
DETECTION AND PREVENTION OF LOGIC ATTACKS AGAINST WEB

APPLICATIONS THROUGH BLACK-BOX ANALYSIS

By

Xiaowei Li

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

August, 2013

Nashville, Tennessee

Approved:

Professor Yuan Xue

Professor Janos Sztipanovits

Professor Bradley Malin

Professor Douglas C. Schmidt

Professor Gautam Biswas

To my parents and Shan

ACKNOWLEDGMENTS

I feel so lucky to be sitting here at this moment. I could never go this far without the people

who have helped me during my PhD journey. My deepest gratefulness goes to my advisor,

Professor Yuan Xue, for her invaluable guidance and support. She has been a great advisor and

my role model, who has taught me how to think, how to solve problems and how to manage my

future career. I will always be grateful for her encouragement and belief in me during my PhD

study.

I would like to thank the members of my thesis committee: Professor Janos Sztipanovits,

Professor Bradley Malin, Professor Douglas C. Schmidt and Professor Gautam Biswas, for their

insightful comments on my thesis. I am also grateful for the help and support from all the

members of the VANETS research group and all my friends at Vandy. Their friendship comprises

my best memories at this country music capital.

This work was sponsored by NSF TRUST (The Team for Research in Ubiquitous Secure

Technology) Science and Technology Center (CCF-0424422). In addition to financial support, it

provides me valuable opportunities to meet with world-class researchers, which greatly broaden

my horizons and benefit my future career.

Last but not least, I would give my special gratitude to my parents for their unconditional

love and endless support from across the ocean. Without them, I could never be who I am. It

is their sacrifice that makes my dream come true. I am also very grateful to my wife and love

Shan, who has been accompanying me for over ten years. She completes me and my life. This

work is dedicated to them.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter

I. INTRODUCTION . 1

Background . 2
Problem Description and Research Goal . 3
Research Approach and Dissertation Contributions 6

Detection of Logic Attacks . 7
Prevention of Logic Attacks . 8

Dissertation Organization . 8

II. RELATED WORK . 10

Existing Defenses against Logic Attacks . 10
Secure Construction of New Web Applications 11
Security Analysis/Testing of Legacy Web Applications 12
Runtime Protection of Legacy Web Applications 15
Summary and Our Contributions . 16

Software Specification Inference . 17
Web Database Security . 18
Test Input Generation . 19

III. A BLACK-BOX APPROACH FOR DETECTION OF STATE VIOLATION AT-
TACKS . 21

Overview . 21
Attacks and Running Example . 22
System Model . 25
Approach . 26

Approach Overview . 26
Web Page Symbolization . 28
Invariant Extraction . 30
Runtime Detection . 31

Implementation . 32
Training Mode . 33
Detection Mode . 34

Evaluation . 35
Experiment Setup . 35
Detection Effectiveness . 37
Performance Overhead . 40

Discussion . 41

iv

IV. SECURING DATABASES FROM LOGIC FLAWS IN WEB APPLICATIONS . 42

Overview . 42
Attacks and Running Example . 43
System Model . 46
Approach . 48

Approach Overview . 48
SQL Signature Construction . 49
Application State Inference . 50
Data Constraint Inference . 51
Invariant Extraction . 52
Runtime Detection . 55

Implementation . 55
Evaluation . 57

Experiment Setup . 57
Detection Effectiveness . 59
Performance Overhead . 60

Discussion . 60

V. AUTOMATIC DISCOVERY OF LOGIC VULNERABILITIES WITHIN WEB
APPLICATIONS . 62

Overview . 62
Problem Description . 63

Illustrative Example . 63
Problem Formulation . 64

Approach . 67
High-level Overview . 67
State Construction . 68
Input Symbolization . 69
Output Symbolization . 70
Test Input Generation . 72
Output Evaluation . 73

Implementation . 73
Phase I: Trace Collection . 74
Phase II: FSM Inference . 75
Phase III: Testing . 75

Evaluation . 77
Experiment Results . 77

Discussion . 81

VI. EXPLOITING WEB APPLICATIONS FOR LOGIC VULNERABILITIES OF
DATABASE ACCESS . 82

Overview . 82
Problem Description . 83

Illustrative Example . 83
System Model . 86
Problem Formulation . 87

Approach . 89
High-level Overview . 89
Trace Collection . 90
SQL Signature Construction . 91
Constraint Inference . 92

v

Vulnerability Exploitation . 95
Implementation . 99

Phase I: Constraint Inference . 100
Phase II: Vulnerability Exploitation 100

Evaluation . 101
Experiment Results . 101

Discussion . 104

VII. AUTOMATED BLACK-BOXDETECTIONOFACCESS CONTROL VULNER-
ABILITIES IN WEB APPLICATIONS . 106

Overview . 106
Problem Description . 107

Database Access Model . 107
Access Control Vulnerability . 110

Approach . 111
High-level Overview . 111
Policy Inference . 112
Vulnerability Detection . 118

Implementation . 120
Crawler . 120
Trace Collection . 122
Inference & Testing . 123

Evaluation . 123
Details of Vulnerabilities . 125

Discussion . 127
Comparison with LogicScope and EXPELLER 128

VIII. CONCLUSIONS AND FUTURE WORK . 129

Summary of Chapters . 129
Limitations . 130
Future Research Directions . 131

BIBLIOGRAPHY . 133

vi

LIST OF TABLES

Table Page

II.1. Summary of Existing Defenses against Logic Attacks 17

III.1. Summary of Evaluated Web Applications (Evaluation of BLOCK) 36

III.2. Summary of Training Set (Evaluation of BLOCK) 37

III.3. Summary of Detection Result (Evaluation of BLOCK) 38

IV.1. Summary of Web Applications (Evaluation of SENTINEL) 58

IV.2. Summary of Training Set (Evaluation of SENTINEL) 59

IV.3. Summary of Detection Result (Evaluation of SENTINEL) 60

V.1. Summary of Traces and Inferred FSMs (Evaluation of LogicScope) 78

V.2. Summary of Testing Results (Evaluation of LogicScope) 78

VI.1. Summary of Constraint Inference (Evaluation of EXPELLER) 102

VI.2. Summary of Testing Results (Evaluation of EXPELLER) 103

VII.1. Summary of Web Applications for Evaluation (Evaluation of BATMAN) . . . 123

VII.2. Summary of Code Coverage (Evaluation of BATMAN) 124

VII.3. Summary of Policy Inference (Evaluation of BATMAN) 124

VII.4. Summary of Testing Results (Evaluation of BATMAN) 125

vii

LIST OF FIGURES

Figure Page

I.1. Overview of Web Application . 2

I.2. Summary of Prototype Systems . 7

III.1. An Example of a Vulnerable Web Application 23

III.2. A Stateless View of a Web Application . 26

III.3. The Procedure of Web Page Symbolization . 28

III.4. Overview of BLOCK System . 33

III.5. Training Mode (BLOCK) . 33

III.6. Detection Mode (BLOCK) . 34

III.7. Number of Invariants vs. Training Set Size (Scarf) 38

III.8. Summary of Performance Overhead (Evaluation of BLOCK) 40

IV.1. An Example Vulnerable Web Application: SimpleOAK 45

IV.2. An EFSM Model of a Web Application . 47

IV.3. Partial EFSM Model of SimpleOAK . 48

IV.4. An SQL Query Skeleton Extraction . 50

IV.5. Invariant Extraction for SQL Signature Dependency 54

IV.6. Overview of SENTINEL System . 55

IV.7. The Analyzer Component . 57

IV.8. Summary of Performance Overhead (Evaluation of SENTINEL) 61

V.1. Example Application . 63

V.2. The FSM Representation of the Example Application 65

V.3. Approach Overview . 68

V.4. Output Symbolization . 71

V.5. Test Input Generation . 72

V.6. Prototype System Architecture (LogicScope) 74

viii

V.7. Workflow of Testing Controller . 76

VI.1. Example Application: SimpleOAK . 85

VI.2. System Model . 87

VI.3. Approach Overview . 90

VI.4. HTTP Interaction Example . 90

VI.5. Query Parameter Membership Constraint . 94

VI.6. Prototype System Architecture (EXPELLER) 99

VII.1. Example of Database Access via a Web Application 107

VII.2. An Example Vulnerable Web Application . 110

VII.3. Trace Structure . 112

VII.4. Column-based Filter Inference . 113

VII.5. Second-Order Relationship Example . 116

VII.6. Prototype System Architecture (BATMAN) . 120

ix

CHAPTER I

INTRODUCTION

Three-tier web architecture has become the de-facto solution for delivering information and

business services over the Internet. The center of this architecture is a web application, which

implements the business logic, accesses the sensitive information (e.g., financial or health) stored

at the back-end database and interacts with the users through the front-end web server. The

increasing popularity of web applications can be attributed to several factors, including remote

accessibility, cross-platform compatibility, and fast development and deployment. AJAX (Asyn-

chronous JavaScript and XML) technology also greatly enhances the user experiences of web

applications with better interactiveness and responsiveness.

On the other side of the coin, web applications have also become a primary and valuable tar-

get for cyber attacks, which brings serious security concerns for all users and businesses that rely

on web applications. According to a recent survey [65], the attacks against web applications now

account for 63% of all the Internet exploits in 2009. There are several reasons behind this trend.

First, web applications are designed to be open and accessible to a large number of users. This

also facilitates easy access from malicious attackers. Second, a dominating percentage of web

applications are designed to connect with database backend information systems and an enor-

mous amount of sensitive information exists. This provides economic incentives to the attackers

to compromise web applications as they can gain a huge amount of profit on the underground

market from the sales of breached data. A breach report from Verizon [66] shows that web appli-

cations now reign supreme in both the number of breaches and the amount of data compromised.

Third, as web applications become deeply embedded in business activities and are required to

support sophisticated functionalities, the design and implementation of web applications are be-

coming more complicated. The increasing complexity is confronted with the insufficient security

assurances from both the widely-used web application development and testing frameworks and

the web developers with insufficient security skills. As a result, a high percentage of web appli-

cations deployed on the Internet are exposed with security vulnerabilities. According to a report

by the Web Application Security Consortium, about 49% of the web applications they reviewed

contain vulnerabilities of high risks and more than 13% of the websites can be compromised

1

completely [72]. Another report [73] reveals that over 80% of the websites on the Internet used

to have at least one serious vulnerability.

Background

A web application is a client-server application that is executed over the Web platform. It is

an integral part of today’s Web ecosystem that enables dynamic information and service delivery.

As shown in Figure I.1, a web application consists of code on both the server side and the client

side. On the server side, the web application receives user inputs via HTTP requests from the

client (i.e., browser), and interacts with the local file system, the back-end database or other

components for data access and information retrieval. Its outputs (i.e., HTML page) are sent to

the client through HTTP responses. On the client side, HTML pages are rendered and the client-

side code (i.e., JavaScript) embedded in the HTTP responses is executed by the web browser.

The client-side code can also communicate with the server-side code asynchronously without

interfering with the display of the existing HTML page via AJAX, which dynamically updates

the page. We describe two unique characteristics of web applications as follows.

Web server

Sta!c

HTML

page

Executable, e.g..,

Java Servlet ,

cgi .

Run!me/Interpreter, e.g., JVM, Zend

Dynamic HTML

page, e.g., . PHP, JSP.

Web Application

Database Web browser

JavaScript,

 Flash,

etc.

Client Side Server Side

HTTP

Figure I.1: Overview of Web Application

Session Management: Web applications adopt the abstraction of a web session to identify

and correlate a series of web requests from the same user during a certain period of time. A

set of session variables (or session data) is associated with a web session, which can be used

by the application to record the states from the historical web requests that affect the future

execution of the web application (i.e., application session state). The session variables can be

maintained either at the client side (via a cookie, a hidden form or a URL) or at the server

2

side (in a file or using a database). In the latter case, a unique identifier (session ID) is defined

to index the explicit session variables stored at the server side and issued to the client. Most

web programming languages (e.g., PHP and JSP) and frameworks offer developers a collection

of functions for managing web sessions. For example, in PHP, session start() can be called to

initialize a web session and a pre-defined global array $ SESSION can be employed to contain

session variables. In either case, the client plays a vital role in maintaining the session information.

Logic Implementation: The implementation of a web application’s logic is usually man-

ifested as enforcing the control flow of the application and protecting its sensitive information

and operations. This is usually achieved through explicit security checks in the source code

or implied by the navigation paths presented to users (i.e., interface hiding). Explicit security

checks examine the conditions over certain security critical variables, whose values are drawn

from session variables or persistent data objects in the database before sensitive information and

operations can be accessed. Interface hiding only allows accessible resources and operations to

be exposed to users as web links.

Problem Description and Research Goal

As web applications get increasingly complex to support sophisticated business functionalities,

an emerging class of vulnerabilities, which are referred to as logic vulnerabilities, (a.k.a, logic

flaws) have attracted increasing attention in recent years. The attacks that target on these

vulnerabilities, which are referred to as logic attacks or state violation attacks, have posed serious

security threats. For instance, in June 2010, it was reported that a vulnerability of the AT&T

website allowed an attacker to harvest Apple iPAD subscribers’ emails by enumerating ICC-

ID numbers, which affected over 100,000 Apple customers [2]. As another example, in 2011,

a huge amount of credit card information was leaked due to a logic vulnerability within the

Citigroup website [15]. A recent report shows that three among top ten security risks for web

applications [49]1 can be attributed to logic vulnerabilities within web applications.

Logic vulnerabilities are closely related with the intended functionality of a web application.

Some vulnerabilities occur within the business logic patterns that are commonly seen in web

applications. Example of such vulnerabilities include access control vulnerabilities, which allows

1Missing Functional Access Control (newly added in 2013), Insecure Direct Object Reference and Unvalidated
Redirects and Forwards.

3

the attackers to access unauthorized sensitive information or operations. Some vulnerabilities

are linked to the functionalities that are specific to an application. For example, an e-commerce

website, which supports coupon during checkout, may be vulnerable to a vulnerability which

allows repeated application of the same coupon.

Ensuring correct implementation of logic specification faces several challenges that are funda-

mental to the development of a web application. First, web applications are usually structured

in a “decentralized” way and rely on additional state maintenance mechanisms to keep the ap-

plication state over the “stateless” HTTP protocol. As a result, the possible execution paths

leading to sensitive operations that are dispersed throughout the web application, making it very

difficult to identify all the security check points. Second, a large number of web applications,

developed in object-oriented programming languages, meanwhile rely on relational databases for

persistent data storage. The impedance mismatch between the relational data model and the in-

memory data model complicates the security checks over these data objects. Third, modern web

application development heavily relies on development frameworks (e.g., Django, Rails). There

exist gaps between the expectations from developers and the actual functionalities provided by

these frameworks. Security vulnerabilities can be introduced when certain functions are used

under the wrong assumptions. A common case is that redirection headers are sent to users when

the security checks fail. However, even the users are redirected to a different page, the issuance

of the redirection header does not stop further program execution, which may trigger sensitive

operations after the security checks fail. This vulnerability is referred to as Execution After

Redirection (EAR) [23].

A web application with logic vulnerabilities is vulnerable to logic attacks. Common logic

attack vectors include:

• Forceful browsing [63], where the attackers directly access hidden but predictable web links

to retrieve unauthorized web pages.

• Parameter tampering [6], which is launched by manipulating certain values in web requests

to craft inputs that are beyond the expected input domain under the current user.

Logic attacks are radically different from input validation attacks. Input validation attacks

manipulate the syntax of web requests to generate malformed web application inputs, while logic

4

attacks are disguised as syntactically valid web requests that carry malicious intentions to violate

the intended application logic.

To date, very few works have been devoted to the study of the logic vulnerabilities and

effective measures to mitigate logic attacks are yet to be developed. Most existing works only

target on one specific type of logic vulnerability, and are limited by the availability of application

source code and the applicability to specific development languages and platforms. There are

three major challenges for addressing logic flaws and logic attacks.

• Application logic is specific to each web application. Logic vulnerabilities and at-

tacks are specific to the functionality of a web application. There is no general specification

which can characterize the logic vulnerabilities and attacks for all web applications.

• Logic specification of a web application is rarely available. Although new tools are

emerging to facilitate the specification-based design of web applications [13, 19, 77], the

majority of online web applications come without any logic specifications.

• The implementation of a web application is heterogeneous. Web applications are

built using diverse programming languages and frameworks (e.g. PHP and JSP). As such,

techniques that infer application specifications from the source code face the following

limitations: (1) the technique developed for one language and platform cannot be readily

applied to another, especially when the application logic is implemented across different

platforms (e.g. for AJAX applications, the application logic is split at both client and server

side); (2) the quality (i.e., correctness and accuracy) of the inferred logic specification is

limited by their capabilities for handling language-level details. For example, it is extremely

difficult to analyze PHP web applications that contain object-oriented code, which leads

to inaccurate representations. (3) the quality of the inferred specification is also highly

dependent on the quality of the web application implementation. The definitions of program

blocks and variables greatly affect the specification inference.

In the light of the above challenges, the research goal of this dissertation is to secure legacy

web applications from logic attacks and vulnerabilities. In particular, we aim to develop security

techniques that can:

• detect logic attacks launched against web applications and

5

• prevent logic attacks by identifying logic vulnerabilities within web applications.

These techniques should be 1) automated - they require minimal amount of human intervention;

2) effective - they can detect a broad range of logic attacks and vulnerabilities with minimum

number of false positives incurred; 3) scalable - they can be easily applied to a variety of web

applications that are developed with different programming languages and frameworks.

Research Approach and Dissertation Contributions

Our approach consists of two major steps: specification inference and specification utilization.

Our specification inference technique does not require application source code but solely relies

on the observation over the external behavior of a web application. Note that the functionality

of an application is correctly and fully manifested when users follow its navigation paths [63].

We infer the application specification from its traces (including web requests/responses, SQL

queries/responses and session variables) collected during its normal execution. Based on the

inferred specification, we take two approaches to defending against logic attacks: runtime detec-

tion of of logic attacks (i.e., the defensive approach) and discovery of logic vulnerabilities within

web applications (i.e., the preventive approach). The defensive approach, based on misuse detec-

tion, aims at identifying the deviation of the application behavior from the inferred specification.

The preventive approach, based on directed fuzzing, generates concrete attack vectors from the

inferred specification to expose the logic vulnerabilities within the application. The defensive

approach can be utilized to protect the potentially vulnerable web applications that cannot be

taken offline for vulnerability analysis, while the preventive approach, which constructs test can

help developers to identify and fix logic flaws within the application implementations so that

they are immune to logic attacks.

In this dissertation, we present several techniques for automatically deriving logic specifi-

cations based on different application models and utilizing the specifications to mitigate logic

attacks. We implement a prototype system for each technique and evaluate it over a set of open

source web applications. Figure I.2 summarizes the five prototype systems we developed. BLOCK

and SENTINEL can be used to detect logic attacks at runtime, while LogicScope, EXPELLER

and BATMAN can be used to identify logic vulnerabilities within web applications. LogicScope

leverages the same amount of information as BLOCK, including web requests, web responses

6

and session variables. EXPELLER leverages the same amount of information as SENTINEL,

including SQL queries, SQL responses and session variables. BATMAN integrates information

of both web requests/responses and SQL queries/responses, and does not require any session

variables. The experiment results demonstrate the effectiveness of our techniques and prototype

systems. The contributions of this dissertation are listed as follows.

Detection: detect logic attacks Testing: identify logic flaws

BLOCK:
detect

malicious web

requests

SENTINEL:
detect

malicious

SQL queries

LogicScope
rely on web

requests/

response,

session info

EXPELLER
rely on SQL

queries/

response,

session info

BATMAN
rely on

web/SQL,

no session

info

Figure I.2: Summary of Prototype Systems

Detection of Logic Attacks

• We present a black-box approach (and the first) for detecting logic attacks. We present

a stateless model of web application by flattening the finite state machine (FSM) model.

Based on this model, we characterize the logic specification by inferring the relations among

web requests, responses and session variables in the form of invariants and use the invariants

for detecting malicious web requests. We implement a prototype detection system BLOCK

for PHP web applications. Details are provided in Chapter III.

• We present an approach to detecting malicious SQL queries, which are triggered to exploit

the database access logic flaws within web applications. We model the web application

as an Extended Finite State Machine (EFSM) by associating data constraints with state

transitions, and extract invariants from SQL queries, responses and session variables. This

technique systematically utilizes the persistent information in the database (i.e., SQL re-

sponse) for deriving a more complete and accurate logic specification. We implement a

7

prototype system SENTINEL for PHP web applications. Details are provided in Chap-

ter IV.

Prevention of Logic Attacks

• We present the first systematic source-code free approach to identifying logic flaws within

web applications based on BLOCK. We present a formalization of logic vulnerability based

on the FSM model and exploit the discrepancies between the intended FSM and the imple-

mented FSM by constructing test inputs that reflect the logic attack vectors. We implement

a prototype system LogicScope. Details are provided in Chapter V.

• We present a source-code free approach, which focuses on identifying logic flaws of database

access within web applications, based on SENTINEL.We characterize the logic specification

as a set of security constraints over SQL queries and exploit the application by constructing

malicious web requests that violate the inferred constraints. We implement a prototype

system EXPELLER for PHP web applications. Details are provided in Chapter VI.

• We present a black-box technique for identifying the most prevalent logic vulnerability:

access control vulnerability, within web applications. This technique is based on a novel

data access model that unifies the SQL queries for write operations and web responses for

read operations, and automatically extracts the intended access control policy by analyzing

data access operation patterns within and across different users and roles. This technique

does not rely on any server-side session variables, thus it can naturally handle web ap-

plications developed in different languages and platforms without additional efforts. We

implement a prototype system BATMAN and evaluate it over open source PHP and JSP

web applications. Details are provided in Chapter VII.

Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter II presents the existing

literature related with the work in this dissertation. Chapter III and Chapter IV present our

black-box approach to detecting logic attacks, as well as the implementation and evaluation

of the BLOCK and SENTINEL systems. Chapter V and Chapter VI present our source-code

8

free approach to identifying logic vulnerabilities within web applications, as well as the imple-

mentation and evaluation of the LogicScope and EXPELLER systems. Chapter V presents our

black-box technique for discovering access control vulnerabilities, as well as the implementation

and evaluation of the BATMAN system. Finally, chapter VIII concludes this dissertation.

9

CHAPTER II

RELATED WORK

The work in this dissertation is mostly related with developing security techniques to address

logic attacks and vulnerabilities within web applications. Our work is also related to several

other areas of research, including software specification inference, web database security and test

input generation. In this chapter, we review the existing work and highlight our contributions.

We summarize the existing work in Table II.1. We highlight two important dimensions: spec-

ification source and defense mechanism. We also fit our techniques described in this dissertation

into the big picture. From the table, we can see that our major contribution is a new category

for specification inference through black-box analysis, which does not require application source

code for either static analysis or instrumentation.

Existing Defenses against Logic Attacks

A large body of existing work has been proposed to secure web applications and defend against

a variety of web attacks. However, most investigate input validation attacks (e.g., [36, 71, 41, 35]),

while only a few try to address logic attacks. This is not surprising because input validation

vulnerabilities are independent of the specific web application and can be captured via a general

specification: insecure information flow. The information flow model can be applied to identify

or fortify the insufficient or erroneous sanitization routines within web applications to defend

against input validation attacks.

In contrast, logic vulnerabilities are multi-faceted without such a general specification. Exist-

ing works that address logic vulnerabilities have followed two directions: 1) targeting on special

types of vulnerabilities that are associated with common application functionalities, such as au-

thentication, access control, etc; 2) aiming at general logic vulnerabilities that can be dependent

on the functionalities of each application (referred to as application-specific logic vulnerabilities

hereinafter). In this case, the application’s intended functionality (i.e., specification) is required

to tackle the logic vulnerabilities and attacks. Such a specification can be explicitly specified by

developers during software development. In the absence of such a specification, which is com-

monly seen in practice, it needs to be inferred from the application implementation. Application

10

specification inference is challenging, since a general method needs be developed to handle a

number of heterogeneous web applications and platforms to minimize manual efforts involved. In

what follows, we categorize the existing works by the phase, when they can be applied along the

lifecycle of a web application, into three classes: Secure Construction of New Web Applications,

Security Analysis/Testing of Legacy Web Applications and Runtime Protection of Legacy Web

Applications.

Secure Construction of New Web Applications

this class of techniques aim to construct secure web applications, ensuring that no potential

vulnerabilities are introduced during the web application development. These techniques are

usually carried out through the design of new web programming languages or frameworks that

are built with security mechanisms, which root out the target vulnerabilities. These techniques

are most applicable to the development of new secure web applications, but not suitable for

fixing the vulnerable legacy applications due to the huge amount of redevelopment effort that is

required.

To enforce authorization policies in web applications, existing works have adopted information

flow model to prohibit sensitive information from flowing to unauthorized principals. Recall that,

to address input validation vulnerabilities, information flow model has been applied to prevent

the untrusted user data from flowing into trusted web contents. Thus, SIF [13] and Swift [12],

which use security-typed language Jif to track the information flow, provide a web application

framework that can enforce both input validation policies and authorization policies.

SELinks [19] is a programming framework that extends the LINKS web programming language

with FABLE [64], a type system for defining and enforcing custom, label-based security policies.

Similar to Jif, the type of sensitive data in Fable is annotated with a security label; different from

Jif, the semantics of this label is user-defined, where programmers define the interpretation of

labels in special enforcement policy functions separated from the rest of the program. FABLE can

be used to define and enforce a wide range of policies including access control, data provenance

and information flow policies, while Jif only supports information flow policy.

Resin [77] is a system that allows programmers to specify application-level data flow assertions

using policy objects and define the data flow boundaries using filter objects. RESIN operates

within a language runtime (e.g, Python or PHP interpreter). It tracks application data as it flows

11

through the application, checks data flow assertions on every executed path and invokes filter

objects when data crosses a data flow boundary, such as when writing data to the network or a file.

A variety of vulnerabilities can be mitigated using Resin, such as script injections, missing access

control checks. Compared to SIF [13] and SELinks [19], Resin allows programmers to reuse the

application’s existing code and thus avoids the large amount of annotations and instrumentations

required by security-typed languages. However, Resin cannot track implicit data flow, such as

program control flow, data structure layout, which is the capability provided by security-typed

languages.

In addition to information flow models, the principle of least privilege and privilege separa-

tion have also been applied to facilitate constructions of web applications that minimize the side

effects of an attack. Capsules [40] is a web development framework based on an object-capability

language Joe-E [44] for enforcing isolation and facilitating the practice of the principle of least

privilege. An web application is partitioned into isolated components, each of which is given a

limited set of explicitly-specified privileges. This technique minimizes the damages caused by vul-

nerable components, especially third-party code, and facilitate security reviews and verification.

However, it cannot guarantee each application component is free of vulnerabilities.

Security Analysis/Testing of Legacy Web Applications

This class of techniques aim to identify vulnerabilities within web applications through pro-

gram analysis (usually referred to as vulnerability analysis) and testing techniques. Additional

efforts have to be spent on fixing the discovered vulnerabilities and retrofitting the web appli-

cations, either manually or automatically. They are usually designed for handling a specific

programming language or framework and can not be easily generalized for another one. A key

challenge for this class of techniques is the trade-off between the completeness and correctness

of vulnerability discovery. Static analysis, which examines application source code without ex-

ecution, tends to be more complete in vulnerability discovery than dynamic analysis (including

testing), which observes the application behavior through execution. On the other hand, static

analysis is likely to introduce more false alerts, while dynamic analysis can typically guarantee the

correctness of the identified vulnerabilities through its capability of generating concrete attack

vectors.

12

Logic vulnerabilities within a legacy web application originate from the discrepancies between

its intended functionalities (i.e., specification) and its implementation. Once the specification of

an application is defined, the existence of logic vulnerabilities can be identified.

UrFlow [11] is able to statically verify a variety of security policies, including both informa-

tion flow and access control policies, within database-backed web applications. UrFlow requires

developers to specify policies in the form of SQL queries and employs symbolic execution and

theorem proving to automatically verify if the program behaviors conform to those policies.

Rubyx [9] is a symbolic execution framework for Ruby-on-Rail web applications. Rubyx

allows developers to specify security policies using a set of programming interfaces and verifies

those policies automatically. Rubyx is able to identify input validation vulnerabilities, CSRF,

insufficient authentication as well as application-specific logic flaws, depending on the security

policies defined.

When the application specification is not provided by the developers, it has to be first inferred

from its implementation for identification of logic flaws. There are two general approaches for

specification inference: 1) static analysis, which extracts the logic specification from the applica-

tion’s source code, and 2) dynamic analysis, which generates the specification by observing the

application’s runtime behavior.

Static Analysis

Sun et al. [63] perform role-specific analysis of PHP web applications for identifying access

control vulnerabilities. They first specify a set of roles with total order. Then sitemaps are con-

structed for different roles in a web application based on explicit navigation links. By comparing

per-role sitemaps, privileged pages can be identified. Then they analyze whether direct access

to privileged pages from unauthorized roles is allowed, which indicates missing access control

checks.

RoleCast [61] also tries to identify missing access control checks in PHP web applications.

In RoleCast, roles are defined based on the common functionality and security logic. The set of

user roles are inferred from the partitions of the file contexts on which security sensitive events

are control dependent. Within a role, RoleCast identifies security-critical variables and performs

role-specific consistency analysis over security-critical variables to find missing security checks.

Doupé et al. [23] address a particular type of logic vulnerability called Execution After

Redirect (EAR), where the application continues execution after developer-intended redirection,

13

resulting in violation of intended control flow and unauthorized execution. In particular, they

present a static analysis technique to identify such vulnerabilities within Ruby-on-Rail web ap-

plications. They extract the control flow graph from the application source code and identify

the control paths that lead to privileged code after redirection routines are called as potential

vulnerabilities.

MiMoSA [4] identifies workflow violations that are introduced by unintended navigation paths,

in addition to data flow attacks that exploit the input validation vulnerabilities, among multiple

modules. MiMoSA infers a workfow graph of the application as a specification through two

steps: first, intra-module analysis extract a “state view” of each module (a PHP file in this

case) is analyzed by determining its pre-condition, post-conditions, and sinks; then inter-module

analysis links the state views to derive the workfow graph of the entire application. Model

checking technique is applied on the workflow graph to identify unintended navigation paths.

Dynamic/Hybrid analysis

Waler [29] can automatically discover application-specific logic flaws. First, Waler extracts

value-based invariants for session variables and function parameters by observing normal exe-

cutions and uses them as the logic specification. Then model checking technique is applied to

identify possible violations of inferred invariants. They also filter spurious invariants by analyzing

the program control paths and capturing the relationship between session variables and database

objects.

While Waler focuses on the analysis of server-side code, NoTamper [6] aims at detecting

parameter tampering opportunities behind web forms within AJAX applications. Such vulnera-

bilities are caused by the inconsistencies between the client-side and server-side validation. No-

Tamper extracts the constraints over parameters within the form from the client-side JavaScript

code and generates malicious input vectors by negating those constraints. The web responses

triggered by both benign and malicious inputs are examined to determine whether the form is

vulnerable to parameter tampering. The black-box technique used by NoTamper may produce

both false positives and false negatives. WAPTEC [7] enhances NoTamper by applying white-

box analysis to the server-side code to reduce false positives and identify the vulnerabilities that

NoTamper fails to discover.

14

Runtime Protection of Legacy Web Applications

This class of techniques aim to harden and protect potentially vulnerable web applications

against external exploits by building a runtime environment that supports its secure execution.

They usually either 1) place safeguards (e.g., proxy) that separate the web application from

other components (e.g., the browser and the database) in the Web ecosystem or 2) instrument

the infrastructure components (e.g., language runtime and web browser) to monitor its runtime

behavior and identify/quarantine potential exploits. These techniques are usually scalable to

handle a large number of web applications, even with different languages or platforms, with the

price of additional performance overhead due to instrumentation.

CLAMP [53] addresses access control vulnerabilities that can be exploited by a variety of

attacks, including logic attacks, SQL injections and even web server compromises, and pro-

tects sensitive user data by isolating application components running on behalf of different users

through virtualization. CLAMP assigns a virtual web server instance to each user’s web session,

so that the user can only access his own data. However, CLAMP cannot be applied to applica-

tions with shared data among users. Also, CLAMP requires a small amount of changes to the

application code.

Nemesis [22] addresses a wide range of authentication bypass and access control vulnerabilities

in legacy web applications. It uses a shadow authentication system to infer successful user

authentication without depending on the potentially vulnerable authentication mechanism in

the application. It employs dynamic information flow tracking technique to track the flow of user

credentials through the application’s language runtime and combines authentication information

with programmer-supplied access control rules to ensure that only properly authenticated users

are granted access to any privileged resources or data. Nemesis does not require changes to

the application code, but need the application developers to provide annotation information for

verifying the authentication credentials and explicitly specify the access control policies.

Swaddler [20] applies anomaly detection technique for the discovery of state violation attacks.

In particular, Swaddler establishes statistical models of session variables for each program block

during its normal execution, which indicate the application state when that program block is

executed. At runtime, this set of statistical models are evaluated to determine whether the ap-

plication state is legitimate when the current program block is executed. Different from Nemesis

15

and CLAMP, which only focus on certain types of common logic vulnerabilities (e.g., authentica-

tion, access control), Swaddler provides a unified approach for a wide range of application-specific

logic vulnerabilities.

Besides the vulnerabilities that are embedded in the server-side code, recent works [33, 67] also

tackle the logic vulnerabilities within the client-side code for AJAX applications. [33] extracts

a control-flow graph of URLs from the client-side HTML and JavaScript code as the client

specification using static analysis. This graph is then used in a reverse proxy to monitor client

behaviors and detect malicious activities against server-side web applications.

Ripley [67] detects malicious user behaviors within AJAX applications by leveraging replicated

execution. Essentially, the client-side computation is exactly emulated on the trusted server

tier, where each client-side event is transferred to the replica of the client for execution. The

discrepancies between the execution results are flagged as exploits.

Summary and Our Contributions

Despite the existence of the above research efforts, as summarized in Table II.1, securing

web applications from logic flaws and attacks still remains an under-explored area. Among

the limited number of works, most of them only address a special type of application logic

vulnerabilities [23, 63, 61, 53, 22, 6, 7], such as authentication and access control vulnerabilities,

and inconsistencies between client and server validations. The fundamental difficulty for tackling

general logic flaws is the absence of application logic specification. The absence of a general and

automatic mechanism for characterizing the application logic may be the inherent reason for the

inability of application scanners and firewalls to handle logic flaws and attacks [25, 5].

Several recent works try to develop a general and systematic method for automatically in-

ferring the specifications for web applications, which in turn facilitates automatic and sound

verification of the application logic. One of the key observations that these work [4, 29, 20]

leverage in establishing the application specification is that the application intended behavior is

usually revealed under its normal execution, when users follow the navigation paths. In [33], sim-

ilar assumption is made for well-behaved clients, where they are expected by the server to invoke

the URLs in a particular sequence with particular arguments. In order to infer the application

logic, one class of methods leverage the program source code [20, 29]. As a result, the inferred

specification is highly dependent on the development language and platform. Our techniques try

16

to infer the application specification by observing and characterizing the application’s external

behavior. The noisy information observed from external behaviors may lead to an inaccurate

specification through this method. Moreover, web application maintains a large amount of per-

sistent states in the database. Correctly identifying these states to accurately characterize the

application logic is still challenging.

Table II.1: Summary of Existing Defenses against Logic Attacks
Secure Construc-
tion

Security Analy-
sis/Testing

Runtime Protec-
tion

Specification Source
Specified by Developer
(explicitly or implicitly)

SIF [13, 12],
SELINKS [19],
Resin [77], Ur-
Flow [11], Cap-
sules [40]

EAR [23] Nemesis [22],
CLAMP [53]

Static Inference
(source code)

N/A MiMoSA [4],
Sun’s work [63],
RoleCast [61],
NoTamper [6],
WAPTEC [7]

Arjun’s work [33]

Dynamic Inference
(via instrumentation)

N/A Waler [29],
WAPTEC [7]

Swaddler [20], Rip-
ley [67]

Dynamic Inference
(black-box analysis)

N/A LogicScope, EX-
PELLER, BAT-
MAN

BLOCK, SEN-
TINEL

Defense Mechanism
Static Checking SIF [13, 12], Ur-

Flow [11]
MiMoSA [4], Role-
Cast [61], EAR [23],
Waler [29], Sun’s
work [63]

N/A

Dynamic
Checking/Enforcement

SIF [13, 12],
SELINKS [19],
Resin [77], Cap-
sules [40]

NoTamper [6],
WAPTEC [7],
LogicScope, EX-
PELLER, BAT-
MAN

Nemesis [22],
CLAMP [53],
Swaddler [20],
Ripley [67], Arjun’s
work [33], BLOCK,
SENTINEL

Software Specification Inference

Software specification is essential for verification of program behaviors and program test-

ing. However, a complete and machine understandable specification is rarely available. Thus,

17

researchers are motivated to study the problem of inferring software specifications. Static in-

ference techniques analyze the program code to extract the partial orders of function calls [39],

while dynamic inference techniques try to profile the program behavior by mining program exe-

cution traces. The Daikon engine [27], the most famous tool in this field, extracts value-related

invariants by matching invariant templates to expressions. Strauss [1] formalizes the specification

mining as a grammar inference problem and learns probabilistic finite state automata (PFSA)

from traces. Perracotta [76] mines two-letter alternating patterns of functions from imperfect

traces. Gk-tail [43] builds extended finite state machine (EFSM) combining both value-related

and temporal properties.

Our techniques fall into the category of dynamic inference techniques. Different from these

generic software specification inference methods, our work observes the external information

(i.e., web requests/responses and SQL queries/responses), does not require instrumentation to

generate execution traces and can be applied to distributed client/server web applications.

Web Database Security

Most database systems currently in use implement role-based access control mechanisms to

regulate database accesses. However, when the database is connected to a web application,

which we refer to as web database, it cannot differentiate between the end users who are actually

operating the application and trusts all the queries issued by the application. Thus, if an attacker

exploits the web application successfully, he can trick the application into sending malicious SQL

queries, leading to a “confused deputy” problem [17].

Access Control

A straightforward approach to addressing the aforementioned confused deputy problem is to

identify the individual users that operate the web application and perform a fine-grained access

control for each user. Roichman et al. [56] leverage parameterized views for user identification

and implement access control at a finer granularity at the database layer. However, such a “user-

based” approach depends on the adoption of parameterized views, which requires retrofitting the

entire database system and all the schema. As an alternative approach, Felt et al. [30] propose

Diesel to enforce privilege separation between different application modules. The “module-based”

18

approach is only capable of confining the potential damages to a certain vulnerable module and

cannot defend against the attacks that exploit the vulnerable module.

Our technique (SENTINEL in Chapter IV) neither relies on user identification nor fine-grained

access control. Instead, we characterize the application state and data constraints when each SQL

query is issued by the application. Our “state-based” approach requires minimal efforts, can be

easily integrated with existing systems and effectively identify malicious SQL queries.

Intrusion Detection

Another approach is to build an intrusion detection system (IDS) for database systems. Lee

et al. [42] build a signature-based IDS by learning a set of legitimate SQL query fingerprints

from database transactions. While the set of fingerprints is exactly the same as the set of SQL

signatures we extract from traces, we further associate each SQL signature with invariants to

detect state violation attacks. Chung et al. [14], Kamra et al. [37] and Chen et al. [10] establish

anomaly-based IDS by deriving user profiles of database accesses from audit logs, while Roichman

et al. [57] rely on parameterized database views [56]. However, all of their systems face the same

challenge of scaling up to handle a huge number of users. Instead, our technique (i.e., SENTINEL

in Chapter IV) characterizes the application behavior, not the individual user behavior. Thus,

our approach is naturally scalable for handling a large population of users.

Test Input Generation

Random test generation (i.e., fuzz testing) tends to achieve limited coverage for testing.

Thus, it is usually enhanced with guided/directed mutations of well-formed inputs to discover

vulnerabilities. FLAX [54] is a taint-guided black-box fuzzing technique for identifying client-

side input validation vulnerabilities in web applications. By leveraging the knowledge of sensitive

sinks, a large proportion of the input space can be pruned. DART [31] blends testing with model

checking, which systematically explores the program space for directed input generation. Another

technique that can be applied for directed input generation is symbolic execution, which is usually

combined with constraint solving. The program execution is tracked using symbolic rather actual

values to gather constrains on inputs capturing how the program uses them. Then, the collected

constraints are negated one by one and solved with a constraint solver, producing new inputs that

19

exercise different control paths in the program. SAGE [32] leverages this technique on well-formed

input in white-box manner to discover vulnerabilities. EXE [8] is able to automatically generate

attack vectors. Kudzu [58] is a symbolic execution framework for JavaScript and aims to identify

code injection vulnerabilities in the client-side code that result from untrusted data provided as

arguments to sensitive operations. Additionally, Halfond et al. [34] apply this strategy to infer

the web application interfaces for improved testing and analysis of web applications.

Symbolic execution can also be combined with concrete execution to avoid redundant test

cases and false warnings [60], which is referred to concolic testing. Emmi et al. [26] concoli-

cally (i.e., both symbolically and concretely) execute server-side code and analyze executed SQL

queries to find missing database records to improve branch coverage in testing. Pan et al. [52]

focus on generating effective inputs for testing database applications given an existing database

state, without incurring the overhead of generating new database state. All of the above works

require analyzing the application source code to incorporate techniques, such as symbolic ex-

ecution and model checking and cannot identify logic vulnerabilities within web applications.

Instead, our test input generation (i.e., LogicScope in Chapter V, EXPELLER in Chapter VI,

BATMAN in Chapter VII) is based on an inferred specification in a black-box manner and echoes

logic attack vectors to expose logic vulnerabilities.

20

CHAPTER III

A BLACK-BOX APPROACH FOR DETECTION OF STATE VIOLATION
ATTACKS

In this chapter, we present BLOCK, a BLack-bOx approach for detecting state violation

attaCKs. To our knowledge, this is the first black-box technique that addresses this problem. We

regard the web application as a stateless system and infer the intended web application behavior

model by observing the interactions between the clients and the web application. We extract a set

of invariants from the web request/response sequences and their associated session variable values

during its attack-free execution. The set of invariants is then used for evaluating web requests

and responses at runtime. We develop a system prototype based on the WebScarab proxy and

evaluate our detection system using a set of real-world web applications. The experiment results

demonstrate that our approach is effective at detecting state violation attacks and incurs an

acceptable performance overhead. Our approach is valuable in that it is independent of the web

application source code and can fit into a large variety of web application hosting scenarios based

on different application frameworks, where the source code may not be available.

The rest of this chapter is organized as follows. We first give an overview of our approach.

Then, we present an example web application to show the state violation attacks we focus on.

Our system and approach are discussed in detail in the following two sections. Then, we discuss

the implementation and demonstrate the evaluation results of the prototype detection system.

We conclude with discussions on the limitations of this work.

Overview

The key idea of BLOCK is to infer the intended behavior model of the web application

(i.e., specification) by observing the web request/response sequences and their associated session

variable values during attack-free executions. In particular, we leverage the stateless property

of HTTP and regard the vector of current values of session variables as part of the input along

with the web request to the application, the web responses and the updated session variables

as the output. In this way, the web application can be approximated as a stateless system.

Under this stateless system model, we characterize the application behavior from three aspects

21

in the form of likely invariants: 1) input invariants, which model the relationship between the

web requests and the session variable values, 2) input/output invariants, which capture the

relationship between the web request and response as well as the changes in the session variables

after the web request is processed, and 3) input/output sequence invariants, which leverage the

historical web request/response pair sequences to capture the application states that are not

revealed by defined session variables.

Attacks and Running Example

A web application manages the clients’ session states to control the access over its restrictive

functions and sensitive information, as well as enforce desired state transitions. Although most

current web application development frameworks provide session management mechanisms, it is

still the developer’s responsibility to define and check session variables at appropriate program

points, which is usually done in an ad-hoc manner. Three types of vulnerabilities are possibly in-

troduced into the web application: (1) insufficient definition of session variables for differentiating

all possible states; (2) insufficient checking of session variables at appropriate program points;

(3) erroneous checking of session variables that can be bypassed. All three of these problems

make the web application vulnerable to state violation attacks (also referred to as the workflow

violation attack in Swaddler [20]). The attacker can launch state violation attacks by sending

web requests to the web application, which violate the underlying requirements of expected web

requests by the developers at the current application state. We use a small PHP web application

(shown in Fig. III.1) which contains several state management vulnerabilities to illustrate state

violation attacks. This example is used throughout the chapter to demonstrate how we address

these attacks.

The first example of the state violation attack is an authentication/authorization (simplified

as auth hereafter) bypass. The web application controls the access over its functions by checking

session variables indicating the user privilege before its restrictive functions can be executed. If

the application is not at the required state, the web application will redirect the user to the

login page, authorization page or an error page. However, if there exists a path leading to the

restrictive function with insufficient or erroneous checking of session variables, the attacker is

able to bypass the authentication/authorization. The example application demonstrates three

22

<?php
include_once("header.php");
if (isset($_GET['logout'])){

session_start();
unset($_SESSION['username']);
unset($_SESSION['privilege']);
session_destroy();
print "You are logged out.
";

} else if (isset($_POST['email'])){
if (validateLogin($_POST['email'], $_POST['passwd'])){

$_SESSION['username'] = $_POST['email'];
if ($_POST['email'] == $admin_email){

$_SESSION['privilege'] = "admin";
} else {

$_SESSION['privilege'] = "user";
}

header("Location: index.php?username

=" . $_SESSION['username']);
exit();

} else {
die("Wrong username or password");

}
}
?>
<form action='login.php' method=post>
username: <input name="email" type="text">

password: <input name="passwd" type="password">

<input name="submit" type="submit"> </form>

< ?php include_once 'footer.html';?>

<?php include_once 'header.php';
logIdentity();
print "Next step: change the
title";
include 'footer.html';?>

<?php
include_once 'header.php';
if (isset($_GET['username'])){

$userid = $_GET['username'];
showUserInfo($userid);
if ($_SESSION['privilege'] == "admin"){

print "Admin link
";
}

}
print "Logout
";
include_once 'footer.html';
?>

<?php
include_once 'header.php';
if ($privilege != "admin"){

header("Location: index.php?username

=".$_SESSION['username']);
}
if (isset($_POST['title'])){

modifyTitle($_POST['title']);
}
?>
<form action='admin2.php' method=post>
New title: <input name="title" type="text">

<input name="submit" type="submit">
</form>
Logout
<?php
include_once 'footer.html';?>

index.php

admin2.php

admin.php

login.php

Figure III.1: An Example of a Vulnerable Web Application

23

cases of auth bypass attacks. admin.php and admin2.php contain restrictive functions, which

should only be accessed by admin users when the session variable $ SESSION[‘privilege’] is set

to the value of admin.

• In admin.php, there is no check on the session variable $ SESSION[‘privilege’]. The at-

tacker, being either a guest or a regular user, can directly request the page and access the

admin functions.

• In admin2.php, even though there is an if condition check on the session variable $privilege,

the attacker can append an additional parameter privilege to the URL, for example

http://example.com/admin2.php?privilege=admin, and bypass the auth check. The reason

is when the register global option of PHP interpreter is enabled, the parameter attached to

the web request will be automatically bound to a global variable, if such a variable does

not exist in the current session state. This vulnerability results from the inappropriate or

erroneous check on the session variable.

• In admin2.php, even when the auth check fails, the attacker is able to execute the restrictive

functions after the redirection (i.e., header function) by submitting a POST request with

the parameter title and change the application’s title successfully. This is because there is

no exit function or an additional check after the redirection.

The second example of a state violation attack is parameter manipulation. In many cases,

the web application assumes implicit relations between the user’s input parameters within web

requests and the session state. Such a relationship may also be reflected by web responses

returned by the web application. If the application does not check the session state when ac-

cepting the web request, the attacker is able to manipulate the input parameters and gain access

to unauthorized information. In the example application, after the user logs in, they will be

redirected to the index.php page, which displays their personal information. The web applica-

tion assumes the request parameter username is always equal to the value of session variable

$ SESSION[‘username’]. If the equality relationship is not examined when the user’s personal

information is retrieved, the attacker is able to view any user’s information by modifying the

username parameter within the web request.

The third state violation attack is workflow bypass. A web application usually has an intended

workflow, which requires the user to perform a predefined sequence of operations to complete a

24

certain task. For example, an e-commerce website has a predefined checkout procedure, which

instructs the customer to first fill-in the shipping information and then the credit card information

before the order can be confirmed and submitted. Such a temporal relationship is enforced by the

restrictions over the session state transitions. However, if the session variables are insufficiently

defined or checked for guarding the desired state transitions, the attacker is able to bypass certain

required steps and violate the intended workflow. The example application requires the admin

user to first access admin.php, which logs his/her identify (by logIdentity function) before they

can modify the application title in admin2.php. The two steps indicate two different session states

and the transition between them should be guarded by the web application. However, there is no

session variable defined for indicating whether the identity of the admin user has been logged or

not. The attacker can directly point to the admin2.php page without their identity being logged.

System Model

As shown in Fig.III.2, a web application is regarded as a stateless system F , which accepts

an input min and emits an output mout, expressed as F (min) = mout. An input min consists of

a web request and a set of session variable name/value pair S(min). To facilitate detection, we

further decompose a web request into two components: a web request key r(min), which includes

the HTTP request method and the target file, and a set of input parameter name/value pair

P (min). In this chapter, we only consider GET and POST methods and focus on PHP pages.

For example, the web request keys include GET-login.php, POST-login.php, in the application

shown in Fig. III.1. Similarly, an output consists of a web response and a set of session variable

name/value pair S(mout). A web response is a synthesized web page, which is usually generated

by filling dynamic contents into a static web page structure (i.e., template). To deal with the

infinite number of possible web responses, we decompose a web page into a web template, the

number of which is finite, with a set of dynamic contents, which become output parameters.

If we assign a unique ID to each static template, a web response can be symbolized as a web

template ID (i.e., web response key v(mout)) and a set of output parameter name/value pairs

Q(min). In the next section, we illustrate how to symbolize a web page as a web template with

a set of output parameters.

25

POST http://example.com/login.php username=testuser&passwd=xx

r (request key) P (input parameter)
$_SESSION[‘privilege’]=null&$_SESSION[‘username’]=null

S (session variable) Web

Application

FTemplate: t.index_user /html/body: user info for testuser

v (response key) Q (output parameter)
$_SESSION[‘privilege’]=“user”&$_SESSION[‘username’]=“testuser”

S (session variable)

mout

min

Figure III.2: A Stateless View of a Web Application

Approach

Approach Overview

Our approach for detecting state violation attacks has two key phases. In the training phase,

the intended behavior model of the web application (i.e., the specification) is derived by observing

the web request/response sequences and the corresponding session variable values during its

attack-free execution. In the detection phase, the inferred model is used to evaluate each incoming

web request and outgoing web response and detect any violations.

Due to the stateless nature of HTTP, session variables are explicitly defined in web applica-

tions to maintain the state of a web session. There are two ways for maintaining session states:

1) client-side only, where session states are directly carried in cookies, hidden forms, or URLs

and 2) collaboration of the client and the server, where the server stores the session states and

issues a session ID to the client for indexing its session states. In either case, session states can

be retrieved at runtime for each web request independent of the web application implementation.

For example, when session states are carried in cookies, hidden forms, or rewritten URLs, they

can be directly retrieved from the web requests. When session states are kept in the server side,

they can be found either in a file or a database table. In the case of PHP, the session state is

26

stored in temporary files located at /var/lib/php5 by default, which is indexed by a session ID

within web requests, while in the case of JSP, the session state is persisted in database tables.

One straightforward approach to modeling the application behavior is to derive its states

from the session variables and their values directly. Yet, this approach has several drawbacks: 1)

at one application state, session variables may exhibit a large range of values. For example, $ -

SESSION[‘username’] can assume as many possible values as the number of registered users in the

same application state. Thus, directly using session variable values to differentiate application

states may result in a large number of spurious states; 2) definition of session variables may

be missing from the application implementation. As a result, two application states in the

specification can not be differentiated by the collection of all session variables. For example, in

the application shown in Fig. III.1, there is no session variable defined for indicating whether the

admin user identity has been logged.

Our approach follows the stateless property of HTTP and regards the session variables as

part of the input to the web application along with web requests. Similarly, the output of

the application consists of the web response and the session variables. In this way, the web

application can be regarded as a stateless system, as shown in Fig. III.2. Under this stateless

system model, we characterize the application behavior in the form of three types of likely

invariants. 1) Type I input invariants: recall that the web application input consists of the web

request and the values of the session variables when the request is made. This type of invariant

models the relationship between the web requests and the session variable values. Essentially,

it tries to capture the constraints on the web requests at certain session states. By identifying

the invariant component of session variables, this approach avoids the introduction of spurious

states by unnecessary session variables. 2) Type II input/output invariant: this type of invariants

models the relationship between the web request and response as well as the changes in the session

variables after the web request is processed. Essentially, it tries to capture the constraints on

the application state transition and the input/output dependency at a certain state. Both type

I and II invariant rely on the session variables to infer the application states. When the session

variables are not sufficiently defined, we need a third type of invariant. 3) Type III input/output

sequence invariants: this type of invariants models the relationship between consecutive web

request/response pairs. Essentially, it tries to capture the application states that are not revealed

by defined session variables by leveraging the historical request/response information. In the

27

following sections, we first formalize our system model and then illustrate how to extract three

types of invariants and apply them into runtime detection.

Web Page Symbolization

To symbolize a web page, we first extract the web templates (O) from all the observed web

pages (D). Then, given a web page d ∈ D, we classify it into the most probable template (v)

and extract the set of output parameters (Q) accordingly. Techniques for extraction of templates

from web pages have been presented in existing literatures [55, 38]. In this chapter, we leverage

the method from TEXT [38], which expresses the DOM tree structure of a web page as a set of

essential paths. Our template extraction procedure contains the following four steps. Step 1 and

2 are similar to TEXT and step 3 and 4 are designed to fulfill the purpose of template extraction

in our context.

(1) Transformation: The DOM tree structure of a web page d is first transformed into a set

of paths Pd. Here, we focus on the paths that lead to the leaf text nodes, which carry the infor-

mation sent back to the clients within web pages. An index page from our example application

can be expressed as three paths: “/html/body/Welcome to the application”, “/html/body/user

information for: testuser.” and “/html/body/a/logout”, as shown in Fig. III.3.

/html/body/Welcome to the example application.

/html/body/user information for: testuser

/html/body/a/Logout

Web Page

/html/body/Welcome to the example application.

/html/body/a/Logout

All paths

Output parameter

Template paths

(t.index_user)

/html/body/ user information for: testuser

Figure III.3: The Procedure of Web Page Symbolization

(2) Pruning: To extract templates from all the paths, those paths that lead to dynamic

contents should be pruned. To do so, we define the support of a path as the number of pages in

28

D that contain the path. Since the occurrence of a path that belongs to a template is generally

higher, paths with low support are most likely dynamic content and should be pruned. For each

page d, the minimum support threshold td is defined as the mode (i.e., the most frequent value)

of the occurrence of paths that are contained in the page. Note that using one threshold for

all the pages is inappropriate as each template may generate a different number of pages. After

the paths with support lower than the threshold are pruned, each page is expressed as a set of

“essential” paths. We use ep(d) to denote the number of essential paths contained in the page d.

(3) Clustering: Two web pages are probably generated from the same web template if they

have similar set of essential paths. The similarity (Dist) between two pages di dj is defined as

follows:

Dist(di, dj) =
cp(di, dj)

√

ep(di)× ep(dj)
(III.1)

where cp(di, dj) is the number of common essential paths contained in di and dj and ep(d) is the

number of essential paths contained in d. We then perform hierarchical agglomerative clustering

(based on average linkage) over all pages based on the above similarity metric. Each resulting

cluster corresponds to a web template. The essential path set of a new template is the intersection

of path sets from the two templates that are merged together.

(4) Parametrization: For each page in D, after eliminating the essential paths contained in

the template it belongs to, the remaining paths in its path set belong to output parameters. The

parameter is identified by the path leading to the text node and its value is the content of the

text node. We extract the parameters that are observed in all pages that belong to the template

as the set of output parameters of the template. For each parameter, we put the common parts

(i.e., tokens) from all the observed values into the parameter name and only extract the variable

part as its value.

For the example application, we obtain seven templates. They are the login page (t.login -

form), logout page (t.logout), wrong login page (t.wrong login), regular user information page

(t.index user), admin user information page (t.index admin), logging identity page (t.admin)

and the title change page (t.title form). As shown in Fig.III.3, the template t.index user has

a parameter “/html/body/user information for:”, which displays the user’s information and its

value is the current user name.

29

Given a web page d, it is first transformed into a set of paths. Then, it is classified into

the template v that has the highest similarity with its path set (i.e., v = argmax(Dist(d, vi)),

vi ∈ O). The corresponding output parameters for the template are finally extracted.

Invariant Extraction

We extract three types of invariants: (1) type I input invariants, indexed by the web request

key r; (2) type II input/output invariants, indexed by the key pair (r, v); (3) type III input/output

sequence invariants, also indexed by the request key r. We also show some example invariants

extracted from the application in Fig.III.1.

Type I Invariant

The inputs with the same request key r are grouped together. We extract the following types

of invariants for each request key r.

(1) A set of session variables Sinv(r) that are always present. An example invariant of this

type is Sinv(GET-index.php) = {$ SESSION[‘username’], $ SESSION[‘privilege’]}.

(2) A set of input parameters Pinv(r) that are always present. An example invariant of this

type is Pinv(POST-login.php) = {email, passwd}.

(3) For a specific session variable s ∈ Sinv(r), its value is drawn from an enumeration set

V (s, r). For example, invariants of this type include: V ($ SESSION[‘privilege’], GET-admin.php)

= {admin}, V ($ SESSION[‘privilege’], GET-index.php) = {admin, user};

(4) For a specific input parameter p ∈ Pinv(r), its value is drawn from an enumeration set

V (p, r).

(5) The value of an input parameter p ∈ Pinv(r) is always equal to the value of a ses-

sion variable s ∈ Sinv(r). For the request key GET-index.php, the session variable $ SES-

SION[‘username’] is always equal to the input parameter username.

Type II Invariant

The input/output pairs with the same key pair (r, v) are grouped together. We first extract

the same set of invariants as type I for the key pair. For example, an invariant drawn for the key

pair (GET-login.php, t.logout) is that V (logout, (GET-login.php, t.logout) = {1} and the input

parameter logout is added into Pinv(GET-login.php, t.logout).

30

We also extract two new invariants for each key pair (r, v):

(1) The value of an output parameter is always equal to the value of an input parameter and/or

a session variable. This invariant reflects the dataflow within the web application. An invariant

for the key pair (POST-login.php, t.index user) is that the output parameter /html/body/ of the

template t.index user is always equal to the session variable $ SESSION[‘username’] and the

input parameter username.

(2) The session state is unchanged. For example, the user’s session state always stays the same

by observing the key pair (GET-login.php, t.login form), but evolves for the key pair (POST-

login.php, t.index user).

Type III Invariant

For each request key r, we extract the following invariant:

(1) A set of input/output key pairs that always precede the web request key in one session.

An invariant of this type is the key pair (GET-admin.php, t.admin) always precedes the request

key GET-admin2.php and the key pair (GET-admin2.php, t.title form) always occurs before

POST-admin2.php.

Runtime Detection

Each web request key r is associated with a set of invariants, including both type I and type

III invariants. Each input/output key pair (r, v) is also associated with a set of type II invariants.

For detection, each invariant is transformed into an evaluation function, which operates on an

input or an input/output pair. If the input or input/output pair satisfies the invariant, the

function returns true. Otherwise, the function returns false. The runtime detection is performed

in two phases:

(1) validating the input min: The web request is accepted, if and only if the request key has

been observed and all the invariants associated with it are satisfied. Otherwise, the web request

is dropped.

(2) validating the input/output pair (min,mout): The web page is sent back to the user if

and only if the corresponding key pair has been observed and all the invariants associated with

it are satisfied. Otherwise, the web page is blocked.

31

All the attacks that exploit the example application can be detected by our extracted in-

variants. (1) Each auth bypass attack instance violates the invariants associated with three

request keys GET-admin.php, GET-admin2.php and POST-admin2.php respectively and are

detected at the first phase. For example, the first attack instance violates the invariant V ($ -

SESSION[‘privilege’], GET-admin.php) = {admin}. (2) the parameter manipulation attack vi-

olates the invariant associated with the request key GET-index.php where the input parameter

username is always equal to the session variable $ SESSION[‘username’] and is detected in the

first phase. It also violates the invariant of the key pair (GET-index.php, t.index user) that the

output parameter “/html/body/user information for:” is equal to both of the input parameters

username and $ SESSION[‘username’]. (3) the workflow bypass attack violates the invariant

associated with the request key GET-admin2.php that the key pair (GET-admin.php, t.admin)

always precedes the request key and is detected in the first phase.

Implementation

We implement the prototype of our detection system BLOCK as a proxy that sits between

the web application and the client, as shown in Fig. III.4. BLOCK is capable of intercepting all

the messages exchanged between the web application and the client and taking snapshots of the

user’s session information stored at the server side. To capture the web requests and responses,

we build BLOCK on top of WebScarab [50], an open source web application testing tool, which

is deployed at the web server and configured as a reverse proxy. PHP web applications, which are

our focus in this chapter, by default store the users’ session information in temporary files at the

directory /var/lib/php5. BLOCK is able to locate the correct session files, indexed by the session

ID within the web request, and read the user’s session information. BLOCK can be operated

in two modes: training and detection. In the training mode, BLOCK collects the observed web

requests, responses and their associated session information, analyzes those execution traces and

extracts the set of relevant invariants. In the detection mode, BLOCK monitors the interactions

between the clients and the web application, dynamically detects and blocks those potential

attacks that violate the extracted invariants. We note that BLOCK can be easily extended

to other platforms other than PHP by just modifying the component that accesses the session

information to handle a variety of programming frameworks. For example, in the case of Tomcat

32

servlet, the component should be able to access database tables via JDBC drivers, which store

persistent session information. Our implementation is independent of the web application (i.e.,

doesn’t require the source code for analysis or instrumentation). Thus, it can scale up to protect

a large number of web applications.

Web Applica�onClient/

Simulator Database

Session

Info
Index by session id

P

r

o

x

y

Web Server

Figure III.4: Overview of BLOCK System

Training Mode

Web Server

User

Simulator

Session

Info

Web Request
BLOCK

Message Constructor

Invariant Extractor

Trace Collector

Web Page

Invariants

Web

Applica!on

Templates Template Extractor

Figure III.5: Training Mode (BLOCK)

The components of BLOCK in the training mode are shown in Fig. III.5. Whenever a

web request or a web page is captured, the message constructor takes a snapshot of the current

session state and composes the corresponding messages, which is sent to the trace collector. After

33

sufficient traces have been collected, BLOCK will perform offline learning. The trace processor

first extracts web templates from observed web pages, then parses both the input and output

messages into the designated format: a request or response key associated with a set of key/value

pairs for both parameters and session variables. The parsed traces are fed into the invariant

extractor, where all three types of invariants are derived. The value-related invariants (e.g., the

equality relationship between variables, the enumeration value set of variables) are inferred by

leveraging the Daikon engine [27], a well-known tool for dynamic inference of program invariants.

The traces are transformed into the format required by the Daikon engine and the output is a

set of invariants extracted for each declared entry. Presence-related invariants are extracted by

self-developed programs. All extracted invariants comprise the web application’s specification.

Detection Mode

Web Server

Client

Session

Info

Web Request

BLOCK

Message Constructor

Invariant Interpreter

Detector

Web Page

Web

Applica!on

Invariants

Templates

Figure III.6: Detection Mode (BLOCK)

Once the invariants are extracted, BLOCK switches to the detection mode, as shown in Fig.

III.6. The invariant interpreter loads and interprets the extracted invariants. At runtime, the

message constructor combines session information with the intercepted web request, composes

an input and sends it to the detector for evaluation. If the input is accepted, the web request

is forwarded to the web application and logged as the current input for the web application.

Otherwise, the web request is dropped. When the message constructor receives a web response,

if the response is a redirection, the subsequent web request will not be evaluated or logged. If

the response is a web page, the message constructor assigns the web page a response key based

34

on its web template, composes an output and sends it to the detector, where the output is paired

with the current input and evaluated. If the output is accepted, the web page is returned to

the client and the key pair is logged for the current user session. Otherwise, the web response is

blocked and the current input is invalidated. After the user’s session has terminated, all of the

logged key pairs are cleaned up from the memory.

Evaluation

Experiment Setup

We evaluate our approach using a set of open source PHP web applications, which are repre-

sentative of different types of functionalities. Table III.1 shows a summary of web applications

we use for evaluation. (1) Scarf is a conference management system, which is used for manag-

ing sessions, papers, users and comments. It is known to contain an auth bypass vulnerability

(CVE-2006-5909). The attacker can directly visit the administrative page generaloptions.php

and modify the system settings and user accounts, since the admin page does not check the

privilege of the current user. It echoes the first case of auth bypass in the example application.

(2) Simplecms is a simple content management system that allows the admin to publish and

manage contents. It is also vulnerable to an auth bypass attack in Auth.php page (BID 19386)

because it uses the register globals mechanism insecurely. An attacker can append a parameter

loggedin to the web request and bypass the authentication check. It echoes the second case of

auth bypass in the example application. (3) Bloggit is a blog application that supports web blog

management. It also has an auth bypass vulnerability (CVE-2006-7014) in the admin.php page

where the restrictive code continues being executed after the auth check fails. It echoes the third

case of auth bypass in the example application. (4) Wackopicko [68] is an online photo sharing

website that allows users to upload pictures, comment on and purchase other people’s pictures.

It was initially written for testing web application vulnerability scanners. It was designed with a

number of vulnerabilities, such as cross-site scripting, SQL injection and file inclusion. Here, we

focus on its parameter manipulation vulnerability. After a user logs in, they can view their per-

sonal information in home.php page. However, an attacker can manipulate the userid parameter

35

to view any other user’s information and owned pictures. (5) OsCommerce [48] is a widely-used

open source e-commerce application. To evaluate our approach for handling workflow bypass

attacks, we instrument one vulnerability into the checkout procedure, which allows the attacker

to go directly to the payment page without selecting the shipping method and the total charge

does not include shipping fees.

Table III.1: Summary of Evaluated Web Applications (Evaluation of BLOCK)
Application PHP files Description Vulnerability
Scarf 21 Conference man-

agement system
Auth bypass (CVE-
2006-5909)

Simplecms 23 Content manage-
ment system

Auth bypass (BID
19386)

BloggIt 24 Blog engine Auth bypass (CVE-
2006-7104)

Wackopicko 53 Photo sharing web-
site

Parameter manipula-
tion

OsCommerce 533 Open source e-
commerce solution

Workflow bypass (in-
strumented)

All the web applications and BLOCK (based on WebScarab) were deployed on a 2.13GHz

Core 2 Linux server with 2GB RAM, running Ubuntu 10.10, Apache web server (version 2.2.16)

and PHP (version 5.3.3). To collect training traces, each web application is driven by a user

simulator, which emulates the interactions between a normal user and the web application. For

each web application, user roles and atomic operations are first identified manually. Then,

the user simulator is developed based on the Selenium WebDriver [59] to emulate a normal

user operating a web application. The simulator leverages a library of user information for all

undergraduate students from a network security class and is able to automatically explore the

web application, such as clicking the links, filling in and submitting forms. Among the available

atomic operations for the currently chosen user, it randomly selects one as the emulated user’s

next step. The user simulator is set up on a 2.83GHz Core 2 desktop with 8GB RAM running

Windows 7 and Firefox 4.0.

36

Detection Effectiveness

BLOCK first runs in the training mode to collect the execution traces, generated by the user

simulators. Table III.2 shows the summary of our collected traces 1. Then, it analyzes those

traces, extracts web request keys, web page templates, as well as all three types of invariants.

To observe the impact of the training set size on the number of derived invariants, we vary the

training set size and calculate the resulting invariants. Fig. III.7 shows the experiment result we

obtain for the Scarf application. We can see that the numbers of type I and III invariants initially

decrease and then converge with the increase of training set size, indicating the elimination of

false invariants learnt from insufficient training samples. The number of type II invariants first

increases, due to the exploration of new state space that was not revealed by the small training set,

then it slowly converges. Based on this observation, we use the training set for each application

where the number of invariants converges.

Table III.2: Summary of Training Set (Evaluation of BLOCK)
Application Requests Web

Pages
Request
Keys

Web
Tem-
plates

Key
Pairs

Type I
Inv

Type
II Inv

Type
III Inv

Scarf 3225 3200 21 26 69 90 640 11
Simplecms 2661 2555 17 12 34 56 190 28
BloggIt 2657 2645 16 13 47 65 377 9
Wackopicko 2949 2946 20 12 30 36 155 37
OsCommerce 3879 3444 25 36 123 374 4609 26

BLOCK then switches to the detection mode. A clean test set is generated by both the user

simulators and the undergraduate students who manually operate the web applications. Ten

attack instances are manually generated under different circumstances for each web application.

Table III.3 (Req: web request; Resp: web response; TS: clean test set; FP: false positive) shows

the summary of the test set and all the detection results. All of the attacks are successfully

detected by BLOCK with only a few false positives incurred. This fact demonstrates the effec-

tiveness of our approach at detecting state violation attacks.

Upon further investigation of the false positives we find two major sources. One is the

incomplete exploration of the web application performed by the user simulator. The capability

1Here, we note that our training only covers the portion of mostly used functions for customers in the OsCom-
merce application. Also, we do not count redirection headers as web pages.

37

500 1000 1500 2000 2500 3000
0

200

400

600

800

Training set size (# of requests)

N
u

m
b

e
r

o
f

in
v

a
ri

a
n

ts

Type I Invariant

Type II Invariant

Type III Invariant

Figure III.7: Number of Invariants vs. Training Set Size (Scarf)

Table III.3: Summary of Detection Result (Evaluation of BLOCK)
Application Req

(TS)
Resp
(TS)

Req
(FP)

Resp
(FP)

Attacks Detected Invariant vi-
olations

Scarf 1364 1360 0 6 10 10 type I and
III

Simplecms 1731 1688 0 8 10 10 type I and
III

BloggIt 1044 1024 0 0 10 10 type I and
III

Wackopicko 1322 1314 0 1 10 10 type I and II
OsCommerce 1505 1460 3 10 10 10 type I and

III

38

of the user simulator determines the state space that our detection system can characterize for the

web application. The more the simulator explores, the richer and more accurate these invariants

are. In our evaluation, some false positives result from error pages that are not explored by the

simulator and thus not observed and profiled by the invariant extractor. In practice, if real-

world traces are available, our detection system can be readily applied and work effectively. The

other source of false positives is the inaccurate symbolization of web pages. Page symbolization

affects both the training and detection phase. In the training phase, both the number and the

quality of the inferred invariants, especially for type II, are closely related with the number of

extracted web templates. We can see that the number of type I and III invariants converges very

fast, thus leading to an extremely low number of false positives for web requests, while type II

invariants bring more false positives of web responses. In the detection phase, due to the content

changes of web pages, it is possible that a web page is classified as a template incorrectly, which

likely results in an unobserved pair of input/output and thus a false positive. We use the same

clustering threshold for all applications to extract web templates, which also introduces certain

level of inaccuracies. Since web template extraction is not our focus in this chapter, we adapt the

methods from TEXT [38] which appear to work well with the web application in our evaluation.

To increase the accuracy and robustness of web page symbolization, advanced algorithms or

manual audit can be introduced for guiding the process.

The detection results also show the types of invariants violated by different attacks. Auth

bypass attacks on insufficient checking of session variables result in violations of type I invari-

ants that are imposed on the session state, when web requests are received. They would also

violate type III invariants due to the missing step of authentication/authorization. Parameter

manipulation attacks can be detected by type I invariants, if the input parameters are related

to the session variables. They may also be identified by type II invariants, if the corresponding

web pages contain output parameters that are related with the session state. Workflow bypass

attacks will be blocked in the same manner as auth bypass attacks, if the session variables, which

are used for guarding the state transitions, are not checked. If there are no such guarding session

variables (e.g., in the example application) type III invariants would help to identify workflow

bypass attacks through the constraints imposed on the sequence of operations.

39

Performance Overhead

Since our detection system sits between the client and the web application, it will affect the

response time of the web application for several reasons. First, the WebScarab proxy intercepts

and forwards all the messages exchanged between the user and the web application, which in-

creases the response time. Second, the integrated detector evaluates the web requests and web

pages, which introduces additional delay. To measure the performance overhead induced by our

detection system, we use the simulators to perform a designated sequence of operations and log

the response time for every web request. We compare the performance under three configura-

tions: 1) without the WebScarab proxy, 2) with the WebScarab proxy deployed but the detector

disabled, 3) with the WebScarab proxy deployed and the detector enabled. Figure III.8 shows

the summary of the averaged response time for each application under the above three scenarios.

We can see that the average response time increases by a factor of 1.5 to around 5, if BLOCK

is deployed and enabled. While the resulting response time is still acceptable, we notice that

more than 90% of the overhead is caused by the WebScarab proxy and only a small amount is

introduced by the detector. For our current prototype implementation, no modifications or con-

figurations are made to the WebScarab proxy to enhance its performance. If a more lightweight

and efficient proxy (e.g, Apache mod proxy) is employed to integrate our detection system, it

would be possible to reduce the response time.

Scarf Simplecms Bloggit Wackopicko OsCommerce
0

20

40

60

80

R
e

sp
o

n
se

 t
im

e
 (

m
s)

without WebScarab

with WebScarab (without Detector)

with WebScarab (with Detector)

Figure III.8: Summary of Performance Overhead (Evaluation of BLOCK)

40

Discussion

There is one limitation of BLOCK we would like to point out. BLOCK only observes and

models the relations between web requests, web responses and the session variables. Thus it

cannot handle attacks that violate the persistent states that exist in database tables. If BLOCK is

extended to capture and analyze the SQL queries/responses from a database, it has the potential

to handle this type of state violation attack. We address this limitation in our follow-up work on

SENTINEL (Chapter IV).

Our technique bears the same limitations as other dynamic analysis techniques. The com-

pleteness and correctness of inferred invariants cannot be guaranteed. In order to put BLOCK

into practice, introducing some manual intervention is preferable to guarantee sufficient training

and suppress false positives. In the future, we hope to investigate mechanisms for automatic

verification of likely invariants.

41

CHAPTER IV

SECURING DATABASES FROM LOGIC FLAWS IN WEB APPLICATIONS

In this chapter, we present SENTINEL, which stands for SEcuriNg daTabase from logIc flaws

iN wEb appLication. We model the web application as an extended finite state machine (EFSM)

and derive the application specification in a black-box manner. In particular, we systematically

extract persistent state information in the database and infer data constraints from observed

SQL queries and responses. Suspicious SQL queries that violate corresponding invariants are

identified as potential attacks. We implement a prototype detection system and evaluate it using

a set of real-world web applications. The experiment results demonstrate the effectiveness of our

approach and show that acceptable performance overhead is incurred by our implementation.

The rest of this chapter is organized as follows. We first give an overview of our approach.

Then, we describe an example vulnerable application and the attacks we focus on. We present

our EFSM model of a web application and approach in the following two sections. The imple-

mentation and evaluation results of the prototype system are then demonstrated. Finally, we

discuss the limitations of our technique to conclude this chapter.

Overview

The front-end web application usually acts as the lone trusted user that interacts with the

database. Thus, the database fully trusts the web application and accepts and executes all the

queries submitted by the application. As such, the vulnerabilities within web applications may

introduce security concerns for the information stored in the database and lead to information

disclosure or tampering. One type of logic attacks trick the application into sending malicious

SQL queries at inappropriate application states.

We proposed BLOCK in the previous chapter for inferring the application specification.

BLOCK observes the web requests/responses between the web application and its users and

extracts the invariants associated within. While BLOCK uses a black-box and source-code-free

framework, its capability is limited because it only observes web requests/responses and does not

take into account the large amount of information persisted in the database, which results in an

incomplete specification. The persistent information in the database may affect the application’s

42

behavior in two ways. First, the application can use persistent objects in the database for main-

taining its state across web sessions, while using session variables for managing the state during a

session. Second, the persistent objects may embed complex data constraints for web applications.

Moreover, BLOCK examines web requests/responses and thus is incapable of handling certain

state violation attacks that are targeted at the database.

To address the above limitations, we answer two questions in this chapter: (1) What exter-

nal behavior should we observe in order to collect sufficient information for specifi-

cation inference? Since we focus on securing the database, we observe the interaction between

the web application and the database. For the application to utilize persistent objects stored

in the database, they have to be returned within SQL responses first. Thus, we collect all the

observed SQL queries and responses, as well as the corresponding session variables.

(2) How should we infer the application logic from collected information in a sys-

tematic way, so that the application behavior can be characterized adequately? We

model the web application as an extended finite state machine (EFSM). EFSM has been em-

ployed for modeling the behavior of complex software [43], because it can capture state transitions

as well as data constraints associated with transitions. It also fits well in the web application

scenario. To derive the EFSM, we first construct SQL signatures from observed SQL queries,

which represent the output symbols emitted from the EFSM. Then, we extract a set of invariants

for each SQL signature from both session variables and SQL responses, which characterize the

application state and the associated data constraints when a SQL query is issued. In particular,

we leverage the Daikon engine [27] to derive value-based invariants, including the invariants over

variables that are used for indicating the application state and the data constraints. Additionally,

we extract the dependencies between SQL signatures to infer other data constraints, which are

implicitly reflected from previously issued SQL queries. The set of invariants, indexed by SQL

signatures, manifest the application specification and are used for evaluating the incoming SQL

queries at runtime. Suspicious SQL queries, which violate any invariant associated with their

respective signatures, are identified as potential attacks and blocked.

43

Attacks and Running Example

Fig. IV.1 shows an example application SimpleOAK, which is used to illustrate the attacks we

address in this chapter and demonstrate our system model and approach throughout the chapter.

A user is first presented with the index.php page (the application is at state s0). After the user

inputs correct login credentials, the application will redirect the student to the user.php page (the

application is at state s1) and the professor to the admin.php page (the application is at state s2),

depending on the role information (i.e., $row[‘role’] in index.php) retrieved from the database.

The user.php page shows the student’s registrations and grades, as well as the syllabus links for

registered courses. The student can only modify his/her own registrations (data constraint c)

through the course.php page. The admin.php page shows all the students’ registrations, so that

the professor can modify their grades accordingly.

SimpleOAK contains several vulnerabilities. First, the application fails to enforce the cor-

rectness of the application state, which allows malicious SQL queries to be issued at an incorrect

state. There are two cases of this type of vulnerability in the SimpleOAK application.

Case 1: A guest user at state s0 can directly access a student’s information (i.e., issuing

Query1 and Query2 in user.php), because the user.php page does not check if the user has

logged in (i.e., whether the session variable $ SESSION[‘userid’] is null).

Case 2: A student at state s1 can directly access the professor’s page (i.e., issuing Query3 in

admin.php) and modify the grades (i.e., issuing Query4 in course.php), because the admin.php

page fails to verify the application state, which is stored as persistent objects in the database

(i.e., whether $row[‘role’] in index.php is equal to professor).

Second, the web application fails to enforce the data constraints (e.g., constraint c) associated

with SQL queries, which allows the attacker to issue malicious SQL queries by manipulating query

parameters.

Case 3: A student is able to view/change another student’s registrations.

• View registration: the user.php page fails to check the constraint: $ GET[‘userid’] ==

$ SESSION[‘userid’] associated with Query1 and Query2.

• Register a course: the course.php page fails to check the constraint: $ POST[‘userid’] ==

$ SESSION[‘userid’] associated with Query5.

44

user.php

index.php

admin.php

course.php

id name syllabus

1 algebra “difficult”

2 web programming “easy”

user_id login password role

2 john 1234 student

1 howard helloworld student

3 larry admin professor

id user_id course_id grade

1 1 2 95

2 1 1 85

3 2 1 68

Table: course

Table: user

Table: registration

Database Schema

<?php
include_once(“header.php”);
if (isset($_SESSION[‘userid’])){

$Query3 = mysql_query("SELECT * FROM registration;");
print(“<table><tr><td>Name</td><td>Course</td><td>Grade</td></tr>”);
while ($row = mysql_fetch_assoc($Query3)) {

print(“<tr><td>” . getUserName($row[‘user_id ’]) .
“</td><td>” . getCourseName($row[‘course_id’]) .
“</td><td><form method=\“post\” action=\“course.php\”>” .
“<input type=\“hidden\” name=\“register_id\” value=” . $row[‘id’] . “>”.s
“<textarea name=\“grade\”>” . $row[‘grade’] . “</textarea>” .
“<input type=\“submit\” name=\“action\” value=\“Modify\”></form></td><tr>”);

}
print(“</table>
Logout”);

} else{ die(“You are not authorized to view this page”); }
?> </body></html>

<? php
include_once(“header.php”);
if (isset($_GET[‘userid’])){

print(“<table><tr><td>Course</td><td>Grade</td><td>Syllabus</td><td>Unregister</td></tr>”);
$Query1 = mysql_query(“SELECT * FROM registration WHERE user_id =”.

$_GET[‘userid’]. “;”);
while ($row = mysql_fetch_assoc($Query1)){

print(“<tr><td>”. getCourseName($row[‘course_id’]). “</td><td>” . $row[‘grade’].
“</td><td>link” .
“</td><td><form method=\“post\” action=\“course.php\”>” .
“<input type=\“hidden\” name=\“register_id\” value=” . $row[‘id’] . “>” .
“<input type=\“submit\” name=\“action\” value=\“Unregister\”></form></td></tr>”);

}
print(“<table><tr><td>Course</td><td>Register</td></tr>”);
$Query2 = mysql_query(“SELECT * FROM course WHERE course.id NOT IN

(SELECT course_id FROM registration WHERE user_id =“ . $_GET[‘userid’]. ”)”);
while ($row = mysql_fetch_assoc($Query2)){

print (“<tr><td>”. $row[‘name’]. “</td><td><form method=\“post\” action=\“course.php\”>” .
“<input type=\“hidden\” name=\“course_id\” value=” . $row[‘id’]. “>” .
“<input type =\“hidden\” name=\“user_id\” value=” . $_GET[‘userid’] . “>” .
“<input type=\“submit\” name=\“action\” value=\“Register\”></form></td></tr>”);

}
print(“</table>
Logout”);

} ?>
</body> </html>

<? php
include_once(“header.php”);
if (isset($_GET[‘logout’])){

unset($_SESSION[‘userid’]);
session_destroy();

} else if (isset($_POST[‘username’]) && isset($_POST[‘password’])){
$Query0 = mysql_query(sprintf(“SELECT * FROM users WHERE login = ‘%s’ AND

password = ‘%s’;”, $_POST[‘username’], $_POST[‘password’]));
if ($row = mysql_fetch_assoc($Query0)){

$_SESSION[‘userid’] = $row[‘id’];
if ($row[‘role’] == “professor”){

header(“Location: admin.php?userid=” . $_SESSION[‘userid’]);
} else if ($row[‘role’] == “student”){

header(“Location: user.php?userid=” . $_SESSION[‘userid’]);
}

} else { die("Wrong username or password."); }
} ?>
<form action=“index.php” method=post>
username: <input name=“username” type=“text”>

password: <input name=“password” type=“password”>

<input name=“submit” type=“submit”>
</form></body></html>

<? php
include_once(“header.php”);
if (isset($_POST[‘register_id’]) && isset($_POST[‘grade’]) && $_POST[‘action’] == “Modify”) {

$Query4 = mysql_query(“UPDATE registration SET grade=” . $_POST[‘grade’] .
“WHERE id= ” . $_POST[‘register_id’] . “;”);

if ($Query4) {
header(“Location: admin.php?userid=” . $_SESSION[‘userid’]);

} else { die(“Fail to update the grade.”); }
} else if (isset($_POST[‘course_id’]) && $_POST[‘action’] == “Register”) {

$Query5 = mysql_query(“INSERT INTO registration (user_id, course_id) VALUES
(”.$_POST[‘user_id’] . “, ” . $_POST[‘course_id’]. “);”);

if ($Query5) {
header(“Location: user.php?userid=” . $_SESSION[‘userid’]);

} else { die(“Fail to register the course.”); }
} else if (isset($_POST[‘register_id’]) && $_POST[‘action’] == “Unregister”) {

$Query6 = mysql_query(“DELETE FROM registration WHERE id=” .
$_POST[‘register_id’]. “;”);

if ($Query6) {
header(“Location: user.php?userid=” . $_SESSION[‘userid’]);

} else { die(“Fail to unregister the course.”); }
} else if (isset($_GET[‘course_id’])){

$Query7 = mysql_query(“SELECT * FROM course WHERE id =” . $_GET[‘ course_id’].
“;”);

if (res = mysql_fetch_assoc($Query7)){
print(“<h2>” . $res[‘name’]. “</h2>
” . “Syllabus: ” . $res[‘syllabus’]. “
”);

}
} ?>
</body></html>

Figure IV.1: An Example Vulnerable Web Application: SimpleOAK

45

• Unregister a course: the course.php page fails to check if the user id field in the affected

row of registration table is equal to the session variable $ SESSION[‘userid’], when issuing

Query6.

Case 4: A student can view the syllabus of a course for which he/she has not registered

by manipulating the course id parameter in Query7. The course.php page fails to check the

correlation between the student and the course, which exists within registration table (i.e., the

directed lines in Fig. IV.1).

To date, there is no automated mechanism that can help developers identify all the above

security flaws and detect the corresponding attacks. Developers have to pay extra attention and

manually place appropriate checks during development and code auditing.

System Model

We model a web application as an extended finite state machine (EFSM) [28], denoted as M .

A web application M , as shown in Fig.IV.2, is defined as a seven-tuple: M = (S, V, I, O, P, U, T).

• S denotes the set of application states. A web application maintains its state using either

session variables (e.g., $ SESSION[‘userid’]) or persistent objects (e.g., the row column

in user table) in the database. We refer to the set of session variables and state-related

persistent objects as state variables, which collectively characterize the current application

state.

• V denotes the set of context variables, which include global variables (e.g., $ SERVER

variables) and local variables in scope (e.g., $row[‘id’] in user.php), except state variables.

They represent the general context of the application’s current execution.

• I is the set of input symbols, which include the users’ web requests (e.g., GET:

user.php?userid=3) and the SQL responses (e.g., $Query0, which contains the response of

Query0) returned by the database.

• O is the set of output symbols, which include web responses sent to users (e.g., header(“Location:

user.php”)) and SQL queries issued to the database (e.g., Query0).

46

• P : DS×DV → {true, false} is the set of data constraints associated with state transitions

(e.g., if($row[‘role’]==professor) in index.php). DS and DV denote the evaluation domains

for state variables and context variables respectively.

• U : DS ×DV → DS ×DV is the set of update functions, which update state and context

variables (e.g., $ SESSION[‘uerid’]=$row[‘id’] in index.php).

• T : S × I × P → S × O × U defines the state transitions. In a web application, each state

transition can be decomposed into two steps: (1) the application accepts the input, executes

update functions and possibly transitions to a new state, just before the output symbol is

emitted, which can be expressed as TU : S×I → S×U . Whether the application transitions

to a new state depends on if state variables are updated. (2) the application evaluates

the data constraints over current variables and issues the output symbol if the evaluation

returns true, which can be expressed as TO: S × P → O. Note here the application state

does not change in this step. SQL queries may modify state-related persistent objects in

the database. However, the application is aware of the state change only after it retrieves

the modified persistent objects later. Thus, we regard the application state before and after

the output symbol is emitted as the same.

Database

Web Applica!on

M

 S

e.g., session var

 V

e.g., global, local

I
User

O (SQL query)O (Web response)

I

(SQL

Response)

(Web

Request)

 “singular”

“plural”

State Variable

Context Variable

Figure IV.2: An EFSM Model of a Web Application

Fig.IV.3 shows part of the intended EFSM model for SimpleOAK, which contains two states

and two transitions. First, SimpleOAK accepts a POST web request (i0) at state s0, which

triggers the transition t0. In the first step tU
0
, the application updates context variables (u0) and

stays at the same state s0, because no state variables are updated. In the second step tO0 , the

application checks data constraints (p0) and issues an SQL query to the database (o0). After the

47

application receives the SQL response from the database (i1), a new transition t1 is triggered. It

first executes updating functions (u1) and transitions to a new state s1, because the state variable

$ SESSION[‘userid’] is updated to the current user id (i.e., from null to non-null). Then, the

application evaluates data constraints (p1) and returns a web response to the user (o1).

s1
(logged as

student)

s0

t u0 : s0 i0 → s0 u0

i0 : POST: index.php?username=john & password = 1234

u0: $_POST[‘username’]=john, $_POST[‘password’]=1234

t o0 : s0 p0 → o 0

p0 : if (isset($_POST[‘username’]) && isset($_POST[‘password’]))

o0: Query0: SELECT * FROM users WHERE login=$_POST[‘username’] AND

password=$_POST[‘password’]

t u1 : s0 i1→ s1 u1

i1 : receive SQL response of Query0

u1: $_row = mysql_fetch_assoc($Query0), $_SESSION[‘userid’]=$row[‘id’]

t o1 : s1 p1→ o1

p1 : if ($row[‘role’]==‘student’)

o1: $header(“Loca�on:user.php?userid=“.$_SESSION[‘userid’])

t 1

t 1t 0

t 0

Figure IV.3: Partial EFSM Model of SimpleOAK

Approach

Approach Overview

Our objective is to detect malicious SQL queries that exploit logic flaws and violate the

application specification. From our system model, such violations manifest during the second step

of state transition (i.e., TO: S×P → O), when the output symbols (i.e., SQL queries) are emitted.

There are two scenarios: (1) the output is emitted when the application is at an incorrect state,

which can be captured by characterizing the relationship between the output and the application

state (i.e., S → O); (2) the output is emitted when the data constraints are not satisfied, which

can be captured by characterizing the relationship between the output and data constraints

(i.e., P → O). Our approach infers the application specification by observing and analyzing the

interactions between the application and the database during attack-free sessions. Then, the

inferred specification is used for runtime detection of malicious SQL queries issued by the web

application. In the following sections, we first illustrate how we identify the set of output symbols

(i.e., O) by constructing SQL signatures from observed SQL queries. Then, we present how we

48

infer the application specification from collected information, including application state inference

and data constraint inference. The inference also captures the first step of state transition (i.e.,

TU : S×I → S×U), because we utilize updated state variables and context variables triggered by

the application input (i.e., either a web request or an SQL response). The inferred specification

is realized as a set of invariants, indexed by SQL signatures. Finally, we describe how we evaluate

incoming SQL queries and detect potential attacks at runtime.

SQL Signature Construction

Each SQL query is composed of a skeleton structure, which is programmed in the source code,

and a set of query parameters, whose values are dynamically fed by the application at runtime.

To represent the output with a finite set of symbols, we need to separate the skeleton structure

from query parameters, which have an unbounded set of values. We extract the skeleton structure

of SQL queries in three steps, as shown in Fig.IV.4. First, we identify all the literals in the SQL

queries and collect all the observed values for each parameter that assumes a literal. Second,

for each parameter, we perform a one-sample Komoglov-Smirnov’s D statistic test (KS-test) to

determine whether the value domain of the parameter is bounded or not. The KS-test is employed

to evaluate whether the number of unique values of the parameter linearly increases with the

number of sample sizes. Further details can be found in [42]. Third, for each parameter, if the

parameter has a bounded value domain (e.g., role), we assume its value carries implicit meaning

for operations, which should be retained within the structure of the query. If the parameter

has an unbounded number of values observed (e.g., user id), we replace its value with a place

holder token and record the parameter. The resulting string is the skeleton structure of the query

(e.g., SELECT * FROM registration WHERE user id = Token, where Token represents a query

parameter).

Next, we construct a SQL signature by combining the skeleton structure of the SQL query

and the script name, where the query resides. An example signature is {user.php, SELECT *

FROM registration WHERE user id = Token}. Each SQL signature represents a unique output

symbol that can be issued by the web application.

49

KS-testuser_id : {‘1’, ‘2’, ‘4’, ‘5’, ‘7’}

role: { ‘student’, ‘professor’}

SELECT * FROM users WHERE user_id = ‘2’ AND role = ‘student’;

SELECT * FROM users WHERE user_id = ‘7’ AND role = ‘student’;

SELECT * FROM users WHERE user_id = ‘1’ AND role = ‘professor’;

SELECT * FROM registration WHERE user_id = ‘4’ ;

SELECT * FROM registration WHERE user_id = ‘5’ ;

user_id : unbounded

role: bounded

SELECT * FROM users WHERE user_id = Token AND role = ‘student’;

SELECT * FROM users WHERE user_id = Token AND role = ‘student’;

SELECT * FROM users WHERE user_id = Token AND role = ‘professor’;

SELECT * FROM registration WHERE user_id = Token;

SELECT * FROM registration WHERE user_id = Token;

Step 3

Step 2

Step 1

Figure IV.4: An SQL Query Skeleton Extraction

Application State Inference

To infer the relationship between the output and the application state (i.e., S → O), we

associate each SQL signature with the set of state variables when an SQL query is issued. First,

we have to identify the correct set of state variables to construct the state space S. State

variables come from two sources: session variables and persistent objects in the database. Due

to the adoption of the connection pooling technique [18], which shares SQL connections among

different sessions, SQL queries from different sessions cannot be differentiated. We reuse the

session id and associate it with each SQL query for indexing the set of session variables.

The state variables that come from persistent objects can only be used by the application

after they are retrieved from the database, thus can be observed from SQL responses. However,

the SQL response may contain a large amount of objects, only part of which are actually used to

maintain the application state. As such, we identify three types of SQL responses: (1) Type I:

the response is a boolean (i.e., true or false), which applies to UPDATE, INSERT and DELETE

queries; (2) Type II: the response of SELECT query, which always contains no more than one row

of objects 1. We say this type of response is “singular”, which can possibly be used for retrieving

persistent state information from the database and updating state variables (as shown in Fig.2).

For example, Query0 in index.php page retrieves the current user information persisted in the

database, which determines the current application state (i.e., at either s0, s1 or s2). (3) Type

1If a SELECT query returns a false on error, we consider its response to be zero row of object.

50

III: the response of SELECT query, which contains a variable row of objects (usually more than

one). We say this type of response is “plural”, which is used for updating context variables by the

application (and inferring data constraints in Section 4.4). For example, Query1 in the user.php

page returns a number of courses the user has registered. We infer the response type for each SQL

signature by examining all the responses, returned by SQL queries with the same signature and

associate a flag r with each signature to indicate its response type. In particular, we transform

the “singular” SQL response into a set of key-value pairs similar to the representation of session

variables (e.g., $row[‘id’], $row[‘role’] in index.php).

After collecting all the state variables, we employ a Daikon engine to extract value-based

invariants over state variables, which characterize the application state associated with each

signature.

Data Constraint Inference

To infer the relationship between the output and the data constraints (i.e., P → O), we

extract three types of data constraints for each SQL signature. First, each SQL signature itself

captures part of the data constraints, which are directly encoded within WHERE clauses and

automatically enforced (e.g., WHERE course.id NOT IN in Query2). Second, we employ daikon

engine to infer the mathematical relationship between state variables and context variables (i.e.,

| S | × | V |), which are fed into SQL queries as query parameters 2. For example, the variable $ -

GET[‘userid’] is always equal to the session variable $ SESSION[‘userid’] in Query1. Third, data

constraints may also be embedded within previously issued SQL queries, since the application

implicitly assumes the dependency relationship between SQL queries. We say an SQL query q is

dependent on another query q′, if the database objects q performs over also satisfy the constraints

specified by the WHERE clause of q′. For example, SimpleOAK first retrieves all the registered

courses (at least the course id) for one student via Query1. Then, the student can view the

syllabus of those courses via Query7. The application implicitly assumes Query7 is dependent

on Query1, which means that the specified course in Query7 always satisfies the constraint

within Query1 that the course is registered by current student. Since the objects within the

SQL response must satisfy the constraints specified by the WHERE clause, we infer this type

2We only identify the equality relationship between state variables and context variables here.

51

of constraint for each signature by evaluating its WHERE clause over previously observed SQL

responses, instead of analyzing complex WHERE clauses and their logical relationship among

different SQL queries. If the WHERE clause of one signature sig is always satisfied by the

response of another signature sig′ that is always issued earlier and observed during the session,

then we express such a constraint in the form that sig is dependent on sig′.

Invariant Extraction

We extract a set of invariants from collected traces to represent the application specification

and use them for runtime detection. In the traces, each SQL query t is associated with the

following information: a set of query parameters Q, a set of state variables S and its SQL

response Resp. The SQL queries, as well as relevant information, are grouped by signatures. We

extract the following types of invariants for each SQL signature.

Type A: Application state invariant

Type A invariants characterize the application state when SQL queries are issued (i.e., S →

O). For each SQL signature sig, we identify:

A.1: A set of state variables Sinv(sig) (Sinv(sig) ⊆ S) that are always present (i.e., their value

is non-null). These state variables represent the dimension of the application state. An example

in SimpleOAK is Sinv(sig1) = {$ SESSION[‘userid’], $row[‘role’]}, where sig1 = (user.php,

SELECT * FROM registration WHERE user id = Token), which indicates that the application

cannot issue Query1 at state s0.

A.2: For a state variable s (s ∈ Sinv(sig)) that is always present, its value is drawn from an

enumeration set E(s, sig), which indicates the value domain for a specific state dimension. An

example in SimpleOAK is E($row[‘role’], sig2) = {‘professor’}, where sig2 = (admin.php, SE-

LECT * FROM registration), which means that Query2 can only be issued when the application

is at state s2.

Type B: Data constraint invariant

Type B invariants characterize the data constraints associated with SQL queries (i.e., P → O).

For each SQL signature sig, we identify:

52

B.1: The value of a query parameter q (q ∈ Q) is always equal to the value of a state variable

that is always present s (s ∈ Sinv(sig)). Since the query parameters are drawn from context

variables, this type of invariant captures the constraints between the context variables and state

variables that the SQL query has to satisfy (i.e., | S | × | V |). An example in SimpleOAK is

the value of Token1 in sig3 is always equal to $ SESSION[‘userid’], where sig3 = (course.php,

INSERT INTO registration (user id, course id) VALUES (Token1, Token2)), which means a

student can only register a course for himself.

B.2: The SQL signature sig is dependent on another SQL signature sig′, if and only if: a)

the skeleton structure of sig′ is a SELECT statement; b) sig′ has a Type III response type; c)

there is always a SQL query with signature sig′ issued before a SQL query with signature sig

can be issued; d) the WHERE clause of the SQL query with signature sig is always satisfied by

the set of objects returned by the previous SQL query with signature sig′. This type of invariant

captures the constraints, which are not directly encoded within the WHERE clause of current

SQL signature but implicitly specified by previously issued SQL queries.

Several examples in SimpleOAK are: a) the signature (course.php, UPDATE registration

SET grade = Token1 WHERE id = Token2) is dependent on (admin.php, SELECT * FROM

registration), because the UPDATE query always executes over one of the objects returned by

the SELECT statement; b) both the signatures (course.php, SELECT * FROM course WHERE

id = Token) and (course.php, DELETE FROM registration WHERE id = Token) are dependent

on (user.php, SELECT * FROM registration WHERE user id = Token).

We present an efficient algorithm to extract this type of invariant, as shown in Fig.IV.5.

We use a hashtable (i.e., SessionStore) to maintain all the objects, carried by SQL responses,

during the session. The key of the hashtable is the signature of an SQL query that has a type

III response, while the value is the objects within the response. When a type III SQL response

is observed, it is added into the hashtable indexed by the signature of the query (i.e., Sig).

When an SQL query is issued, its WHERE clause (i.e., Cond) will be evaluated over the objects

maintained in the hashtable. If the clause is satisfied by the response of a previous SQL query,

their pair is added into a candidate set CandidateSet. Otherwise, the pair is added into a black

list BlackList and is no longer evaluated. If the dependency relationship between two signatures

holds for all the samples in the trace, it becomes one invariant.

53

SigDepLearn(TRACE Γ)
CandidateSet← ∅
BlackList← ∅
SessionStore← empty
for all queries t IN Γ do
if a new session then
SessionStore← empty

end if
Sig ← extractSig(t)
Cond← extractWhereClause(t)
if Cond = null then
continue

end if
for all keys k NOT IN SessionStore do
Pair← (Sig, k)
BlackList.add(Pair)

end for
for all keys k IN SessionStore do
Pair← (Sig, k)
if BlackList.exists(Pair) then
continue

end if
if SessionStore.getRespone(k).eval(Cond)=true then
CandidateSet.add(Pair)

else
BlackList.add(Pair)
if CandidateSet.exists(Pair) then
CandidateSet.remove(Pair)

end if
end if

end for
if Sig.getRespType = Type III then
SessionStore.add(Sig, t.Resp)

end if
end for
return CandidateSet

Figure IV.5: Invariant Extraction for SQL Signature Dependency

54

Runtime Detection

Each SQL signature sig is associated with a set of invariants Inv(sig) after invariant extrac-

tion. The collection of all the invariants serves as the application specification. For detection,

each invariant inv is transformed into an evaluation function finv. If the observed SQL query

t satisfies the invariant inv, finv returns true. Otherwise, the function returns false. An SQL

query is accepted and sent to the database if and only if its signature exists and it satisfies all

the invariants associated with the signature. Otherwise, the query is blocked and the applica-

tion receives an error response. In SimpleOAK, all the four attack cases can be detected using

corresponding invariants extracted in the previous section.

Implementation

We implement a prototype detection system SENTINEL for PHP web applications as two

components: the Sensor and the Analyzer, as shown in Fig.IV.6. The Sensor is responsible for

collecting information and communicating with the Analyzer, while the Analyzer is responsible

for offline training and runtime detection. To be more specific, the Sensor intercepts SQL

queries and responses, collects session variable values and script names, and sends them to

Analyzer. Based on the collected traces, the Analyzer extracts SQL signatures and infers the

set of invariants associated with signatures. At runtime, the Analyzer evaluates incoming SQL

queries and instructs Sensor to block malicious queries.

Web Applica�on

Database Session

Info

PHP Interpreter

Client/

Simulator

Sensor

php-mysql

Analyzer

Web Server

Figure IV.6: Overview of SENTINEL System

55

To implement the functionalities of the Sensor, we modify the php-mysql module in the

PHP interpreter, which provides the connectivity between the web application and the database.

Whenever a SQL query is constructed and is about to be sent to the database, we capture

the query string, identify the script currently being executed (via $ SERVER[‘SCRIPT FILE-

NAME’]), record the current values of session variables and send them to the Analyzer. In PHP,

the session variables are by default stored in local files located at /var/lib/php5 and indexed by

the current session id. When the SQL response is returned from the database, we capture it

and also send it to the analyzer. Our extensions to the php-mysql module can be dynamically

enabled/disabled through an added PHP directive (i.e., mysql:enable proxy).

The Analyzer, the key component of SENTINEL, is implemented as a Java Servlet and

can be operated in two modes: training and detection, as shown in Fig.IV.7. In the training

mode, Trace Collector logs all the information received from Sensor. After sufficient traces are

collected, Signature Extractor generates SQL signatures from observed SQL queries. Then, all

of the information (identified by the SQL signatures) are fed into the Invariant Extractor, where

we leverage the Daikon engine to infer the value-based invariants (i.e., A.1, A.2, B.1). The

Session Manager is responsible for analyzing sessions and extracting SQL signature dependency

invariants (i.e., B.2). In the detection mode, when an SQL query is received from the Sensor, the

Signature Extractor first generates its signature. Then, it is passed to the Detector for evaluation

based on the set of invariants, identified by its signature. The Session Manager is responsible for

maintaining the observed objects during the session, when an SQL response is received from the

Sensor, and evaluating the query with B.2 invariants. If the query is determined to be safe, the

Analyzer will respond to the Sensor and allow the Sensor to forward the query to the database.

Otherwise, the Analyzer will instruct the Sensor to block the malicious query and the Sensor

will return an error response to the application.

The communication between the Sensor and the Analyzer is based on HTTP. The Sensor

composes a web request, which contains collected information, sends it to the Analyzer and

waits for the web response. The Analyzer processes the web request via the Request Handler.

SENTINEL is independent of web applications and database systems and can be easily inte-

grated with existing infrastructures by just replacing the original php-mysql module with our

extension version. Although our current prototype works for PHP applications, it can be conve-

niently extended to handle other platforms as long as the functionalities of the Sensor (e.g., SQL

56

Sensor

Signature Extractor

Invariants

Trace Collector

Request Handler

Invariant Extractor DetectorSession Manager

Detec!on workflow

Training Workflow

Analyzer

Figure IV.7: The Analyzer Component

interception, the interface for communicating with the analyzer) are implemented. Currently,

we co-locate the Analyzer with the Sensor and the applications, and restrict the access to the

Analyzer. Our implementation has the potential to be deployed as a security service if addi-

tional mechanisms for securing the communication between the Sensor and the Analyzer (e.g.,

authenticating the Sensor) are implemented.

Evaluation

Experiment Setup

We evaluate SENTINEL using a set of open-source PHP web applications, as shown in Ta-

ble IV.1. (1) Scarf is a conference management system, which is used for managing sessions,

papers, users and comments. It has an authentication bypass vulnerability (CVE-2006-5909),

which allows the attacker to directly access the administrative functionalities. The page gen-

eraloptions.php doesn’t check if the session variable $ SESSION[‘privilege’], which indicates the

privilege of current user, is equal to admin when retrieving and updating system settings and

user accounts stored in the database. (2) Wackopicko [68] is an online photo sharing website that

57

allows users to upload, comment and purchase pictures. It is designed with a number of vulner-

abilities, such as cross-site scripting and SQL injection, and used for testing the capabilities of

web application vulnerability scanners [25]. In this chapter, we focus on the logic vulnerabilities

it contains. The first vulnerability allows an attacker to manipulate the userid parameter sent

to the sample.php page and view any users’ information, because the application does not check

if the userid parameter is equal to the id of the user who is currently logged in. The second vul-

nerability can be exploited by an attacker to view the high-quality versions of arbitrary pictures

without purchasing them by manipulating the picid parameter sent to the highquality.php page.

The application uses a database table own to maintain the relationship between the pictures and

their buyers. However, it fails to check if the current user has purchased a particular picture

when retrieving its high-quality version. (3) OpenIT [47] is an IT management system, which

consists of a set of modules, such as inventory, help desk, issue tracking and other features. It

has a parameter manipulation vulnerability, which allows the attacker to tamper with a hidden

field that stores the employee ID and change other users’ information. (4) openInvoice [46] is an

invoicing system for keeping track of customers, invoices and items. It has a vulnerability (CVE-

2008-6524) that an attacker can exploit to modify the password of an arbitrary user through the

resetpass.php page.

Table IV.1: Summary of Web Applications (Evaluation of SENTINEL)
Application # PHP file Description Vulnerability
Scarf 21 Conference man-

agement system
Auth bypass (CVE-2006-
5909)

Wackopicko 52 Photo sharing
website

Parameter manipula-
tion, forceful browsing
[68]

OpenIT 25 IT management
system

Parameter manipulation

openInvoice 327 Invoicing system Parameter manipulation
(CVE-2008-6524)

We deploy all of the web applications on a 2.13GHz Core 2 Linux server with 2GB RAM,

running Ubuntu 10.10, Apache web server (version 2.2.16) and PHP (version 5.3.3). The analyzer

is hosted by Tomcat 7 on the same machine. To generate traces more efficiently, we build user

simulators that automate the procedure of operating web applications and emulate the interaction

58

between a normal user and the web applications. The details about user simulators can be refered

to in Chapter III.

Detection Effectiveness

SENTINEL first runs in the training mode to collect traces, extract signatures and infer

invariants. Training traces are generated by both manually operating the web applications and

running user simulators and do not include attack instances (e.g., SQL injections). Table IV.2

shows the summary of our training set. In addition to the size of the SQL query set, we also

report on the number of extracted signatures, database fields we observed from SQL queries and

responses, likely state variables, as well as each type of inferred invariants.

Table IV.2: Summary of Training Set (Evaluation of SENTINEL)
Application SQL

queries
SQL
Signa-
tures

Database
fields

State
variables

A.1
Inv

A.2
Inv

B.1
Inv

B.2
Inv

Scarf 4385 95 58 44 1210 457 71 10
Wackopicko 5062 56 57 29 729 52 130 14
OpenIT 5708 50 145 97 1583 401 596 3
openInvoice 8022 113 51 31 746 375 43 2

Then, SENTINEL runs in the detection mode. The clean test set is also generated by both

manually operating the web applications and running the user simulators. Ten attacks are

manually launched against each web application under different circumstances, such as logging

as a different user and performing a different sequence of actions before launching the attack.

Table IV.3 shows the summary of our test sets and detection results. We can see that all of

the attacks are successfully identified by corresponding invariants. In Wackopicko for instance,

the attack, which allows for the high-quality versions of arbitrary pictures to be viewed without

purchase, is detected by one of the B.2 invariants. To the best of our knowledge, none of the

existing techniques can capture this type of logic attack, since they do not account for the

persistent information (i.e., the table own) in the database, which reflects part of the application

logic. On the other hand, the false positive rate is fairly low. We analyze the false alerts raised

by SENTINEL and find that all of them are introduced by the incomplete exploration of user

simulators, which is known as an inherent challenge for dynamic analysis techniques. In summary,

59

we believe the detection experiments demonstrate the effectiveness of our approach at detecting

malicious SQL queries that violate the intended application logic.

Table IV.3: Summary of Detection Result (Evaluation of SENTINEL)
Application Queries (clean

test set)
Queries (false
positive)

Attacks Detected Invariant
violations

Scarf 4694 1 10 10 A.1, A.2
Wackopicko 4984 2 10 10 B.1, B.2
OpenIT 6304 0 10 10 B.1
openInvoice 6585 0 10 10 B.1

Performance Overhead

At runtime, SENTINEL intercepts each SQL query and sends it to the Analyzer for evalua-

tion before forwarding it to the database, which inevitably introduces additional SQL response

delay. To evaluate the performance overhead induced by SENTINEL, we measure the averaged

SQL response time for running each web application under three circumstances: (1) without

SENTINEL; (2) with SENTINEL and with the Detector disabled; (3) with SENTINEL and the

Detector enabled to evaluate each SQL query. Fig. IV.8 shows the summary of the performance

overhead measured for each application. The results are averaged over a number of rounds. We

can see that SENTINEL increases SQL response time by a factor of 1.6 to 4. The performance

overhead is introduced mainly through two sources: (1) the communication overhead between the

Sensor and the Analyzer ; (2) the analysis time during which the Analyzer extracts SQL signa-

ture and evaluates the query. While the communication overhead is still acceptable (around 1ms

in average), the analysis time is relatively low. Thus, we believe SENTINEL can be integrated

into running applications without incurring noticeable performance degradation.

Discussion

Fingerprint-based techniques have been proposed to defend against SQL injection attacks

[42]. Our technique extracts SQL signatures to represent the possible output symbols that can

be issued by the web application and associates them with invariants, which characterize the

application state and data constraints. Similar to a fingerprint, our technique has the potential

60

Scarf Wackopicko OpenIT openInvoice
0

1

2

3

4

 A
v

g
 R

e
sp

o
n

se
 T

im
e

 (
m

s)

without SENTINEL

with SENTINEL (disable Detector)

with SENTINEL (enable Detector)

Figure IV.8: Summary of Performance Overhead (Evaluation of SENTINEL)

to be employed to mitigate SQL injection attacks, which tamper with the SQL query structure

captured by the SQL signature. Since we focus on state violation attacks in this chapter, we do

not evaluate our technique over the detection of SQL injection attacks.

Our technique bears the same limitations as other dynamic analysis techniques. Due to

the fact that the user simulator is incapable of exploring all of the possible states of the web

application, our inferred invariants can be either incomplete or spurious. The completeness (i.e.,

coverage) of our technique cannot be directly assessed, because we do not examine the application

source code. The attacks that traverse the unexplored state of the application will not be detected

by our system, resulting in false negatives. On the other hand, the inferred invariants may be over

restrictive for characterizing the application’s behavior, so that normal behaviors are identified

as attacks, resulting in false positives. In reality, if real world traces are available, our technique

can be readily applied.

Since we focus on securing the database access, we collect SQL queries and extract invariants

only for SQL signatures. However, our approach can be extended to handle other types of state

violation attacks, such as an unauthorized file access. In this case, the Sensor should be extended

to collect relevant sensitive operations (i.e., file I/O system calls) and the Analyzer establishes

models for file access behaviors of the web application.

61

CHAPTER V

AUTOMATIC DISCOVERY OF LOGIC VULNERABILITIES WITHIN WEB
APPLICATIONS

In this chapter, we take a first step towards a systematic source-code free approach to identi-

fying logic flaws within web applications. In particular, we model the logic of a web application

using a finite state machine (FSM) and formalize logic vulnerabilities as the discrepancies be-

tween the intended FSM and the implementation FSM. We infer the intended FSM based on

collected web requests, web responses and session variables. We then construct two forms of

test inputs to exploit the discrepancies between the intended FSM and the FSM that is actually

implemented by the application. We implement a prototype system LogicScope and evaluate it

using a set of real world web applications.

The rest of this chapter is organized as follows. We first give an overview of our approach.

Then we give an illustrative example and present our system model. The details of our approach

and implementation are described in the following two sections. Finally, we conclude this chapter.

Overview

The intended behavior of a web application can usually be observed when benign users follow

the navigation paths within the web application [29, 63]. In this case, we say the inputs (i.e.,

HTTP requests) from the users are expected. Over the expected inputs, the behavior of the

intended FSM and the implementation FSM is consistent. The discrepancies manifest over the

application behaviors when unexpected inputs are fed into the application.

To identify such discrepancies, we first construct the intended FSM as a partial FSM over the

observed user inputs (i.e., expected input domain). Then, based on the inferred partial FSM, we

test the application over unexpected inputs at each state to identify logic flaws. We present two

methods for constructing test input vectors, corresponding to two commonly seen state violation

attack vectors (i.e., parameter manipulation and forceful browsing attacks, respectively) and feed

them into the application. We provide an evaluation rule to determine whether the corresponding

web response leads to a potential logic vulnerability. The reported potential logic vulnerabilities

are evaluated manually and classified into real attack vectors and false positives.

62

Problem Description

Illustrative Example

In Figure V.1, we present a small, vulnerable web application as a running example to illus-

trate how we formalize and identify logic flaws within web applications. This application uses

two session variables $ SESSION[‘privilege’] and $ SESSION[‘userid’] to remember the current

user’s access right and ID. A user, who just logs in, will be redirected to the index.php page. If

the current user is an admin (i.e., $ SESSION[‘privilege’] is equal to “admin”), they are presented

with links for adding new users, editing and deleting any of the registered users. If the current

user is a regular user (i.e., $ SESSION[‘privilege’] is equal to “user”), they can see only the link

for editing their own information.

edit_user.php

<?php

edit_user($_GET[`userid`]);

?>

add_user.php
<?php

add_user();

?>

delete_user.php

<?php

if ($_SESSION[`privilege`] != “admin”)

die (“ACCESS DENIED!”);

delete_user($_GET[`userid`]);
?>

<?php

if ($_SESSION[`privilege`] == “admin”) {

echo “Add User ”;

$user_set = get_all_users();
foreach ($user_set as $user) {

echo “Edit User ”;

echo “Delete User ”;

}

} else if ($_SESSION[`privilege`] == “user”) {
echo “Edit

User ”;

}

?>

index.php

Figure V.1: Example Application

63

Problem Formulation

We model a web application using a finite state machine (FSM) model (S, s0, Σ, Λ, T , G),

where S is the set of states, s0 ∈ S is the initial state, Σ is the set of input symbols (i.e., input

alphabet), Λ is the set of output symbols (i.e., output alphabet), T : S × Σ → S is the set of

transition functions and G : S × Σ → Λ is the set of output functions. T and G determine the

next state and the output symbol, respectively, based on the current state and the input symbol.

To understand the logic flaws within a web application, we need to consider two FSMs asso-

ciated with it: (1) the ideal FSM (denoted as Fideal) models the intended (or expected) behavior

of the web application without any security vulnerabilities; (2) the implementation FSM (de-

noted as Fimpl) models the actual behavior of the web application as being implemented by

the developer. If Fimpl is equivalent to Fideal, we say the implemented web application is se-

cure as intended. If there exist discrepancies between Fimpl and Fideal and the discrepancies

involve sensitive information or operations, we say the implemented web application has logic

vulnerabilities.

As shown in Figure V.2, the example application has three states: (1) the user is not logged

in (s0), (2) a regular user logs in (s1) and (3) an admin user logs in (s2). The state information is

maintained by two session variables $ SESSION[‘privilege’] and $ SESSION[‘userid’], which are

explicitly defined in the application. Each input symbol I ∈ Σ is an abstract representation of a

web request, which consists of two parts: 1) the key (denoted by K) represents the syntax of the

web request (e.g., K1 = GET-edit user.php : userid); 2) the value (denoted by V) represents the

value domains of the parameters, which is related to the semantics of the web request (e.g., V1 =

[userid = vconstrained($ SESSION[‘userid’])] means that the userid parameter in the web request

is equal to the value of the session variable userid) (we refer the reader to Input Symbolization for

details). Thus, I1 = K1.V1 and I2 = K1.V2 are two different input symbols due to the difference

in their parameter value domains, although they have the same syntax structure. Similarly, each

output symbol in Λ is an abstract representation of the web responses returned by the application

to users.

The ideal FSM (Fideal) for the application works as follows. At state s1, since it is intended

that the regular user can only edit his/her own information, when the regular user sends an input

symbol I1 = K1.V1, where the userid parameter is equal to the current user id, the application will

respond with the edit user page (output symbol O1). When the regular user tries to edit another

64

S1

S0

S2
$_SESSION[‘userid’]=xx
$_SESSION[‘privilege’]=admin

$_SESSION[‘userid’]=xx
$_SESSION[‘privilege’]=user

$_SESSION[‘userid’]=null
$_SESSION[‘privilege’]=null

Fideal

S1: Σ à Λ

I1= K1. V1: [GET-edit_user.php : userid] . [userid = vconstrained($_SESSION[‘userid’])]
I2= K1. V2: [GET-edit_user.php : userid] . [userid = vunsatisfied]

I3= K2. V: [GET-delete_user.php : userid] . [userid = nonnull]
I4= K3. V: [GET-add_user.php : userid] . [userid = nonnull]

Input symbols

O1: edit_user_page
O2: ACCESS_DENIED

O3: delete_user_page
O4: add_user_page

Output symbols

I1

Σexp(S1)

I2

I3

I4

O1

Λmea(S1)

O2

Λdum(S1)

S2: Σ à Λ

I1

Σexp(S2)

I2

I3

I4

O1

Λmea(S2)

O2

Λdum(S2)

O3

O4

Fimpl

S1: Σ à Λ

I1

Σexp(S1)

I2

I3

I4

O1

Λmea(S1)

S2: Σ à Λ

I1

Σexp(S2)

I2

I3

I4

O1

Λmea(S2)

O2

Λdum(S2)

O3

O4

O4

O2

Λdum(S1)

Figure V.2: The FSM Representation of the Example Application

65

user’s information (i.e., by sending I2 = K1.V2), delete a user (i.e., by sending I3 = K2.V) or

add a new user (i.e., by sending I4 = K3.V), the application should reject such input symbols

with an ACCESS DENIED page (output symbol O2).

However, the implemented application has two logic vulnerabilities, which are reflected as the

discrepancies between Fideal and Fimpl, shown using the dashed lines with arrows in Figure V.2.

First, the edit user.php page does not check if the userid parameter is equal to the current user

ID. Second, the add user.php page does not check if the current user has the admin privilege, as

the delete user.php page does. These vulnerabilities allow two types of attacks. 1) Parameter

manipulation attack: when input symbol I2 is sent to the application at state s1, the output

symbol O1 is returned. This allows a regular user to edit other users’ information. 2) Forceful

browsing attack: when input symbol I4 is sent to the application at state s1, O4 is returned,

which allows a regular user to add new users.

Since a user can send any web request to a web application, the input alphabet can be

infinite and fed into the application at any state, resulting in corresponding output symbols.

However, at a given state s, we observe that only a subset of input symbols are expected by the

application (denoted as Σexp(s)) and processed to generate “meaningful” output symbols (i.e.,

Λmea(s) = G(s,Σexp(s))). The expected input symbols are the web requests that can be issued (if

the user follows the navigation links of the web application and the meaningful output symbols)

are the web responses that provide the users with useful information. All the other input symbols,

that are not expected at state s, should be rejected/mitigated by the application, resulting in

“dummy” output symbols (i.e., Λdum(s) = G(s,Σ− Σexp(s))). A dummy output symbol means

that the application responds to the user with an error page or a redirection header pointing to

a previously visited web page, without leaking any useful information. As shown in Figure V.2,

for state s1, the expected input set is {I1}, the meaningful output set is {O1} and the dummy

output set is {O2}. For state s2, the expected input set is {I1, I2, I3, I4} and the meaningful

output set is {O1, O3, O4}. A web application is expected to fully implement the intended

functionality, which means the behaviors of Fideal and Fimpl over the expected input symbols

should be consistent. However, the unexpected input may not be fully mitigated/rejected by

Fimpl as intended by Fideal. Thus, we say a web application has a logic vulnerability at state s,

if an input symbol, which is not expected at state s (called a malicious input and denoted by

66

Imal), is fed into the application, the application generates an output symbol that falls beyond

the dummy output set (i.e., G(s, Imal) ∈ (Λ− Λdum(s))).

Approach

High-level Overview

As stated in the problem formulation, to identify logic vulnerabilities, we need to construct

unexpected (malicious) inputs for each state and evaluate whether their outputs fall beyond the

dummy output set. This is nontrivial since we have no knowledge about the entire input alphabet

(and thus unexpected input) and the dummy output set at each state. To approach this problem,

we first construct a partial FSM over the expected input domain by observing the executions of

the application when users follow the navigation paths provided by the application. Then, we

leverage the inferred partial FSM to construct unexpected inputs and test the application for

logic vulnerabilities. The overview of our approach is shown in Figure V.3.

We collect execution traces, including web requests, web responses and associated session

variables, when normal users follow the navigation paths, and analyze the traces to construct

the partial FSM through the following essential steps: (1) State Construction, in which we

derive the set of application states S using collected session variables. (2) Input Symbolization,

in which we abstract concrete web requests into input symbols. This allows us to profile the

expected input domain at each state (i.e., Σexp(s), ∀s ∈ S). (3) Output Symbolization, in which

we transform web responses (i.e., html pages) into abstract output symbols. This allows us to

obtain the mapping between the expected input symbols and the meaningful output symbols (i.e.,

G(s,Σexp(s)) → Λmea(s), ∀s ∈ S). Note that we have no knowledge about the dummy output

set (i.e., Λdum(s), ∀s ∈ S), because we only feed expected input symbols into the application. In

addition, we learn how the application transitions between the set of states and the corresponding

input symbols that trigger the transitions (i.e., T : S × Σ→ S).

Then, based on the partial FSM, we test each application state over the unexpected inputs.

In particular, we have to address two issues:

67

• Test Input Generation: Since we only have knowledge of the expected input set given a

state, how do we construct unexpected input symbols to test that state? We present two

methods for generating test input vectors in Test Input Generation.

• Output Evaluation: Since we have no knowledge of the dummy output set given a state,

how do we determine whether the corresponding output symbol falls beyond the dummy

output set, so that we can report a potential logic vulnerability? We provide the evaluation

rule in Output Evaluation.

Trace
Collection

FSM
Inference

Testing

State Construction

Input Symbolization

Output Symbolization

Test Input Generation

Output Evaluation

Figure V.3: Approach Overview

State Construction

A web application usually uses session variables to maintain the users’ session state. Intu-

itively, the set of application states can be constructed through the Cartesian product of the

value domains of the session variables. However, directly applying this method may result in

an infinite number of states, since the value domains of session variables can be infinite. Thus,

we first characterize the value domain for each session variable. We employ the KS-test (see

Chapter III for details) to analyze the set of values collected for each session variable and cate-

gorize each variable into two types: (1) bounded, which means the values the variable may take

are bounded to a finite set. For example, $ SESSION[‘privilege’] only assumes two values: user

and admin, indicating two types of users. We represent bounded session variable using the set

of observed values; (2) unbounded, which means the number of values the variable may take

linearly increases with the number of samples. For example, $ SESSION[‘userid’] can take the

68

same number of values as the user number. In this case, we need to consider the value-based

invariants between input parameters and session variables. We abstract such variables using null

and nonnull for state construction and model such invariants through constrained variables in

input symbolization.

Then, we construct the application state using the Cartesian product of the abstract values

of session variables, which we refer to as the state signature, and identify the set of application

states that are observed in the traces. One example state signature is [privilege = user] [userid

= nonnull], which represents the application state when a regular user logs into the application.

Theoretically, the application state space can be huge depending on the number of session vari-

ables and their abstract value domains. In reality, we observe that the actual number of states

can be much smaller, since certain session variables are correlated with each other. For example,

when a user logs in, both session variables are updated and the following state is impossible:

[privilege = user] [userid = null].

Input Symbolization

We need to represent a collection of web requests using abstract input symbols. A web

request consists of a HTTP method (we only consider GET and POST here), a URL (the script

file name in the case of PHP, e.g., index.php) and a set of input parameters. We symbolize

each web request with a two-part structure Key.Value: (1) the key (denoted by K) represents

the syntax of a web request. This part is formed by the combination of the HTTP method and

the URL, which we refer to as the request key, with a set of parameters, whose order is sorted

alphabetically (e.g., [GET-edit user.php : userid]). (2) the value (denoted by V) represents the

value domain of parameters, which indicates certain invariants between the input symbol and

the application state. Since a parameter may assume an infinite number of values, we first profile

each parameter and construct the value domain by concatenating the sequence of abstract values

of each parameter, which is similar to how we deal with session variables.

Since the value domain of parameters reflects the relationship between the input symbol

and the application state, we need to profile the value domain of each parameter at each state

(i.e.,“local” profiling). In order to construct input symbols that are atomic for the entire applica-

tion, we need to obtain the global value domain of each parameter by combining their local views

(i.e., “global” profiling). Thus, we take two steps to profile each input parameter. In the first step,

69

we employ the KS-test over the set of values collected for each parameter with the same request

key at the same state and categorize the parameter into three types: (1) an unbounded random

variable (denoted as pur), which can take any value - we represent its value domain with two

abstract values Θ(pur) = {null, nonnull}, where Θ denotes the value domain. (2) an unbounded

constrained variable (denoted as puc), which can take an infinite number of values, but is subject

to certain constraints - here, we only identify one state-related constraint, where the parameter

is always equal to a specific session variable (e.g., the parameter userid of request key GET-edit -

user.php at state s1 is always equal to $ SESSION[‘userid’]). We represent its value domain with

three values Θ(puc) = {null, vconstrained(sess), vunsatisfied}, where vconstrained denotes the value

satisfying the constraint and sess denotes the session variable name and vunsatisfied denotes all

the other values1. (3) bounded variable (denoted as pb), whose value domain is represented with

the set of values plus two additional values: null and voutofbound, where voutofbound denotes the

values that are beyond the bounded set. In the second step, we combine the local views of the

value domains of parameters. If the parameter has consistent domain type over all the states, we

keep its domain type and re-compute its value domain (i.e., for pub, the value domain is the set of

values divided by multiple constraints; for pb, additional values are added into the domain). If the

parameter has inconsistent domain types over all the states, we use the more restrictive domain

type and the further divided value domain pb ≫ puc ≫ pur, where ≫ means “is more restrictive

than”. In the example application, the parameter userid of the request key GET-edit user.php is

constrained by $ SESSION[‘userid’] at state s1, but inferred as an unbounded random variable

at state s2. Thus, in the global space, its domain type is identified as an unbounded constrained

variable. In this way, we construct two atomic input symbols at state s2 (K1.V1, K1.V2 as shown

in Figure V.2).

Output Symbolization

We need to transform a collection of web responses (i.e., html pages) into abstract output

symbols. Usually, web responses are generated by feeding dynamic contents into static templates

by the application and the number of static templates for a web application is finite. Thus, we

represent a web response using its static template, which is the output symbol that is emitted

1In a general case, it is possible that one parameter is subject to more than one constraint, whose value domain
will be further divided.

70

by the application. To extract the templates from collected web responses, we leverage the same

technique as in Chapter III. We give a brief introduction here, but for more details we refer

the reader to Chapter III. We represent the tree-like DOM structure of a html page as a set

of paths (like XPath) leading to text nodes in the page, which carry useful information (Step I:

transformation). Then, we identify those paths, which occur not so frequently compared to other

paths, as dynamic contents and prune them (Step II: pruning). The remaining paths for a web

page are more likely to be used in composing the template, which we refer to as “critical paths”.

Then, the set of web pages are clustered based on the similarities of its critical paths, to form

a number of templates (Step III: clustering). Given a web response, we assign it to a cluster,

which it most likely belongs to, and represent it using the corresponding output symbol (Step IV:

classification). As shown in Figure V.4, six paths are identified from the index.php page seen by

the admin user in the example application, three of which are regarded as critical after pruning.

Then, one output symbol (i.e., HTML template) t.index admin is identified after clustering and

the incoming web page will be assigned to this template because of the high similarities of critical

paths.

/html/body/a/Add User

/html/body/p/a/edit

/html/body/p/a/delete

Web Page

/html/body/a/Add User

/html/body/p/a/edit

/html/body/p/a/delete

All paths

Critical paths

Output symbol: t.index_admin

Transformation

Pruning

Clustering

/html/body/p/testuser1

/html/body/p/testuser2

/html/body/p/testuser3

/html/body/p/testuser1

/html/body/p/testuser2

/html/body/p/testuser3

Add User

testuser1 edit delete

testuser2 edit delete

testuser3 edit delete

Add User

testuser4 edit delete
Classification

Figure V.4: Output Symbolization

71

Test Input Generation

We present two methods for generating test input symbols at a given state s, as shown in

Figure V.5. Each method is designed to construct one type of attack vector.

mutate

Method 1: parameter manipulation Method 2: forceful browsing

K1.V1 K2.V

Σexp(s)

Imal = K1.V2

K1.V1 K2.V

Σexp(s)
Σexp(s’)

K3.V

K4.V

K1.V2

Imal(s)

Figure V.5: Test Input Generation

Method 1 – Parameter Manipulation

Given an expected input symbol I = K.V ∈ Σexp(s) at state s, we directly mutate the input

symbol, so that the mutated input symbol falls beyond the expected input set at state s (i.e.,

Imal = mutate(I) 6∈ Σexp(s), where mutate is a function over the input symbol). Specifically,

the mutate function keeps the Key part of input symbol unchanged, but change the Value part

by varying the values of one or several parameters. For an unbounded constrained variable, we

may change its value from vconstrained to vunsatisfied ; for an bounded variable, we may change

its value to another in the bounded set or voutofbound. For example, as shown in Figure V.5, the

Value part of input symbol K1.V1 is mutated to be V2 as a test input vector for state s. This

method mimics the scenario of parameter manipulation attacks, where the attacker tampers the

parameter values to violate the constraint between the web request and the current state.

Method 2 – Forceful Browsing

We leverage an expected input symbol from another state s′, which falls beyond the expected

input set of the current state s (i.e., Imal ∈ Σexp(s
′)−Σexp(s)). We select input symbols at state

s′ with a Key structure unobserved at state s as test input vectors for state s. For example, as

shown in Figure V.5, the input symbols at state s′ with Key K3 and K4 that are not observed

72

at state s are used as test input vectors for state s. This method mimics the scenario of forceful

browsing attacks, where the attacker provides a hidden sensitive link to the application that

should not be accessible at current state.

Output Evaluation

Let Otest be the output symbol generated by the application after the test input vector Imal

is fed into the application at state s. The goal of the output evaluation is to determine whether

Otest falls beyond the dummy output set (i.e., Otest 6∈ Λdum(s)). Since the dummy output cannot

be observed directly, we apply the knowledge of the meaningful output set for evaluation. Based

on the definition of dummy output, it is straightforward to recognize that there is no intersection

between the meaningful and dummy output sets for any two states. Thus, if the test output is

the same as any meaningful output, we should report a potential logic vulnerability. Specifically,

let I be the original input symbol from which Imal is generated (Imal = mutate(I) in Method

1; Imal = I in Method 2), and Oorig be the output symbol generated by feeding the original

input symbol I at the corresponding state (i.e., Oorig = G(s, I) in Method 1; Oorig = G(s′, I) in

Method 2, where s′ is the state from which I is selected from). The output evaluation rule is:

if Otest = Oorig, we report a potential logic vulnerability.

If a test input vector can be generated from more than one input symbol (e.g., K1.V3 can

be generated from both K1.V1 and K1.V2), which have different output symbols, the resulting

output symbol will be compared to every possible output symbol.

To suppress false positives, we observe that all of the information that is accessible at the

initial state (i.e., s0) should be non-sensitive for all the states. Thus, only when Otest does not

belong to Λmea(s0) do we report the violation of the rule as a potential logic vulnerability. Since

our technique relies on the collected traces, which may not completely characterize the application

behavior, we report those alerts as potential logic vulnerabilities, which require human efforts to

analyze and confirm.

Implementation

We implement a prototype system called LogicScope for identifying logic flaws within PHP

web applications. Our technique only requires session information from the server side, which is

73

usually maintained externally to the web application in either local files (e.g., at /var/lib/php5

for PHP) or a database table (e.g., django session for Python). Note that, though we developed

the system for PHP web applications, LogicScope can easily be customized for other platforms

(e.g., JSP), because its approach to venerability identification is independent of the programming

language and source code. As shown Figure V.6, LogicScope is composed of three major compo-

nents, including (1) a Trace Collector, (2) a Spec Analzyer and (3) a Testing Engine, which are

executed in three phases.

Trace Collector
(WebScarab Proxy)

Session Inspector

Web Server

Session Exporter

User/
Simulator

Phase I: Trace Collection

Phase II: FSM Inference

Web request
/response

Session Variable

SessionProfile

RequestProfile

TemplateProfile

Session Log DriverSpec

StateProfile

Spec Analzyer

Symbolizer

FSM Analyzer

TestSpec Generator TestSpec

Testing Engine

State Driver

Web Server

Session Exporter

Phase III: Testing

Symbolizer

Login Helper

LoginProfile

InputProfile

Testing Controller

Session Inspector

Output
Evaluator

Request Generator

Figure V.6: Prototype System Architecture (LogicScope)

Phase I: Trace Collection

The Trace Collector is responsible for collecting web traffic traces when users navigate through

the application during attack-free sessions. We implement the Trace Collector by enhancing

74

the WebScarab proxy [50] with a Session Inspector module. WebScarab intercepts web re-

quests/responses exchanged between the user and the application, while the Session Inspector

collects the set of session variables that are associated with each web request/response pair. To

do so, we deploy a web service Session Exporter on the web server, which will retrieve the set of

session variables given a session ID and send them to the Session Inspector. To customize Log-

icScope for other platforms, the only module that needs to be adapted is the Session Exporter,

since all the other components in LogicScope are independent of the application platform.

Phase II: FSM Inference

The Spec Analyzer is executed in Phase II to derive both the partial FSM and the testing

specification. The collected traces in Phase I are first fed into the Symbolizer module, where

session variables are analyzed (resulting in the SessionProfile), web requests are profiled (resulting

in the RequestProfile) and web responses are clustered to form a set of HTML templates (resulting

in the TemplateProfile). In particular, we implement an invariant inference engine to extract the

equality constraint between the parameters and session variables over all samples. Based on the

above profiles, the traces are transformed into symbolized session logs, where each set of session

variables are replaced with a state signature and each web request/response pair is represented

by the corresponding input/output symbol. Then, session logs are used by the FSM Analyzer

module to derive the partial FSM, resulting in two files: StateProfile, which characterizes the

mapping between input/output symbols on each state (i.e., output function representation) and

DriverSpec, which records the transitions between the set of application states, as well as the input

symbols that trigger the transitions (i.e., transition function representation). Finally, StateProfile

is analyzed by TestSpec Generator to generate the testing specification, which includes both a

set of test input symbols for each state and corresponding output symbols for evaluation.

Phase III: Testing

The Testing Engine is executed in Phase III to determine if the application has logic vulner-

abilities, based on the above derived profiles and specifications. It instantiates test input vectors

into concrete web requests, feeds them into the application and evaluates the corresponding web

75

responses. The Testing Controller is the core module that takes charge of the entire testing

procedure. The workflow of this module is shown in Figure V.7.

Check current application state
(Session Inspector)

Load TestSpec and profiles

if current state
test is complete?

Retrieve next test input vector

Instruct Request Generator to
construct and submit a concrete web

request

Fetch the response and wrap up info to
Output Evaluator

Mark current state as complete and
retrieve next test state

Consult State Driver to get the path
(sequence of input symbols) leading to

target state

Report potential logic vulnerability or
pass

No

No available test state

Instruct Request Generator to drive
the app to the target state

Testing Finished!

Yes

test state available

Figure V.7: Workflow of Testing Controller

The Testing Controller first loads TestSpec and other profiles and checks the current applica-

tion state using the session ID (usually retrieved from the “Set-Cookie” header within the first

web response returned by the application). If the test of the current state is not completed, it

retrieves the next available test input vector, delegates Request Generator to generate a concrete

web request and submits it to the application. After it receives the web response, it will wrap

up all the necessary information and send it to Output Evaluator for evaluation, where logic

vulnerabilities, if exist, will be reported. If the test of the current state is completed (i.e., no test

input vectors are left), the Testing Controller will move to the next available test state. It will

consult the State Driver, which loads the DriverSpec and keeps track of the transition graph of

the application, to get the path leading to the next test state. The path computed by the State

Driver is essentially the shortest path from the current state to the target state (i.e., a sequence

with minimum number of input symbols), which will be instantiated by the Request Generator

and trigger the state transition step by step to the target state. This mechanism is desirable,

76

since we cannot directly manipulate the set of session variables to drive the application into our

desired abstract state. For the example application, after we test state s1 for the regular user,

we must first log out (i.e., move to state s0) and log in as an admin user to test state s2. If all

the states have been fully tested, the testing procedure is finished. LogicScope can also perform

appropriate URL encoding/decoding, capture essential headers or values (e.g., cookies, encrypted

XSRF tokens) and embed them in the following web requests, in order to continue with the live

web session, thus be able to handle a variety of web applications well.

One key challenge we need to address is how to instantiate abstract input symbols into con-

crete web requests with meaningful parameters. In Phase II, when we profile web requests, we

also infer the value type (e.g., number, literal string) of each parameter. When the Request Gen-

erator tries to generate the concrete value for a parameter, it checks its value type and randomly

generates a value of that type or retrieves a value from a pre-loaded value store (i.e., InputPro-

file). In particular, Request Generator includes Login Helper module, which helps Testing Engine

successfully log into the application. Login Helper requires the user to provide a LoginProfile file,

which specifies the input symbol that represents the login request (e.g., POST-index.php) and at

least one set of legitimate user credentials (e.g., username and password) for each type of user

(e.g., regular user, admin user).

Evaluation

We select six real-world PHP web applications to evaluate our prototype system, LogicScope.

We deploy all of the web applications on a 2.13GHz Core 2 Linux server with 2GB RAM,

running Ubuntu 10.10, Apache web server (version 2.2.16) and PHP (version 5.3.3). To facilitate

trace collection, we developed user simulators for each application based on an open source web

application testing tool, Selenium WebDriver [59]. The details of user simulators can be referred

to in Chapter III.

Experiment Results

LogicScope first runs in Phase I and Phase II to collect traces and infers the application

logic specification. Table V.1 shows the statistics of traces and the inferred FSMs, including the

number of files, collected web requests, web responses, session variables, states, input and output

77

symbols. Then, LogicScope generates the testing specification and launches the testing proce-

dure against each web application. One feature of LogicScope is that it also provides concrete

attack vectors and evidences for further inspection. Finally, we manually analyze the reported

logic vulnerabilities based on the additional information provided by LogicScope and categorize

them as either true vulnerability or false positive. Table VI.2 shows the testing results, including

the number of test input vectors generated by each method (FB for forceful browsing; PM for

parameter manipulation), attack instances reported by LogicScope, real attack vectors and false

positives (i.e., FP). We also compare the discovered vulnerabilities with the known vulnerabilities

from public sources and report the false negatives (FN) (i.e., the number of vulnerabilities Log-

icScope fails to identify). In summary, we generate 233 test input vectors for all the applications

and have 25 attack instances reported, among which, 18 are real attack vectors and 7 are false

positives.

Table V.1: Summary of Traces and Inferred FSMs (Evaluation of LogicScope)
Application Files Web

req.
Web
resp.

Session
var.

State Input
symb.

Output
symb.

Scarf 21 1348 1346 3 3 31 15

Wackopicko 52 2104 1650 1 2 18 7

EventsLister 37 1290 1287 2 2 25 11

Bloggit 24 2657 2645 1 2 18 23

openInvoice 25 1138 1083 5 5 73 11

OpenIT 25 1462 1453 5 5 16 6

Table V.2: Summary of Testing Results (Evaluation of LogicScope)
App Method Test

input
Flagged
attack

Real
attack

FP FN

Scarf FB 5 1 0 1 0
PM 44 9 8 1 0

Wackopicko FB 5 2 2 0 1
PM 16 0 0 0 0

EventsLister FB 0 0 0 0 0
PM 25 4 2 2 0

Bloggit FB 6 2 0 2 0
PM 20 0 0 0 1

openInvoice FB 19 4 4 0 0
PM 28 0 0 0 0

OpenIT FB 3 3 2 1 0
PM 62 0 0 0 0

Summary 233 25 18 7 2

78

Scarf is a conference management application, which maintains user, paper and session

information in the database. It has a known authentication bypass vulnerability (CVE-2006-

5909), which allows the attacker to directly access the restrictive page generaloptions.php that

contains administrative functionalities.

LogicScope successfully identifies this vulnerability and gives eight real attack vectors, which

represent different exploits, such as deleting a user or modifying a user’s information. Meanwhile,

LogicScope introduces two FPs. For example, one FP is triggered by a test vector, which is

allowed at the state under test, but never accessible through navigation links. The existence

of this FP reflects an inherent challenge of dynamic analysis, where complete exploration of

expected input domain over the application states is required during the trace collection phase.

We handle this challenge by carefully developing the user emulator and supplying meaningful

parameters to explore the application as fully and deeply as possible.

Wackopicko is an online photo sharing website that allows users to upload, comment and

purchase pictures. It contains both input validation flaws and logic flaws. Here, we focus on

identifying its logic flaws.

LogicScope identifies two logic vulnerabilities. The attacker can tamper with the parame-

ter userid within the sample.php and view.php pages, respectively, to retrieve any other users’

information. The corresponding constraints (i.e., the userid sent to sample.php is always equal

to 1 due to a static link, and the userid sent to view.php always equal to the session variable

$ SESSION[‘userid’] indicating the current user ID) are violated.

LogicScope fails to identify one known logic vulnerability (i.e., false negative), which allows

the attacker to view high-quality pictures without purchasing them by manipulating the picid

parameter sent to the highquality.php page. This relationship between users and pictures exists

in the database table “own”, which cannot be captured by our technique when constructing input

symbols. Thus, no attack vectors will be generated to violate such constraint.

EventsLister is an event management application, in which only admin users are allowed to

add new events, update or delete events and add new users. It has an known logic vulnerability

within the add user.php page, which lacks the security checking function checkUser() for verifying

if an admin user is logged in. The vulnerability allows the attacker to directly access the user -

add.php page and craft a POST request to add a new user.

79

LogicScope successfully identifies the above logic vulnerability. LogicScope also reports an-

other two attack vectors, which allow the attacker to reset passwords for registered users. Since

the attacker has no access to the victims’ emails, it cannot pose threats to the application, so we

classify them as false positives.

Bloggit is a blog management application, where only admin users are allowed to add/edit/delete

blogs, as well as user information and other features. This application has a known Execution

After Redirection (EAR) vulnerability (CVE-2006-7014) within the session.inc.php page, which

allows the attacker to execute administrative functionalities (e.g., adding a user), even after the

authorization check fails. All of the files that include session.inc.php for authorization checks are

vulnerable.

LogicScope is able to construct the attack vectors that exploit the above vulnerability, but

fails to report it as such (i.e., false negative). This is because, although the database content has

been tampered with by the attacks, LogicScope still observes a redirection response indicating the

authorization check fails. Meanwhile, LogicScope introduces two FPs, when a spurious parameter

id is sent to the admin.php page for adding a new user or a new category.

OpenInvoice is an invoicing system for keeping track of customers, invoices and items,

etc. LogicScope identifies one logic vulnerability (CVE-2008-6524), which allows the attacker,

logged in as a normal user or an inactive user, to modify the password of an arbitrary user, by

constructing four attack vectors that violate the constraint over the parameter uid (i.e., equal to

a session variable indicating the current user ID) sent to the page resetpass.php.

OpenIT is an IT management system, which consists of a number of modules, such as em-

ployee, news, computer and software. LogicScope identifies one logic vulnerability, which allows

the attacker to change arbitrary users’ information by tampering with the hidden parameter

employee EmployeeID within the form for editing user information. Two attack vectors are con-

structed to violate the constraint over the parameter (i.e., equal to a session variable indicating

the current user ID) under different scenarios. LogicScope also introduces one FP, where the

admin user tries to modify his/her own information, which is allowed but not reflected in the

traces. As we discussed in the case of Scarf, this is due to a fundamental challenge of dynamic

analysis.

80

Discussion

We analyzed the false positives and identify two major causes. First, our technique relies on

complete exploration of expected input domain over the application states, which is an inherent

challenge of dynamic analysis. We handle this challenge by carefully developing user simulators

and supplying meaningful parameters to explore the application as fully and deep as possible.

Still, some false positives are introduced due to missing links to expected input symbols. Second,

there may exist correlations or complex constraints (e.g., the database constraint in wackopicko)

within input parameters, which we do not capture when we construct input symbols from web

requests. The method used by NoTamper [6] in identifying the constraints over parameters by

analyzing html pages could be a valuable complement to our technique.

Our prototype LogicScope can handle a large variety of web applications well, since it can

perform appropriate URL encoding/decoding, capture essential headers or values (e.g., cookies

and encrypted XSRF tokens) and embed them in the following web requests, in order not to

break the live web session. However, our technique cannot handle AJAX-heavy applications,

where web pages are dynamically updated. The logic flaws within traditional web applications

are still not well resolved.

81

CHAPTER VI

EXPLOITING WEB APPLICATIONS FOR LOGIC VULNERABILITIES OF
DATABASE ACCESS

In this chapter, we propose a source-code free approach, which focuses on identifying logic

flaws of database access within web applications. We leverage the EFSM model from SENTINEL

and infer the intended security constraints over SQL queries issued by the application by col-

lecting SQL queries, SQL responses and session variables. Then, we systematically exploit the

application by violating the inferred constraints through manipulating web requests. We imple-

ment a prototype system EXPELLER for PHP web applications and evaluate it using a set of

real world web applications.

The rest of the chapter is organized as follows. We first give the overview of our approach.

Then we give an illustrative example and present our system model. The details of our approach

and implementation are described in the following two sections. Finally, we conclude this chapter.

Overview

Chapter IV presents one of the first studies targeting the logic vulnerabilities of database

access. SENTINEL is a runtime detection system, which can identify malicious SQL queries

issued by the web application. While shown to be effective in preventing malicious SQL queries

from accessing the database, this detection approach has several limitations. First, it incurs a

non-negligible performance overhead for database access at runtime. Second, as a mitigation

mechanism, it does not address the root cause of the malicious SQL query emissions. Built

on top of SENTINEL, we aim at identifying the logic vulnerabilities of database access within

web applications. In particular, we generate test inputs to exploit the potentially vulnerable

application. If the exploit is successful, the concrete attack vectors can greatly help the developers

pinpoint and fix the logic vulnerabilities within the web application.

We first identify the intended security constraints for each sensitive operation within the

application by observing the interactions between the application and the user, as well as the

database. Specifically, we collect the external information of a web application, including web

requests, SQL queries/responses and session variables and organize them into web interaction

82

samples due to the stateless feature of HTTP. Sensitive operations are identified through SQL

signature construction based on collected SQL queries. The intended constraints of sensitive

operations are inferred by extracting the set of invariants that hold true over all the interaction

samples collected for each SQL signature. We model a web application as an Extended Finite

State Machine (EFSM) and regard both the web requests and the SQL responses returned by

the database as the inputs to the application. Thus, not only do we examine the relationship

between the SQL queries and the web requests, but we also explore the constraints that might

persist in the database through analyzing SQL responses.

To exploit the web application for logic vulnerabilities, we try to violate the inferred con-

straints for each SQL signature and examine whether the desired SQL queries can still be trig-

gered. To maximize the possibility of target SQL query emission, we leverage the collected HTTP

interaction samples where the queries are emitted during the training phase. We only manip-

ulate selected input fields (within web requests and session variables) of the samples to violate

different types of constraints, while keeping the rest of the inputs the same, and replay them to

the application. If the SQL signature being tested is observed during the test interaction, we

report a SQL violation emission instance, which indicates a potential logic vulnerability. Finally,

we manually analyze those instances and confirm real logic vulnerabilities.

Problem Description

Illustrative Example

Fig. VI.1 shows an example application SimpleOAK, which is used to illustrate the logic vul-

nerabilities we address in this chapter and demonstrate our approach throughout this chapter.

This application uses two session variables $ SESSION[‘role’] and $ SESSION[‘userid’] to remem-

ber the current user’s privilege and identity. SimpleOAK is intended to work as follows when

a user follows its navigation paths. The user is first presented with the login.php page. After

the user inputs the correct login credentials, the application will redirect him to the user.php

page (for the student role) or the admin.php page (for the professor role), depending on the role

information (i.e., $ SESSION[‘role’]) retrieved from the database. The admin.php page shows all

83

the students’ registrations to the professor via issuing Query5 and allows the professor to modify

their grades accordingly via issuing Query6. The user.php page shows the current student’s

registrations and grades, as well as the syllabus links for registered courses via issuing Query2.

The student is able to view and modify his own registrations through the course.php page via

issuing Query7, Query8 and Query9.

SimpleOAK contains several logic vulnerabilities. First, the application fails to enforce the

session state constraints for SQL queries, which manifest as two cases.

Case 1: A guest user can directly access a student’s information by triggering Query2 in

user.php, since the user.php page does not check if the current user has logged in as a student

(i.e., if $ SESSION[‘role’] == ‘student’).

Case 2: Although a guest user or a student cannot directly access the professor’s page due to

the security check in admin.php (i.e., if $ SESSION[‘role’] == ‘professor’), the redirection fails

to stop the program execution, which still allows the attacker to trigger Query5 and Query6.

For instance, Query6 can be triggered on the attacker’s behalf to modify the students’ grades in

the database. This flaw is also referred to as an Execution After Redirection (EAR) vulnerability

[23].

Second, the application fails to enforce the query parameter constraints associated with SQL

queries, which allows the attacker to issue malicious SQL queries by manipulating SQL query

parameters.

Case 3: A student is able to view/change another student’s registrations.

• View registration: the user.php page fails to check the constraint: $ GET[‘userid’] ==

$ SESSION[‘userid’] associated with Query2.

• Register a course: the course.php page fails to check the constraint: $ POST[‘userid’] ==

$ SESSION[‘userid’] associated with Query7.

• Unregister a course: the course.php page fails to check if the user id field in the affected

row of registration table is equal to the session variable $ SESSION[‘userid’], when issuing

Query8.

Case 4: A student can view the syllabus of a course for which they have not registered,

by manipulating the course id parameter in Query9. The course.php page fails to check the

84

course.php

<? php

if ($_SESSION[‘role’] != “student”) {

die(“You are not authorized!”);
}

if (isset($_POST[‘course_id’]) && $_POST[‘action’] ==

“Register”) {

$Query7 = mysql_query(“INSERT INTO registration

(student_id, course_id) VALUES (”.$_POST[‘user_id’] . “, ” .

$_POST[‘course_id’]. “);”);

} else if (isset($_POST[‘register_id’]) && $_POST[‘action’] ==

“Unregister”) {

$Query8 = mysql_query(“DELETE FROM registration

WHERE id=” . $_POST[‘register_id’]. “;”);

} else if (isset($_GET[‘course_id’])){

$Query9 = mysql_query(“SELECT * FROM Course

WHERE id =” . $_GET[‘course_id’]. “;”);

print_course_syllabus($Query7);

} ?>

admin.php

<?php

if ($_SESSION[‘role’] != “professor”) {

header(‘login.php’);
}

if (isset($_GET[‘userid’])){

$Query4 = mysql_query(“SELECT * FROM user WHERE

user_id = ” $_GET[‘userid’] . “;”);

print_admin_info($Query4);
$Query5 = mysql_query("SELECT * FROM registration;");

print(“<table><tr><td>Name</td><td>Course</td><td>Grade</t

d></tr>”);

while ($row = mysql_fetch_assoc($Query3)) {

print(“<tr><td>” . getUserName($row[‘user_id’]) .
“</td><td>” . getCourseName($row[‘course_id’]) .

“</td><td><form method=\“post\”

action=\“course.php\”>” .

“<input type=\“hidden\” name=\“register_id\” value=” .

$row[‘id’] . “>” .
“<textarea name=\“grade\”>” . $row[‘grade’] .

“</textarea>” .

“<input type=\“submit\” name=\“action\”

value=\“Modify\”></form></td><tr>”);

}
} else if (isset($_POST[‘register_id’]) && isset($_POST[‘grade’])

&& $_POST[‘action’] == “Modify”) {

$Query6 = mysql_query(“UPDATE registration SET grade=”

. $_POST[‘grade’] . “WHERE id= ” . $_POST[‘register_id’] . “;”);

} ?>

login.php

<?php

$uname =$_POST[‘uname’];

$pwd =$_POST[‘pwd’];
if (isset($uname) & isset($pwd)) {

$Query0 = mysql_query(“SELECT id FROM users WHERE

login=” . $uname . “ AND pwd=”.$pwd. “;”);

if ($Query0) {

$_SESSION[‘userid’] = get_id($Query0);
$Query1= mysql_query(“SELECT * FROM user WHERE

user_id = ” $_GET[‘userid’] . “;”);

$_SESSION[‘role’] = get_role($Query1);

if ($_SESSION[‘role’] == “professor”) {

header(“Location: admin.php?userid=” .
$_SESSION[‘userid’]);

} else if ($_SESSION[‘role’] == “student”) {

header(“Location: user.php?userid=” .

$_SESSION[‘userid’]);

}
} else {

die(“Wrong username or password!”);

}

}
return_login_form();?>

user.php

<? php

if (isset($_GET[‘userid’])){

$Query2 = mysql_query(“SELECT * FROM registration

WHERE user_id=”. $_GET[‘userid’]. “;”);

print(“<table><tr><td>Course</td><td>Grade</td><td>Syllabus</t

d><td>Unregister</td></tr>”);

while ($row = mysql_fetch_assoc($Query2)){
print(“<tr><td>”. getCourseName($row[‘course_id’]).

“</td><td>” . $row[‘grade’].

“</td><td><a href=\“./course.php?course_id=” .

$row[‘course_id’]. “\”>link” .

“</td><td><form method=\“post\”
action=\“course.php\”>” .

“<input type=\“hidden\” name=\“register_id\” value=”

. $row[‘id’] . “>” .

“<input type=\“submit\” name=\“action\”

value=\“Unregister\”></form></td></tr>”); }
$Query3 = mysql_query(“SELECT * FROM course

WHERE course.id NOT IN (SELECT course_id FROM

registration WHERE user_id=“ . $_GET[‘userid’]. ”)”);

print(“<table><tr><td>Course</td><td>Register</td></tr>”);

while ($row = mysql_fetch_assoc($Query3)){
print (“<tr><td>”. $row[‘name’]. “</td><td><form

method=\“post\” action=\“course.php\”>” .

“<input type=\“hidden\” name=\“course_id\” value=” .

$row[‘id’]. “>” .

“<input type =\“hidden\” name=\“user_id\” value=” .
$_GET[‘userid’] . “>” .

“<input type=\“submit\” name=\“action\”

value=\“Register\”></form></td></tr>”);

}

} ?>

id name syllabus

1 algebra “difficult”

2 web programming “easy”

id login pwd role

2 john 1234 student

1 larry admin professor

3 howard helloworld student

id user_id course_id grade

1 1 2 95

2 1 1 85

3 2 1 68

Table: course
Table: user

Table: registration

Figure VI.1: Example Application: SimpleOAK

85

correlation between the student and the course, which exists within registration table (i.e., the

directed lines in Fig. VI.1).

To date, there is no automated mechanism that can help developers identify all the above

security flaws. Developers have to pay extra attention and manually place appropriate checks

during development and code auditing.

System Model

We model a web application as an extended finite state machine (EFSM) [28], denoted as M .

A web application M , as shown in Fig.VI.2, is defined as a seven-tuple: M = (S, V, I, O, P, U, T).

• S denotes the finite set of application states. A web application maintains its state using

both session variables (e.g., $ SESSION[‘userid’])

• V denotes the set of context variables during current execution, which include both global

variables and local variables in scope (e.g., $ POST[‘uname’] in login.php).

• I is the set of input symbols, which include users’ web requests (e.g., GET:user.php?userid=3)

and SQL responses (e.g., $Query0, which contains the response of Query0) returned by the

database. Note that the database holds a large amount of information that may affect the

application’s behavior. The sheer volume of data makes it extremely hard to incorporate as

application state directly. We observe that information that comes from persistent objects

can only be used by the application after it is retrieved from the database in the form of

SQL responses. Thus we model the database state information though the SQL responses

as inputs to the application.

• O is the set of output symbols, which include web responses sent to users and SQL queries

issued to the database (e.g., Query1).

• P : V → {true, false} is the set of trigger functions evaluated over context variables. Only

when specific trigger functions are evaluated to be true, can state transitions be enabled

and output symbols emitted.

• U : V → V is the set of update functions, which update context variables (e.g., $ SES-

SION[‘userid’] = get id($Query0) in login.php) based on external input.

86

• T : S×I×P → S×O×U defines the state transitions. The web application first accepts the

external input and executes update functions. If the desired trigger functions over updated

variables are evaluated to be true, the application may transition to a new state and

emit the corresponding output symbols. For example, after SimpleOAK accepts the SQL

response of Query0 (i.e., $Query0) from the database, it will update context variables $ -

SESSION[‘role’] and $ SESSION[‘userid’]. Then, depending on the user role (i.e., professor

or student), the application will transition to a new state and return the corresponding

output symbols (header(“Location: admin.php”) or header(“Location: user.php”)) to the

user.

Database

Web Application
M

S (State)

V (Context)

I
User

O (SQL query)O (Web response)

I

(SQL
Response)

(Web
Request)

Figure VI.2: System Model

Problem Formulation

The application logic specifies that certain conditions need to be satisfied before sensitive op-

erations can be performed. We focus on identifying logic vulnerabilities of database access within

web applications in this chapter. Thus, we regard SQL queries issued by the web application as

sensitive operations, which are used for retrieving and manipulating sensitive information in the

database. From the above system model, we can see that in order for an SQL query (i.e., O)

to be issued, the application has to reside in a certain state, accept desired external input and

satisfy the trigger functions (i.e., S × I × P).

Thus the conditions to be satisfied for triggering SQL queries can be captured through con-

straints extracted over session variables (for state S) and context variables, whose values come

87

from the request parameters or the SQL responses (I). In particular, we identify two types

of constraints associated with SQL queries, i.e., session state constraint and query parameter

constraint. Session state constraint, represented solely by session variables, indicates the appli-

cation state, while query parameter constraint manifests the desired relationship between context

variables (since query parameters also belong to context variables).

Formally, let Φ(q) be the constraint that is intended to be satisfied before SQL query q ∈ O

is issued, which is built on a set of primitive constraints using boolean operators. Each primitive

constraint is represented as a predicate that is evaluated over one or several context variables

and returns either true or false. For instance, $ SESSION[‘role’] == “student” is a primitive

constraint. In SimpleOAK, the intended constraint for issuing Query3 in the user.php page is

Φ(Query3) = Φ1 ∧ Φ2 ∧ Φ3 consists of three primitive constraints. Φ1 is $ SESSION[‘userid’]

!= null and Φ2 is $ SESSION[‘role’] == “student”, which belong to session state constraint

and collectively indicate that a student logs into the application. Φ3 is $ GET[‘userid’] ==

$ SESSION [‘userid’], which belongs to the query parameter constraint and indicates the web

request parameter $ GET[‘userid’] that is propagated into the query as a query parameter has

to equal the current user ID.

The intended constraints are usually implemented as explicit security checks in the source

code or implicitly implied by the navigation paths offered to users. If the intended constraints

are not always enforced in the application implementation, logic vulnerabilities are introduced,

which allow sensitive operations to be performed under undesired circumstances. There are two

scenarios where such vulnerabilities can exist.

(1) Missing check: when users are assumed to follow the navigation paths provided by the

application, security checks may be missing on unexpected paths leading to sensitive operations.

Vulnerability examples include Case 1, 3 and 4 in SimpleOAK.

(2) Futile check: although security checks are placed before sensitive operations, they fail to

stop the attackers from triggering sensitive operations. Case 2 in SimpleOAK is one example of

this type.

All of the above logic vulnerabilities are rooted in the fact that the application fails to enforce

the intended constraints for sensitive operations completely and correctly. Formally, we say a

web application has logic vulnerabilities of database access, if there exists one SQL query q that

can still be issued by the application while its intended constraint is violated. Our objective is

88

to identify the existence of such logic vulnerabilities and demonstrate it using concrete malicious

inputs towards the web application.

Approach

High-level Overview

To identify logic vulnerabilities within a web application, we first infer the intended constraints

for each sensitive operation. The intended behavior of a web application can be captured through

observing its normal execution when users follow navigation paths offered by the application [63].

We refer to this step as the constraint inference phase. Then, we exploit the application by

constructing malicious inputs which violate the inferred constraints and examine whether the

sensitive operations can still be triggered. We refer to this step as the vulnerability exploitation

phase.

In the constraint inference phase, we first collect execution traces when users follow navigation

paths provided by the application. Then, we identify the set of sensitive operations from collected

SQL queries by constructing SQL signatures. We extract a set of invariants from execution traces

for each SQL signature as the intended constraints, including both session state constraints and

query parameter constraints.

In the vulnerability exploitation phase, we try to trigger the SQL queries being tested while

violating their intended constraints. In particular, to violate the session state constraints, we di-

rectly manipulate the session variables. Since SQL query parameters can not be directly changed

by a user, in order to violate the query parameter constraints, we need to manipulate the SQL

query parameters through the web request parameters. If the SQL query being tested can still

be issued, we report a violating SQL emission instance, which will be manually analyzed to con-

firm whether it manifests a real logic vulnerability. The overview of our approach is shown in

Figure VI.3.

89

SQL
responses

Session
Variables

Session State Manipulation
Query Parameter

Manipulation

Scenario Verification

Constraint
Inference

Vulnerability
Exploitation

SQL
queries

Request
Parameters

Equality
Constraints

Bounded
Constraints

Session State
Constraints

Web
Requests

Membership
Constraints

Propagation
Paths

SQL
Signatures

Query
Parameters

Interaction
Sample

Figure VI.3: Approach Overview

Trace Collection

The stateless nature of HTTP allows us to model the behavior of a web application through

independent sequences of web requests/responses. Specifically, we refer to the process starting

from the moment when the user sends a web request to the application to the moment when the

user receives the web response as one interaction. Figure VI.4 shows an example interaction.

Web request i
POST-login.php

$_POST[‘uname’]=“larry”;
$_POST[‘pwd’]=“admin”

Web response o

Interaction λ

Query1:
SELECT * FROM users

WHERE id =
$_SESSION[‘userid’];

Web App

Sissue

$_SESSION[‘userid’]=1
$_SESSION[‘role’]=

null;

Sentry

$_SESSION[‘userid’]=null
$_SESSION[‘role’]=

null;

Query0:
SELECT id FROM users

WHERE
login=$_POST[‘uname’]

AND
pwd=$_POST[‘pwd’];V: Context Variables,

e.g., $_POST[‘uname’]

|id| ; |1|

Figure VI.4: HTTP Interaction Example

90

We collect the set of interactions observed during normal executions when users follow navi-

gation paths as the application execution traces. We organize the traces into interaction samples.

Each sample includes four parts: a web request (including a request key and a set of request

parameters), the entry session state Sentry, a list of SQL queries and the corresponding issuing

session states Sissue and SQL responses.

We represent web requests using two parts: web request key and request parameters. The

web request key is defined as the combination of the HTTP method (here we only consider GET

and POST) and the URL path (in php, it is the script file name which the request points to).

An example web request key is GET-login.php. Web request parameters are essentially a vector

of key-value pairs.

Session variables are usually maintained by the web application to serve users across multiple

interactions. We represent the session state using a vector of session variable key-value pairs and

refer to it as session state vector. In particular, we refer to the value of the session state vector

when the application receives the web request as entry session state (denoted by Sentry).

During one interaction, one or more SQL queries can be issued to the database and corre-

sponding SQL responses are returned to the application. We refer to the session state vector

when each SQL query is issued as issuing session state (denoted by Sissue). Note that Sissue

can be different from Sentry, since the session variables may be updated by the application input

(including both web requests and SQL responses) during the interaction. For example, as shown

in Figure VI.4, a POST web request points to the login.php page in the example application,

when the user has not logged in (i.e., $ SESSION[‘userid’] is null). After the application verifies

the user’s credential by issuing Query0 to the database and checking the SQL response, session

variables are updated to remember that a user logs in (i.e., $ SESSION[‘userid’] is nonnull).

Then, the application issues Query1 to retrieve some configuration information for the user. We

can see for Query1 the issuing session state Sissue is different from the entry session state Sentry.

SQL Signature Construction

Each SQL query is composed of a skeleton structure, which is programmed in the source

code, and a set of query parameters, whose values are dynamically fed by the application at

runtime. To identify the SQL queries that correspond to the same sensitive operation from the

trace, we need to separate their skeleton structure from query parameters. In particular, we

91

replace the value of each query parameter with a place holder and get the skeleton structure

of each SQL query (e.g., SELECT * FROM registration WHERE user id = Token). Then, we

construct the SQL signature by combining the skeleton structure with the script file name, where

the query resides. For example, the SQL signature for Query1 is: “[user.php] [SELECT * FROM

registration WHERE user id = Token]”.

Constraint Inference

To infer the intended constraints for each SQL signature from execution traces, we first identify

all the interaction samples within which there exists at least one SQL query that matches the

SQL signature q. For each SQL signature, we identify two types of constraints, i.e., session

state constraint and query parameter constraint, which manifest as invariants extracted from the

collected interaction samples. Each type of the primitive constraint we infer here is a necessary

condition for issuing the corresponding SQL query q. As we described in SectionVII, the overall

constraint that needs to be satisfied for issuing query q is the conjunction of these primitive

constraints.

Session State Constraint

Session state constraint indicates the intended session state whenever the SQL query is issued.

Thus, we analyze the set of issuing session states Sissue for each SQL signature to infer session

state constraint. For example, whenever Query2 is issued, we observe that: $ SESSION[‘userid’]

is not null and $ SESSION[‘role’] is always equal to “student”. In particular, we extract two

types of constraints:

• Constraint 1.1 (Persistent Session Variable): A specific session variable is required to be

set (i.e., its value is not null).

For example, in SimpleOAK, when Query2 and Query3 are issued, both $ SESSION[‘role’]

and $ SESSION[‘userid’] are always set to indicate a user has logged in.

• Constraint 1.2 (Bounded Session Variable): The value of a specific session variable is

bounded to a finite set.

For example, in SimpleOAK, when Query2 and Query3 are issued, $ SESSION[‘role’] is always

equal to “student”, indicating the current user is a student, while when Query5 and Query6 are

92

issued, $ SESSION[‘role’] is always equal to “professor”, indicating only the professor can trigger

these two operations.

We note that session variables are usually correlated to each other. For example, when $ -

SESSION[‘role’] is set to a specific value, $ SESSION[‘userid’] is always set to a non-null value. To

capture this relationship between session variables, we use a vector of symbolic values of session

variables to represent session state constraints. To transform its concrete value to its symbolic

value, we first analyze each session variable over all its observed values and categorize it as

either a bounded variable or an unbounded variable based on one-sample Komoglov-Smirnov’s

D Statistics test (KS-test) [42]. If a session variable has a bounded value domain (e.g., $ -

SESSION[‘role’] only takes “professor” or “student”), its symbolic values are the same as the

concrete values. If the session variable has an unbounded value domain (e.g., $ SESSION[‘userid’]

can take infinite number of values), we use null and nonnull to represent its symbolic values. In

this way, we can represent the above two session state constraints using one symbolic session state

vector. For example, whenever Query2 and Query3 are issued, only one session state vector is

observed: {[session.userid = nonnull] [session.role = student]}.

Query Parameter Constraint

Query parameter constraint characterize the value domain of SQL query parameters and

the relationship between query parameters and context variables, whose values come from the

request parameters or the SQL responses, as well as session variables. Some constraints are

directly encoded within WHERE clauses of SQL queries and automatically enforced by the

database (e.g., WHERE course.id NOT IN in Query3). In addition, we analyze the observed

values of SQL query parameters and the relevant context variables to identify the following three

parameter constraints.

• Constraint 2.1 (Bounded Query Parameter): The value of a specific SQL query parameter

is bounded to a finite set.

This constraint indicates the value of the query parameter takes implicit semantics in the

application and should not be set to an arbitrary value that is beyond this set.

• Constraint 2.2 (Query Parameter Equality): The value of a specific query parameter is

always equal to the value of a session variable, when the SQL query is issued.

93

This constraint, which is extracted from the values of query parameters and issuing session

state Sissue, brings about the value-based relationship between SQL queries and the session state,

which cannot be captured by a finite set of symbolic session state vectors (as in Constraint 1.1 and

1.2). For example, in order to trigger Query2 and Query3 in SimpleOAK, the query parameter

$ GET[‘userid’] is intended to always reflect the current user id (i.e., $ SESSION[‘userid’]).

GET-user.php?userid=2

course.php?course_id=3;
course.php?course_id=4;
course.php?course_id=5;

Interaction 1
Web App

SELECT id FROM registrations WHERE
user_id = 2;

{|id| ; |3| ; |4| ; |5|}

GET-
course.php?course_id=3

SELECT * FROM course WHERE id = 3;

{|id||name||Syllabus| ;
|3||algebra||”Difficult”|}

Course Page

Interaction 2

Membership Constraint

Propagation Path

Figure VI.5: Query Parameter Membership Constraint

We observe that the constraints may also be embedded within SQL queries issued from

previous interaction, since the application assumes users follow navigation paths (e.g., clicking

links or submitting forms within the web response), through which the information as well as the

constraint from previous interaction can be passed along to next interaction. For example, as

shown in Figure VI.5, SimpleOAK first retrieves all the registered courses (at least the course id)

for one student via Query2. Then, the student can view the syllabus of a course by clicking one

of the course links, which will trigger Query9. Thus, the query parameter course id in Query9

always satisfies the constraint (i.e., WHERE clause) in Query2, which indicates that the student

can only view the syllabus of registered courses.

Such constraints between two subsequential SQL queries can be observed through the rela-

tionship between the data object within SQL response of the first query and the parameters

94

in the second SQL query, as the results returned by the SQL response always satisfy the con-

straints associated with the SQL query. Thus we infer the following constraint by analyzing

query parameters and the list of SQL responses observed within previous interaction.

• Constraint 2.3 (Query Parameter Membership): The value of a specific query parameter

always comes from an SQL response returned by the database within the previous interac-

tion.

This constraint captures the requirements over query parameters intended by the applica-

tion, which are implied by navigation paths. Several examples in SimpleOAK include: a) the

parameter id in the signature (admin.php, UPDATE registration SET grade = Token1 WHERE

id = Token2) always comes from the response variable id returned for the signature (admin.php,

SELECT * FROM registration), since the UPDATE query always performs over one of the ob-

jects returned by the SELECT statement; b) the parameter id in (course.php, DELETE FROM

registration WHERE id = Token) always comes from the response variable id returned for the

signature (user.php, SELECT * FROM registration WHERE user id = Token).

To infer this constraint, we attach every interaction sample with the interaction that precedes

it, which contains a list of SQL query-response pairs. Then, we compare the value of each

query parameter with the SQL response values from the previous interaction. If the value of

query parameter always belongs to the value set of a specific response variable for all interaction

samples, we identify it as a constraint.

Vulnerability Exploitation

The existence of logic vulnerabilities can be identified if we are able to construct a sequence

of web requests so that some SQL queries can be issued while their intended constraints are

violated. First, we need to reconstruct an execution scenario, when the SQL query can be possibly

triggered. Second, we need to manipulate the execution scenario to violate the constraints under

test and replay it to see whether the desired SQL query can still be issued. If so, we report that

there exists a violating SQL emission instance, which indicates a potential logic flaw.

The reconstruction of the execution scenario can be nontrivial, since a random sequence

of inputs has a very low chance of triggering the desired SQL query. Here we leverage the

interaction samples collected for the desired SQL query for scenario reconstruction. Due to the

95

stateless feature of HTTP, each interaction sample is able to reproduce the desired SQL query if

it is replayed by setting the application state to be the same as the entry session state and feeding

the web request to the application. Directly setting the application session state is equivalent

to feeding a sequence of web requests to drive the application into the desired session state. To

identify the candidate sample for replay, we randomly select one sample from the set which shares

the same request key, since the web request key marks the entry point of the application.

Manipulation of the execution scenario to violate the constraint under test also requires careful

selection of parameter values, because a randomly generated value might be trivially rejected by

the application. For example, we cannot feed a string value when the application is expecting

a number value. We capture the legitimate value domains for the parameters appearing in the

constraints based on their values from the trace samples and randomly select a value from its

domain as test inputs. In the following, we illustrate how we manipulate the selected interaction

sample to violate session state constraints and query parameter constraints, respectively.

Session State Manipulation

Violating the session state constraints requires the manipulation of the issuing state variables

Sissue, which can not be done directly by users during program execution. We notice that Sissue

is actually derived from Sentry. Thus, it is possible that we violate the constraints over Sissue

by manipulating Sentry, which can be manipulated by users through an appropriate sequence of

web requests. We perform session state manipulation as follows.

First, we collect the set of entry session state vectors observed in the traces, which we refer to

as the reachable entry state set (denoted by Πreachable). This set represents all the possible entry

session states for all the interactions. As each reachable entry state Sentry can be acquired by

feeding the corresponding sequence of web requests to the application during the trace collection

phase, in the testing phase we directly set its values of session variables based on selected samples

for simplicity.

Second, we identify the set of leading entry state set, which are observed to lead to Sissue

during the execution (denoted by Πleading(Sissue)). Then we generate the testing entry state set

for Sissue (denoted by Πtesting(Sissue)), so that every testing session state vector falls beyond

Πleading(Sissue) (i.e., ∀Stesting ∈ Πtesting(Sissue), Stesting ∈ (Πreachable −Πleading(Sissue))). Our

intuition is that Stesting will probably not lead to Sissue, so that the constraints over Sissue

96

are violated. It is important to note that whether the session constraints over Sissue have been

violated needs to be further verified, which will be described in Scenario Verification.

Finally, we have to instantiate each testing session state vector into concrete values of session

variables. We randomly pick a set of session variables, whose symbolized session state vector

matches the testing one. We set the session state of the application and feed the original web re-

quest. For example, Sissue for the SQL signature generated from Query5 is always [session.userid

= nonnull] [session.role = professor]. Thus, we identify two testing session state vectors: [ses-

sion.userid = nonnull] [session.role = student] and [session.userid=null] [session.role=null] for

testing the session state constraints associated with that SQL signature.

Query Parameter Manipulation

To violate the query parameter constraints, we need to manipulate the values of query pa-

rameters. However, there is no direct way to control SQL query parameters. We notice that

the values of SQL query parameters are usually propagated from web request parameters. For

example, as shown in Figure VI.5 the request parameter $ GET[‘course id’] is propagated to the

query parameter id in Query9. Thus, we can violate query parameter constraints by manipulat-

ing web request parameters. Similar to how we extract Query Parameter Equality constraint, we

analyze the collected interaction samples to identify parameter propagation paths.

• Parameter Propagation Path: The value of a specific query parameter is always equal to a

specific web request parameter.

For the query parameters that do not have propagation paths from web requests, we do not

violate their associated constraints. For query parameters with propagation paths, we manipulate

the corresponding web request parameters, while keeping the web request syntax and the entry

session state as the same as the interaction sample.

To violate Constraint 2.1, we generate a random value that falls beyond the finite value

domain of the bounded parameter. For example, we observe that the query parameter user id in

Query4 is bounded to 1. We can set the request parameter $ GET[‘userid’] sent to the admin.php

page to fall beyond the value set.

To violate Constraint 2.2, we change the value of the web request parameter to be different

from the session variable, whose value is intended to be the same as the query parameter. For

97

example, one constraint we infer for the SQL signature of Query2 in user.php page is: $ -

GET[‘userid’] is always equal to $ SESSION[‘userid’]. If the current value of $ SESSION[‘userid’]

is 3, we change the value of $ GET[‘userid’] to be a different number.

To violate Constraint 2.3, we need to control two interactions. We first replay the preced-

ing interaction, collect the SQL responses within this interaction, then change the web request

parameter to fall beyond the set of values of the response variable, whose value is supposed to

contain the query parameter. For example, as shown in Figure VI.5, if the values returned by

Query2 includes 3, 4 and 5, we set the value of the web request parameter course id to fall

beyond the set.

We notice that the single random value might not be sufficient for exposing the logic flaws

due to the persistent information in the database. For example, when the testing web request

tries to add a new user into the application, whose id already exists in the database, the INSERT

query will not be triggered. On the other hand, when the testing web request tries to delete

a user, whose id does not exist in the database, it will also fail to trigger the DELETE query.

Thus, to increase the exposure of logic flaws, we generate two concrete values for each request

parameter that we manipulate. One value is from the set of observed values in the traces; the

other is randomly generated to fall beyond the observed set and have the same type (e.g., integer

or string).

Scenario Verification

After we replay the manipulated interaction sample to the application, we need to verify

whether the execution scenario exposes potential logic vulnerabilities within the application. We

need to examine if the SQL query, whose SQL signature is under test, is issued by the application

and confirm the intended constraints are actually violated through our manipulation. To do so,

we collect the set of SQL queries within the replayed interactions and construct SQL signatures

for each SQL query to match the one under test. If two SQL signatures match, we need to further

verify the validity of the manipulation depending on the type of the constraints being violated.

If it is a violation of query parameter constraints, we directly report a violating SQL emission

instance, since the manipulated parameter values violate query parameter constraints.

If it is a violation of session state constraints, we have to check whether the constraints

over the issuing states are actually violated when the query is issued because our manipulation

98

is performed over the entry session state and not directly over the issuing session state. For

example, when we set the entry state to match the testing session state vector [session.userid =

nonnull] [session.role = student] and send a web request with the request key GET-admin.php to

the application, Query4 is triggered while the intended constraints (i.e., the issuing session state

vector should be [session.userid = nonnull] [session.role = professor]) are violated. A violating

SQL emission instance is thus reported.

Finally, we manually analyze those reported instances and classify them into either real vio-

lations of intended constraints or false positives.

Implementation

We implement a prototype system called EXPELLER, as shown in Figure VII.6, for iden-

tifying logic vulnerabilities within PHP web applications. EXPELLER operates in two phases:

constraint inference and vulnerability exploitation, which are illustrated in details as follows.

Web Server

PHP Interpreter
(php-mysql)

Database

SQL
queries/

responses
Query
Sensor

Proxy
WebScarabUser/

Simulator

Web
Application

Session
Exporter/
Controller

Request
Sensor

Expeller

Testing
Engine

Web
Requests

Session
Info

Session
Info

Constraints

Request
Generator

SQL
Symbolizer

Constraint
Analyzer

Phase I:
constraint inference

Phase II:
vulnerability exploitation

Phase I workflow

Phase II workflow

Figure VI.6: Prototype System Architecture (EXPELLER)

99

Phase I: Constraint Inference

In the constraint inference phase, EXPELLER reconstitutes interactions by collecting the

external information during the normal executions of the web application, constructs SQL sig-

natures and infers intended constraints. To collect session variables, EXPELLER has a Session

Exporter module that is deployed on the web server, which can retrieve the set of session variables

indexed by the session id. To collect web requests, we leverage and deploy an open source proxy

WebScarab between the user and the application and extend it with a Request Sensor module,

which forwards the captured web requests to EXPELLER. Similarly, to collect SQL queries, we

embed the php-mysql module within the PHP interpreter with a Query Sensor module, which

delivers the observed SQL queries to EXPELLER. To associate the SQL queries with the corre-

sponding web requests and the issuing session states, both the Request Sensor module and the

Query Sensor module communicate with the Session Controller module to retrieve the set of

session variables at the moment when the web request is received and the moment when the SQL

query is issued, and send the session information to EXPELLER.

After sufficient traces are collected, SQL queries are first fed into the SQL Symbolizer module

for constructing SQL signatures. Then, all the traces, indexed by SQL signatures, are sent to

the Constraint Analyzer module, where they are symbolized and the intended constraints are

extracted using an invariant inference engine developed by us.

Phase II: Vulnerability Exploitation

In the vulnerability exploitation phase, EXPELLER is responsible for constructing exploit

inputs based on inferred constraints, driving the web application with these inputs and reporting

potential logic vulnerabilities.

The Testing Engine module takes the charge of the entire exploitation procedure. Recall that

we employ two methods to construct exploit inputs based on the violation of session constraints

and parameter constraints respectively. To violate session constraints, the Testing Engine ma-

nipulates the values of session variables through Session Controller, which is co-located with

the Session Exporter at the web server. Then, the Testing Engine instructs the Request Gen-

erator module to replay the corresponding web request to the application. Similarly, to violate

parameter constraints, the Testing Engine instructs Request Generator to reconstruct the web

100

requests with manipulated parameter values. During each interaction, the Query Sensor module

deployed within the PHP interpreter collects the set of SQL queries issued by the application

and sends them back to Testing Engine for scenario verification so that potential logic flaws can

be identified.

It is worth noting that our approach is independent of the application source code. Among all

the components of EXPELLER, only the Query Sensor and the Session Exporter/Controller have

to be deployed at the web server and co-located with the web application. Other components can

be deployed as web services, which are independent from the web application. This deployment

feature allows EXPELLER to be easily customized for other platforms (e.g., JSP), as long as the

Query Sensor and the Session Exporter/Controller are appropriately implemented and deployed.

Evaluation

We select a set of real world PHP web applications to evaluate our prototype system EX-

PELLER. We deploy all the web applications on a 2.13GHz Core 2 Linux server with 2GB RAM,

running Ubuntu 10.10, Apache web server (version 2.2.16) and PHP (version 5.3.3). To facili-

tate constraint inference, we develop a user simulator for each application, which automates the

procedure of operating the web application and emulates the interactions between users and the

web application when users follow the navigation paths of the application. We refer the reader

to Chapter III for more details of user simulators.

Experiment Results

In the constraint inference phase, EXPELLER first runs to collect traces. We run the user

simulators long enough until the number of constraints stabilizes. Then, EXPELLER constructs

SQL signatures and infers constraints from collected traces. Table VII.2 shows the statistics

of constraint inference for each application, including the number of PHP files, collected SQL

queries, web requests, SQL signatures, request keys, observed symbolic session state vectors, the

constraints of each type, as well as the propagation paths identified from traces. In particular,

we report the sum of session state vectors observed for different SQL signatures as the number

of session state constraints (i.e., Constraint 1.1 & 1.2).

101

In the vulnerability exploitation phase, EXPELLER manipulates the selected interaction

samples by violating each type of constraints. In particular, EXPELLER generates four types of

exploit inputs: (1) Test1: violating session state constraints; (2) Test2: violating Constraint 2.1

(Bounded Query Parameter); (3) Test3: violating Constraint 2.2 (Query Parameter Equality); (4)

Test4: violating Constraint 2.3 (Query Parameter Membership). EXPELLER feeds the exploit

inputs into the application one by one and flags those which trigger a matching SQL query (i.e.,

indicating the existence of a potential logic flaw). Then, all the flagged exploits will be manually

analyzed and categorized into either real violations or false positives.

Table VI.2 shows the summary of testing results, including the number of tests of each type,

flagged exploits, false positives, as well as vulnerable files and logic flaws identified from each

application. Note that the number of vulnerable files is computed by grouping violating SQL

signatures based on their script file names and the number of logic flaws is determined through

manual analysis of the source of those violations. One logic flaw may result in a number of

vulnerable files and SQL query violations. This is because one faulty security check function in

one source file may be included in a number of places. As a result, the vulnerability will manifest

through multiple SQL query violations within different vulnerable files. EXPELLER’s capability

in locating the vulnerable files can greatly help developers pinpoint and fix the vulnerabilities

within the web application.

In summary, EXPELLER identifies 9 logic flaws and 2 of them (marked in parenthesis) are

previously unknown from published sources. In what follows, we explain the details of the exploits

and logic flaws we identify for each application.

Table VI.1: Summary of Constraint Inference (Evaluation of EXPELLER)
Application PHP

files
SQL
queries

SQL
Sig.

Web
req.

Req.
keys

Session
vec-
tors

Const
1.1 &
1.2

Const
2.1

Const
2.2

Const
2.3

Prop.
paths

Scarf 21 26378 78 1746 20 3 125 32 7 17 38

Wackopicko 52 7547 53 1822 28 2 63 3 26 39 18

EventsLister 37 1151 22 1202 24 2 23 5 1 0 28

Bloggit 24 9029 37 2999 18 2 45 4 0 15 34

minibloggie 11 1342 13 566 8 2 16 0 6 8 7

Scarf. It is intended that only the admin user can perform certain sensitive operations,

including modifying the application configuration and all the users’ information through the

102

Table VI.2: Summary of Testing Results (Evaluation of EXPELLER)
Application Test1 Flag FP Test2 Flag FP Test3 Flag FP Test4 Flag FP Vuln.

file
Logic
flaw

Scarf 142 50 35* 0 0 0 0 0 0 6 6 1 1 1

Wackopicko 49 0 0 1 1 0 2 2 0 4 4 1 3 3

EventsLister 26 18 0 2 2 0 0 0 0 0 0 0 8 3
(2)

Bloggit 30 24 0 0 0 0 0 0 0 14 14 0 12 1

minibloggie 15 1 0 0 0 0 0 0 0 2 0 0 1 1

Summary 262 93 35* 3 3 0 2 2 0 26 24 2 25 9

generaloptions.php page. EXPELLER identifies the known authentication bypass vulnerability

within the generaloptions.php page, where the require admin() function for checking the con-

straint: $ SESSION[‘privilege’] == “admin” is missing. This vulnerability allows attackers to

issue all of the sensitive SQL queries towards the database through crafted web requests.

We notice that EXPELLER introduces a number of false positives (marked with *) in Test1,

which we will explain in detail in Section VII. EXPELLER also introduces one false positive in

Test4, where it takes the observation that the parameter paper order comes from the value set of

userid from the previous interaction as a membership constraint by mistake. This false positive

is introduced because the paper order parameter and the userid parameter share the same value

domain which is populated with natural numbers (e.g.,1,2,...), and our trace collection phase

does not supply enough samples to differentiate these two parameters.

Wackopicko. EXPELLER identifies three logic flaws within Wackopicko. The first one exists

in the users/sample.php page, where the userid parameter is fixed to be 1 as part of a static link.

However, this page fails to check this constraint (2.1) before the SQL query is issued to retrieve

the user information. This allows attackers to view any users’ information by manipulating

the userid parameter. The second flaw resides in the users/view.php page, which expects the

userid parameter to be the same as the current user id (i.e., $ SESSION[‘userid’]). However,

this page fails to check this constraint (2.2) and allows the attacker to access unauthorized user

information. The third flaw occurs in the highquality.php page, which retrieves information for

pictures that are purchased by the user. This constraint is implied through the navigation paths,

which requires the user to visit the purchased.php page first to retrieve the set of purchased

pictures. However, the highquality.php page does not check this constraint (2.3) when issuing

SQL queries to the database, which allows the attacker to manipulate the pic id parameter sent to

the highquality.php page to view the pictures that are not purchased. EXPELLER introduces one

103

false positive in Test4. In add comment.php file, EXPELLER infers one parameter propagation

path from the POST parameter picid to the query parameter comments.picture id. Despite of

such an equality relationship, the value of comments.picture id does not come from the POST

parameter picid. It is actually directly retrieved from the database, and thus cannot be tampered

with by changing the request parameter.

EventsLister. EXPELLER identifies three logic flaws within the application. The first is a

known vulnerability (CVE-2009-3168). We refer the reader to Chapter V for vulnerability de-

tails. The second one is an Execution After Redirection vulnerability. Although the checkUser()

function is included in a number of script files before issuing SQL queries, it fails to stop the

application execution after redirecting the users to the login page. To the best of our knowledge,

this is a previously unknown vulnerability, which allows attackers to perform all administrative

functions, including adding, deleting events and users and more. The third one is also a unknown

vulnerability, which allows attackers to tamper with the parameter “ampm” to carry an arbitrary

value and store the value in the database. This parameter is intended to only take either string

“am” or “pm”. However, the update.php page fails to check this Bounded Query Parameter

constraint before issuing the query to the database. This vulnerability can serve as a launch pad

for further exploits, since the tampered value will be returned within the web responses later.

Bloggit. EXPELLER identifies the known Execution After Redirection vulnerability (CVE-

2006-7014) successfully. We refer the reader to Chapter V for vulnerability details.

Minibloggie is a simple blog application, which only allows the admin user to add/edit/delete

posts. It has a known logic vulnerability (CVE-2008-6650), which allows the attacker to delete

any posts without logging in, since the del.php page misses the verifyUser() function for security

checking.

EXPELLER identifies the above vulnerability, by crafting a POST web request with an

arbitrary post id parameter to trigger the deletion of any posts. EXPELLER generates two test

cases in Test4 for trying to edit the posts that are not authored by the current user. Minibloggie

successfully identifies such malicious inputs by checking the authorship of posts before issuing

UPDATE queries.

104

Discussion

Our approach makes two assumptions: 1) the intended application behavior is fully reflected

when users follow the navigation paths; and 2) SQL queries are all sensitive operations. In

practice, these two assumptions may not always hold. As a result, the inferred constraints

may not accurately reflect the intended security requirements of the application, causing some

ambiguous results.

EXPELLER introduces 10 false positives in Test1 in the Scarf experiment, which are caused

by malformed navigation within the application. For example, the comment.php page is not

accessible by a guest user through navigation links. Thus, several test cases are generated for

guest users to forcefully browse this page and trigger queries within, which is actually allowed

by the application. It is arguable (and subjective) whether we should report this as a real

vulnerability or false positive. Similar cases occur within showsessions.php page and register.php

page.

The other 25 false positives, introduced by EXPELLER in Test1 in the Scarf experiment, are

caused by header file inclusion. The header.php and functions.php files, included in a number of

files, perform certain basic operations through SELECT queries, such as retrieving the conference

name. These queries are regarded as distinct sensitive operations when they are associated with

different files via SQL signature construction. However, the information these queries retrieve

from the database is non-sensitive and even accessible to a guest user. Thus, we classify them as

false positives. To determine what information is sensitive requires involving human knowledge.

105

CHAPTER VII

AUTOMATED BLACK-BOX DETECTION OF ACCESS CONTROL
VULNERABILITIES IN WEB APPLICATIONS

In this chapter, we present an automated black-box technique for the detection of access

control vulnerabilities within web applications. We introduce a virtual SQL query model to

accurately represent the database access operations that a web application can perform. Based

on this model, complex data relationship (i.e., first-order and second-order) between users and

accessed data entities are formulated and considered in the inference of access control policies.

This allows our approach to cover a broader range of vulnerabilities compared with existing

approaches. Our technique does not require application source code and server-side session

information and thus is independent of the application development languages and platforms.

We implement a prototype system BATMAN and evaluate it over a set of PHP and JSP web

applications. The experiment results demonstrate that our approach is effective, accurate and

applicable for applications developed in different languages. Our technique also provides detailed

evidences to facilitate the manual analysis and the fix of the identified flaws.

The rest of the chapter is organized as follows. We first give an overview of our approach.

Then we present our database access model and an illustrative example. The details of our

approach and implementation are described in the following two sections. Finally, we conclude

this chapter.

Overview

Access control vulnerabilities stem from the discrepancies between the intended access control

policy and the policy that is actually implemented within a web application. Observing the

fact that an application implementation usually comes without an explicit specification of the

access control policy, deriving the intended access control policy becomes the first critical step in

identifying access control vulnerabilities. This is a very challenging task especially for database-

backed web applications. First, access control policies are implemented jointly through the proper

definition of database access operations (e.g., SQL queries) and the data processing and filtering

functions within web applications. The policy enforcement may span multiple program blocks,

106

files or web interactions. Second, complex data relationship within the databases may complicate

the way how access control policies are manifested.

In this chapter, we present a black-box technique, which can accurately identify a broad

range of access control vulnerabilities, especially arising from complex data relationship. We

present a virtual SQL query model, which captures both the database access action (i.e., SQL

queries issued to the database) and the database access result (i.e., the actual information that is

presented to the user through web responses). We model the access control policy at two levels –

at the role level, as the mapping between roles and the virtual SQL queries; at the user level, as

the constraints over virtual SQL query parameters which characterize the relationship between

users and the data entities being accessed. Based on the observation that the access control

policy is usually correctly implemented under normal user navigation, we employ a crawler for

automatically exploring the application, observe its interactions with users and the database and

collect the execution traces for inferring the intended access control policy. Based on the inferred

policy, we generate test inputs to exploit the application for potential access control flaws.

Problem Description

Database Access Model

Web Applica�on

if ($_GET[‘act’]==“GetPosts”) {

$row=fetch_assoc(mysql_query(

“SELECT * FROM posts”));

print($row);

if ($row[‘tag’]==“user”){

echo(edit_link . $row[‘id’]);

}

manPost.php

SELECT * FROM posts;

| id | �me | tag | content |;

|10 | 0401 | user | I like Java |;

|11 | 0503 | user | Big day! |;

|12 | 0101 | admin | new year~ |;

GET-

manPost.php?act=GetPosts

0401
<td> I like Java </td>

<a href=manPost.php?

act=Edit&id=10>Edit
0503

<td> Big day! </td>
<a href=manPost.php?

act=Edit&id=11>Edit

0101</td>
<td> New year~ </td>

….

Database

User

database view

Web Request

SQL Query

Web Response

SQL Response

web view

0401

0503

0101

I like Java

Big day!

new year~

10

11

Figure VII.1: Example of Database Access via a Web Application

107

Figure VII.1 illustrates a typical scenario where a user accesses the information stored at the

back-end database through the front-end web application. In this scenario, a user’s data access

requests are carried in the web requests and processed by the web application. The application

first validates the user identity, then grants the user access privilege based on his role by issuing

the database access requests on the user’s behalf. Based on the results received from the database,

the application composes the web responses, which return the information to the user.

In this chapter, we focus on relational database due to its popular deployment. In a web

application, a user’s privilege to access a relational database is granted through the issuance of

SQL query, which specifies the operation and the set of data which the operation can be applied

to. In the relational data model, data is represented as a set of n-ary relations, where each n-ary

relation is an ordered set of attribute values. Visually, the basic data block can be represented

as a table, which we refer to as database view in the chapter. There are two types of operations

that can be applied:

MODIFY operation, which is performed through SQL queries, including INSERT, UPDATE

and DELETE statements. When a user performs a MODIFY operation, the operation immedi-

ately takes effect over the database view that is specified in the SQL query.

READ operation, which is achieved through SELECT statement. When a user performs a

READ operation, the SQL response is first processed at the web application which filters and

embeds the retrieved database view into the web response in the form of HTML. As a result,

the actual data observed by the user, which we refer to as web view, could be different from

the database view, since the application may only allow part of the information within the SQL

response to flow into the web response. As shown in Figure VII.1, the returned SQL response

(i.e., the database view) is structured as a table. Only selected relations of the table are used by

the application for composing the web response (i.e., the web view). In this case, the database

view specified in the original SQL query is not sufficient to model the user’s data access privilege.

The post-processing by the web application needs to be taken into account.

To establish a unified model to express the data access privilege for the above two operations,

we introduce virtual SQL query. For a MODIFY operation, the virtual SQL query is the same as

the original SQL query, as it directly captures the data access privilege. For a READ operation,

the virtual SQL query supplements the original SQL query with additional filters to capture the

108

post processing of the database view. The filters are constructed along two dimensions: column-

based filter, which selects the attributes from the database view, and row-based filter, which

selects the tuples from the database view. As shown in Figure VII.1, the application makes use

of the time, id and content attributes to construct the web response, which we refer to as the

column-based filter. Then two of the three rows of id values are used for composing the editing

links, which we refer to as the row-based filter. The column-based filter can be represented by

limiting the attributes in the SELECT statement (e.g., SELECT id FROM post) and the row-

based filter can be represented by enhancing the SELECT statement of the column-based filter

with WHERE clauses (e.g., SELECT id FROM post WHERE tag = ‘user’).

Formally, we represent a virtual SQL query using a skeleton structure and a set of query

parameters. The skeleton structure is programmed in the source code, while the values of the

parameters are dynamically fed by the application at runtime. For MODIFY operation, both

the skeleton structure and the set of query parameters are derived from its original SQL query.

For example, a virtual SQL query can be represented as: DELETE FROM user WHERE id =

[p1], where p1 represents the value of the query parameter. For READ operation, the skeleton

structure is composed of the skeleton structure of the original SQL query and the skeleton

structures of the SQL queries that represent the post-processing filters. The set of parameters

that are associated with both original SQL queries and the post-processing filter SQL queries

collectively constitute the set of parameters for the virtual SQL query. Now we formalize our

access control model as follows.

Database Access Operation: A database access operation represents the action performed

by the web application on a behalf of users for retrieving or modifying data in the database. We

model the database access operation through virtual SQL query. We use o ∈ O to denote the

skeleton of the virtual SQL query and Φ(o) to denote the set of parameters associated with o.

Role: A role r ∈ R represents a distinctive set of privileges. We assume the set of roles form

a lattice ordering relationship. A less privileged role should not be able to access the data which

are only allowed for more privileged roles.

User: A user u ∈ U represents a concrete principal with one specific role (denoted by r(u))

that interacts with the web application. Each user who is registered with the application is

identified through an entity defined in the database (e.g., a tuple in the user table). When a

user u triggers an operation, the parameters passed into the operation are linked to the user’s

109

identity in the database, which are represented as user-based constraints. In this way, the access

privileges of users under the same role can be differentiated.

Access Control (AC): The intended access control policy in a web application specifies the

set of privileges for each user. It consists of two levels: role level and user level. The role-level

access control policy is abstracted as the mapping from roles to the set of virtual SQL query

skeletons P : R → 2O, where P (r) represents the set of virtual SQL query skeletons that can

be triggered under role r. The user-level access control policy attaches user-based constraints to

each virtual SQL query skeleton that is accessible under r(u).

Access Control Vulnerability

include(“func�ons.php”);

if (! isAdmin()) {

header(“Loca�on:login.php”);

}

link(“listUser.php”);

displayAllUsersWithPosts();

manUser.php

include(“func�ons.php”);

if (! isLoggedIn()){

header(“Loca�on:login.php”);

exit();

}

if (isset($_GET[‘userid’)) {

getUserPosts($_GET[‘userid’]);

} else if isset($_GET[‘post_id’]) {

managePost($_GET[‘post_id’])

}

manPost.php

func�on isAdmin() {

if ($_SESSION[‘role’] ==

“admin”) return true;

else return false;

}

func�on isLoggedIn() {

if ($_SESSION[‘userid’] !=

null) return true;

else return false;

}

func ons.php

….

….displayAllUsers();

listUser.php

Figure VII.2: An Example Vulnerable Web Application

Access Control Vulnerability: A web application has an access control vulnerability if

either of the following scenarios occurs: (1)at the role level, there exists a skeleton o, which is

only allowed for role r, but can be triggered by a user with a less privileged role r′; (2)at the user

level, there exists a skeleton o allowed for r(u), which can be triggered by the user u while one

of the constraints associated with o is violated.

Figure VII.2 shows an example application to demonstrate the access control flaws we focus

on. It has three roles: guest user, regular user and admin user. ThemanUser.php and listUser.php

pages are only intended for admin users, since the manUser.php page places isAdmin() function

to check the user’s role and the link to listUser.php page is only shown in manUser.php page.

The manPost.php page is intended for regular users to manage their own posts. This example

application is specially crafted to contain several access control vulnerabilities that correspond to

110

the above two scenarios: (1) An attacker, as a guest user, can trigger administrative operations

within both manUser.php and listUser.php pages. The listUser.php page misses the isAdmin()

function for checking the user’s role, thus can be directly accessed without following the link.

Although the check function within the manUser.php page redirects unauthorized users, it does

not stop the application execution, so that the attacker’s request is still processed. This vul-

nerability is also referred to as Execution After Redirection (EAR) [23]. (2) An attacker, as a

regular user, can retrieve and modify any post created by other users. The manPost.php page

fails to check whether the request parameter $ GET[‘userid’] really represents the current user

when retrieving the posts for the user and whether the post with id $ GET[‘post id’] belongs to

the current user.

Approach

High-level Overview

Our approach consists of three major phases: Trace Collection, Policy Inference and Vulner-

ability Detection. To identify access control vulnerabilities in web applications, we first infer the

intended access control policy by observing the application normal execution where users follow

the navigation links (including submitting forms) provided by the web application.

In the Trace Collection phase, we leverage a web crawler to emulate the behaviors of different

users when they follow the navigation links. During crawling, we collect the web interactions

between the crawler and the application (i.e., HTTP requests and responses), as well as the

interactions between the application and the database (i.e., SQL queries and responses), as the

application’s execution traces. Figure VII.3 shows an overview of the trace structure. Each SQL

sample is retrieved from the traces by including a pair of SQL query and response, as well as the

web request and response in the interaction. In the Policy Inference phase, the collected traces

are grouped into different sample sets for inferring the intended access control policy at two levels:

role level and user level. In the Vulnerability Detection phase, test inputs are constructed based

on the inferred access control policy and fed into the application to generate a testing report

of identified potential access control flaws. Finally, we manually analyze the testing report to

111

confirm real vulnerabilities and false positives. Our approach regards the web application as a

black-box and does not require the application source code.

We elaborate Policy Inference and Vulnerability Detection in the next two sections and de-

scribe the implementation details of the crawler in SectionVII.

Role r2Role r1

Session

Session

User u1

Session

Session

User u2

Session

Session

User u3

Interac!on

Interac!on

Interac!on

….

Web request

SQL query

SQL response

Web response

….

….

SQL query

SQL response

Session Interac!on SQL sample

Web request

Web response

SQL response

SQL query

SQL sample

SQL sample

….

Retrieval

Figure VII.3: Trace Structure

Policy Inference

Role-level Policy Inference

At the role level, the access control policy is derived by identifying the set of virtual SQL

query skeletons that are triggered by different roles (i.e., P (r), r ∈ R). Since this skeleton can

be trivially constructed for the MODIFY operations from its original SQL queries, we focus on

deriving the post-processing filters for constructing virtual SQL skeleton for READ operations.

We first infer the column-based filters based on the database view presented in the SQL response

and the web view embedded in the web response (i.e. HTML), then infer the row-based filters

by leveraging the column-based filters.

112

Column-Based Filter Inference The key issue for inferring the column-based filter is to iden-

tify which attributes of the database view flow into the web response. There are two challenges

here. First, database view is represented in a table structure, while the web response retains a

tree-like DOM structure. Second, the columns in a database view can be represented through

their attribute names, while this attribute information is usually removed when the data is em-

bedded into the HTML page. Even worse, the data can be dispersed in the web page without

a fixed representation. This structural and textual level mismatch prevents simple syntax-based

filter construction. Thus we look for matching of the value domains between the data from

database views and web responses. This is performed in three steps, as shown in Figure VII.4.

First, we need to convert the data in HTML into a set of variables. We name these variables

as web variables and denote them as wv ∈ webResp, where webResp is a web response. In the

second step, we match these web variables to the columns in the database view. Finally, we

construct the column-based filter by choosing the columns that match web variables, which can

be merged.

| id | �me | tag | content |;

|10 | 0401 | user | I like Java |;

|11 | 0503 | user | Big day! |;

|12 | 0101 | admin| new year~ |;

0401
<td> I like Java </td>

Edit

0503
<td> Big day! </td>

Edit

Name Value
/html/body/div/b[1] 0401

/html/body/div/b[2] 0503

/html/body/div/b[1]/td[1] I like Java
/html/body/div/b[2]/td[1] Big day!

/html/body/div/b[1]/a[1]/manPost.php?id 10
/html/body/div/b[2]/a[1]/manPost.php?id 11

/html/body/div/b[1]/a[1]/manPost.php?act edit

/html/body/div/b[2]/a[1]/text Edit
/html/body/div/b[1]/a[1]/manPost.php?act edit

/html/body/div/b[2]/a[1]/text Edit

Name Values

id { 10, 11, 12}

�me {0401, 0503, 0101}

tag {user, user, admin}

content {I like Java, Big day!, new year~}

Web à Column
/html/body/div/b[1] à �me

/html/body/div/b[2] à�me

/html/body/div/b[1]/td[1] à content
/html/body/div/b[2]/td[1] à content

/html/body/div/b[1]/a[1]/manPost.php?idà id
/html/body/div/b[2]/a[1]/manPost.php?idà id

Column filter
/html/body/div/b à �me

/html/body/div/b/td à content

/html/body/div/b/a/manPost.php?idà id

Conversion

Matching

Merging

Figure VII.4: Column-based Filter Inference

113

HTML to variable conversion. To convert the data in HTML into a set of variables, we

first identify the locations within web responses where dynamic information usually flows into

(i.e. data sink). We observe that there are three types of data sinks: text shown to the user ;

parameters in URL links ; and form fields (including select options, hidden fields, etc.). Each

data sink is identified by the unique XPath leading to the sink from the DOM root. For the

parameters in URL links, we also append the URL link and the parameter name. The unique

XPath is constructed by appending the node along the general XPath (e.g., /html/body/div/b)

with a sequence number (e.g., /html/body/div/b[1]).

Web-to-attribute matching. First, we group the SQL samples based on their original SQL

query skeleton as well as their web request keys. The web request key is defined as the combination

of HTTP method and the request URL (e.g., GET-manPost.php). The reason for grouping by

web request key is that the post-processing is determined by the program block that is executed

when the application composes the web response, while the web request key specifies the entry

point of the execution. For convenience of presentation, we denote a column in the database view

using a variable sv ∈ sqlResp, where sqlResp is the database view carried in the SQL response.

Let V (v) represents the set of values of variable v. We identify a match between sv ∈ sqlResp

and wv ∈ webResp if and only if V (wv) ⊆ V (sv) holds for all sqlResp and webResp within the

same sample group. To compare two values, we employ approximate string matching since the

information from the database view can be manipulated by the application before it flows into

the web response. We denote the response propagation path from sv to wv as Presp : sv → wv.

Web variable merging. We examine the web variables under the same general XPath. If they

are matched with the same column, which means their values come from one single source, we

recognize the attribute that flows into the web response as a column-based filter. The column

filters in Figure VII.4 can be represented as: SELECT id, time, content FROM post.

Row-Based Filter Inference The row-based filter inference is performed in two steps. First,

for each column selected from the column-based filter, we identify the rows whose values actually

flow into the web response. Then, we observe the values of each attribute among the identified

rows. If the values keep consistent for a certain attribute, we recognize it as one row-based filter

and count the attribute as one operation parameter. In Figure VII.1, for the time and content

attributes, all the rows flow into the web response and no attribute exists, whose values keep

consistent. For the id attribute, the values of attribute tag keep consistent among the two rows

114

that flow into the web response. Thus, we identify the tag attribute as an additional operation

parameter and its value is “user”.

User-level Policy Inference

The role-level policy specifies the set of database access operations that can be performed by

all the users with the same role, while the user-level policy restricts the specific view the user is

authorized to access through constraints over the operation parameters. Note that the operation

parameters include the parameters from the original SQL queries and the parameters from the

post-processing filters (for READ operations).

First-Order Constraint To differentiate the views among users, the operation parameters

have to be linked with a user’s identity, which reflect the relationship between the user and

the view being accessed in the database. If the view being accessed is referenced by the user

identity directly (e.g., through the primary key in the user table), we say there exists First-Order

Relationship between the user and the view and the constraint on accessing this view is called

First-Order Constraint. For example, if the application issues a SQL query: SELECT * FROM

user WHERE id=5 to retrieve the information for the current user, the id parameter is subject

to the first-order constraint.

We infer the first-order constraint in two steps. For each user u with role r(u), let o ∈ P (r(u))

be a virtual SQL skeleton that is accessible based on the role-level access control policy and Φ(o)

be the set of parameters associated with o. First, we identify the operation parameters pv ⊆ Φ(o)

whose values are consistent for u. Then, from the consistent parameter set, we identify the

parameters that are unique to each user of the same role by filtering out those whose values

coincide across different users. In this way, the identified parameters are bounded to the user

and directly linked to the user’s identity.

Second-Order Constraint The operation parameters for accessing data may not always be

linked with the user’s identity directly. If the relationship between the data entity and the user’s

identity is reflected through foreign keys or a separate table, we say there exists Second-Order

Relationship between the user and the data entity. As shown in Figure VII.5(1), the post entity

is not directly linked with the user’s identity, rather through the author table.

115

if ($_GET[‘act’] == “DeleteAllPosts”) {

mysql_query(“SELECT post_id

FROM author WHERE user_id =”.

$SESSION[‘userid’];

return_confirma�on();

}

if ($_POST[‘act’] == “ConfirmDelete”)

{ for ($_POST as $id)

mysql_query (“DELETE FROM

post WHERE id = “ . $id);

}

manPost.php
SELECT post_id FROM author WHERE

user_id = 6;

{|id| ; |10| ; |11| ;}

GET-

manPost.php?act=Delete

AllPosts

<form ac�on=‘POST’>

<input type=‘hidden’ value=‘10’>

<input type=‘hidden’ value=‘11’>

<input type=‘submit’ name=‘act’

value=‘confirmDelete’> DELETE FROM post WHERE id = ‘10’

DELETE FROM post WHERE id = ‘11’
POST-

manPost.php?act=Confir

mDelete&

id=10&id=11

….

id name role

1 admin admin

5 alice user

6 bob user

Table: user

id me tag content

10 0401 user I like Java

11 0503 user Big day!

12 0101 admin new year~

Table: post

(1) Database Schema

(2) Second-Order Rela�onship Across Web Interac�ons

id post_id user_id

1 10 6

2 11 6

Table: author

3 12 5

Figure VII.5: Second-Order Relationship Example

116

To compare with the first-order constraint which is imposed over the parameters of the virtual

SQL query directly, the second-order constraint can be represented through a nested SQL query,

e.g., DELETE FROM post WHERE id IN (SELECT post id FROM author WHERE user id =

‘6’). Here the parameter id does not directly link to the user id, but is bounded to the database

view that is subject to first-order constraint. If the second-order constraint is implemented in

a nested SQL statement as the above example, it is reduced to a first-order constraint problem

where the indirect relationship is automatically enforced.

However, in a web application the second-order constraint is usually implemented through two

SQL statements within two web interactions, so that the users can be prompted with intermediate

results. As shown in Figure VII.5(2), the application first retrieves all the posts created by the

user, then the user can confirm the deletion. When this procedure is separated into more than

one interactions, the user may violate this constraint by manipulating the web requests between

interactions. As shown by dotted lines in Figure VII.5(2), this constraint actually reflects the

value propagation chain across web interactions: the results returned by a previous operation are

propagated through the web response, the web request parameters into a new operation. Since

this constraint is manifested across interactions, in order to infer it we need to look back for

previous web interactions. The number of web interactions we look back for depends on how

long this value propagation chain lasts. We observe that this chain is usually no longer than

three for most applications. Thus, we look back for two interactions in our inference.

We denote the operation in current interaction by ocur, the operation from preceding inter-

actions by opre and its result (i.e., SQL response) by Re(opre), the web (response) variables from

preceding interactions by webResppre and the web request parameters of current interaction by

webReqcur. We identify the second-order constraint if and only if the following rule holds for all

the samples in the group:

Second-Order Relationship Rule: (1) opre is a READ operation; (2) ∃v ∈ Φ(opre), v is subject

to first-order constraint, since the returned result set should be specific to each user; (3) there

exists a response propagation path from the SQL response to the web response in a preceding

interaction, i.e., ∃Presp : sv → wv, where sv ∈ Re(opre), wv ∈ webResppre; (4) there exists a

parameter propagation path from the web request to the operation in the current interaction

i.e., ∃Ppara : rv → pv, where rv ∈ webReqcur, pv ∈ Φ(ocur); (5) V (rv) ⊆ V (wv), which means

117

the request parameters come from the previous web response. The value propagation chain is

sv → wv → rv → pv.

Here the parameter propagation path Ppara : rv → pv, where rv ∈ webReqcur, pv ∈ Φ(ocur)

from web request parameters to virtual SQL query parameters can be inferred in a similar way

as how we infer column-based filters. We group the SQL samples by both virtual SQL query

skeleton and web request key, since each request URL has a set of predefined request parameters.

Within each sample group, we compare the values of web request parameters (webReq) against

those of operation parameters (i.e., Φ(o)). A parameter propagation path exists between a web

request and an operation if and only if the following rule holds for all the samples: ∃rv ∈ webReq

and ∃pv ∈ Φ(o) and V (rv) == V (pv).

Vulnerability Detection

Test Input Generation

We generate test inputs based on the inferred policy to check whether the policy is actually

enforced by the application. Each test input is designed to examine whether a specific database

access operation can be performed while the policy is violated. Concretely, two types of test

inputs are generated through differential analysis : (1) role-based test, which examines whether

a less privileged role can trigger a database access operation, which is only allowed for a more

privileged role; (2) user-based test, which examines whether a user can trigger a database access

operation with a parameter that is subject to the user-based constraint but takes a value that is

linked to another user’s identity.

To realistically emulate the attack inputs, our test inputs trigger the desired database access

operations through web requests, since end users (including attackers) cannot directly trigger the

database access operations. This can be nontrivial, since a random web request has a very low

chance of triggering the desired operation. To address this challenge, we leverage the samples

that are used for policy inference for constructing test inputs. For each test input, we select a

seed sample from each sample group and manipulate the contents of the sample.

Role-based Test. For each pair of roles (r1, r2 ∈ R, assuming r1 is less privileged than r2)

from the role set, we compare their sets of allowed virtual SQL query skeleton to identify the set

of privileged operations (denoted by Otest), which should not be allowed for the less privileged

118

role r1 (i.e., ∀o ∈ Otest, o ∈ P (r2), o 6∈ P (r1)). To test each privileged operation, we first select

a seed sample that is collected for users with role r2, within which the operation under test has

been triggered. Then, we change the user identity attached to the sample to be a user with role

r1, who should not be able to perform to this operation according to the inferred policy.

User-based Test. To test user-based constraints associated with the virtual SQL query skeleton,

test inputs are constructed to violate such constraints and fed into the application to examine

whether the operation can still be triggered. For test construction, we select a seed sample from

each sample group and manipulate the value of the web request parameter that has a parameter

propagation path leading to the operation parameter, which is subject to the constraint being

tested. Specifically, to violate the first-order constraint, we replace the parameter value with a

value that is observed for a different user with the same role. We note that first-order constraints,

which do not have parameter propagation paths from web request will not be tested, since their

parameters can not be manipulated from web requests. To violate the second-order constraints,

test inputs need to contain a sequence of web requests. Such a test input is constructed in two

steps. First, all the web requests, except the last one, from the sample are kept to trigger the

READ operation that returns the set of data entities that are bound to the user. Next, we

manipulate the parameter value of the last web request (i.e. test request) to fall outside of the

above set.

Test Input Evaluation

Before a test input is fed into the application, if the user attached to the test input is required

to log into the application, a login web request is first constructed with the user’s login credentials

and sent to the application to acquire the session cookie, so that subsequent web requests are

recognized as the same user. If the test input is aimed at testing a second-order constraint,

the sequence of web requests within the test input, except the test web request, are sent to

the application. At the same time, all of the SQL queries and responses are collected. The

READ operation that returns the set of data entities will be identified and the test request is

manipulated based on its operation results (i.e. web response). Then, the test web request is sent

to the application. After the web response is received, we check the sequence of SQL queries and

responses collected during this interaction to see whether the database access operation under

the test has been triggered. Especially, for a READ operation, we need to analyze whether the

119

information within the SQL response flows into the web response based on the filters. If the

operation under test is identified, we flag the test input as a violation. After all the test inputs

are evaluated, we manually analyze the reported violations and classify them as either a true or

false positive.

Implementation

We implement a prototype system called BATMAN. Its architecture is shown in Figure VII.6.

The crawler, web proxy and MySQL Proxy are adapted from open source projects and cooperate

with the Sync Portal for collecting traces. The enhancements we make with the crawler are

implemented in around 3000 lines of Java code. The Inference Engine and the Testing Engine

are developed by ourselves in around 4600 lines of Java code for policy inference and vulnerability

detection.

Database
(MySQL)

Web Applica!on

Crawler

HTTP

Requests/Res

ponses

Inference

Engine
SQL

Queries/

Responses

Tes!ng

Engine

MySQL

Proxy

Web

Proxy

Sync Portal

Tes�ng

Inference

Access

Control

policy

Tes!ng

report

App user

spec

Indexing

log

Figure VII.6: Prototype System Architecture (BATMAN)

Crawler

The crawler is built upon Crawljax [21], an open-source crawler designed for exploring modern

web applications. Crawljax leverages the web application testing framework Selenium [59] for

instantiating browser instances and rending web pages. Crawljax iterates all the clickables on a

web page and progressively constructs a graph of web pages for exploring application. Utilizing a

120

crawler for trace collection allows for efficient exploration of a web application with high coverage.

However, Crawjax (and most other open source crawlers) has several limitations and can not be

directly applied for trace collection. Thus, we enhance Crawljax with two important functions,

which are elaborated below.

Type-enhanced Form Filling. During crawling, whenever Crawljax encounters a web form,

it will generate random inputs for filling the form. Since Crawljax is agnostic of the semantics

of input fields, the randomly filled form is very likely to be rejected by the application, which

prevents it from crawling the portion of the application behind a form submission. For example,

the user registration form usually checks the validity of user-provided email, password and other

features.

To enhance Crawljax’s capability of filling forms, we employ a two-round crawling strategy.

In the first round, the crawler follows the identified links, fills random inputs and collects all

the encountered input fields. We refer to this round as the form input discovery phase. We

define a set of commonly seen input data types, such as a single-digit number, random string,

email and phone number. and manually attach the data type information to the input fields.

For some input fields with special requirements, e.g., password, we directly specify a concrete

value. In the second round, when the crawler encounters a form, it will generate a corresponding

value based on the attached data type or take the concrete value and feed into the application.

This two-round strategy cannot guarantee the crawler successfully makes it through every form

checking, but can greatly increase the crawling coverage.

Semantic-based Page Comparison. Crawljax employs a depth-first strategy for crawling

and returns to the previous page when it encounters a web page that has been visited. The

criteria for determining whether a web page has been visited is the exact DOM matching with

any previously seen web page. Considering that the web application state is possibly changed

during crawling (e.g., adding an item to the shopping cart), this stringent criteria can easily get

the crawler stuck in a local loop (e.g., adding a different item every time), which leads to the

crawler unnecessarily exploring deeper with worse efficiency.

To achieve both better coverage and efficiency, we relax this stringent criteria by modifying

the underlying page representation and comparison within Crawljax. We observe that although

some web pages are not identical to each other, their semantics can be the same, which means

121

that the crawling paths starting from these pages are exactly the same. Thus, we can merge these

pages with same semantics to stop crawling further beyond. To identify web pages with the same

semantics, we leverage the intuition, pointed out in [24], that the links and forms within a web

page determine where users can go from the current page. Thus, we represent a web page using

the set of distinct link and form structures. To be more specific, we extract all the links and forms

from the page, remove all the parameters and obtain their structure. An example link structure is

/html/body/div/a/view.php?user id=[p1], where [p1] is the place token for the parameter value.

The web form is represented in a similar manner by combing the action URL with all input fields.

An example form structure is /html/body/div/form/adduser.php?username=[p1]&password =[p2]

&submit=[p3]. In this way, the crawler identifies web pages with the same set of link/form

structures, collapses them together and does backtracking from the current point.

Trace Collection

To collect traces, we leverage an open source web proxy WebScarab [50] to intercept HTTP

requests/responses exchanged between the user and the application, and MySQL Proxy [45]

to intercept SQL queries/response exchanged between the application and the database. Since

MySQL Proxy is unaware of the HTTP interactions, we need to correlate the SQL queries and

responses with the HTTP interactions during which they are collected. To do so, we implement

Sync Portal, which is a web service running on Tomcat and can receive web requests coming from

the web proxy and the MySQL proxy. We modify the WebScarab proxy, so that every time it in-

tercepts a web request/response, it generates a unique index and sends the index to The Sync Por-

tal through a wrapping web request. An example web request is http://127.0.0.1:8080/Portal?

type=HTTP REQUEST &index=10. Similarly, the MySQL proxy generates unique indices for

SQL queries and responses and send them to The Sync Portal. This is implemented through

writing a Lua script executed by the MySQL Proxy. The Sync Portal writes received indexes

into an indexing file for synchronizing the SQL traffic with web interactions. This loosely couple

structure enables us to deploy the components on different machines.

122

Inference & Testing

As shown by solid lines in Figure VII.6, the Inference Engine takes the indexing file, collected

web requests/responses, and SQL queries/responses together to generate the access control policy

file. The dotted lines in Figure VII.6 show the testing workflow. The Testing Engine generates

test inputs based on the policy file, constructs test web requests and sends them to the application.

At the same time, the MySQL Proxy sends SQL queries and responses observed during each

interaction to Testing Engine. The Testing Engine examines the web response and the sequence

of SQL pairs received during the current interaction to identify if the data access operation under

test has been executed. The application user specification is also utilized by The Testing Engine

to construct login requests.

Evaluation

We select a set of open source web applications for evaluation, which include both PHP and

JSP applications, to demonstrate the effectiveness of our approach across different platforms. We

deploy all the applications on a 2.13GHz Core 2 Linux server with 2GB RAM, running Ubuntu

10.10, Apache web server (version 2.2.16), PHP (version 5.3.3) and Tomcat6 (version 6.0.28).

Table VII.1 shows a summary of these applications with their programming language, the lines

of executable code (LoC) and a brief description.

Table VII.1: Summary of Web Applications for Evaluation (Evaluation of BATMAN)
Application Lang. Files LoC Description

Scarf (2007-0227) PHP 19 797 conference system
Wackopicko PHP 52 952 photo-sharing
EventsLister v2.03 PHP 27 837 event board
Bloggit v1.0 PHP 24 1071 blogging
minibloggie v2.1.6 PHP 11 838 blogging
JsForum v0.1 JSP 22 2224 web forum
JspBlog v0.2 JSP 17 1365 blogging

We first run the web crawler to collect execution traces. To demonstrate that our crawler is

able to cover most functionalities of the application, we show the percentage of the application’s

executable code that the crawler triggers (i.e., code coverage) in Table VII.2. The PHP code

coverage is measured using Spike PHPCoverage [62] and the JSP code coverage is measured

using Clover [16]. We also show the improvement of the code coverage achieved by our crawler

123

compared to a baseline tool, wget. As pointed out in [24], code coverage is not an accurate metric

for measuring the completeness of exploration and the performance of a crawler. This is because

applications contain code used for installation, debugging, error-handling, and is even “dead”

code, which can never be reached by the crawler. We use code coverage as a metric and tool to

assist the identification of the portion of the application which the crawler misses, and iteratively

improve the crawling depth for better trace quality.

Table VII.2: Summary of Code Coverage (Evaluation of BATMAN)
Application crawler coverage wget coverage crawler improve-

ment

Scarf 64.74% 32.12% 101.56%
Wackopicko 64.02% 30.78% 107.99%
EventsLister 74.81% 42.53% 75.89%
Bloggit 81.87% 68.35% 19.78%
minibloggie 64.98% 42.12% 54.27%
JsForum 69.5% 37.9% 83.38%
JspBlog 58.7% 36.1% 62.60%

The Inference Engine runs over the collected traces and generates the intended access control

policy. Table VII.3 shows a summary of the policy inference results. For each application,

we show the number of roles, web sessions, web requests and SQL queries being collected, along

with the virtual SQL query skeletons (denote by skeleton) and two types of user-based constraints

being identified.

Table VII.3: Summary of Policy Inference (Evaluation of BATMAN)
Application role web ses-

sion
web re-
quest

SQL
query

skeleton First-
Order
Constraint

Second-
Order
Constraint

Scarf 3 17 1931 14486 45 2 0
Wackopicko 2 7 4478 16074 26 14 1
EventsLister 2 9 2227 1857 12 0 0
Bloggit 2 13 416 934 22 0 0
minibloggie 2 9 466 655 12 10 9
JsForum 3 17 3666 29749 21 12 1
JspBlog 2 10 270 119 9 0 0

The Testing Engine generates test inputs based on the inferred policy and exploits the appli-

cation. Table VII.4 shows a summary of the testing results. Three types of tests are evaluated:

role-based test (denoted as R-Test), tests generated for first-order user-based constraint (denoted

124

as FU-Test) and tests for second-order user-based constraint (denoted as SU-Test). For each type

of test, we show the number of generated test inputs, flagged inputs (denoted by Flagged) and

false positives (denoted by FP). We also report the number of real violations (true positives) in

total (denoted by TP-Sum) and the number of access control vulnerabilities confirmed by manual

analysis (denoted by Vuln). Note that these two numbers can be different, because one access

control flaw within one check function allows all the operations that are guarded by the check

to be triggered by unauthorized user, resulting in a number of violations. In the following, we

describe the details of access control vulnerabilities we identify from each web application.

Table VII.4: Summary of Testing Results (Evaluation of BATMAN)
Application R-Test Flagged FP FU-

Test
Flagged FP SU-

Test
Flagged FP TP-

sum
Vuln

Scarf 64 12 0 0 0 0 0 0 0 12 1
Wackopicko 24 0 0 1 1 0 1 1 0 2 2
EventsLister 9 9 0 0 0 0 0 0 0 9 2
Bloggit 19 16 2 0 0 0 0 0 0 14 1
minibloggie 16 1 0 0 0 0 9 2 0 3 2
JsForum 45 12 0 3 3 0 1 0 0 15 6
JspBlog 8 8 0 0 0 0 0 0 0 8 8

Summary 185 58 2 4 4 0 11 3 0 63 22

Details of Vulnerabilities

Scarf has three roles: guest user, regular user and admin user. Only admin users are allowed

to manage papers, sessions and registered users. We identify one known authentication bypass

vulnerability (CVE-2006-5909) within the generaloptions.php page, which misses the require -

admin() function for authorization checks. This vulnerability allows an attacker, as a guest or

regular user, to tamper the conference and user information, since the page.

Wackopicko We identify two access control flaws within the application. The first one exists in

the users/view.php page, which fails to check the intended first-order constraint on the parameter

userid. This allows an attacker to access any user’s information by tampering this parameter.

The second one exists in the highquality.php page, which shows the high-quality pictures that are

purchased by the user. This second-order constraint is implemented across two interactions. In

the first interaction, the user visits the purchased.php page to retrieve a list of thumbnails and ids

125

of the pictures being purchased. In the second interaction, the high-quality picture is requested

via parameter pic id whose value comes from the picture ids returned by the first interaction.

The vulnerability within the highquality.php page fails to check this constraint on the parameter

pic id, which allows an attacker to view any high-quality pictures. The highquality.php page

calls the same function to retrieve the picture information from the database as other pages, but

presents the picture’s high quality key value to the user. Our technique can accurately identify

this sensitive operation by analyzing the post processing performed by the application.

EventsLister only allows admin users to add new events, update or delete existing events, and

manage users. We identify two access control flaws within the application. The first known one

exists in the add user.php page, where the function for checking whether the current user is an

admin (i.e., checkUser()) is missing. This allows an attacker to directly access this page and add

new users. The second is an Execution After Redirection vulnerability within the checkUser()

function. All the PHP files that include this function for authorization checks are vulnerable

and allow an attacker to trigger the database access operations. Sun et al. [63] also study this

application, but fail to identify the second vulnerability.

Bloggit only allows admin users to manage blogs and user information. We identify the known

Execution After Redirection vulnerability (CVE-2006-7014) in the session.inc.php page. All of

the files that include the session.inc.php file for authorization checks allow an attacker to trigger

the database access operations even after being redirected. Our tool also generates two false

positives. After investigation, we found out they result from spurious filtering rules where the

values of two irrelevant variables coincide with each other, so that the same database access

operation is identified as different ones for two roles.

Minibloggie only allows the admin user to manager posts and the regular user to edit or delete

the posts created by himself. We identify the known access control flaw (CVE-2008-6650) within

the del.php page, which lacks the verifyUser() function for checking the user’s role. This allows an

attacker, as a guest user, to delete any posts. We also identify another previously unknown access

control flaw, which allows the attacker, as a regular user, to delete other users’ posts by tampering

the parameter post id, since the del.php page misses checking the second-order constraint on the

parameter. This shows our technique can capture the data relationship between users and data

126

entities across web interactions and identify access control flaws arising from it. RoleCast [61]

also studies this application, but fail to identify the second vulnerability.

JsForum has three roles: guest user, regular user and admin user. Regular users can add threads

and replies to the forum, while admin users can add new forum and moderate all threads and

replies. We identify several access control flaws within this application. First, the application

fails to check the current user’s role. As a result, guest users can add new threads, replies

and forums, and increase the view counters of certain threads without logging in. Second, the

application fails to check the first-order constraint on the parameter within a hidden field user

in the forms. This allows a regular user to add new threads or replies on behalf of other users by

tampering this parameter. It is worth noting that second-order constraints are also identified for

this application, where a user should only be able to edit his own replies. But testing results show

that the application checks the relationship between the reply and the user. Thus no vulnerability

is reported under the SU-test.

JspBlog only allows the admin user to manage the blogs and users. JspBlog implements the

access control policy by hiding the links that lead to administrative pages from guest users.

Vulnerabilities exist within administrative pages which fail to check the current user’s role before

any database access operations. Thus an attacker can forcefully access any administrative page

and trigger those operations.

Discussion

We use dynamic analysis for policy inference and directed fuzzing for vulnerability detection.

Here we discuss the intrinsic challenges and limits of these two techniques and how we address

them in this work. First, dynamic analysis cannot guarantee the completeness of vulnerability

discovery. Insufficient exploration of the web application may lead to false negatives. We enhance

our crawler with two major functions, so that it can cover most functionalities of the application.

During experiments, we measure the code coverage and use it as an assistance to determine the

crawling depth so that we can make a sound tradeoff between the trace quality and the crawling

time. Second, the accuracy of directed fuzzing is closely related with the database state. For

example, when a test input of adding a new user is sent to the application, the test output may

vary depending on whether the user already exists in the database. If it exists, the application

127

will reject the request and the INSERT query cannot be triggered even the application contains

a vulnerability of missing check. If the user does not exist in the database, then the vulnerability

will be discovered. We address this problem by ensure the consistency of database state between

the inference phase and the testing phase. First we record the database state before crawling and

leverage the collected traces for generating concrete test input values. Before testing, we restore

the database state and feed test inputs that don’t affect the database state before those which

might change the state.

Comparison with LogicScope and EXPELLER

LogicScope only leverages web requests/responses for vulnerability analysis and does not ex-

amine the interactions between the web application and the database. Thus, it cannot handle

EAR (e.g., the false negative in Bloggit), where malicious SQL queries are triggered towards the

database and the effect of the database state tampering is not reflected within web responses. In

addition, it can not handle the complex relationship between data entities either (e.g., the false

negative in Wackopicko), which can only be revealed through SQL responses. EXPELLER exam-

ines SQL queries/responses, thus can address the above limitations of LogicScope. EXPELLER

does not examine web responses, which may introduce false positives. Specifically, EXPELLER

reports a potential logic flaw, whenever an unexpected SQL query is issued. However, the in-

formation returned by the SQL query may not be returned to the user, since the application

may perform additional processing and filtering over the SQL response to remove the sensitive

information. Further, both LogicScope and EXPELLER require session variables for analysis.

To retrieve session variables from a different platform other than PHP, which our prototype

systems have been customized for, new session inspector components have to be developed and

plugged into the prototype systems. In contrast, BATMAN integrates the information from both

web requests/responses and SQL requests/responses, which enables it to handle both EAR and

complex data relationship within the database while a minimum number of false positives are in-

curred. BATMAN also eliminates the usage of session variables by utilizing the role information,

which is usually fixed and known a priori for a web application. This feature makes the prototype

implementation of BATMAN naturally applicable to different platforms. The evaluation results

demonstrate both the effectiveness and the generality of BATMAN system.

128

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the work presented in previous chapters and discuss the limi-

tations of our work and future research directions.

Summary of Chapters

Chapter I introduced the background of web application security and described the research

problem we addressed in this dissertation – logic attacks and vulnerabilities. We also gave

an overview of both defensive and preventive approaches and how our approaches address the

existing challenges through black-box analysis.

Chapter II reviewed existing works for defending against logic attacks. These works are

categorized into three classes. We also present the research areas that are closely related to

this dissertation, including software specification inference, database security and test input

generation.

Chapter III and IV described two runtime detection systems BLOCK and SENTINEL, which

can detect logic attacks launched against web applications. In particular, BLOCK detects ma-

licious web requests and SENTINEL detects malicious SQL queries that target at back-end

databases. BLOCK is the first source-code free solution that addresses the logic attacks. SEN-

TINEL can cover more types of logic attacks than BLOCK due to its capability of handling

persistent application state in the database.

Chapter V and VI described two testing systems LogicScope and EXPELLER, which can

identify logic vulnerabilities within web applications. LogicScope, based on BLOCK, can han-

dle logic vulnerabilities that are reflected through web responses, while EXPELLER, based on

SENTINEL, can cover those that are reflected as malicious SQL queries but not through web

responses.

Chapter VII described a black-box technique, BATMAN, which formulates the logic vulner-

abilities as access control problems and detects access control flaws within web applications.

BATMAN has two major advantages over LogicScope and EXPELLER in two aspects: accuracy

129

and scalability. First, BATMAN covers more logic vulnerabilities than LogicScope by observ-

ing the interactions between the application and the database and tends to be more accurate

than EXPELLER by taking into account the information propagation from SQL responses to

web responses. Second, BATMAN does not require session variables. This allows the prototype

implementation to handle applications that are developed in different languages and platforms

without any adaptation. The evaluations over open source web applications demonstrate both

the effectiveness and the adaptability of our technique.

Limitations

Despite the aforementioned advantages, our techniques have two major limitations.

First, our techniques are based on dynamic analysis and thus confronted with the inherent

challenge of addressing the completeness of the analysis. Insufficient exploration of the state

space of a web application leads to inaccurate characterization of application logic, resulting in

both false positives and false negatives. Although we leverage carefully crafted user simulators

and the automated crawler to minimize the chances of insufficient exploration, we cannot reason

the coverage of the state space of a web application and improve it automatically.

Formal modeling of the state space of a web application is critical for reasoning the coverage of

our techniques. As we have elaborated before, the state of a web application is maintained using

two mechanisms – session variables, which keep the intra-session states, and database objects,

which keep the inter-session states. Trivial methods which characterize the application state

directly using the values of these variables and data objects will lead to state explosion. On

the other hand, the application state can be reflected through the execution paths. If we can

enumerate all the possible execution paths during crawling, we can cover all of the reachable

application states. However, the exploration of all the possible execution paths requires a full

population of the database, which itself is a hard research problem [51]. Existing techniques need

to analyze the application source code to summarize the constraints along different branches and

prepare the database. Without accessing the application source code, we can only start with

a partially populated database and progressively enrich the application state space with user

inputs until it is “converged”. The criteria to determine if the explored state space is converged

can only be defined over the external manifestations (through web responses or SQL queries)

130

and evaluated after state inference. Thus, an iterative technique for state preparation and state

inference is desirable during the crawling. This technique consists of the inference of the current

application state, construction of user inputs that possibly introduce new application states and

refinement of the current application state. Although this method may not achieve a “perfect”

database population, it give a certain guarantee or indication of the application state space being

explored. The capability of reasoning and exploring the application state space iteratively will

help the testing procedure to uncover subtle logic vulnerabilities and reduce false positives.

Second, our techniques cannot handle the scenario where the application logic specification

dynamically changes, such as dynamic access control policy. It is interesting to investigate if our

techniques can be extended to handle system dynamics. The key to handling system dynamics

is to identify the static component behind the dynamics. For example, to handle the scenario of

dynamic access control, where new roles can be created and the privileges of a specific role can be

modified, we need to identify all of the possible privileges, which are specified in the application

implementation and usually unchanged. Instead of characterizing the application logic based on

roles, we can describe it in terms of privileges. Then, we can perform the vulnerability analysis

over the authorization of each distinct privilege.

Future Research Directions

Web applications have been evolving fast with new technologies emerging, which result in an

ever-changing landscape for web application security with new challenges. We outline several

future research directions and point out pioneering works as follows.

First, an increasing amount of web application code that embeds business logic is moving to

the client side. Since the client-side JavaScript code is exposed, the attackers are able to gain

more knowledge about the application logic, thus more likely to discover the logic vulnerabilities

within the application. Some researchers have noticed and tried to address this problem. For

example, NoTamper [6] studied the inconsistencies of security checks behind web forms between

the client side and the server side. Guha et al. [33] detected malicious client behaviors based

on the execution graphs extracted from client-side code. However, they only target one specific

vulnerability and there is no general approach to handle both client side and server side vul-

nerabilities. Our techniques currently focus on the server side of the application. As a future

131

direction, it would be interesting to integrate our techniques with the above techniques to char-

acterize the client-side application logic, which can help us to better understand the application

logic as a whole and discover more subtle logic vulnerabilities that arise from the client-side code.

Second, web applications are increasingly built by integrating third-party web services through

APIs (i.e., Application Program Interface), which makes the application business logic more

complex. Logic vulnerabilities can arise from the integration procedure, where multiple parties

get involved in the web interactions. For example, Wang et al. [70] discovered logic vulnerabilities

within the checkout procedures of several popular e-commerce websites that rely on third party

payment services (e.g, Paypal), which can be exploited by the attackers to shop for free. They also

identified logic flaws within web-based single-sign-on services [69], which enable the attackers to

impersonate the victims. To defend against this type of logic attacks requires the understanding

of the logic specification under the multi-party interaction scenarios. Several recent works try

to address this problem by either analyzing the SDK (i.e., Software Development Kit) source

code (e.g., [3]) or observing the web interactions (e.g., [75]). Very similar to our techniques,

InteGuard [75] performs security checks over a set of invariant relations among HTTP interactions

to defeat logic attack at runtime and INDICATOR [74] employs hybrid analysis to infer the

dependency constraints on parameters for web services, such as Twitter and Flickr, which can

be utilized to verify the correctness of client applications. As a future direction, it would be

interesting and promising to extend our techniques to secure the integration among multiple web

applications.

132

BIBLIOGRAPHY

[1] Glenn Ammons, Rastislav Bodk, and James R. Larus. Mining specifications. In Symposium
on Principles of Programming Languages, volume 37, pages 4–16, 2002.

[2] AT&T website breach. http://www.acunetix.com/blog/web-security-zone/articles/analysis-
php-attack-apple-information-disclosure/.

[3] Guangdong Bai, Jike Lei, Guozhu Meng, Sai Sathyanarayan Venkatraman, Prateek Saxena,
Jun Suny, Yang Liuz, and Jin Song Dong. AuthScan: Automatic Extraction of Web Au-
thentication Protocols From Implementations. In NDSS’13: Proceedings of the 20th Annual
Network and Distributed System Security Symposium, 2013.

[4] Davide Balzarotti, Marco Cova, Viktoria V. Felmetsger, and Giovanni Vigna. Multi-module
vulnerability analysis of web-based applications. In CCS ’07: Proceedings of the 14th ACM
conference on Computer and communications security, pages 25–35, 2007.

[5] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell. State of the art: Automated
black-box web application vulnerability testing. Oakland’10: Proceedings of the 31st IEEE
Symposium on Security and Privacy, pages 332–345, 2010.

[6] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, Radoslaw Bobrowicz, and V. N.
Venkatakrishnan. Notamper: automatic blackbox detection of parameter tampering op-
portunities in web applications. In CCS ’10: Proceedings of the 17th ACM conference on
Computer and communications security, 2010.

[7] Prithvi Bisht, Timothy Hinrichs, Nazari Skrupsky, and V. N. Venkatakrishnan. Waptec:
whitebox analysis of web applications for parameter tampering exploit construction. In
CCS’11: Proceedings of the 18th ACM conference on Computer and communications secu-
rity, pages 575–586, 2011.

[8] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler.
Exe: automatically generating inputs of death. In CCS ’06: Proceedings of the 13th ACM
conference on Computer and communications security, pages 322–335, 2006.

[9] Avik Chaudhuri and Jeffrey S. Foster. Symbolic security analysis of ruby-on-rails web ap-
plications. In CCS ’10: Proceedings of the 17th ACM conference on Computer and commu-
nications security, 2010.

[10] You Chen and Bradley Malin. Detection of anomalous insiders in collaborative environ-
ments via relational analysis of access logs. In CODASPY’11: Proceedings of the first ACM
conference on Data and application security and privacy, pages 63–74, 2011.

[11] Adam Chlipala. Static checking of dynamically-varying security policies in database-backed
applications. In OSDI’10: Proceedings of the 9th USENIX conference on Operating systems
design and implementation, 2010.

[12] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin
Zheng. Secure web applications via automatic partitioning. In SOSP ’07: Proceedings of
the 21st ACM SIGOPS symposium on Operating systems principles, pages 31–44, 2007.

[13] Stephen Chong, K. Vikram, and Andrew C. Myers. Sif: Enforcing confidentiality and
integrity in web applications. In USENIX’07: Proceedings of the 16th conference on USENIX
security symposium, 2007.

133

[14] Christina Yip Chung, Michael Gertz, and Karl Levitt. DEMIDS: A Misuse Detection System
for Database Systems. In Proceedings of the Integrity and Internal Control in Information
System, pages 159–178, 1999.

[15] Citigroup credit card information leakage in 2011. http://www.wired.com/threatlevel/2011/
06/citibank-hacked/.

[16] Clover. http://www.atlassian.com/software/clover/overview.

[17] Confused Deputy Problem. http://en.wikipedia.org/wiki/confused deputy problem.

[18] Connection Pooling. http://en.wikipedia.org/wiki/connection pool.

[19] Brian J. Corcoran, Nikhil Swamy, andMichael Hicks. Cross-tier, label-based security enforce-
ment for web applications. In SIGMOD ’09: Proceedings of the 35th SIGMOD international
conference on Management of data, pages 269–282, 2009.

[20] Marco Cova, Davide Balzarotti, Viktoria Felmetsger, and Giovanni Vigna. Swaddler: An
Approach for the Anomaly-based Detection of State Violations in Web Applications. In
RAID’07: Proceedings of the 10th International Symposium on Recent Advances in Intrusion
Detection, pages 63–86, 2007.

[21] Crawljax. http://crawljax.com.

[22] Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. Nemesis: preventing authenti-
cation & access control vulnerabilities in web applications. In USENIX’09: Proceedings of
the 18th conference on USENIX security symposium, pages 267–282, 2009.

[23] Adam Doupé, Bryce Boe, Christopher Kruegel, and Giovanni Vigna. Fear the EAR: Dis-
covering and Mitigating Execution After Redirect Vulnerabilities. In CCS’11: Proceeding of
the 18th ACM Conference on Computer and Communications Security, 2011.

[24] Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. Enemy of the
state: a state-aware black-box web vulnerability scanner. In Proceedings of the 21st USENIX
conference on Security symposium, Security’12, pages 26–26, 2012.

[25] Adam Doupé, Marco Cova, and Giovanni Vigna. Why Johnny Can’t Pentest: An Analysis
of Black-box Web Vulnerability Scanners. In DIMVA’10: Proceedings of the 7th Conference
on Detection of Intrusions and Malware and Vulnerability Assessment, pages 111–131, 2010.

[26] Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynamic test input generation for
database applications. In ISSTA ’07: Proceedings of the 2007 international symposium on
Software testing and analysis, pages 151–162, 2007.

[27] Michael Ernst, Jake Cockrell, William Griswold, and David Notkin. Dynamically Discovering
Likely Program Invariants to Support Program Evolution. IEEE Transactions on Software
Engineering, 27:99–123, 2001.

[28] Extended Finite State Machine. http://en.wikipedia.org/wiki/extended finite-state ma-
chine.

[29] Viktoria Felmetsger, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. To-
ward Automated Detection of Logic Vulnerabilities in Web Applications. In USENIX’10:
Proceedings of the 19th USENIX Security Symposium, 2010.

134

[30] Adrienne Felt, Matthew Finifter, Joel Weinberger, and David Wagner. Diesel: Applying
Privilege Separation to Database Access. In ASIACCS’11: Proceedings of 6th ACM Sym-
posium on Information, Computer and Communications Security, pages 416–422, 2011.

[31] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: directed automated random
testing. In PLDI’05: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pages 213–223, 2005.

[32] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated whitebox fuzz
testing. In NDSS’08: Proceedings of the 16th Network and Distributed System Security
Symposium, 2008.

[33] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static analysis for ajax intrusion
detection. In WWW’09: Proceedings of the 18th international conference on World Wide
Web, pages 561–570, 2009.

[34] William G.J. Halfond, Saswat Anand, and Alessandro Orso. Precise interface identification
to improve testing and analysis of web applications. In ISSTA ’09: Proceedings of the
eighteenth international symposium on Software testing and analysis, pages 285–296, 2009.

[35] Kenneth L. Ingham, Anil Somayaji, John Burge, and Stephanie Forrest. Learning dfa rep-
resentations of http for protecting web applications. Computer Networks and Isdn Systems,
51:1239–1255, 2007.

[36] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities (short paper). In Oakland’06: Proceedings of the
27th IEEE Symposium on Security and Privacy, pages 258–263, 2006.

[37] Ashish Kamra, Evimaria Terzi, and Elisa Bertino. Detecting anomalous access patterns in
relational databases. The VLDB Journal, 17:1063–1077, 2008.

[38] Chulyun Kim and Kyuseok Shim. TEXT: Automatic Template Extraction from Heteroge-
neous Web Pages. IEEE Trans. Knowl. Data Eng., 23(4):612–626, 2011.

[39] Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson Engler. From un-
certainty to belief: inferring the specification within. In OSDI ’06: Proceedings of the 7th
symposium on Operating systems design and implementation, pages 161–176, 2006.

[40] Akshay Krishnamurthy, Adrian Mettler, and David Wagner. Fine-grained privilege separa-
tion for web applications. In WWW’10: Proceedings of the 19th international conference on
World Wide Web, pages 551–560, 2010.

[41] Christopher Kruegel and Giovanni Vigna. Anomaly detection of web-based attacks. In
CCS’03: Proceedings of the 10th ACM conference on Computer and communications secu-
rity, pages 251–261, 2003.

[42] Sin Yeung Lee, Wai Lup Low, and Pei Yuen Wong. Learning Fingerprints for a Database
Intrusion Detection System. In ESORICS’02: Proceedings of 7th European Symposium on
Research in Computer Security, pages 264–280, 2002.

[43] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Automatic generation of software
behavioral models. In ICSE ’08: Proceedings of the 30th international conference on Software
engineering, pages 501–510, 2008.

[44] Adrian Mettler, David Wagner, and Tyler Close. Joe-e: A security-oriented subset of java.
In NDSS’10: Proceedings of the 17th Annual Network and Distributed System Security Sym-
posium, pages 357–374, 2010.

135

[45] MySQL Proxy. http://dev.mysql.com/doc/refman/5.0/en/mysql-proxy.html.

[46] OpenInvoice 0.9 beta. http://sourceforge.net/projects/openinv/.

[47] OpenIT. http://sourceforge.net/projects/openit/.

[48] OsCommerce Inc. http://www.oscommerce.com/.

[49] OWASP Top Ten Project 2013 Report. https://www.owasp.org/index.php/Top 10 2013-
Top 10.

[50] OWASP WebScarab Project. https://www.owasp.org/index.php/category:owasp web-
scarab project.

[51] Kai Pan, Xintao Wu, and Tao Xie. Database state generation via dynamic symbolic execu-
tion for coverage criteria. In Proceedings of 4th International Workshop on Testing Database
Systems (DBTest11), pages 4–9, June 2011.

[52] Kai Pan, Xintao Wu, and Tao Xie. Generating program inputs for database application
testing. InASE’11: Proc. 26th IEEE/ACM International Conference on Automated Software
Engineering, 2011.

[53] Bryan Parno, Jonathan M. McCune, Dan Wendlandt, David G. Andersen, and Adrian
Perrig. CLAMP: Practical prevention of large-scale data leaks. In Oakland’09: Proceedings
of the 30th IEEE Symposium on Security and Privacy, 2009.

[54] Pongsin Poosankam Prateek Saxena, Steve Hanna and Dawn Song. Flax: Systematic discov-
ery of client-side validation vulnerabilities in rich web applications. In NDSS’10: Proceedings
of the 17th Annual Network and Distributed System Security Symposium, 2010.

[55] Davi De Castro Reis, Reis Paulo, Alberto H.F. Laender, Paulo B. Golgher, and Altigran S.
da Silva. Automatic web news extraction using tree edit distance. In WWW ’04: Proceedings
of the 13th international conference on World Wide Web, pages 502–511, 2004.

[56] Alex Roichman and Ehud Gudes. Fine-grained access control to web databases. In SAC-
MAT’07: Proceedings of the 12th ACM symposium on Access control models and technolo-
gies, pages 31–40, 2007.

[57] Alex Roichman and Ehud Gudes. DIWeDa - Detecting Intrusions in Web Databases. In
Proceeedings of the 22nd annual IFIP WG 11.3 working conference on Data and Applications
Security, pages 313–329, 2008.

[58] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn
Song. A symbolic execution framework for javascript. In Oakland’10: Proceedings of the
2010 IEEE Symposium on Security and Privacy, pages 513–528, 2010.

[59] SeleniumHQ: Web Application Testing System. http://seleniumhq.org/.

[60] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for
c. In ESEC/FSE-13: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 263–272, 2005.

[61] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. Rolecast: finding missing security
checks when you do not know what checks are. In OOPSLA ’11: Proceedings of the 26th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 1069–1084, 2011.

136

[62] Spike PHPCoverage. http://phpcoverage.sourceforge.net/.

[63] Fangqi Sun, Liang Xu, and Zhendong Su. Static detection of access control vulnerabilities
in web applications. In USENIX’11: Proceedings of the 20th USENIX Security Symposium,
2011.

[64] Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable: A language for enforcing
user-defined security policies. In Oakland ’08: Proceedings of the 29th IEEE Symposium on
Security and Privacy.

[65] Symantec internet security threat report 2009. http://www.symantec.com/business/threatreport/.

[66] Verizon 2010 Data Breach Investigations Report. http://www.verizonbusiness.com/resources/
reports/rp 2010-data-breach-report en xg.pdf.

[67] K. Vikram, Abhishek Prateek, and Benjamin Livshits. Ripley: automatically securing web
2.0 applications through replicated execution. In CCS ’09: Proceedings of the 16th ACM
conference on Computer and communications security, pages 173–186, 2009.

[68] Wackopicko. https://github.com/adamdoupe/wackopicko.

[69] Rui Wang, Shuo Chen, and XiaoFeng Wang. Signing me onto your accounts through face-
book and google: A traffic-guided security study of commercially deployed single-sign-on
web services. In Oakland’12: Proceedings of the 2012 IEEE Symposium on Security and
Privacy, pages 365–379, 2012.

[70] Rui Wang, Shuo Chen, XiaoFeng Wang, and Shaz Qadeer. How to shop for free online -
security analysis of cashier-as-a-service based web stores. In Oakland’11: Proceedings of the
32nd IEEE Symposium on Security and Privacy, 2011.

[71] Gary Wassermann and Zhendong Su. Static detection of cross-site scripting vulnerabilities.
In ICSE’08: ACM/IEEE 30th International Conference on Software Engineering, 2008.

[72] Web Application Security Statistics. http://projects.webappsec.org/w/page/13246989/Web
ApplicationSecurityStatistics.

[73] WhiteHat Security. WhiteHat website security statistic report 2010.

[74] Qian Wu, Ling Wu, Guangtai Liang, Qianxiang Wang, Tao Xie, and Hong Mei. Infer-
ring dependency constraints on parameters for web services. In Proceedings of the 22nd
international conference on World Wide Web, WWW ’13, pages 1421–1432, 2013.

[75] Luyi Xing, Yangyi Chen, XiaoFeng Wang, and Shuo Chen. InteGuard: Toward Automatic
Protection of Third-Party Web Service Integrations. In NDSS’13: Proceedings of the 20th
Annual Network and Distributed System Security Symposium, 2013.

[76] Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. Per-
racotta: mining temporal api rules from imperfect traces. In ICSE ’06: Proceedings of the
28th international conference on Software engineering, pages 282–291, 2006.

[77] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Improving application
security with data flow assertions. In SOSP’09: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 291–304, 2009.

137

