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CHAPTER I

DEFINABILITY IN SUBSTRUCTURE ORDERING

I.1 Introduction

In the paper [JM09a], Jaroslav Ježek and Ralph McKenzie introduce the following general situation. Let

K be a fixed T-class of structures over a finite signature where T denotes afixed type of axioms such as

equations, quasi-equations, or universal sentences. LetLK denote the collection of T-subclasses ofK which

usually forms a complete lattice ordered by inclusion. We may investigate if any ofthe following conditions

are met by the first-order structureLK :

1. the finitely generated T-subclasses are definable in the language of lattices, and each such T-subclass

is definable up to the automorphisms ofLK ;

2. the finitely axiomatizable T-subclasses are definable in the language of lattices, and each such T-

subclass is definable up to the automorphisms ofLK ;

3. the classes axiomatizable by a single T-axiom is a definable subset ofLK

4. the only automorphisms ofLK are the “obvious” ones.

If all of the above conditions are met we say that the T-theories ofK haspositive definability.

For an example of an “obvious” automorphism, letP be a poset. Reversing the direction of the ordering

produces a new partial order over the same universe, denoted byPop, where

a<P b iff a>Pop b.

The mapop : P→ Pop takes substructures to substructures and can be seen to preserve the relation of

embedding among posets. This meansop induces a non-trivial automorphism of the partially ordered set

of finite isomorphism types ordered by isomorphic substructures(embeddability); moreover, it is a non-

trivial automorphism when restricted to lattices and distributive lattices. In a series of papers [JM09a],

[JM10], [JM09b], [JM09c], Jězek and McKenzie investigated first-order definability in the substructure

relation restricted to the finite isomorphism types of various subclasses of ordered sets. One of the principal

results gathered from the separate papers is the following.

Theorem I.1.1. ([JM09a], [JM10], [JM09b], [JM09c]) LetU denote either the class of posets, lattices, or

distributive lattices. Let〈PU,≤〉 denote the poset of finite isomorphism types in the classU ordered by

embeddability. Then there exists a single typec∈ PU, such that every element of〈PU,≤,c〉 is first-order

definable; moreover,op is the only non-trivial automorphism ofPU.

If Semdenotes the poset of finite isomorphism types of meet-semilattices ordered by embeddability,

then every type is first-order definable in the order relation ofSem; in particular,Semhas no non-trivial

automorphisms.
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For meet-semilattices, posets, and distributive lattices, the Birkhoff dual of the substructure poset of

finite isomorphism types is isomorphic to the lattice of universal subclasses. Using this isomorphism and the

previous result, Jězek and McKenzie established positive definability for these universal theories. Lattices

do not form a locally finite class, and so the question of positive definability for the universal theory of

lattices remains tantalizingly open.

The case of ordered sets presents an additional remarkable result. In [JM10], it was shown that the

connected finite isomorphism types of ordered sets were first-order definable in the substructure relation. It

is a classical result of finite model theory, that among finite posets, the property of being connected is not

first-order finitely axiomatizable; that is, there is no first-order sentenceψ in the language of ordered sets

such that the finite models ofψ are precisely the connected ordered sets. In this regard, the substructure

theory may capture strictly second-order properties. Indeed, it was shownby Jezek and McKenzie[JM10,

Thm. 3.8] that in a certain sense, second-order finite axiomatizability among finite posets is equivalent to

first order definability in the poset of finite isomorphism types ordered by substructure.

Whereas the previous work analyzed sublasses of ordered sets, the present work extends the theory of

positive definability and definability in the substructure relation to the unordered structures of simple graphs

( which are irreflexive symmetric digraphs) in Chapter III and equivalence relations in Chapter IV. In both

cases, positive definability of the universal theories is achieved by establishing an analogue of Theorem

I.1.1. We go further and characterize the expressive power of first-order definability in the substructure

relation as equivalent to modeling full second-order properties when restricted to the finite members.

I.2 Outline of argument

In Chapter II, we establish the relationship between the lattice of universalsubclasses and the poset of finite

isomorphism types ordered by embeddability. The goal of this chapter is to provide a general template for the

investigation of positive definability of universal theories, and so we pursue the material in an abstract setting

and hope to be relatively thorough. The method does not work for arbitrary universal classes, and so the

additional assumptions we must make are those which are necessary to preserve the approach established in

[JM09a], [JM10], and [JM09b]. The chapter culminates with the proof of Theorem II.1.9 which guarantees

positive definability of the universal theories provided we can first prove each finite type is definable in the

poset of finite isomorphism types after adding a finite number of certain constants to the poset language.

An excellent and economical introduction to those aspects of model theory and first-order logic which

are utilized in this dissertation can be found in the first two sections of chapter5 in [BS81]. I will assume

the basic familiarity with first-order logic and structures which can be found there.

In Section II.2, we briefly introduce the long-standing Reconstruction conjectures for finite ordered sets

and simple graphs. We observe, as in [JM10], that the question of positive definability provides an excellent

application for the affirmative resolution of these conjectures.

In Chapter III, we explore definability for finite isomorphism types of simple graphs under the sub-

structure relation. Definability in this poset appears quite expansive, andwe shall be able to conclude its

elementary theory is undecidable and non-finitely axiomatizable. We establish the hypothesis required in

Theorem II.1.9 and thereby conclude positive definability for the universal theories of simple graphs. This

2



exploration culminates in Proposition III.7.1 of Section III.7 where it is showneach isomorphism type is de-

finable. In the remaining part of the chapter, we establish the connection between definability in the poset of

finite isomorphism types with the second-order language of graphs. The connection passes through the first-

order language of a small category which is introduced and examined in Section III.9. This development

follows very closely that of [JM10, Sec.3] which was the original inspiration for this work.

In Chapter IV, we turn our attention to the universal theory of equivalence relations. The poset of

finite isomorphism types ordered by the substructure relation at first appears quite transparent, and so it is

somewhat surprising, at least to the author, that we are able to interpret arithmetic and thereby conclude

its elementary theory is both undecidable and non-finitely axiomatizable. Positive definability here follows

more readily than in the case of simple graphs since Set Reconstruction holdsfor equivalence relations.

In order to establish the connection between definability in the poset of finite isomorphism types and the

second-order language, we must do more work. This culminates in Section IV.5.

Then in Chapter V, we look at some questions which arise from the work of the previous chapters.
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CHAPTER II

UNIVERSAL CLASSES

In this chapter, we are concerned with classes of structures modeled by universal sentences. We will

establish some conditions on a universal class for which positive definability of the universal theories is

reduced to investigating definability in the isomorphic substructure relation of itsfinite members. When we

refer to a class of structuresK over a fixed signature, we always assume it is closed under taking isomorphic

structures.

II.1 Definability inLU

For a fixed signature, a first-order formulaφ(x1, ...,xn) is said to be open if it contains no quantifiers. A

formula is inprenexform if it looks like

Q1y1 · · ·Qmymψ(x1, ...,xn)

where eachQi is a quantifier, some of theyi ’s may refer to the variablesx j , andψ(x1, ...,xn) is an open for-

mula. A standard result guarantees that every formula is logically equivalent to some formula in prenex form,

which provides a canonical description for choosing interesting speciesof formulas. We may define one such

species by saying that a formula isuniversalif it is logically equivalent to a prenex formula with only uni-

versal quantifiers. Recall, for any positive integern there is a first-order sentence∃x1 · · ·∃xnΨ≥n(x1, ...,xn)

using only existential quantifiers such that for any structureB in any signature,B� ∃x1 · · ·∃xnΨ≥n iff |B| ≥ n;

for example, we can take forΨ the following open formula

Ψ(x1, ...,xn) :=
∧

i< j

xi 6≈ x j .

Then∀x1 · · ·∀xn¬Ψ≥n(x1, ...,xn) is a universal sentence which asserts a structure has at mostn−1 elements.

For a set of first-order sentencesΘ in some fixed signature, Mod(Θ) is the class of structures in the

same signature which satisfy every sentence ofΘ. We sayU is auniversal classif U = Mod(Θ) for some

set of universal sentencesΘ. Universal classes can be described in an alternate manner. For a class R,

S(R) will denote the class of structures isomorphic to substructures of structures in R. The classPU(R)

will consist of those structures isomorphic to ultraproducts of structures from R. We shall make use the

following characterization of universal classes.

Theorem II.1.1. [BS81, Thm 2.20] For any class of structures over a fixed signature, the following are

equivalent:

1. K is a universal class

2. K is closed underSandPU
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3. K= SPU(K∗) for some classK∗

For a non-empty class of structuresK, the universal class generated byK, denoted byU(K), is by

definition the smallest universal class containingK. The previous theorem implies we may takeU(K) =

SPU(K).

A classK is said to belocally finite if all finitely generated substructures of structures inK are finite.

ForR ⊆K, we sayU(R)∩K is the universal class generated byR relative toK. If R =Mod(Θ) ∩ K for

some set of universal sentencesΘ, thenR is called a universal class relative toK. It is easy to see that

both simple graphs and ordered sets form locally finite universal classes. As an ordered structure in a single

binary relational signature, lattices do not form a universal class sincethey are not closed under substructure.

In the signature of two binary operations, meet and join, lattices do indeed form a universal class, but it is

not a locally finite.

Lemma II.1.2. For a locally finite classK closed under substructures, the relative universal subclasses are

determined by their finite members.

Proof: Let R, P be relative universal subclasses ofK. If they do not have the same finite members, then

clearlyR 6= P.

SupposeR 6= P. Then without loss of generality, there existsP∈ P (and also inK) such thatP /∈R, and

so there exists a universal sentenceφ such thatP2 φ , butφ is satisfied by every structure inR. Since only

finitely many variables appear inφ , there exist{a1, ...,an} ⊆ P such thatD = SgP(a1, ...,an) ≤ P is a finite

structure andD 2 φ . This impliesD /∈ R. •

LetK f in denote the class of finite structures inK.

Lemma II.1.3. For a classK of structures of finite signature, we haveU(K) f in ⊆ S(K) f in.

Proof: From Theorem II.1.1, we haveU(K) = SPU(K). Let B≤ ∏U Pi be a finite substructure of an

ultraproduct fromK. For all
{

ā1, ..., ān, ān+1, b̄1, ..., b̄m
}
⊆ B, operation symbolf and relation symbolR, if

in B we have

f (ā1/U, ..., ān/U) = ān+1/U and R(b̄1/U, ..., b̄n/U),

then by definition of the ultraproduct the sets

J f (ā1, ..., ān) = ān+1K = {i : Pi � f (ā1(i), ..., ān(i)) = ān+1(i)}

JR(b̄1, ..., b̄n)K =
{

i : Pi � R(b̄1(i), ..., b̄n(i))
}

all belong to the ultrafilterU. If B= {ā1/U, ..., āp/U}, then since the signature is finite the intersection of

all these sets forB together withJΨ≥p(ā1, ..., āp)K is non-empty and belongs toU. If k is a coordinate in this

intersection, then it is straightforward to see thatB embeds intoPk; therefore,SPU(K) f in ⊆ S(K) f in. •

For a universal classU, the universal classes contained inU may be ordered by containment; moreover,

the order is a lattice order with meet given by intersection and the join of subclassesK andV given as
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K∨V = SPU(K∪V) by Theorem II.1.1. The lattice of universal subclasses ofU is denoted byLU. When

we refer to definability inLU, we refer to relations of the latticeLU definable by first-order formulas in the

language of lattice theory.

For two structuresA andB in the same signature, we writeA≤ B if A is embeddable intoB; i.e., A is

isomorphic to a substructure ofB. For a non-empty classK in a finite signature, we may consider the relation

≤ of embeddability among the finite members. This naturally defines a quasi-order, and so by passing to

the natural quotient by symmetric pairs, we arrive at the poset of finite isomorphism types〈PK,≤〉 often

denoted simply asPK. Since elements ofPK denote equivalence classes of isomorphic finite structures, we

often refer to the order ofPK as the substructure relation.

Recall for a posetP, the order ideals ofP form a distributive lattice under the operations of set intersec-

tion and union. This lattice is the Birkhoff dual ofP and is denoted byO(P).

Corollary II.1.4. For a locally finite universal classU of finite signature, we have the isomorphismLU ≈

O(PU).

Proof: For a universal subclassK, we mapφ(K) =K f in. SinceK is closed under substructures,K f in is

an order ideal under≤. Using Lemma II.1.3, for any universal sublcassesK andR we see that the join in

the lattice of universal classesK∨R = SPU(K∪R) implies(K∨R) f in = SPU(K∪R) f in ⊆ S(K∪R) f in =

S(K) f in ∪S(R) f in; therefore, the mapφ preserves joins. As the meet operation is just intersection in both

lattices,φ is easily seen to preserve meets. Finally, Lemma II.1.2 guaranteesφ is a bijection.•

In particular, the lattice of universal subclasses ofU is complete. An elementa in a latticeL is said to be

strictly join-irreducible if whenevera=
∨

X for some set of lattice elementsX, thena∈ X. For any poset

P, the strictly join-irreducible elements ofO(P) are the principal order ideals. The property of an element

being strictly join-irreducible is preserved under isomorphism.

Lemma II.1.5. In a complete lattice, an elementx is strictly join-irreducible iffx has a unique lower cover.

The set of strictly join-irreducible elements is first-order definable.

Proof: Let L be a complete lattice. Supposex is strictly join-irreducible and setY = {z∈ L : z< x}. If

x=
∨

Y = b, thenx∈Y; a contradiction. Sob< x, and ify< x, then by definition we havey≤ b; therefore,

b is the unique lower cover ofx .

Supposex has a unique lower coverx∗≺ x. If x=
∨

B, then there existsy∈B such thaty> x∗; otherwise,
∨

B≤ x∗ ≺ x, a contradiction. This meansy= x and so,x is strictly join-irreducible.

The property thatx has a unique lower cover can be given a first order description; for example,

(∃z)[(z< x)∧ (x� z)∧ ((∀y)((y< x)∧ (x� y)→ y≤ z))]

•

A classR of structures has thefinite embedding propertyif for any finite set of finite structures{Ai}
n
1⊆

R, there is a finite structureB ∈ R such thatAi ≤ B for 1≤ i ≤ n. Many classes have this property; for

example, simple graphs, groups, rings, lattices, posets, and equivalence relations.
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A universal classR is finitely generatedif there is a finite setJ of finite structures such thatR = U(J).

A universal classR is finitely axiomatizableif there is a finite setΘ of universal sentences such thatR =

Mod(Θ). For a positive integerN, letRN denote the subclass ofN-generated substructures. In general, for a

locally finite class and fixedN, all theN-generated substructures will be finite, but there is no a priori reason

that their cardinalities should have a finite bound.

From this point on, we shall assume the universal classU is locally finite, of finite signature, has the

finitely embedding property, andUN is finite up to isomorphism for eachN.

Lemma II.1.6. A universal subclassK ⊆ U is finitely generated iffK is contained in a strictly join-

irreducible universal subclass.

Proof: If K = SPU(P1, ...,Pn), let P∈ U f in such that eachPi →֒ P. ThenK ⊆ SPU({P}) and so,φ(K) =

K f in ⊆ S({P}) = (P]; therefore,K⊆ φ−1((P]) which is strictly join-irreducible.

Likewise, ifK⊆R whereR is strictly join-irreducible, thenφ(R) = (P] for someP∈U f in. This implies

K f in ⊆R f in = S(P), and soK f in is finite up to isomorphism. This impliesK is finitely generated by Lemma

II.1.2. •

Lemma II.1.7. LetU be a finitely axiomatizable universal class. A universal subclassK⊆ U is finitely ax-

iomatizable iff up to isomorphism there are only finitely many finite structures minimal under embeddability

among structures ofU outside ofK.

Proof: Let Θ be a finite set of universal sentences such thatU = Mod(Θ). Suppose there exist finitely

many finite structuresP1, ...,Pn /∈ K such that for allB /∈ K somePi ≤ B. Let Ψ be the sentence “I have

a substructure isomorphic to someP1, ...,Pn”. Notice thatΨ can be taken to be a disjunction of existential

sentences.

If A� ¬Ψ, thenA does not embed anyPi and so by definition of theP1, ...,Pn, we must haveA∈K.

If A∈K, butA� Ψ, then somePi ≤ A which impliesPi ∈K, a contradiction; thus,A� ¬Ψ.

Altogether we have thatK= Mod({¬Ψ,Θ}) and¬Ψ is universal.

Conversely, supposeK=Mod(Σ) whereΣ is a finite set of universal sentences. We may assumeK is a

proper universal subclass. ThenKc∩U = Mod(
∨
{¬φ : φ ∈ Σ})∩U. Let N denote the maximum number

of variables used in¬φ for all φ ∈ Σ. Then for any structureA∈U, we have thatA /∈K iff A� ¬φ for some

φ ∈ Σ which implies there exists a finite substructureB≤ A such thatB� ¬φ andB is at mostN-generated.

We have shown thatA /∈K iff S(A)∩ (UN∩K
c) 6= /0. This shows the minimal structures ofU outside of

K are contained inUN which, by hypothesis, is finite up to isomorphism.•

Proposition II.1.8. Let U be a finitely axiomatizable universal class. The finitely generated and finitely

axiomatizable universal subclasses ofU are first-order definable inLU.

Proof: By Lemma II.1.6 and Lemma II.1.5, “K such thatK ⊆ R for someR which has a unique lower

cover” yields a first-order definition for the finitely generated universal subclasses. The proposition will be

complete with the proof of the following claim.
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Claim: K is finitely axiomatizable iff there exists a finitely generated classN such that∀M, M�K⇒

M∧N �K.

Proof: SupposeK is finitely axiomatizable. By Lemma II.1.7 letP1, ...,Pn be a representative list of the

finite minimal structures outside ofK. ThenN = SPU(P1, ...,Pn) is finitely generated. IfM�K, then there

existsR∈M, but R /∈ K which implies somePi ∈ N∩M; therefore, the intersection is not empty and in

particular,N∧M�K.

For the converse, suppose thatN is is finitely generated by someP1, ...,Pn. ThenN = SPU(P1, ...,Pn) =

S(P1, ...,Pn), and without loss of generality we may further assumeS(P1, ...,Pn) ⊆ {P1, ...,Pn}. Let R be

the class of structures of(U∩Kc) f in minimal under substructure. For eachB ∈ R, setKB = SPU({B}).

ThenKB � K impliesKB∩N � K, and so there existsF ∈ (KB∩N) f in such thatF /∈ K. This means

F ∈ {P1, ...,Pn} up to isomorphism, and so by Lemma II.1.7,K is finitely axiomatizable.

This finishes the claim and the proposition.•

The above proposition characterizes the finitely axiomatizable universal classes as those classesU(Fc)

whereF is a finitely generated order filter in〈PU,≤〉. The finitely generated universal classes are those

classesU(I) whereI is a finitely generated order ideal.

For any posetP, AutP will denote the group of automorphisms of the posetP. For any automorphism

φ ∈ AutP andJ ∈ O(P), the setφ(J) = {φ(a) : a∈ J} is an order ideal and soφ naturally determines an

automorphism ofO(P). In this way, the automorphisms of the posetPU induce automorphisms of the

down-set latticeO(PU), and by using Corollary II.1.4, automorphisms of the latticeLU. The next theorem

provides conditions which guarantee these automorphisms are the only automorphisms ofLU.

Whenever a groupG acts on a setX there is an induced action onn-tuples of elements(x1, ...,xn)
g =

(xg
1, ...,x

g
n). To fix notation, let{(x1, ...,xn)}

G = {(x1, ...,xn)
g : g∈G} denote the orbit of(x1, ...,xn) under

G.

Theorem II.1.9. [JM10, Thm 2.35] LetU be finitely axiomatizable. Suppose there exist distinct finite iso-

morphism typesc1, ...,cm such that each element ofPU is definable in the pointed poset〈PU,≤,c1, ...,cm〉.

Suppose the set

{(c1, ...,cm)}
Aut(PU)

is definable inPU without constants. Then each finitely generated universal subclass and finitely axiomati-

zable universal subclass ofU is definable up to the automorphisms ofLU induced by the automorphisms of

PU; moreover, the automorphisms induced byPU are the only automorphisms ofLU.

Proof: By Corollary II.1.4 and Proposition II.1.8, we may attain the result by showing individual defin-

ability of those order idealsI ∈ O(PU) which are finitely generated ideals or the complements of finitely

generated filters.

Let I be an order ideal which is finitely generated or the complement of a finitely generated filter. We

need to show that{I}Aut is first order definable inO(PU). There are finitely many finite structuresP1, ...,Pn

such that

I =
{

B∈ U f in : B≤ Pi for some 1≤ i ≤ n
}
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or

I =
{

B∈ U f in : B� Pi for 1≤ i ≤ n
}
.

It is convenient to denote the principal order ideal generated byB asB ↓. Since the mapΨ : PU→

O(PU) taking c to c ↓ is an order-embedding, Lemma II.1.5 implies eachP1 ↓, ...,Pn ↓ is definable in the

pointed latticeO(PU) with constantsc1 ↓, ...,cm ↓. This means for each 1≤ i ≤ n, there is a first-order

formulaψi(x,y1, ...,ym) in the language of lattices such thatPi ↓ is the unique elementa0 such thatO(PU) �

ψi(a0,c1 ↓, ...,cm ↓). Also, by hypothesis there is a first-order formulaε(x1, ..,xm) which defines the set

{(c1 ↓, ...,cm ↓)}
Aut.

For ease of notation, let+ denote the lattice join operation inO(PU). Let Φ(x) be the formula

(∃y· · ·∃ym)(∃x1 · · ·∃xn)[ε(y1, ...,ym)∧
∧

1≤i≤n

ψi(xi ,y1, ...,ym)∧x= x1+ · · ·+xn]

andΘ(x) be the formula

(∃y· · ·∃ym)(∃x1, ...,xn)[ε(y1, ...,ym)∧
∧

1≤i≤n

ψi(xi ,y1, ...,ym)]∧ (∀z)[z≤ x↔
∧

1≤i≤n

xi � z].

The claim is thatO(PU) � Φ(A) iff A= φ(I) for someφ ∈ AutO(PU) whereI is the order ideal gen-

erated byP1, ...,Pn; andO(PU) � Θ(B) iff B= φ(J) for someφ ∈ AutO(PU) whereJ is the largest order

ideal omitting eachP1, ...,Pn.

To verify the claim, suppose thatO(PU) � Θ(B). Let Y1, ...,Ym andX1, ...,Xn be the elements which

witness the satisfaction ofΘ(B). Then we have that

O(PU) � ε(Y1, ...,Ym)

O(PU) � ψi(Xi ,Y1, ...,Ym)

for i = 1, ...,n. It follows that(Y1, ...,Ym) = (c1 ↓, ...,cm ↓)
φ for some automorphismφ .

Consider the order idealφ−1(B). ThenO(PU) � Θ(φ−1(B)) with witnessesφ−1(Yi) = ci ↓ andφ−1(Xj)

for i = 1, ..,mand j = 1, ...,n. The fact thatO(PU)�Θ(φ−1(B)) impliesφ−1(B) is the largest element which

fails to be above any element of the set{P1 ↓, ...,Pn ↓}; i.e., φ−1(B) avoids eachPi and soφ−1(B) = J. So

we haveB = φ(J). Since it is straightforward to see thatO(PU) � Θ(J) andO(PU) � Θ(φ(J)), we have

shownJ is definable up to the automorphisms.

Suppose thatO(PU) � Φ(B). Then as before, we have witnessesY1, ...,Ym and X1, ...,Xn such that

(Y1, ...,Ym) = (c1 ↓, ...,cm ↓)
φ for some automorphismφ .

We see thatO(PU) � Φ(φ−1(B)) with witnessesφ−1(Yi) = ci ↓ andφ−1(Xj) for i = 1, ...,m and j =

1, ...,n. ThenO(PU)�ψ j(φ−1(Xi),c1 ↓, ...,cm↓) impliesφ−1(Xj) =Pi ↓ for i = 1, ...,n. We can also see that

O(PU)�Φ(φ−1(B)) impliesφ−1(B) is the join of the principal ideals generated by theφ−1(X1), ...,φ−1(Xn);

thus,φ−1(B) = I which impliesB= φ(I). Again, since it is clear thatO(PU) � Φ(I) andO(PU) � Φ(φ(I)),
we have shown theI is definable up to the automorphisms.

To finish the theorem, supposeσ is an automorphism ofO(PU). Since the relation{(c1, ...,cm)}
Aut(PU)
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is definable, then by the above there exists someφ ∈ Aut(PU) such thatσ(ci ↓) = φ̄(ci ↓) for i = 1, ...,m

whereφ̄ is the unique automorphism ofO(PU) induced byφ . Then the automorphism̄φ−1 ◦σ fixes each

ci ↓.

Claim: Any automorphism ofO(PU) which fixes eachci ↓ is the identity.

Proof: Let τ be an automorphism ofO(PU) which fixes eachci ↓. By the above, for each principal order

idealB there is a first-order formulaψ(x,y1, ...,ym) in the language of lattices so thatB is the unique element

such thatO(PU) � ψ(B,c1 ↓, ...,cm ↓). ThenO(PU) � ψ(B,c1 ↓, ...,cm ↓) impliesO(PU) � ψ(τ(B),τ(c1 ↓

), ...,τ(cm ↓)) and therefore,O(PU) � ψ(τ(B),c1 ↓, ...,cm ↓). This forcesτ(B) = B and soτ fixes every

principal order ideal. Since any order ideal is the complete join over the pincipal order ideals generated by

its members, it must be the case thatτ fixes every ideal, and so is the identity. This finishes the claim.

It follows from the claim that̄φ−1◦σ = id and therefore,σ = φ̄ . It now follows that the automorphisms

of LU are just the induced automorphisms ofPU. •

In Chapters III and IV we will explore first-order definability in the substructure relation for simple

graphs and equivalence relations. Each universal class is locally finite, of finite signature, has the finite

embedding property, and has up to isomorphism only finitely manyN-generated structures for eachN.

Furthermore, in the respective partially ordered sets of finite isomorphism types we will show that each

isomorphism type is definable by adding an additional constant to the language. Since in each case, the

orbits of the constants under automorphism will be definable without constants, the conditions of Theorem

II.1.9 will be satisfied, and so we will have established positive definablity for each class.

II.2 Reconstruction

Let D be the class of digraphs; that is, structures in a single binary relation. Fora finite digraphA andx

a vertex ofA, we letA− x denote the substructure restricted on the remaining elements. If the digraphA

has vertex setV(A) and edge setE(A), thenA− x is the digraph with vertex setV(A)\{x} and the edges

are exactly thoses edges ofE(A) which are not incident withx. In the case of digraphs, our general notion

of substructure is often referred to as an induced subdigraph. Thedeckof a digraphA is the multiset

defined asD(A) = {A−x : x∈V(A)} where we allow repeated elements in the caseA− x ≈ A− y for

x 6= y; in particular, the cardinality ofD(A) is equal to the cardinality ofA. In the deck, we only consider

the isomorphism types of the one vertex-deleted induced subdigraphs, soif A andB are isomorphic finite

digraphs, then they will have the same decks. The general Reconstruction question asks ifA andB have the

same decks, then is it true that they are isomorphic?

If we consider a subclassK ⊆D closed under one-element deletions, then the reconstruction question

can be posed for the finite digraphs inK. It may be that reconstruction can be answered in the affirmative

for all pairs of finite digraphs fromK excluding a finite list of structures. In this case, we will slightly abuse

terminology and say reconstruction holds forK if it is true for all structures larger than a predetermined

cardinality; consequently, it is said to fail inK if it fails for an infinite family of pairs of structures.

The question of reconstruction appears in print for simple graphs in [Kel57] and for posets in [San85]
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(though in this paper it is mentioned the problem may stretch back almost a decade). In the case for graphs,

it is easy to see that the path on three vertices and the disjoint union of a path on two vertices with an

additional isolated vertex have the same decks, but are not isomorphic. Similarly, the three element poset

with a unique bottom covered by two incomparable elements and its opposite havethe same decks, but are

not isomorphic. The reconstruction conjecture for graphs and posets states that these are the only exceptions;

that is, reconstruction holds for simple graphs and posets of cardinality atleast four. The truth of this

conjecture is known for many subclasses of posets and graphs, but thefull conjecture remains quite open. A

good place to begin this topic is in the survey [Ram05].

In [Sto77] it was shown that reconstruction fails for digraphs. In fact,Stockmeyer showed the failure in

the particular universal class of tournaments and then modified his construction in [Sto81] to give several

lists of counterexamples for other digraphs.

There is a closely related question which appears in [Har64] which we describe in the general setting

of this chapter. For any locally finite universal classU of finite signature, takeA ∈ PU and consider the

setLA = {B∈ PU : B≺ A}; that is,LA is the set of lower covers in the poset of finite isomorphism types

ordered by the substructure relation. The Set Reconstruction question asks if

LA = LB ⇒ A= B (II.1)

Again, by an abuse of terminology, set reconstruction is said to hold in a class if (II.1) holds after excluding

finitely many counterexamples. One can see that set reconstruction implies reconstruction for those digraphs

closed under one-element deletions since digraphs with the same deck havethe same lower covers; posets,

simple graphs, and tournamants are particular examples. As a result, it is unknown if set reconstruction

holds for simple graphs and posets. Set reconstruction is known to hold for equivalence relations [PS04].

In the case of posets and graphs, the truth of set reconstruction may yielda quick proof of individual

definability. For this section, a countable posetP is said to begradedif there exists a sequence of subsets

P1,P2, .... which partitionP such that eachPi is a non-empty set of incomparable elements, and every element

of P covered by some element ofPi+1 belongs toPi . If PU is graded and eachPk consists of precisely those

structures with cardinalityk, then we say thatPU is graded by cardinality.

Lemma II.2.1. Suppose Set Reconstruction holds inPU for structures of cardinality at leastm> 1, and that

PU is graded by cardinality. If all structures of cardinality at mostm−1 are individually definable, then

every structure is individually definable.

Proof: Since the poset is graded by cardinality, we may use induction on the cardinality of types to show

each element at a given height is definable. Those structures of cardinality m−1 serve as the base of the

induction. If each structure at heightn> m−1 is definable, then by Set Reconstruction each structureA at

heightn+1 is uniquely determined by the set of lower coversLA, and so inductively, is the unique element

covering that particular first-order definable setLA of elements at heightn. •
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CHAPTER III

SIMPLE GRAPHS

We consider the class of simple graphsG which are those digraphs for which the binary edge relation is

irreflexive and symmetric. Simple graphs form a locally finite universal class. For two verticesu,v∈G, the

edge relation foru andv is denoted asu∼ v and it is said thatu andv are adjacent, or are connected by an

edge.

We are concerned with the notion of embedding; that is, an injective mapφ : G→ H such that for all

verticesu,v ∈ G, u∼ v iff φ(u) ∼ φ(v). Following the notation of Chapter II, we writeG≤ H if there

is an embeddingφ of G into H, and in this case, it is immediate thatφ(G) is a substructure ofH such

that G≈ φ(G). For graphs, the general model-theoretic notion of substructure corresponds exactly to the

definition of induced subgraph. If QGR denotes the finite simple graphs with vertex sets over the positive

integers, then the embedding relation≤ restricted to these graphs forms a quasi-ordered set〈QGR,≤〉. The

poset of finite isomorphism typesPG ordered by substructure is then just the quotient of〈QGR,≤〉 by the

equivalence determined by isomorphism.

While we are interested in definability in the posetPG, it will be more convenient to work within the

quasi-ordered set〈QGR,≤〉where we will speak of graphs definable up to isomorphism rather than definable

isomorphism types.

If G < H, but there does not existG < F < H, then we writeG≺ H and sayH coversG. It is easy

to see thatG≺ H iff G≤ H and|H| = |G|+1. It follows that the posetPG is naturally graded according

to cardinality, and so for each fixed positive integern those graphs at heightn (having cardinalityn) are

definable as having a maximaln-element chain in its principal order ideal. Notice this definition requires a

fixedn, and so those graph with cardinalityn+1 require a different package of formulas to define them. We

shall see later in Section III.6 how to capture the cardinality of arbitrary graphs in a uniform manner.

The graph with a single vertex is the unique bottom element inPG below every other element. We do

not consider the graph on an empty set of vertices.

WhenA≤ B, we will often without mention identifyA with a particular induced subgraphU of B such

thatU ≈ A. For example, ifA≺ B, then we will say thatB is formed fromA by adding an additional vertex

v to A and possibly some additional edges connectingv to vertices ofA. If v is a vertex ofG, thenG−v will

denote the induced subgraph on the vertices ofG omitting v; that is, the induced subgraph on the vertex set

V(G)−{v}.

There is an obvious automorphism of〈QGR,≤〉 (and ofPG) which is defined by edge complementation

and denoted byσ ; that is,σ(G) is the graph over the same set of vertices asG, butu∼ v in σ(G) iff u 6∼ v

in G. We shall see in Section III.7 that this is the only non-trivial automorphism ofPG.

Thecomplete graph, or clique, onm vertices is denoted asKm and is characterized as the unique graph

having every possible edge. Theempty graph, or trivial graph, onm vertices is denoted asNm and is

characterized as the unique graph having no edges. It is easy to see that both Km ↓ andNm ↓ are chains.

Thepathon n vertices is denoted byPn and is a graph isomorphic to the graphv1 ∼ v2 ∼ ·· · ∼ vn with no
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additional edges other than the ones specified. Thecircuit(or cycle) Cn is formed from the pathPn by adding

only one additional edgevn∼ v1.

The set of complete or empty graphs is definable.

Lemma III.0.2. The set{Km : m≥ 1}∪{Nm : m≥ 1} is definable inPG.

Proof: A graphG is in the above set iffG ↓ is a chain.

To see this, supposeG 6≈ Kn,Nk for anyn,k≥ 1. Then|G| ≥ 3 and so there exist verticesu,v,x,y such

that|{u,v,x,y}| ≥ 3 andu∼ v andx 6∼ y. ThenK2≤G andN2≤G, butK2 andN2 are incomparable.•

For two graphsG andH, we form a new graphG+H called the disjoint sum ofG andH by taking

the disjoint union of the two sets of vertices and allowing only those edges coming from G andH. This

can be visualised as placing the graphG by the side ofH. By construction, ifA≈ G andB≈ H, then

A+B≈G+H. We may consider the sum of more than two graphs, and so when taking many factors{Gi}

we can write the sum as∑Gi . This will yield a convenient general notation for simple graphs.

Two verticesa andb in a graphG arepath-connectedif there is a path inG starting froma and ending

atb; explicitly, if there is a sequence of verticesa= x1, ...,xn = b in G such thatxi ∼ xi+1 for i = 1, ...,n−1.

The graphG is connectedif every two vertices ofG are path-connected. We say an induced subgraphH of G

is a connected component ofG if H is connected, but no vertex ofG outside ofH is connected to any vertex

of H; in this case we can writeG as a disjoint sum ofH and the induced subgraph on the remaining vertices.

Naturally, any simple graph may be represented asG≈ ∑Gi whereGi are the connected components ofG.

Given two graphsG andH, we may construct a new graphG
∨

H called the join ofG andH by taking

G+H and adding every possible edge of the formu∼ v whereu ∈ G andv ∈ H. For example,Kp+q ≈

Kp
∨

Kq. Again, it is easy to see that ifA≈G andB≈ H, thenA
∨

B≈G
∨

H.

The graph on four vertices with only the edgesu∼ v∼ x∼ y∼ u andv∼ y will be denoted asB.

The graph on four vertices with only the edgesu∼ v∼ x andv∼ y will be denoted asK1,3. This graph

is often referred to as theclaw.

uv

x y u

v x

y

B K1,3

Figure III.1: GraphsB andK1,3

At this point, we will add the constantP3 representing the path on three vertices to form the pointed

quasi-ordered structure〈QGR,≤,P3〉. Unless otherwise specified, definability will refer to the language

{≤,P3}.

Definition III.0.3. For 0≤ k≤ n, let Kn+k N1 denote the graph constructed fromKn+N1 by arbitrarily

addingk new edges. It is easy to see the graphs are isomorphic no matter how thek new edges are added,

and so this produces a well-defined construction on isomorphism types. For example,Kn+n N1≈ Kn+1.
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If we denote the single vertex ofN1 by v, then we may defineNn+k N1 in a similar manner by addingk

distinct edgesu∼ v whereu is a vertex ofNn.

RemarkIII.0.4. For example,B≈ K3+2 N1 andK1,3≈ N3+3 N1.

Lemma III.0.5. For m≥ 1, the only covers ofKm are{Km+k N1}0≤k≤m, and the only covers ofNm are

{Nm+k N1}0≤k≤m

Proposition III.0.6. Every graph on at most four vertices is definable.

Proof: By Lemma III.0.2, the set{K3,N3} is definable, and so then{P3,P2+N1} is definable as the

remaining graphs at height three; therefore,P2+N1 is definable since we can call up the constantP3.

NowP4 is definable as the unique element coveringP3 andP2+N1, but not covering anything in{K3,N3}.

The circuitC4 is the element with the unique lower coverP3.

We would like to defineP3+N1. NoticeP3+N1 andK3+1 N1 both coverP3, P2+N1, and some graph

in {K3,N3}. We shall have recourse to uniquely define a graph which coversC4 which will help separate

P3+N1 from K3+1 N1. First, we see thatC4+N1 can be defined as the unique cover ofC4 which has exactly

two subcoversA andB, and if A≈C4, thenB 6≈ P4 and covers bothP3 andP2+N1. We can then recover

P3+N1 as the unique subcover ofC4+N1 which is not isomorphic toC4.

K3 is then defined as the complete or empty graph at height three which is notN3; consequently,K4 is

also definable. It follows thatK2 andN2 are separately definable.

The graphK3+1 N1 is definable as the unique element with lower coversP3,P2+N1, andK3.

K3+N1 is the only cover ofP2+N1 which also coversK3 and is not isomorphic toK3+1 N1.

K2+K2 is the element with unique lower coverP2+N1.

K2+N2 is the unique element with onlyP2+N1 andN3 as lower covers.

The graphB is definable as the unique cover ofP3 not equal toK3+1 N1, but which also coversK3.

The graphK1,3 is definable as the element withP3 andN3 as the only lower covers.

This accounts for every type inPG of height at most four.•

SinceK3 andN3 are separately definable, Lemma III.0.2 implies the sets of complete and trivial graphs

are separately definable.

Definition III.0.7. For a graphA, let cl(A) = n whereKn is largest clique which embeds inA, andi(A) = m

whereNm is the maximal trivial graph which embeds inA. A copy ofNm in A is called an independent set

of A; thus,i(A) is the size of a maximal independent set inA.

From the previous comments,cl(Γ) and i(Γ) are definable properties ofΓ. It is also easy to see that

i(G+H) = i(G)+ i(H).

To finish this section, we will show how to interpret the arithmetic of positive integers using disconnected

cliques. Corollary III.0.9 references results of Section IV.2.

Proposition III.0.8. The set{Γ : Γ is a disjoint sum of cliques} is definable.
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Proof: It is easy to see thatΓ is a disjoint sum of complete graphs iffP3 � Γ. •

There is an obvious way to associate a disjoint sum of cliques to any equivalence relation; for the

partitionπ = (n1, ...,nt) consider the graphΓπ = ∑t
i=1Kni . It is easy to see thatπ ≤ σ iff Γπ ≤ Γσ ; therefore,

the above proposition implies〈PE,≤〉 is definably present inPG. Corollaries IV.2.15 and IV.2.16 yield the

following.

Corollary III.0.9. The elementary theory of〈PG,≤〉 is undecidable and not finitely axiomatizable.

III.1 Circuits, Paths and Trees

A graphH is said to contain a graphG as a subgraph if there is a subset of verticesV and some subset of

edgesE with vertices inV such that the graph with verticesV and edgesE is isomorphic toG. This does

not imply G≤ H. For example,B containsC4 as a subgraph, butC4 � B; that is,B does not containC4 as

an induced subgraph.

A graph is said to beacyclic (or a forest) if it does not contain a circuit as a subgraph. The first result

says we need only consider induced subgraphs.

Lemma III.1.1. Γ contains a circuit as a subgraph iffΓ contains a circuit as an induced subgraph.

Proof: SupposeC ⊆ G is a circuit inG and writeC = x1 ∼ ·· · ∼ xn ∼ x1. If C � G, then there exists

i +1 < j, such thatxi ∼ x j , and soC
′
= x1 ∼ ·· · ∼ xi ∼ x j ∼ ·· · ∼ xn ∼ x1 is a smaller circuit. If we let

D⊆G be a circuit of minimal cardinality, then it follows thatD≤G. •

Lemma III.1.2. {A : A≈ ∑C, C is a circuit, |C|> 3} is definable.

Proof: The claim is thatA is in this set iff|A| ≥ 4, andP3≤ A, K1,3 � A, K3 � A, andA has a unique lower

cover.

It is straightforward to see that these conditions are necessary. We mustshow that they are sufficient.

SupposeA is a graph which satisfies the conditions. IfA is a circuit, then we are done. AssumeA is not

a circuit. Note thatP3≤ A impliesA is not an empty graph.

Claim: A is the disjoint sum of circuits and paths.

Proof: First, note the maximum degree of every vertex inA is two. Suppose not. Letv be a vertex of

A such that its neighborhoodN(v) = {u : v∼ v} has at least three vertices. If any two vertices ofN(v) are

adjacent, thenK3≤ A; a contradiction. Since|N(v)| ≥ 3 and no vertices are adjacent, the induced subgraph

on the verticesN(v)∪{v} embeds a copy ofK1,3; another contradiction.

Since every vertex has maximum degree two, it is not too hard to see thatA must be the disjoint sum of

circuits and paths. This finishes the claim.

SupposeA is the disjoint sum ofk circuits andr paths. Letv be a vertex of some circuit andu a vertex

of some path. ThenA−v hask−1 circuits, butA−u still hask circuits. This contradictions the fact thatA
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has a unique lower cover. SupposeA is only the disjoint sum oft paths. SinceP3 ≤ A, some pathP in the

sum ofA has at least three vertices. Letx be a terminal vertex inP and lety be a vertex of degree two inP.

ThenA−x is the disjoint sum oft paths, butA−y is the disjoint sum oft +1 paths; a contradiction.

It must be the case thatA is a disjoint sum of circuits. SinceA has a unique lower cover, all the circuits

must have the same length.•

For anyn 6= m, we see thatCn andCm are incomparable, and therefore, any two disjoint sums in the

previous relation are comparable iff they are dsjoint sums over the same isomorphic circuit. In this case, the

set of such sums over the same circuit are naturally linearly ordered according to the number of components;

of course, the minimal elements are just the circuits.

Proposition III.1.3. The set of circuits is definable.

Proof: If we denote the definable set in Lemma III.1.2 asCSUM, then we have the following definable

relationR= {(A,B) : A,B∈ CSUM,A≤ B}. It follows from the above discussion thatC is a circuit iff

C≈ K3, or

|C|> 3,C∈ CSUM, and∀B[(B,C) ∈ R→ B≈C]. •

We record the following corollary for use in the next section.

Corollary III.1.4. {(C,Γ) : C is circuit andΓ≈C+C} is definable

Proof: (C,Γ) is in the relation iffC is a circuit and

C≈ K3 andΓ is a disjoint sum of cliques,cl(Γ) = 3 andi(Γ) = 2, or

C≈C4 andC4 is the unique circuit strictly belowΓ, K1,3 � Γ, Γ has a unique lower cover, andi(Γ) = 4,

or

|C|> 4, Γ ∈ CSUM, Cm < Γ, and there does not existR∈ CSUM such thatCm < R< Γ.

The case whereC≈C4 requires some explanation. The first two conditions implyΓ is a disjoint sum

of copies ofC4 and possibly of some paths. SinceΓ has a unique lower cover, there cannot be any paths

present in the disjoint sum. The conditioni(Γ) = 4 implies there are only two copies ofC4 in the sum, that

is, Γ≈C4+C4. •

Corollary III.1.5. The set of forests is definable.

Proof: By definition,F is a forest iff it avoids every circuit. By Lemma III.1.1 and Proposition III.1.2, this

is a definable condition.•

Proposition III.1.6. The set of paths is definable. In addition, the following two sets are definable:

1) {(A,P) : A≈ Nm for some m andP≈ P2m}

2) {(A,P) : A≈ Nm for some m andP≈ P2m+1}

Proof: The set of paths are just those elements which are the unique lower covers of a circuit.

1) (A,P) is in this relation iffA≈ Nm for somem, P is a path,i(P) = m, andP covers a pathL
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such thati(L) = m.

2) (A,P) is in this relation iffA≈ Nm for somem, P is a path,i(P) = m, andP covers a pathL

such thati(L) = m−1. •

By considering circuits which cover the appropriate paths, those circuits of even and odd cardinality are

also separately definable.

Corollary III.1.7. {Γ : Γ is a disjoint sum of paths} is definable.

Proof: It is easy to see that a graph is strictly below some circuit iff it a disjoint sum of paths. The result

now follows from Proposition III.1.3.•

Proposition III.1.8. The lattice of universal subclasses of the universal class generatedby finite graphs has

cardinality the continuum.

Proof: The set of isomorphism types of finite circuits constitutes a denumerably infinite antichain in

PG, and so by Corollary II.1.4 the collection of universal classes generated by arbitrary subsets of finite

cycles forms a pair-wise distinct collection. Since universal classes of graphs are model classes over a finite

signature, the cardinality is precisely the continuum.•

Proposition III.1.9. The class of non-finitely generated universal subclasses of simple graphs is equal to

the union of the principal filters generated byU({Km : m< ω}) andU({Nm : m< ω}).

Proof: Clearly,U({Km : m< ω}) andU({Nm : m< ω}) are not finitely generated subclasses. Since simple

graphs form a locally finite universal class, a universal subclass is non-finitely generated iff it contains

infinitely many non-isomorphic finite simple graphs. The result is now just a direct application of Ramsey’s

Theorem.•

Definition III.1.10. For a,b in the same connected component ofΓ, let d(a,b) equal one less than the

cardinality of the shortest path inΓ connectinga to b. The diameter ofΓ is then taken to bed(Γ) =
max{d(a,b) : a,b in the same connected component ofΓ}. Whena,b are in different connected compo-

nents, setd(a,b) = ∞.

The distance between any two verticesa andb in the same connected component is always realized by

some path, sayP= a∼ x1 ∼ ·· · ∼ xn ∼ b. If xi ∼ x j for some j > i +1, then we may construct a shorter

path froma to b, contradicting the minimality ofP; thus, the distance is always realized by an embedded

pathP≤ Γ. SinceΓ is finite, the diameter is always realized by some path, and thus, by an embedded path.

While it is not always true thatA≺ B impliesd(A)≤ d(B) - considerA≈ P4 andB≈C5 - it is true for the

class of forests.

A tree is a connected forest. In the case of forests, any induced path betweentwo vertices is unique, and

so the diameter of a forest is just the length of the largest induced subpath.
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Proposition III.1.11. The set of trees is definable.

Proof: The claim is thatT is a tree iff T is a forest and for any forestD such thatT ≺ D we have

d(D)≤ d(T)+1.

SupposeT is a tree, then wheneverD is a forest such thatT ≺ D, we can constructD from T by adding

a new vertexx and at most a single new edgeu∼ x whereu∈ T. Let P≤ D realize the diameter ofD. If

x /∈ P, thend(T)≥ d(D). If x∈ P, thenx is a terminal vertex in the pathP since it has degree one; therefore,

we have a pathP≤ T such thatP is equal to adjoiningx to the end ofP≤ T. Then|P| ≤ d(T) which implies

d(D) = |P| ≤ d(T)+1.

Conversely, ifF satisfies the conditions, then we may writeF = ∑m
i=1Fi where eachFi is a tree. Note

there exists 1≤ k≤m such thatd(F) = d(Fk). If m> 1, then choosej 6= k and constructR, a cover forF ,

in the following manner: takeF and a new vertexv /∈ F , and add two new edgesa∼ v andb∼ v where

a∈ Fj andb∈ Fk such thatb is an end-vertex of a pathP≤ Fk which realizesd(Fk). It is easy to see that

d(R)> d(Fk)+1; thus, we must havem= 1 which impliesF is a connected forest.•

The above argument utilized the fact that the diameter for acyclic graphs was definable. If in general, the

diameter of a graph was a definable property, then one would hope an argument similar to that of Proposition

III.1.11 would yield the definability of the set of connected graphs. Explicitly, one would need the result

thatΓ is connected iff every upper cover increases the diameter by at most one. Unfortunately, this not true;

one can find counterexamples among trees and their covers which are notforests. We will have to take a

different approach to capture connected graphs in Section III.3.

III.2 Addition of Paths

It will be useful to do addition with paths instead of with cliques. The starting point is to observe that the

lower covers of a pathPk are precisely the pathPk−1 and the disjoint sumsPr +Pt wherer + t = k−1.

Lemma III.2.1. {(P,G) : P≈ Pm,G≈ Pm+Pm} is definable.

Proof: The claim is thatG≈ Pm+Pm iff

m= 1 andG≈ N2, or

m≥ 2 andG≺ E ≺Cm+1+Cm+1 for someE such thatG is acyclic.

To see this one merely has to observe that any acyclicG such thatG≺ E ≺Cm+1+Cm+1 must come

from deleting a single vertex from each of the components in the sum. ThatCm+1+Cm+1 is definable is

precisely Corollary III.1.4.•

Proposition III.2.2. {(A,B,P) : A≈ Pn,B≈ Pm,P≈ Pk wherek= n+m} is definable.

Proof: The claim is thatP≈ Pn+m iff P is a path, there exists a pathR such thatP≺ R, and there exists

G≺ Rsuch that

(1) G is not a path
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(2) Pn≤G andPm≤G

(3) If Q is a path such thatQ≤G, thenQ≤ Pn or Q≤ Pm

(4) If Pm≤ Pn we havePm+Pm≤G, and ifPn≤ Pm we havePn+Pn≤G

and for any pathE such thatF ≺ E andF satisfies (1) - (4), thenR≤ E.

To show these conditions are sufficient, supposeP satisfies the conditions and is covered by a pathR

andG≺ R. AssumeR≈ Ps and so,G≈ Pr +Pt wherer + t = s−1. Without loss of generality we may

taken≥ m. If r > n or t > n, thenPn+1 ≤ G, but Pn+1 � Pn andPn+1 � Pm which contradicts (3); thus,

r, t ≤ n. By (2), r = n or t = n, and so we may assumer = n. By (4), t ≥ m and so we can conclude that

n+m≤ s−1≤ n+n. For f −1 in the interval[n+m,n+n], eachPf has a lower cover which satisfies (1) -

(4), and so we must haves−1= n+mby the requirement of minimality. This impliesP≈ Pn+m.

Clearly,Pn+Pm≺ Pn+m+1 satisfies (1) - (4), and by the above argument any disjoint sum of two paths

which satisfies (1) - (4) must be covered by a pathPs with n+m+1≤ s≤ n+n+1 wheren≥ m. This

establishes the conditions are necessary, and completes the proof of the proposition.•

As a corollary we may establish the definability of the disjoint sum of two paths.

Corollary III.2.3. {(A,B,P) : A,B are paths andP≈ A+B} is definable.

Proof: P≈ Pn+Pm iff P≺ Pn+m+1, and

(1) Pn≤ P andPm≤ P

(2) If Q is a path such thatQ≤ P, thenQ≤ Pn or Q≤ Pm.

If P satisfies the conditions, thenP≈Pn+m or P≈Pr +Pt wherer+t = n+m. Without loss of generality,

assumen≥m. SincePn+1 ≤ Pn+m, by (2) we see thatP≈ Pr +Pt . Condition (1) impliesr ≥ n or t ≥ n. If

r > n, or t > n, thenPn+1 ≤ P and we arrive at a contradiction of (2); thus,r = n or t = n which implies

t = mor r = m, respectively.

As the necessity of the conditions is immediate, we have established the result.•

Since paths are the unique lower covers of circuits, we can also accomplishaddition with the definable

set of circuits in the obvious way.

Corollary III.2.4. {(A,B,C) : A≈Cn,B≈Cm,C≈Cn+m} is a definable relation.

III.3 Connectedness

In this section we will show the set of connected graphs is definable.

Lemma III.3.1. {(C,E) : C≈Cm andE ≈Cm+N1} is definable.

Proof: The claim is thatE ≈Cm+N1 iff

m= 3 andE ≈ K3+N1, or

m> 3 andCm≺ E, K1,3 � E, K3 � E.
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The necessity of the conditions is immediate.

For sufficiency, supposeE satisfies the conditions andE 6≈ K3+N1 . Then we may formE from Cm by

adding an additional vertexv and possibly some new edges connectingCm to v. Suppose there exista,b∈Cm

such thata∼ v andb∼ v. If a∼ b, then the induced subgraph on the vertices{a,b,v} is isomorphic toK3,

a contradiction. It must be the case thata 6∼ b, but thenK1,3≤ E when we consider the induced subraph on

the vertices{z,a,w,v} wherez∼ a∼ w andz,w∈Cm, another contradiction. So there can be at most one

new edge. Sincem> 3 we see thatK1,3≤ E if there is just one additional edge; therefore,E ≈Cm+N1. •

Let Path≥2 denote the set of graphs which are disjoint sums of paths with no isolated vertices.

Lemma III.3.2. Path≥2 is definable.

Proof: We will show the set of graphs which are disjoint sums of paths with isolated vertices is definable,

then the lemma will follow. Recall that the set of circuits forms an antichain underthe substructure ordering;

however, their unique subcovers, the set of paths, is linearly well-ordered. This implies there is a first-order

definable well-ordering≤∗ on circuits defined by

C≤∗ D if and only if P≤Q

for circuitsC andD andP≺C andQ≺ D.

The claim is thatG is a disjoint sum of paths with isolated vertices iff

|G|= 1 andG≈ N1, or

|G|= 2 andG≈ N2, or

|G|= 3 andG≈ N3, or G≈ K2+N1, or

|G|> 3 and

(1) G is a disjoint sum of paths

(2) If C is a circuit such thatG≤C, andC is the smallest circuitD under≤∗ such thatG≤ D,

then there exist circuitsE andF such thatE ≺∗ F ≺∗ C andG≤ E+N1.

The preceeding observations and Corollary III.1.7 guarantee these conditions are definable. For neces-

sity, assumeG is a disjoint sum of paths with isolated vertices and writeG≈ N1+∑r
i=1Pi . If n= ∑r

i=1 |Pi |,

thenCn+r+2 is the circuit of smallest cardinality which embedsG. Then∑r
i=1Pi ≤Cn+r and we setE≈Cn+r

for condition (2).

For sufficiency, assumeG satisfies the conditions and that|G|> 3. By (1),G is a disjoint sum of paths.

It is easy to see that ifG has no isolated vertices, thenG≤Ck iff G≤Ck+N1. LetC be the smallest circuit

under≤∗ such thatG≤C. If G has no isolated vertices then using (2),G≤ E whereE is a circuitE <∗ C;

a contradiction. It must be the case thatG has isolated vertices.•

RemarkIII.3.3. The first-order conditions for definability and the proof of the following proposition was

suggested by Ralph McKenzie. This will provide for a rather simple way to capture connected graphs in

Proposition III.3.6.

Proposition III.3.4. {(X,N,G) : N≈ Nm and G≈ X+Nm} is definable.
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Proof: The claim is thatG≈ X+Nm iff

G is trivial, X is trivial andi(G) = i(X)+m, or

G is not trivial, and

(1) X is not trivial andX < G

(2) i(G) = i(X)+m

(3) For every circuitC there exists a circuitC such that

(a)C<∗C

(b) There existsΓ such that

(i) X ≤ Γ andC≤ Γ, and for allH ≤ Γ, X ≤ H andC≤ H impliesH ≈ Γ
(ii) G≤ Γ
(iii) For all R≤ Γ such thatC≺ R, C+N1≈ R

(4) For allB∈ Path≥2, B≤G impliesB≤ X

We first tackle the argument for sufficiency. SupposeG satisfies the conditions. We may assumeG is

not trivial; otherwise, definability follows from addition with trivial graphs which is provided by Proposition

III.0.8 and the results of Section IV.2. We can representG asG≈ E+P whereE is the disjoint sum of

connected components which are not paths andP is the disjoint sum of all the connected components which

are paths. Also, writeX ≈ A+Q whereA the disjoint sum of connected components which are not paths

andQ is the disjoint sum of all the connected components which are paths. Suppose n= |Q| andQ hasr

components (all of which are paths). TakeCn+r = C in (3). LetC be the circuit withCn+r <∗ C given by

(3a).

Let Γ be the graph whose existence is guaranteed by (3b). Condition (iii) implies that any copy of the

circuit C in Γ must appear as a connected component, and sinceC≤ Γ, we can writeΓ ≈C+K for some

sum of connected graphsK. SinceX ≤ Γ, we must haveA≤ K. BecauseC∗ was chosen large enough such

thatQ≤C, we haveX ≤C+A≤C+K ≈ Γ; thus, by (i) we haveΓ≈ A+C. Note that

A+Q≈ X < G≈ E+P≤ Γ≈ A+C

impliesE ≈ A and so,G≈ A+P whereQ≤ P≤C.

We can further writeQ≈ F +Nt andP≈H+Nr whereF,H ∈ Path≥2. It is easy to see that wheneverK

is maximal among those graphsΦ ∈ Path≥2 such thatΦ≤ X ≈ A+Q≈ A+F +Nt , thenK ≈ J+F where

J ∈ Path≥2 and is maximal forJ≤ A. TakeJ̄ ∈ Path≥2 such thatJ̄≤ A and is of maximum cardinality. The

conditionQ≤ P implies F ≤ H. If F < H, thenJ̄+H ∈ Path≥2 and J̄+H ≤ G, and so by (4) we must

haveJ̄+H ≤ A+F which contradicts the choice of̄J. It must be the case thatF ≈H. Condition (2) implies

Nr ≈ Nt +Nm and so,

G≈ A+P≈ A+H +Nr ≈ A+F +Nt +Nm≈ A+Q+Nm≈ X+Nm.

To prove these conditions are necessary, assumeX is not trivial and writeX ≈ A+Q as before with

n= |Q| andr such thatQ hasr components (all of which are paths). Then for anyCn+r+2m <∗C notice that

Q≤C. We may then takeΓ≈ A+C and it is straightforward to check conditions (3) and (4) are satisfied.•
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The previous proposition actually yields more than is explicitly stated. What we have shown is that

there is a first-order formulaΨ(x,y,z,w) in the language of〈QGR,≤〉 such that〈QGR,≤〉 � Ψ(A,N,G,P3)

iff N is trivial andG≈ A+N. If we apply the complementation automorphismσ we see that〈QGR,≤〉 �

Ψ(B,K,H,σ(P3)) iff σ(N) = K is complete andH ≈ σ(A+N) = σ(A)
∨

σ(N) = B
∨

K. Sinceσ(P3) =

K2+N1 is definable in〈QGR,≤,P3〉, there is a first-order formulaγ(x,w) such that〈QGR,≤〉 � γ(A,P3) iff

A≈ K2+N1. We can then take the formula

∃wΨ(x,y,z,w)∧ γ(w,P3)

in order to define the joinX
∨

K whereK is complete.

Corollary III.3.5. {(X,K,G) : K ≈ Km and G≈ X
∨

Km} is definable.

An induced subgraphA≤ G is called amaximal connected componentiff A is connected and ifA <

B≤ G, thenB is disconnected; in particular, a maximal connected component is a connected component.

For example, ifA andB are connected withA≤ B, thenG≈ A+B has onlyB as a maximal connected

component.

Proposition III.3.6. The set of connected graphs is definable.

Proof: The claim is thatG is connected iff there does not existB < G such that for allE, B≺ E ≤ G

impliesE ≈ B+N1.

Clearly, if G is disconnected withG≈ B+H whereB is a maximal connected component, then every

coverF of B in G is of the formF ≈ B+N1.

If G is connected, then for everyB< G there existsx∈ G with x /∈ B but is adjacent to the connected

component ofB with largest cardinality. Then the induced subgraph onB∪{x} is certainly not isomorphic

to B+N1. •

Since the property of being connected is definable, we can recognize themaximal connected compo-

nents.

Lemma III.3.7. {(A,G) : A is a maximal connected component ofG} is definable.

Proof: From the previous proposition and by the definition of maximal connected component.•

The following lemma is the first step in showing the definability of the disjoint sum operation; however,

it is such a specialized instance of a sum that we must do a little more preparationbefore we tackle the

general case in Section III.5.

Lemma III.3.8. {(A,B,G) : G≈ A+B, A,B connected and incomparable} is definable.

Proof: The claim is that(A,B,G) is in the relation iff

(1) A andB are connected and incomparable

(2) A andB are maximal connected components ofG
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andG is smallest under≤ among graphs satisfying (2).•

The following sum will be useful in Section III.7.

Lemma III.3.9. {(C,D,Γ) : C≈Cm,D≈Cn for n> m> 5, Γ≈ ∑n
k=mCk} is definable.

Proof: The claim is thatΓ≈ ∑n
k=mCk iff every circuitC such thatCm≤∗ C≤∗ Cn is a maximal connected

component ofΓ, andΓ is the smallest under≤ with this property.

Since distinct circuits are incomparable, the argument from LemmaIII.3.8 canbe applied here to estab-

lish the result.•

III.4 Martians and Other Useful Graphs

For a circuitCn we may construct the graphCn→1 by adding only one new edgeu∼ x wherex is some

new vertex andu is an arbitrary vertex ofCn. Different choices ofu result in isomorphic graphs, and so the

construction is well-defined on isomorphism types.

The same construction forKn in place ofCn yields a special case of definition 4.2; in this case we have

Kn→1= Kn+1 N1.

Lemma III.4.1. {(K,Γ) : K ≈ Kn andΓ≈ Kn→1} is definable.

Proof: The claim is thatΓ≈ Kn→1 iff

n= 1 andΓ≈ K2, or

n> 1 andΓ coversKn, Γ is connected, butΓ has a disconnected subcover.

To see this, supposeΓ satisfies the conditions andn> 1. ThenKn ≺ Γ impliesΓ ≈ Kn+k N1 for some

1≤ k≤ n. SinceΓ is connected we must havek≥ 1. If k≥ 2, then every lower cover ofΓ is connected

which yields a contradiction; therefore,k= 1. That the conditions are necessary is immediate.•

In the same way we have the definability of the graphsCn→1.

Lemma III.4.2. {(C,Γ) : C≈Cn andΓ≈Cn→1} is definable.

Proof: Γ≈Cn→1 iff Cn≺ Γ, Γ is connected, butΓ has a disconnected subcover.•

Lemma III.4.3. {(C,Γ) : C is a circuit andΓ≈C+K2} is definable.

Proof: The claim is thatΓ≈Cm+K2 iff

m= 3 andΓ≈ K3+K2, or

m> 3 and there existsF such thatCm≺ F ≺ Γ, i(Γ) = i(Cm)+1, andCm is a maximal component ofΓ.

It is straightforward to see thatCm+K2 satisfies the criteria.

For sufficiency, supposeΓ satsifies the conditions andΓ 6≈ K3+K2. We may constructΓ from Cm by

adding two new verticesu and v, and possibly some new edges. SinceCm is maximal component of a
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subcover,u andv are not connected to any vertices ofCm. The conditioni(Γ) = i(Cm)+1 impliesu∼ v;

threfore,Γ≈Cm+K2. •

The graphC→2 refers to the cover ofC→1 formed by adding an additional vertex and only one addi-

tional edge joining the new vertex to the unique vertex of degree one inC→1. The graphKn→2 is defined

in a similar manner.

Lemma III.4.4. {(C,Γ) : C is a circuit andΓ≈C→2} is definable.

Proof: The claim is thatΓ≈C→2 whereC is a circuit iff

(1) C+N1≺ Γ
(2) Γ is connected

(3) Γ has a disconnected acyclic subcover

We shall only verify sufficiency. SupposeΓ satisfies conditions (1) - (3). ThenΓ may be constructed

from C+N1 by adding an additional vertexv and possibly some new edges joiningv to C. If u denotes the

isolated vertex ofC+N1, then condition (2) implies we have edgesv∼ u andv∼ x for somex∈C. If v is

adjacent to any other vertices ofC, then every acyclic subcover is connected, a contradiction of (3); thus, v

is adjacent to only one vertex ofC which impliesΓ≈C→2. •

Proposition III.4.5. {(K,Γ) : K ≈ Kn andΓ≈ Kn→2} is definable.

Proof: The claim is thatΓ≈ Kn→2 iff

n= 1 andΓ≈ P3, or

n= 2 andΓ≈ P4, or

n≥ 3 andKn→1≺ Γ, Kn+N1≺ Γ, P4≤ Γ, Kn+1 � Γ, andC4 � Γ.

It is easy to see these conditions are satisfied byKn→2.

SupposeΓ meets these conditions, and we may assumen≥ 3. SinceKn+N1 ≺ Γ, we can constructΓ
from Kn+N1 by adding a new vertexv and possibly new edges of the formx∼ v wherex∈ Kn+N1. Since

Kn+1 � Γ, there existsy∈ Kn such thaty 6∼ v. SinceKn→1≺ Γ, there existsu∈ Kn such thatu∼ v, andv

is not adjacent to any other vertex ofKn. If z denotes the solitary vertex ofN1, then the conditionP4 ≤ Γ
impliesv∼ z, and this demonstrates thatΓ≈ Kn→2. •

We describe a certain cover of the sumC+D whenC andD are incomparable circuits. LetC+D denote

the cover ofC+D formed by adding an additional vertexv and only two new edges connectingv toC andv

to D. The choices of vertices inC andD which are adjacent tov is immaterial since every choice results in

isomorphic graphs.

Lemma III.4.6.
{
(C,D,Γ) : C,D are incomparable circuits andΓ≈C+D

}
is definable.

Proof: The claim is thatΓ≈Cn+Cm iff

(1) Cn+Cm≺ Γ
(2) Γ is connected
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(3) Γ has a disconnected subcoverE ≺ Γ such thatCn � E

(4) Γ has a disconnected subcoverF ≺ Γ such thatCm � E

SupposeΓ satisfies conditions (1) - (4). Then (1) impliesΓ may be constructed by addiing an additional

vertexv toCn+Cm and some new edges incident withv. SinceΓ is connected, there must be edges connect-

ing v to Cn andv to Cm. Taken≥m and suppose there are at least two vertices inCn adjacent tov, then no

mater howv is connected toCm, every subcover which avoidsCn is connected; a contradiction with (3). A

similar argument showsv is adjacent to only one vertex ofCm; therefore,Γ≈Cn+Cm.

For necessity, it is easy to see the only subcovers ofCn+Cm which avoidCn or Cm arePn−1+Cm or

Cn+Pm−1, respectively.•

Lemma III.4.7. {(C,D,G) : C,D are incomparable circuits andG≈C→1 +D} is definable.

Proof: The definability of this relation follows from Lemma III.3.8 and Lemma III.4.2.•

Lemma III.4.8. The relation

{(C,D,G) : C and D are incomparable circuits andG≈C→1 +D→1}

is definable.

Proof: Notice that whenC andD are incomparable circuits,C→1 andD→1 must also be incomparable.

The result now follows from Lemma III.3.8.•

Let γ(n,m) denote the graph formed by adding a single new edge connecting the two unique vertices of

Cn→1 +Cm→1 which have degree one.

Proposition III.4.9. The relation

{(C,D,Γ) : C,D are incomparable circuits andΓ≈ γ(|C|, |D|)}

is definable.

Proof: The claim is thatΓ≈ γ(n,m) iff

(1)Cn→1 +Cm≺ Γ
(2) Γ is connected

(3) If Cm≺ R≤ Γ, thenR≈Cm→1 or R≈Cm+N1

(4) If Cn→1≺ R≤ Γ, thenR≈Cn→2, or R≈Cn→1 +N1.

We only verify sufficiency. SupposeΓ satisfies conditions (1) - (4). From condition (1), we can form

G by adding an additional vertexv to Cn→1 +Cm and possibly some new edges incident withv. SinceΓ
is connected by (2), there is at least one new edge connectingv to the copy ofCm in Cn→1 +Cm, but by

condition (3) there can be exactly one such edge. Again by (2), there is at least one edge connectingv to
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Cn→1; however, by condition (4),Cn→2 is the only possibility for a connected induced subgraph on the

vertices ofCm→1 ∪{v}. We have shownΓ≈ γ(n,m). •

Definition III.4.10. Forn≥ 1, amartianM(n) is constructed from the two graphsKn andK1,3 by identifying

a single vertex ofKn with a single vertex ofK1,3 which has degree one. Note the choice of the vertex inKn is

immaterial and so the construction is well-defined on isomorphism types. Ap-martian, denoted bypM(n),

is constructed fromM(n) by connecting the remaining two vertices of degree one inK1,3; thus connecting

the “antennae”.

M(4) pM(4)

Figure III.2: A martian and p-martian

Before we show the definability of martians and p-martians, we need to show the definability of two

auxiliary families of graphs.

Lemma III.4.11. {(K,R,G) : K ≈ Kn,R≈ Km andG≈ Kn+Km} is definable.

Proof: We taken≥m. The claim is thatG≈ Kn+Km iff G is a disjoint sum of cliques withcl(G) = n,

i(G) = 2, and

(1) If n= m, thenG has a unique lower cover, or

(2) If n> m, then there existsB< G such thatB has a unique lower cover withcl(B) = mandi(B) = 2,

and wheneverA< G such thati(A) = 2 andA has a unique lower cover, thencl(A)≤m.

If G satisfies the conditions, thenG≈ Kn+Kr for somer ≤ n. NoticeG has a unique lower cover iff

n= r. This is the content of condition (1). NoticeKt +Kt < G iff t ≤m. This is the content of condition (2).

•

Lemma III.4.12. {(K,G) : K ≈ Kn andG≈ Kn+P3} is definable.

Proof: The claim is thatG≈ Kn+P3 iff

n= 1 andG≈ P3+N1, or

n= 2 andG≈ K2+P3, or

n> 2 and(Kn,P3,G) is in the relation of Lemma III.3.8.•
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Proposition III.4.13. {(K,M) : K ≈ Kn andM ≈M(n)} is definable.

Proof: The claim is thatM ≈M(n) for n≥ 2 iff

n= 1 andM ≈ K1,3

n= 2 andM is the unique cover ofK1,3 which is acyclic and embedsP4, or

n≥ 3 and

(1) Kn+N2≺M, Kn→2≺M, and these are the only lower covers ofM which embedKn

(2) P4≤M

(3) Kn−1+P3≺M

To show these conditions characterize martians we need only check the cases forn> 1.

SupposeM satisfies the conditions andn= 2. We may constructM by adding a new vertexv to K1,3 and

possibly new edges incident withv. Let x be the unique vertex ofK1,3 with degree three, thenv∼ x implies

P4 � K1,3 no matter what other edges are present; thus,v 6∼ x. Again, sinceP4≤M, v is adjacent to a vertex

of K1,3 with degree one, butv must be adjacent to exactly one such vertex sinceM is acyclic. This finishes

the demonstration thatM ≈M(2).

Supposen≥ 3 andM satsifies (1) - (3). SinceKn+N2≺M, we may constructM by adding an additional

vertexv to Kn+N2 and possibly some new edges incident withv. Let w andx be the vertices comprising

this copy ofN2. By (2), we must have a new edgea∼ v for somea∈ Kn and, without loss of generality,

an edgev∼ x. If there existsb∈ Kn such thatb 6= a andb∼ v, there is no possibility forKn−1+P3 ≺M, a

contradiction of (3); thus, the induced subgraph onKn∪{v} is isomorphic toKn→1. Supposew 6∼ v. Then

M has the three lower coversKn→2, Kn+N2, andKn→1 +N1 which all embedKn, a contradiction of (1);

therefore, we must have an edgew∼ v and conclude thatM ≈M(n).

For necessity, it is easy to see thatM(2) is an acyclic cover ofK1,3 which embedsP4.

SinceM(n) has a unique copy ofKn for n≥ 3, the only lower covers ofM(n) which embedKn must

come from deleting the vertices not included inKn. In this case,Kn→2 andKn+N2 are the only such covers.

Conditions (2) and (3) are immediate. Altogether we have shown (1) - (3) characterizes these martians.•

Proposition III.4.14. {(K,M) : K ≈ Kn andM ≈ pM(n)} is definable.

Proof: The claim is thatM ≈ pM(n) iff

n= 1 andM ≈ K3→1, or

n= 2 andK3→2, or

n≥ 3 andKn+K2≺M, P4≤M, P5 � M, andB � M.

It is straightforward to check that each of these conditions must hold for the appropriate p-martian, so we

shall concentrate on demonstrating that they are sufficient to characterize these graphs. SupposeM satisfies

the conditions, and we may assumen> 2.

ThenKn+K2≺M implies we may constructM by adding an additional vertexx to Kn+K2 and possibly

some new edges. SinceP4 ≤ M, but P5 � M, we must have thatx is adjacent to each vertex ofK2, and

that x is adjacent to at least one vertexa ∈ Kn and there existsb ∈ Kn such thatx 6∼ b. If x is adjacent to

an additional vertexc∈ Kn distinct froma, then the induced subgraph on vertices{c,b,a,x} is isomorphic
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to B, a contradiction; thus, there are no additional edges and we see thatM ≈ pM(n). This finishes the

proposition.•

III.5 G + H

In this section we will prove the definability of the operationG+H whereG andH are arbitrary graphs.

The starting point for this development will be the construction and definabilityof special connected graphs

called pointed sums.

Definition III.5.1. Given two connected graphsA andB, the pointed sumis a graphA+p B formed by

adding a new vertexv to A+B and two new edges incident tov; one edge connectsv to a vertex inA, and the

other edge connectsv to a vertex inB. Different choices of vertices inA andB lead to non-isomorphic graphs

which are still considered as pointed sums; therefore, the notationA+p B will refer to the finite family of

pointed sums for the different choices of vertices inA andB which are adjacent to the added vertex which

has degree two.

We can see that when bothA andB are complete, or both are circuits, then the choices of vertices in

the definition is immaterial, and in these cases the family of pointed sums collapses to aunique graph. To

make the connection with previous notation, for circuitsC andD, C+p D ≈C+D. While we do not have

definability of general pointed sums, we do have definability in a very specific and useful case.

Lemma III.5.2. The relation

{(A,K,G) : A connected and not a clique,K ≈ Kn, n> cl(A)+1, G∈ A+p K}

is definable.

Proof: Note thatA is not complete andn> cl(A)+1 impliesA andKn are incomparable, and so by Lemma

III.3.8, A+Kn is definable.

The claim is that(A,K,G) is in the relation iff

(1) A is connected and not a clique

(2) K ≈ Kn for somen such thatn> cl(A)+1

(3) A+Kn≺G

(4) G is connected

(5) If Kn≺ R≤G, thenR≈ Kn+N1 or R≈ Kn→1.

(6) M(n)� G andpM(n)� G

The proof of necessity is straightforward and so we will establish sufficiency.

SupposeG satisfies the criteria. By (3),G may be constructed fromA+Kn by adding a new vertexp

and perhaps some new edges incident withp. Noten≥ 3. LetV be the induced subgraph on the vertices

of Kn together withp. SinceG is connected, the vertexp is connected to some vertex of this copy ofKn;

thus,R≈ Kn→1. Again, sinceG is connected there is at least one new edgep∼ a with a∈ A. Suppose
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p∼ b whereb∈ A andb 6= a. If b∼ a, then the induced subgraph onKn∪{p,a,b} is isomorphic toM(n),

a contradiction. Ifb 6∼ a, then we have a copy ofpM(n)≤G, another contradiction; therefore,p is adjacent

to at most one vertex ofA, and so we conclude thatG∈ A+p Kn. •

Proposition III.5.3. {(A,Γ) : A is connected andΓ≈ A+A} is definable.

Proof: If A is a clique, then the definability ofA+A is guaranteed by Lemma III.4.11. We may supposeA

is not a clique, and thus,|A|> 2. Letm= cl(A)+3.

SinceA and Km are connected and incomparable,A+Km is definable by Lemma III.3.8, and from

Corollary III.3.5,(A+Km)
∨

N1 is definable. Then by Lemma III.5.2 we have thatA+p Km+1 is definable

where, in a slight abuse of notation,A+p Km+1 will refer to any of the graphs in the set represented by

the pointed sumA+p Km+1. By choice ofm it is easy to see that(A+Km)
∨

N1 andA+p Km+1 must be

incomparable; therefore, by Lemma III.3.8 the disjoint union(A+Km)
∨

N1+(A+p Km+1) is definable.

We claim thatA+A+Km+1+Km is the unique graphΓ so that there existsE such that

(1) Γ≺ E ≺ (A+Km)
∨

N1+(A+p Km+1)

(2) Km→1� E andKm+1 is a maximal connected component ofE

(3) A andKm+1 are the only maximal connected components ofΓ

To see this, setG≈ (A+Km)
∨

N1+(A+p Km+1). By (1), there exist verticesz andw such thatΓ ≈
G− z−w. In the construction ofA+p Km+1, a new vertexv was added to the sumA+Km+1 and an edge

connectingv to a vertex ofKm+1. Let a denote this vertex ofKm+1. If a ∈ {z,w}, then Km+1 cannot

appear as a maximal connected component; a contradiction of (3). Ifv /∈ {z,w}, thenKm→1 embeds in

every subcover ofG, or Km+1 is not a maximal connected component; a contradiction of (2). Without

loss of generality, we may takev = z. If we let q denote the unique vertex ofN1 in the construction of

(A+Km)
∨

N1 which is connected to every vertex ofA+Km, then (3) implies we must haveq = w. Then

G−v−q≈ A+A+Km+1+Km.

We will now see how to recoverA+A from A+A+Km+1+Km. This is the purpose of the following

claim which will complete the proposition.

Claim: Consider the following property for a graphH:

(∗∗) H +N2≤ A+A+Km+1+Km but H +N3 � A+A+Km+1+Km

The graphA+A is the unique graph among those maximal under≤ for property(∗∗), which haveA as the

only maximal connected component.

Proof: Let X be maximal for property(∗∗) and havingA as the only maximal connected component. We

may writeX ≈ A+X2+ · · ·+Xn whereXi are the connected components ofX. SinceX +N2 ≤ A+A+

Km+1+Km, it must be the case thatX2+ · · ·+Xn+N2≤A+Km+1+Km. LetG2+ · · ·+Gn+U be an induced

subgraph ofA+Km+1+Km such that eachGi ≈Xi andN2≈U , andX2+ · · ·+Xn+N2≈G2+ · · ·+Gn+U ⊆

A+Km+1+Km. The graphG2+ · · ·+Gn+U fixes a copy ofX2+ · · ·+Xn+N2 in A+Km+1+Km.

If U ⊆ Km+1+Km, thenG2+ · · ·+Gn ⊆ A which impliesn= 2 by maximality; therefore,G2 ≈ A and

soX ≈ A+A. We show this is the only possible case.
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If U ⊆ A+Km+1 butU * A, thenG2+ · · ·+Gn ⊆ A+Km. Only a single connected componentGi can

be in an induced subgraph inKm, and so by maximality there is a component, sayG2, isomorphic toKm.

This impliesG3+ · · ·+Gn ⊆ A. But m= cl(A)+3 impliesKm is a maximal connected component ofX; a

contradiction. The same argument forU ⊆ A+Km shows there exists someGi ≈ Km+1 which yields another

contradiction.

If N2⊆ A, then someGi ⊆ Km+1 and maximality again shows we must have someGi ≈ Km+1; a contra-

diction.

This finishes the claim and the proposition.•

Lemma III.5.4. {(A,B,Γ) : A,B connected andA< B, Γ≈ A+B} is definable.

Proof: If B is a clique, then so isA and we already have definability of their sum. AssumeB is not a clique

and setm= cl(B)+3. Then any two graphs fromA+p Km+1 andB+p Km are incomparable. By the same

argument as in the previous lemma, we have that the sumΓ≈ A+B+Km+1+Km is definable. We can then

recoverA+B from Γ in a similar way, as well.

A+B is the unique graphH which hasB as the only maximal connected component and is maximal

under≤ for the property thatH +N2 ≤ Γ andH +N3 � Γ. To see this, letH ≈ H1 + · · ·+Hr be such

a graph with connected componentsHi . We may takeH1 ≈ B and considerB+H2 + · · ·+Hr +N2 ≤

A+B+Km+1+Km. LetV+G2+ · · ·+Gn+U be an induced subgraph ofA+B+Km+1+Km such that each

Gi ≈ Hi , N2≈U , andV ≈ B, andB+H2+ · · ·+Hn+N2≈V +G2+ · · ·+Gn+U ⊆ A+B+Km+1+Km.

If N2 ≈U * Km+1+Km, then by maximality some componentGi must intersectKm+1+Km. Again by

maximality, we can conclude thatHi ≈ Km or Hi ≈ Km+1; a contradiction. It must be thatU ⊆ Km+1+Km

and intersects both cliques which impliesG2+ · · ·+Gr ≤ A; thus, maximality impliesr = 2 and soH2≈ A.

Altogether, this showsH ≈ A+B. •

Putting these last two results together we can conclude the definability of a sumof two connected

graphs..

Proposition III.5.5. {(A,B,Γ) : A,B connected andΓ≈ A+B} is definable.

We should note a useful property of the join construction. IfV is a disconnected graph, thenV
∨

N1 is

connected and has a unique disconnected subcover; namely, ifU ≺V
∨

N1 is disconnected, thenU ≈V.

Lemma III.5.6. The relation

{(U,V,Γ) : V disconnected, U a maximal connected component ofΓ, Γ≈U +V}

is definable.

Proof: (U,V,Γ) is in the relation iff

(1) V is disconnected andV ≤ Γ
(2) U is a maximal connected component ofΓ
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(3) If M is a maximal connected component ofΓ, thenM ≈U or M ≤V

(4) Γ≺U +V
∨

N1

(5) Γ is not isomorphic to the disjoint sum of two connected graphs.

Since necessity is straightforward to check, we only prove sufficiency.

SupposeΓ satisfies conditions (1) - (5). By condition (4),Γ ≈ Γ′ whereΓ′ is an induced subgraph of

U +V
∨
{v}, and there exists a vertexx∈U +V

∨
{v} such thatU +V

∨
{v}−x= Γ′. We will showΓ′ is

isomorphic toU +V by considering the possible choices for the vertexx.

Supposex= v. ThenV
∨
{v}−x=V and soΓ′ =U +V

∨
{v}−x=U +V.

If x∈V, thenV
∨
{v}− x is connected;. This impliesΓ′ = U +V

∨
{v}− x is the disjoint sum of two

connected graphs, a contradiction of condition (5); therefore,x /∈V.

Supposex ∈U . SinceV
∨
{v} is a connected subset ofΓ′, we must have thatV

∨
{v} ≤ M for some

maximal connected component ofΓ′ ≈ Γ. By condition (3), we haveV
∨
{v} ≤M≈U orV

∨
{v} ≤M≤V.

Since|V
∨
{v}| > |V|, we must haveV

∨
{v} ≤U . But Γ′ = (U − x)+V

∨
{v} and condition (5) implies

U − x is disconnected. Since|U − x| < |U |, condition (2) impliesU ≤ V
∨
{v} which then yieldsU ≈

V
∨
{v}.

SinceU −x is disconnected, thenU −x≈V
∨
{v}−x≈V impliesΓ′ = (U −x)+ (V

∨
{v})≈V +U .

•

Lemma III.5.7.
{
(A,P,Γ) : P a path,P� A, andΓ≈ A+P

}
is definable.

Proof: If A is a path or is just connected, then we already have the definability ofA+P. If A is disconnected,

then the definability ofA+P follows from Lemma III.5.6 since the conditionP� A impliesP is a maximal

connected component ofA+P. •

Proposition III.5.8. {(A,B,Γ) : Γ≈ A+B} is definable.

Proof: Let P be a path such thatP� A andP� B and|P|> 3. SetH = (A+P)
∨

N1+(B+P)
∨

N1 which

is definable fromA andB using Lemma III.5.7, Proposition III.5.5, and Corollary III.3.5. The claim is that

A+B+P+P is the unique graphG such that

(1) G≺ E ≺ H for someE

(2) P is a maximal connected component ofG

(3) P+P≤G

(4) P
∨

N1 � G

To see this, assumeG satisfies conditions (1) - (4). We can writeH = A′∪B′∪P′∪P′′∪{p,q} where

A′ ≈ A, B′ ≈ B, P′ ≈ P′′ ≈ P, andA′∪P′∪{p} ≈ (A′+P′)
∨

N1 andB′∪P′′∪{q} ≈ (B′+P′′)
∨

N1. Then

by (1), G = H −{u,v} for some verticesu,v. If neither p nor q is in {u,v}, thenP cannot be a maximal

connected component ofG; a contradiction of condition (2). We may assume, without loss of generality,

q = v. ThenG = (A′+P′)
∨

N1+B′+P′′−u. If u∈ B′ or u∈ P′′ or u∈ A′, thenG we haveP
∨

N1 � G

which contradicts condition (4). Ifu ∈ P′, thenP+P � G since any copy ofP in (A′+P′)
∨

N1−u will
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containp and two consecutive vertices ofP′ which induce a copy ofK3; a contradiction of condition (3). It

must be the case thatu= p which implies

G= (A′+P′)
∨

N1+B′+P′′− p= A′+P′+B′+P′′ ≈ A+B+P+P.

We may then use Lemma III.5.7 to captureA+B as the unique graphF such thatF +P+P≈G. •

III.6 Cardinality

In this section, we establish the cardinality of graphs as a definable property. The first step is to generalize

the constructionC+D whereC andD are incomparable circuits. The graph∑n
k=mCk is the cover of the sum

∑n
k=mCk with one new vertexv and a new edge connectingv to each circuit.

Lemma III.6.1.
{
(C,D,Γ) : C≈Cm,D≈Cn for n> m> 5, Γ≈ ∑n

k=mCk
}

is definable.

Proof: The claim is thatΓ≈ ∑n
k=mCk iff

(1) ∑n
k=mCk ≺ Γ

(2) If Ci ≺ R≤ Γ, thenR≈Ci +N1, or R≈Ci →1 for m≤ i ≤ n

(3) Γ is connected

Necessity is immediate. For sufficiency, notice (1) and (3) implyΓ is formed by adding a vertexv to

∑n
k=mCk and at least one new edgev∼ xi with xi ∈Cm+i for m≤ i ≤ n. Condition (2) implies exactly one

new edgev∼ xi is added.•

Proposition III.6.2. {(K,A) : K ≈ Kn and|A|= n} is definable.

Proof: It suffices to characterize when|A| ≥ n. The claim is that|A| ≥ n iff A is a clique andKn≤ A, or A

is not a clique,cl(A) = m, and for every graphP with the following properties we must haveKn+1≤ P :

(1) A
∨

K1≤ P

(2) For every cliqueK and graphQ such thatKm < Q≤ A andQ
∨

K ≤ P, there existsQ′

such thatKm≤Q′ ≺Q and a cliqueK with K ≺ K such thatQ′
∨

K ≤ P.

Assume first thatA is not a clique and that|A| ≥ n. AssumeP satisfies conditions (1)-(3). By induction

on k for 0 ≤ k ≤ |A| −m, we argue thatQ∨Kk+1 ≤ P for some graphQ such thatKm ≤ Q ≤ A with

k= |A|−|Q|. We see that (1) yields the base casek= 0 with Q= A. Condition (3) is applied at the inductive

step for 1≤ k< |A|−m to showQ′∨Kk+1 ≤ P for someKm≤Q′. At the stepk= |A|−m= |A|− |Q|, we

see thatKm≤Q impliesKm≈Q which yields

P≥Q∨Kk+1≈ Km∨K|A|−m+1≈ K|A|+1≥ Kn+1.

Now assumeA is not a clique and|A|< n. Let Q1, ...,Qp be a full list, up to isomorphism, of all graphs
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Q such thatKm≤Q≤ A. Let r i = |A|− |Qi|. We see thatcl(Qi) = m. Set

P=
p

∑
i=1

Qi ∨Kr i+1.

Note cl(Qi ∨Kr i+1) = m+ r i + 1 andcl(P) = max{cl(Qi ∨Kr i+1) : i = 1, ..., p}. The clique size ofP is

determined by the component of maximum clique size which occurs whenr i is largest; that is, when|Qi |=

|Km| ⇒Qi ≈ Km. For simplicity, let this occur ati = 1 and so we have

Q1∨Kr1+1≈ Km∨K|A|−m+1≈ K|A|+1.

Thus,cl(P) = |A|+1≤ n⇒ Kn+1 � P. It remains to show thatP satisfies (1) and (2).

SinceA is not a clique, condition (1) is immediately seen to hold by construction. For (2), supposeKm<

Q≤ A andK is a clique such thatQ∨K ≤ P. SinceQ∨K is connected, we must haveQ∨K ≤ Qi ∨Kr i+1

for somei ∈ [p]. Let K ≈ Kl . Then

cl(Q)+ l = cl(Q∨K)≤ cl(Qi ∨Kr i+1) = m+ r i +1

implies l ≤ r i +1. We can assumeQ∨K ⊆Qi ∨Kr i+1.

SinceKm < Q≤ A, Q is not a clique, and so there existU ⊆ Q andq0,q1 ∈ Q such thatKm≈U and

q0 6∼ q1. We may take, without loss of generality,q0 /∈U . We must have{q0,q1}⊆Qi−Kr i+1. So there exists

j 6= i such thatQ j ≈Qi−q0. PutQ′ = Q−q0. ThenKm≤Q′ andQ′∨Kl ⊆ (Qi−q0)∨Kr i+1≈Q j ∨Kr i+1.

Clearly, we haveKr j+1≈ Kr i+1∨K1. SetKl ≺ Kl ∨K1 = K. To finish the proposition we see that

Q′∨K ≈Q′∨ (Kl ∨K1)≤Q j ∨ (Kr i+1∨K1)≈Q j ∨Kr j+1.

•

Since we can do addition with cliques, we can use the previous proposition to define the ternary relation

{(A,B,G) : |A|+ |B|= |G|} which allows us to do addition with the cardinality of arbitrary graphs. As a

consequence, we have the definability of then-step cover≺n defined asA≺n B if there exists a chain of

coversA≺ F1≺ ·· · ≺ Fn≈ B.

Lemma III.6.3. {(A,B,C) : C≈Cn andA≺n B} is definable.

Proof: The claim is thatA≺n B iff A≤ B, andCn≈C|B|−|A|. •

III.7 Individual Definability

In this section we will give a proof of the following proposition. Letp3 denote the isomorphism type ofP3.

Proposition III.7.1. Every element of〈PG,≤,p3〉 is definable. The complementation map is the only non-

trivial automorphism of〈PG,≤〉.
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If we can show every graph is definable, then the following lemma will completelycharacterize the

automorphisms of〈PG,≤〉.

Lemma III.7.2. Supposeφ is a non-identity automorphism of the structureB of signatureσ . Suppose

co ∈ B such that{c0,φ(c0)} is definable in the signatureσ . Suppose that each element ofP is definable in

the signatureσ with the additional constantc0; that is, definable in the structure〈B,σ ,c0〉. Thenφ is the

only non-identity automorphism of the structureB.

Proof: Supposeτ is an automorphism which fixesc0. By assumption, for every elementa∈ B, there is a

formulaΨa(x,y) such thatB � Ψa(b,c0) iff a= b. ThenB � Ψa(a,c0) impliesB � Ψa(τ(a),τ(c0)) which

impliesB� Ψa(τ(a),c0); therefore,τ(a) = a for everya∈ B, and so we concludeτ = id.

If τ 6= id, then because{c0,φ(c0)} is definable without constants, we must haveτ(c0) = φ(co). Then

φ−1◦ τ fixesc0, and so by the above,φ−1◦ τ = id which impliesτ = φ . •

Definition III.7.3. Let A be any element of QGR with |A| = n. Let B be a graph with vertex set over

the positive integers{1, ...,n} = [n] such thatB≈ A. Construct a finite graph denoted byPn(A,B) in the

following way:

First, take the graphB+∑n
i=1Cn+2+i . Next, for each vertexk of B, add an edge connectingk to some

vertex ofCn+2+k. In the end onlyn new edges are added. The resulting graph is called ano-presentation

of A. The o-presentationPn(A,B) should look like the graphA with an edge leading out of each vertex to

a circuit uniquely determined by cardinality. The figure below showsP4(A,B) whereA is the ismorphism

type ofK3→1 andB is the isomorphic copy over the positive integers labeled as shown.

C

C

C

C 8
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1

2
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Figure III.3: An o-presentation forP4(K3→1,B)

Proposition III.7.4. For a particularA∈ QGR, each o-presentationPn(A,B) is definable.

Proof: The idea is to use specific information ofB as a graph on the vertices[n] to write down first-order
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properties which capturePn(A,B). First we introduce a little simplifying notation; fori, j ∈ [n], i 6= j, let

B(i, j) =







Cn+2+i →1 +Cn+2+ j →1 if i 6∼ j in B

γ(n+2+ i,n+2+ j) if i ∼ j in B

The claim is thatΓ≈ Pn(A,B) iff

(1) ∑n
i=1Cn+2+i ≺n Γ

(2) If Cn+2+i ≺ R≤ Γ, thenR≈Cn+2+i +N1 or R≈Cn+2+i →1

(3) (for eachi, j ∈ [n], i 6= j) B(i, j)≤ Γ
(4) If ∑n

i=1Cn+2+i ≺ R≤ Γ, then there existsj ∈ [n] such thatCn+2+ j →1≤ R.

(5) (for eachi, j ∈ [n], i 6= j) If Cn+2+i +Cn+2+ j ≺ R≤ Γ, thenCn+2+i +Cn+2+ j 6≈ R

(6) For i ∈ [n], if Cn+2+i ≺2 R≤ Γ, thenR≈Cn+2+i →2, or R≈Cn+2+i +K2, or R≈Cn+2+i →1 +N1,

or R≈Cn+2+i +N2

It is easy to see that because the cardinality ofCn+2+i exceedsn and is connected uniquely to vertexi

of B, Pn(A,B) contains a unique copy of eachCn+2+i for i ∈ [n]; therefore,Pn(A,B) also contains a unique

copy of ∑n
i=1Cn+2+i . By construction, eachCn+2+i is connected to a unique vertex. These facts make it

straightforward to check thatPn(A,B) satisfies the stated conditions.

For sufficiency, assumeΓ satisfies conditions (1) - (6). From (1), we can assume, after passing to

isomorphic induced subgraphs, that there exist vertices{v1, ...vn} of Γ such that∑n
i=1Cn+2+i = Γ− v1−

·· · − vn. Suppose there existk, j ∈ [n] such thatvk is adjacent to more than one vertex ofCn+2+ j . Then

the induced subgraph on the verticesCn+2+ j ∪{vk} is not isomorphic toCn+2+ j +N1 nor toCn+2+ j →1; a

contradiction of (2). Each vertexvk is adjacent to at most one vertex of anyCn+2+i for i = 1, ...,n.

Suppose there exist{k, i, j} ⊆ [n], i 6= j, such that the induced graph on the vertices ofCn+2+ j ∪{vk}

is isomorphic toCn+2+ j →1, and the induced subgraph on the verticesCn+2+i ∪ {vk} is isomorphic to

Cn+2+i →1. Then the induced subgraph onCn+2+i ∪Cn+2+ j ∪ {vk} is isomorphic toCn+2+i +Cn+2+ j ; a

contradiction of (5). We see that ifvk is adjacent to someCn+2+ j , then it cannot be adjacent to any other

circuit of ∑n
i=1Cn+2+i .

If for eachk∈ [n], we consider the induced subgraph on the vertices of∑n
i=1Cn+2+i∪{vk}, then condition

(4) impliesvk is adjacent to someCn+2+ j . Altogether we have shown there is a functionφ : [n]→ [n] such

that for eachk ∈ [n], Cn+2+φ(k) is the unique circuit of∑n
i=1Cn+2+i adjacent tovk; moreover, the induced

subgraph on the vertices yields a copy ofCn+2+φ(k)→1.

We showφ is bijective. Supposeφ(i) = φ( j) = k. Then the induced subgraph on the vertices of

Cn+2+k∪
{

vi ,v j
}

is a graph which cannot be isomorphic to any of the four types of graphs listed in condition

(6), a contradiction; therefore,φ is injective and so a bijection.

Condition (1) then implies there is a unique copy of eachCn+2+i . Since eachCn+2+φ(k) is uniquely

connected to a singlevk, we see thatB(φ(i),φ( j)) ≤ Γ if and only if B(φ(i),φ( j)) is isomorphic to the

induced subgraph on the vertices ofCn+2+φ(i) ∪Cn+2+φ( j) ∪ {vi ,vk}. This impliesvi ∼ v j if and only if

B(φ(i),φ( j))≤ Γ. Condition (3) then impliesvi ∼ v j if and only if φ(i)∼ φ( j) in B.

If F is the graphΓ induces on the vertices{v1, ...,vn}, then what we have shown is that the mapvi 7→ φ(i)
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for i = 1, ...,n yields an isomorphismF ≈ B. SinceCn+2+φ(i) is uniquely connected tovi by a single edge,

the isomorphismφ extends to an isomorphismΓ≈ Pn(A,B) in the natural way.•

The next task is to find a way to “read off” the copy ofA sitting inside an o-presentationPn(A,B). The

first step is to return to the topic of paths and isolate particular covers. Whenattaching a new vertexv to

a pathP, the choice ofu∈ P for u∼ v makes a difference. We will use the notationPn→
t
1 to denote the

covers ofPn which are formed by adding a single new edgeu∼ v wherev is a new vertex andu∈ Pn such

thatu has degree two. Different choices ofu lead to non-isomorphic graphs, so the notationPn→
t
1 refers to

the finite family of such graphs for a fixedn.

Lemma III.7.5. {(P,Γ) : P≈ Pn andΓ ∈ Pn→
t
1} is definable.

Proof: The claim is thatΓ ∈ Pn→
t
1 iff Pn≺ Γ, K1,3≤ Γ, Pn+1 � Γ, andΓ is acyclic.

If Γ satisfies the conditions, thenΓ is formed fromPn by adding a new vertexv and possibly new edges

of the formu∼ v for u∈ Pn. If at least two new edges are added, then a circuit must be formed, andso there

is at most one new edgex∼ v with x∈ Pn. SinceK1,3 ≤ Γ, there is exactly one new edge. SincePn+1 � Γ,

the degree ofx cannot be one. This establishes the lemma.•

Lemma III.7.6. {(C,Γ) : P≈ Pn andΓ≈ ∑n
i=1Pn+1+i} is definable.

Proof: The claim is thatΓ≈ ∑n
i=1Pn+1+i iff Γ≺n ∑n

i=1Cn+2+i andΓ is acyclic.•

We now have all the ingredients to finish the proof of Proposition III.7.1. From an o-presentation

Pn(A,B) we see thatA+∑n
i=1Pn+1+i is the unique graphG such that

(1) G≺n Pn(A,B)

(2) For allk∈ [n], Cn+2+k � G

(3) For allk∈ [n], G embeds no element ofPn+1+k→
t
1

(4) For allk∈ [n], eachPn+1+k is a connected component ofG

This follows since conditions (1) and (2) implyG is obtained precisely by deleting exactly one vertex

from eachCn+2+i for i ∈ [n]. Condition (3) and (4) imply each of those vertices must have degree three. We

can then recoverA as the unique graphH such thatG≈ H + ∑n
i=1Pn+1+i .

RemarkIII.7.7. Using a particularP3 ∈QGR as a constant we have shown every finite graph is definable up

to isomorphism in〈QGR,≤,P3〉. The same result could be achieved, but perhaps with greater difficulty,if we

had chosen another graphC as the constant, providedC is not self-complementary. To see this, notice from

the proof of Proposition III.0.6, there is a formulaβ (x) in the language of≤ such that〈QGR,≤〉 � β (E)
iff E ≈ P3 or E ≈ K2+N1. By what we have shown, for anyG ∈ QGR there is a formulaφG(x,y) in the

language of≤ such that〈QGR,≤〉 � φG(E,P3) iff E ≈G. It is not hard to see that the unary formula

(∃y)φG(x,y)∧φC(C,y)∧β (y)

uniquely definesG.
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In the next proposition, we shall see how to capture the pair(A,P) whereP is isomorphic to some o-

presentation ofA. The proof of Proposition III.7.4 relied on the fact that we had a fixed graph on hand, and

so we could “encode” the edge relation of this fixed graph with a certain packet of formulas. This means

different graphs require different package of formulas to define theedge relations in the o-presentations.

Since we have definable access to the cardinality of a graph, and can do arithmetic with circuits, we shall

be able to describe a uniform packet of formulas which “encode” the edge relations of some graph in an

o-presentation.

Proposition III.7.8. We have the following:

(1) {(A,Pn(A,B)) : for someB≈ A with n= |A|} is definable.

(2) If B is a graph over the vertices[n] with B≈ A andB′ is a graph over the vertices[m] with B′ ≈ A′,

thenPn(A,B)≈ Pm(A′,B′) if and only if n= mandB= B′.

Proof: For part (1), the claim is that(A,P) is in the relation iff (where|A|= n which is definable)

(1) ∑n
i=1Cn+2+i ≺n P

(2) If Cn+2+i ≺ R≤ P, thenR≈Cn+2+i +N1 or R≈Cn+2+i →1

(3) (for eachi, j ∈ [n], i 6= j) If Cn+2+i →1 + Cn+2+ j →1 � P, thenγ(n+2+ i,n+2+ j)≤ P

(4) If ∑n
i=1Cn+2+i ≺ R≤ P, then there existsj ∈ [n] such thatCn+2+ j →1≤ R.

(5)(for eachi, j ∈ [n], i 6= j) If Cn+2+i +Cn+2+ j ≺ R≤ P, thenCn+2+i +Cn+2+ j 6≈ R

(6) For i ∈ [n], if Cn+2+i ≺2 R≤ P, thenR≈Cn+2+i →2, or R≈Cn+2+i +K2, or R≈Cn+2+i →1 +N1,

or R≈Cn+2+i +N2

(7) If G is the graph which satisfies the following properties

(a)G≺n P

(b) For allk∈ [n], Cn+2+k � G

(c) For allk∈ [n], Pn+1+k→
t
1� G

(d) For allk∈ [n], eachPn+1+k is a connected component ofG

thenG≈ A+∑n
i=1Pn+1+i .

The proof of necessity and sufficiency exactly follows the proof of Proposition III.7.4. AnyP which

satisfies conditions (1) - (6) must be isomorphic to an o-presentationPn(E,F) for someF . Condition (7)

then impliesE ≈ A. The details are left for the reader.

We establish part (2). Clearly,n = m andB = B′ implies Pn(A,B) ≈ Pm(A′,B′). SupposePn(A,B) ≈

Pm(A′,B′). By using the definition of an o-presentation,Pn(A,B) hasn+∑n
i=1(n+ 2+ i) vertices. Since

Pn(A,B) andPm(A′,B′) have the same cardinality, we must have

n2+3n+
n(n+1)

2
= m2+3m+

m(m+1)
2

which impliesn=m, and soB andB′ have the same vertices. BecausePn(A,B) andPm(A′,B′) must then have

a unique copy of eachCn+2+i and therefore, a unique copy of eachCn+2+i →1 for i ∈ [n], the isomorphism

of o-presentations restricts to the identity onB andB′. •
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III.8 Morphisms

We now turn to the task of encoding set functions. In the next section, we shall be interested in graph

homomorphisms. We start with some auxiliary constructions.

Definition III.8.1. A pandais the graphP(n) constructed fromCn→1 by adding two additional verticesx

andy and only two new edgesx∼ u andy∼ u whereu is the unique vertex ofCn→1 with degree one. A

p-panda, denoted bypP(n) is formed fromP(n) be completing the triangle formed by the panda’s arms; that

is, by adding the edgex∼ y to P(n).

P(5)
pP(5)

Figure III.4: A panda and p-panda

Lemma III.8.2. {(C,F) : C≈Cn andF ≈ P(n)} is definable.

Proof: The claim is thatF ≈ P(n) iff

n= 3 andF ≈M(3), or

n> 3 andCn+N2≺ F , F is connected, and ifCn≺ R≤ F , thenR≈Cn→1 or R≈Cn+N1.

SupposeF satisfies the criteria andF 6≈M(3). We may constructF fromCn+N2 by adding a new vertex

v and some additional edges connectingv to Cn+N2. Let N2 be composed of the verticesa andb. Since

F is connected, we must have edgesv∼ a andv∼ b, and at least one edgev∼ x wherex∈Cn. Since the

induced subgraph on the vertices ofCn∪{v} is connected, we must have exactly one edge connectingv to

Cn.

Since necessity is immediate, the proposition is established.•

Lemma III.8.3. {(C,F) : C≈Cm andF ≈ pP(m)} is definable.

Proof: The criteria is thatF ≈ pP(m) iff Cm+K2≺ F , and if

m= 3, thenF ≈ pM(3), or if

m> 3, F is connected,K3≤ F , and ifCm≺ R≤ F , thenR≈Cm→1 or R≈Cm+N1.

It is straightfoward to check the necessity of the criteria, and so we will establish their sufficiency.

SupposeF satisfies the conditions. LetF be constructed fromCm+K2 by adding a new vertexv and

possibly new edges incident withv. Let a andb be the two vertices ofK2. We may assumem> 3.

Let m> 3. SinceF is connected, we have at least one edgev∼ x for x∈Cm. Then we must have exactly

one edge since the induced subgraph onCm∪{v} is connected. SinceK3 ≤ F , we must have edgesv∼ a

andv∼ b. •
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Let Tuttle denote the cover ofP4 formed by adding a new vertex toP4 and exactly two new edges

connecting the new vertex to the two vertices ofP4 which have degree 2. In light of Proposition III.7.4,

Tuttle is definable.

Figure III.5: Tuttle

Here is how to encode a functionf : [n]→ [m]. Define the graphσ(n, f ,m) over the vertex set

n

∑
i=1

C3+i +
m

∑
i=1

K3+i + Nn

with the following edge relations: Let{v1, ...,vn} be the vertices ofNn; choose verticesxi ∈ C3+i and

u j ∈ K3+ j for i = 1, ...,n and j = 1, ...,m; take all the edges of∑n
i=1C3+i + ∑m

i=1K3+i together with edges

xi ∼ vi for i = 1, ...,n, and edgesvi ∼ uf (i) for i = 1, ...,n; these are the only edges.

Notice the choices ofui andxi are immaterial. Below isσ(n, f ,m) for f (1) = f (2) = 1, f (3) = 2.

C

C

C

K

K
5

5

44

6

Figure III.6: σ(3, f ,2)

RemarkIII.8.4. It may be possible to replace the conditions listed in the next proposition by a more ef-

ficient or elegent set of conditions, but the advantage of the list is that it makes the proof of sufficiency

straightforward to verify.

Proposition III.8.5. We have the following:

(1) σ(n, f ,m)≈ σ(n′, f ′,m′) iff n= n′, m= m′ and f = f ′.

(2) {(Cn,Km,F) : n,m> 0, andF ≈ σ(n, f ,m) for somef : [n]→ [m]} is definable.

Proof: We tackle statement (1). Observe thatσ(n, f ,m) contains a unique copy of∑n
i=1C3+i and of

∑m
i=1K3+i . This implies we must haven = n′ andm= m′. For eachi ∈ [n], C3+i appears in exactly one

pointed sumK3+ f (i)+pC3+i in σ(n, f ,m), and thus, also inσ(n′, f ′,m′). This implies f (i) = f ′(i) for each

i ∈ [n], and so,f = f ′.

For the second statement, the claim is thatF ≈ σ(n, f ,m) for somef : [n]→ [m] iff

(1) ∑n
i=1C3+i + ∑m

i=1K3+i ≺n F
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(2) For i ∈ [n], C3+i is not a connected component ofF

(3) For i ∈ [n], if C3+i ≺ R≤ F , thenR≈C3+i →1 or R≈C3+i +N1.

(4) For i, j ∈ [n], i 6= j, if C3+i +C3+ j ≺ R≤ F , thenR 6≈C3+i +C3+ j

(5) For eachi ∈ [n], C3+i →2≤ F .

(6) For eachi, j ∈ [n], i 6= j, γ(3+ i,3+ j)� F

(7) For j ∈ [m], if K3+ j ≺ R≤ F , thenR≈ K3+ j →1 or R≈ K3+i +N1.

(8) For i ∈ [n], P(i)� F andpP(i)� F

(9) Tuttle� F

SupposeF satisfies the conditions. Condition (1) implies we can constructF by adding the vertices

{v1, ...,vn} to ∑n
i=1C3+i + ∑m

i=1K3+i and possibly some new edges incident with the vertices{v1, ...,vn}.

Condition (2) implies eachC3+i is adjacent to at least one vertex of{v1, ...,vn}. Condition (3) implies that if

C3+i is adjacent to somevk, then there is a unique vertexxi ∈C3+i such thatxi ∼ vk. Condition (4) implies

no two distinctC3+i andC3+ j are adjacent to the same vertex of{v1, ...,vn}, and therefore, noC3+i can be

adjacent to more than one vertex of{v1, ...,vn}. We may reorder the vertices of{v1, ...,vn} so that for each

i ∈ [n], vi is the unique vertex adjacent toC3+i by a unique edge. Condition (6) impliesvi 6∼ v j for i 6= j.

Condition (5) implies eachvi is adjacent to a vertex of someK3+ j , and condition (8) implies it is not

connected to any other vertex ofK3+ j , nor to any vertex ofK3+r for r 6= j. For eachi ∈ [n], let f (i) = j

whereK3+ j is adjacent tovi . Let uf (i) ∈ K3+ f (i) such thatvi ∼ uf (i). Condition (8) asserts that whenever

f (i) = f ( j) for i 6= j, thenuf (i) = uf ( j); that is, a unique vertex is chosen inK3+ f (i) so that whenevervk is

connected to the cliqueK3+ f (i), it is connected by that vertex. The mapf : [n]→ [m] is the function we are

after, and altogether we have shownF ≈ σ(n, f ,m). •

III.9 A Small Category

We define a small categoryCG. The objects are simple graphs whose vertex sets are initial segments of

positive integers. The morphismsCG(A,B) are the graph homomorphisms fromA to B which we write as a

triple F = (A, f ,B) where f : [n]→ [m] with n= |A| andm= |B|. The categoryCG can naturally be thought

of as a 2-sorted first-order structure, with one sort for objects and another sort for morphisms, together with

a ternary relation over the sort of morphisms which reflects composition. Thecategory structure is then

described by the standard category axioms in this 2-sorted first-order language.

For a morphism, the property of being a monomorphism or an epimorphism is by definition first-order

definable in the language of the category. In general categories we do not formally have access to the “inner”

structure of the objects and so we don’t expect to definably capture the property of injectivity or surjectivity;

likewise, the property thatf ∈ CG(A,B) is an embedding refers to the relational structure ofA andB which

is not included in the 2-sorted language of the category. In the case of simple graphs, for a morphism to be

injective is equivalent to being a monomorphism and surjectivity is equivalent to being an epimorphism. So

here, injectivity and surjectivity are definable properties. It will also be possible to capture embeddings, but

we need to make an adjustment.
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We enrich the small category by adding 4 new constants to the language and denote the resulting stucture

by CG′. We add the constantsK2, P3, and the mapsCG(N1,K2) = {t,b}. Notice thatN1 is a terminal object

in CG′, and so is definable. We can use the first-order structure of the category and the constants to definably

manipulate the edge relations of the object in the category. For any graphA and verticesu,v∈ A, we see

thatu∼ v in A iff where x,y∈ CG(N1,A) such thatx(0) = u andy(0) = v, then there existsh∈ CG(K2,A)

such thatht = x andhb = y.

x

y

t

b

h(x,y)

A

Figure III.7: Reading the edge relation

The first-order language ofCG′ is even more expressive. We seef ∈ CG(A,B) is an embedding ifff is a

monomorphism and whenever there existx,y∈ CG(N1,A) andq∈ CG(K2,B) such thatgt = f x andgb= f y,

then there existsφ ∈ CG(K2,A) such thatx= φ t andy= φb. This means that the substructure relation of

〈QGR,≤,P3〉 when restricted to the objects of the small category is first order-definablein CG′.

x

t

b

A B
f

g
y

Figure III.8: Capturing embeddings

Using the bijectionG∋ u↔ x∈ CG(N1,G) such thatx(0) = u, we see that given anyG∈ Obj CG, we

can construct an isomorphic graph

Ĝ= 〈CG(N1,G), r̂ ⊆ CG(N1,G)×CG(N1,G)〉 ≈G (III.1)

where both the set of vertices and the edge relation ˆr have first-order definitions in the language of the small

category. It is not difficult to see that the set of such graphs
{

Ĝ : G∈ObjCG
}

is definable.

By following the procedure outlined in [JM10, Sec.3.1], we can use the first-order language of the

category applied to the structures in
{

Ĝ : G∈ObjCG
}

to parametrize arbitrary subsets of finitary cartesian

products. To see this, takêG1, ...,Ĝm andR̂ a subset of the cartesian product of their universes; that is,R̂⊆

CG(N1,G1)×·· ·×CG(N1,Gm). By the bijection in the previous paragraph there is a corresponding relation
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R⊆G1×·· ·×Gm. If |R|= k, we shall use the maps inCG(N1,Nk) to parametrizek-element subsets of the

product in the same way as the maps ofCG(N1,A) parametrize the elements ofA. If πi : G1×·· ·×Gm→Gi

denotes thei-th projection of the cartesian product as sets, then for any fixed bijectionp : [k]→ R there

is a fixed sequence of morphismspi ∈ CG(Nk,Gi) given by pi = πi ◦ p. This follows since any set map

α : [k]→G corresponds exactly to a morphism of the trivial graphNk into G. An arbitrary tuple inR is then

specified by(p1(s), ..., pm(s)) wheres∈ [k]. It is easy to see that with this choice of(p1, ..., pm) we have

R̂= {(q1, ...,qm) ∈ CG(N1,G1)×·· ·×CG(N1,Gm) : qi = pi ◦q for some q∈ CG(N1,Nk)}

In this way, the first-order language ofCG′ when restricted to the structures
{

Ĝ : G∈ObjCG
}

is equiv-

alent to a second-order language which has variables ranging over theelements ofĜ, variables for the

morphisms between objects, and can express the edge relation in objects, application of morphisms to ele-

ments, composition of morphisms, and equality of elements and morphisms, and the apparatus to quantify

over arbitrary subsets of finite products. Altogether, using the isomorphism in Eq.(III.1), we see that the

first-order language ofCG′ when restricted to the objects of the category is equivalent in expressivepower

to a full second-order language of simple graphs over the same set of objects. What is surprising is that the

isomorphism invariant relations definable in the first-order language ofCG′ (equivalently, a full second-order

language), is up to isomorphism first-order definable in the theory of substructure. In order to establish this

fact, we need to build a model of the small category in the definable relations of〈QGR,≤,P3〉. The difficult

part of this has already been accomplished.

Suppose we have graphsGi = 〈[mi ], r i〉 in the category and a morphismF = (G1, f ,G2) such that

f : [m1]→ [m2]. We encodeGi as any graph isomorphic toPi = Pmi (Gi ,Gi) and encodeF as any triple

isomorphic toM(F) = (P1,σ(m1, f ,m2),P2).

In the next result, we see how to read off the values of a functionf with statement (1), and how to

capture that af is a homomorphism with statement (2).

Lemma III.9.1. We have the following:

1. If (U,V,W) ≈M(F) for F = (G1, f ,G2), thenF(and f ) are uniquely determined and for alli ∈ [m1]

and j ∈ [m2], we have thatf (i) = j iff K3+ j +pC3+i ≤V.

2. (U,V,W) ≈ M(F) for someF = (G1, f ,G2) iff where mi = |Gi |, we haveU ≈ Pm1(G1,G1), W ≈

Pm2(G2,G2), andV ≈ σ(m1, f ,m2) for somef : [m1]→ [m2]; and whenever we have 1≤ i, i′ ≤m1 and

1≤ j, j ′≤m2, j 6= j ′, andK3+ j +pC3+i ≤V andK3+ j ′+pC3+i′ ≤V, thenγ(m1+2+ i,m1+2+ i′)≤U

impliesγ(m2+2+ j,m2+2+ j ′)≤W.

Proof: For part (1), the first part of Proposition III.8.5 and the second part of Proposition III.7.8 guarantee

that (U,V,W) ≈ M(F) iff U ≈ Pm1(G1,G1), W ≈ Pm2(G2,G2), andV ≈ σ(m1, f ,m2). That f (i) = j iff

K3+ j +pC3+i ≤V is explicit by construction.

For part (2), recall in the proof of Proposition III.7.4 thatγ(m1+2+ i,m1+2+ i′)≤Pm1(B1,B1) iff i ∼ i′

in B1. •

We now account for the composition of morphisms.
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Lemma III.9.2. Let F = (G1, f ,G2) and H = (G2,h,G3) with |Gi | = mi for i = 1,2,3. Let M(F) ≈

(P1,σ1,P2) andM(H) ≈ (P2,σ2,P3). ThenM(HF) ≈ (P1,σ3,P3) iff σ3 ≈ σ(m1, p,m3) for somep such

that: for all i ∈ [m1], j ∈ [m2], k ∈ [m3], we have thatK3+ j +p C3+i ≤ σ1 andK3+k +p C3+ j ≤ σ2 imply

K3+k+pC3+i ≤ σ3.

We have gathered together all the necessary definable relations. The analogue of Theorem 3.8([JM10])

below in the case of simple graphs goes through exactly word for word. Since we have strived for relative

completeness in this dissertation, and since the corresponding result for equivalence relations in Section IV.5

requires a slight modification of the translation scheme, we will present the argument here.

Theorem III.9.3. Let R be an isomorphism invariant relation over QGR. ThenR is first-order definable

over〈QGR,≤,P3〉 iff its restriction to ObjCG is first-order definable in the language ofCG′.

Proof: Let R be an isomorphism invariantN-ary relation over QGR. One direction has already been

established in the beginning of this section.

SupposeR∩ObjCGN is definable in the language ofCG′; that is, there exists a formulaΦ in the language

of CG′ such that

R∩ObjCGN =
{
(A1, ...,AN) ∈ObjCGN : CG′ � Φ(A1, ...,AN)

}
.

We need a formulaΨ(x1, ...,xN) in the language of〈QGR,≤,P3〉 such that

R=
{
(G1, ...,GN) ∈ QGRN : 〈QGR,≤,P3〉 � Ψ(G1, ...,GN)

}
.

We will define by induction a formulâΦ(x1, ...,xN) so that wheneverAi ≈ Bi with Ai ∈ QGR, and|Ai |= ki

for i = 1, ...,N we have

CG′ � Φ(B1, ...,BN) iff 〈QGR,≤,P3〉 � Φ̂(Pk1(A1,B1), ...,PkN(AN,BN)).

We can then takeΨ(x1, ...,xN) to be

(∃u1, ...,uN)(Φ̂(u1, ...,uN)∧ (“there existvi such thatki = |xi | andui ≈ Pki (xi ,vi) for i = 1, ...,N))”

Let X1, ...,XM be a list of all the object variables, both free and bound, which appear inΦ. Let f1, ..., fT
be a list of all the morphism variables which appear inΦ. Note that all the morphism variables must appear

bound. We introduce variablesx1, ...,xM for Φ̂ which will correspond to the object variableX1, ...,XM, and

y1, ...,yT which will correspond to the morphism variablesf1, ..., fT . By induction on the length of a formula,

we define a correspondence from the subformulas ofΦ to formulas in the substructure relation.

Our scheme for translating the atomic subformulas is the following:

1. If φ is Xr = Xs , thenφ̂ is xr ≤ xs∧xs≤ xr .

2. If φ is fs = fr , thenφ̂ is yr ≤ ys∧ys≤ yr
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3. If φ is fs∈ CG(Xr ,Xt), thenφ̂ is

(∃ur ,ut)(“there existvr ,vt such thatkr = |ur |,kt = |ut |, andxr = Pkr (ur ,vr)

andxt = Pkt (ut ,vt) and(xr ,ys,xt) = M(F) for someF ∈ CG(vr ,vt)”)

4. If φ is fi ∈ CG(Xr ,Xt)∧ f j ∈ CG(Xt ,Xs)∧ fk = f j ◦ fi , thenφ̂ is

(∃ur ,ut ,us)(“there existvm such thatkm = |vm| andxm = Pkm(um,vm) for m∈ {r, t,s} and

(xr ,yi ,xt) = M(F) for someF ∈ CG(vr ,vt) and(xt ,y j ,xs) = M(G)

for someG∈ CG(vt ,vs) and(xr ,yk,xs) = M(GF)”)

5. If φ is¬ψ , or ψ ∧θ , thenφ̂ is¬ψ̂, or ψ̂ ∧ θ̂

6. If φ is (∃Xr)ψ , thenφ̂ is (∃xr)[(∃ur)(“there existsvr such thatkr = |vr | andxr = Pkr (ur ,vr)”)∧ ψ̂]

7. If φ is (∀Xr)ψ , thenφ̂ is (∀xr)[(∃ur)(“there existsvr such thatkr = |vr | andxr = Pkr (ur ,vr)”)→ ψ̂ ]

8. If φ is (∃ fs∈ CG(Xr ,Xt))ψ , thenφ̂ is

(∃ys)[(∃ur ,ut)(“there existvr ,vt such thatkr = |vr |,kt = |vt | andxr = Pkr (ur ,vr) and

xt = Pkt (ut ,vt) and(xr ,ys,xt) = M(F) for someF ∈ CG(ur ,ut)”)∧ ψ̂]

9. If φ is (∀ fs∈ CG(Xr ,Xt))ψ , thenφ̂ is

(∀ys)[(∃ur ,ut)(“there existvr ,vt such thatkr = |vr |,kt = |vt | andxr = Pkr (ur ,vr) and

xt = Pkt (ut ,vt) and(xr ,ys,xt) = M(F) for someF ∈ CG(vr ,vt)”)→ ψ̂]

It is now straightforward to prove by induction on the length of a formula thatfor all subformulas

φ(X1, ...,XM; f1, ..., fT) of Φ, and for allGi ∈ObjCG, Fj = (B j ,g j ,Cj) ∈ CG(B j ,Cj) with |Gi |= ui , |B j |= b j

and|Cj |= c j for i ≤M, j ≤ T it holds that

CG′ � φ(G1, ...,GM; f1, ..., fT)

iff

〈QGR,≤,P3〉 � φ̂(Pu1(G1,G1), ...,PuM(GM,GM);σ1(b1,g1,c1), ...,σT(bM,gM,cM))

The theorem is then established whenφ = Φ. •

Corollary III.9.4. For every sentenceφ in the second-order language of simple graphs, there is a formula

Φ(x) in the first-order language of the quasi-ordered set〈QGR,≤,P3〉 such that a graphA in QGR models

φ if and only if 〈QGR,≤,P3〉 � Φ(A).
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CHAPTER IV

EQUIVALENCE RELATIONS

In this chapter, we consider the universal class of equivalence relationsE, and investigate definability

in the partially ordered set〈PE,≤,n2〉 wheren2 denotes the isomorphism type of the two element identity

relation.

IV.1 Individual Definability

Recall, finite equivalence relations can be considered as arithmetic partitions.If π is a partition of ann

element set intot blocks, then we can representπ as a sequence of positive integersπ = (n1, ...,nt) where

eachni represents the size of thei-th block andni+1≤ ni . If σ embeds intoπ, then any two elements which

are in separate blocks inσ must be mapped to separate blocks inπ. If σ = (s1, ...,sr), then it is easy to see

that

σ ≤ π iff r ≤ t and si ≤ ni for all i ≤ r. (IV.1)

There is another way to represent the partitionπ = (n1, ...,nt) called a Young diagram. This is a series

of left-justified rows of boxes; the first row hasn1 number of boxes, the second row hasn2 boxes, the third

row hasn3 boxes, etc. For example, the following is the Young diagram for the partitions(4,2,2,1) and

(5,3,2,1), respectively:

For any Young diagram, the transpose is defined by interchanging the rows and the columns in the same way

that the transpose of a matrix is defined. For example, the Young diagram for π = (n1, ...,nt) has first row

with n1 boxes, and second row withn2 boxes, and third row withn3 boxes, etc. Then the transpose Young

diagram has the first column withn1 boxes, the second column hasn2 boxes, the third column hasn3 boxes,

etc. It is easy to see that the transpose of a Young diagram forπ, is the Young diagram for another partition

denotedπ∂ . For example,π = (4,2,2,1) andπ∂ = (4,3,1,1) are pictured below:

Using (IV.1), we see thatπ ≤ σ iff the Young diagram forπ is contained in the Young diagram forσ .

From this geometric picture it is easy to conclude:

Lemma IV.1.1. The transpose mapπ → π∂ is an automorphism of〈PE,≤〉.
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If σ < π, but there does not existρ such thatσ < ρ < π, then we writeσ ≺ π and sayπ coversσ ,

or thatσ is a subcover ofπ. For a partitionπ, |π| will denote the cardinality of the underlying set. It is

immediate from (IV.1) thatπ ≺ ρ implies |π|+1= |ρ|.
The identity, ortrivial , relation on the set{1, ...,m}will be denoted asNm, and the set of identity relations

asN= {Nm : m< ω}. The unique equivalence relation on{1, ...,m} with only one block will be denoted as

Km. Such equivalence relations are said to becomplete, or total, and the set of complete relations is denoted

byK= {Km : m< ω}.

Proposition IV.1.2. K andN are separately definable.

Proof: K consists of those partitionsπ which avoidN2 together withN1 which is clearly definable.N

consists ofN1 together with those partitionsπ which are aboveN2 such thatπ ↓ is linearly ordered.•

We have a nice characterization of those non-finitely generated universal subclasses of equivalence re-

lations.

Proposition IV.1.3. The class of non-finitely generated universal subclasses of equivalence relations is equal

to the union of the principal filters generated byU(K) andU(N).

Proof: Clearly,U(K) andU(N) are not finitely generated. Since equivalence relations form a locally finite

universal class, a universal subclass is non-finitely generated iff itcontains infinitely many non-isomorphic

finite equivalence relations. IfR is not finitely generated and avoids someNm, then there are infinitely many

finite partitions with at mostm blocks; therefore,R contains finite partitions with blocks of arbitrarily large

cardinality.•

It will be convenient to adjust the representation of a partition. Each total relation on ann-element

set will correspond to a complete simple graphKn on n vertices. Since each partition is a disjoint sum of

blocks, and each block can be thought of as a total relation over that block, we would like to represent each

partition as a disjoint sum of complete simple graphs. For the partitionπ = (n1, ...,nt), this can be written

asπ = ∑t
i=1Kni whereni+1≤ ni .

We call a partitionπ uniform if it is the case that all the blocks are of the same cardinality which can

be written asπ = ∑m
i=1Kn ≈mKn. It is often useful to write the representation in the formπ = ∑r

i=1miKni

whereni+1 < ni by grouping blocks of equal cardinality together. This will be referred toas thecanonical

representation. We have the following characterization of uniform partitions.

Lemma IV.1.4. π has a unique lower cover iffπ is uniform; consequently, the set of uniform partitions is

definable without constants.

Proof: For necessity, notice that ifπ ≈mKn, then∀ρ ≺ π,ρ ≈ (m−1)Kn+Kn−1.

If π is not uniform, then we can writeπ ≈Kn+∑r
i=1Ksi wheren≥ si and there existssk such thatn> sk.

ThenKn−1+∑r
i=1Ksi andKn+Ksk−1+∑i 6=k Ksi are incomparable subcovers ofπ. •

At this point, we should note that those partitions at a fixed given heightn−1 are definable inPE without

constants, since they are precisely those partitionsσ such thatσ ↓ contains a chain of covers of lengthn,
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but no chain of greater length; for example, the set of isomorphism types{k2,n2} are precisely those types

at height 1.

With the proof of the next theorem, positive definability now follows from Theorem II.1.9.

Proposition IV.1.5. Every element of〈PE,≤,k2〉 is definable. The transpose map is the only non-trivial

automorphism of〈PE,≤〉.

Proof: Suppose every element of〈PE,≤,k2〉 is definable. Since{k2,n2} is definable without constants

and closed under the transpose map, Lemma III.7.2 completely characterizesthe automorphisms ofPE. We

now must show individual definability.

Note K2+K1 is definable as the unique element with bothN2 andK2 as lower covers. Together with

Proposition IV.1.2, this shows every partition of cardinality at most three is definable. Using Lemma II.2.1,

it is sufficient to show set reconstruction holds for partitions of cardinalityat least four. While this is has

been established as part of a slightly more general reconstruction resultby Pretzel and Siemons[PS04], we

will present an argument in our setting.

Assume|π|,|σ | ≥ 4, and supposeLπ = Lσ . The goal is to showπ ≈ σ . Sinceρ ≺ π⇒ |ρ|+1= |π|, we

must have|π|= |σ |. Also,π andσ must have the same number of blocks in their canonical representations;

i.e., if π ≈ ∑t
i=1miKni andσ ≈ ∑r

i=1siKpi , thent = r. This follows sincet = |Lπ | andr = |Lσ |.

AssumeKni = Kpi , butmi 6= si . Without loss of generality, supposemi < si . Then every lower cover of

σ has at leastsi−1 blocksKpi , butπ has a lower cover which does not. So in the canonical representation

reading from the left, whenever the block sizes are equal, they must appear equally often.

If t = 1, thenπ andσ are uniform and so have unique lower covers. Here,Lπ = Lσ ⇒ π ≈ σ . Now,

assumet > 1 andπ 6≈ σ . Then letk be the first integerj ≤ t such thatKn j 6=Kp j ; therefore,Kni =Kpi and (by

the above),mi = si , for i < k. Without loss of generality, we may assumeKnk < Kpk. If k= 1, then no lower

cover ofπ has a block ofKpk, butσ certainly does. Ifk> 1, thenρ ≈ (s1−1)Kp1 +Kp1−1+∑r
i=2siKpi ≺ σ

cannot be a lower cover ofπ. It must be the case thatσ ≈ π. •

IV.2 Arithmetic

For our purposes, it will be convenient to actually work with a closely related structure. Let QEQV denote the

set of equivalence relations over finite sets of positive integers. We thenestablish our results on definability

in the pointed quasi-ordered set〈QEQV,≤,K2〉; consequently, whenever a particular equivalence relation is

shown to be definable, it is definable up to the isomorphism of relations. Unless explicitly stated otherwise,

definability refers to this pointed structure with the language{≤,K2}.

The poset〈PE,≤,k2〉 is then isomorphic to the quotient of〈QEQV,≤,K2〉 by the equivalence deter-

mined by isomorphism. The transposition map is also an automorphism of〈QEQV,≤〉.

For a partitionρ, let l(ρ) equal the number of blocks inρ. This will be referred to as the length of the

partition.

Lemma IV.2.1. {(π,ρ) : π ≈ Nm, l(ρ) = m,m≥ 1} is definable.
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Proof: We see thatl(ρ) = m iff Nm≤ ρ butNm+1 � ρ. •

Lemma IV.2.2. {(k,π) : k≈ Kn and all blocks ofπ have at mostn elements} is definable.

Proof: That every block ofπ has at mostn elements is given by the conditionKm � π for Km≻ Kn. •

We setb(π) = n if Kn≤ π, butKn+1 � π. While we have seen that uniform partitions are definable, the

following lemmas will allow us to specify particular uniform partitions.

Lemma IV.2.3. {(k,n,π) : k≈ Km,n≈ Nn,π ≈ nKm} is definable.

Proof: We see that(k,n,π) is in this relation iffk is complete,n is trivial, k≤ π but σ � π whenk≺ σ
andσ complete,l(π) = |n|, andπ has a unique lower cover.

It is immediate thatπ ≈ nKm satisfies the condition.

To see that they are sufficient, we must haveπ ≈ rKt by uniformity, l(π) = |n| impliesr = n, andt = |k|

sincek is the largest complete partition belowπ. •

Lemma IV.2.4. {(k,π) : k≈ Kn and all blocks ofπ are at least size n} is definable.

Proof: (k,π) is in the relation iffk≈ Kn and wheneverl(π) = m, mKn≤ π. •

Proposition IV.2.5. {π : all blocks ofπ are distinct} is definable.

Proof: Let b(π) = n and l(π) = t. Then all the blocks ofπ are distinct iff∀s< t, there existsKns ≤ Kn

such thatsKns ≤ π, (s+1)Kns � π, andsKp � π for Kp > Kns.

Suppose all blocks ofπ are distinct and order them asKn1 > Kn2 > · · ·> Knt wheren1 = n. Fors≤ t, if

sKnk ≤ π, thenKnk ≤ Kns; therefore,Kns is the largest block ofπ such thatsKns ≤ π.

Conversely, supposeπ satisfies the conditions and consider the representation ofπ with Kn1 ≥ Kn2 ≥

·· · ≥ Knt wheren1 = n. Fors= 1, Kr1 ≤ π, butKr1+1 � π impliesKr1 ≈ Kn1 ≈ Kn since 2Kr1 � π. This also

impliesn2 < n1 = n.

Fors= 2 we have that 2Kr2 ≤ π and so there existsni < n1 such thatKr2 ≤ Kni which impliesKr2 ≤ Kn2.

Since 2Kr2 ≤ 2Kn2 ≤ π butsKr2+1 � π, we must haveKr2 ≈Kn2; because 3Kn2 ≈ 3Kr2 � π, we haven3 < n2.

As we continue inductively, fors< t we havesKrs ≤ π and so there existsni < ns−1 such thatKrs ≤

Kni which impliesKrs ≤ Kns. SincesKrs ≤ sKns ≤ π but 2Krs+1 � π, we must haveKrs ≈ Kns; because

(s+1)Kns ≈ (s+1)Krs � π, we havens+1 < ns.

Fors= t−1, the conclusionnt < nt−1 finishes demonstrating that allni are distinct.•

We can now specify the existence of a particular block.

Proposition IV.2.6. {(k,π) : k≈ Kn andKn is a block ofπ} is definable.

Proof: (k,π) is in this relation iffk≈ Kn for somen≥ 1, k≤ π, and wherel(π) = t there existsNr ≤ Nt

such thatrKn≤ π, (r +1)Kn � π, andrKp � π for Kp > Kn.
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To see that this characterizes the presence of a blockKr in π, notice that in the canonical representation

for π ≈ ∑t
i=1miKni , Knk appearsmk times, but the largest uniform partition with blocks of sizenk belowπ is

(

∑k
i=1mi

)
Knk. For the blockKnk the value ofr we are after is thenr = ∑k

i=1mi . •

Definition IV.2.7. For n≥ 1, a partitionσ ≈ ∑n
i=1Ki is called afactorial and will be denoted as[n]!.

Our approach to the definability of addition and multiplication is to first show that factorials are defin-

able.

Proposition IV.2.8. {(k,π) : k≈ Kn, π ≈ [n]! } is definable.

Proof: Th claim is thatπ is isomorphic to the factorial[n]! iff

(1) b(π) = n

(2) For allKr ≤ Kn we have thatKr is a block ofπ
(3) All the blocks ofπ are distinct

If π ≈ [n]!, then it is easy to see the conditions are satisfied.

Supposeπ satisfies conditions (1) - (3). Conditions (1) and (2) implyπ ≈ ∑n
i=1miKi , and condition (3)

implies eachmi = 1. •

We can now define the pairs of complete and trivial partitions which are at thesame height.

Lemma IV.2.9. {(k,n) : k is complete, n is trivial, |k|= |n|} is definable.

Proof: (k,n) is in this relation iffk≈ Kr , n≈ Nm, andl(π) = m whereπ ≈ [r]!. •

With factorials, we don’t have to start counting the components just fromK1; this means we can now do

addition.

Proposition IV.2.10. {(k, r,π) : k, r,π are complete and|k|+ |r|= |π|} is definable.

Proof: (k, r,π) is in this relation iffk, r,π are complete,k, r < π, and whereρ is the partition in which

all the blocks are distinct, andKm is a block ofρ iff k < Km≤ π, we then have thatl(ρ) = |r|. The last

condition is definable by Lemma IV.2.9.•

It follows from the last two propositions that we can also do addition by considering the corresponding

triplets of trivial relations.

We may refer to a partition of the formmKn asn-uniform to denote the fact that all the blocks are of

cardinalityn. We will also saymKn hassize n. The frequencyrefers tom. We saw in Lemma IV.2.3 that

the set ofn-uniform partitions is definable; moreover, it is easy to see that the set ofn-uniform partitions are

linearly ordered. The next result allows us to pick out the uniform partitions which appear in a canonical

representation.
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Proposition IV.2.11. The relation

{(k,n,π) : n≈ Nn andk is a block ofπ which appears exactlyn times}

is definable.

Proof: Let k≈ Kr andn≈ Nn. We have thatKr is a block ofπ which appears exactlyn times iff π ≈ nKr ,

or

(1)Kr is block ofπ,

(2) If b(π) = r, thennKr is the maximalr-uniform partition belowπ.

(3) If b(π) 6= r and there existsK∗ > Kr such that

(a)K∗ is a block ofπ such that wheneverKs is a block ofπ aboveKr , we have thatKs≥K∗ > Kr ,

and

(b) mKr is the maximalr-uniform partition belowπ, and

(c) tK∗ is the maximal|K∗|-uniform partition belowπ
thenn= m− t.

If we examine the canonical representation ofπ ≈ ∑s
i=1miKni , then for any blockKnr , we see that

(∑r
i=1mi)Knr is the largestnr -uniform partition belowπ, and so the correctness of the above characterization

follows sincemr = ∑r
i=1mi−∑r−1

i=1 mi . That the characterization is first-order is guaranteed by Lemma IV.2.4

and Lemma IV.2.9.•

Proposition IV.2.12. {(k,π) : k is complete and|π| ≥ |k|} is definable.

Proof: The claim is that(k,π) is in the relation iffk is complete, and for any partitionσ which satisfies the

conditions below, we havel(σ)≥ |k|:

(∗∗) If Kr ≤ π andmKr ≤ π but (m+1)Kr � π for somem, thenKr is a block ofσ which appears at

leastm times.

To check necessity, letπ ≈ ∑t
i=1miKni with |π| ≥ n= |k|, and supposeσ is a partition which satisfies

the condition (∗∗). We wish to showl(σ)≥ n. SetMr = ∑r
i=1mi and note thatM1 < M2 < · · ·< Mt . Since

MiKni is a maximalni-uniform partition belowπ, we must have thatKni appears as a block inσ Mi times.

This implies∑t
i=1MiKni ≤ σ . For an arbitrary blockKr such thatKns+1 < Kr <Kns, (∗∗) impliesKr is a block

of σ and must appear at leastMs times inσ ; in particular,[r]! ≤ σ wheneverKr is a block ofπ. Altogether,

it must be the case that∑t
i=1mi [ni ]! ≤ σ and so

l(σ)≥ l

(
t

∑
i=1

mi [ni ]!

)

=
t

∑
i=1

l (mi [ni ]!) =
t

∑
i=1

mini = |π| ≥ n.

To establish sufficiency, suppose(k,π) is in the relation, but|π| < n = |k|. Let π ≈ ∑t
i=1miKni . Set

ρ ≈ ∑t
i=1mi [ni ]! and observe thatl(ρ) = ∑t

i=1mini < n. SupposeKs≤ π and letk be the smallest number

for whichKs≤Knk. For the blockKnk, we see that
(

∑k
i=1mi

)
Knk ≤ π is maximal. IfrKs� π for r > ∑k

i=1mi ,

then by definition of the canonical representation, we must haveKs � Knk+1 which contradicts the choice of
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Knk; therefore,
(

∑k
i=1mi

)
Ks≤ π is maximal amongs-uniform partitions. Notice thatKnk appears inρ for

each factorial[nr ]! wherenr > nk; that is,Knk appears∑k
i=1mi times which is exactly how oftenKs appears

as a block inρ. We have shown the partitionρ satsifies (∗∗), and so we arrive at a contradiction. It must be

the case that|π| ≥ n •

By examining the above proof, it is interesting to note that we have essentially shown the definability of

σ ≈ ∑t
i=1mi [ni ]! given π ≈ ∑t

i=1miKni .

Proposition IV.2.13. {(k,π) : k is complete and|π|= |k|} is definable.

Proof: We would have|π| ≥ |k|, but |π|� |k|+1. •

We can now interpret multiplication.

Proposition IV.2.14. {(k,ρ,π) : k,ρ,π are complete and|π|= |k| |ρ|} is definable.

Proof: (k,ρ,π) is in this relation iffk,ρ,π are complete and|π|= |σ | whereσ ≈ |k|K|ρ|. •

Let 〈N>0,+,×〉 denote the structure over the set of positive integers such that the operations of addition

and multiplication have their usual meaning. From [TMR53, Thm 7], the elementary theory of this structure

is undecidable. Propositions IV.1.2, IV.2.10, and IV.2.14 state that we can define the operations of addition

and multiplication over the definable set of complete partitions, and so establish afirst-order interpretation

of the elementary theory of〈N>0,+,×〉 into the elementary theory of〈PE,≤,n2〉. According to [TMR53,

Thm 7&10] this yields the following result.

Corollary IV.2.15. The elementary theory of〈PE,≤〉 is undecidable.

Since the elementary theory of a fixed structure is complete, by [TMR53, Thm1] we can conclude the

following.

Corollary IV.2.16. The elementary theory of〈PE,≤〉 is not finitely axiomatizable.

IV.3 Morphisms

Here is our scheme for encoding a functionf : [n]→ [m]. We take a partition

ξ (n, f ,m)≈
n

∑
i=1

miKi +Kn+1+m where mi = f (i).

In such a partition,Kn is the largest block ofξ (n, f ,m) such thatKn+1 is not a block, but there does exist a

strictly larger block. The next blockKr is the unique largest block, andm= r−n−1. This is how to read off

the domain and range off . Clearly, any such partition∑n
i=1miKi +Kn+1+m wheremi ≤m defines a unique

function f : [n]→ [m] where we setf (i) = mi .
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We can realize a partitionτ asξ (n, f ,m) for somef in the following way:

(1) If mrKr is the uniform block ofτ with largest size, thenmr = 1.

(2) If mnKn is the next largest uniform block ofτ, then for all 1≤ i < n we have a uniform blockmiKi .

(3) n+1< r

(4) If miKi is a uniform block inτ, thenmi ≤ r−n−1.

We have the following.

Proposition IV.3.1. We have the following:

(1) ξ (n, f ,m)≈ ξ (n′,g,m′) iff n= n′, m= m′ and f = g.

(2) {(Kn,Km,τ) : n,m> 0, andτ ≈ ξ (n, f ,m) for somef : [n]→ [m]} is definable.

IV.4 o-Presentations

Let σ be a concrete partition on the set[n]. We would like to encode in the isomorphism type of another

partition information which records which elements of[n] are in the same block inσ . Consider the set of

partitionsAσ whereπ = ∑n
i=1miKi ∈ Aσ if it satisfies the condition

mi = mj iff (i, j) ∈ σ . (IV.2)

We can uniquely reconstructσ from anyπ ∈ Aσ by matching together into separate groups those uniform

blocks which have the same frequency. For each such group, corresponding sizes of the uniform blocks

precisely describes the elements which are in the same block ofσ . Here, the actual frequency numbers

are irrelevant since any member ofAσ will do. Since we would like our choice of a partition inAσ to be

definable, we must be more judicious.

For anyπ ∈ QEQV, the isomorphism type[π] contains a concrete partition we labelπ∗ defined in the

following manner. Letπ ≈ ∑n
i=1miKni so thatπ is a partition of a set withm= ∑n

i=1mini elements. Nowπ∗

is a partition on[m] where

• The firstm1n1 integers are divided intom1 blocks where the first block contains 1, ...,n1, the second

block containsn1+1, ....,2n1, and continuing in this manner them1-th block contains the

integers(m1−1)n1+1, ....,mini

• The nextm2n2 consecutive integers are partitioned in a similar manner.

•We continue partitioning consecutive intervals ofmini integers until we exhaust the uniform blocks

of π.

Any element ofAπ∗ has a peculiar form - all the uniform blocks with the same frequencies appear as a

consecutive interval in the sizes of the uniform blocks. We are now ready to define an o-presentation.

Definition IV.4.1. For anyπ ∈ QE, chooseP(π) ∈ Aπ∗ such that whenever

{
mKp,mKp+1.....,mKq

}
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is a complete set of uniform blocks inP(π) which have the same frequency, thenm= p. We sayP(π) is an

o-presentationfor π.

ExampleIV.4.2. If we takeπ = 3K3+2K5, then

P(π) = K1+K2+K3
︸ ︷︷ ︸

+4K4+4K5+4K6
︸ ︷︷ ︸

+7K7+7K8+7K9
︸ ︷︷ ︸

+

10K10+10K11+10K12+10K13+10K14
︸ ︷︷ ︸

+

15K15+15K16+15K17+15K18+15K19
︸ ︷︷ ︸

Given σ ∈ QEQV, supposesKs, ...,sKr are all the uniform blocks inP(σ) which have the same fre-

quency. We callsKs+ · · ·+ sKr a pseudo-blockof P(σ). The terminology comes from the fact that a

pseudo-block inP(σ) reflects the existence of a block inσ .

Lemma IV.4.3. The set{(Ks,ρ,Kr) : ρ ≈ sKs+ · · ·+sKr} is definable.

Proof: We see thatρ ≈ sKs+ · · ·+sKr iff whenevers≤ i ≤ r, thensKi is a uniform block ofρ and these

are the only uniform blocks.•

Proposition IV.4.4. The following hold.

(1) The set{P(π) : π ∈ QEQV} is definable.

(2) The set{(ρ,P(π)) : ρ is a pseudo-block ofP(π)} is definable.

(3) The set{(σ ,P(π)) : σ ≈ π} is definable.

(4) P(π)≈ P(σ) iff π∗ = σ∗.

Proof:

(1) We see thatσ ≈ P(π) for someπ iff

• If mKr is the uniform block ofσ with the largest size, then for all 1≤ i ≤ r there existsn such that

nKi is a uniform block ofσ .

• WhenevermKs andmKr are two uniform blocks ofσ with s< r, thenmKi is a uniform block ofσ for

all s≤ i ≤ r.

• WhenevermKs andnKr are two uniform blocks ofσ with m 6= n ands< r, thenm< n.

• If mKs is a uniform block which is smallest for all uniform blocks with the same frequency, then

m= s.

The first three conditions implyσ ∈ Aπ for someπ. The last condition guaranteesσ is a disjoint union

of pseudo-blocks and so is an o-presentation.

(2) ρ ≈ sKs+ · · ·+sKr is a pseudo-block ofP(π) if sKs andsKr are uniform blocks ofP(π), and among

all uniform blocks which have frequencys, sKs is smallest andsKr is the largest in size.
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(3) From the canonical representation, the isomorphism type of a partitionπ is completely determined

by the uniform blocks inπ. The central question is, how do we read off the uniform blocks ofπ from the

collection of pseudo-blocks ofP(π)?
For a pseudo-block(Ks,ρ,Kr), we define the differenced(ρ) = r + 1− s. Among all the pseudo-

blocks ofP(π) which have the same difference, let(Ks1,ρ1,Kr1) be the one in whichs1 is smallest, and

let (Ks2,ρ2,Kr2) be the one in whichs2 is largest. Thenr2+1−s1
r2+1−s2

Kr2+1−s2 is a uniform block ofπ.

Any such partition asr2+1−s1
r2+1−s2

Kr2+1−s2 derived fromP(π) in this manner is called adifference blockof

P(π). Thenπ is up to isomorphism the unique partition whose uniform blocks are precisely the difference

blocks ofP(π).
(4) By construction, we haveπ ≈ σ iff π∗ = σ∗, and from the above it follows thatπ ≈ σ iff P(π) ≈

P(σ). •

ExampleIV.4.5. If we takeP(π) from the previous example, then we can reconstruct the isomorphism type

of π as
9−0
3−0

K9+1−7+
19+1−10
19+1−15

K19+1−15 = 3K3+2K5.

IV.5 A Small Category

In the same manner as in Section III.9, we define a small categoryCE. The objects are precisely the concrete

partitionsπ∗ whereπ ∈ QEQV. The morphismsCE(π∗,σ∗) are the relational homomorphisms fromπ∗ to

σ∗ which we write as a tripleF = (π∗, f ,σ∗) where f : [n]→ [m] with n= |π∗| andm= |σ∗|. The category

CE can naturally be thought of as a 2-sorted first-order structure, with onesort for objects and another sort

for morphisms, together with a ternary relation over the sort of morphisms which reflects composition. The

category structure is then described by the standard category axioms in this2-sorted first-order language.

We enrich the small category by adding 3 new constants to the language and denote the resulting struc-

ture byCE′. We add the constantsK ∗2 and the mapsCE(N∗1 ,K
∗
2) = {t,b}. Notice thatK∗1 is a terminal object

in CE′, and so is definable. For anyπ∗ ∈ ObjCE, we can use the maps inCE(K ∗2,π∗) to parametrize the

partition structure in the following way: for anyi, j in the universe ofπ∗ = 〈[n], r〉, we see that(i, j) ∈ r iff

wherex,y∈ CE(K∗1 ,π∗) such thatx(0) = i andy(0) = j, then there existsh∈ CE(K ∗2,π∗) such thatht = x

andhb = y. This clearly yields a definable equivalence relation overCE(K∗1 ,π∗) denoted by ˆr.

By a similar argument as in Section III.9, the property that a morphism is an embedding is definable

in the first-order language ofCE′. We conclude that the embeddability relation of〈QEQV,≤,N2〉 when

restricted to the objects of the small category is first-order definable inCE′.

Using the bijectionπ∗ ∋ i↔ x∈ CE(K∗1 ,π∗) such thatx(0) = i, we see that given anyπ∗ ∈ObjCE, we

can construct an isomorphic equivalence relation

Γ(π∗) = 〈CE(K∗1 ,π∗), r̂ ⊆ CG(K∗1 ,π∗)×CG(K∗1 ,π∗)〉 ≈ π∗

where both the set of elements and the relation ˆr have first-order definitions in the language of the small
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category. The set of partitions in{Γ(π∗) : π∗ ∈ObjCE} provide isomorphic copies of the objects of the

category. For these ojects, we now have access to the “internal” stuctureusing the first-order theory of the

category.

Putting all this together, the first-order language ofCE′ is equivalent in expressive power to a second-

order language applied to the structures{Γ(π∗) : π∗ ∈ObjCE}. This new language has variables ranging

over the elements ofΓ(π∗), variables for the morphisms between objects, can express the partition rela-

tion in objects, machinery to express the application of morphisms to elements, composition of morphisms,

and equality of elements and morphisms. The procedure in [JM10] to parametrize arbitrary finitary rela-

tions works equally well in this small category of equivalence relations. Altogether, we see that the first-

order language ofCE′ is equivalent in expressive power to a full second-order language over the structures

{Γ(π∗) : π∗ ∈ObjCE}.

In order to establish the version of III.9.3 for partitions, we need to build a model of the small category

CE′ in the definable relations of〈QEQV,≤ K2〉. With Propositions IV.4.4 and IV.3.1, almost all the work

has been accomplished already. What remains is definably capturing the property that a functionf : n→m

encoded asξ (n, f ,m) is a homomorphism between partitionsπ∗ andσ∗ encoded asP(π) andP(σ) where

|π|= n and|σ |= m.

Suppose we have objectsπ∗i in the category withmi = |π∗i | for i = 1,2, and a morphismF = (π∗1 , f ,π∗2)∈
CE(π∗1 ,π∗2) where f : [m1]→ [m2]. We encodeπ∗i as any graph isomorphic toPi = P(π∗i ) and encodeF as

any triple isomorphic to the ternary relationM(F) = (P1,ξ (m1, f ,m2),P2). Using Propositions IV.4.4 and

IV.3.1 we can realize forM(F) = (P1,ξ (m1, f ,m2),P2) thatP1 andP2 are o-presentations for someπ andσ ,

respectively, and thatξ (m1, f ,m2) encodes some function fromπ∗ to σ∗ wherem1 = |π∗| andm2 = |σ∗|.
In the following lemma, we will see how to read off the values of the functionf with statement (1), and

how to capture the fact thatf is a homomorphism with statement (2).

Lemma IV.5.1. We have the following:

1. If (A,S,B)≈M(F) for F = (π∗1 , f ,π∗2), then f is uniquely determined and for alli ∈ [m1] and j ∈ [m2]

where|π∗1 |= m1 and|π∗2 |= m2, we have thatf (i) = j iff jKi is a uniform block ofS.

2. (A,S,B) ≈ M(F) for someF = (π∗1 , f ,π∗2) ∈ CE(π∗1 ,π∗2) iff where mi = |π∗i |, we haveA≈ P(π∗1),
B≈ P(π∗2), andS≈ ξ (m1, f ,m2) for somef : [m1]→ [m2]; and whenever we have 1≤ i, i′ ≤m1 and

1≤ j, j ′ ≤m2, j 6= j ′, and jKi , j ′Ki′ are uniform blocks ofS, then the blocksKi andKi′ have the same

frequency inA implies the blocksK j andK j ′ have the same frequency inB.

The next lemma captures the composition of morphisms.

Lemma IV.5.2. Consider morphismsF = (π∗1 , f ,π∗2) andG= (π∗2 ,g,π∗3) with |π∗i |= mi for i = 1,2,3. Let

M(F) ≈ (P1,S1,P2) andM(G) ≈ (P2,S2,P3). ThenM(GF) ≈ (P1,H,P3) iff H ≈ ξ (m1,h,m3) for someh

such that: for alli ∈ [m1], j ∈ [m2], k∈ [m3], we have thatjKi is a uniform block ofS1 andkKj is a uniform

block ofS2 imply kKi is a uniform block ofH.
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We have gathered together all the necessary definable relations. The proof of Theorem III.9.3 for

simple graphs goes through exactly word for word in this setting with one slightchange - we need only

modify the translation of first-order formulas in the language ofCE′ taking into account our scheme for

o-presentations(Theorem IV.4.4). The scheme for the translation of the atomic formulas in the case of

equivalence relations is the following:

1. If φ is Xr = Xs , thenφ̂ is xr ≤ xs∧xs≤ xr .

2. If φ is fs = fr , thenφ̂ is yr ≤ ys∧ys≤ yr

3. If φ is fs∈ CE(Xr ,Xt), thenφ̂ is

(∃ur ,ut)(“xr = P(ur) andxt = P(ut) and(xr ,ys,xt) = M(F) for someF ∈ CE(u∗r ,u
∗
t )”)

4. If φ is fi ∈ CE(Xr ,Xt)∧ f j ∈ CE(Xt ,Xs)∧ fk = f j ◦ fi , thenφ̂ is

(∃ur ,ut ,us)(“xm = P(um) for m∈ {r, t,s} and(xr ,yi ,xt) = M(F) for someF ∈ CE(u∗r ,u
∗
t ) and

(xt ,y j ,xs) = M(G) for someG∈ CE(u∗t ,u
∗
s) and(xr ,yk,xs) = M(GF)”)

5. If φ is¬ψ , or ψ ∧θ , thenφ̂ is¬ψ̂, or ψ̂ ∧ θ̂

6. If φ is (∃Xr)ψ , thenφ̂ is (∃xr)[(∃ur)(“xr = P(ur)”)∧ ψ̂]

7. If φ is (∀Xr)ψ , thenφ̂ is (∀xr)[(∃ur)(“xr = P(ur)”)→ ψ̂ ]

8. If φ is (∃ fs∈ CE(Xr ,Xt))ψ , thenφ̂ is

(∃ys)[(∃ur ,ut)(“xr = P(ur) andxt = P(ut) and(xr ,ys,xt) = M(F) for someF ∈ CE(u∗r ,u
∗
t )”)∧ ψ̂]

9. If φ is (∀ fs∈ CE(Xr ,Xt))ψ , thenφ̂ is

(∀ys)[(∃ur ,ut)(“xr = P(ur) andxt = P(ut) and(xr ,ys,xt) = M(F) for someF ∈ CE(u∗r ,u
∗
t )”)→ ψ̂]

Now the argument of Theorem III.9.3 follows mutatis mutandis to conclude the following.

Theorem IV.5.3. Let R be an isomorphism invariant relation over QEQV. ThenR is first-order definable

over〈QEQV,≤,K2〉 iff its restriction to ObjCE is first-order definable in the language ofCE′.

Corollary IV.5.4. For every sentenceφ in the second-order language of equivalence relations, there is a

formula Φ(x) in the first-order language of the quasi-ordered set〈QEQV,≤,K2〉 such that an equivalence

relationπ in QEQV modelsφ if and only if 〈QEQV,≤,K2〉 � Φ(π).
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IV.6 The Number of Universal Classes

A quasi-ordered setQ is said to bewell-quasi-ordered([Mil85]) if there are no infinite strictly descending

chains, and no infinite anti-chains. LetO(Q) andF(Q) denote the set of order ideals and order filters, respec-

tively ordered by inclusion. It is easy to see that ifQ is well-quasi-ordered, thenO(Q) has the descending

chain condition andF(Q) has the ascending chain condition.

There is a nice connection between locally finite universal theories and well-quasi-orderings. The fol-

lowing two lemmas are essentially contained in a 1967 paper of A.I. Mal’cev[Mal67].

Lemma IV.6.1. Let U be a locally finite universal class of finite signature.PU is well quasi-ordered iff

there are only countably many universal subclasses; otherwise, thereare continuum many.

Proof: If PU is not well-quasi-ordered, then it must have an infinite anti-chain{Ai : i ∈ ω}. This provides

2ℵ0 many distinct universal subclass{U(AJ) : J⊆ ω}.
SupposePU is well-quasi-ordered. ForJ ∈ O(PU), let XJ denote the set of elements minimal inPUrJ

which must form an anti-chain. SincePU is well-quasi-ordered,XJ is finite. SinceXJ uniquely determines

J, |LU|= |O(PU)| ≤ℵ0. •

Proposition IV.6.2. SupposeU is a finitely axiomatizable locally finite universal class of finite signature,

and there are only finitely manyN-generated structures up to isomorphism. Then every universal subclass

is finitely axiomatizable iffPU is well quasi-ordered.

Proof: If PU is not well quasi-ordered, then there are continuum many universal subclasses. Since there

are only countably many finite sets of sentences, there are non-finitely axiomatizable universal subclasses.

SupposePU is well quasi-ordered. LetK≤ U be a universal subclass. We may assume it is not finitely

generated; thus,K = U(I) for some infinite order ideal ofPU. For eachn, let Hn = {A : |A| ≤ n,A /∈ I}.

Let Fn = Hn ↑. Then eachFn is a finitely generated order filter andI = (
⋃

Fn)
c. Also, F1 ⊆ F2 ⊆ ·· · is an

ascending sequences of filters and so must converge; that is, there existsM such thatFk = FM for all k≥M.

ThenK= U(Fc
M) which impliesK is finitely axiomatizable.•

A sequence(an)n∈ω in a quasi-ordered setQ is bad if ai 6≤ a j for i < j. It is not difficult to see thatQ

well-quasi-ordered(wqo) iff it has no bad sequences. The next result follows from a more general theorem

of Higman [Hig52] on finite sequences, but we will provide a proof in our setting.

Proposition IV.6.3. The posetPE is well quasi-ordered; as a result, there are only countably many universal

classes of equivalence relations every one of which is finitely axiomatizable.

Proof: It suffices to showPE has no bad sequences. For a contradiction, assume(πi)n∈ω is a bad sequence.

Write eachπi as

πi =
r i

∑
k=1

K i
tk
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such that the blocks are non-increasing in cardinality. For eachi < j, let α(i, j) be the smallestn such that

n−1

∑
k=1

K i
tk ≤ π j but

n

∑
k=1

K i
tk 6≤ π j .

For π1, we haveα(1,−) : ω r {1} → [r1] and so there exists∆1 an infinite subset such thatα(1,∆1) is

constant. Note

K1
tα(1, j)

> K j
tα(1, j)

for all j ∈ ∆1.

Choosej∗1 ∈ ∆1 such thattα(1, j∗1)
is smallest.

Again we extract an infinite subset∆2 such thatα( j∗1,∆2) is constant. Note

K
j∗1

tα( j∗1, j)
> K j

tα( j∗1, j)
for all j ∈ ∆2.

Choosej∗2 ∈ ∆2 such thatα( j∗1, j∗2) is smallest.

Inductively, we find a sequence{ j∗1, j∗2, ...} such that

K
j∗p

tα( j∗p, j
∗
p+1)

> K
j∗p+1

tα( j∗p, j
∗
p+1)

Now, supposeα(i, j) is bounded on the sequence{ j∗1, j∗2, ...}. Then there exists an infinite subsetθ ⊆
{ j∗1, j∗2, ...} such thatα(i, j) is constant. Sayθ = {k1,k2, ...}. This produces an infinite descending sequence

Kk1
tα(k1,k2)

> Kk2
tα(k2,k3)

> · · ·

which is a contradiction.

If α(i, j) is not bounded on{ j∗1, j∗2, ...}, then there must exist a subsequence{s1,s2, ...} such that

α(si ,si+1)< α(si+1,si+2).

But then

Ks1
tα(s1,s2)

> Ks2
tα(s1,s2)

≥ Ks2
tα(s2,s3)

> Ks3
tα(s2,s3)

≥ ·· ·

provides an infinite descending sequence; another contradiction.•
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CHAPTER V

QUESTIONS

In a review of substructure definability for distributive lattices([JM09b]), semilattices([JM09a]), lat-

tices([JM09c]), posets([JM10]), and in extending these results to the unordered structures of equivalence

relations and simple graphs, similiarities in constructions and arguments abound, but in each case there

is enough distinction so that the approach almost starts over again each time. Having established strong

definability results for these classes, can we abstract the combinatorial ormodel properties which may guar-

antee similar substructure definability in general universal classes? Even restricted to universal subclasses

of digraphs, this appears to me a difficult question.

Does positive definability hold for the universal class of tournaments? Reconstruction([Sto77]), and thus

set reconstruction, fails for tournaments, and so Lemma II.2.1 can offer no help in this case. The relationship

between substructure definability and reconstruction is unclear, but perhaps we can offer another link with

the following immediate corollary to Proposition III.7.1 and Theorem 2.29 in [JM10].

Corollary V.0.4. If P,Q are two counterexamples to Reconstruction(as posets or as simple graphs), thenP

andQ have distinct sets of upper covers.

Proof: If P andQ are two counterexamples to Reconstruction, then|P|, |Q| > 4 and must have the same

lower covers in the substructure ordering since they have the same lower decks. If in addition they have

the same upper covers, thenP andQ must satisfy the same unary formulas in the language of{≤,c} where

|c| ≤ 4. This contradicts the fact that for simple graphs and posets each elementis definable after adding a

single constant of cardinality at most 3.•

For tournaments, there is an obvious automorphismrev of the substructure ordering which comes

from reversing the orientation of the edges. The counterexamples to the Reconstruction Conjecture for

digraphs discoverd by Stockmeyer([Sto77]) appear in two infinite families(Bi ,Ci) and(Di ,Ei). Interest-

ingly, rev(Bi) = Bi , rev(Ci) = Ci , andrev(Di) = Ei . This is precisely what one must have if it is the case

that the sets{Bi ,Ci} and{Di ,Ei} are definable. This prompts the following two questions.

QuestionV.0.5. After adding a constant, every finite isomorphism type of tournaments is first-order defin-

able in the poset of finite isomorphism types ordered by substructure; moreover,rev is the only non-trivial

automorphism. Positive definability for universal theories holds.

QuestionV.0.6. Each pair of Stockmeyer’s counterexamples{Bi ,Ci} and{Di ,Ei} are definable in the poset

of finite isomorphism types ordered by substructure without adding a constant to the language.

We saw that for posets, simple graphs, and equivalence relations the expressive power of first-order de-

finability in the substructure relation was equivalent to modeling full second-order sentences when restricted

to the finite members. Is this to be expected in general?
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QuestionV.0.7. LetU be a finitely axiomatizable locally finite universal class in a finite signature. LetRbe a

class of finite structures ofU closed under isomorphism. SupposeR is not the finite models of any first-order

sentence, but the isomorphism types represented byR is a definable unary relation in〈PU,≤ c1, ...,ck〉 for

some finite typesc1, ...,ck. Must the expressive power of first-order definability in the substructure relation

be equivalent to full second-order properties in the finite? Does it at least capture all first-order properties?

We attempt an application of Corollary III.9.4 which suggest possible answers to the previous question

may be found among universal subclasses of simple graphs. We borrowthe terminology of finite model

theory from [EF95]. For two logicsL1 andL2, we writeL1≤ L2 if for any signatureτ and every sentence

φ ∈ L1[τ ], there existsψ ∈ L2[τ ] such that finite models ofφ are precisely the finite models ofψ . We write

L1≡ L2 iff L1≤ L2 andL2≤ L1.

Recall, the following theorem concerning interpretation of structures.

Theorem V.0.8. ([Hod93, Thm. 5.5.1]) Letσ be a first-order language whose signature consists of the

binary relation symbolR, and letL be a first-order language with finite signature. Then there is a first-order

sentenceχ in σ such that

(1) Every model ofχ is an irreflexive symmetric graph.

(2) The class of models ofχ is bi-interpretable with the class of allL-structures which have more than

one element.

Moreover, both interpretations in(2) preserve embeddings.

With any FO-interpretation, there is the corresponding reduction theorem relating satisfiability by struc-

tures in the two signatures.

Proposition V.0.9. Let Π be an interpretation ofσ in τ. For every FO(σ ) sentenceψ there exists a FO(τ)

ψΠ such that for allτ-structuresA(with non-empty universe),

A � ψΠ iff AΠ
� ψ .

As noted in ([EF95, Ex 11.2.4]), the logic FO can be replaced with some otherlogicsL such that FO

≤ L≤ SO like FO(IFP), FO(PFP), or SO.

Let τ be finite relational signature and letKτ be the class of models in that signature with at least two

elements. Then by Theorem V.0.8, Corollary III.9.4, and Prop. V.0.9 we can conclude that

• PKτ is definably present inPG.

• For any of the logicsL which satisfy the conclusion of Proposition V.0.9, the finite models of those

finitely L-axiomatizable subclasses ofKτ are first-order definably present inPG.

• If L1 < L2≤ SO satisfy the conclusion of Proposition V.0.9, then there exists a finite signature τ and

sentenceφ ∈ L2[τ ] such that the finite models ofφ are not the finite models of anyL1[τ ]-sentence,

but the isomorphism types form a first-order definable set inPG.
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CHAPTER VI

A DISJUNCTIVE CHARACTERIZATION FOR QUASIVARIETIES

VI.1 Introduction

In [J6́8], Bjarni J́onsson established that all the algebras in a varietyV have distributive congruence lattices

iff the variety has ternary termsp0, ..., pn which satisfy the identities

p0(xyz) ≈ x

pn(xyz) ≈ z

pi(xyx) ≈ x 0≤ i ≤ n

pi(xxy) ≈ pi+1(xxy) i even

pi(xyy) ≈ pi+1(xyy) i odd

Kirby Baker noticed J́onsson’s condition was equivalent to a closely related disjunction; namely,a vari-

etyV is congruence distributive iff there exist ternary termsp1, ..., pn such that

V |= pi(xux)≈ pi(xvx) 0≤ i ≤ n

V |= x 6≈ y→
n−1∨

i=1

[pi(xxy) 6≈ pi+1(xyy)]

Using the above characterization in an intricate analysis of principal congruence generation in congruence

distributive varieties (a streamlined version of which can be found in [BS81]), Baker secured the following

finite basis result:

Theorem VI.1.1. [Bak77] LetV be a variety of finite signature. IfV is congruence distributive and has a

finite residual bound, thenV is finitely based.

In [Wil00], Ross Willard provided a new characterization for congruence meet-semidistributive vari-

eties; a varietyV is congruence meet-semidistributive iff there exist ternary termsf0, ..., fn,g1, ...,gn such

that

V |= fi(xyx)≈ gi(xyx) 0≤ i ≤ n

V |= x 6≈ y→
n∨

i=0

[ fi(xxy)≈ gi(xxy)↔ fi(xyy) 6≈ gi(xyy)]

Ross Willard was able to use this disjunction characterization to provide an ingenious and involved analysis

of principal congruences in congruence meet-semidistributive varieties which yields his generalization of

Baker’s finite basis theorem.
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Theorem VI.1.2. [Wil00] Let V be a variety with finite signature. IfV is congruence meet-semidistributive

and has a finite residual bound, thenV is finitely based.

The paper of Maroti and McKenzie[MM04] explores finite basis results inquasivarieties, and manages

to provide a common framework which generalizes the finite basis results of Ross Willard for congruence

meet-semidistributive varieties and Pigozzi’s[Pig88] finite basis result for relatively congruence distributive

quasivarieties. The start of their approach is the observation that Willard’s disjunction can characterize

quasivarieties satisfying a weaker condition than meet-semidistributivity, butwhich is equivalent to it in

varieties.

In Section VI.2 we prove a similar disjunction for quasivarieties which is an amalgam of Willard’s

characterization of congruence meet-semidistributivity and Malcev’s characterization of congruence per-

mutability. For varieties, our characterization is equivalent to the existence of a weak difference term. Using

the very nice Lemma VI.2.6 from [KS98, Lem.4.4], we will provide a relatively short proof of this fact.

In Section VI.3, we consider two applications of the characterization for Taylor varieties which will

allow us to simplify the proof of an important result(Theorem VI.3.3), and provide an elementary gener-

alization of another(Theorem VI.3.2). We will reference but not develop the algebraic framework recently

developed to study the constraint satisfaction problem(CSP). The readeris directed to the papers of Bulatov,

Jeavons, and Krokhin[BJK05] and Jeavons[Jea98]. For the required background in universal algebra consult

Hoby and McKenzie[HM88].

VI.2 The Characterization

For a quasivarietyK, let α = Θ(x,z), β = Θ(x,y), andγ = Θ(y,z) be the principle congruences determined

in FK(x,y,z) and make the definition

WK(x,y) :=
∨

( f ,g)∈α
[ f (xxy)≈ g(xxy)↔ f (xyy) 6≈ g(xyy)] .

For any algebraA∈K, we have

A |= ∀x∀y(¬WK(x,y)↔¬WK(y,x)) .

To see this, for any termf (xyz) define f ∗(xyz) = f (zyx). Then f ∗∗ = f and( f ,g) ∈ α implies( f ∗,g∗) ∈ α .

Takea,b∈ A and assumeA |= ¬WK(a,b); that is, f (aab) = g(aab)↔ f (abb) = g(abb) holds inA for all

terms f ,g such thatf (xyx) = g(xyx). Then f (baa) = g(baa) iff f ∗(aab) = g∗(aab) iff f ∗(abb) = g∗(abb)

iff f (bba) = g(bba); thus,A |= ¬WK(b,a). A similar argument establishes the converse.

For a ternary termc(xyz) in the signature ofK, define the formulaMc(x,y) by

Mc(x,y) := [y≈ c(xxy)∧c(xxy)≈ c(yxx)∧c(yyx)≈ c(xyy)∧c(xyy)≈ x] .

When the context is clear, the subscript denoting the class will often be dropped, but in its place will be a
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positive integer to denote the disjunction is over a finite set of terms. For example,

Wn(x,y) :=
n∨

i=1

[ fi(xxy)≈ gi(xxy)↔ fi(xyy) 6≈ gi(xyy)]

where eachfi(xyx)≈ gi(xyx).

For anyA∈ K, let the set ofK-congruences be ConK(A) = {α ∈ Con(A) : A/α ∈K}. The set ofK-

congruences is a complete lattice where the meet is the same as in Con(A), and the join denoted by∨K is

the corresponding operation induced by the meet. Letα ,β ,γ ∈ ConK(A), and define congruencesβm, γm∈

ConK(A) inductively byβ0 = β , γ0 = γ and

βn+1 = β ∨K (α ∧ γn) and γn+1 = γ ∨K (α ∧βn).

Noticeβ ≤ β1≤ β2≤ ·· · andγ ≤ γ1≤ γ2≤ ·· · . Set

β∞ =
⋃

n∈ω
βn and γ∞ =

⋃

n∈ω
γn

and noteβ∞,γ∞ ∈ConK(A).

We are now ready for the theorem.

Theorem VI.2.1. For any quasivarietyK the following are equivalent.

(1) For anyA∈K andα ,β ,γ ∈ConK(A), α ∧β = α ∧ γ = 0A impliesα ∧ (β ◦ γ)⊆ γ ◦β .

(2) For anyA∈K andα ,β ,γ ∈ConK(A), α ∧ (β ◦ γ)⊆ γ∞ ◦β∞.

(3) For the principle congruencesα = Θ(x,z), β = Θ(x,y), andγ = Θ(y,z) in FK(x,y,z) there existsm

such thatα ∩ (β ◦ γ)⊆ γm◦βm.

(4) There exists a finite set of ternary termsf1, ...., fn,g1, ....,gn,c such thatfi(xyx)≈ gi(xyx)

for i = 1, ...,n, andK satisfies the sentence

∀x∀y[x 6≈ y−→Wn(x,y)∨Mc(x,y)] .

Proof: We show(4)⇒ (1). Let (a,b)∈α∧(β ◦γ). Then(a,d)∈ β and(d,b)∈ γ for somed∈A. Suppose

a 6= b andA |=Wn(a,b). Then take 1≤ i ≤ n such thatfi(aab) = gi(aab)↔ fi(abb) 6= gi(abb). Without loss

of generality, assumefi(aab) = gi(aab). Then we havefi(adb) 6= gi(adb) or fi(adb) = gi(adb). Suppose

we havefi(adb) = gi(adb). Then

fi(abb)γ fi(adb) = gi(adb)γgi(abb)

and

fi(abb)α fi(aba) = gi(aba)αgi(abb)

which showsfi(abb)α ∧ γgi(abb). Sinceα ∧ γ = 0A, we arrive at the contradictionfi(abb) = gi(abb).

A similar argument for the casefi(adb) 6= gi(adb) will show fi(adb)α ∧ βgi(adb), and so produce the
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contradictionfi(adb) = gi(adb).

It must be the case thatA |= Mc(a,b). We havea = c(abb) and c(aab) = b, and it is the case that

a= c(abb)γc(adc)βc(aab) = b. This shows(a,b) ∈ γ ◦β .

We show(1)⇒ (2). Noticeα ∧β∞ = α ∧ γ∞. Let δ = α ∧β∞ and noteδ ∈ ConK(A). We also have

δ ≤ α ,β∞,γ∞ andα/δ ,β∞/δ ,γ∞/δ ∈ ConK(A/δ ). Thenα/δ ∧β∞/δ = α/δ ∧ γ∞/δ = 0A/δ which implies

by (1),

α/δ ∧ (β∞/δ ◦ γ∞/δ )⊆ γ∞/δ ◦β∞/δ .

Let (a,b) ∈ α ∧ (β ◦ γ)⊆ α ∧ (β∞ ◦ γ∞). If (a,b) ∈ δ the result is immediate. Suppose(a,b) 6∈ δ , then

(a/δ ,b/δ ) ∈ α/δ ∧ (β∞/δ ◦ γ∞/δ )⊆ γ∞/δ ◦β∞/δ

and so there existm< ω andc∈ A such that

(a/δ ,c/δ ) ∈ γm/δ

(c/δ ,b/δ ) ∈ βm/δ .

Sinceδ refinesγ∞ andβ∞, we can conclude that

(a,c) ∈ γ∞

(c,b) ∈ β∞

which yields (2).

To show(2)⇒ (3), notice that(x,z) ∈ α ∩ (β ◦γ), and so by (2), there existsmsuch that(x,z) ∈ γm◦βm.

If (a,b) ∈ α ∩ (β ◦ γ), then there existn and c ∈ FK(x,y,z) such that(a,c) ∈ γn and (c,b) ∈ βn. Take

the endomorphismσ : FK(x,y,z)→ FK(x,y,z) determined byσ : (x,y,z)→ (a,c,b), and observe thatα ≤
σ−1(α), γ ≤ σ−1(γ), andβ ≤ σ−1(β ). It is not difficult to see thatσ(γm◦βm) ⊆ γm◦βm from which we

conclude that(a,b) = (σ(x),σ(z)) ∈ γm◦βm.

We establish(3)⇒ (4). Assume (3) holds. There existsm such that(x,z) ∈ α ∩ (β ◦ γ) ⊆ γm◦βm. So

there must be a ternary termc(xyz) ∈ FK(x,y,z) such that(x,c(xyz)) ∈ γm and(c(xyz),z) ∈ βm.

We showK satisfies the infinite sentence

∀x∀y[x 6≈ y−→WK(x,y)∨Mc(x,y)] .

A compactness argument applied to¬WK(x,y)∧¬Mc(x,y)−→ x≈ y will then replace the formally infinite

disjunction with a disjunction over a finite set of terms.

Suppose there existA∈K anda,b∈ A such thata 6= b andA |= ¬WK(a,b). By the above remarks, we

also haveA |= ¬WK(b,a). Altogether,

f (aab) = g(aab)↔ f (abb) = g(abb)
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and

f (bba) = g(bba)↔ f (baa) = g(baa)

holds inA for all terms f ,g such thatf (xyx)≈ g(xyx).

Consider the homomorphisms ofFK(x,y,z) into A given by π1 : (x,y,z) → (a,a,b), π2 : (x,y,z) →

(a,b,b), σ1 : (x,y,z)→ (b,b,a), andσ2 : (x,y,z)→ (b,a,a). Then

α ∧kerπ1 = α ∧kerπ2 and α ∧kerσ1 = α ∧kerσ2

Also, β ≤ ker π1∧ ker σ1 andγ ≤ ker π2∧ ker σ2.

Inductively, we haveβm≤ ker π1∧ ker σ1 andγm≤ ker π2∧ ker σ2 for all m.

But for the termc(xyz) we have

(x,c) ∈ γm≤ kerπ2∧kerσ2

(c,z) ∈ βm≤ kerπ1∧kerσ1.

This impliesc(aab) = c(baa) = b 6= a= c(bba) = c(abb) and therefore,

A |= Mc(a,b).

•

The termc(xyz) in Mc(x,y) will be idempotent throughoutK. To this, takeB∈K anda∈ B. Consider

the induced mapσ : FK(x,y,z)→ B defined byσ(x) = σ(y) = σ(z) = a. Thenα ,β ,γ ≤ kerσ and so

βm,γm≤ kerσ . Then(x,c) ∈ βm impliesc(aaa) = a.

RemarkVI.2.2. From the arguments(4)⇒ (1) and(1)⇒ (2) in Theorem VI.2.1 we have the following

useful facts for any varietyV satisfying condition (4). LetA∈ V, α ,β ,γ ∈ Con(A), anda,b∈ A such that

a 6= b:

• If (a,b) ∈ α ∩ (β ∨ γ) andA |=WV(a,b), then

α ∧β 6= 0A or α ∧ γ 6= 0A.

• If (a,b) ∈ α ∩ (β ∨ γ) andα ∧β = α ∧ γ = 0A, thenA |= Mc(a,b)∧¬WV(a,b).

• If (a,b) ∈ α ∩ (β ∨ γ)rδ whereδ = α ∧β∞ = α ∧ γ∞, then

aδ c(abb) δ c(bba) and bδ c(baa) δ c(aab).

We say(a,b) is a Malcev pair ifA |= Mc(a,b), and a Willard pair ifA |=Wn(a,b).

By referring to Theorem 9.6 in [HM88], we have the following corollary.

Corollary VI.2.3. LetV be a locally finite variety. The following are equivalent.
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(1)V omits type 1

(2)V has a Taylor term

(3) There exists an idempotent special varietyE≤ V such thatE 6≤ Sets.

(4) For the principle congruencesα = Θ(x,z), β = Θ(x,y), andγ = Θ(y,z) in FV(x,y,z) there existsm

such thatα ∩ (β ◦ γ)⊆ γm◦βm.

(5) There exists a finite set of idempotent ternary termsf1, ...., fn,g1, ....,gn,c such thatfi(xyx)≈ gi(xyx)

for i = 1, ...,n, andV satisfies the sentence

∀x∀y(x 6≈ y−→ [Wn(x,y)∨Mc(x,y)]) .

RemarkVI.2.4. It is easy to see(5)⇒ (3) since the conditions inWn(x,y) andMc(x,y) cannot be satis-

fied by any interpretation by ternary projections. We shall see later that(5)⇒ (2) in the discussion of

Sigger’s([Sig10]) strong malcev condition, so the disjunctive characterization can imply in short order a 6-

variable Taylor term for locally finite varieties. The equivalence of (4) and (2) passes through (1) and tame

congruence theory. Is it possible to give a direct proof of(2)⇒ (4)?

Definition VI.2.5. We say a quasivarietyQ is strictly activeif it satisfies condition (3)(equivalently, con-

dition (4)) in Theorem VI.2.1 above; namely, for the principle congruences α = Θ(x,z), β = Θ(x,y), and

γ = Θ(y,z) in FQ(x,y,z), there existsm∈ ω such thatα ∩ (β ◦ γ)⊆ γm◦βm.

In Theorem VI.2.7 we shall see that the termc(xyz) in Mc(x,y) will be a weak difference term for any

strictly active variety. This will allow us to give an alternate proof of the result of Kearnes and Szendrei

characterizing the malcev condition in(4) of Corollary VI.2.3 as the weakest malcev condition for varieties

which guarantees that abelian algebras are affine. Our proof avoids the necessity of first developing the topic

of quasi-affine varieties. In order to do so, we shall need a lemma from [KS98]. Forα ,β ∈ Con(A), letA(α)

denote the congruenceα thought of as a subalgebra ofA2. Define the congruence inA(α),

∆βα =CgA(α)({〈(u,u),(v,v)〉 : (u,v) ∈ β}).

Lemma VI.2.6. (Lemma 4.4 [KS98]) SupposeV has a Taylor term. Forγ ,δ ∈ Con(A), let γi = π−1
i (γ) for

i = 1,2 whereπi denotes the coordinate projections ofA(δ ) ontoA andηi = kerπi . If C(γ ,δ ;0) holds, then

γ0∧η1∧∆γδ = 0= γ1∧η0∧∆γδ .

Theorem VI.2.7. (Theorem 4.8 [KS98]) For a varietyV, the following are equivalent:

(1)V has a weak difference term.
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(2)V is strictly active.

(3)V has an idempotent term which interprets as a malcev operation in abelian algebras; consequently,

abelian algebras are affine.

Proof: Assume (1) holds and letc(xyz) be the weak difference term. LetA ∈ V and supposeα ,β ,γ ∈
Con(A) such thatα ∧β = α ∧ γ = 0. Let(a,b) ∈ α ∧ (β ◦ γ) = θ . Then there existse∈ A such thataβeγb.

Then

a[θ ,θ ]c(bba)γc(bea)βc(baa)[θ ,θ ]b.

Since[β ,α ] = [γ ,α ] = 0 we have[β ∨ γ ,α ] = 0. This implies[θ ,θ ]≤ [β ∨ γ ,α ] = 0 and so(a,b) ∈ γ ◦β .

We have established

α ∧ (β ◦ γ)⊆ γ ◦β .

This is precisely condition (1) in Theorem VI.2.1, and so we see thatV is strictly active.

Now, assumeV is strictly active. It is easy to see that neitherWn(x,y) norMc(x,y) can be satisfied by any

interpretation by ternary projections, and so by a result of Walter Taylor[HM88, Lemma 9.4],V has a Taylor

term and so we may make use of Lemma VI.2.6. LetA∈ V be an abelian algebra. Then[1A,1A] = 0A which

impliesC(1A,1A;0A) in A. In the notation of Lemma VI.2.6,A(1A) = A2 andπ−1
i (1A) = 1A2 and therefore,

∆1A,1A∧η1 = 0= ∆1A,1A∧η0.

For anya,b∈ A we have〈(a,a),(b,b)〉 ∈ ∆1A,1A ∧ (η0◦η1), and so by the remark proceeding Theorem

VI.2.1 we see that〈(a,a),(b,b)〉 is a Malcev pair inA2. But this just means(a,b) is a Malcev pair inA. We

have shown the termc(xyz) in Mc(x,y) is a malcev term for every abelian algebra inV, and so each abelian

algebra is affine.

Now, supposec(xyz) is an idempotent term which is a malcev operation on abelian algebras ofV. If we

pass to the variety generated by the idempotent reducts of algebras inV, then sincec(xyz) is idempotent, it

will interpret as a malcev operation for the idempotent reducts which are abelian.

Let θ be a congruence ofA∈ V and(a,b) ∈ θ . If θ = [θ ,θ ], thenc(bba)[θ ,θ ]a[θ ,θ ]c(abb). In case

[θ ,θ ] < θ , we factor by[θ ,θ ] and observe thatθ is abelian over[θ ,θ ]. Then eachθ/[θ ,θ ]-class is an

abelian subalgebra of the idempotent reduct ofA/[θ ,θ ], and soc(abb)/[θ ,θ ] = a/[θ ,θ ] = c(bba)/[θ ,θ ].
It follows thatc(xyz) is a weak difference forV. •

RemarkVI.2.8. The implication(2)⇒ (3) required the use of a Taylor term. For general varieties, strictly

active is a stronger condition than having a Taylor term [KS98, Ex.4.13]. Is it possible to use the disjunctive

characterization to prove Lemma VI.2.6 directly?

VI.3 Applications

Here is an immediate applicaton of the disjunction characterization in Theorem VI.2.3. For a finite reflexive

tournamentT, CSP(Tc) will denote the constraint satisfaction problem over the structure which has all the
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singleton unary relations in addition to the edge relation ofT. In [Lar06], Benoit Larose proves the following

theorem.

Theorem VI.3.1. Let T be a finite reflexive tournament. ThenT admits a Taylor operation if and only ifT

is transitive. IfT is transitive, then the problem CSP(Tc) is in P, and it isNP-complete otherwise.

The second statement follows immediately from the first, since transitive tournaments are precisely

linear orders, and so admit the lattice operations of max and min([JCC98]). The last statement follows since

the relational structureTc is a core, and it is known that if a core relational structure does not admit aTaylor

operation, then CSP(Tc) is NP-complete [BKJ00].

The strategy of Larose’s proof for the first statement is to consider a counter-example of minimal cardi-

nality, and first show that it must have strictly more than three elements. The second step is to argue with

the local combinatorics and produce a smaller counterexample, obtaining a contradiction. The first step is

achieved by an application of a highly non-trivial and involved construction of a homotopy theory for finite

reflexive binary structures developed in [LT04] and [Lar06]. Our first application of Theorem VI.2.3 is to

provide an entirely elementary proof of this result; actually, a stronger result can be achieved.

Let R≤ Tn be in the relational clone determined byT; equivalently, there is a primitive positive formula

ψ(x1, ...,xn) in the edge relation ofT such thatR= Rψ(x1,...,xn) = {(a1, ...,an) : T |= ψ(a1, ...,an)}. For any

verticesv2, ., , ,vn−1 ∈ T, the unary relationSψ(x1,v1,...,vn) = {a∈ T : T |= ψ(a,v1, ...,vn)} may not be in the

relational clone generated byT, but it will be closed under the idempotent polymorphisms ofT. We call

such unary relationsSψ(x1,v1,...,vn) inferred idempotent subalgebras.

For a finite relational structureX, IdAlg (X) denotes the non-indexed algebra with the same universe as

X and whose operations are all the idempotent polymorphisms.

Theorem VI.3.2. Let T be a finite tournament(not neccessarily reflexive). IfT contains a 3-cycle with at

least two loops, thenT is not closed under a Taylor polymorphism; consequently, CSP(Tc) is NP-complete.

Proof: For contradiction, assume there exists a finite tournament which contains a 3-cycle with at least

two loops and is closed under a Taylor operation. LetT be such a tournament of minimal cardinality. Let

a→ b→ c→ a be a 3-cycle inT and without loss of generality, we may assume the verticesa and b

have loops. By Corollary VI.2.3,V(IdAlg (T)) satisfies the disjunctive condition in (5). Suppose(a,b) is

a Malcev pair. Thenb= c(aab)→ c(abb) = a which is a contradiction. It must be the case that(a,b) is a

Willard pair, and so takef (xyz),g(xyz) such thatf (xyx)≈ g(xyx) and

f (aab) = g(aab)↔ f (abb) 6= g(abb).

If it were the case thatf (aab) 6= g(aab) and f (abb) = g(abb), setr(xyz) = f (zyx), s(xyz) = g(zyx) and

noticer(xyx) ≈ s(xyx). If Trev denotes the tournament formed by reversing the orientation of the edges of

T, thenTrev has the same polymorphisms asT. We then have a 3-cycleb→ a→ c→ b in Trev with loops

atb anda wherer(bba) = s(bba) andr(baa) 6= s(baa).

68



So we may assumef (aab) = g(aab) and f (abb) 6= g(abb). We claim that there exists a vertexw such

that a→ w→ b. Let suppose this is not the case. We shall argue for a contradiction. Since f andg are

polymorphisms ofT, there is an obvious homomorphism of the digraphG (see Fig.VI.1a) intoT which

“fixes” the vertices{a,b,c}. It must be that{ f (aab),g(aab), f (bab)} ⊆ {a,b}. There are two cases to

consider.

a b

c

f(bcb)

f(bab)

f(abb) g(abb)

(a)G

a b

c

f(bcb) f(bab)

(b)H

Figure VI.1: DigraphsG andH

Supposef (abb) = a. Theng(abb) = b anda→ f (aab)→ f (abb) = a implies f (aab) = g(aab) = a.

This reduces to a homomorphic mapping ofH (see Fig.VI.1b) intoT. If f (bab) = a, then byH we must

have f (bcb) = a, but b→ f (bcb) = a yields a contradiction. Iff (bab) = b, then f (bcb) = b. Now, b =

f (bcb) = g(bcb)→ g(cab)→ g(abb) = b impliesg(cab) = b. But thenb= g(cab)→ g(aab) = a yields a

contradiction.

Supposef (abb) = b. Then we must haveg(abb) = a anda→ f (aab) = g(aab)→ g(abb) = a implies

f (aab) = a. Again we have reduced to a consideration ofH. If f (bab) = a, then we must havef (bcb) = a,

but thenb→ f (bcb) = a is a contradiction. Iff (bab) = b, thenb→ f (bcb)→ f (bab) = b implies f (bcb) =

b. We haveb= f (bcb)→ f (cab)→ f (abb)=bwhich impliesf (cab)=b. But thenb= f (cab)→ f (aab)=

a is a contradiction.

So, there must exist a vertexw such thata→w→ b. We may assumew→ c to produce the configuration

a b

c

w

If w← c, then we would considerTrev and notice the induced subtournament on{a,b,c,w} forms an

isomorphic configuration.

Define the subalgebraB= {z : (∃x) [(b→ x)∧ (w→ x)∧ (x→ z)]}. Then{a,b,c} ⊆ B and so by min-

imality, B= T. But thenw∈ B implies there existsx0 such that 2→ x0 andw→ x0→ w. Sincex0 6= 2,w

andw 6= b, we arrive at the final contradiction which establishes the theorem.•

In [Sig10], Mark Siggers proved that omitting type 1 for locally finite varietiesis equivalent to a strong

malcev condition; namely, a locally finite variety omits type 1 if and only if it has a 6-variable Taylor term.
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Sigger’s startling short proof was based on the fact that a finite irreflexive symmetric graph with a triangle

is not closed under a Taylor operation. This result is essentially established by Bulatov’s reproof of theH-

dichotomy conjecture whenH is an irreflexive symmetric graph. Hell and Nes̆et̆ril[HN90] first established

the dichotomy forH-coloring, and since then several authors in Bulatov[Bul05], Kun and Szegedy[KS09],

Siggers[Sig09] and Barto and Kozik[BK12] have provided alternate proofs of this important result with

varying levels of simplification. Our second application will be another proofthat a finite irreflexive graph

with an odd symmetric cycle is not closed under a Taylor operation. Since ourproof is more algebraic,

we begin in the same manner as Bulatov[Bul05] by taking a minimal counterexampleand using primitive

positive formulas to enforce special properties; however, the disjunctive characterization in Corollary VI.2.3

will allow us to short-cut the main argument entirely.

Theorem VI.3.3. Let G be a finite irreflexive digraph which contains an odd symmetric cycle. ThenG is

not closed under a Taylor polymorphism.

Proof: For a contradiction, suppose there exists a finite irreflexive digraph which contains a symmetric

odd cycle and is closed under a Taylor operation. LetG= 〈V,E〉 be such a digraph of minimal cardinality.

By passing to the symmetric skeleton, we may assumeG is symmetric. We may also assumeG contains

a triangle. If this is not so, then letk ≥ 5 be the length of the smallest symmetric odd cycle inG. The

k-2-fold relational productEk−2 is a binary relation in the relational clone generated by the edge relation

E, and so is closed under the polymorphisms ofG = 〈V,E〉. Sincek≥ 5 is the length of the smallest odd

cycle inG, Ek−2 is irreflexive. Letx1↔ x2↔ ·· · ↔ xk↔ x1 be a cycle inG. Then(xi ,xi+2(modk)) ∈ Ek−2

and(xi ,xi+1(modk)) ∈ Ek−2 becausek is odd. Altogether,H=
〈
V,Ek−2

〉
is an irreflexive symmetric digraph

of the same cardinality asG with a triangle and closed under a Taylor operation. Let 1↔ 2↔ 3↔ 1 be a

symmetric triangle inG.

Note that every vertex is part of a triangle. To see this, observe thataE3a iff a is a vertex of a triangle.

If we restrict to the subalgebraS(x) =
{

x∈G : xE3x
}

, then by minimality, we must haveS= G. Also,

G cannot contain a complete graph on 4 vertices since the neighborhood of any of its vertices is a proper

pp-definable subset whch contains a triangle.

d

a b

c

Figure VI.2: A rhombus

Claim: G cannot contain a proper rhombus(see Fig.VI.2).

Proof: : For a contradiction,G contains a rhombus where the two non-adjacent vertices are distinct. We

will define a quotient graph fromG which will have smaller cardinality, contain a triangle, and be closed

under a Taylor operation. We start by defining a congruence. Consider the following primitive positive

formula

R(x,y) := ∃u∃v[E(x,u)∧E(x,v)∧E(u,v)∧E(u,y)∧E(v,y)] .
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ThenR(a,b) iff a andb can be connected as opposite vertices of a rhombus. Letθ be the transitive closure

of R which is pp-definable sinceG is finite. Since every vertex belongs to some triangle,R is reflexive, and

therefore,θ is a congruence. By assumption,θ is non-trivial.

We showθ does not contain an edge ofG. For a contradiction, suppose otherwise and chooseeθh where

eandh are connected by a chain ofn rhombii of minimal possible length. Ifn= 1, theneand f are vertices

of a complete graph on 4 vertices; therefore,n> 1. There are two cases to consider.

a

bd

e

c

h

1 2 k+1 2k

g

(2k+1)

Figure VI.3: A chain of rhombii

If n= 2k is even, theneandhare connected by a chain of rhombii as in Fig.VI.3. Consider the subalgebra

defined by the pp-formula

S(x) := ∃ z1x1,y1z2 · · ·xk−1yk−1zk[E(a,z1)∧E(b,z1)∧E(z1,x1)∧E(z1,y1)

∧ E(x1,y1)∧E(x1,z2)∧E(y1,z2)∧· · ·∧E(xk−1,yk−1)∧E(xk−1,zk)

∧ E(yk−1,zk)∧E(zk,x)]

This formula says thatu∈ S if E(u,v) for somev andv can be connected to the edgeE(a,b) by a chain of

k−1 rhombii the same wayh can be connected toE(a,b) in Fig.VI.3. We see thatScontains the triangle

on{e,c,d}, and so by minimality,S=G. But h∈ S implies there exists some vertexf connected toh by a

chain ofn−1= 2k−1 rhombii. This contradicts the minimality of the chain.

If n= 2k+1, then we can argue in the same manner using the subalgebra defined by thepp-formula

S(x) := ∃ x1y1z1 · · ·xkykzk[E(g,x1)∧E(b,y1)∧E(x1,y1)∧E(x1,z1)∧E(y1,z1)

∧ E(z1,x2)∧E(z1,y2)∧· · ·∧E(xk,yk)∧E(xk,zk)

∧ E(yk,zk)∧E(zk,x)]

Since both cases lead to a contradiction,θ cannot identify an edge ofG. This implies the vertices of

any triangle are not identified byθ . The quotient graphG/θ is defined with vertex set{a/θ : a∈V} and

edge relation{(a/θ ,b/θ) : E(a,b)}. If t(x1, ...,xn) is a Taylor polymorphism ofG, thenG/θ admits a

Taylor operation defined bŷt(a1/θ , ...,an/θ) = t(a1, ...,an)/θ . This is a polymorphism ofG/θ sinceθ is

a congruence. Now, the quotient graphG/θ is of smaller cardinality, has no loops, contains a triangle, and

is closed under the corresponding Taylor operation - contradicting the minimality of G. This establishes the

claim.

By Corollary VI.2.3,V(IdAlg (G)) satisfies condition (5). Suppose there are two Malcev pairs. Without
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loss of generality, we may assume(1,2) and(1,3) are Malcev. Then 1= c(122)↔ c(331) = 1 which is

a contradiction. We must have at least one Willard pair. Without loss of generality, we assume(1,2) is a

Willard pair and so there existf ,g such thatf (xyx) ≈ g(xyx) with f (122) = g(122) and f (112) 6= g(112)

(If it were the case thatf (112) 6= g(112) with f (122) = g(122), setr(xyz) = f (zyx), s(xyz) = g(zyx) and

noticer ands provide the required pattern).

f(112)

f(231)

f(122)

f(323)

f(313)

g(112)

g(231)

1

2

3

3

Figure VI.4: A leaf

Since f andg are polymorphisms, there is a homomorphism of the leaf graph in Fig.VI.4 which “fixes”

the vertices{1,2,3}. By the previous claim, it must be the case thatg(231) = f (231) in G. But this forms

another rhombus which impliesg(112) = f (112), the final contradiction which establishes the theorem.•

VI.4 A Next Step

In studying polymorphisms of finite digraphs, it appears the new characterization for Taylor varieties may

be useful. In the applications we considered, the arguments were more “local” and reduced to the analysis

of a small and simple combinatorial configuration. Perhaps this approach can be generalized to more varied

settings. The following would be an interesting first start.

• Characterize those finite tree digraphs which admit a Taylor operation

• Characterize all finite tournaments which admit a Taylor operation. In particular, if T is a finite smooth

tournament with two directed cycles, isT closed under a Taylor operation?
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