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CHAPTER I 

Clinically Translating Ecological and Evolutionary Microbiome Assembly 

 

Introduction 

Defining Principles of Human Microbiome Assembly 

 Gut microbiomes, the genetic repertoire for millions to trillions of 

microbes residing throughout each metazoan’s digestive tract, are shaped by their 

host and environment. Composed of up to 500 times the genetic diversity of the 

human genome and distributed across more than 1,000 microbial species, 

microbiomes result from ecological assembly of microbial communities known as 

microbiota1-4. The advent of high throughput genetic sequencing hastened the 

characterization of microbiota and microbiomes, revealing an under-appreciated 

diversity of microbial taxa, ecological compositions, and functional capabilities1;4-6. 

In these gastrointestinal communities, variation associates intrinsically with host 

physiology7;8, genetics9-13, metabolism14;15, immunity16-20, and evolutionary 

relatedness12;21-25, as well as extrinsically with lifestyle1;26-28, diet4;29-34, 

environment4;35;36, and sociality37;38. Many factors exerting influence on 

microbiome and microbiota composition likely drive the regular observation of 

higher variation between organisms than variation within an adult organism over 
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time, suggesting that personalized composition is a more stable phenomenon 

relative to the influence of intrinsic and extrinsic factors which vary across 

organisms13;39-41. Particular interest has been payed to microbiota associations 

with human diseases, where interpersonal variation likely plays important roles in 

disease risk and progression. Extrinsic microbiota control through manipulation 

of diet, lifestyle, and xenobiotics can rapidly change composition and functional 

compatibility with the host, making the microbiome a novel and promising target 

for health interventions30;33;42-44. However, composition specific to each individual 

means that interventions targeting the microbiota are not necessarily 

generalizable across a population, and defining microbiota-disease variation often 

shows limited reproducibility and contradictory results between studies. 

Characterizing microbial communities and their genetic capacity has been a rapid 

scientific breakthrough, but the ability to define “what varies” has far outpaced 

defining principles of “why”. Therefore, reproducible principles need to be applied 

to the human microbiome in order to develop generalizable applications, and to 

distinguish deviations that indicate personalized interventions remain necessary.  

 

Utilizing Ecological and Evolutionary Principles to Understand Human Health	

	 A decade of characterizing microbiome and microbiota differences has laid 
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a foundation for applying principles developed over a century of ecological and 

evolutionary theory. Whether comparing closely related individuals or diverse 

host species, establishing reproducible patterns could help elucidate generalizable 

principles governing host and microbial roles in assembly, and inform shared 

mechanisms of compositional and functional breakdown across diseases and 

evolutionary history. However, clinical and translational studies are often 

disconnected from fundamental basic science research, resulting in pillars of 

knowledge united by underlying biology but disconnected in ideology, 

terminology, and methodology. To date no consensus has arisen in defining 

‘healthy’ or ‘dysbiotic’ gut ecosystems, partially fueled by the realization that core 

taxa and functions can make up a minimal set of microbiota and microbiome 

composition when examined across populations4;26;42;45;46. In fact, differences in 

extrinsic lifestyle and intrinsic biology likely mean that defining these terms will 

be subjective to the individual and situationally dependent. This is not to say that 

individuality has precluded generalizations, with patterns emerging including 

reduction of ecological alpha diversity across a wide range of diseases47;48, and the 

observation that microbiota ecological similarity parallels host evolutionary 

relatedness (a.k.a., phylosymbiosis) in a variety of animal systems and 

hominids24;49-52. Moving forward, questions elucidating ecological and evolutionary 
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roles in host-microbe symbioses can be investigated in clinical and translational 

studies, particularly if conscious consideration is given from the initial stages of 

study design. Likewise, the wealth of existing clinical studies warrant re-

examination while considering that taxa and functions may lack reproducible 

associations because disease etiology affects the same mechanistic principle of 

community instability, but the resulting breakdown reflects individual intrinsic 

and extrinsic influences. The questions then arise, what ecological and 

evolutionary principles apply to microbiota and microbiomes, and more 

importantly how can they be tested in an empirical way? 

 Investigating these principles is a priority for many basic science 

researchers working in model systems, but generalization to the extent that 

principles can inform health interventions and evolutionary biology will require a 

body of evidence founded in clinical and basic science settings. Certainly, 

challenges and barriers exist to properly addressing the hypotheses underlying 

many ecological and evolutionary principles in humans, including limited control 

of extrinsic factors affecting the microbiome, the inability to use genetic 

engineering or interventions that lack a medical utility, a limited host genetic 

diversity relative to interspecific comparisons, and higher costs for recruiting and 

sampling enough individuals to be powered to detect patterns where they exist. 
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Challenges may also arise due to deviating approaches and motivations 

underlying basic and clinical research. Clinicians start with a factor of interest 

such as a disease, observe associated biological patterns such as changes in 

microbiome composition, investigate underlying mechanisms, and only after a 

large body of literature is compiled try to connect unifying principles. Basic 

researchers often begin with an ecological or evolutionary principle, predict 

biological mechanisms and patterns that fit the hypothesis, and finally in model 

systems compile examples of controlled intrinsic and extrinsic factors that 

associate with expected outcomes. For this reason, merely discussing principles 

and examples in basic science research is not a roadmap for clinicians. However, a 

barrier that should not exist is siloing of ecological and evolutionary principles 

into basic science merely by lacking communication of their utility and 

approachability.  

 

A Framework Translating Ecological and Evolutionary Principles to Clinicians 

Here the aim is to make the transfer of ecological and evolutionary 

concepts more salient to the broader clinical community by focusing on how they 

could be investigated and applied to understand disease. First, reviewing some of 

the fundamental eco-evolutionary measures already widely employed in 
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microbiome research will lay a groundwork for addressing hypotheses. Second, 

the patterns investigators look for in those measures that could be explained by 

higher eco-evolutionary principles will be discussed. Third, we will examine 

empirical examples in model systems that support how and why those patterns 

manifest, and consider which patterns may or may not be extensible to human 

studies. Fourth, we will discuss how clinical studies could incorporate these 

patterns to test if generalizable eco-evolutionary principles may influence or 

breakdown in disease etiology. Proposing approaches to investigate eco-

evolutionary principles is an avenue for clinicians to incorporate such questions 

into their existing studies, and ultimately generalizing from model systems to 

humans could reveal novel applications of these principles to understanding 

human health and disease. 

 

In the Light of Evolution 

Phylosymbiosis: Host Evolutionary Impacts on Microbiome Ecology 

Since multicellular metazoans arose hundreds of millions of years ago, they 

have been surrounded and inhabited by complex microbial communities. The 

same applies for millions of years of human and hominid evolution, and 

understanding the evolutionary context that has shaped human microbiomes 
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could prove critical as modernization leads to rapid shifts in human lifestyles that 

outpace rates of evolutionary adaptation. Efforts to elucidate factors shaping 

modern human microbiomes also reveal difficulties in disentangling the influence 

of covarying factors spanning diet, lifestyle, culture, geography, genetics, and 

others. Therefore, if host evolution influences microbiome assembly, confounding 

host intrinsic and extrinsic variation will need to be controlled or statistically 

assessed to quantify the effect host evolutionary divergence is playing. Since 

evolution acts constantly, one possible expectation is that evolutionarily changes 

affecting the microbiome would generally accrue consistently over time. 

Phylosymbiosis is the observation that host phylogenetic relationships 

correspond to microbiota or microbiome relationships as measured by beta 

diversity and depicted visually in dendrograms24;51. Conversely, stochastic 

assembly and microbial dispersal throughout the environment could result in 

variable microbiome composition that is not necessarily distinguishable by host 

species53. Observing phylosymbiosis is at first glance interpreted as due to host 

filtering or genetic effects through immune, metabolic, or physiological systems 

that interact with the microbiome. However, host filtering is too simplistic as 

phylosymbiosis could also arise by microbial adaptations for colonizing specific 

hosts at certain abundances, perhaps in an effort to increase their own replication 
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in a favorable host species.  

While a diverse array of mechanisms could underlie the pattern, 

phylosymbiosis provides predictive hypotheses about the relationship between 

host evolution and microbiome ecology. If other factors are controlled, 

phylosymbiosis has two primary expectations: 1) genetically distinct hosts will 

have distinguishable microbiomes, and 2) microbiome beta-diversity relationships 

will parallel host evolutionary relationships. Thus, phylosymbiosis is observed as 

a phylogenetic signal on microbial community relationships. It is a pattern whose 

mechanisms remain to be studied in a wide array of hosts. Considering the 

relatively persistent accrual of genetic variation within species, each change has a 

probability of affecting the microbiome to varying degrees through allelic 

variation at a locus controlling host traits that interact or do not interact with the 

microbiome. While the magnitude of effect on the microbiome from a single 

variant could be negligible or enormous depending on the affected system, when 

averaged across thousands to millions of evolutionary changes, rates of host 

evolution could correlate with diverging microbiome ecologies. One utility of 

phylosymbiosis could be as a null hypothesis for the expected relationship 

between host evolution and microbiome ecology, allowing researchers to identify 

where community compositions are more stably maintained or diverge more 
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dramatically than expected between host species. While the pattern of 

phylosymbiosis more likely emerges through interspecific genetic divergence 

following the formation of reproductive, allopatric, or other barrier to shared 

microbial acquisition, the conceptual framework that accruing host genetic 

variation leads to ecological changes in the microbiome is generalizable across 

short and long timescales whether reproductive barriers are at play.  

 

Quantifying Ecological and Evolutionary Microbiome Divergence 

Functionally testing principles like phylosymbiosis requires measuring 

both microbiome ecological similarity and host evolutionary relatedness. Such 

measures are foundational to microbiome research and can be applied to a diverse 

array of hypotheses. There are far more tools used in microbiome research than 

can be discussed here, however reviewing these widely-used and fundamental 

measures provides a toolkit to understand (i) how measures can be used to test 

hypotheses about host-associated microbiome assembly, (ii) which principles and 

measures of phylosymbiosis could be extendable to humans, and (iii) what 

phylosymbiotic expectations predict for the human microbiome in an evolutionary 

context relative to our hominid and hominin relatives.  

Ecological similarity can be assessed between the total compositions of two 
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microbial communities using beta diversity, a measure of ecological distance 

between samples. Beta diversity has been a traditional foundation of ecological 

studies over the past century, and is one of the most widely used measures in 

modern microbiome research. Depending on the metric used, beta diversity 

quantifies how similar or different two microbiomes are by comparing: 1) the 

unweighted presence / absence of unique observations (e.g. metric Binary 

Jaccard), 2) the weighted relative abundance of observations (e.g. metric Bray 

Curtis), 3) the phylogenetic diversity across observations (e.g. metric unweighted 

and weighted UNIFRAC)54-56, 4) or some combination of all three.  

An expectation under the first hypothesis of phylosymbiosis is that hosts 

with the same genetic background will have more similar microbial communities 

than genetically divergent hosts. This hypothesis could be evaluated if organisms 

of the same genetic background have lower ecological distances between their 

microbiomes than organisms of different genetic backgrounds. However, more 

advanced tests with statistical and nonparametric advantages have been developed 

to assess beta diversity distinguishability between categorical groups such as host 

species (ANOSIM57;58), across continuous variables (PERMANOVA58), correlation 

with other kinds of distance based outcomes (Mantel Correlation59), or supervised 

classification (Random Forest60), each with their own advantages61. In addition to 
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statistically evaluating hypotheses with beta diversity, methods for decomposing 

high dimensional distance matrices allow researchers to visually examine sample 

relationships in two or three dimension ordination plots (Principle Coordinates of 

Analysis, PCoA62; Non-metric Multidimensional Scaling, NMDS63; Canonical 

Correlation Analysis, CCA64), or in dendrograms with sample relationships as tree 

distances65. Commonly used beta diversity metrics each have their own nuances 

and caveats that must be considered, but together they provide a foundation to 

understand how microbiomes vary between organisms.  

A similarly diverse set of measures quantify evolutionary divergence of 

hosts. Phylosymbiosis has focused on characterizing evolutionary divergence 

between closely- or distantly-related host species based on the genetic similarity 

at shared loci within their genome. The most widely used tool to assess host 

relatedness is to cluster genetic distances between samples into tree dendrograms 

known as phylogenies. Just as with beta diversity, there are a wide-variety of 

metrics and approaches to calculate genetic distances and cluster samples66. While 

phylogenies can be constructed with human genomes, finer measures of 

interspecific genetic divergence are more conducive to the degree of variation 

between humans lacking reproductive barriers. The advent of genotyping and 

sequencing abilities to characterize Single Nucleotide Polymorphisms (SNPs) 
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across the genome has allowed quantification of host genetic relatedness in 

microbiome studies using measures of: SNPs shared (Identity By State, IBS), 

SNPs shared due to common ancestry (Identity By Descent, IBD), distinguishing 

SNP variation across many loci (Population Structure)67-69, how SNPs associate 

with covariates like height or disease status (Genome-Wide Association Studies, 

GWAS)70;71, or the contribution to traits from additive SNP effects (Heritability)72-

74. The second hypothesis of phylosymbiosis has been evaluated by looking for 

correlation between beta diversity and phylogenetic distances, or looking for 

concordance between microbiome dendrogram and host phylogenetic trees23-25;52. 

The first approach may be useful because direct distances are taken into account, 

but this also assumes equivalency in rate of change between the genome and 

microbiome which are governed by very different forces23. The second approach 

only utilizes the clustered interspecific relationships and therefore is less 

powerful; however, it reduces the assumption of equal rates of change23. Just as 

with beta diversity, there are many additional evolutionary measures of host 

genetic relatedness that can be applied in microbiome research, and each of these 

approaches have extensive nuance and caveats that must be considered. 

Regardless of the approach, tools to measure phylosymbiosis can reveal insights 

about individual microbial contributions to the observation of phylosymbiosis23. 
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The combination of these basic ecological and evolutionary measures provide a 

foundation to assess the roles evolution may play in microbiome assembly, as well 

as a wide range of other hypotheses. 

 

Evidence for Phylosymbiosis 

What evidence exists in metazoan and model systems that host evolution 

shapes microbiomes, and how are these hypotheses of phylosymbiosis critically 

assessed using beta diversity and phylogenetic measures? The first hypothesis of 

phylosymbiosis predicts that intraspecific beta diversity distances will be lower 

than interspecific. Using the techniques discussed above, such a prediction would 

manifest as grouping of microbiomes by host species in ordination space and 

dendrogram trees. This is because the formation of reproductive barriers during 

speciation lead to evolutionary divergence, and therefore if each variant had an 

equal effect then microbiome composition would be expected to also continuously 

diverge. It should not be assumed however that each variant will have an effect on 

microbiome composition, and for variants that do affect microbiome assembly the 

magnitude of change could vary widely. Indeed, early microbiome studies across 

metazoans found that microbiomes were generally distinguishable across diverse 

host species25;75. A caveat of such broad interspecific examination is revealed 
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where beta diversity associates with host phylogeny, but also confounding factors 

like host diet, taxonomic order, and provenance13. Therefore, it is impossible to 

say if herbivores cluster away from carnivores because they are more closely 

related genetically, or if the dietary shifts correlated with evolutionary divergence 

are causal13.  

By limiting confounding effects like diet, environment, sex, 

endosymbionts, and age, phylosymbiosis has been observed within laboratory 

controlled clades of closely related host species of Hydra49;76, Nasonia24;51;77;78, 

Peromyscus deer mice24, three families of mosquitoes24, and Drosophila24. Outside of 

controlled lab conditions in natural populations the observation of 

phylosymbiosis is mixed, with the signal observed in clades of diverse mammals23, 

coral52, birds79, and the skin microbiomes of grazing mammals80 and fish81, but not 

within clades of amphibians82, Drosophila83, and among more divergent birds79, 

coral52, and carnivorous mammals23. The difference in results between controlled 

lab and natural field studies usefully suggest conditions where predictions of 

phylosymbiosis may breakdown. One possibility is that the influence of varying 

intrinsic factors like age and sex, as well as extrinsic factors like diet and 

environment can play more influential roles in microbiome assembly than host 

evolution. Indeed, dietary differentiation was clearly a factor alongside host 
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phylogeny in explaining microbiome composition23;75;81. It could also be supposed 

that even in controlled environments, the influence of host evolution could be so 

subtle that stochastic factors like microbial dispersal limitation and community 

dynamics could obscure any signal of phylosymbiosis. These two possibilities 

raise the possibility that there may be a ‘Goldilocks Zone’ of evolutionary 

divergence where phylosymbiosis is most strongly observed, as under the first 

possibility hosts have become so diverged in factors like lifestyle or physiology 

that phylosymbiosis is obscured, or under the second where a lack of evolutionary 

divergence does not lead to interspecifically distinguishable communities. Indeed, 

the evolutionary age of divergence across species within a host clade strongly 

correlates with the degree of microbiome distinguishability measured by ANOSIM 

tests in controlled settings for clades diverging from 1mya to 100mya24, but the 

correlation of host phylogeny with beta diversity is significantly overpowered by 

dietary correlation when examined across more divergent host species (i.e. 

>500mya)23;79.  

It is estimated that modern humans arose within the last 200k years, 

therefore does evidence exist that evolutionary changes in our genome have 

measurable effects on microbiome composition, particularly in such a short 

timeframe? This question leads to a third but albeit rare possibility for the 
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obfuscation of a phylosymbiotic signal, that a single evolutionary variant confers 

very little evolutionary divergence on its own, but if the variant has a very large 

effect on microbiome composition, it could disrupt phylosymbiotic expectations 

for microbiome relationships. In humans, the persistence into adulthood of 

lactase gene metabolism of lactose from milk arose at least three times across 

southern Europe and northern Africa, and the ability to utilize milk as a high 

energy food source has advantages that could lead to selection driven 

maintenance in the population84;85. Population geneticists have developed GWAS 

techniques to identify SNPs across the human genome that correlate with a 

phenotypic trait71. The technique has been adapted to measure which variants 

associate with changes in total microbiome composition measured by alpha and 

beta diversity, or the abundance of individual microbial taxa9-11;13;86-90. One of the 

first associations identified was between a SNP on chromosome 2 in the lactase 

gene and the abundance of Bifidobacterium, suggesting that variation in the ability 

to process lactose sugars could shape microbiome composition at least among 

individual taxa9. Considering the benefits such a high energy food source could 

confer, it is probable that there could be evolutionary selection on SNPs affecting 

the lactase gene, but also sociocultural selection to maintain lifestyles with 

sources of dietary milk. This therefore entangles host evolution and extrinsic 
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factors like herding and societal structures. Due to identifiable shifts in human 

microbiome composition associated with small evolutionary changes in the 

lactase gene over the last 50k years, the concept of unequal evolutionary 

contributions to microbiome composition spread across time could rapidly 

disrupt a signal of phylosymbiosis.  

Under phylosymbiosis, the interspecific correlation between microbiome 

distinguishability and genetic divergence has a parallel in the observation that 

beta diversity across human individuals correlates with the degree of shared SNPs 

genome-wide9. This observation supports the potential utility of applying 

measures of human genetic relatedness to generating expectations about 

microbiome similarity across individuals. Measuring heritability often relies on 

twin studies, where the degree to which a phenotype is shared is compared 

between genetically identical monzygotic twins and dizygotic twins sharing ~50% 

of their parent’s genetic material72. Applying twin studies of heritability to the 

microbiome means looking for differences in community composition across the 

most limited degrees of genetic divergence, yet it has been reproducibly observed 

that beta diversity and the abundance of some microbial taxa are significantly 

heritable7;13;91;92. Beyond microbiome divergence between twins, beta diversity 

distances between microbiomes significantly increased for parent-sibling 
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relationships, and further for microbiome similarity between unrelated 

individuals7. These examples highlight how the phylosymbiotic hypothesis that 

genetic divergence will lead to microbiome divergence may provide useful 

predictions about the relationship between host evolution and microbiome 

divergence both between and within species. They also demonstrate how 

phylosymbiosis may serve as a useful hypothesis to identify where intrinsic or 

extrinsic host variation, changes from neutral to selection driven evolutionary 

effects on the microbiome, or violations of assumptions about the gradual 

concordance of variation in both systems can obscure such predictions.  

 

Human Microbiomes in a Phylosymbiotic Context 

How can changes in human microbiome composition be understood 

relative to our closest hominid and hominin relatives? Across clades of humans 

and wild hominids the pattern of phylosymbiosis has been observed24;50;93. 

Divergence since the last common ancestor of humans and chimpanzees leads to 

the expectation that human microbiomes will be distinct, and indeed this is 

observed as greater interspecific versus interspecific beta diversity distances24;50;93. 

Relative to microbiome divergence between other hominids, however, human 

microbiomes are separated by larger interspecific distances than would be 
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expected from concordant change between the genome and microbiome92. 

Humans and hominids in captivity have lower microbiome alpha diversity than 

hominids living in the wild50;94;95. Alpha diversity is another widely used measure 

in microbiome research, which assigns a value to diversity within a microbiome 

based on the total community composition. Depending on the calculation metric 

used, alpha diversity is affected by community: 1) richness as the number of 

unique observations (e.g. metric observed OTUs), 2) evenness as the similarity 

of observation frequencies (e.g. metric Pielou’s evenness), 3) phylogenetic 

diversity across observations (e.g. metric PD whole tree), or 4) a combination of 

richness, evenness, and diversity. While alpha and beta diversity are both 

calculated from total microbiome profiles, there are no inherent expectations 

about how alpha diversity will change across host evolutionary divergence. Still, 

differences in community alpha diversity will likely be reflected by increasing beta 

diversity distances between samples as the loss of alpha diversity reduces overlap 

of community composition.  

Why do humans have lower gut alpha diversity compared to our hominid 

relatives, and what aspects of our changing lifestyles, diets, and genetics have 

played a role? Among hominin relatives, ancient Neanderthal oral microbiome 

compositions reveal significant beta diversity divergence between those that ate 
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primarily meat and those primarily subsisting on nut and plant diets96. Still, beta 

diversity distances between Neanderthals were dwarfed by distances between 

human and Neanderthal microbiomes, some of the latter which had dental 

microbiomes more similar to wild Chimpanzee96. One conclusion might be that 

relative to the dramatic lifestyles shifts in modern humans, ancient hominin 

shared more interspecific environmental and dietary similarity with hominid 

relatives, therefore leading to lower beta diversity distances. Across Europe, 

shifting from a hunter-gatherer lifestyle to farming and then industrial lifestyles 

corresponds with distinguishable changes in dental microbiomes and loss of alpha 

diversity in fossilized human remains97. Attributing causality is difficult as each 

historical period was also accompanied by shifts from complex to simple dietary 

carbohydrates, higher to lower overall dietary diversity, outdoor and rural to 

indoor and urban lifestyles, natural to more sterile dwellings, and many other 

factors.  

One could critically argue that ancestral human and hominin microbiomes 

vary only for technical and not biological reasons, but shifts in lifestyle have 

parallels in modern human cultures from around the globe today. Some of the 

most profound differences in human gut microbiomes are observed between 

traditional hunter-gatherer or subsistence farming cultures and urbanized western 
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lifestyles, again accompanied by decreasing alpha diversity28;98-100. Western 

lifestyles also correlate with shifts in gut carbohydrate active enzymes abilities to 

process plant versus animal food source substrates, suggesting diet is playing 

roles in shaping microbiome metabolism across lifestyle gradients99. Microbiomes 

in four populations spanning traditional to urbanized lifestyles in the Himalayas 

associated with environmental factors like varying water sources and dwelling 

style27. Clearly many aspects of modernization in human culture may help to drive 

the observation of increased microbiome divergence outpacing what would be 

expected from evolutionary divergence alone. Even migration into more 

westernized cultures were accompanied by beta diversity divergence and alpha 

diversity reductions within individuals from two ethnic minorities as they 

immigrated from Thailand to the United States101. While diet and lifestyle appear 

to play important roles for these immigrants, effects covaried with unmeasured 

changes in habitation, stress associated with global migration, and new social 

interactions101.  

A gradient of beta diversity similarity from more traditional to westernized 

cultures around the globe today stratified microbiomes along the first principle 

component of PCoA plot, and this divergence in community composition 

correlates with the abundance of particular microbial taxa99. Along this gradient 
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there is a reproducible shift from taxonomic groups containing complex fiber 

degrading Prevotella in more traditional cultures, to Bacteroides which process 

simple sugars more readily and mucus degrading Akkermansia in westernized 

cultures8;99;102. The utilization of dietary metabolites is likely a key driver of 

taxonomic divergence across lifestyles, and this is reflected by differences in 

microbiome enzymatic capacities99. Ultimately divergence in microbiome 

composition across hominids, hominins, and lifestyle gradients in modern 

humans have likely been influenced by host genomic differences to varying 

degrees. However, the larger than expected degree of beta diversity divergence to 

hominid and hominin relatives and losses in alpha diversity at many stages of 

human advancement highlight how extrinsic environmental factors can confound 

relationships between host evolution and microbiome composition.  

Microbiome divergence between humans and interspecific relatives and 

between intraspecific lifestyle shifts outpaces what would be expected from 

evolution, and this may inform modern human health93. Many common and 

chronic diseases associate with reduced alpha diversity, and share overlapping 

changes in microbiome taxonomic composition103. One hypothesis is that modern 

human microbiomes are shaped by very different extrinsic factors than what more 

slowly changing human genomes have evolved to contend with. This could lead to 
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ineffective host control of the microbiome through loss of immune or metabolic 

mechanisms shaped over millions of years. Widespread antibiotic use, more 

sterile built environments, reduced dietary diversity, and a range of other factors 

in modern human life could be responsible for lower alpha diversity104-106. These 

losses of community complexity could in turn allow openings for opportunistic 

pathogens like Clostridium difficile to take hold in the gut, and it has been shown 

that abundance reduction of Clostridiales precedes hospital acquired C. difficile 

infection107. Invasion of potentially pathogenic microbes is closely linked with 

host immunity, and it has been observed in mice that a disrupted gut microbiome 

allows invasion of oral microbes which in turn drive immune inflammation108. 

Invasion of oral microbes into the gut microbiome was significantly higher in 

humans with five diseases, which may reflect imbalances or ‘dysbiosis’ of 

community composition108. If lower alpha diversity is a precursor leading to 

disease, then the increased rates of many common and autoimmune diseases in 

westernized societies may be a reflection of the wide-spread reductions in alpha 

diversity that have occurred relative to hominids, hominins, and lifestyle 

modernization. 
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Roles of Reciprocal Host and Microbial Evolution in Shaping Communities 

Composed of trillions of genomes from thousands of microbial taxa, the 

genetic components of the microbiome undergo evolutionary changes as well. The 

pressures acting on genetic variants in the microbiome may not be uniform across 

taxa however, and the intimacy of a microbe’s interaction with a host could be a 

key determinant. Phylosymbiosis treats the total or portions of the microbiome as 

a measurable unit that may change between host species by a variety of 

mechanisms including host filtering, bacteria filtering, microbial evolution, and 

more. Within this context, host and microbial genomes can exert evolutionary 

selection pressures on each other, particularly if the association is maintained 

over multigenerational timescales. Some of the most intimate host-microbe 

interactions are revealed by comparing host and microbial evolutionary patterns 

of cospeciation, codiversification, and cocladogenesis. In these examples, 

evolutionary divergence patterns across host species are paralleled by evolutionary 

divergence of a particular microbial strain or species, which can be quantified as 

the similarity of evolutionary patterns between host and microbe phylogenies. 

These patterns suggest that a microbial taxon has been associated with a host or 

shared environment over evolutionary timescales, and that formation of 

reproductive barriers between host species are paralleled by separately evolving 
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microbial lineages. Coevolution and codivergence are most often observed in 

strict cases of host interactions with a microbe over many generations, and inter-

generational transfer of microbes could be evolutionarily selected for in host and 

microbial genomes. Some of the most intimate examples of host-microbe 

codiversification result from the action of coevolution, where host and 

microbiome exert evolutionary pressures on the other’s genome reciprocally over 

time. Two striking examples include aphids and their Buchnera endosymbionts 

where critical functions are lost from Buchnera genomes and instead fulfilled by 

the host109;110, and bobtail squid which acquire Vibrio fischerii symbionts into a 

specialized organ that helps protect the host from predation111;112. Interestingly, 

microbes may not only be affected by host speciation events and subsequent 

evolutionary divergence, but they could also create reproductive barriers leading 

to host speciation77. Under strict lab conditions, such a pattern was observed in 

Nasonia wasp species where reproductively isolated species gained the ability to 

reproduce when reared germ free, and reproductive barriers returned when re-

inoculated with native microbiomes51;77. While evidence for cospeciation of 

microbes with humans is tenuous113, the evolutionary mechanisms selecting for 

inter-generational microbial transmission may still play important roles in human 

gut microbiome assembly.      
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Microbial Transmission Shapes Intimate Host-Microbe Associations 

Definitions of heritability often imply host genomes affecting a phenotype, 

but it is important to remember that a microbe’s genome could undergo selection 

for its own heritability if it experiences fitness or performance advantages in the 

host environment. In the case of Buchnera symbionts and their aphid hosts, 

genomic loss of microbial functions necessary to life has led Buchnera to become 

obligate to the aphid microbiome environment109;110. Without the aphid fulfilling 

key functions lost in the Buchnera genome, and reciprocally without vitamins 

provided by Buchnera to the aphid, neither would survive. This necessity has 

facilitated vertical transmission of Buchnera directly from aphid parent to 

offspring. Vertical transmission has led obligate symbionts of many arthropod 

species to become inviable without their host, and intertwining microbial fates 

with that of a host’s lineage may be a key driver of codiversification patterns114-120. 

Cases of strict vertical transmission support a debated hologenome hypothesis, 

stating that in addition to selection acting on host and microbe as independent 

units of life, a level of selection can also act on the host’s genome and microbiome 

as a single unit. Such a prediction makes sense in strict cases of coevolution like 

aphids and Buchnera, where host and microbial fates are directly intertwined. 
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Hologenome selection could also depend on how the host genome relates to a 

compilation of microbes, the total community composition, factors like 

community stability, or host-microbe metabolic complementarity. Still, 

extensibility of a hologenomic level of selection becomes less clear when host and 

microbial fates are not so closely intertwined, such as with V. fischeri and the 

bobtail squid112. While squid fitness can be linked to V. fischeri providing 

resistance to predation, both V. fischeri and the squid can survive in the ocean 

environment without the other. Squid acquire V. fischeri through horizontal 

transmission from the ocean environment on a daily basis, but horizontal 

transmission also encompasses microbial acquisition from other members of the 

same species that do not fall under strict parent-to-offspring vertical transmission. 

As V. fischeri can survive alone in the ocean its fate is not necessarily linked to 

acquisition by squid; however, squid have evolved a physiological organ devoted 

to host filtering that specifically selects for V. fischeri112. Through acquisition into 

the non-competitive squid-organ microbiome, V. fischeri gains advantages over 

other ocean microbes that could induce evolutionary selection for its acquisition 

by the squid. While the existential fate of host and microbe are not necessarily 

tied together in this example, the mutualistic benefits each provides the other 

may improve not only their own fitness, but also that of the hologenome.  
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By definition fitness depends on an organism’s ability to produce offspring, 

and for this reason the act of propagating and raising young is under strong 

evolutionary pressures. In humans, the role of microbial transmission and 

maintenance from parent to offspring in early life is becoming increasingly 

recognized as critical for health as people age. The human vagina provides infants 

with their first exposure to complex microbial communities, and evidence 

abounds that vaginal community composition is controlled by host filtering4;121;122. 

Interestingly pH appears to be a key factor in vaginal filtering of microbial taxa, 

and reciprocally Lactobacillus and other dominant vaginal microbes may contribute 

to acidification through lactic acid production123. The apparent ubiquity of lactic 

acid production across vaginal taxa suggest similar evolutionary forces may be at 

play as in V. fischeri and squid, where host physiology and microbial contributions 

to host health could lead to a level of hologenomic complementarity. Maintaining 

a selective vaginal environment contributes to maternal performance through 

prevention of community imbalance and foreign microbial invasion that can lead 

to vaginosis124. Selective vaginal ecosystems also play roles in maternal fitness, 

both during initial childbirth and in long term health of the child. It has become 

widely recognized that inoculation with a healthy vaginal microbiome during 

childbirth helps to seed the long-term composition of infant microbiomes, and a 
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primary mechanism is to train children’s immune systems through a process 

called immune education37;125. Adaptive immunity is developed throughout 

human’s lifetimes with exposure to pathogens, but comparison of natural and c-

section births highlight how important initial exposure is through dramatically 

higher rates of allergies and asthma when babies are not exposed to vaginal 

microbiomes at birth126;127. While vaginal inoculation at birth helps seed a baby’s 

initial microbiome, replacement of maternal strains and species occurs quickly 

over the first few years of life which suggests that immune education and not 

long-term vertical inheritance may be a driving force of selection for 

transmission125;128. In addition to vertical inheritance of vaginal microbes, there is 

evidence that mothers contribute to horizontal acquisition of microbes in babies 

through breast feeding in multiple potential ways. First, it is believed that human 

breast milk is not sterile, and contribution of microbes through this early feeding 

source may have similar roles as vaginal communities in immune education129. It 

is unknown if genetic selection has shaped which microbes appear in breast milk, 

but a second way that breast milk may contribute to horizontal transmission of 

microbes is through conferred host filtering effects. Human milk oligosaccharides 

(HMOs) are formed from five monosaccharide sugar building blocks linked in 

over 100 identified combinations, far outnumbering the complexity observed in 
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other mammals130-132. These HMOs can be metabolized by the gut microbiome of 

babies, and the nutritional benefits provided may help select for certain 

combinations of beneficial microbes that regulate immune development132. An 

interesting proposition arises when the role of microbial evolution is considered 

in these cases, that microbial production of lactic acid in vaginal microbes and 

consumption of HMOs in infant guts could be conferred across strains and species 

by horizontal gene transfer (HGT). Mobile genetic elements rich in metabolic 

capacities appear to be transferred between Lactobacilli in vaginal communities, 

and there may be a component of hologenomic selection at play because the 

conference correlates with exclusion of pathogenic Gardnerella species that would 

hurt the host133. In combination with selection on maternal fucosyltransferases 

that help microbes metabolize HMOs, results of the high prevalence of HGT in 

human gut microbiomes may help contribute to maternal horizontal transmission 

of Lactobacillus and Bifidobacterium to babies134;135. HGT has also been a key driver 

of antibiotic resistance spreading across diverse microbes in human microbiomes 

following decades of widespread antibiotic use, leading to a clear disconnect 

between selection pressures on host genomes and the microbiome106;135. The rise 

of antibiotic resistance highlights that hologenome complementarity can be 

superseded by selection on microbial fitness despite deleterious effects on the 
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host. Clearly evolution has shaped interplay between host genomes and 

microbiomes across millions of years, and there is distinct crossover between 

patterns identified in animal models which could have direct implications on 

human health. Principles like the hologenome and phylosymbiosis provide useful 

predictions about host-microbiome evolution, and the lack of ubiquity with which 

they are observed also allows the identification of alternative principles which can 

lead of breakdown of those expectations. Understanding which evolutionary 

principles apply in humans may allow researchers to correlate expected patterns, 

or lack thereof, with positive and negative health outcomes. The ecological forces 

dictating microbiome assembly, factors driving community dynamics through a 

host’s lifetime, and roles of community composition and stability in human health 

will be considered next. 

 

Ecological Building Blocks of Community Assembly 

 Ecological forces constantly shape the microbiome throughout an 

organism’s lifetime, and provide mechanisms on which host and microbial 

evolutionary forces can act. A microbiome composes the genomic content for 

trillions of living microorganisms that represent the biotic component of a 

complex ecosystem. These organisms are constantly competing for non-living 
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abiotic components of that ecosystem necessary for life, including metabolites, 

minerals, vitamins, essential amino acids, and nucleotides. Such a complex 

ecosystem is analogous to the complexity of macro-ecologies such as forests or 

oceans, and many of the same measures developed over centuries of studying 

animals and their environments can be applied to microbiomes. Larger ecological 

principles dictating microbiome assembly also overlap those shaping macro-

ecosystems, and their application to understanding community function, 

diversity, and stability can inform health over individuals’ lifetimes and response 

to extrinsic perturbations. Function is a key determinant of ecological assembly, 

and characterizing functional contributions and requirements of individual 

microbes and the community as a whole can provide targets for interventions 

aimed at shaping the microbiome. It is with this in mind that an ecological 

framework will be established by discussing how function, competition, initial 

assembly, short- and long-term community dynamics, and stability play into 

human health.  

 

Functional Diversity, Redundancy, and Complementarity among Microbes 

 The gut microbiome is among the most dense and diverse microbial 

ecosystems identified, and competition for resources means that microbes do not 
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live individually or independent of their host. With over a thousand-species 

identified throughout human digestive tracts, a multitude of diverse functional 

and metabolic roles help determine how microbes interact with one another4. 

These abilities are dictated by the genetic capacity within each microbial genome, 

and this content can vary widely even across strains of the same species136. 

Compared to the human genome with roughly 20 thousand human genes, 

metagenomic sequencing has identified more than 10 million unique microbial 

genes6. Therefore, functional diversity within the microbiome vastly outnumbers 

capacities found within the human genome. When considered across the breadth 

of microbial taxa which have evolved over billions of years however, it is 

interesting to observe that most healthy human gut microbiomes are dominated 

by two bacterial phyla, Bacteroides and Firmicutes4. The remaining bacterial taxa 

in the human gut are often predominantly Proteobacteria and Actinobacteria, 

many lineages of which are considered environmental and can exist extrinsic to 

host associated microbiomes1;4. Over 50 bacterial phyla have been identified to 

date, and the limited breadth of phyla in the human gut likely reflect the unique 

traits of such an environment. Genetically encoded functional capabilities such as 

anaerobic respiration in the oxygen deprived environment, adherence to epithelial 

and mucosal linings, and host filtering for certain traits may be key determinants 
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of microbial survival in the digestive tract. Selection on gut microbiome 

composition by the combined effects of the ecosystem may drive observations of 

functional redundancy, where the same advantageous traits that allow survival 

in the environment are maintained or even spread with HGT across many 

taxonomic lineages of gut microorganisms. A key goal of early studies like the 

Human Microbiome Project was to identify components of the core microbiome, 

defined as taxa or functional traits that are ubiquitously shared across most or all 

people in the population4. As more individuals have been sampled it has become 

clear that a core set of taxa are not maintained across microbiota, yet functions 

are more conserved across metagenomic profiles even when there is very little 

overlap of microbial strains or species137. With ecological measures applied to 

taxonomic or functional microbiome profiles, functional redundancy may be 

observed as lower inter-individual beta diversity distances and less alpha diversity 

variation between profiles of microbiome functions compared to taxonomy. In 

such a comparison however it is important to consider how methodological 

differences between metagenomic and 16S amplicon sequencing can affect 

diversity measures, particularly biases like depth of sequencing coverage and 

resolution at which features are defined (e.g. taxonomic species versus families, 

functional representation of particular enzyme versus collapsing counts into 
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metabolic pathways). Still, when limiting such variation by using taxa and 

functions annotated from the same metagenomic profiles, higher inter-individual 

correlation in genes was also observed compared to species138. Inter-individual 

correlation was lowest for metatranscriptomic profiles where more than half of 

transcripts were differentially expressed compared to their metagenomic 

abundance, suggesting observed functional redundancy in the metagenome 

represents the available genetic capacity and not necessarily functional activity138. 

Altering downstream products encoded by the microbiome occurs during 

transcription into RNA, translation into proteins, post-translational protein 

modification, enzymatic metabolism of those proteins, and a range of other 

mechanisms acting throughout those processes. Pairing metagenomic sequencing 

techniques with metabolomics is gaining wider popularity because it allows 

researchers to directly compare potential genetic capacities of the microbiome 

with actual functional consequences in abiotic metabolite targets and products. 

More holistic use of multi’omics techniques may reveal how gut microbiomes and 

abiotic factors function as an ecosystem, but a key challenge is distinguishing 

effects of microbiome versus host metabolism. This issue emerges because 

microbiomes and hosts metabolize many of the same molecules, and host-

microbe and microbe-microbe metabolic complementarity has direct roles on 
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the gut ecosystem and host health. One example is microbial fermentation of 

complex dietary carbohydrates into short chain fatty acids (SCFAs). Resulting 

SCFAs from fermentation then become available as energy sources for: human 

colonocytes in the lower intestine (e.g. butyrate), gluconeogenesis in the human 

liver (e.g. propionate), and by other bacteria which is known as cross-feeding 

(e.g. acetate)139. Fermentation metabolizes what are called ‘non-digestible 

carbohydrates’ predominantly from dietary plant sources, yet such terminology 

seems flawed when considering they are only non-digestible without a 

complementary microbiome that catalyzes the first steps of digestion. Yet non-

digestible may be the case for many people as fermentation into SCFA’s is 

functionally redundant among a subset of Firmicutes, which may or may not be 

represented in each individuals’ microbiome140;141. Much like tools for 

evolutionary comparison, functional capacity in the microbiome can be assessed 

through direct nucleotide alignments or creating hidden Markov models that learn 

important genetic signatures for functional gene families. Thus, metagenomic 

sequencing yields the genetic material that allows researchers to understand how 

capabilities like fermentation are distributed across the breadth of taxa in a 

microbiome, whether factors like HGT or convergent evolution could play into 

that functional redundancy, and how such functions are represented across 
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human populations.  

 

Microbial Niche Specialization, Competition and Compatibility 

How do functional abilities contribute to microbial survival and success 

within the gut ecosystem? Beyond identifying individual functions, measures 

leveraging total genomic capacities organisms have been developed to understand 

how well a microbe’s total metabolic potential complements human 

metabolism142. Abiotic products of microbial metabolism that complement 

humans include essential vitamin B12, and the necessity of this nutrient could 

lead humans to shape an ecosystem favorable to vitamin B12 producing microbes 

that is analogous to aphid and Buchnera relationships. Through niche 

specialization microbes can take advantage of favorable conditions in the gut 

ecosystem, where environmental characteristics complement particular microbial 

traits leading to reduced competition with other microbes. The process of a 

microbe favorably occupying a niche could result from stochastic assembly of 

characteristics within a particular microenvironment and corresponding microbial 

traits, but it could also be directed by host control of the gut ecosystem or 

microbial construction of favorable conditions. Competition for abiotic factors 

may favor certain microbial traits, such as formation of a metabolic niche 
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through the bioavailability of essential metabolites and minerals that can only be 

utilized by a subset of taxa. Microbes compete fiercely for essential trace metals 

like zinc and iron, and humans are able to sequester these metals inside cells to 

control microbial access143;144. When pathogenic microbes take hold in the gut, the 

bioavailability of iron is key to their rapid growth, and a host’s ability to limit this 

essential mineral creates a chokepoint to microbial over-proliferation known as 

“nutritional immunity144.” Some viruses also compete for the iron metabolic 

niche to achieve the same ultimate goal of replication, but viruses favor 

acquisition of iron by human cells because they rely on the host’s replication 

machinery for their own life cycle145. To create their own iron metabolic niches, 

different viruses have developed a series of tools including: targeting active iron 

transporters as receptors in host membranes to preferentially infect cells that are 

actively acquiring iron, disrupting signaling pathways that limit iron acquisition 

by host cells leading to increased uptake, and blocking iron efflux through 

degradation of ferroportin145. The availability of many metabolic niches within the 

microbiome depend on the extrinsic influence of host diet, with macronutrient, 

specific metabolite, and mineral content varying widely across food sources. As 

omnivores, human diets can vary widely, and microbiome composition varies 

widely between animal and plant, high fat and low fat, high protein versus high 
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carbohydrate, and traditional versus western diets26;28;30. Firmicutes that perform 

fermentation into SCFAs in the human gut seem to prosper with plant based diets 

for instance, and this makes sense because they leverage a metabolic niche 

through the specialized ability to metabolize complex plant carbohydrates141;146;147. 

Considering how diet can create (e.g. through additional plant carbohydrates) or 

eliminate (e.g. through low iron) metabolic niches could provide targets to 

control specific microbes in the gut. Limiting iron for instance has been shown to 

reduce or even ameliorate negative processes and health outcomes associated 

with human immunodeficiency virus, hepatitis B and C viruses, and human 

cytomegalovirus145. Biogeographical niches may also form in the gut through 

spatial exclusion of competition, either by creating local barriers that prevent 

entry of other microbes, or by leveraging traits that allows persistence within a 

particular selective microenvironment space. Regulating host mucus production 

to establish an exclusive mucosal biofilm for instance can create a barrier for 

other microbes and threats like antibiotics. Other microbes have developed ways 

to adhere to the gut epithelial lining that allows spatial persistence, countering 

the common microbial fate of colonic transit. Microbes may also leverage 

biogeographical niche microenvironments purely for their own benefit, and in 

ways that are pathogenic to the host. Habitation of colonic crypts bypasses host 
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“metabolic barriers” where colonocyte cells normally consume butyrate before it 

penetrates to basal crypt progenitor cells148;149. Microbial expansion into the less 

competitive base of crypts allows butyrate and other molecules to bypass the 

colonocyte “metabolic barrier”, and has been linked to inflammation, delayed 

wound repair, and colorectal carcinogenesis148;149. If two microbes occupy the 

same metabolic and spatial niche, it is likely one will eventually displace the other 

through a process of competitive exclusion. The ability for microbes to colonize 

individual humans varies from person to person, which suggests interpersonal 

variation in niche specificity148. Alongside diet, human microbiome composition 

prior to fecal microbiome transplant (FMT) and probiotic inoculation is 

predictive, and likely deterministic, of which foreign microbes can take hold in the 

gut148. Following antibiotic treatment, reconstitution of a diverse human gut 

ecosystem seems to depend on the complexity of the inoculation, where simple 

probiotics reduced and diverse FMT improved reestablishment of community 

diversity compared to no innoculation150;151. This may suggest that filling a rich 

diversity of microbial niches leads to faster and more stable gut community 

assembly, when compared to less diverse inoculations like probiotics where 

microbes may partially and ineffectively fill many unoccupied niches. Under the 

theory of competitive exclusion, more available niches equate to more 
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opportunities for foreign and potentially pathogenic microbes to invade. 

Therefore, reductions in microbiome alpha diversity across westernized societies 

could allow opportunistic and potentially pathogenic microbes to overgrow by 

lacking direct competition, which in turn may be reflected in the correlation 

between alpha diversity and negative health outcomes. Going forward clinicians 

could consider the niche requirements of specific pathogens as targets to 

eliminate or fill with commensal microbes, and alpha diversity as a quantifier of a 

microbiomes capacity for competitive exclusion. As our understanding of 

microbial niche occupation and competitive exclusion grow, shaping the 

landscape of available niches may provide new ways to engineer ideal ecosystem 

homes for a diversity of ‘healthy’ microbes.  

 

Priority Effects and Dispersal Limitation Shape Initial Microbiome Assembly 

 Functional capacity and niche preference help determine a microbe’s 

survival in the gut ecosystem, but a range of community ecology principles 

capture or shape composition and diversity beyond single microbe interactions. 

As with vaginal inoculation and HMOs shaping human microbiomes early in life, 

which microbes colonize first can have long-term consequences on the 

microbiome and host health. Priority effects manifest when the sequential order 
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of microbial colonization shapes which microbes can subsequently colonize. 

Mechanisms of priority effects could embody many principles like competitive 

exclusion limiting niche access, functional diversity and redundancy controlling 

adaptability between niches, symbiotic cross-feeding creating new niches, and 

even indirect apparent competition for niches by shaping third-party predator-

prey preferences or immune education to act on competitors. For example, 

Haemophilus influenza virus that causes flu may exert small changes on host 

immune education that allows a wider diversity of Streptococcus pneumoniae 

infection which causes pneumonia, yet the complexities of microbial coinfections 

and co-colonization experienced throughout an individual’s life make such 

dependencies difficult to distinguish by merely looking for pairwise microbial co-

occurence152. Examining human microbiomes temporally may help with such 

insights however, where patterns in colonization order may better reveal where 

underlying priority effects could be at play. In fly models, the likelihood of 

microbial colonization decreased with previous microbial inoculations, and spatial 

niche occupation appeared to be a factor in this competitive exclusion153. Still, a 

combination of stochastic dynamics and microbial dose in the inoculum seem to 

shape initial community assembly, while downstream assembly and community 

stability seemed to be shaped by priority effects stemming the ‘lottery’ of 
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successful initial colonizers153. A key contributor to colonization order is the 

‘exposome’ of microbes and metabolites that a host confronts in their 

environment on a daily basis154;155. Biogeographical partitioning of different 

microbes into physical regions is determined by dispersal limitations, essentially 

the distribution range of each microbial species. Clouds of microbes stochastically 

assembled in the air and on surfaces are ubiquitous to our world, but exposomes 

vary widely in composition across locations and time points155. Examination of 

wild mammal microbiomes showed that phylogeny and diet explained some 

microbiome variation, but was independent of a biogeographic signal that 

physically closer mammals had more microbiome similarity (i.e. lower beta 

diversity distances = more similar microbiomes)156. The role that living indoors 

has likely played in shaping human microbiomes is likely profound93, and 

sterilized indoor air contains a very different exposome than the local outdoor 

environment104;155;157;158. Humans also seed the exposome with microbes, and one 

does not have to look farther than individuals’ cell phones to see microbial 

transfer to the local environment159. Horizontal transfer of diverse microbes 

through the exposome maybe critical for proper immune education, as transfer of 

microbes from pets to owners is prevalent and correlates with lower rates of 

asthma and allergies37;160. The prevalence of c-section births has led hospitals to 
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implement horizontal microbiome transfer of vaginal swabs from mothers to 

newborns, in many ways setting a long term trajectory by shaping the newborns 

first exposome37;125;127;128;161;162. Extending such a concept could lead to shaping 

indoor microbiomes in the interest of health, for example to inoculate a 

competitive iron niche occupying microbe to limit a viral outbreak. A current 

challenge is packaging and delivery of live probiotics with billions of microbes 

into a competitive gut ecosystem containing trillions of microbes, and therefore 

competitive exclusion may be limiting probiotic effectiveness. Sourcing probiotic 

microbes from human microbiomes instead of common cultures such as 

Lactobacillus from milk may be a key first step in effective colonization. Still, it 

may be advantageous to more broadly consider natural ecological patterns of 

microbial colonization when designing probiotics, such as: priority effects in 

determining when a probiotic would best colonize an individual, where exposome 

composition is inadequate for immune education and should be complemented 

with probiotics, or how characterizing microbial functions can inform probiotic 

niche specialization that will competitively exclude an opportunistic pathogen.  

 

Community Dynamics and Ecological Stability Shape Microbiomes Throughout Life 

 While many mechanisms shape community assembly, an established 
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community is also constantly changing according to ecological forces. 

Community dynamics are simply the variation in a microbiome over time, but 

the underlying mechanisms of such variation is anything but simple. Changes 

within microbiomes can occur stochastically, such as with extrinsic influences of 

dispersal limitations and microbial exposure, or intrinsically such as with random 

fluctuations in microbial abundance or the niches that are available53;153;163. 

Dynamic change may also be directed by a range of ecological principles already 

discussed, such as with the progression of microbial communities from low 

diversity and disparate compositions in newborns, to higher diversity and more 

interpersonal overlap in older children125;127;160;164. Considering time as an aspect of 

microbiome composition is important because of dynamic fluctuations, but 

temporal change occurs across many scales165. Timescale variation affecting the 

microbiome may be short such as between day and night or time since last eating, 

medium such as dietary patterns changing by season or regular menstruation, or 

long such as expansion of microbiome alpha diversity in children and depletion 

with old age165. Short term dynamics are likely influenced by many of the microbe-

microbe and microbe-host ecological principles already discussed, but fecal 

sampling makes it difficult to get finer than daily resolution of gut microbiome 

dynamics. This is where model organisms excel by allowing minute to hour 
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temporal dynamics to be observed, such as in zebrafish gut microbiomes where 

microbial motility and priority effects help determine dynamic change over short 

time periods166. Ecological stability could have a number of interpretations, but 

is generally defined counter to community dynamics as maintaining microbiome 

composition over time. Host gut motility creates dynamic microbial turnover 

through fecal movement, but microbial traits of adherence and motility allow 

microbes to persist and restore stability166;167. This reset of ecological stability may 

counter dangerous pathogenic overgrowth, and it is speculated that the human 

appendix has evolved to serve as a microbial reservoir that restocks a stable 

ecosystem166-168. Ecological stability can also define the resiliency of a microbiome 

to maintain composition while undergoing an extrinsic perturbation, and this 

aspect of ecological stability has important clinical applications. Lower alpha 

diversity associates with modern western lifestyles and the onset of many 

diseases, and is likely a key factor in loss of community stability through many of 

the ecological principles already discussed103. For instance, lower alpha diversity 

may be linked to community stability through increased invasion by pathogenic 

microbes due to a lack of competitive exclusion, or loss of functional diversity 

leading to metabolic networks with ineffective microbial cross-feeding. Ecological 

resilience is a microbiomes ability maintain a steady state, but ecological stability 
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can also define a microbiomes reestablishment after strong perturbations like 

antibiotics150;169. Individuals with higher diversity before antibiotics tend to have 

faster or more pronounced recovery of community composition, and the ability to 

recover can be accelerated by introducing diverse microbes and slowed by 

introducing single taxa probiotics150;169;170. Ecological resilience could be applied 

clinically to measure temporal microbiome reestablishment after antibiotics or 

major medical treatment, where alpha diversity trajectory could be a biomarker of 

proper recovery. Ecological stability can be measured as intrapersonal beta 

diversity variation over time, and sudden increases in beta diversity distances 

could be an early clinical biomarker of health changes.  

 Another way to think about microbiome variation is overlap across 

individuals, and population stability considers what aspects of community 

composition are shared by group of people. The core microbiome is a way to 

assess which individual taxa or functions are maintained across a study 

population, but population stability considers the maintenance of total 

community composition. One way to leverage population stability is 

understanding disease in case control studies, and how the ill-defined term 

‘dysbiosis’ manifests. In many ways, dysbiosis has been loosely used to describe 

any microbiome composition which is distinguishable from that of healthy control 
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individuals, including where a concerted shift in microbiome composition is 

shared by case individuals. While still hotly debated, one way population stability 

could define dysbiosis is as a change in microbiome variance between cases and 

controls. Put more simply, microbiomes of healthy individuals will be more 

similar (i.e. lower inter-personal beta diversity distance), while microbiomes in 

dysbiosis will each compositionally breakdown in different ways (i.e. higher inter-

personal beta diversity distance)171. This sets dysbiosis apart from shared shifts in 

microbiome composition associated with some diseases, where microbiome 

variance may remain the same within case and control groups even if 

microbiomes are distinguishable. Both patterns emerge in a meta-analysis of 28 

case-control microbiome studies, with some diseases and studies characterized by 

a general unstable loss of beneficial taxa, and others by a concerted acquisition of 

specific pathogens103. Coral ecologists have come up with a measure of population 

stability by comparing the relationship between taxa abundance and the ubiquity 

of those taxa, known as the abundance-ubiquity test172. This test is useful to 

distinguish outlying observations that either appear in high abundance but 

sporadically across individuals (unstable), or observations that appear 

consistently across individuals but at a lower than expected abundance (stable)172. 

Applying abundance-ubiquity community-wide as a measure of population 
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stability may help distinguish disease associations with an indiscriminate loss of 

stable healthy taxa, apart from disease associations with high abundance blooms 

of pathogenic microbes. Ultimately our understanding of community stability in 

the human gut is poor, at least partially because stability depends on so many 

underlying ecological forces. Other factors may be the limited number of quality 

datasets that look at human microbiomes temporally, and that model systems 

may be better suited for understanding stability on short timescales. Still, 

ecological stability and dynamics can be characterized by diversity measures, and 

tracking microbiome dynamics temporally may serve as a biomarker that 

underlying ecological forces are shifting their influence.   

 

Conclusion   

 Microbiomes assemble and dynamically change throughout the lifetime of 

host metazoans, yet principles uniting broadly observed microbiome patterns 

across metazoans have been poorly translated into the clinic. The outlined 

framework focuses on building from fundamental ecological and evolutionary 

measures into principles that define patterns in lab and natural populations, and 

subsequently what such principles can tell us about human health and breakdown 

in disease. The following work addresses clinically translating ecological and 
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evolutionary factors affecting microbiomes through three disparate projects: 1) 

first exploring phylosymbiosis by developing a framework of ecological and 

evolutionary expectations observed across 24 lab reared animal species, 2) looking 

at ethnicity as a factor explaining gut microbiome ecology in the United States, 

and roles that inter-ethnic variation could play in personalized health disparity 

treatments, and 3) finally working to disentangle the many intrinsic and extrinsic 

influences on microbiome ecology through a multi-ethnic, dietary controlled 

microbiome clinical trial. By spanning controlled model organism studies to 

intervention based human clinical trials, this work provides an example of how 

ecological and evolutionary principles can be adapted to diverse applications.  
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CHAPTER II 

Phylosymbiosis: Relationships and Functional Effects of Microbial 

Communities across Host Evolutionary History1 

 

Author Contributions 

 This study was performed by Andrew Brooks (AB), Robert Brucker (RB), 

Kevin Kohl (KK), Edward van Opstal (EO), and Seth Bordenstein (SB). RB reared 

and obtained samples from the 24 animal species used throughout primary 

analyses. Primarily RB and somewhat AB extracted DNA, performed 16S 

amplification, and sequenced microbiome communities in the 24 main analyses. 

AB performed the non-functional analytical analyses throughout the paper. EO 

performed and analyzed Nasonia functional microbiome transplants, and KK 

performed Peromyscus functional microbiome transplants. SB was principle 

investigator and worked with all individuals to plan and develop analyses. 

Everyone helped write and edit the manuscript. 

                                            

1 This work is published in PLOS Biology: Brooks AW*, Kohl KD*, Brucker RM*, van Opstal EJ, Bordenstein SR. (2016). 
Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History. PLOS 
Biology. http://dx.doi.org/10.1371/journal.pbio.2000225. (*Co-first Authors).  
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Introduction 

Abstract 

Phylosymbiosis was recently proposed to describe the eco-evolutionary 

pattern whereby the ecological relatedness of host-associated microbial 

communities parallels the phylogeny of related host species (Fig 2.1). Here, we 

test the prevalence of phylosymbiosis and its functional significance under highly 

controlled conditions by characterizing the microbiota of 24 animal species from 

four different groups (Peromyscus deer mice, Drosophila flies, mosquitoes, and 

Nasonia wasps), and we reevaluate the phylosymbiotic relationships of seven 

species of wild hominids. We demonstrate three key findings. First, intraspecific 

microbiota variation is consistently less than interspecific microbiota variation, 

and microbiota-based models predict host species origin with high accuracy 

across the dataset. Interestingly, the age of host clade divergence positively 

associates with the degree of microbial community distinguishability between 

species within the host clades, spanning recent host speciation events (~1 million 

y ago) to more distantly related host genera (~108 million y ago). Second, 

topological congruence analyses of each group’s complete phylogeny and 

microbiota dendrogram reveal significant degrees of phylosymbiosis, irrespective 

of host clade age or taxonomy. Third, consistent with selection on host-
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microbiota interactions driving phylosymbiosis, there are survival and 

performance reductions when interspecific microbiota transplants are conducted 

between closely related and divergent host species pairs. Overall, these findings 

indicate that the composition and functional effects of an animal’s microbial 

community can be closely allied with host evolution, even across wide-ranging 

timescales and diverse animal systems reared under controlled conditions.  

Fig 
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2.1. Graphical abstract for hypothesis of phylosymbiosis: microbiome 

community similarity will parallel host evolutionary relatedness. 

 

Author Summary 

Studies on the assembly and function of host-microbiota symbioses are 

inherently complicated by the diverse effects of diet, age, sex, host genetics, and 

endosymbionts. Central to unraveling one effect from the other is an 

experimental framework that reduces confounders. Using common rearing 

conditions across four animal groups (deer mice, flies, mosquitoes, and wasps) 

that span recent host speciation events to more distantly related host genera, this 

study tests whether microbial community assembly is generally random with 

respect to host relatedness or "phylosymbiotic," in which the phylogeny of the 

host group is congruent with ecological relationships of their microbial 

communities. Across all four animal groups and one external dataset of great 

apes, we apply several statistics for analyzing congruencies and demonstrate 

phylosymbiosis to varying degrees in each group. Moreover, consistent with 

selection on host-microbiota interactions driving phylosymbiosis, transplanting 

interspecific microbial communities in mice significantly decreased their ability to 

digest food. Similarly, wasps that received transplants of microbial communities 
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from different wasp species had lower survival than those given their own 

microbiota. Overall, this experimental and statistical framework shows how 

microbial community assembly and functionality across related species can be 

linked to animal evolution, health, and survival.  

 

Introduction 

 A large body of literature has documented genetic and environmental 

influences on the composition of host-associated microbial 

communities31;51;75;78;173-178. Although environmental factors are considered to play 

a much larger role than host genetics and evolutionary history10, host influences 

and their functional consequences are poorly elucidated and thus require 

systematic study across host-microbiota systems. Several outstanding questions 

remain regarding the nature of host effects on microbiota assembly. Are host-

microbiota associations stochastically assembled, or might there be deterministic 

assembly mechanisms that predict these associations? How rapidly do microbiota 

differences form between closely related host species, and are interspecific 

microbiota differences prone to decay over evolutionary time? Can host-driven 

assembly of the microbiota be isolated from confounding variables such as diet, 

age, sex, and endosymbionts? If there are microbiota differences between species, 
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are they functional in an evolutionarily informed manner, such that mismatches 

between host and interspecific microbiota lead to reductions in fitness or 

performance, particularly when interspecific microbiota transplants are conducted 

between older host species pairs?  

 If host-associated microbial communities assemble stochastically through 

environmental acquisition with no host-specific influence, then microbiota 

compositions across related host species will not differ from expectations based 

on random community assemblies and dispersal limitations. Therefore, in a 

common environment, microbiota will form independent of host species (Fig 

2.2A), and any interspecific differences in microbiota composition would be 

arbitrary. In contrast, if hosts influence a sufficient amount of the composition of 

the microbiota, then under controlled rearing conditions, intraspecific microbial 

communities will structure more similarly to each other than to interspecific 

microbial communities (Fig 2.2B). Similarly, if microbial communities are 

randomly established or are not distinguishable with regard to host evolutionary 

relationships, then dendrograms illustrating beta diversity distance relationships 

between microbial communities will not parallel the phylogeny of the host species 

(Fig 2.2C). However, if microbial communities are distinguishable, then hosts 

with greater genetic divergence may exhibit more distinguishable microbiota. In 
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this case, there will be congruence between the host phylogeny and microbiota 

dendrogram (Fig 2.2D). As this outcome is not likely due to coevolution, 

cospeciation, or cocladogenesis of the entire microbial community from a last 

common ancestor, "phylosymbiosis" was proposed as a new term that does not 

necessarily presume that members of the microbial community are constant, 

stable, or vertically transmitted from generation to generation77;78. Rather, 

phylosymbiosis refers to an eco-evolutionary pattern in which evolutionary 

changes in the host associate with ecological changes in the microbiota.  
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Fig 2.2. Analyses and predictions that can distinguish stochastic host-

microbiota assembly from phylosymbiosis under controlled conditions. Two-

dimensional ordination plots depict hypothetical microbiota similarity under (A) 

stochastic versus (B) phylosymbiotic models. Dashed lines represent host-specific 

clustering. Topological congruence analyses between host phylogeny 

(evolutionary relatedness) and microbial community dendrogram (ecological 

relatedness) depict the pattern expected for (C) stochastic versus (D) 
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phylosymbiotic host-microbiota assembly.  

 

 Phylosymbiosis leads to the explicit prediction that as host nuclear genetic 

differences increase over time, the differences in host-associated microbial 

communities will also increase. Indeed, phylosymbiosis has been observed in 

natural populations of sponges179, ants178, bats180, and apes50;93. However, other 

studies on termites181, flies182-184, birds185, and mice186 have not observed strict 

patterns of phylosymbiosis or host-specific microbial signatures. In natural 

population studies, determining the forces driving phylosymbiosis is equivocal, as 

both environmental and host effects can covary and contribute to microbiota 

assembly. Importantly, major effects of the environment, age, or sex may 

overwhelm the ability to detect phylosymbiosis. Indeed, diet is a stronger 

determinant of whole microbial community structure than genotype in lab-bred 

mice187. Additionally, conjecture about the formation of host-specific communities 

should be resolved in a wider context, especially their functional significance, as 

microbiotas may be inconsequential to host biology or uniquely situated for 

certain host genotypes and fitness. Thus, the prevalence and functional 

significance of phylosymbiosis is uncertain and requires reductionist approaches 

to discriminate among the frequently confounded variables of host, environment, 
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development, sex, and even endosymbiont status.  

 Here, we quantify phylosymbiosis under laboratory conditions to control 

for environmental and host rearing variation. Prior investigations of 

phylosymbiosis have not typically controlled for these confounding variables, with 

the exception of male Nasonia wasps51;78 and Hydra76;175. Specifically, we reared 24 

species in the laboratory while controlling for sex (virgin females), age, diet, and 

endosymbionts, thus removing major environmental variables and isolating the 

contribution of host species on microbiota assembly. The experimental systems, 

or “host clades,” span four species of Nasonia parasitic jewel wasps, six species of 

Drosophila fruit flies, eight species of Anopheles, Aedes, and Culex mosquitoes, and 

six species of Peromyscus deer mice. An externally derived dataset with seven 

members of the hominid lineage50 provides another mammalian and multigenus 

clade for reference and facilitates examination of natural populations in which 

phylosymbiosis was previously documented. Together, the five host clades include 

31 distinct taxa and span a range of estimated divergence times from 0.2-108 

million y. Last, we test the hypothesis that phylosymbiosis represents a functional 

association through a series of microbial transplants with autochthonous 

(intraspecific) and allochthonous (interspecific) microbiota in Nasonia and 

Peromyscus. We expect that an experimentally mediated disruption of 
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phylosymbiosis will have functional costs that may lower host fitness or 

performance in an evolutionarily informed manner. Our findings demonstrate 

that a consistent set of controlled experimental and bioinformatic approaches in 

comparative microbiota studies can isolate host-driven phylosymbiosis.  

 

Results 

Host Clade Differentiates Microbial Communities 

 Phylosymbiosis predicts that host clades will harbor distinguishable 

microbial communities (e.g., jewel wasps versus fruit flies versus deer mice, etc.) 

and that more closely related host clades will exhibit more similar microbial 

communities (e.g., insects versus mammals). Indeed, at a broad scale, we found 

that host clades harbored relatively distinct microbial communities (Fig 2.3A, 

ANOSIM, R = 0.961, p < 1e-6). Furthermore, there was significant microbiota 

differentiation between the mammalian and invertebrate host clades in the 

principle coordinates analysis (PCoA) (Fig 2.3A, ANOSIM, R = 0.905, p < 1e-6). 

The PCoA shows insect groups separating along two dimensions of a plane, with 

the mammals distinguished orthogonally from that plane in a third dimension, 

suggesting that variance in insect microbial communities is fundamentally 

different than that in mammals. As is well established, the gut communities of 
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mammals were dominated by the bacterial classes Clostridia (Firmicutes) (Fig 

2.3B, hominid 42%, Peromyscus 37%) and Bacteroidia (Bacteroidetes) (Fig 2.3B, 

hominid 15%, Peromyscus 37%), while the insect clades were dominated by 

Proteobacteria (Fig 2.3B, Drosophila 78%, mosquito 69%, Nasonia 77%). This same 

bacterial divide is also seen in the network analysis, with significant clustering of 

the insect microbial communities around Proteobacteria, and the mammal 

microbial communities around subsets of shared and unique Firmicutes and 

Bacteroidetes (G-test, p < 1e-6, Fig 2.3C). Microbial diversity as measured by the 

Shannon index188 was approximately 35% higher in mammalian hosts compared 

to insects, indicating more diverse symbiont communities among the mammalian 

clades (Fig 2.3D; Nested analysis of variance [ANOVA]: phylum effect [mammals 

versus insects]: F1,302 = 419.82, p < 0.001; clade effect nested within phylum: 

F3,298 = 18.46, p < 0.001; species effect nested within clade and phylum: 

F26,272 = 7.94, p < 0.001).  
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Fig 2.3. Meta-analysis of microbiota variation across five host clades. (A) 

PCoA analysis of Bray-Curtis ecological similarity in three dimensions based on 

99% operational taxonomic unit (OTU) cutoff, with colors depicting clade of 

origin. (B) Phylum level relative abundance for all samples, with a key provided in 

C. (C) Network analysis in which small squares depict samples, with their color 

indicating clade of origin. Lines connect genus-level OTUs to samples and are 

weighted by occurrence and colored by OTU phylum. (D) Shannon alpha diversity 

for each host species. Small ellipses depict individual samples, and dark lines 

indicate the species’ median diversity. The lower and upper end of each box 

represent the 25th and 75th quartiles, respectively. Whiskers denote the 1.5 
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interquartile range.  

 

 We implemented a random forest classifier (RFC) supervised learning 

algorithm to quantify the degree to which individual microbial communities can 

be classified into their respective host clade. RFC models show a strong ability to 

classify microbial communities to their correct host clades based on OTUs (98.5% 

classification accuracy) (S2.1 Table). Additionally, models distinguish mammals 

and insect samples with high accuracy (95.9% classification accuracy) (S2.1 

Table). Cross-validation prevents overfitting by ensuring that classification 

accuracy is assessed using only samples excluded from model training. We also 

used RFC models to identify the most distinguishing bacterial taxonomic level for 

both interclade distinction and the divide between mammals and insects. Genera 

provided the strongest ability to predict host clade (99.0% classification accuracy) 

(S2.1 Table); however, the major groups of insects and mammals were better 

distinguished by family-level community classification (98.3% classification 

accuracy) (S2.1 Table). Taken together, these results illustrate that evolutionary 

relationships of the host clades broadly covary with differences in microbial 

communities. While differentiation of the five clades could in part be attributable 

to varied experimental conditions for each animal group (since they were reared 
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separately), clustering of the vertebrate microbial communities from the insect 

microbial communities is independent of rearing conditions and suggests a host-

assisted structuring of microbial communities.  

 

Intraspecific Microbial Communities Are Distinguishable within Host Clades 

 Phylosymbiosis predicts that an individual’s microbial community will 

exhibit higher similarity to communities of the same host species than to those 

from different host species. The degree of similarity can be variable but should 

correlate with genetic relatedness of the host species. Pairwise comparisons of 

beta diversity distances between all individuals within each host clade reveal that 

the average distance between microbial communities within a species is always 

less than between species (S2.1 Fig). Summarized beta diversity also reveal lower 

intraspecific versus interspecific distances, with significant differences observed 

for all clades (Fig 2.4A, Each dataset: Mann-Whitney U, p < 1e-6).  
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Fig 2.4. Intraspecific versus interspecific microbial community variation 

within and between host clades. (A) Box-and-whisker plot of intraspecific and 

interspecific Bray-Curtis distances between samples for each clade. Boxes 

represent the 25th to 75th quartiles, with the central line depicting the group 

median and whiskers showing the 1.5 interquartile extent. (B) PCoA of Bray-

Curtis distances with first three most distinguishing dimensions shown. Colors 

represent different species and correspond to the colors in Fig 2.5. (C) Regression 

analysis measuring the correlation between the evolutionary age of host clade 

divergence on a log scale and the ANOSIM R-values of intraspecific microbiota 

distinguishability from part B for each host clade.  
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 We next evaluated intraspecific microbiota clustering through Bray-Curtis 

beta diversity interrelationships with PCoA and statistically assessed the strength 

of interspecific microbiota distinguishability with ANOSIM (Fig 2.4B). 

Visualization of the first three principle components revealed that individual 

samples clustered around their respective species’ centroid position. In all host 

clades, each host species harbored significantly distinguishable microbial 

communities (Fig 2.4B, ANOSIM p < 0.001 for all host clades). Notably, the 

ANOSIM R-values of interspecific microbiota distinguishability within a host 

clade positively correlated with the maximal age of divergence of the species in 

the host clades (Fig 2.4C, Regression Analysis Log Transformed Clade Age, R2 = 

0.92, p = 0.006; Untransformed Clade Age, R2 = 0.70, p = 0.048). Thus, host 

clades with higher total divergence times between species had stronger degrees of 

microbiota distinguishability, while less diverged host clades exhibited less 

microbiota distinguishability. For example, with an estimated host divergence 

time of 108 million y189, mosquitoes showed the greatest distinguishability of 

their microbiota. Conversely, in Nasonia jewel wasps, which only diverged 

between 200,000 and 1 million y ago190, the relative strength of clustering was 

less distinct but still statistically significant. The three intermediate aged clades 
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showed corresponding intermediate levels of clustering: Drosophila had an 

estimated divergence time of 62.9 million y191, hominids diverged 9 million y 

ago192, and Peromyscus diverged 11.7 million y ago193. Therefore, the 

phylosymbiotic prediction that host species will exhibit significant degrees of 

specific microbiota assembly was supported in these observations, even under 

highly controlled conditions in the laboratory models. Microbiota specificity was 

maintained among very closely related and very divergent species, and a 

connection was observed between the magnitude of host genetic divergence and 

microbiota similarity.  

 

Supervised Classification: Microbiota Composition Predicts Host Species 

As microbiota clustering was supported within species across all five 

animal clades, it should be possible to model the strength of how well 

communities of bacteria predict their host species and how specific members of 

the microbiota affect these predictions. We therefore used RFC models trained on 

the microbiota of each host clade to evaluate classification accuracy (i.e., the 

percentage of assigning microbiota to their correct host species) and the expected 

predicted error (EPE, i.e., the ratio of model accuracy relative to random 

classification). RFC results indicated that the operational taxonomic units 
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(OTUs) for Drosophila and Peromyscus and genus taxonomic levels for hominid, 

mosquito and Nasonia have the highest classification accuracies, with significant 

EPE observed for all clades (EPE > 2, S2.1 Table). At the genus level, the 

mosquito and Drosophila host clades exhibited the strongest results (mosquito, 

classification accuracy = 99.8%, EPE = 558.9; Drosophila, classification accuracy 

= 97.2%, EPE = 31.7). Other host clades demonstrated significant but 

comparatively lower strength models. The reduced predictive power of these 

models may be due to a number of factors, such as a lower number of host species 

(Nasonia, classification accuracy = 88.7%, EPE = 13.4), uneven sample 

representation from each species (hominid, classification accuracy = 53.4%, EPE 

= 2.1), and lower sequencing coverage (Peromyscus, classification accuracy = 

61.4%, EPE = 2.5).  

To determine the most distinguishing genera of the bacterial community, 

we examined the resulting loss of model classification accuracy when each genus 

was excluded from RFCs (S2.2 Table). Distinguishability within the Drosophila, 

Nasonia, and mosquito clades was driven primarily by genera in Proteobacteria, 

which represent five (14.0% model accuracy), seven (11.3% model accuracy), and 

eight (18.2% model accuracy) of the top ten genera, respectively. Three of the ten 

most distinguishing genera in Drosophila females are from the Acetobacteraceae 
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family (9.5% model accuracy), previously recognized to be “core” microbiota 

members194;195. Three of the twenty most distinguishing genera in Nasonia females 

were closely related symbionts from the Enterobacteriaceae family (genera: 

Proteus, Providencia, Morganella; 3.1% model accuracy), consistently found in our 

previous studies of Nasonia males51;78. Eight genera from the phylum 

Proteobacteria dominate mosquito female distinguishability, primarily three 

Gammaproteobacteria of the order Pseudomonadales (8.2% model accuracy), and 

three Betaproteobacteria of the family Comamonadaceae (5.9% model accuracy). 

Hominid interspecific distinguishability was driven by the phylum Firmicutes, 

particularly of the order Clostridiales that contains three of the most distinguishing 

genera (1.5% model accuracy). The genus Allobaculum conferred nearly double the 

distinguishing power of any other bacteria in Peromyscus (3.8% model accuracy), 

and it is associated with low-fat diet, obesity, and insulin resistance in mice196. As 

may be expected, genera of the abundant phyla Firmicutes and Bacteroidetes 

dominated the majority of distinguishability in Peromyscus (10.6% model 

accuracy), but genera from Proteobacteria in the family Helicobacteraceae 

comprised four of the top eleven genera (4.4% model accuracy). Overall, 

microbiota composition can be used to predict host species with high accuracy, 

and genera commonly observed in other studies of these host clades underlie 
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interspecific distinguishability.  

 

Phylosymbiosis Is Common within Host Clades 

The major prediction of phylosymbiosis is that phylogenetic relatedness 

will correlate with beta diversity relationships of microbial communities among 

related host species. Microbiota dendrograms were constructed by collapsing 

individual samples to generate an aggregate microbial community for each species 

and then by comparing relationships of their beta diversity metrics. The matching 

cluster and Robinson-Foulds tree metrics were utilized to calculate host 

phylogenetic and microbiota dendrogram topological similarity, with normalized 

distances ranging from 0.0 (complete congruence) to 1.0 (complete 

incongruence)197. Matching cluster weights topological congruency of trees, 

similar to the widely used Robinson-Foulds metric197;198. However, matching 

cluster takes into account sections of subtree congruence and therefore is a more 

refined evaluation of small topological changes that affect incongruence. 

Significance of the matching cluster and Robinson-Foulds analyses was 

determined by the probability of randomized bifurcating dendrogram topologies 

yielding equivalent or more congruent phylosymbiotic patterns than the 

microbiota dendrogram. Additionally, using the same methodology, matching 
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cluster and Robinson-Foulds metrics were evaluated for Bray-Curtis, unweighted 

UniFrac56, and weighted UniFrac56 beta diversity dendrograms at both 99% and 

97% clustered OTUs (S2.2 Fig). The cytochrome oxidase I (COI) gene was used 

to construct the phylogeny for each host clade, which compared well to 

established phylogenetic or phylogenomic trees for all species included in the 

study (Nasonia190; Drosophila191; hominids192; mosquitoes189). Peromyscus was further 

resolved with an additional marker (arginine vasopressin receptor 1A [AVPR1A]) 

to reflect the latest phylo- genetic estimates199;200.  

 

Fig 2.5. Phylosymbiosis between host phylogeny and microbiota 

dendrogram relationships. Topological congruencies are quantified by the 

normalized Robinson-Foulds (RF) metric, which takes into account symmetry in 
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rooted tree shape on a scale from 0 (complete congruence) to 1 (incomplete 

incongruence). The normalized matching cluster (MC) metric is a refined version 

of the RF metric that sensitively accounts for incongruences between closely 

related branches. Horizontal lines connect species whose position is concordant 

between host phylogeny and microbiota dendrogram based on 99% OTU cutoffs, 

therefore requiring no topological shift to demonstrate phylosymbiosis.  

 

Nasonia female wasps exhibited an equivalent phylogenetic tree and 

microbial community dendrogram, representing exact phylosymbiosis (Nasonia 

wasps, Fig 2.5A). These results parallel previous findings in Nasonia males51;78. 

Despite congruency, the Nasonia clade has limited topological complexity with 

only four species, therefore resulting in a relatively marginal significance. Mice 

also show nearly perfect congruence, with the exception of Peromyscus eremicus 

(Fig2.5B). Drosophila fruit flies (Fig 2.5C) showed the lowest topological 

congruency but were still moderately significant. Four of the six species show 

correct topological relationships, while the microbial community relationships of 

Drosophila pseudoobscura and D. erecta are topologically swapped. These results are 

different from previous findings in Drosophila that utilized a different experimental 

design, set of taxa, and sequencing technology183. However, the evidence for 
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phylosymbiosis is tentative in Drosophila as, unlike other clades, there is no 

significant congruence for either unweighted or weighted UniFrac metrics (S2.2 

Fig). Previous studies detected no pattern of phylosymbiosis across Drosophila 

species183, which could be attributed to Drosophila’s constant replenishment of 

microbes from the environment182;184 or the dominance by the bacterial genus 

Acetobacter, which is important for proper immune and metabolic development183. 

The two additional clades, mosquitoes and hominids, showed significant 

phylosymbiosis (Fig 2.5D and 2.5E). Specifically, the mosquitoes showed accurate 

separation of Culex and Aedes genera from Anopheles, and the topological 

departures from phylosymbiosis appeared in two of the bifurcations between 

closely related species. The hominid microbial community dendrogram reflects 

the correct branching of Gorilla from Homo sapiens, followed by bonobos and 

chimpanzees, with the exception that one of the chimpanzee subspecies grouped 

more closely with the bonobo lineage. These results are similar to previous 

observations that the relationships of the microbial communities parallel those in 

the host phylogeny50. With the exception of Drosophila, which yielded variable 

evidence for host-microbiota congruence, significant degrees of phylosymbiosis 

were observed across clades with varying tree similarity metrics and microbiota 

beta diversity analyses.  
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Phylosymbiosis Represents a Functional Association                      

Microbiota-host distinguishability and topological congruence does not 

strictly imply that the phylosymbiotic associations are fitness directed, though it 

naturally follows that a particular host species may be more ideally suited for an 

autochthonous versus allochthonous microbiota. We therefore performed a series 

of microbial transplants to test the prediction that inoculated microbiota from a 

different species would decrease aspects of host performance or fitness in contrast 

to inoculated microbiota from the same species. Moreover, if there is selection on 

host-microbiota interactions such that microbiotas are uniquely or better situated 

for resident host backgrounds, then transplanted microbiota from a divergent 

species could drive more pronounced reductions in host functions than 

transplanted microbiota from a closely related species.  

In Peromyscus, we followed a previously established protocol201 to transplant 

the microbial communities from six rodent donor species into a single recipient 

species, P. polionotus, as well as a control group in which the microbial 

communities from P. polionotus were introduced to intraspecific individuals of P. 

polionotus. Inventories of fecal microbiota from donor and recipient mice revealed 

that portions of the donor microbiota successfully transferred. The estimated 



 

 76 

amount of transplanted OTUs and their relative abundance ranged from 6.5%-

26.2% and 11.4%-40.7%, respectively, when analyzed at the 99% OTU cutoff 

level. Variation in the transfer of foreign microbes was dependent on donor 

species and its divergence from the recipient species (S2.3 Fig). We then 

measured dry matter digestibility, or the proportion of food material that is 

digested by the animal. Consistent with selection on host-microbiota interactions, 

mice that were inoculated with microbial communities from more distantly 

related hosts exhibited decreased dry matter digestibility (Fig 2.6). These results 

were only significant when the group receiving feces from P. eremicus donors was 

removed (Fig 2.6). Notably, the microbiota of P. eremicus is not congruent with 

our predictions of phylosymbiosis (Fig 2.5). Thus, only the taxa showing 

phylosymbiosis exhibited the functional trend with digestibility. Distantly related 

donor species (Neotoma lepida and Mus musculus) did not drive significance, as the 

correlation remained statistically significant when investigating only Peromyscus 

donors (excluding P. eremicus; Fig 2.6).  
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Fig 2.6. Effects of allochthonous and autochthonous microbial communities 

on the digestive performance of recipient mice. Dry matter digestibility is 

calculated as (g dry food ingested-g dry feces produced) / g dry food ingested. 

Divergence times between P. polionotus and donor species were determined from 

previously published phylogenies199;200. Points represent mean values ± standard 

error for each group (n = 5-6 recipients per group).  

 

In the most extreme cases in which mice were inoculated with the 

microbial communities from P. californicus or M. musculus, there was approximately 

a 3% decrease in dry matter digestibility, which is on par with the decrease in 
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digestibility observed as a result of helminth infections in Peromyscus202. Animals 

must consume more food to meet energy demands when faced with decreases in 

digestibility. Indeed, mice inoculated with microbial communities from P. 

californicus or M. musculus exhibited significantly higher food intakes than the 

control group (S2.4 Fig; Tukey’s honest significant difference (HSD) test: p = 

0.001 for P. californicus to P. polionotus; p = 0.044 for M. musculus to P. polionotus). 

The mice inoculated with the microbes from P. eremicus performed just as well, if 

not better, than the control groups in terms of dry matter digestibility (Fig 2.6) 

but still had slightly higher food intakes (S2.4 Fig).  

 In Nasonia, we used an in vitro rearing system to transplant heat-killed 

microbial communities from three Nasonia donor species into larvae of N. 

vitripennis or N. giraulti203. We then measured the survival of the recipients from 

first instar larva to adulthood. In both N. vitripennis and N. giraulti hosts, 

interspecific microbiota transplantations exhibited significant decreases in 

survival to adulthood when compared to intraspecific microbial transplantations 

(Fig 2.7). Specifically, N. giraulti with a N. vitripennis microbiota yielded a 24.5% 

average survival decrease in comparison to a N. giraulti microbiota (Fig 2.7A, 

Mann-Whitney U, p = 0.037). Interestingly, N. giraulti with a microbiota from the 

more closely related N. longicornis exhibited a similar but nonsignificant survival 
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reduction (23.7%, Fig 2.7A, Mann-Whitney U, p = 0.086). N. vitripennis with a N. 

giraulti or N. longicornis microbiota exhibited a 42.6% (Fig 2.7B, Mann-Whitney U, 

p < 0.0001) and 23.3% (Fig 2.7B, Mann-Whitney U, p = 0.003) average survival 

decrease in comparison to a N. vitripennis microbiota, respectively (Fig 2.7A, 

Mann-Whitney U, p < 0.0001). Comparisons were also made between 

noninoculated hosts and those inoculated with interspecific backgrounds (N. 

giraulti background: N. vitripennis inoculum p = 0.07, N. longicornis inoculum p = 

0.26; N. vitripennis background: N. giraulti inoculum p = 0.001, N. longicornis 

inoculum p = 0.15).  
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Fig 2.7. Effects of allochthonous and autochthonous microbial communities 

on the survival of Nasonia wasps. (A) Normalized larval-to-adult survival of N. 

giraulti wasps harboring no, self, or foreign microbiota. (B) Normalized larval-to-

adult survival of N. vitripennis wasps harboring no, self, or foreign microbiota. 

Adult survival is calculated as number of adults in a transwell / number of first 

instar larvae in a transwell. Adult survival was normalized to the average survival 
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of the autochthonous microbiota transplantation. Circles represent individual 

transwell samples, and the dashed line represents the average survival of the 

autochthonous microbiota transplantation normalized to 1; error bars represent 

95% confidence intervals. Mann-Whitney U statistics, p < 0.1, *p < 0.05, ** p < 

0.01, and **** p < 0.0001.  

 

Discussion 

Under phylosymbiosis, host-associated microbial communities form, in 

part, as a result of interactions with the host rather than through purely 

stochastic processes associated with the environment. Specifically, we predicted 

that given closely related animals reared in controlled environments, the 

relationships of the microbiota would be congruent with the evolutionary 

relationships of the host species. Previous evidence for phylosymbiosis under 

controlled regimes existed in Nasonia51;78 and Hydra76, and wild populations of 

sponges179, ants178, and apes50;93 also exhibited this pattern. Here, in a 

comprehensive analysis of phylosymbiosis in a diverse range of model systems, 

we report the widespread occurrence of this pattern under strictly controlled 

conditions as well as a functional basis in the context of host digestive 

performance in mice and survival in wasps. These results represent the first 
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evidence for phylosymbiosis in Peromyscus deer mice, Drosophila flies, a variety of 

mosquito species spanning three genera, and Nasonia wasp females with the 

inclusion of N. oneida. Previous studies in Nasonia measured male phylosymbiosis 

and did not include N. oneida51;78. By rearing closely related species from the same 

host clade in a common environment, and by controlling age, developmental 

stage, endosymbiont status, and sex, the experiments rule out confounding 

variables that can influence microbiota relationships in comparative analyses. 

Eliminating these variables is important because they often substantially correlate 

with inter-specific differences. Thus, our findings demonstrate that a uniform 

experimental and bioinformatic methodology can excavate host effects on 

phylosymbiosis from other potentially confounding variables in comparative 

microbiota studies.  

We observed marked differences in microbial diversity and community 

structure between mammalian and invertebrate host clades. Mammalian 

communities were more diverse and dominated by Bacteroidetes and Firmicutes, 

while insect-associated communities were less diverse and primarily dominated 

by Proteobacteria. These results are consistent with previous microbial 

inventories conducted in mammals and insects75;204. Together, these findings 

suggest large-scale differences in the host-microbiota interactions between 
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mammals and insects. These differences across host phyla could be due to a 

variety of possibilities, including host genetics, diet, age, and rearing 

environment. To remove confounding variables that structure host-microbiota 

assemblages and to rigorously test phylosymbiosis, we utilized an experimental 

design within four host clades that isolated the effects of host evolutionary 

relationships from other effects (i.e., diet, age, rearing environment, sex, 

endosymbionts). We found that host species consistently harbored 

distinguishable microbiota within each host clade. Additionally, we found 

significant degrees of congruence between the evolutionary relationships of host 

species and ecological similarities in their microbial communities, which is 

consistent with the main hypothesis of phylosymbiosis. These results importantly 

expand previous evidence for this eco-evolutionary pattern and demonstrate that 

related hosts reared under identical conditions harbor distinguishable microbial 

assemblages that can be likened to microbial community markers of host 

evolutionary relationships. It is conceivable that recently diverged species (i.e., 

those younger than several hundred thousand years) would have less genetic 

variation and fewer differences in microbiota composition. Furthermore, 

divergent hosts may have vast differences in physiology that overwhelm the 

likelihood of observing phylosymbiosis. Surprisingly, we observed phylosymbiosis 
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to varying degrees in all host clades, and the age of clade divergence positively 

correlates with the level of intraspecific microbiota distinguishability. Thus, as 

host species diverge over time, microbial communities become more distinct77;78, 

and the limits of detecting phylosymbiosis may occur at extreme scales of 

incipient or ancient host divergence times.  

The mechanisms by which phylosymbiosis is established requires 

systematic investigation. Perhaps the most apparent regulator of host-microbiota 

interactions is the host immune system. A previous study of phylosymbiosis in 

Hydra demonstrated that antimicrobial peptides of the innate immune system are 

strong dictators of community composition, and expression of antimicrobial 

peptides are necessary for the formation of host-specific microbiota49;175. Further- 

more, genome-wide association studies in humans9, mice176, and Drosophila205 have 

identified a large immune effect in which host immune genes can explain 

variation in microbial community structure. Interestingly, host immune genes 

often exhibit rapid evolution and positive selection compared to genes with other 

functions206;207. While this trend is often explained by the host-pathogen arms 

race206, it is also likely due to host evolutionary responses for recruiting and 

tending a much larger collection of nonpathogenic microbes.  

Other host pathways may also underlie the observed species-specific 
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microbiota signatures. Hosts produce glycans and mucins on the gut lining that 

may serve as biomolecular regulators of microbial communities208;209. For example, 

knocking out the gene for α1-2 fucosyltransferase inhibits production of 

fucosylated host glycans on the gut surface and significantly alters microbial 

community structure210. Additional knockout studies have demonstrated the roles 

of circadian clock genes211, microRNAs212, and digestive enzymes213 in determining 

microbial community structure. These various physiological systems might also 

interact with one another and may have even evolved in tandem to regulate 

microbial community structure.  

Alternatively, rather than hosts “controlling” their microbiota, microbes 

may be active in selecting which host niches to colonize. For example, hosts have 

been compared to ecological islands, where environmental selection of the 

microbiota through niche availability may occur214. However, given the large 

number of studies that demonstrate the role of microbes in improving host 

performance215, we find it unlikely that hosts would assume a solely passive role 

in these interactions. An elegant study allowed microbial communities from 

various environments (soil, termite gut, human gut, mouse gut, etc.) to compete 

within the mouse gut216. This study found that a foreign community of the human 

gut microbiota exhibited an early competitive advantage and colonized the mouse 
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gut first. Later, the mouse gut microbiota dominated and outcompeted the human 

gut microbiota216. Thus, community assembly is not a monolithic process of host 

control but likely a pluralistic combination of host control, microbial control, and 

microbe-microbe competition. In this context, both population genetic heritability 

and community heritability measurements of the microbiota will be useful in 

prescribing the varied genetic influences of a foundational host species on 

microbiota assembly217.  

 The acquisition route of microbes could also influence our understanding 

of phylosymbiosis. If phylosymbiosis is observed when the microbiota is acquired 

horizontally from other hosts, the environment, or some combination of the two, 

then phylosymbiosis is presumably influenced by host-encoded traits such as 

control of or susceptibility to microbes. However, maternal transmission of 

microbes is argued to be a common trend in animals218. For example, sponges 

exhibit vertical transmission of a diverse set of microbes in embryos219. Trans- 

mission of full microbial communities is unlikely in most systems, given that the 

communities of developing animals tend to exhibit markedly lower diversity and 

distinct community structure compared to adults8;78;220. Thus, it is improbable that 

phylosymbiotic relationships are explained simply by community drift over host 

evolutionary divergence. There could be a subset of microbial taxa that are more 



 

 87 

likely to be transmitted from mother to offspring that in turn affect what other 

microbes colonize. For instance, in humans, the family Christensenellaceae is 

situated as a hub in a co-occurrence network containing several other gut 

microbes and has a significant population genetic heritability91. When 

Christensenella minuta was introduced into the guts of humanized mice, the 

microbial community structure was significantly altered91. This microbe, as well 

as others, can therefore be likened to a keystone taxa or "microbial hub" that can 

impact community structure despite low abundance91;221-223. Thus, one could 

hypothesize that phylosymbiotic relationships in some systems may be driven by 

host transmission of microbial hubs that determine whole community structure 

through ensuing microbe-microbe interactions. However, further work is needed 

to test this hypothesis.  

 The congruent relationships between hosts and associated microbial 

communities are likely maintained through their positive effects on host 

performance and fitness but could be neutral or harmful as well. While the 

importance and specificity of hosts and microbes in bipartite associations has 

been demonstrated on host performance224, it is unclear whether such effects 

commonly occur for hosts and their complex microbial communities. If they exist, 

disruption of phylosymbiosis via hybridization or microbiota transplants should 
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lead to reduced fitness or performance. For instance, hybridization experiments 

demonstrate negative interactions or "hybrid breakdown" between host genetics 

and the gut microbiota that drives intestinal pathology in house mice225 and 

severe larval lethality between N. vitripennis and N. giraulti wasps51. Furthermore, 

transplant experiments show that all microbes are not equal for the host. An early 

study demonstrated that germ-free rabbits inoculated with a mouse gut 

microbiota exhibited impaired gastrointestinal function compared to those given a 

normal rabbit microbiota226. Together, these functional studies and others suggest 

that interactions between hosts and their microbiota are not random and instead 

occur at various functional levels.  

 Here, we add an evolutionary component to these ideas by demonstrating 

that microbial communities from more evolutionarily distant hosts can be prone 

to more pronounced reductions in host performance or fitness. Specifically, 

Peromyscus deer mice inoculated with microbial communities from more distantly 

related species tended to exhibit lower food digestibility. The exception to this 

trend was the P. eremicus to P. polionotus group, which did not exhibit any decrease 

in digestibility. It should be noted that P. eremicus also did not follow 

phylosymbiosis (Fig 2.5B), which may explain the departure from our expected 

trend in digestibility. For example, deviations from phylosymbiosis could be due 
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to a microbial community assembly that is inconsequential to host digestibility. 

Therefore, transferring a nonphylosymbiotic community between host species 

may not yield performance costs.  

 An alternative explanation for our results could be that hosts are 

acclimated to their established microbiota, and the introduction of foreign 

microbiota either elicits a host immune response or disrupts the established 

microbiota, thus decreasing digestibility. One technique to distinguish between 

adaptation and acclimation would be to conduct experiments in germ- free P. 

polionotus recipients. However, the derivation of germ-free mammals is a difficult 

and expensive process227 and has not been conducted for Peromyscus. Earlier 

studies utilizing germ-free mammals demonstrate that microbial communities 

from evolutionarily distant hosts negatively impact gastrointestinal function226 

and immune development228, thus supporting our hypothesis of functional 

matching between host and the gut microbiota.  

 Additionally, among very closely related species, Nasonia exposed to 

interspecific micro- biota have lower fitness than those exposed to intraspecific 

microbiota. While this experiment utilized heat-killed bacteria to avoid shifts in 

the microbiota composition during media growth, the protocol is sufficient to test 

the predictions of phylosymbiosis. First, isolated microbial products can exert 



 

 90 

drastic effects on eukaryotic partners. For example, a sulfonolipid purified from 

bacteria can induce multicellularity in choanoflagellates229. Additionally, the insect 

immune system can respond with strain-level specificity to heat-killed bacteria230. 

Therefore, we hypothesize that each Nasonia host species evolved to the products 

of their own gut microbiota rather than those of gut microbiota from related host 

species. Together, results from the Peromyscus and Nasonia functional experiments 

reveal the importance of host evolutionary relationships when considering 

interactions between hosts and their gut microbial communities and ultimately 

the symbiotic processes that can drive adaptation and speciation231;232. The 

molecular mechanisms underlying the functional bases of phylosymbiosis in 

various systems demand further studies  

 Overall, we have established phylosymbiosis as a common, though not 

universal, phenomenon under controlled rearing with functional effects on host 

performance and survival. It is worth emphasizing again that this term is explicit 

and different from many other similar terms, such as coevolution, cospeciation, 

cocladogenesis, or codiversification233. While cospeciation of hosts and specific 

environmentally or socially acquired microbes-e.g., hominids and gut bacterial 

species113 or the bobtail squid and Vibrio luminescent bacteria112 could contribute 

in part to phylosymbiosis, concordant community structuring with the host 
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phylogeny is not dependent on parallel gene phylogenies but instead on total 

microbiota compositional divergence. Phylosymbiosis does not assume congruent 

splitting from an ancestral species because it does not presume that microbial 

communities are stable or even vertically transmitted from generation to 

generation234;235. Rather, phylosymbiosis predicts that the congruent relationships 

of host evolution and microbial community similarities could have varied 

assembly mechanisms in space and time and be newly assembled each generation 

(though see our discussion of transmission routes above). Moreover, the findings 

here imply that across wide-ranging evolutionary timescales and animal systems, 

there is a functional eco-evolutionary basis for phylosymbiosis, at least under 

controlled conditions.  

 It may be difficult to detect phylosymbiosis in natural populations because 

of extensive environmental variation that overwhelms the signal. We suggest that 

one way to potentially overcome this challenge is to start with laboratory-

controlled studies that identify (i) phylosymbiotic communities and (ii) the 

discriminating microbial taxa between host species. Resultantly, investigations 

can test whether these microbial signatures exist in natural populations, albeit 

perhaps in a smaller fraction of the total microbiota that is mainly derived by 

environmental effects. Another advantage of controlled studies is that the 
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functional effects, both positive and negative, of a phylosymbiotic community 

assembly can be carefully measured in the context of host evolutionary history.  

 

Materials and Methods 

Ethics Statement 

 Procedures involving functional microbiota transplants in Peromyscus mice 

were approved by the University of Utah Institutional Animal Care and Use 

Committee under protocol 12- 12010. Mice obtained from the Peromyscus Genetic 

Stock Center were reared under IACUC approved protocols, and only fecal 

samples were directly utilized. While our paper contains data for several primate 

species, this data was conducted by another research group, has been previously 

published, and is now publicly available. Thus, there was no requirement of 

approved protocols for the primate species.  

 

Nasonia Husbandry and Sample Collection 

 Nasonia were reared as previously described236. Four strains were used: 

Nasonia vitripennis (strain 13.2), N. longicornis (IV7U-1b), N. giraulti (RV2x(u)), N. 

oneida (NAS_NONY(u)). To collect individuals for microbiota analysis, virgin 

females were sorted as pupae into sterile glass vials and collected within the first 
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24 h of eclosing as adults. Subsequently, they were rinsed with 70% ETOH for 2 

min, a 1:10 bleach solution for 2 min, followed by two rinses in sterile water. 

Individuals were then placed in 1.5 ml tubes and flash frozen in liquid nitrogen. 

They were then stored at -80 C until DNA extractions. Fifty individuals were 

collected per strain.  

 

Drosophila Husbandry and Sample Collection 

 Nine strains of Drosophila were obtained from the University of California 

San Diego Drosophila Species Stock Center. Six strains were used in the 

microbiome analysis because they were Wolbachia-free: Drosophila melanogaster 

(Strain Dmel, stock number 14021-0248.25), D. simulans (Dsim, 14021-

0251.195), D. yakuba (Dyak, 14021-0261.01), D. erecta (Dere, 14021-0224.01), D. 

pseudoobscura (Dpse, 14011-121.94), and D. mojavensis (Dmow, 15081-1352.22). 

The three strains that tested positive for Wolbachia (method described below) 

were: D. sechellia (14021-0248.25), D. ananassae (14021-0371.13), and D. willistoni 

(14030-0811.24). All strains were reared on a cornmeal media (Drosophila Species 

Stock Center: http://stockcenter.ucsd.edu/info/food_cornmeal.php) with a sterile 

Braided Dental Roll (No. 2, Crosstex, Atlanta, Georgia, US) inserted into the 

surface of the media. All stocks were incubated at 25 C with a 12-h light-dark 
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cycle and monitored every 24 h. Every 14 d, stock vials were cleared of any 

emerged adults, and 6 h later, ten virgin females and three males were transferred 

to new food vials. This conditioning on the same food was done for five 

generations before setting up media vials for sample collection. For each of the six 

strains, five virgin females were mated with two males and allowed to oviposit for 

24 h; afterwards, the parents were removed and the vials were incubated as per 

above.  

 After 12 d, vials were cleared and virgin females were collected every 4-6 h 

over a 36 h period. All females were rinsed with 70% ETOH for 2 min, a 1:10 

bleach solution for 2 min, followed by two rinses in sterile water. Individual adult 

flies were then placed in 1.5 ml tubes and flash frozen in liquid nitrogen. They 

were then stored at -80 C until DNA extractions. Approximately 25-30 virgin 

adult females were collected per strain.  

 

Mosquito Husbandry and Sample Collection 

 Mosquitoes were acquired from the Malaria Research and Reference 

Reagent Resource Center as eggs on damp filter paper within 24 h of being laid. 

Eight strains were used: Anopheles funestus (strain name FUMOZ), An. farauti s.s. 

(FAR1), An. quadrimaculatus (GORO), An. arabiensis (SENN), An. gambiae (MALI 
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NIH), Aedes aegypti (COSTA RICA), Ae. albopictus (ALBO), and Culex tarsalis 

(YOLO F13). Eggs were floated in 350 ml of sterile water with 1.5 ml of 2% yeast 

slurry and autoclaved within a sterile and lidded clear plastic container. 

Containers were enclosed within a larger sterile clear container and placed inside 

an incubator set at 25 ̊C with a 12-h light-dark cycle and monitored every 24 h. 

After 48 h, the hatched larvae were sorted out and 100-150 of each species were 

placed in new sterile water (150 ml) with 30 mg of powdered koi food (Laguna 

Goldfish & Koi all season pellets). Water level was maintained at 150 ml, and 

larvae were fed 30 mg of powdered koi food every day for a total of 13 d. All 

pupae were discarded (frozen and autoclaved) on day 10, and new pupae were 

collected every 12 h on day 11, 12, and 13. Water samples were also collected and 

frozen for microbial analysis on day 11.  

 To collect individuals for microbiota analysis, pupae were sorted according 

to sex, and all females were rinsed with 70% ETOH for two min, then 1:10 bleach 

solution for two min, followed by two rinses in sterile water. Individual pupae 

were then placed in 1.5 ml tubes and flash frozen in liquid nitrogen. They were 

then stored along with their corresponding water sample at -80 C until DNA 

extractions. Ten to 25 individuals were collected per strain.  
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Peromyscus Husbandry and Sample Collection 

 Fecal samples were collected from the Peromyscus Genetic Stock Center at 

the University of South Carolina. Six stock species of Peromyscus were used: P. 

maniculatus (stock BW), P. polionotus subgriseus (PO), P. leucopus (LL), P. californicus 

insignis (IS), P. aztecus hylocetes (AM), and P. eremicus (EP). All mice were reared 

using their standard care practices at the stock center on the same mouse chow 

diet. Cages were cleaned at regular intervals for all species, and all species were 

caged within the same facility. Individuals from non-mating cages of females (five 

to six per cage) were used for collections. Fecal pellets were collected on a single 

morning from individual mice directly into a sterile tube and placed on dry ice 

before being stored at -80 C for 24 h. Samples were then shipped overnight on dry 

ice and again stored at -80 C until DNA extractions. One to three pellets from 15 

individuals were collected per strain.  

In order to eliminate the introduction of confounding factors and exclude 

any subjects that had a pinworm infection at the time of sample collection, we 

conducted a screen to confirm the pinworm status of each mouse. Pinworm status 

was confirmed by PCR. Primers utilized to amplify the 28S rDNA D1 and D2 

domains of multiple pinworm species were developed and confirmed with 
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positive DNA samples of Syphacia obvelata and Aspiculuris tetraptera (received from 

the Feldman Center for Comparative Medicine at the University of Virginia). The 

C1 primer 5’-ACCCGCTGAATTTAAGCAT-3’ and the D1 primer 5’-

TCCGTGTTTCAAGACGG-3’ were amplified under the following reaction 

conditions: 94 C for 1 min; 35 cycles of 94 C for 30 s, 55 C for 30 s, 72 C for 30 s; 

and a final elongation time at 72 C for 2 min. The resultant samples were then 

visualized on a 1% agarose gel. Of the 84 fecal specimens analyzed, 8 of the 

samples showed amplification at 750 bp corresponding to the expected 

amplification size of the pinworm DNA sequence. For confirmation, the 750 bp 

bands were extracted using a Wizard Gel Extraction Kit (Promega Corporation, 

Madison, Wisconsin, US) and sequenced (GENEWIZ, Inc, New Jersey, US). 

Sequence results confirmed the presence of Aspiculuris tetraptera infection, and 

these 8 samples and were excluded from further analysis.  

 

Wolbachia Screens of Stock Insect Lines 

 The presence or absence of Wolbachia was checked using two replicates of 

three individuals per species. DNA extraction was performed with PureGene 

DNA Extraction Kit (Qiagen), and fragments of the 16S rDNA gene were PCR 

amplified using primer set WolbF and WolbR3237. Only stock strains that were 
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Wolbachia negative were used in the experiments.  

 

Insect DNA Extraction 

 Individual insects (and the mosquitoes’ corresponding water samples) 

were mechanically homogenized with sterile pestles while frozen within their 

collection tube. The samples were then thawed to room temperature for 30 s and 

flash frozen again in liquid nitrogen with additional mechanical homogenization. 

The samples were finally processed using the ZR-Duet DNA/RNA MiniPrep Kit 

(Zymo Research, Irvine, California, US). Samples were then quantified using the 

dsDNA BR Assay kit on the Qubit 2.0 Fluorometer (Life Technologies).  

 

DNA Isolation from Mouse Samples 

 The PowerSoil DNA isolation kit (Mo Bio Laboratories, Carlsbad, 

California, US), was utilized to extract DNA from 20 mg of mouse fecal material 

per sample according to manufacturer’s protocol after being mechanically 

homogenized with sterile pestles while frozen within their collection tube. 

Samples where then quantified using the dsDNA BR Assay kit on the Qubit 2.0 

Fluorometer.  
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PCR, Library Prep, and Sequencing 

 Total genomic DNA was quantified using dsDNA HS Assay kit on the 

Qubit. Using two μl of DNA, a 20 μl PCR reaction of 28S general eukaryotic 

amplification was conducted on each sample, with only 25 cycles. Products were 

purified using Agencourt AMPure XP, quantified using the dsDNA HS Assay kit 

on the Qubit, and compared to the amount of 16S amplification from the same 

DNA volume and PCR reaction volume as previously described236. PCR 

amplification of the bacteria 16S rRNA was performed with the 27F 5’-

AGAGTTTGATCCTGGCT- CAG-3’ and 338R 5’-GCTGCCTCCCGTAGGAGT-3’ 

“universal” bacterial primers with the NEBNext High-Fidelity 2X PCR Master 

Mix; duplicate reactions were generated per sample, which were pooled together 

postamplification. For sequencing runs 1 (Peromyscus) and 2 (Nasonia, mosquito, 

and Drosophila), 16S PCR products that were made into libraries had their 

concentrations normalized relative to about 1,000 ng/ml and 2,000 ng/ml of the 

28S quantity for library prep respectively.  

 Using the Encore 384 Multiplex System (NuGEN, San Carlos, California, 

US), each samples’ 16S product was ligated with Illumina NGS adaptors and a 

unique barcode index (after the reverse adaptor). The samples were then purified 
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using Agencourt AMPure XP and quantified using the dsDNA HS Assay kit on 

the Qubit. Samples were subsequently pooled.  

 Each pooled library was run on the Illumina MiSeq using either the MiSeq 

Reagent Kit V2 or V3 for paired-end reads. Run 1 was conducted at the University 

of Georgia Genomics Facility and run 2 was conducted at Vanderbilt Technologies 

for Advanced Genomics (VANTAGE).  

 

Sequence Quality Control 

 Sequence quality control and OTU analyses were carried out using QIIME 

version 1.8.0238. Forward and reverse paired-end sequences were joined and 

filtered if they met the following criteria: they fell below an average Phred quality 

score of 25, contained homopolymer runs or ambiguous bases in excess of 6 

nucleotides, or were shorter than 200 base pairs. Sequences were also removed if 

there were errors in the primer sequence or if barcodes contained errors and could 

not be assigned to a sample properly. A total of 5,065,121 reads passed quality 

control for the meta-analysis, with an average read length of 310 ± 48 

nucleotides. Drosophila: 648,676 reads, average length 315 ± 23. hominid: 

1,292,542 reads, average length 247 ± 38. mosquito: 664,350 reads, average 

length 328 ± 19. Nasonia: 864,969 reads, average length 322 ± 15. Peromyscus: 



 

 101 

295,752 reads, average length 347 ± 12.  

 

OTU Analysis 

 Chimeric sequences were evaluated and removed using the UCHIME 

algorithm239 for the intersection of de novo and GreenGenes 13_5 non-

chimeras240. The sequences were then clustered into OTUs at 94%, 97%, and 99% 

similarity using the USEARCH open-reference method241. OTUs were mapped at 

the respective percent against the GreenGenes 13_5 database and screened for a 

minimum group size of two counts, with dereplication based on full sequences240. 

Representative sequences were chosen as the most abundant representative in 

each OTU cluster and aligned using GramAlign242. A phylogenetic tree of the 

representative sequences was built in QIIME238 with the FastTree method and 

midpoint rooting243. Taxonomy was then assigned to the OTU representatives 

with the UCLUST method against the GreenGenes 13_5 database240. OTU tables 

were constructed in QIIME238 and sorted by sample IDs alphabetically.  

 

Sample and OTU Quality Control 

 OTU tables were screened to remove any OTUs classified as chloroplast, 

unassigned, and Wolbachia. Individual samples were assessed for low sequence 
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coverage affecting community profiles and diversity as well as for processing 

errors based on minimum count thresholds assessed against group means. 

Following rarefaction, counts were subsequently chosen as the highest rarefaction 

number allowed by the smallest sample’s count representation in each respective 

clade and the meta-analysis. Alpha diversity was measured using Shannon and 

Chao1 metrics generated with the QIIME alpha_rarefaction script. Plots of alpha 

diversity at a range of rarefied levels were used to assess and remove samples with 

low diversity.  

 

Meta-Analysis 

 The PCoA (Fig 2.3A) components for the meta-analysis were constructed 

using the QIIME jackknifed_beta_diversity script. The OTU table first underwent 

rarefaction, followed by the computation of Bray-Curtis beta diversity distances 

for each rarefied table. PCoA plots of the first three coordinate dimensions were 

generated using a custom Python script. Individual samples are each depicted as a 

point and are colored by host clade of origin.  

 The community profile (Fig 2.3B) for the meta-analysis was generated 

using a custom Python script and BIOM tools244. OTU tables were first converted 

to relative abundance for each sample, and bacterial taxonomy was collapsed at 
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the class level. Bacterial classes were sorted alphabetically, and a stacked bar chart 

representing the relative abundance for each sample was constructed.  

 The network analysis (Fig 2.3C) was visualized using Cytoscape245. OTU 

tables were first collapsed by bacterial taxonomy at the genus level, and QIIME’s 

make_otu_network script was used to construct connections between each 

bacterial genus to individual hosts based on relative abundance. Network files 

were then imported into Cytoscape, where the network was computed using an 

edge-weighted force directed layout. Nodes were colored by host clade, and 

connections were colored by key bacterial phylum observed in high abundance 

(i.e., Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria) and gray for 

additional phylum.  

 Alpha diversity plots (Fig 2.3D) were prepared using the Phyloseq 

package246. OTU tables collapsed by host species were imported into Phyloseq, 

and the plot_richness function was used to generate box-and-whisker plots of 

Shannon alpha-diversity. Plots were colored by host clade of origin.  

 

Microbiota Dendrograms 

 Microbiota dendrograms were constructed using the QIIME 

jackknifed_beta_diversity script. OTU table counts were first collapsed by host 
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species of origin to get representative species microbiota profiles. The pipeline 

script performed 1,000 rarefactions on each table and calculated Bray-Curtis beta 

diversity distances for each. Bray-Curtis distance matrices were UPGMA clustered 

to give dendrograms of interspecific relatedness. The role of 97% versus 99% 

OTU clustering cutoffs and weighted and unweighted UniFrac beta diversity 

measures (S2.2 Fig) were evaluated for Robinson-Foulds and matching cluster 

congruence with host phylogeny.  

 

Host Phylogenies  

 Host phylogenetic trees were constructed using sequences for each host 

species’ cytochrome oxidase gene downloaded from the NCBI. COI was chosen as 

a highly conserved molecular marker, and it is widely used for interspecific 

phylogenetic comparison247. Sequences were initially aligned using Muscle 

v3.8.31248. Gap positions generated through inserts and dele- tions were removed, 

and overhanging sequence on 50 and 30 ends were trimmed. Models of molecular 

evolution were evaluated using jModelTest v2.1.7249, and the optimal model was 

used for final alignment and tree building in RaxML v8.0.0250. The Nasonia and 

Peromyscus clades were carried out using the same methodology-except for final 

alignment and tree building in PhyML v3.0251 and for Peromyscus the AVPR1A gene 
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was concatenated with COI to further resolve the phylogeny. All trees are 

concordant with well-established phylogenies from literature references noted in 

the Results section.  

 

Robinson-Foulds and Matching Cluster Congruency Analysis 

 Quantifying congruence between host phylogeny and microbiota 

dendrogram relationships (Fig 2.5) was carried out with a custom Python script 

and the TreeCmp program252. The topologies of both trees were constructed, and 

the normalized Robinson-Foulds score198 and normalized matching cluster score253 

were calculated as the number of differences between the two topologies divided 

by the total possible congruency score for the two trees. Next, 100,000 random 

trees were constructed with the same number of leaf nodes, and each was 

compared to the host phylogeny. The number of trees which had an equivalent or 

better score than the actual microbiota dendrogram were used to calculate the 

significance of observing that topology under stochastic assembly. Normalized 

results of both statistics have been provided to facilitate comparison. Matching 

cluster and Robinson-Foulds p-values were determined by the probability of 

100,000 randomized bifurcating dendrogram topologies yielding equivalent or 

more congruent phylosymbiotic patterns than the microbiota dendrogram.  
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Intraspecific Versus Interspecific Beta Diversity Distances  

 Within each clade, the Bray-Curtis distances calculated by the 

jackknife_beta_diversity script (Fig 2.4A) were separated by those that compared 

microbiota within a host species and those that compared between host species. 

The box-and-whisker plots were constructed in Python. Coloring indicates host 

clade of origin, and all intraspecific and interspecific distances are rep- resented 

for each clade. These distances were then compared between the groups using a 

non- parametric, two-tailed Mann-Whitney U test implemented in SciPy254;255.  

 

ANOSIM Clustering  

 To evaluate intraspecific clustering (Fig 2.4B), the ANOSIM test was used 

to calculate the distinguishability of Bray-Curtis distances based on species of 

origin. Bray-Curtis distance matrices were generated using the QIIME 

jackknifed_beta_diversity script on tables of individuals rarefied 1,000 times. The 

QIIME script compare_categories was used to calculate ANOSIM scores using the 

Bray-Curtis distance matrix and host species as categories. 1,000 permutations 

were used to calculate the significance of clustering for each clade. Three-

dimensional PCoA plots were generated in Python using components generated 
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from Bray-Curtis distance matrices in QIIME, and the first three components are 

shown. Points are colored by host species within each clade, and colors correlate 

with the species labels in Fig 5 for reference.  

 

Correlation of ANOSIM Clustering and Clade Age  

 A general linear regression was performed to test the correlation between 

age of clade origin and the intraspecific clustering measured through ANOSIM R-

statistic scores. Cladogenesis Age was Log10 transformed to normalize the 

distance scale between samples (1, 10, 100 MYA). The regression was carried out 

in Stata v12.0 to determine the coefficient (R2) and significance (p-value).  

 

Random Forest Analyses  

 OTU tables were first collapsed at each bacterial taxonomic level (i.e., 

phylum...genus) using the QIIME script summarize_taxa. Then, both the raw 

OTU table and each collapsed table underwent ten rarefactions to an even depth 

using the QIIME script multiple_rarefactions_even_depth. RFC models were 

constructed with the supervised_learning script for 1,000 rounds of ten-fold 

Monte Carlo cross validation on each table. At each level, the results were collated 

and averages were taken for the ten rarefied tables. Host species were used as the 
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category for RFC model distinguishability, testing the ability to assign samples to 

their respective host species. The average class error for each clade was subtracted 

from 100 to get the percent accuracy of the models at each taxonomic level. The 

same methodology was used for constructing RFC models for the meta-analysis, 

with the only exception being that host species, host clade, and vertebrate or 

invertebrate categories were tested for distinguishability.  

 

Microbiota Transplants  

 Peromyscus. We tested the effects of allochthonous microbial 

communities on host performance by conducting a series of microbial transplants 

from various donor rodent species into a single recipient species, the oldfield 

mouse (Peromyscus polionotus). We obtained virgin, female Peromyscus species (P. 

polionotus, P. maniculatus, P. leucopus, P. eremicus, P. californicus) from the Peromyscus 

stock center. We also obtained three female individuals of Neotoma lepida (Neotoma 

is the sister genus of Peromyscus) from Dr. M. Denise Dearing (University of 

Utah). Additionally, we obtained six female individuals of outbred Mus musculus 

from Dr. Wayne Potts (University of Utah). The founding animals of this colony 

were collected from near Gainesville, Florida, US, and the animals have been 

randomly bred in captivity for roughly 13 generations and are still highly 
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outbred256;257. All rodent species were maintained on powdered laboratory rodent 

chow (Formula 8904, Harlan Teklad, Madison, Wisconsin, US) except for 

woodrats, which were fed powdered rabbit chow (Formula 2031, Harlan Teklad, 

Madison, Wisconsin, US), given that woodrats are herbivorous. All procedures 

involving rodents were approved under the University of Utah Institutional 

Animal Care and Use Committee protocol #12-12010.  

 To conduct microbial transplants, we followed a protocol that was 

previously established to transplant the microbiota from Neotoma lepida into Rattus 

norvegicus201. First, donor feces were collected from three to six individuals of each 

donor species by placing rodents in wire-bottom metabolic cages overnight and 

collecting feces the next morning. Feces were then ground with a mortar and 

pestle and mixed into powdered laboratory chow (Formula 8904, Harlan Teklad, 

Madison, Wisconsin, US) at a ratio of 15% w/w. Recipient animals (five to six 

individuals per group) were fed food containing feces of a particular donor species 

for two nights. Then, recipient animals were fed normal laboratory diets for 6 d, 

which is a sufficient time for the clearance of transient, ingested microbes258. We 

then measured food intake and dry matter digestibility by placing animals into 

wire-bottom metabolic cages. Animals were presented with a known amount of 

powdered rodent chow overnight. The next morning, remaining food was 
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weighed, and feces were collected, dried overnight, and weighed. Food intake was 

calculated as g dry food presented-g dry food remaining. Dry matter digestibility 

was calculated as (g dry food ingested-g dry feces produced) / g dry food ingested.  

 We investigated whether microbial communities from more distantly 

related hosts affected performance metrics in recipients. We compared food 

intake using ANOVA and Tukey’s HSD test across recipient groups. We also 

conducted correlations of dry matter digestibility and estimated divergence times 

based off of previously published phylogenies200;259. We performed correlations 

using both untransformed divergence times and log-transformed divergence 

times.  

 Nasonia. We tested the effects of allochthonous microbial communities on 

host survival by exposing two recipient species (N. vitripennis or N. giraulti) to a 

suspension of heat-killed microbes isolated from three donor Nasonia species (N. 

vitripennis, N. giraulti, and N. longicornis). We reared Nasonia in an in vitro rearing 

system203 and inoculated germ-free larvae in 6 mm diameter transwell inserts with 

autochthonous microbiota, allochthonous microbiota, and sterile phosphate-

buffered saline (PBS) for the first 8 d after embryo hatching. Microbiota were 

purified from fourth instar larvae of Nasonia by filtration through a 5 um filter and 

centrifugation at 10,000 rpm for 3 min. The pellet was suspended in a sterile PBS 
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solution at a concentration of 5 x 106 CFU of microbiota bacteria (determined by 

tryptic soy agar plating) per milliliter. 20 uL of this microbiota suspension was 

added to the transwell inserts for each of the 8 inoculation days. Nasonia rearing 

media was replaced daily just before the inoculations.  

 Measurements of Nasonia survival from first instar larvae to adulthood were 

determined using transwell insert images taken with an AmScope MT1000 

camera. For each transwell, live larval counts were recorded 3 d post-embryo 

hatching. Adult counts were determined by recording the number of remaining 

larvae and pupae in each transwell sample 20 d after embryo hatching (5-7 d after 

first adult eclosion) and subtracting that number from the larval counts 

previously recorded. Normalized adult survival per transwell sample was 

calculated as the percent survival of Nasonia from 3 d to 20 d after embryo 

hatching divided by the average percent survival of the autochthonous microbiota 

treatment group. We compared survival between the autochthonous and 

allochthonous treatment groups using Mann-Whitney U tests.  
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S2.1 Fig. Comparisons of intraspecific and interspecific Bray-Curtis 

distances for pairwise combinations of all species. Bray-Curtis beta diversity 

distances were computed for all pairs of individuals within each clade from 99 

percent OTUs. Colored circles denote the named species, and colors within box-

and-whisker plots denote to which species it is being compared. Boxes represent 

the 25th to 75th quartiles with the central line depicting the group median, and 

whiskers showing the 1.5 interquartile extent.  
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S2.2 Fig. Phylosymbiosis analysis for alternative beta-diversity metrics and 

OTU clustering cutoffs. The normalized Robinson-Foulds metric and the 

normalized Matching Cluster metric were used to evaluate the congruence 

between host phylogenies and microbiota dendrograms for Bray Curtis, 

Unweighted UniFrac, and Weighted UniFrac beta-diversity metrics at both 97 and 

99 percent clustered OTUs.  
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S2.3 Fig. Fine-resolution overlap between donor and recipient microbial 

communities. White bars represent shared OTUs between donor and recipients 

and thus the possible range of transfer. Colored bars represent the portion of 

shared OTUs that are donor-specific and thus transfer of unique OTUs between 

donor and recipients. Panels (A) and (B) depict the mean ± s.e.m. percentage of 

OTUs. Panels (C) and (D) show the mean ± s.e.m abundance of total sequences. 
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These analyses were conducted with OTU-picking at both 97% and 99% sequence 

identities.  

 

S2.4 Fig. Effects of allochthonous versus autochthonous microbial 

communities on the food intake of recipient mice. Divergence times between 

P. polionotus and donor species were determined from previously published 

phylogenies200;259. Points represent mean values ± s. e.m. for each group (n = 5-6 

recipients per group).  

 

S2.1 Table. Table of Random Forest accuracy in classifying the microbiota 

by host species in each host clade, and by host species, clade, and mammal 

or invertebrate taxonomy in the meta-analysis. Models were generated using 

OTUs or abundance collapsed by bacterial taxonomy. Red boxes highlight the 

highest classification accuracy. Ten-fold cross validation assessed the percent 
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classification accuracy for test sets excluded from model training.  

https://doi.org/10.1371/journal.pbio.2000225.s005 

 

S2.2 Table. Table of Random Forest model mean decrease in accuracy when 

genera are excluded from classification of the microbiota in each host clade. 

Random Forest models were generated using genera collapsed bacterial 

taxonomies. Genera are ordered by those that contribute the most accuracy to the 

model to those that contribute the least accuracy to the model, measured in the 

form of decrease in model accuracy when a genus is excluded from model 

construction. Standard deviations of mean decrease in model accuracy are also 

provided.  

https://doi.org/10.1371/journal.pbio.2000225.s006 

 

 

S2.3 Table. Tables of microbiota taxon in the meta-analysis with varying 

abundance between host clades or between vertebrates and invertebrates. 

The meta-analysis OTU table was collapsed at each bacterial taxonomic level 

(Phylum to Genus), and converted to relative abundance. Kruskal-Wallis tests 

were performed on microbial taxon within each table, testing for differences in 
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the mean abundance across host clades or vertebrates and invertebrates. The 

results were sorted from high to low significance of p-values, which are provided 

alongside False Discovery Rate and Bonferroni corrected p-values. Mean 

abundances of each taxon within host clades or vertebrates and invertebrates are 

provided as a heatmap, with dark blue indicating high abundance, light blue 

centered at the 5% most abundant values and fading to white for low abundance 

or non-existent taxon. 

https://doi.org/10.1371/journal.pbio.2000225.s005 
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CHAPTER III 

Finer-Scale Phylosymbiosis: Insights from Insect Viromes2 

 

Author Contributions 

 This study was performed by Brittany Leigh (BL), Sarah R. Bordenstein 

(SRB), Andrew Brooks (AB), Aram Mikaelyan (AM), and Seth Bordenstein (SB). 

BL reared Nasonia and extracted viral particles, sequenced and assembled viral 

contigs, and assembled virome community profiles. BL, SRB, AB, AM contributed 

to statistical analysis, with AB performing topological congruency tests. SB was 

the principle investigator and worked with all study participants to develop 

analyses. All participants contributed to writing / editing of the manuscript. 

 

Introduction 

Abstract 

Phylosymbiosis was recently proposed to describe the eco-evolutionary 

pattern whereby the ecological relatedness (e.g., beta diversity relationships) of 

                                            

2 This work is published in mSystems: Leigh BA, Bordenstein SR, Brooks AW, Mikaelyan A, Bordenstein SR. 2018. Finer-
scale phylosymbiosis: insights from insect viromes. https://doi.org/10.1128/mSystems.00131-18.  
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host-associated microbial communities parallels the phylogeny of the host 

species. Representing the most abundant biological entities on the planet and 

common members of the animal-associated microbiome, viruses can be influential 

members of host-associated microbial communities that may recapitulate, 

reinforce, or ablate phylosymbiosis. Here we sequence the metagenomes of 

purified viral communities from three different parasitic wasp Nasonia species, one 

cytonuclear introgression line of Nasonia, and the flour moth outgroup Ephestia 

kuehniella. Results demonstrate complete phylosymbiosis between the viral 

metagenome and insect phylogeny. Across all Nasonia contigs, 69% of the genes in 

the viral metagenomes are either new to the databases or uncharacterized, yet 

over 99% of the contigs have at least one gene with similarity to a known 

sequence. The core Nasonia virome spans 21% of the total contigs, and the 

majority of that core is likely derived from induced prophages residing in the 

genomes of common Nasonia-associated bacterial genera: Proteus, Providencia, and 

Morganella. We also assemble the first complete viral particle genomes from 

Nasonia-associated gut bacteria. Taken together, results reveal the first complete 

evidence for phylosymbiosis in viral metagenomes, new genome sequences of 

viral particles from Nasonia-associated gut bacteria, and a large set of novel or 

uncharacterized genes in the Nasonia virome. This work suggests that 
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phylosymbiosis at the host-microbiome level will likely extend to the host-virome 

level in other systems as well.  

 

Importance 

Viruses are the most abundant biological entity on the planet and interact 

with microbial communities with which they associate. The virome of animals is 

often dominated by bacterial viruses, known as bacteriophages or phages, which 

can (re)structure bacterial communities potentially vital to the animal host. Beta 

diversity relationships of animal-associated bacterial communities in laboratory 

and wild populations frequently parallel animal phylogenetic relationships, a 

pattern termed phylosymbiosis. However, little is known about whether viral 

communities also exhibit this eco-evolutionary pattern. Metagenomics of purified 

viruses from recently diverged species of Nasonia parasitoid wasps reared in the 

lab indicates for the first time that the community relationships of the virome can 

also exhibit complete phylosymbiosis. Therefore, viruses, particularly 

bacteriophages here, may also be influenced by animal evolutionary changes 

either directly or indirectly through the tripartite interactions among hosts, 

bacteria, and phage communities. Moreover, we report several new bacteriophage 

genomes from the common gut bacteria in Nasonia.  
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Introduction 

Ecological similarity of host-associated microbial communities between 

species can often mirror phylogenetic similarity of hosts across a wide range of 

animal taxa24;50;94;178;179;260. This eco-evolutionary pattern, termed 

phylosymbiosis24;51, can arise from a variety of biotic or abiotic factors. 

Resultantly, phylosymbiosis does not a priori presume stable or long-term, 

transgenerational associations between microbial communities and their hosts. 

Phylosymbiosis may change with environments, lifestyles, or multipartite 

interactions that shift assembly of microbial communities. For example, phages 

(i.e., bacteriophages; viruses that infect bacteria) can outnumber bacteria in both 

free-living and host-associated communities261;262, represent the majority of viruses 

within animal microbiomes261;263-266, and may drive or ablate bacterial 

phylosymbiosis as they prey on bacteria.  

A phage can exhibit two main life cycles: lytic and temperate. A lytic phage 

infects its bacterial host and immediately replicates and lyses the bacterial cell. A 

temperate phage, however, can integrate into and replicate as part of the bacterial 

genome until a biotic or abiotic trigger causes it to excise and enter the lytic cycle. 

In mammalian host-associated phage communities, the temperate life cycle 
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dominates263;267-269, presumably due to environmental parameters such as host 

density270 and mucosal tissue structure271. Phage integration into animal-

associated bacterial genomes (i.e., prophage) can alter the phenotype of the host 

bacterium through lysogenic conversion272;273, as well as enhance biofilm 

formation and thereby horizontal gene transfer among co-occurring bacteria274;275. 

The prevalence of temperate phages in host- associated microbiomes suggests 

that these phages may more intimately evolve with their bacterial hosts and/or 

shape the composition of the bacterial communities. Additionally, the discovery 

of intraspecific and interspecific core viromes dominated by phages across animal 

systems is often reflective of the core bacterial communities described in these 

same organisms264;276-278. Although it has been suggested previously277, 

phylosymbiosis at the viral level has yet to be explicitly demonstrated, and 

evidence for this tripartite association pattern could underpin new ecological and 

functional interactions between an animal host, its bacterial community, and the 

viruses infecting both.  

 

Results 

Virome Samples and Assemblies 

Viral purifications from adults of three species of Nasonia, a Nasonia 



 

 124 

introgression line, and the Mediterranean flour moth Ephestia kuehniella were 

sequenced. Each of the pure Nasonia species (N. vitripennis, N. longicornis, and N. 

giraulti) maintains their natural Wolbachia infections from supergroup A. The 

introgression line IntG has the genome of N. giraulti and the cytoplasm of N. 

vitripennis, including the maternally inherited supergroup A Wolbachia strain 

wVitA from N. vitripennis279. E. kuehniella harbors a supergroup B Wolbachia strain 

named wCauB280. Viral particle sequencing and single sample assembly statistics 

are outlined in S3.1 Table in the supplemental material.  

 

Phylosymbiosis of viral metagenomes 

Phylosymbiosis describes a significant host phylogenetic signal on host-

associated microbiome communities24. Bacterial communities frequently, but not 

universally, exhibit this relationship under wild and laboratory conditions24;51. For 

viromes, there is no a priori reason to expect that phylosymbiosis will occur 

because inducible proviruses and/or lytic viruses, i.e., the targets of this study, 

may constitute a small subset of the total viral DNA in bacterial and eukaryotic 

genomes, and active viral particles have the potential to lyse and shift bacterial 

communities that may disrupt phylosymbiosis. Here we evaluate if the Nasonia 

viromes form phylosymbiotic community relationships.  
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The phylogeny of Nasonia spp. rooted with the outgroup E. kuehniella is 

based on DNA sequences of the cytochrome oxidase I (COI) gene as previously 

shown24;51;281-284. It resulted in the same branching pattern as the dendrogram 

generated from Bray-Curtis beta diversity of the viral metagenomes across the 

host species (Fig 3.1). The matching cluster and Robinson-Foulds tree metrics 

were utilized to calculate host phylogenetic and virome dendrogram topological 

congruence, which is highly significant based on both metrics with 100,000 

randomly bifurcating trees to simulate stochastic virome assembly24 (P value = 

0.00451). Additionally, using the same methodology, matching cluster and 

Robinson-Foulds metrics were evaluated by the Binary Jaccard beta diversity 

index, which produced identical results using viral presence and absence within 

each sample. Taken together, these findings comprise one of the first lines of 

evidence for phylosymbiosis in host-associated viral communities. We next 

evaluated the number and types of viruses that comprise these phylosymbiotic 

communities.  
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Figure 3.1. Phylosymbiosis occurs between insects and their viral 

communities. The host phylogeny is constructed with PHYML from 385bp of the 

cytochrome oxidase I gene, and the UPGMA hierarchical cluster relationships of 

the viromes are based on Bray-Curtis beta diversity distances. Significance of 

topological congruence was determined using a previously described method24 

based on the rooted Robinson-Foulds (P-value: 0.00451) and rooted matching 

cluster (P-value: 0.00451) with a total of 100,000 randomized topologies 

simulating a null hypothesis of stochastic virome ecological assembly. 

 

Characterizing Host Genetic Effects, the Virome Core, and Toxins 

Unlike many environmental viral metagenomes, the majority of the viral 

100 

56 

Nasonia vitripennis 12.1 

Nasonia longicornis 2.1 

   N. giraulti IntG  

Nasonia giraulti 16.2 

Ephestia kuehniella 

Virome Beta Diversity Host Phylogeny 
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contigs from the insects studied here had at least one gene with BLASTx 

similarity to either known lytic viruses or genes from their potential respective 

hosts. An average of 30.9% of the genes identified in each of the samples have a 

predicted annotation and function (Fig 3.2A). Therefore, to identify groups of 

proteins independent of the database annotations, unique protein clusters, 

defined as groups of proteins with significant sequence similarity (>70%), were 

determined in each of the samples by the protein clustering tool vContact (Fig 

3.2B). The protein cluster networks identified N. giraulti and IntG as the most 

diverse viromes, which share a N. giraulti genetic background but vary in the 

origin of their cytotype. This result suggests that host genotype rather than 

cytotype more strongly impacts diversity of the host-associated viral metagenome, 

either through interactions with phage directly or through interactions with the 

bacteria harboring these phages. N. longicornis and N. vitripennis yielded 

approximately 50% fewer unique protein groups in their viromes.  
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Figure 3.2. Nasonia species harbor a modest core virome. (A) Percent viral 

contigs with at least one functionally annotated gene as determined by Pfam 

analysis. (B) Viral protein cluster analysis illustrating diversity of viral proteins 

within each virome. Each dot represents a unique viral protein and connecting 

lines indicate >70% sequence similarity between two proteins. (C) Venn diagram 

illustrating the viral contigs unique within and shared between the Nasonia 

species. (D) Taxonomic affiliation of the 219 members of the identified core 

virome as determined by BLASTx against the nr database. Shading indicates the 

relative abundance of each member within single viromes and was determined by 
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read mapping to viral contigs. 

 

To assess identity and diversity of proteins with predicted function in the 

viromes, contigs from all samples were compared to the protein family (Pfam) 

database. Each Nasonia species virome maintained a small, host-specific set of 

Pfams ranging from 6.7% to 14.8% of the Pfams (S3.2 Table). Precisely 24.4% of 

the Pfams (n=173) were shared among all of the Nasonia samples, which parallels 

the 21% of the total contigs described as the core virome below. Across all 

species, the most abundant Pfam (4.7% of total Pfam predictions) was the helix-

turn-helix (HTH) DNA-binding motif (PF01381) followed by the phage integrase 

Pfam (PF00589, 2.9% of total Pfam predictions).  

To further explore the protein content of the viromes and the interactions 

that could underpin phylosymbiosis between hosts and their viromes, we assessed 

if domains similar to known toxins or domains that interact with eukaryotic hosts 

were present in these viruses using the Pfam annotations. Proteins identified as 

toxins and eukaryotic-interacting domains span immunoglobulin peptidases, 

virulence genes, lysins, and others (indicated by boldface in S3.2 Table). Domains 

identified within these groups were found in viral contigs isolated from N. giraulti 

and IntG where 36 and 34 unique identifiable toxin and eukaryotic-interacting 
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proteins spanned 0.045% and 0.067% of the total contigs, respectively. N. 

vitripennis and N. longicornis maintained 17 and 25, which spanned 0.025% and 

0.098% of the contigs, respectively. One identified domain is the hemolysin-

encoding XhlA (PF10779) detected in Bacilli class-associated contigs in all of the 

samples, which was also the most abundant in the N. giraulti and the IntG 

introgression samples. This family of hemolysins, first observed in the 

entomopatho- genic Xenorhabdus nematophila, notably lyses insect immune cells285.  

Next, core viral contigs shared among all samples were determined by read 

mapping to the assembled contigs using the iVirus pipeline286. Across the Nasonia 

samples, the core was comprised of 219 viral contigs or 21% of total Nasonia viral 

contigs (Fig 3.2C). Of these core viral contigs, the majority (84%) are 

homologous to members infecting species of the most abundant bacterial genera 

found within the Nasonia gut microbiome: Morganella, Proteus, and Providencia (Fig 

3.2D). Additionally, 14 of the core viral contigs are homologous to sequences 

from the Bacilli class, all of which are relatively more abundant in N. giraulti and 

IntG. Two core viral contigs showed amino acid similarity to sequences in the 

genome of the entomopathogenic Xenorhabdus innexi287;they contain phage 

structural genes typical of active phage particles. Additionally, the complete 

genome of wVitA phage WO, a prophage of the obligate intracellular bacterium 
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Wolbachia that infects each of these aforementioned Nasonia species288, was 

detected only in N. vitripennis. The genome of this prophage was described 

previously289 and produces viral particles as seen in transmission electron 

microscopy in N. vitripennis288.  

 

Viral diversity among Nasonia species 

The number of reads mapped to each viral contig adjusted for contig size 

varied among species, highlighting distinct relative abundance differences of 

Proteus, Providencia, Morganella, and Bacilli phages among the Nasonia species (Fig 

3.3). Proteus phages dominate the N. giraulti virome at 34.3% of the total contigs, 

and Morganella phages make up the next largest portion at 30.8%. Morganella 

phages dominate the N. longicornis virome at 45.9%, and Providencia dominates the 

N. vitripennis virome at 41.4%. Phages with similarity to the Bacillaceae family 

outnumber all other groups in introgression line IntG (38.7%), followed by 

Proteus (26.8%). Thus, a different family of phages dominates each individual host 

genotype as was similarly shown for bacterial communities associated with these 

wasps24. For example, Providencia bacteria dominate the N. vitripennis microbiome24, 

which correlates with the highest abundance of Providencia phages in the 

sequenced virome.  
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Figure 3.3: Viral communities are distinguishable between Nasonia species 

and dominated by a few taxa. The assigned taxa are bacterial genera that harbor 

sequences, presumably prophages, homologous to the viral protein sequences. 

The relative abundance of viral contigs within each species is variable. Taxonomy 

is determined by highest similarity through tBLASTx against the nr database.  

N. giraulti IntG 12.1
Total=285,355

N. giraulti 16.2 
Total=264,833

N. vitripennis 12.1
Total=122,202

N. longicornis 2.1
Total=62,423

Bacillus Morganella Proteus Providencia Other
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Complete and abundant viral genomes 

Six putative circular phage genomes in the core virome with moderate 

amino acid similarity (>70% homology) to sequences in members of Proteus and 

Morganella were identified using the viral classification program VirSorter and 

annotated using BLASTx against the RefSeq database (Fig 3.4). None of the 

circular phage genomes were previously reported as prophages in the bacterial 

genomes from which they were identified, nor have they been previously 

described as forming lytic phage particles. Genes in five of these circular phage 

particle genomes have closest matches in the Proteus bacterial genus. The other, 

phage NG54, contains genes most homologous to Morganella spp. Thus, these six 

newly assembled phage genomes, as well as most contigs recovered here, 

establish the hypothesis that homologous regions in close bacterial relatives of 

those that colonize Nasonia are prophages with the potential to form phage 

particles.  
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Figure 3.4: Taxonomy and function of circular genomes and most abundant 

linear viral contigs in Nasonia. Six complete and circular viral genomes were 

part of the core Nasonia virome, five of which consisted mostly of open reading 

frames (ORFs) with similarity to Proteus proteins as determined via BLASTx 

through NCBI against the nr database (denoted by colored line of inner circles). A 

total of six viral contigs (circular Phage NV18 and five linear contigs above) 

composed >50% of reads from each of the samples. Each of these dominant 

viruses were shared among all of the samples with the exception of Phage NGI95 

which was only present in N. giraulti and N. giraulti IntG. Colored arrows indicate 

predicted gene function, and colored inner circles represent the genus of the 

closest BLASTx hit of each gene to the nr database. 

 

To determine the most abundant phage variants within the Nasonia virome, 

reads were mapped to each of the viral contigs, and six contigs with total read 

coverage over 2,000 were identified as the most abundant. These six phage 

genomes, one of which was circular (phage NV18, Fig 3.4) and five of which were 

incomplete genomes (contigs), represented 26% of the total reads in N. longicornis 

and over 50% of reads in the other three samples. Five of these six most abundant 

phages were dominated by ORFs with similarity to Proteus, Providencia, and 
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Morganella as well. However, phage NGI95 (Fig 3.4) shared the most similarity 

with Bacilli proteins and was detected only in the introgression line IntG and N. 

giraulti. Again, a large number of these genes encode unannotated hypothetical 

proteins, and of these abundant linear viral contigs, three of the five maintain 

identifiable integrase genes.  

Last, two additional novel circular phage genomes recovered from N. 

vitripennis (phage NV11X) and N. giraulti (phage NG24X) are composed of 

Xenorhabdus genes, have 94% nucleotide similarity to each other, and maintain 

predicted phage structural and hypothetical proteins (S3.1 Fig). These two 

Xenorhabdus phages show an average of 64% amino acid identity and complete 

genome synteny to predicted proteins of Xenorhabdus innexi and KK7.4, suggesting 

that prophages are present within these two bacterial genomes. Xenorhabdus 

bacteria are insect pathogens that suppress the immune system and produce 

numerous virulence factors such as hemolysin and cytotoxin that result in insect 

lethality290-292. Although hemolysins were found in these viromes, they were 

associated with Bacilli phages and not these Xenorhabdus phages, consistent with 

previous reports that the Xenorhabdus bacteria themselves encode these toxins290-

292.  
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Discussion  

Phylosymbiosis between host and bacterial communities is emerging as a 

trend in microbiome studies of the animal world, across both vertebrate and 

invertebrate species23;24;293;294. While the genetic and biochemical mechanisms 

underlying phylosymbiosis require more study, animal performance or fitness is 

often highest when animals contain a homospecific microbiome in comparison to 

a heterospecific microbiome24;295. These findings imply that there are mechanisms 

by which animals differentially respond to the membership of the microbiome 

and/or vice versa. Animal-associated viromes, often composed of mostly phages, 

have generally received much less study than bacterial microbiomes, and there is 

no a priori reason to expect that phylosymbiosis will occur in phage metagenomes 

because animals are not expected to directly exert influence on membership, nor 

is the phage community expected to directly determine which animal it occurs in. 

However, evidence for direct phage protein interactions within insect hosts is 

found in endosymbionts where a stable association among the phage, bacterium, 

and animal has been established296-298. The bacterial endosymbionts of Nasonia, 

Wolbachia and its prophage (WO), represent another potential case as the phage-

encoded Cif proteins cause299 and rescue300 reproductive parasitism phenotypes in 

arthropod hosts. Additionally, phage particles can bind animal mucus on 
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epithelial tissues via immunoglobulin domains found on the surface of some 

phage capsids, providing a form of immunity against colonizing bacteria301;302. The 

phages in this environment can also be transcytosed across the epithelial 

membrane and trafficked through the Golgi apparatus via the endomembrane 

system303, further highlighting a direct interaction between phages and animals.  

While bacteriophages may simply exhibit phylosymbiosis in a passive 

manner by association with phylosymbiotic bacterial communities, inducible 

prophages and/or lytic phages that are the subject of study here may only 

constitute a small subset of the phage DNA in bacterial genomes. Moreover, 

active phage particles have the potential to lyse and shift bacterial communities 

that may disrupt phylosymbiosis. Thus, there is no preferred reason to expect the 

metagenome of the purified community of virus particles will exhibit 

phylosymbiosis. Similarly to other animal viromes261;263-265;267;277, the majority of 

viruses within Nasonia species are phages, and they appear to be derived mainly 

from prophages predicted in the most prevalent bacterial genera in Nasonia: 

Proteus, Providencia, and Morganella. Previous reports in Hydra also showed that 

viromes were host species specific, composed mostly of phages, and partially 

phylosymbiotic, although congruence of the host and virome topologies was not 

investigated277. Interestingly, wild-caught and lab strains of the same species 
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(Hydra vulgaris) harbor significantly different bacterial communities304;305 and 

therefore maintained unique viral communities as well277.  

Here we describe the first report of phylosymbiosis among host-associated 

viromes in the parasitoid wasp genus Nasonia. Members of this genus diverged 

very recently, between 200,000 and 1 million years ago284, and controlled rearing 

of each species leads to distinguishable, phylosymbiotic microbiomes that 

significantly impact development and survival24;51. Indeed, interspecific microbiota 

transplantation causes 25 to 42% decreases in Nasonia survival to adulthood 

compared to intraspecific microbial transplantations24. Moreover, hybrid death in 

the F2 generation is due to a breakdown in phylosymbiosis whereby inoculations 

of resident gut bacterial species into germfree hybrids recapitulate hybrid 

lethality51.  

The results here are consistent with the model that if bacterial 

communities show phylosymbiosis with animal hosts, so too will their viromes. 

More simply put, viral phylosymbiosis appears to emerge as a by-product of host-

bacterium phylosymbiosis. From a methodological perspective, the result is 

striking given that the sequencing methods to build the bacterial and viral 

community dendrograms are fundamentally different: 16S amplicon sequencing 

versus shotgun viral metagenomics. Machine learning on 16S amplicon data 
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previously specified that three of the major distinguishing bacterial genera in 

Nasonia are closely related symbionts from the Enterobacteriaceae family (genera 

Proteus, Providencia, and Morganella)24. Interestingly, abundant phages of Proteus, 

Providencia, and Morganella dominate the virome identified within all of the pure 

Nasonia species (Fig 3.2D and Fig 3.3). Nonetheless, distinguishability of the 

viromes between Nasonia species is evident through at least two observations: (i) 

one of the most abundant viruses, phage NGI95, is solely found in the Nasonia 

giraulti genotype and (ii) the majority of the phage particle genetic diversity within 

N. giraulti and IntG is represented by a shared group of abundant Bacillaceae phages 

(Fig 3.2B and Fig 3.2C). Similarities between the samples with an N. giraulti 

genetic background support the hypothesis that host genotype, rather than 

cytotype, plays a role in shaping elements of the phage community structure.  

Many of the dominant bacteria present within Nasonia are related to well-

studied human pathogens present in enteric diseases306-312 in addition to other 

insects313-315, and genomes are therefore available167;316;317. However, most prophage 

genomes present within these bacteria have not yet been described, and 69% of 

the genes remain annotated as encoding hypothetical proteins. Thus, the majority 

of the viruses found in this study were active, unannotated phages of the most 

prevalent types of bacteria found in Nasonia.  



 

 141 

We assembled five complete Proteus phages and one Morganella phage (Fig 

3.3). Four of these phages (phages NGI4, NV18, and NG55 [Proteus] and phage 

NG54 [Morganella]) maintained an integrase gene, indicating likely integration 

into their host’s genome as a prophage. One of the circular Proteus phages 

maintaining an integrase, phage NV18, was by far the most prevalent phage in all 

of the samples with over 20,000-fold read coverage from N. vitripennis compared to 

the 10- to 200-fold coverage of most other viral contigs. This phage genome is 

composed of mostly hypothetical proteins and proteins with domains of unknown 

function. Many of these phages show amino acid similarity to sequences within 

the Proteus, Providencia, and Morganella genera (Fig 3.3). These similarities suggest 

that the described phages may be able to infect members across these sister 

genera, integrating and acquiring or leaving behind genes in the process.  

The discovery of animal-bacterial-viral phylosymbiosis provides a new 

insight into the tritrophic relationships between animal evolution, bacterial 

communities, and their phage communities. We note that phylosymbiosis does 

not equate to coevolution, codiversification, or cospeciation because these are 

evolutionary processes that assume divergence from a common ancestor. 

Phylosymbiosis is an eco-evolutionary pattern whereby ecological similarities in 

the microbiome, or virome in this case, parallel phylogenetic relationships of the 
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host. These patterns are not necessarily ones that occur long term, and they can 

change rapidly in time or space. However, the detection of phylosymbiosis of the 

virome is consistent with host identity providing either a direct or indirect 

influence that partitions clustering relationships of viral particle communities in a 

manner that reflects animal evolution among closely related species. Whether 

these patterns hold in wild populations will require future study.  

The microbiome has now been widely recognized as a key component of 

many animal functions, and alterations of this bacterial community can result in 

performance or fitness reductions318-320. Prophages are more common than lytic 

phages in stable host-associated microbial communities261;263, outnumber bacteria 

~3:1, and represent a potential structural force for establishment and 

maintenance of a microbiome321-323. Intimate associations among phages, bacteria, 

and their animal hosts are complex, and further studies investigating 

phylosymbiotic phage communities throughout the animal kingdom are necessary 

to gain a fuller understanding of the role that microbiomes and viromes play in 

animal functions and evolution.  
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Materials and Methods 

Sample Collection and Sequencing 

Nasonia species were reared as previously described51. Four strains were 

used in this study: Nasonia vitripennis (strain 12.1), N. longicornis (2.1), N. giraulti 

(16.2), and N. giraulti (IntG 12.1). Each strain maintains Wolbachia infections of 

the A supergroup. The IntG line was generated by repeatedly backcrossing N. 

vitripennis 12.1 females to uninfected N. giraulti RV2R males for nine generations 

to generate a line that contains wVitA-infected cytoplasm of N. vitripennis in the 

genetic background of N. giraulti279. Each strain was maintained under constant 

light at 25°C and raised on flesh fly pupae (Sarcophaga bullata). The transfected 

line of the Mediterranean flour moth Ephestia kuehniella harboring Wolbachia strain 

wCauB was obtained from Takema Fukatsu and Tetsuhiko Sasaki280. Moths were 

maintained at 24°C and 70% humidity on a diet consisting of wheat bran, 

glycerol, and dried yeast (20:2:1 [wt/wt]).  

Whole insects were suspended in sterile SM buffer and homogenized to 

release the viruses from the animal tissue. Viral particles were PEG precipitated 

as previously described289 and filtered through an 0.22-m filter. Viral DNA was 

extracted using the Qiagen MinElute Virus Spin kit, amplified using the Qiagen 



 

 144 

REPLI-g minikit, and sequenced on the Illumina HiSeq 2000 platform with 

paired-end reads (2x 100 bp).  

 

Bioinformatics 

Mate-pair reads from the viromes were analyzed using the iVirus 

pipeline286. First, the sequences were trimmed using Trimmomatic 0.35.0324 and 

quality checked using FastQC. De novo assembly of mate-pair reads was completed 

using SPAdes 3.6.0325 with a k-mer value of 63 and default parameters. Assembly 

quality was determined by QUAST326 and is reported in S3.1 Table in the 

supplemental material. All samples were coassembled with SPAdes 3.6.0 with a k-

mer of 63 to generate a single reference file and run through VirSorter327 in 

addition to the single assemblies. Viral contigs less than 500 bp and with 

coverage of less than five were removed from further analysis. Reads were then 

mapped back to the VirSorter viral contig outputs to estimate the relative 

abundance of each viral contig for each sample. BowtieBatch286 was used to run 

bowtie2 on all samples of the coassembled contigs and produced BAM output 

files read by Read2RefMapper to generate relative abundance and coverage plots 

for each viral contig within each metagenome. To consider a contig present within 

an individual sample, reads from that sample needed to cover 75% of the viral 
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contig from the coassembled virome. Venn diagrams were generated using the 

VennDiagram package328 through R v 3.3.2 software to display the overlap of 

contigs in different gut compartments using the mapping data from 

Read2RefMapper286. Relative abundance plots were illustrated using GraphPad’s 

Prism v 7.0c. Viral protein cluster diversity was determined using vContact 

through the iVirus pipeline286;329 and visualized using Gephi 0.9.2330.  

The VirSorter output for single assemblies was used for taxonomic 

classification against the NCBI-nr protein database. All taxonomic classifications 

were determined using the top BLASTx hit, with a threshold score of 50 on 

BLAST bitscore. Open reading frames (ORFs) were predicted and annotated using 

Prokka v1.12.0331. Additionally, protein families (PFAMs) within the ORFs were 

identified with InterProScan v5.26.65332. jModelTest v2.1.7333 was performed to 

determine the optimal model of host gene evolution and, using this model 

(PHYML with the JC69 substitution model), a phylogenetic tree was constructed 

for the host species (as previously described in reference 1 24) from a nucleotide 

alignment of the mitochondrial cytochrome oxidase subunit I (COI) genes. 

Virome similarities as determined by Bray-Curtis beta diversity unweighted pair 

group method with arithmetic mean (UPGMA) clustering were determined using 

read coverage counts of viral contigs. These count profiles were rarefied 10 times 
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to a depth of 16,400 counts for each host virome to normalize for differential 

sequencing coverage. Bray-Curtis beta diversity and resulting UPGMA 

clustergrams between host viromes were calculated, and UPGMA trees were 

averaged to generate a consensus clustergram across the rarefied community 

profiles. Phylosymbiosis as measured through topological similarity between the 

host phylogeny and the virome clustergram was evaluated using the rooted 

Robinson-Foulds and rooted matching cluster methods previously described24. 

Significance was determined by comparing the observed degree of congruence to 

the congruence obtained across 100,000 randomized tree topologies using a 

custom script with methods previously described24.  
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Supplementary Information 

 

Supplementary Figure 3.1: Complete Xenorhabdus phage genomes. Two 

similar (94% nucleotide similarity) circular Xenorhabdus phage genomes were 

recovered, one from N. vitripennis (Phage NV11X) and the other from N. giraulti 

(Phage NG24X).  

 

Phage NV11X  
70,152 bp 

Phage NG24X  
62,588 bp 

DNA recombination Phage tail DNA packaging/binding/repair 

Transcriptional regulation No hits Domains of unknown function (DUFs) Hypothetical 

Phage head Baseplate 

Other enzymes 
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Supplemental Table 3.1: Assembly statistics.  

 

Supplementary Table 3.2: Pfam assignments in viral metagenomes. 

https://msystems.asm.org/content/3/6/e00131-18/figures-only 

 

 

	

N. vitripennis 12.1 N. longicornis 2.1 N. giraulti IntG N. giraulti 16.2
# reads (bp) 55,018,874 16,967,060 54,305,634 51,603,058
# contigs (>=0 bp) 5,338 10,288 11,154 7,625
# contigs (>=1000 bp) 658 961 1,677 1,060
# contigs (>=5000 bp) 136 198 352 241
# contigs (>=10000 bp) 82 105 191 146
# contigs (>=25000 bp) 34 36 75 83
# contigs (>=50000 bp) 13 6 23 36
Total length (>=0 bp) 6,233,827 7,400,287 14,313,288 10,974,448
Total length (>=1000 bp) 4,574,682 4,746,396 10,687,227 8,488,860
Total length (>=5000 bp) 3,539,370 3,281,465 8,066,250 6,923,197
Total length (>=10000 bp) 3,164,282 2,636,751 6,950,497 6,263,109
Total length (>=25000 bp) 2,380,066 1,550,630 5,146,661 5,246,785
Total length (>=50000 bp) 1,631,890 488,296 3,224,513 3,479,271
# contigs 1,478 2,247 3,730 2,388
GC (%) 40.57 42.08 39.73 39.63
N50 21,830 8,245 16,642 34,618
N75 3,076 1,710 2,686 4,157
L50 42 125 120 65
L75 219 545 629 269
#N's per 100 kbp 0 0 0 0
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CHAPTER IV 

American Gut: Gut Microbiota Diversity across Ethnicities in the United 

States3 

 

Author Contributions 

 This study was performed by Andrew Brooks (AB), Sambhawa Priya (SP), 

Ran Blekhman (RB), and Seth Bordenstein (SB). SP and RB performed the 

random forest modeling, with input provided by AB and SB. AB performed all 

other analyses in the manuscript, under the direction of SB. Everyone helped 

write and edit the manuscript. 

 

Introduction 

Abstract 

 Composed of hundreds of microbial species, the composition of the human 

gut microbiota can vary with chronic diseases underlying health disparities that 

disproportionally affect ethnic minorities. However, the influence of ethnicity on 

                                            

3 This work is published in PLOS Biology: Brooks AW, Priya S, Blekhman R, Bordenstein SR. (2018) Gut Microbiota 

Diversity across Ethnicities in the United States. https://doi.org/10.1371/journal.pbio.2006842 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the gut microbiota remains largely unexplored and lacks reproducible 

generalizations across studies. By distilling associations between ethnicity and 

differences in two US-based 16S gut microbiota data sets including 1,673 

individuals, we report 12 microbial genera and families that reproducibly vary by 

ethnicity. Interestingly, a majority of these microbial taxa, including the most 

heritable bacterial family, Christensenellaceae, overlap with genetically associated 

taxa and form co-occurring clusters linked by similar fermentative and 

methanogenic metabolic processes. These results demonstrate recurrent 

associations between specific taxa in the gut microbiota and ethnicity, providing 

hypotheses for examining specific members of the gut microbiota as mediators of 

health disparities. 

 

Fig 4.1. Graphical abstract of ethnicity-specific microbiota composition. 
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Author Summary 

 Understanding microbiota similarities and differences across ethnicities 

has the potential to advance approaches aimed at personalized microbial discovery 

and treatment, particularly those involved in ethnic health disparities. Here, we 

explore whether or not self-declared ethnicity consistently varies with gut 

microbiota composition across 1,673 healthy individuals in the United States. We 

find subtle but significant differences in taxonomic composition between four 

ethnicities, and we replicate these results across two study populations. Within 

the gut microbiota of Americans, there are at least 12 microbial taxa, which 

reproducibly vary in abundance across ethnicities. These taxa tend to correlate in 

abundance and metabolic functions and overlap with previously identified taxa 

that are associated with human genetic variation. We discuss the roles these taxa 

play in digestion and disease and propose hypotheses for how they may relate to 

ethnic health disparities. This study highlights the need to consider and 

potentially account for ethnic diversity in microbiota research and therapeutics.  

 

Introduction 

 The human gut microbiota at fine resolution varies extensively between 
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individuals 6;7;334, and this variability frequently associates with diet4;30;31;335, 

age4;8;11, sex4;11;336, body mass index (BMI)4;7, and diseases presenting as health 

disparities337-340. The overlapping risk factors and burden of many chronic diseases 

disproportionally affect ethnic minorities in the United States, yet the underlying 

biological mechanisms mediating these substantial disparities largely remain 

unexplained. Recent evidence is consistent with the hypothesis that ethnicity 

associates with variation in microbial abundance, specifically in the oral cavity, 

gut, and vagina121;122;341. To varying degrees, ethnicity can capture many facets of 

biological variation including social, economic, and cultural variation, as well as 

aspects of human genetic variation and biogeographical ancestry. Ethnicity also 

serves as a proxy to characterize health disparity incidence in the United States, 

and while factors such as genetic admixture create ambiguity of modern ethnic 

identity, self-declared ethnicity has proven a useful proxy for genetic and 

socioeconomic variation in population scale analyses, including in the Human 

Microbiome Project87;342;343. Microbiota differences have been documented across 

populations that differ in ethnicity as well as in geography, lifestyle, and 

sociocultural structure; however, these global examinations cannot disconnect 

factors such as intercontinental divides and hunter-gatherer versus western 

lifestyles from ethnically structured differences98;99;344. Despite the importance of 
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understanding the interconnections between ethnicity, microbiota, and health 

disparities, there are no reproducible findings about the influence of ethnicity on 

differences in the gut microbiota and specific microbial taxa in diverse United 

States populations, even for healthy individuals4.  

Here, we comprehensively examine connections between self-declared 

ethnicity and gut microbiota differences across more than a thousand individuals 

sampled by the American Gut Project (AGP, N=1375)1 and the Human 

Microbiome Project (HMP, N=298)4. Previous studies demonstrated that human 

genetic diversity in the HMP associates with differences in microbiota 

composition9, and genetic population structure within the HMP generally 

delineates self-declared ethnicity87. Ethnicity was not found to have a significant 

association with microbiota composition in a Middle Eastern population, however 

factors such as lifestyle and environment that influence microbiota variation 

across participants was homogenous compared to the ethnic, sociocultural, 

economic, and dietary diversity found within the United States35. While ethnic 

diversity is generally underrepresented in current microbiota studies, evidence 

supporting an ethnic influence on microbiota composition among first generation 

immigrants has been recently demonstrated in a Dutch population345. The goal of 

this examination is to evaluate, for the first time, if there are reproducible 
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differences in gut microbiota across ethnicities within an overlapping United 

States population, as ethnicity is one of the key defining factors for health 

disparity incidence in the United States. Lifestyle, dietary, and genetic factors all 

vary to different degrees across ethnic groups in the United States, and it will 

require more even sampling of ethnic diversity and stricter phenotyping of study 

populations to disentangle which factors underlie ethnic microbiota variation in 

the AGP and HMP. 

 

Results 

Microbiota are Subtly Demarcated by Ethnicity 

We first evaluate gut microbiota distinguishability between AGP 

ethnicities (Fig 4.2A, family taxonomic level, Asians-Pacific Islanders (N=88), 

Caucasians (N=1237), Hispanics (N=37), and African Americans (N=13)), sexes 

(female (N=657), male (N=718)), age groups (years grouped by decade), and 

categorical BMI (underweight (N=70), normal (N=873), overweight (N=318), 

and obese (N=114)) (Demographic details in S4.1A Table). Age, sex, and BMI 

were selected as covariates because they are consistent across the AGP and HMP 

datasets. Additionally, 31 other categorical factors measuring diet, environment, 

and geography were compared for pairwise differences between two ethnicities 
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using proportions tests, and very few (10 / 894) tests significantly varied (S4.1 

Table additional sheets). Interindividual gut microbiota heterogeneity clearly 

dominates; however, Analyses of Similarity (ANOSIM) reveal subtle but 

significant degrees of total microbiota distinguishability for ethnicity, BMI, and 

sex, but not for age (Fig 4.2B, Ethnicity; Fig 4.2C, BMI; Fig 4.2D, Sex; Fig 4.2E, 

Age)57. Recognizing that subtle microbiota distinguishability between ethnicities 

may be spurious, we independently replicate the ANOSIM results from HMP 

African Americans (N=10), Asians (N=34), Caucasians (N=211) and Hispanics 

(N=43) (S4.2A Table, R=0.065, p=0.044). We again observe no significant 

distinguishability for BMI, sex, and age in the HMP. Higher rarefaction depths 

increase microbiota distinguishability in the AGP across various beta diversity 

metrics and categorical factors (S4.2B Table), and significance increases when 

individuals from overrepresented ethnicities are subsampled from the average 

beta diversity distance matrix (S4.2C Table). Supporting the ANOSIM results, 

Permutational Multivariate Analysis of Variance (PERMANOVA) models with 

four different beta diversity metrics showed that while all factors had subtle but 

significant associations with microbiota variation when combined in a single 

model, effect sizes were highest for ethnicity in 7 out of 8 comparisons across 

beta diversity metrics and rarefaction depths in the AGP and HMP (S4.2D Table). 
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We additionally test microbiota distinguishability by measuring the correlation 

between beta diversity and ethnicity, BMI, sex, and age with an adapted BioEnv 

test (S4.2E Table)346. Similar degrees of microbiota structuring occur when all 

factors are incorporated (Spearman Rho=0.055, p-values: Ethnicity=0.057, 

BMI<0.001, Sex<0.001, Age=0.564). Firmicutes and Bacteroidetes dominated 

the relative phylum abundance, with each representing between 35% and 54% of 

the total microbiota across ethnicities (S4.1 Fig). 
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Fig 4.2. Gut microbiota composition and distinguishability by ethnicity, sex, 

age, and BMI. (A) The average relative abundance of dominant microbial families 

for each ethnicity. (B-E) Principle coordinates analysis plots of microbiota Bray-

Curtis beta diversity and ANOSIM distinguishability for: (B) Ethnicity, (C) Sex, 

(D) Age, (E) BMI. In B-E, each point represents the microbiota of a single sample, 

and colors reflect metadata for that sample. Caucasian points are reduced in size 
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to allow clearer visualization, and p-values are not corrected across factors that 

have different underlying population distributions.  

 

We next test for ethnicity signatures in the gut microbiota by analyzing 

alpha and beta diversity, abundance and ubiquity distributions, distinguishability, 

and classification accuracy60. Shannon’s Alpha Diversity Index188, which weights 

both microbial community richness (observed operational taxonomic units 

[OTUs]) and evenness (Equitability), significantly varies across ethnicities in the 

AGP data set (Kruskal-Wallis, p = 2.8e-8) with the following ranks: Hispanics > 

Caucasians > Asian-Pacific Islanders > African Americans (Fig 4.3A). In the 

HMP, there is a significantly lower Shannon diversity for Asian-Pacific Islanders 

relative to Caucasians and a trend of lower Shannon diversity for Asian-Pacific 

Islanders relative to Hispanics; African Americans change position in diversity 

relative to other ethnicities, potentially as a result of undersampling bias. Five 

alpha diversity metrics, two rarefaction depths, and separate analyses of Observed 

OTUs and Equitability generally confirm the results (S4.3A Table).  
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Fig 4.3. Ethnicity associates with diversity and composition of the gut 

microbiota. (A) Center lines of each boxplot depict the median by which 

ethnicities were ranked from low (left) to high (right); the lower and upper ends 

of each box represent the 25th and 75th percentiles, respectively; whiskers denote 

the 1.5 interquartile range; and black dots represent individual samples. Lines in 

the middle of violin plots depict the mean, and p-values are Bonferroni corrected 

within each data set. (B) Left extending violin plots represent intraethnic 
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distances for each ethnicity, and right extending violin plots depict all interethnic 

distances. Center lines depict the mean beta diversity. Significance bars above 

violin plots depict Bonferroni corrected pairwise Mann-Whitney U comparisons of 

the intra-intra- and intra-interethnic distances. (C) Within each ethnicity, OTUs 

shared by at least 50% of samples. Colored lines represent a robust ordinary least 

squares regression within OTUs of each ethnicity, shaded regions represent the 

95% confidence interval, R2 denotes the regression correlation, the OTUs column 

indicates the number of OTUs with >50% ubiquity for that ethnicity, Mean A/U 

is the average abundance/ubiquity ratio, and the padj is the regression 

significance adjusted and Bonferroni corrected for the number of ethnicities.  

 

If ethnicity impacts microbiota composition, pairwise beta diversity 

distances (ranging from 1/completely dissimilar to 0/identical) will be greater 

between ethnicities than within ethnicities. While average gut microbiota beta 

diversities across all individuals are high (Bray-Curtis = 0.808), beta diversities 

between individuals of the same ethnicity (intraethnic, Bray-Curtis = 0.806) are 

subtly but significantly lower than those between ethnicities in both the AGP 

(interethnic, Bray-Curtis = 0.814) and HMP data sets (intraethnic, Bray-Curtis = 

0.870 versus interethnic, Bray-Curtis = 0.877) (Fig 4.3B). We confirm AGP 



 

 161 

results by subsampling individuals from over-represented ethnicities across beta 

metrics and rarefaction depths (S4.4A and S4.4B Table). Finally, we repeat 

analyses across beta metrics and rarefaction depths using only the average 

distance of each individual to all individuals from the ethnicity to which they are 

compared (S4.4C and S4.4D Table).  

Next, we explore interethnic differences in the number of OTUs shared in 

at least 50% of individuals within an ethnicity, as the likelihood of detecting a 

biological signal is improved in more abundant organisms relative to noise that 

may predominate in lower abundance OTUs. Out of 5,591 OTUs in the total AGP 

data set, 101 (1.8%) OTUs meet this ubiquity cutoff in all ethnicities, and 293 

(5.2%) OTUs meet the cutoff within at least one ethnicity. Hispanics share the 

most ubiquitous OTUs and have the lowest average abundance/ubiquity (A/U) 

ratio (Fig 4.3C), indicating stability, whereby stability represents a more 

consistent appearance of OTUs with lower abundance but higher ubiquity172. This 

result potentially explains their significantly lower intraethnic beta diversity 

distance and thus higher microbial community overlap relative to the other 

ethnicities (Fig 4.3B). Comparisons in the AGP between the higher sampled 

Hispanic, Caucasian, and Asian-Pacific Islander ethnicities also reveal a trend 

wherein higher intraethnic community overlap (Fig 4.3B) parallels higher 
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numbers of ubiquitous OTUs (Fig 4.3C), higher Shannon alpha diversity (Fig 

4.3A), and higher stability of ubiquitous OTUs as measured by the A/U ratio (Fig 

4.3C).  

 We next assess whether a single ethnicity disproportionately impacts total 

gut microbiota distinguishability in the AGP by comparing ANOSIM results from 

the consensus beta diversity distance matrix when each ethnicity is sequentially 

removed from the analysis (Fig 4.4A and S4.2E Table). Distinguishability remains 

unchanged when the few African Americans are removed but is lost upon removal 

of Asian-Pacific Islanders or Caucasians, likely reflecting their higher beta 

diversity distance from other ethnicities (Fig 4.4A). Notably, removal of Hispanics 

increases distinguishability among the remaining ethnicities, which may be due to 

a higher degree of beta diversity overlap observed between Hispanics and other 

ethnicities (S4.4B Table). Results conform across rarefaction depths and beta 

diversity metrics (S4.2F Table), and pairwise combinations show strong 

distinguishability between African Americans and Hispanics (ANOSIM, R = 

0.234, p = 0.005) and Asian-Pacific Islanders and Caucasians (ANOSIM, R = 

0.157, p < 0.001).  
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Fig 4.4. Microbiota distinguishability and classification ability across 

ethnicities. (A) ANOSIM distinguishability between all combinations of 

ethnicities. Symbols depict specific ethnicities included in the ANOSIM tests, and 

boxes denote the R-value as a heatmap, in which white indicates increasing and 

black indicates decreasing distinguishability relative to the R-value with all 

ethnicities. (B) Average ROC curves (for 10-fold cross-validation) and prediction 

performance metrics for one-versus-all RF classifiers for each ethnicity, using 

SMOTE347	and down subsampling approaches for training.  
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Finally, to complement evaluation with ecological alpha and beta diversity, 

we implement a random forest (RF) supervised learning algorithm to classify gut 

microbiota from genus-level community profiles into their respective ethnicity. 

We build four one-versus-all binary classifiers to classify samples from each 

ethnicity compared to the rest and use two different sampling approaches to train 

the models synthetic minority oversampling technique (SMOTE)347	 and 

downsampling for overcoming uneven representation of ethnicities in both the 

data sets (see Materials and methods). Given that the area under the receiver 

operating characteristic (ROC) curve (or AUC) of a random guessing classifier is 

0.5, the models classify each ethnicity fairly well (Fig 4.4B), with average AUCs 

across sampling techniques and data sets of 0.78 for Asian-Pacific Islanders, 0.76 

for African Americans, 0.69 for Hispanics, and 0.70 for Caucasians. Ethnicity 

distinguishing RF taxa and out-of-bag error percentages appear in (S4.2 Fig).  

 

Recurrent Taxon Associations with Ethnicity 

Subtle to moderate ethnicity-associated differences in microbial 

communities may in part be driven by differential abundance of certain microbial 

taxa. 16.2% (130/802) of the AGP taxa and 20.6% (45/218) of HMP taxa across 

all classification levels (i.e., phylum to genus, S4.5 Table) significantly vary in 
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abundance across ethnicities (Kruskal-Wallis, pFDR < 0.05). Between data sets, 

19.2% (25/130) of the AGP and 55.6% (25/45) of the HMP varying taxa replicate 

in the other data set, representing a significantly greater degree of overlap than 

would be expected by chance (ethnic permutation analysis of overlap, p < 0.001 

each taxonomic level and all taxonomic levels combined). The highest replication 

of taxa varying by abundance occurs with 22.0% of families (nine significant in 

both data sets / 41 significantly varying families in either data set), followed by 

genus with 13.4% (nine significant in both data sets / 67 significantly varying 

genera in either data set).  

Among 18 reproducible taxa, we categorize 12 as taxonomically distinct 

(Fig 4.5) and exclude six in which nearly identical abundance profiles between 

family/genus taxonomy overlap. Comparing relative abundance differences 

between pairs of ethnicities for these 12 taxa in the AGP reveals 30 significant 

differences, of which 20 replicate in the HMP (p < 0.05, Mann- Whitney U). 

Intriguingly, all reproducible pairwise differences are a result of decreases in 

Asian-Pacific Islanders (Fig 4.5). We also test taxon abundance and 

presence/absence associations with ethnicity separately in the AGP using linear 

and logistic regression models, respectively, and we repeat the analysis while 

incorporating categorical sex and continuous age and BMI as covariates (S4.6 
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Table). Clustering microbial families based on their abundance correlation reveals 

two co-occurrence clusters: (i) a distinct cluster of six Firmicutes and Tenericutes 

families in the HMP and (ii) an overlapping but more diverse cluster of 20 

families in the AGP (S4.3 Fig). Nine of the 12 taxa found to recurrently vary in 

abundance across ethnicities are represented in these clusters (Fig 4.5), with four 

appearing in both clusters and the other five appearing either in or closely 

correlated with members of both clusters (S4.3 Fig). Furthermore, 90% (18/20) 

of families in the AGP cluster and 66% (4/6) of taxa in the HMP cluster 

significantly vary in abundance across ethnicities. We also found overlap for AGP 

and HMP data sets between taxa significantly varying in abundance across 

ethnicities (with false discovery rate [FDR] < 0.05) and taxa in RF models with 

percentage importance greater than 50% for an ethnicity (S4.2B Fig). Taken 

together, these results establish general overlap of the most significant ethnicity-

associated taxa between these methods, reproducibility of microbial abundances 

that vary between ethnicities across data sets, and patterns of co-occurrence 

among these taxa, which could suggest they are functionally linked.  
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Fig 4.5. Ethnicity-associated taxa match between the HMP and AGP. Bar 

plots depict the log10 transformed relative abundance for individuals possessing 

the respective taxon within each ethnicity, ubiquity appears above (AGP) or 

below (HMP) bars, and the 25th and 75th percentiles are shown with extending 

whiskers. Mann-Whitney U tests evaluate differences in abundance and ubiquity 

for all individuals between pairs of ethnicities; for example, the direction of 

change in Victivallaceae is driven by ubiquity while abundance is higher for those 

possessing the taxon. Significance values are Bonferroni corrected for the six tests 

within each taxon and data set, and bold p-values indicate that significance (p < 

0.05) and direction of change replicate in the AGP and HMP.  
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Most heritable taxon of bacteria varies by ethnicity  

 Identified as the most heritable taxon in the human gut13;91, the family 

Christensenellaceae exhibits the second strongest significant difference in 

abundance across ethnicities in both AGP and HMP data sets (S4.5 Table, Family: 

AGP, Kruskal-Wallis, pFDR = 1.55e-9; HMP, Kruskal-Wallis, pFDR = 0.0019). 

Additionally, Christensenellaceae is variable by sex and BMI (AGP: Sex, Kruskal-

Wallis, pFDR = 1.22e-12; BMI, Kruskal-Wallis, pFDR = 0.0020) and represents 

some of the strongest pairwise correlations with other taxa in both co-occurrence 

clusters (S4.3 Fig). There is at least an eight-fold and two-fold reduction in 

average Christensenellaceae abundance in Asian-Pacific Islanders relative to the 

other ethnicities in the AGP and HMP, respectively (S4.5 Table), and significance 

of all pairwise comparisons in both data sets show reduced abundance in Asian-

Pacific Islanders (Fig 4.5). Christensenellaceae also occurs among the top 10 most 

influential taxa for distinguishing Asian-Pacific Islanders from other ethnicities 

using RF models for both AGP and HMP data sets (S4.2A Fig). Abundance in 

individuals possessing Christensenellaceae and presence/absence across all 

individuals significantly associate with ethnicity (S4.6 Table, Abundance, Linear 

Regression, pBonferroni = 0.006; Presence/Absence, Logistic Regression, 
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pBonferroni = 8.802e-6), but there was only slight correlation between the taxon’s 

relative abundance and BMI (S4.4 Fig). Confirming previous associations with 

lower BMI348, we observe that AGP individuals with Christensenellaceae also have 

a lower BMI (Mean BMI, 23.7 ± 4.3) than individuals without it (Mean BMI, 25.0 

± 5.9; Mann- Whitney U, p < 0.001). This pattern is separately reflected in 

African Americans, Asian-Pacific Islanders, and Caucasians but not Hispanics (Fig 

4.6), suggesting that each ethnicity may have different equilibria between the 

taxon’s abundance and body weight.  
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Fig 4.6. Christensenellaceae variably associate with BMI across ethnicities. 

Boxplots of BMI for individuals without (unfilled boxplots) and with (filled 

boxplots) Christensenellaceae. Significance was determined using one-tailed 

Mann-Whitney U tests for lower continuous BMI values. Black lines indicate the 

mean relative abundance; the lower and upper end of each box represent the 25th 
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and 75th percentiles, respectively; and whiskers denote the 1.5 interquartile 

range. 

 

Genetic- and ethnicity-associated taxa overlap  

Many factors associate with human ethnicity, including a small subset of 

population specific genetic variants (estimated approximately 0.5% genome wide) 

that vary by biogeographical ancestry199;200; self-declared ethnicity in the HMP is 

delineated by population genetic structure87. Here, we investigate whether 

ethnicity-associated taxa overlap with (i) taxa that have a significant population 

genetic heritability in humans13;90;91;349 and (ii) taxa linked with human genetic 

variants in two large Genome-Wide Association Studies (GWAS)-microbiota 

analyses13;90. All recurrent ethnicity-associated taxa except one were heritable in 

at least one study, with seven replicating in three or more studies (Table 4.1). 

Likewise, abundance differences in seven recurrent ethnicity-associated taxa 

demonstrate significant GWAS associations with at least one variant in the 

human genome. Therefore, we assess whether any genetic variants associated 

with differences in microbial abundance exhibit significant rates of differentiation 

(fixation index [FST]) between 1,000 genome superpopulations199;200. Out of 49 

variants associated with ethnically varying taxa, 21 have higher FST values 
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between at least one pair of populations than that of 95% of other variants on the 

same chromosome and across the genome; the FST values of five variants 

associated with Clostridiaceae abundance rank above the top 99% (S4.7 Table). 

Since taxa that vary across ethnicities exhibit lower abundance in Asian-Pacific 

Islanders, it is notable that the FST values of 18 and 11 variant comparisons for 

East Asian and South Asian populations, respectively, are above that of the 95% 

rate of differentiation threshold from African, American, or European 

populations. Cautiously, the microbiota and 1,000 genomes data sets are not 

drawn from the same individuals, and disentangling the role of genetic from social 

and environmental factors will still require more controlled studies.  

Recurrent	Ethnicity-Associated	Taxa	 Heritability	 Genetic	Associations	
Family:	Peptococcaceae	 0.1213	A,	0.2154C,	0.26E	 rs143179968E	
Family:	Dehalobacteriaceae	 0.6878B,	0.3087C	 	
Family:	Christensenellaceae	 0.3819A,	0.6170B,	0.4230C,	

0.3065D	

	
Order:	Clostridiales,	Family:	Unclassified	 0.2914	A,	0.4020B,	0.1330C	 *40	Genetic	VariantsC	
Genus:	Veillonella	 0.1370	A,	0.2168D	 rs347941C	
Order:	RF39,	Family:	Unclassified	 0.2341	A,	0.6618B,	0.3074C	 rs4883972C	
Family:	Verrucomicrobiaceae	 0.1257	A,	0.5973B,	0.1394C	 	
Family:	Victivallaceae	 	 	
Family	Odoribacteriaceae	 0.1389	A,	0.1917D,	0.34E	 chr7:96414393E,	rs115795847E	
Genus:	Odoribacter	 0.1916D	 	
Family:	Rikenellaceae	 0.1299D,	0.29E	 rs17098734C,	rs3909540C,	rs147600757E	

rs62171178E	
Family:	Coriobacteriaceae,	Genus:	Unclassified	 0.1364	A,	0.2822B,	0.1609C	 rs9357092E	

	

Table	 4.1.	 Most	 recurrent	 ethnicity-associated	 taxa	 are	 previously	 reported	

heritable	 and	 genetically-associated	 taxa.	 The	 table	 shows	 population	 genetic	

heritability	estimates	and	associated	genetic	variants	for	the	12	recurrent	ethnically	

varying	 taxa.	 The	minimum	heritability	 cutoff	was	 chosen	 as	 >0.1,	 and	only	 exactly	
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overlapping	 taxonomies	 were	 considered.	 Studies	 examined:	 AUKTwins	 (2014,	 ‘A’	

measure	of	additive	heritability	 in	ACE	model)91,	BYatsunenko	(2014,	 ‘A’	measure	of	

additive	 heritability	 in	 ACE	 model)91,	 CUKTwins	 (2016,	 ‘A’	 measure	 of	 additive	

heritability	 in	 ACE	 model)13,	 DLim	 (2016,	 H2r	 measure	 of	 polygenic	 heritability	 in	

SOLAR350)349,	 ETurpin	 (2016,	 H2r	 measure	 of	 polygenic	 heritability	 in	 SOLAR350).	

*indicates	excessive	variants	were	excluded	from	table.		

	

Discussion  

Many common diseases associate with microbiota composition and 

ethnicity, raising the central hypothesis that microbiota differences between 

ethnicities can occasionally serve as a mediator of health disparities. Self-declared 

ethnicity in the US can capture socioeconomic, cultural, geographic, dietary, and 

genetic diversity, and a similarly complex array of interindividual and 

environmental factors influence total microbiota composition. This complexity 

may result in challenges when attempting to recover consistent trends in total gut 

microbiota differences between ethnicities. The challenges in turn emphasize the 

importance of reproducibility, both through confirmation across analytical 

methods and replication across study populations87;121;122;341;345;351. In order to 

robustly substantiate the ethnicity-microbiota hypothesis, we evaluated recurrent 

associations between self-declared ethnicity and variation in both total gut 
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microbiota and specific taxa in healthy individuals. Results provide hypotheses for 

examining specific members of the gut microbiota as mediators of health 

disparities.  

Our findings from two American data sets demonstrate that (i) ethnicity 

consistently captures gut microbiota with a slightly stronger effect size than other 

variables such as BMI, age, and sex; (ii) ethnicity is moderately predictable from 

total gut microbiota differences; and (iii) 12 taxa recurrently vary in abundance 

between the ethnicities, of which the majority have been previously shown to be 

heritable and associated with human genetic variation. Whether shaped through 

socioeconomic, dietary, healthcare, genetic, or other ethnicity-related factors, 

reproducibly varying taxa represent sources for novel hypotheses addressing 

health disparities. For instance, the family Odoribacteriaceae and genus 

Odoribacter are primary butyrate producers in the gut, and they have been 

negatively associated to severe forms of Crohns disease and Ulcerative Colitis in 

association with reduced butyrate metabolism352-354. Asian-Pacific Islanders 

possess significantly less Odoribacteriaceae and Odoribacter than Hispanics and 

Caucasians in both data sets, and severity of Ulcerative Colitis upon hospital 

admission has been shown to be significantly higher in Asian Americans355. 

Considering broader physiological roles, several ethnicity-associated taxa are 
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primary gut anaerobic fermenters and methanogens356;357 and associate with lower 

BMI and blood triglyceride levels348;358. Indeed, Christensenellaceae, 

Odoribacteriaceae, Odoribacter, and the class Mollicutes containing RF39 

negatively associate with metabolic syndrome and demonstrate significant 

population genetic heritability in twins349. Implications for health outcomes 

warrant further investigation but could be reflected by positive correlations of 

Odoribacteriaceae, Odoribacter, Coriobacteriaceae, Christensenellaceae, and the 

dominant Verrucomicrobiaceae lineage Akkermansia with old age359;360. 

Akkermansia associations with health and ethnicity in Western populations may 

reflect recently arising dietary and lifestyle effects on community composition, as 

this mucus-consuming taxon is rarely observed in more traditional cultures 

globally99. Moreover, these findings raise the importance of controlling for 

ethnicity in studies linking microbiota differences to disease because associations 

between specific microbes and a disease could be confounded by ethnicity of the 

study participants.  

 Based on correlations in individual taxon’s abundance, a similar pattern of 

co-occurrence previously identified as the “Christensenellaceae Consortium” 

includes 11 of the 12 recurrent ethnically varying taxa91, and members of this 

consortium associate with genetic variation in the human formate oxidation gene, 
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aldehyde dehydrogenase 1 family member 1 (ALDH1L1), which is a genetic risk 

factor for stroke13;361;362. Formate metabolism is a key step in the pathway 

reducing carbon dioxide to methane363;364, and increased methane associates with 

increased Rikenellaceae, Christensenellaceae, Odoribacteriaceae, and 

Odoribacter365. Products of methanogenic fermentation pathways include short 

chain fatty acids such as butyrate, which, through reduction of proinflammatory 

cytokines, is linked to cancer cell apoptosis and reduced risk of colorectal 

cancer366;367. Asian Americans are the only ethnic group where cancer surpasses 

heart disease as the leading cause of death, and over 70% of Asian Americans 

were born overseas, which can affect assimilation into Western lifestyles, leading 

to reduced access to healthcare and screening366;368-370. Preliminary results from 

other groups suggest that the gut microbiome of Southeast Asian immigrants 

changes after migration to the US371. Indeed, as countries in Asia shift toward a 

more Western lifestyle, the incidence of cancers, particularly gastrointestinal and 

colorectal cancers, are increasing rapidly, possibly indicating incompatibilities 

between traditionally harbored microbiota and Western lifestyles372-375. Asian 

Americans have higher rates of type 2 diabetes and pathogenic infections than 

Caucasians376, and two metagenomic functions enriched in control versus type 2 

diabetes cases appear to be largely conferred by cluster-associated butyrate-
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producing and motility-inducing Verrucomicrobiaceae and Clostridia taxa reduced 

in abundance among AGP and HMP Asian-Pacific Islanders337. Both induction of 

cell motility and butyrate promotion of mucin integrity can protect against 

pathogenic colonization and associate with microbial community 

changes337;367;377. Levels of cell motility and butyrate are key factors suspected to 

underlie a range of health disparities including inflammatory bowel disease, 

arthritis, and type 2 diabetes337;378-380. Patterns of ethnically varying taxa across 

ethnicities could result from many factors including varying diets, environmental 

exposures, sociocultural influences, human genetic variation, and others. 

However, regardless of the mechanisms dictating assembly, these results suggest 

that there is a reproducible, co-occurring group of taxa linked by similar metabolic 

processes known to promote homeostasis.  

The utility of this work is establishing a framework for studying ethnicity-

associated taxa and hypotheses of how changes in abundance or presence of these 

taxa may or may not shape health disparities, many of which also have genetic 

components. Differing in allele frequency across three population comparisons 

and associated with the abundance of Clostridiales, the genetic variant rs7587067 

has a significantly higher frequency in African (minor allele frequency [MAF] = 

0.802) versus East Asian (MAF = 0.190, FST = 0.54, Chromosome = 98.7%, 
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Genome-Wide = 98.9%, See Methods), admixed American (MAF = 0.278, FST = 

0.44, Chromosome = 99.0%, Genome-Wide = 99.1%), and European 

populations (MAF = 0.267, FST = 0.45, Chromosome = 98.7.3%, Genome-Wide 

= 98.7%). This intronic variant for the gene HECW2 is a known expression 

quantitative trait locus (eQTL) (GTEx, eQTL Effect Size = -0.18, p = 7.4e-

5)381;382, and HECW2 encodes a ubiquitin ligase linked to enteric gastrointestinal 

nervous system function through maintenance of endothelial lining of blood 

vessels383;384. Knockout of HECW2 in mice reduced enteric neuron networks and 

gut motility, and patients with Hirschsprung’s disease have diminished 

localization of HECW2 to regions affected by loss of neurons and colon blockage 

when compared to other regions of their own colon and healthy individuals385. 

Hirschsprung’s disease presenting as full colon blockage is rare and has not 

undergone targeted examination as a health disparity; however, a possible 

hypothesis is that lower penetrance of the disease in individuals with the risk 

allele at rs7587067 could lead to subtler effects on gut motility resulting in 

Clostridiales abundance differences.  

Despite the intrigue of connecting the human genome, microbiota, and 

disease phenotypes, evaluating such hypotheses will require more holistic 

approaches including incorporating metagenomics and metabolomics to identify 
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whether enzymes or metabolic functions reproducibly vary across ethnicities, as 

well as direct functional studies in model systems to understand if correlation is 

truly driven by causation. Further limitations should also be considered, including 

recruitment biases for the AGP versus HMP, variation in sample processing and 

OTU clustering, and uneven sampling, which could only be addressed with 

downsampling of over-represented ethnicities. Still, despite these confounders, 

care was taken to demonstrate the reproducibility of results across statistical 

methods, ecological metrics, rarefaction depths, and study populations. 

Summarily, this work suggests that abundance differences of specific taxa, rather 

than whole communities, may represent the most reliable ethnic signatures in the 

gut microbiota. A reproducible co-occurring subset of these taxa link to a variety 

of overlapping metabolic processes and health disparities and contain the most 

reproducibly heritable taxon, Christensenellaceae. Moreover, a majority of the 

microbial taxa associated with ethnicity are also heritable and genetically 

associated taxa, suggesting that there is a possible connection between ethnicity 

and genetic patterns of biogeographical ancestry that may play a role in shaping 

these taxa. Our results emphasize the importance of sampling ethnically diverse 

populations of healthy individuals in order to discover and replicate ethnicity 

signatures in the human gut microbiota, and they highlight a need to account for 
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ethnic variation as a potential confounding factor in studies linking microbiota 

differences to disease. Further reinforcement of these results may lead to 

generalizations about microbiota assembly and even consideration of specific taxa 

as potential mediators or treatments of health disparities.  

 

Materials and methods  

Ethics statement  

Access to HMP data was obtained through dbGaP approval granted to SRB 

and AWB. Institutional Review Board approval was granted with nonhuman 

subjects determination IRB161231 by Vanderbilt University.  

 

Data acquisition  

AGP data was obtained from the project FTP repository located at 

ftp://ftp.microbio.me/AmericanGut/. AGP data generation and processing prior 

to analysis can be found at https://github.com/biocore/American-

Gut/tree/master/ipynb/primary-processing. All analyses utilized the rounds-1-25 

data set, which was released on March 4, 2016. Throughout all analyses, QIIME 

v1.9.0 was used in an Anaconda environment (https://continuum.io) for all script 

calls, and custom scripts and notebooks were run in the QIIME 2 Anaconda 
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environment with python version 3.5.2, and plots were postprocessed using 

Inkscape (https://inkscape.org/en/)238. Ethnicity used in this study was self-

declared by AGP study participants as one of four groups: African American, 

Asian or Pacific Islander (Asian-Pacific Islander), Caucasian, or Hispanic. Sex was 

self-declared as either male, female, or other. Age was self-declared as a 

continuous integer of years old, and age categories defined by the AGP by decade 

(i.e., 20’s, 30’s, etc.) were used in this study. BMI was self-declared as an integer, 

and BMI categories defined by AGP of underweight, healthy, overweight, and 

obese were utilized. A total of 31 categorical metadata factors were assessed for 

structuring across ethnicities with a two proportion Z test between pairs of 

ethnicities using a custom python script (S4.1 Table additional sheets). The p-

values were Bonferroni corrected within each metadata factor for the number of 

pairwise ethnic comparisons. 97% OTUs generated for each data set are utilized 

throughout to maintain consistency with other published literature; however, 

microbial taxonomy of the HMP is reassigned using the Greengenes reference 

database386. Communities characterized with 16S rDNA sequencing of variable 

region four followed an identical processing pipeline for all samples, which was 

developed and optimized for the Earth Microbiome Project387. HMP 16S rDNA 

data processed using QIIME for variable regions 3-5 was obtained from 
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http://hmpdacc.org/HMQCP/. Demographic information for individual HMP 

participants was obtained through dbGaP restricted access to study 

phs000228.v2.p1, with dbGaP approval granted to SRB and nonhuman subjects 

determination IRB161231 granted by Vanderbilt University. Ethnicity and sex 

were assigned to subjects based on self-declared values, with individuals selecting 

multiple ethnicities being removed unless they primarily responded as Hispanic, 

while categorical age and BMI were established from continuous values using the 

same criteria for assignment as in the AGP. The HMP Amerindian population was 

removed due to severe under-representation. This filtered HMP table was used for 

community level analyses (ANOSIM, alpha diversity, beta intra-inter); however, 

to allow comparison with the AGP data set, community subset analyses 

(cooccurrence, abundance correlation, etc.) were performed with taxonomic 

assignments in QIIME using the UCLUST method with the GreenGenes_13_5 

reference.  

 

Quality control  

AGP quality control was performed in Stata v12 (StataCorp, 2011) using 

available metadata to remove samples (Raw N = 9,475) with BMI more than 60 

(removed −988 total remaining [8,487]) or less than 10 (−68 [8,419]); missing 
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age (−661 [7,758]), with age greater than 55 years old (−2,777 [4,981]) or less 

than 18 years old (−582 [4,399]); and blank samples or those not appearing in 

the mapping file (−482 [3,917]), with unknown ethnicity or declared as other 

(−131 [3786]), not declared as a fecal origin (−2,002 [1784]), with unknown sex 

or declared as other (−98 [1686]) or located outside of the US (−209 [1477]). 

No HMP individuals were missing key metadata or had other reasons for 

exclusion (−0 [298]). Final community quality control for both the AGP and 

HMP was performed by filtering OTUs with less than 10 sequences and removing 

samples with less than 1,000 sequences (AGP, −102 [1375]; HMP, −0 [298]). 

All analyses used 97% OTUs generated by the AGP or HMP, and unless otherwise 

noted, results represent Bray-Curtis beta diversity and Shannon alpha diversity at 

a rarefaction depth of 1,000 counts per sample.  

 

ANOSIM, PERMANOVA, and BioEnv distinguishability  

The ANOSIM test was performed with 9,999 repetitions on each rarefied 

table within a respective rarefaction depth and beta diversity metric (Fig 4.2 and 

S4.2A-S4.2B Table), with R values and p-values averaged across the rarefactions. 

Consensus beta diversity matrices were calculated as the average distances across 

the 100 rarefied matrices for each beta diversity metric and depth. Consensus 
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distance matrices were randomly subsampled 10 times for subset number of 

individuals from each ethnic group with more than that subset number prior to 

ANOSIM analysis with 9,999 repetitions, and the results were averaged 

evaluating the effects of more even representations for each ethnicity (S4.2C 

Table). Consensus distance matrices had each ethnicity and pair of ethnicities 

removed prior to ANOSIM analysis with 9,999 repetitions, evaluating the 

distinguishability conferred by inclusion of each ethnicity (Fig 4.4A, S4.2F Table). 

Significance was not corrected for the number of tests to allow comparisons 

between results of different analyses, metrics, and depths. PERMANOVA 

analyses were run using the R language implementation in the Vegan package58, 

with data handled in a custom R script using the Phyloseq package246. Categorical 

variables were used to evaluate the PERMANOVA equation (Beta Diversity 

Distance Matrix ~ Ethnicity + Age + Sex + BMI) using 999 permutations to 

evaluate significance, and the R and p-values were averaged across 10 rarefactions 

(S4.2D Table). The BioEnv test, or BEST test, was adapted to allow evaluation of 

the correlation and significance between beta diversity distance matrices and age, 

sex, BMI, and ethnicity simultaneously (S4.2E Table)346. At each rarefaction depth 

and beta diversity metric, the consensus distance matrix was evaluated for its 

correlation with the centered and scaled Euclidian distance matrix of individuals 
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continuous age and BMI, and categorical ethnicity and sex encoded using patsy 

(same methodology as original test) (https://patsy.readthedocs.io/en/latest/#). 

The test was adapted to calculate significance for a variable of interest by 

comparing how often the degree of correlation with all metadata variables (age, 

sex, BMI, ethnicity) was higher than the correlation when the variable of interest 

was randomly shuffled between samples 1,000 times.  

 

Alpha diversity  

Alpha diversity metrics (Shannon, Simpson, Equitability, Chao1, Observed 

OTUs) were computed for each rarefied table (QIIME: alpha_diversity.py), and 

results were collated and averaged for each sample across the tables (QIIME: 

collate_alpha.py). Pairwise nonparametric t tests using Monte Carlo permutations 

evaluated alpha diversity differences between the ethnicities with Bonferroni 

correction for the number of comparisons (Fig 4.3A, S4.3 Table, QIIME: 

compare_alpha_diversity.py). A Kruskal-Wallis test implemented in python was 

used to detect significant differences across all ethnicities.  

 

Beta diversity  

Each consensus beta diversity distance matrix had distances organized 



 

 186 

based on whether they represented individuals of the same ethnic group or were 

between individuals of different ethnic groups. All values indicate that all pairwise 

distances between all individuals were used (Fig 4.3B, S4.4A and S4.4B Table), 

and mean values indicate that for each individual, their average distance to all 

individuals in the comparison group was used as a single point to assess pseudo-

inflation (S4.4C and S4.4D Table). A Kruskal-Wallis test was used to calculate 

significant differences in intraethnic distances across all ethnicities. Pairwise 

Mann-Whitney U tests were calculated between each pair of intraethnic distance 

comparisons, along with intra-versus-interethnic distance comparisons. 

Significance was Bonferroni corrected within the number of intra-intraethnic and 

intra-interethnic distance groups compared, with violin plots of intra- and 

interethnic beta diversity distances generated for each comparison.  

 

Random forest  

RF models were implemented using taxa summarized at the genus level, 

which performed better compared to RF models using OTUs as features, both in 

terms of classification accuracy and computational time. We first rarefied OTU 

tables at a sequence depth of 10,000 (using R v3.3.3 package vegan’s rrarefy() 

function) and then summarized rarefied OTUs at the genus level (or a higher 
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characterized level if genus was uncharacterized for an OTU). We filtered for rare 

taxa by removing taxa present in fewer than half of the number of samples in 

rarest ethnicity (i.e., fewer than 10/2 = 5 samples in HMP and 13/2 = 6 

[rounded down] in AGP), retaining 85 distinct taxa in the HMP data set and 322 

distinct taxa in the AGP data set at the genus level. The resulting taxa were 

normalized to relative abundance and arcsin-sqrt transformed before being used 

as features for the RF models. We initially built a multiclass RF model, but since 

the RF model is highly sensitive to the uneven representation of classes, all 

samples were identified as the majority class, i.e., Caucasian. In order to even out 

the class imbalance, we considered some sampling approaches, but most existing 

techniques for improving classification performance on imbalanced data sets are 

designed for binary class imbalanced data sets and are not effective on data sets 

with multiple under-represented classes. Hence, we adopted the binary 

classification approach and built four one-versus-all binary RF classifiers to 

classify samples from each ethnicity compared to the rest. 10-fold cross-validation 

(using R package caret 388) was performed using ROC as the metric for selecting 

the optimal model. The performance metrics and ROC curves were averaged 

across the 10 folds (Fig 4.4B). Without any sampling during training the 

classifiers, most samples were identified as the majority class, i.e., Caucasian, by 
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all four one-versus-all RF classifiers. In order to overcome this imbalance in class 

representation, we applied two sampling techniques inside cross-validation: i) 

downsampling and ii) SMOTE347. In the downsampling approach, the majority 

class is downsampled by random removal of instances from the majority class. In 

the SMOTE approach, the majority class is downsampled, and synthetic samples 

from the minority class are generated based on the k-nearest neighbors 

technique347. Note, the sampling was performed inside cross-validation on 

training set, while the test was performed on unbalanced held-out test set in each 

fold. In comparison to a no-sampling approach, which classified most samples as 

the majority class, i.e., Caucasians, our sampling-based approach leads to 

improved sensitivity for classification of minority classes on unbalanced test sets. 

Nevertheless, the most accurate prediction remains for the inclusion in the 

majority class. The ROC curves and performance metrics table in Fig 4.4B show 

the sensitivity-specificity tradeoff and classification performance for one-versus-all 

classifier for each ethnicity for both the sampling techniques applied on both of 

the data sets. For both of the data sets, downsampling shows higher sensitivity 

and lower specificity and precision for minority classes (i.e., African Americans, 

Asian-Pacific Islanders, and Hispanics) compared to SMOTE. However, for the 

majority class (i.e., Caucasian), downsampling lowers the sensitivity and 
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increases the specificity and precision compared to SMOTE. The sensitivity-

specificity tradeoff, denoted by the AUC, is reduced for Hispanics in both the data 

sets. The most important taxa with >50% importance for predicting an ethnicity 

using RF model with SMOTE sampling approach are shown in S4.2A Fig. Among 

the 10 most important taxa for each ethnicity, there are nine taxa that overlap 

between the AGP and HMP data sets (highlighted by the blue rectangular box); 

however, which ethnicity, they best distinguish varies between the two data sets. 

Within each data set we highlighted taxa that are distinguishing in RF models 

and have distinguishing differential abundance in S4.2B Fig, reporting both the 

FDR corrected significance for Kruskal-Wallis tests of differential abundance, and 

the percent importance for the most distinguished ethnicity of each in RF models. 

We also report out-of-bag errors for the final RF classifier that was built using the 

optimal model parameters obtained from cross-validation approach corresponding 

to each ethnicity and sampling procedure for both AGP and HMP data sets in 

S4.2C Fig.  

 

Taxon associations  

 Taxon differential abundance across categorical metadata groups was 

performed in QIIME (QIIME: group_significance.py, S4.5 Table) to examine 
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whether observation counts (i.e., OTUs and microbial taxon) are significantly 

different between groups within a metadata category (i.e., ethnicity, sex, BMI, and 

age). The OTU table prior to final community quality control was collapsed at 

each taxonomic level (i.e., Phylum-Genus; QIIME: collapse_taxonomy.py), with 

counts representing the relative abundance of each microbial taxon. Differences in 

the mean abundance of taxa between ethnicities were calculated using Kruskal-

Wallis nonparametric statistical tests. p-values are provided alongside false 

discovery rate and Bonferroni corrected p-values, and taxon were ranked from 

most to least significant. Results were collated into excel tables by taxonomic 

level and metadata category being examined, with significant (FDR and 

Bonferroni p-value < 0.05) highlighted in orange, and taxa that were false 

discovery rate significant in both data sets were colored red. The Fisher’s exact 

test for the overlap of number of significant taxa between data sets was run at the 

online portal (http://vassarstats.net/tab2x2.html), with the expected overlap 

calculated as 5% of the number of significant taxa at all levels within the 

respective data set, and the observed 25 taxa that overlapped in our analysis. The 

permutation analysis was performed by comparing the number of significant taxa 

(S4.5 Table, pFDR < 0.05) overlapping between the AGP and HMP to the number 

overlapping when the Kruskal-Wallis test was performed 1,000 times with 
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ethnicity randomly permuted. In 1/ 1,000 runs, there was one significant taxon 

overlapping at the family level and one in 3/1,000 permutations at the genus 

level, with no significant taxa overlapping in any repetitions at higher taxonomic 

levels. The 12 families and genera that were significantly different were evaluated 

to not be taxonomically distinct if their abundances across ethnicities at each level 

represented at least 82%-100% (nearly all >95%) of the overlapping taxonomic 

level, and the genera was used if classified and family level used if genera was 

unclassified (g__). Average relative abundances on a log10 scale among 

individuals possessing the taxon were extracted for each taxon within each 

ethnicity, and the abundance for 12 families and genera were made into bar chart 

figures (Fig 4.5). The external whisker (AGP above, HMP below) depicts the 75th 

percentile of abundance, and the internal whisker depicts the 25th percentile. 

Pairwise Mann-Whitney U tests were performed between each pair of ethnicities 

using microbial abundances among all individuals and were Bonferroni corrected 

for the six comparisons within each taxon and data set. Bonferroni significant p-

values are shown in the figure and shown in bold if significance and direction of 

change replicate in both data sets. Ubiquity shown above or below each bar was 

calculated as the number of individuals in which that taxon was detected within 

the respective ethnicity. Additional confirmation of ethnically varying abundance 
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was also performed at each taxonomic level (S4.6 Table), at which the correlation 

of continuous age and BMI along with categorically coded sex and ethnicity were 

simultaneously measured against the log10 transformed relative abundance of 

each taxon among individuals possessing it using linear regression (S4.6 Table, 

Abundance) and against the presence or absence of the taxon in all individuals 

with logistic regression (S4.6 Table, Presence Absence). Significance is presented 

for the models each with ethnicity alone and with all metadata factors included 

(age, sex, BMI), alongside Bonferroni corrected p-values and individual effects of 

each metadata factor.  

 

Co-occurrence analysis  

 Bacterial taxonomy was collapsed at the family level, Spearman correlation 

was calculated between each pair of families using SciPy389, cluster maps were 

generated using seaborn (S4.3 Fig), and ethnic associations were drawn from S4.5 

Table. Correlations were masked where Bonferroni corrected Spearman p-values 

were >0.05, and clusters were identified as the most prominent (strongest 

correlations) and abundance enriched. Enrichment of ethnic association was 

evaluated by measuring the Mann-Whitney U of cluster families’ ethnic 

associations (p-values, S4.5 Table) compared to the ethnic associations of 
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noncluster taxa. Cluster-associated families were identified as having at least 

three significant correlations with families within the cluster.  

 

Christensenellaceae analysis  

 The abundance of the family Christensenellaceae was input as relative 

abundance across all individuals from the family level taxonomic table. 

Individuals were subset based on the presence/absence of Christensenellaceae, 

and BMIs were compared using a one-tailed Mann-Whitney U test, then each was 

further subset by ethnicity and BMI compared using one-tailed Mann-Whitney U 

tests and boxplots within each ethnicity (Fig 4.6).  

 

Genetically associated, heritable, and correlated taxa analysis  

 Genetically associated taxa from population heritability studies13;90;91;349	

with a minimum heritability (A in ACE models or H2r) >0.1 and from GWAS 

studies13;90 were examined for exact taxonomic overlap with our 12 ethnically-

associated taxa. The 42 genetic variants associated with Unclassified Clostridiales 

are rs16845116, rs586749, rs7527642, rs10221827, rs5754822, rs4968435, 

rs17170765, rs1760889, rs6933411, rs2830259, rs7318523, rs17763551, 

rs2248020, rs1278911, rs185902, rs2505338, rs6999713, rs5997791, rs7236263, 
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rs10484857, rs9938742, rs1125819, rs4699323, rs641527, rs7302174, 

rs2007084, rs2293702, rs9350764, rs2170226, rs2273623, rs9321334, 

rs6542797, rs9397927, rs2269706, rs4717021, rs7499858, rs10148020, 

rs7524581, rs11733214, and rs7587067 from13. These 40 variants along with 

variants in Table 4.1 except for chr7:96414393 (total = 49) were then assessed in 

1,000 Genomes individuals for significant differentiation across 

superpopulations390. The 1,000 Genomes VCF files were downloaded 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), and variants with 

a minor allele frequency less than 0.01 were removed, with FST calculated 

between each pair of superpopulations using vcftools391. The East Asian versus 

South Asian FST rates were not used in the analysis. A custom script was used to 

examine the FST for each of the 49 variants and was compared to the FST of all 

variants on the same chromosome and all variants genome-wide for that pair of 

populations, with percentile calculated and the number of variants with a higher 

FST divided by the total number of variants. The eQTL value and significance for 

rs7587067 were drawn from the GTEx database382.  
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Supporting information 

Supporting Figures 

 

S4.1 Fig. The average relative abundance of dom
inant m

icrobial phyla for each ethnicity.  
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S4.2 Fig. Summary of RF distinguishing taxa and out-of-bag error for each 

ethnicity. (A) Importance of taxa for predicting each ethnicity using RF models 

with SMOTE sampling approach are shown as percentage contributions, 

highlighted by color for each ethnicity. Among the 10 most important taxa for 

each ethnicity, nine overlap between the AGP and HMP data sets (highlighted by 

the blue rectangular box); however, which ethnicity they best distinguish varies 

between the two data sets. (B) Taxa that are distinguishing in RF models and 

have distinguishing differential abundance in S4.5 Table. The FDR corrected 
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significance for Kruskal-Wallis tests of differential abundance and the percent 

importance for the most distinguished ethnicity of each in RF models are shown. 

(C) Out-of-bag error percentages for the final RF classifier that was built using 

the optimal model parameters obtained from cross-validation approach 

corresponding to each ethnicity and sampling procedure for both AGP and HMP 

datasets.  
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S4.3 Fig. Abundance correlation of microbial families. Spearman correlation 

cluster maps of bacterial abundance for families in the AGP and HMP. Numbers 

within boxes depict the spearman correlation value with heatmap coloration from 

blue negative correlation (−1), white no correlation (0), to red positive 

correlation (1). Positions have been masked based on Bonferroni significance 
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<0.05 for the total cluster map of all microbial families. Taxa within boxes were 

identified as a highly correlated cluster, and taxa outside the boxes share multiple 

correlations with those within the cluster. Blue taxonomic names indicate overlap 

of taxa within boxes of both the AGP and HMP, while black indicate multiple 

correlations with the clusters in both data sets. The ethnic association column 

depicts FDR corrected p-values from Kruskal-Wallis tests in S4.5 Table, which are 

bolded if <0.05.  

  

S4.4 Fig. Correlation of BMI with Christensenellaceae abundance. The 
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relationship for each individual between log10 transformed Christensenellaceae 

abundance on the y-axis and BMI on the x-axis, with statistics slope, R2, and p fit 

with a linear regression. Coloration of each point indicates ethnicity: yellow, 

African American; blue, Asian-Pacific Islander; green, Hispanic; red, Caucasian.  

 

Supporting Tables 

https://doi.org/10.1371/journal.pbio.2006842.s005 

S4.1 Table. Demographic information for the AGP. Breakdown of age and BMI 

by sex and ethnicity. Heatmaps were constructed within each statistic and 

category (bounded by black box). The means for all sex and ethnic groups were 

used as the center (white), with higher values indicated in red and lower in blue. 

HMP data is not shown because of data access restrictions on participant 

metadata, available through dbGaP application. Additional sheets depict 

proportions tests of ethnic structuring for 31 metadata factors, each on their own 

sheet. 

 

https://doi.org/10.1371/journal.pbio.2006842.s006 

S4.2 Table. Microbiota distinguishability by ethnicity, age, sex, and BMI. (A) 

AGP and HMP ANOSIM distinguishability by ethnicity, age, sex, and BMI at a 
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rarefaction depth of 1,000 and across four ecological metrics (more details in 

table). (B) AGP ANOSIM distinguishability by ethnicity, age, sex, and BMI at 

rarefaction depths of 1,000 and 10,000. (C) ANOSIM results for consensus 

distance matrix while subsampling the maximum number of individuals from 

each ethnic group. (D) BioEnv results of correlation between ethnicity, age, sex, 

and BMI together with outcome as multivariate beta diversity distance matrices 

(Distance Matrix = Ethnicityx1 + Categorical Agex2 + Categorical BMIx3 + 

Sexx4 + B). (E) ANOSIM results for consensus distance matrix when each 

ethnicity and group of ethnicities are sequentially removed from the analysis.  

 

https://doi.org/10.1371/journal.pbio.2006842.s007 

S4.3 Table. Alpha diversity by ethnicity, age, sex, and BMI. Alpha diversity 

for ethnicity, age, sex, and BMI across varying rarefaction depths and beta 

diversity metrics in the AGP (Fig 4.5A and Fig 4.5C-4.5E) and for ethnicity in the 

HMP (Fig 4.5B). Results are based on nonparametric permutation-based t tests, 

and p-values are Bonferroni corrected within each factor of interest, depth, and 

metric.  

 

https://doi.org/10.1371/journal.pbio.2006842.s008 
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S4.4 Table. Comparison of beta diversity distances for within and between 

ethnicities. All values depicted are Mann-Whitney U p-values. (A) All distances 

between pairs of individuals within each ethnicity were compared between 

ethnicities across rarefaction depths 1,000 and 10,000, four beta diversity metrics, 

and with subsampling over-represented ethnicities. (B) All distances between 

pairs of individuals within and between each ethnicity were compared between 

ethnicities. (C) Mean distances between pairs of individuals within each ethnicity 

were compared between ethnicities. (D) Mean distances between pairs of 

individuals within and between each ethnicity were compared between 

ethnicities.  

 

https://doi.org/10.1371/journal.pbio.2006842.s009 

S4.5 Table. Taxa that are differentially abundant by ethnicity, sex, BMI, and 

age in the AGP and HMP. Kruskal-Wallis results for differential taxa abundance 

across metadata groupings, including FDR and Bonferroni corrected p-values, and 

taxa abundance averages within each group. Metadata factors and taxonomic 

levels are separated by excel tabs.  

 

https://doi.org/10.1371/journal.pbio.2006842.s010 
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S4.6 Table. Taxa that are correlated with ethnicity, sex, BMI, and age in the 

AGP. Results of linear (Abundance) and logistic (Presence Absence) regression 

results for differential taxa abundance across metadata factors separated by 

taxonomic level. Columns in order indicate the taxon name, the number of 

individuals with nonzero abundance; then the p-value for ethnicity alone, the p-

value Bonferroni corrected, the f-test statistic, and R2; then the same values for 

the regression with ethnicity, age, sex, and BMI together; then the abundances in 

each ethnic group; and finally the p-values for each factor broken down.  

 

https://doi.org/10.1371/journal.pbio.2006842.s011 

S4.7 Table. Genetic variants with taxa associations and detailed 1,000 

Genomes population differentiation rates (FST). Variants in red indicate the 

variant has at least one FST above the 95th percentile for high differentiation 

between at least one pair of populations. Columns I-BU represent the values for 

calculating variant FST and percentiles. The first two spaces indicate the two 

superpopulations being compared. FST indicates the rate of differentiation for 

that variant between that pair of populations. Higher indicates the number of 

variants genome- wide with a higher FST, and total indicates the total genome-

wide variants examined. The columns with chromosome indicate the number of 
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variants with higher FST and total variants on the same chromosome as the 

variant of interest. Percent indicates the number of variants with a higher FST 

divided by the total number of variants. 
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CHAPTER V 

Vanderbilt Microbiome Initiative4  

 

Author Contributions 

 Timothy Olszewski, Katie A. Friese, and Dr. Heidi J. Silver at the 

Vanderbilt Nutrition Center recruited and screened study subjects. Timothy 

Olszewski obtained subject consent, supervised visits, and gathered samples at 

the Nutrition Center. Andrew Brooks stored and aliquoted fecal and oral samples 

and then performed DNA extractions and Illumina library preparation prior to 

sequencing. Andrew Brooks worked with Karen Beeri at Vantage to perform 

metagenomic sequencing. Holly M. Smith and Jane F. Ferguson stored blood and 

urine samples, submitted samples to Metabolon for metabolomics profile 

generation, and extracted DNA from blood samples for human genotyping which 

was performed at Vantage. James C. Poland and John A. McLean performed fecal 

metabolomics profiling with funding provided by the Vanderbilt Institute for 

Infection, Immunology, and Inflammation to Andrew Brooks. William Beavers 

and Eric P. Skaar performed the metallomics profiling. Angela M. Eeds, Akos 

                                            

4 Analysis of the VMI clinical trial is currently underway, and this chapter will be updated once significant results have 

been generated. A multi’omics publication describing results from the first 18 participants will be prepared.  
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Ledeczi, Hamid Zare, Andrew Brooks, and Seth R. Bordenstein worked on study 

questionnaires and the survey application. Seth R. Bordenstein was the principle 

investigator and supervised all aspects of the project.  

 

Introduction 

  ’Omics describes techniques measuring many components of a complex 

biological system, and rapid technological advances in data generation and 

processing now allow researchers to look at multiple ’omics systems throughout 

the human body simultaneously. Combinatorial multi’omic studies allow deeper 

insights about interconnections between different physiological systems, 

particularly when measuring characteristics of human hosts, the trillions of 

microorganisms that call them home, and the multitude of abiotic molecules on 

which both depend. However, the novelty of multi’omic studies leads to 

challenges in the cost of data generation, limited tools for inter-dataset 

comparison, and researchers lacking experience in the caveats specific to each 

type of ‘omics data. Yet a more holistic view of human health can emerge with 

multi’omics, particularly if cause and effect can be attributed across systems. 

Multi’omics are particularly promising for incorporating the composition and 

genetic capacities of complex human-associated microbiomes with host systems 
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like metabolism and immunity. Additionally, each ‘omics profile serves as a 

complex snapshot in time, but temporal multi’omics sampling may be key to 

understanding how different system affect one another. Finally, diet is frequently 

the dominant explanatory variable of microbiome composition, making 

interpersonal dietary diversity a key confounding variable in human studies. The 

Vanderbilt Microbiome Initiative (VMI) seeks to comprehensively address these 

points by leveraging: multi’omics measures of systems throughout the human 

body, replication of those measures temporally, and performing this temporal 

sampling as individuals progress through a week-long controlled dietary 

intervention.  

 

Sample Location  ‘Omics Time Points Profiling 

Oral (Saliva) Metagenomics 2 
Oral microbiome composition and 

functional capacity 

Fecal Metagenomics 3-8 
Gut microbiome composition and 

functional capacity 

Fecal Metabolomics 3-8 Gut metabolites 

Fecal Metallomics 3-8 Gut trace mineral abundance 

Fecal Viromics 3-8 Gut viral and phage genomes 

Blood Metabolomics 2 Bloodstream circulating metabolites 
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Blood Genomics 2 Human SNPs genome-wide 

Urine Metabolomics 2 Urine excreted metabolites 

 

Table 5.1: ‘Omics datasets sampled in the VMI clinical trial (N=18). Yellow 

shades depict samples that were used in multiple ‘omics methods. Orange shades 

depict ‘omics methods that were performed at multiple body sites. 

 

 As in human genetics research, representative diversity has been lacking in 

the early days of microbiome research, which is predominantly represented by 

white, ancestrally-European individuals. A focus of the VMI is to capture 

multiethnic diversity across a range of ‘omics systems. Further, interpersonal 

diversity is to be weighed across ‘omics as individuals shift western diets to a 

shared vegetarian diet for four days, before returning to their own unique western 

diet. As many factors can affect the microbiome, some confounding influences 

were restricted in selection criteria, including: sexual diversity (all female), age 

diversity (18-40 years), dietary diversity (all western) and body mass index 

diversity (BMI – normal). Ideally, a study population should represent as much of 

humanities’ diversity as possible to improve extensibility of results to a wider 

sampling of people. Unfortunately, study size and diversity was limited to account 
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for costs of participant diets and multi’omics, challenges in broader ethnic 

recruitment, and maintaining statistical power to detect multi’omic and inter-

ethnic variation. Other factors were controlled for in an attempt to address two 

questions: 1) whether intra‘omics distinguishability between ethnicities will 

increase or decrease on a shared diet, and 2) whether multi’omics profiles will 

compositionally converge on a shared diet, and diverge upon returning to unique 

western diets. Currently, all of the datasets (except for the fecal viromics) have 

been generated and prepared for analysis.  
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Figure 5.1: Recruitment poster for VMI study. Participants were recruited 

through the Vanderbilt Nutrition Center, with N=18 study subjects completing 

sampling in 2018. 

 

Materials and Methods 

Inclusion and Exclusion Criteria 

Inclusion criteria: Single self-declared ethnicity (Black, White) for participant 

A DIET STUDY TO INVESTIGATE EFFECTS OF  A 
PLANT-BASED DIET ON THE 

GUT MICROBIOME  

YOU MAY BE  
ELIGIBLE: 

AGE 18 - 40 
FEMALE 

BMI 18.5 - 24.9 
 

Volunteers who qualify and 
complete the study will    
be compensated for        
participation.  
 
This 6-day study requires: 
two screening visits and  
following a plant-based,  
calorie-controlled diet for 4 
days.  

To see if you qualify, please call or email: 
615-936-0985 or timothy.olszewski@vumc.org 

Investigators are studying 
the effects of a plant based 
diet on the bacteria that 
comprise the gut microbi-
ome, which may provide 
information on health and 
disease risk. 

Date of IRB Approval: 08/06/2018
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and both parents. Female. Age 18-40 years. BMI 18.5-24.9 kg/m2. Stable weight 

over past three months.  

Exclusion criteria: No medication or dietary supplementation over past three 

months. No history of chronic disease or current illness / infection / 

inflammatory state. No tobacco use. No history of drug or alcohol abuse (> 1-2 

drinks per week). No current pregnancy or lactation validated by blood test. No 

dietary restrictions / food allergies / food intolerances. No vegetarian or vegan 

diet.  

 

Participant Recruitment and Visits 

 Participants were recruited from the greater area of Nashville, Tennessee, 

USA. All participants provided written consent forms approved by the Vanderbilt 

Institutional Review Board (IRB#: 171170). Recruitment was carried out on local 

college campuses around the Nashville area, therefore participants are biased 

toward those who attend or work at a local college and are not necessarily 

representative of the larger Nashville population. Initial visits involved consent 

and medical background screening, measurements of vitals (blood pressure, 

pulse, respiration, temperature, height, weight), and collection of the first round 

of oral saliva, urine, and blood samples (see following sampling sections for 
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specific protocols). At the initial visit to the Vanderbilt Nutrition Center, four 

days of vegetarian food were provided (three meals and one snack per day) 

alongside fecal sampling kits, gloves, and FecesCatchers. Participants were then 

asked to provide two days of fecal samples while on their normal western diet, 

consume the provided diet for four days while collecting fecal samples, then 

return to their normal western diet for two days with fecal samples collected. At 

the end of this period participants returned to the Vanderbilt Nutrition Center, 

where the final set of oral saliva, urine, and blood samples were collected. 

Questionnaires were filled out to collate personal metadata using one initial pre-

survey, daily-surveys with each fecal sample collected, and a post-survey for 

participant feedback. All personal or identifiable information was stored in 

Vanderbilt’s secure RedCap clinical trial system (https://redcap.vanderbilt.edu/), 

and survey questions were approved by the Vanderbilt Institutional Review Board 

(IRB#: 171170). 

 

Oral Sampling 

 Study participants self-collected saliva samples using the OMNIgene Oral 

Kit (DNA Genotek). All samples were collected in the morning at the participants 

time of visit to the Vanderbilt Nutrition Clinic for pre- and post-diet time points. 
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Participants were asked to avoid tooth brushing, flossing, and use of mouthwash 

for 12 hours prior to sampling. Participants were asked to avoid eating, drinking, 

or chewing gum for 30 minutes prior to sampling. At the time of sampling, 

participants were asked to wash their hands and rinse their mouth with fresh 

water. One minute after expelling water rinse, participants spit fresh saliva into 

OMNIgene Oral collection funnels to the specified fill line and closed the lid to 

introduce stabilizing solution. Finally, collection tubes were sealed and shaken for 

10 or more seconds to homogenize the sample among the stabilization solution, 

before being submitted to the research team for storage in negative 80-degree 

Celsius freezers.  

 

Fecal Sampling 

 Study participants self-collected fecal samples using Zymo DNA/RNA 

Shield Fecal Collection Tubes. Participants were instructed to collect samples 

from the first bowel movement of the day. Participants were asked to wash their 

hands and wear gloves, then place FecesCatchers across the toilet to catch fecal 

samples. After depositing the stool on the FecesCatcher, participants were 

instructed to collect a small (~1 gram) sample using the scoop in the DNA/RNA 

Shield Fecal Collection Tube, then flush the FecesCatcher and remaining stool 
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down the toilet. The collection scoop was reconnected back into the collection 

tube and vigorously shaken for 30 seconds to thoroughly homogenize the sample 

with DNA/RNA Shield solution. Samples were stored at room temperature until 

the post-study participant visit to the Vanderbilt Nutrition Center, where all 

samples were returned to researchers and stored in negative 80-degree Celsius 

freezers. 

 

Dual DNA/RNA Extraction 

Sterility Protocol: All of the following steps of aliquoting, extraction and 

metagenomics library preparation were performed in a SterilGARD III Advance - 

class II biological safety cabinet. Prior to every use the interior of the cabinet was 

thoroughly cleaned with 70% ethanol, and left for at least 15 minutes under UV 

exposure. At no point were sample tubes opened outside of the biosafety hood. 

An Eppendorf 24 sample centrifuge (ID 5424) was thoroughly cleaned with 70% 

ethanol and left in the biosafety hood throughout all extractions to minimize 

movement in and out of the hood.  

Sample Homogenization and Aliquoting: Stool samples were thawed in collection 

tubes within the biosafety hood, thoroughly shaken, and aliquoted into 1.5mL 

microcentrifuge tubes in the following amounts for downstream ’Omics: 1mL was 
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set aside for metallomics, 1mL for fecal metabolomics, 400uL for fecal 

metagenomics, 400uL for viromics. Oral samples were homogenized and 400uL 

were stored for oral metagenomics. 

Metagenomic Bead Beating: Samples totaling 300uL were aliquoted into Zymo 

Research BashingBead 2mL Lysis Tube with 0.1 and 0.5mm beads provided in the 

ZymoBIOMICS DNA/RNA Miniprep Kit (Cat. No. R2002) immediately prior to 

bead beating. Tubes were then secured into a Biospec Products Mini-Beadbeater-

96 (Cat. No. 1001, Mini-Beadbeater-96, 115 volt). Bead beating was performed at 

maximum speed for 3 minutes, left to sit for 2 minutes in bead beater to prevent 

sample overheating, and then bead beat again at maximum speed for 3 minutes.    

 

Metallomics Profiling 

 200 µL of each sample or buffer (some samples did not have 200 µL, so 

less was added as described in the sample key) was transferred to preweighed 

metal-free tubes (VWR, Radnor, PA). Tubes were weighed again to get the weight 

of each sample. Samples were acid digested in 2 mL Optima grade 70 % nitric acid 

(ThermoFisher, Waltham, MA) and 500 µL 30 % hydrogen peroxide (Sigma, St. 

Louis, MO) for 24 h at 60 °C. After digestion, 10 mL UltraPure (Invitrogen, 

Carlsbad, CA) water was added to each sample. Elemental quantification on acid-
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digested liquid samples was performed using an Agilent 7700 inductively coupled 

plasma mass spectrometer (Agilent, Santa Clara, CA). The following settings 

were fixed for the analysis Cell Entrance = -40 V, Cell Exit = -60 V, Plate Bias = 

-60 V, OctP Bias = -18 V, and collison cell Helium Flow = 4.5 mL/min. Optimal 

voltages for Extract 2, Omega Bias, Omega Lens, OctP RF, and Deflect were 

determined empirically before each sample set was analyzed. Element calibration 

curves were generated using ARISTAR ICP Standard Mix (VWR) diluted from 10 

ppm to 1 ppb in 10-fold intervals. Samples were introduced by peristaltic pump 

with 0.5 mm internal diameter tubing through a MicroMist borosilicate glass 

nebulizer (Agilent). Samples were initially up taken at 0.5 rps for 30 s followed by 

30 s at 0.1 rps to stabilize the signal. Samples were analyzed in Spectrum mode at 

0.1 rps collecting three points across each peak and performing three replicates of 

100 sweeps for each element analyzed. Data were acquired and analyzed using the 

Agilent Mass Hunter Workstation Software version A.01.02. 
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CHAPTER VI 

Conclusion  

 

Summary 

 The body of research presented here addresses a diverse set of hypotheses 

about how animal and human hosts shape their associated microbiomes. This 

breadth of topics reflects the newly appreciated importance of host-associated 

microbiomes, and exemplifies the many important questions that still need to be 

addressed in such a fledgling field. Microbiome research as a field of study may be 

new, but it draws foundational principles developed in a variety of scientific 

disciplines including ecology, evolution, microbiology, genetics, biochemistry, 

mathematics, medicine, and many others. Recent technological advances across a 

range of ‘omics approaches have unveiled an inner complexity of life within our 

bodies, and lay the groundwork to ask many fundamental questions across such 

diverse disciplines. A primary aim is translating microbiome research into clinical 

settings, with goals of improving human health, building equity across health 

outcomes, and eliminating diseases. Still, such a young field lacks uniform 

standards, methodologies, and frameworks that help bridge basic science 

principles into clinical settings. There is a long road toward proper 
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standardization, but fortunately researchers can compare human studies with 

patterns observed in more easily controlled animal model and lab settings. 

Characterizing clinical implications of basic science principles on human 

microbiome assembly will require combining basic reductionist and clinical 

results. If properly investigated, clinically translating such principles could 

provide researchers with new biomarkers and toolkits to address public health 

and human disease. The three primary projects in this body of research span a 

basic science approach to connecting host evolution and microbiome ecology, a 

big data examination of how microbiome ecology relates to ethnicity and health 

disparities, and a temporal clinical trial to holistically examine how dietary 

intervention affects meta’omics throughout the human body. While disparate 

questions were addressed in each project, the results presented here reveal novel 

insights about how animals and human shape their complex communities of 

associated microorganisms. 
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Future Directions  

The Extent of Phylosymbiosis 

 Phylosymbiosis was proposed as an alternative hypothesis to stochastic 

microbiome assembly, where host genetic variation shapes species-specific 

microbiomes that reflect the host evolutionary relationships. This understanding 

was proposed51;77 and then methodologically framed in lab settings24;49, but a key 

question is the extent to which phylosymbiosis can be detected in natural animal 

populations. Initial studies were performed on model organisms in labs because it 

had been demonstrated that diet and physiology confounded detection of an 

evolutionary signal, making strict controls necessary25;75. The extent to which 

those factors and many more can be controlled in natural settings is limited, and 

across mammals it appears that diet obfuscates phylogenetic signals in the 

microbiome across species that diverged more than 100mya23. Still, in natural and 

lab settings the observation of phylosymbiosis has utility. For one, 

phylosymbiosis connects host evolution and microbial ecology, and its 

observation could indicate of host filtering mechanisms and possibly even 

hologenome level selection, but only if other factors can be accounted for in study 

design. It was also discussed how the underlying hypotheses of phylosymbiosis 
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could be extended to understand roles of human evolution in modern microbiome 

assembly, particularly in framing divergence of human microbiomes in western 

and modernized societies. Modern lifestyles have affected human microbiomes, as 

observed through higher community divergence than would be expected relative 

to inter- and intra-specific comparisons with ancestral and more traditionally 

shaped microbiomes28;50;94;97. As the multitude of intrinsic and extrinsic influences 

on the microbiome are quantified, attributing microbiome variation to each 

confounding effect could help uncover evolutionary signals. Under controlled 

conditions phylosymbiosis could offer utility as a null hypothesis, against which 

alternative evolutionary principles could be tested for microbiome associations. In 

this light, it will be interesting to explore under which conditions phylosymbiotic 

signals disappear. In simulations for example, it was shown that modeling 

phylosymbiosis could manifest a signal simply through host filtering related to a 

single trait, like changing pH in the gut environment that correlates with 

phylogeny392. Among natural populations there are likely many more factors with 

influential roles on a phylosymbiotic signal, but this reductionist modeling 

highlights how simulations leveraging ecological principles can explain real world 

patterns. This is because phylosymbiosis provides useful hypotheses that are 

extensible across circumstances and diverse metazoan. Like other ecological and 
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evolutionary principles, it will likely take many years to disentangle the factors 

that shape phylosymbiosis, but that process would itself yield many interesting 

discoveries. Ultimately, a wide variety of other questions could be asked 

pertaining to phylosymbiosis, but for clinical applications the most interesting 

will be what aspects of phylosymbiotic hypotheses can be applied to modern 

human microbiomes.    

 

How could Ethnicity-Associated Microbiomes Contribute to Personalized 

Therapies?5 

Recently, studies have explored the role that ethnicity plays in gut 

microbiome assembly, uncovering subtle but reproducible differences in 

microbiome composition that could result from ethnic individuality in factors of 

diet, lifestyle, socioeconomic conditions, cultural practices, and genetic 

ancestry35;393;394. Variation within each factor has been linked to microbiome 

composition, and thus each could underlie ethnicity-associated 

microbiomes1;4;7;11;13;25;30-32;36;37;94;105;335;344;395-399. Unfortunately, in studies across 

global populations factors like geography and lifestyle covary with ethnicity, 

                                            

5	This	work	is	published	in	Future	Microbiology:		Brooks	AW.	(2019).	How	could	ethnicity-associated	microbiomes	contribute	to	

personalized	therapies?	Future	Microbiology.		
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making individual effects indistinguishable27;98;99;344;400;401. However, three recent 

studies have eliminated geographic variation and reduced social and cultural 

variation by examining multiethnic populations within the Netherlands, United 

States, and Israel35;393;394. Microbiome variation was observed at the community 

and individual taxon levels across ethnicities in the Netherlands and United 

States393;394, but environmental effects dominated in the Israeli population where 

authors note homogeneous lifestyles across the six ethnic groups35. This 

highlights the important nuance that no two ethnicities are the same, and that 

ethnicity-associated microbiome differences will be subjective to the ethnic 

groups being compared and the larger context in which they reside. Given the 

subtlety with which ethnicity-associated microbiome variation has been observed, 

and the subjectivity of such variation to the individual, ethnicity, and larger 

national context, what utility could ethnicity-associated microbiomes contribute 

to personalized therapies? 

Notably, ethnicity demarcates risk for many diseases with disproportionate 

burdens in one or more ethnic groups, and these health disparities cost hundreds 

of billions of dollars annually in the United States alone162;342;355;366;402-404. Ethnic 

health disparities present a key target for personalized medicine, where health 

interventions will be tailored to each individual, their health circumstance, and 
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ethnicity as one of many potential criteria. Many health disparities also associate 

with microbiome composition, establishing a tripartite relationship between 

ethnicity, the gut microbiome, and health outcomes43;103;339;340;380;405-408. These 

associations inform the hypothesis that ethnicity-associated microbiome 

composition can be used to link the influence of factors like ethnicity-associated 

dietary or cultural patterns with health disparity etiology. While individuals, 

organizations, and governments are working to address public policy and societal 

factors underlying health disparities, medical researchers also have the capacity to 

leverage ethnicity-by-microbiome and disease-by-microbiome associations to 

build a foundation for ethnic-specific therapies. An obvious but worthwhile 

approach would be to target ethnicity-associated microbiome compositions 

directly with tools like probiotics, fecal microbiome transplantation, or even 

phage therapies. However, our understanding of ethnicity-associated microbiomes 

is in its infancy, and any such interventions will require years of further research 

and clinical trials before widespread implementation is possible. To spur much 

needed inclusion of diversity in microbiome research and build a foundational 

understanding of the ethnicity-microbiome-disparity intersection, two potential 

approaches of how ethnicity-associated microbiome could be leveraged today will 

be considered. 
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Ethnicity-associated microbiomes: a proxy for factors explaining microbiome 

assembly 

Ethnicity captures a complex array of dietary, socioeconomic, cultural, 

lifestyle, and genetic factors to varying degrees, making it difficult to disentangle 

which, if any, of these factors play a role in microbiome composition. However, 

when microbiome composition covaries with ethnicity and one of these factors, it 

could serve as an indication that the factor itself may explain ethnicity-associated 

composition. The question is whether such patterns are informative in 

disentangling the role of each factor in ethnicity-associated microbiome assembly 

without validation in large, comprehensively phenotyped, multiethnic studies. 

Many studies are examining how factors like diet or genetics shape factor-

associated microbiomes, but as with much of microbiome research these are in 

smaller and generally ethnically homogeneous populations4;7;11;13;335;409;410. Still, 

through reductionist means these studies are isolating microbiome composition 

shaped by associated factors;factors which may also vary across ethnicities and 

contribute to ethnicity-associated microbiomes. The problem is that identifying 

which factors like diet or lifestyle vary between ethnicities and lead to meaningful 

biological variation in the microbiome is difficult. For researchers though, 



 

 225 

identifying factor-associated microbiome variation that overlaps with ethnicity-

associated microbiome variation could serve as an indicator that a factor varies 

ethnically and is playing a biologically meaningful role in microbiome assembly. 

Critically, using data available today would mean comparing microbiome patterns 

across different study populations, and the caveat must be acknowledged that 

most factor-associated microbiome variation identified to date is in Caucasian 

majority populations. With potential pitfalls, what makes this approach 

worthwhile? 

 Ethnicity-associated microbiome variation appears to be subtle393;394, 

requiring large, multiethnic study populations to detect its signal. Fortunately, 

large microbiome projects and biobanks are now emerging that facilitate 

ethnicity-microbiome studies, and ethnicity is in general consistently and reliably 

declared in individual’s electronic health records67;342;343;411. On the other hand, 

factor-associated microbiome studies require careful controls to eliminate 

confounding variables, favoring smaller and ethnically homogeneous populations. 

Factors like diet and lifestyle have a complex array of underlying variables that 

could be measured, few of which are regularly assessed during medical visits and 

seldom appear in electronic health records. This is notable because measuring all 

complex factors that could influence the microbiome in large multiethnic 
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populations is prohibitively invasive and costly, while carrying out factor-

associated microbiome studies between each pair of ethnicities in their subjective 

context would quickly become exhaustive. By comparing microbiome variation in 

smaller factor-associated studies with microbiome variation observed across 

ethnicities in large studies, the amount of overlapping variation could be used as a 

proxy ranking for which factors more likely contribute to ethnicity-associated 

microbiome assembly. Caveats of this data-driven approach include cross 

population comparisons, ethnicity-associated microbiome composition potentially 

overlapping variation of multiple confounding factors, and the inability to directly 

prove causal effects on microbiome assembly. Still, such an approach could be a 

powerful tool to generate hypotheses about which factors play roles in ethnicity-

associated microbiome formation. Further, prescribing changes to factors like diet 

or lifestyle identified in this approach could serve as therapies to manipulate 

ethnicity-associated microbiomes, especially if composition is linked to health 

disparities, as discussed below.  

 

Ethnicity-associated microbiome composition in health disparity etiology  

Health disparity inequality manifests as different disease risks across 

ethnicities, and therefore ethnicity-associated microbiome composition could 
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associate with disparity risk342;343;355. Many health disparities have been correlated 

with microbiome composition as well, but it has not been established if disease-

associated microbiome variation overlaps with ethnicity-associated microbiome 

variation43;103;339;340;380;405-408. Just as overlapping factor-associated and ethnicity-

associated microbiome variation could serve as proxies for factors contributing to 

microbiome assembly, overlapping disease-associated and ethnicity-associated 

microbiome variation could serve as a proxy for microbiome variation more likely 

to be linked with disparity etiology. Certainly, identifying overlap would not 

establish whether microbiome variation is causal, consequential, or only 

tangentially associated to disparity etiology. With this said, overlap could be used 

to rank which disparities have the potential to be mediated by ethnicity-associated 

microbiome variation. 

The true strengths of this approach lie in more nuanced examination. 

Microbiome variation associated with age and ethnicity had little overlap in 

younger and healthier individuals in the United States394. However, it is unknown 

how ethnicity-associated microbiomes change as individuals age, which will be 

important to investigate, as most disparities have onset at later ages. If ethnicity-

associated variation changes with age, does overlap with disparity-associated 

microbiome composition exist lifelong, increase with age, or manifest around the 
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normal age of disparity onset? Ethnicity-associated and disparity-associated 

microbiome variation could also overlap across multiple diseases, indicating that 

while disease phenotypes may be distinct, the underlying biological etiology may 

be shared. It will be particularly interesting to explore whether groups like 

autoimmune or metabolic disparities that share increasing risk within an ethnicity 

will also overlap in the same sets of ethnicity-associated microbiome composition. 

Combined with the first approach, overlapping factor-associated, ethnicity-

associated, and disparity-associated microbiome composition could provide 

unique insights into the mechanisms worth investigating as drivers of disparities. 

As available data grows the variety of questions that could be asked grows as well, 

and many insights about the potential for personalized therapies could be gained 

in the near term by creatively connecting ethnicity-associated microbiome 

assembly to disease etiology. 
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Conclusion 

Growing awareness that ethnicity-associated microbiome composition exists will 

hopefully lead researchers to increase ethnic diversity in microbiome study 

recruitment, particularly for studies of diseases that present as health disparities. 

Ultimately, multiethnic studies targeting a single factor or disparity will be 

necessary to attribute causality in the ethnicity-microbiome-disparity intersection, 

but the insights that could be gained by leveraging big data in approaches like 

these may help inform which targets are worth pursuing. Ethnicity is a complex 

concept subjective to the individual and environmental context, with each 

ethnicity varying differently for a range of factors like diet, lifestyle, culture, and 

genetics. Exhaustively investigating every combination of ethnicities, factors, and 

disparities for their microbiome relationship is untenable, and so creative and 

targeted approaches will be necessary to accelerate personalized therapies related 

to ethnicity-associated microbiomes. The details of each of these approaches are 

less important than fostering the mindset that existing ethnicity-associated 

microbiome composition can be utilized now, and that barriers in cost and 

recruitment time for multiethnic clinical trials should not prevent investigations 

of how the microbiome could mediate health disparities. As a culture, addressing 

injustices in access to healthcare and fresh food, socioeconomic mobility, and 
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many other factors underlying disparities is an ideal but protracted avenue to 

pursue equality in health outcomes. Right now, practical approaches leveraging 

ethnicity-associated microbiomes for clues about contributing factors, underlying 

etiologies, and lifestyle interventions for health disparities are worth pursuing if 

they can ameliorate even some inequality in disparity risk. 
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Closing Remarks 

“I am large, I contain multitudes.” – Walt Whitman (Leaves of Grass)  

 The multitude of viewpoints, beliefs, and emotions that make each of us 

unique in Walt Whitman’s eyes are analogous to the multitudes of 

microorganisms, enzymes, metabolites, and minerals that make each of us 

biologically distinct. In search of health equality our biological complexity must 

be characterized across the breadth of human diversity to develop treatments that 

work for all. Even broader is the diversity of metazoans with which we share this 

world, and it would be foolish to discount the insights we can make by marrying 

basic, model organism, and clinical studies across humans and animals. 

Microbiome research as a new scientific field is still like the wild west, it begs for 

structure and standardization, but also allows creative minds to investigate 

without preconceived notions and assumptions. As our understanding develops 

alongside novel tools like probiotics and FMT, perturbing the microbiome will 

become more accessible, effective, and hopefully provide a leap forward in our 

ability to shape human health. 
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