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CHAPTER I 

 

INTRODUCTION 

 

Analogue functional analysis (AFA) methodology (Iwata, Dorsey, Slifer, 

Bauman, & Richman, 1982/1994) is the current standard for experimentally identifying 

variables maintaining problem behavior for individuals with disabilities. However, there 

are certain circumstances in which highly controlled experimental analyses may not be 

appropriate. For cases of severe self-injury or aggression, temporarily increasing these 

behaviors to confirm reinforcing variables may not be ethical (Durand, 1993). In other 

cases, experimental analyses may not be feasible given the setting and available resources 

(Horner, 1994).  

Even when AFAs are feasible and ethically sound, the outcomes may not 

accurately reflect the function of problem behavior as it occurs in the natural 

environment. Some individuals may not engage in problem behavior during contrived test 

conditions, resulting in false negative findings (Wacker, Berg, Harding, & Cooper-

Brown, 2004). False negatives may be due to isolating single antecedents and 

consequences in test conditions when in fact a combination of variables more reliably 

evoke or maintain problem behavior (Call, Wacker, Ringdahl, & Boelter, 2005; Dolezal 

& Kurtz, 2010). Idiosyncratic variables in the individual’s natural environment may also 

contribute to false negative AFA outcomes if these variables are not included in test 

conditions (Carr, Yarbrough, & Langdon, 1997; Lang et al., 2009; McComas, Hoch, 

Paone, & El-Roy, 2000; Ringdahl & Sellers, 2000).  
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False positive outcomes are also possible for cases in which a consequence is not 

provided contingent on problem behavior in the natural environment, yet is identified as a 

reinforcer in an experimental analysis (Shirley, Iwata, & Kahng, 1999). Both false 

negative and false positive AFA outcomes seem to result from a mismatch between AFA 

test conditions and an individual’s environment, yet the same set of test conditions (i.e., 

social positive reinforcement in the form of adult attention, social negative reinforcement 

in the form of escape from demands, automatic reinforcement, and a control condition) 

are included in the majority of AFAs (Hanley, Iwata, & McCord, 2003).  

For cases in which AFAs may be inappropriate, infeasible, or do not provide clear 

results, descriptive assessments may be the best alternative. Descriptive assessments 

consist of direct observations in the environment in which problem behavior occurs 

during which data are collected on behavior-environment interactions (Bijou, Peterson, & 

Ault, 1968; Mace & Lalli, 1991). Data collected during descriptive assessments may be 

used to quantify response-stimulus relations and identify contingencies between problem 

behavior and consequences in the natural environment. These descriptive data may be 

used to form hypotheses concerning which variables are functioning as reinforcers. 

The term contingency has been defined broadly as a relation between two or more 

events with varying probabilities (Vollmer, Borrero, Wright, Van Camp, & Lalli, 2001). 

Within reinforcement theory, contingencies are defined by two transitional probabilities: 

the probability of a stimulus given a response and the probability of a stimulus given no 

response (Catania, 1971; 2007). Contingent relations, in which a stimulus may occur both 

in the presence and absence of a response, may be contrasted with dependent relations, in 

which a stimulus occurs only in the presence of a response and never in its absence. 
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Contingent relations are more likely to be identified in natural settings, whereas 

dependent relations are characteristic of experimental analyses (e.g., AFA test 

conditions). Positive contingencies are identified when a stimulus occurs more often in 

the presence of a response than in its absence. Negative contingencies are identified when 

a stimulus occurs more often in the absence of a response than in its presence. Although a 

positive contingency may be necessary for reinforcement (Hammond, 1980; Martens, 

DiGennaro, Reed, Szczech, & Rosenthal, 2008), the precise conditions sufficient to 

produce a reinforcement effect remain unknown (Vollmer et al., 2001). Therefore, 

calculating contingencies via descriptive assessments may be used to suggest, but not 

confirm, the function(s) of problem behavior.  

Several strategies for quantifying response-stimulus relations have been proposed 

and applied within the literature on descriptive assessments via sequential analysis. 

Methods of sequential analysis are used to determine whether the occurrence of one 

observed event is associated with the subsequent occurrence of another observed event 

within one or more observation sessions (Yoder & Symons, 2010). Sequential analysis 

methods may be applied to any pair of observed events. For the purpose of identifying 

potential reinforcers for problem behavior, the primary events of interest include a target 

response (i.e., problem behavior) and a change in the status of a stimulus (e.g., adult 

attention).  

 McComas et al. (2009) reviewed several methods of calculating contingencies in 

natural environments, including simple probabilities, transitional probabilities, and 

Yule’s Q (YQ; Yule & Kendall, 1957). The authors identified simple probabilities as an 

insufficient and imprecise method of calculating contingency. Simple probabilities do not 
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control for the base rates of either the response or consequent stimulus and are therefore 

uninterpretable. Transitional probabilities in isolation are also insufficient, because 

transitional probabilities only control for the base rate of the response, but not for the 

consequent stimulus. YQ, a linear transformation of the odds ratio, is the recommended 

method for statistically quantifying sequential associations between events (Bakeman, 

McArthur, & Quera, 1996; Yoder, Short-Meyerson, & Tapp, 2004). YQ is bounded by -

1.0 and 1.0 and is therefore more interpretable than the unbounded odds ratio. The YQ 

statistic controls not only for the base rates of each event, but for the chance occurrence 

of the two events occurring in sequence (Yoder & Symons, 2010). Positive YQ values 

indicate an observed sequential frequency greater than expected by chance. Negative YQ 

values indicate an observed sequential frequency less than expected by chance. Zero YQ 

values indicate an observed sequential frequency equal to that expected by chance (Yoder 

& Symons, 2010).  

 Contingency space analysis (CSA; Gibbon, Berryman, & Thompson, 1974; 

Matthews, Shimoff, & Catania, 1987; Martens et al., 2008) is a method of quantifying 

response-stimulus relations consistent with Catania’s (1971; 2007) definition of 

contingency. CSA involves a comparison between two transitional probabilities: the 

probability of a stimulus given a target response (p(S/R)) and the probability of a 

stimulus in the absence of a target response (p(S/R)). The CSA probabilities are plotted 

as points in contingency space, with the y-axis representing the p(S/R) and the x-axis 

representing the p(S/R). Points located on, or near, the diagonal line between the x- and y-

axes represent stimuli independent of the target response (i.e., the probability of the 

stimulus is the same whether or not the target response occurs; see Figure 1). The  
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Figure 1 

Graphic Representation of Contingency Space 
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location of points in contingency space allows a visualization of contingent and 

noncontingent relations between target responses and environmental stimuli.  

 Both YQ and CSA are calculated using the same 2 x 2 contingency table values 

(see Table 1), with each cell representing one of four possible sequences (i.e., response 

occurred and was followed by stimulus [Cell A], response occurred and was not followed 

by stimulus [Cell B], response did not occur but stimulus did occur [Cell C], and neither 

response nor stimulus occurred [Cell D]). By virtue of the formulae used to calculate YQ 

and CSA (see Table 2), these measures always correspond in terms of the direction of the 

association or contingency. A positive YQ will always correspond to a point in 

contingency space above the diagonal (i.e., the p(S/R) is greater than the p(S/R)), 

indicating a positive contingency. A negative YQ will always correspond to a point in 

contingency space below the diagonal (i.e., the p(S/R) is less than the p(S/R)), indicating 

a negative contingency. However, the extent to which the strength of the sequential 

association (YQ) corresponds with the strength of the contingency (CSA) is less clear.  

 In order to compare YQ and CSA in terms of strength, an effect size metric is 

needed for CSA. Currently, there is no recommended index of contingency strength for 

CSA aside from the difference between the two transitional probabilities (Martens et al., 

2008). This difference score (DS; p(S/R) – p(S/R)) represents the distance from the 

diagonal of independence in contingency space, thus presumably, the farther the point 

lies from the diagonal, the stronger the contingency. Another potential measure of 

contingency strength is a ratio of the transitional probabilities (p(S/R) / p(S/R)). This 

alternative effect size metric, which has not been used in studies on CSA, is known as a  

relative risk ratio (RR) in epidemiology research (Merrill & Timmreck, 2006; see Table 3 
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Table 1 

Construction of 2 x 2 Contingency Tables Using Lag-1 Event Sequential Analysis 

 

 Reinforcer Contact No Reinforcer Contact 

Target Response A B 

No Target Response C D 

 

Cell Contents 

A 
Number of event lag-1 pairs with first event as target response 
and second event as contact with reinforcer 
 

B 
Number of event lag-1 pairs with first event as target response 
and second event as any coded event except contact with 
reinforcer 

C Number of event lag-1 pairs with first event as any coded event 
except target response and second event as contact with reinforcer 

D 
Number of event lag-1 pairs with first event as any coded event 
except target response and second event as any coded event 
except contact with reinforcer 
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Table 2 

Calculations of CSA Probabilities and YQ Statistics from the 2 x 2 Contingency Tables 

 

Contingency Table CSA 
p(S/R) 

CSA 
p(S/R) YQ 

A B 

C D 
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Table 3 

Calculations of Relative Risk Ratios and Difference Scores from the CSA Probabilities 

 

RR DS 

p(S/R) / p(S/R) 
or 

 
 

p(S/R) - p(S/R)  
or 
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for effect size formulae). The RR takes into account the location of the transitional 

probabilities along the x- and y-axes, in addition to the distance from the graphic 

diagonal. To illustrate the potential distinction between a difference in probabilities and a 

ratio of probabilities, consider the following two points in contingency space: (1) p(S/R) 

= .95, p(S/R) = .85 and (2) p(S/R) = .15, p(S/R) = .05. The difference in probabilities 

would be the same for each point (.10) whereas the ratio of probabilities would be greater 

for the second point (3.0), than the first point (1.1). The RR may better reflect the 

strength of contingency than the DS, as this index seems to account for the overall 

probability of the stimulus. 

 Because YQ is the current recommended approach for statistically quantifying 

sequential associations, we sought to compare this method to one uniquely suited to 

operant theory (CSA). For the purpose of identifying potential response-reinforcer 

relations, indices of contingency may be more informative than an index of sequential 

association (Yoder & Symons, 2010). We chose an animal model to compare CSA and 

YQ for three reasons. First, an animal model allows a simplified environment in which a 

single target response and a single stimulus may be isolated. Second, animal models 

allow for confirmation of the identified stimulus as a reinforcer. Third, laboratory 

environments allow increased control over contingent and noncontingent reinforcement 

schedules, not readily available in natural environments.  

The purpose of the current study was to compare CSA and YQ measures in terms 

of the effects on response patterns in mice. We also sought to compare two possible 

effect size metrics for CSA (i.e., DS and RR) in terms of correspondence with overall 

responding. The decision to use frequency of responding as the outcome measure on 



 

  11 

which to compare the three indices was based on an assumption that higher indices of 

contingency should correspond to higher rates of responding (e.g., Hammond, 1980). We 

selected two distinct points in contingency space for which the DS and RR differed but 

the YQ values were the same. These points in contingency space were approximated 

using concurrent schedules of reinforcement. We hypothesized that potential differences 

in response patterns between the approximated points in contingency space would reveal 

the most useful measure in predicting the strength of the response-reinforcer relation. 

Higher rates of responding in the condition for which the RR was greater, for example, 

may suggest RR as the most appropriate indicator of contingency strength.  
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CHAPTER II 

 

METHOD 

 

Subjects 

Thirteen male C57BL/6J mice were included in the study and were approximately 

four months of age at the start of test conditions. A 12:12 hr light/dark cycle was in effect 

throughout the experiment and all experimental sessions occurred during the light cycle. 

Animals had ad libitum access to water outside of experimental sessions and had access 

to food for 4 hr each day beginning 1 hr after experimental sessions were completed. An 

18-hr food deprivation period preceded all experimental conditions.  

 

Apparatus 

 Operant conditioning chambers (OFA-510, Med AssociatesTM, Inc) were used for 

all experimental sessions. The chambers were controlled by modified programs included 

in the MedLab 8 Package (SOF-700LA-1, Med AssociatesTM, Inc) for MED-PC® IV 

software. Each chamber included an ENV-313M illuminated infrared nose poke sensor 

and an ENV-302M-S liquid dipper, which dispensed .01 cc of a 1:1 mixture of Ensure 

and water. An ENV-302HD infrared head entry detector for the dipper receptacle allowed 

recording of when the animals contacted the Ensure mixture. Two additional nose poke 

sensors were located to the left of the dipper and in the center of the wall opposite the 

dipper. Only nose pokes to the illuminated sensor at the right of the dipper constituted 

target responses and resulted in food delivery. Nose pokes to the two remaining sensors 
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were recorded but had no effect on food delivery. An ENV-315M house light remained 

illuminated for the duration of all sessions.  

 

Procedure 

 Shaping. Shaping sessions were initially conducted to increase the occurrence of 

the target response of right sensor nose pokes and to establish contact with food as a 

positive reinforcer. All animals were initially exposed to a continuous schedule of 

reinforcement (CRF) following right sensor nose pokes for 11 consecutive sessions, each 

lasting 30 min. At the start of each session, the house light came on and remained 

illuminated until the session ended. The right nose poke sensor was illuminated until the 

sensor was activated, at which point the light turned off and the dipper became available. 

The dipper remained available until 10 s following a head entry to the dipper. The right 

nose poke sensor became illuminated again once the dipper was no longer available. A 

minimum of 5 consecutive sessions with target response (i.e., right sensor nose poke) 

rates above 1 per min were required before moving to the comparison schedules of 

reinforcement. 

 Comparison schedules of reinforcement. A concurrent schedule of 

reinforcement was selected to approximate each of the targeted points in contingency 

space (i.e., the probability of reinforcement given a target response versus the probability 

of reinforcement given no target response as .50 and .33, respectively and .20 and .11, 

respectively). To approximate the probabilities of reinforcement given a target response, 

random ratio schedules of reinforcement were selected. The random ratio schedule is a 

type of variable ratio reinforcement schedule in which the probability of reinforcement 
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remains constant across aggregations of responses (Bancroft & Bourret, 2008). Thus, a 

random ratio 2 was selected to approximate the .50 probability of reinforcement 

following a target response and a random ratio 5 was selected to approximate the .20 

probability of reinforcement following a target response.  

To approximate the probabilities of reinforcement given no target response, 

variable time (VT) schedules were added to each of the random ratio schedules. A “non-

response” was arbitrarily defined as 5 s elapsing without a right sensor nose poke. To 

approximate the .33 probability of reinforcement given no target response (i.e., 

reinforcement following every third “non-response”), we multiplied 5 s by three and 

selected a VT 15-s schedule. The VT 15-s schedule was in effect concurrently with the 

random ratio 2 schedule to approximate the .50 probability of reinforcement following a 

target response and the .33 probability of reinforcement following no target response.  

To approximate the .11 probability of reinforcement given no target response (i.e., 

reinforcement following every ninth “non-response”), we multiplied 5 s by nine and 

selected a VT 45-s schedule. The VT 45-s schedule was in effect concurrently with the 

random ratio 5 schedule to approximate the .20 probability of reinforcement following a 

target response and the .11 probability of reinforcement following no target response. 

These VT schedule components resulted in food delivery every 15 s (on average) during 

one comparison schedule and every 45 s (on average) during the other comparison 

schedule independent of responding. We selected random ratio + VT schedules to 

approximate an environment in which reinforcement is sometimes delivered following 

target responses and sometimes delivered in the absence of target responses. 
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During each of these test conditions, the right nose poke sensor remained on 

throughout the session. When either the random ratio response requirement was met or 

the VT interval elapsed, the dipper became available for 5 s. The VT schedule component 

was independent of the random ratio schedule component, thus it was possible for the 

reinforcement intervals to overlap, resulting in food availability for greater than 5 s. 

Experimental design. Each animal was exposed to each concurrent schedule of 

reinforcement via an A-B-A-B (n = 3) or B-A-B-A (n = 9) reversal design. An A-B-A 

design was used for one animal that ceased responding during the third phase. The A 

condition corresponded to the random ratio 2 + VT 15-s schedule; the B condition 

corresponded to the random ratio 5 + VT 45-s schedule. Animals were exposed to each 

concurrent schedule for a minimum of 10 sessions. Conditions were changed after 

response rates in four of five consecutive sessions were within 20% of the mean of the 

previous five sessions. The final session had to be one of the four within this 20% range. 

Response rates beyond 30% of this mean could not be included in these five consecutive 

sessions. This criterion was added to prevent any extreme data points from significantly 

altering the mean stability range. Dependent variables included right, left, and rear sensor 

nose pokes per min during shaping and right sensor nose pokes in addition to the three 

indices of contingency (i.e., YQ, RR, DS) throughout the comparison schedules.   

 

Sequential Analysis 

 A lag-1 event method of sequential analysis was used to construct the 2 x 2 

contingency tables (see Table 1). Although event-based sequential analyses can be 

problematic due to the challenge of identifying an exhaustive set of relevant events 
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(Yoder & Symons, 2010), this method was feasible given the highly controlled setting 

and the low number of relevant events (i.e., right sensor nose poke, left or rear sensor 

nose poke, contact with Ensure mixture). The lag-1 event method was selected over time 

window analysis due to the rapid sequences of coded events displayed in the raw data 

streams. Because it was possible for several coded events to occur within the same 

second, an event-based method allowed for only the responses that triggered food 

delivery to be counted in the A cells of the contingency tables.  

In the lag-1 event sequential analysis, pairs of coded events (i.e., events 1 and 2, 

events 2 and 3, events 3 and 4, and so on) were the coded units tallied into the 2 x 2 

contingency tables. This approach to contingency table construction, in which events 

overlap between pairs, has been justified empirically (Bakeman & Dorval, 1989). In fact, 

the resulting doubling of the number of coded units in the contingency table is considered 

beneficial, as it facilitates interpretability of sequential associations (Yoder & Symons, 

2010). The first event or target response included the right sensor nose poke and the 

second event or consequence included contacting food. The total number of event pairs or 

coded units (i.e., A+B+C+D) varied across sessions, as the number of coded events 

varied across sessions. CSA probabilities and YQ indices were calculated from the 2 x 2 

contingency table values according to the formulae in Table 2. CSA probabilities were 

plotted in contingency space with p(S/R) along the y-axis and p(S/R) along the x-axis.  

 

Correlational Analysis 

Due to unexpected variability in indices of contingency and target response rates 

from one session to another (as opposed to systematic differentiation between 
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conditions), correlational analyses were conducted to explore whether one or more 

indices was more closely associated with total responding. Product moment correlation 

coefficients I were calculated to measure the strength of the association between each 

pair of indices of contingency (i.e., r[DS, RR], r[DS, YQ], r[RR, YQ]). Correlation 

coefficients were also calculated to measure the strength of the association between each 

index of contingency and the total frequency of target responses. All correlations were 

calculated per subject and across conditions.  

Based on variable and unexpectedly low correlation coefficients, quadratic terms 

(i.e., the squared values of each index) were added to determine whether any of the 

relations between indices and responding were curvilinear. Only quadratic terms that 

were statistically significant were included and the resulting R values (i.e., measures of 

association between each index and total responding) were reported. Three paired sample 

t-tests were conducted to determine whether there was a statistically significant 

difference between the correlations of each index and total responses (e.g., r[YQ, Total 

Responses] vs. r[RR, Total Responses]). The t-tests were performed on z-transformed r 

values, as z-scores are normally distributed and thus more likely to relate linearly to other 

variables whereas Pearson correlation coefficients are not (Cohen, Cohen, West, & 

Aiken, 2003). Statistical t-tests and resulting p values are therefore more accurate when z 

(rather than r) is used as the dependent measure. Three additional paired sample t-tests 

were performed on z-transformed r values of correlations between each pair of indices to 

test for significant differences among these pairs. 
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CHAPTER III 

 

RESULTS 

 

After 11 sessions of shaping, target response rates were at or above 1 per min for 

at least five consecutive sessions across all subjects. Clear differentiation between target 

response rates (right sensor nose poke M = 2.31; SD = 0.67) and non-target response rates 

(left sensor nose poke M = 0.07; SD = 0.06; rear sensor nose poke M = 0.17; SD = 0.11) 

were observed for all subjects during the final five sessions. Because the frequency of the 

target response increased following the contingent presentation of food, contact with food 

(i.e., head entry to dipper when dipper was available) was identified as a positive 

reinforcer for right sensor nose pokes.  

The concurrent schedules of reinforcement for each comparison condition did not 

produce the intended points in contingency space (see Figure 2). In addition, considerable 

variability in the indices of contingency was observed both within conditions and among 

subjects. The variability was, at least in part, due to variability in overall target response 

rates, as the rate of responding affected the probabilities of reinforcement in the presence 

versus absence of target responses. Some subjects, for example, emitted the target 

response rapidly throughout the session such that very few response-independent (i.e., 

VT-based) reinforcers were contacted. 

Experimental control was not demonstrated between condition (concurrent 

schedule of reinforcement) and target response rate. For nine of the 13 subjects, there was 

no systematic distinction in probabilities of reinforcement given a target response 
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Figure 2 

Intended and Observed Mean Points in Contingency Space per Condition across Subjects 
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(response-dependent reinforcers) and probabilities of reinforcement in the absence of a 

target response (response-independent reinforcers) between experimental conditions. The 

indices of contingency were therefore undifferentiated between conditions for these 

animals, as were the target response rates. See Figure 3 for example subjects for which no 

differentiation was observed between conditions.  

For the remaining four subjects (2, 6, 10, and 14), experimental control was 

demonstrated between the experimental condition (concurrent schedule of reinforcement) 

and the probabilities of reinforcement following a target response and in the absence of a 

target response. For these subjects, all three indices of contingency were higher in the B 

condition (random ratio 5 + VT 45-s) than the A condition (random ratio 2 + VT 15-s; 

see Figure 4 for mean CSA points and Figures 5 and 6 for reversal graphs). Responding 

by Subject 14 extinguished in the third phase before criteria were met to implement the 

final reversal. The resulting A-B-A design permitted only two demonstrations of effect 

for this subject as opposed to three demonstrations for Subjects 2, 6, and 10. Despite the 

observed differences in contingencies between conditions, there were still no systematic 

differences in response rates between conditions for these four subjects (see Figure 7).  

 For all subjects, across all sessions, the three indices of contingency (DS, RR, 

YQ) indicated the same direction of association (positive versus negative; by virtue of the  

formulae for each index). In addition to the correspondence between indices shown in the 

reversal graphs (Figures 5 and 6), the correlational analysis revealed strong positive 

associations between each pair of contingency indices (see Table 4). The correlations 

between the DS and YQ (M = .97, SD = .04) were slightly yet consistently higher than 

the correlations between DS and RR (M = .88, SD = .12; t(12) = 12.09, p < .0001) and 
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Figure 3 

Examples of Undifferentiated Indices of Contingency and Undifferentiated Responding 

Between Experimental Conditions 
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Figure 3, continued 
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Figure 4 

Mean Points in Contingency Space for Subjects 2, 6, 10, and 14 
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Figure 5 

Yule’s Q and Relative Risk Ratios for Subjects 2, 6, 10, and 14 
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Figure 6 

Relative Risk Ratios and Difference Scores for Subjects 2, 6, 10, and 14 
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Figure 7 

Target Responses per Min for Subjects 2, 6, 10, and 14 
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Table 4 

Correlations Among Indices of Contingency 

 

Subject r (DS,RR) r (DS, YQ) r (RR, YQ) 

2 0.965 0.997 0.97 

3 0.931 0.996 0.949 

4 0.985 0.999 0.992 

5 0.915 0.99 0.958 

6 0.863 0.981 0.909 

7 0.903 0.986 0.935 

8 0.836 0.966 0.875 

9 0.824 0.975 0.873 

10 0.951 0.993 0.963 

11 0.967 0.991 0.98 

12 0.886 0.944 0.955 

13 0.521 0.856 0.746 

14 0.937 0.993 0.956 
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between RR and YQ (M = .93, SD = .07; t(12) = 7.24, p < .0001). This difference in 

correlations among pairs of indices was likely due to a distinction in the range of DS and 

YQ (-1, 1) and RR (0, ). Both YQ and the DS are bounded whereas RR is unbounded. 

Although the ranges of values for each index in the current data set were restricted, the 

asymmetrical distribution of RR values compared to the symmetrical distribution of YQ 

and DS values may explain why correlations including RR were slightly lower than 

correlations between the DS and YQ.  

The correlation coefficients describing the association between each index of 

contingency and total responding were variable (see Table 5). Eight of 36 regression 

coefficients (3 indices per 13 subjects) included a statistically significant quadratic term. 

Five of these significant quadratic terms included regressions of response frequency on 

the DS. Although positive linear relations between indices of sequential association or 

contingency and total responding were identified for a subset of subjects (e.g., Subjects 7 

and 14; see Figure 8), other regression analyses revealed negative linear relations (see 

Figure 9) or quadratic relations (see Figure 10). In fact, some distinctions were identified 

among the relations between each index and total responding within the same subject 

(e.g., Subject 13; see Figure 11). The paired sample t-tests did not reveal statistically 

significant differences between the r values and total responding among the three indices. 
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Table 5 

Correlation Coefficients Between Each Index of Contingency and Total Frequency 
Target Responses  
 
 

Subject r (DS, Resp) r (RR, Resp) r (YQ, Resp) 

2 0.43* 0.39* 0.41* 

3 -0.17 -0.12 -0.13 

4 -0.25 -0.27 -0.26 

5 0.23 0.4 0.41* 

6 0.31* 0.16 0.23 

7 0.35 0.5 0.45 

8 -.47* -0.18 -0.2 

9 .28* 0.11 0.17 

10 .36* 0.09 0.08 

11 -0.16 -0.08 -0.09 

12 -0.54 -0.25 -0.32 

13 -0.11 0.33 0.3 

14 0.39 0.46 0.46 
                  *Includes quadratic term 
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Figure 8 

Examples of Positive Linear Relations between Indices of Contingency and Total 
Frequency Target Responses 

Subject 7 

Subject 7 
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Figure 8 continued 
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Figure 8 continued 
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Figure 9 

Examples of Negative Linear Relations between Indices of Contingency and Total 

Frequency Target Responses 
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Figure 10 

Examples of Quadratic Relations between Indices of Contingency and Total Frequency 
Target Responding 

Subject 2 

Subject 6 
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Figure 10 continued 
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Figure 11 

Example of Within-Subject Variability Among Relations between Indices of Contingency 
and Total Frequency Target Responding  

Subject 13 

Subject 13 
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Figure 11 continued 
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CHAPTER IV 

 

DISCUSSION 

 

 The aim of the current study was to compare CSA and YQ as two methods of 

quantifying response-stimulus relations. To compare these methods in terms of strength, 

two effect size metrics were evaluated for CSA. In addition to a difference in transitional 

probabilities (DS), a ratio of transitional probabilities (RR) was included to better account 

for the base rate of the consequent stimulus. Across all subjects, each pair of indices was 

highly correlated. This finding is not surprising considering each of the indices is 

calculated using the same contingency table values. The degree of correspondence among 

indices, however, suggests a low likelihood of any two indices leading to different 

conclusions of whether a consequence is identified as a potential reinforcer.  

The primary limitation of the current study was the discrepancy between the 

intended points in contingency space and the transitional probabilities resulting from the 

concurrent schedules of reinforcement. Despite careful approximations of reinforcement 

probabilities via the concurrent schedules, the ultimate probabilities were still partially 

dependent on the subjects’ responding and thus were not entirely under experimenter 

control. Some subjects, for example, emitted target responses rapidly such that 

reinforcers were rarely contacted in the absence of a response. Other subjects did not 

contact the VT-based (i.e., response independent) reinforcers when they did become 

available. These scenarios resulted in decreased probabilities of reinforcement in the 
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absence of target responses, which increased the overall index of contingency or 

sequential association.  

Although variable, the transitional probabilities resulting from the concurrent 

schedules of reinforcement were less distinct (i.e., closer in contingency space) than the 

intended probabilities. This outcome likely contributed to the lack of differentiated 

responding between the two experimental conditions. Even though there was a systematic 

distinction in indices of contingency between conditions for a subset of subjects, response 

rates for these subjects were still undifferentiated. The differences in transitional 

probabilities may not have been large enough to produce differentiated response rates. 

The lack of discriminative stimuli associated with each condition also may have 

contributed to the lack of response differentiation.   

 Our primary research question was whether the DS, RR, or YQ more accurately 

predicted response-reinforcer relations for cases in which contingency strength differed 

among indices. The variability in transitional probabilities across sessions and the lack of 

differentiated responding between experimental conditions precluded addressing the 

research question based on the experimental A-B-A-B design. Instead, we addressed this 

research question indirectly by comparing correlations between each index and total 

responding across subjects. The lack of statistically significant differences among 

correlations between each index and responding prevented the identification of any single 

index as a better predictor of responding. 

The regression analyses did, however, provide insight on the relations between 

indices of contingency and frequency of target responses. The design of the current study 

was based on an assumption that greater indices of contingency (as measured by DS, RR, 
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or YQ) would generally correspond with higher rates of responding. Results of the 

regression analyses allowed an empirical evaluation of this assumption. Variability in the 

form of the relation between contingency indices and responding was identified among 

(and in some cases, within) subjects. Only a subset of positive linear relations between 

contingency strength and total responding was identified. In fact, a subset of negative 

linear relations was also identified. Other relations were curvilinear, including five 

statistically significant quadratic functions among the correlations between the DS and 

responding. 

Curvilinear relations between contingency strength and response frequencies may, 

in fact, better approximate relations between indices of contingency and stimuli 

functioning as reinforcers. When considering the p(S/R) in isolation, the highest response 

rates likely would be produced by probabilities between 0 and 1 (i.e., intermittent 

reinforcement), whereas lower response rates likely would be produced by probabilities 

at the two extremes (i.e., extinction and continuous reinforcement, respectively; Catania, 

2007). Although the interaction between the p(S/R) and the p(S/R) is not fully 

understood, a curvilinear relation in which lower response rates correspond with high and 

low extremes of contingency indices (i.e., a quadratic relation) seems possible and 

remains consistent with operant theory. The lack of consistency in the relations between 

contingency indices and responding identified in the current data set may be related to the 

restricted ranges of contingency indices. If a general quadratic function does explain the 

relation between the full range of values of contingency strength and response frequency, 

restricted ranges of contingency strength may reveal positive linear, negative linear, 

curvilinear, or no clear relations depending on the location of the restricted range. 
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The method of contingency table construction (i.e., lag-1 event) also may have 

contributed to unexpected relations between contingency indices and responding (e.g., 

negative linear relations). Subject 12, for example, engaged in the highest rates of 

responding across conditions (M = 20.32 per min, SD = 4.03). For this subject, it appears 

that strings of rapid responding led to decreased probabilities of reinforcement given a 

target response, as only the response coded immediately prior to contacting reinforcement 

was counted as reinforced (Cell A). All previous responses in the string were not counted 

as reinforced (Cell B). High values in Cell B relative to Cell A result in a decreased 

p(S/R). For subjects engaging in strings of rapid responses, it was possible for lower 

indices of contingency (due to a decreased p(S/R)) to be associated with higher overall 

response rates, producing a negative correlation. This pattern was apparent for Subject 12 

(see Figure 9).  

The potential influence of the method of contingency table construction on the 

relation between contingency indices and responding emphasizes the importance of 

selecting a method that accurately reflects sequences of responses and stimuli as they 

occur in the relevant environment. In cases of high rate ‘bursts’ of target responding, the 

lag-1 event method may result in an underestimation of contingency strength due to high 

B cell counts. A partial interval method, in which intervals of time would represent the 

coded units used to construct the contingency table, would likely produce more balanced 

cell counts. Although an event-based method seemed most appropriate to measure 

contingency for a highly-controlled animal model in which multiple events occurred per 

second, partial interval methods of data collection would be more appropriate for 

collecting data on behaviors occurring under free operant conditions within an applied 
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setting (Ayres & Gast, 2010). Indeed, partial interval methods of data collection and 

contingency table construction (as opposed to real-time event coding) are commonly used 

in the literature on descriptive assessments (e.g., Anderson & Long, 2002; Martens et al., 

2008; Martens et al., 2010).  

We hypothesized RR would better predict responding than the DS because RR 

appeared to better reflect the impact of the base rate of the stimulus on the contingency 

index. This prediction was based on the possibility of equal DSs for stimuli with very 

different base rates (e.g., p(S/R) = .95, p(S/R) = .85 and p(S/R) = .15 and the p(S/R) = 

.05). All else being equal, stimuli with lower base rates increase the RR value compared 

to stimuli with higher base rates. This adjustment may be considered consistent with a 

behavior analytic perspective, as stimuli presented frequently regardless of the 

occurrence of the target response are less likely to function as reinforcers than stimuli 

rarely presented in the absence of the target response. The comparisons of correlations 

between contingency indices and responding, however, did not reveal a significant 

difference between RR and DS in terms of predicting response frequency. Aside from 

predicting response-reinforcer relations, however, an advantage of using RR is its 

simplicity in terms of what is conveyed to consumers. For example, if the RR for 

attention given problem behavior is 2.0, the index indicates attention was twice as likely 

to occur when the individual engaged in problem behavior than when the individual did 

not engage in problem behavior. 

 Although neither the DS nor RR was identified to better predict response-

reinforcer relations than YQ, the single subject graphs of contingency indices in addition 

to the correlations between pairs of contingency indices suggest no loss of information 
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from using CSA. Because YQ is a well-established statistic, guidelines exist for the 

amount of data necessary to yield interpretable YQ values (Yoder & Feurer, 2000; Yoder 

& Symons, 2010) as well as benchmarks for small, medium, and large effect sizes 

(derived from those identified for the odds ratio; Rosenthal, 1996). In contrast, no such 

guidelines exist for CSA, revealing clear avenues for future research. Another critical 

avenue for future research is evaluating the accuracy of CSA outcomes in natural 

settings. Accuracy may be measured as the extent to which CSA outcomes match FA 

outcomes (e.g., Martens, Gertz, de Lacy Werder, & Rymanowski, 2010), or the extent to 

which behavioral interventions based on CSA outcomes effectively reduce problem 

behavior within that setting (e.g., Dolezal & Kurtz, 2010).  

 Despite its limitations, the present study supports the use of CSA in identifying 

environmental contingencies, as this method is conceptually systematic with operant 

theory and the measures of contingency strength appear to correspond closely with the 

YQ measure of sequential association. This research extends previous research on 

evaluating sequential analysis methods for descriptive assessments in several ways. First, 

CSA and YQ have not been compared previously as methods for identifying potential 

reinforcement effects. Second, the consequent stimulus in the current study was shown to 

function as a positive reinforcer, which allowed confirmation that the indices of 

contingency and sequential association reflected reinforcement effects. Third, the utility 

of each index in predicting response-reinforcer relations was evaluated based on animal 

responding. Regression analyses allowed the evaluation of an assumption of a positive 

linear relation between contingency strength and response frequencies. Finally, the 

findings demonstrate preliminary support for two potential effect size measures for CSA, 
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which would allow comparisons of contingency strength among multiple consequent 

stimuli. 
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