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CHAPTER I 

 

SYNTHESIS OF FOUR ISOMERIC LINOLEIC TRIOLS 

 

 

The role of linoleic acid in the mammalian epidermal water barrier 

 

It has been observed since 1929 that certain polyunsaturated fatty acids are required in the 

diet1 (Figure 1.1). These essential fatty acids (EFA) form a diverse array of bioactive lipid 

mediators that act on a large number of selective receptors in nearly every tissue and cell in the 

body.2 In this way, EFA signaling influences nearly every process in human physiology. It is 

therefore of no surprise that excessive actions of EFA derived mediators are implicated in heart 

disease, cancer proliferation, mental health disorders, and numerous other diseases, including EFA 

deficiency and ichtyosis.2  

The hallmark sign of EFA deficiency, scaly skin, is associated with epidermal water loss 

due to failure to form a functional epidermal water barrier.3 This phenotype is also observed as a 

result of the human genetic disorders of ichthyosis, a disease characterized by “dry, thickened, and 

scaly skin”.3 In rats with EFA-deficiency, one common observation is increased water 

consumption due to trans-epidermal water loss.3 

 

	
	

Figure 1.1 Essential fatty acids, arachidonic acid and linoleic acid 

	
Reintroduction of linoleic acid into the diet of EFA-deficient rats results in increased growth in 

size due to the effect of linoleate restoring the epidermal water barrier.1 Interestingly, all members 

of the linoleic acid family show restoration of the epidermal water barrier and increased growth of 
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these rats. Introduction of arachidonic acid to the diet of EFA-deficient rats showed restoration of 

the epidermal water barrier and even greater growth in size than linoleate. These results led some 

to infer that arachidonic acid was the essential fatty acid, and that linoleic acid (18 carbons) serves 

as a precursor for arachidonate (20 carbons). This hypothesis was turned on its head when linoleic 

acid-rich lipids such as linoleate glucosylceramide, linoleate ceramide, and linoleate very long 

chain fatty acid were identified in human, rat and pig epidermal tissue1 (Figure 1.2).  

 

 

 
 

Figure 1.2 Structures of linoleic acid-rich ceramides. 

 

 

In fact, arachidonic acid was almost completely absent from the outer epidermal tissue. While it 

was unclear whether these lipids serve as structural components of the intact water barrier or 

whether the oxidation of the linoleic moiety was essential, these lipid bodies were known to be 

important in formation of the epidermal water barrier. The final thread of evidence came in 1986, 

when Hansen showed that while arachidonate restored the epidermal barrier in EFA-deficient rats, 
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only linoleate was found in the epidermal ceramides, suggesting a conversion of arachidonate to 

linoleate.1 With linoleic acid being recognized as the essential fatty acid in barrier formation, 

attention turned to investigating the structural role of the linoleate-rich epidermal ceramides.3,4,5 

In order to understand the role of linoleate-rich ceramides, an understanding of how the 

mammalian epidermal water barrier forms is necessary, starting with defining corneocyte 

structure. Corneocytes are dead flat cells that make up the outer epidermis in mammalian skin.4,5 

Each corneocyte is surrounded by a layer of polymerized protein, called the corneocyte envelope 

(Figure 1.3). The ω-hydroxyl-very long chain fatty acids (VLFA) of epidermal ceramides are 

covalently bound to these polymerized cross-linked proteins, constituting the corneocyte lipid 

envelope (Figure 1.4). It is this covalent linkage between lipids and the underlying protein that 

creates a waterproof barrier in the outer epidermis.4,5  

 

 
 

Figure 1.3 Representation of relationship of corneocytes, cornified envelope, corneocyte lipid 
envelope and lipid lamellae 
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Figure 1.4 Covalent bond between very long chain fatty acid of the epidermal sphingoside and the 
cornified lipid envelope, forming the mammalian epidermal water barrier  
 

 

The absence of this linkage leads to trans-epidermal water loss and the symptoms of 

congenital icthyosis. While many genes must work in concert to establish the mammalian 

epidermal water barrier, a single mutation in one leads to ichthyosis (Figure 1.5). One such gene 

product, 12R-lipoxygenase (12R-LOX) is essential.6 Mutation or deletion of 12R-LOX shows a 

remarkable reduction in covalent linkage of ω-hydroxyl-VLFA ceramides to the corneocyte 

envelope. Additionally, absence or mutation of epidermal lipoxygenase 3 (eLOX3), leads to ~50% 

reduction in covalent linkage between the two.6 While the importance of 12R-LOX, eLOX3, and 

linoleic acid is irrefutable, their mechanism and roles were unknown until recently.  
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Figure 1.5 Conversion of linoleate-rich ceramide to covalently-bound ceramide, through 
previously unknown enzymatic means 

 
 
 

In 2011, the Brash group reported that the linoleic moiety of the epidermal ceramides is 

selectively oxidized by 12R-LOX, yielding the 9R-hydroperoxide (9R-HPODE) derivative (Figure 

1.6).3,6  
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Figure 1.6 Linoleate-containing ceramide, a substrate for oxidation and conversion of linoleate 
moiety to the 9R-hydroperoxide derivative via 12R-LOX 

 

 

 

eLOX3 in turn catalyzes the conversion of 9R-HPODE specifically to the 9R,10R-epoxy-13R-

hydroxy-epoxyalcohol derivative (Figure 1.7). These oxidative events were shown to be necessary 

for formation of the epidermal water barrier, as absence of LOX metabolites were correlated with 

failure to form the cornified lipid envelope.3,6 

 
Figure 1.7 Conversion of the 9R-hydroperoxy linoleic acid metabolite to the 9R,10R,13R-
epoxyalcohol by eLOX3  

 
 

Recently, the selective hydrolytic opening of the epoxide moiety of this epoxyalcohol was shown 

to afford the trihydroxy derivative. This transformation, catalyzed by epoxide hydrolase 3 (EH3) 

or soluble epoxide hydrolase (sEH) was shown to be essential for barrier formation as well (Figure 

1.8).7 
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Figure 1.8 Conversion of the 9R,10R,13R-epoxyalcohol of linoleic acid to the 9R,10R,13R-
trihydroxy linoleic acid 
 

At this point, the oxidized linoleate triol moiety is hydrolyzed, allowing the ω-hydroxyl-VLFA to 

covalently bind the cornified envelope and create an intact barrier (Figure 1.9).4,5 These findings 

shine light on an important physiological process. It is the formation of the epidermal water barrier 

that allows life on dry land to exist, and for practical purposes this work has huge implications in 

understanding atopic dermatitis, a condition of large clinical importance.8 

 

 
 

Figure 1.9 Oxidation of linoleate-rich ceramides by 12R-LOX, eLOX-3, and EH3, leading to an 
intact epidermal water barrier 
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While much has been learned, gaps in our understanding of this process remain. First, many 

isomers can and are produced via this oxidative pathway, albeit, some in minor amounts. 

Epoxyalcohols of varying stereochemistry at the 9,10 and 13 position can be opened to form either 

the 9,10,13-trihydroxy linoleic acids (1.1-1.4) or the 9,12,13-trihydroxy linoleic acids (1.5-1.8) 

(Figure 1.10). Analysis of these isomers is critical for furthering our understanding of barrier 

formation. This is complicated by the difficulty in identifying and quantifying the linoleate triols 

produced in this process, as isomers possess nearly identical chromatographic and spectroscopic 

properties. While several synthetic routes to access the 9,12,13-trihydroxy series have been 

developed8-14, the 9,10,13-trihydroxy series has yet to be synthesized. Further study will be greatly 

advanced with the aide of isomerically pure synthetic standards. With this, and the importance of 

other lipid mediators in mind, we sought a common synthetic strategy to allow access to lipid 

mediators of interest, including the linoleic triols described. 

 

 
 

Figure 1.10 Eight possible linoletae-trihydroxy isomers produced via epoxyalcohol opening 
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Synthesis of Key Building Blocks 

 

Our lab is interested in the chemical synthesis of a variety of lipid metabolites, due to their 

interesting structural motifs and to be defined biological profiles. When looking at this diverse 

subset of natural products, a few common structural themes arise. The prevalence of 1,2-diols of 

varying stereochemistry appears frequently, and an allylic alcohol with a pentyl-chain is a common 

motif. We hypothesize the use of isomeric alkynes 1.9-1.12 and building blocks 1.13 and 1.14 can 

be used as common intermediates toward a wide array of lipid mediators, including linoleic triols, 

hemiketals, and isofurans (Scheme 1.1). Our synthetic strategy toward the diastereomeric linoleic 

triols benefits from insights gained during our synthetic studies directed towards hemiketal D2, 

hemiketal E2, and the isofurans, thus these will be briefly discussed.  

 

 
 

Scheme 1.1 General synthetic strategy toward lipid mediators 
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Our synthetic strategy directed towards hemiketal D2 starts from alkyne 1.11, which is synthesized 

from the L-tartaric acid (Scheme 1.2). A one-pot acetal protection and Fischer esterification affords 

1.15 in good yields and subsequent treatment with lithium aluminum hydride affords the desired 

diol 1.16.15 Mono-protection of diol 1.16 with tert-butyldiphenylchlorosilane yields alcohol 1.17 

in 79% yield.15,16 Conversion of the alcohol to the corresponding triflate 1.18 followed by 

displacement with lithium trimethylsilyl acetylide then affords the alkyne 1.19.16 Removal of the 

TBDPS protecting group with tetrabutylammonium fluoride affords the alkynyl building block 

1.11 in 66% yield over 3 steps.16 

 

 
 

Scheme 1.2 Synthesis of alkyne 1.11 from L-tartaric acid 

 

 While developing this route, we observed triflate 1.18 to be moderately stable in solution and 

minimally stable to silica gel chromatography. Inspired by a report from Sakai and co-workers 

(Scheme 1.3), we considered an alkyl halide or tosylate as alternative substrates that would be 

significantly more stable and potentially avoid the use of a TBDPS protecting group.17 With this 

intent, we investigated a variety of leaving groups (Scheme 1.4) as potential alternatives to the 

unstable triflate 1.18. 
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Scheme 1.3 Alkynyl displacement reported by Sakai 

 

Diol 1.16 was mono-protected with p-toluenesulfonyl chloride, yielding a potential 

substrate for displacement (1.22), and could be converted to the bromide 1.20 via Finklestein 

conditions (Scheme 1.4).17 This method proved low yielding, and alternative strategies were 

explored. Starting from alcohol 1.17, Appel conditions afforded the bromide or iodide 1.23 and 

1.24, respectively, which were investigated as potential substrates.18 De-protection of 1.23 or 1.24 

with TBAF afforded the corresponding alcohols 1.20 and 1.25, offering two more potential 

substrates for the desired displacement. Conversion of the alcohol 1.27 to the mesylate 1.26 

proceeded in 88% yield (Scheme 1.4).19 

 
 

Scheme 1.4 Synthesis of substrates as potential alternatives to triflate 1.18 
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We were very encouraged when, in our hands, the displacement reported by Sakai and co-

workers was reproduced in almost identical yields (ca. 70%), and we found the bromide starting 

material 1.20 to be bench stable (Scheme 1.5).16 Using the conditions from Sakai, we attempted 

displacement of the bromide with the preferred trimethylsilyl acetylide in place of 1-pentyne. To 

our dismay, only trace amounts of the desired product 1.11, and allene 1.27 were isolated from the 

reaction. We reasoned that the excessive equivalents of n-butyllithium were leading to 

decomposition, however, despite many attempts to optimize the reaction conditions, we could not 

encourage displacement without excess n-butyllithium. A variety of conditions utilizing lithium 

acetylide ethylene diamine complex were examined20, but only starting material was recovered 

from these attempts (Scheme 1.5).  

 

 
 

Scheme 1.5 Select examples of displacement conditions with bromide 1.20 
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Undeterred, we turned our attention to other leaving groups. Using a variety of conditions, 

we saw either recovery of starting material or complete decomposition in the case of tosylate 1.22, 

iodide 1.25, or mesylate 1.26 (Scheme 1.6). It should be mentioned that treatment of triflate 1.18 

with lithium acetylide-EDA complex led to decomposition only. To our surprise, treatment of 

iodide 1.24 under Sakai’s conditions, with trimethylsilyl acetylide, afforded allene 1.27 in 75% 

yield with no observed decomposition. 

 

 
 

Scheme 1.6 Select examples of displacement conditions and substrates 

 

Allene formation is only observed under conditions of excessive n-butyllithium and 

trimethylsilyl acetylide. Under analogous conditions utilizing the lithiate of pentyne, no allene 

formation is observed. The d-orbitals of silicon presumably provides greater stabilization of the 

intermediate lithiate anion than the alkyl chain of 1.21 (Scheme 1.7). To suppress undesired 
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of the linoleic triols 1.1-1.4 in a more convergent approach, or 1.30 could be used to install the 

ω-side chain of HKE2 (Scheme 1.7). 

 

 
 

Scheme 1.7 Formation of 1.27 through anion stabilization and proposed alternative nucleophiles  

 

While interesting, these results were not followed up, due to the need for high 

concentrations of HMPA and a large excess of n-butyllithium (Scheme 1.6). After an exhaustive 

screen of conditions, leaving groups, and nucleophiles, our original conditions to convert triflate 

1.18 to alkyne 1.19 using THF and NMP as the solvent system at -20 °C were found to be the 

highest yielding, and to date this reaction has been run on as many as 20 grams of material. 

Efforts towards hemiketal E2 required an efficient synthesis of cis-acetonide alkyne 1.10. 

Starting from commercially available 2-deoxy-L-ribose, acetal protection followed by Colvin 

rearrangement afforded the desired alkyne in good yields and only two synthetic steps (Scheme 

1.9).23 This chemistry has been demonstrated on a 20 gram scale in regards to the acetal protection 

and a 5 gram scale in regards to the Colvin rearrangement.  
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Scheme 1.8 Synthesis of alkyne 1.10 from 2-deoxy-L-ribose 

 

With these robust routes to isomeric alkynes 1.11 and 1.10 in place, we turned our attention 

to the total synthesis of the epimeric linoleic triols 1.1-1.4 (Scheme 1.10). The synthesis of triols 

1.1 and 1.3 started from alkyne 1.9, which was synthesized from D-tartaric acid (Scheme 1.10).15,16  

 

 
 

Scheme 1.9 Strategy toward triols 1.1 and 1.3, from 1.9, 1.13 and 1.32 

 

Conversion to the corresponding methyl ester 1.33 has been performed starting from 100 

grams of D-tartaric acid, and reduction of ester 1.33 has been demonstrated on as much as 120 

grams of material. Mono-protection and the triflation-displacement-de-protection sequence all 

proceeded as expected (Scheme 1.11). We have found two ways to successfully handle the unstable 

triflate intermediate. The crude reaction mixture can be quickly filtered through a plug of silica to 

afford crude triflate, which must be used immediately in the next reaction. If the triflate must be 

stored, it must be concentrated from benzene three times and stored under vacuum over P2O5 until 

further use.  
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Scheme 1.10 Synthesis of alkyne 1.9 from D-tartaric acid 

 

Triols 1.2 and 1.4 were synthesized starting from 2-deoxy-L-ribose derived alkyne 1.10, using the 

same vinyl iodide 1.32 and phosphonate building block 1.13 as triols 1.1 and 1.3 (Scheme 1.12).  

 
 

Scheme 1.11 Strategy toward triols 1.2 and 1.4, from 1.10, 1.13 and 1.32 

 

Our necessary phosphonate 1.13 was synthesized in one step via Claisen condensation of dimethyl 

methylphosphonate and methyl hexanoate in 79% yield (Scheme 1.13).24 Synthesis of vinyl iodide 

1.32 began from pentynol. Reaction with Jone’s reagent afforded the carboxylic acid25, which was 

immediately treated with Cs2CO3 and MeI to afford the methyl ester 1.3626 in a 32% yield over 2 

steps. Radical-mediated hydrostannylation27,28 followed by tin-iodine exchange yielded the known 

vinyl iodide 1.3229 (Scheme 1.13). 
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Scheme 1.12 Synthesis of vinyl iodide 1.32 and phosphonate side chain 1.13 
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Total Synthesis of Linoleic Triols 

 

 With our key building blocks in hand, alkyne 1.9 and vinyl iodide 1.32 were subjected to 

Sonogashira conditions to afford the desired enyne 1.38 in 84% yield (Scheme 1.13). We then 

sought to reduce the enyne moiety to the corresponding alkane 1.39. Attempted enyne reduction 

using palladium on carbon under 1 atm of hydrogen and ethyl acetate as the solvent produced no 

reaction.  

 

 
Scheme 1.13 Successful sonogashira coupling of 1.9 and 1.32, followed by failed hydrogenation 
of the enyne moiety 
 

When subjected to hydrogenation conditions in methanol, an inseparable mixture of semi-reduced 

alkene products was obtained (Scheme 1.15). In an attempt to optimize these more promising 

conditions, the hydrogenation was attempted at 44 psi of hydrogen. These harsher conditions led 

to acetal deprotection and afforded, again, an inseparable mixture of semi-reduced alkene products 

(Scheme 1.15).  
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Scheme 1.14 Attempted hydrogenations of enyne 1.38  

 

Reduction conditions reported by Jiang and co-workers utilizing a NiCl2/NaBH4 complex as the 

hydrogen transfer reagent proceeded to cleanly reduce the enyne without acetal deprotection.30 

Using NiBr2 in place of NiCl2 we successfully reduced enyne 1.40 to alkane 1.41 in >95% yield 

(Scheme 1.16). In hopes of developing a route free from silyl-protecting groups, we attempted 

these conditions to reduce enyne 1.38 to alcohol 1.39. Using this substrate, semi-reduction to an 

inseperable mixture of alkenes was observed. This problem was solved by simply changing the 

order of addition to the reaction mixture. We found addition of NaBH4 to pre-complexed NiBr2 

and alcohol 1.38 resulted in complete, quantitative conversion of enyne 1.38 to alcohol 1.39 

(Scheme 1.16).  

 

 
 

Scheme 1.15 Successful hydrogenation of enyne 1.40 and 1.38 using Borohydride-Nickel(II)-
complex  
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Next, oxidation of alcohol 1.39 with Dess-Martin periodinane afforded the corresponding aldehyde 

that was directly subjected to Horner-Wadsworth-Emmons conditions to afford the desired enone 

1.43 in 79% yield over two steps (Scheme 1.17). Reduction of the enone under Luche conditions 

yielded the epimeric alcohols 1.44 and 1.45 as a 1:1 mixture of isomers, which were separable by 

flash column chromatography (Scheme 1.18). The stereochemistry of the epimers was assigned 

using Mosher ester analysis, which will be discussed following the results of our synthetic efforts. 

 

 
 
Scheme 1.16 Oxidation and Horner-Wadsworth-Emmons reaction to afford enone 1.43, followed 
by Luche reduction of enone 1.43, yielding epimeic alcohols 1.44 and 1.45 
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Acetal de-protection under standard conditions gives the desired triols 1.46 and 1.47 in good yields 

and only 30 minute reaction times (Scheme 1.19). The resultant methyl ester 1.47 was hydrolyzed 

and used as a standard for the study of epoxide hydrolase activity in forming the epidermal water 

barrier.7 

 

 
 

Scheme 1.17 Acetal de-protection affording trihydroxy linoleate esters 1.46 and 1.47, followed by 
hydrolysis of 1.47 to yield acid 1.1 
 

 

 Turning our attention to triols 1.2 and 1.4, Sonogashira coupling of alkyne 1.10 and vinyl 

iodide 1.32 gave the desired enyne 1.48 in 81% yield. Using our optimized conditions, enyne 1.48 

was reduced to alcohol 1.49 in quantitative yield (Scheme 1.20). 30 

gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

OO

C5H11

1:1 THF/4M HCl
30 min, 77%

C5H11

OH

HO

OH

OH

OO

C5H11
HO

1:1 THF/4M HCl
30 min, 86%

C5H11

OH OH

1M KOH
MeOHOH

CO2Me

CO2Me

OH OH

OH

OH OH

OH

CO2H

CO2H

1.44

1.45

1.46

1.47

1.3

1.1

CO2Me

CO2Me

1M KOH
MeOH

63%



	
22 

 
 
Scheme 1.18 Sonogashira coupling of 1.10 and 1.32, followed by hydrogenation to afford alcohol 
1.49 and oxxidation and Horner-Wadsworth-Emmons reaction to afford enone 1.51, followed by 
Luche reduction of enone 1.51 yielding epimeric alcohols 1.52 and 1.53 

 
 

Oxidation and subseuquent Horner-Wadsworth-Emmons reaction gave the enone 1.51 in 82% 

yield over two steps (Scheme 1.21). Reduction of enone 1.51 using Luche conditions gave a 1:1.3 

ratio of isomers 1.52 and 1.53 (Scheme 1.22) and the stereochemistry of each epimer was assigned 

using Mosher ester analysis.  

 Lcareer should uche conditions afford a mixture of isomers, which were separated, and 

carried forward. Acetal de-protection proceeded as expected, affording the desired triol methyl 

esters in good yields (Scheme 1.23). Ester 1.55 was hydrolyzed to acid 1.2 and, along with 1.1, 

used as standard to study the epoxide hydrolase activity discussed earlier.7  
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Scheme 1.19 Acetal de-protection affording trihydroxy linoleate esters 1.54 and 1.55, followed by 
hydrolysis of 1.55 to yield acid 1.2 

 

 

Determination of Stereochemistry 

 

Among the many methods used to determine absolute stereochemistry of non-racemic molecules, 

Mosher ester analysis is the most common.31 The alcohol of unknown stereochemistry is esterified 

with a chiral carboxylic acid of known stereochemistry, MTPA being the most common. The first 

step of the analysis is coupling of the alcohol to both enantiomers of Mosher’s acid (MTPA).31 To 

determine absolute configuration, alcohols 1.44, 1.45, 1.52, and 1.53 were each esterified with 

both (R)-MTPA and (S)-MTPA to afford Mosher esters 1.56-1.63 (Scheme 1.20). To demonstrate 

the analysis, alcohol 1.53 will be used as an example.  
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Scheme 1.20 Synthesis of Mosher esters 1.56-1.63 

 

 

The Mosher ester method relies on the empirical conformation of each diastereomer (1.58 

and 1.59) in the s-trans configuration with the trifluromethyl, secondary alcohol and carbonyl 

groups all syn-coplanar to one another (Scheme 1.21). 
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Scheme 1.21 Model conformation for Mosher ester analysis 

 
1H NMR spectroscopy is then used and the spectra of both the (R) and (S)-MTPA 

diastereomers (1.58 and 1.59) are analyzed. The phenyl ring of the MTPA is known to shield the 

protons residing above and below it through anisotropy. The consequence of this shielding effect 

is a large difference in the chemical shift between the (S) and (R) diastereomers. These shifts are 

recorded in a table and the change in shift between (S) and (R) diastereomers (ΔS,Rδ) is recorded. 

In this case, we can determine the configuration of the secondary alcohol moiety of 1.53 to be (R). 

The anisotropic effect of the phenyl ring has shielded the alkenyl proton, moving its shift further 

upfield. Through conformational analysis this means the alkenyl proton is below the phenyl ring 

of the (R)-Mosher ester, which is only possible (in this case) if the secondary alcohol is of the (R) 

configuration. 
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1.53 δ (ppm) 1.58 δ (ppm) 1.59 δ (ppm) ΔS,Rδ (ppm) 
5.84 5.79 5.78 0.01 
5.64 5.75 5.60 0.15 

  5.48 5.47 0.01 
4.13 4.13 4.13 0 
3.97 3.96 3.94 0.02 
3.65 3.64 3.64 0 
2.28 2.30 2.30 0 

 

Figure 1.11 Chemical shifts of 1.53, 1.58, and 1.59 and ΔS,Rδ  of 1.58 and 1.59 
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Experimental Methods 

 

General Procedure: All reactions sensitive to air or moisture were conducted in flame-dried or 

oven dried glassware under an atmosphere of argon. Reaction temperatures were controlled 

using a thermocouple thermometer and analog hotplate stirrer. Reactions were conducted at 

room temperature (rt, approximately 23 °C) unless otherwise noted. Flash column 

chromatography was conducted using silica gel 230-400 mesh. Analytical thin-layer 

chromatography (TLC) was performed on E. Merck silica gel 60 F254 plates and visualized 

using UV, p-anisaldehyde stain, and potassium permanganate stain. Yields were reported as 

isolated, spectroscopically pure compounds.  

Materials: Solvents were obtained from either an MBraun MB-SPS solvent system or freshly 

distilled. THF was distilled from sodium/benzophenone. MeOH was dried over magnesium and 

stored over molecular sieves. CH2Cl2 and N-methylpyrrolidinone were dried over CaH2, 

distilled, and stored over molecular sieves. Et3N and diisopropylethylamine were dried over 

CaH2, distilled, and stored over KOH pellets. Oxalyl chloride was distilled fresh, prior to use. All 

starting materials and reagents were used as received unless noted otherwise. The molarity of n-

butyllithium solutions was determined by titration using diphenylacetic acid as an indicator 

(average of three determinations).  

Instrumentation: 1H NMR spectra were recorded on Bruker 400, 500, or 600 MHz 

spectrometers and are reported relative to deuterated solvent signals. Data for 1H NMR spectra 

are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q 

= quartet, p = pentet, m = multiplet, br = broad, app = apparent), coupling constants (Hz), and 

integration. 13C NMR spectra were recorded on Bruker 100, 125, or 150 MHz spectrometers and 

are reported relative to deuterated solvent signals. Mass spectra were recorded on a Waters 

Synpat G2S HDMS spectrometer. 

 

 



	
31 

1.15: To a suspension of L-Tartaric acid (25 g, 168 mmol) and methanol (10 

mL) was added 2,2-dimethoxypropane (47.5 mL) and p-TSA (100 mg, cat.). 

The reaction was heated to 70°C and stirred at this temperature until a dark red 

color was obtained (~1 h). Additional 2,2-dimethoxypropane (25 mL) and cyclohexane (113 mL) 

were added. The flask was fitted with a Vigreux column and shortpath distillation head. The 

mixture was heated and the acetone-cyclohexane and methanol-cyclohexane azeotropes were 

slowly removed over a 6 hour period (~150 mL). The mixture was cooled to room temperature 

and potassium carbonate (250 mg) was added. The reaction was stirred until the dark red color 

abated. Volatiles were removed in vacuo and the product was purified by vacuum distillation (0.5 

mmHg, 94-110°C) to yield 1.15 (32.6 g, 89%) as a clear yellow oil. [𝛼]$%&-49.2 (CHCl3, c 1.0); 1H 

NMR (400 MHz, CDCl3) δ: 4.81 (s, 2H), 3.83 (s, 6H), 1.49 (s, 6H); 13C NMR (CDCl3, 100 MHz): 

δ: 169.7, 113.5, 76.7, 52.45, 26.0. m/z calcd. for C9H14O6 [M+Na]+ 241.0681 found 241.0777. 

Identical in all respects to published data1	

 

	
	

1.16: A suspension of LAH (5.84 g, 154 mmol) in diethyl ether (98 mL) was 

refluxed for 30 min.  The suspension was then allowed to cool to room 

temperature and a solution of 1.15 (20.0 g, 91.7 mmol) in diethyl ether (49 mL) 

was added dropwise over 1 h.  The suspension was brought to reflux and allowed to stir for 3 h.  

The reaction was cooled to 0 °C and quenched carefully with H2O (5.84 mL), 4 N NaOH (5.84 

mL), then H2O (18.2 mL) and stirred until the grey color of LAH was no longer present. The 

mixture was filtered and the filter cake was washed with diethyl ether. The combined organic 

extract wask dried (MgSO4), filtered, and concentrated in vacuo. The product was purified  by 

vacuum distillation (81-94 °C, 0.01 mm) to afford of 1.16 (10.3 g, 70%) as a pale yellow oil. 

[𝛼]$%&	-2.4 (CHCl3, c 1.0); 1H NMR (CDCl3, 400 MHz): δ: 4.02 (m, 2H), 3.76 (m, 4H), 1.96 (br. 

s, 2H), 1.44 (s, 6H); 13C NMR (CDCl3, 400 MHz): δ: 109.6, 78.2, 62.3, 27.4. m/z calcd. for 

C7H14O4 [M+H]+ 163.0970 found 163.0795. Identical in all respects to published data 
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1.17: To a suspension of NaH (60%, 4.4 g, 110 mmol) in THF (363 mL) at 

0 °C was added a solution of 1.16 (10.0 g, 61.7 mmol) in THF (36.3 mL) 

via dropwise addition. The resulting suspension was allowed to stir at that 

temperature for 1 h, then a solution of TBDPSCl (16.0 mL, 61.7 mmol) in THF (36.3 mL) was 

added dropwise and the reaction was warmed to room temperature and allowed to stir for 2 h.  The 

resulting suspension was carefully quenched with H2O and extracted with Et2O (3 x 50 mL). The 

combined organic extracts were washed with H2O (50 mL) and brine (50 mL), dried (MgSO4), 

filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (4:1 

hexanes/ethyl acetate) to afford 1.17 (18.8 g, 75%) as a pale yellow oil.	[𝛼]$%&-0.71 (CHCl3, c 1.4); 
1H NMR (400 MHz, CDCl3) δ: 7.68-7.65 (m, 4H), 7.46-7.37 (m, 6H), 4.09-4.05 (m, 1H), 4.00-

3.94 (m, 1H), 3.84-3.79 (m, 2H), 3.76-3.72 (m, 1H), 3.69-3.63 (m, 1H), 2.06 (br, 1H), 1.41 (s, 3H), 

1.39 (s, 3H), 1.06 (s, 9H); 13C NMR (100 MHz, CDCl3) δ: 136.0, 133.3, 130.2, 128.7, 128.1, 109.5, 

79.9, 77.9, 64.5, 62.9, 27.4, 27.3, 27.2, 19.5. m/z calcd. for C23H32O4Si [M+Na]+ 423.1959 found 

423.2069. Identical in all respects to published data 

	
	
	

1.18: To a solution of alcohol 1.17 (20.0 g, 49.9 mmol) and Et3N (20.9 mL, 

150 mmol) in CH2Cl2 (832 mL) at -20 °C was added 

trifluoromethanesulfonic anhydride (12.6 mL, 74.9 mmol) dropwise. The 

reaction was stirred for 30 min at -20°C, and quenched with sat. aq. NaHCO3 (500 mL). The layers 

were separated and the organic layer was washed with water (500 mL), and brine (500 mL). The 

organic layer was dried (MgSO4), filtered, and concentrated in vacuo. The resulting residue was 

filtered through a short pad of silica gel (10:1 Hex/EtOAc). The triflate was used immediately in 

the next reaction.  
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1.19: To a solution of (trimethylsilyl)acetylene (5.97 g, 60.8 mmol) in 

THF (350 mL) stirring at -20 °C was added n-BuLi (2.0 M in hexanes, 

25.3 mL) dropwise. The reaction was stirred at -20°C for 30 min. A 

solution of the crude triflate 1.18 (ca. 13 g, 25 mmol) in THF (150 mL) and NMP (100 mL) was 

added. The reaction mixture was stirred at -20 °C for 1 h, quenched with sat. aq. NH4Cl (500 mL) 

and extracted with EtOAc (3 x 500 mL). The combined organic extracts were washed with water 

(500 mL) and brine (500 mL), dried (MgSO4), filtered, and concentrated in vacuo. The residue 

1.19 was filtered through a short pad of silica gel (10:1 Hex/EtOAc). The filtrate was concentrated 

in vacuo and used immediately in the next reaction.	[𝛼]$%&	-5.1 (CHCl3, c 2.3); 1H NMR (400 MHz, 

CDCl3) δ: 7.68 (m, 4H), 7.41 (m, 6H), 4.06 (m, 2H), 3.83 (d, 2H), 1.43 (s, 3H), 1.40 (s, 3H), 1.07 

(s, 9H), 0.12 (s, 6H). 13C NMR (100 MHz, CDCl3) δ: 135.5, 133.2, 133.1, 129.6, 127.6, 108.9, 

102.0, 87.0, 79.8, 75.5, 63.9, 27.1, 27.0, 26.7, 23.9, 19.2, -0.08. m/z calcd. for C28H40O3Si2 

[M+Na]+ 503.2406 found 503.2571 

 

 

1.11: To a solution of 1.19 (300 mg, 0.62 mmol) in THF (6 mL) at rt was added 

a solution of TBAF (1M in THF, 1.4 mL). Let stir at rt for 1 h. The reaction 

was diluted with EtOAc (5 mL) and washed with brine (3 mL). The layers were 

separated and the aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic 

extracts were dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash 

column chromatography (4:1 Hex/EtOAc) to afford 1.11 (69 mg, 66% over 3 steps) as a clear oil. 

[𝛼]$%&	2.8 (CHCl3, c 1); 1H NMR (400 MHz, CDCl3) δ: 4.03 (m, 1H), 3.99 (m, 1H), 3.94 (m, 1H), 

3.86 (m, 1H), 2.59 (m, 2H), 2.04 (s, 1H), 2.04 (br s, 1H), 1.42 (s, 3H), 1.41 (s, 3H); 13C NMR 

(CDCl3, 100 MHz): δ: 109.1, 80.9, 79.3, 74.3, 70.8, 62.1, 27.0, 22.7. m/z calcd. for C9H14O3 

[M+H]+ 170.0942 found 170.9641. Identical in all respects to published data 

	
	

1.33: To a suspension of D-Tartaric acid (25 g, 168 mmol) and methanol (10 

mL) was added 2,2-dimethoxypropane (47.5 mL) and p-TSA (100 mg, cat.). 

The reaction was heated to 70°C and stirred at this temperature until a dark 

red color was obtained (~1 h). Additional 2,2-dimethoxypropane (25 mL) and cyclohexane (113 
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mL) were added. The flask was fitted with a Vigreux column and shortpath distillation head. The 

mixture was heated and the acetone-cyclohexane and methanol-cyclohexane azeotropes were 

slowly removed over a 6 hour period (150 mL). The mixture was cooled to room temperature and 

potassium carbonate (250 mg) was added. The reaction was stirred until the dark red color abated. 

Volatiles were removed in vacuo and the product was purified by vacuum distillation (0.5 mmHg, 

94-110°C) to yield 1.33 (29.8 g, 81%) as a clear oil. [𝛼]$%&49.0 (CHCl3, c 1.0); 1H NMR (400 MHz, 

CDCl3) δ: 4.81 (s, 2H), 3.83 (s, 6H), 1.49 (s, 6H); 13C NMR (CDCl3, 100 MHz): δ: 169.75, 113.49, 

76.68, 52.42, 25.98. m/z calcd. for C9H14O6 [M+Na]+ 241.0681 found 241.0768. Identical in all 

respects to published data 

	
	
	

1.34: To a suspension of LAH (8.87 g, 138 mmol) in THF (135 mL) at 0°C was 

added a solution of 1.33 (30 g, 138 mmol) in THF (66 mL) via dropwise addition. 

The mixture was allowed to warm to rt and stirred for 16 h. The suspension was 

cautiously quenched by dropwise addition of water (120 mL), and the reaction was allowed to stir 

until the grey color of unquenched LAH was no longer present. The mixture was then filtered 

through a pad of celite (100 g) and the filtrate was concentrated in vacuo. The residue was purified 

by vacuum distillation (0.5 mmHg at 120-124°C) to afford 1.34 (10 g, 45% yield) as a clear viscous 

oil. [𝛼]$%&1.96 (CHCl3, c 1.08); 1H NMR (400 MHz, CDCl3) δ: 4.02 (t, 2H), 3.80 (dd, 2H), 3.71 

(dd, 2H) 1.43 (s, 6H); 13C NMR (CDCl3, 100 MHz): δ: 109.2, 77.76, 61.86, 26.97. m/z calcd. for 

C7H14O4 [M+H]+ 163.0970 found 163.0875. Identical in all respects to published data 

	
	

1.35: To a suspension of NaH (4.42 g, 111 mmol, 60% dispersion) in THF 

(350 mL) at 0°C was added a 1.34 (10 g, 61.6 mmol) dropwise over 30 

min. After complete addition the reaction was allowed to stir for 30 min. 

A solution of TBDPS-Cl (17 g, 61.6 mmol) in THF (25 mL) was added dropwise and the reaction 

was allowed to stir for 16 h. The reaction was cautiously quenched by addition of water (400 mL). 

The aqueous layer was extracted with Et2O (3 x 300 mL). The combined organic extracts were 

dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash column 

chromatography (4:1 hexanes/ethyl acetate) to afford 1.35 (23.8 g, >95%) as a colorless oil.	[𝛼]$%& 
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0.69 (CHCl3, c 1.6);  1H NMR (400 MHz, CDCl3) δ: 7.68-7.65 (m, 4H), 7.46-7.37 (m, 6H), 4.09-

4.05 (m, 1H), 4.00-3.94 (m, 1H), 3.84-3.79 (m, 2H), 3.76-3.72 (m, 1H), 3.69-3.63 (m, 1H), 2.06 

(br, 1H), 1.41 (s, 3H), 1.39 (s, 3H), 1.06 (s, 9H); 13C NMR (400 MHz, CDCl3) δ: 136.0, 133.3, 

130.2, 128.7, 128.1, 109.5, 79.9, 77.9, 64.5, 62.9, 27.4, 27.3, 27.2, 19.5. m/z calcd. for C23H32O4Si 

[M+Na]+ 423.1959 found 423.2066. Identical in all respects to published data 

	

	
	

S1: To a solution of alcohol 1.35 (10 g, 25 mmol) and Et3N (10.5 mL, 75 

mmol) in CH2Cl2 (100 mL) at -20 °C was added trifluoromethanesulfonic 

anhydride (6.25 mL, 37.5 mmol) via dropwise addition. The reaction was 

stirred for 30 min at -20°C, washed with sat. aq. NaHCO3 (100 mL), water (100 mL), and brine 

(100 mL). The organic layer was dried (MgSO4), filtered, and concentrated in vacuo. The resulting 

residue was filtered through a short pad of silica gel (10:1 Hex/EtOAc) and the unstable triflate 

was used immediately in the next reaction.  

 

 

	
S2: To a solution of (trimethylsilyl)acetylene (5.97 g, 60.8 mmol) in 

THF (350 mL) stirring at -20 °C was added n-BuLi (2.0 M in hexanes, 

25.3 mL) via dropwise addition. The reaction was stirred at -20°C for 30 

min. A solution of the crude triflate S1 (ca. 13 g, 25 mmol) in THF (150 mL) and NMP (100 mL) 

was added. The reaction mixture was stirred at -20 °C for 1 h, quenched with sat. aq. NH4Cl (500 

mL) and extracted with EtOAc (3 x 500 mL). The combined organic extracts were washed with 

water (500 mL) and brine (500 mL), dried (MgSO4), filtered, and concentrated in vacuo. The 

residue was purified by flash column chromatography (10:1 Hex/EtOAc) to afford S2 (8.8 g, 74%) 

as a clear oil. [𝛼]$%&	2.8 (CHCl3, c 1); 1H NMR (400 MHz, CDCl3) δ: 7.67 (m, 4H), 7.37 (m, 6H), 

4.04 (m, 2H), 3.82 (d, 2H), 2.62 (dd, 2H), 1.42 (s, 3H), 1.39 (s, 3H), 1.05 (s, 9H), 0.11 (s, 9H); 13C 

NMR (CDCl3, 100 MHz): δ: 135.6, 133.2, 129.6, 127.6, 108.9, 102.0, 87.0, 79.9, 75.5, 63.9, 27.1, 

27.1, 26.8, 23.9, 19.2, -0.08. m/z calcd. for C28H40O3Si2 [M+Na]+ 503.2406 found 503.2570 
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1.9: To a solution of S2 (300 mg, 0.62 mmol) in THF (6 mL) at rt was added a 

solution of TBAF (1M in THF, 1.4 mL). Let stir at rt for 1 h. Diluted with EtOAc 

(5 mL) and washed with brine (3 mL). The layers were separated and the 

aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried 

(MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash column 

chromatography (4:1 Hex/EtOAc) to afford 1.9 (62 mg, 59% over 3 steps) as a clear oil. [𝛼]$%&	-

2.8 (CHCl3, c 1); 1H NMR (400 MHz, CDCl3) δ: 4.03 (m, 1H), 3.99 (m, 1H), 3.94 (m, 1H), 3.86 

(m, 1H), 2.59 (m, 2H), 2.04 (s, 1H), 2.04 (br s, 1H), 1.42 (s, 3H), 1.41 (s, 3H); 13C NMR (CDCl3, 

100 MHz): δ: 109.1, 80.9, 79.3, 74.3, 70.8, 62.1, 27.0, 22.7. m/z calcd. for C9H14O3 [M+Na]+ 

202.0833 found 202.0862 

	
	
	

1.13: To a solution of phosphonate (10.3 g, 83 mmol) in freshly 

distilled THF (50 mL) at -78°C was added n-butyllithium (35 mL, 2.5 

M in hexanes) dropwise and the reaction was stirred for 30 min. Methyl hexanoate (6 g, 46 mmol) 

was added dropwise over 20 min and the reaction was allowed to warm to room temperature 

overnight. The reaction was quenched with sat. aq. NH4Cl (15 mL) and diluted with ethyl acetate 

(40 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (3 x 40 

mL). The combined organic extracts were washed with brine (40 mL), dried (MgSO4), filtered, 

and concentrated in vacuo. The residue was purified by column chromatography (2:1 to 1:2 

hexanes/ethyl acetate gradient) to afford 1.13 (7.66 g, 76%) as a colorless oil. 1H NMR (400 MHz, 

CDCl3): δ: 3.81 (s, 3H), 3.78 (s, 3H), 3.12 (d, 2H), 2.61 (t, 2H), 1.60 (t, 2H), 1.29 (m, 4H), 0.91 (t, 

3H). 13C NMR (100 MHz, CDCl3): δ:  201.9, 52.9, 43.9, 41.8, 40.5, 30.9, 22.9, 22.3, 13.7. Identical 

in all respects to published data 

	
	

1.38: To a solution of 1.32 (459 mg, 1.91 mmol) in Et3N (20 mL) 

at room temperature was added copper (I) iodide (109 mg, 0.57 

mmol) and bis(triphenylphosphine)palladium(II) dichloride (134 

mg, 0.19 mmol). The resulting mixture was degassed. To this mixture was added 1.9 (780.4 mg, 

1.91 mmol) as a solution in Et3N (4.5 mL). The reaction mixture was stirred at room temperature 

for 16 h, then concentrated in vacuo. The resulting residue was dissolved in EtOAc (70 mL), 
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washed with water (1 x 15 mL) and NH4Cl (2 x 15 mL). The organic extract was dried (MgSO4) 

and concentrated in vacuo. The residue was purified by flash column chromatography (Hexanes 

to 9:1 Hexanes/Ethyl acetate gradient) to afford 1.38 (819 mg, 82%) as a light yellow oil: [𝛼]$%&	-

0.04 (CHCl3, c 1); 1H NMR (400 MHz, CDCl3) δ 7.71 (t, J = 1.5 Hz, 4H), 7.40 (m, 6H), 6.01 (m, 

1H), 5.47 (d, J = 15.7 Hz, 1H), 4.13 (m, 1H), 3.95 (m, 1H), 3.83 (m, 2H), 3.68 (s, 3H), 2.66 (m, 

2H), 2.41 (m, 4H), 1.44 (s, 3H), 1.42 (s, 3H), 1.07 (s, 9H); 13C NMR (100 MHz, CDCl3)	δ 173.3, 

141.5, 135.9, 133.5, 130.0, 128.0, 111.2, 109.4, 84.9, 81.0, 80.7, 76.2, 64.0, 51.9, 33.4, 28.4, 27.5, 

27.4, 27.1, 24.1, 19.5. m/z calcd. for C15H22O5 [M+Na]+ 305.1358 found 305.1477 

	
	
1.39: To a suspension 1.38 (300 mg, 1.06 mmol) and Nickel (II) 

bromide (24 mg, 0.11 mmol) in MeOH (18 mL) at 0 °C was added 

sodium borohydride (281 mg, 7.44 mmol). The resulting black 

suspension was stirred at 0 °C for 10 min, then the flask was evacuated and purged with hydrogen 

gas. The reaction was allowed to warm to room temperature and stir 16 h. The reaction mixture 

was filtered through a plug of celite and washed with MeOH (3 x 5 mL). The combined filtrate 

and washings were concentrated in vacuo. The resulting residue was dissolved in EtOAc (70 mL), 

washed with water (15 mL), dried (MgSO4), filtered and concentrated in vacuo to afford AA-42 

(291 mg, >95%) of as a colorless oil, which was used without further purification:	[𝛼]$%&	-0.02 

(CHCl3, c 0.42); 1H NMR (400 MHz, CDCl3) δ 7.69 (m, 4H), 7.41 (m, 6H), 3.95 (m, 1H), 3.76 

(m, 2H), 3.73 (m, 1H), 3.68 (s, 3H), 2.31 (t, J = 7.4 Hz, 2H), 1.63 (m, 2H), 1.56 (m, 2H), 1.41 (s, 

3H), 1.38 (s, 3H), 1.32 (m, 8H), 1.07 (s, 9H); 13C NMR (100 MHz, CDCl3) δ 174.5, 135.9, 133.5, 

133.4, 129.97, 129.94, 127.9, 108.6, 81.3, 78.8, 64.4, 51.7, 34.3, 33.6, 29.8, 29.4, 29.3, 27.7, 27.2, 

27.0, 26.3, 25.2, 19.5. m/z calcd. for C15H28O5 [M+Na]+ 311.1827 found 311.1934 

 
	

1.42: To a solution of 1.39 (106 mg, 0.37 mmol) in dichloromethane 

(10 mL) at room temperature were sequentially added NaHCO3 (27 

mg, 0.32 mmol) and Dess-Martin Periodinane (235 mg, 0.56 mmol). 

The resulting reaction mixture was stirred at room temperature for 1.5 h and quenched with 25% 

Na2S2O3 (8 mL) and NaHCO3 (8 mL). The organic layer was separated, dried (MgSO4), and 

concentrated in vacuo. The residue was filtered through a plug of silica gel (hexanes to 3:2 
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hexanes/ethyl acetate gradient) to afford 1.40 (69 mg, 65%) as a colorless oil. The unstable 

aldehyde was used without further purification:	1H NMR (400 MHz, CDCl3) δ 9.73 (d, J = 2.4 Hz, 

1H), 4.04 (m, 1H), 3.93 (dd, J = 2.4, 7.6 Hz, H), 3.68 (s, 3H), 2.31 (t, J = 7.5 Hz, 2H), 1.66 (m, 

4H), 1.49 (s, 3H), 1.43 (s, 3H), 1.32 (m, 8H). 

	
	
	

1.43: To a solution of 1.13 (66 mg, 0.30 mmol) in THF (1 mL) at 0 °C 

was added sodium bis(trimethylsilyl)amide (1 M solution in THF, 240 

µL, 0.24 mmol) dropwise. After stirring at 0°C for 5 min, the ice bath 

was removed and the reaction was allowed to warm to room temperature 

and stirred for an additional 30 min. White solid was formed during this period. The reaction 

mixture was cooled to 0 °C and a solution of 1.40 (68 mg, 0.24 mmol) in THF (2.5 mL) was added. 

The reaction was stirred at 0 °C for 30 min and quenched with water (5 mL). The aqueous layer 

was extracted with EtOAc (2 x 10 mL). The combined organic extracts were dried (MgSO4), 

filtered, and concentrated in vacuo. The residue was purified by flash column chromatography 

(hexanes to 17:3 hexanes/ethyl acetate gradient) to afford 1.43 (75 mg, 82%) as a colorless 

oil:	[𝛼]$%&	0.04 (CHCl3, c 1.0);  1H NMR (400 MHz, CDCl3) δ 6.71 (dd, J = 5.8, 15.8 Hz, 1H), 6.38 

(dd, J = 1.2, 15.8 Hz, 1H), 4.15 (m, 1H), 3.73 (m, 1H), 3.68 (s, 3H), 2.57 (t, J = 7.4 Hz, 2H), 2.31 

(t, J = 7.4 Hz, 2H), 1.63 (m, 6H), 1.45 (s, 3H), 1.43 (s, 3H), 1.32 (m, 12H), 0.90 (t, J = 6.8 Hz, 

3H); 13C NMR (100 MHz, CDCl3) δ 200.5, 174.5, 141.8, 130.7, 109.6, 81.0, 80.8, 51.7, 41.2, 34.3, 

32.3, 31.7, 29.7, 29.33, 29.2, 27.5, 27.0, 26.2, 25.1, 24.0, 22.7, 14.2. m/z calcd. for C22H38O5 

[M+Na]+ 405.2609 found 405.2792 

	
	

1.44 and 1.45: To a solution of 1.43 (120 mg, 

0.31 mmol) and CeCl3
.7H2O (140 mg, 0.38 

mmol) in methanol (3.1 mL) stirring at 0°C was 

added NaBH4 (12 mg, 0.31 mmol). The reaction 

was stirred at 0°C for 1 h, then rt for 3 h. The solvent was removed in vacuo and the crude residue 

was purified by flash chromatography (4:1 hexanes/ethyl acetate) to afford 1.45 (59 mg, 50%, rf = 

0.11) and 1.44 (60 mg, 50%, rf = 0.10) as clear oils. 
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1.45: [𝛼]$%&	-1.37 (CHCl3, c 0.58); 1H NMR (400 MHz, CDCl3) δ: 5.84 (m, 1H), 5.65 (m, 1H), 4.12 

(m, 1H), 3.98 (t, 1H), 3.65 (s, 3H), 3.64 (m, 1H), 2.28 (t, 2H), 1.59 (m, 2H), 1.46 (s, 6H), 1.34 (m, 

4H), 1.28 (m, 14H), 0.87 (t, 3H). 13C NMR (100 MHz, CDCl3) δ 137.9, 127.2, 108.3, 81.7, 80.7, 

71.8, 51.3, 37.0, 33.9, 31.7, 31.6, 29.3, 28.9, 27.2, 26.8, 25.9, 25.0, 24.8, 22.4, 13.9. m/z calcd. for 

C22H42O5 [M+Na]+ 407.2766 found 407.2922 

 

1.44: [𝛼]$%&	4.2 (CHCl3, c 0.33); 1H NMR (400 MHz, CDCl3) δ: 5.84 (m, 1H), 5.65 (m, 1H), 4.12 

(m, 1H), 3.97 (t, 1H), 3.65 (s, 3H), 3.64 (m, 1H), 2.28 (t, 2H), 1.50 (m, 2H), 1.44 (s, 6H), 1.39 (m, 

4H), 1.29 (m, 14H), 0.87 (t, 3H). 13C NMR (100 MHz, CDCl3) δ 174.1, 137.9, 127.5, 108.3, 81.7, 

80.6, 72.1, 51.3, 36.9, 33.9, 31.7, 31.6, 29.6, 29.4, 29.0, 28.9, 27.2, 26.8, 25.9, 25.0, 24.8, 22.5, 

13.9. m/z calcd. for C22H42O5 [M+Na]+ 407.2766 found 407.292. 

 

 
 

1.47: To a solution of 1.45 (16 mg, 0.04 mmol) in THF (1 mL) was added 

4M HCl (1 mL). The reaction was stirred for 30 min and extracted with 

EtOAc (3 x 5 mL). The combined organic extracts were washed with 

Brine, dried (MgSO4), filtered, and concentrated in vacuo. The residue 

was purified by flash chromatography (3:7 hexanes/ EtOAc) to afford 1.47 (12 mg, 86%) as a clear 

oil:	[𝛼]$%& 0.84 (CHCl3, c 0.33); 1H NMR (400 MHz, CDCl3) δ: 5.85 (dd, 1H, J = 8, 8 Hz), 5.72 

(dd, 1H, J = 8, 8 Hz), 4.13 (m, 1H), 3.93 (t, 1H), 3.65 (s, 3H), 3.45 (m, 1H), 2.29 (t, 2H), 1.60 (m, 

2H), 1.51 (m, 4H), 1.30 (m, 14H), 0.88 (t, 3H) ; 13C NMR (CDCl3, 100 MHz): δ: 136.4, 129.4, 

75.3, 74.50, 71.9, 51.4, 37.1, 33.9, 32.8, 31.6, 29.2, 29.0, 28.9, 25.4, 24.9, 24.8, 22.5, 13.9. m/z 

calcd. for C19H36O5 [M+Na]+ 367.2453 found 367.2598 

 

 

1.46: To a solution of 1.44 (15 mg, 0.04 mmol) in THF (1 mL) was added 

4M HCl (1 mL). The reaction was stirred for 30 min and extracted with 

EtOAc (3 x 5 mL). The combined organic extracts were washed with 

Brine, dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash 

chromatography (3:7 hexanes/ EtOAc) to afford 1.46 (10 mg, 77%) as a clear oil:	[𝛼]$%& 0.67 
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(CHCl3, c 0.42); 1H NMR (400 MHz, CDCl3) δ: 5.85 (dd, 1H, J = 8, 8 Hz), 5.72 (dd, 1H, J = 8, 8 

Hz), 4.14 (m, 1H), 3.92 (t, 1H), 3.66 (s, 3H), 3.45 (m, 1H), 2.29 (t, 2H), 1.55 (m, 2H), 1.51 (m, 

4H), 1.30 (m, 14H), 0.88 (t, 3H); 13C NMR (CDCl3, 100 MHz): δ: 174.2, 136.5, 129.7, 75.4, 74.4, 

72.2, 51.4, 37.2, 33.9, 32.9, 31.6, 29.6, 29.3, 29.2, 28.9, 25.4, 25.0, 24.8, 22.5, 13.9. m/z calcd. for 

C19H36O5 [M+Na]+ 367.2453 found 367.2598 

	
	

1.1: To a solution of 1.47 (1 mg, 0.002 mmol) in MeOH (1 mL) was 

added 1 M KOH (1 mL). After 30 min the reaction was deemed complete 

by RP-HPLC. A solution of 1 M aq. KH2PO4 (0.5 mL) and 1 M HCl (0.9 

mL) was added. The aqueous layer was extracted with EtOAc (3 x 1 mL). 

The combined organic extracts were washed with brine (1 mL) dried (MgSO4), filtered, and 

concentrated in vacuo to afford 1.1 (0.7 mg, 63%) 1H NMR (400 MHz, CD3OD): δ = 5.59 (m, 

2H), 3.95 (m, 1H), 3.80 (m, 1H), 3.31 (m, 1H), 2.17 (t, 2H), 1.50 (m, 2H), 1.43 (m, 4H), 1.24 (m, 

14H), 0.82 (t, 3H). 13C NMR (100 MHz, CD3OD): δ = 176.21, 135.08, 129.55, 75.05, 74.29, 71.58, 

36.86, 33.48, 32.05, 31.52, 29.15, 28.89, 28.72, 25.35, 24.75, 24.60, 22.23, 12.90.	

	
	

1.48: A suspension of 1.32 (50mg, 0.21 mmol), CuI (10mg, 0.05 

mmol) and PdCl2(PPh3)2 (12mg, 0.018 mmol) in triethylamine 

(2mL, 0.1 M) was thoroughly degassed. A solution of 1.10 (30mg, 

0.18 mmol) in triethylamine (0.5mL, 0.35 M) was added dropwise 

and the reaction was stirred for 16 h. The volatiles were removed in vacuo and the residue was 

dissolved in ethyl acetate (10 mL), washed with water (5 mL), and sat. aq. NH4Cl (5 mL). The 

organic layer was dried (MgSO4), filtered, and concentrated in vacuo. The crude residue was 

purified by flash column chromatography (hexanes to 3:2 hexanes/ethyl acetate gradient) to afford 

1.48 (25 mg, 52% yield) as a clear oil. [𝛼]$%&	-24.2 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3): δ 

= 6.11 (m, 1H), 5.53 (d, 1H), 4.38 (m, 2H), 3.86 (m, 2H), 3.69 (s, 3H), 2.70 (m, 2H), 2.42 (m, 4H), 

1.49 (s, 3H), 1.39 (s, 1H); 13C NMR (100 MHz, CDCl3): δ = 172.8, 141.7, 110.5, 108.5, 84.3, 80.6, 

77.54, 75.2, 61.1, 51.5, 33.0, 27.9, 27.7, 25.2, 20.7. m/z calcd. for C15H22O5 [M+Na]+ 305.1358 

found 305.1477 
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1.49: To a suspension of NiBr (cat.) and 1.48 (25mg, 0.09 mmol) in MeOH (3 

mL) at 0°C was added NaBH4 (12mg, 0.32 mmol). The reaction was stirred for 

10 min at 0°C and a black color was observed. The reaction vessel was 

evacuated, placed under an atmosphere of hydrogen gas (1 atm), and allowed to 

warm to rt and stir overnight. The reaction was filtered through celite and a plug 

of silica and washed with ethyl acetate. The filtrate was concentrated in vacuo to afford 1.49 (25 

mg, >95%) as a clear oil. [𝛼]$%&	-13.2 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3): δ = 4.13 (m, 

2H), 3.65 (s, 3H), 3.59 (m, 2H), 2.30 (t, 2H), 1.60 (m, 2H), 1.45 (s, 3H), 1.36 (s, 3H), 1.30 (m, 

10H);	13C NMR (100 MHz, CDCl3): δ = 174.1, 107.9, 77.8, 61.7, 51.3, 33.9, 29.6, 29.3, 29.0, 28.9, 

28.7, 28.2, 26.5, 25.4, 24.8. m/z calcd. for C15H28O5 [M+Na]+ 311.1827 found 311.1973 

	

1.50: To a solution of compound 1.49 (105 mg, 0.36 mmol) in dichloromethane 

(10 mL) at room temperature were sequentially added NaHCO3 (26 mg, 0.31 

mmol) and Dess-Martin Periodinane (233 mg, 0.55 mmol). The resulting 

reaction mixture was stirred at room temperature for 1.5 h and quenched with 

25% Na2S2O3 (8 mL) and NaHCO3 (8 mL). The organic layer was separated, 

dried (MgSO4) and concentrated in vacuo. The resulting residue was dissolved in hexane and 

filtered through a celite plug which was washed with hexane. The combined filtrate and washings 

were concentrated to afford 1.50 (95 mg of crude aldehyde) as a light yellow oil which was used 

without further purification: 1H NMR (400 MHz, CDCl3) δ 9.64 (d, J = 3.4 Hz, 1H), 4.33 (m, 1H), 

4.25 (dd, J = 3.5, 7.1 Hz, 1H), 3.68 (s, 3H), 2.31 (t, J = 7.5 Hz, 2H), 1.64 (m, 2H), 1.62 (s, 3H), 

1.51 (m, 2H), 1.42 (s, 3H), 1.31 (m, 8H). 

	
	

	
1.51: To a solution of 1.13 (106 mg, 0.47 mmol) in THF (2 mL) at 0 °C 

was added sodium bis(trimethylsilyl)amide (1 M solution in THF, 400 

µL, 0.40 mmol) dropwise. After stirring at 0 °C for 5 min, the ice bath 

was removed and the reaction was allowed to warm to room 

temperature and stirred for an additional 30 min. White solid was formed during this period. The 

the reaction mixture was cooled to 0 °C and the crude 1.50 was added as a solution in THF (5 mL). 
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The reaction was stirred at 0 °C for 30 min and quenched with water (10 mL). The aqueous layer 

was extracted with EtOAc (2 x 15 mL). The combined organic layers were dried (MgSO4) and 

concentrated in vacuo. The residue was purified by flash column chromatography (hexanes to 17:3 

hexanes/ethyl acetate gradient) to afford 1.51 (105 mg, 72% over two steps) as a colorless oil: 

[𝛼]$%&	-0.8 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.68 (dd, J = 6.3, 15.8 Hz, 1H), 6.32 (dd, 

J = 1.2, 15.8 Hz, 1H), 4.65 (m, 1H), 4.24 (m, 1H), 3.67 (s, 3H), 2.56 (t, J = 7.4 Hz, 2H), 2.30 (t, J 

= 7.4 Hz, 2H), 1.63 (m, 4H), 1.53 (s, 3H), 1.46 (m, 2H), 1.31 (m, 12H), 0.90 (t, J = 6.8 Hz, 3H); 
13C NMR (100 MHz, CDCl3) δ 200.4, 174.5, 141.4, 131.1, 109.1, 78.6, 77.9, 51.7, 41.1, 34.3, 31.7, 

30.8, 29.5, 29.34, 29.25, 28.3, 26.5, 25.8, 25.1, 24.1, 22.7, 14.2. m/z calcd. for C22H38O5 [M+Na]+ 

405.2609 found 405.2779 

 

	
1.52 and 1.53: To a solution of 1.51 (10 mg, 

0.026 mmol) and CeCl3
.7H2O (11 mg, 0.031 

mmol) in methanol (0.2 mL) stirring at 0°C 

was added NaBH4 (1 mg, 0.026 mmol). The 

reaction was stirred at 0°C for 1 h, then rt for 3 h. The solvent was removed in vacuo and the crude 

residue was purified by flash chromatography (4:1 hexanes/ethyl acetate) to afford 1.53 (4 mg, 

40%, rf = 0.11) and 1.52 (4 mg, 40%, rf = 0.10) as clear oils. 

 

1.53: [𝛼]$%&	-1.92 (CHCl3, c 0.42); 1H NMR (400 MHz, CDCl3) δ: 5.70 (m, 2H), 4.48 (m, 1H), 4.11 

(m, 2H), 3.64 (s, 3H), 2.28 (t, 2H), 1.59 (m, 2H), 1.46 (s, 6H), 1.34 (m, 4H), 1.28 (m, 14H), 0.87 

(t, 3H). 13C NMR (100 MHz, CDCl3) δ 174.1, 137.1, 126.9, 108.0, 78.9 78.2, 72.3, 51.3, 36.9, 

33.9, 31.6, 30.3, 29.6, 29.3, 29.0, 28.9, 28.2, 26.0, 25.5, 25.0, 24.8, 22.5, 13.9. m/z calcd. for 

C22H40O5 [M+Na]+ 407.2766 found 407.2922 

 

1.52: [𝛼]$%&	1.30 (CHCl3, c 0.92); 1H NMR (400 MHz, CDCl3) δ: 5.65 (m, 2H), 4.49 (m, 1H), 4.12 

(m, 2H), 3.65 (s, 3H), 2.28 (t, 2H), 1.60 (m, 2H), 1.46 (s, 6H), 1.34 (m, 4H), 1.28 (m, 14H), 0.87 

(t, 3H). 13C NMR (100 MHz, CDCl3) δ 174.1, 137.2, 126.3, 107.9, 78.8 78.2, 71.9, 51.3, 37.0, 

33.9, 31.6, 30.3, 29.3, 29.0, 28.9, 28.2, 26.0, 25.5, 24.9, 24.8, 22.5, 13.9. m/z calcd. for C22H40O5 

[M+Na]+ 407.2766 found 407.2922 

O

O

OH

CO2Me

O

O

OH

CO2Me



	
43 

1.55: To a solution of 1.53 (13 mg, 0.034 mmol) in THF (1 mL) was 

added 4M HCl (1 mL). The reaction was stirred for 30 min and 

extracted with EtOAc (3 x 3 mL). The combined organic extracts were 

washed with Brine (5 mL), dried (MgSO4), filtered, and concentrated 

in vacuo. The residue was purified by flash chromatography (3:7 hexanes/ EtOAc) to afford 1.55 

(7 mg, 65%) as a clear oil:	[𝛼]$%&	3.2 (CHCl3, c 0.25); 1H NMR (400 MHz, CDCl3) δ 5.76 (m, 2H), 

4.13-4.08 (m, 2H), 3.65 (s, 4H), 2.29 (t, 2H), 1.60 (m, 2H), 1.51 (m, 4H), 1.30 (m, 14H), 0.88 (t, 

3H). 13C NMR (100 MHz, CDCl3) δ 174.3, 136.9, 128.2, 75.2, 74.1, 72.4, 51.4, 37.2, 34.0, 32.1, 

31.7, 29.7, 29.3, 29.1, 29.0, 25.7, 25.1, 24.8, 22.6, 14.0. m/z calcd. for C19H36O5 [M+Na]+ 367.2453 

found 367.2598 

 

 

1.54: To a solution of 1.52 (13 mg, 0.034 mmol) in THF (1 mL) was 

added 4M HCl (1 mL). The reaction was stirred for 30 min and extracted 

with EtOAc (3 x 3 mL). The combined organic extracts were washed 

with Brine (5 mL), dried (MgSO4), filtered, and concentrated in vacuo. 

The residue was purified by flash chromatography (3:7 hexanes/ EtOAc) to afford 1.54 (8 mg, 

72%) as a clear oil:	[𝛼]$%&	10.2 (CHCl3, c 0.33); 1H NMR (400 MHz, CDCl3) δ 5.78 (m, 2H), 4.12-

4.09 (m, 2H), 3.66 (s, 4H), 2.29 (t, 2H), 1.60 (m, 2H), 1.55 (m, 4H), 1.30 (m, 14H), 0.88 (t, 3H). 
13C NMR (100 MHz, CDCl3) δ 174.3, 136.7, 127.9, 75.1, 74.1, 72.1, 51.4, 37.2, 34.0, 32.0, 31.7, 

29.7, 29.3, 29.0, 28.9, 25.6, 25.0, 24.8, 22.6, 14.0. m/z calcd. for C19H36O5 [M+Na]+ 367.2453 

found 367.2598 

 

 

1.2: To a solution of 1.55 (1 mg, 0.002 mmol) in MeOH (1 mL) was 

added 1 M KOH (1 mL). After 30 min the reaction was deemed 

complete by RP-HPLC. A solution of 1 M aq. KH2PO4 (0.5 mL) and 1 

M HCl (0.9 mL) was added. The aqueous layer was extracted with EtOAc (3 x 1 mL). The 

combined organic extracts were washed with brine (1 mL) dried (MgSO4), filtered, and 

concentrated in vacuo to afford 1.2 (0.8 mg, 76%). 1H NMR (400 MHz, CD3OD): δ = 5.60 (m, 
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2H), 3.96 (m, 1H), 3.84 (m, 1H), 3.40 (m, 1H), 2.17 (t, 2H), 1.50 (m, 2H), 1.43 (m, 4H), 1.24 (m, 

14H), 0.81 (t, 3H).	

 

Representative experimental for Mosher ester Analysis 

 

1.58: To a solution of 1.53 (1 mg, 0.002 mmol) in CH2Cl2 (0.35 mL) 

was (S)-MTPA (1.5 mg, 0.007 mmol), DCC (1.3 mg, 0.007 mmol), and 

DMAP (1 mg, 0.007 mmol). The reaction was stirred 24 h. The solvent 

was removed in vacuo and the crude residue was purified by flash 

chromatography (40:1 hexanes/ethyl acetate) to afford 1.58 (1 mg, >95%) as a clear oil. 1H NMR 

(400 MHz, CDCl3): δ = 7.54 (m, 2H), 7.39 (m, 3H), 5.79 (m, 1H), 5.75 (m, 1H), 4.48 (m, 2H) 

4.13 (m, 2H), 3.96 (m, 1H), 3.64 (s, 3H), 2.30 (t, 2H), 1.54 (m, 12H).	In an entirely analogous 

fashion, 1.59 was prepared. 1H NMR (400 MHz, CDCl3): δ = 7.54 (m, 2H), 7.39 (m, 3H), 5.78 

(m, 1H), 5.60 (m, 1H), 4.48 (m, 2H), 4.13 (m, 2H), 3.94 (m, 1H), 3.64 (s, 3H), 2.30 (t, 2H), 1.53 

(m, 12H).	
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Appendix A1: 

 

 

Spectra Relevant to Chapter I 
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Figure A1.1 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.15 in CDCl3 
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Figure A1.2 100 MHz DEPT 135 NMR spectrum of 1.15 in CDCl3 
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Figure A1.3 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.16 in CDCl3 
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Figure A1.4 100 MHz DEPT 135 NMR spectrum of 1.16 in CDCl3 
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Figure A1.5 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.17 in CDCl3.  

O

O

TBDPSO OH

O

O

TBDPSO OH



	
51 

 
 

 
Figure A1.6 100 MHz DEPT 135 NMR spectrum of 1.17 in CDCl3 
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Figure A1.7 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.19 in CDCl3 
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Figure A1.8 100 MHz DEPT 135 NMR spectrum of 1.19 in CDCl3 
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Figure A1.9 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.11 in CDCl3 
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Figure A1.10 100 MHz DEPT 135 NMR spectrum of 1.11 in CDCl3 
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Figure A1.11 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.33 in CDCl3 
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Figure A1.12 100 MHz DEPT 135 NMR spectrum of 1.33 in CDCl3 
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Figure A1.13 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.34 in CDCl3 
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Figure A1.14 100 MHz DEPT 135 NMR spectrum of 1.34 in CDCl3 
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Figure A1.15 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.35 in CDCl3 
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Figure A1.16 100 MHz DEPT 135 NMR spectrum of 1.35 in CDCl3 
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Figure A1.17 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of S2 in CDCl3 
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Figure A1.18 100 MHz DEPT 135 NMR spectrum of S2 in CDCl3 
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Figure A1.19 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.9 in CDCl3 
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Figure A1.20 100 MHz DEPT 135 NMR spectrum of 1.9 in CDCl3 
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Figure A1.21 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.38 in CDCl3 
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Figure A1.22 100 MHz DEPT 135 NMR spectrum of 1.38 in CDCl3 
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Figure A1.23 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.39 in CDCl3 
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Figure A1.24 100 MHz DEPT 135 NMR spectrum of 1.39 in CDCl3 
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Figure A1.25 400 MHz 1H-NMR spectrum of 1.42 in CDCl3 
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Figure A1.26 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.43 in CDCl3 
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Figure A1.27 100 MHz DEPT 135 NMR spectrum of 1.43 in CDCl3 
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Figure A1.28 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.45 in CDCl3 
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Figure A1.29 100 MHz DEPT 135 NMR spectrum of 1.45 in CDCl3 
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Figure A1.30 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.44 in CDCl3 
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Figure A1.31 100 MHz DEPT 135 NMR spectrum of 1.44 in CDCl3 
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Figure A1.32 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.47 in CDCl3 
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Figure A1.33 100 MHz DEPT 135 NMR spectrum of 1.47 in CDCl3 
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Figure A1.34 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.46 in CDCl3 
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Figure A1.35 100 MHz DEPT 135 NMR spectrum of 1.46 in CDCl3 
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Figure A1.36 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.1 in MeOD 
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Figure A1.37 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.48 in CDCl3 
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Figure A1.38 100 MHz DEPT 135 NMR spectrum of 1.48 in CDCl3 
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Figure A1.39 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.49 in CDCl3 
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Figure A1.40 100 MHz DEPT 135 NMR spectrum of 1.49 in CDCl3 
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Figure A1.41 400 MHz 1H-NMR spectrum of 1.50 in CDCl3 
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Figure A1.42 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.51 in CDCl3 
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Figure A1.43 100 MHz DEPT 135 NMR spectrum of 1.51 in CDCl3 
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Figure A1.44 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.53 in CDCl3 
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Figure A1.45 100 MHz DEPT 135 NMR spectrum of 1.53 in CDCl3 
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Figure A1.46 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.52 in CDCl3 
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Figure A1.47 100 MHz DEPT 135 NMR spectrum of 1.52 in CDCl3 
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Figure A1.48 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.55 in CDCl3 
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Figure A1.49 100 MHz DEPT 135 NMR spectrum of 1.55 in CDCl3 
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Figure A1.50 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 1.54 in CDCl3 
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Figure A1.51 100 MHz DEPT 135 NMR spectrum of 1.54 in CDCl3 
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Figure A1.52 400 MHz 1H-NMR spectrum of 1.2	in MeOD 
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Figure A1.53 400 MHz 1H-NMR spectrum of 1.58 and 1.59	in CDCl3 
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Figure A1.51 400 MHz 1H-NMR spectrum of 1.62 and 1.63	in CDCl3 
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CHAPTER II 

 

DEVELOPMENT OF A LARGE SCALE CONVERGENT APPROACH TO 
APOPTOLIDINONE C 

 

 

Apoptolidin: Isolation, Structure, and Biological Activity 

 

In 1997, Seto and co-workers reported the isolation and identification of apoptolidin A, (a 

reportedly potent producer of apoptosis) from the culture broth of Nocardiopsis sp. FU401 (Figure 

2.1). The aptly named apoptolidin appeared to selectively induce apoptotic activity against E1A 

induced rat glial cells over untransformed cells.1 

 

 
 

Figure 2.1 Structure of the Nocardiopsis sp. FU40 metabolite apoptolidin A 

 

Apoptolidin is a 20-membered macrolactone possessing a fully substitiuted hemi-ketal 

pyran, 25 stereocenters, 5 double bonds, a 6-deoxy-4-O-methyl-L-glucose appended to the C9 

hydroxyl group and a dissacharide consisting of L-olivomycose and D-oleandrose appended to the 

C27 hydroxyl group2, (Figure 2.1). Since its isolation, over ten structurally related apoptolidins 

have been described.3-10 These compounds differ by the presence or absence of the C6 methyl 

group (R1), C16 and C20 hydroxyl groups (R2 and R3), and the presence or absence of the C27 
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disacharride. There is a also variation at the 2’ position of the monosacharride appended to C9. 

Additionally, Apoptolidins A, B, and D are known to isomerize between 20 and 21-membered 

lactone due to acyl migration from the C19 to the C20 hydroxyl group, generating isoapoptolidins 

A, B, and D (Figure 2.2).2,3 Despite their slight structural differences, most members of this class 

have comparable bioactivity, with only a few exceptions.  

 

 
 

Figure 2.2 Structures of apoptolidin’s A-H 

 

 Perhaps the most intriguing observation is the dramatically reduced activity of Apoptolidin 

H and Apoptolidin D disacharride, suggesting the sugar moieties play a crucial role in apoptolidin 

bioactivity (Figure 2.3).7-8 Further supporting this hypothesis, the fully de-glycosylated (aglycone) 

apoptolidinone A is completely inactive (Figure 2.3). Despite several elegant syntheses of 

apoptolidin A and apoptolidinones A, C, and D11-16, little has been done to study the localization 

of these compounds in cells or their mechanism of action. Furthermore, it is still unknown why 

dramatic differences in activity are observed when the sugar moieties are removed. While little is 

known about the apoptolidin mechanism of action, it is not for lack of effort, and a brief history of 

apoptolidin biological studies will be summarized.  
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Figure 2.3 EC50 of four apoptolidin glycovariants against H292 cells 

 

Seto and co-workers observed significant DNA-laddering, as well as fragmented nuclei 

and condensed chromatin when E1A-transformed rat glial cells were treated with apoptolidin.1 

These are hallmark phenotypic signs of the apoptotic pathway. They also observed that apoptolidin 

displayed diminished cytotoxic activity against untransformed rat glial cells. In 2000, building off 

of this, Khosla and co-workers reported apoptolidin to be among the top 0.1% most cell-line 

selective agents screened in the National Cancer Institute (NCI) 60 human cancer cell line panel.17 

They also went on to propose the mitochondrial protein, F0F1-ATP synthase (F0F1-ATPase), as the 

target of apoptolidin. There was a high correlation between cell lines that were particularly 
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sensitive to apoptolidin and cellular expression of genes encoding for the F0F1-ATPase subunits. 

In addition, apoptolidin was shown to bind F0F1-ATPase in vitro.17 

 In a later report, Khosla showed that mouse B lymphoma (LYas) cells transfected with the 

anti-apoptotic protein Bcl-2 were resistant to apoptolidins cytotoxic effects.12 In contrast, normal 

LYas cells were surprisingly sensitive to apoptolidin. LYas cells were also co-treated with 

apoptoldin and known caspase-9 inhibitors, and activity was significantly reduced.18,19 These 

results prompted Khosla and coworkers to conclude apoptolidin works through an apoptotic 

mechanism.18,19 

 Building on this, our group, in collaboration with the Bachmann and Marnett groups, 

reported that Cy3 fluorophore tagged apoptolidin A and apoptolidin H (Figure 2.4) localize in the 

mitochondria of H292 human lung cancer cells.9 Both compounds maintained comparable activity 

to the natural compounds.  

 

 
 

Figure 2.4 Fluorescent Cy3-tagged apoptolidin A and H and Cy3-bicyclononyne 
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This observation would support the hypothesis of an apoptotic mechanism of action, however, the 

fluorescent Cy3 dye and linker localized to the mitochondria as well. While the Cy3 dye proved 

to be non-toxic to cells, and Cy3-tagged apoptolidin A and H were still cytotoxic, it cannot be 

concluded that apoptolidin localizes to the mitochondria.9  

It is important to note the effect of cell confluency and apoptolidin activity. Our group 

demonstrated that cells at low confluence maintain about a 50% viability in the presence of 

apoptolidin, whereas high confluence cells are very sensitive to apoptolidin’s cytotoxic effect. This 

observation presents a challenge when comparing historical apoptolidin bioactivities, and must be 

taken into consideration when designing and implementing experiments in the future. Our reported 

EC50 values in Figure 2.3 were measured with this understanding, providing accurate and 

comparable data. 

Lastly, in 2016, in a collaboration with the Bachmann and Irish groups, we used cell 

microscopy imaging, and showed that apoptolidin is selectively taken up by cancer cell lines over 

healthy cell models.20 These results were quantified by single-cell fluorescent phospho-specific 

flow cytometry.20 In order to further these results and probe the role of apoptolidin glycosylation 

state in mechanism of action, we sought to access all four apoptolidin glycovariants (Figure 2.3). 

Apoptolidin A and H are available through fermentation9, while the aglycone is only accessible 

via total synthesis.21,22 Once accessed, the aglycone can be subjected to precursor directed 

biosynthesis to afford the C27 disaccharide.23 With all four glycovariants in hand, we can continue 

to elucidate the role of glycosylation state in apoptolidin bioactivity, but first, a robust, large-scale 

synthesis of the aglycone is necessary. 
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Chemical Synthesis of Apoptolidins  

 

Koert’s Synthesis of Apoptolidinone A 

 

 The Koert group’s strategy to apoptolidinone A focused on two key disconnections; a Stille 

coupling to form the C11-C12 bond and a Yamaguchi macrolactonization to form the 20-

memebered lactone (Scheme 2.1).11 The proposed Northern (2.1) and Southern (2.2) hemispheres 

were assembled in a relatively succinct 13 and 15 linear steps respectively. 

 
Scheme 2.1 Koert’s retrosynthetic strategy toward apoptolidinone A 
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The synthesis of the southern hemisphere began with Noyori hydrogenation of 4-methoxy-

acetoacetate (2.3), affording the chiral alcohol in nearly quantitative yield, with excellent 

enantioselectivity. Resultant silyl-protection and reduction of the methyl ester afforded aldehyde 

2.4. The tin(II) triflate-mediated aldol utilizing the beta-keto imide derived enolate of 2.5 afforded 

the Evan’s syn product in 91% yield with excellent diastereoselectivity. Alcohol-directed 

asymmetric hydride delivery, trans-amidation and silyl-protection afforded 2.7 (Scheme 2.2).   

 

 
Scheme 2.2 Synthesis of weinreb amide 2.7 

 

Lithiate addition of 2.9 to weinreb amide 2.8, followed by a one-pot silyl-deprotection and 

acetal formation gave pyran 2.10 in 78% yield over the two steps. Protection of the secondary 

alcohol and substrate-controlled dihydroxylation have diol 2.11, again in good yields. Acetylation 

of diol 2.11 afforded pyran 2.12 (Scheme 2.3).  
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Scheme 2.3 Koert’s synthesis of the Southern hemisphere of apoptolidinone A 

 

 Hydrogenation using Pearlman’s catalyst and oxidation with Dess-Martin reagent yielded 

aldehyde 2.13 in 88% over two steps. Grignard addition to the aldehyde gave the desired vinyl 

stannane 2.2, completing the synthesis of the southern hemisphere (Scheme 2.3).  

 The synthesis of the Northern hemisphere began from β-hydroxy-γ-lactone 2.8, which can 

be prepared from (L)-malic acid in 3 steps.11 Protection of the chiral secondary alcohol, reduction 

of the lactone with DiBAlH, and treatment with wittig reagent 2.16 gives the linear alcohol 2.17 

in only three steps. Silyl-protection of the primary alcohol 2.17 followed by reduction of the ester 

with DiBAlH, oxidation with MnO2, and treatment with wittig reagent 2.16 afforded the diene 

(2.18) in good yields. De-protection of the triethylsiyl ether with CSA in MeOH, and subsequent 

oxidation and Takai olefenation afforded the vinyl iodide 2.19 (Scheme 2.4).  
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Scheme 2.4 Koert’s synthesis of the Northern hemisphere 

 

 

Reduction of the ester moiety with DiBAlH, oxidation with MnO2, and treatment with 

wittig reagent 2.16 gave vinyl iodide 2.1 in 57% yield over three steps, and completed the synthesis 

of the northern hemisphere. It should be noted, that with the trienoate in hand, all reactions with 

linear intermediates were performed in amber glassware, with the exclusion of daylight to prevent 

isomerization of the trienoate moiety (Scheme 2.6).  

 With both the Northern and Southern hemispheres in hand, the Koert group investigated 

multiple conditions for the Stille coupling of 2.1 and 2.2. While several Pd0-mediated cross-

couplings afforded the desired product, yields were below 30% (even with the use of long reaction 

times and higher temperatures). Surprisingly, the use of Cu(I)-thiophene carboxylate under mild 

conditions, gave the desired product in 81% yield in only 1 hour. We noted the non-triviality of 

this bond formation, as it is a common problem in later syntheses as well. With the C11-C12 bond 

formed, attention turned to the second key disconnection. Hydrolysis of the ester with lithium 

hydroxide gave the corresponding acid in 87% yield (Scheme 2.5). Yamaguchi macrolactonization 

was employed to form the 20-membered macrolactone. Global de-protection proceeded in good 

yields, affording apoptolidinone A in 19 linear steps (Scheme 2.5).11 

 

gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

O
O

HO
1. TBSOTf, 2,6-lutidine, 
    CH2Cl2, 88%

CO2Et

PPh3

2. DiBAlH, CH2Cl2, -78oC
3. PhMe, 100 oC, 2.16

2.16

HO

TBSO CO2Et

1. TESCl, imH, 
    CH2Cl2, 0 oC, 93%
2. DiBAlH, toluene, -78 oC
3. MnO2, CH2Cl2, 40 oC
4. 2.16, toluene, 100 oC
    79%, 3 steps

TESO

TBSO

CO2Et

1. CSA, MeOH/CH2Cl2, 0 oC, 93%
2. DMP, pyridine, CH2Cl2, 20 oC
3. CrCl2, CHI3, cat. hydroquinone
    THF, 1,4-dioxane, 20 oC
    67%, 2 steps

TBSO

CO2Et
I

2.15 2.17 2.18

2.19

1. DiBAlH, PhMe, -78 oC
2.) MnO2, CH2Cl2, 20 oC
3.) 2.16, PhMe, 100 oC
     57%, 3 steps

TBSO

I CO2Et2.1



	
109 

 
Scheme 2.5 Completion of apoptolidinone A  

 

Crimmin’s Synthesis of Apoptolidinone A 

 

 The Crimmin’s approach to apoptolidinone A is unique in that a cross metathesis was used 

to form the C10-C13 diene, rather than a cross-coupling to form the C11-C12 bond (Scheme 

2.36).15 While in general the approach was not highly convergent, the use of Crimmin’s aldol 

technology proved to be very efficient. These efforts will be briefly highlighted. 

 

 
Scheme 2.6 Crimmin’s approach to apoptolidinone A 
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 Crimmin’s aldol between auxiliary 2.23 and aldehyde 2.24 using 1 equivalent each of 

titanium(IV) tetrachloride, (-)-sparteine and NMP gave the Evan’s syn aldol adduct 2.25 in 90% 

yield. Protection of the resulting alcohol as the triethylsilyl ether and subsequent reduction utilizing 

DiBAlH gave aldehyde 2.26 (Scheme 2.7). 

 

 
 

Scheme 2.7 Synthesis of aldehyde 2.26 via Crimmin’s aldol technology 

 

Crimmin’s aldol between auxiliary 2.23 and aldehyde 2.26 using 1 equivalent of 

titanium(IV) tetrachloride and excess Hunig’s base gave the non-Evan’s syn aldol adduct 2.27 in 

62% yield. The resultant alcohol was protected as the trimethylsilyl ether (Scheme 2.8). 

 

 
Scheme 2.8 Crimmin’s aldol to afford the non-Evan’s syn adduct 2.27 

 

 After further elaboration of the southern hemisphere, in a reaction sequence that would 

inspire our future efforts, the primary alcohol moiety was converted to the cross-metathesis 

precursor 2.30. Deprotection of the acetate group of 2.28, followed by Swern oxidation and 

iterative Wittig reactions utilizing reagent 2.16 and 2.29 afforded diene 2.30 (Scheme 2.9). 
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Scheme 2.9 Synthesis of cross metathesis precursor diene 2.30 

 

 

 Cross metathesis between the terminal vinyl groups of 2.30 and 2.20 using the Grubbs 

heterocyclic carbine catalyst provided the E isomer, 2.31, in 63% yield (Scheme 2.10). It is worth 

noting that two equivalents of 2.20 were required due to competing homodimerization. This 

undesired product could, however, be isolated and recycled. 

 

 
Scheme 2.10 Cross metathesis to yield the seco-acid precursor 2.31 
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Nelson’s Synthesis of Apoptolidinone C 

 

 The Nelson group’s approach to apoptolidinone C centered on four key disconnections. 

Cross-couplings were employed to form the C5-C6 bond and C11-C12 bond and Mukaiyama aldol 

was used to establish the southern hemisphere. Yamaguchi macrolactonization formed the 20-

memebred macrolactone (Scheme 2.11). While the disconnections were hardly unique, the Nelson 

group developed a highly convergent synthesis and demonstrated the utility of enantioselective 

catalytic aldol surrogates to set stereochemistry through reagent control (Scheme 2.12).16   

 

 
 

Scheme 2.11 The Nelson group’s strategy toward apoptolidinone C 
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The catalytic asymmetric acyl halide–aldehyde cyclocondensation (AAC) developed in the Nelson 

group begins via [2+2] cycloaddition of a ketene and aldehyde, in which a chiral Lewis acid (2.38) 

or Lewis base (2.36, 2.37) can influence the facial selectivity of the approach (Scheme 2.12). The 

resulting β-lactone can be opened via nucleophilic acyl substitution. This methodology was used 

to install nearly every stereocenter in apoptolidinone C. 

 

 

 
Scheme 2.12 Enantioselective catalysis employed in Nelson’s synthesis of apoptolidinone C 

 

 We drew inspiration from the Nelson group’s approach to the Northern hemisphere and 

this route will be briefly summarized. Aldehyde 2.39 was treated with carbon tetrabromide and 

triphenylphosphine to afford the key fragment, dibromide 2.32, in 80% yield. Likewise, the 

coupling partner, boronate 2.34 was synthesized from previously reported vinyl iodide 2.40 via 

Suzuki cross-coupling in an impressive 97% yield (Scheme 2.13). 
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Scheme 2.13 Synthesis of the key fragments dibromide 2.32 and vinyl boronate 2.34  

 

 

 Chemoselective Suzuki cross-coupling afforded the desired trienoate as a single 

regioisomer in 66% yield. The resulting vinyl bromide was subjected to Negishi conditions to 

complete the construction of the apoptolidin trienoate moiety and furnish 2.41 in 90% yield 

(Scheme 2.14). 

 

 
 

Scheme 2.14 Synthesis of trienoate 2.41 via iterative cross-couplings 
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Sulikowski’s Synthesis of Apoptolidinone A 

 

 Sulikowski’s approach to apoptolidinone A was highly convergent, focusing on several 

key disconnections. Cross-coupling to establish the C11-C12 bond, Yamaguchi esterification, 

Suzuki-Miyaura coupling was used to form the C5-C6 bond and aldol reactions were used in 

construction of the southern hemisphere (Scheme 2.15).14   

 

 
 

Scheme 2.15 Sulikowski’s approach to apoptildinone A 

 

 

Compound 2.46 was synthesized from (S)-malic acid using a known procedure in four 

steps. Reduction of the lactone moiety of 2.46 with DiBAlH, followed by condensation with 1,3-

propanedithiol afforded 1,3-dithiane 2.47 in 60% yield over two steps. The alcohol was oxidized 

via Swern conditions and Grignard addition of 2.14 to the resulting aldehyde proceeded with 

chelation-control yielding the 2.48 from lactone 2.46 in only four steps (Scheme 2.16).  
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Scheme 2.16 Synthesis of vinyl stannane 2.48 

 

 Vinyl stannane 2.48 was treated with iodine, and the alcohol was protected as the 

triethylsilyl ether before the dithiane was cleaved using Fetizon-Jurion conditions to unmask the 

aldehyde moiety, yielding 2.49 (Scheme 2.17). 

 

 
 

Scheme 2.17 Synthesis of key aldehyde 2.49 

 

 

 Vinyl boronate 2.50 was prepared via Roush crotylation conditions and subsequent 

protection of the resultant free hydroxyl as the triethylsilyl ether. Suzuki-Miyaura cross-coupling 

between vinyl iodide 2.49 and vinyl boronate 2.50 yielded diene 2.43 in 70% yield (Scheme 2.18). 
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Scheme 2.18 Synthesis of the western hemisphere through Suzuki coupling  

 

 

 Diastereoselective Mukaiyama aldol between aldehyde 2.43 and the enol silane of 2.44 

afforded the ketone 2.51 in 50% yield as a 4:1 mixture of diastereomers. Yamaguchi esterification 

of 2.51 with carboxylic acid 2.40 gave dienoate 2.52 in 83% yield (Scheme 2.19). Aldol addition 

between the kinetic enolate of 2.52 and aldehyde 2.45 afforded the syn aldol product, 2.53, as a 

single isomer in 41% yield. The late stage intermediate ketone 2.52 was recovered (30%), and the 

high convergence of this approach offers some compensation for the relatively low yield of the 

aldol, although room for improvement remained. The resulting alcohol was protected as the 

triethylsilyl ether (Scheme 2.19). 
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Scheme 2.19 Synthesis of late-stage intermediate 2.53 via aldol 

 

 

 Alkene 2.53 was subjected to cross-metathesis with propenyl boronate (2.54) using Grubbs 

second-generation catalyst to afford vinyl boronate 2.55 in 30% yield as a single regioisomer. 

Intramolecular Suzuki-Miyaura cross-coupling gave the macrolactone 2.42 in 60% yield (Scheme 

2.20). This approach avoids the linear trienoate intermediates, which readily isomerize, and is 

therefore favorable. Desilylation via treatment with HF.pyr in THF afforded apoptolidinone A in 

61% yield.14 This approach to apoptilidinone A was completed in 14 steps from lactone 2.46, 

proving to be the most convergent route (Scheme 2.20). Several late stage steps were fairly low 

yielding, however the insights gained from this approach have proved very important in our current 

investigation of large-scale apoptolidinone synthesis, which would be next to impossible without 

a highly convergent approach. 
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Scheme 2.20 Completion of the total synthesis of apoptoldinone A 
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Progress Toward Apoptolidinone C 

 

When studying previously completed syntheses of apoptolidin natural products, a few 

themes emerge. First demonstrated by Sulikowski and then the Nelson group, the Mukaiyama 

aldol14,16 approach to the southern hemisphere is convergent and highly diastereoselective. With 

the less stereocomplex apoptolidinone C as the target, we could avoid the sequential late stage 

Mukaiyama aldols required for the synthesis of apoptolidinone A. Instead Mukaiyama aldol 

between 2.35 and 2.56 or 2.57 would furnish the Southern hemisphere. The use of chiral auxiliaries 

by Koert11 and Crimmins15 provides a robust and scalable process for the synthesis of the 

enantiomerically pure polyketide backbone of the southern hemisphere (2.35). The convergent 

approaches of Sulikowski14 and Nelson16 demonstrate the utility of fragments such as 2.40 in cross-

couplings to establish the C5-C6 bond. In regards to the C11-C12 bond, much variation exists, in 

fact, the western portion of the molecule varies considerably from one groups approach to the next. 

Recognizing this, we sought a synthesis that would allow ready access to multiple potential 

coupling partners for C11-C12 cross-coupling (2.56-2.59).  

 

 
 

Scheme 2.21 Our original synthetic strategy to apoptolidinone C 
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Synthesis of the C20-C28 Fragment 

 

Recognizing the utility of this approach for our purposes, we utilized an aldol between 

thiozalidinone 2.60 and aldehyde 2.4 using Crimmin’s conditions.15,27 We were delighted when 

the transformation produced the aldol adduct consistently in 88-92% yields with >95:5 

diastereoselectivity. The auxiliary was reductively cleaved using sodium borohydride in MeOH, 

and oxidation of the resulting alcohol using Swern conditions afforded the aldehyde, 2.62, in 88% 

yield (Scheme 2.24). 

 

 
 

Scheme 2.22 Synthesis of aldehyde 2.62 

 

Aldehyde 2.62 was reacted with oxazolidinone 2.63 under Crimmin’s conditions to afford the 

adduct 2.6 in 92% yield, again with >95:5 diastereoselectivity. Transamidation of the aldol adduct 

and protection of the free alcohols as TES ethers proceeded smoothly, yielding Weinreb amide 

2.64.11 Treatment of 2.64 with methylmagnesium bromide in ether afforded the key fragment, 

methyl ketone 2.35 in 89% yield (Scheme 2.25).16  
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Scheme 2.23 Synthesis of key fragment methyl ketone 2.35 

 

With our key methyl ketone fragment 2.35 in hand, we turned our attention to the 

synthesis of 2.56 and 2.57. Aldol coupling between 2.65 and 2.66 gave disappointing yields, 

while aldol reaction between 2.65 and 2.67 proceeded in modest yields (Scheme 2.26). Realizing 

this would serve as a bottleneck in our large scale synthesis, we opted for the high yielding aldol 

between 2.65 and acrolein (2.68), which proceeded in 82% giving good diastereoselectivity 

(Scheme 2.26). 

 

 
 

Scheme 2.24 Aldol reactions between auxiliary 2.65 and aldehydes 2.66-2.68 

 

After investigating aldol couplings to synthesize various cross-coupling partners for the 

synthesis of the C11-C12 bond, we refined our strategy and considered cross metathesis. This 

disconnection revealed two new fragments, 2.72 and 2.73, as targets (Scheme 2.27). 
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Scheme 2.25 Revised synthetic strategy toward apoptoldinone C 

 

 

 The aldol adduct 2.71 was protected as the TES ether to afford 2.74 in quantitative yield. 

Reductive cleavage of the auxiliary using lithium borohydride, followed by oxidation of the 

resulting alcohol with Dess-Martin reagent gave the aldehyde 2.75 in good yields. In a procedure 

borrowed from Nicolaou, a one carbon homologation via Ohira-Bestmann reagent and subsequent 

methylation afforded the acetylene (2.72) in good yields (Scheme 2.28).12,13 

 

 
 

Scheme 2.26 Synthesis of key fragment 2.72 from aldol adduct 2.71 
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We then attempted selective hydrometallations of the alkyne moiety of 2.76, but were unable to 

effect the desired transformation selectively, or in a manner we deemed scalable and robust 

(Scheme 2.29).28 

 

 
 

Scheme 2.27 Failed selective hydrostannylation of alkyne 2.77 

 

 

Chemistry demonstrated in previous syntheses showed fragment 2.78 could be coupled to 

fragment 2.34 via Suzuki coupling (Scheme 2.30). Taking advantage of this, we have begun to 

explore the synthesis of these fragments and investigate cross-couplings.  

 

 
 

Scheme 2.28 Current strategy toward apoptolidinone C 

 

 Wittig like conditions can be used to convert aldehyde 2.75 to the key fragment vinyl 

bromide 2.178 (Scheme 2.84). Investigation into cross-couplings and unification of our four key 

fragments is currently underway, and will be facilitated by the scalable and robust routes 

developed.  

gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

TESO TESO SnBu3
(Bu3Sn)BuCu(CN)Li2
THF/MeOH

2.72 2.77

gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg

O

O

O OMe
OH

OH

MeO O H

HO

Suzuki
Coupling

Mukaiyama Aldol

Esterification

O
OMe

OR OTBSOR

Bpin
CO2EtTESO

CHO
OMe

Cross-Metathesis

Br

Br

2.111

2.178
2.113

2.1152.171



	
125 

 
 

Scheme 2.29 Synthesis of key fragment 2.78 

 

Suzuki coupling between 2.78 and 2.34 followed by Negishi coupling is expected to afford the 

Northern hemisphere (2.80) and Mukaiyama aldol between 2.81 and 2.79 is expected to provide 

the Southern hemisphere (2.82). Esterification is proposed to unify the Northern and Southern 

hemispheres, and ring closing metathesis is expected to form the macrocycle. Global de-protection 

will afford apoptolidinone C. 
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Scheme 2.30 Proposed completion of apoptolidinone C 
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Experimental Procedures 

 

General Procedure: All reactions sensitive to air or moisture were conducted in flame-dried or 

oven dried glassware under an atmosphere of argon. Reaction temperatures were controlled 

using a thermocouple thermometer and analog hotplate stirrer. Reactions were conducted at 

room temperature (rt, approximately 23 °C) unless otherwise noted. Flash column 

chromatography was conducted using silica gel 230-400 mesh. Analytical thin-layer 

chromatography (TLC) was performed on E. Merck silica gel 60 F254 plates and visualized 

using UV, p-anisaldehyde stain and potassium permanganate stain. Yields were reported as 

isolated, spectroscopically pure compounds.  

Materials: Solvents were obtained from either an MBraun MB-SPS solvent system or freshly 

distilled. THF was distilled from sodium/benzophenone. MeOH was dried over magnesium and 

stored over molecular sieves. CH2Cl2 and N-methylpyrrolidinone were dried over CaH2, 

distilled, and stored over molecular sieves. Et3N and diisopropylethylamine were dried over 

CaH2, distilled, and stored over KOH pellets. Oxalyl chloride was distilled fresh, prior to use. All 

starting materials and reagents were used as received unless noted otherwise. The molarity of n-

butyllithium solutions was determined by titration using diphenylacetic acid as an indicator 

(average of three determinations).  

Instrumentation: 1H NMR spectra were recorded on Bruker 400, 500, or 600 MHz 

spectrometers and are reported relative to deuterated solvent signals. Data for 1H NMR spectra 

are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q 

= quartet, p = pentet, m = multiplet, br = broad, app = apparent), coupling constants (Hz), and 

integration. 13C NMR spectra were recorded on Bruker 100, 125, or 150 MHz spectrometers and 

are reported relative to deuterated solvent signals.  
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Chemical Synthesis: 

 

S3: To a suspension of [RuCl2(C6H6)]2 (126 mg, 0.25 mmol) in DMF (5.0 mL) 

at 115 °C was added (S)-BINAP (255 mg, 0.41 mmol). The resulting slurry 

was stirred over 15 min. After cooling to room temperature, the solution was transferred into a 

hydrogenation apparatus. A solution of methyl 2.3 (9.97 g, 68.2 mmol) in MeOH (30 mL) was 

transferred into the hydrogenation apparatus. The apparatus was filled with hydrogen (10 bar) and 

stirred at 95 °C over 72 h. Upon completion, the reaction mixture was cooled to room temperature 

and concentrated in vacuo. The resulting residue was purified by flash column chromatography 

(1:2 hexanes/ethyl acetate) to yield the product S3 (8.5 g, 84%) as a yellow oil. 1H NMR (400 

MHz, CDCl3): δ = 4.13 (m, 1H), 3.71 (s, 3H), 3.42 (m, 2H), 3.40 (s, 3H), 2.95 (d, 1H), 2.54 (d, 

2H); 13C NMR (100 MHz, CDCl3): δ = 171.7, 75.3, 66.2, 58.3, 51.0, 37.7. Identical in all respects 

to published data 

 

S4: To a solution of Alcohol S3 (8.15 g, 55.0 mmol) in DMF (80 mL) at 0oC 

was added imidazole (8.6 g, 127.0 mmol) and TBSCl (21.6 g, 71.5 mmol). The 

reaction was allowed to stir at room temperature for 18 h. Reaction was quenched with sat. aq. 

NH4Cl (150 mL). The aqueous layer was extracted with diethyl ether (3 x 100 ml) and the 

combined organic extracts were washed with brine, dried (MgSO4), filtered, and concentrated in 

vacuo. The residue was purified by flash column chromatography (5:1 hexanes/ethyl acetate) to 

yield the product S4 (14.2 g, >95%) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 4.25 (m, 

1H), 3.65 (s, 3H), 3.31 (s, 3H), 3.27 (dd, 1H), 2.58 (dd, 1H), 2.44 (dd, 1H) 0.84 (s, 9H), 0.06, 0.03 

(2s, 6H); 13C NMR (100 MHz, CDCl3): δ = 171.7, 76.5, 68.2, 58.8, 51.3, 40.1, 25.6, 17.9, -4.7, -

5.3. Identical in all respects to published data 

 

 2.4: To a stirred solution of Ester S4 (9.3 g, 35.5 mmol) in CH2Cl2 (250 mL) at 

-78 °C was added DiBAlH dropwise (42.6 mL, 1.0 M in hexanes) over 2 h. After 

complete addition, the reaction was allowed to stir at -78 °C for 1 h. The reaction was quenched 

with MeOH (20 mL), added to a solution of Rochelle’s salt (700 mL, 1.0 M), and stirred for 3 h. 

The layers were separated and the aqueous layer was extracted with CH2Cl2 (3 x 100 mL). The 

combined organic extracts were dried (MgSO4), filtered, and concentrated in vacuo. The residue 
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was purified by flash column chromatography (10:1 hexanes/ethyl acetate) to yield aldehyde 2.4 

(7.26 g, 88%) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 9.81 (s, 1H), 4.36 (m, 1H), 3.44 

(dd, 1H), 3.34 (s, 3H), 3.32 (dd, 1H), 2.56 (m, 2H), 0.88 (s, 9H), 0.10, 0.09 (2s, 6H); 13C NMR 

(100 MHz, CDCl3): δ = 201.3, 76.6, 67.1, 59.1, 48.7, 25.6, 17.7, -4.5, -4.9. Identical in all respects 

to published data 

 

 

S5: To a solution of acyloxazolidinethione (6.82 g, 27.4 mmol) in CH2Cl2 

(110 mL) at 0 °C was added TiCl4 (30.2 mL, 1.0 M in CH2Cl2). The 

yellow slurry was stirred for 15 min at 0 °C. Diisopropylethylamine (4.77 

mL, 27.4 mmol) was added slowly and the reaction was stirred for 40 

min at 0 °C. N-methylpyrrolidinone (2.64 mL, 27.4 mmol) was added the reaction was stirred an 

additional 10 min. A solution of aldehyde 2.4 (7.0 g, 30.2 mmol) in CH2Cl2 (10 mL) was added 

dropwise. After complete addition, the reaction was stirred at 0 °C for 1.5 h. The reaction was 

quenched with sat. aq. NH4Cl and the aqueous layer was extracted with CH2Cl2 (3 x 150 mL). The 

combined organic extracts were dried (MgSO4), filtered, and concentrated in vacuo. The residue 

was purified by flash column chromatography (10:1 to 6:1 hexanes/ethyl acetate) to yield the syn 

aldol adduct S5 (12.2 g, 92%) as a seperable >95:5 mixture of diastereomers. 1H NMR (400 MHz, 

CDCl3): δ = 7.37-7.22 (m, 5H), 4.96 (m, 1H), 4.72 (m, 1H), 4.32 (m, 3H), 4.11 (m, 1H), 3.40 (m, 

2H), 3.36 (s, 3H), 3.29 (dd, 1H), 2.80 (dd, 1H), 1.80 (m, 1H), 1.68 (m, 1H), 1.33 (d, 3H), 0.90 (s, 

9H), 0.12, 0.11 (2s, 6H); 13C NMR (100 MHz, CDCl3): δ =185.1, 177.0, 135.1, 129.3, 128.9, 127.3, 

70.0, 69.6, 68.6, 65.7, 60.2, 59.0, 53.3, 43.0, 38.3, 37.4, 25.7, 18.0, 15.1, 10.7, -4.66, -5.04. 

Identical in all respects to published data 

 

2.61: To a solution of alcohol S5 (5.2 g,  10.8 mmol) in DMF (18 mL) at 

0 °C was added imidazole (2.2 g, 32.4 mmol) followed by TESCl (4.88 g, 

32.4 mmol). The reaction was stirred at 0 °C for 3 h and quenched with 

water (50 mL). The aqueous layer was extracted with diethyl ether (3 x 

70 mL). The combined organic extracts were washed with water, dried 

(MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash column 

chromatography (20:1 hexanes/ethyl acetate) to yield the product 2.61 (6.4 g, >95%) as a colorless 
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oil. 1H NMR (400 MHz, CDCl3): δ = 7.37-7.22 (m, 5H), 4.83 (m, 2H), 4.29 (m, 1H), 4.19 (m, 2H), 

3.95 (m, 1H), 3.33 (m, 4H), 2.78 (m, 1H), 1.69 (m, 2H), 1.37 (d, 3H), 0.99 (s, 9H), 0.60 (m, 15H), 

0.11, 0.10  (2s, 6H); 13C NMR (100 MHz, CDCl3): δ =185.0, 175.9, 135.3, 129.3, 128.8, 127.2, 

71.4, 69.0, 68.6, 60.7, 59.0, 43.4, 37.2, 25.8, 22.5, 13.9, 12.3, 6.81, 6.43, -3.94, -4.71. Identical in 

all respects to published data 

 

 S6: To a solution of 2.61 (7.85 g, 13.2 mmol) in MeOH (100 mL) at 0 °C was 

added sodium borohydride (2.99 g, 79.0 mmol). The reaction was stirred at 0 °C 

for 3 h and the volatiles were removed in vacuo. The residue was partitioned 

between water (70 mL) and CH2Cl2 (90 mL). The aqueous layer was extracted with CH2Cl2 (3 x 

100 mL) and the combined organic extracts were washed with brine, dried (MgSO4), filtered and 

concentrated in vacuo. The residue was purified by flash column chromatography (10:1 

hexanes/ethyl acetate) to yield the product S6 (4.2 g, 79%) as a colorless oil. 1H NMR (400 MHz, 

CDCl3): δ = 4.13 (m, 1H), 3.99 (m, 1H), 3.87 (m, 1H), 3.68 (m, 1H), 3.32 (s, 3H), 3.30 (m, 2H), 

2.74 (m, 1H), 2.00 (m, 1H), 1.69 (t, 2H), 0.98 (s, 9H), 0.87 (m, 12H), 0.64 (m, 6H), 0.08, 0.07 (2s, 

6H); 13C NMR (100 MHz, CDCl3): δ = 77.6, 73.1, 69.2, 65.6, 58.5, 40.0, 38.0, 25.7, 18.0, 11.9, 

6.68, 6.43, 5.68, 5.00, -3.94, -4.86. Identical in all respects to published data 

 

2.62: To a solution of (COCl)2 (0.043 mL, 0.493 mmol) in CH2Cl2 (1.0 mL) at 

-78 °C was added DMSO (0.070 mL, 0.986 mmol). The mixture was stirred at 

-78 °C for 15 min before a solution of alcohol S6 (125 mg, 0.308 mmol) in 

CH2Cl2 (1.0 mL) was added. The mixture was stirred for 15 min before adding triethylamine (0.216 

mL, 1.54 mmol). The reaction was allowed to stir at -78 °C for 15 min then at 0 °C for 40 min. The 

reaction was quenched with water (10 mL) and the aqueous layer was extracted with CH2Cl2 (3 x 

20 mL). The combined organic extracts were washed with brine, dried (MgSO4), filtered and 

concentrated in vacuo. The residue was purified by flash column chromatography (20:1 

hexanes/ethyl acetate) to afford the aldehyde 2.62 (100 mg, 80%) as a light yellow oil. 1H NMR 

(400 MHz, CDCl3): δ = 9.81 (s, 1H), 4.31 (m, 1H), 3.88 (m, 1H), 3.35 (s, 3H), 3.31 (d, 2H), 2.53 

(m, 1H), 1.68 (m, 2H), 1.08 (d, 3H), 0.96 (s, 9H), 0.90 (m, 12H), 0.63 (m, 6H), 0.10 (s, 6H); 13C 

NMR (100 MHz, CDCl3): δ = 205.0, 77.5, 69.7, 69.1, 58.7, 52.1, 40.0, 25.8, 18.0, 6.76, 6.49, 5.37, 

5.08, -4.00, -4.75. Identical in all respects to published data. 
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2.6: To a solution of propionyloxazolidinone (1.3 g, 5.64 mmol) in 

CH2Cl2 (25 mL) at 0 °C was added TiCl4 (6.2 mL, 1.0 M in CH2Cl2). 

The yellow slurry was stirred for 15 min. Diisopropylethylamine (0.98 

mL, 5.64 mmol) was added and the reaction was stirred for 40 min at 

0 °C. N-methylpyrrolidinone (0.54 mL, 5.64 mmol) was added and the reaction was stirred for 10 

min. A solution of aldehyde 2.62 (2.5 g, 6.2 mmol) in CH2Cl2 (5.0 mL) was added dropwise. After 

complete addition, the reaction was stirred at 0 °C for 1.5 h. The reaction was quenched with sat. 

aq. NH4Cl (10 mL) and the aqueous layer was extracted with CH2Cl2 (3 x 20 mL). The combined 

organic extracts were washed with water, dried (MgSO4), filtered, and concentrated in vacuo. The 

residue was purified by flash column chromatography (6:1 à 2:3 hexanes/ethyl acetate) to afford 

the product 2.6 (2.7 g, 92%) as a seperable >95:5 mixture of diastereomers. 1H NMR (400 MHz, 

CDCl3): δ = 7.33-7.21 (m, 5H), 4.69 (m, 1H), 4.19 (m, 2H), 4.11 (m, 2H), 4.09 (m, 2H), 3.39 (m, 

2H), 3.33 (s, 3H), 3.29 (dd, 1H), 2.80 (dd, 1H), 1.84 (m, 2H), 1.60 (m, 1H), 1.25 (d, 3H), 0.87 (s, 

9H), 0.09, 0.08 (2s, 6H); 13C NMR (100 MHz, CDCl3): δ =176.9, 152.9, 135.2, 129.3, 128.8, 127.2, 

77.3, 73.6, 71.8, 70.7, 66.0, 60.2, 55.4, 40.0, 39.3, 37.62, 36.4, 25.7, 17.9, 11.8, 9.73, -4.68, -5.01. 

Identical in all respects to published data 

 

S7: To a solution of Weinreb salt (519 mg, 5.32 mmol) in CH2Cl2 (8.0 

mL) at -10 °C, added AlMe3 (2.66 mL, 2.0 M in hexanes). The mixture 

was allowed to stir at room temperature for 1 h. The reaction was cooled 

to -10 °C and a solution of adduct 2.6 (400 mg, 0.76 mmol) in CH2Cl2 (8 mL) was added. The 

reaction was stirred at -10 °C over 4 h. The mixture was then transferred via cannula to a solution 

of aq. Rochelle’s salt (60 mL, 1.0 M) and stirred overnight. The two layers were separated and the 

aqueous layer was extracted with CH2Cl2 (3 x 60 mL). The combined organic extracts were washed 

with brine, dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash 

column chromatography (4:1 à 1:1 hexanes/ethyl acetate) to afford the product S7 (310 mg, 80%) 

as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 4.37 (s, 1H), 4.10 (m, 1H), 4.09 (1H), 3.85 (m, 

1H), 3.71 (br s, 1H), 3.68 (s, 3H), 3.38 (m, 2H), 3.33 (s, 3H), 3.17 (s, 3H), 3.07 (br m, 1H), 1.81 

(m, 2H), 1.50 (m, 1H), 1.17 (d, 3H), 0.87 (s, 9H), 0.09, 0.07 (2s, 6H); 13C NMR (100 MHz, CDCl3): 
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δ = 178.2, 77.2, 74.3, 69.9, 69.3, 60.8, 58.9, 39.2, 37.4, 32.3, 25.9, 18.0, 11.9, 10.0, -4.56, -5.06. 

Identical in all respects to published data 

 

2.64: To a solution of amide S7 (250 mg, 0.61 mmol) in CH2Cl2 (10 

mL) stirring at 0 °C was added imidazole (332 mg, 4.9 mmol) and 

TESCl (0.62 mL, 3.7 mmol). The solution was stirred at 0 °C for 3 h. 

The reaction was quenched with pH = 7 phosphate buffer (10 mL). The two layers were separated 

and the aqueous layer was extracted with ether (3 x 10 mL). The combined organic extracts were 

dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash column 

chromatography (20:1 hexanes/ethyl acetate) to afford the product 2.64 (370 mg, >95%) as a 

colorless oil. 1H NMR (400 MHz, CDCl3): δ = 4.14 (m, 1H), 3.99 (m, 1H), 3.74 (m, 1H), 3.66 (s, 

3H), 3.32 (s, 3H), 3.31 (m, 2H), 3.16 (s, 3H), 2.97 (m, 1H), 1.80 (m, 2H), 1.47 (m, 1H), 1.03 (d, 

3H), 0.92 (s, 9H), 0.88 (m, 12H), 0.52 (m, 6H), 0.07 (s, 6H). 13C NMR (100 MHz, CDCl3): δ = 

176.2, 77.2, 73.71, 69.6, 69.3, 60.4, 58.6, 42.1, 40.3, 38.7, 31.4, 25.7, 22.5, 18.0, 13.9, 9.71, 10., 

10.5, -4.48, -4.87. Identical in all respects to published data 

 

 

2.35: To a solution of amide 2.64 (250 mg, 0.39 mmol) in THF (0.39 mL) 

at 0 °C, added CH3MgCl (0.39 mL, 3.0 M in THF) dropwise. The reaction 

was allowed to stir for 30 min, before quenching with sat. aq. NH4Cl (10 

mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (3 x 10 mL). The 

combined organic extracts were dried (MgSO4), filtered, and concentrated in vacuo. The residue 

was purified by flash column chromatography (20:1 hexanes/ethyl acetate) to afford the product 

2.35 (208 mg, 89%) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 4.26 (m, 1H), 3.95 (m, 

1H), 3.71 (m, 1H), 3.33 (s, 3H), 3.29 (m, 2H), 2.70 (m, 1H), 2.15 (s, 3H), 1.78 (m, 2H), 1.62 (m, 

1H), 1.09 (d, 3H), 0.92 (s, 9H), 0.88 (m, 12H), 0.52 (m, 6H), 0.69 (s, 6H); 13C NMR (100 MHz, 

CDCl3): δ = 210.1, 73.0, 70.1, 69.3, 58.8, 50.2, 42.8, 40.5, 28.5, 25.8, 11.9, 9.72, 9.41, 7.00, 5.91, 

5.33, -4.36, -4.75. Identical in all respects to published data. 
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2.71: To a solution of propionyloxazolidinone (3.00 g, 12.84 mmol) in CH2Cl2 

(53.5 mL) at 0 °C was added TiCl4 (14.12 mL, 1 M in CH2Cl2). The yellow slurry 

was stirred for 15 min at 0 °C. Diisopropylethylamine (2.23 mL, 12.84 mmol) was 

added slowly and the reaction was stirred for 40 min at 0 °C. Added N-

methylpyrrolidinone (1.24 mL, 12.84 mmol) and stirred for 10 min. A solution of acrolein (792 

mg, 14.12 mmol) in CH2Cl2 (5 mL) was added dropwise. After complete addition, the reaction 

was stirred at 0 °C over 1.5 h. The reaction was quenched with sat. aq. NH4Cl (150 mL) and the 

aqueous layer was extracted with CH2Cl2 (3 x 150 mL). The combined organic extracts were dried 

(MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash column 

chromatography (4:1 petroleum ether/ethyl acetate) to yield the syn aldol adduct 2.71 (3.26 g, 

81%). 1H NMR (400 MHz, CDCl3): δ = 7.18-7.32 (m, 5H), 5.84 (m, 1H), 5.37 (d, J  = 17.24, 1H), 

5.23 (d, J = 10.6 Hz, 1H), 4.70 (m, 1H), 4.50 (br. S, 1H), 4.19 (m, 2H), 3.87 (m, 1H), 3.26 (d, J = 

10.4 Hz, 1H), 2.79 (m, 1H), 1.25 (d, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ = 176.4, 

153.1, 137.4, 135.0, 129.4, 128.9, 127.3, 116.1, 72.6, 66.2, 55.1, 42.5, 37.7, 11.1. Identical in all 

respects to published data 

 

 

2.74: To a solution of alcohol 2.71 (1.34 g, 4.6 mmol) in CH2Cl2 (34 mL) at 0 °C 

was added imidazole (940 mg, 13.8 mmol) and TESCl (2.08 g, 13.8 mmol). The 

reaction was allowed to warm to room temperature, stirred for 16 h and quenched 

with water (50 mL). The aqueous layer was extracted with CH2Cl2 (3 x 30 mL). 

The combined organic extracts were washed with water, dried (MgSO4), filtered, and concentrated 

in vacuo. The residue was purified by flash column chromatography (8:1 hexanes/ethyl acetate) to 

yield the product 2.74 (1.83 g, >95%) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.15-

7.25 (m, 5H), 5.79 (m, 1H), 5.14 (d, J = 17.2, 1H), 5.04 (d, J = 10.36, 1H), 4.53 (ddd, 1H), 4.24 (t, 

1H), 4.06 (m, 2H), 3.95 (m, 1H), 3.18 (d, J = 16.48 Hz, 1H), 2.69 (m, 1H), 1.14 (d, 3H), 0.86 (m, 

9H), 0.51 (m, 6H), ; 13C NMR (CDCl3, 100 MHz): δ = 174.7, 153.2, 139.1, 135.3, 129.4, 128.9, 

127.2, 115.7, 75.5, 65.9, 55.6, 43.9, 37.8, 29.6, 12.7, 6.7, 4.8. 
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S8: To a solution of 2.74 (700 mg, 1.74 mmol) in THF (16 mL) stirring at 0 °C was 

added LiBH4 (2.0 M in THF, 3.47 mL) dropwise. Let warm to room temperature and 

stirred for 5 h. The reaction was cooled to 0 °C and quenched by dropwise addition of water. The 

aqueous layer was extracted with diethyl ether (3 x 10 mL). The combined organic extracts were 

dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash column 

chromatography (8:1 hexanes/ethyl acetate) to yield the alcohol S7 (340 mg, 85%) as a colorless 

oil. 1H NMR (400 MHz, CDCl3): δ = 5.88 (m, 1H), 5.24 (d, J = 17.3 Hz, 1H), 5.19 (d, J = 10.5 Hz, 

1H), 4.24 (t, 1H), 3.65 (m, 1H), 3.49 (m, 1H), 3.02 (br s, 1H), 2.01 (m, 1H), 0.94 (m, 9H), 0.78 (d, 

3H), 0.59 (m, 6H); 13C NMR (CDCl3, 100 MHz): δ = 137.4, 116.0, 65.7, 40.6, 12.4, 6.7, 4.7. 

 

2.75: To a solution of the alcohol S8 (78 mg, 0.339 mmol) in CH2Cl2 (6.5 mL) was 

added Dess-Martin Reagent (215 mg, 0.508 mmol) and NaHCO3 (24 mg, 0.291 mmol). 

The reaction was stirred at room temperature for 1 h. The reaction was quenched with sat. aq. 

Na2S2O3 (8 mL). The layers were separated and the aqueous layer was extracted with CH2Cl2 (3 x 

10 mL). The combined organic extracts were dried (MgSO4), filtered, and concentrated in vacuo. 

The residue was purified by flash column chromatography (8:1 hexanes/ethyl acetate) to yield the 

aldehyde 2.75 (63 mg, 82%) as a colorless oil. 1H NMR (400 MHz, CDCl3): δ = 9.76 (d, J = 1.3 

Hz, 1H), 5.82 (m, 1H), 5.26 (d, 1H), 5.17 (d, 1H), 4.52 (t, 1H), 2.47 (m, 1H), 1.05 (d, J = 6.8 Hz, 

3H), 0.91 (m, 9H), 0.58 (m, 6H); 13C NMR (CDCl3, 100 MHz): δ = 204.6, 138.3, 115.9, 73.7, 52.5, 

8.4, 6.7, 4.8. Identical in all respects to published data 
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Appendix A2: 

 

 

Spectra Relevant to Chapter II 
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Figure A2.1 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of S3 in CDCl3 
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Figure A2.2 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of S4 in CDCl3 
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Figure A2.3 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 2.4 in CDCl3 
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Figure A2.4 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of S5 in CDCl3 
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Figure A2.5 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 2.61 in CDCl3 
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Figure A2.6 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of S6 in CDCl3 
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Figure A2.7 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 2.62 in CDCl3 
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Figure A2.8 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 2.6 in CDCl3 
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Figure A2.9 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of S7 in CDCl3 
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Figure A2.10 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 2.64 in CDCl3 
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Figure A2.11 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 2.35 in CDCl3 
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Figure A2.12 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 2.71 in CDCl3 
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Figure X. 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of X in CDCl3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure A2.13 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 2.74 in CDCl3 
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Figure A2.14 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of S8 in CDCl3 
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Figure X. 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of X in CDCl3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure A2.15 400 MHz 1H-NMR and 100 MHz 13C-NMR spectrum of 2.72 in CDCl3
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