected, but no vertex &foutside ofH is connected to any vertex
of H; in this case we can writé as a disjoint sum dfl and the induced subgraph on the remaining vertices.
Naturally, any simple graph may be representeGasy G; whereG; are the connected components®f

Given two graph$s andH, we may construct a new grag@\/H called the join ofG andH by taking
G+ H and adding every possible edge of the fanm v whereu € G andv € H. For exampleKp g ~
KoV Kg. Again, it is easy to see thatA~ G andB ~ H, thenA\/B~ G\/H.

The graph on four vertices with only the edges v~ x ~ y ~ uandv ~ y will be denoted a8.

The graph on four vertices with only the edges v ~ x andv ~ y will be denoted a¥ 3. This graph
is often referred to as thelaw.

B K3

Figure lll.1: Graph$3 andKj 3

At this point, we will add the constari representing the path on three vertices to form the pointed
quasi-ordered structur@QGR, <,Ps). Unless otherwise specified, definability will refer to the language

{<,Ps}.

Definition 111.0.3. For 0< k < n, let K, +¢ N1 denote the graph constructed frdfq + Ny by arbitrarily
addingk new edges. It is easy to see the graphs are isomorphic no matter h&meeedges are added,
and so this produces a well-defined construction on isomorphism typesx&mple K, +n N1 ~ K 1.
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If we denote the single vertex df; by v, then we may definBl, +x Nz in a similar manner by addiny
distinct edgesl ~ v whereu is a vertex ofNy,.

Remarkll.0.4. For exampleB ~ Kz +2N; andKz 3 ~ N3 +3N;.

Lemma I111.0.5. Form > 1, the only covers oKy are {Km +« Nl}ogkgm, and the only covers dfi,, are
{Nm+k N1 }ockem

Proposition 111.0.6. Every graph on at most four vertices is definable.

Proof: By Lemma I11.0.2, the se{Ks,N3} is definable, and so thefPs;,P,+N;} is definable as the

remaining graphs at height three; therefde+ N; is definable since we can call up the consnt

Now P is definable as the unique element coveffagndP, + Ny, but not covering anything ifiKs, N3 }.

The circuitC4 is the element with the unique lower covy

We would like to defind® + N;. Notice P; + N; andKs +1 N; both coverPs, P, + N1, and some graph
in {Ks3,N3}. We shall have recourse to uniquely define a graph which c&gevehich will help separate
Ps+ N1 from K3 +1 N;. First, we see that, + N; can be defined as the unique coveCgfnvhich has exactly
two subcoverdA andB, and if A =~ Cy4, thenB % P, and covers boti®; andP, + N;. We can then recover
Ps 4+ N7 as the unique subcover 6f + N; which is not isomorphic t&,.

Kz is then defined as the complete or empty graph at height three which ignoonsequenthyy is
also definable. It follows tha&, andN, are separately definable.

The graphKs +1 Nj is definable as the unique element with lower cowr#, + Ny, andKs.

K3+ Nz is the only cover o, + Ny which also cover&s and is not isomorphic t&z +1 Nj.

Kz + K is the element with unique lower cover+ Nj.

K2+ Ny is the unigue element with onkb + N; andN3 as lower covers.

The graphB is definable as the unique coverm@fnot equal td<z 41 N1, but which also coverks.

The graplKy 3 is definable as the element witg andNz as the only lower covers.

This accounts for every type iRG of height at most fours

SinceK3 andN3 are separately definable, Lemma 111.0.2 implies the sets of complete and trizjaig
are separately definable.

Definition 111.0.7. For a graplA, letcl(A) = nwhereK, is largest clique which embeds A andi(A) =m
whereN, is the maximal trivial graph which embedsAn A copy of Ny, in Alis called an independent set
of A; thus,i(A) is the size of a maximal independent sefin

From the previous commentsl(I") andi(I") are definable properties &f It is also easy to see that
i(G+H)=i(G)+i(H).

To finish this section, we will show how to interpret the arithmetic of positive etegsing disconnected
cliques. Corollary 111.0.9 references results of Section 1V.2.

Proposition 111.0.8. The se{l" : T is a disjoint sum of cliquésis definable.
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Proof: Itis easy to see thdtis a disjoint sum of complete graphs i £ . e

There is an obvious way to associate a disjoint sum of cliques to any ¢noearelation; for the
partitiont= (ng,...,ny) consider the graph,; = 2}21 Kn. Itis easy to see that < g iff ['; <T 4; therefore,
the above proposition implie$PE, <) is definably present it?G. Corollaries 1V.2.15 and 1V.2.16 yield the
following.

Corollary 111.0.9. The elementary theory @f?g, <) is undecidable and not finitely axiomatizable.

1.1 Circuits, Paths and Trees

A graphH is said to contain a grapB as a subgraph if there is a subset of verti¢emnd some subset of
edgesE with vertices inV such that the graph with verticksand edge& is isomorphic toG. This does
not imply G < H. For exampleB containsC, as a subgraph, b@ £ B; that is,B does not contai, as
an induced subgraph.

A graph is said to bacyclic (or afores) if it does not contain a circuit as a subgraph. The first result
says we need only consider induced subgraphs.

Lemmallll.1.1. T contains a circuit as a subgraphlificontains a circuit as an induced subgraph.

Proof: SupposeC C G is a circuit inG and writeC = x; ~ --- ~ X, ~ X1. If C £ G, then there exists
i+ 1< j, such thatx ~ xj, and SOC =Xq ~ e~ X ~ Xj ~ -+~ Xn ~ X1 is @ smaller circuit. If we let
D C G be a circuit of minimal cardinality, then it follows thBX < G. e

Lemmalll.1.2. {A: A= SC, Cisacircuit,|C| > 3} is definable.

Proof: The claim is thaiA is in this set iff|A| > 4, andP; < A, K13 £ A, K3 £ A, andA has a unique lower
cover.
It is straightforward to see that these conditions are necessary. Weshowsthat they are sufficient.
Supposé is a graph which satisfies the conditionsAlfs a circuit, then we are done. Assuiiiés not
a circuit. Note thaP; < AimpliesAis not an empty graph.

Claim: Ais the disjoint sum of circuits and paths.
Proof: First, note the maximum degree of every verteXAins two. Suppose not. Let be a vertex of
A such that its neighborhodd(v) = {u: v~ v} has at least three vertices. If any two verticeNg¥) are
adjacent, theiz < A; a contradiction. SinciN(v)| > 3 and no vertices are adjacent, the induced subgraph
on the verticedN(v) U {v} embeds a copy df; 3; another contradiction.

Since every vertex has maximum degree two, it is not too hard to seA thast be the disjoint sum of
circuits and paths. This finishes the claim.

SupposéA is the disjoint sum ok circuits andr paths. Letv be a vertex of some circuit anda vertex
of some path. TheA—v hask— 1 circuits, butA — u still hask circuits. This contradictions the fact that
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has a unique lower cover. Supposeés only the disjoint sum of paths. Sincds < A, some patlP in the
sum ofA has at least three vertices. bebe a terminal vertex i® and lety be a vertex of degree two i
ThenA— xis the disjoint sum of paths, buA —y is the disjoint sum of + 1 paths; a contradiction.

It must be the case thatis a disjoint sum of circuits. Sinc& has a unique lower cover, all the circuits
must have the same lengt.

For anyn % m, we see thaC, andC,, are incomparable, and therefore, any two disjoint sums in the
previous relation are comparable iff they are dsjoint sums over the samerjgtmoircuit. In this case, the
set of such sums over the same circuit are naturally linearly ordereddfigdo the number of components;
of course, the minimal elements are just the circuits.

Proposition I11.1.3. The set of circuits is definable.

Proof: If we denote the definable set in Lemma Ill.1.2@SUM, then we have the following definable
relationR= {(A,B) : A,B € CSUM,A < B}. It follows from the above discussion thats a circuit iff
C=Ks, or
IC| >3,C e CSUM, andVB[(B,C) c R—B=~C].

We record the following corollary for use in the next section.
Corollary Ill.1.4. {(C,I') : Ciscircuitand” ~ C+C} is definable

Proof: (C,IN) is in the relation iffC is a circuit and

C ~ Kz andr is a disjoint sum of cliqueg|(I') = 3 andi(I") = 2, or

C ~ C4 andC, is the unique circuit strictly below, K1 3 £ ', I has a unique lower cover, aind) = 4,
or

IC| > 4,I € CSUM, C,, < T', and there does not exiBte CSUM such thaC, < R<T.

The case wher€ = C,4 requires some explanation. The first two conditions iniplg a disjoint sum
of copies ofC4 and possibly of some paths. Sincehas a unique lower cover, there cannot be any paths
present in the disjoint sum. The conditigiii) = 4 implies there are only two copies Gf in the sum, that
is,F =~ Cy4+Cy. @

Corollary ll1.1.5. The set of forests is definable.

Proof: By definition,F is a forest iff it avoids every circuit. By Lemma Ill.1.1 and Proposition LR,lthis
is a definable conditiorm

Proposition 111.1.6. The set of paths is definable. In addition, the following two sets are dédinab
1) {(A,P) : A= Ny for some m andP ~ Pom}
2) {(A,P) : A=~ Np, for some m and® ~ Poy;1}

Proof: The set of paths are just those elements which are the unique lowes cd\ecircuit.
1) (A,P) is in this relation iffA ~ Ny, for somem, P is a pathj(P) = m, andP covers a pati
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such thai(L) =m.
2) (A,P) is in this relation iffA ~ Nny, for somem, P is a pathj(P) = m, andP covers a patf
suchthai(L)=m—1.e

By considering circuits which cover the appropriate paths, those cirdugtzeen and odd cardinality are
also separately definable.

Corollary IIl.1.7. {I :T is a disjoint sum of pathsis definable.

Proof: It is easy to see that a graph is strictly below some circuit iff it a disjoint stipaths. The result
now follows from Proposition I11.1.3e

Proposition 111.1.8. The lattice of universal subclasses of the universal class gendnatadte graphs has
cardinality the continuum.

Proof: The set of isomorphism types of finite circuits constitutes a denumerablyténéintichain in
PG, and so by Corollary 11.1.4 the collection of universal classes gertketaterbitrary subsets of finite
cycles forms a pair-wise distinct collection. Since universal classesaphg are model classes over a finite
signature, the cardinality is precisely the continum.

Proposition 111.1.9. The class of non-finitely generated universal subclasses of simglagia equal to
the union of the principal filters generated y{Km, : m < w}) andU({Nm: m< w}).

Proof: Clearly,U({Km : m< w}) andU({Nm: m < w}) are not finitely generated subclasses. Since simple
graphs form a locally finite universal class, a universal subclassnsfinitely generated iff it contains
infinitely many non-isomorphic finite simple graphs. The result is now just atgplication of Ramsey’s
Theorem.e

Definition 111.1.10. For a,b in the same connected componentloflet d(a,b) equal one less than the
cardinality of the shortest path in connectinga to b. The diameter of is then taken to bel(l') =
max{d(a,b) : a,b in the same connected componenf¢f Whena,b are in different connected compo-
nents, setl(a,b) = co.

The distance between any two vertigeandb in the same connected component is always realized by
some path, saff =a~ Xy ~ --- ~ Xy ~ b. If X ~ X; for somej > i+ 1, then we may construct a shorter
path froma to b, contradicting the minimality oP; thus, the distance is always realized by an embedded
pathP < T. Sincerl is finite, the diameter is always realized by some path, and thus, by an endlmstttie
While it is not always true thah < B impliesd(A) < d(B) - considerA ~ P, andB ~ Cs - it is true for the
class of forests.

A treeis a connected forest. In the case of forests, any induced path betiwegartices is unique, and
so the diameter of a forest is just the length of the largest induced subpath.
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Proposition I11.1.11. The set of trees is definable.

Proof: The claim is thafT is a tree iff T is a forest and for any fore® such thatT < D we have
d(D) <d(T)+1.

Supposd is a tree, then whenevéris a forest such thakt < D, we can construdd from T by adding
a new vertexx and at most a single new edge- x whereu € T. Let P < D realize the diameter dd. If
x¢ P, thend(T) > d(D). If xe P, thenxis a terminal vertex in the patsince it has degree one; therefore,
we have a patR < T such thaP is equal to adjoining to the end oP < T. Then|P| < d(T) which implies
d(D)=|P| <d(T)+1.

Conversely, ifF satisfies the conditions, then we may wiite= S, F; where eactt; is a tree. Note
there exists K k < msuch thad(F) = d(F). If m> 1, then choosg # k and construcR, a cover forF,
in the following manner: tak& and a new vertex ¢ F, and add two new edges~ v andb ~ v where
a e Fj andb € R such thab is an end-vertex of a path < K which realizesd(F). It is easy to see that
d(R) > d(FK) + 1, thus, we must have = 1 which impliesF is a connected forese.

The above argument utilized the fact that the diameter for acyclic graphdefimable. If in general, the
diameter of a graph was a definable property, then one would hopewmnemgsimilar to that of Proposition
111.1.11 would yield the definability of the set of connected graphs. Explicithe would need the result
thatl" is connected iff every upper cover increases the diameter by at maodtofatunately, this not true;
one can find counterexamples among trees and their covers which dmrexis. We will have to take a
different approach to capture connected graphs in Section I11.3.

1.2 Addition of Paths

It will be useful to do addition with paths instead of with cliques. The startirigtgse to observe that the
lower covers of a patR are precisely the path_1 and the disjoint sumB. + R wherer +t = k— 1.

Lemmallll.2.1. {(P,G): P = Py, G~ Pn+ Py} is definable.

Proof: The claim is thatG ~ Py, + P, iff

m=1 andG~ Ny, or

m> 2 andG < E < Cy 1+ Cmy1 for someE such thats is acyclic.

To see this one merely has to observe that any ac@&bach thatG < E < Cy.1 + Cyp must come
from deleting a single vertex from each of the components in the sum. Ghhat+ Cy,. 1 is definable is
precisely Corollary 111.1.4e

Proposition 111.2.2. {(A,B,P) : A~ P,,B~ Py, P~ R  wherek = n+ m} is definable.

Proof: The claim is thaP ~ B, iff P is a path, there exists a pathsuch thatP < R, and there exists
G < Rsuch that
(1) Gis not a path
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()P, <GandP, <G
(3) If Qis a path such thad < G, thenQ < R, orQ < R,
(4) If P, < By we haveRy+ P < G, and if B, < P, we haveR, + P, < G

and for any patlE such thaF < E andF satisfies (1) - (4), theR< E.

To show these conditions are sufficient, suppBsatisfies the conditions and is covered by a gath
andG < R AssumeR = P; and so,G ~ R + R wherer +t = s— 1. Without loss of generality we may
taken>m. If r >nort>n, thenRy1 <G, butRy1 £ P, andRyy1 £ Py which contradicts (3); thus,

r,t <n. By (2),r =nort=n, and so we may assume=n. By (4),t > mand so we can conclude that
n+m<s—1<n+n. Forf —1inthe intervaln+m,n+ n|, eachP; has a lower cover which satisfies (1) -
(4), and so we must hawe- 1 = n+ mby the requirement of minimality. This implid3~ Py .

Clearly, Py + Py < Primy1 satisfies (1) - (4), and by the above argument any disjoint sum of twa path
which satisfies (1) - (4) must be covered by a p@flwith n+m+1 <s<n+n+1 wheren>m. This
establishes the conditions are necessary, and completes the proof aifibsifion. e

As a corollary we may establish the definability of the disjoint sum of two paths.
Corollary I11.2.3. {(A,B,P) : A, B are paths an® ~ A+ B} is definable.

Proof: P~ R+ Py iff P < Py my1, and

Q)P <PandkP,<P

(2) If Qis a path such tha < P, thenQ < B, or Q < P,

If P satisfies the conditions, théw P,y or P~ B + R wherer +t = n+m. Without loss of generality,
assumen > m. SincePy. 1 < Pyim, by (2) we see thdP ~ B + R. Condition (1) implies > nort > n. If
r >n, ort > n, thenkP,,1 < P and we arrive at a contradiction of (2); thus= n or t = n which implies
t = morr =m, respectively.

As the necessity of the conditions is immediate, we have established the sesult.

Since paths are the unigue lower covers of circuits, we can also accoragti#fon with the definable
set of circuits in the obvious way.

Corollary 1Il.2.4. {(A,B,C): A~ Cy,B~Cp,C~Cy.m} is a definable relation.

1.3  Connectedness
In this section we will show the set of connected graphs is definable.
Lemmallll.3.1. {(C,E):C~CyandE ~ Cy+ N;} is definable.

Proof: The claim is thaE ~ Cy, + Ny iff
m= 3 andE ~ K3+ Ny, or
m> 3 andCy < E, K13 £ E, K3 £ E.
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The necessity of the conditions is immediate.

For sufficiency, suppode satisfies the conditions arttl% K3+ N; . Then we may fornk from Cy, by
adding an additional vertexand possibly some new edges connedipdo v. Suppose there exiatb € C,
such thata ~ vandb ~ v. If a~ b, then the induced subgraph on the verti€ag, v} is isomorphic taKs,

a contradiction. It must be the case that b, but thenKy 3 < E when we consider the induced subraph on
the vertices{z,a,w,v} wherez ~ a~ w andzw € Cy, another contradiction. So there can be at most one
new edge. Since > 3 we see thak; 3 < E if there is just one additional edge; therefdfesz Cy+ Ny. @

Let Path., denote the set of graphs which are disjoint sums of paths with no isolatéckeger
Lemma lll.3.2. Path.; is definable.

Proof: We will show the set of graphs which are disjoint sums of paths with isoladites is definable,
then the lemma will follow. Recall that the set of circuits forms an antichain uh@esubstructure ordering;
however, their unique subcovers, the set of paths, is linearly welkeddd his implies there is a first-order
definable well-ordering<, on circuits defined by

C<.D ifandonlyif P<Q

for circuitsC andD andP < C andQ < D.
The claim is thatG is a disjoint sum of paths with isolated vertices iff
|G| =1 andG =~ Ny, or
|G| =2 andG ~ Ny, or
|G| =3 andG ~ N3, or G ~ Kz + N, or
|G| >3 and
(1) Gis adisjoint sum of paths
(2) If Cis a circuit such that < C, andC is the smallest circuid under<, such thatG <D,
then there exist circuitt andF such thaE <, F <. CandG < E + N;j.

The preceeding observations and Corollary 111.1.7 guarantee thesktions are definable. For neces-
sity, assumés is a disjoint sum of paths with isolated vertices and wate: N1 + 5{_; R. If n=3{_,|R],
thenC, .2 is the circuit of smallest cardinality which embdﬂsThenz{:1 P <Cy.r andwe seE ~ C
for condition (2).

For sufficiency, assum®@ satisfies the conditions and th&]| > 3. By (1), G is a disjoint sum of paths.
It is easy to see that & has no isolated vertices, théh< Cy iff G < C¢+ N;. LetC be the smallest circuit
under<, such thaiG < C. If G has no isolated vertices then using @)< E whereE is a circuite <, C;

a contradiction. It must be the case tahas isolated vertices.

Remarklll.3.3. The first-order conditions for definability and the proof of the followingpsition was
suggested by Ralph McKenzie. This will provide for a rather simple way pduca connected graphs in
Proposition 111.3.6.

Proposition 111.3.4. {(X,N,G) : N = Np and G~ X+ Nn} is definable.
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Proof: The claim is thatG ~ X + N, iff
Gis trivial, X is trivial andi(G) = i(X) +m, or
G is not trivial, and
(1) X'is not trivial andX < G
2)i(G)=i(X)+m
(3) For every circuiC there exists a circuf such that
(@C<,C
(b) There exist§ such that
() X<TandC<T,andforallH <TI',X <H andC <H impliesH =~ T
(i c<r
(iii) Forall R<T suchthal < R,C+N; =~ R
(4) For allB € Path-», B < GimpliesB < X

We first tackle the argument for sufficiency. Supp@seatisfies the conditions. We may assuGiées
not trivial; otherwise, definability follows from addition with trivial graph$ieh is provided by Proposition
[11.0.8 and the results of Section IV.2. We can represerésG ~ E + P whereE is the disjoint sum of
connected components which are not pathsRirsthe disjoint sum of all the connected components which
are paths. Also, writX ~ A+ Q whereA the disjoint sum of connected components which are not paths
andQ is the disjoint sum of all the connected components which are paths. SuppoR)| andQ hasr
components (all of which are paths). TaBg., = C in (3). LetC be the circuit withC,,, <, C given by
(3a).

Let I be the graph whose existence is guaranteed by (3b). Condition (iii) implieartgaopy of the
circuit C in I must appear as a connected component, and §inc€, we can writel’ ~ C+ K for some
sum of connected graph& SinceX < T, we must havé\ < K. Becaus&€* was chosen large enough such
thatQ < C, we haveX <C+A < C+K =T; thus, by (i) we havé ~ A+ C. Note that

A+QxX<GrE+PLSI~A+C

impliesE ~ Aand soG~ A+ PwhereQ< P <C.

We can further writ€) ~ F +N; andP ~ H 4+ N, whereF,H € Path.,. Itis easy to see that wheneuer
is maximal among those grapfisc Path-, such thath < X ~ A+ Q~ A+F + N, thenK ~ J+F where
J € Path-; and is maximal fod < A. TakeJ € Path-, such thatJ_g Aand is of maximum cardinality. The
conditionQ < P impliesF <H. If F <H, thenJ+H ¢ Path.» andJ+H < G, and so by (4) we must
haveJ+H < A+ F which contradicts the choice df It must be the case th&t~ H. Condition (2) implies
N; =~ N; + Ny, and so,

G~A+P~A+H-+N ~A+F+N +Npn~A+Q+Nm~ X+ Nn.

To prove these conditions are necessary, assxirigenot trivial and writeX ~ A+ Q as before with
n=|Q| andr such thaQQ hasr components (all of which are paths). Then for &y, m <. C notice that
Q <C. We may then také ~ A+ C and it is straightforward to check conditions (3) and (4) are satiséied.

21



The previous proposition actually yields more than is explicitly stated. Whatave Bhown is that
there is a first-order formul#(x,y, z,w) in the language ofQGR, <) such that QGR, <) F W(A/N, G, Ps)
iff N is trivial andG ~ A+ N. If we apply the complementation automorphismwve see thatQGR, <) F
W(B,K,H,oa(R)) iff o(N) =K is complete andH ~ g(A+N) = g(A)\Vo(N) = B\ K. Sinceo(P;) =
K2+ Ny is definable inflQGR, <, Ps), there is a first-order formulgx,w) such that QGR, <) F y(A, Ps) iff
A=~ K>+ N;. We can then take the formula

(X, Y, 2, W) A y(w, Ps)

in order to define the joiX \/ K whereK is complete.

Corollary 111.3.5. {(X,K,G) : K = Ky, and G~ X\/Kn} is definable.

An induced subgraph < G is called amaximal connected componeifit A is connected and iA <
B < G, thenB is disconnected; in particular, a maximal connected component is a cotirectgponent.
For example, ifA andB are connected with < B, thenG ~ A+ B has onlyB as a maximal connected
component.

Proposition 111.3.6. The set of connected graphs is definable.

Proof: The claim is thatG is connected iff there does not exBt< G such that for alE, B< E < G
impliesE ~ B+ N;.

Clearly, if G is disconnected witls ~ B+ H whereB is a maximal connected component, then every
coverF of Bin Gis of the formF ~ B+ N;.

If G is connected, then for eveB < G there existx € G with x ¢ B but is adjacent to the connected
component oB with largest cardinality. Then the induced subgraptBan{x} is certainly not isomorphic
toB+Nj. e

Since the property of being connected is definable, we can recognizeakienal connected compo-
nents.

Lemmallll.3.7. {(A,G): Ais a maximal connected component®f is definable.

Proof: From the previous proposition and by the definition of maximal connectegbonent.e

The following lemma is the first step in showing the definability of the disjoint sueraifpn; however,
it is such a specialized instance of a sum that we must do a little more prepdrafame we tackle the
general case in Section IlI.5.

Lemmallll.3.8. {(A,B,G): G~ A+B, A,B connected and incomparabllés definable.

Proof: The claim is thatA, B, G) is in the relation iff
(1) AandB are connected and incomparable
(2) A andB are maximal connected componentszof
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andG is smallest undex among graphs satisfying (29.

The following sum will be useful in Section 111.7.
Lemmalll.3.9. {(C,D,l):C~CnynD=~Cyforn>m>5T = 5}_,C} is definable.

Proof: The claimis thal ~ ¥ . Cy iff every circuitC such thaCp, <. C <, C, is a maximal connected
component of , andrl” is the smallest undet with this property.

Since distinct circuits are incomparable, the argument from Lemmalll.3.8eapplied here to estab-
lish the resulte

1.4 Martians and Other Useful Graphs

For a circuitC, we may construct the graply, —; by adding only one new edge~ x wherex is some
new vertex andi is an arbitrary vertex of,,. Different choices ofi result in isomorphic graphs, and so the
construction is well-defined on isomorphism types.

The same construction fdg, in place ofC, yields a special case of definition 4.2; in this case we have
Kn —1=Kn+1N;.

Lemmalll.4.1. {(K,I):K~K,andl =K, —1} is definable.

Proof: The claim is that” ~ K, —1 iff

n=1andlr = Ky, or

n> 1 andl” coversK,, " is connected, but has a disconnected subcover.

To see this, suppodesatisfies the conditions am> 1. ThenK, < I impliesT ~ K, +x N1 for some
1 <k <n. Sincel is connected we must hake> 1. If k > 2, then every lower cover df is connected
which yields a contradiction; therefodle= 1. That the conditions are necessary is immediate.

In the same way we have the definability of the graphs-;.
Lemmalll.4.2. {(C,I'):C~C,andll ~C, —1} is definable.

Proof: [ = C, —, iff C, < I, I is connected, but has a disconnected subcover.

Lemmallll.4.3. {(C,I"): Cisacircuitand ~C+ Kz} is definable.

Proof: The claim is thal” ~ Cy, + K; iff
m= 3 andl ~ K3+ K>, or
m> 3 and there exists such thaCy < F <T,i(I") =i(Cy) + 1, andCy, is a maximal component df.

It is straightforward to see th@},+ K satisfies the criteria.
For sufficiency, supposk satsifies the conditions ad# Ks + K,. We may construct from Cy, by
adding two new verticest andv, and possibly some new edges. Siggis maximal component of a
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subcoveru andv are not connected to any vertices@f. The conditioni(I") = i(Cy) + 1 impliesu ~ v;
threfore,l ~Cyn+K>. @

The graphC — refers to the cover af —; formed by adding an additional vertex and only one addi-
tional edge joining the new vertex to the unique vertex of degree o@e-in. The graptK, — is defined
in a similar manner.

Lemmallll.4.4. {(C,I"):C isacircuitandl’ ~ C —,} is definable.

Proof: The claim is thaf ~ C —» whereC is a circuit iff
(1)C+Nyg <T
(2) T is connected
(3) T has a disconnected acyclic subcover

We shall only verify sufficiency. Suppogesatisfies conditions (1) - (3). Thédnmay be constructed
from C+ N; by adding an additional vertexand possibly some new edges joinwmtp C. If u denotes the
isolated vertex o€ + Nj, then condition (2) implies we have edges u andv ~ x for somex € C. If vis
adjacent to any other vertices ©f then every acyclic subcover is connected, a contradiction of (3), thus
is adjacent to only one vertex @fwhich impliesl’ ~C —». @

Proposition 111.4.5. {(K,I") : K = K, andl' =~ K, —>} is definable.

Proof: The claimis thaf ~ K, — iff
n=1andl =~ Ps, or
n=2andl ~ Py, or
n>3andKy —1< T, Kn+Ny <, P4 <T,Knyp £, andCs £T.

It is easy to see these conditions are satisfielpy-».

Supposd” meets these conditions, and we may assame3. SinceK, + N; < I', we can construdt
from K + N; by adding a new vertexand possibly new edges of the fosm- v wherex € K, + N;. Since
Kni1 £ T, there existy € K, such thaty £ v. SinceK, —1< T, there existsl € K, such thau ~ v, andv
is not adjacent to any other vertexI§f. If z denotes the solitary vertex df;, then the conditiod’y < I
impliesv ~ z, and this demonstrates tHatz K, —». @

We describe a certain cover of the s@m D whenC andD are incomparable circuits. LEt+ D denote
the cover ofC + D formed by adding an additional vert@and only two new edges connectintp C andv
to D. The choices of vertices i@ andD which are adjacent teis immaterial since every choice results in
isomorphic graphs.

Lemma lll.4.6. {(C, D,I) : C,D are incomparable circuits afid~ C + D} is definable.

Proof: The claim is thaf” ~ C, +C, iff
(1)Ch+Cn<T
(2)T is connected
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(3) T has a disconnected subcoeer I' such thaC, « E

(4)T has a disconnected subcover I such thaCy, £ E

Supposd satisfies conditions (1) - (4). Then (1) impliEsnay be constructed by addiing an additional
vertexv to C, +Cy,, and some new edges incident withSincel is connected, there must be edges connect-
ing vto C, andv to C,,. Taken > mand suppose there are at least two verticgs,indjacent tos, then no
mater howv is connected t&,, every subcover which avoids, is connected; a contradiction with (3). A
similar argument showsis adjacent to only one vertex 6f,; therefore]” ~ C, +Cp,.

For necessity, it is easy to see the only subcovelG,of C,, which avoidC, or Cy, areP,_; +Cy, or
Ch+ Pn_1, respectivelye

Lemmallll.4.7. {(C,D,G):C,D are incomparable circuits ar@@l~~ C —1 +D} is definable.

Proof: The definability of this relation follows from Lemma 111.3.8 and Lemma I11.4e2.

Lemma lll.4.8. The relation

{(C,D,G) : C and D are incomparable circuits aBdx C —1 +D —1}

is definable.

Proof: Notice that wherC andD are incomparable circuit§; —1 andD —; must also be incomparable.
The result now follows from Lemma [11.3.8.

Let y(n,m) denote the graph formed by adding a single new edge connecting the tweweidices of
Cn —1 +Cm —1 Which have degree one.

Proposition 111.4.9. The relation
{(C,D,I') : C,D are incomparable circuits ad~ y(|C|,|D|)}

is definable.

Proof: The claim is thaf” ~ y(n,m) iff

1)Ch —14+Cn<T

(2)T is connected

B)IfCh<R<T,thenR~Cy, —1 0rR=Cpr+Nyg

(4) If C, 1< R<T,thenR~C, —2, or R~ Cy —1 +Nj.

We only verify sufficiency. Suppode satisfies conditions (1) - (4). From condition (1), we can form
G by adding an additional vertexto C, —1 +Cy, and possibly some new edges incident withSincel”
is connected by (2), there is at least one new edge connectmghe copy ofCy, in C, —1 +Cr, but by
condition (3) there can be exactly one such edge. Again by (2), thetddast one edge connectingo
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Cn —1; however, by condition (4)Cn, —2 is the only possibility for a connected induced subgraph on the
vertices ofCy, —1 U{Vv}. We have showi ~ y(n,m). e

Definition 111.4.10. Forn> 1, amartianM(n) is constructed from the two grapKg andKj 3 by identifying
a single vertex oK, with a single vertex oKy 3 which has degree one. Note the choice of the vertdirs
immaterial and so the construction is well-defined on isomorphism typgsmartian denoted bypM(n),
is constructed fronM(n) by connecting the remaining two vertices of degree oni¢ig thus connecting
the “antennae”.

M) pPM(4)

Figure 111.2: A martian and p-martian

Before we show the definability of martians and p-martians, we need to skodefinability of two
auxiliary families of graphs.

Lemmalll.4.11. {(K,R G): K =~ Ky, R~ Ky andG = K, + Kn} is definable.

Proof: We taken > m. The claim is thaG ~ K, + K, iff G is a disjoint sum of cliques witkl(G) = n,
i(G) =2, and
(1) If n=m, thenG has a unique lower cover, or
(2) If n> m, then there existB < G such thaB has a unique lower cover with(B) = mandi(B) = 2,
and wheneveA < G such thai(A) = 2 andA has a unique lower cover, theh A) < m.

If G satisfies the conditions, th&h~ K, + K; for somer < n. Notice G has a unique lower cover iff

n=r. This is the content of condition (1). Noti¢g + K; < Giff t < m. This is the content of condition (2).
[

Lemma lll.4.12. {(K,G): K =~ K, andG = K, + Ps} is definable.

Proof: The claim is thatG ~ K, + Ps iff
n=1andG~ P;+ Ny, or
n=2andG~Ky+P;, or
n> 2 and(Kn, Ps,G) is in the relation of Lemma 111.3.8e
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Proposition 111.4.13. {(K,M) : K =~ K, andM ~ M(n)} is definable.

Proof: The claim is thaM ~ M(n) for n > 2 iff

n=1andM~Kj3

n= 2 andM is the unique cover df; 3 which is acyclic and embed, or

n> 3 and

(1) Kn+ Nz < M, K, —2=< M, and these are the only lower coverdwivhich embed,
(QPs<M
B)Kn1+Ps<M

To show these conditions characterize martians we need only check #sfoas> 1.

SupposéM satisfies the conditions amd= 2. We may construd¥l by adding a new vertexto K; 3 and
possibly new edges incident with Let x be the unique vertex d€; 3 with degree three, then~ x implies
P4 £ Kq3 no matter what other edges are present; thysx. Again, sinceP;, < M, v is adjacent to a vertex
of K1 3 with degree one, but must be adjacent to exactly one such vertex sMas acyclic. This finishes
the demonstration thal ~ M(2).

Suppose > 3 andM satsifies (1) - (3). Sinck, + N, < M, we may construd¥l by adding an additional
vertexv to K, + N, and possibly some new edges incident with_et w andx be the vertices comprising
this copy ofN,. By (2), we must have a new edge- v for somea € K,, and, without loss of generality,
an edges ~ x. If there existd € K, such thab +# a andb ~ v, there is no possibility foK,_1 +P; < M, a
contradiction of (3); thus, the induced subgraphkan {v} is isomorphic taK, —1. Supposev ¢ v. Then
M has the three lower coveks, —», K, + N, andK,, —1 +N; which all embedK,, a contradiction of (1);
therefore, we must have an edge- v and conclude tha¥l ~ M(n).

For necessity, it is easy to see th&t2) is an acyclic cover oKj 3 which embed#®.

SinceM(n) has a unique copy df, for n > 3, the only lower covers d¥1(n) which embedK, must
come from deleting the vertices not includedin In this caseK, —2 andK, + N, are the only such covers.
Conditions (2) and (3) are immediate. Altogether we have shown (1) - é€8acterizes these martians.

Proposition 111.4.14. {(K,M): K ~ K, andM = pM(n)} is definable.

Proof: The claim is thaM ~ pM(n) iff

n=1andM =~ Kz —4, or

n=2 andKsz —», or

n>3andKy,+Ky <M, P, <M, B £ M, andB £ M.

Itis straightforward to check that each of these conditions must holdéappropriate p-martian, so we
shall concentrate on demonstrating that they are sufficient to charadteeze graphs. Suppdeesatisfies
the conditions, and we may assumg 2.

ThenK,+ K> < M implies we may construdl by adding an additional vertexto K, + K, and possibly
some new edges. Sinég < M, butPs £ M, we must have that is adjacent to each vertex &, and
thatx is adjacent to at least one vertaxc K, and there existb € K,, such thatx -¢ b. If x is adjacent to
an additional vertex € K, distinct froma, then the induced subgraph on vertidesb, a, x} is isomorphic
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to B, a contradiction; thus, there are no additional edges and we seBlthapM(n). This finishes the
proposition.e

1.5 G+H

In this section we will prove the definability of the operati@n- H whereG andH are arbitrary graphs.
The starting point for this development will be the construction and definabfligpecial connected graphs
called pointed sums.

Definition 111.5.1. Given two connected graphs and B, the pointed sums a graphA +,B formed by
adding a new vertexto A+ B and two new edges incident¥pone edge connectdo a vertex inA, and the
other edge connectgo a vertex irB. Different choices of vertices iA andB lead to non-isomorphic graphs
which are still considered as pointed sums; therefore, the notationB will refer to the finite family of
pointed sums for the different choices of verticeq\iandB which are adjacent to the added vertex which
has degree two.

We can see that when bothandB are complete, or both are circuits, then the choices of vertices in
the definition is immaterial, and in these cases the family of pointed sums collapsesitua graph. To
make the connection with previous notation, for circ@itandD, C+,D ~ C+D. While we do not have
definability of general pointed sums, we do have definability in a very spexifi useful case.

Lemmalll.5.2. The relation
{(A,K,G) : Aconnected and not a cliqui€é,~ K,, n> cl(A) +1, Ge A+,K}

is definable.

Proof: Note thatA is not complete and > cl(A) + 1 impliesA andK, are incomparable, and so by Lemma
111.3.8, A+ K, is definable.

The claim is thatA, K, G) is in the relation iff

(1) Aiis connected and not a clique

(2) K = K, for somen such than > cl(A) + 1

BA+Ky <G

(4) Gis connected

(B) If Ky < R< G, thenR~ K+ Nj or R= K, —1.

(6) M(n) £ GandpM(n) £ G

The proof of necessity is straightforward and so we will establish suffiyie

Supposes satisfies the criteria. By (3¥; may be constructed frod+ K,, by adding a new vertep
and perhaps some new edges incident witiNoten > 3. LetV be the induced subgraph on the vertices
of K,, together withp. SinceG is connected, the vertexis connected to some vertex of this copykof;
thus,R= K, —1. Again, sinceG is connected there is at least one new edgea with a € A. Suppose
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p ~ bwhereb € Aandb # a. If b ~ @, then the induced subgraph BRU {p,a,b} is isomorphic taVi(n),
a contradiction. Ib ¢ a, then we have a copy @M(n) < G, another contradiction; thereforgjs adjacent
to at most one vertex &k, and so we conclude th& e A+pK,. o

Proposition I11.5.3. {(A,T) : Ais connected anfl ~ A+ A} is definable.

Proof: If Ais a clique, then the definability &+ A is guaranteed by Lemma l11.4.11. We may suppase
is not a clique, and thu$A| > 2. Letm=cl(A) + 3.

Since A and K, are connected and incomparabfet+ Ky, is definable by Lemma 111.3.8, and from
Corollary 111.3.5, (A+ Kn) \V Ny is definable. Then by Lemma 111.5.2 we have t#at, K1 is definable
where, in a slight abuse of notatioA+p Km1 will refer to any of the graphs in the set represented by
the pointed sunh+p Kmy1. By choice ofmit is easy to see thatA + Kiy) \V/ N1 and A+p Kmy1 must be
incomparable; therefore, by Lemma 111.3.8 the disjoint unidn- Km) \/ N1 + (A4, Kmy1) is definable.

We claim thatA + A+ Kmy 1 + K is the unique graph so that there exists such that

(T <E<(A+Kn)VNi+ (A+pKmni1)
(2) Km —1£ E andKpy1 is @ maximal connected componentof
(38) AandK,.1 are the only maximal connected componentg of

To see this, seG ~ (A+ Km) VN1 + (A+pKme1). By (1), there exist verticesandw such that” ~
G —z—w. In the construction oA+, Kmy1, @ new vertew was added to the sum+ K1 and an edge
connectingv to a vertex ofKy,1. Let a denote this vertex oKy 1. If a € {z w}, thenKy1 cannot
appear as a maximal connected component; a contradiction of (8)¢ ffz,w}, thenKy, —1 embeds in
every subcover o5, or Kn,.1 is not a maximal connected component; a contradiction of (2). Without
loss of generality, we may take= z. If we let g denote the unique vertex & in the construction of
(A+Km) VN1 which is connected to every vertex Af+- Kq,, then (3) implies we must hawg=w. Then
G—V—g~A+A+Kni1+Kn.

We will now see how to recovek+ A from A+ A+ Kmi 1+ K. This is the purpose of the following
claim which will complete the proposition.

Claim: Consider the following property for a graph
(#%) H+ N2 < A+ A+ Kmi1+Kn but H-+N3 £ A+A+Kni1+Kn

The graphA+ A is the unique graph among those maximal unddor property(xx), which haveA as the
only maximal connected component.

Proof: Let X be maximal for propertysx) and havingA as the only maximal connected component. We
may write X =~ A+ X, + --- + X, whereX; are the connected componentsXaf SinceX + N, < A+ A+
K1+ Km, itmustbe the case thgp +- - -+ Xn+ No < A+ K1+ Km. LetGo+---+ Gy +U be an induced
subgraph oA+ K1+ Ky such that eact; = X; andN, ~ U, andXo+ - -+ X+ No = Go+-- -+ G, +U C
A+ Kmi1+ Km. The graphGz +--- + G+ U fixes a copy oo + -+ - + Xp + No in A+ K1 + K.

If U C K1+ Km, thenGy + - -- + G, € A which impliesn = 2 by maximality; therefore; ~ A and
soX =~ A+ A. We show this is the only possible case.
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If U C A+Kmyq butU € A thenG, + - - + G, € A+ K. Only a single connected componéjtcan
be in an induced subgraph Ky, and so by maximality there is a component, &y isomorphic toKp,.
This impliesGz + - - - + G, C A. Butm= cl(A) + 3 impliesKy, is a maximal connected componenttfa
contradiction. The same argument BIC A+ K, shows there exists son@& ~ Km, 1 which yields another
contradiction.

If N, C A, then somés; C Ky 1 and maximality again shows we must have s@ie: Kn,,1; a contra-
diction.

This finishes the claim and the propositian.

Lemma lll.5.4. {(A,B,['): A Bconnected ané < B, ' ~ A+ B} is definable.

Proof: If Bis a clique, then so i8 and we already have definability of their sum. AssuBris not a clique
and sem= cl(B) + 3. Then any two graphs frol+, Kn1 andB+, Ky, are incomparable. By the same
argument as in the previous lemma, we have that thelsenf + B+ Ky 1 + Ky, is definable. We can then
recoverA+ B from I in a similar way, as well.

A+ B is the unique grapi which hasB as the only maximal connected component and is maximal
under< for the property thaH + N, <T andH + Nz £ I'. To see this, leH ~ H; +--- + H, be such
a graph with connected componemis We may takeH; ~ B and consideB+H +--- 4+ H; + Ny <
A+B+Kmni1+ K. LetV+Gy+---4+G,+U be an induced subgraph Af B+ K, 1 + K such that each
G ~Hi,No~U,andV ~B,andB+Ha+:--+Hy+No =~V +Go+ -+ G +U C A+ B+ K1+ K.

If N2 ~U & K1+ Km, then by maximality some compone@t must intersecKm,.1 + Km. Again by
maximality, we can conclude th&t ~ Ky, or H; =~ Kn,.1; a contradiction. It must be that C K1+ Km
and intersects both cliques which impli@s+ - - - + G; < A; thus, maximality implies = 2 and sdH, ~ A.
Altogether, this showsl ~ A+ B. e

Putting these last two results together we can conclude the definability of adfstwo connected
graphs..

Proposition I11.5.5. {(A,B,I") : A,B connected andl ~ A+ B} is definable.

We should note a useful property of the join constructiorV/ I§ a disconnected graph, then/ Ny is
connected and has a unique disconnected subcover; namgly ¥ \/ N; is disconnected, thdd ~ V.

Lemma l11.5.6. The relation
{(U,V,I') :V disconnectedU a maximal connected componentloflr ~U +V}

is definable.

Proof: (U,V,I) is in the relation iff
(1) V is disconnected and <TI
(2) U is a maximal connected componentiof
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(3) If M is a maximal connected componentigfthenM ~U orM <V

4r<U+VvvVN

(5) I is not isomorphic to the disjoint sum of two connected graphs.

Since necessity is straightforward to check, we only prove sufficiency.

Supposd” satisfies conditions (1) - (5). By condition (4),~ " wherel’ is an induced subgraph of
U +V V{v}, and there exists a vertexc U +V \/ {v} such that +V \/{v} —x=T". We will showl” is
isomorphic tdJ +V by considering the possible choices for the verex

Supposx=vV. ThenV \/{v} —x=V andsd’'=U +V\V{v}—x=U+V.

If x eV, thenV \/{v} —xis connected;. This implieE' =U +V \/{v} — x is the disjoint sum of two
connected graphs, a contradiction of condition (5); therefogey .

Supposex € U. SinceV \/{v} is a connected subset bf, we must have that \/ {v} <M for some
maximal connected componentldfx I". By condition (3), we hav¥ \/ {v} <M ~U orV\/{v} <M <V.
Since|V \V/{v}| > |V|, we must hav&/ \/ {v} <U. Butl’ = (U —x)+V \/{v} and condition (5) implies
U — x is disconnected. Sinc® — x| < |U|, condition (2) impliesU <V \/{v} which then yieldsU =~
VV{v}.

SinceU — x is disconnected, thdd —x =~V \/{v} —x=~V implies[’ = (U —x) + (VVV{v}) =V +U.

Lemma lll.5.7. {(A,R,):PapathP £ A, andl ~ A+ P} is definable.

Proof: If Ais a path or is just connected, then we already have the definabilty-&f. If Ais disconnected,
then the definability oA+ P follows from Lemma 111.5.6 since the conditidh < A impliesP is a maximal
connected component &f+P. o

Proposition 111.5.8. {(A,B,I") : [ ~ A+ B} is definable.

Proof: Let P be a path such th& <« AandP £ Band|P| > 3. SetH = (A+P)\/N; + (B+P) \/ Ny which
is definable fromA andB using Lemma 111.5.7, Proposition 111.5.5, and Corollary 111.3.5. The claim &tth
A+ B+ P+ Pis the unique grapls such that

(1) G < E < H for someE

(2) P is a maximal connected component®f

B)P+P<LG

(4)PVNL £G

To see this, assun@ satisfies conditions (1) - (4). We can write= A'UB'UP' UP”U{p,q} where
A~AB =B P~P ~P, andAUP U{p}~ (A+P)VyNyandB' UP"U{q} ~ (B'+P”)\VN;. Then
by (1), G=H — {u,v} for some vertices,v. If neitherp norqis in {u,v}, thenP cannot be a maximal
connected component @&; a contradiction of condition (2). We may assume, without loss of generality,
q=V. ThenG= (A +P)VN1+B +P"—u. lfueB orue P’ orue A, thenG we haveP\/N; £ G
which contradicts condition (4). ifi € P, thenP+ P £ G since any copy oP in (A" + P')\/N; — u will
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containp and two consecutive vertices Bf which induce a copy oK3; a contradiction of condition (3). It
must be the case that= p which implies

G=(AN+P)\/Ny+B +P'—p=A+P +B +P'~A+B+P+P.

We may then use Lemma 111.5.7 to capt#e-B as the unique graph such thaF +P+P~G. e

1.6 Cardinality

In this section, we establish the cardinality of graphs as a definable propee first step is to generalize
the constructiol€ + D whereC andD are incomparable circuits. The grapfi_,Cx is the cover of the sum
Y k_mCk With one new vertex and a new edge connectirgo each circuit.

Lemmalll.6.1. {(C,D,l):C~CnD~Cyforn>m>5 T~ 5  C}is definable.

Proof: The claim is thaf ~ ¢ _,Cx iff

1) ZE:ka ol

(2)If G <R<T,thenR~C+Nj,orR=~C —;form<i<n

(3) T is connected

Necessity is immediate. For sufficiency, notice (1) and (3) inipig formed by adding a vertexto
Y k-mCk and at least one new edge- x; with X, € Cy.i for m<i < n. Condition (2) implies exactly one
new edger ~ X; is added e

Proposition 111.6.2. {(K,A) : K = K, and|A| = n} is definable.

Proof: It suffices to characterize wheA| > n. The claim is thatA| > niff Ais a clique and, <A, or A
is not a cliquecl(A) = m, and for every grapP with the following properties we must ha¥g 1 <P
(1)AVKL <P
(2) For every cliqu&k and graphQ such thaK,, < Q < AandQV\/ K < P, there exist&)
such thaKy, < Q < Q and a cliqgueK with K < K such that) VK < P.

Assume first thaf\ is not a clique and thgf| > n. AssumeP satisfies conditions (1)-(3). By induction
on k for 0 < k < |A]—m, we argue thaQ V Ky,1 < P for some graphQ such thatk,, < Q < A with
k=|Al—|Q|. We see that (1) yields the base ckse0 with Q = A. Condition (3) is applied at the inductive
step for 1< k < |A| — mto showQ' Vv Ky;1 < P for someKy, < Q. At the stepk = |A| —m= |A| — |Q|, we
see thak,, < Q impliesKy, =~ Q which yields

P> QVKii1~ KnVKa-mi1~ Kajp1 > Knta.

Now assum@\ is not a clique andlA| < n. Let Qy,...,Qp be a full list, up to isomorphism, of all graphs
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Qsuch thakKym < Q < A. Letr; = |A| — |Qi|. We see thatl(Q;) = m. Set
P
P= Qi \% Kri+1-
2

Note cl(Q; V Ky, +1) = m+r; + 1 andcl(P) = max{cl(Qj VK1) :i=1,...,p}. The clique size oP is
determined by the component of maximum clique size which occurs whetargest; that is, whejQ;| =
|Km| = Qi = Kn. For simplicity, let this occur at= 1 and so we have

Q1 VK11~ KmVKa—mp1 =~ Kjaj11-

Thus,cl(P) = |A|+1 < n= K1 £ P. It remains to show tha® satisfies (1) and (2).

SinceAis not a clique, condition (1) is immediately seen to hold by construction. Fospposdm <
Q <AandK is a clique such tha® Vv K < P. SinceQV K is connected, we must ha@Vv K < Q; VK ;1
for somei € [p]. LetK ~ K|. Then

cl(Q)+1=cl(QVK) <cl(QVKyi1) =m+ri+1

implies| <rj+1. We can assum@V K C Q; V Ky, 11.

SinceKn < Q < A, Qis not a clique, and so there exigtC Q andqp,q; € Q such thatk,, ~ U and
Qo # . We may take, without loss of generality, ¢ U. We must havéqp, g1} € Qi — K, 1. So there exists
j #1such thaQ; ~ Q —qo. PutQ’ = Q—qp. ThenKy, < Q@ andQ' VK| C (Q —qo) VKr 11~ Qj VK, 41.
Clearly, we haveKy, ;1 ~ Ky, 11 VK;. SetK| < K| VK = K. To finish the proposition we see that

QVK~Q V(K VK;) <QjV (Kri1VKy) = Qj VK 1.

Since we can do addition with cliques, we can use the previous propositiefine the ternary relation
{(A,B,G) : |A|+|B| = |G|} which allows us to do addition with the cardinality of arbitrary graphs. As a
consequence, we have the definability of thstep cover<, defined asA <, B if there exists a chain of
coversA<F <--- <k, =B.

Lemmal lll.6.3. {(A,B,C):C = C,andA <, B} is definable.

Proof: The claim is thatA <, Biff A<B, andC, ~ C‘BHA‘. °

.7 Individual Definability

In this section we will give a proof of the following proposition. Lgfdenote the isomorphism type B.

Proposition I11.7.1. Every element of PG, <, p3) is definable. The complementation map is the only non-
trivial automorphism of 2, <).
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If we can show every graph is definable, then the following lemma will completedyacterize the

automorphisms of P3G, <).

Lemma Il.7.2. Supposep is a hon-identity automorphism of the structBeof signaturec. Suppose
Co € B such that{cy, ¢(co) } is definable in the signatur@. Suppose that each elementfofs definable in
the signatures with the additional constarty; that is, definable in the structuf®, g,cp). Theng is the
only non-identity automorphism of the structuBe

Proof: Suppose is an automorphism which fixeg. By assumption, for every elemeatk B, there is a
formulaW,(x,y) such thaB F W,(b,cp) iff a=b. ThenB F Wa(a,co) impliesB = W4(1(a), 7(Co)) which
impliesB = Wy(1(a),Co); therefore,r(a) = afor everya € B, and so we conclude= id.

If T+#id, then becausécy, ¢(Co)} is definable without constants, we must havyey) = ¢(c,). Then
¢ 1o fixescy, and so by the aboveg 1 o T = id which impliest = ¢. e

Definition 111.7.3. Let A be any element of Q& with |A| = n. Let B be a graph with vertex set over
the positive integergl,...,n} = [n] such thatB ~ A. Construct a finite graph denoted By(A,B) in the
following way:

First, take the grapB+ ¥, Cni2+i. Next, for each vertek of B, add an edge connectirigto some
vertex ofC,. 2. k. In the end onlyn new edges are added. The resulting graph is called-presentation
of A. The o-presentatioR, (A, B) should look like the grapi with an edge leading out of each vertex to
a circuit uniquely determined by cardinality. The figure below sh8y#, B) whereA is the ismorphism
type ofK3z —1 andB is the isomorphic copy over the positive integers labeled as shown.

Figure 111.3: An o-presentation fd?(Ks —1,B)

Proposition 111.7.4. For a particulaA € QGR, each o-presentatid® (A, B) is definable.

Proof: The idea is to use specific information®fas a graph on the verticég to write down first-order
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properties which capturd,(A, B). First we introduce a little simplifying notation; forj € [n], i # |, let

B(i, ) = Chi24i —1 +Cni2yj —1 ifitjinB
’ yin+2+i,n+2+j)  ifi~jinB

The claim is that” ~ R,(A, B) iff

(1) SL1Cri2ti =T

() If Cni2yi < RZT, thenR~Cqy24i + Ny Or R~ Chi24i —1

(3) (foreachi,j e [n],i#])B(i,j) <T

(4) If 3L1Cni24i < R<T, then there exist§ € [n] such thaCp o4 j 1< R.

(5) (foreachi, j € [n], i # j) If Caiz1i +Cny2tj < R<T, thenChizyi +Chizij # R

(6) Fori € [n], if Cni24i <2 R< T, thenR=aCyi21i —2, OrRx Cry21i + Ko, or R~ Cpioyi —1 +Ny,
or R~ Cni24i + N2

It is easy to see that because the cardinalit¢,pf,; exceeds and is connected uniquely to vertex
of B, Py(A, B) contains a unique copy of ea€h2+; for i € [n]; therefore P, (A, B) also contains a unique
copy of 31, Cni2+i. By construction, eacln o is connected to a unique vertex. These facts make it
straightforward to check th&h (A, B) satisfies the stated conditions.

For sufficiency, assumE satisfies conditions (1) - (6). From (1), we can assume, after passing to
isomorphic induced subgraphs, that there exist vert{egs..vy} of I' such thaty' 1 Cyio4i =T —vi —
---—Vp. Suppose there exi&t j € [n] such thatv is adjacent to more than one vertex@f,>,j. Then
the induced subgraph on the verti&&s 2 j U {vi} is not isomorphic ta&Cy2j+ Ny nor toCpi24j —1; @
contradiction of (2). Each vertex is adjacent to at most one vertex of &y, o, fori=1,....n.

Suppose there exigk,i, j} C [n], i # |, such that the induced graph on the vertice€pf,, ; U {w}
is isomorphic toCyy2+j —1, and the induced subgraph on the verti@s,i U {w} is isomorphic to
Cni2+i —1. Then the induced subgraph @q,2i UCn 2. j U{W} is isomorphic toCqi21i+Cni24j; @
contradiction of (5). We see thatVf is adjacent to som€,, . j, then it cannot be adjacent to any other
circuit of 114 Cny24i.

If for eachk € [n], we consider the induced subgraph on the vertic§g'0fCy 2+i U{Vv}, then condition
(4) impliesy is adjacent to som€&, o j. Altogether we have shown there is a functipn[n] — [n] such
that for eachk € [n, Chi2+g(k IS the unique circuit ofs L, Chi24i adjacent tov; moreover, the induced
subgraph on the vertices yields a copyGaf ., yk) —1-

We show@ is bijective. Suppose(i) = ¢(j) = k. Then the induced subgraph on the vertices of
ChiokU {Vi,Vj } is a graph which cannot be isomorphic to any of the four types of gragbd liscondition
(6), a contradiction; therefor@ is injective and so a bijection.

Condition (1) then implies there is a unique copy of e@ghz,i. Since eaclC,, >, ¢\ is uniquely
connected to a single, we see thaB(¢(i),@(j)) < T if and only if B(¢(i),¢(j)) is isomorphic to the
induced subgraph on the vertices@f ». i) U Cryarg(j) U {Vi, W} This impliesv; ~ vj if and only if
B(¢(i),@(j)) < T. Condition (3) then implies; ~ v; if and only if ¢(i) ~ @(j) in B.

If F is the graph induces on the verticdsn, ..., vn }, then what we have shown is that the nvap:> ¢(i)
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fori=1,...,nyields an isomorphisrk ~ B. SinceC, ., iS uniquely connected tq by a single edge,
the isomorphisnp extends to an isomorphism~ R,(A, B) in the natural ways

The next task is to find a way to “read off” the copyAsitting inside an o-presentatidi(A,B). The
first step is to return to the topic of paths and isolate particular covers. \Aterhing a new vertexto
a pathP, the choice oli € P for u ~ v makes a difference. We will use the notati@n—! to denote the
covers ofP, which are formed by adding a single new edge v wherev is a hew vertex and € P, such
thatu has degree two. Different choiceswlead to non-isomorphic graphs, so the notaffar-! refers to
the finite family of such graphs for a fixed

Lemmalll.7.5. {(P,F):P~R,andl € R, -} is definable.

Proof: The claimis thaf ¢ B, %tl iff Py<T,Ky3<T, P £, andrl is acyclic.

If I satisfies the conditions, thénis formed fromP, by adding a new vertexand possibly new edges
of the formu ~ vfor u € R,. If at least two new edges are added, then a circuit must be formedpahdre
is at most one new edge~ v with x € R,. SinceKy 3 <T, there is exactly one new edge. Sifgg1 £ T,
the degree ok cannot be one. This establishes the lemma.

Lemmalll.7.6. {(C,l'):P~P,andl =~ 3! ; Py+1+i} is definable.

Proof: The claimis thal ~ Y ; Pyyayi iff T <n 311 Chioyi andr is acyclic. e

We now have all the ingredients to finish the proof of Proposition Ill.7.1onFan o-presentation
Pr(A,B) we see thab+ S, Py 14i is the unique grapks such that

(1) G <, Py(A,B)

(2) Forallke [n], Chioik £ G

(3) Forallk € [n], G embeds no element &1k —}

(4) For allk € [n], eachPy; 1.k is @ connected component Gf

This follows since conditions (1) and (2) imply is obtained precisely by deleting exactly one vertex
from eachCy 24 fori € [n]. Condition (3) and (4) imply each of those vertices must have degree Ve
can then recoveh as the unique grapH such thaG~H + S ;P14

RemarKIl.7.7. Using a particulaP; € QGR as a constant we have shown every finite graph is definable up
to isomorphism ifQGR, <, Ps). The same result could be achieved, but perhaps with greater diffi€ufty,

had chosen another gra@ihas the constant, providétlis not self-complementary. To see this, notice from
the proof of Proposition 111.0.6, there is a formyBx) in the language ok such thatQGR, <) F B(E)

iff E ~ P3or E~ K+ N;. By what we have shown, for ang € QGR there is a formulaps(x,y) in the
language oK such that QGR, <) F @z (E, ;) iff E ~ G. Itis not hard to see that the unary formula

(3Y)@s(%,y) A @ (C,y) AB(Y)

uniguely definess.
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In the next proposition, we shall see how to capture the [@aiP) whereP is isomorphic to some o-
presentation oA. The proof of Proposition 111.7.4 relied on the fact that we had a fixeghgron hand, and
so we could “encode” the edge relation of this fixed graph with a certaikgpad formulas. This means
different graphs require different package of formulas to defineetlge relations in the o-presentations.
Since we have definable access to the cardinality of a graph, and caithaoetic with circuits, we shall
be able to describe a uniform packet of formulas which “encode” the eelgtions of some graph in an
o-presentation.

Proposition 111.7.8. We have the following:
(1) {(A,Py(A,B)) : for someB ~ A with n= |A|} is definable.
(2) If Bis a graph over the verticés| with B~ A andB' is a graph over the verticgs) with B’ ~ A/,
thenR,(A,B) ~ Py(A',B') if and only ifn=mandB =B'.

Proof: For part (1), the claim is thdi, P) is in the relation iff (wheréA| = n which is definable)
(1) 3L1Chi24i <nP
(2) If Chi24i < R< P, thenR~Cpn 21+ Ny orR=Chi24i —1
(3) (for eachi, j € [n],i # j) If Cnioyi =1+ Chuoj =1 £ P, theny(n+2+i,n+2+j) <P
(4) If 311 Cni2+i < R< P, then there exist§ € [n] such thaCpi2.j 1< R
(5)(for eachi, j € [n], i # j) If Chi24i +Cni2ij < RSP, thenChiz4i +Cni2ij #R
(6) Fori € [n], if Chi24i <2 R< P, thenR~ Cp 24 —2, Or R~ Cy 24 + Kz, or R~ Cpi24i —1 +Ny,
or R~ Chi24i + N2
(7) If Gis the graph which satisfies the following properties
@G=<nP
(b) Forallke [n], Chioik &G
(c) Forallke [n], Pui1ik—1£G
(d) For allk € [n], eachP,;1.k is a connected component Gf
thenG~ A+ 3 ;1 Puayi.

The proof of necessity and sufficiency exactly follows the proof ofpBsition 111.7.4. AnyP which
satisfies conditions (1) - (6) must be isomorphic to an o-presentBiid@ F) for someF. Condition (7)
then impliesE ~ A. The details are left for the reader.

We establish part (2). Clearly = mandB = B’ implies Py(A,B) ~ Py(A',B’). SupposeP,(A,B) ~
Pn(A',B'). By using the definition of an o-presentatidf(A,B) hasn+ 3 ;(n+2+i) vertices. Since
P.(A,B) andPy(A',B') have the same cardinality, we must have

n(n+1) m(m+1)

=m +3m-+ >

n’+3n+

which impliesn=m, and sdB andB’ have the same vertices. Becals\, B) andPy(A',B') must then have
a unigue copy of eac, 2+ and therefore, a unique copy of eath »,; —1 for i € [n], the isomorphism
of o-presentations restricts to the identity®andB'. e
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1.8 Morphisms

We now turn to the task of encoding set functions. In the next sectionhai s interested in graph
homomorphisms. We start with some auxiliary constructions.

Definition 111.8.1. A pandais the grapHP(n) constructed fron€, —1 by adding two additional vertices
andy and only two new edges~ u andy ~ u whereu is the unique vertex o€, —1 with degree one. A
p-pandadenoted bypP(n) is formed fromP(n) be completing the triangle formed by the panda’s arms; that
is, by adding the edge~ y to P(n).

PG) pP(5)

Figure Il.4: A panda and p-panda

Lemma ll1.8.2. {(C,F):C~C,andF = P(n)} is definable.

Proof: The claim is thaF ~ P(n) iff

n= 3 andF ~ M(3), or

n> 3 andC,+ N, < F, F is connected, and €, < R<F, thenR~ C;, —; or R~ C,+ N;z.

Supposd- satisfies the criteria arfel % M(3). We may construde from C,+ N, by adding a new vertex
v and some additional edges connecting C, + N,. Let N, be composed of the verticesandb. Since
F is connected, we must have edges a andv ~ b, and at least one edge~ x wherex € C,,. Since the
induced subgraph on the vertices@fu {v} is connected, we must have exactly one edge connecting
Cn.

Since necessity is immediate, the proposition is establighed.

Lemma lll.8.3. {(C,F):C~CyandF ~ pP(m)} is definable.

Proof: The criteria is thaF ~ pP(m) iff Cy+ Kz < F, and if

m= 3, thenF =~ pM(3), or if

m > 3, F is connectedKs < F, and ifCy, < R< F, thenR~ C, —1 or R~ C,, + Ns.

It is straightfoward to check the necessity of the criteria, and so we wilbksieheir sufficiency.

Suppose- satisfies the conditions. L&t be constructed frorey, + Kz by adding a new vertex and
possibly new edges incident with Let a andb be the two vertices df,. We may assumsn > 3.

Letm > 3. SinceF is connected, we have at least one edgex for x € C,. Then we must have exactly
one edge since the induced subgraplCaru {v} is connected. Sincks < F, we must have edges~ a
andv~b. e
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Let Tuttle denote the cover of; formed by adding a new vertex # and exactly two new edges
connecting the new vertex to the two verticesRpfwhich have degree 2. In light of Proposition 111.7.4,
Tuttleis definable.

L

Figure II1.5; Tuttle

Here is how to encode a functidn: [n] — [m]. Define the graplo(n, f,m) over the vertex set

n m
i;CBH + i;K3+i + Np

with the following edge relations: Lefvi,...,vy} be the vertices oN,; choose vertices; € C3,; and
uj € Kgyjfori=1,...,nandj=1,..,m take all the edges df " ;Cs;i + Y{";Ks,i together with edges
X ~vifori=1,...,n and edges; ~ us fori =1,...,n; these are the only edges.

Notice the choices dfi andx; are immaterial. Below igr(n, f,m) for f(1) = f(2) =1, f(3) = 2.

G K,
Cs Ks
Cs

Figure I1.6: 0 (3, f,2)

Remarklll.8.4. It may be possible to replace the conditions listed in the next proposition by @ efior
ficient or elegent set of conditions, but the advantage of the list is thatkesntoe proof of sufficiency
straightforward to verify.

Proposition 111.8.5. We have the following:
@) on f,m~ao, ' m)iff n=n,m=mandf = f'.
(2) {(Ch,Km,F) : n,m> 0, andF ~ og(n, f,m) for somef : [n] — [m|} is definable.

Proof: We tackle statement (1). Observe tl@n, f,m) contains a unique copy df!' ;Cs;; and of
5", Ksti. This implies we must have = n" andm= . For eachi € [n], C3;; appears in exactly one
pointed sunKs, ¢y +pCsyi in a(n, f,m), and thus, also iw (', f',n). This impliesf (i) = f'(i) for each
i €[n],and so,f = f’.

For the second statement, the claim is that o(n, f,m) for somef : [n] — [m] iff

(1) >hq1Cati + SN Kati <nF
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(2) Fori € [n], Cs,j is not a connected componentfof

(3) Fori € [n], if C34i < R< F, thenR~ Cz,i —1 o0r R~ Cgj + Nj.
(4) Fori,j e [n],i# j,if C31i +Cs4j < R<F, thenR# Csi +Csy
(5) For eachi € [n], Ca1i —2<F.

(6) Foreach, j € [n],i#j, y(3+i,3+]) £F

(7) Forj e [ml, if K31 j < R< F, thenR~ Kz, —1 or R~ Kz;i+Ni.
(8) Fori e [n], P(i) £ F andpP(i) £ F

(9) Tuttle£ F

Supposd- satisfies the conditions. Condition (1) implies we can constfubly adding the vertices
{V1,...;vn} 10 311 Cayi + >"1Ksii and possibly some new edges incident with the vertisgs...,vn}.
Condition (2) implies eac@iz.; is adjacent to at least one vertex{of, ..., v }. Condition (3) implies that if
Cs.j is adjacent to some, then there is a unique vertexe Cz.j such that; ~ v. Condition (4) implies
no two distinctCz,; andCz . j are adjacent to the same vertex{oi,...,vn}, and therefore, n@z; can be
adjacent to more than one vertex{of, ..., v, }. We may reorder the vertices é¥;, ..., vy} so that for each
i € [n], v; is the unique vertex adjacent@,; by a unique edge. Condition (6) impligs)t v; fori # j.

Condition (5) implies eachy is adjacent to a vertex of sonk&, j, and condition (8) implies it is not
connected to any other vertex g, , nor to any vertex oKz, for r # j. For each € [n], let f(i) = |
whereKs, j is adjacent tos. Letuy(;y € Kayf(j) such thaty ~ uy;y. Condition (8) asserts that whenever
f(i) = f(j) fori# j, thenus;) = us(j); that is, a unique vertex is chosenKg, ¢ so that wheneveyy is
connected to the cliquis. ¢(;), it is connected by that vertex. The mép [n] — [m] is the function we are
after, and altogether we have shotwnz a(n, f,m). e

1.9 A Small Category

We define a small categoi§G. The objects are simple graphs whose vertex sets are initial segments of
positive integers. The morphismi$j(A, B) are the graph homomorphisms frékto B which we write as a
triple F = (A, f,B) wheref : [n] — [m] with n= |A] andm = |B|. The categor®§ can naturally be thought
of as a 2-sorted first-order structure, with one sort for objects aathansort for morphisms, together with
a ternary relation over the sort of morphisms which reflects composition. category structure is then
described by the standard category axioms in this 2-sorted first-ordprdga.

For a morphism, the property of being a monomorphism or an epimorphism isfimjtidn first-order
definable in the language of the category. In general categories wat érmally have access to the “inner”
structure of the objects and so we don't expect to definably capturedbeny of injectivity or surjectivity;
likewise, the property that € CG(A, B) is an embedding refers to the relational structuré ahdB which
is not included in the 2-sorted language of the category. In the case desimgphs, for a morphism to be
injective is equivalent to being a monomorphism and surjectivity is equit/tddreing an epimorphism. So
here, injectivity and surjectivity are definable properties. It will also bssible to capture embeddings, but
we need to make an adjustment.
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We enrich the small category by adding 4 new constants to the languagersote the resulting stucture
by €9’. We add the constanks,, P3, and the map8G(N;,K2) = {t,b}. Notice that\; is a terminal object
in €9’, and so is definable. We can use the first-order structure of the cagbthe constants to definably
manipulate the edge relations of the object in the category. For any grapld verticesi, v € A, we see
thatu ~ vin Aiff where x,y € €5(Ny,A) such thatx(0) = u andy(0) = v, then there existh € CG(K2,A)
such thatt = xandhb =y.

Figure Il.7: Reading the edge relation

The first-order language @f5’ is even more expressive. We skee CG(A, B) is an embedding iff is a
monomorphism and whenever there existe CG(Nz,A) andg € C5(K 2, B) such thagt = fxandgb = fy,
then there existg € CG(K2,A) such thaix = ¢t andy = @b. This means that the substructure relation of
(QGR, <,P;) when restricted to the objects of the small category is first order-defimaB .

B

Figure 111.8: Capturing embeddings

Using the bijectiorG > u <> x € €9(Nz, G) such thatx(0) = u, we see that given ang € Obj CG, we
can construct an isomorphic graph

G = (€S(Ny,G),f C CG(N1,G) x CG(N1,G)) ~ G (1.2)

where both the set of vertices and the edge relatioawe first-order definitions in the language of the small
category. It is not difficult to see that the set of such gra{ﬂ%s Ge Obj(?g} is definable.

By following the procedure outlined in [JM10, Sec.3.1], we can use thedider language of the
category applied to the structures{ié :Ge Obj69} to parametrize arbitrary subsets of finitary cartesian
products. To see this, talfél, ey Gr, andR a subset of the cartesian product of their universes; thRtds,
CY(N1,G1) x --- x CG(N1,Gm). By the bijection in the previous paragraph there is a corresponding relatio
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RC Gy x --- x Gm. If |R| =k, we shall use the maps 86(Ny, Ny) to parametrizé-element subsets of the
product in the same way as the map£6{N;,A) parametrize the elementsAfIf 75 : Gy x --- x G — G
denotes the-th projection of the cartesian product as sets, then for any fixed bijeptidk] — R there
is a fixed sequence of morphismse C5(Nk,G;i) given by pi = 5o p. This follows since any set map
o : [k] — G corresponds exactly to a morphism of the trivial gréfphinto G. An arbitrary tuple irRis then
specified by(pi(s), ..., pm(S)) wheres € [K]. Itis easy to see that with this choice(gf, ..., pm) we have

R={(q1,..-,am) € €5(N1,G1) x --- x €5(N1,Gm) : ¢ = pioq for some q € CG(Ng,Ny)}

In this way, the first-order language 6§’ when restricted to the structurc{:é :Ge Obj€9} is equiv-
alent to a second-order language which has variables ranging oveletments ofG, variables for the
morphisms between objects, and can express the edge relation in objptitatam of morphisms to ele-
ments, composition of morphisms, and equality of elements and morphisms, amppératas to quantify
over arbitrary subsets of finite products. Altogether, using the isomarpim<g.(I1l.1), we see that the
first-order language dfS’ when restricted to the objects of the category is equivalent in exprgssiver
to a full second-order language of simple graphs over the same sgeofobNhat is surprising is that the
isomorphism invariant relations definable in the first-order languag€‘aequivalently, a full second-order
language), is up to isomorphism first-order definable in the theory ofrswghgre. In order to establish this
fact, we need to build a model of the small category in the definable relatiqid@®, <, Ps). The difficult
part of this has already been accomplished.

Suppose we have graplg = ((m],r;) in the category and a morphisfkh = (Gy, f,G2) such that
f : [m] — [mp]. We encode5; as any graph isomorphic 8 = Py, (Gj,Gj) and encodd= as any triple
isomorphic toM (F) = (P, o(m, f,my),P,).

In the next result, we see how to read off the values of a functievith statement (1), and how to
capture that & is a homomorphism with statement (2).

Lemma ll1.9.1. We have the following:

1. If (U,V,W)~ M(F) for F = (Gy, f,G,), thenF (and f) are uniquely determined and for ak [my]
andj € [mp], we have thaf (i) = j iff Ksyj+pCai <V.

2. (U,V,W) =~ M(F) for someF = (Gy, f,Gy) iff where mi = |G;|, we haveU ~ Py, (G1,G1), W ~
Py (G2,G2), andV ~ a(my, f,mp) for somef : [my] — [mp]; and whenever we have<i,i’ <my and
1<), ' <mp, j# ]} andKsy | +pCari <V andKz, j +pCarir <V, theny(my +2+i,m +2+i") <U
impliesy(mp+24 j,my+2+j) <W.

Proof: For part (1), the first part of Proposition 111.8.5 and the secontl gfdProposition I11.7.8 guarantee
that (U,V,W) =~ M(F) iff U ~ Py, (G1,G1), W = P, (G2,G2), andV ~ o(my, f,mp). That f(i) = j iff
Ka+j+pCati <V is explicit by construction.

For part (2), recall in the proof of Proposition 111.7.4 thdtm +2+4i,m; +2+i") < Py, (B1,Bq) iff i ~ 1

inB;. e

We now account for the composition of morphisms.
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Lemma 111.9.2. Let F = (Gy, f,G2) andH = (Gy,h,Gg) with |Gj| =m for i =1,2,3. LetM(F) =
(P1,01,P) andM(H) = (P, 02,P;). ThenM(HF) ~ (P, 03,Ps) iff 03 ~ o(m, p,ms) for somep such
that: for alli € [my], j € [mp], k € [mg], we have thaKs,; +pCsyi < 01 andKzx +pCzyj < 02 imply
Ksik+pCs+i < 03.

We have gathered together all the necessary definable relations. dlbgwnof Theorem 3.8([JM10])
below in the case of simple graphs goes through exactly word for worde Sie have strived for relative
completeness in this dissertation, and since the corresponding resujtifealence relations in Section V.5
requires a slight modification of the translation scheme, we will present gluengnt here.

Theorem [11.9.3. Let R be an isomorphism invariant relation over GThenR is first-order definable
over (QGR, <, Ps) iff its restriction to Obj2g is first-order definable in the languageQ§’'.

Proof: Let R be an isomorphism invariami-ary relation over Q@&. One direction has already been
established in the beginning of this section.
Suppos&®NObjCgN is definable in the language 6§'; that is, there exists a formutain the language
of €9’ such that
RNObjCSN = {(Aq,...,Ax) € ObjeSN : CF' E D(Ay,...,An) }.

We need a formul&(x,...,Xn) in the language ofQGR, <, Ps) such that
R={(Gy,....,Gn) € QGRV : (QGR,<,Ps) F W(Gy,...,Gn) } -

We will define by induction a formulé)(xl, ...,Xn) SO that whenevel; ~ B; with Aj € QGR, and|Aj| =k;
fori=1,...,N we have

CY' F ®(By,...,By) iff (QGR,<,Ps)E aJ(H(l(Al,Bl),...,H(N(AN,BN)).
We can then tak&(x, ...,xN) to be
(Jug, ..., un) (P(ug, ..., un) A (“there existv; such thak; = |x;| andu; ~ B (x;, V) fori =1,...,N))”

Let X1, ...,Xm be a list of all the object variables, both free and bound, which appebr iret fq, ..., fr
be a list of all the morphism variables which appeaginNote that all the morphism variables must appear
bound. We introduce variables, ..., xy for ® which will correspond to the object variabg, ..., Xy, and
V1, ---, Y1 Which will correspond to the morphism variablfs..., fr. By induction on the length of a formula,
we define a correspondence from the subformulad tuf formulas in the substructure relation.

Our scheme for translating the atomic subformulas is the following:

2. If @is fs= f,, then@isy, < ysAYs <V
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3. If gis fs € €5(X, %), thengis

(3ur, w)(“there existv;, % such thak, = |ur|,k = |u|, andx, = B (ur, V)
andx = R (u, ) and (%, Ys,%) = M(F) for someF € CS(v;,w)")

4. If @is fi € CG(X, X) A fj € CG (X, Xs) A fi = fj o fi, thengiis

(3ur, w, us) (“there existvy such thaky = V| andxm = B, (Um,Vm) for me {r,t,s} and
(Xr,¥i,%) = M(F) for someF € C5(v;,w) and (X, Yj,Xs) = M(G)
for someG € CG(w,Vs) and (X, Yk, Xs) = M(GF)”)

5. If gis—, or Y A O, thengis —{, or A 6

6. If @is (3X ), then@is (3x)[(3ur)(“there existsy, such thak, = |v;| andx, = R (ur,V;)") A §]
7. If @is (VX ), then@is (vx)[(3ur) (“there existsy, such thak, = |v;| andx, = R (ur,v;)") — @]
8. If @is (Ifs € CS(X:, %))W, thengis

(3ys)[(Fur, ur) (“there existvy, v such thak, = |v¢|,k = |w| andx = R (ur, V) and
X = R (U, %) and (%, Ys, %) = M(F) for someF € €5(ur, u)") A @]

9. If pis (Vfs € CS(X, %))y, thengis

(VYs)[(3ur, up) (“there existvy, v such thak; = |v¢|,k = |w| andx, = R (ur,Vv;) and
% = B (U, ) and (%, Ys, %) = M(F) for someF € C5(v;,w)") — ]

It is now straightforward to prove by induction on the length of a formula tbatall subformulas
O(Xq,...,Xwm; f1,..., fr) of ®, and for allG; € ObjCY, Fj = (Bj,9j,C;) € C5(B;,Cj) with |Gj| = u;, |Bj| = b;
and|Cj| =cj fori <M, j <T it holds that

69/ = (p(Gl, .., GM; fl, ceey fT)
iff
(QGR, <,Ps) E @(Py, (G1,G1), ..., Py (Gm, Gm); 01(b1,01,€1), -, 07 (b, G, Om))

The theorem is then established whgs- ©. o
Corollary 111.9.4. For every sentence in the second-order language of simple graphs, there is a formula
®(x) in the first-order language of the quasi-ordered(§BR, <,P;) such that a grapA in QGR models

@if and only if (QGR, <,Ps) F ®(A).
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CHAPTER IV
EQUIVALENCE RELATIONS

In this chapter, we consider the universal class of equivalence rddticand investigate definability
in the partially ordered setP&, <,n,) wheren, denotes the isomorphism type of the two element identity
relation.

V.1 Individual Definability

Recall, finite equivalence relations can be considered as arithmetic partitfornsis a partition of am
element set intd blocks, then we can represemias a sequence of positive integers- (ng,...,n;) where
eachn; represents the size of tih block andn; 1 < n;. If 0 embeds intat, then any two elements which
are in separate blocks m must be mapped to separate blockstinf o = (s, ...,S ), then it is easy to see
that

o< iff r<tands<n forall i<r. (IV.1)

There is another way to represent the partitioa: (ny,...,n) called a Young diagram. This is a series
of left-justified rows of boxes; the first row hag number of boxes, the second row masoxes, the third
row hasnz boxes, etc. For example, the following is the Young diagram for the partitidrs2,1) and
(5,3,2,1), respectively:

For any Young diagram, the transpose is defined by interchanging tisearmhthe columns in the same way
that the transpose of a matrix is defined. For example, the Young diagram=qn;, ...,n;) has first row
with n, boxes, and second row with boxes, and third row witlmz boxes, etc. Then the transpose Young
diagram has the first column with boxes, the second column hasboxes, the third column has boxes,
etc. It is easy to see that the transpose of a Young diagram, ferthe Young diagram for another partition
denotedn’. For examplerr= (4,2,2,1) andm® = (4,3,1,1) are pictured below:

Using (IV.1), we see thatr < o iff the Young diagram fontis contained in the Young diagram for.
From this geometric picture it is easy to conclude:

Lemma IV.1.1. The transpose map— 71 is an automorphism afP&, <).

45



If o < m, but there does not exigt such thato < p < 1, then we writeg < 1T and sayrt coversa,
or thato is a subcover oft. For a partitionr, |17 will denote the cardinality of the underlying set. Itis
immediate from (IV.1) thatt < p implies|m| + 1= |p|.

The identity, ottrivial, relation on the seftl, ..., m} will be denoted asly, and the set of identity relations
asN = {Nm: m< w}. The unique equivalence relation ¢t ..., m} with only one block will be denoted as
Km. Such equivalence relations are said tabmpleteor total, and the set of complete relations is denoted
by X = {Kn: m< w}.

Proposition IV.1.2. K andN are separately definable.

Proof: X consists of those partitioris which avoidN, together withN; which is clearly definable N
consists oN; together with those partitiong which are abové\, such thatrt | is linearly ordereds

We have a nice characterization of those non-finitely generated ualigensclasses of equivalence re-
lations.

Proposition I1V.1.3. The class of non-finitely generated universal subclasses of éejudgrelations is equal
to the union of the principal filters generated®yX) andU(N).

Proof: Clearly,U(X) andU(N) are not finitely generated. Since equivalence relations form a locally finite
universal class, a universal subclass is non-finitely generatect@hitains infinitely many non-isomorphic
finite equivalence relations. R is not finitely generated and avoids soMg then there are infinitely many
finite partitions with at mosn blocks; thereforeR contains finite partitions with blocks of arbitrarily large
cardinality. e

It will be convenient to adjust the representation of a partition. Each tetation on am-element
set will correspond to a complete simple grafhon n vertices. Since each partition is a disjoint sum of
blocks, and each block can be thought of as a total relation over thadt bleovould like to represent each
partition as a disjoint sum of complete simple graphs. For the partitien(ny, ...,n), this can be written
asm=Si_, Ky, whereni ;1 <nj.

We call a partitionrt uniformiif it is the case that all the blocks are of the same cardinality which can
be written ast= S ; K, & mK;. It is often useful to write the representation in the form= y{_; mK,
wheren; 1 < n; by grouping blocks of equal cardinality together. This will be referredsgdhecanonical
representationWe have the following characterization of uniform partitions.

Lemma IV.1.4. T has a unique lower cover ifff is uniform; consequently, the set of uniform partitions is
definable without constants.

Proof: For necessity, notice thatif ~ mK,, thenvp < m,p ~ (m— 1)Kp + Kj_1.
If Tis not uniform, then we can writg~ K, + S[_, Ks wheren > s and there exists; such thanh > s.
ThenKn_1+ 5i_1Ks andK,+Kg 1+ Yi+kKg are incomparable subcoversmfe

At this point, we should note that those partitions at a fixed given heiglitare definable itPE without
constants, since they are precisely those partitmissich thato | contains a chain of covers of length
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but no chain of greater length; for example, the set of isomorphism tlpes,} are precisely those types
at height 1.
With the proof of the next theorem, positive definability now follows from diteen 11.1.9.

Proposition 1V.1.5. Every element of PE, < k») is definable. The transpose map is the only non-trivial
automorphism of P&, <).

Proof: Suppose every element (P&, < k») is definable. Sincék,,n;} is definable without constants
and closed under the transpose map, Lemma Ill.7.2 completely characteezgomorphisms @FE. We
now must show individual definability.

Note K, + K is definable as the unique element with bdthandK, as lower covers. Together with
Proposition 1V.1.2, this shows every partition of cardinality at most threefisalgde. Using Lemma 11.2.1,
it is sufficient to show set reconstruction holds for partitions of cardinalitieast four. While this is has
been established as part of a slightly more general reconstructionbbgdeiietzel and Siemons[PS04], we
will present an argument in our setting.

Assumell,|o| > 4, and supposk; = Ls. The goal is to showr~ g. Sincep < m= |p|+1=|m], we
must have ] = |o|. Also, mando must have the same number of blocks in their canonical representations;
i.e. if ZleKni ando ~ y{_; 5Ky, thent =r. This follows since = |L;| andr = |Ls]|.

AssumeKy, = K, butm # 5. Without loss of generality, supposg < s. Then every lower cover of
o has at leas — 1 blocksK,, but 7T has a lower cover which does not. So in the canonical representation
reading from the left, whenever the block sizes are equal, they musaapgeally often.

If t =1, thenrand o are uniform and so have unigue lower covers. Here= Ly = T~ 0. Now,
assume > 1 andrr# 0. Then letk be the firstintegej <t such thak,, # K, ; thereforeKy, = K, and (by
the above)m = s, fori < k. Without loss of generality, we may assuiig < K. If k=1, then no lower
cover ofrhas a block oKy, , buto certainly does. Ik > 1, thenp ~ (s1 — 1)K, + Kp,—1+ S{_o5Kp < 0
cannot be a lower cover af. It must be the case that~ 1. e

V.2 Arithmetic

For our purposes, it will be convenient to actually work with a closely rdlataucture. Let QBv denote the
set of equivalence relations over finite sets of positive integers. Weetitablish our results on definability
in the pointed quasi-ordered SQEQV, <,K5); consequently, whenever a particular equivalence relation is
shown to be definable, it is definable up to the isomorphism of relations. £Jekgdicitly stated otherwise,
definability refers to this pointed structure with the languégeKs}.

The poset{PE, < k) is then isomorphic to the quotient dQEQV, <,K;) by the equivalence deter-
mined by isomorphism. The transposition map is also an automorphis@Egv, <).

For a partitionp, letl(p) equal the number of blocks jo. This will be referred to as the length of the
partition.

Lemma IV.2.1. {(m,p) : T~ Nm,|(p) = m;m> 1} is definable.
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Proof: We see thak(p) = miff Nj < p butNm1 £ p. ®

Lemma IV.2.2. {(k, 1) : k= K, and all blocks ofrr have at mosh elements} is definable.

Proof: That every block oft has at mosh elements is given by the conditidfy, £ rrfor Ky - Kp,. @

We setb(rr) = nif Ky < 11, butKn;1 ﬁ 1. While we have seen that uniform partitions are definable, the
following lemmas will allow us to specify particular uniform partitions.

Lemma IV.2.3. {(k,n, 1) : kK~ Kn,n = Ny, T~ nKp} is definable.

Proof: We see thatk,n, ) is in this relation iffk is completen is trivial, k < 1 but o ﬁ ntwhenk < o
ando complete] (1) = |n|, and T has a unique lower cover.

It is immediate thatt ~ nK, satisfies the condition.

To see that they are sufficient, we must have rK; by uniformity,| () = |n| impliesr = n, andt = ||
sincek is the largest complete partition belaw e

Lemma IV.2.4. {(k, 1) : k~ K, and all blocks ofr are at least size}nis definable.

Proof: (k, ) is in the relation iffk ~ K, and whenevek(m) = m, mK, < 11. ®

Proposition IV.2.5. {rr: all blocks ofrare distinct} is definable.

Proof: Let b(mr) = nandl(m) =t. Then all the blocks oft are distinct iffvVs < t, there exist¥Kp, < K,
such thasK,, < 1, (s+ 1)Kn, £ 11, andsK;, £ mrfor Kp > K.

Suppose all blocks afr are distinct and order them &g, > K, > --- > K, whereny = n. Fors <t, if
sKn, < 1, thenKp, < Kp,; thereforeKy is the largest block oft such thasK,, < .

Conversely, supposk satisfies the conditions and consider the representationvath K, > K, >
.-+ > Kp wheren; = n. Fors=1,K;, < m, butK;, 1 £ mimpliesK;, ~ Ky, ~ K since X,, £ . This also
impliesn, < ng =n.

Fors=2 we have thatR,, < rrand so there existg < n; such thaK,, <Ky which impliesK, <Kp,.
Since X, < 2Ky, < mbutskK,.1 £ 1, we must havé,, ~ Kp,; because R, ~ 3K, £ 1, we havens < ny.

As we continue inductively, fos <t we havesK;, < rmand so there exists < ns_1 such that,, <
Kr, which impliesK;, < Kp,. SincesK, < sk, < mbut XK1 £ 1, we must have¥;, ~ K,; because
(s+1)Kn, = (s+ 1)K, £ 11, we havens, 1 < ns.

Fors=t—1, the conclusiom; < n;_; finishes demonstrating that al are distinct.e

We can now specify the existence of a particular block.
Proposition IV.2.6. {(k, 1) : k=~ K, andK, is a block ofrt} is definable.
Proof: (k, m) is in this relation iffk ~ K, for somen > 1, k < 11, and wherd (1) =t there existdN, < N

such thatK, < m, (r + 1)Kn £ 11, andrK, £ mrfor Ky > K.
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To see that this characterizes the presence of a ldpak 77, notice that in the canonical representation
for m~ 3!, mKy,, Kn, appearsny times, but the largest uniform partition with blocks of sigeoelow Tis
(Z!‘Zlm) Kn,. For the blockKy, the value of we are after is then= K  m. e

Definition IV.2.7. Forn> 1, a partitiono ~ ' ; K; is called afactorial and will be denoted ajs|!.

Our approach to the definability of addition and multiplication is to first show #etbfials are defin-
able.

Proposition IV.2.8. {(k, ) : k=~ Ky, T [n]! } is definable.

Proof: Th claim is thatrtis isomorphic to the factoridh]! iff
(1)b(m) =n
(2) For allK; < K, we have thakK; is a block ofrt
(3) All the blocks ofrrare distinct

If T~ [n]!, then it is easy to see the conditions are satisfied.
Supposer satisfies conditions (1) - (3). Conditions (1) and (2) imply 31, mK;, and condition (3)
implieseactm =1. e

We can now define the pairs of complete and trivial partitions which are s&tine height.
Lemma IV.2.9. {(k,n) : kis complete nis trivial, |k| = |n|} is definable.

Proof: (k,n) is in this relation iffk ~ K;, n &~ N, andl (11) = mwherer~ [r]!. o

With factorials, we don’t have to start counting the components just Kgnthis means we can now do
addition.

Proposition IV.2.10. {(k,r, 1) : k,r, Tare complete an¢k| + |r| = |1 } is definable.

Proof: (k,r,m) is in this relation iffk,r, 71 are completek,r < 11, and wherep is the partition in which
all the blocks are distinct, andy, is a block ofp iff k < Ky < 11, we then have thdi(p) = |r|. The last
condition is definable by Lemma IV.2.9.

It follows from the last two propositions that we can also do addition byidenisig the corresponding
triplets of trivial relations.

We may refer to a partition of the fornmkK, asn-uniform to denote the fact that all the blocks are of
cardinalityn. We will also saymkK, hassize n Thefrequencyrefers tom. We saw in Lemma 1V.2.3 that
the set oh-uniform partitions is definable; moreover, it is easy to see that the setioiform partitions are
linearly ordered. The next result allows us to pick out the uniform parstishich appear in a canonical
representation.
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Proposition IV.2.11. The relation
{(k,n, M) : n~ N, andk is a block ofrr which appears exactlytimes}

is definable.

Proof: Letk~ K; andn ~ N,. We have thakK; is a block ofrt which appears exactlytimes iff T~ nk;,
or
(DK: is block of m,
(2) If b(m) =, thennkK; is the maximat-uniform partition belowrr.
(3) If b(m) # r and there exist&* > K, such that
(a)K* is a block ofrr such that whenevéd; is a block ofrraboveK;, we have thaKg > K* > K,
and
(b) mK: is the maximar-uniform partition belowr, and
(c) tK* is the maximalK*|-uniform partition belowrt
thenn =m-—t.

If we examine the canonical representationrof y7 ; mKy, then for any blockK,, we see that
(Si—1m) Ky, is the largesh,-uniform partition belowr, and so the correctness of the above characterization
follows sincem, = z{:l m — z{;ll m;. That the characterization is first-order is guaranteed by Lemma IV.2.4
and Lemma IV.2.99

Proposition 1V.2.12. {(k, rT) : kis complete andm] > |k| } is definable.

Proof: The claim is thatk, ) is in the relation iffk is complete, and for any partitiam which satisfies the
conditions below, we havdo) > |k|:
() If Ky < mandmkK; < mbut(m-+ 1)K, £ mrfor somem, thenK; is a block ofa which appears at
leastmtimes.

To check necessity, lat~ S!_; mKy, with |71 > n = |k|, and suppose is a partition which satisfies
the condition ¢x). We wish to show (o) > n. SetM, = {_;m and note thaM; < M, < --- < M. Since
MiKp, is @ maximaln;-uniform partition belowrtr, we must have tha, appears as a block ior M; times.
This impIiesg}:l MKy, < a. For an arbitrary block; such thaky_,, < K; < Kp,, (x) impliesK; is a block
of o and must appear at leddt times ing; in particular,r]! < o whenevel; is a block ofrt. Altogether,
it must be the case thgt_; m[n;]! < o and so

(o) >1 (ilm[ni]!) = ill (my[m]!) = ilmni =|m >n.

To establish sufficiency, suppogk m) is in the relation, butr < n= |k|. Let m~ 5! ;mK,. Set
p~ Si_,mn]! and observe thdp) = St_; mn; < n. Supposes < rand letk be the smallest number
for whichKs < Kp,. For the block<y, , we see thafy ¥ , m) K, < rris maximal. IfrKs £ mrforr > g€, m;,
then by definition of the canonical representation, we must Kgwe K, ,, which contradicts the choice of
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Knes therefore,(z}‘zlm) Ks < mis maximal among-uniform partitions. Notice thaK,, appears irp for
each factoria[n]! wheren, > ny; that is,Kp, appearsz!;lm times which is exactly how oftes appears
as a block inp. We have shown the partitigm satsifies £x), and so we arrive at a contradiction. It must be
the case thatrr] > ne

By examining the above proof, it is interesting to note that we have essentialiynghe definability of
o~ S m[n]! givent~ S mK,.

Proposition 1V.2.13. {(k, i) : kis complete andm]| = |k| } is definable.

Proof: We would havem > |k|, but|m # |k| + 1. e

We can now interpret multiplication.
Proposition IV.2.14. {(k,p, ) : k, p, 1T are complete anglr| = |K| |p|} is definable.

Proof: (k,p, ) is in this relation iffk, p, mare complete anfft] = |o| wherea ~ |k|K . @

Let (N-o,+, x) denote the structure over the set of positive integers such that theiopseraf addition
and multiplication have their usual meaning. From [TMR53, Thm 7], the elemethtaory of this structure
is undecidable. Propositions 1V.1.2, 1V.2.10, and 1V.2.14 state that we efamedthe operations of addition
and multiplication over the definable set of complete partitions, and so estalfilisk@der interpretation
of the elementary theory dN-,+, x) into the elementary theory df’€, <,n,). According to [TMR53,
Thm 7&10] this yields the following result.

Corollary IV.2.15. The elementary theory @fP€, <) is undecidable.

Since the elementary theory of a fixed structure is complete, by [TMR53, Iiwe can conclude the
following.

Corollary IV.2.16. The elementary theory dfP&, <) is not finitely axiomatizable.

IV.3 Morphisms

Here is our scheme for encoding a functibn[n] — [m]. We take a partition
n
En, f,m) ~ ZlmiKi +Kni1+m where my = f(i).
i=
In such a partitionKy is the largest block of (n, f,m) such thaKp, 1 is not a block, but there does exist a
strictly larger block. The next blodK; is the unique largest block, amal=r —n— 1. This is how to read off

the domain and range df Clearly, any such partitio{" ; mK; + Ky 1+m wheremy < mdefines a unique
function f : [n] — [m] where we sef (i) = m.
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We can realize a partitionasé (n, f, m) for somef in the following way:

(1) If m(K; is the uniform block ofr with largest size, them, = 1.

(2) If mKp is the next largest uniform block af then for all 1< i < nwe have a uniform blockyK;.
B)n+1l<r

(4) If mK; is a uniform block int, thenm; <r —n—1.

We have the following.

Proposition IV.3.1. We have the following:
D) &N, f,m) ~&(n',g,m)iff n=n',m=m andf =g.
(2) {(Kn,Km, ) : n,m> 0, andt =~ & (n, f,m) for somef : [n] — [m|} is definable.

V.4 o-Presentations

Let o be a concrete partition on the gai. We would like to encode in the isomorphism type of another
partition information which records which elements|dfare in the same block ia. Consider the set of
partitionsA; whererr= S ; mK; € A; if it satisfies the condition

m=m; iff (i,j)eo. (IvV.2)

We can uniquely reconstruct from any 1t € A; by matching together into separate groups those uniform
blocks which have the same frequency. For each such group, pondisg sizes of the uniform blocks
precisely describes the elements which are in the same blook ddere, the actual frequency numbers
are irrelevant since any member &§ will do. Since we would like our choice of a partition Ay to be
definable, we must be more judicious.
For anym € QEQv, the isomorphism typé&r contains a concrete partition we label defined in the
following manner. Lett~ 31 ; mK, so thatrris a partition of a set wittm= 3!, mn; elements. Nowt*
is a partition onm| where
e The firstmyn; integers are divided intoy, blocks where the first block contains. 1, n4, the second
block containgy; + 1, ..., 2ng, and continuing in this manner tima -th block contains the
integers(m —1)n; + 1, ....,mn;
e The nextmpn, consecutive integers are partitioned in a similar manner.
e We continue partitioning consecutive intervalsgh; integers until we exhaust the uniform blocks
of .

Any element ofA has a peculiar form - all the uniform blocks with the same frequenciesaapsea
consecutive interval in the sizes of the uniform blocks. We are nowyrteadefine an o-presentation.

Definition IV.4.1. For anym e Q&, chooseP(m) € A such that whenever
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is a complete set of uniform blocks R(77) which have the same frequency, thrar= p. We sayP(m) is an
o-presentatiorior 7t.

ExamplelV.4.2. If we take = 3K3+ 2Ks, then

P() = KitKotKg+AaKs+4Ks+aKe+7K7 + 7Kg + 7Kg +

10K10+ 10K 1+ 10K12 4+ 10K13+ 10K 14+

15K15+ 15K16+ 15K 17+ 15K 18+ 15K19

Given o € QEQV, supposeskKs, ...,sK; are all the uniform blocks ifP(o) which have the same fre-
quency. We calsKs+ --- + sK. a pseudo-bloclof P(g). The terminology comes from the fact that a
pseudo-block iP(o) reflects the existence of a blockdn

Lemma IV.4.3. The sef{(Kg, p,K;) : p = sKs+---+ K} is definable.

Proof: We see thap ~ skKs+ - - - + sK; iff whenevers < i <r, thensk; is a uniform block ofp and these
are the only uniform blockse

Proposition 1V.4.4. The following hold.
(1) The sef{P(m) : me QEQV} is definable.
(2) The set{(p,P(m)) : p is a pseudo-block d?(m)} is definable.
(3) The set{(o,P(m)): 0~ n} is definable.
(4)P(m) ~ P(0) iff T =

Proof:
(1) We see thatr ~ P(m) for somerr iff

e If mK; is the uniform block ofo with the largest size, then for all4d i <r there exists1 such that
nk; is a uniform block ofo.

e WhenevemKs andmK; are two uniform blocks o& with s < r, thenmk; is a uniform block ofo for
alls<i<r.

e WhenevemK; andnK; are two uniform blocks o& with m=£ nands < r, thenm < n.

e If mKy is a uniform block which is smallest for all uniform blocks with the same fregyethen
m=s.

The first three conditions implg € A; for somert. The last condition guaranteesis a disjoint union
of pseudo-blocks and so is an o-presentation.

(2) p = sKs+-- -+ sK is a pseudo-block d?(m) if sKs andskK; are uniform blocks oP(1), and among
all uniform blocks which have frequensysKs is smallest andk; is the largest in size.
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(3) From the canonical representation, the isomorphism type of a paritiscompletely determined
by the uniform blocks int. The central question is, how do we read off the uniform blocks &bm the
collection of pseudo-blocks &f()?

For a pseudo-blockKs, p,K;), we define the differencd(p) =r+1—s. Among all the pseudo-
blocks of P(r1) which have the same difference, (s, p1,K,) be the one in whicls; is smallest, and
let (Ks,, p2,Kr,) be the one in whicls; is largest. Therﬁiﬁ%;Krﬁl_% is a uniform block ofrt.

Any such partition aé;%KrzH,Sz derived fromP(71) in this manner is called difference bloclof
P(m). Thenris up to isomorphism the unique partition whose uniform blocks are preciselyifierence
blocks ofP(m).

(4) By construction, we hava ~ o iff T = ¢*, and from the above it follows that ~ o iff P(m) ~
P(o). e

ExamplelV.4.5. If we takeP(7) from the previous example, then we can reconstruct the isomorphism type
of ras
9-0 19+1-10

——=Koy1-7

— K _15 = 3K3+ 2Ks.
30 +19+1_15 19+1-15 = 3Kz + 2Ks5

IV.5 A Small Category

In the same manner as in Section 1.9, we define a small catétfor¥he objects are precisely the concrete
partitionst* whererm € QEQV. The morphism€E(m*, o*) are the relational homomorphisms framh to
o* which we write as a tripl& = (11, f,0*) wheref : [n] — [m] with n= |r7*| andm= |o™*|. The category
CE& can naturally be thought of as a 2-sorted first-order structure, wittsortéor objects and another sort
for morphisms, together with a ternary relation over the sort of morphismswhilects composition. The
category structure is then described by the standard category axioms2rsihited first-order language.

We enrich the small category by adding 3 new constants to the languageraoie ¢the resulting struc-
ture byC€’. We add the constanks; and the map€¢&(N;,K3) = {t,b}. Notice thatk; is a terminal object
in C&’, and so is definable. For any € ObjCE, we can use the maps BE(K3, 1°) to parametrize the
partition structure in the following way: for anyj in the universe oft* = ([n],r), we see thai, j) € r iff
wherex,y € CE(K7, ) such that(0) =i andy(0) = j, then there existh € CE(K3, 1) such thaht = x
andhb =y. This clearly yields a definable equivalence relation ®@&{K;, 7*) denoted by .

By a similar argument as in Section 1I1.9, the property that a morphism is andslimgpis definable
in the first-order language @f&¢’. We conclude that the embeddability relation(GfEQV, <,N,) when
restricted to the objects of the small category is first-order definalflé€’in

Using the bijectiont* 3 i <» x € CE(K;, ") such thai(0) =i, we see that given ang* € ObjC¢E, we
can construct an isomorphic equivalence relation

r(m) = (CE(KT, m),F C CG(K], M) x CS(K{, ")) =~ 1"

where both the set of elements and the relatidvave first-order definitions in the language of the small
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category. The set of partitions §T (1) : 71" € ObjCE} provide isomorphic copies of the objects of the
category. For these ojects, we now have access to the “internal” stusingethe first-order theory of the
category.

Putting all this together, the first-order languageéf is equivalent in expressive power to a second-
order language applied to the structuf€g ) : i € ObjCE}. This new language has variables ranging
over the elements df(m*), variables for the morphisms between objects, can express the partition rela
tion in objects, machinery to express the application of morphisms to elementspsitiompof morphisms,
and equality of elements and morphisms. The procedure in [JM10] to parzenatbitrary finitary rela-
tions works equally well in this small category of equivalence relations. Attogy, we see that the first-
order language of &’ is equivalent in expressive power to a full second-order languegetbe structures
{F (") : m € ObjCE}.

In order to establish the version of 111.9.3 for partitions, we need to build dehof the small category
C¢&’ in the definable relations dQEQV, < K5). With Propositions 1V.4.4 and 1V.3.1, almost all the work
has been accomplished already. What remains is definably capturingfiertyrthat a functiorf : n — m
encoded ag (n, f,m) is a homomorphism between partitions ando* encoded a® () andP(o) where
|m =nand|o| =m.

Suppose we have objeats in the category wittm = |72*| for i = 1,2, and a morphisth = (11, f, 15 €
CE(m, ) wheref : [my] — [mp]. We encodet’ as any graph isomorphic 8 = P(7*) and encodé as
any triple isomorphic to the ternary relatibh(F) = (P, & (my, f,my), P2). Using Propositions 1V.4.4 and
IV.3.1 we can realize foM (F) = (P1, & (my, f,mp), P,) thatP, andP, are o-presentations for someando,
respectively, and that(my, f,m) encodes some function fromi to o* wheremy = |7t*| andm, = |0™|.

In the following lemma, we will see how to read off the values of the funcfiovith statement (1), and
how to capture the fact thdtis a homomorphism with statement (2).

Lemma IV.5.1. We have the following:

1. If (A,SB)=M(F) forF = (r, f, ), thenf is uniquely determined and for alE [my] andj € [my]
where| ;| = my and |15 | = mp, we have thaf (i) = j iff jK; is a uniform block ofS.

2. (A,SB) =~ M(F) for someF = (1, f, %) € CE(m, 1) iff where my = |7E°|, we haveA ~ P(rt),
B~ P(m), andS~ &(my, f,mp) for somef : [my] — [my]; and whenever we havedi,i’ < m and
1<, j <my, j#j,andjK;,j’Ki are uniform blocks oS, then the block¥; andK; have the same
frequency inA implies the blockK; andK; have the same frequency

The next lemma captures the composition of morphisms.

Lemma IV.5.2. Consider morphismB = (1, f, 7%) andG = (75,9, 755 ) with |75°| = m; fori =1,2,3. Let
M(F) =~ (P1,S,P) andM(G) = (P, $,Ps). ThenM(GF) ~ (Pi,H,P;) iff H ~ &(my,h,mg) for someh
such that: for all € [my], j € [mp], k € [mg], we have thafK; is a uniform block ofS; andkK; is a uniform
block of S, imply KK; is a uniform block oH.
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We have gathered together all the necessary definable relations. ddfegbrTheorem 111.9.3 for
simple graphs goes through exactly word for word in this setting with one gstiggmige - we need only
modify the translation of first-order formulas in the language®8f taking into account our scheme for
o-presentations(Theorem 1V.4.4). The scheme for the translation oftdneicaformulas in the case of
equivalence relations is the following:

1. If Qis X, = Xs, then@is X < XsAXs < Xr.
2. If @is fs= f, then@isy, < YsAYs <V

3. If gis fs € CE(X, X), thengis

(Fur,w) (“X% = P(ur) andx = P(w) and(X,Ys,% ) = M(F) for someF € CE(u;,u)”)

4. If @is fi € CE(X, X) A fj € CE(X, Xs) A fi = fj o fj, then@ s

(3ur, U, Us) (“Xm = P(um) for me {r,t,s} and(x,Vi,%) = M(F) for someF € CE(u;,u;) and
(%Y}, %) = M(G) for someG € C&(uy',ug) and (%, Yk, Xs) = M(GF)")
5. If pis—, or Y A O, thengis —{, or YA 6
6. If @is (3X) @, then@is (3x)[(Fur) (X = P(ur)") A @]
7. If @is (VX )@, then@is (vx)[(3ur) (“% = P(ur)”) — @]

8. If pis (3fs € CE(X, %))W, thengis

(3ys)[(3ur, w) ("% = P(ur) andx = P(u) and(x:,ys,x) = M(F) for someF € CE&(uy,u)") A @]
9. If pis (Vfs € CE(X, %))W, thengis

(VYs)[(Fur, w) (“% = P(ur) andx = P(u) and(x,ys, %) = M(F) for someF € CE(uf, )") — @]

Now the argument of Theorem 111.9.3 follows mutatis mutandis to conclude tleaiag.

Theorem IV.5.3. Let R be an isomorphism invariant relation over Q& ThenR is first-order definable
over (QEQv, <,K) iff its restriction to ObjC¢ is first-order definable in the language®@f’.

Corollary IV.5.4. For every sentence in the second-order language of equivalence relations, there is a
formula ®(x) in the first-order language of the quasi-ordered(SHEQV, <,Kz) such that an equivalence
relationrtin QEQV modelsg if and only if (QEQV, <,Ky) E ®(m).
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V.6 The Number of Universal Classes

A quasi-ordered sd) is said to bewell-quasi-ordereMil85]) if there are no infinite strictly descending
chains, and no infinite anti-chains. L&(Q) andF(Q) denote the set of order ideals and order filters, respec-
tively ordered by inclusion. It is easy to see thaQifs well-quasi-ordered, thefi(Q) has the descending
chain condition an&(Q) has the ascending chain condition.

There is a nice connection between locally finite universal theories athdjwasi-orderings. The fol-
lowing two lemmas are essentially contained in a 1967 paper of A.l. Mal'cegRMa

Lemma IV.6.1. Let U be a locally finite universal class of finite signaturBU is well quasi-ordered iff
there are only countably many universal subclasses; otherwise aifgecentinuum many.

Proof: If PU is not well-quasi-ordered, then it must have an infinite anti-ckain i € w}. This provides
250 many distinct universal subclags(A;) : J C w}.

SupposéPU is well-quasi-ordered. Fare O(PU), let X; denote the set of elements minimatii( <. J
which must form an anti-chain. SinG&l is well-quasi-orderedy; is finite. SinceX; uniquely determines
3, [Lul = [0(PU)| < To.

Proposition 1V.6.2. Supposdl is a finitely axiomatizable locally finite universal class of finite signature,
and there are only finitely many-generated structures up to isomorphism. Then every universal sabcla
is finitely axiomatizable iffPU is well quasi-ordered.

Proof: If PU is not well quasi-ordered, then there are continuum many univerbalagses. Since there

are only countably many finite sets of sentences, there are non-finitelpataable universal subclasses.
SupposePU is well quasi-ordered. Lek < U be a universal subclass. We may assume it is not finitely

generated; thusk = U(l) for some infinite order ideal dPU. For eachn, letH, = {A: |A| <n,A¢1}.

Let /, = Hn 1. Then eactr, is a finitely generated order filter amd= (JF,)¢. Also,F; CF, C --- is an

ascending sequences of filters and so must converge; that is, timeMesuch that, = Ry for all k > M.

ThenX = U(Fg) which impliesX is finitely axiomatizables

A sequencéan)ncq in a quasi-ordered s€ is badif & £ a; for i < j. Itis not difficult to see tha@Q
well-quasi-ordered(wqo) iff it has no bad sequences. The neult feows from a more general theorem
of Higman [Hig52] on finite sequences, but we will provide a proof in aitisg.

Proposition 1V.6.3. The posefP€ is well quasi-ordered; as a result, there are only countably many saiver
classes of equivalence relations every one of which is finitely axiomatizable

Proof: It suffices to showPE has no bad sequences. For a contradiction, as§ome,, is a bad sequence.
Write eachrg as

I .
=5 K,
k=1
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such that the blocks are non-increasing in cardinality. For each, leta(i, j) be the smallegt such that
n-1 n
> K<m but H K £m.
K=1 K=1

For i, we havea(1,—): w~ {1} — [r1] and so there exist4; an infinite subset such that(1,4;) is
constant. Note

1 j ;
Kta(u) > Kta(l.j) forall jeA;.

Choosejj € A; such thaty (g j: is smallest.
Again we extract an infinite subsa such thatr (j;,A>) is constant. Note

i i ;
Kta(j:’{.j) > th(j»l«,n forall jeAs.

Choosej; € A such thatr (j3, j5) is smallest.
Inductively, we find a sequendgdj, j5, ...} such that

Jp Jerl
ta(ip.in, p) ta(ipif, y)

Now, supposex (i, j) is bounded on the sequenfg, j3,...}. Then there exists an infinite subset
{i1,]5,...} such that (i, j) is constant. Sag = {ki,ko, ...}. This produces an infinite descending sequence

ky ko
Ktﬂ(krkz) > Ktﬂ(kz«ks) >

which is a contradiction.
If a(i, j) is not bounded ok j;, j5,...}, then there must exist a subsequefges,, ...} such that

a(s,S+1) < a(S11,S+2)-

But then

s ) S K S
Kta(ﬁ-sz) > Kta( Kta(Sst) > Kta(

> ...
s1.%2) .53)

provides an infinite descending sequence; another contradietion.
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CHAPTER V
QUESTIONS

In a review of substructure definability for distributive lattices([JMO9ls@milattices([JM09a]), lat-
tices([JM09c]), posets([JM10]), and in extending these results tornibedered structures of equivalence
relations and simple graphs, similiarities in constructions and arguments ghwmutnic each case there
is enough distinction so that the approach almost starts over again each tawimg ldstablished strong
definability results for these classes, can we abstract the combinatamaldal properties which may guar-
antee similar substructure definability in general universal classes? resticted to universal subclasses
of digraphs, this appears to me a difficult question.

Does positive definability hold for the universal class of tournaments@hdtruction([Sto77]), and thus
set reconstruction, fails for tournaments, and so Lemma 11.2.1 can afteelp in this case. The relationship
between substructure definability and reconstruction is unclear, buaperive can offer another link with
the following immediate corollary to Proposition 11.7.1 and Theorem 2.29 in M1

Corollary V.0.4. If P,Q are two counterexamples to Reconstruction(as posets or as simple gthphP)
andQ have distinct sets of upper covers.

Proof: If P andQ are two counterexamples to Reconstruction, tfnQ| > 4 and must have the same
lower covers in the substructure ordering since they have the same leaks.dIf in addition they have
the same upper covers, therandQ must satisfy the same unary formulas in the language<ot} where
|c| < 4. This contradicts the fact that for simple graphs and posets each elisndefinable after adding a
single constant of cardinality at most &.

For tournaments, there is an obvious automorphistnof the substructure ordering which comes
from reversing the orientation of the edges. The counterexamples to tten&eruction Conjecture for
digraphs discoverd by Stockmeyer([Sto77]) appear in two infinite famiBe<i) and (Dj,E;). Interest-
ingly, rev(B;) = B, rev(Ci) = C;, andrev(D;) = E;. This is precisely what one must have if it is the case
that the set§B;,C;} and{D;, E;} are definable. This prompts the following two questions.

QuestionV.0.5. After adding a constant, every finite isomorphism type of tournaments iofust- defin-
able in the poset of finite isomorphism types ordered by substructurepresreeyv is the only non-trivial
automorphism. Positive definability for universal theories holds.

QuestionV.0.6. Each pair of Stockmeyer’s counterexamp{&s,C;} and{D;,E;} are definable in the poset
of finite isomorphism types ordered by substructure without adding aamtrte the language.

We saw that for posets, simple graphs, and equivalence relations ttessixp power of first-order de-
finability in the substructure relation was equivalent to modeling full seardds sentences when restricted
to the finite members. Is this to be expected in general?
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Questionv.0.7. LetU be a finitely axiomatizable locally finite universal class in a finite signatureRIlbeta
class of finite structures &f closed under isomorphism. Supp®®is not the finite models of any first-order
sentence, but the isomorphism types representeRlibya definable unary relation U, < cq, ..., c) for
some finite typesy, ..., k. Must the expressive power of first-order definability in the substraatiation
be equivalent to full second-order properties in the finite? Does it st &zgture all first-order properties?

We attempt an application of Corollary 111.9.4 which suggest possible assiwehe previous question
may be found among universal subclasses of simple graphs. We bitreck@rminology of finite model
theory from [EF95]. For two logicg 1 and£,, we write £1 < £, if for any signaturer and every sentence
@ € L4]1], there existsy € L[] such that finite models ap are precisely the finite models gf. We write
L1=Loiff L1 < Loandly < L;.

Recall, the following theorem concerning interpretation of structures.

Theorem V.0.8. ([Hod93, Thm. 5.5.1]) Leto be a first-order language whose signature consists of the
binary relation symbadR, and letL be a first-order language with finite signature. Then there is a first-order
sentence in o such that
(1) Every model ofx is an irreflexive symmetric graph.
(2) The class of models of is bi-interpretable with the class of dltstructures which have more than
one element.
Moreover, both interpretations {{2) preserve embeddings.

With any FO-interpretation, there is the corresponding reduction the@atmg satisfiability by struc-
tures in the two signatures.

Proposition V.0.9. Let N be an interpretation of in 1. For every FOf) sentencea) there exists a FQ]
" such that for allr-structuresA (with non-empty universe),

Ay it ATEy.

As noted in ([EF95, Ex 11.2.4]), the logic FO can be replaced with some tbies £ such that FO
< L < SO like FO(IFP), FO(PFP), or SO.

Let 1 be finite relational signature and l€t be the class of models in that signature with at least two
elements. Then by Theorem V.0.8, Corollary 111.9.4, and Prop. V.0.9 weoaclude that

e PXK; is definably present if®G.

e For any of the logicsC which satisfy the conclusion of Proposition V.0.9, the finite models of those
finitely £L-axiomatizable subclasses®f are first-order definably presentds.

e If £1 < L, < SO satisfy the conclusion of Proposition V.0.9, then there exists a finite sigrragund
sentencep € £[1] such that the finite models @f are not the finite models of an§; [7]-sentence,
but the isomorphism types form a first-order definable sétdn
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CHAPTER VI
A DISJUNCTIVE CHARACTERIZATION FOR QUASIVARIETIES

VI.1 Introduction

In [J68], Bjarni bnsson established that all the algebras in a vaiietave distributive congruence lattices
iff the variety has ternary termsy, ..., pn Which satisfy the identities

Po(xyd ~ X

Pn(Xy2) z

Pi (XyX) X 0<i<n
pi(xxy) =~ pia(xxy) i even
pi(xyy) =~ pipa(xyy) i odd

Kirby Baker noticed dnsson’s condition was equivalent to a closely related disjunction; naenedyj-
ety V is congruence distributive iff there exist ternary teqmms..., p, such that

V E pixux)~pi(xvy) 0<i<n
n-1
Vo x#y—= \[pxy) # piva(xyy)]
i=1
Using the above characterization in an intricate analysis of principal aenge generation in congruence
distributive varieties (a streamlined version of which can be found in [BSB&ker secured the following
finite basis result:

Theorem VI.1.1. [Bak77] LetV be a variety of finite signature. ¥ is congruence distributive and has a
finite residual bound, theW is finitely based.

In [Wil0Q], Ross Willard provided a new characterization for congreeneet-semidistributive vari-
eties; a varietyV is congruence meet-semidistributive iff there exist ternary tefgns., fn, g1, ..., gn Such
that

Vo fi(xyx) &~ gi(xyX) 0<i<n

Vo xgy = \[fixxy) & ai(xxy) < fi(xyy) 7 6i(xyy)]

i=0

Ross Willard was able to use this disjunction characterization to provide ami@ugeand involved analysis
of principal congruences in congruence meet-semidistributive varietiehwyields his generalization of
Baker's finite basis theorem.
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Theorem VI.1.2. [Wil00] Let V be a variety with finite signature. i is congruence meet-semidistributive
and has a finite residual bound, théris finitely based.

The paper of Maroti and McKenzie[MMO04] explores finite basis resultpuasivarieties, and manages
to provide a common framework which generalizes the finite basis resultsssf WRidlard for congruence
meet-semidistributive varieties and Pigozzi's[Pig88] finite basis resulefatively congruence distributive
guasivarieties. The start of their approach is the observation that Villdigjunction can characterize
guasivarieties satisfying a weaker condition than meet-semidistributivitywbiah is equivalent to it in
varieties.

In Section VI.2 we prove a similar disjunction for quasivarieties which is anlgana of Willard’s
characterization of congruence meet-semidistributivity and Malcev'sactenization of congruence per-
mutability. For varieties, our characterization is equivalent to the existdrecereak difference term. Using
the very nice Lemma VI.2.6 from [KS98, Lem.4.4], we will provide a relativédgrs proof of this fact.

In Section VI.3, we consider two applications of the characterization fgloTararieties which will
allow us to simplify the proof of an important result(Theorem VI.3.3), andviplean elementary gener-
alization of another(Theorem VI1.3.2). We will reference but not dgvéhe algebraic framework recently
developed to study the constraint satisfaction problem(CSP). The risatiezcted to the papers of Bulatov,
Jeavons, and Krokhin[BJKO05] and Jeavons[Jea98]. For thérezbjpackground in universal algebra consult
Hoby and McKenzie[HM88].

VI.2 The Characterization

For a quasivarietiK, leta = ©(x,z), B = ©(x,y), andy = O(y, z) be the principle congruences determined
in Fx(x,y,2) and make the definition

Wie(x,y) :=\/ [F(xxy) = g(xxy) < (xyy) % g(xyy)].
(f,9)ea

For any algebr# € X, we have

A = VXYY (Wi (X, Y) <> =W (Y, X)) .

To see this, for any term(xy2 definef*(xyz = f(zyx. Thenf** = f and(f,g) € a implies(f*,g*) € a.
Takea,b € A and assum@ = —W(a,b); that is, f(aab) = g(aab) ++ f(abb) = g(abb) holds inA for all
termsf,g such thatf (xyx) = g(xyX). Thenf(baa) = g(baa) iff f*(aab) = g*(aab) iff f*(abb) = g*(abb)
iff f(bba) =g(bba); thus,A = —-W(b,a). A similar argument establishes the converse.

For a ternary terne(xyz2) in the signature oC, define the formuldic(x,y) by

Mc(X,Y) := [y = C(XXy) A C(XXy) = C(yXX) AC(YyX) == C(XyY) AC(XyY) = X].

When the context is clear, the subscript denoting the class will often lpgedo but in its place will be a
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positive integer to denote the disjunction is over a finite set of terms. For égamp

n

=\ [fi(xxy) = Gi (xxy) <= Ti(xyy) % Gi(xyy)]
i=1
where eacH;(xyX) ~ gi(XyX).
For anyA € X, let the set ofK-congruences be CgqitA) = {a € Con(A) : A/a € KX}. The set ofK-
congruences is a complete lattice where the meet is the same as(id)Cand the join denoted by* is
the corresponding operation induced by the meet.dL&, y € Conk(A), and define congruencés, ym €

Cony(A) inductively byBy = B, yo = y and
Bni1=PB v (aAYh) and Y1 = V\/jc (aABn)-
NoticeB <P <P <---andy<y <y, <---. Set

Boo:UBn and Voo:UVn
new new
and noteB., Y. €Conk (A).
We are now ready for the theorem.

Theorem VI.2.1. For any quasivariet the following are equivalent.
(1) For anyA € K anda, 3,y eCong(A),a AB=a Ay=0aimpliesa A (Boy) C yof.
(2) ForanyA € X anda, 3,y eCong(A), d A (BoY) C Ve 0 .
(3) For the principle congruences= O(x,z), B = O(x,y), andy = O(y, 2) in Fx(X,Y, z) there existsn
such thatr N (Boy) C ymo Bm.
(4) There exists a finite set of ternary terms...., fn, 91, ..., gn, € such thatf; (xyx) ~ gi(xyx)
fori=1,...,n, andX satisfies the sentence

VXYY [X % Y — Wh(X,Y) V Mc(X, Y)] -

Proof: We show(4) = (1). Let(a,b) e a A(Boy). Then(a,d) € 3 and(d,b) € y for somed € A. Suppose
a# bandA =W, (a,b). Then take K i < nsuch thatfi(aab) = gj(aab) <+ fi(abb) # gi(abb). Without loss
of generality, assumé(aab) = gij(aab). Then we havd(adb) # gj(adb) or fi(adb) = gi(adb). Suppose
we havefi(adb) = gj(adb). Then

fi(abb)yf;(adb) = gi(adb) ygi(abb)

and
fi(abb)a fi(aba) = gi(aba) agi(abb)

which showsfi(abb)a A ygi(abb). Sincea Ay = 0a, we arrive at the contradictiofi (abb) = gi(abb).
A similar argument for the cas(adb) # gi(adb) will show fi(adb)a A Bgi(adb), and so produce the
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contradictionf;(adb) = gi(adb).
It must be the case th# = M¢(a,b). We havea = c(abb) andc(aab) = b, and it is the case that
a= c(abb)yc(adc)Bc(aab) = b. This showga,b) € yo 3.
We show(1) = (2). Noticea A B = 0 A Y. Letd = a A B. and noted € Cong(A). We also have
0 <A, B, Yo aNda /3, Bx/d, Yoo /O € Conyc(A/D). Thena /O N Pw/d =[O A Ve /D = Op 5 Which implies
by (1),
/8 N (Boo/ 5 Vin /B) C Yoo/ 50 s/ 3.

Let (a,b) e aA(Boy) CaA(BsoY). If (a,b) € d the resultis immediate. Suppo&eb) ¢ 9, then
(@/0,b/8) € /O N (Bo/G0 Yoo /D) € Voo /S0 Beo /O

and so there exish < w andc € A such that
(a/0,c/0) € ym/0

(c/d,b/d) € Bm/d.

Sinced refinesy,, andpf., we can conclude that
(a7 C) € y°°

(c,b) € B

which yields (2).

To show(2) = (3), notice that(x,z) € an (B oy), and so by (2), there existssuch tha{x,z) € ymo Bm.
If (a,b) € an(Boy), then there exish andc € Fx(X,y,z) such that(a,c) € y, and(c,b) € B,. Take
the endomorphisno : Fy(X,y,2) — Fx(X,Y,2) determined by : (x,y,z) — (a,c,b), and observe that <
o (a), y<o(y), andB < o~1(B). Itis not difficult to see that (ymo Bm) C ymo Bm from which we
conclude thata,b) = (o(x),0(2)) € Ymo Bm.

We establisi(3) = (4). Assume (3) holds. There exigstssuch that(x,z) c an(Boy) C ymo Bm. SO
there must be a ternary tertxy2 € Fx(X,Y,z) such thatx,c(xy2)) € ym and(c(xy2),z) € Bm.

We showX satisfies the infinite sentence

YXVY [X %Y — Whe(X,Y) V Me(X,Y)] -

A compactness argument appliedd4(x,y) A =Mc(x,y) — X~ y will then replace the formally infinite
disjunction with a disjunction over a finite set of terms.

Suppose there exigtc K anda,b € A such that # b andA = Wi (a,b). By the above remarks, we
also haveA = Wy (b,a). Altogether,

f(aab) = g(aab) <+ f(abb) = g(abb)
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and
f(bba) = g(bba) «» f(baa) = g(baa)

holds inA for all termsf, g such thatf (xyx) ~ g(xyx).
Consider the homomorphisms &% (x,y,z) into A given by 1 : (X,y,2) — (a,a,b), ™ : (X,y,2) —
(a,b,b), 01: (x,y,2) — (b,b,a), ando> : (x,y,z) — (b,a,a). Then

a Nkermm = a Akerre and a Akerop = a Akeros

Also, 3 < ker A ker o1 andy < ker 1B ker 0>.
Inductively, we haveBy, < ker ra A ker g1 andym, < ker teA ker g, for all m.
But for the termc(xy2) we have

(X,C) € ym < kerre A keroy

(c,2) € Bm < kermy A keroy.

This impliesc(aab) = c(baa) = b # a = c(bba) = c(abb) and therefore,

A= Mc(a,b).

The termc(xy2) in Mc(X,y) will be idempotent throughouX. To this, takeB € K anda € B. Consider
the induced maw : Fx(x,y,z) — B defined byo(x) = o(y) = 0(z) = a. Thena,B,y < kero and so
Bm, Ym < kero. Then(x,c) € By impliesc(aaa) = a.

RemarkVI.2.2. From the argument&4) = (1) and(1) = (2) in Theorem VI.2.1 we have the following
useful facts for any variety satisfying condition (4). LeA €V, a,f3,y € Con(A), anda,b € A such that
a#h:

o If (a,b) € anN(BVy)andA =Wy (a,b), then

aAB#0s or aAyO0Oa.

elf (a,b) e an(BVy)anda AB = a Ay=0p, thenA|= M:(a,b) A—-Wy(a,b).
olf (a,b)can(BVy)~owhered=aAPw=0aA V¥, then

adc(abb) dc(bba) and bdc(baa) dc(aab).
We say(a,b) is a Malcev pair ifA = Mc(a,b), and a Willard pair ifA =Wy (a,b).

By referring to Theorem 9.6 in [HM88], we have the following corollary.

Corollary VI.2.3. LetV be a locally finite variety. The following are equivalent.
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(1) 'V omits type 1

(2) V has a Taylor term

(3) There exists an idempotent special variéty V such tha€ £ Sets

(4) For the principle congruences= 9O(x,z), 3 = O(x,y), andy = O(y, 2) in Fy(X,y,z) there existsn
such thatr N (Boy) C ymo B

(5) There exists a finite set of idempotent ternary tefms.., f, 91, ...., On, € Such thatf; (xyx) ~ gi(xyx)
fori =1,...,n, andV satisfies the sentence

VXYY (X2 Y — Wh(X,Y) V Mc(X,Y)]).

RemarkV1.2.4. It is easy to se¢5) = (3) since the conditions iy (X,y) andMc(X,y) cannot be satis-
fied by any interpretation by ternary projections. We shall see later(f)at- (2) in the discussion of
Sigger’s([Sig10]) strong malcev condition, so the disjunctive charaetgwn can imply in short order a 6-
variable Taylor term for locally finite varieties. The equivalence of (4) &) passes through (1) and tame
congruence theory. Is it possible to give a direct proofd)f=- (4)?

Definition VI.2.5. We say a quasivariet§ is strictly activeif it satisfies condition (3)(equivalently, con-
dition (4)) in Theorem V1.2.1 above; namely, for the principle congrusmce- ©(x,z), 8 = ©(x,y), and
y=0(y,2) in Fy(X,Y, 2), there existsn € w such thato N (Boy) C ymo Bm.

In Theorem VI1.2.7 we shall see that the tecfmy2) in Mc(x,y) will be a weak difference term for any
strictly active variety. This will allow us to give an alternate proof of the hesliKearnes and Szendrei
characterizing the malcev condition(i4) of Corollary VI.2.3 as the weakest malcev condition for varieties
which guarantees that abelian algebras are affine. Our proof aveidstiessity of first developing the topic
of quasi-affine varieties. In order to do so, we shall need a lemma fr&88K Fora, 3 € Con(A), letA(a)
denote the congruencethought of as a subalgebraaf. Define the congruence i a),

ABa :CgA(a)({«U,U),(V,V» : (U,V) S B})

Lemma VI.2.6. (Lemma 4.4 [KS98]) Suppose has a Taylor term. Foy,d € Con(A), lety, = m‘l(y) for
i = 1,2 whererg denotes the coordinate projectionsAgd) onto A andn; = kerrg. If C(y, §;0) holds, then

YoAMAD =0=yiANoADys.

Theorem VI.2.7. (Theorem 4.8 [KS98]) For a variety, the following are equivalent:
(1) V has a weak difference term.
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(2) V is strictly active.
(3) V has an idempotent term which interprets as a malcev operation in abeliarealgedmsequently,
abelian algebras are affine.

Proof: Assume (1) holds and letxy2) be the weak difference term. Léte V and suppose,f,y €
Con(A) such thar A\B=a Ay=0. Let(a,b) € a A(Boy)= 0. Then there exists € A such thabBeyb.
Then

a0, B]c(bba)yc(bea LBc(baa)[o, O]b.

Since[B,a] = [y,a] = 0 we havel Vv y,a] = 0. This implies[8,0] < [BVy,a] =0 and so(a,b) € yo 3.
We have established
an(Boy)Cyop.

This is precisely condition (1) in Theorem VI.2.1, and so we seeWXhatstrictly active.

Now, assumé is strictly active. Itis easy to see that neitNgy(X,y) norMc(x,y) can be satisfied by any
interpretation by ternary projections, and so by a result of Walter TayMg8, Lemma 9.4]V has a Taylor
term and so we may make use of Lemma VI.2.6. AetV be an abelian algebra. Thék, 1] = 0a which
impliesC(1a, 1a;0a) in A. In the notation of Lemma V1.2.8)(1a) = A% and 7t 1(1a) = 1. and therefore,

A1,1, A1 = 0= D1,1, A No.

For anya,b € Awe have((a,a), (b,b)) € A1, 1, A (oo N1), and so by the remark proceeding Theorem
VI.2.1 we see that(a, a), (b,b)) is a Malcev pair irA%. But this just meanga, b) is a Malcev pair inA. We
have shown the term(xy2) in M¢(X,y) is @ malcev term for every abelian algebr@/inand so each abelian
algebra is affine.

Now, suppose&(xy2) is an idempotent term which is a malcev operation on abelian algebtadbive
pass to the variety generated by the idempotent reducts of algebfathien sincec(xyz) is idempotent, it
will interpret as a malcev operation for the idempotent reducts which atiaabe

Let 6 be a congruence ¢t € V and(a,b) € 6. If 6 =[6, 6], thenc(bba)[0, 8]a[0, B]c(abb). In case
[0,0] < 6, we factor by[6, 0] and observe thaff is abelian overff, 8]. Then eachf/[6, 8]-class is an
abelian subalgebra of the idempotent reducAgf0, 8], and soc(abb)/[0, 6] = a/[8, 6] = c(bba) /[0, 6].

It follows thatc(xy2) is a weak difference fov. e

RemarkVI.2.8. The implication(2) = (3) required the use of a Taylor term. For general varieties, strictly
active is a stronger condition than having a Taylor term [KS98, Ex.4.43 plossible to use the disjunctive
characterization to prove Lemma VI.2.6 directly?

VI.3  Applications

Here is an immediate applicaton of the disjunction characterization in Theorén8VFFor a finite reflexive
tournamenfl, CSPT ©) will denote the constraint satisfaction problem over the structure whistatée
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singleton unary relations in addition to the edge relatioh.dih [LarO6], Benoit Larose proves the following
theorem.

Theorem VI.3.1. Let T be a finite reflexive tournament. Th&nadmits a Taylor operation if and onlyTf
is transitive. IfT is transitive, then the problem CSP is in P, and it isNP-complete otherwise.

The second statement follows immediately from the first, since transitive toemta are precisely
linear orders, and so admit the lattice operations of max and min([JCC98})last statement follows since
the relational structur&® is a core, and it is known that if a core relational structure does not adraitlar
operation, then CSPF() is NP-complete [BKJ0O].

The strategy of Larose’s proof for the first statement is to consideunatesexample of minimal cardi-
nality, and first show that it must have strictly more than three elements. Thadstep is to argue with
the local combinatorics and produce a smaller counterexample, obtainingradiotion. The first step is
achieved by an application of a highly non-trivial and involved constraativa homotopy theory for finite
reflexive binary structures developed in [LT04] and [Lar06]. Otstfapplication of Theorem VI.2.3 is to
provide an entirely elementary proof of this result; actually, a strongaitresn be achieved.

LetR< T" be in the relational clone determined Byequivalently, there is a primitive positive formula
Y(X1,..., %) in the edge relation of such thaR= Ry, . x,) = {(a1,..,an) : T = Y(ay,...,an)}. Forany
verticesva, .,,,Vo-1 € T, the unary relatioByx, v;,..v,) =12 € T : T = (a,vy,...,Vn) } may not be in the
relational clone generated By, but it will be closed under the idempotent polymorphismg ofWe call
such unary relationSy,y, v, ... v,) inferred idempotent subalgebras

For a finite relational structur¥, IdAlg (X) denotes the non-indexed algebra with the same universe as
X and whose operations are all the idempotent polymorphisms.

Theorem VI.3.2. Let T be a finite tournament(not neccessarily reflexive)T fontains a 3-cycle with at
least two loops, theill is not closed under a Taylor polymorphism; consequently, T9R¢ NP-complete.

Proof: For contradiction, assume there exists a finite tournament which contaityae3with at least
two loops and is closed under a Taylor operation. Tdte such a tournament of minimal cardinality. Let
a— b— c— abe a 3-cycle inT and without loss of generality, we may assume the verticaad b
have loops. By Corollary VI.2.3V(IdAlg (T)) satisfies the disjunctive condition in (5). Suppdagb) is

a Malcev pair. Theib = c(aab) — c(abb) = a which is a contradiction. It must be the case tf@b) is a
Willard pair, and so také (xy2), g(xy2 such thatf (xyx) ~ g(xyx) and

f(aab) = g(aab) <> f(abb) # g(abb).

If it were the case that(aab) # g(aab) and f (abb) = g(abb), setr(xy2 = f(zyx), s(xy2 = g(zy¥ and
noticer (xyx) ~ s(xyx). If T™ denotes the tournament formed by reversing the orientation of the edges of
T, thenT™" has the same polymorphismsBsWe then have a 3-cycle— a — ¢ — b in T with loops
atb anda wherer (bba) = s(bba) andr(baa) +# s(baa).
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So we may assumg(aab) = g(aab) and f (abb) # g(abb). We claim that there exists a vertexsuch
thata — w — b. Let suppose this is not the case. We shall argue for a contradictione Siandg are
polymorphisms ofT, there is an obvious homomorphism of the digrdplisee Fig.Vl.1a) intol' which
“fixes” the vertices{a,b,c}. It must be that{ f(aab),g(aab), f(bab)} C {a,b}. There are two cases to
consider.

f(beb)
P N

f(beh) f(bab)

f(abb) g(abb)

f(bab)

(b) H

@G

Figure VI.1: Digraphsz andH

Supposef (abb) = a. Theng(abb) = b anda — f(aab) — f(abb) = a implies f(aab) = g(aab) = a.
This reduces to a homomorphic mappinglbfisee Fig.VI.1b) intol. If f(bab) = a, then bylH we must
have f (bch) = a, butb — f(bcb) = a yields a contradiction. Iff(bab) = b, then f(bcb) =b. Now, b =
f(bcb) = g(bch) — g(cab) — g(abb) = b impliesg(cab) = b. But thenb = g(cab) — g(aab) = ayields a
contradiction.

Supposef (abb) = b. Then we must havg(abb) = aanda — f(aab) = g(aab) — g(abb) = aimplies
f(aab) = a. Again we have reduced to a consideratiodbflf f(bab) = a, then we must havé(bcb) = a,
but thenb — f(bcb) = ais a contradiction. Iff (bab) = b, thenb — f(bch) — f(bab) =bimplies f (bch) =
b. We haveb = f (bcb) — f(cab) — f(abb) = bwhich impliesf (cab) =b. Butthenb= f(cab) — f(aab) =
ais a contradiction.

So, there must exist a vertexsuch tha — w — b. We may assume — c to produce the configuration

If w <+ c, then we would consideF™¥ and notice the induced subtournament{anb, c,w} forms an
isomorphic configuration.

Define the subalgeba= {z: (3x) [(b — X) A (W — X) A (X— 2)]}. Then{a,b,c} C B and so by min-
imality, B=T. But thenw € B implies there existgg such that 2— xg andw — Xo — W. Sincexg # 2,w
andw # b, we arrive at the final contradiction which establishes the theosem.

In [Sig10], Mark Siggers proved that omitting type 1 for locally finite varietgesquivalent to a strong
malcev condition; namely, a locally finite variety omits type 1 if and only if it has aGable Taylor term.
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Sigger’s startling short proof was based on the fact that a finite irfeflesymmetric graph with a triangle
is not closed under a Taylor operation. This result is essentially establishBulatov’s reproof of théd-
dichotomy conjecture wheH is an irreflexive symmetric graph. Hell and $&fil[HN9O] first established
the dichotomy foH-coloring, and since then several authors in Bulatov[Bul05], Kun aredj&dy[KS09],
Siggers[Sig09] and Barto and Kozik[BK12] have provided alternatefsr of this important result with
varying levels of simplification. Our second application will be another ptioaf a finite irreflexive graph
with an odd symmetric cycle is not closed under a Taylor operation. Sinceroof is more algebraic,
we begin in the same manner as Bulatov[Bul05] by taking a minimal counterexamglasing primitive
positive formulas to enforce special properties; however, the disyenciiaracterization in Corollary VI1.2.3
will allow us to short-cut the main argument entirely.

Theorem VI1.3.3. Let G be a finite irreflexive digraph which contains an odd symmetric cycle. Thén
not closed under a Taylor polymorphism.

Proof: For a contradiction, suppose there exists a finite irreflexive digrapbhwdontains a symmetric
odd cycle and is closed under a Taylor operation. (et (V,E) be such a digraph of minimal cardinality.
By passing to the symmetric skeleton, we may ass@hig symmetric. We may also assuriecontains
a triangle. If this is not so, then &> 5 be the length of the smallest symmetric odd cycl&sin The
k-2-fold relational producEX—2 is a binary relation in the relational clone generated by the edge relation
E, and so is closed under the polymorphismsGof (V,E). Sincek > 5 is the length of the smallest odd
cycle inG, EX 2 is irreflexive. Letx <+ Xz ¢ -++ <> X ¢» X1 be a cycle inG. Then(xi, X 2modk) € E¥ 2
and (X, X +1(modg) € Ek-2 becausd is odd. AltogetherH = <V, E"‘2> is an irreflexive symmetric digraph
of the same cardinality a8 with a triangle and closed under a Taylor operation. Let 2<+> 3« 1 be a
symmetric triangle irG.

Note that every vertex is part of a triangle. To see this, observafatiff ais a vertex of a triangle.
If we restrict to the subalgebi®x) = {x € G : xE3x}, then by minimality, we must hav8= G. Also,
G cannot contain a complete graph on 4 vertices since the neighborhoog of ds vertices is a proper
pp-definable subset whch contains a triangle.

d

N

a b

NP

Figure V1.2: A rhombus

Claim: G cannot contain a proper rhombus(see Fig.VI1.2).
Proof: : For a contradiction(z contains a rhombus where the two non-adjacent vertices are distinct. We
will define a quotient graph fronix which will have smaller cardinality, contain a triangle, and be closed
under a Taylor operation. We start by defining a congruence. Caniddollowing primitive positive
formula

R(x,y) := 3u3av[E(x,u) AE(X,V) AE(u,v) AE(U,y) AE(V,Y)].
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ThenR(a,b) iff aandb can be connected as opposite vertices of a rhombus betthe transitive closure
of Rwhich is pp-definable sincé is finite. Since every vertex belongs to some trianglés reflexive, and
therefore 8 is a congruence. By assumptidhis non-trivial.

We showB does not contain an edge@f For a contradiction, suppose otherwise and chefsavhere
eandh are connected by a chainwfhombii of minimal possible length. H= 1, theneandf are vertices
of a complete graph on 4 vertices; therefare; 1. There are two cases to consider.

1 2 k+1 2k(2k+1)

Figure VI1.3: A chain of rhombii

If n=2kis even, themandh are connected by a chain of rhombii as in Fig.VI.3. Consider the subalgebr
defined by the pp-formula

SX):= 3 z1X1, Y122 - Xe—1Yk-1Z[E(a,z1) ANE(b, 1) ANE(z1,%1) AE(2Z1,¥1)
A E(x1, Y1) AE(X1,22) AE(Y1,22) A+ AE (-1, Yi-1) A B (X-1,Z)
A E(Yk-1,2) N E(Z,X)]

This formula says that € Sif E(u,v) for somev andv can be connected to the edgéa, b) by a chain of
k — 1 rhombii the same waly can be connected t6(a,b) in Fig.VI1.3. We see thab contains the triangle
on{ec,d}, and so by minimalityS= G. Buth € Simplies there exists some vertéxonnected th by a
chain ofn—1 = 2k — 1 rhombii. This contradicts the minimality of the chain.

If n=2k+ 1, then we can argue in the same manner using the subalgebra definegpyfthemula

SX):= 3 xay1z1---XWkZ[E(9, x1) AE(b,y1) AE(X1, Y1) AE(X1,21) ANE(Y1,21)
N E(ze, %) NE(z1,Y2) A - ANE (X, Vi) A E (X, %)
A E(Yk 2Z) NE(z, X))

Since both cases lead to a contradicti@rgannot identify an edge di. This implies the vertices of
any triangle are not identified b§. The quotient grapléz/6 is defined with vertex sefa/6:a<V} and
edge relation{(a/08,b/0) : E(a,b)}. If t(x1,...,X,) is a Taylor polymorphism ofz, thenG/6 admits a
Taylor operation defined bifa; /9, ...,a,/6) = t(a, ...,a,)/0. This is a polymorphism of:/6 sincef is
a congruence. Now, the quotient gra@ii6 is of smaller cardinality, has no loops, contains a triangle, and
is closed under the corresponding Taylor operation - contradicting the nlityimiaGG. This establishes the
claim.

By Corollary VI.2.3,V(IdAlg (G)) satisfies condition (5). Suppose there are two Malcev pairs. Without
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loss of generality, we may assurfie 2) and(1,3) are Malcev. Then % c¢(122) «+» ¢(331) = 1 which is
a contradiction. We must have at least one Willard pair. Without loss ofrgktyewe assumél,?2) is a
Willard pair and so there exidt g such thatf (xyX) ~ g(xyx) with f(122) = g(122) and f(112) # g(112)
(If it were the case thaf(112) # g(112) with f(122) = g(122), setr(xy2 = f(zyX), s(xy2 = g(zy¥ and
noticer ands provide the required pattern).

3
f(112)/ \
f(231) 2

NS

£(313)

f(122) ( 12)

g(231)

Figure VI.4: A leaf

Sincef andg are polymorphisms, there is a homomorphism of the leaf graph in Fig.VI.4 whiias"
the vertices(1,2,3}. By the previous claim, it must be the case th&31) = f(231) in G. But this forms
another rhombus which implieg112) = f(112), the final contradiction which establishes the theorem.

V1.4 A Next Step

In studying polymorphisms of finite digraphs, it appears the new chaizatien for Taylor varieties may
be useful. In the applications we considered, the arguments were moad’ ‘4ol reduced to the analysis
of a small and simple combinatorial configuration. Perhaps this approadiecgeneralized to more varied
settings. The following would be an interesting first start.

e Characterize those finite tree digraphs which admit a Taylor operation

e Characterize all finite tournaments which admit a Taylor operation. In platj¢iT is a finite smooth
tournament with two directed cycles,Tsclosed under a Taylor operation?
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