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CHAPTER I

INTRODUCTION

The past decade has witnessed an impressive development of nonlinear modeling

in both theory and practice. Many nonlinear models have been proposed in the literature,

such as the bilinear models, the threshold autoregressive models and the Markov Switching

models, to name only a few. These models can capture such features as nonnormality,

asymmetry, leptokurtosis and volatility clustering, that are beyond the scope of their lin-

ear counterparts. In this context, the identi�cation, testing and speci�cation of nonlinear

models is of great concern.

In time series analysis literature, one major task is to investigate the structural

relationship between the present and past observations. Thus, it has been of considerable

interest to correctly choose the exact number of lagged values to be included when explaining

the variability of the present observation. Many techniques have been applied in an attempt

to answer this model speci�cation issue.

The model identi�cation is generally realized by �tting autoregressive models of

successive orders within a certain range, computing the estimates of the lag selection crite-

ria, and adopting the one with the minimum value. To estimate autoregressive models, both

parametric and nonparametric approaches have been widely applied. The classical proce-

dures, including the Akaike information criterion (AIC), the �nal prediction error (FPE),

the Bayesian information criterion (BIC) and the Hannan and Quinn criterion (HQ) are

based on the parametric speci�cation of autoregressive models. Despite their simplicity and

intuitive appeal, classical procedures su¤er from two drawbacks. The �rst is the consis-

tency problem. Only the latter two procedures are consistent in the sense of picking the
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true order of the model with probability one asymptotically. The second drawback is that

a complete parametric speci�cation can be too restrictive in an applied context. As is now

well documented, misspeci�cation of the parametric models would eventually lead to the

invalidity of the classical lag selection criteria.

Compared to their classical counterparts, lag selection criteria based on nonpara-

metric techniques, such as the nonparametric version of FPE and cross-validation, are quite

�exible in the sense that they can be applied to both linear and nonlinear models, where

as some of the classical ones may fail to detect the right lags. Another advantage of the

nonparametric FPE and cross-validation lies in their consistency, which is lacking in most

classical procedures. However, like most nonparametric approaches, the �exibility comes

at the cost of the curse of dimensionality, which refers to the problem that the �nite and

asymptotic properties of the nonparametric procedures deteriorate quickly as the dimen-

sion of the regressors increases. This problem makes most of the complete nonparametric

procedures, including the nonparametric version of FPE and cross validation, impractical

in empirical research.

In the �rst chapter, we address the model identi�cation issue for nonlinear additive

models. We develop a nonparametric lag selection criterion based on the �nal prediction

error. The immediate advantage of this approach is that little prior information on the

model structure is assumed. It o¤ers an e¤ective alternative to lag selection procedures

based on classical criteria such as the AIC, the BIC and the FPE.

The �rst chapter proposes a new approach that is consistent and free of the curse

of dimensionality. This approach uses a similar idea as the nonparametric FPE but di¤ers

by imposing an additive structure in model speci�cation. The appeal of the additive model

is that the �tted model is free from restrictive parametric assumptions, just as any other
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nonparametric method. However, unlike most of its counterparts, the e¤ects of individual

covariates can be easily interpreted, regardless of their number. Fan and Yao (2003) show

how additive models can be used to improve the predictions of multiperiod volatility of

aggregate returns. More importantly, most of the classical time series models such as

AR(p) model, ARMA(p, q) model, ARCH(p) model and GARCH(p, q) model, belong to

the family of additive models.

Following the idea presented in Tjostheim and Auestad (1994b) and using the

marginal integration method by Linton and Nielsen (1995), we derive the nonparametric

version of the FPE for additive models and show the new criterion is consistent. As a

result of the additive structure, this new approach circumvents that serious drawback of

nonparametric techniques : the curse of dimensionality.

We implement a Monte-Carlo study to investigate the performance of our nonpara-

metric lag selection criterion. We compare the performance of this new approach with that

of existing ones for a wide range of processes, including linear and nonlinear processes. Our

�ndings show that this new approach generally outperforms the existing ones for general

autoregressive models.

The �rst chapter proposes a nonparametric lag selection criterion that is applicable

to additive processes. In contrast, the classical approaches may fail completely because of

model speci�cation issue and the nonparametric lag selection procedures may fail when

too many lags are included. The simulation results show that this new method generally

outperforms the nonparametric FPE for a wide range of additive models.

An individual time series, such as GDP, a stock price index, prices of commodities

can wander extensively and yet some pair of series may move together due to underlying

long-run equilibrium relations. Examples might be expenditures and household income,
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short and long term interest rates and prices of the same commodity in di¤erent markets.

The concept of cointegration, de�ned �rst by Granger (1981, 1983) has been widely used

to capture this type of long run linear relationship among two or more unit root processes.

Cointegration allows for the estimation of structural parameters without the need to impose

exogeneity assumption. Additionally, it plays an important role in evaluating the veracity

of propositions in economics theories, for example, the theory of purchasing power parity.

Much of the empirical and theoretical work on cointegration has been conducted in

the context of parametric models, including the well-known likelihood ratio test by Johansen

(1991). More recently, Shintani (2001) and Cheng and Phillips (2008) have considered the

use of model-free cointegration test and selection procedure for identifying the cointegrating

rank of a process. The latter approaches are more �exible as compared to the likelihood

ratio test in the sense that they do not require the speci�cation of the structure of the

data-generating process.

Cointegration is used to measure the linear relation among nonstationary variables

only. Quite a few macroeconomic time series that are not unit root processes may behave

like cointegrated processes in that the series move together over time. Furthermore, when

it comes to variables with deterministic trends, the current econometric practices generally

assume simple linear functions of time in all variables. However, there is empirical evidence

that some long macroeconomic time series are more in accord with a nonlinear trend-

stationary process. The concept of cotrending was introduced into the literature to ful�ll

a role similar to that of cointegration in a trend-stationary system. Cotrending is the

phenomenon that one or more linear combinations of the time series would eliminate the

deterministic trend. When we deal with variables with nonlinear trends or with structural

breaks, many approaches fail to detect the correct cointegrating and cotrending rank.
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The second chapter suggests a simple cotrending rank selection criterion. This

approach utilizes the information contained in the data sample covariance matrix to inves-

tigate the cotrending relations. Speci�cally, when a system contains stationary elements,

nonstationary elements and time trends, the sample covariance matrix would diverge at dif-

ferent rates. By exploring these di¤erent rates of divergence, we propose a novel cotrending

rank selection criterion. The selection procedure is shown to be consistent in the sense of

picking the true cointegrating and cotrending rank of the model with probability one when

the sample size is large.

This chapter contributes to the literature in many aspects. First of all, it gives

rise to a new tool that is model-free and simple to implement. Therefore, it is not necessary

to build a complete model and is often desirable in case of nonlinear trends and structural

breaks. Second, determining the cointegrating and cotrending ranks via a purely data-

driven selection criterion has certain attractions over hypothesis testing procedures. One

advantage is that it is not necessary to obtain the asymptotic distributions and the critical

values. Lastly, this novel selection procedure has not been previously considered in the

presence of both stochastic and deterministic trends..

Modeling and forecasting volatility (the covariance structure of asset returns) is

important in the sense that volatility is considered as a measure of risk, and investors

demand a premium for investing in risky assets. First introduced by Engle(1982), models

of Autoregressive Conditional Heteroskedasticity (ARCH) and their extensions Generalized

Autoregressive Conditional Heteroskedasticity (GARCH) models form the most popular way

to model the dependency of the conditional second moment and yield relatively accurate

forecasts.

Recently, however, growing evidence suggests an asymmetric response of the con-
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ditional variance to positive and negative news. Several extensions of GARCH models aim

at accommodating this asymmetry in the response. These include the GJR-GARCH model,

the asymmetric GARCH models and Threshold GARCH models. Most of these models,

however, are characterized by the existence of two regimes of volatilities: low volatility and

high volatility, which are triggered by positive and negative shocks, respectively. Gonzalez-

Rivera (1998) introduced the smooth transition GARCH model, where the regime transition

function is continuous and exhibit a continuum of regimes. The smooth transition GARCH

model generalizes the modeling of asymmetry in variance and nests a threshold speci�cation.

The third chapter develops a smooth transition GARCHmodel with an asymmetric

transition function, which allows an asymmetric response of volatility to the size and sign

of shocks, and an asymmetric transition dynamic for positive and negative shocks. This

speci�cation encompasses a wide array of GARCH speci�cations and can yield much better

�ts to actual �nancial time series.

To test for asymmetry, we propose two testing procedures. One is based on the

linearization of the transition function. The other is a supremum LM test with unidenti�ed

parameters under the null. From our simulation experiments, we �nd that the LM test is

preferred, because it only requires the estimation of the model under the null. We apply our

model to the empirical �nancial data: the NASDAQ index and the individual daily stock

returns of IBM. The empirical evidence shows that our model outperforms many existing

GARCH speci�cations.

Research into the time series properties of conditional second moments of returns

has been an active area of empirical research. The chapter contributes to the rich literature

by proposing a new more general model to capture the asymmetric e¤ect of bad news and

good news on the conditional second moments. The new speci�cation can be more �tted
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to the �nancial time series than existing GARCH models.

7



CHAPTER II

NONPARAMETRIC LAG SELECTION FOR NONLINEAR ADDITIVE
AUTOREGRESSIVE MODELS

Introduction

The �nal prediction error (FPE) criterion, as an alternative to the cross-validation

criterion, provides a consistent lag selection procedure for the kernel-based nonparametric

estimation of nonlinear autoregressive (AR) models. Under very general assumptions on

the autoregressive function and on the function of conditional heteroskedasticity, Tschernig

and Yang (2000) prove the consistency of the combinations of the lagged variables obtained

by minimizing the nonparametric version of the FPE originally proposed by Tjøstheim and

Auestad (1994).1 In particular, using an optimal bandwidth that minimizes the asymptotic

FPE, both probabilities of including too many lags (over�t) and missing some lags (under�t)

approach zero as the sample size increases. Unfortunately, despite the desirable asymptotic

property of the FPE procedure, Tschernig and Yang (2000) also point out its poor �nite

sample performance, namely, the fact that over�tting models are selected too often when the

sample size is small. For this reason, they recommend making a multiplicative correction

to the FPE in order to avoid over�tting. The possibility of developing a more e¤ective lag

selection procedure based on the FPE designed for special multidimensional models, such

as additive models, is mentioned in section 3 of Tjøstheim and Auestad (1994) and in the

conclusion of Tschernig and Yang (2000). However, the formal investigation for such an

additive FPE procedure has not yet been conducted.

1In contrast, the lag selection using the original FPE of Akaike (1969) is not consistent for parametric
time series models.
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In this chapter, we introduce additivity in the autoregressive function and inves-

tigate the e¤ect of placing such a simplifying structure on the properties of the FPE-like

lag selection. We provide the conditions required for the consistency of the lag selection

procedure using a variant of the FPE designed for the additive nonparametric regression. In

contrast to the unrestricted FPE procedure without the additivity assumption, our additive

nonparametric FPE-like procedure turns out to perform reasonably well in small samples.

Indeed, the probability of over�tting becomes much smaller than in the unrestricted case so

that there is no need for the �nite sample correction used by Tschernig and Yang (2000).

The advantage of an additivity assumption in the nonparametric lag selection

found in this chapter also suggests the potential for a similar procedure designed for more

complex additive models, such as generalised additive models and generalised structured

models (Mammen and Nielsen, 2003).

The remaining of the chapter is organized as follows. In section 2, we introduce the

model and discuss the asymptotic properties of the procedure. Its �nite sample performance

is evaluated using Monte-Carlo simulation in section 3. All the proofs are provided in the

Appendix A.

The nonparametric FPE for additive models

We consider the problem of selecting the combination of lags S = fi1; i2; :::; img,

where ij > ik for j > k, in an additive AR model of the form,

Yt = c+
X
i2S

fi(Yt�i) + �(Xt)�t

for t = 1; :::; n, where Xt = (Yt�i1 ; Yt�i2 ; :::; Yt�im)
0, and �t �i.i.d.(0; 1) with a �nite fourth

moment. In a typical nonparametric lag selection problem without an additive structure,

the largest lag im in the model can be very large but the total number of lagged Yt�s, denoted
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by m, is required to be a small number due to the curse of dimensionality. Here, we do

not need such a restriction on m (� im) since the convergence rate of additive regression

estimators we employ does not depend on the dimension of the model. Below, we have a

set of assumptions that are similar to the ones used in Tschernig and Yang (2000) except

for the last assumption on the additive nonparametric regression estimator.

Assumptions A.

(A1) For some integer M � im, the vector process XM;t = (Yt�1; Yt�2; :::; Yt�M )0 is strictly

stationary and �-mixing with �(n) � c0n�(2+�)=� for some � > 0 and c0 > 0.

(A2) The stationary distribution of the process XM;t has a continuous di¤erentiable density

�(xM ).

(A3) The autoregression function fi(�) for i 2 S is twice continuously di¤erentiable while

�(�) is continuous and positive on the support of �(�).

(A4) The support of the weight function w(�) is compact with nonempty interior. The

function w(�) is continuous, nonnegative and �(xM ) > 0 for xM 2supp(w).

(A5) The kernel-based nonparametric additive regression estimator bfi(xi) for i 2 S con-
verges to fi(xi) at the one-dimensional rate of

p
nh with its bias given by ri(xi)�2Kh

2=2

where h is the bandwidth satisfying h! 0, nh!1 as n!1, �2K =
R
K(u)u2du, K(�) is

a symmetric second order kernel function and ri(xi) is positive and �nite.

In estimating the additive AR model, we employ a kernel regression approach

combined with the marginal integration proposed by Linton and Nielsen (1995): bfi(xi) =R bf(x)dQ(x�i) � bc where bf(x) is a nonparametric estimator of the nonlinear AR function
without an additivity assumption, bc is an estimator of c such as n�1Pn

t=1 Yt, x�i represents

all the elements in x = (xi; x�i) excluding xi, and Q is a weighting function satisfying
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R
dQ(u) =

R
q(u)du = 1. Under some conditions, Assumption (A5) is satis�ed with

ri(xi) =

Z
Trf52

X
fi(xi)gq(x�i)dx�i

when the local linear estimator is used for bf(x), or with
ri(xi) =

Z
[Trf52

X
fi(xi)g+ 25T �(x)5

X
fi(xi)=�(x)]q(x�i)dx�i

when the local constant (Nadaraya-Watson) estimator is used for bf(x). We focus on the
marginal integration estimator instead of using the back�tting estimator for additive mod-

els because the former is computationally simple and its statistical properties are well-

established.

By using an analogy to the asymptotic FPE of Tschernig and Yang (2000), the

second term in formula (7) of Tjøstheim and Auestad (1994b) is decomposed as follows

E

"X
i2S

fi(Yt�i)�
X
i2S

bfi(Yt�i)#2w(XM;:t)
= E

"X
i2S

fi(Yt�i)�
X
i2S

E bfi(Yt�i) +X
i2S

E bfi(Yt�i)�X
i2S0

bfi(Yt�i)#2w(XM;:t)
= E

h
(I

0
+ II

0
)2w(XM;t)

i
Using the results from Linton and Nielsen (1995) and setting the bandwidths in

all the dimensions to h, we have

E
h
(II

0
)2w(XM;:t)

i
= h4

�4K
4

Z "X
i2S

ri(xi)

#2
w(xM )�(xM )dxM

By using the same argument as in Tschernig and Yang (2000), the cross term E
h
I
0
II

0
w(XM;:t)

i
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is negligible. Now we derive E
h
(I

0
)2w(XM;:t)

i
: Since

bfi(Yt�i)� E bfi(Yt�i) =

Z "
n�1

X
s

Kh(Yt�i � yi;s)Kh(X�i;t � x�i;s)�(Xt)�tb�(Xt) �(x�i)

#
dx�i

= n�1
X
s

Kh(Yt�i � yi;s)q(x�i)�(Xt)�tb�(Xt) ;

Then

E
h
(I

0
)2w(XM;:t)

i
t

Z "
n�1

X
s

Kh(y � x)q(x�i)�(x)�s
�(x)

#2
�(y)�(xM )w(xM )dxM :

which becomes

1

n

Z �
Kh(y � x)q(x�i)�(x)

�(x)

�2
�(y)�(xM )w(xM )dxM (II.1)

where the cross terms are left out by a U-statistic argument as in Tjøstheim and Auestad

(1994b). The precedent equation can be re-written as

1

n
kKk22

Z
�2(x)

�(x)
q2(x�i)�(xM )w(xM )dxM

From our additivity assumption, E
h
(I

0
)2w(XM;:t)

i
converges to 1

nhkKk
2
2B:

Next, we introduce

AFPE = A+
1

nh
kKk22B + h4

�4K
4
C (II.2)

with

A =

Z
�2(xM )w(xM )�(xM )dxM ;

B =

Z
�2(x)

�(x)

(X
i2S

q2(x�i)�(xi)

)
w(xM )�(xM )dxM ; and

C =

Z "X
i2S

ri(xi)

#2
w(xM )�(xM )dxM

12



where kKk22 =
R
K2(u)du, �2K =

R
K(u)u2du and ri(xi) is the term appears in the asymp-

totic bias ri(xi)�2Kh
2=2 of the estimator bfi(xi). The optimal bandwidth, hopt, minimizes

(II.2) is given by

hopt =
�
kKk22��4K BC

�1	1=5 n�1=5:
In principle, we can replace employ other estimators, e.g., the smooth back�t-

ting estimator which is a useful practical variant of the classical back�tting estimator (see

Mammen, Linton and Nielsen, 1999, and Nielsen and Sperlich, 2005). Following the same

argument, we obtain

E
h
(II

0
)2w(XM;:t)

i
= h4c4h�

4
K

Z "X
i2S

�i(xi)

#2
w(xM )�(xM )dxM

with ch being the limit of n1=5h and �i(xi) =
P
i2S

h
rfi(xi)
�(x)

@�(x)
@xi

+ 1
2r

2fi(xi)
i
when the

local linear estimator is used for bf(x), or with �i(xi) = r2fi(xi) �
R
r2fi(xi)�j(xj)dxj

when the local constant (Nadaraya-Watson) estimator is used for bf(x).
Similarly, we can show that E

h
(I

0
)2w(XM;:t)

i
converges to

1

nh
kKk22

Z (X
i2S

�2i (xi)

ch�(xi)

)
w(xM )�(xM )dxM ;

where �2i (xi) = var(Y � f(x)jXi = xi): Therefore, we can de�ne AFPE with modi�ed B

and C if we employ the smooth back�tting estimator.

Our criterion for additive AR models motivated by the unrestricted FPE takes the

form

\FPE(S) = bA+ 1

nh
(m�1)�+1
opt

2K(0) bB;

13



where � 2 [0; 1],

bA = n�1 nX
t=1

 
Yt �

X
i2S

bfi(Yt�i)!2w(XM;:t)
and

bB = n�1 nX
t=1

(Yt �
P
i2S

bfi(Yt�i))2b�(Xt)
(X
i2S

q(X�i;t)

)
w(XM;:t):

The �rst term in\FPE(S) is analogous to the measure of regression �t in traditional

information criteria for the model selection, while the second term can be a penalty for an

increased dimension m, depending on a tuning parameter �.2 We follow Tschernig and

Yang (2000) and focus on the case when the optimal bandwidth hopt is used for bfi(xi) in
bA, but any bandwidth of order n�1=5 can be used for bfi(xi) in bB. We select the subset bS =
fbi1;bi2; :::;bibmg � f1; 2; :::;Mg which minimizes\FPE(S) among all possible combinations of
f1; 2; :::;Mg. The selected bS = S0 over�ts if S0 � S and S0 6= S and under�ts if it does not
over�t and S0 6= S. The lag selection procedure is consistent if the probability of bS = S

approaches unity as n!1.

Theorem 1 Under Assumption (A1)-(A5) and � 2 (0; 1], as n!1,

\FPE(S0)�A
\FPE(S)�A

! +1,

for any over�tting combination S0 = fi01; i02; :::; i0m0g.

The over�tting \FPE(S0) asymptotically becomes larger than the correctly spec-

i�ed \FPE(S) because the penalty term of the former converges at a rate slower than

the latter as long as � > 0. Note that h0opt used for \FPE(S0) di¤ers from hopt be-

cause B and C are replaced by B0 =
R �2(x)
�(x0)

�P
i2S0 q

2(x�i)�(xi)
	
w(xM )�(xM )dxM and

2When � = 1, the rate of the penalty term becomes same as that of the unrestricted nonparametric FPE.
When � = 0, the rate becomes the one discussed in Tjøstheim and Auestad (1994) for the additive case.
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C 0 =
R �P

i2S0 r
0
i(xi)

�2
w(xM )�(xM )dxM , respectively, where x0 represents a larger lag vec-

tor nesting x. Unlike the unrestricted FPE, however, the convergence rates of two band-

widths are the same even if the dimensions of the regressors are di¤erent. This is the reason

why � = 0 is not desirable in excluding over�tting models.

To investigate the under�tting case, we focus on the case of a proper subvector

x0 of the true lag vector x = (x0; x00) for notational simplicity. The following assumption

corresponds to the assumption A8 of Tschernig and Yang (2000).

(A6) The weighted squared projection error, de�ned as

c2 =
R �P

i2S fi(xi)
�2
w(xM )�(xM )dxM �

R
E2f

P
i2S fi(xi)jx0gw(xM )�(xM )dxM ,

is positive.

Theorem 2 Under Assumption (A1)-(A6) and � 2 [0; 1], as n!1,

\FPE(S0)�\FPE(S) p! c2 > 0,

for any under�tting combination S0 = fi01; i02; :::; i0m0g.

A combination of Theorems 2.1 and 2.2 yields the following consistency result.

Theorem 3 Under Assumption (A1)-(A6) and � 2 (0; 1], as n!1,

P
hbS = Si! 1:

Remarks

1. If � > 0, the probability of the procedure failing to completely identify the

correct model diminishes as the sample size increases. Similar to the unrestricted FPE

procedure, the consistency of the additive FPE-like procedure holds for both local linear

and local constant estimators.
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2. If � = 0, our FPE-like criterion is asymptotically equivalent to the asymptotic

FPE. Therefore, the optimal bandwidth hopt can be consistently estimated by searching for

the bandwidth which minimizes \FPE(S) using � = 0. Once hopt is estimated, the same

bandwidth can be used for other FPEs with any � 2 (0; 1] for the purpose of consistent lag

selection.

3. While both the unrestricted FPE procedure and our procedure for additive

models are consistent, the latter procedure can be expected to perform better in the �nite

sample. The unrestricted nonparametric FPE procedure of Tjøstheim and Auestad (1994)

performs poorly, mainly because over�tted models are selected too often. A comparison of

the rates of divergence of the ratios in our Theorem 2.1 and Corollary 3.1 of Tschernig and

Yang (2000) shows that the former is faster than the latter as long as (m+4)(m0+4)� > 5.

This suggests that the probability of selecting over�tting models based on our procedure

approaches zero faster for many combinations of lags.

Monte-Carlo simulation

We conduct a Monte-Carlo simulation to investigate the �nite sample properties of

our FPE-like procedure designed for the additive models. The performance of the proposed

procedure is evaluated using both local linear and local constant estimators for various

values of �(= 0; 0:1; 0:5; 1:0) and is compared to the performance of the unrestricted FPE

procedure. The arti�cial series are generated from 11 additive AR models given in Table

1, where �t�s are independent and identically distributed N(0; 1) random variables. The

processes are a collection of linear and nonlinear additive models previously used in sim-

ilar simulation studies. The �rst three linear models (AR1-AR3) and the following three

nonlinear models (NLAR1-NLAR3) are used in Tschernig and Yang (2000). The next two

models (NLAR4 and NLAR5) are taken from Chen, Liu and Tsay (1995), and the three
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Table 1. Data generating processes used in simulation
Model Function
AR1 Yt = 0:5Yt�1 + 0:4Yt�2 + �t
AR2 Yt = �0:5Yt�1 + 0:4Yt�2 + �t
AR3 Yt = �0:5Yt�6 + 0:5Yt�10 + �t
NLAR1 Yt = �0:4(3� Y 2t�1)=(1 + Y 2t�1) + 0:6

�
3� (Yt�2 � 0:5)3

	
=
�
1 + (Yt�1 � 0:5)4

	
+ �t

NLAR2 Yt =
�
0:4� 2 exp(�50Y 2t�6)

	
Yt�6 +

�
0:5� 0:5 exp(�50Y 2t�10)

	
Yt�10 + �t

NLAR3 Yt =
�
0:4� 2 cos(40Yt�6) exp(�30Y 2t�6)

	
Yt�6 +

�
0:5� 0:5 exp(�50Y 2t�10)

	
Yt�10 + �t

NLAR4 Yt = 2 exp(�0:1Y 2t�1)Yt�1 � exp(�0:1Y 2t�2)Yt�2 + �t
NLAR5 Yt = �2Yt�1I(Yt�1 � 0) + 0:4Yt�1I(Yt�1 > 0) + �t
NLAR6 Yt = 0:8 log(1 + 3Y

2
t�1)� 0:6 log(1 + 3Y 2t�3) + �t

NLAR7 Yt = 1:5 sin((�=2)Yt�2)� 1:0 sin((�=2)Yt�3) + �t
NLAR8 Yt = (0:5� 1:1 exp(�50Y 2t�1))Yt�1 + (0:3� 0:5 exp(�50Y 2t�3))Yt�3 + �t
Notes: I(x) is an indicator which takes a value 1 if x holds and 0 otherwise. �t � N(0; 1):iid

other models (NLAR6-NLAR8) are taken from Chen and Tsay (1993).

For each process, the �rst 120 observations of 220 realizations are discarded to

generate a series of size 100 used in the nonparametric regression. Additive AR models are

estimated using the marginal integration method applied to both the local constant and

local linear estimators with a Gaussian kernel. In particular, we follow Sperlich, Linton

and Härdle (1999) and use the empirical distribution function Qn(x�i) as the weighting

function to obtain bfi(xi).3 To �nd a combination S which minimizes\FPE(S), we employ
the algorithm explained in Tjøstheim and Auestad (1994) with a maximum possible total

number of lags set to M = 13. For the choice of bandwidth we employ the procedure used

by Tschernig and Yang (2000). In particular, hm =
pdvar(Yt) f4=(m+ 2)g1=(m+4) n�1=(m+4)

is used for b�(Xt) in bB and h1 is used for bfi(Yt�i) in bB. For the estimation of the optimal
bandwidth hopt used in fi(Yt�i) in bA, we �nd a value which minimizes\FPE(S) by searching
over the interval [0:2h1; 2h1]. The same optimal bandwidth, for each of the corresponding

combination of lags, is also used in the FPEs with � 6= 0. We replicate each experiment

100 times and report the empirical frequencies of selecting the correct model along with

3We substitute the smoothed empirical density based on a Gaussian kernel, for the density of weight
function, q(X�i;t), required in bB.
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over�tting frequencies. Tables (3) and (3) show the results for the local linear and local

constant estimators, respectively.

The results of the simulation are summarized as follows. First, for almost all

cases, frequencies of selecting correct combinations of lags based on the additive FPE-

like procedure are higher than those based on the unrestricted FPE procedure. The only

exception is the NLAR1 process for which both FPEs are performing very poorly. Thus, in

general, gains from knowing the additive structure somewhat depend on the data generating

process. Second, the FPE procedures work much better when the local constant estimator is

used. This is true for both the unrestricted FPE and the FPE for additive models. Third,

there is a signi�cant reduction in the frequencies of over�ts when the FPE for additive

models is used, compared to the unrestricted FPE. This is consistent with our theoretical

prediction. Finally, the performance of the additive FPE is not very sensitive to the choice

of � for a wide range of values. However, setting � = 1 is not recommended for most of

the cases. It is interesting to note that � = 0 often shows the best �nite sample properties

despite the fact that such a choice does not provide a consistent selection procedure. When

the local constant estimator is employed, � = 0:1 or 0:5 provides the best result in many

cases.

Conclusion

The possibility of using the FPE criterion in the lag selection of additive AR

models has been previously discussed in the literature, but no formal proof on its asymptotic

properties was available. We have shown that the FPE criterion designed for the additive

model provides the consistent lag selection procedure under very general conditions. In

addition, simulation results suggest the e¤ectiveness of the additive FPE procedure in �nite

samples. Unlike the unrestricted FPE, the �nite sample correction to reduce over�ts might
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not be necessary. Our results are also in line with good �nite sample properties of traditional

information criteria for the nonlinear additive spline estimation recently reported by Huang

and Yang (2004).

Finally, in this chapter, we focus on marginal integration because it does not

involve the iterative computation. However, we note that better �nite sample properties

of the back�tting method over marginal integration have been often reported in simulation

studies (e.g., Sperlich, Linton and Härdle, 1999, and Martins-Filho and Yang, 2007). The

performance of our procedure based on other estimators, such as the smooth back�tting

estimator, remains to be investigated in future work.
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Table 2. Frequencies of selecting correct lags using a local linear estimator
Unrestricted FPE for additive models

Model FPE � = 0 0:1 0:5 1:0

LAR1 0 (89) 16 (29) 15 (32) 10 (48) 5 (56)
LAR2 0 (87) 18 (30) 17 (34) 8 (60) 5 (70)
LAR3 1 (98) 77 (19) 65 (31) 19 (79) 17 (82)
NLAR1 13 (73) 2 (38) 3 (43) 3 (53) 2 (44)
NLAR2 4 (84) 43 (42) 41 (46) 32 (58) 24 (66)
NLAR3 1 (84) 45 (34) 41 (40) 30 (56) 22 (65)
NLAR4 0 (99) 24 (50) 20 (55) 12 (65) 11 (72)
NLAR5 6 (94) 38 (47) 34 (53) 16 (78) 9 (84)
NLAR6 1 (53) 29 (28) 27 (34) 17 (47) 18 (46)
NLAR7 59 (20) 82 (13) 81 (14) 76 (12) 58 (12)
NLAR8 14 (84) 56 (41) 54 (42) 34 (62) 20 (73)

Notes: Frequencies of selecting the correct speci�cation are computed from 100 simulation runs.
Numbers in parentheses are frequencies of over�tting.

Table 3. Frequencies of selecting correct lags using a local constant estimator
Unrestricted FPE for additive models

Model FPE � = 0 0:1 0:5 1:0

LAR1 3 (91) 42 (2) 46 (2) 49 (3) 36 (19)
LAR2 10 (83) 49 (2) 52 (2) 48 (10) 29 (34)
LAR3 24 (75) 93 (4) 93 (5) 68 (30) 43 (57)
NLAR1 48 (7) 60 (4) 33 (13) 35 (2) 21 (3)
NLAR2 17 (77) 71 (13) 78 (8) 62 (22) 39 (41)
NLAR3 12 (81) 63 (6) 63 (7) 58 (15) 31 (40)
NLAR4 26 (71) 69 (3) 52 (7) 46 (6) 33 (19)
NLAR5 53 (9) 79 (0) 79 (0) 73 (0) 50 (1)
NLAR6 4 (59) 40 (6) 42 (5) 44 (10) 32 (18)
NLAR7 37 (0) 98 (0) 99 (0) 99 (0) 69 (0)
NLAR8 70 (11) 80 (9) 85 (8) 88 (0) 67 (1)

Notes: Frequencies of selecting the correct speci�cation are computed from 100 simulation runs.
Numbers in parentheses are frequencies of over�tting.
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CHAPTER III

CONSISTENT COTRENDING RANK SELECTION WHEN BOTH STOCHASTIC
AND NONLINEAR DETERMINISTIC TRENDS ARE PRESENT

Introduction

For decades, one of the most important issues in the analysis of macroeconomic

time series has been how to incorporate a trend. Two popular approaches that have often

been employed in the literature are (i) to consider a stochastic trend, with or without a

linear deterministic trend, such as the one suggested in Nelson and Plosser (1982), and (ii)

to consider a nonlinear deterministic trend such as the one with trend breaks considered in

Perron (1989, 1997). Cointegration, introduced by Engle and Granger (1987), is a useful

concept in understanding the nature of comovement among variables based on the �rst

approach. In cointegration analysis, the cointegrating rank, de�ned as the number of linearly

independent cointegrating vectors, provides valuable information regarding the trending

structure of a multivariate system with stochastic trends. Several model-free consistent

cointegrating rank selection procedures have been developed in the literature. Analogous to

cointegration analysis is the analysis of comovement based on the second approach, namely,

the nonlinear deterministic trend. The cotrend analyses of Bierens (2000), Hatanaka (2000)

and Hatanaka and Yamada (2003) lie along this line of research. However, a consistent

selection procedure of the cotrending rank, de�ned similarly as the cointegrating rank with

a stochastic trend replaced by a nonlinear deterministic trend, has not yet been developed.

This chapter proposes a model-free consistent cotrending rank selection procedure

when both stochastic and nonlinear deterministic trends are present in a multivariate sys-

tem. Consistency here refers to the property that the probability of selecting the wrong
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cotrending rank approaches zero as sample size tends to in�nity. Our procedure selects

the cotrending rank by minimizing the von Neumann criterion, similar to the one used

by Shintani (2001) and Harris and Poskitt (2004) in their analyses of cointegration. This

approach exploits the fact that identi�cation of cotrending rank can be interpreted as iden-

ti�cation among three groups of eigenvalues of the generalized von Neumann ratio. Using

this property of the von Neumann criterion, we propose two types of cotrending rank se-

lection procedures that are (i) invariant to linear transformations of the data; (ii) robust

to model misspeci�cation; and (iii) valid not only with a break in the trend, but also with

a broader class of nonlinear trend functions. The simulation results also suggest that our

cotrending rank selection procedures perform well in �nite samples.

Our analysis is closely related to that of Harris and Poskitt (2004) and Cheng and

Phillips (2009), who propose consistent cointegrating rank procedures that do not require a

parametric vector autoregressive model of cointegration such as the one in Johansen (1991).

While we provide some examples of nonlinear trend functions, including trend breaks and

smooth transition trend models, our cotrending rank selection procedure does not require

the parametric speci�cation of the trend function, or the parametric speci�cation of serial

dependence structure. Thus, our approach generalizes the results of Harris and Poskitt

(2004) and Cheng and Phillips (2009) in the sense that it allows both common stochastic

trends and common deterministic trends. Consequently, we can also use our procedure

to determine the cointegrating rank in the absence of nonlinear deterministic trends. To

illustrate this feature, we include both cointegrated and cotrended cases in our simulation

analysis.

As emphasized in Stock and Watson (1988), the cointegrated system can be in-

terpreted as a factor model with a stochastic trend being a common factor. Thus, deter-
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mining the cointegrating rank is identical to determining the number of common stochastic

trends because the latter is the di¤erence between the dimension of the system (number

of variables) and the cointegrating rank.1 In the presence of both stochastic and nonlinear

deterministic trends, however, the number of common nonlinear deterministic trends does

not correspond to the di¤erence between the dimension and the cotrending rank. Because

the number of common deterministic trends also contains valuable information about the

trending structure, we introduce the notion of weak cotrending rank, so that the di¤er-

ence between the dimension and the weak cotrending rank becomes the number of common

deterministic trends.

Our two alternative de�nitions of cotrend are natural consequence of the notion of

a common feature introduced in Engle and Kozicki (1993). They de�ne the common feature

as �a feature that is present in each of a group of series but there exists a non-zero linear

combination of the series that does not have the feature�. When such a feature is a broad

class of trends, namely, a mixture of both stochastic and deterministic trends, the de�nition

of cotrend requires a linear combination which eliminates both types of trends at the same

time. In contrast, when such a feature is the dominant trend, namely the deterministic

trend only, a linear combination should eliminate the deterministic trend but not necessary

the stochastic trend. Since the latter type of cotrend nests the former type, we distinguish

the two by referring the latter type as a weaker version of the cotrending relationship. Our

procedure can select both the cotrending rank and weak cotrending rank.

The remainder of this chapter is organized as follows. Section 2 introduces some

key concepts in the system of common stochastic and deterministic trends. The main

theoretical results are provided in section 3. Section 4 reports Monte Carlo simulation
1PANIC method proposed by Bai and Ng (2004) utilizes the consistent selection of the number of common

stochastic trends in a very large dynamic factor system based on information criteria. See also Bai and Ng
(2002) for the case of consistent selection of the number of stationary common factors.
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results to show the �nite sample performance of our procedures. In section 5, we apply our

procedures to the Japanese money demand function. Section 6 concludes, and the technical

proofs are presented in the Appendix B.

Motivation

Cotrending ranks

Our cotrend analysis begins with an assumption that all the variables contain

deterministic trends. This presumption is similar to the case of traditional cointegration

analysis which requires all the variables to follow I(1) processes so that at least one stochas-

tic trend is present in each variable of interest. The following simple bivariate examples

illustrate the motivation of our cotrend analysis. In the presence of deterministic trends, a

pair of variables, yt = (y1t; y2t)0, can be decomposed as

y1t = d1t + s1t; (III.1)

y2t = d2t + s2t;

where dt = (d1t; d2t)
0 represents a deterministic trend component and st = (s1t; s2t)

0 rep-

resents a stochastic component that can be either I(0) or I(1) process. Suppose a simple

bivariate linear trend model given by

y1t = c1 + �1t+ "1t;

y2t = c2 + �2t+ "2t;
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where "1t and "2t are zero mean I(0) error terms, �1 6= 0 and �2 6= 0. Then, this model has

a representation (III.1) with

d1t = c1 + �1t; d2t = c2 + �2t;

s1t = "1t; and s2t = "2t: (III.2)

According to the de�nition of Engle and Kozicki (1993), a feature is said to be common if

a linear combination of the series fails to have the feature. Since the deterministic trend is

the main feature of interest, two variables are cotrended if the trend is eliminated by taking

a particular linear combination (see also Bierens, 2000, Hatanaka, 2000, and Hatanaka and

Yamada, 2003). In the case of a linear deterministic trend in (III.2), there is a trivial

cotrending relationship since the vector (1;��1=�2) can eliminate the trend. Likewise, if

m variables are generated from a multivariate linear trend model, there are m � 1 trivial

cotrending relationships since there are m � 1 linearly independent non-zero cotrending

vectors.

In our analysis, stochastic trends can be either included or excluded. When sto-

chastic trends are present, there will be two layers of potential cotrending relationships.

For example, suppose a pair of variables are generated from two independent random-walk-

with-drift processes:

y1t = �1 + y1t�1 + "1t;

y2t = �2 + y2t�1 + "2t;

where "1t and "2t are zero mean iid error terms, �1 6= 0 and �2 6= 0. Then, the model has a
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representation (III.1) with

d1t = c1 + �1t; d2t = c2 + �2t;

s1t = s1t�1 + "1t; and (III.3)

s2t = s2t�1 + "2t

so that s1t and s2t are I(1) processes, or stochastic trends. In this case, the vector (1;��1=�2)

eliminates the linear deterministic trend, but no linear combination can eliminate the sto-

chastic trend. However, since the dominant trend, namely the deterministic trend can still

be eliminated, we refer to the vector (1;��1=�2) as a weak cotrending vector. In contrast,

if (III.3) is replaced by

d1t = c1 + �1t; d2t = c2 + �2t;

s1t = s1t�1 + "1t; and (III.4)

s2t = (�2=�1)s1t + "2t;

the weak cotrending vector (1;��1=�2) eliminates not only the linear deterministic trend,

but also the stochastic trend. Since both type of trends are eliminated by a single vector

(1;��1=�2), we view such a case as the stronger version of the cotrending relationship.

In a system of m variables with both stochastic and deterministic trends, one of

our goals is to identify the total number of linearly independent vectors that can eliminate

both stochastic and deterministic trends at the same time. In this chapter, we refer to

the number of such cotrending vectors as the cotrending rank and denote it by r1. The

cotrending rank can be any integer value in the range of 0 � r1 < m. In addition to r1,

we also introduce the weak cotrending rank (denoted by r2) as the total number of linearly

independent vectors that can eliminate the deterministic trend, regardless of whether such
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vectors can eliminate the stochastic trend at the same time. Since all the cotrending vectors

are also weak cotrending vectors, r2 should satisfy r1 � r2 < m. While it is not the stronger

version of cotrending rank based on a broader notion of trends, the identi�cation of r2 is

also important in the presence of both stochastic and deterministic trends, since m� r2 in

the m-variable-system corresponds to the total number of common deterministic trends. In

the above example of m = 2, a vector (1;��1=�2) can eliminate the deterministic trend

regardless of the values of �1 and �2. Thus, the weak cotrending rank r2 of both models

(III.3) and (III.4) is 1. However, the cotrending rank is 0 for model (III.3) and is 1 for

model (III.4). In this chapter, we propose a simple procedure to identify both r1 and r2 in

a system of m variables, in the presence of both stochastic and deterministic trends.

As discussed above, the elimination of the deterministic trend is of primary interest

in our cotrend analysis. This di¤ers from traditional cointegration analysis where elimina-

tion of the stochastic trend is its main interest even if a deterministic trend is included in

the system. To see this point, consider another model with stochastic trends given by

d1t = c1 + �1t; d2t = c2 + �2t;

s1t = s1t�1 + "1t; and (III.5)

s2t = s1t + "2t:

Here the cointegrating vector (1;�1) can always eliminate the stochastic trend, but not the

deterministic trend unless �1 = �2. For the purpose of distinguishing between (III.4) and

(III.5) in cointegration analysis, Ogaki and Park (1997) introduced the notions of stochastic

cointegration and deterministic cointegration. In their terminology, stochastic cointegration

refers to the case in which only the stochastic trend is eliminated by the cointegrating

vector. In contrast, deterministic cointegration refers to the case in which both stochastic
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and deterministic trends are eliminated by the same cointegrating vector. In our cotrend

analysis, however, two models di¤er because the (strong) cotrending rank r1 is 1 for (III.4)

but 0 for (III.5).

Trend breaks and smooth transition trends

So far, we have only seen an obvious cotrending relationship with a linear trend

for the purpose of introducing the notion of cotrending ranks. However, cotrend analysis

becomes more meaningful when variables contain various forms of nonlinear deterministic

trends so that the system can have more than one common deterministic trend. Here, we

provide some examples of nonlinear trends to highlight the class of deterministic trends that

are allowed in our consistent cotrending rank selection procedure.

As discussed in Mills (2003), many macroeconomic time series data, including

GDP of the UK and Japan and stock prices in the U.S., violate the assumption of stable

growth over the typical sample periods. A convenient approach to allow for multiple shifts

in the growth rate, while maintaining the continuity of the trend function, is to consider

a kinked trend, or a piece-wise linear trend structure in each segment of the whole sample

period. When there are h time shifts in the (log) growth rate, the segmented linear trend

can be written as

dKINKt = �0t+
hX
i=1

�i(t� Ti)1[t > Ti];

where Ti is the trend break point and 1[x] is an indicator that takes the value of 1 if x is

true and 0, otherwise. The segmented linear trend implies that the growth rate corresponds

to �0; during the �rst subperiod t < T1, and corresponds to �0+
Pj
i=1 �i, in the remaining

subperiods, Tj � t < Tj+1 for j = 1; :::; h.

Recall that in the preceding bivariate example with a linear trend, the deterministic
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trend terms d1t and d2t are by de�nition proportional to a common linear deterministic

trend, say dLINt = t, ignoring the constant. Therefore, we can always �nd at least one linear

combination that eliminates the trend, and the cotrending relationship is trivial. However, if

the linear trend functions in d1t and d2t are replaced by segmented trend functions, a linear

combination can eliminate the deterministic trend if and only if (i) all the break points,

Ti�s, are the same and (ii) all the piece-wise trend slope coe¢ cients, �0is are proportional

between the two trend functions. If either of the two conditions fails to hold, the two

nonlinear deterministic trends are linearly independent and no common deterministic trend

exists. This fact also shows how our cotrend analysis di¤ers from the cobreaking analysis

of Hendry and Mizon (1998) and Clements and Hendry (1999). In the presence of a trend

break, cobreaking is a necessary condition of cotrending, but not a su¢ cient condition.

Although the segmented trend function dKINKt imposes continuity, its �rst deriva-

tive is not continuous, suggesting an abrupt change of the growth rate at each break point.

To allow for a gradual change in the growth rate, we may replace the indicator function in

dKINKt with a smooth transition function. This substitution of the trend function leads to

a smooth transition trend model. The smooth transition trend model was originally pro-

posed by Bacon and Watt (1971) and has been discussed by Lin and Teräsvirta (1994) and

Leybourne, Newbold and Vougas (1998). While there are many types of smooth transition

trend functions, one most frequently used one is the logistic transition function given by

G(i; Ti) =
1

1 + exp(�i(t� Ti))
;

where i (> 0) is the scaling parameter that controls the speed of transition, and Ti becomes

the timing of the transition midpoint instead of the break point. The nonlinear deterministic

trend component of a multiple-regime logistic smooth transition trend (LSTT) model takes
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the form of

dLSTt = �0t+
hX
i=1

�i(t� Ti)G(i; Ti):

It should be noted that, as i approaches in�nity, the logistic transition function G(i; Ti)

approaches the indicator function 1[t > Ti]. Thus, the deterministic trend dLSTt nests both

the kinked trend dKINKt and the linear trend dLINt as special cases. Figure 1 shows the

typical shape of kinked and smooth transition trends when h = 1. The former contains a

one-time abrupt change in the �rst derivative, while the latter shows continuous change in

the �rst derivative.

Both segmented and smooth transition type models of trend shift are allowed in our

cotrending rank selection procedure. Furthermore, other types of nonlinear deterministic

trend functions can be also included as long as they belong to a class of trend functions so

that their order of magnitude is identical to that of a linear trend. Let fdKINKt gTt=1, and

fdLSTt gTt=1 be the deterministic sequences where Ti = kiT , 0 < k0 < k1 < ::: < kh < 1,

and i�s are �xed. Then, both trend sequences have the same order of magnitude as

the linear trend sequence fdLINt gTt=1 in the sense that both
PT
t=1 d

KINK
t =

PT
t=1 d

LIN
t andPT

t=1 d
LST
t =

PT
t=1 d

LIN
t approach a non-zero constant as T tends to in�nity. Similarly, our

analysis remains valid for any nonlinear deterministic trend sequence fd�t gTt=1 such thatPT
t=1 d

�
t =
PT
t=1 d

LIN
t approaches some non-zero constant as T tends to in�nity. In the

following section, we propose a procedure to identify both r1 and r2 in a system of m

variables, which is valid for any nonlinear deterministic trend functions that belong to this

class of nonlinear trends.2 An important feature of our procedure is that estimation of

parametric nonlinear trend functions is not required. In this sense, our procedure can be

2We focus on this class of trends since the trend breaks are most frequently used forms of nonlinear trends
in practice. However, we can easily extend our approach to incorportate other class of trend functions such
as the one for quadratic trends or cubic trends.
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viewed as a nonparametric approach to cotrending rank selection.

Theory

We assume that an m-variate time series, yt = [y1t; � � � ; ymt]
0
, is generated by

yt = dt + st; t = 1; � � �T; (III.6)

where dt = [d1t; � � � ; dmt]
0
is a nonstochastic trend component, st = [s1t; � � � ; smt]

0
is a

stochastic process, respectively de�ned below, and neither dt nor st is observable. We

denote a random (scalar) sequence xT by Op(T �) if T��xT is bounded in probability and

by op(T �) if T��xT converges to zero in probability. For a deterministic sequence, we

use O(T �) and o(T �), if T��xT is bounded and converges to zero, respectively. The �rst

di¤erence of xt is denoted by �xt. Below, we employ a set of assumptions that are similar

to those in Hatanaka and Yamada (2003).

Assumptions B.

(B1) st = st�1 + �t and �t = C(L)"t =
P1
j=0Cj"t�j ; C0 = In ,

P1
j=0 j

2 kCjk < 1, where

"t is iid with zero mean and covariance matrix �"" > 0:

(B2) Each element of
PT
t=1 dt is O(T

2) and is not o(T 2):

(B3) There exists an m�m orthogonal full rank matrix B = [B? B2 B1 ], such that each

element of
PT
t=1B

0
1yt is Op(T

1=2), each element of
PT
t=1B

0
2yt is Op(T ) and is not op(T ),

and each element of
PT
t=1B

0
?yt is Op(T

2) is not op(T 2), where B1, B2; B? are m � r1,

m� (r2 � r1) and m� (m� r2), respectively.

Under Assumptions B , B1 represents a set of cotrending vectors that eliminates

both deterministic and stochastic trends. B2 represents a set of vectors eliminating only
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deterministic trends, but not stochastic trends. B? consists of vectors orthogonal to B1

and B2.

In the scalar case, the von Neumann ratio is de�ned as the ratio of the sample

second moment of the di¤erences to that of the level of a time series. The multivariate

generalization of the von Neumann ratio is de�ned as S�111 S00 where

S11 = T
�1

TX
t=1

yty
0
t; and S00 = T

�1
TX
t=2

�yt�y
0
t:

Shintani (2001) and Harris and Poskitt (2004) also use this multivariate version of the von

Neumann ratio in cointegration analysis. Let b�1 � b�2 � � � � � b�m � 0 be the eigenvalues of
S�111 S00. We summarize the statistical properties of b�0is in the presence of both stochastic
and deterministic trends in the following lemma.

Lemma 1 Under Assumptions B, we have: (i) a sequence of [b�1,� � � , b�r1 ] has a positive
limit and is Op(1) but is not op(1); (ii) a sequence of T [b�r1+1,� � � , b�r2 ] has a positive limit
and is Op(1) but is not op(1), provided r2 � r1 > 0; and (iii) a sequence of T 2[b�r2+1,� � � ,b�m] has a positive limit and is Op(1) but is not op(1), provided m� r2 > 0.

From Lemma 1, the eigenvalues of S�111 S00 can be classi�ed into three groups

depending on their rates of convergence, namely, Op(1) , Op(T�1) and Op(T�2). The

number of eigenvalues in each group corresponds to the number of cotrending relationships

(r1), the di¤erence between weak cotrending and (strong) cotrending relationships (r2 �

r1) and the number of common deterministic trends (m � r2), respectively. We exploit

this property to construct the following two types of consistent cotrending rank selection

procedures based on the von Neumann criterion, which is de�ned as a sum of the partial sum

of eigenvalues and a penalty term. The �rst is a �paired�procedure which independently
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selects the cotrending rank r1 and the weak cotrending rank r2 by minimizing each of

V N1(r1) = �
r1X
i=1

b�i + f(r1)CT
T
; and

V N2(r2) = �
r2X
i=1

b�i + f(r2)C 0
T

T 2
;

or

br1 = arg min
0�r1�m

V N1(r1); and

br2 = arg min
0�r2�m

V N2(r2)

where f(r), CT and C
0
T are elements of penalty function de�ned in detail below.

The second procedure is a �joint�procedure that simultaneously determines both

r1 and r2 by minimizing

V N(r1; r2) = �
p
T

r1X
i=1

b�i � r2X
i=r1+1

b�i + f(r1)CT
T
+ f(r2)

C
0
T

T 2
;

or

(br1; br2) = arg min
0�r1;r2�m

V N(r1; r2):

The main theoretical result is provided in the following proposition.

Proposition 1 (i) Suppose Assumptions B holds, and f(r) is an increasing function of r,
CT ; C

0
T ! 1, CT =T;C

0
T =T ! 0, then the paired procedure using V N1(r1) and V N2(r2)

yields,

lim
T!1

P (br1 = r1; br2 = r2) = 1:
(ii) Suppose Assumptions B holds, and f(r) is an increasing function of r, CT =

p
T ;C

0
T =
p
T !

1, CT =T;C
0
T =T ! 0, then the joint procedure using V N(r1; r2) yields,

lim
T!1

P (br1 = r1; br2 = r2) = 1:

Remarks:
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(a) The proposition shows that both of the two cotrending rank selection proce-

dures are consistent in selecting a cotrending rank without specifying a parametric model

as long as the trend belongs to a certain class of nonlinear functions. The joint selection

procedure requires slightly stronger assumptions on CT and C
0
T than the paired selection

procedure.

(b) Commonly employed CT in the literature of information criteria includes CT =

ln(T ), 2 ln(ln(T )), and 2, which respectively leads to the Bayesian information criterion

(BIC), Hannan-Quinn criterion (HQ), and Akaike information criterion (AIC). Part (i) of

the proposition implies that the paired cotrending rank selection procedure is consistent

when BIC and HQ type penalties are employed, but is inconsistent when an AIC type

penalty is employed. In contrast, part (ii) of the proposition implies that CT (and C
0
T )

should diverge at the rate faster than
p
T for the joint cotrending rank selection procedure,

thus none of CT = ln(T ), 2 ln(ln(T )), and 2 yield consistency.

(c) By the de�nition of V N(r1; r2), cotrending ranks selected by the joint pro-

cedure always satisfy br1 � br2. For the paired procedure, selected cotrending ranks will
satisfy br1 � br2 if C 0T = T�CT , where 0 � � < 1. This fact can be demonstrated by

the following argument. The selected cotrending rank br1 implies that V N1(r) > V N1(br1)
for all r < br1. The result is equivalent to the partial sum of eigenvalues

Pbr1
i=r+1

b�i be-
ing greater than ff(br1)� f(r)gCTT�1 (note that b�i � 0 and f(br1) � f(r) > 0). To see

if V N2(r) > VN2(br1) for the corresponding r and br1, it su¢ ces to show that
Pbr1
i=r+1

b�i
is greater than ff(br1)� f(r)gC 0TT�2. By substituting C 0T = T�CT the latter becomes

ff(br1)� f(r)gCTT�1�T�(1��). Since T�(1��) < 1,Pbr1
i=r+1

b�i > ff(br1)� f(r)gCTT�1 >
ff(br1)� f(r)gCTT�1 � T�(1��). Because we have shown that V N2(r) > VN2(br1) for all
r < br1., it implies br1 � br2.
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(d) The criterion function V N1(r1) in the paired procedure can solely be used to

select cointegrating rank in a system of stochastic trends without nonlinear deterministic

trends. It nests the criterion function considered in Harris and Poskitt (2004) as a special

case. Their criterion �C;T , in their notation, is identical to V N1(r1) combined with CT =

ln(T ) and f(r) = 2r(2m � r + 1). Thus, part (i) of the proposition extends the result of

Harris and Poskitt (2004) to the cointegrating rank selection for general choice of CT and

f(r).

(e) For consistency of our procedures, f(r) can be any increasing function of r.

In this chapter, we follow Harris and Poskitt (2004) and employ f(r) = 2r(2m � r + 1),

the function used in their consistent cointegrating rank selection criterion. This choice

satis�es the required condition of an increasing function since df(r)=dr = 4(m � r) > 0.

Other choices of functions, such as f(r) = 2mr � r2 and f(r) = 2mr � r(r + 1)=2, are also

discussed in Cheng and Phillips (2009) based on the reduced rank regression structure of

the cointegrated system.

Experimental evidence

Stochastic trends and cointegrating rank

The proposed cotrending rank selection procedures are justi�ed based on the as-

ymptotic theory. Thus, it is of interest to examine their �nite sample properties by means

of Monte Carlo analysis. This section reports the results under di¤erent settings of the true

cotrending ranks, and of various penalty terms.

Before we present the main simulation results of cotrending rank selection in a

system with stochastic and nonlinear deterministic trends, let us �rst consider the case of a

cointegrated system without deterministic trends. Understanding the basic characteristics
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of the multivariate von Neumann ratio-based procedure in a simple system with stochastic

trends only, will help us justify the use of the similar procedure in a more complicated

system. Recall, that the von Neumann ratio criterion V N1(r1) in the paired procedure

can be used to determine the cointegrating rank in the cointegrated system, and that it

nests the cointegrating rank selection procedure of Harris and Poskitt (2004) as a special

case. Since estimation of the cointegrating vector and serial correlation structure is not

required, our procedure and the procedure by Harris and Poskitt (2004) may be viewed

as a nonparametric approach to cointegrating rank selection. In contrast, the information

criteria for selecting cointegrating rank in Cheng and Phillips (2009) are based on the

eigenstructure of a reduced rank regression model. While serial correlation structure is

not estimated, cointegrating vectors are estimated. In this sense, their procedure may be

viewed as a semiparametric approach to cointegrating rank selection. Here, we use the

same simulation design as in Cheng and Phillips (2009) and compare the �nite sample

performance of two alternative approaches.

A bivariate time series yt = (y1t; y2t)0 is generated from

�yt = ��
0
yt�1 + ut; ; t = 1; � � �T;

where ut follows a V AR(1) process with a VAR coe¢ cient 0:4 � I2 and a mutually inde-

pendent standard normal error term. By setting ��
0
= 0,

��
0
=

0BB@ 1

0:5

1CCA ( �1 1 );

and

��
0
=

0BB@ �0:5 0:1

0:2 �0:15

1CCA ;
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we generate a multivariate system with the true cointegrating rank r1 = 0; 1 and 2, re-

spectively. We evaluate the �nite sample performance of both semiparametric and non-

parametric approaches by the frequencies of selecting the true cointegrating rank in 20,000

replications for the sample sizes T = 50, 100 and 4003. For the reduced rank regression pro-

cedure of Cheng and Phillips (2009), we employ the AIC, BIC and HQ criteria and denote

them by RRR-AIC, RRR-BIC and RRR-HQ, respectively. The von Neumann ratio criterion

�C;T of Harris and Poskitt (2004) is equivalent to V N1(r1) with f(r) = 2r(2m� r+1) and

CT = ln(T ). Since it involves a BIC-type penalty, we refer to this procedure by VN-BIC.

In addition, we also consider the AIC-type penalty CT = 2, as well as an HQ type penalty

CT = 2 ln(ln(T )), and denote corresponding criteria by VN-AIC and VN-HQ, respectively.

It should be noted that theoretical analysis implies that both RRR-AIC and VN-AIC are

inconsistent in selecting true cointegrating rank.

Table 4 reports the performance of the cointegrating rank selection procedures

based on six criteria with frequencies of correctly selecting true rank shown in bold fonts.

The results of the simulation can be summarized as follows.

First, the semiparametric approach by Cheng and Phillips (2009) and our non-

parametric approach seem to complement to each other because their relative performance

depends on the data generating processes. If true cointegrating rank is r1 = 0, the non-

parametric von Neumann ratio-based procedures uniformly outperform the semiparametric

reduced rank regression-based procedures for all the sample sizes under consideration. In

contrast, if the true cointegrating rank is r1 = 2 and the sample size is small (T = 50 and

100), each of the reduced rank regression procedures, RRR-AIC, RRR-BIC and RRR-HQ,

works better than each counterpart of the von Neumann ratio procedures, VN-AIC, VN-

3Here, we follow Cheng and Phillips (2009) and the �rst 50 observations are discarded to eliminate the
e¤ect of the initial values y0 = 0 and u0 = 0.
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BIC and VN-HQ, respectively. If the true cointegrating rank is r1 = 1, the semiparametric

reduced rank regression procedure works better with a BIC type penalty (RRR-BIC) when

the sample size is as small as T = 50, but the nonparametric von Neumann ratio procedures

dominates for the other cases.

Second, for the von Neumann ratio-based procedures, the AIC type penalty often

works well when the sample size is small, despite the fact that it provides theoretically

inconsistent rank selection. In particular, it dominates other types of penalties if the true

cointegrating rank is the largest (r1 = 2), mainly because the penalty for higher rank is

much smaller with CT = 2 than with CT = ln(T ) or CT = 2 ln(ln(T )). However, even in

the case of low frequencies of selecting the true rank when the sample size is small, they

quickly approach one when the sample size increases to T = 400. On the whole, it seems

fair to say that the von Neumann criterion is at least as useful as the information criterion

based on the reduced rank regression in selecting cointegrating rank.

Deterministic trends and cotrending rank

In this subsection, we evaluate the �nite sample performance of our proposed

procedure using the three-dimensional vector series y�t = (y
�
1t; y

�
2t; y

�
3t)

0 with di¤erent com-

binations of cotrending and weak cotrending ranks (m = 3).

To consider the case with only one common (nonlinear) deterministic trend, we

�rst generate the data using

y�1t = �1y
�
1t�1 + "1t;

y�2t = �2y
�
2t�1 + "2t; (III.7)

y�3t =

8>><>>:
c+ �0t if t � �T

c+ (�0 � �1)�T + �1t if t > �T
;
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with ("1t; "2t)
0
= iidN(0;�") where

�" =

2664 1 0:5

0:5 1

3775 :
Note that here y�1t and y

�
2t do not have a deterministic trend, but the transformed system

becomes equivalent to yt given in equation (III.6), where each element contains a determin-

istic trend and a stochastic component. We can use any nonsingular matrix A such that

yt = Ay
�
t = dt+ st. Because the eigenvalues for the von Neumann ratio are invariant to any

nonsingular transformation of the data, we can directly use y�t in the computation of our

rank selection criteria in place of yt = Ay�t in the simulation. For example, a transformation

using a matrix

A =

26666664
1 1 1

�1 1 1

1 0 1

37777775
yields

y1t = y�1t + y
�
2t + y

�
3t = d1t + s1t

y2t = �y�1t + y�2t + y�3t = d2t + s2t

y3t = y�1t + y
�
3t = d3t + s3t:

For the case of �1 = 0:5 and �2 = 1:0, a vector (1;�1; 0) becomes a cotrending vector since

y1t � y2t = 2y�1t is stationary, and a vector (1; 0;�1) becomes a weak cotrending vector

since y1t � y3t = y�2t contains a stochastic trend but not a deterministic trend. Since other

cotrending vectors can be also incorporated by a di¤erent choice of a nonsingular matrix
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A, a very large class of cotrended system can be covered by our simple simulation design.

We consider three cases by using di¤erent combinations of �i 2 f0:5; 1:0g for

i = 1; 2, in (III.7) and generate the data with (r1; r2) = (2; 2), (1; 2), and (0; 2). In particular,

setting �1 = �2 = 0:5 implies (r1; r2) = (2; 2), �1 = 0:5 and �2 = 1:0 implies (r1; r2) = (1; 2),

and �1 = �2 = 1:0 implies (r1; r2) = (0; 2). The parameters for the kinked trend function

are set to c = 0:5, �0 = 2, � = 0:5; and �1 = 0:5.

Second, we consider the cases of two deterministic trends using

y�1t = �1y
�
1t�1 + "1t;

y�2t = c+ �0t (III.8)

y�3t =

8>><>>:
c+ �0t if t � �T

c+ (�0 � �1)�T + �1t if t > �T
;

with "1t = iidN(0; 1), �1 2 f0:5; 1:0g; c = 0:5, �0 = 2, � = 0:5. This system generates the

data with (r1; r2) = (1; 1) when �1 = 0:5, and (r1; r2) = (0; 1) when �1 = 1:0.

Finally, we consider the three-deterministic trend case using

y�1t = c+ �0t+ "1t;

y�2t =

8>><>>:
c+ �0t if t � �1T

c+ (�0 � �1)�1T + �1t if t > �1T
(III.9)

y�3t =

8>><>>:
c+ �0t if t � �2T

c+ (�0 � �1)�2T + �1t if t > �2T
;

with "1t = iidN(0; 1), c = 0:5, �0 = 2, �1 = 0:5; �2 = 1=3 and �1 = 0:5. This system

generates the data with (r1; r2) = (0; 0).

We employ two paired cotrending rank selection procedures and two joint cotrend-

ing rank selection procedures. For the paired procedures, we employ a BIC type penalty
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CT = ln(T ) for V N1(r1). Recall that selected cotrending ranks from the paired proce-

dure always satisfy br1 � br2 as long as C 0T = T�CT , where 0 � � < 1. Here, we employ

C 0T =
p
T ln(T ) for V N2(r2) and denote corresponding paired procedure by �paired BIC.�

In addition, we also consider the case with a weaker penalty for V N2(r2) by replacing the

penalty with C 0T =
p
T ln(ln(T )). Since V N1(r1) is the same as before but the penalty

for V N2(r2) somewhat resembles that of the HQ type penalty, we denote the procedure by

�paired BIC-HQ.�

For the joint selection procedures, ln(T ) cannot be used for CT (and C 0T ), since

consistency requires the penalty diverges at a rate faster than
p
T . Therefore, we consider

V N(r1; r2) with the penalty CT = C 0T =
p
T ln(T ), and denote the procedure by �joint BIC.�

We additionally consider the pair of slower rate CT = C 0T =
p
T ln(ln(T )) and denote the

corresponding procedure by �joint HQ.�As in the case of cointegration analysis, we employ

f(r) = 2r(2m� r + 1).

Table 5, Table 6 and Table 7 report the frequencies of selecting cotrending rank

r1 and weak cotrending rank r2 by four procedures for sample sizes T = 50, 100 and 400

in 20,000 replications.4 For each data generating process, the pair (br1; br2) is selected by
minimizing the von Neumann criterion among (r1; r2) = (2; 2), (1; 2), (0; 2), (1; 1), (0; 1)

and (0; 0).5 Frequencies of selecting the true model are shown in a bold font in the table.

The results of the simulation can be summarized as follows.

First, both the paired procedures and joint procedures work well even when the

sample size is as small as T = 50. When there is only one common deterministic trend

and T = 50, paired procedures, paired BIC and paired BIC-HQ, work better than the joint

4For the stationary AR(1) part of the equations, the initial values are generated from its stationary
distribution. For the other equations, initial values are set at 0.

5We only report the results from raw series version of the von Neumann criterion in the simulation since
the demeaned version yielded similar results. The full simulation results are available upon request.
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procedures, joint BIC and joint BIC-HQ, for the cases (r1; r2) = (2; 2) and (1; 2), but the

latter works better for the case of (r1; r2) = (0; 2). However, as the sample size increases,

the frequencies of selecting the true rank become close to one for both types of procedures

and thus the performance of the two procedures become almost indistinguishable.

Second, when there are two common deterministic trends and T = 50, the paired

procedures perform better for the case of (r1; r2) = (1; 1) and the joint procedures perform

better for the case of (r1; r2) = (0; 1). When T = 100, both procedures yield su¢ ciently

high frequencies of selecting the true rank.

Finally, when there are three deterministic trends in the system, or (r1; r2) = (0; 0),

the performance highly depends on the choice of penalty terms. In particular,paired BIC

and joint BIC select true rank all the time even if the sample size is T = 50. In contrast,

the frequencies are very low for the paired BIC-HQ and joint BIC-HQ when sample size is

small (T = 50), and frequencies become close to unity only when the sample size is T = 400.

Smooth transition trends and cotrending rank

In this section, we study the e¤ect of nonlinearity in the trend function on the

performance of our cotrending rank selection procedure. To this end, we consider the

logistic smooth transition trend model and control the shape of the deterministic function

by controlling the scale parameters in the logistic transition function. We generate the

arti�cial data with (r1; r2) = (0; 1) using

y�1t = y�1t�1 + "1t;

y�2t = c0 + �0t; (III.10)

y�3t = (c0 + �0t)G(; �T ) + (c1 + �1t)(1�G(; �T ))
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where G(; �T ) is a logistic transition function de�ned in the previous section and "1t =

iidN(0; 1), c = 0:5, �0 = 2, � = 0:5; and �1 = 0:5. As noted above, the scale parameter

 controls the speed of transition. As  approaches in�nity, the logistic function collapses

to an index function I(t > �T ) and (III.10) become (III.7) with �1 = 1:0. On the other

hand, as  approaches zero, the smooth transition trend model approaches to a linear

trend. In this scenario, we can always �nd the linear combination that eliminates the trend

function. In other words, when  is close to zero, the system of two common deterministic

trends (r2 = 1) becomes closer to the system of one common deterministic trend (r2 = 2).

Therefore, for a small value of , we expect that it will be di¢ cult for our procedure to

identify r2 = 1 from r2 = 2.

Table 8 presents the simulation results given di¤erent choices of the scale parameter

 2 f0:001; 0:005; 0:01g when T = 400: Note that we can use the result of Table 7 for

(r1; r2) = (0; 1) and T = 400 as the benchmark limit case with a large . It turns out that

the procedure works well in selecting the true rank even  is as small as 0:01. Consistent

with our prediction, two of the four procedures (joint BIC-HQ and joint BIC-HQ) select

r2 = 2 when  = 0:01, and all the procedures select r2 = 2 when  = 0:001.

Application

The simulation results in the previous section show that our procedures perform

well in various experimental set-ups. In this section, we apply our procedures to the

Japanese money demand function to investigate the cotrending relations among money

demand, income and interest rate (m = 3). A seasonally adjusted quarterly series of real

GDP, two de�nitions of monetary aggregates, M1 and M2; and the call rate for the sam-

ple period from 1980:Q1 to 2010:Q4, are plotted in Figures 2 to 5. The �gures show the

possibility of kinked deterministic trends in these variables.
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We follow Bae, Kakkar and Ogaki (2006) and consider following three di¤erent

speci�cations of money demand functions,

Model 1 : ln

�
Mt

Pt

�
= �0 + �1 ln(yt) + �1it + "t;

Model 2 : ln

�
Mt

Pt

�
= �0 + �1 ln(yt) + �1 ln(it) + "t; and

Model 3 : ln

�
Mt

Pt

�
= �0 + �1 ln(yt) + �1 ln

�
it

1 + it

�
+ "t;

where Mt is the money demand, Pt is the aggregate price level, yt is real GDP and it is the

nominal interest rate.

We apply both paired and joint cotrending rank selection procedures to the vec-

tors (ln(Mt=Pt); ln(yt); it), (ln(Mt=Pt); ln(yt); ln(it)), and (ln(Mt=Pt); ln(yt); ln(it=(1 + it)).

Table 9 reports the empirical results for all three di¤erent speci�cations of the functional

form for interest elasticity of money demand. The results are somewhat mixed depending

on the choice of the penalty of the criteria and the choice of the variables. However, it is

important to note that none of the procedures select (r1; r2) = (0; 0). This implies that

there are, at least, either cotrending or weak cotrending relationships in Japanese money

demand in the long-run. When M2 is used as the monetary aggregate and when demeaned

version of the von Neumann ratio is used, (r1; r2) = (0; 2) is selected for all cases, imply-

ing that the kinked trend is likely to be a single common deterministic trend among three

variables.

Conclusion

This paper has proposed a model-free cotrending rank selection procedure to use

when both stochastic and nonlinear deterministic trends are present in a multivariate sys-

tem. The procedure selects two types of cotrending ranks by minimizing two new criteria

based on the generalized von Neumann ratio. Our approach is invariant to the linear trans-
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formation of data, robust to misspeci�cation of the model and consistent under very general

conditions. Monte Carlo experiments have suggested good �nite sample performance of the

proposed procedure. An empirical application to the money demand function in Japan has

also suggested the usefulness of our procedure in detecting cotrending relationships when

nonlinear deterministic trends are present in data.
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Figure 1. Segmented linear trend and smooth transition trend
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Table 4. Two dimensional cointegrating rank selection
T=50 r1 = 0 r1 = 1 r1 = 2 r1 = 0 r1 = 1 r1 = 2 r1 = 0 r1 = 1 r1 = 2

RRR-AIC 0.46 0.41 0.13 0.00 0.78 0.22 0.02 0.55 0.43
RRR-BIC 0.81 0.17 0.03 0.00 0.92 0.08 0.45 0.45 0.10
RRR-HQ 0.62 0.30 0.07 0.00 0.85 0.15 0.13 0.61 0.26
VN-AIC 0.97 0.03 0.00 0.04 0.96 0.00 0.01 0.80 0.19
VN-BIC 1.00 0.00 0.00 0.65 0.35 0.00 0.47 0.52 0.01
VN-HQ 0.99 0.01 0.00 0.21 0.79 0.00 0.09 0.84 0.07
T=100 r1 = 0 r1 = 1 r1 = 2 r1 = 0 r1 = 1 r1 = 2 r1 = 0 r1 = 1 r1 = 2

RRR-AIC 0.49 0.39 0.12 0.00 0.78 0.22 0.00 0.25 0.75
RRR-BIC 0.88 0.11 0.01 0.00 0.94 0.06 0.05 0.73 0.22
RRR-HQ 0.70 0.25 0.05 0.00 0.87 0.13 0.00 0.51 0.49
VN-AIC 0.98 0.02 0.00 0.00 1.00 0.00 0.00 0.39 0.61
VN-BIC 1.00 0.00 0.00 0.05 0.95 0.00 0.01 0.95 0.05
VN-HQ 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.76 0.24
T=400 r1 = 0 r1 = 1 r1 = 2 r1 = 0 r1 = 1 r1 = 2 r1 = 0 r1 = 1 r1 = 2

RRR-AIC 0.52 0.37 0.11 0.00 0.76 0.24 0.00 0.00 1.00
RRR-BIC 0.95 0.05 0.00 0.00 0.96 0.04 0.00 0.02 0.98
RRR-HQ 0.80 0.18 0.03 0.00 0.89 0.11 0.00 0.00 1.00
VN-AIC 0.97 0.03 0.00 0.00 1.00 0.00 0.00 0.00 1.00
VN-BIC 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.06 0.94
VN-HQ 1.00 0.00 0.00 0.00 1.00 0.10 0.00 0.00 1.00

Note: Frequencies of selecting each cointegrating rank are reported.
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Table 5. Three dimensional cotrending rank selection: T=50
T=50 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.93 0.06 0.01 0.00 0.00 0.00
Paired BIC-HQ 0.93 0.06 0.01 0.00 0.00 0.00
Joint BIC 0.81 0.12 0.08 0.00 0.00 0.00
Join BIC-HQ 0.79 0.13 0.08 0.00 0.00 0.00
T=50 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.02 0.71 0.18 0.07 0.02 0.00
Paired BIC-HQ 0.02 0.78 0.20 0.00 0.00 0.00
Joint BIC 0.01 0.46 0.35 0.14 0.04 0.00
Join BIC-HQ 0.01 0.57 0.41 0.00 0.00 0.00
T=50 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.05 0.79 0.01 0.16 0.00
Paired BIC-HQ 0.00 0.05 0.94 0.00 0.00 0.00
Joint BIC 0.00 0.02 0.82 0.01 0.16 0.00
Joint BIC-HQ 0.00 0.02 0.98 0.00 0.00 0.00
T=50 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.00 0.00 0.81 0.19 0.00
Paired BIC-HQ 0.00 0.00 0.00 0.81 0.19 0.00
Joint BIC 0.00 0.00 0.00 0.62 0.38 0.00
Joint BIC-HQ 0.00 0.00 0.00 0.60 0.40 0.00
T=50 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.00 0.00 0.03 0.96 0.01
Paired BIC-HQ 0.00 0.00 0.00 0.03 0.97 0.00
Joint BIC 0.00 0.00 0.00 0.01 0.97 0.01
Joint BIC-HQ 0.00 0.00 0.00 0.01 0.99 0.00
T=50 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.00 0.00 0.00 0.00 1.00
Paired BIC-HQ 0.00 0.00 0.00 0.00 0.98 0.02
Joint BIC 0.00 0.00 0.00 0.00 0.00 1.00
Join BIC-HQ 0.00 0.00 0.00 0.00 0.98 0.02

Note: The �rst and the second elements in the parenthesis denote cotrending and weak cotrending
rank r1 and r2, respectively. Numbers are frequencies of selecting each pair of cotrending ranks.
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Table 6. Three dimensional cotrending rank selection: T=100
T=100 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 1.00 0.00 0.00 0.00 0.00 0.00
Paired BIC-HQ 1.00 0.00 0.00 0.00 0.00 0.00
Joint BIC 1.00 0.00 0.00 0.00 0.00 0.00
Joint BIC-HQ 1.00 0.00 0.00 0.00 0.00 0.00
T=100 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.02 0.93 0.00 0.06 0.00 0.00
Paired BIC-HQ 0.02 0.98 0.00 0.00 0.00 0.00
Joint BIC 0.01 0.82 0.00 0.16 0.00 0.00
Joint BIC-HQ 0.01 0.99 0.00 0.00 0.00 0.00
T=100 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.03 0.87 0.00 0.10 0.00
Paried BIC-HQ 0.00 0.03 0.97 0.00 0.00 0.00
Joint BIC 0.00 0.01 0.89 0.00 0.10 0.00
Joint BIC-HQ 0.00 0.02 0.98 0.00 0.00 0.00
T=100 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.00 0.00 1.00 0.00 0.00
Paired BIC-HQ 0.00 0.00 0.00 1.00 0.00 0.00
Joint BIC 0.00 0.00 0.00 1.00 0.00 0.00
Joint BIC-HQ 0.00 0.00 0.00 1.00 0.00 0.00
T=100 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.00 0.00 0.02 0.98 0.01
Paired BIC-HQ 0.00 0.00 0.00 0.02 0.98 0.00
Joint BIC 0.00 0.00 0.00 0.01 0.98 0.01
Joint BIC-HQ 0.00 0.00 0.00 0.01 0.99 0.00
T=100 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.00 0.00 0.00 0.00 1.00
Paired BIC-HQ 0.00 0.00 0.00 0.00 0.00 1.00
Joint BIC 0.00 0.00 0.00 0.00 0.00 1.00
Joint BIC-HQ 0.00 0.00 0.00 0.00 0.00 1.00

Note: See note for Table 5.
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Table 7. Three dimensional cotrending rank selection: T=400

T=400 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 1.00 0.00 0.00 0.00 0.00 0.00
Paired BIC-HQ 1.00 0.00 0.00 0.00 0.00 0.00
Joint BIC 1.00 0.00 0.00 0.00 0.00 0.00
Joint HQ 1.00 0.00 0.00 0.00 0.00 0.00
T=400 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.99 0.00 0.01 0.00 0.00
Paired BIC-HQ 0.00 1.00 0.00 0.00 0.00 0.00
Joint BIC 0.00 0.94 0.00 0.06 0.00 0.00
Joint HQ 0.00 1.00 0.00 0.00 0.00 0.00
T=400 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.01 0.98 0.00 0.02 0.00
Paired BIC-HQ 0.00 0.01 0.99 0.00 0.00 0.00
Joint BIC 0.00 0.00 0.98 0.00 0.02 0.00
Joint HQ 0.00 0.00 1.00 0.00 0.00 0.00
T=400 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.00 0.00 1.00 0.00 0.00
Paired BIC-HQ 0.00 0.00 0.00 1.00 0.00 0.00
Joint BIC 0.00 0.00 0.00 1.00 0.00 0.00
Joint HQ 0.00 0.00 0.00 1.00 0.00 0.00
T=400 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.00 0.00 0.00 1.00 0.00
Paired BIC-HQ 0.00 0.00 0.00 0.00 1.00 0.00
Joint BIC 0.00 0.00 0.00 0.00 1.00 0.00
Joint HQ 0.00 0.00 0.00 0.00 1.00 0.00
T=400 (2,2) (1,2) (0,2) (1,1) (0,1) (0,0)
Paired BIC 0.00 0.00 0.00 0.00 0.00 1.00
Paired BIC-HQ 0.00 0.00 0.00 0.00 0.00 1.00
Joint BIC 0.00 0.00 0.00 0.00 0.00 1.00
Joint HQ 0.00 0.00 0.00 0.00 0.00 1.00

Note: See note for Table 5.
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Table 8. Cotrending rank selection with smooth transition trend models: T=400
(2,2) (1,2) (0,2) (1,1) (0,1) (0,0)

(i)  = 0:001
Paired BIC 0.00 0.00 0.91 0.00 0.09 0.00
Paired BIC-HQ 0.00 0.00 1.00 0.00 0.00 0.00
Joint BIC 0.00 0.00 0.91 0.00 0.09 0.00
Joint HQ 0.00 0.00 1.00 0.00 0.00 0.00

(ii)  = 0:005
Paired BIC 0.00 0.00 0.00 0.00 1.00 0.00
Paired BIC-HQ 0.00 0.00 1.00 0.00 0.00 0.00
Joint BIC 0.00 0.00 0.00 0.00 1.00 0.00
Joint HQ 0.00 0.00 1.00 0.00 0.00 0.00

(iii)  = 0:01
Paired BIC 0.00 0.00 0.00 0.00 1.00 0.00
Paired BIC-HQ 0.00 0.00 0.00 0.00 1.00 0.00
Joint BIC 0.00 0.00 0.00 0.00 1.00 0.00
Joint HQ 0.00 0.00 0.00 0.00 1.00 0.00
Note: Frequencies of selecting each cointegrating rank are reported.

Table 9. Cotrending relationship among money, income and interest rates
Model 1 Model 2 Model 3
VN VN-� VN VN-� VN VN-�

(i) M1
Paired BIC (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)
Paired BIC-HQ (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
Joint BIC (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)
Joint HQ (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)

(ii) M2
Paired BIC (0,1) (0,2) (0.1) (0,2) (0,1) (0,2)
Paired BIC-HQ (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
Joint BIC (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)
Joint HQ (0,1) (0,2) (0,1) (0,2) (0,1) (0,2)

Note: For each pair of numbers, the �rst element denotes the cotrending rank, r1, and the second
element denotes the weak cotrending rank, r2. The �rst column represents the results of the von
Neumann criteria from raw series (VN), and the second column is from demeaned series (VN-�).
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CHAPTER IV

AN ASYMMETRIC SMOOTH TRANSITION GARCH MODEL

Introduction

Modeling and forecasting returns volatility in �nancial market is one of the most

important issue in �nancial econometrics. Over the years, a number of di¤erent features

of returns volatility have emerged, such as positive dependence in the volatility process,

volatility clustering, high persistence and nonlinearity. The most widely used class of mod-

els to estimate and forecast volatility is represented by the autoregreesive conditional het-

eroskedasticity (ARCH model by Engle, 1982) and the generalized autoregreesive condi-

tional heteroskedasticity (GARCH model by Bollerslev et al., 1990).

One key criticism of the GARCH speci�cations comes from the modeling of condi-

tional variance as a function of past squared residuals, which makes the sign of the residuals

irrelevant in predicting volatility. The symmetric treatment of positive and negative resid-

uals contradicts the stylized fact, �rst noted by Black(1976), that stock market returns

become more volatile after a negative shock, than they do after a positive shock of the

same magnitude. One possible explanation, known as "the leverage e¤ect", is that negative

excess return reduce the equity value, hence the leverage ratio, of a given �rm increase,

thus raising its riskiness and the future volatility of its assets. Nelson�s (1991) Exponential

GARCH model is one of the �rst of many speci�cations, for example, threshold GARCH

(TGARCH) model proposed by Rabemananjara and Zakoian(1993), the asymmetric power

ARCH model developed by Ding et al (1993), and so on, that involves asymmetric functions

of the residuals. It is well known in the literature that the speci�cations which allow for
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"leverage e¤ect" dominate the standard GARCH speci�cations.

More recently, several authors introduced smooth transition speci�cations (Hagerud,

1997, Gonzalez-Rivera, 1998, Anderson et al., 1999 and Medeiros and Veiga, 2009), in mod-

eling the asymmetric response of conditional variance to positive versus negative news. The

smooth transition models can be thought of as a regime switch model with a continuum of

regimes. For certain parameter values, it nests with the threshold speci�cations that only

allows for a �nite number of regimes. The smooth transition speci�cations in some sense

generalize the modeling of asymmetry in variance and the empirical evidence in favor of the

smooth transition speci�cation is also reported by these authors.

The main purpose of this chapter is to propose a new smooth transition GARCH

model, which allows both sign asymmetry and transition asymmetry. The smooth transition

speci�cations in the volatility literature assume a transition function that is symmetric

around its midpoint, which implies that negative shocks and positive shocks will have the

same transition phases. The symmetry in the transition phases may be too restricted

for practical purposes. Following Nelder (1961) and Sollis et al.(1998), we introduce a

generalized logistic function that allows for both sign asymmetry and transition asymmetry,

to model conditional variance.

This chapter contributes to the literature in many aspects. First of all, our model

is a generalization of the smooth transition GARCH models by Hagerud (1997), Gonzalez-

Rivera (1998)) and Anderson et al. (1999), and can nest with a lot of existing speci�cations,

such as the DGE model of Ding, Granger, and Engle(1993), and the GJR model of Glosten,

Jagannathan, and Runkle (1993), for certain range of parameter values. Secondly, our

model allows both the ARCH parameters and GARCH parameters to vary with shocks,

which gives rise to a news impact curve that changes shape as volatility varies. Therefore,
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the shocks of the same size and same magnitude may have di¤erent impact on current

volatility depending on past volatility levels. Similar to the asymmetric nonlinear smooth

GARCH model by Anderson et al. (1999), our model is nonlinear in both past shocks and

past volatilities. Thirdly, to test for asymmetry, we propose two testing procedures, one is

based on the linearization of the transition function and the other is a supremum LM test

with unidenti�ed parameters under the null, following Davies (1977, 1987). We �nd that

the LM test is preferred, because it only requires estimation of the model under the null.

The remainder of this chapter is organized as follows. In section 2, we introduce

the asymmetric smooth transition GARCH (ASTGARCH for abbreviation) model and its

statistical properties. In section 3, we address the problem of testing for the existence of

a smooth transition mechanism. We propose two test statistics to test for asymmetry and

conduct a Monte-Carlo experiment to examine their �nite sample performance. In section 4,

we o¤er an application to NASDAQ stock index daily returns and IBM daily stock returns,

and in section 5, we conclude the chapter and summarize this work.

An asymmetric adjustment smooth transition model

The model

Let rt denote the rate of returns of a �nancial asset from time t � 1 to time t

and let 	t�1 be the investors�information set which contains relevant information at time

t: The unexpected shock is denoted by "t, which is given by rt � E(rtj	t�1): The condi-

tional variance of returns, ht = V ar(rtj	t�1); is a measure of volatility, �rst proposed by

Engle(1982). In the literature, "tj	t�1 is generally assumed to follow a normal distribution

with mean zero and variance ht: This distribution, however, can be relaxed to more general

ones, for example, the standardized distribution (Bollerslev 1987) and the generalized error
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distribution (Nelson 1991). We assume conditional normality of "tj	t�1 in this chapter.

Furthermore, we assume

"t = ut
p
ht

where ut is an i:i:d:n sequence with zero mean and unit variance.

The �rst volatility model that incorporates the smooth transition speci�cation is

by Hagerud (1997) and Gonzalez-Rivera (1998), which is given

ht = w0 +

pX
i=1

�0i"
2
t�i +

 
pX
i=1

�1i"
2
t�i

!
F (st�1; ) +

qX
i=1

�0iht�i:

The smooth transition model generalizes the modeling of variance with the in-

troduction of a smooth transition speci�cation in the sense that it allows for intermediate

transition states. It also encompasses a wide array of ARCH speci�cations, such as the DGE

model of Ding, Granger, and Engle(1993), and the GJR model of Glosten, Jagannathan,

and Runkle (1993), and the threshold ARCH model of Rabemananjara and Zakoian (1993).

As discussed by Fonari and Mele(1997), the main restriction of the smooth tran-

sition model is the e¤ects of "t�1 and ht�1 on the volatility are additively separable. In

other words, the impact of "t�1 on conditional variance does not depend on past volatility

values and is always the same for a given value of "t�1: Anderson et al. (1998) introduce

the asymmetric nonlinear smooth transition GARCH models (ANTSGARCH), a class of

models that extends the smooth transition GARCH model and allows the nonlinearity in

both GARCH and ARCH parameters, which is given by

ht = w0 +

pX
i=1

�0i"
2
t�i +

qX
i=1

�0iht�i + F (st�1; )

"
w1 +

 
pX
i=1

�1i"
2
t�i

!
+

qX
i=1

�1iht�i

#
:

In this chapter, we introduce an asymmetric transition function: the generalized

logistic function introduced by Nedler (1991) and Sollis et al. (1998) and propose the
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following new speci�cation.

De�nition 1 An asymmetric smooth transition GARCH model, is de�ned by the model

ht = w0 + �0"
2
t�1 + �0ht�1 + F (st�1; �; )(w1 + �1"

2
t�1 + �1ht�1) (IV.1)

where

F (st�1; �; ) = [1 + exp(�st�1=)]
�

is the transition function. st�1 is the transition variable and � is the smooth parameter.
Possible transition asymmetry is introduced through the parameter  where  = 1 implies
no asymmetry.

It is too restrictive for practical purposes to assume that transition functions are

symmetric around its mid-point, which implies that positive shocks and negative shocks

will have the same transition phases. Our model departs from most of the existing GARCH

speci�cation by making use of this asymmetric transition function. The intuition behind

this assumption resides in the two asymmetries found in the volatility literature, i.e, the

leverage e¤ect and reversion of asymmetric e¤ect. Given these two properties, the positive

shocks and negative shocks in generally have di¤erent impact dynamics on volatility. Our

model may easily capture these two asymmetry properties. In this chapter, we focus on the

asymmetric smooth transition GARCH (1,1) model (ASTGARCH(1,1) for abbreviation).

Other variants can also be obtained following the same methodology. For convenenience,

we denote the parameter vector � � (w0; �0; �0; w1; �1; �1; �; ; ):

The equivalence between our speci�cation and that of Anderson et al. (2005) can

be readily established by setting  = 1: In the case of  = 1, w1 = 0 and �1 = 0, our model

collapses to the smooth transition GARCH model of Hagerud (1997) and Gonzalez-Rivera

(1998). By using the same reasoning as Gonzalez-Rivera (1998), we can easily show the

equivalence of our model with the DGE model, the GJR model and so on.

An important tool, widely used in the literature to capture the impact of innova-

tions on volatility, is the news impact curve(NIC) introduced by Engle and Ng (1991). The
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idea is to examine the implied relation between �t�1 and ht; holding constant the informa-

tion set prior to t � 2 and earlier. For a standard GARCH(1,1) model with w1; �1 and �1

all being set equal to zero, the news impact curve is characterized by

NIC(�t�1jht�1 = h) = w0 + �0"2t�1 + �0h

The NIC(�t�1jht�1 = h) is a quadratic function of "t�1 and the sign of "t�1 is irrelevant

in this function. The past volatility h only changes the level of NIC; but not the shape of

the curve.

A key feature of our model is the sign and size asymmetry. In other words, shocks

of the same size and same sign may have di¤erent e¤ects on volatility depending on past

volatility levels. The news impact curve is

NIC(�t�1jht�1 = h) = w0 + �0"2t�1 + �0h+ F (st�1; �; )(w1 + �1"2t�1 + �1h)

which depends nonlinearly on "t�1 and h: So we draw a set of news impact to show the

relationship between �t�1 and ht; following Bollerslev, et al. (1994).

Figure 6 presents the news impact curve, conditional on di¤erent past volatility

levels, of our new model where the GARCH(1,1) model is used as a benchmark. In this

�gure, the ASTGARCH(1,1) is generated by setting w0 = 0:01; �0 = 0:1; �0 = 0:1; � = 1

and

ht = 0:01 + 0:1�
2
t�1 + 0:1h+ F (�t�1; 1; 0:2)(0:1 + 0:01�

2
t�1 + 0:5h):

Meanwhile, the GARCH(1,1) model is generated by

h(t) = 0:01 + 0:1�2t�1 + 0:1h:

Here, we set h =0.5 and 5, respectively.
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As we can see from Figure 6, for the GARCH(1,1) model, the news impact curve

does not change the shape as we change the initial values of h: In contrast, the shape of

news impact curve for ASTGARCH(1,1) varies with the initial values of h, which implies

a nonlinear relationship between �2t�1 and h(t). We can also observe that the shock of

the same size and magnitude may have di¤erent e¤ects on volatility, depending on past

volatility levels.

Estimation

In this section, we consider maximum likelihood estimation of the asymmetric

smooth transition model and alternatively quasi maximum likelihood estimation in case of

a nonnorrmal distribution of the error terms. We limit our results to ANSTGARCH(1,1)

model, while observing that

the results are quite similar for more complicated models.

Let "t be the unexpected return, which is given by �t = rt � E(rtj	t�1); the

log-likelihood function for a sample of T observations is, apart from a constant:

lT (Y ; �) = �
1

2
lnht �

1

2
�2th

�1
t :

Di¤erencing with respect to the variance parameters yields

@lt
@�

=
1

2
h�1t

@ht
@�
(�2th

�1
t � 1);

@2lt

@�@�
0 = (�

2
th
�1
t � 1) @

@�
0

�
1

2
h�1t

@ht
@�

�
� 1
2
h�2t

@ht
@�

@ht

@�
0 �
2
th
�1
t :

where

@ht
@�

= zt + �0
@ht�1
@�

+ F (st�1; �; )�1
@ht�1
@�

:
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where zt is de�ned as a 8�1 row vector

�
1; "2t�1; ht�1; F (st�1; �; ); F (st�1; �; )"

2
t�1; F (st�1; �; )ht�1;

@F (st�1; �; )

@�
;
@F (st�1; �; )

@

�

where

@F (st�1; �; )

@�
= �st�1(w1 + �1"2t�1 + �1ht�1) [1 + exp(�st�1=)]

��1 exp(�st�1=)

and

@F (st�1; �; )

@
= (w1 + �1"

2
t�1 + �1ht�1) [1 + exp(�st�1=)]

��
exp(�st�1=)

1 + exp(�st�1=)
�st�1= � ln (1 + exp(�st�1=))

�

By the law of total expectations, the information matrix involves only the �rst

derivative

J = E

�
@2lt

@�@�
0 j	t�1

�
= �1

2
h�2t

@ht
@�

@ht

@�
0 �
2
th
�1
t ;

which can be estimated by its sample analogue. However, the �rst derivative can only be

estimated recursively.

The MLE, denoted by b�T;ML; which maximizes lT (Y ; �), is consistent and its as-

ymptotic distribution is normal when the true parameter vector �0 is not on the boundary of

its parameter space, the conditional density is correctly speci�ed and regularity conditions

apply.

Covariance stationarity

In the ARCH literature, a key issue is to know whether shocks to variance is

persistent or not. Moreover, the estimation of parameters generally imposes covariance

stationarity. In linear models, it is quite straightforward to obtain su¢ cient and necessary
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conditions for statioanarity. However, the same problem is more complicated in a nonlinear

framework. It is customary to analyze dynamics by examining the stationarity properties

of the limiting processes.

Following Bollerslev(1986) and Gonzalez-Rivera(1996), the values of F (st�1; �; )

lies between 0 and 1. In the upper regime, F (st�1; �; ) = 1; so the process is covariance

stationary if and only if

�0 + �0 + �1 + �1 < 1:

In the lower regime, F (st�1; �; ) = 0; so the process is covariance stationary if and only if

�0 + �0 < 1:

Similar conditions can be found for any other regimes. However, it is noteworthy that

covariance stationarity of the upper regime implies covariance stationarity in any other

regimes, but not vice versa.

Positivity of the variance is achieved by imposing the restrictions that w0 > 0,

�0 > 0, �0 > 0, w0 + w1 > 0, �0 + �1 > 0 and �0 + �1 > 0:

Speci�cation test for asymmetry

In this section, we introduce several ways to test for asymmetry in volatility in

our asymmetric smooth transition GARCH model. We are interested in two types of asym-

metries: the asymmetry of volatility in response of negative news and positive news, and

the transition asymmetry. Therefore, we are concerned with two null hypotheses tests:

H10 : � = 0 and H20 :  = 1: If H10 is true, there is no leverage e¤ect. In contrast, if H20 is

true; there is no transition asymmetry and our model collapses to that of Anderson et al.
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(1998). To test for H20 :  = 1; we can make use of the usual Wald test or t test statistic.

A testing procedure with a Taylor expansion

The complication arises from the fact that when � is equal to zero, the parameters

w1, �1, �1 and � are unidenti�ed. Following Luukkonen et al (1988), this problem is solved

by replacing F (:) with a suitable linear approximation, i.e, a second order Taylor expansion

of the transition function around � = 0: The approximation of F (:) is then inserted into

equation (IV.1), and testing statistic such as LM test and F test in a linear framework can

be implemented.

In our context, the transition function F (st�1; �; ) can be approximated by its

Taylor expansion at � = 0; which is

T1 = F (0) + F
0
(0)�

Thus the asymmetric smooth transition model can be approximated by

hlt = w0 + �0"
2
t�1 + �0hlt�1 +

h
F (0) + F

0
(0)�

i
(w1 + �1"

2
t�1 + �1hlt�1)

Reparameterize the above model and insert F
0
(0) = �2��1st�1, we obtain the

model

hlt = w + �"
2
t�1 + �hlt�1 + �00st�1"

2
t�1 + �11st�1hlt�1 (IV.2)

where �00 = �2��1�1� and �11 = �2��1�1�.

Equation (IV.2) is a purely auxiliary model to obtain the test statistics, which

may have some undesirable property of being explosive (see Granger and Andersen, 1978,

p.28). The null hypothesis of H10 : � = 0 can be rewritten as

H10 : �00 = �11 = 0:
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Given the residual, "t is conditionally normal, a Lagrange multiplier test statistic

for this hypothesis is

1

2

(
TX
t=1

1

2
eh�1lt (�2teh�1lt � 1)@hlt@�0

)(eh�1lt @hlt@�0

�eh�1t @hlt
@�0

�0)�1( TX
t=1

1

2
eh�1lt (�2teh�1lt � 1)@hlt@�0

)
(IV.3)

where �0 � (�; �; �00; �11) is the vector of parameters in equation (IV.2), ehlt is the condi-
tional variance under the null of GARCH(1,1) model, and @hlt

@�0
is the partial derivative of

hlt with respect to �0 in equation (IV.2) under the null, see Hagerud (1997) for detail.

As is pointed out by Luukkonen et al (1988), a potential problem of the testing

is that � can not be separated from �00 and �11. When the values of ; �1 and �1 are

relatively small, the test may not have satisfactory power against the alternative.

A supremum LM-test with unidenti�ed parameters

As we discussed above, the key issue in our testing procedure comes from the

unidenti�cability problem. In other words, when the null hypothesisH10 : � = 0 is true, then

the parameter vector �1 � (;w1; �1; �1) can take any values. Following Davies (1997,1998)

and Gonzalez-Rivera(1998), we keep the unidenti�ed parameters �1 �xed, the parameter for

which the score is calculated is �0 � (w0; �0; �0; �). Under conditional normality assump-

tion, a general form of the LM test statistic for H10 : � = 0 is the same as in equation (IV.3).

However, because the parameter vector �1 is unknown, the LM test statistic is a function

of �1 and therefore is not feasible. We denote this test statistic LM(�0): Davies(1977)

suggested the following test

T (�1) = sup
�1

LM(�1)

66



for which the probability distribution is unknown. Hansen (1996) proposed a simulation

based method to �nd the null distribution of the forgoing supremum test statistic. Let

��1 = argmax
�1

LM(�1), to simulate the null distribution of T (�1), we need to draw T � J iid

random variables utj from N(0; 1), t = 1 � � �T , j = 1 � � �J; and generate a sample of J-scores

and J�test statistics:

bsn;j(��1; 0) =
1

2

X
t

eh�1t @eht
@�0

(�2t
eh�1t � 1)utj

Tn;j(�
�
1; 0) = nbsn;j(��1; 0)0 bV �1(��0)bsn;j(��1; 0)

The approximate p-value of the supremum test statistic T (�1) is simply the fre-

quency with which Tn;j(��1; 0) > T (�1) occurs. In our simulation section, we set J = 200:

Monte-Carlo simulation

In this section, we conduct a Monte-Carlo simulation to investigate the �nite

sample performance of the two test statistics. Table 10, Table 11 and Table 12 display the

size and power of the test statistics under three data generating processes. The experiment

consists of 100 replications.

In Table 10, the arti�cial data is generated by using � = [0:2; 0:2; 0:2; 0:1; 0:3; 0:3; 100; 0:8]

in equation (IV.1). Table 10 reports the actual rejection frequencies of the two testing pro-

cedures. In addition, we can only estimate �00 = �2�1�1� and �11 = �2�1�1�; � can

not be separated from �00 and �11: This nonidenti�ability indicates that the test may not

have a satisfactory power in case of small �1; �1 and . Because of all the above rea-

sons, the linearization test does not have a good �nite sample performance. In Table 11,

the arti�cial data is generated by setting � = [0:2; 0:2; 0:2; 0:1; 0:1; 0:1; 5; 0:1] in equation

(IV.1). In Table 12, the arti�cial data is generated by GARCH(1,1) model by setting
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� = [0:2; 0:2; 0:2; 0; 0; 0; 0; 0] in equation (IV.1).

As we can see from the above tables, the supremum LM test has a good size for

both sample sizes, but has a relatively small power when the sample size is 500. However,

in case of large sample size(1500 in our simulation,) the test becomes more powerful.

Application

In this section, an asymmetric smooth transition GARCH model is estimated to

�nancial data, and the smooth transition GARCH model, GARCH(1,1) model and the

asymmetric nonlinear smooth transition GARCH model are estimated as benchmarks. The

�rst data set is daily returns of the valued weighted NASDAQ index from January 2,1990

to December 31, 2007, consisting of 4540 observations. The second data is comprised of

4792 daily observations for the individual stock IBM, from January 2,1990 to December 31,

2008. These data have been extracted from Center for Research on Stock Prices(CRSP)

database.

Table 13 reports the summary statistics for the NASDAQ index daily returns and

the IBM daily returns. We �nd that the distribution of the daily returns depart from

normality distribution by their skewness and kurtosis, and has a fat tail, which are the two

key stylized facts of �nancial asset returns.

Table 14 presents the estimation coe¢ cient and likelihoods to NASDAQ index

for our new model, the asymmetric nonlinear smooth transition model, smooth transition

model and the GARCH(1,1) model. It is apparent that there is a smooth transition between

volatility regimes. We also test for the signi�cance of the coe¢ cients � and � and �nd that

the null � = 0 and the null � = 1 are both rejected at the 5% signi�cance level. One

noteworthy point is the the t statistic for � does not have the standard t distribution for
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� = 0, because of the unidenti�cability issue we have addressed. Therefore, we need to rely

on the two test statistics we propose in the previous section to test � = 0.

Table 15 presents the estimation of conditional variance to IBM daily returns.

Also, the null hypothesis � = 0 and the null hypothesis � = 1 are rejected at the 5%

signi�cance level.

Conclusion

The asymmetric response of volatility to positive shocks and negative shocks, best

known as the leverage e¤ect has been well addresses in the �nancial econometrics literature.

A lot of empirical models have been proposed to capture this e¤ect with applications to stock

returns and exchange rates and so on. In this chapter, we have introduced an asymmetric

smooth transition model, which permits both the asymmetric responses and asymmetric

transition dynamics of the shocks on the volatility. This model is a generalization of the

asymmetric nonlinear smooth transition models by Anderson, Nam and Vahid(1999) and

the smooth transition model by Hagerud (1997) and Gonzalez-Rivera (1998). Under certain

conditions, this model nests with a lot of existing speci�cation, such as the threshold model

by Zokanian and the widely used asymmetric power model of DGE and the GJR model.

Two test statistics are suggested to test whether there exists the leverage e¤ect. A Monte-

Carlo experiment has shown that the supremum LM test is preferred when the small sample

is small, due to its estimation simplicity. The empirical result also shows the advantage of

our new model, which is more �exible in capturing the features of �nancial asset return

volatility.
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Table 10. Simulated power of two test statistics
Test Sample Size Actual Rejection Frequencies(%)

Nominal size: 5% Nominal size: 10%
LM test T=500 76% 82%

T=1500 90% 92%
Supremum LM test T=500 85% 93%

T=1500 100% 100%

Table 11. Simulated power of two test statistics
Test Sample Size Actual Rejection Frequencies(%)

Nominal size: 5% Nominal size: 10%
LM test T=500 25% 33%

T=1500 36% 44%
Supremum LM test T=500 41% 51%

T=1500 91% 95%

Table 12. Simulated size of two test statistics
Test Sample Size Actual Rejection Frequencies(%)

Nominal size: 5% Nominal size: 10%
LM test T=500 20% 32%

T=1500 25% 32%
Supremum LM test T=500 17% 27%

T=1500 11% 21%

Table 13. Summary statistics

Mean Median Skewness Kurtosis St. Dev Max Min
NASDAQ 0.00 0.00 0.26 6.64 0.02 0.13 -0.16
IBM 0.00 0.00 0.16 6.38 0.01 0.14 -0.10

Table 14. Estimation of conditional variance : NASDAQ index

ASTGARCH ASNGARCH STGARCH GARCH
!0 0.00 0.00 0.00 0.00��

�0 0.06�� 0.06�� 0.05�� 0.08��

�0 0.90�� 0.90�� 0.77�� 0.92��

!1 0.00�� 0.00��

�1 0.04�� 0.04�� 0.04��

�1 0.00 0.00��

� 495.69 561.13�� 133.00��

 0.53��

Log Likelihood 13785.09 13786.52 13459.10 13761.42

70



Table 15. Estimation of conditional variance : IBM daily returns

ASTGARCH ASNGARCH STGARCH GARCH
!0 0.00�� 0.00 0.00�� 0.00��

�0 0.05�� 0.04�� 0.05�� 0.05��

�0 0.92�� 0.93�� 0.77�� 0.94��

!1 0.00�� 0.00��

�1 0.02�� 0.03�� 0.08��

�1 0.01� 0.00��

� 56.21� 194.47 133.00��

 0.09��

Log Likelihood 12667.60 12678.32 12397.97 12650.30

Figure 6. Transition function F (�t�1; �; ) with di¤erent � and 
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Figure 7. News impact curve for GARCH(1,1) model and the asymmetric smooth transition
GARCH model for ht�1 = 0:5 and ht�1 = 5
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APPENDIX A

PROOFS OF NONPARAMETRIC LAG SELECTION FOR NONLINEAR ADDITIVE
AUTOREGRESSIVE MODELS

Proof of Theorem 1

Proof. We �rst show the asymptotic equivalence of AFPE and \FPE(S) for

� = 0 and � > 0. We then show that the rates of convergence for the over�tting case

become slower only if � > 0.

Under Assumptions A, using the argument in the proof of Theorem 3.1 of Tschernig

and Yang (2000), we have

bA = n�1
nX
t=1

 X
i2S

fi(Yt�i) + �(Xt)�t �
X
i2S0

bfi(Yt�i)!2w(XM;:t)
= n�1

nX
t=1

�(Xt)
2�2tw(XM;:t) + n

�1
nX
t=1

 X
i2S

fi(Yt�i)�
X
i2S0

bfi(Yt�i)!2w(XM;:t)
+n�2

nX
t=1

nX
j=1

 X
i2S

fi(Yt�i)�
X
i2S0

bfi(Yt�i)!�(Xj)�jw(XM;:t)
Taking expectation of bA and follow the same argument as in TA paper, we have the �rst

terms contributes to A and the second term contributes to 1
nhkKk

2
2B + h

4 �
4
K
4 C. Taking

expectation of the third term, we have

E

"
n�1

nX
t=1

2

 X
i2S

fi(Yt�i)�
X
i2S0

bfi(Yt�i)!�(Xt)�tw(XM;:t)
#

= 2E

24n�1 nX
t=1

nX
j=1

 X
i2S

fi(Yt�i)� E
 X
i2S

fi(Yt�i)

!
+ E

 X
i2S

fi(Yt�i)

!
�
X
i2S0

bfi(Yt�i)!�(Xt)�tw(XM;:t)
35
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If t = j; the above equation can be written as

�2E
"
Kh(Yt�i � yi;s)b�(Xt)

(X
i2S

q(x�i)

)
�2(Xt)

2�2t

#

= �2 1
nh
K(0)

Z
�2(x)

�(x)

(X
i2S

q(x�i)

)
w(xM )�(xM )dxM

If s 6= t, the contributions are of order O(T�1); following the argument from Tjøstheim and

Auestad (1994) paper.

If � = 0,

\FPE(S) = bA+ 1

nhopt
2K(0) bB

= AFPE + opf(nhopt)�1g

= A+
1

nhopt

�
kKk22B +

�4K
4
C

�
+ opf(nhopt)�1g:

If � > 0,

\FPE(S) = bA+ 1

nh
(m�1)�+1
opt

2K(0) bB;
= AFPE +

1

nh
(m�1)�+1
opt

2K(0)B + opf(nhopt)�[(m�1)�+1]g

= A+
1

nh
(m�1)�+1
opt

2K(0)B + opf(nhopt)�[(m�1)�+1]g:

Asymptotic properties of\FPE(S0) with m0 > m are similarly obtained by replacing B and

C of AFPE by B0 and C 0 and consider the new limit AFPE0. The result follows from the

fact that (m0 � 1)� + 1 > (m� 1)� + 1 as long as � > 0.

Proof of Theorem 2

Proof. Under Assumptions A and � 2 [0; 1], we have

\FPE(S) = A+Opf(nhopt)�[(m�1)�+1]g
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for correct speci�cation. For under�tting combinations S0, we have

\FPE(S0) = bA0 + 1

nh
(m�1)�+1
opt

2K(0) bB0
where

bA0 = n�1 nX
t=1

 
Yt �

X
i2S0

bfi(Yt�i)!2w(XM;:t)
and

bB0 = n�1 nX
t=1

(Yt �
P
i2S0

bfi(Yt�i))2b�(Xt)
(X
i2S0

q(X�i;t)

)
w(XM;:t):

The decomposition of bA0 yields
bA0 = n�1

nX
t=1

 X
i2S

fi(Yt�i) + �(Xt)�t �
X
i2S0

bfi(Yt�i)!2w(XM;:t)
= n�1

nX
t=1

�(Xt)
2�2tw(XM;:t) + n

�1
nX
t=1

 X
i2S

fi(Yt�i)�
X
i2S0

bfi(Yt�i)!2w(XM;:t)
+n�1

nX
t=1

2

 X
i2S

fi(Yt�i)�
X
i2S0

bfi(Yt�i)!�(Xt)�tw(XM;:t)
Using the argument in the proof of Theorem A.2 of Tschernig and Yang (2000), the �rst

term converges to A, the second term converges to

E

24 X
i2S

fi(Yt�i)�
X
i2S0

bfi(Yt�i)!2w(XM;:t)
35 = c2 +O(h02opt);

and the third term converges to zero. Thus,

\FPE(S0) = A+ c2 +Op(h02opt) +Opf(nhopt)�[(m�1)�+1]g

and the result follows by subtracting\FPE(S) from\FPE(S0).

Proofs of Theorem 3

Proof. The result directly follows from Theorems 1 and 2.
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APPENDIX B

PROOFS OF CONSISTENT COTRENDING RANK SELECTION WHEN BOTH
STOCHASTIC AND DETERMINISTIC TRENDS ARE PRESENT

Proof of Lemma 1

Proof. We want to show that b�1,� � � ,b�r1 is Op(1) but is not op(1), b�r1+1,� � � ,b�r2
is Op(T�1) but is not op(T�1), and b�r2+1, � � � , b�m is Op(T�2) but is not op(T�2) if all

the eigenvalues of S�111 S00 are arranged in a descending order. We employ the data matrix

notation, Y
0
= [y1; � � � ; yT ], D

0
= [d1; � � � ; dT ] and S

0
= [s1; � � � ; sT ].

We have constructed an orthogonal full rank matrix [B? B2 B1] in Assumption 1

and further de�ne

M11 = B
0
S11B; and M00 = B

0
S00B

Due to the orthogonality of the matrix [B? B2 B1], the eigenvalues of S
�1
11 S00 arise as the

same solutions to

det(�M11 �M00) = 0:

Our proof can be established in the following two steps.

Step 1:

We assume G = limT!1 T�3
PT
t=1 dtd

0
t exists and T

�3PT
t=1 dtd

0
t�G is O(T�1=2).

The eigenvalues of T 2M�1
11 M00 are equivalent to the eigenvalues �

0
s that solve

det(�T�2M11 �M00) = 0

For the matrix T�2M11, the only block matrix that is not equal to zero is B
0
?Y

0
Y B?,
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which converge to B
0
?GB? under Assumptions B. Because the eigenvalues are continuous

functions of the matrix,

p lim
T�!1

�i(T
2M�1

11 M00) = �i(p lim
T�!1

T 2M�1
11 M00):

It can be easily shown that M00 is Op(1) but is not op(1). Therefore, for i = r2 + 1; � � � ;m;

we are led to

�i(T
2M�1

11 M00) = Op(1) but is not op(1):

This leads to the result that T 2b�i is Op(1) but not op(1) for i = r2 + 1; � � � ;m:
Step 2:

Let DT = diag[Im�r2 ; T
1=2Ir2 ]; the roots of

det(�T�2M11 �M00) = 0

are equivalent to

det(DT
�
�T�2M11 �M00

�
DT ) = 0 (B.1)

The matrix �T�2M11 can be rewritten as0BBBBBBB@
�T�3B

0
?Y

0
Y B? �T�3B

0
?Y

0
Y [ B2 B1 ]

�T�3[
B
0
2

B
0
1

]Y
0
Y B? �T�3[

B
0
2

B
0
1

]Y
0
Y [ B2 B1 ]

1CCCCCCCA
;

and we denote

Ya = �T
�3B

0
?Y

0
Y B? �B

0
?�Y

0
�Y B0?;

Yb = �T
�2

0BB@ B
0
2Y

0
Y B2 B

0
2Y

0
Y B1

B
0
1Y

0
Y B2 B

0
1Y

0
Y B1

1CCA�
0BB@ TB

0
2�Y

0
�Y B2 T 1=2B

0
2�Y

0
�Y B1

T 1=2B
0
1�Y

0
�Y B2 TB

0
1�Y

0
�Y B1

1CCA ;
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and

Yc = �T
� 5
2

0BB@ B
0
2Y

0
Y B?

B
0
1Y

0
Y B?

1CCA� T 1=2
0BB@ B

0
2�Y

0
�Y B?

B
0
1�Y

0
�Y B?

1CCA :
Then equation (B.1) is rewritten as

det(Ya) det[Yb � Y
0
c Y

�1
a Yc] = 0 (B.2)

The �rst determinant can on the LHS of (B.2) cannot be equal to zero, implying the second

determinant must be zero. Concerning the �rst part of Yb;only its �rst r2 � r2 diagonal

block is nonzero, and the second part of Yb and Y
0
c Y

�1
a Yc is Op(T ) but is not op(T ): Hence,

we are led to

det(�iT
�2B

0
1Y

0
Y B1 �Op(T )) = 0

for i = r1 + 1; � � � ; r2. While we let T goes to in�nity and the solutions �i solves the above

equation satis�es

�i(T
2M�1

11 M00) = Op(T ) but is not op(T ) for i = r1 + 1; � � � ; r2:

Therefore, one can conclude that b�i is Op(T�1) but is not op(T�1) for i = r1 + 1; � � � ; r2.

Analogously, one can show that b�i is Op(1) but is not op(1) for i = 1; � � � ; r1.
Proof of Proposition 2

Proof. (i) Let r1 be the true cotrending rank, which is estimated by minimization

of V N1(r1) for 0 � r1 � m: To check the consistency of this estimator, we need to show

V N(r
0
1) > VN(r1) if r

0
1 is not equal to the true cotrending rank r1:
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When r
0
1 < r1,

V N1(r
0
1)� V N1(r1) =

r1X
i=r

0
1+1

b�i + (f(r01)� f(r1))CTT�1
In order to consistently select r1 with probability 1 as T !1; we need

r1X
i=r

0
1+1

b�i + (f(r01)� f(r1))CTT�1 > 0; as T !1:

From Proposition 1, we know the �rst term is a positive number that is bounded away from

zero and the second term is a negative number of order O(CTT�1): As long as CTT�1 ! 0

as T ! 1; the above inequality holds and we are led to the conclusion that V N1(r
0
1) >

V N1(r1) when r
0
1 < r1:

When r
0
1 > r1,

V N1(r
0
1)� V N1(r1) = �

r
0
1X

i=r1+1

b�i + (f(r01)� f(r1))CTT�1
From Proposition 1, we know that b�i is Op(T�1) but is not op(T�1) for i = r1 + 1; � � � r2;
By multiplying both sides by T; we have

T
�
V N1(r

0
1)� V N1(r1)

�
= �T

r
0
1X

i=r1+1

b�i + (f(r01)� f(r1))CT :
As long as CT ! 1 as T ! 1, the second term on the right hand side dominates, which

leads to V N1(r
0
1) > V N1(r1) when r

0
1 > r1. Thus the consistency of V N1(r1) in selecting

true cotrending rank is established. Analogously, one can establish the consistency of the

estimator of the true weak cotrending rank by V N2(r2):

(ii) To show the consistency of the joint selection procedure, consider all the pos-

sible cases as follows.

Case 1: r
0
1 < r1;
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We have

V N(r
0
1; r

0
2)� V N(r1; r2) =

p
T

r1X
i=r

0
1+1

b�i +Op(CT
T
);

where b�i for i = r01 + 1; � � � ; r1 is Op(1) but is not op(1):
From Proposition 1 and Lemma 1, the �rst term dominates, which leads to V N(r

0
1; r

0
2) >

V N(r1; r2) when r
0
1 < r1:

Case 2: r
0
1 > r1:

V N(r
0
1; r

0
2)� V N(r1; r2) = �

p
T

r
0
1X

i=r1+1

b�i + (f(r01)� f(r1))CTT +Op(
CT
T 2
);

where b�i is Op(T�1) for i = r1 + 1; � � � ;m:
The dominant term in the above equation is (f(r

0
1)�f(r1))CTT provided that CTp

T
!

1, the inequality V N(r01; r
0
2) > VN(r1; r2) holds in this case.

Case 3: r
0
1 = r1:

When r
0
2 > r2;

V N(r
0
1; r

0
2)� V N(r1; r2) = �

p
T

r
0
2X

i=r2+1

b�i + (f(r02)� f(r1))C 0
T

T 2
;

where b�i is Op(T�2) for r02 + 1; � � � ;m:
Then, we have

T 2
�
V N(r

0
1; r

0
2)� V N(r1; r2)

�
= �

p
T

r
0
2X

i=r2+1

T 2b�i + (f(r02)� f(r2))C 0
T :

Provided that CTp
T
! 1, the dominant term is (f(r

0
2) � f(r2))C

0
T , which is greater than

zero. Hence V N(r
0
1; r

0
2) > VN(r1; r2) in this case.When r

0
2 < r2;

V N(r
0
1; r

0
2)� V N(r1; r2) =

p
T

r2X
i=r

0
2+1

b�i + (f(r02)� f(r2))C 0
T

T 2
:

The �rst term on the right hand side is Op(T�3=2) but is not op(T�3=2); dominate the second
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term, provided that C
0
T
T ! 0: Hence V N(r

0
1; r

0
2) > V N(r1; r2) in this case.Combining the

conditions on CT and C
0
T , for all the preceding cases, it follows that the joint selection

procedure will lead to consistent estimation of the cotrending and weak cotrending rank
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