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Chapter 1

Introduction and Background

Electronic structure calculations play a critical role in materials modeling by captur-

ing phenomena at the quantum scale, and likely owe much of their success in materials

research to speed improvements enabled by the pseudopotential approximation to density

functional theory (DFT).2, 3 However, new pseudopotentials still need to be developed to

meet the accuracy and speed demands of the materials design framework. The goal of our

research is thus to improve on previous generations of pseudopotentials by improving the

way pseudopotentials are evaluated, and to leverage this knowledge to enable automated

searches for optimal pseudopotential parameters. The scientific impact of our work will be

faster and more accurate pseudopotentials, enabling high-throughput calculations efficient

enough to support the new materials by design paradigm and accurate enough to probe

uncharted areas of the materials design space.

The pseudopotential is an effective atomic potential that speeds up DFT calculations

by “freezing” core electrons so that only the valence electrons need to be calculated in the

system. This frozen-core approximation is justified because the valence electrons are in-

volved in bonding while the core electrons are relatively inert. Additionally, freezing the

core electrons can smooth the valence wave functions, enabling further speedup of the cal-

culations by reducing the number of plane waves needed to represent them in a plane wave

basis set. Pseudopotentials were originally introduced in 19594 and several implemen-

tations have since been developed, including norm-conserving pseudopotentials, ultrasoft

pseudopotentials, and the projector augmented wave method.5, 6, 7 Since the 1990s efforts

have focused less on new kinds of pseudopotentials and more on tuning the parameters of

these pseudopotentials to make them faster and more accurate. This has resulted in several

popular pseudopotential libraries.
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A pseudopotential library is a collection of pseudopotentials for a large number of el-

ements, sometimes arranged in a periodic table format for ease of use. For each element,

a typical library has one or two pseudopotentials per exchange-correlation functional. The

choices of exchange-correlation functional are usually limited to common parameteriza-

tions of the local density approximation (LDA) and generalized gradient approximation

(GGA). The clearest advantage of libraries is the convenience of pseudopotentials ready

for use. Another potential advantage is that the widespread use of standard sets of pseu-

dopotentials allows the community to discover any flaws that exist, enabling improvement

of libraries over time.8 In recent years there has been a renewed interest in pseudopoten-

tial development and a surge in new libraries as metrics, testing protocols, and researcher

needs evolve. Some recent libraries include the JTH library of PAWs packaged with the

Abinit code,9 the SG15 library of norm conserving pseudopotentials created using opti-

mization techniques,10 the EPAW library which was created especially for high pressure

systems,11 and the SSSP library which selects the best pseudopotentials from previously

existing libraries according to their newly proposed testing protocol.12

The motivation of this work is not necessarily to create new libraries, although many of

the discoveries could be used towards that end. Instead, the motivation is any case where

new pseudopotentials need to be developed, including custom pseudopotentials. Below,

we mention some drawbacks of pseudopotential libraries, and how these are addressed

with custom pseudopotentials.

It is well known that, for any pseudopotential, a compromise between accuracy and ef-

ficiency must be chosen.13 This places constraints on the design of libraries, where authors

must make design decisions that may not be optimal for all users. For instance, in the inter-

est of computational efficiency, authors may choose a large pseudopotential radius, causing

sphere overlap in compressed materials or materials with defects. Additionally, a library

must aim for transferability to all systems. This leads to cases where small radii and extra

semi-core electrons,14 unnecessary for many systems, introduce added expense to calcula-
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tions for some researchers. In contrast, our work does not aim for complete transferability,

instead opting to ensure pseudopotentials are optimal for a given application. This relaxes

the above-mentioned constraints of developing libraries.

Another disadvantage of libraries is that they may have only have a few pseudopo-

tentials per element, leaving the user in trouble if there are no pseudopotentials available

that are appropriate for a given problem. This lack of pseudopotential options can lead to

situations where off-the-shelf pseudopotentials are used without regard to their validity in

the problem at hand. And for many calculations, the wrong pseudopotential can lead to

seemingly valid but drastically inaccurate results.

As an alternative to choosing pseudopotentials from libraries, users can generate their

own pseudopotentials using codes such as Atompaw.15 This approach has the advantage of

allowing the user to choose desired combinations of exchange and correlation functionals,

core/valence partitions, and other pseudopotential parameters. However, tuning the param-

eters of these pseudopotentials can be a daunting task for users without years of experience

and a detailed understanding of the nuances of pseudopotential development.

Pseudopotentials are not unique, and choosing appropriate parameters for them can be

challenging. These parameters are typically adjusted by hand until calculations using the

pseudopotential closely match results given by all-electron DFT calculations. The VASP

documentation states that “[pseudopotential] generation was, and still is, a tricky, cum-

bersome, error-prone and time-consuming task” and “few groups can afford to generate

a new [pseudopotential] for every problem at hand.8 Gianozzi, the author of the popular

Quantum Espresso DFT code, has published some notes online for hand-tuning pseudopo-

tentials, and he describes the process as “closer to cooking than to science”.16 To date,

the majority of the wisdom behind hand-tuning pseudopotentials is passed along through

tips in user guides similar to these, and the process of pseudopotential generation relies

on intuition and experience. To streamline the pseudopotential generation process, we are

developing methods to generate custom pseudopotentials on demand for the user’s specific
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applications using an automated search for optimal pseudopotentials parameters. This au-

tomated optimization will eliminate the need for years of experience or hand-wavy intuition

by automatically testing thousands of pseudopotentials.

Although pseudopotentials have been heavily used for decades, this approach of au-

tomated optimization is relatively new. In 2015, two separate groups applied a single-

objective simplex method to automatically tune pseudopotentials.10, 17 In our work, we

show that pseudopotentials can be reliably tuned using a genetic algorithm to achieve gains

in accuracy and speed. Since our original work on generating PAWs using evolutionary

algorithms, Sarkar et. al. have applied a genetic algorithm to optimize several pseudopoten-

tials for high pressure materials.11 A unique advantage to our optimization technique is the

generation of a Pareto front of pseudopotentials, which offers a user-selectable tradeoff be-

tween accuracy and efficiency. The Pareto front is a result of conducting a multi-objective

optimization vs. using only a single objective. In our case, we optimize for both accuracy

and speed, and an example of a Pareto front can be seen in Figure 3.3.

The push for reproducibility and validation in DFT has led to the proposal of new

metrics and testing protocols for evaluating pseudopotentials. The most notable of the new

metrics is the ∆-factor , originally introduced by Lejaeghere et. al. in Reference 18 and sub-

sequently used to compare a wide array of published DFT codes.19 Other metrics have been

proposed by Prandini et. al.,12 including a test suite for speed and accuracy. They claim

the ∆-factor alone is not enough to determine the convergence properties (and thus speed)

of a pseudopotential since different metrics can have different convergence properties for

the same pseudopotential. Using our optimization tool, we have explored relationships be-

tween different pseudopotential quality metrics, deciding which ones are best suited for

describing and optimizing pseudopotentials. The new metrics we have considered are an

interatomic force-based accuracy metric motivated by situations where interatomic forces

are important, and a metric for the atomic scattering property accuracy based on the arct-

angents of the logderivatives.
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The previously mentioned arctangent metric addresses problems with the current stan-

dard for evaluation of scattering properties in pseudopotentials, the logderivatives. In

this work, we show that the arctangent metric reliably represents disagreements in the

logderivatives and captures ghost states, meaning it is valuable as a metric for evaluat-

ing the accuracy of a pseudopotential. Additionally, since the metric is very cheap to ob-

tain compared to metrics calculated in the solid such as the ∆-factor, the arctangent metric

lends itself as a screening metric during pseudopotential development or optimization. By

screening out bad PAWs using the arctangent metric, more expensive and time consuming

calculations of metrics such as the ∆-factor can be avoided for a large portion of pseudopo-

tentials.

In this dissertation, I describe our optimization techniques using a genetic algorithm,

the necessary formulations of the pseudopotential metrics, and the application of the opti-

mizations to real-world problems. More specifically, Chapter 3 covers the application of

a multi-objective genetic algorithm to the optimization of PAW pseudopotentials based on

interatomic forces, arctangents, and efficiency metrics. Chapter 4 covers the arctangent

metric in more detail, with illustrations of its efficacy. Finally, in Chapter 5, we apply

our optimizations to the development of a low-valency gallium pseudopotential for defect

calculations in GaN, and illustrate how the genetic algorithm improves the speed of opti-

mizations.
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Chapter 2

Theory

2.1 Pseudopotentials and Projector Augmented Wave Data Sets

To understand the pseudopotential parameters we adjust during optimizations, some

pseudopotential theory is necessary. Several formulations of pseudopotentials have been

developed, including norm conserving pseudopotentials,5 ultrasoft pseudopotentials,6 and

projector augmented wave data sets (PAWs).7 However, in this work we focus exclusively

on PAWs. That being said, our optimization technique is not limited to PAWs, and is

applicable to any pseudopotential type. An introduction to PAWs and pseudopotentials in

general can be found in Reference 13, and details on the projector augmented wave method

can be found in Reference 7. We will discuss only the relevant PAW parameters here.

Valence/core partition In a pseudopotential, the core electrons are frozen as if in an

isolated atom, while the valence electrons are free to interact with the solid. The valence

partition can also contain semi-core states are necessary if they affect the physics. These

semi-core states would typically be considered core electrons, but are significantly involved

in bonding for some materials. The semi-core electrons are no longer inert, for example, if

their wavefunctions are extended in space (or if the materials under study are highly com-

pressed) so that the orbitals are overlapping significantly with neighboring atoms. Including

more electrons in the valence partition will typically increase accuracy and transferability

of a pseudopotential, but will make calculations more expensive. Therefore, for compu-

tational efficiency purposes, it is ideal to keep as many electrons in the core partition as

possible.

Radii A core premise of the pseudopotential is that the wave functions and potential

must be correct (same as all-electron) outside some sphere surrounding each atom.Inside
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this sphere of radius rc, the wave function and potential are smoothed out, or pseudized.

This radius corresponds to rpaw in Reference 15. rc is an important tunable parameter of

pseudopotentials and is optimized in our work. In the PAW approach, several other radii are

defined: rshape, rvloc, and rcore (see Reference 15). In the Atompaw code, these three radii

are set equal to rc by default, but can be specified independently if desired. Additionally,

each partial wave has an associated radius ri ≤ rc.

Projectors Projectors are used to map the pseudized wave functions to the all-electron

partial waves within the PAW method. Each partial wave corresponding to a scattering state

has a projector energy, Ei. In practice these projector energies are adjusted by pseudopo-

tential developers to remove ghost states and ensure the logderivatives (and thus scattering

properties) match all-electron values over some relevant energy range. By construction,

the all-electron and pseudized logderivatives match at the projector energies, so additional

projectors with strategically chosen projector energies can be used to enforce scattering

accuracy to an arbitrarily high energy. Typically, however, the number of projectors is kept

as low as possible to keep computational costs down, and because scattering property ac-

curacy is not normally necessary for high energies. We expect that optimal values of these

projector energies depend on the choice of the radii.

2.2 Evaluating Pseudopotentials

The ideal pseudopotential is accurate, efficient (fast), and transferable. These objec-

tives compete with each other, making the pseudopotential generation process an art of

compromise. For example, reducing the core radius of a pseudopotential can make the

pseudopotential more accurate, but this increase in accuracy usually comes at the expense

of computational efficiency; reducing this radius is likely to increase the size of the basis

set required to converge calculations. Complete transferability is also never guaranteed be-

cause testing a pseudopotential in a variety of systems does not guarantee it will work in

others. Better transferability can be gained by including more electrons in the valence or
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reducing the core radius, but this again decreases the computational efficiency. There are

various metrics for quantifying a pseudopotential’s accuracy, efficiency, and transferability.

The metrics relevant to this work are discussed in the remainder of this section.

2.2.1 Accuracy

The accuracy of a pseudopotential is gauged by comparison with all-electron calcula-

tions as opposed to experimental results. By comparing to all-electron calculations, one can

evaluate the pseudopotential approximation only and not other approximations inherent to

DFT. A fortunate advantage of this approach is that all-electron results can be obtained in

situations where experimental data do not exist. A recent example of this is given in Refer-

ence 14, where they use zero-temperature lattice constant data for BCC, FCC, and simple

cubic structures. Many of these structures are not stable in nature. Furthermore, calcula-

tions do not have to be converged to high accuracy since all that is needed is a comparison

with all-electron results. For example, coarse k-point sampling can be used provided this

sampling is the same in both the pseudopotential and all-electron calculations. The standard

method for evaluating the accuracy of pseudopotentials against all-electron results has two

parts, evaluation in the atom and evaluation in the solid. Both of these parts are discussed

below, as well as methods for visually or automatically evaluating the quality.

2.2.1.1 Evaluating in the atom

A pseudopotential is evaluated in the atom by comparing pseudized (PS) and all-electron

(AE) logderivatives for a single isolated atom. The logderivatives are related to scattering

properties of the pseudopotential. Ideally, the scattering properties of the AE and PS poten-

tials should be similar in order to correctly capture the physical interaction of the potential

with electrons. When inspecting the log derivatives, any discontinuities should line up as

much as possible. Any discontinuity present in the PS logderivatives that is not found in

the AE logderivatives is a ghost state, and can result in unphysical behavior in calculations.
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Typically the logderivatives are inspected visually. In some cases, the root mean square

error of AE and PS log derivative curves over some energy range is used.11 An alterna-

tive metric, introduced in this work, is based on the arctangent of the logderivatives. An

advantage of the arctangents is that they are numerically smooth whereas the logderiva-

tives contain singularities. This smoothness enables meaningful comparisons between the

all-electron and pseudized arctangent curves. This advantage and other advantages of the

arctangent metric are the subject of Chapter 4.

The calculation of the logderivatives is very fast (at least with the Atompaw code),

requiring only seconds on a single processor. If the logderivatives are sampled very finely

(on the order of 10,000 points), the evaluation of the logderivatives can take a few minutes.

The arctangents of the logderivatives are then trivially fast to calculate.

2.2.1.2 Evaluating in the solid

Lattice constant/bulk modulus The lattice constant calculation is the classic first pass

for evaluating a pseudopotential in the solid. In the simplest case, there is only one lattice

parameter and no other structural degrees of freedom (e.g. BCC, FCC, simple cubic, rock

salt, diamond, and zinc-blende structures). In this case, the energy vs. lattice constant rela-

tionship is simply E(a), or in terms of volume, E(V ) = E(a3). To calculate the equilibrium

lattice constant, one must first calculate the total energy at several different lattice constants

near some reasonable guess for the minimum. From this energy vs. lattice constant data,

an equation of state can be fitted. Typical equations of state are the Murnaghan or Birch-

Murnaghan equations of state. The bulk modulus also comes directly from the equation of

state and can be used for comparison to all-electron calculations as well.

∆-factor The ∆-factor was introduced by Lejaeghere et al. in 2014 and is becoming the

standard metric for evaluating pseudopotential accuracy in the solid. The ∆-factor is similar

to the equilibrium lattice constant calculation in that it requires a calculation of the equation

of state across some lattice constant range for both the all-electron and pseudopotential
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cases. However, instead of just comparing the error in lattice constant and bulk modulus

derived from the equation of state, the energy error across the whole lattice constant range

is considered. Thus, the ∆-factor is based on the integral of the difference between two

equations of state.

∆ =

√∫ 1.06V0
0.94V0

(E1(V )−E2(V ))2 dV

0.12V0
(2.1)

Several alternative formulations exist,19, 11 all variations on the same theme. Typically, a

small range of volumes, −0.94V0 to 1.06V0, near equilibrium is used. In contrast, Sarkar et

al. have used a larger energy range to account for high pressure environments such as the

Earth’s core.

Forces An alternative to equilibrium crystal properties such as the lattice constant is

the force-based metric, where interatomic forces are compared between all-electron and

pseudopotential calculations in the same atomic structures. The force-based metric is moti-

vated by applications where atoms are not in perfect crystals or molecular dynamics (where

accurate forces are crucial).

In order to have non-zero interatomic forces to compare, atoms must be in non-equilibrium

positions. There are multiple ways to set up these non-equilibrium structures. One could

perturb the atoms from an equilibrium crystal structure. Alternatively, one could randomly

place the atoms in the unit cell. Yet another option is to run molecular dynamics simu-

lations at some temperature to get physically relevant atomic configurations. In any case,

care must be taken to avoid configurations where atoms are unrealistically close. Ideally,

the configurations adequately sample the coordinations with neighboring atoms, but an

exhaustive sample is intractable. In practice, only a few configurations may be necessary.

The error in interatomic force for a single atom is defined as r f = |fAE−fPS|. For the

case of a two atom unit cell, the forces on the two atoms are equal and opposite, and we
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can consider the force on only one of the atoms. Then the force based metric is defined as

s f =

(
1
N

N

∑
i=1

r2
f ,i

)1/2

, (2.2)

where N is the number of configurations. This metric could easily be extended to account

for more atoms in the unit cell.

2.2.2 Efficiency

In addition to accuracy, one wants to know the efficiency, or speed, of a pseudopo-

tential. Pseudopotentials with which calculations are more computationally expensive are

referred to as hard pseudopotentials. Soft pseudopotentials are more efficient. Usually the

metric for efficiency is just the energy cutoff required for convergence of some physical

parameter in the solid. For example, you could determine the required cutoff for a Si po-

tential by converging the lattice constant within some tolerance. Different potentials will

converge to that tolerance at different plane wave cutoffs. The idea is to tune parameters of

pseudopotentials so that they require the lowest cutoff while still remaining accurate com-

pared to all-electron results. In reality, the expense of calculations comes from the number

of self-consistent iterations and bands as well. Therefore, we have used a new efficiency

metric which is based not only on the energy cutoff, but also on self-consistent iterations

and bands.

2.2.3 Transferability

It is usually desirable for a pseudopotential be accurate in various chemical environ-

ments. Early developers of pseudopotentials recognized that the scattering properties of

the pseudopotential were critical for encouraging this transferability, hence the focus on

logderivatives during pseudopotential evaluation. In addition to scattering property tests,

pseudopotential developers typically run calculations in various solids to make sure the
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pseudopotential gives correct results in multiple systems (see References 20, 14, 10 for ex-

ample). Transferability is advantageous for high throughput materials studies because the

pseudopotentials are expected to work in all materials. Transferability is also advantageous

for reducing the barrier to entry for DFT users.

There is no perfect pseudopotential for every system, thus assuring the transferability of

a pseudopotential inevitably leads to sacrifices in speed for many materials. For example,

a small PAW radius that leads to the most accurate solution in the materials tested will

likely be smaller than necessary for many systems, making the calculations unnecessarily

expensive. Another example of transferability leading to sacrifices in speed is the inclusion

of the 3d electrons in many studies of GaN. By removing these 3d electrons from the

valence of gallium, the simulations of defects in GaN can be sped up by more than 40%,

as will be discussed in Chapter 5. The gallium pseudopotential without 3d electrons in the

valence is not transferable to many systems, but is perfectly acceptable for defect studies

in GaN.
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Chapter 3

Force-based optimization of PAW data sets

3.1 Motivation

Pseudopotential methods for density functional theory (DFT) calculations can dras-

tically reduce computational time by reducing calculations involving core electrons, and

have been widely used in computational materials science since their introduction in 1979.5

However, pseudopotentials that are both accurate in reproducing all-electron results and ef-

ficient in the computational work required are difficult to generate because these objectives

tend to compete with each other. In this chapter, we generate pseudopotentials based on

their accuracy in predicting atomic forces in non-equilibrium crystal configurations and

their computational work demands. Our force-based approach is different from previous

work, where pseudopotentials have been verified based on equilibrium properties such as

lattice constant and bulk modulus.9, 14

Motivations for our force-based approach are applications where atoms are not in a

perfect-crystal environment, such as defects in lattices, material interfaces, or molecular

dynamics (MD). In the context of MD, Car-Parinello21 or Ehrenfest dynamics22 require

forces obtained from ab initio electronic structure calculations using DFT and the pseu-

dopotential approximation, therefore pseudopotentials should be designed to produce ac-

curate forces.

Pseudopotentials are typically tuned by adjusting several parameters until physical

quantities are calculated with sufficiently minimal errors as compared to all-electron re-

sults. Commonly these quantities are equilibrium lattice constant and bulk modulus,14, 9

but other metrics based on perfect crystals are also used.18 If a pseudopotential produces

low error for the physical quantity being calculated then the pseudopotential is said to be
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good. The question that remains is will the pseudopotential optimized for equilibrium per-

fect crystals work for atoms that are not in their equilibrium positions? In other words, if

we break symmetry by adding a defect or perturbing atoms in the lattice, how can we know

that the pseudopotential that was derived for a perfect periodic crystal is still “good?” To

answer this question, we have chosen to optimize based on forces in non-perfect crystals to

ensure that subsequent force calculations are accurate.

We have used a multi-objective genetic algorithm (MOGA) to optimize pseudopoten-

tials for accuracy and computational work by altering a set of parameters used to create

pseudopotentials. The use of genetic algorithms for tuning pseudopotentials was intro-

duced in Reference 23. In that work, though, the genetic algorithm was used to generate

accurate, efficient, and transferable pseudopotentials based on equilibrium properties. We

are not claiming in this work that pseudopotentials generated using the present approach are

transferable. Instead we claim they are applicable to arbitrarily perturbed atomic configura-

tions of the chosen material system. The accuracy of a pseudopotential is partially based on

a comparison between forces calculated using the pseudopotential method and forces cal-

culated using the all-electron full-potential linearized augmented-plane wave (FP-LAPW)

method. The computational work of a pseudopotential is based on an estimation of the

floating-point operations required to run the force calculations. After a specified number

of pseudopotentials have been created, the non-dominated pseudopotentials are chosen for

the Pareto set. A pseudopotential is non-dominated if it cannot be improved in one ob-

jective without worsening the other. The resulting Pareto set contains design points with

varying compromises between accuracy and efficiency. Our method could make pseudopo-

tentials more accessible to a broader range of scientists and engineers by automating the

optimization of pseudopotentials. The optimizer handles the design, generation, and eval-

uation of pseudopotentials, resulting in not just one, but many optimized pseudopotentials

with varying user selectable compromises between accuracy and efficiency.

In this chapter, we have completed three force-based optimizations: one for lithium and
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fluorine in LiF, one for silicon and germanium in SiGe, and another for elemental molyb-

denum. We chose these materials for two reasons. First, good pseudopotentials are already

available to use as a reference when testing the pseudopotentials. Second, these materials

are bonded differently, and we show that our method works well for a variety of chemi-

cal environments. We have generated a Pareto set of optimized pseudopotentials for each

material. To ensure that force-optimized pseudopotentials yield equilibrium properties, we

also tested several of our optimized pseudopotentials for their ability to predict equilib-

rium lattice constant and bulk modulus. Moreover, we test the optimized pseudopotentials

in atomic configurations unknown to the optimizer. This step ensures that the optimized

pseudopotentials are generally applicable to any atomic configuration and not just valid for

the optimized configurations. Finally, results using our optimized pseudopotentials were

compared with results given by pseudopotentials from the ABINIT library.

3.2 Methods

3.2.1 Pseudopotential optimization

A multi-objective genetic algorithm (MOGA), implemented using the DAKOTA soft-

ware package,24 was used for optimizing pseudopotentials. The two objectives for the

optimization were accuracy and computational work, which MOGA tries to minimize (the

accuracy objective should be minimized because it is based on force residuals). The genetic

algorithm (GA), which is based on biological evolution, starts with a random population of

design points, where each design point is a unique set of values for the design variables. The

design variables are inputs to atompaw used to create pseudopotentials (one pseudopoten-

tial for each element in the material), and the goal of MOGA is to find the best values for

these design variables. For LiF and SiGe, which have two elements, each design point cre-

ates a pair of pseudopotentials, so the elements are being optimized simultaneously. The

design variables used for each material system are shown in Table 3.1. Each design point is
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tested to determine its work and accuracy objectives, where lower objective values are de-

sirable. Design points with lower objectives are given higher fitness values. Design points

from each generation with low fitness values are discarded, and the remaining design points

are subjected to genetic operations (mutation and crossover), which introduce diversity, to

create the next generation of design points. We used MOGA’s random shuffle crossover op-

erator, which randomly selects design variable values from a specified number of parents

to create the offspring. The specified number of parents was 10, the specified number of

offspring was 20, and the crossover rate was 0.8. Mutation was carried out using uniform

replacement, where every design variable for the design point is changed to a random value

distributed uniformly in the allowed range of that design variable. The mutation rate was

0.3.

As MOGA progresses, the optimizer should find design points with higher fitness val-

ues. Because accuracy and work are competing objectives, there is no single best design

point. Instead, all design points that are non-dominated are chosen for the Pareto set, which

is the final product of MOGA (see Figure 3.3, for example). A non-dominated design point

cannot be decreased in one objective without increasing the other objective. For this study,

design points in the Pareto set that produce less error will require more work, and those

that produce more error will require less work. In addition to searching for design points

with higher fitness, the optimizer also attempts to fill in gaps in the Pareto front.

To determine the error given by the pseudopotential method, we compared atomic

forces calculated using pseudopotentials to atomic forces calculated using the all-electron

full-potential linearized augmented-plane wave (FP-LAPW) method. Both the pseudopo-

tential method and the all-electron method share the approximations of DFT, so any dif-

ferences in results between the two methods can be attributed to the pseudopotential used.

The all-electron method was considered exact for the purposes of this work.

In addition to comparing forces, we also used the atomic wave functions to effectively

screen pseudopotentials containing ghost states. Traditionally, ghost states are detected by
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Figure 3.1: MOGA workflow. For each design point, a pair of pseudopotentials is created
and tested simultaneously.

Design
Material Variable Minimum Maximum
LiF RCLi 0.2 Bohr 4 Bohr

RCF 0.2 Bohr 4 Bohr
EPF 0 Ry 15 Ry

SiGe RCSi 0.2 Bohr 4 Bohr
EPSi 0 Ry 15 Ry
RCGe 0.2 Bohr 4 Bohr
EDGe 0 Ry 15 Ry

Mo RCMo 0.2 Bohr 4 Bohr
EPMo 0 Ry 15 Ry
EDMo 0 Ry 15 Ry

Table 3.1: Design variables and specified ranges used for MOGA. RC stands for cutoff
radius. EP and ED are reference energies for P and D orbitals.
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comparing the logarithmic derivatives of the pseudopotential and all-electron radial wave

functions, defined as
1

ΨEl(rc)

dΨEl

dr
, (3.1)

where ΨEl is the wave function, r is the radial position, and rc is the cutoff radius. Visual

inspection of the logarithmic derivatives of the two wave functions allows pseudopotential

designers to quickly assess the quality of a pseudopotential before it’s put into a crys-

tal. This otherwise manual operation can be codified for the purposes of optimization by

looking at the root mean square (RMS) of the logarithmic derivative residuals. However,

directly minimizing this RMS is a poor choice for automated evaluation due to disconti-

nuities in the logarithmic derivatives. Any slight misalignment between the all-electron

and pseudo wave functions leads to a large change in the residual sum. Even worse, as

the misalignment decreases, the residual sum steadily increases until the wave functions

significantly overlap, at which point the residual sum starts decreasing. As a result, try-

ing to minimize this term using traditional gradient based techniques can lead to solutions

where the all-election and pseudo wave functions have no overlap, resulting in a useless

solution. Only if the initial pseudopotential parameters lead to a starting guess where the

all-election and pseudo wave functions overlap sufficiently to be in the local minima or

region of attraction will the optimization lead to a potentially useful solution.

Alternatively one can treat the logarithmic derivative as

tan Θ =
1

ΨEl(rc)

dΨEl

dr
(3.2)

and use RMS of the all-election and pseudo wave function Θ residuals. This approach

doesn’t suffer from having a region of repulsion surrounding a logarithmic discontinuity

misalignment. In fact, as the original logarithmic derivatives align themselves, the Θ resid-

uals decrease. Each traversal of a discontinuity coincides with a π phase shift which accu-

mulates over the plot. Consequently, extra discontinuities, including those that are barely
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visible due to the discrete energy sampling, have a dramatic effect on the resulting objec-

tive and hence the optimization. This makes using the RMS of the Θ residuals an excellent

choice for evaluating the pseudopotential quality from an automated point of view.

The projector augmented wave (PAW) pseudopotential method7 was implemented us-

ing the socorro code from Sandia National Laboratories.25 The all-electron method

was implemented with the Elk code.26 The exchange and correlation functionals used

the PBE version of the generalized gradient approximation (GGA).27 For Elk, the ex-

change and correlation functionals were implemented using LibXC.28 For socorro and

atompaw the built in implementations of the exchange and correlation functionals were

used. A 4× 4× 4 Monkhorst-Pack k-point grid29 was used for all calculations. This k-

point mesh may not have been sufficient for convergence to physical values, but since both

the all-electron and pseudopotential methods use the same k-point grid the results can be

compared without convergence being required.14

Atoms in the crystals studied were perturbed from the equilibrium positions to produce

net forces on the atoms. The equilibrium configuration is the natural crystal structure of

each system; rock-salt for LiF, zinc-blende for SiGe, and BCC for Mo. The atomic forces

were calculated for four different non-equilibrium random atomic configurations, which

we call training configurations. After testing optimizations with two, four, and eight train-

ing sets, we concluded that four was sufficient for our systems because we did not observe

significant changes in results of the optimizations when using more than four training con-

figurations. Nevertheless, we concede that more training sets could be necessary for more

complex systems. The generation of the random configurations used for the optimizations

is discussed in more detail in Section 3.2.2.

We used the force residual to quantify force error between pseudopotential forces and

all-electron forces. The force residual is the magnitude of the vector difference between

the two forces on an atom:

r f =
∣∣fp− fAE

∣∣ , (3.3)
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where fp is the force on the atom from the pseudopotential method and fAE is the force

on the atom from the all-electron method. A lower force residual represents a better match

with the all-electron results and more accurate force. If the pseudopotential and all-electron

methods give equal force vectors, the force residual is 0. For all sytems we defined the unit

cell with two atoms, meaning the atomic forces will be equal and opposite. Therefore, we

consider the forces on atom 2 only. The Θ residual is defined as

rΘ = Θp−ΘAE, (3.4)

where Θp is the arctangent of the logderivative for the pseudized wave function and ΘAE is

the arctangent of the logderivative for the all-electron wave function.

The accuracy objective for a design point is constructed as

SA = s f +WΘsΘ, (3.5)

where s f is the sum of the force residuals over the atomic configurations (N),

s f =

(
1
N

N

∑
i=1

r2
f ,i

)1/2

. (3.6)

And sΘ is a sum of the arctan of logderivatives over each element and each state in each

element (l),

sΘ =
2
π

1
L ∑

elements
∑

l

(
1
M

M

∑
i=1

(
rΘ,i
)2

)1/2

, (3.7)

where M is the number of sample points. The weight WΘ in equation 3.5 is chosen so that

both terms in SA are similar orders of magnitude. The weights used for this chapter were

0.005 for LiF, 0.022 for SiGe, and 5.3 for Mo.

The work objective was an approximation of the number of floating point operations re-

quired to calculate the kinetic energy, potential, electron density, projected eigen-problem,
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Hamiltonian, overlap operator, and residuals. The number of floating point operations is

approximated as

SW = m
[
2nw +10b2 +b3 +(b+1)nd log2 nd +b(3nw +4pnw +2nw log2 nw)

]
(3.8)

where b is the number of bands, nw is the size of the FFT grid for wave functions and

potential, nd is the size of the density FFT grid, p is the number of projectors, and m is the

number of iterations. We chose to estimate computational work using this formula instead

of wall time to avoid biases due to different computing environments.

Different pseudopotential pairs required different wave function cutoff (Ecut) values for

the solution to converge. To determine the required wave function cutoff, we increased it

from 10 Ry in steps of 10 Ry and considered the solution converged when

(
Ei−1−Ei

Ei−1

)2

< 10−8, (3.9)

where Ei is the cell energy for the wave function cutoff being tested and Ei−1 is the cell

energy for the previous wave function cutoff tested. The density cutoff was set to 4Ecut.

Pseudopotential pairs that didn’t converge by Ecut = 70Ry were given artificially high work

and accuracy objectives so the optimizer would recognize them as bad design points.

Pseudopotentials were generated using the atompaw code.15 The core and valence

configurations used are shown in Table 3.2. We chose to vary cutoff radii (RC) and pro-

jector energies (EP and ED) as design variables for these optimizations. Table 3.1 shows

the atompaw input parameters that were used as design variables for MOGA. The PAW

pseudopotentials generated by atompaw have four specified cutoff radii: rpaw, rshape, rvloc,

and rcore.15 For simplicity, we used a single value for all four radii. If atompaw could not

create a pseudopotential given a set of parameters, an artificially high objective was re-

turned to the optimizer to identify it as poor design point. An artificially high objective was

also returned if pseudopotentials took longer than a specified wall time to converge or the
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Element core valence
Li none 1s, 2s, 2p
F 1s 2s, 2p
Si 1s, 2s, 2p 3s, 3p
Ge 1s, 2s, 2p 3s, 4s, 3p, 4p, 3d
Mo 1s, 2s, 3s, 2p, 3p, 3d 4s, 5s, 4p, 4d

Table 3.2: Specified valence configurations for generating pseudopotentials with
atompaw.

pseudopotential resulted in non-convergence of a calculation.

3.2.2 Random atomic configurations

Atoms in the crystal structure must be moved from the equilibrium position to produce

a net force on the atoms. The unit cells for LiF and SiGe have lattice vectors (a
2 , a

2 , 0), (0,

a
2 , a

2 ), and (a
2 , 0, a

2 ) where a is the corresponding lattice constant. The unit cell for Mo has

lattice vectors (a, 0, 0), (0, a, 0), and (0, 0, a). We generated atomic configurations for the

optimization by randomly placing atom 2 in the unit cell while leaving atom 1 fixed at the

unit cell origin.

To characterize the random atomic configurations, we have used the normalized nearest

neighbor distance. This value is proportional to the distance between the closest two atoms

in the crystal lattice for a given atomic configuration. It arises because the perturbation

of an atom from its equilibrium position will move the atom closer to other atoms in the

lattice (although in the zinc-blende structure, perturbations sometimes increase the nearest

neighbor distance). The closest two atoms in the crystal are not necessarily in the same unit

cell. For each configuration, the normalized nearest neighbor distance is defined as

d =
h
he

(3.10)

where h is the (non-normalized) nearest neighbor distance for that configuration and he is

the nearest neighbor distance for the equilibrium crystal structure. Normalizing to he aids
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in analysis of atomic distances by letting d = 1 for equilibrium and d < 1 when atoms

move closer. For LiF (rock-salt structure), he = a/2 = 3.804Bohr. For SiGe (zinc blende

structure), he =
√

3a/4 = 4.531Bohr. For Mo (BCC), he =
√

3a/2 = 5.157Bohr. The

lattice constants used for the force calculations only need to be approximate as long they

are the same for both the the all-electron and pseudopotential calculations, ensuring a valid

comparison between forces. The lattice constants used were a = 7.6Bohr for LiF, a =

10.5Bohr for SiGe, and a = 6.0Bohr for Mo.

A random atomic configuration was not used if d < 0.8. This constraint prevents atoms

from being too close and producing unrealistically large repulsive forces. Because many

atomic positions violate this constraint, atom 2 is only allowed in a certain region in the

unit cell. To illustrate this, we generated 100,000 random configurations and plotted the

atomic locations in the unit cell (Figure 3.2). Atom 1 can be seen at the unit cell origin.

The positions of atom 2 represent the region of allowed positions for atom 2. Table 3.3

contains the four random configurations generated for each crystal system that were used

for the optimization.

3.2.3 Evaluation of optimized pseudopotentials

Ideally, pseudopotentials generated to calculate forces accurately would also predict

equilibrium properties with similar accuracy. We calculated equilibrium lattice constant

and bulk modulus using several design points from the Pareto fronts. The results using our

optimized pseudopotentials were compared with results given by the all-electron method.

To find lattice constant and bulk modulus, the energy of the unit cell was calculated for

nine different lattice constants between 95% and 105% of the lattice constant initial guess.

The energy vs. unit cell volume relationship was fit to the Murnaghan equation of state30

and the lattice constant and bulk modulus were derived from this fit. A calculation of

lattice constant was done with Elk using the lattice constants reported in Section 3.2.2 as

the initial guess. The resulting lattice constants from those calculations were used as the

23



(a) LiF

(b) SiGe

(b) Mo

Figure 3.2: Left: Equilibrium positions of the two unit cell atoms for LiF in the rock-
salt structure, SiGe in the zinc blende structure, and Mo in the BCC structure. Right:
Illustrations of the region of possible positions of atom 2 for LiF and SiGe. Atom 1 is fixed
at the origin. These images were created by generating 100000 random configurations
using the method in Section 3.2.2.

24



Configuration atom 2 coordinates d
LiF 1 0.282, 0.187, 0.242 0.824
LiF 2 0.546, 0.314, 0.607 0.862
LiF 3 0.387, 0.496, 0.469 0.865
LiF 4 0.658, 0.478, 0.387 0.877
SiGe 1 0.740, 0.240, 0.448 0.825
SiGe 2 0.497, 0.507, 0.222 0.887
SiGe 3 0.591, 0.492, 0.329 0.958
SiGe 4 0.372, 0.506, 0.475 0.988
Mo 1 0.514, 0.050, 0.496 0.804
Mo 2 0.760, 0.431, 0.509 0.804
Mo 3 0.508, 0.142, 0.522 0.809
Mo 4 0.514, 0.431, 0.721 0.817

Table 3.3: Atomic configurations for LiF and SiGe used for this chapter. The training
configurations were used for the optimization of pseudopotentials. The lattice vectors for
LiF and SiGe are (a

2 , a
2 , 0), (0, a

2 , a
2 ), and (a

2 , 0, a
2 ). The lattice vectors for Mo are (a, 0,

0), (0, a, 0), and (0, 0, a). Atom 1 position is (0,0,0). The training configurations for each
material are sorted by d.

guesses for the all-electron and pseudopotential lattice constant calculations reported in this

chapter.

3.3 Results

3.3.1 Pareto fronts

For all crystal systems, MOGA created and tested a set number of design points—

2500 for LiF and Mo and 7500 for SiGe. The initial generation size for each material

was 300 design points. Subsequent generation sizes were determined by MOGA, and new

generations were created until the specified number of design points were tested. At the

end of the optimization, the non-dominated design points were identified for the Pareto

front. The resulting objectives for each design point tested are shown in Figure 3.3 and

points on the Pareto front are identified in blue. The best design points have low error and

work objectives, so they are found towards the bottom and left in the plots. The Pareto front

offers a diverse set of design points. In Figure 3.3, the design points vary from accurate but
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expensive (top left) to inexpensive but not as accurate (bottom right) with a distribution of

points in between.

For comparison, we calculated the work and accuracy objectives of pseudopotentials

available from a pseudopotential library. Lithium, fluorine, silicon, germanium, and molyb-

denum PAW pseudopotentials are available from the ABINIT website.31 These pseudopo-

tentials, which we used as reference pseudopotentials, are expected to be very accurate.

Figure 3.3 shows the objectives of these reference pseudopotentials in relation to our Pareto

front. We were able to generate pseudopotentials with comparable accuracy and efficiency

compared to reference pseudopotentials from the literature, as is evident from the accuracy

and work objectives of the reference pseudopotentials in Figure 3.3.

We chose three design points from each of our Pareto fronts to test further. These repre-

sentative design points are labeled accurate, balanced, and fast based on their positions on

the Pareto front. Figure 3.3 shows the locations on the Pareto fronts of these design points.

For LiF and SiGe, the design point on the Pareto front with the best accuracy objective was

chosen for accurate. For Mo, the second Pareto point was chosen for accurate instead of

the first. Mo Pareto point 1’s work objective is 160% higher than Pareto point 2’s work

objective while offering only a 3% improvement in accuracy objective, making it an un-

likely choice for production runs. For all materials, the design point with the lowest work

objective was chosen for fast. We chose a design point near the middles of our Pareto fronts

for the balanced pseudopotentials to represent a balance between accuracy and work.

3.3.2 Genetic algorithm vs. random sampling and parametric sweep

Genetic algorithms (GA) are known to be advantageous for complex design spaces

because they are less likely to be caught in a local minimum. However, we performed tests

of the GA compared to brute force techniques to determine whether the GA (1) explored

the entire design space, and (2) found the superior Pareto set. For the first test we randomly

sampled the design space with 7500 points—the same number of total design points used
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Figure 3.3: Design points and Pareto fronts for (a) LiF, (b) SiGe, and (c) Mo. More accurate
design points have lower accuracy objectives and are towards the left in the plots. Faster
design points have lower work objectives and are towards the bottom in the plots. We
calculated the work and accuracy objectives of pseudopotentials from the literature; the
objectives of these reference pseudopotentials are indicated on the plots. We chose three
design points at different locations on the Pareto front to further evaluate. The chosen
design points, accurate, balanced, and fast, are also indicated on the plots.
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Figure 3.4: Pareto fronts for three different optimizations–one using the GA, one using a
random sample of the design space, and one using a parametric sweep of the design space.
The Pareto fronts are similar but the GA pushes the Pareto front farther towards lower
objectives.

in the GA optimization. For the second, we gridded the 4D design space with 10 points in

each of the the two cutoff radius dimensions and 9 points in each of the two projector energy

dimensions, for a total of 8100 design points. We used 8100 design points instead of 7500

because we needed a product of 4 approximately equal integers to form the uniform grid.

We avoided other optimization techniques because the majority of common optimization

techniques can optimize only a single objective. Therefore, comparison to our study, which

relies heavily on the quality of a Pareto optimal set with two competing objectives, is not

meaningful.

The difference between an optimized Pareto front (using MOGA) and one created from

random sampling or a parametric sweep were not as dramatic as we expected. Nevertheless,

the GA does seem to push the Pareto front farther towards lower objectives as seen in Figure

3.4.

Interestingly, the GA approaches its final Pareto front in the first few generations, im-
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Figure 3.5: Design points after 10 generations (900 design points) of the GA alongside 900
randomly sampled design points. The final Pareto front from the GA after 7500 design
points is shown as a solid line.

plying that the GA could be stopped much sooner and still give comparable results. Figure

3.5 shows the design points after 10 generations (900 design points) of the GA alongside

900 randomly sampled design points. The final Pareto front from the GA after 7500 design

points is shown as a solid line. Clearly the design points are near optimal at this point in the

optimization since they are near the final Pareto front. Notice the GA design points have

approached the corner of the Pareto front, which is arguably the most important region.

3.3.3 Accuracy of forces in training configurations

The force magnitudes for the training configurations are plotted in Figure 3.6. Each

plot shows the force magnitude on atom 2 in the unit cell calculated with our representative

pseudopotentials and reference pseudopotentials for LiF, SiGe, and Mo. In general, the

reference, accurate, and fast pseudopotentials all produce forces reasonably close to the all-

electron solution while the fast pseudopotential forces are off by a larger amount. The fast
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pseudopotentials for all materials are probably unusable due to high force errors. However,

other points on the Pareto front offer fast solutions without the excessive accuracy penalty.

Trends in the results are noticeable in Figure 3.6a for configurations 2-4 and Figure

3.6c for configurations 2-4. For LiF, reference consistently under-predicts the forces. LiF-

accurate is very near the all-electron solution with LiF-balanced and LiF-fast producing

higher errors as expected. Similarly for SiGe, SiGe-reference consistently underpredicts

the forces. SiGe-accurate and SiGe-balanced are close to the all-electron solution while

SiGe-fast both overpredicts and underpredicts by large amounts. For Mo, all pseudopoten-

tials tend to over-predict forces except for training configuration 1.

3.3.4 Accuracy of forces in random test configurations

We calculated forces for 100 random atomic configurations that were generated after

the optimization was complete. These test configurations were generated with the same

d > 0.8 constraint on positions that was used when generating the training configurations.

Because these random configurations were not used for the optimization, they can be used

to show how well different pseudopotentials predict forces in configurations unknown to

the optimizer.

When generating the training configurations, we allowed d to be any value greater than

0.8. However, the configurations were generated randomly and because of the small sample

size, d is in the range 0.824-0.877 for LiF, 0.825-0.988 for SiGe, and 0.804-0.817 for Mo.

Table 3.3 lists d for all training configurations, and these optimization ranges are shaded in

Figure 3.7. Because the test configurations represent a larger sample, the range of d for the

test configurations is wider, and many configurations fall outside the range of d used in the

optimization.

Figure 3.7 shows the percent error in the forces for each test configuration, calculated

as

r∗f = 100×
r f

|fAE|
(3.11)
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Figure 3.6: Magnitude of force on atom 2 for (a) LiF, (b) SiGe, and (c) Mo in the training
configurations as generated by the all-electron method, the reference pseudopotentials, and
the representative pseudopotentials.
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Figure 3.7: Normalized force residuals for (a) LiF, (b) SiGe, and (c) Mo in their test con-
figurations for the reference and representative pseudopotentials. The optimization region
is indicated by the shaded area. Lower force residuals indicate more accurate force results.
The hollow points represent the training configurations. The lines between points are for
visualization and are not meant to imply a certain trend.
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where fAE is the force on the atom from the all-electron method. r f is the force residual

defined in section 3.2.1. Recall, lower force residuals means better accuracy, with r∗f = 0

being the exact solution. These plots show how well our pseudopotentials calculate forces

both inside and outside the optimization ranges. The fast pseudopotentials had by far the

largest force residuals for every configuration. With the exception of the Mo training con-

figuration 1 (leftmost training config in Fig. 3.7c), the residuals for the test configurations

are consistent with the residuals for the training configurations. This implies that force

residuals for a few training configurations can represent the residuals for a wide range of

configurations. In other words, optimizing for a few training configurations will produce

pseudopotentials with predictable accuracy in configurations unknown to the optimizer. For

LiF, the accurate and balanced pseudopotentials consistently produced lower force resid-

uals than the reference pseudopotential within the optimization region and for d greater

than the optimization region. For the highest values of d, LiF-balanced produced slightly

higher force residuals. For d lower than the optimization region, the residuals for both LiF-

accurate and LiF-balanced increased for many configurations and were higher than the

reference pseudopotential. The increase in residuals for these smaller d may result from

increased sphere overlap that the optimizer did not anticipate. SiGe-accurate and SiGe-

balanced produced lower residuals than the reference pseudopotentials across the entire d

range, with only a few configurations having higher residuals. Compared to differences in

force residuals for the other systems, Mo-accurate and Mo-balanced produced practically

the same force residuals as the reference pseudopotentials, although Mo-reference did tend

to have slightly higher residuals.

3.3.5 Accuracy of lattice constant and bulk modulus

The pseudopotentials optimized using forces were also evaluated for their ability to

estimate equilibrium lattice constant and bulk modulus. The results were compared with

the lattice constant and bulk modulus calculated using both the reference pseudopotentials
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design variables objectives
RCLi RCF EPF SA SW a (%) B (%) Ecut (Ry)

ref 1.61 1.40 2.00 0.00232 0.00616 −0.22 +2.67 50
1.20
1.40
1.20

2454 2.07 1.37 2.13 0.00083 0.00524 −0.11 +5.00 50
1 2.06 2.12 4.05 0.00061 0.00404 +0.14 +4.66 30
2 1.62 2.16 0.55 0.00081 0.00339 +0.05 +2.80 30
3 1.62 2.16 1.06 0.00081 0.00321 +0.04 +2.97 30
4 1.62 2.12 4.64 0.00124 0.00303 +0.28 +2.70 30
5 1.88 2.16 5.37 0.00150 0.00294 +0.36 +1.47 30
6 1.88 2.27 1.75 0.00270 0.00284 −0.03 +2.71 30
7 1.88 2.03 4.26 0.00308 0.00275 −0.24 +2.27 30
8 1.89 2.27 0.62 0.00385 0.00266 −0.06 +2.07 30
9 1.82 3.08 9.68 0.00463 0.00220 +7.41 −36.89 30

10 3.95 3.73 3.49 0.00596 0.00177 +12.15 −21.75 20
11 3.88 3.39 14.37 0.00690 0.00147 +16.86 −64.14 20

Table 3.4: Design variables, accuracy objective, work objective, percent errors in lattice
constant and bulk modulus, and converged Ecut for LiF reference pseudopotentials, LiF
design point 2454, and all points on the Pareto front. LiF-accurate, LiF-balanced, and
LiF-fast are shaded. The RCs specified for the reference pseudopotentials are rpaw, rshape,
rvloc, and rcore.1 If only one value is specified for RC, then all four cutoff radii are equal.
The percent errors are relative to a = 7.702Bohr and B = 64.59GPa, which are derived
from the all-electron calculation.

and the all-electron method. The percent errors in lattice constant and bulk modulus for

LiF, SiGe, and Mo are reported in Tables 3.4, 3.5, and 3.6. With the exception of the few

points near the bottom of each Pareto front, the optimized pseudopotentials produced lattice

constants within 1% of the all-electron lattice constant and bulk modulus values within 5%

of the all-electron bulk modulus.

3.3.6 Design variables

Because LiF has only three design variables—RCLi, RCF, and EPF—its design points can

be plotted in a 3D parameter space. Figure 3.8 shows the work objective, represented by

color, as a function of the design variables. This figure (as well as Figure 3.9) is meant to be
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design variables objectives
RCSi EPSi RCGe EDGe SA SW a (%) B (%) Ecut (Ry)

ref 1.90 4.50 2.30 3.00 0.00436 0.01291 −0.08 +0.58 50
1.60 2.00
1.75 1.80
1.20 1.90

1 2.65 8.19 1.92 4.08 0.00450 0.01152 +0.34 −2.02 40
2 2.65 7.90 1.92 4.08 0.00451 0.01014 +0.33 −1.94 40
3 2.65 7.86 1.92 4.08 0.00451 0.00983 +0.33 −1.93 40
4 2.74 8.69 1.84 4.67 0.00454 0.00891 +0.38 −2.64 40
5 2.65 6.91 1.91 4.08 0.00458 0.00753 +0.29 −1.64 40
6 2.65 6.91 1.92 3.41 0.00460 0.00722 +0.21 −1.21 40
7 2.48 7.75 1.84 4.67 0.00470 0.00707 +0.22 −1.29 40
8 2.46 4.73 2.11 1.89 0.00475 0.00472 +0.34 −1.48 30
9 2.34 2.61 2.12 1.89 0.00480 0.00449 +0.35 −1.52 30

10 2.34 5.40 2.19 1.14 0.00522 0.00403 +0.33 −1.62 30
11 2.09 4.49 2.19 0.51 0.00539 0.00368 +0.27 −1.25 30
12 1.82 12.60 2.72 0.23 0.01137 0.00324 +1.54 −9.75 20
13 1.95 11.46 2.72 0.23 0.01149 0.00293 +1.52 −9.60 20
14 1.95 5.88 2.72 0.23 0.01149 0.00278 +1.53 −9.61 20
15 2.65 6.91 3.04 0.23 0.03920 0.00255 +2.99 −20.13 20
16 2.65 5.32 2.78 7.02 0.07254 0.00247 +9.49 −27.78 20
17 3.53 9.94 3.12 5.31 0.07879 0.00239 +15.95 −40.74 20

Table 3.5: Design variables, accuracy objective, work objective, percent errors in lattice
constant and bulk modulus, and converged Ecut for SiGe reference pseudopotentials and all
points on the Pareto front. SiGe-accurate, SiGe-balanced, and SiGe-fast are shaded. The
RCs specified for the reference pseudopotentials are rpaw, rshape, rvloc, and rcore.1 If only one
value is specified for RC, then all four cutoff radii are equal. The percent errors are relative
to a = 10.59Bohr and B = 72.48GPa, which are derived from the all-electron calculation.
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design variables objectives
RCMo EPMo EDMo SA SW a (%) B (%) Ecut (Ry)

ref 2.20 3.00 4.00 2.437 0.0068 +0.09 +2.88 30
1 1.35 4.89 11.14 0.308 0.2260 +0.08 +2.14 40
2 1.38 14.09 13.37 0.329 0.0868 +0.08 +2.29 40
4 1.38 12.48 13.37 0.340 0.0825 +0.08 +2.28 40
7 1.38 1.56 13.37 0.387 0.0803 +0.09 +2.20 40

10 1.38 0.17 13.86 0.410 0.0753 +0.09 +2.19 40
13 1.42 14.90 13.41 0.417 0.0486 +0.07 +2.43 40
16 1.44 13.80 13.37 0.447 0.0402 +0.07 +2.51 40
19 1.44 5.09 13.37 0.451 0.0385 +0.08 +2.42 40
22 1.45 14.20 13.37 0.462 0.0361 +0.07 +2.58 40
25 1.45 12.71 11.14 0.464 0.0351 +0.07 +2.55 40
28 1.45 0.20 14.51 0.465 0.0329 +0.08 +2.46 40
31 1.46 6.41 13.37 0.481 0.0315 +0.07 +2.55 40
34 1.46 0.26 7.58 0.494 0.0290 +0.08 +2.51 40
37 1.60 3.36 11.52 1.053 0.0136 +0.06 +3.04 40
40 1.67 6.41 11.14 1.144 0.0126 +0.06 +3.09 40
43 1.77 0.39 9.05 1.345 0.0116 +0.07 +2.96 40
46 1.78 0.53 4.96 1.372 0.0106 +0.08 +2.93 40
49 2.03 14.24 1.89 1.561 0.0101 −0.17 +4.86 40
52 2.03 9.70 3.70 1.701 0.0078 +0.10 +2.22 30
55 2.00 0.35 4.96 1.725 0.0068 +0.09 +2.96 30
58 2.00 0.53 4.06 1.734 0.0063 +0.09 +2.94 30
61 2.04 0.17 2.50 1.802 0.0056 +0.09 +2.98 30
64 2.96 0.35 1.16 2.857 0.0035 +0.73 +1.55 20
67 3.56 0.85 5.87 3.206 0.0028 +12.69 +24.25 20
70 3.82 0.17 14.51 4.036 0.0024 +14.16 −5.99 20

Table 3.6: Design variables, accuracy objective, work objective, percent errors in lattice
constant and bulk modulus, and converged Ecut for the Mo reference pseudopotential and
some points on the Pareto front. Mo’s front contained 70 points because of the shape of
the front, so all Pareto points are not shown in this table. Mo-accurate, Mo-balanced, and
Mo-fast are shaded. The percent errors are relative to a = 5.990Bohr and B = 256.5GPa,
which are derived from the all-electron calculation.
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Figure 3.8: Every design point tested for LiF plotted by RCLi, RCF, and EPF with color rep-
resenting the work objective SW (arbitrary units). This figure is a cross-view stereoscopic
image that can be viewed in 3D. The black squares represent design points that returned
artificially high objectives. The lack of significant color variation in the vertical direction
indicates that EPF has little effect on the work objective.

cross-viewed in 3D and helps illustrate the distribution of points sampled by the optimizer.

Any dependence of the work objective on EPF is visible as a variation of color in the vertical

direction. In Figure 3.8, little variation of color appears in the vertical direction, meaning

the work objective has only weak dependence on EPF. Indeed, Tables 3.4, 3.5, and 3.6

show no obvious trends in projector energies for any of the systems. Similarly, Figure 3.9

shows only slight dependence on EPF. Although the dependence is weak, in some regions

of the design space, EPF is used to refine the pseudopotential and is consequently kept as a

design variable. Nevertheless, because of the weak dependence on projector energies, we

focus the following discussion on cutoff radii.

We can compare the design variable values for our representative design points with

the reference pseudopotentials from the literature (Tables 3.4, 3.5, and 3.6). The atompaw

inputs for the reference pseudopotentials are different from our input files in several ways

other than RCs and projector energies, so identical RCs and projector energies would not pro-

duce identical pseudopotentials. Therefore, the comparison of RCs and projector energies is
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Figure 3.9: Every design point tested for LiF plotted by RCLi, RCF, and EPF with color repre-
senting the accuracy objective SA (arbitrary units). This figure is a cross-view stereoscopic
image that can be viewed in 3D. The black squares represent design points that returned
artificially high objectives. The lack of significant color variation in the vertical direction
indicates that EPF has little effect on the accuracy objective.

not a direct comparison. However, the RCs play an important role in pseudopotential prop-

erties and should be examined. Upon a cursory inspection, decreasing work corresponds to

larger RCs, which is consistent with common understanding. For LiF, all of the RCs for our

representative design points were greater than the reference pseudopotentials, which used

RCLi = 1.6Bohr and RCF = 1.4Bohr. Figure 3.8 shows that the region for RCLi = 1.6Bohr

and RCF = 1.4Bohr is a region of high work objective, probably explaining why all of our

representative design points have higher RCs, which would fall in regions of lower work

objective.

For LiF, the lattice constant and bulk modulus results are noticeably worse after Pareto

point 8, which coincides with a large jump in cutoff radii. It is well known that PAW

sphere overlap can yield poor and unpredictable results. This motivates an examination of

the cutoff radii for the more accurate points on the Pareto front. Pareto point 1 has large

cutoff radii, much larger than LiF-reference and large enough to cause sphere overlap. In

fact, most design points tested caused sphere overlap. Initially, the possibility of sphere
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overlap did not concern us because we assumed cutoff radii that were large enough to

cause overlap would produce bad force results and thus be ruled out by MOGA. Evidently,

this was not the case since the overlap did not cause bad results for our Pareto points. This

suggests we could improve our optimizations by constraining the cutoff radii or using more

training configurations. Using more training configurations would increase the chances of

overlap resulting in design points with smaller cutoff radii.

3.3.7 Larger unit cell

We tested our pseudopotentials in larger unit cells to understand the scalability of our re-

sults to larger systems. For LiF and SiGe, we used the respective rock-salt and zinc-blende

conventional unit cells, which contain 8 atoms. For Mo, we used a 2×2×2 conventional

BCC unit cell, containing 16 atoms total. We perturbed the atoms from their equilibrium

positions by a random amount in each direction. The maximum allowed perturbations

were 1.9Bohr for LiF, 2.1Bohr for SiGe, and 1.2Bohr for Mo. The configurations were

constrained to d > 0.85 to produce configurations in the optimization ranges for LiF and

SiGe. Random configurations were generated using the allowed perturbations until a con-

figuration was found satisfying this constraint. We used the same d > 0.85 constraint for

Mo even though d = 0.85 is not in optimization range. According to Fig. 3.7c, the Mo

pseudopotentials perform similarly across the entire range of d so the choice of d for Mo

should not matter. Having already shown that the fast pseudopotentials are too inaccurate to

be useful, we only show results for accurate and balanced pseudopotentials in this section.

Figure 3.10 shows r∗f for each atom in the larger unit cells for LiF, SiGe, and Mo.

For LiF, our optimized pseudopotentials produced much higher force residuals than

LiF-reference in the large unit cell, especially for the fluorine atoms. This result was un-

expected since our pseudopotentials produced better residuals in the test configurations.

We think this result is due to the PAW sphere overlap discussed in section 3.3.6, despite

the interatomic spacings being in the same range as in Figure 3.7. For LiF, the large cut-
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Figure 3.10: Force percent error, r∗f , for each atom in the large unit cell for (a) LiF, (b)
SiGe, and (c) Mo as calculated by the reference pseudopotentials and various optimized
pseudopotentials.
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off radii did not hurt our force results for the training configurations, or the design points

would have produced poor force results and been given worse accuracy objectives. Also,

the sphere overlap was not an issue for the test configurations, as shown in Figure 3.7.

Perhaps this disparity in results is because our random perturbations did not sample Li-Li

interactions or F-F interactions, instead only varying distances and angles between neigh-

boring atoms of Li and F. This implies improvements could be made in the method by

sampling interactions for like atoms by using a larger unit cell.

We chose an additional LiF design point from the optimization to test, design point

2454. This point had smaller cutoff radii than any of the Pareto points and a higher work

objective. It is indicated in Figure 3.3. If this point had a slightly lower accuracy objective,

it would have been on the Pareto front. Figure 3.10a shows that this design point produces

similar residuals to the the reference pseudopotential. We expect that if the Li-Li and F-

F interactions had been sampled more, smaller cutoff radii would have been necessary to

produce accurate forces and the optimizer would have selected points with smaller cutoff

radii.

For SiGe, the lack of Si-Si sampling or Ge-Ge sampling did not seem to degrade the

force results when using the larger unit cell. The force residuals for our optimized pseu-

dopotentials were mostly lower than reference pseudopotentials, as expected from the re-

sults in Figure 3.7. Perhaps it was acceptable not to sample Si-Si and Ge-Ge interactions in

this case because silicon and germanium are chemically similar elements, making an Si-Si

or Ge-Ge interaction similar to a Si-Ge interaction. The low residuals produced by SiGe-

accurate and SiGe-reference in the low d range in Figure 3.7 also imply that SiGe is not

sensitive to the sphere overlap in this case when calculating forces. SiGe-balanced had low

residuals despite being farther down the Pareto front. This is due to the shape of the Pareto

front (Figure 3.3b). The left section of the Pareto front is nearly vertical, meaning all of the

points on the left edge of the front have very similar accuracies. This feature of the Pareto

front is advantageous because one can decrease the work significantly while maintaining
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high accuracy, as shown by the low force residuals produced by SiGe-balanced.

For Mo, the trends in force residuals for the larger unit cell are comparable to trends in

force residuals for the test configurations, with residuals being similar between the different

pseudopotentials. Our hypothesis—that the lack of same-element sampling in LiF caused

poor results for larger LiF unit cell—is supported by the Mo findings because the residuals

for this plot are the same as in Figure 3.7.

3.3.8 SiGe in cesium chloride structure

For our pseudopotentials to be useful, they must have some degree of local transfer-

ability, meaning they should work in materials related to the optimized material even if

they aren’t meant to be universally transferable to all materials. To examine the local trans-

ferability of our optimized pseudopotentials, we tested our SiGe pseudopotentials in the

cesium chloride structure. The CsCl structure is chemically different from the optimized

structure because it uses a cubic primitive cell instead of a rhombohedron, meaning the

atoms are coordinated differently. The unit cell for the CsCl structure has lattice vectors (a,

0, 0), (0, a, 0), and (0, 0, a) where a = 6.14Bohr for CsCl structured SiGe. A new set of

test configurations was generated for the CsCl structure with the constraint d > 0.8 where

he =
√

3a/2. The procedure for testing the pseudopotentials in the CsCl structure is the

same as in section 3.3.4. We tested the pseudopotentials in 100 random test configurations

by comparing forces calculated with pseudopotentials to forces calculated with all-electron

DFT.

As expected, SiGe-accurate and SiGe-balanced produced reasonable force values for

the 100 test configurations (Figure 3.11). The optimization range in this figure is the same

as in Figure 3.7(b), but plotted using absolute nearest-neighbor distances instead of nor-

malized nearest neighbor distances. For larger h, both SiGe-accurate and SiGe-balanced

produced higher errors than SiGe-reference, but still within reasonable values. These high

h configurations had values of h outside the optimization range, probably explaining the
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Figure 3.11: Normalized force residuals in CsCl structured SiGe test configurations for the
reference and representative pseudopotentials. The shaded area represents the optimization
region. Lower force residuals indicate more accurate force results. The lines between
points are for visualization and are not meant to imply a certain trend.

increase in force errors in that region. The higher force residuals outside the optimization

region suggest that these pseudopotentials could be further improved with a better sample

of configuration space using larger unit cells or various unit cells. In other words, an in-

telligent selection of configurations could improve the optimization compared to a random

selection of configurations.

3.3.9 Computational work

For LiF, all of the Pareto points have lower work objectives than the reference pseu-

dopotentials, meaning the Pareto points should all be faster. The slowest LiF Pareto point

had a work objective 34% lower than LiF-reference, and the fastest had a work objective

76% lower. LiF design point 2454, which was discussed in Section 3.3.7, has a work ob-

jective 15% lower than LiF-reference. The results for LiF design point 2454 alone justify

using optimization to develop pseudopotentials to achieve speedup with arguably com-

parable accuracy. This point is further supported by results for SiGe, where all Pareto
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points again had a lower work objective than SiGe-reference. SiGe-accurate is 11% lower,

SiGe-balanced is 71% lower, and SiGe-fast is 81% lower. However, these results are not

universal.

In contrast to LiF and SiGe, most Mo Pareto points had higher work objectives than

Mo-reference, with 54 Pareto points being higher, one being equal, and the remaining 15

being lower. Mo-accurate had a work objective 33 times higher than Mo-reference, while

Mo-balanced was 17% lower and Mo-fast was 64% lower. To understand why we didn’t

get the same favorable results for Mo as we did for LiF and SiGe, we consider the crystal

environments.

For Mo, the optimizer created a pseudopotential, Mo-balanced, that is practically iden-

tical to Mo-reference in terms of accuracy and work. Even though both pseudopotentials

produced very similar results, they are not equivalent pseudopotentials. In fact, the design

variables in Table 3.6 indicate that these are very different pseudopotentials. Nevertheless,

the performance between these two pseudopotentials for the test configurations, large unit

cell, and lattice constant/bulk modulus is similar. We believe this similarity in the perfor-

mance of the pseudopotentials is a result of optimizing Mo in the same target structure

(BCC) as Mo-reference.9 Considering both pseudopotentials were optimized for the same

crystal structure, it is not surprising that the optimized pseudopotential is comparable to

the reference pseudopotential. The optimization for the same crystal structure may explain

why the results from the Mo pseudopotential optimization do not show any significant gains

in speed.

In contrast, for Si and Ge the target structure of the optimization was different than

those of the reference Si and Ge pseudopotentials, which were separately optimized as

elemental crystals. We were able to optimize Si and Ge together to produce speed gains that

optimizing Si and Ge individually may not have produced. This result also supports our

idea that generating pseudopotentials on demand for specific systems can allow speedup

without sacrificing accuracy. Perhaps large scale simulations can be sped up dramatically
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while maintaining a high level of accuracy simply by tuning the pseudopotentials for the

environment.
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Chapter 4

Atan metric

4.1 Motivation

The pseudopotential and projector augmented wave (PAW)7 methods,* which are core

frameworks of plane wave density functional theory (DFT) codes such as VASP,32, 33, 34, 35

Abinit,36 and Quantum Espresso,37 enable accurate and tractable calculations in periodic

and semi-periodic systems. The choice of pseudopotentials for a study can affect the accu-

racy and speed of calculations, so a key step in using these methods is choosing or generat-

ing pseudopotentials that are appropriate for the problem at hand. Widespread use of plane

wave DFT in both physics and materials science means the quality of available pseudopo-

tentials affects the accuracy and throughput of a large variety of research.

Especially important for the accuracy and transferability of pseudopotentials are their

scattering properties.5, 13 However, the current approach for evaluating scattering proper-

ties, which involves visual inspection of logderivative plots,1, 16 is subjective and requires

time consuming human inspection. Therefore, this approach does not allow for generation

of new pseudopotentials using automated optimizations, which are the subject of several

recent efforts in pseudopotential development.10, 23, 38, 11 Additionally, the current push for

standardized pseudopotential verification19, 12 is still lacking a scattering property metric.

In this work, we suggest a new metric, SA, that addresses shortcomings of visual inspection

of the logderivatives, and provides a low-barrier but meaningful metric for standardized

evaluation and reporting of the quality of pseudopotential scattering properties.

The new metric SA is formulated by taking the arctangent of the logderivatives. This

*Although pseudopotentials and PAW data sets (PAWs) are distinct solutions to modeling the core elec-
trons and atomic charges in DFT, we can discuss both under the same framework. As such, we will refer to
both as pseudopotentials except when specified otherwise.
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extension of the canonical approach to evaluating PAWs using logderivatives alone pro-

vides valuable information to the user or optimizer analyzing the PAW. We show that this

metric is capable of robustly predicting ghost states without resorting to density of states or

equation of state (EOS) calculations in the solid, and accurately represents the amount of

disagreement between all-electron and pseudized solutions. Furthermore, we show that SA

predicts accuracy in the solid in many cases, meaning it is valuable as a screening metric

during optimizations.

In the past, the process of generating pseudopotentials was somewhat of an art requir-

ing extensive hand tuning1, 16 by long-time experts in the field. More recently, the need

for custom pseudopotentials, as well as the desire for new libraries, has sparked interest

in automated optimization of pseudopotentials.10, 23, 38, 11 Both hand tuning and automated

optimization can benefit from improved pseudopotential quality metrics. For hand tuning,

meaningful and reliable metrics become a tool for more efficiently evaluating pseudopoten-

tials as they are created, allowing faster throughput. From there, optimizations are a natural

next step, where loosening the burden of tedious visual inspection of the logderivatives al-

lows the search of much larger parameter spaces in a more rigorous way. For automated

optimizations, reliable and meaningful metrics are critical for guiding the optimization.

Before discussing the details of the proposed metric SA, we summarize the standard

metrics currently in use by the community. These metrics fall into two categories: atom

metrics (SA will fit in this category) and solid metrics. Atom metrics involve comparisons

between calculations of the isolated atom using an all-electron solution and a pseudized so-

lution. The standard atom metrics are related to scattering properties of the atom. The qual-

ity of the scattering properties are typically evaluated visually using a plot of the logderiva-

tives, where the agreement between pseudized (PS) and all-electron (AE) logderivatives

indicates quality. Small discrepancies at higher energies can be tolerated. However, sin-

gularities in the PS wave function that do not exist in the AE wave function are known as

ghost states and result in non-physical solutions. Because of the small system size (one
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atom) and because much of data necessary for evaluation of the pseudopotential atom met-

rics is a by-product of pseudopotential generation, atom metrics are computationally cheap

to obtain.

Solid metrics, in contrast, involve calculations in elemental solids, compounds, or both.

These metrics are typically derived from energy vs. volume calculations. From these data,

equations of state (EOS), equilibrium lattice parameters, and bulk moduli can be obtained

and then compared to the same parameters from all-electron calculations. More recently,

the ∆-factor,18, 19 which represents the error in the EOS with a single number, has gained

popularity. Regardless which solid metric is preferred, all are expensive compared to atom

metrics due to setup time, larger system sizes, multiple electronic structure calculations,

and compulsory convergence studies. Furthermore, codes for all-electron solutions of

periodic systems (using the full-potential linearized augmented plane wave (FP-LAPW)

method, for example) can have their own uncertainties that can be on the order of errors

associated with pseudopotentials.19 This uncertainty, combined with inherent differences

between all-electron and pseudopotential methods, means that a small bias exists any time

pseudopotential results are compared to all-electron calculations in the solid. This bias,

however, does not exist with atom metrics. Nevertheless, the advantage of solid metrics is

that one obtains evidence that the pseudopotential gives reasonable results in a calculation

of a material (as opposed to an isolated atom). Moreover, one can infer the transferability

of the pseudopotential between different systems by sampling various materials structures.

In many cases, researchers have relied on expensive solid metrics to detect ghost states.

A recent (2018) example is given in Reference 12, where they analyze the accuracy of band

energies given by using the pseudopotentials in various solids. In this work, which does

not generate new pseudopotentials but instead analyzes a handful of previously existing

pseudopotential libraries, the expense of the band structure calculations is not a limiting

factor. Additionally, the band structure calculations were already necessary for estimation

of the required plane wave energy cutoff for different pseudopotentials. In contrast, we are
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trying to facilitate automated optimization efforts, where thousands, or even orders of mag-

nitude more pseudopotentials need to be evaluated. For this many pseudopotentials, band

structure calculations and other solid metrics become prohibitively expensive for detecting

ghost states. Evidently, an atom metric that could reliably identify a pseudopotential that is

accurate in the solid would greatly reduce the barrier to generating new pseudopotentials.

The arctangent approach, which yields an atom metric, to evaluating pseudopotentials

is advantageous over logderivatives because the arctangent method produces numerically

smooth results, making numerical comparisons more meaningful. Additionally, it can iden-

tify ghost states that would otherwise go undetected. Finally, the quality of a pseudopo-

tential can be reduced to and reliably indicated by a single number, which is useful for

automated evaluations.

The arctangent of the logderivatives has been used in previous studies for visual com-

parison of scattering properties. In his chapter on pseudopotentials, Don Hamann describes

the advantage of plotting the arctangent vs. the logderivatives because the arctangent does

not have singularities.39 Hamann has also used this metric in Reference 40, citing the ad-

vantage of the smoother curves for visual comparison. Mattsson has used the arctangent

curves for visual inspection during customization of VASP Li and Mo PAWs for high en-

ergy density physics applications.41, 42 While studying xenon at high pressures, Root et

al. found ghost states in a VASP Xe PAW, which VASP then improved.43 The scattering

properties of the old and new Xe PAWs are compared visually with arctangent plots.44

We note that the computation of the arctangent must be phase unwrapped to use the

metric for automated pseudopotential evaluations. The phase unwrapping prevents dis-

continuities in the arctangent. However, phase unwrapping is not always the norm. A

non-phase-unwrapped version of the arctangent metric has been used by Kiffner et al.45

for visual evaluation of pseudopotentials. A non-phase-unwrapped version is also included

in the Atompaw EXPLORE capability. In this case, the utility of the arctangent as an

automated metric is questionable.
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4.2 The arctangent metric

The logderivatives of the wave functions of a pseudopotential defined for each angular

momentum channel l as

Ll(E) =
Ψ′l(E,r)
Ψl(E,r)

∣∣∣∣
r=rc

, (4.1)

where Ψ(E,r) is the electron wavefunction at a given energy, E, and rc is the cutoff radius

of the PAW. These values are related to the atomic scattering properties and are important

indicators of accuracy and transferability of pseudopotentials. Logderivatives are calcu-

lated for both the all-electron (AE) and pseudized (PS) wave functions, and the two are

compared visually. The logderivative vs. energy curves often contain one or more singular-

ities, which are related to nodes in the wave functions. The locations of these singularities

should match as closely as possible between AE and PS logderivatives. However, nu-

merically representing the agreement between these singularities in logderivative curves is

challenging because the infinities do not behave well numerically. In especially bad cases,

singularities in the PS log derivatives exist that are not present at all in the AE log deriva-

tives. These spurious singularities are known as ghost states, and their existence can cause

significant errors in the solid calculation. Therefore, pseudopotentials with ghost states are

unusable. The arctangent is better than the logderivatives at indicating ghost states for a

variety of reasons that will be illustrated below.

We first consider the logderivative metric as an evaluation tool to illustrate its shortcom-

ings. Because we are comparing two curves that we expect to be the same—the all electron

(AE) and pseudo (PS) logderivatives—it makes sense to subtract one from the other to get

a residual error. Because both of these curves are evaluated on a discrete sample of points,

the difference gives an error value at each sample point. Then the RMS of these errors

represents the disagreement between the curves as a single number:

SL,l =

√√√√ 1
N

E2

∑
E=E1

(
Ll,PS(E)−Ll,AE(E)

)2
, (4.2)
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where LAE is the all-electron logderivative, LPS is the pseudo logderivative, and N is the

number of sample points. The fundamental problem with this metric is that the disagree-

ment between the curves is not faithfully reflected in the metric, meaning worse agreement

does not always equal a larger value, and a larger value does not always mean worse agree-

ment. This feature is illustrated in the following toy examples.

Because the logderivative metric can be extremely sensitive to the alignment of logderiva-

tive singularities with the discrete sample points. We consider a mock logderivative of the

form

Lmock(E) =
1

E−a
. (4.3)

The 1/E form is similar to the shape of a singularity in an actual logderivative. The mock

AE logderivative is represented by equation 4.3 with a displacement of a = 0, and is shown

by the solid line in Figure 4.1a. The mock PS logderivative is also represented by equation

4.3 but with the displacement a as a free parameter. By sweeping a, various disagree-

ments between the AE and PS logderivatives are represented and shown in Figure. 4.1

as the dashed lines, where larger a represents greater disagreement. To quantify this dis-

agreement (pretending we don’t know that the mock AE and PS logderivatives are the

same shape), we attempt to apply the logderivative metric defined in equation 4.2 with

Ll,AE(E) = Lmock(E)
∣∣
a=0 and Ll,PS(E) = Lmock(E)

∣∣
a. The value of the metric is now de-

pendent on the displacement a. What we expect from a meaningful metric is that it in-

creases monotonically as the magnitude of the disagreement a increases. However, what

we see instead is the relationship shown in Figure 4.1b, where the metric varies erratically.

This behavior is due to the sensitivity of the logderivative metric to the alignment of energy

sample points with the singularity and is clearly undesirable.

However, another issue with the logderivative metric that is being masked by this sin-

gularity alignment issue can can be illustrated by smoothing the mock logderivative at the
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singularity. Consider an alternative mock log derivative of the form

Lsmooth(E) =
1

E−a

(
1− e−100(E−a)2

)
, (4.4)

where the singularity at E − a is softened by the factor of 1− e−100(E−a)2
. As before,

the mock AE logderivative is represented by a = 0, and the mock PS logderivatives by

varying a. These AE and PS mock logderivatives are shown in Figure 4.2a. Again,

we apply the metric in equation 4.2 as an attempt to quantify the disagreement, with

Ll,AE(E) = Lsmooth(E)
∣∣
a=0 and Ll,PS(E) = Lsmooth(E)

∣∣
a. For a meaningful metric, we would

expect a monotonic increase of the metric as the magnitude of the disagreement a increases.

Instead, we get the relationship shown in Figure 4.2b, where the metric does not increase

monotonically with displacement. This effect is due to the finite energy range for the eval-

uation of the metric (-5 to 5 in this case) and could be eliminated by extending the energy

range. However, for real logderivatives the appropriate energy range is decided beforehand

and is not adjusted to account for the location of singularities. In fact, a typical logderiva-

tive could have multiple singularities, and extending the evaluation range to account for a

nearby singularity would likely uncover additional singularities.

Because of the issues discussed above, a metric based on logderivatives is fundamen-

tally inappropriate for describing the disagreement between AE and PS scattering proper-

ties. However, we can address both problems using instead the arctangent of the logderiva-

tives,

Al(E) = tan−1 Ψ′l(E,r)
Ψl(E,r)

∣∣∣∣
r=rc

, (4.5)

where l is the angular momentum channel. We define the arctangent metric for a single

angular momentum channel as

Sa,l =

√√√√ 1
N

E2

∑
E=E1

(
Al,PS(E)−Al,AE(E)

)2
, (4.6)
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where AE and PS have the same meaning as before.

To demonstrate the efficacy of the metric, we take the arctangent of the mock logderiva-

tive

Amock = tan−1Lmock(E) = tan−1 1
E−a

(4.7)

Here, we do not have to worry about smoothing at E−a, because taking the arctangent re-

moves the 1/E singularity. We let Amock at a = 0 represent the AE arctangent curve, shown

by the solid line in Figure 4.3a. Again, the parameter a is used to shift the singularity

feature along the x-axis, representing various amounts of disagreement with the AE mock

arctangent. Amock for various values of a are shown in Figure 4.3a as the dashed lines.

Now we can evaluate the arctangent metric for various displacements a using equation 4.6

with Al,AE(E) = Amock(E)
∣∣
a=0 and Al,PS(E) = Amock(E)

∣∣
a. Note that we enforced the arc-

tangent function to return values between −π and 0 to ensure continuity of the arctangent

curve (for general arctangent curves, we ensure continuity using our phase unwrapping al-

gorithm discussed in Section 4.4.1). As illustrated in Figure 4.3b, larger displacements of

the feature mean larger values of the arctangent metric, even when the feature is displaced

outside the energy sampling range. Also, there is no erratic variation of the arctangent

metric with small changes in displacement as was observed in Figure 4.1b. Therefore, SA

better represents the disagreement between AE and PS scattering properties.

We can further demonstrate how the arctangent handles features in the logderivatives

by using the l = 1 logderivative and arctangent from a silicon pseudopotential created dur-

ing this work. In Figure 4.4, we provide the logderivative and arctangent for two different

energy sample densities. The ghost state near -2 Ry is visually apparent in all four represen-

tations. However, we notice that the magnitude of the chirp (numerical representation of the

singularity) is sensitive to the sample density. Yet the arctangent appears to be insensitive to

the sample density. We can see the variation in both SL and SA metrics in Figure 4.5 when

varying the number of energy sample points used to calculate these metrics. SA remains rel-

atively constant (Figure 4.5b), while SL is very sensitive to the sampling (Figure 4.5a). The
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Figure 4.1: (a) Logderivative metric SL shown with a few representative displacements and
(b) the RMS error of the displaced logderivative relative to a = 0.
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Figure 4.2: (a) Smoothed logderivative metric SL shown with a few representative displace-
ments and (b) the RMS error of the displaced smooth logderivative relative to a = 0.
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Figure 4.3: (a) Arctangent metric SA shown with a few representative displacements and
(b) the RMS error of the displaced arctangent relative to a = 0.
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sensitivity of SL to the sampling is undesirable, since the metric should ideally be indepen-

dent of this sampling. Of course, even for SA, the sampling must be fine enough to resolve

the features corresponding to singularities in the logderivatives. But above this threshold,

which is apparently lower than the sampling density shown in Figure 4.5, SA remains stable

as desired. The global increasing trend in the logderivative metric with increasing sampling

is due to the singularity at the ghost state energy (the metric would likely be infinite for con-

tinuous sampling), and the erratic variations are related to how the singularity at the ghost

state lines up with the sample points.

The arctangent has the property that it shifts by±π whenever there is a singularity in the

logderivative, which allows the approach to find flawed PAWs. We have already seen this

shift behavior in Figure 4.4b and d. Figure 4.3a also shows this characteristic shift, but the

transition is much slower due to the width of the singularity. Regardless of the rate of shift,

this behavior leads to disagreements in the arctangents if singularities in the logderivatives

are slightly misaligned. In Figure 4.6, we show the additional benefit that these phase shifts

can illuminate ghost states that do not register noticeably on the logderivatives. Figure 4.6

shows a logderivative curve from another Si PAW selected from the design space. Here, the

agreement seems perfect, and no singularities are visible. However, taking the arctangent,

you see a shift of −π near E =−0.5, indicating a singularity in the logderivatives. Indeed,

if you zoom in near E = −0.5 on the logderivatives you can see a small blip in the plot.

This blip will not show up as a large error when evaluating the logderivative metric SL but

will result in a large value of SA. Even a user inspecting visually will likely miss this ghost

state in the logderivatives, whereas it readily appears in the arctangent.

4.3 Efficient Development of Pseudopotentials and PAWs

In the previous section, we demonstrated that the arctangent metric SA reliably rep-

resents disagreements between AE and PS scattering properties because it is numerically

smooth and increases monotonically as features in the logderivatives become more mis-
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Figure 4.4: The logderivative and arctangent curves are shown for sampling of 100 (a-b)
and 1000 (c-d) points to illustrate the difference in resolution at the ghost state near -2 Ry.
This silicon PAW has a narrow ghost state near E = −2 in the l = 1 angular momentum
channel, which is visible in (a) and (b). The arctangent metric is relatively unaffected by
the sampling (b to d, also refer to Figure 4.5(b) (b), while the logderivative metric varies
erratically (a to c, also refer to Figure 4.5(a)).
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no ghost state is visible. However, a π shift is shown in the arctangent curve near -0.5 Ry
(middle), indicating a ghost state. Indeed, if you zoom in to this region of the logderivatives
(top, inset), you can see a small blip indicating a ghost state. The number of sample points
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aligned. Additionally we have shown how SA reliably indicates ghost states due to its ±π

shifting property, even at coarser energy sampling. Already we see the value of the metric,

as it cheaply captures scattering agreement with a single number. In this section, we will

describe how we can utilize the simplicity and effectiveness of this metric to speed up the

development of pseudopotentials.

4.3.1 The ∆-factor

The ∆-factor has been posited as the de facto standard for pseudopotential and PAW ac-

curacy. After all, it compares an all-electron solution to a pseudized solution using physical

quantities (lattice constant and bulk modulus derived from an equation of state) in its mea-

sure. The prevailing thought is that if the pseudized solution produces the same physical

results as the all-electron solution, then the pseudized part must be correct. The assumption

from the user who is armed with the knowledge of a low ∆-factor then is that the designer

of the pseudopotential has ensured the scattering properties are sufficiently accurate.

Consequently, we will evaluate the PAWs in the context of the ∆-factor, whose calcu-

lation details are provided in Section 4.4.2. The ∆-factor is a solid metric, meaning an

equation of state must be calculated using the PAW in a solid. It is related to the bulk

modulus and equilibrium lattice parameter calculations in that they all are derived from the

equation of state.

4.3.2 Parameter sweeps and testing the ∆-factor

Of the metrics we have discussed to indicate the quality of a pseudopotential (SA, SL,

and ∆), none was initially assumed to be better than the others, although we’ve demon-

strated some advantages of SA over SL already. In fact, we can’t identify any single metric

as the ultimate and universal standard. Instead, we can only examine relationships between

these metrics and look for trends and make judgments about their suitability for identify-

ing the highest quality pseudopotentials. To explore the relationships between the various
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metrics used to evaluate the quality of pseudopotentials, we generated a large collection of

PAW pseudopotentials for Na, Mo, and Si using parameter sweeps. We chose these three

elements, which we tested in three different materials, to sample different types of bond-

ing: Mo in BCC Mo for metallic bonding; Li in rock-salt LiF for ionic bonding; and Si in

zinc-blende SiC for covalent bonding. The details of the parameter sweep are included in

Section 4.4.3. By spanning a relatively large design space, we created many PAWs with a

range of quality from exceptional to unusable.

For each PAW we calculated the ∆-factor, a solid metric, as well as the atom metrics

SA and SL which are calculated for each angular momentum channel of the pseudopotential

and combined for the total metric. The total logderivative metric is then

SL = ∑
l

SL,l, (4.8)

and the total arctangent metric is

SA = ∑
l

SA,l. (4.9)

We proceed by first plotting the arctangent metric SA against the ∆-factor (Figure 4.7)

for every pseudopotential in each material we tested. Small ∆-factor values indicate that

the physical quantities produced by the pseudized solution match those of the all-electron

solution; small SA values indicate the lack of ghost states and close agreement between the

AE and PS scattering properties. The two metrics measure seemingly two different things,

yet the relationship between the ∆-factor and SA is remarkable.

First consider the Na case (top two images in Figure 4.7). In general the two metrics

corroborate the quality of the PAW, with the possible exception of a handful of outliers.

Upon closer examination (see the zoomed plot on the right), however, we find that many

PAWs have small ∆ values but not so small arctangent values. This means that pseudopo-

tentials that produce good match with physical quantities as indicated by the small ∆ values

may actually contain disagreements in the scattering properties at some energies. More in-
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terestingly, a small arctangent automatically guarantees a small ∆-factor, as long as we can

remove outliers, meaning the arctangent alone predicts accuracy in the solid in this case.

For Mo, a similar correlation between the ∆-factor and SA can be observed in Figure 4.7.

For Si, the trend is not so clear, but in the region of reasonable values for ∆ and SA (see

zoomed plot), a correlation is visible. Si and Mo points with good arctangents but bad ∆

values will be discussed in the next section.

Because the logderivative has been the canonical approach for finding pseudopotentials

with ghost states, we show the relationship between the logderivative metric SL and ∆-factor

in Figure 4.8. Unlike the arctangent, the logderivative metric does not predict accuracy in

the solid. Even in the zoomed regions near the optimal points, no meaningful relationship

is seen. Moreover, any apparent trends are different between the three materials suggesting

that the there is nothing universal about these relationships.

Some of the pseudopotentials we generated caused Socorro to crash during calculations

of the total energy. These crashes, the result of the failure of a linear algebra routine,

likely indicate that these pseudopotentials are of poor quality. These pseudopotentials are

indicated at the bottom of the Mo and Si plots in Figures. 4.7 and 4.8 on the line labeled

X1. Evidently, a good SA does not always indicate a quality pseudopotential, since some

of these ill-conditioned points had optimal values of SA yet still caused crashes in Socorro.

Additionally, with some pseudopotentials the total energy is not converged within 10−8

Ry after 100 self consistent cycles (10−7 Ry after 200 cycles for Mo) for one or more

of the electronic structure calculations during calculation of the ∆-factor. This alone is

not an indicator of a bad PAW, but does imply the PAW is not optimal for speed. These

pseudopotentials are also indicated in Figures. 4.7 and 4.8, labeled X2.

4.3.3 Reducing computational expense of optimizations

We can use the fact that SA identifies pseudopotentials with high accuracy in the solid to

expedite the process of developing new pseudopotentials. Expensive ∆-factor calculations
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or other tests in the solid are necessary, but really only need to be performed for pseudopo-

tentials with good scattering properties. Therefore, it would be valuable to filter out points

with high SA during optimizations before calculating solid metrics. For example filtering

out Na PAWs from our parameter sweep with SA > 0.1 reduces the number of pseudopo-

tentials by 75%. The SA cutoff is somewhat arbitrary, and acceptable values of SA may

depend on the application of the pseudopotential. Nevertheless, SA < 0.1 seems to be a

suitable minimum requirement for quality PAWs based on the zoomed plots in Figure 4.7.

Applying this same threshold for Mo and Si means that we have reduced the number of

solid calculations that need to performed by 78% and 57% respectively. However, for Mo

and Si, low SA does not guarantee a good value of the ∆-factor like it does for Na. In other

words, the scattering properties alone may not be sufficient to determine if a PAW is accu-

rate in the solid. Although the results for Mo and Si are, in general, similar in character to

those of Na, the metal and the covalent material exhibit a few more outliers. That is, we find

PAWs with small arctangent values but large ∆-factor values. This means that arctangent

alone is not a universal indicator of high-quality PAWs.

The apparent discrepancy can partially be explained by PAW projectors that are too

large. To compensate for this shortcoming, we introduce a new metric for PAWs that we

call the projector magnitude ratio. For a single projector,

di =

√
〈p̃i|p̃i〉
〈ψ̃i|ψ̃i〉

. (4.10)

Here p̃i is the projector function and ψ̃i the PS partial wave for quantum numbers nili. The

projector metric is then defined as the RMS of the projector magnitude ratios. That is,

Sp =

√
1
Ni

∑
i

di. (4.11)

The projector magnitude ratio represents the size of the projectors compared to the size

of the wave functions. An ideal projector has a similar magnitude to the corresponding PS
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wave function, and thus has a value near unity. What should be avoided are projectors much

larger than their corresponding PS wave functions,7, 1 which would have larger values such

as 100 (see Figure 4.9). Like the logderivative and the arctangent, the projector magnitude

is an atom metric used to indicate the quality of a PAW. In Figure 4.7 each point represents

a different PAW, and the color corresponds to projector magnitude ratio. Examining the

colors of the points, we find that the points with small arctangent values but large ∆ values

do, in fact, have large projectors. These data suggest that the arctangent combined with the

projector magnitude ratio could be used as a universal method for indicating quality PAWs,

further meaning that an atomic metric can indeed indicate accuracy in the solid.

Returning to the idea of filtering out pseudopotentials based on atom metrics before

running ∆-factor calculations, we now can now filter out points with high projector mag-

nitudes (> 60) as well. Filtering by both projector magnitude and arctangent leads to a

reduction in points of another 15-40% on top of those filtered out by SA alone. Filtering by

both SA < 0.1 and SP < 60 we see a total reduction of pseudopotentials of about 50-75%

for all materials tested.

4.4 Methods

4.4.1 Phase unwrapping of the arctangent

Phase unwrapping of Al(E) is necessary to ensure suitability of the the arctangent as

a metric. Without this phase unwrapping, there are discontinuities in the arctangent curve

where it should be continuous. We can enforce continuity of the arctangent curve by shift-

ing Al(E) by ±π whenever the curve crosses ∓π/2.

We have defined the arctangent in Equation 4.5, d. The phase unwrapped arctangent is

defined as

Âi = Ai + si (4.12)

where i is the index for the energy sampling, Ai is the arctangent as defined in Equation 4.5
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Figure 4.7: ∆-factor vs arctangent metrics for for Na (top), Mo (middle), and Si (bottom).
The full objective space is shown in the left plots and a zoomed view is shown in the right
plots. For some pseudopotentials, an error is thrown during the ∆-factor calculations. We
have labelled these at the bottom of the plot with an X1. Additionally, with some pseudopo-
tentials the total energy is not converged within 10−8 Ry after 100 self consistent cycles
(10−7 Ry after 200 cycles for Mo) for one or more of the electronic structure calculations
during calculation of the ∆-factor. These are labeled with an X2 at the bottom of the plot.
The color is the projector metric.
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Figure 4.8: ∆-factor vs. logderivative metrics for Na (top), Mo (middle), and Si (bottom).
The full objective space is shown in the left plots and a zoomed view is shown in the right
plots. For some pseudopotentials, an error is thrown during the ∆-factor calculations. We
have labelled these at the bottom of the plot with an X1. Additionally, with some pseudopo-
tentials the total energy is not converged within 10−8 Ry after 100 self consistent cycles
(10−7 Ry after 200 cycles for Mo) for one or more of the electronic structure calculations
during calculation of the ∆-factor. These are labeled with an X2 at the bottom of the plot.
The color is the projector metric. One outlier with SL > 3×106 is not shown in the top left
figure.
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Figure 4.9: Examples of projectors with appropriate magnitude (left, d = 1.8) and large
magnitude (right, d = 53) compared to the PS wave function.

for i in range 1 to N
if A(Ei) ·A(Ei−1)< 0 and Ψ(Ei,rc)< 0,

si = si−1−π · sign(Ψ′(Ei,rc))
else if (Ψ(Ei−1)−Ψ(Ei−2)) · (Ψ(Ei)−Ψ(Ei−1))< 0

and |(Ψ(Ei−1)−Ψ(Ei−2))− (Ψ(Ei)−Ψ(Ei−1))|> 0.01
and si−1 = si−2 = si−3,

si = si−1 +π · sign(Ψ(Ei−1)−Ψ(Ei−2))
else,

si = si−1
done

Figure 4.10: Algorithm for determining shifts for phase unwrapping the arctangents.

using a four quadrant arctangent function, s is a shift that depends on the energy sample

point, and we have dropped the angular momentum subscript l for clarity. The algorithm

for determining the shift si is pseudocoded in Figure 4.10. Â is the arctangent used to

calculate metrics throughout this paper, not A.

The logderivatives and thus Al(E) are evaluated on a set of discrete points, and some-

times the ghost states are narrow. Therefore the energy sampling must be fine enough

to sufficiently resolve the singularities. In previous work, we found a sampling of 600

points/Ry to be sufficient. For this work we use a sampling of 1000 points/Ry. This

sampling is much finer than Atompaw’s current default value of about 10 points/Ry. The

logderivatives and the arctangents are both evaluated on the energy range -5 to 5 Ry.
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4.4.2 Calculating the ∆-factor

The ∆-factor, originally proposed in Reference,18 is defined for this work as

∆ =

√∫ 1.06V0
0.94V0

(E1(V )−E2(V ))2dV

0.12V0
, (4.13)

where a comparison of the energy-volume curve between an all-electron solution (E1, con-

sidered exact) and a pseudopotential DFT solution (E2) is made. In our case, the two

solutions are derived from the full-potential linearized augmented plane wave (FP-LAPW)

code Elk26 version 4.3.0.6 and the plane wave DFT code Socorro,25 respectively. V0 is

the average of the equilibrium volumes given by two solutions. To find the energies and

equilibrium volumes we calculated the total energy at 5 volumes in the range (0.95aguess)
3

and (1.05aguess)
3, with guess lattice parameters of aguess = 10.82 Bohr for rock-salt NaCl,

aguess = 5.98 Bohr for BCC Mo, and aguess = 8.29 Bohr for zinc-blende SiC. These energy-

volume data are then fit with a Murnaghan equation of state.30 Equation 4.13 is evaluated

numerically using the trapezoidal rule to get the ∆-factor. The energy calculations for

the ∆-factor were performed using the GGA-PBE exchange correlation functional in both

codes. We used a 7x7x7 Monkhorst Pack k-point grid for NaCl and SiC and an 11x11x11

Monkhorst Pack k-point grid for Mo. It is not necessary that the k-point grid be fine enough

to converge the physical properties, as we are only interested in a comparison between the

pseudopotential calculation and an all-electron calculation, and we use the same k-point

grid for both.14 For the calculations in Socorro, a relatively high plane wave cutoff of 120

Ry was used to ensure convergence.

There are multiple versions of the ∆-factor which are all in the same spirit but vary

slightly in implementation. Differences include normalization of the metric, which solution

(if not both) is used for V0, which equation of state is fitted, and which structures and

compounds are used. In many cases, the final ∆-factor is the average over many compounds.

In our case, we consider only one compound per element as a representative compound.
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4.4.3 Parameter Sweeps

All pseudopotentials were generated by sweeping select input parameters normally

used in specifying a PAW pseudopotential. The inputs were established from templates

based on published pseudopotentials, and the parameters swept uniformly within specified

ranges. The AtomPAW code version 4.1.0.3 was used to generate the pseudopotentials.15

See Table 4.1 for the parameters varied, the ranges of the design space, and the parameter

values in the original published pseudopotentials. The parameter rc is the radius of the aug-

mentation spheres. For the original Si pseudopotential, the last three values for rc indicate

rshape, rvloc, and rcore as described in Reference 15. Note that, for each pseudopotential in

this work and for the original Na and Mo pseudopotentials from the literature, rshape, rvloc,

and rcore were set equal to rc. The energies El are matching energies for projectors, where

l is the angular momentum channel.

The Na and Mo input file templates were based on the published PAWs from the Atom-

paw web page <2013 library. The radius rc and the projector energies were varied during

the parameter sweep. For Si, the template was from Atompaw’s >2013 library. In this case,

several modifications to the template were necessary, including the pseudization scheme

because Socorro does not support l-dependent shape functions. For all pseudopotentials,

we increased the logderivative sampling to 10,000 from the default value of 200. This in-

crease in sampling does not affect the resulting pseudopotential, only the logderivative and

arctangent data. Such a large sampling was used to improve resolution of the features in

the logderivatives and arctangents.

67



element parameter range step original
Na rc 0.8-2.4 0.05 1.8

Ep 0-10 0.5 2
Mo rc 1.2-2.6 0.1 2.2

Ep 0-10 1 4
Ed 0-10 1 6

Si rc 1.0-2.4 0.1 1.7, 1.5, 1.7, 1.7
Es 0-20 1 14
Ep 0-20 1 14

Table 4.1: The parameters varied in the parameter sweeps. The rc are PAW radii and the Ei
are energies for projectors for angular momentum channel i. All radii are in Bohr; energies
in Rydberg. The total number of PAWs tested were 693 for Na, 1815 for Mo, and 6615 for
Si.
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Chapter 5

Application of Improved Pseudopotential Optimization Techniques to a Low-Valency

Gallium PAW for Faster DFT Calculations in GaN

5.1 Motivation

The study of point defects in gallium nitride (GaN) will benefit from accurate and fast

ab-initio molecular dynamics studies using plane wave DFT with the PAW method. For

studies of defects, large supercells are required because of long-range Coulombic interac-

tions of the defects and long-range strain fields. Either the supercell must be large enough

to reduce these effects, or multiple supercell sizes must be used to extrapolate cell-size-

dependent results to infinite cell size. The large cell sizes and necessity of cell size con-

vergence studies make quality defect calculations extremely computationally expensive.

Furthermore, if one wants to perform MD studies of defects, even more expense is added

since the electronic structure must be calculated at each time step. Therefore, efficient

PAWs are a necessity for plane wave DFT studies of point defects in GaN. The primary ob-

jective of this chapter is thus to optimize a custom Ga PAW that will give accurate results

for defect studies in GaN while significantly reducing the computational expense compared

to existing Ga PAWs. We do not optimize an N PAW and instead use a previously published

5-electron PAW because we expect the greatest improvement in speed to be gained by op-

timizing the Ga PAW with fewer electrons in the PAW valence partition.

The goal is not to find the perfect PAW for Ga that is transferable to all materials. In-

stead, we customize a Ga PAW for significant performance gains in studies of defects in

GaN. We take this approach because, to ensure transferability, compromises must be made

(e.g. more valence electrons or smaller radii) that can drastically reduce efficiency. There-

fore, because our Ga pseudopotential is not required to be accurate for a wide chemical
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space, we can customize the pseudopotential to be as fast as possible while still capturing

the physics necessary for the problem at hand.

The main change to our Ga PAW compared to the previously published PAWs in the

Atompaw or Abinit libraries is the removal of the 3d electrons from the valence partition,

meaning the Ga PAW has 3 electrons in the valence instead of 13.* Removing the 3d

electrons from the valence partition improves the computational efficiency of calculations

by reducing the number of electrons that need to be calculated. The number of electrons

reduces from 18 to 8 per formula unit since the N PAW has 5 electrons in the valence parti-

tion, enabling a potential reduction in computation time of about a factor of two. Previous

research has suggested that the gallium 3d electrons are important in studies of GaN since

they affect band gap and structural property results. This effect is attributed to the overlap

and hybridization of the gallium 3d electrons with the nitrogen 2s electrons.46, 47, 48 How-

ever, other research has shown that this interaction is an artifact of the approximation to the

exchange-correlation functional, which falsely raises the energy of gallium 3d electrons so

that it overlaps with the nitrogen 2s; in reality the energy of the gallium 3d band is about

3 eV lower than the nitrogen 2s band.49 In this chapter, we show that the accuracy of our

quantities of interest, namely defect transition levels, is not adversely affected in calcu-

lations in GaN by removing the 3d electrons from the valence compared to calculations

using a 13-electron Ga PAW. To demonstrate this accuracy in GaN using our optimized Ga

potential, we calculate lattice parameters, band gaps, and defect levels in w- and zb-GaN

and compare to results given by a published 13-electron Ga PAW.

Given the valence/core partition, the next step in generating a PAW is selecting the radii

and other parameters. For this we use automated approaches where thousands of PAWs can

be efficiently generated and then tested using quality objectives. We have demonstrated the

effectiveness of these techniques for pseudopotential development in the previous chapters,

and they are also discussed in the literature.11, 23 In this chapter, we first use a parameter

*VASP and GPAW have 3-electron PAWs, but they are not useable with Socorro, and we are unsure of
their quality.
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sweep to uniformly search the space, varying important parameters for PAW quality. As a

demonstration, we also run a genetic algorithm in the same search space and show that it

more efficiently finds the same or better PAWs compared to a parameter sweep.

Following standard practice for pseudopotential testing, we test each pseudopotential

both in an isolated atom and in calculations in the solid. The accuracy of each calculation

is determined by comparing to all-electron DFT calculations, which are considered exact

for the purposes of this work. In the isolated atom, we use the arctangent metric, which we

have already shown in Chapter 4 to be the best known scattering property metric. We will

further demonstrate in this chapter the advantages of this metric for prediction of accuracy

in the solid. For evaluating PAW accuracy in the solid, we use a standard lattice parameter

calculation. Some studies also optimize PAWs or pseudopotentials for speed23, 10 using

metrics such as estimated FLOPS or the energy cutoff required for convergence within a

certain tolerance. In this work, we do not optimize the Ga PAW for speed since we assume

that that the required cutoff for our calculations is determined by the N PAW and not the

Ga PAW. We assume this because the N atom is more compact than Ga (it has smaller PAW

radius) and thus should require more plane waves in the basis set. In any case, the reduction

of the number of gallium valence electrons provides a significant speed advantage already.

5.2 Methods

5.2.1 Optimizations

A single PAW can be described as

d = {rc,Ep,Ed1,Ed2} (5.1)

where rc, Ep, Ed1, and Ed2 are parameters used to specify the PAW. The other parameters

for the PAW are not varied during the optimization. The choice of which parameters to

vary, and other settings for the PAW are discussed in Section 5.2.1.1. Each PAW, d, is
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evaluated by calculating two accuracy metrics, Sa and Ss, which both need to be minimized

by the optimization. Sa is a scattering property metric for the isolated atom and Ss is a

metric based on lattice constant calculations in the solid. Both objectives are discussed in

Section 5.2.1.4. In this chapter we present results from both a parameter sweep, described

in Section 5.2.1.2, and a multi-objective genetic algorithm, described in Section 5.2.1.3.

5.2.1.1 PAW design

For the optimizations, we vary several parameters important for specifying the PAW,

which are inputs to the Atompaw code. For reference, the template for the Ga PAW input

file is shown in Figure 5.1. The parameters varied are indicated in curly braces, and the

other parameters are not varied. The PAW input parameters relevant to this chapter are

described here in further detail.

We treat only the 4s and 4p electrons as valence, and the remaining electrons (including

the 3d electrons) are frozen in the core. We set all radii in the PAW equal to rc. This

includes rpaw, rshape, rvloc, rcore, and the matching radius for each basis function. Setting

the radii equal is necessary in order to keep the number of design variables small so that

the number of points in the parameter sweep is not prohibitively large. Setting these radii

equal is common in published PAWs, and we do not expect it to hinder our search for

high-quality PAWs. We found it necessary to include 1 additional s, 1 additional p, and

2 additional d projectors to get both accurate scattering properties and lattice constants in

GaN. The matching energies for these projectors are Es, Ep, Ed1, and Ed2. In order to keep

the number of design variables at 4, we fixed Es at 5 Ry while varying Ep, Ed1, and Ed2.

We found that the PAW results are fairly insensitive to the choice of Es. The PAWs were

generated with the GGA-PBE functional, and all DFT calculations in this chapter using Elk

and Socorro use this functional.
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Ga 31
XC_GGA_X_PBE+XC_GGA_C_PBE logderivrange -5 5 6001
4 4 3 0 0 0
4 1 1
0 0 0
c
c
c
v
c
c
v
c
2
{Ga_RC}
y
5
n
y
{Ga_EP}
n
y
{Ga_ED1}
y
{Ga_ED2}
n
CUSTOM RRKJ
3 0
{Ga_RC}
{Ga_RC}
{Ga_RC}
{Ga_RC}
{Ga_RC}
{Ga_RC}
SOCORROOUT
END

Figure 5.1: Input file template for Atompaw Ga. The variable parameters are in curly
braces. Notice that all radii are set equal.
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5.2.1.2 Parameter Sweep

We use 11 values for each parameter varied in order to adequately sample the space,

meaning the time required to perform the parameter sweep scales as 11N where N is the

number of design variables. With that in mind, we chose to use four design variables so

that there are a total of 14,641 design points in the parameter sweep. See Table 5.1 for the

values of each parameter during the sweep. For each set of parameters, we calculate Sa and

Ss to evaluate that PAW.

parameter min max N
rc (Bohr) 2 3 11
Ep (Ry) 0 10 11
Ed1 (Ry) 0 10 11
Ed2 (Ry) 0.5 10.5 11

Table 5.1: Parameter sweep variable ranges. The energy ranges and step sizes for Ed1 and
Ed2 were chosen so that two different d projectors would never have the same energy.

5.2.1.3 Genetic Algorithm

The DAKOTA software24 is used for the multi-objective genetic algorithm. The settings

for the genetic algorithm are shown in Table 5.2. For the multi-objective genetic algorithm,

we vary the same parameters in the same range as the parameter sweep. The objectives Sa

and Ss are also the same as for the parameter sweep.

5.2.1.4 Objectives

The objective Sa is designed to evaluate a PAW for its scattering properties in the iso-

lated atom. Typically, the PS logderivatives are visually compared to the AE logderivatives

to ensure that the curves match and that discontinuities line up. What we need instead

for our optimization is a way to evaluate the logderivatives automatically, representing the

agreement of the curves with a single metric. The integral of the difference between the
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population size 100
max function evaluations 2500
initialization type unique random
crossover type shuffle random
num offspring 2
num parents 2
crossover rate 0.8
mutation type replace uniform
mutation rate 0.1
fitness type domination count
replacement type below limit = 6
shrinkage fraction 0.9
num generations 40

Table 5.2: Genetic algorithm settings for DAKOTA. The variable ranges are the same as
for the parameter sweep shown in Table 5.1.

logderivative curves,

SL =

√√√√ 1
N

E2

∑
E=E1

(LPS(E)−LAE(E))2 (5.2)

where

L(E) =
ψ ′(r)
ψ(r)

∣∣∣∣
r=rc

(5.3)

is an obvious first choice, and has indeed been used by other researchers.11 However,

we use the arctangent of the logderivatives instead for two reasons: (1) the arctangent of

the logderivatives is numerically smooth without discontinuities, making the error integral

more meaningful, and (2) the arctangent curve can identify ghost states that are visually

imperceptible in the logderivatives and completely missed by integrating the logderivatives.

We discussed the advantages of the arctangent metric in more detail in Chapter 4. We

will further demonstrate in Section 5.3 that the arctangent metric more reliably predicts

accuracy in the solid. The arctangent metric is defined as the root mean square of the error

in the atan curve,

Sa =

√√√√ 1
N

E2

∑
E=E1

(APS(E)−AES(E))2 (5.4)

75



where the atan curve is defined as

A(E) = tan−1 ψ ′(E,r)
ψ(E,r)

∣∣∣∣
r=rc

. (5.5)

We use a range of −5 to 5 Ry to integrate the logderivatives and atan.

There is an additional consideration for the arctangent objective that arises because we

are pseudizing the 3d electrons in Ga. There is now a discontinuity in the AE logderivatives

around −1.5 Ry that corresponds to the 3d bound state. We do not want to represent this

discontinuity in our PS logderivatives. Therefore, we consider logderivatives and atan only

for E > 0 for the d channel.

As described in Section 4.4.1, the arctangent curve must be phase shifted at appropriate

points to ensure its continuity. The phase unwrapping algorithm we use relies on a very

fine sampling of the logderivatives to resolve all discontinuities in the arctangent curve. We

determined that a sampling of 6000 points was sufficient over the range of 10 Ry to resolve

all discontinuities. With coarser sampling, the phase unwrapping algorithm will miss some

discontinuities. To ensure 6000 points was sufficient, we calculated the arctangent metric

for each PAW with a sampling of 100000 instead of 6000 and got the same values within a

small tolerance.

The objective Ss is designed to evaluate a PAW for its accuracy in the solid. To ana-

lyze the accuracy of each PAW in the solid, we calculated the zb-GaN equilibrium lattice

parameter using each PAW and compared the values to the all-electron value. The general

methods used for calculating equilibrium lattice parameters are described later. Our pre-

liminary tests have shown that the zb-GaN lattice parameters correlate to the w-GaN lattice

parameters, meaning no information is gained by calculating both. Because the zb-GaN

lattice parameter is faster and simpler to calculate, we use the zb-GaN lattice parameter for

the test in the solid during our optimizations.

The all-electron full potential linearized augmented plane wave (FP-LAPW) value as
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calculated using the Elk code was considered to be the correct answer for the purposes of

the lattice constant calculations. We compare to FP-LAPW results instead of experiment

because we only want to test the effect of the pseudopotential on the results, and not the

approximations inherent to DFT. We use a 3×3×3 k-point sampling which may not com-

pletely converge the solution, but convergence is not necessary for comparison between

two DFT calculations using the same sampling.14 This low k-point sampling speeds up the

optimization to make finding optimized PAWs tractable.

For the lattice constant calculation using Elk, three different convergence settings were

used: normal, high quality (highq=.true.), and very high quality (vhighq=.true.). The lat-

tice constant using very high quality settings was selected for the reference value. The

difference between the very high quality and high quality settings was 0.0023 Bohr, so we

considered this value converged.

For the calculations with Socorro using the PAWs, the calculations were performed

at an energy cutoff of 80 Ry, which we determined was sufficient to converge the lattice

constant values for all PAWs.

The objective for the accuracy of the PAW in the solid is then

Ss = |aPAW−aelk| (5.6)

where aPAW is the zb-GaN lattice constant given by the PAW being evaluated and aelk is the

reference lattice constant given by the FP-LAPW method.

The lattice constant calculations were performed exactly the same way for the all-

electron and PAW cases. For zinc-blende GaN, we sampled 5 values of the lattice constant

between -5% and +5% of the starting guess of 8.6 Bohr. This is a reasonable guess value

because the all electron lattice constant was found to be 8.6012 Bohr. The Murnaghan

equation of state30 was fitted to the energy vs. unit cell volume data, and the minimum of

the EOS curve was chosen as the equilibrium lattice constant.

77



When analyzing the optimization results, we calculated the wurtzite lattice parameters

for some PAWs. For the wurtzite structure, both a = b and c are varied. At each value of

a and c, the internal coordinates are relaxed to get the u value for the wurtzite structure.

This gives us an energy surface, E(a,c,u), where the minimum gives the equilibrium lattice

parameters. To find the minimum, we fit the energy data to the bivariate polynomial

E(a,c) =C0 +C1a+C2c+C3a2 +C4ac+C5c2

+C6a3 +C7a2c+C8ac2 +C9c3.

(5.7)

from which the local minimum can be found. We chose a starting value and varied ±2%.

The starting guesses were a = 5.98 Bohr and c = 9.62 Bohr. This is more expensive than

a zinc-blende lattice parameter calculation because (1) the energy is evaluated on a 2d grid

instead of a 1d grid, (2) there are 4 atoms instead of 2 in the primitive cell, and (3) a

relaxation of the ionic positions is necessary at every grid point.

5.2.2 Defect Calculations

We calculated defect transition levels of three native point defects in w-GaN, a gallium

vacancy, and the gallium interstitial at two different sites. The structures of each defect

are shown in Figure 5.9. The defect calculations were performed in a 3× 3× 2 w-GaN

supercell containing 72 atoms, not including the defect. We compared band gaps and defect

levels between the 13-electron and 3-electron PAWs to gauge the effect of removing the 3d

electrons from the valence.

The defect transition level for charge states q−1 and q is defined as

EL[q−1,q] = E[q−1]−E[q]−Eshift (5.8)

where Eshift is conventionally the valence band edge energy. For this work, the shift will

be defined on a case by case basis when comparing defect levels between different PAWs
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(see Section 5.3.2). The energy, E[q], at charge state q is calculated using the PAW being

tested. The energy cutoffs used were 45 Ry for the 3-electron PAW and 50 Ry for the

13-electron PAW. All defect level calculations used a 2× 2× 2 k-point sampling. A uni-

form compensating background charge is used to keep the total charge of the cell neutral.

The ionic positions are fully relaxed for each charge state with a force tolerance of 10−4

Ry/Bohr. For all defect calculations, the lattice parameters are set to the lattice parameters

of the bulk cell as calculated by the PAW being tested so that the results are self-consistent.

Therefore, the lattice constants are slightly different for each PAW. Using the 3-electron Ga

PAW, the calculated lattice parameters are a = 6.092 Bohr and c = 9.891 Bohr. Using the

13-electron PAW the calculated lattice parameters are a = 6.095 Bohr and c = 9.929 Bohr.

The ionic positions are fully relaxed for each charge state.

For valid defect charge states, electrons added or removed are localized on the defect

site. Otherwise, electrons are delocalized. For an infinite size supercell, we could identify

valid charge states as those with defect transition levels within the bulk band gap. However,

the bounds for valid charge states for a finite-sized supercell are not equal to the band edges

in the bulk cell.50 The effective bounds are calculated as

Eb,upper =
E[−1]−E[0]

Q
−Eshift (5.9)

Eb,lower =
E[0]−E[−1]

Q
−Eshift (5.10)

where Q = 4/72, the fractional charge of a 4 atom cell, equivalent to a 72 atom cell and

E[q] is the energy for the non-defective structure calculated with a unit cell charge of q. The

value for Q is fractional because the unit cell is small (4 atoms) but we want to simulate

adding a single electron to a larger cell (72 atoms). Eshift is the same as in Equation 5.8.
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5.2.3 Timing Calculations

To test the speedup of the 3-electron Ga PAW vs the 13-electron Ga PAW, we ran

structure relaxations for w-GaN with a Ga vacancy. We chose a structure relaxation as a

timing test because the underlying calculations are the same as MD, which is the desired

application of the new Ga PAW. In both MD and structure relaxations, the interatomic

forces are calculated and the atomic positions are updated at each step. To compare timing

on a per-iteration basis, we fixed the number of iterations to 20 for the self consistent

calculations of the electronic structure, and the number of relaxation steps to 11 for a total

of 220 total iterations. All calculations were performed in the same computing environment

with the same number of compute nodes, and the same nitrogen PAW was used in all cases.

We ran the timing tests in two different cell sizes to evaluate the scaling of the speedup.

5.3 Results and Analysis

5.3.1 Optimization results

We are searching for a PAW with good qualities as indicated by the objectives Sa and

Ss. The relevant portion of the objective space for the parameter sweep is shown in Figure

5.2. Each point represents one Ga PAW tested. Points towards the left of the plot have

better scattering properties as indicated by a low value of Sa. Points towards the bottom

of the plot have smaller errors in the equilibrium zb-GaN lattice parameter compared to

all-electron results, as indicated by a low value of Ss. Therefore, an optimal PAW would

appear at the bottom left of the plot. Optimal PAWs with both accurate Sa and Ss are evident

in the objective space, meaning we have optimized a PAW with high accuracy according to

our objectives.

We chose an optimal design point (Sa = 0.027, Ss = 0.0037) to test further. First, we

manually inspect the logderivatives and arctangent curves of the optimal PAW, which are

shown in Figure 5.3. From this figure it is clear that the PS logderivatives and arctan-
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gent curves match the respective AE curves. Recall that the discontinuity in the d channel

corresponds to the 3d bound state, and we do not want to capture that behavior in the

PS logderivatives. The results in this figure show that accurate scattering properties are

achievable within our PAW search space.
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Figure 5.2: Objective space for parameter sweep. Points towards the bottom left of the plot
are more optimal. Notice that a low arctangent objective (Sa) predicts a low lattice constant
error (Ss) in the solid.

An interesting finding is that our objective Sa for the scattering properties also predicts

accurate lattice parameter in the solid, as evident in Figure 5.2. This result supports our

findings in Chapter 4, where the arctangent metric predicted accuracy in the solid for sil-

icon, sodium, and molybdenum. To compare the arctangent metric to the logderivative

metric, we also calculated SL as defined in Equation 5.2. The objective space using SL is

81



−5

0

5

lo
g 

de
riv

a 
iv

e

S P D F
all elec ron
pseudo

−5 0 5
E (Ry)

−2

−1

0

1

a 
an

 o
f l

og
 d

er
iv

a 
iv

e

−5 0 5
E (Ry)

−5 0 5
E (Ry)

−5 0 5
E (Ry)

Ga PAW 5493

Figure 5.3: The first row shows the PS and AE logderivatives for each angular momentum
channel. The second row shows the arctangents of the log derivatives for each angular
momentum channel. Notice the discontinuity in the logderivatives in the D channel which
corresponds to the 3d bound state. With the exception of this discontinuity (which we ig-
nore due to pseudizing the 3d electrons), the agreement between log derivatives is excellent
in the full energy range, and the atan curves capture this agreement.

82



0 200 400 600 800 1000
SL (arb. units)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

S s
 (B

oh
r)

0.02

0.04

0.06

0.08

0.10

0.12

0.14

S a
 (a

rb
. u

ni
ts

)

Figure 5.4: Objective space for the parameter sweep using SL instead of Sa. Points to-
wards the bottom left of the plot are more optimal. Unlike the arctangent objective, a low
logderivative objective does not predict accurate lattice constants. Compare to Figure 5.2.

shown in Figure 5.4. It is evident that the logderivative does not predict lattice constant

accuracy as the arctangent does.

We have shown that an accurate PAW exists in this search space. As a final proof of con-

cept for PAW optimization, we show that a genetic algorithm can find optimal PAWs with

fewer iterations than the parameter sweep. Thus using a multi-objective genetic algorithm

(MOGA) will enable searches of larger parameter spaces in the future which would not be

tractable with parameter sweeps. Figure 5.5 shows the objective space for an optimization

of the GaN PAW using a genetic algorithm. In this case, optimal points are discovered as

in the parameter sweep, but the number of required design points is much lower. This is
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Figure 5.5: Objective space for the optimization using a genetic algorithm. Compared to
the parameter sweep (Figure 5.2), the genetic algorithm found optimal PAWs with a much
sparser search space.

evident visually by noting the non-optimal region of the objective space is much sparser

using a genetic algorithm vs. a parameter sweep (compare Figure 5.5 with Figure 5.2). A

total of 2500 PAWs were tested in the MOGA test, but only 1052 were necessary to find

a point that dominated PAW 5493 from the parameter sweep. This means the number of

evaluations required has been reduced by an order of magnitude compared to the parameter

sweep.

84



5.3.2 Defect calculations using optimized PAW

Given an optimized PAW according to our optimization objectives, we want to validate

this PAW in defect calculations. These tests will confirm that the Ga PAW optimized to

give the correct lattice constant in zb-GaN is transferable to the defect calculations in w-

GaN we are interested in, and that freezing the 3d electrons does not significantly affect

our defect calculation results.

First, the calculated w-GaN Kohn-Sham band gap is increased by 0.36 eV using the

3-electron PAW as compared to the 13-electron PAW (see Figure 5.6, for example). This

is possibly due the fictitious gallium 3d and nitrogen 2s interaction present when treating

the 3d electrons as valence electrons, which was mentioned in Section 5.1. By freezing

the 3d electrons we can avoid this spurious interaction, thus correcting the band gap by

some amount. Although it’s true that improvement of the band gap is somewhat of a fluke,

that does not change the fact that a fictitious interaction has been avoided by freezing the

3d electrons. In both cases, including or omitting the 3d electrons from the valence, an

approximation is being made. In the former case, the spurious repulsion of the VBE upward

is included, and in the latter, the other interactions of the 3d electrons during bonding are

neglected.

The calculated defect transition levels are shown in Figures 5.6, 5.8, and 5.7 for a

gallium vacancy, and two different gallium interstitial sites. The structures for the defects

are shown in Figure 5.9. It is unknown to what extent the difference in band gap is due to

the valence band shifting downward vs. the conduction band shifting upward. Therefore,

it does not make sense to align the levels by the valence band edges or the conduction

band edges. We have therefore shifted the energies for the optimized 3-electron PAW

downward by 1/2 the difference in band gaps to enable better comparison of the defect

levels. This shift is somewhat arbitrary, but our conclusions are insensitive to the choice

of shift. Qualitatively, the defect transition levels are similar for all defects calculated. For

every defect, both PAWs predict the same number of defect transition levels within the
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bounds. One possible exception is the +5/+6 level for the tetrahedral site. However, since

this level for both PAWs is very near the bound, these can still be considered to agree.

Furthermore, both PAWs predict the negative-U behavior for the tetrahedral site, indicated

by the +1/+2 level being lower than the +2/+3 level, which means this defect can trap two

holes with the second hole bound more strongly than the first.51 This behavior has also

been reported in Reference 52. Quantitatively, all defect levels agree within 0.25 eV.

5.3.3 Speedup achieved with optimized PAW

Given that we have found optimal PAWs using our search, we want to know if they

afford any speedup compared to a 13-electron PAW. We expect they will, due to fewer

electrons being included in the valence. However, the 3-electron PAW requires more addi-

tional projectors, which adds computing time to calculations. We ran timing calculations

as described in Section 5.2.3 for two different supercell sizes, 72 and 300 atoms. In each

supercell, one Ga atom is removed to create the Ga vacancy. We see a speedup using the

3-electron PAW for both supercell sizes. The speedup for both cell sizes is 30-40%, and is

greater for the larger cell.
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Figure 5.6: Comparison of defect levels between PAWs for the gallium vacancy. The
energies for the Abinit PAW are referenced to the valence band edge. The energies for
the 3-electron PAW so that the difference in the band gap is split between the valence and
conduction bands. The dashed black lines are the band edges and the solid red lines are the
bounds.
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Figure 5.7: Comparison of defect levels between PAWs for the gallium interstitial in the
tetrahedral site. The energies for the Abinit PAW are referenced to the valence band edge.
The energies for the 3-electron PAW so that the difference in the band gap is split between
the valence and conduction bands. The dashed black lines are the band edges and the solid
red lines are the bounds.
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Figure 5.8: Comparison of defect levels between PAWs for the gallium interstitial in the
octahedral site. The energies for the Abinit PAW are referenced to the valence band edge.
The energies for the 3-electron PAW so that the difference in the band gap is split between
the valence and conduction bands. The dashed black lines are the band edges and the solid
red lines are the bounds.
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Figure 5.9: Structures for the gallium vacancy (a) and the gallium interstitial (b-d) in w-
GaN. The larger spheres are gallium and the smaller spheres are nitrogen. For the gallium
vacancy, the location of the missing gallium is indicated with the red sphere. For the
interstitials, the interstitial gallium is shown with the blue sphere. The octahedral site for
the gallium interstitial is shown in (b). The initial guess for the location of the gallium
interstitial in the tetrahedral site is shown in (c). The location of the gallium interstitial in
the tetrahedral site after relaxation is shown in (d).
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Chapter 6

Conclusions and Outlook

We have developed methods for automatically optimizing pseudopotentials for speed

and accuracy improvements in plane wave DFT calculations. In Chapter 3, we used a

multi-objective genetic algorithm to optimize pseudopotentials for interatomic force ac-

curacy and computational work. Our method produced Pareto sets of pseudopotentials,

which offer varying compromises between accuracy and efficiency. We have seen that our

force-based optimization can produce pseudopotentials of comparable accuracy compared

to pseudopotentials from the literature when predicting forces or equilibrium lattice con-

stant and bulk modulus, while improving the computational efficiency of the pseudopoten-

tials. To enable and improve our optimizations, we developed new pseudopotential metrics,

which we have compared to existing metrics. As demonstrated in Chapters 4 and 5, our

arctangent metric for scattering properties is the most effective metric for pseudopotential

scattering properties currently formulated, and is key to enabling efficient pseudopotential

optimizations. Finally, we leveraged our optimization techniques and metrics to enable

tractable studies of point defects in GaN.

Currently the predominant resource for DFT users in need of pseudopotentials is pseu-

dopotential libraries. The long term vision of our research is to 1) improve and expand

on these current libraries and 2) offer a method to automatically generate new pseudopo-

tentials when libraries are not sufficient. This work has demonstrated that new pseudopo-

tentials can offer speed and accuracy advantages over those currently available in these

libraries. The reduction in force errors for LiF in Chapter 3, for example, was from about

7% to about 2%. Perhaps the more important finding is that computational work represents

an opportunity for significant improvement of pseudopotentials. For SiGe, we were able

to find pseudopotentials with accuracies comparable to the reference pseudopotentials in
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the literature, but faster by a factor of three according to our computational work objective.

This improvement in speed was obtained by tuning only the radii and projector matching

energies and required no reduction of the number of electrons in the valence. We have also

demonstrated significant speedup in a Ga PAW by reducing the number of electrons in the

valence. In this case, although we did vary radii and projector matching energies, we did

not attempt to find the most efficient Ga PAW within our search space (in other words, we

didn’t search for the fastest of the fast).

Because of these results, further speed gains for pseudopotentials across the periodic

table are likely in the future. These gains will come both from optimizing the pseudopoten-

tial parameters and from reducing the transferability of the pseudopotentials in anticipation

of use in specific materials or regimes.

A tradeoff between accuracy and efficiency is possible by leveraging reductions in

transferability for speed gains (i.e. reducing the relevant materials space or applicable phys-

ical regimes). In contrast, recent libraries have been designed primarily with transferability

in mind. Speed gains are likely possible in comparison to those libraries given the transfer-

able nature of those pseudopotentials, whereas we can improve speed gains by neglecting

transferability. The advantage of a selection of pseudopotentials is the availability of ap-

propriate pseudopotentials optimal for a user’s problem.

This tradeoff in accuracy and speed encourages a much more diverse and versatile

pseudopotential library. Although it is possible that libraries could eventually mature to

supply needs of every researcher, especially with the recent surge in new library develop-

ment, much more development is still needed. Having a large selection of pseudopotentials

makes calculations more accessible by preventing situations where a non-expert user has

to generate their own pseudopotential appropriate pseudopotentials aren’t available.

One could imagine a new paradigm of pseudopotential generation where pseudopoten-

tials are generated as needed to be optimal for a specific problem. This approach could be

beneficial for longer term studies of a small class of materials or structures, where the time
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investment for optimizing a new pseudopotential is offset by the eventual time savings, or

when strict accuracy is needed. The material-specific optimization allows for generation

of pseudopotentials that work well for the chosen system without needing to worry about

transferability to unrelated materials, allowing softer pseudopotentials. Our technique sug-

gests that pseudopotentials can be generated as needed for users’ specific applications to

achieve gains in computational efficiency. It would be especially beneficial for long term

studies of a specific material or related materials, or when speed is critical.

One can even imagine a situation where multiple pseudopotentials are used for the

same element in different parts of the same system. For example, a silicon pseudopoten-

tial optimized for bulk silicon could be used far away from an interface while a different

pseudopotential optimized to interact with the interface material could be used for silicon

atoms closer to the interface.

Automated optimization is a clear route towards smarter generation of new pseudopo-

tentials, offering a more thorough and intelligent search of the design space than would be

allowed with traditional hand-tuning methods. Because more pseudopotentials are tested,

the probability of finding a high-quality pseudopotential is increased. Additionally, the

optimization reduces the need for human time and expertise. We demonstrated the effec-

tiveness of automated optimizations in Chapters 3 and 5, and other recent works have seen

positive results using pseudopotential optimizations as well.10, 11 In Chapter 5 we com-

pared a genetic algorithm to a parameter sweep for the same search space of PAWs and

found that the genetic algorithm required an order of magnitude fewer calculations, which

justifies our use of genetic algorithms earlier in Chapter 3.

In this work, we have not focused on maximizing the efficiency of the optimization

methods, instead focusing primarily on the metrics and methods for distinguishing a good

pseudopotential from a bad one using metrics vs. human inspection. Therefore, improve-

ments can be made to our optimization methods, including several immediate ones. First,

the scattering properties of each angular momentum channel are independent of the projec-
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tor matching energies of other angular momentum channels. This reduces the search space

significantly, which we have not leveraged. Second, the parameters governing the genetic

algorithm can be tuned for this type of problem. We have used default values for the ge-

netic operations (crossover, mutation), and what we considered to be reasonable values for

population sizes. However, it’s possible significant gains could be made by choosing these

parameters more rigorously.

A major contribution to the effectiveness of automated optimizations from this work

is the exploration and evaluation of the pseudopotential quality metrics, which enable op-

timizations. These, plus contributions from other groups,18, 12, 11 will enable much more

effective optimizations. In each chapter we have used various metrics for the accuracy of

pseudopotentials. For scattering accuracy in the atom, we have used our arctangent metric,

which we have compared to a metric based on the logderivatives. For accuracy in the solid,

we have used the lattice constant (Chapters 3 and 5), the ∆-factor (Chapter 4), and inter-

atomic forces (Chapter 3). We can now draw some conclusions about the advantages and

disadvantages of each metric.

The lattice constant and the ∆-factor are both derived from similar energy-volume cal-

culations. Thus we could expect them to be correlated to some extent, excluding cases

where the bulk modulus is extremely wrong. In fact, we have seen that they provide simi-

lar information, and this has been independently confirmed in Reference 12. Furthermore,

the interatomic forces, can also be expected to provide the same information as the lattice

constant or the ∆-factor, since they are related to the energies by the Hellman-Feynman

theorem, provided the atomic positions are sufficiently near equilibrium. All other things

being equal, there is an advantage to the ∆-factor in that it also captures energy-volume

curvature disagreement while lattice constant does not. The advantage of the ∆-factor over

a force-based metric is that it is much simpler to implement. Additionally, the reporting of

the ∆-factor is now common for new pseudopotentials, thus providing a standard that can

be used to compare all pseudopotentials.
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To evaluate pseudopotential scattering properties, we have developed the arctangent

metric, SA. This metric is related to the logderivatives but can be used as a metric for

automated evaluation. We have demonstrated that this metric can be used to reliably capture

ghost states without resorting to calculations in the solid such as lattice constants, density

of states, or band structures. Additionally, it provides a meaningful representation of the

overall quality of scattering properties in pseudopotentials and PAWs. Thus SA is key to

enabling efficient pseudopotential optimizations. We describe below possible applications

of this metric by the pseudopotential communities.

For those designing pseudopotentials by hand, using SA can streamline the process by

easily screening out pseudopotentials with poor logderivative agreement or ghost states

without requiring visual inspection. It also requires no calculations in the solid using the

pseudopotential as would be necessary for other methods of detecting ghost states such as

band structure calculations.

For those designing pseudopotentials using automated or semi-automated optimization

techniques, the metric has two advantages. First, as a metric alone it has the ability to

reliably guide optimizations. An optimization will only perform correctly if the metrics

used as objectives are meaningful, so that the value of the metrics truly indicate the quality

of the pseudopotentials, which is the case for the arctangent metric. The second advantage

is that SA can reduce optimization time when used as a screening metric by reducing the

number of necessary calculations in the solid.

Furthermore, in anticipation of users performing calculations in different physical regimes,

SA could be defined for different energy ranges (e.g. -5 to +10 Ry vs. -5 to +5 Ry). A version

with a higher energy limit could be useful for ensuring accuracy in excited state calcula-

tions, for example. In problems where speed is important and scattering agreement at high

energies is not critical, a lower energy range upper limit would be sufficient. This approach

of tailoring the energy range to the specific application is reminiscent of an approach used

by Sarkar et al. in which they modify the pressure range of the ∆-factor to account for high
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energy density calculations of materials at high pressures.

For users of plane wave DFT, the SA metric gives an immediate and easy-to-interpret

indicator of the quality of a pseudopotential’s scattering properties. Reporting this metric

to the community, similar to the way the ∆-factor is reported, would give valuable infor-

mation to users. Currently, it is the responsibility of the designers of pseudopotentials to

ensure there are no ghost states in their libraries, or the responsibility of users to carefully

check the pseudopotential scattering properties. And as we have seen, good ∆-factor does

not necessarily imply good scattering properties. Using a full test set of structures when

calculating the ∆-factor, as is done in other works, may improve the predictive power of

the ∆-factor, but the improvement depends on the completeness of the test set of structures,

and increasing the test set increases the expense of the ∆-factor calculations. Additionally,

Prandini et al.12 have urged the use of a wider array of tests in the solid, pointing out that ∆

alone does not necessarily correlate to the accuracy of other metrics such as those based on

phonons, band structures, and cohesive energies. The inclusion of further tests as suggested

would even further increase the expense of tests in the solid, and their findings support our

claim that ∆ alone does not represent the true accuracy of a pseudopotential. Therefore,

SA stands out as an obvious choice for a new pseudopotential metric, providing a valuable

supplement to the information given by the ∆-factor and other metrics in the solid.

In conclusion, we summarize the key takeaways of this research. First, new pseudopo-

tentials will be faster and more accurate than currently existing pseudopotentials, and can

offer plane wave DFT users a user-selectable tradeoff between accuracy and efficiency.

Next, the development of these new pseudopotentials will benefit from automated opti-

mization techniques, especially genetic algorithms. Finally, the arctangent metric we have

developed will enable these optimizations and provide a straightforward and robust method

for evaluating scattering properties of pseudopotentials. This metric reliably captures pseu-

dopotential ghost states with negligible computational expense and could provide a stan-

dardized scattering property metric for the plane wave DFT community.
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