SENSOR COMPUTATION AND COMMUNICATION

FOR REMOTE STRUCTURAL MONITORING

By

Olabode Ajiboye

Thesis
Submitted to the Faculty of the
Graduate School of Vanderbilt University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE
in
Electrical Engineering
August, 2009

Nashville, Tennessee

Approved:
Dr. William H. Robinson

Dr. Akos Ledeczi

ACKNOWLEDGMENTS

I thank God for the opportunities that have been presented to me thus far. His
providence is very evident in all aspects of my life and for that I am very grateful. I will
also like to thank my family and friends for their words of encouragement throughout the
course of my time here at Vanderbilt University.

My Adpvisor, Dr. Robinson has been a great teacher and an even better role model
for me during these past few years. His support has been very instrumental and his very
calm and amicable demeanor did more in terms of encouragement than words will be able
to express. I also want to thank Dr. Ledeczi for being my second reader, and providing the

proper insight and objectivity necessary to make this work a success.

i

TABLE OF CONTENT

Page

ACKNOWLEDGMENTSottt ettt sttt et esaee e il

LIST OF TABLES. ...ttt st ettt et e s saeee e v

LIST OF FIGURES ...ttt sttt e e vi
Chapter

. INTRODUCTION.....ccuttitiiititeeteete ettt sttt e et e s 1

II. STRUCTURAL HEALTH MONITORING........ccccceiiiiiiiniiiniieeenieeeeeee e 5

III. HARDWARE AND SOFTWARE RESOURCES.........cccoooiiiiiiiieeiiieeeeeeee e 9

Hardware ReSOUICES.cccuiiiiiiiiiiiiiiieeeeceeete e 9

Software Resources — TinyOS And NesC.......ccceeeviierniiiniiiiieeeeiiniiieeeeenn 11

IV. SYSTEM CONSTRAINTS AND APPLICATIONS......ccceeiiiiinienieeeee e 15

SYSEM CONSITAINES. ..ccueveeiiieeiiieeeiteeeit ettt ettt e et e s e e e e e e e 15

Real-Time COnStraints.cccueeerieeriieeiiiieeriieeeeeeeiee et siieeeee s 15

Message Passing SpecifiCationsccceevueeerieeiniieeeenniiiiieee e 16

APPICALIONS. ...eeeiiiieiiiie ettt et e et e e e st e e e beeesabeeeenneeees 17

Fast Fourier Transforms...........cooueerieiieiniiniieeceeeceeese e 17

Tiny Encryption AIZOrithm.........ccoceeiiiriiiniininiiniiniiienieeeceieeeee 19

V. RESEARCH CHALLENGE........cccoiiiiiiiiiieee ettt 23

VL. EXPERIMENTAL SETUP.....c.ooiiiiiiiiiee ettt 25

OSscilloSCOPE APPIICALION. ...ccuviiieiiieeiiieeiieeeite ettt e e e e ee e e e 26

Network Data MONITOTING.veeruieieiieeiieeerieeesteeeveeeireeeeeeeeerraeeaeeennns 27

Propagating Large Data Sets........cccccoovviriiiiiiiiiiniiiiceccee e 29

il

Verification Of FFT And TEA Implementations On IRIS Mote.................. 31

Characterizing The Computational Performance Of The System................ 33
VILRESULTS. ...ttt ettt ettt e st e et e e e 36
TIMING ANALYSIS.c..eieeiiiiiiiiieiiiee ettt et e e e s e e e e e e e 36

Memory UtIHZAtION.veeriiieriieeriie ettt ettt et e e e e 46

Continuous Data Sampling..........cccueeeviieeiiieniieeeiie e 48
VIILSUMMARY ...ttt sttt ettt ettt et e e ettt e e e it e e e 49
REFERENCES.ttt ettt et sttt e st e b e st sab e e neaee s 51
APPENDIX ...ttt et ettt ettt ettt s 55
OSCUIOSCOPE.N....eeiiiieiiiieeeeee ettt s e e e e e aeeees 55
Oscilloscope.nc (Ori@inal)........cooieriiiriiriieieeeee et 57
Oscilloscope.nC (MOAIfIed).......ueeeruiieeciiieeiieeciie et 63
OSCUIOSCOPEAPPC.IIC. ..ttt et e e e 83
PEILPLcce e 85

v

LIST OF TABLES

Table Page
1. Expected Data Transmission Time...........coooveeiiiiriiiiieniieeniieeiieeeieeeee e 44
2. Memory UtIHZAtION........cccueeiriiiiiie ettt ettt et e e e 46

Figure

10.

11.

12.

13.

14.

15.

16.

17.

18.

LIST OF FIGURES

Page
SYSEM ATCRILECIUTE.vieiiiieeiiieiiie et estee ettt et ste e e sbee et ee et eesenbtreeeeeeaas 8
IMTSBI0CB... ettt ettt e et e st e e et ee e 9
XIM2TTOCA ...ttt et s e et e et e bt e s abe e bt e saeeeabeesateenseeens 10
IMICA IMIOLL. ...ttt ettt ettt ettt e e sab e s bbbt e e e e e easenes 10
MIBS20CBi.......c ottt ettt et sttt e e 10
DFT ALOTItRIM....cciiiiiiiiiiiciieceeeee et e e e e e eeeeeennes 17
Computing an 8 Point DFT [14]......ccooiiiiiiiieeeeeeeeeeeeeeee e 18
Eight-point decimation-in-time FFT algorithm [15].......ccccccooiiniiiiiniiis 19
A FEIStE] StTUCTUTE [18] e e e e e 21
Java GUI for data collection at the base Stationcceceeveereeenieniieeeniieee e, 27
A SAMPIE MESSAZE....eeenvveeeirieririeiiiteeeiteeeitteeeitteestteestteesbeeesbeeesaseeessbeesnsraeeesesnnns 28
Data Verification with error Margin.........cccveerieeeriieeniiieeriee e eriee e eireesinee s 32
32 HZ time Graph.....coocuoiiiiiiiiiiiieeee ettt 38
64 HZ time Graph........cooiiiiiiiiiiiieieeeeeeee e 38
128 HZ tiME GIaPN...cc.eviieiiieeiiieeiieeeiieeette ettt ettt stee et eeseaae e e e 39
256 HZ tiMe GTaph......ccuvieeiiiieeiiieeieeciie ettt e e e e e e e sabee e 39
S12 HZ tiMe Graph.....ccc.oooiiiiiiiiiiiiieeeceee et 40
1024 HZ time Graph........ccoooiiiiiiiiieieieceee ettt e e e 40

Vi

19. Buffering time Graph at S12HZ.........coocuiieiiiiiiiiiiieeeee e 41

20. Buffering time Graph at 1024HzZ coooiiiiiieteee e 41
21. Task Execution Graph.........ccoccceoiiriiiiiiniiieiieeeee et 43
22. Transmission Time as a function of FFT Size at 256Hz...........c.cccocceviiniiiniennne. 44
23. Number of Nodes for different Sampling Frequencies..........cccccceeevevivieeeeeennnne. 45
24. Memory UtHIZAtION.........coooiiiiiiiriiiiienieeieeete ettt s 47

vil

CHAPTER 1

INTRODUCTION

The economy of the United States is greatly tied to the transportation system, and
bridges are an integral part of the network that connects people and businesses.
Therefore, it is important to make the inspection, maintenance and repair of these
structures a high priority. Prior to the catastrophic collapse of the bridge in Minneapolis
[1], most bridge inspections had been visual with follow-up done only when visible
damage is noticed. The event in Minneapolis sparked great interest in the area of
computerized inspections that can provide better and more accurate understanding of the

structural health of the bridges.

Wireless sensor networks (WSNs) offer a promising method to provide structural
monitoring of bridges. A WSN is a collection of spatially distributed autonomous sensing
devices also known as motes, which are capable of communicating with each other in a
structured or ad hoc manner [2]. The motes are capable of monitoring physical conditions
using sensors that are attached to them. A sensor network node’s hardware consists of a
microprocessor, data storage, sensors, analog-to-digital converters (ADCs), a data
transceiver, controllers that tie the pieces together and an energy source [3]. Most WSN
applications have to deploy a significant number of sensors into the field, hence slower
and cheaper processors are mounted on these nodes to minimize cost. However, advances
in the area of semiconductors promise a future with smaller and more efficient

microcontroller circuits.

Research in the area of Structural Health Monitoring (SHM) has primarily
involved wireless data collection at nodes with centralized data processing. Today, motes
are built with faster processors, hence improving the prospect for transferring much of the
data processing to the wireless network. The work in this thesis primarily examines the
potential limitations of current sensor technologies (e.g., the IRIS mote) to implement a
real-time structural health monitoring system with decentralized data processing. These
limitations are examined using the performance changes due to the introduction of on-
chip processing. The on-chip processing involves the implementation of both a Fast
Fourier Transform and a lightweight data encryption mechanism. By processing data at
the nodes, additional time will be needed for data processing and encryption. This
introduces overhead into the system that impacts the data transmission time; this in turn
affects the design of a real-time system. A real-time system is defined as a system that is
capable of sampling data at a given frequency with a very small time margin in between
sample blocks. The monitoring system should provide an adequate programming platform
that can be used for built-in data security and on-chip data processing. It should also
utilize existing technology in a way that will provide a thorough and cost-effective means
of monitoring bridges in a real-time environment.

Most modern structures have a characteristic natural vibration frequency of about
10 Hz. However by the Nyquist theorem [4], the sampling rate should be at least twice
that value to reproduce the original signal with adequate fidelity. In order to reduce the
effects of the constant influx of noise, it becomes imperative to sample at rates much

higher than the suggested Nyquist levels [5]. There are also other cases such as David

Culler's work that suggest sampling in the kHz range [6]. Prior research in this area
suggests a minimum sampling rate of 100 Hz [5].

A secondary goal of the project is to determine a feasible range of relevant
sampling frequencies for the IRIS mote. These range of frequencies should not introduce
any latency into the system that is being implemented.

This thesis contributes to this research field in the following ways:

It studies the potential of a structural health monitoring system with

decentralized processing.

It also studies the feasibility of using Wireless Sensor Networks for real-time
data acquisition, processing and transmission in a structural health monitoring

system.

« It determines a feasible range of relevant sampling frequencies on the specified

hardware.

The organization of this thesis is as follows. Chapter 2 provides a brief description
of the Structural Health Monitoring application domain and it also gives some
perspective on prior work that has been done in this area. This background information
will assist the reader in understanding the scope and direction of the work in this thesis.
Chapter 3 gives a description of the hardware and software that were used for this project.
Chapter 4 discusses the constraints of developing a real-time system, as well as some of
the challenges of implementing a decentralized Structural Health Monitoring system.
Since much of the decentralized processing will involve conversion of data in the time-

domain data into its corresponding frequency domain, Fast Fourier Transforms will also

be discussed. This chapter also describes the different data security options that can be
used for the proposed system. Chapter 5 discusses the research challenges that this project
tackles by outlining the contributions of this work to the research community, while
Chapter 6 provides the experimental setup. Chapter 7 discusses the results and provides
an analysis of the collected data. The final chapter summarizes the results as well as

provides some directions of possible research in this area.

CHAPTER 11

STRUCTURAL HEALTH MONITORING

Structural Health Monitoring is an indirect way of detecting the level of damage
that has been done to a structure via natural or human-induced disturbances [6].
Traditionally, Structural Health Monitoring was done using wired systems that collected
and monitored data from these structures. This was an expensive and inflexible approach
because the system could not be easily redeployed if better data collection points were

discovered on the structure.

Wireless Sensor Networks became a good way to solve this problem, and thereby
meet a major requirement for a viable SHM system. Autonomous motes could now be
deployed over a field of interest while data was collected at a base station [7], [3]. The
decision to use WSNs came with a significant trade-off; bandwidth had to be sacrificed
for flexibility and price. The radios on the sensors were not capable of transferring data at
very high speeds, which also limited the number of motes that can be part of a single

network.

N. G. Shrive from the University of Calgary gives a description of the
requirements for a SHM system from a civil engineering standpoint [7]. According to the
work in that paper, an effective and deployable SHM system needs to have cheap,
replaceable and durable sensors with some on-site artificial intelligence and low-power
requirements. This proposed system’s on-site intelligence should be capable of

determining failure in the sensors and power sources. The work in this thesis recommends

the use of wireless data transmission in order to avoid the risk of disruption to wires;
wireless systems can also be easily replaced as advances in both software and hardware
are made. Lastly, the system should be designed in a way that allows sensibility to certain
structural response parameters that are calculated for the particular structure on which it

will be deployed.

Prior work done by Deepak et al. discusses the design of Wisden [5], a first
generation wireless sensor network that is used for structural data acquisition. According
to them, first generation network systems are likely to be used for data acquisition with
much of the processing done at a base station node. Their main goal was to implement a
reliable data transport as well as a wavelet based compression mechanism to deal with the
issue of limited bandwidth. The work in this thesis focuses on implementing a second
generation system with more data processing done in the network. Deepak’s work
implemented their system using the MICA mote, and its performance is compared to that

of the IRIS mote which was used to implement this project.

D. Culler et al. describe the implementation of a first generation SHM system on
the south tower of the Golden Gate Bridge (GGB) [6]. This work identifies the
requirements that a SHM system imposes on a WSN and new solutions to meet these
requirements are proposed and implemented. This particular work is one of the largest
deployments of a WSN for SHM with data sampled reliably over a 64-node, 46-hop
network. The work on the GGB was able to obtain data of sufficiently high quality by
sampling at rates much higher than 200 Hz; the sampling rate for the previously

mentioned Wisden system. Secondly, the work was designed for scalability, allowing for

dense sensor coverage. It is also important to note that this system was actually deployed
on a real-world structure, hence it was able to solve the myriad of problems that come
with a real deployment. This resulted in meaningful and reliable calibrated data which is
usually missing in prototype implementations. This work also found out that smaller
packet sizes tend to be a bottleneck for multi-hop network data transmission bandwidth,
however, larger packets sizes do not necessary provide a solution to this problem due to

the limited amount of RAM space on the motes.

Although the current work in this area involves the traditional implementation of a
SHM system with a single data collection point, allusions have been made to a
decentralized system as the future of research for bridge monitoring. With advances in
semiconductor technology, it is becoming easier to manufacture motes with faster
processors. This makes it possible to transfer the data processing tasks to the sensor nodes
that make up these networks as shown in Figure 1. The main task that is transferred is the
Fast Fourier Transforms and additional tasks like data encryption and compression can
also be implemented on the sensors. This idea is currently mitigated by the issue of
energy supply for such systems. Wireless Sensor Networks have autonomous nodes that
have a limited amount of energy supply, hence limiting the amount of processing and
transmission that can be done on these sensors. The use of Wireless Sensor Networks for
structural monitoring also introduces the issue of data security, making the

implementation of a data encryption mechanism a primary goal.

a/"'___"\\

task fft()
= |

Fig. 1 — System Architecture

All these advancements in radio transmission rate and increased computational
capacity in low-cost sensors make real-time structural health monitoring an interesting
idea. Real-time data monitoring involves continuous data capture with a very small time
margin between data sample blocks. The marginal time is represented as a percentage of
total execution time, and the acceptable threshold will be set by the system designer. This
idea forms the basis for this thesis work where a single-hop network will be observed and

characterized for continuous data sampling and on-chip computation.

CHAPTER III

HARDWARE AND SOFTWARE RESOURCES

Hardware Resources

A Wireless Sensor Network (WSN) is a collection of sensors that are capable of
communicating with each other in a structured or ad hoc manner. Each sensor has a
processor for data processing, a radio interface for wireless communication and a
dedicated memory for storing data and programs. The project characterizes the feasibility
of Crossbow technology's products for the purpose of real-time data collection and
processing. The products used are listed below:

* MTS310CB which is a basic sensor board that plugs into the mote. It features a

light and temperature sensor, a microphone, sounder and an accelerometer [8].

Fig. 2 - MTS310CB

e XM2I110CA (aka Iris mote) which is a mote module used for enabling low
power, wireless sensor networks. It is capable of sending data at 250 Kbps and

also has node routing capabilities used by multi-hop networks [9].

Fig. 3 - XM2110CA

MICA is an 868/916 MHz mote that transfers data at 38.4 kbaud and is used
extensively in wireless sensor networks. This hardware is introduced here

because its performance will be compared to that of the IRIS mote later in this

paper.

Fig. 4 — Mica Mote

MIB520CB which is a base station for the entire wireless network. It allows for
a wired connection with the PC via the USB port. The port is used for

programming the motes and communicating with them as well [10].

Fig. 5 — MIB520CB

10

Software Resources — TinyOS And NesC

TinyOS [11], [12] is a platform independent operating system that was used as the
software interface for the hardware products listed in the previous section. It allows for
wired or over the air configuration of the motes. Programming in the TinyOS
environment is done in a language called nesC (network embedded system C) which is a
variant of the C programming language. Although it is a C variant, there are very marked
differences in the programming styles. The nesC language is an event-driven
programming language that is used to directly control the hardware on the sensors. It is
also a modular language with applications being built from other smaller components that
are able to provide the necessary functionalities. These components are called Modules,
and they need to be joined together via a process called “Linking” in order to build a
larger working application. The modules are very similar to objects conceptually; they
encapsulate and couple state with functionality. However, the principal distinction lies in
the naming scope. Unlike C++ and Java objects, which refer to functions and variables in
a global namespace, nesC components use a purely local namespace. This means that in
addition to declaring the functions that it implements, a component must also declare the
functions that it calls. The name that a component uses to call these functions is
completely local. When a component “A” declares that it calls a function “B”, it is
essentially introducing the name A.B into a global namespace. A different component, C,
that calls a function B introduces C.B into the global namespace. Even though both A and
C refer to the function B, they might be referring to completely different implementations.

Every component has a specification, a code block that declares the functions it provides

11

(implements) and the functions that it uses (calls). For example, the specification for a

fictional component SampleC is given as:

module SampleC {
provides command uint8_t send_data(uint8_t* array, uintS_t len);

uses command uint8_t get_data(uint8_t* array, uintS_t len);

Because SampleC provides the function “send_data”, it must define it so that
other components can call it. Conversely, because SampleC uses “set_data”, it can
reference the function and so depends on some other component to define it. Components
can always reference functions that they define, meaning SampleC can call function
“send_data” on itself. In practice, components very rarely declare individual functions in
their specification. Instead, NesC has interfaces, which are collections of related
functions. Component specifications are almost always in terms of interfaces. For
example, some applications require stop and start services. The StdControl interface is a

common way to express this functionality:

interface StdControl {
command error_t start();

command error_t stop();

A component representing an abstraction or service that can be turned on or off
provides StdControl, while a component that needs to turn others on and off uses

StdControl. This is often a hierarchical relationship. For example, a routing layer needs to

12

start a data link packet layer, which in turn needs to start and stop idle channel detection:

module RoutingLayerC {
provides interface StdControl;

uses interface StdControl as SubControl;

module PacketLayerC {

provides interface StdControl;

Connecting providers and users together is called wiring. For example,
RoutinglayerC’s code has function calls to SubControl.start() and SubControl.stop().
Unless SubControl is wired to a provider, these functions are undefined symbols,
meaning they are not bound to any actual code. However, if SubControl is wired to
PacketLayerC’s StdControl, then when RoutingLayerC calls SubControl.start(), it will
invoke PacketLayerC’s StdControl.start(). This means that the reference
RoutingLayerC.SubControl.start points to the definition PacketLayerC.StdControl.start.
The two components RoutinglLayerC and PacketLayerC are completely decoupled, and

are only bound together when wired.

For computationally intensive programs, TinyOS allows the use of “tasks” which
are synonymous to functions in any other programming language. These tasks can be
triggered inside an event. For example, it is possible that a programmer wants to perform

some operation on a set of data collected from the sensors. Once the readings arrive, an

13

event is triggered, and the programmer can then place a call to a task to perform some
arithmetic operation on the newly gathered data. Unlike the C language, tasks need not be

declared, but they still need to be implemented before they are called.

14

CHAPTER IV

SYSTEM CONSTRAINTS AND APPLICATIONS

System Constraints

Real-Time Constraints

The concept of real-time means different things to different system designers, but
for the scope of this project, it refers to a system that is capable of sampling data at a
given frequency, with a very small time margin in between sample blocks. The major
constraints of such a system for structural health monitoring are discussed below:

+ Energy: wireless sensors have a limited power source and this limits the
amount of data computation and transmission that can be done. Real time
systems require continuous data sampling, processing and transmission, and
this energy constraint poses a major restriction to the implementation of such a

system

« Data transmission and storage: Motes are very small computers that have
limited memory on them. This limits the amount of data that can be stored
intermediately prior to processing and transmission. Intermediate data storage
is a major part of real-time systems because information needs to be buffered

in order to support the idea of continuous data sampling and transmission.

- Sampling frequencies: The frequency at which data is sampled is critical to the

successful implementation of a real-time system. The sampling frequency has

15

to be high enough to detect the natural vibration frequency. However, sampling
at a high frequency poses a few challenges. It results in more data points, hence
requiring more intermediate data storage. It also means that more data will be

transmitted over the radio hence utilizing more power.

Although there are many factors that limit the implementation of a real-time
system, it is still important to pursue scholastic ideas that explore the potential of the
components that make up the system. This work can be categorized as a probe into the
potential implementation of a real-time monitoring system.

Message Passing Specifications

TinyOS 2.x is only capable of sending a maximum of 128 bytes. The default
payload size in each message is set to 28 bytes, but this value can only be altered at
compile time as stated in the programming manual. This poses a problem for applications
that are designed to send packets of varying size. TinyOS 2.x uses a data structure called
“message_t” to organize the data that will be sent across the network. In the “message.h”
file under the “tinyos2.x/tos/types” directory, the variable TOSH_DATA_LENGTH is
used to store the length of the data field. Its default size is 28 bytes, but its value can be
changed at compile time with the command line option: DTOSH_DATA_LENGTH = x.

Since this value is reconfigurable, it is possible that two different versions of an
application can have different packet sizes. If a packet layer receives a packet whose
payload size is longer than TOSH_DATA_LENGTH, it must discard the packet. This
work addresses the limitations of fixed packet sizes and the maximum length of a packet.

This is mainly relevant for cases where particularly long data sets are needed for signal

16

processing computations.

Applications

Fast Fourier Transforms

Fast Fourier Transforms are integral in representing and analyzing the information
gathered from the bridge structures. This project focuses mainly on the vibration
frequency parameters that are gathered using the accelerometer device on the sensor. This
data will then be separated into its frequency component using a Fast Fourier Transform.
A Fast Fourier Transform (FFT) is an efficient algorithm used to compute the Discrete
Fourier Transform (DFT) of a discrete signal. A DFT decomposes a sequence of values
into components of different frequencies. For the case of this thesis, a series of time
domain data are passed through a DFT algorithm to get the frequency domain
components of the input data. An FFT is essentially a faster implementation of a DFT
computation. Computing a DFT of N points takes O(N?) arithmetical operations, while an
FFT can compute the same result in only O(N log N) operations. The difference in speed
can be substantial for long data sets. The computation time can be reduced by several

orders of magnitude in such cases, and the improvement is roughly proportional to

Nllog (N). Let x,,, xx, be complex numbers, the DFT is defined by the formula:

N—] ==Ll
X.=> xe" k=0,..,N—1

n=0

Fig. 6 — DFT Algorithm

17

This project adapts the Cooley Tukey [13] algorithm which is a very popular
computation of the DFT. It uses a divide and conquer algorithm that recursively breaks
down a DFT of size X into two pieces of size X/2 at each step, limiting the length of the
input sequence to powers of 2. This method is generally referred to as the Radix-2

method.

For illustrative purposes, Figure 6 depicts the computation of an 8-point DFT (N =
8). Observe that the computation is performed in three stages, beginning with the

computations of four two-point DFTs, then two four-point DFTs, and finally, one eight-

point DFT.
x(0} 2-point
x(4) =———d DFT Combine e X (0}
2-point
) DFT's (1)
F(2) r—— 2-point pomsn X(2)
x(6) DFT Combing e ¥{3)
49';?;“ e X(4}
x(1) ——— 2-point —t X{5)
x(5) DET Combing —e X{5}
2-point
- DFT’s = X
x(3} 2-point
x(7) DFT

Fig. 7 — Computing an 8 Point DFT [14]

Once all the 2-point FFTs have been calculated, the values are then recombined in

a butterfly combination as illustrated in Figure 8.

18

Stage 2 Stage 3

N/ .

X(1})

x{0) .

x(4)

Stage 1
-1
(2} ~ X2y
Wl >< wi] \><X/ X0y
-1

x(6)

x(1) X(4)

x(5)

W XX /N,

XN

x(3)

x{7)

Fig. 8 — Eight-point decimation-in-time FFT algorithm [15]

Tiny Encryption Algorithm

There are many encryption algorithms that have been developed since the early
70s, but most of them are usually computationally intensive. This makes them unsuitable
for deployment on sensors nodes due to the low processing capabilities of these motes.
The Tiny Encryption Algorithm (TEA) [16] was used in this project because of its
simplicity and ease of implementation. Prior to providing the details about TEA, it is
important to mention TinySec [17], a link layer encryption mechanism which is meant to

be the first part in a suite of security solutions for TinyOS devices.

TinySec

TinySec is a link layer encryption mechanism that was created to address security

issues in devices where energy and computational power present significant resource

19

limitations. Just like the TEA, TinySec also implements a block cipher with a single
symmetric keying system, hence providing a similar level of security. The main goals for

TinySec are to provide the following:

Access control: by ensuring that only authorized nodes are able to participate in

the network because only authorized nodes have access to the shared group key.

Integrity: by making sure that messages are only accepted provided they have not

been altered in transit.

Confidentiality: by ensuring that outside parties are not able to infer the content

of messages.

Simplicity: by providing a security stack that provides the three goals mentioned
above which is no more difficult to use than the traditional, non-security aware

communication stack.

The Tiny Encryption Algorithm was chosen over the TinySec for the two reasons

listed below:

+ Tiny Encryption Algorithm is platform independent.

« Unlike the TinySec implementation, Tiny Encryption does not increase the size

of the original packet.

The TEA is a block cipher that was developed by David Wheeler and Roger
Needham at the Computer Laboratory of Cambridge University. It is one of the fastest
and more efficient cryptographic algorithms in modern times. It is a Feistel cipher which

uses logical operations like - XOR, ADD and SHIFT. It encrypts 64 data bits at a time

20

using a 128-bit key. The key schedule is extremely simple, with all the parts of the key
used in exactly the same way for each cycle. It seems highly resistant to differential
cryptanalysis, and achieves complete diffusion (where a one bit difference in the plain
text input will cause approximately 32 bit differences in the cipher text) after only six
rounds. Performance on a modern desktop computer or workstation is very impressive,
and it can also be implemented on a mote. The simplicity of the TEA algorithm makes it
vulnerable to certain attacks. One of its main weaknesses is the problem with “equivalent
keys”; each key is equivalent to three others which means that the effective key size is

only 126 bits. However, it provides the level of security needed for the scope of this work.

| =<4

=

[Tl >>5

Fig. 9 — A Feistel structure [18]

According to Simon Shepherd, Professor of Computational Mathematics at
Bradford University, the TEA is a relatively safe algorithm with no known successful

cryptanalysis. It uses the same mixed algebraic group technique as the International Data

21

Encryption Algorithm (IDEA), but it is much simpler making it faster as well. The code
is very lightweight and portable enough to be used on small computers such as those on
sensors. The minor weaknesses identified with the TEA algorithm are rectified in a new
variant of the algorithm called Block TEA or XTEA[16]. TEA fits the bill for a low-

overhead end-to-end cipher encryption.

22

CHAPTER V

RESEARCH CHALLENGE

Using Wireless Sensor Networks for Structural Health Monitoring has become the
prevalent consensus amongst researchers in this area [3]. Most current systems implement
sensors that are able to send raw information to a base station. This base station mote is
typically connected to a computer that is capable of processing large volumes of
information. Also, little work has been done in the area of real-time data collection for
structural health monitoring. Most systems are either event driven, or collect data at a
delayed time interval.

The work in this thesis studies the potential of a structural health monitoring
system with decentralized data processing. This monitoring system will have nodes that
are capable of processing data prior to sending them over the network. This also allows
for the possibility of implementing data security and/or compression techniques on the
sensor nodes.

Some of the system implementation challenges involve exploring the effects of
sending data sets of multiple sizes across the network, as well as sending an aggregate
data size of more than 128 bytes in cases where it is needed. This project naturally
exceeds this since it involves the calculation of Fast Fourier Transforms which at times
may require up to 1024 points of data.

By measuring the accuracy of the results sent across the network for varying

packet lengths, the computational feasibility (i.e. capacity) of the IRIS mote is

23

characterized for real-time and computationally-intensive processing.

Most computers have a MIPS (millions of instruction per second) specification
that is used by researchers as a benchmark for selecting the right machine for their
projects. This work characterizes the computational efficiency of the sensors by
measuring the performance based on the computation of Fast Fourier Transforms and the
implementation of a data encryption algorithm on multiple lengths of data in real time at
different data sampling frequencies. It is worthwhile to pursue these concepts because
sensors are used for a variety of applications, and hence an adequate characterization of
their computational capacity may be helpful in selecting a particular mote to match a
user's need.

The resonant frequency of a structure is that frequency which causes the structure
to vibrate at maximum amplitude. This in turn causes the structure to be under
tremendous stress. Although most structures have a natural resonant frequency of less
than 10 Hz, it is important to sample at a rate much higher than that in order to increase
the fidelity of the signal as well as eliminate problems caused by noise. This is the reason
why this project characterizes the performance of the motes for multiple frequencies. It is
possible to implement a filtering algorithm to solve the issue with noise, but that will be

additional tasks that will have to be implemented on the sensor.

24

CHAPTER VI

EXPERIMENTAL SETUP

This project uses the Oscilloscope program [6] that sends periodic data gathered
from a sensor to a base station. This algorithm was altered to implement the solutions to
the problems that were discussed in earlier sections. In order to solve the problem of
having a limited packet size, an algorithm was implemented that is best described as a
“Burst Mode” application for the sensor. It is a way to change the amount of data that is
sent across the network, and it also serves as a foundation for characterizing the
effectiveness of performing large-scale computation on a relatively large set of data. A
buffer is created which holds the values collected from the sensor prior to sending them
across the radio. There are some control parameters that monitor the accumulation of data
in the buffer. These parameters are used to initiate a rapid succession of data being sent
across the radio once the buffer is full. This is useful when data processing has to be

completed before the final values are sent.

Characterizing the performance of the motes requires the gradual increase in the
size of the buffer which holds the values that need to be processed within the TinyOS
tasks. This approach is useful for identifying the buffer sizes that result in an excessive

computation time; excessive computation time is unacceptable for real-time applications.

The following subsections will discuss the approach used in this experiment for

collecting useful data; these data are used to characterize the feasibility of the given

25

hardware for use in a real-time structural health monitoring system.

The following sections provide a description of the components that are integral to
setting up this project. It also explains the main concept that was used to tackle the issue
of propagating large data sets across the network. The penultimate section discusses the
methods used to verify the integrity of the data produced from the FFT and TEA
algorithms. The final section provides a description of how the computational

performance of the processors will be analyzed.

Oscilloscope Application

The Oscilloscope application (APPENDIX) is a simple data-collection program
that periodically samples the default sensor and broadcasts a message over the radio once
a specified number of readings have been reached. These readings are received by a base
station mote, and the values can be collected in a variety of ways. The original version
gathers the data by using a Java program that shows the values in a Graphical User

Interface as shown in the figure 10.

26

"~ Oscilloscope
_Maote | Color ||

X: 4924 - 5024

Clear data Sample period gnsy:/100 | — v{z500 - 4095 ||

Fig. 10 — Java GUI for data collection at the base station

The lines represent values that are being sent from independent motes that have
been programmed to report to this particular base station. For the purpose of this
experiment, a packet sniffer is used to collect all data sent over the radio from the sensor
node to the base station. The packet sniffer intercepts the raw data that is sent over the
radio to the basestation, and this data is used for analysis, verification and graphing. More

details about this application is provided in the next section.

Network Data Monitoring

It is very important to be able to monitor the values that are passed between the
sensor node and the base station. TinyOS has a Java tool that listens to the network port
of the computer for incoming packets sent by the sensor node. The command line option

used to initialize this listening device is:

“java net.tinyos.tools.Listen -comm serial @/dev/ttyUSB 1:iris > output.txt”

The “-comm” option specifies the target port on the computer, the “:iris” portion

specifies the type of sensor sending the data, and the “output.txt” is the name of the file

27

that stores the collected data. The packets are displayed in their raw form with all the

additional meta data that accompany the payload information.

However, it is important for the programmer to know what section of the raw data
represent the actual sensor readings that are sent across the network. A Perl script
“payload.pl” (see APPENDIX) was written to parse the incoming values sent across the
network in order to extract the useful payload information. The script can be altered easily

to fit any packet size increase up to the maximum allowed.

A message sent through serial ports from the motes to the PC will typically look

like Figure 11:

(00)(FF FF 00 00 08 00 09)13 77 02 07 00 13 00 00)

LEADING ZERO PACKET HEADER PAYLOAD

Fig. 11 — A sample message
The first byte “00” is a typical leading zero to denote the beginning of the

message. After that, the whole packet is of the type "serial_packet_t". Inside the
serial_packet_t structure, the first 7 bytes are of the type "serial_header_t", which is a
data structure that holds the meta data or descriptive information of the message that is
being sent across the network. In Figure 11, the meta data will be the next 7 bytes that

immediately follow the leading zero.

The structure of “serial_header_t" is given below:

« nx_am_addr_tdest *Destination (2 bytes)*

- nx_am_addr_t src *Source (2 bytes)*

28

« nx_uint8_t length *Payload Length (1 byte)*

- nx_am_group_t group *Group ID (1 byte)*

- nx_am_id_ttype *Active Message Handler Type (1 byte)*

After the 7-byte header comes the payload, which can be up to
TOS_DATA_LENGTH (28 bytes) long. The content is determined by the payload and has
no restrictions other than the length. In Figure 11, the payload is represented by the last 8
bytes. The length of this section is denoted in the "Payload Length" field in

“serial_header_t”.

The structure of the message is such that the header and the payload constitute one
packet. The Oscilloscope application described in the appendix sends out these messages
one packet at a time. The next section describes a method that sends a larger data set over

the radio.

Propagating Large Data Sets

Sending large quantities of information from the sensor node to the base station
requires a mechanism that rapidly sends chunks of the data set in a sequential manner.
Due to the limitation on the maximum packet size that could be sent across the network, a
system had to be devised that could send parts of the larger data set in smaller groups
until the entire set was successfully sent. This implementation, called the “burst mode”
allows data of varying sizes and lengths to be sent across the network. It also provides the

possibility of performing operations on a larger data set prior to sending the resulting data

29

across the network. This idea will make it possible to perform Fourier Transforms on

much larger data points.

The size of the input array is crucial when performing Discrete Transforms of a
sequence of digitized data. For example, a 256-point FFT requires an array that is as
many points long. This is a relatively large dataset when compared to the packet size
limitation of 28 bytes, as well as the current implementation of the Oscilloscope
application. Every packet in this application has a payload portion that holds eight 2-byte
values that represent the actual readings that are taken from the sensor boards. Therefore,
a dataset with 256 points will require the program to rapidly send 32 packets across the
network in order to begin the collection of new data into the auxiliary buffer space. The
efficiency of the send sequence ultimately determines how much time elapses until the

collection of sensor data in subsequent batches.

The original code (see APPENDIX) initiates the sending of data across the
network when the preset number of readings has been taken from the sensor. A buffer is
created to store the data collected from the accelerometer prior to initiating the send
sequence. The size of the sample dataset is controlled by another value that is set within
the header file. Once the buffer has been filled, a sequence of tasks are initiated to
process the stored information. A flag mechanism was implemented to trigger the send
sequence, hence ensuring that all the values in the buffer are completely processed before
the send sequence is initiated. The event-driven nature of TinyOS is then exploited for the

“burst mode” implementation. An event

““event void AMSend.sendDone(message_t* msg, error_t error)” is triggered every time

30

a packet is sent across the network. Another send command can then be implemented

inside this event to initiate a recursive send pattern. This happens because the send
command will trigger the same event “event void AMSend.sendDone(message_t* msg,

error_t error)” again, hence creating a loop. This loop sequence is terminated once the

predetermined number of packets have been sent across the network.

The entire application will be compromised if the values being stored in the
buffers are incorrect or inaccurate. For this reason a method was devised to ensure the
accuracy of the data stored in the buffers from the FFT and TEA implementations. This

verification process and its results are explained in the next section.

Verification Of FFT And TEA Implementations On IRIS Mote

It is important to verify the correctness of the values that are being gathered on the
processors on the motes. In other words, there needs to be a way to make sure that the
values sent across the network are valid. In the case of a computationally intensive FFT, it
is imperative that the final values being sent across the network actually represent the
Fourier transform of the initial signal stored in the buffer. For this reason, a program was
written to implement the same dataset on a local PC using a readily available language
such as C++. Sample signals were generated using sine functions on both the sensor and
the PC as inputs into the buffers that are used for calculating the FFT. The results of both
applications are represented in Figure 12. Note that the Perl script described earlier was

instrumental in gathering and plotting the data sent from the motes.

31

Data Verification

==Sensor Values
=*'C++ Program
™= Eror Margin (abs)

Amplitude

4 10 16 22 28 34 40 46 52 58 64 70 76 82 88 94 100106112118124
1 7 13 19 25 31 37 43 49 55Frg1en§7 73 79 85 91 97 103109115121127
uency

Fig. 12 — Data Verification with error margin

Figure 12 shows the 128-point FFT computation for a signal represented by the
equation 10*sin(20). Much of the errors observed are as a result of the level of precision
available on the sensor. Although the FFT computation is performed and stored in
floating precision, the value is stored as an integer prior to transmission, thereby reducing
the amount of data sent over the radio by 75 percent. This is the reason for the error
margin that is displayed along the thick black line. The same techniques were used to

verify the correctness of the TEA algorithm on the motes.

The FFT and TEA algorithms are the tasks that are implemented in this

experiment. One of the goals of the project was to document the marginal time that is

32

introduced into the system due to executing these algorithms. The next section describes
the concept of measuring time in the TinyOS environment and how this is used to
characterize the performance of the processors on the motes for different data sizes and

frequencies.

Characterizing The Computational Performance Of The System

Most operating systems and microcontrollers come equipped with a robust

system-time implementation, offering feature like:

« Multiple counters and clocking options

+ One or more comparison registers for counters with interrupt triggers and

« Time stamps for sent and received data

This provides programmers with an easy way to measure the execution time of a
particular program or application. However, TinyOS does not attempt to capture all this
diversity in a platform-independent fashion. Instead, each processor is able to expose its
applications to a system-like timing mechanism through the implementation of the
functionality of the underlying components and interfaces at the hardware level. The
Local.timer() component is used in this experiment to provide a pseudo system timing
mechanism. These measurements will be used to compare the marginal time required for

different data set sizes.

The elapsed time and the amount of memory used by the sensor are the two

integral parts to performing a feasibility characterization of the motes. Memory space is a

33

crucial metric because the amount of space on the sensor is very limited, and this in turn
affects the size of the information that can be processed and stored within the application.
Time is also a major factor in this case because of the requirement to process information

in a real-time manner.

The amount of data memory used was monitored for different FFT lengths and the
limit was recorded. The percentage of time for performing the FFT and TEA algorithms
will also be studied for different frequency values. This will help in making
recommendations as well as concluding the feasibility of IRIS motes for real-time data

monitoring.

Due to the lack of an output stream interface such as “cout” in C++ or “print” in
Java, the timer values had to be incorporated into the message packet structure. The

TinyOS timer interface provides a 32-bit timer value that is synonymous to a counter; it

“232”

counts from “0” to before starting over at “0”. The message packet structure looks

like this:

typedef nx_struct oscilloscope {
nx_intl6_t version;
nx_intl6_t interval;
nx_intl6_tid;
nx_intl6_t count;
nx_int32_t timer;
nx_int16_t readings[NREADINGS];

} oscilloscope_t;

The goal is to compute the total time it takes to collect and process one batch of
data. This information will then be broken into parts constituting the Buffering time, Task

34

processing time and Data sending time. The total execution time is calculated by
assigning the value of the timer to a variable at the beginning of the buffering sequence.
The difference between the timer values after two consecutive batches provides a rough
estimation of the execution time. The execution time for the tasks, FFT and TEA, are also
derived by extracting the timer value right before the task is called, and right after it
performs its last operation. The following equation describes the total time and its

constituents:

TimeToTaL = Timeyn — Timen.; + Timegpr + TimeTga + TimesgND

Although it is possible to calculate the amount of time it should take to send data
over the radio from the product specifications, this information will be quite misleading.
The recursive nature of the “Burst Mode” implementation is responsible for this. For each
section of data sent over the radio, an event has to be triggered upon successful
transmission. This event in turn prompts the transmission of the subsequent batch. This
creates additional overhead time which is almost impossible to calculate explicitly.

Therefore, the transmission time is then derived by rearranging the previous equation.

TimeSEND = TimeTOTAL - (TimeN - TimeN_l) - TimeFFT - TimeTEA

35

CHAPTER VII

RESULTS

Timing Analysis
The collected data are displayed and discussed in a way that supports the
contributions of this thesis work to the research community. These contributions are

restated below:

« A study of the potential of a structural health monitoring system with

decentralized processing

« A study of the feasibility of using Wireless Sensor Networks for real-time data

acquisition, processing and transmission in a structural health monitoring system.

« Provides a feasible range of relevant sampling frequencies on the specified

hardware.

The sensors are capable of operating at different sampling frequencies and this
affects the feasibility of the sensor for different data collection scenarios. Timing
information was gathered while operating the mote at different sampling frequencies,
starting from 32 Hz. Although this frequency may be insufficient for preserving the
fidelity of the signals in the presence of noise, it does satisfy the Nyquist theorem for
sampling at a frequency that is at least twice the value of the expected signal; most
structures have a natural vibration frequency of no more than 10 Hz. The sampling

frequency of the mote is then doubled for subsequent data points and the efficiency of the

36

sensor is analyzed for higher frequency values. Data collection was stopped at 1024 Hz
because it represented a threshold for efficient on-chip computation. At this frequency, an

increase in the buffering time was observed.

After taking the time measurements, it was verified that the amount of time
that was required by the processor to compute the FFT and TEA algorithms were
constant regardless of the frequency that was used. This is consistent with expectations
because the task execution time should not depend on the sampling frequency. This
information will be used to analyze the performance of the sensor at the different

sampling frequencies.

An approximation of the overall execution time for one batch of data is
determined by subtracting time stamps between consecutive batches. The time
information is retrieved from the same point within the program; right before the

buffering begins. The total execution time is broken down conceptually as follows:

TimeTOTAL = TimeN — TimeN_1 + TimeFFT + TimeTE AT TimGSEND

The percentages of the amount of time spent computing the FFT and TEA are provided in

the following graphs:

37

% Time

% Time

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

32 Hz

B % Send
O9% TEA
Mo FFT
W 9, Buffer

64 128 256 512
FFT Size (points)

Fig. 13 — 32 Hz time Graph

64 Hz

M % Send
0% TEA
W FFT
M <, Buffer

64 128 256 512
FFT Size (points)

Fig. 14 — 64 Hz time Graph

38

% Time

% Time

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

128 Hz

B % Send
O% TEA
Mo FFT
W o, Buffer

64 128 256 512
FFT Size (points)

Fig. 15 — 128 Hz time Graph
256 Hz

M <, Send
O % TEA
W% FFT
M <, Buffer

64 128 256 512
FFT Size (points)

Fig. 16 — 256 Hz time Graph

39

512 Hz

100%

90%
80%
70%
60% M < Send
50% 0% TEA
40% Mo, FFT
30% M o, Buffer
20%
10%

0%

(0]
=
|_
R
64 128 256 512
FFT Size (points)
Fig. 17 — 512 Hz time Graph
1024 Hz
100%
90%
80%
70%
60% B %% Send
(0]
£ 50% 0% TEA
N 40% Mo FFT
R
30% W o, Buffer
20%
10%
0%
128 256 512

FFT Size (points)

Fig. 18 — 1024 Hz time Graph

The collected results are divided into three sections and an analysis of the
observed trend is given for each case. The buffering time readings were collected

beginning at 32Hz and the sampling rate was increased gradually until any discrepancy

40

was observed.

1200
1000
800
M
E 600 B Buffering
) Time
S
= 400 u Expected
Time
200 I
, I
64 128 256 512
FFT Size (points)
Fig. 19a — Buffering time Graph at 512Hz
600
500
400
@
E 300 B Buffering
) Time
S
= 200 | Expected
Time

100 I
0 -I

64 128 256 512
FFT Size (points)

Fig. 19b — Buffering time Graph at 1024Hz

Buffering Time

This is the amount of time it takes for the application to fill the intermediate
buffers. The recorded buffering time matched the expected times for the observed

frequencies from 32Hz to 512Hz; Figure 19a shows the expected and actual buffering

41

times for different FFT sizes at 512Hz. However, there was an increase in the recorded
time at 1024Hz as shown in Figure 19b. This increase in time is attributed to the
introduction of an overhead, however, the source of the overhead is yet to be properly

identified.

Task Execution Time

This is the amount of time it takes for the FFT and TEA algorithms to complete. It
was found that these values remained the same regardless of the data sampling rate. An
increase in the execution time was only observed when the FFT size was increased. This
increase in time followed the expected trend, NLog(N), for FFT computations where N is
the length of the input buffer. As seen in Figure 20, the percentage of time spent
performing the tasks increases as the sampling frequency increased. This is attributed to
the fact that an increase in the sampling frequency decreases the buffering time
significantly, which was a major portion of the total execution time. The amount of data
that was processed on the sensor supports the idea of a decentralized SHM system.
Implementing a full fledged decentralized SHM system may not be practical at the
moment due to power supply constraints, but the idea still remains promising as the future

of SHM systems.

42

Task Execution Time
600

500
400

B FFT Time
@ TEA Time

300

200

Time (ms)

100 B
0 '/"
32 64 128 256 512

FFT Size (points)

*

Fig. 20 — Task Execution Graph

Data Transmission Time

This is the time it takes to send data across the network from the sensor mote to
the base station. The IRIS sensor mote is capable of sending data at 250 kbps. The table
below shows the expected transfer times for the various FFT sizes used during this
experiment. These data show the disparity between the expected transmission times and
the actual measured times. However, the expected transmission times are simply

theoretical, and they only represent a maximum threshold.

43

Table 1 — Expected Data Transmission Time

FFT Size Data Size (Bits) Expected Transfer time
(ms)
32 512 2.048
64 1024 4.096
128 2048 8.192
256 4096 16.384
512 8192 32.768

Figure 21 shows the amount of time it took to send multiple packets of data across
the network at 256Hz. This trend is expected because the transmission time should be
directly proportional to the size of the data. The transmission time information can also
be used to calculate the number of nodes that can be supported by the network as

discussed in the next paragraph.

800
700
600
500

400
& Transmission
300 Time

200
100 - .//

o

32 64 128 256 512
FFT Size (points)

Transmission Time (ms)

Fig. 21 — Transmission Time as a function of FFT Size at 256Hz

44

The number of nodes that can be supported by a one-hop network with continuous
data transmission depends on the sampling frequency. This is as a result of the
dependency between the sampling frequency and the buffering time. To estimate the
number of nodes that can be supported by the implementation, the total execution time for
each data transmission batch will have to be divided by the amount of time it takes to

send the same batch of data over the radio:
(TimetotaL) / (TimesgnD)

Figure 22 shows the average number of nodes that can be supported by the
network for the different sampling frequencies that were monitored. It is also important to
mention that these values are approximations because only one sensor was used for this
experiment; a multi-node network will have to be adjusted to avoid collisions during data

transmission.

35

30

s 1\

7]

)

S ol \

2 20

S

5 15 ® Number of
o

= Nodes
=)

zZ

0
32 64 128 256 512 1024

Sampling Frequency (Hz)

Fig. 22 — Number of Nodes for different Sampling Frequencies

45

Memory Utilization

One major setback for the IRIS sensor is the amount of memory (RAM) available
for programming. Although its processing power is quite good, the sensor is unable to
deal with large data sets mainly because of the amount of space needed to store
intermediate data.

For this experiment, the largest data set that fits the memory restraint was 512
points of data. The RAM space utilized by the program is shown below for the different
FFT sizes. An attempt to process a 1024-point FFT resulted in a program size that

exceeded the amount of space available on the sensor (8Kilobytes).

Table 2 — Memory Utilization

FFT Size RAM (bytes) Marginal Memory ROM (bytes)
Increase
16 814 N/A 17890
32 974 160 17892
64 1294 320 17892
128 1934 640 17892
256 3214 1280 17898
512 5774 2560 17898
1024 10894 5120 17898

The Memory Utilization graph shows the amount of space used by the program
as the number of packets increased. The important piece of information is the trend that is

observed when the marginal increase is observed. This trend follows that of the aggregate

46

packet size. The measurements were taken starting from a 16-point FFT, and the size was
doubled for subsequent measurements. This is why the amount of additional space

required was expected to increase in multiples of 2 as shown in Figure 23.

Memory Utilization
12000

10000
8000

6000 H RAM

B Marginal Increase
4000
2000 L
o m L L L

16 32 64 128 256 512 1024

Memory Size (mega bytes)

Number of Packets

Fig. 23 — Memory Utilization

It is possible to process larger FFT sizes; however, a trade off with computational
accuracy will be necessary especially when computing Fast Fourier Transforms. Floating
point FFT's require the input data to be stored as a “‘double” variable which is represented
by 8 bytes as compared to the 2 bytes that are used for transferring data over the radios;
the values transmitted over the radio are of the type “nx_int16_t”. This is the main reason

for the large amount of memory space consumed by the program

47

Continuous Data Sampling

In order for this application to sample data continuously, the data sample
collection and sampling will have to be implemented in parallel using interrupts. This can
be accomplished by adding another buffer to hold intermediate data samples that will be
processed by the tasks while the initial buffer is being refilled by the sampling protocol.
However, this approach can only be feasible as long as the task processing time remains
less than the data collection time. The equation “(1/sampling frequency) x (# of
samples)” provides the sampling time. This value can then be compared to the sum of the

task processing time and the transmission time.

It is important to notice that the formula above translates to a 50% threshold for
the system that was implemented in this work. This means that data will have to be
sampled no less than 50% of the entire execution time. Figures 13 — 18 show that
sampling at approximately 512 Hz and above will result in a case where the data

collection time drops below this 50% threshold.

48

CHAPTER VIII

SUMMARY

The idea of a real-time application depends on the definition of “real-time”. It
is commonly used to describe applications that have a deadline associated with them.
There may be a requirement for the amount of time allowed to pass before either data is
being recaptured, or a system response is initiated. The IRIS mote is ideal for real-time
decentralized structural monitoring because its processing power is sufficient for

performing computationally intensive and repetitive operations such as FFTs.

When compared to a Mica sensor, the IRIS sensor spends much less time
transmitting data over the radio. When sampling between 200 Hz and 250 Hz, data
transmission accounts for about 20% of the total execution time on the IRIS as opposed

to a staggering 85.7% for the Mica mote.

Although the availability of memory is a major setback for on-chip processing, the
available memory space allows for up to 512 data points to be captured at relevant
sampling frequencies. The work in this thesis also shows a successful implementation of
both a secure data encryption algorithm and the calculation of a 1024-point FFT

algorithm on the IRIS sensor.

Finally, a range for feasible computation was determined to be between 32 Hz and
1024 Hz. Although most structures have natural frequency of less than 10 Hz, it is

important to sample at a rate much higher than 10 Hz in order to preserve the fidelity of

49

the signal, as well as eliminate problems caused by noise.

This project can be extended by deploying a WSN on a small scale bridge
prototype in order to take actual readings. The characterization can also be extended to
measure stress,strain and temperature variations. Also more work can be done in terms of

programming the sensor nodes to transfer data for predetermined threshold values.

50

REFERENCES

Minnesota Department of transportation, Program Support Division, Technical

memorandum No. 07-10-B-02, July 19, 2007

. LF. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survery on

Sensor Networks,” IEEE Comm. Mag., Aug. 2002, pp. 102-114

. D. Culler, D. Estrin, and M. Srivastava, "Guest Editors' Introduction: Overview of

Sensor Networks," Computer, vol. 37, pp. 41-49, 2004.

C. E. Shannon, "Communication in the presence of noise", Proc. Institute of

Radio Engineers, vol. 37, no.1, pp. 10-21, Jan. 1949.

. N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and
D. Estrin. A wireless sensor network for structural monitoring. The Proceedings

of the ACM Conference on Embedded Networked Sensor Systems, November

2004.

Sukun Kim, Pakzad, S. Culler, D. Demmel, J. Fenves, G. Glaser, S. Turon, M.,
"Health Monitoring of Civil Infrastructures Using Wireless Sensor Networks,"
Information Processing in Sensor Networks, 2007. IPSN 2007. 6th International

Symposium on , vol., no., pp.254-263, 25-27 April 2007

N. G. Shrive. “Intelligent Structural Health Monitoring: a Civil Engineering

Perspective”. University of Calgary, Alberta Canada.

www.xbow.com/support/Support pdf filessyMTS-

51

http://www.xbow.com/support/Support_pdf_files/MTS-MDA_Series_Users_Manual.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

MDA Series Users Manual.pdf

www.xbow.com/Products/Product pdf files/Wireless pdf/IRIS Datasheet.pdf

www.xbow.com/Products/Product pdf files/Wireless pdf/MIB520 Datasheet.pdf

http://www.tinyos.net/

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J.
Hill, M. Welsh, E. Brewer, and D. Culler, "TinyOS: An Operating System for
Sensor Networks," in Ambient Intelligence: Springer Berlin Heidelberg, 2005, pp.

115-148.

Cooley, J. W. and Tukey, J. W. (1965). An Algorithm for the Machine Calculation

of Complex Fourier Series. Math. Computat., 19, 297-301.

www.cmlab.csie.ntu.edu.tw/.../transform/fft.html

www.cmlab.csie.ntu.edu.tw/.../transform/fft.html

TEA, a Tiny Encryption Algorithm

C. Karlof, N. Sastry, and D. Wagner, "TinySec: a link layer security architecture
for wireless sensor networks," in 2nd International Conference on Embedded

Networked Sensor Systems Baltimore, MD, USA, 2004, pp. 162 — 175.

http://en.wikipedia.org/wiki/File: XTEA InfoBox Diagram.png

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992).
Numerical recipes in C: the art of scientific computing. Cambridge University

Press, Cambridge, England.

52

http://en.wikipedia.org/wiki/File:XTEA_InfoBox_Diagram.png
http://www.cmlab.csie.ntu.edu.tw/cml/dsp/training/coding/transform/fft.html
http://www.cmlab.csie.ntu.edu.tw/.../transform/fft.html
http://www.tinyos.net/
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MIB520_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/IRIS_Datasheet.pdf
http://www.xbow.com/support/Support_pdf_files/MTS-MDA_Series_Users_Manual.pdf

20. Straser, E.G. “A modular, wireless damage monitoring system for structures”.
Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford

University, Stanford, CA. 1998

21. K. C. Lu, C. H. Loh, Y. S. Yang, J. P. Lynch and K. H. Law. “Real-Time structural

damage detection using Wireless Sensing and Monitoring System” (2007)

22.S. E. Lee, S.H. Shin, G. D. Park, K. Y. Yoo. “Wireless Sensor Network Protocols
for Secure and Energy-Efficient Data Transmission”. 7th Computer Information

Systems and Industrial Management Applications, 2008

23. Health Monitoring of Bridge Structures and Components Using Smart

Technology http://www.ctre.iastate.edu/reports/health monitor wi voll.pdf

24. V. Plessi, F. Bastianini, S. Sedigh. “A Wireless system for real-time environmental

and structural monitoring”. University of Missouri-Rolla, Rolla, MO

25. http://www.bec.iastate.edu/

26. J.P. Lynch. Overview of wireless sensors for real-time health monitoring of civil
structures. Proceedings of the 4™ International Workshop on Structural Control

(4™ TWSC), New York City, NY, June 10-11, 2004.

27. M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. The flooding time
synchronization protocol. The Proceedings of ACM Second International
Conference on Embedded Networked Sensor Systems (SenSys 04), pp. 39-49,

Baltimore, MD, November 3, 2004.

28. S. Liu, O. V. Gavrylyako, P. G. Bradford. Implementing the TEA on Sensors.

53

http://www.bec.iastate.edu/
http://www.ctre.iastate.edu/reports/health_monitor_wi_vol1.pdf

ACM Southeast Regional Conference, Proceedings of the 42nd annual Southeast

regional conference, pp. 64 — 69, Huntsville, AL, 2004.

54

APPENDIX

Oscilloscope.h
[
* Copyright (c) 2006 Intel Corporation
* All rights reserved.
*
* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to
* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
*04704. Attention: Intel License Inquiry.

*/

/I @author David Gay

// Revised by Bode Ajiboye

#ifndef OSCILLOSCOPE_H

#define OSCILLOSCOPE_H

enum {
/* Number of readings per message. If you increase this, you may have to

increase the message_t size. */

55

NREADINGS =8,

/* Default sampling period. */

DEFAULT_INTERVAL =1,

AM_OSCILLOSCOPE = 0x93,

packets =4

};

typedef nx_struct oscilloscope {
nx_int16_t version; /* Version of the interval. */
nx_intl6_t interval; /* Samping period. */
nx_intl6_t id; /* Mote id of sending mote. */

nx_intl6_t count; /* The readings are samples count * NREADINGS onwards */

/timing variable

nx_int32_t timer;

nx_int16_t readings[NREADINGS];

} oscilloscope_t;

#endif

56

Oscilloscope.nc (Original)

/>!<
* Copyright (c) 2006 Intel Corporation

* All rights reserved.

&

* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to

* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
*04704. Attention: Intel License Inquiry.

*/

[HE

* Oscilloscope demo application. See README.txt file in this directory.

%

* @author David Gay
*/
#include "Timer.h"

#include "Oscilloscope.h"

module OscilloscopeC

{

uses {

57

interface Boot;

interface SplitControl as RadioControl;
interface AMSend;

interface Receive;

interface Timer<TMilli>;

interface Read<uint16_t>;

interface Leds;

implementation

message_t sendBuf;

bool sendBusy;

/* Current local state - interval, version and accumulated readings */

oscilloscope_t local;

uint8_t reading; /* 0 to NREADINGS */

/* When we head an Oscilloscope message, we check it's sample count. If
it's ahead of ours, we "jump" forwards (set our count to the received

count). However, we must then suppress our next count increment. This

58

is a very simple form of "time" synchronization (for an abstract
notion of time). */

bool suppressCountChange;

// ' Use LEDs to report various status issues.
void report_problem() { call Leds.led0Toggle(); }
void report_sent() { call Leds.led1Toggle(); }

void report_received() { call Leds.led2Toggle(); }

event void Boot.booted() {
local.interval = DEFAULT_INTERVAL;
local.id = TOS_NODE_ID;
if (call RadioControl.start() != SUCCESS)

report_problem();

void startTimer() {
call Timer.startPeriodic(local.interval);

reading = 0;

event void RadioControl.startDone(error_t error) {

59

startTimer();

event void RadioControl.stopDone(error_t error) {

event message_t* Receive.receive(message_t* msg, void* payload, uint8_t len) {

oscilloscope_t *omsg = payload;

report_received();

/* If we receive a newer version, update our interval.

If we hear from a future count, jump ahead but suppress our own change

%/

if (omsg->version > local.version)

{
local.version = omsg->version;
local.interval = omsg->interval;
startTimer();

}

if (omsg->count > local.count)

60

local.count = omsg->count;

suppressCountChange = TRUE;

return msg;

/* At each sample period:
- if local sample buffer is full, send accumulated samples
- read next sample
*/
event void Timer.fired() {
if (reading == NREADINGS)
{
if (!sendBusy && sizeof local <= call AMSend.maxPayloadLength())
{
// Don't need to check for null because we've already checked length
/l above

memcpy(call AMSend.getPayload(&sendBuf, sizeof(local)), &local, sizeof
local);

if (call AMSend.send(AM_BROADCAST_ADDR, &sendBuf, sizeof local) ==
SUCCESYS)

sendBusy = TRUE;

61

}
if (!sendBusy)

report_problem();

reading = 0;

/* Part 2 of cheap "time sync": increment our count if we didn't
Jump ahead. */

if (!suppressCountChange)
local.count++;

suppressCountChange = FALSE;

}
if (call Read.read() != SUCCESS)

report_problem();

event void AMSend.sendDone(message_t* msg, error_t error) {
if (error == SUCCESS)
report_sent();
else

report_problem();

sendBusy = FALSE;

62

event void Read.readDone(error_t result, uint16_t data) {

if (result != SUCCESS)

{

data = Oxffff;

report_problem();

}

local.readings[reading++] = data;

Oscilloscope.nc (Modified)

/*
* Copyright (c) 2006 Intel Corporation

* All rights reserved.

*k

* This file 1s distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to

* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
*04704. Attention: Intel License Inquiry.

*/

[R*

63

* Oscilloscope demo application. See README.txt file in this directory.
k

* @author David Gay

* Revised by Bode Ajiboye

*/

#include "Timer.h"

#include "Oscilloscope.h"

module OscilloscopeC @safe()
{
uses {

interface Boot;
interface SplitControl as RadioControl;
interface AMSend;
interface Receive;
interface Timer<TMilli>;
interface Read<uint16_t>;

interface Leds;

interface Timer<TMilli> as Timer2;

interface LocalTime<TMilli>;

64

}

implementation

{

message_t sendBuf;

bool sendBusy;

/["1c" 1s used to check for first sampling iteration

uint® tlc =1;

/* Current local state - interval, version and accumulated readings */

oscilloscope_t local;

uint32_t reading; /* 0 to NREADINGS */
uint16_t timing; /* timer variable*/

uint32_t start, end,overflow_check;

/* Buffer control variable

when index2 = 1, the send sequence is initiated

65

index3 is used to track the number of packets that have been sent*/
uint8_t index =0;
uint8_t jj,ii;

uint8_t index2 = 0;

/* index3 is used to control data accumulation into "local.reading" variable prior to
sending */

uint8_t index3 = 0;

/*buf[] is an array used to hold temporary sensor readings... "packets" is used to set the
number of packets to be stored/sent

"packets" is declared in header file — */

nx_int16_t buf[NREADINGS*packets];

nx_int16_t buf2[NREADINGS*packets];

/* buf_index is used to track the section of buf[] that the new readings from local.reading
need to go into

. For example, if buf[] has "NREADINGS*2" positions, the first stream of data from
local.reading fills the first NREADINGS positions,

when buf_index is 0. Incrementing buf_index by one allows the next set of data from
local.reading to be place in the next NREADINGS positions

in buf[] */

uint32_t buf_index.d;

66

/* bcomp is set to TRUE when the number of packets specified by the variable "packets"
have been sent over the radio */

bool bcomp = FALSE;

bool flag = FALSE;

uint8_t dir;
uintl6_t m;

/* FFT variables */

long n,i,il,j,k,i2,L11,12;
double cl1,c2,tx,ty,t1,t2,ul,u2,z;
double X[NREADINGS*packets];

double y[NREADINGS*packets];

uintl6_t ind;

/*tea algorithm variables™*/
uint16_t v0, v1, sum, loopi;
uintl6_t delta=0x9e3779b9; /* a key schedule constant */
uint16_t kO, k1, k2, k3; /* cache key */

uint16_t kk[4];

uint16_t tealoop = 0;

67

/lused to calculate m=log_2(NREADINGS *packets)

imtp=1;

task void tea(){

tealoop = 0;
/Iwhile(tealoop < 64)
while(tealoop < packets*NREADINGS)
{
kk[0] = 0x1234;
kk[1] = 0x5678;
kk[2] = 0x90AB;

kk[3] = 0xCDEF;

v0 = buf2[tealoop],vl = buf2[tealoop+1], sum = 0O;

kO=kk[0], k1=kk[1], k2=kk[2], k3=kk[3];

68

for (loopi=0; loopi < 32; loopi++) { /* basic cycle start */
sum += delta;
v0 += ((vl<<4) + k0) A (v1 + sum) * ((v1>>5) + k1);
vl += ((v0<<4) + k2) » (vO + sum) * ((vO>>5) + k3);

} /* end cycle */

buf2[tealoop]=v0; buf2[tealoop+1]=v1;

tealoop = tealoop + 2;

/Nocal.timer = call LocalTime.get(); //used to get execution time for TEA algorithm

index2 = 1;
}
task void fft(){

for (d=0; d < NREADINGS*packets; d++)

{

buf2[d] = 10*sin(20*(d/packets)); //generate a sine signal.;

x[buf_index] = buf2[buf index];

69

/[Calculate m=log_2(NREADINGS*packets)

m = 0;

while(p < NREADINGS*packets)

dir=1;

/* Calculate the number of points */
n=1;
for (i=0;i<m;i++)

n *=2;

/* Do the bit reversal */

2=n>>1;

70

i=0;
for (i=0;i<n-1;i++) {
if (i <j){
tx = x[il;
ty = y[il;
x[i] = x[jI;
ylil = y(jl;

/* Compute the FFT */
cl =1.0;
cl=-cl;

c2=0.0;

12=1;
for (1=0;1<m;1++) {
11 =12;
12 <<= 1;
ul = 1.0;
u2 =0.0;
for (j=0;j<11;j++) {
for (i=j;i<n;i+=12) {
il =i+11;
tl =ul *x[il] - u2 * y[il];
t2 =ul *y[il] + u2 * x[il];
x[i1] = x[i] - t1;
ylil] = y[i] - €2;
x[i] +=t1;
y[i] +=t2;
}
z=ul *cl -u2 *c2;
u2=ul *c2+u2 *cl;
ul =z;
}
c2 =sqrt((1.0 - c1) / 2.0);

if (dir == 1)

72

c2 =-c2;

cl =sqrt((1.0 + cl) / 2.0);

/* Scaling for forward transform */
if (dir==1) {
for (i=0;i<n;i++) {
x[i] /=n;

y[il /= n;

for (ind=0; ind < NREADINGS*packets ; ind++)

{

buf2[ind] = x[ind];

/Nocal.timer = call LocalTime.get(); **used to get execution time for FFT algorithm

73

index2=1;

/Ipost tea();

/* When we head an Oscilloscope message, we check it's sample count. If
it's ahead of ours, we "jump" forwards (set our count to the received
count). However, we must then suppress our next count increment. This
is a very simple form of "time" synchronization (for an abstract
notion of time). */

bool suppressCountChange;

// ' Use LEDs to report various status issues.
void report_problem() { call Leds.led0Toggle(); }
void report_sent() { call Leds.led1Toggle(); }

void report_received() { call Leds.led2Toggle(); }

event void Boot.booted() {

74

local.timer = O;

local.interval = DEFAULT_INTERVAL,;
local.id = TOS_NODE_ID;

if (call RadioControl.start() != SUCCESS)

report_problem();

void startTimer() {
call Timer.startPeriodic(local.interval);
call Timer?2.startPeriodic(2);

reading = 0;

event void RadioControl.startDone(error_t error) {

startTimer();

event void RadioControl.stopDone(error_t error) {

}

75

event message_t* Receive.receive(message_t* msg, void* payload, uint8_t len) {

oscilloscope_t *omsg = payload;

report_received();

/* If we receive a newer version, update our interval.
If we hear from a future count, jump ahead but suppress our own change
*/

if (omsg->version > local.version)

{
local.version = omsg->version;
local.interval = omsg->interval;
startTimer();

}

if (omsg->count > local.count)

{
local.count = omsg->count;
suppressCountChange = TRUE;
}
return msg;

76

event void Timer2.fired(){

/* At each sample period:
- if local sample buffer is full, send accumulated samples
- read next sample

*/

event void Timer.fired() {

if (index2 == 1)

{

index2 = 0;

77

for (jj=0; jj < NREADINGS; jj++)
{
buf_index = jj + (index3*NREADINGS);

local.readings[jj] = buf2[buf_index];

}

index3++;

if (!sendBusy && sizeof local <= call AMSend.maxPayloadLength())

{

// Don't need to check for null because we've already checked
length

// above

memcpy(call AMSend.getPayload(&sendBuf, sizeof(local)),
&local, sizeof local);

if (call AMSend.send(AM_BROADCAST_ADDR, &sendBuf,
sizeof local) == SUCCESS)

sendBusy = TRUE,;

78

if (!sendBusy)

report_problem();

/* Part 2 of cheap "time sync": increment our count if we didn't
Jump ahead. */
if (!suppressCountChange)
local.count++;
suppressCountChange = FALSE;
}
if(!flag)

{

if (call Read.read() !'= SUCCESS)

{

report_problem();

79

event void AMSend.sendDone(message_t* msg, error_t error) {
if (error == SUCCESS)
report_sent();
else

report_problem();

sendBusy = FALSE;

if(!bcomp)
{
for (jj=0; jj < NREADINGS; jj++)
{
buf_index = jj + (index3*NREADINGS);

local.readings[jj] = buf2[buf_index];

memcpy(call AMSend.getPayload(&sendBuf, sizeof(local)), &local, sizeof
local);

80

if (call AMSend.send(AM_BROADCAST_ADDR, &sendBuf, sizeof local) ==
SUCCESYS)

sendBusy = TRUE;

if(index3 == packets - 1)

{
index2 = 0;
index3 = 0;
bcomp = TRUE;
timing = 0;
flag = FALSE;

}

index3++;

event void Read.readDone(error_t result, uint16_t data) {

if (result != SUCCESS)

{

data = Oxffff;

81

report_problem();

buf2[reading++] = data;

if(lc==1)

local.timer = call LocalTime.get();

Ic =0;

if(reading == (NREADINGS *packets)+1))
{
local.timer = call LocalTime.get() - local.timer;
reading = 0;
bcomp = FALSE;
index2=1;

Ic=1;

82

flag = TRUE;

/Ipost fft();

Oscilloscope AppC.nc

/*
* Copyright (c) 2006 Intel Corporation

* All rights reserved.

*

* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to

* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
*04704. Attention: Intel License Inquiry.

*/

aakal

83

* Oscilloscope demo application. Uses the demo sensor - change the
* new DemoSensorC() instantiation if you want something else.

*

* See README.txt file in this directory for usage instructions.
*
* @author David Gay
*/
configuration OscilloscopeAppC { }
implementation
{
components OscilloscopeC, MainC, ActiveMessageC, LedsC,
new TimerMilliC(), new DemoSensorC() as Sensor,

new AMSenderC(AM_OSCILLOSCOPE), new
AMReceiverC(AM_OSCILLOSCOPE);

OscilloscopeC.Boot -> MainC;
OscilloscopeC.RadioControl -> ActiveMessageC;
OscilloscopeC.AMSend -> AMSenderC;
OscilloscopeC.Receive -> AMReceiverC;
OscilloscopeC.Timer -> TimerMilliC;
OscilloscopeC.Read -> Sensor;

OscilloscopeC.Leds -> LedsC;

84

Perl.pl

#!/usr/local/bin/perl

print "Hi there!\n";

open (LOGFILE, "output.txt") or die "I couldn't get at log.txt";

open (PROCESSED, ">processed.txt") or die "$! error trying to overwrite";

print PROCESSED "Mote Data\n";

for $line (<LOGFILE>) {

@fields = split(/\s/, $line);

print PROCESSED "TIMER VALUE =";

print PROCESSED hex("$fields[16]$fields[17]$fields[18]$fields[19]") ;

print PROCESSED "\n";

for ($count=20; $count<35; $count++)

{

85

$hexvall = $fields[$count];

$hexval2 = $fields[$count+1];

if(hex($hexvall) == 255)

{

print PROCESSED hex("$fields[$count]$fields[$count+1]") - 65536;

else

print PROCESSED hex("$fields[$count]$fields[$count+1]");

print PROCESSED "\n";

$count++;

}

}

close LOGFILE;

close PROCESSED;

86

	INTRODUCTION
	STRUCTURAL HEALTH MONITORING
	HARDWARE AND SOFTWARE RESOURCES
	Hardware Resources
	Software Resources – TinyOS And NesC

	SYSTEM CONSTRAINTS AND APPLICATIONS
	System Constraints
	Real-Time Constraints
	Message Passing Specifications
	Applications
	Fast Fourier Transforms
	Tiny Encryption Algorithm

	RESEARCH CHALLENGE
	EXPERIMENTAL SETUP
	Oscilloscope Application
	Network Data Monitoring
	Propagating Large Data Sets
	Verification Of FFT And TEA Implementations On IRIS Mote
	Characterizing The Computational Performance Of The System

	RESULTS
	Timing Analysis
	Memory Utilization
	Continuous Data Sampling

	SUMMARY
	REFERENCES
	APPENDIX
	Oscilloscope.h
	Oscilloscope.nc (Original)
	Oscilloscope.nc (Modified)
	OscilloscopeAppC.nc
	Perl.pl

