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USING EVOLUTIONARILY BASED CORRELATION MEASURES TO IMPROVE 

BCL::FOLD PROTEIN STRUCTURE PREDICTION 

Introduction 

Overview 

The objectives of this thesis are (1) to use site-site correlation data in addition to primary 

sequence properties to predict more accurately long-range protein contacts; (2) to use predicted 

long-range contacts to enrich for native-like models during de novo prediction using BCL::Fold; (3) 

to explore modifications to our method that may further enhance de novo prediction confidence 

based scoring and sampling subsets of predicted contacts. 

Protein Structure Prediction 

One of the primary purposes of DNA is to store information regarding the sequence of 

amino acids in each of the proteins that carry out the necessary functions to maintain and 

perpetuate life. RNA transfers this sequence information from DNA to sequences of amino acid 

via the machinery of the ribosome. The organization of amino acids in sequence is known as the 

primary structure. During folding the sequence forms simple local structures, secondary structural 

elements (SSEs). SSEs then aggregate into the final fold, also known as the tertiary structure. Thus 

the sequence of amino acids dictates the tertiary, or three-dimensional structure, of each protein 

with the caveat that some proteins, especially ones of larger size, require chaperone molecules 

to successfully surmount intermediate states and arrive at their final thermodynamically stable 
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conformation (Anfinsen, 1973). A folded protein can then carry out its function – enzymatic, 

structural, signaling, or otherwise (Baker, 2000; Floudas, Fung, McAllister, Mönnigmann, & 

Rajgaria, 2006; Levinthal, 1968; Schwede, Sali, & Eswar, n.d.; Zwanzig, Szabo, & Bagchi, 1992). 

Thus, protein structure dictates function, and knowledge of a protein’s fold informs our 

understanding of normal activity and dysfunction. However, elucidating the structure for non-

trivial proteins de novo (using sequence information alone) is a challenging problem due to the 

sheer size of the fold search space. This search space increases exponentially as amino acid 

sequence length increases. Thus, de novo structure prediction remains especially difficult for 

proteins larger than 150 amino acids (Bonneau, Strauss, et al., 2002; Yarov‐Yarovoy & Schonbrun, 

2006). Myriad different methods have addressed this challenge computationally, including 

comparative modeling, which uses the determined structures of similar sequences (Kopp & 

Schwede, 2004); fragment-based methods, which search for similar portions of a protein in other 

sequences with known structures and assemble the matching fragments (Rohl, Strauss, Chivian, 

& Baker, 2004); fold recognition methods, which leverage the fact that entire protein folds are 

less diverse than sequence structure suggests, and often very different sequences can fold to the 

same 3-dimensional structure. Once an approximate placement is determined using either the 

combinations of sub-elements (fragment-based methods) or entire sequences threaded into 

similar related known structures (homology modeling), other methods are used to score and 

refine the predicted structures (Floudas et al., 2006; D. Kim, Xu, Guo, Ellrott, & Xu, 2003; Przybylski 

& Rost, 2004). 

As computational power has continued to increase, simulating the protein folding 

pathway at varying levels of complexity has been attempted with more resource intensive de novo 
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methods. Such approaches predict the final fold from the primary amino acid sequence without 

structural information from related proteins. These include molecular dynamics methods (Alder 

& Wainwright, 1959; Ding, Tsao, Nie, & Dokholyan, 2008; Proctor, Ding, & Dokholyan, 2011; Shaw, 

Deneroff, & Dror, 2008) and BCL::Fold  which simplifies the complexity of protein models by 

generating models with a Monte Carlo Metropolis simulated annealing algorithm that samples 

the placement of idealized secondary structural elements and scores each model using several 

knowledge-based scoring potentials (Karakaş et al., 2012; Woetzel et al., 2012). 

One can increase protein structure prediction sampling efficiency by constraining the 

search space with long-range contact restraints (positions distant in the primary sequence but 

known to be in close proximity within the tertiary structure). Given a sufficient number of accurate 

contact restraints, it is possible to solve structures deterministically using distance geometry. 

BCL::Fold can leverage sparse experimental and computational restraints to improve accuracy. 

Such restraints include NMR chemical shifts, residual dipolar couplings, medium-resolution cryo-

electron microscopy data, electron paramagnetic resonance, small-angle X-ray scattering, and 

distance restraints (Sanders & Sönnichsen, 2006; B. E. Weiner, Woetzel, Karakas, Alexander, & 

Meiler, 2013). 

For all de novo protein structure prediction methods, the greatest challenge is effectively 

sampling the conformational search space. No method can recognize a native-like topology that 

it does not sample. Thus, constraints that effectively limit the search space, such as contact 

restraints derived from evolutionary site-site couplings, are invaluable for improving current 

methods. An efficiently constrained search space reduces the effects of the sampling bottleneck 

(D. E. Kim, Blum, Bradley, & Baker, 2009). 
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Contact Prediction 

De novo structure prediction begins with only the primary sequence. The initial search set 

is the entirety of conformational space for a given sequence. Constraints reduce the 

computational complexity of identifying the native fold. Knowing that two amino acid sites that 

are distant in the sequence are close in space provides useful information. In other words, the 

“information content” is directly proportional to the predicted contact’s sequence separation 

(Alexander, Bortolus, Al-Mestarihi, Mchaourab, & Meiler, 2008). The frequency of these long-

range contacts within a given protein varies, and one can compare proteins’ contact order to 

understand the relative complexity of the fold. Specifically, contact order is calculated as the 

average sequence separation between amino acid pairs that form contacts in the folded 3-

dimensional structure (Bonneau, Ruczinski, Tsai, & Baker, 2002). As long-range contacts form 

during actual or simulated protein folding, they are more likely to be disrupted by the long 

intervening amino acid chain. Thus, protein structures with higher contact order fold more slowly 

and are more challenging to predict for methods like Rosetta, MD-based methods, and many 

other methods which maintain a continuous primary structure (Lindorff-Larsen, Piana, Dror, & 

Shaw, 2011; Punta & Rost, 2005). This is in contrast to the BCL, which focuses on placing and 

scoring separate SSEs, enabling it to better leverage long-range contact restraints than other 

methods. 

While other definitions have been used, a contact, as per the Critical Assessment of 

Protein Structure Prediction, is an amino acid pair with their Cβ carbons within 8Å or less (Cα is 

used in the case of glycine) and with a minimum separation of six amino acids in the primary 

sequence (Ezkurdia, Graña, Izarzugaza, & Tress, 2009; Izarzugaza, Gran, Tress, Valencia, & Clarke, 



 

5 
 

2007). A long-range contact is traditionally separated by 12 amino acids along the primary 

sequence. In addition to improving protein fold prediction, contact prediction has also proved 

useful for estimating the rate of protein folding (Punta & Rost, 2005). 

Most available contact prediction methods achieve accuracies insufficient for robust de 

novo protein folding. Earlier methods developed to predict long-range contacts have accuracies 

that peak at around 20%. Newer methods, utilizing deep architectures, only improve accuracy to 

30% (Di Lena, Nagata, & Baldi, 2012). Current contact prediction methods include the use of 

statistical methods, genetic algorithms (Chen & Li, 2010), machine learning methods (ANN, Deep 

Architectures) (Fariselli, Olmea, Valencia, & Casadio, 2001), sequence conservation (Jones, 

Buchan, Cozzetto, & Pontil, 2012), predicted secondary structures (Karakaş, Woetzel, & Meiler, 

2010), mutual information, and more recently direct information (DI) (Olmea & Valencia, 1997; 

Shackelford & Karplus, 2007). 

Previous work leveraged many different data points to predict contacts. These data types 

include primary sequence position, site separation, site-site correlation such as mutual 

information, predicted secondary structure, predicted solvent accessible surface area, amino acid 

property profiles, position-specific scoring matrices PSIBLAST), as well as predicted solvent 

accessibility (Altschul et al., 1997; Di Lena et al., 2012; Karakaş et al., 2010). Earlier work also 

utilized complexity composition of the intervening region (Xue, Faraggi, & Zhou, 2009). However, 

using these descriptors alone only yields maximum accuracies of up to 42% in some cases (Karakaş 

et al., 2010). This level of performance has been beneficial but further increases in accuracy can 

further bolster de novo prediction. 
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Direct Information (DI), has been particularly promising. Morcos et al. have used DI to 

determine the structures of some membrane and soluble proteins with enough homologous 

sequences to form a deep and accurate alignment. However, additional filtering and secondary 

structure-based constraints are necessary to attain the published performance (Morcos et al., 

2011). 

 

 

Mutual Information 

Mutual information (MI) is one algorithm for determining pairwise correlation. Pairwise 

correlation, denoted here as Cij
ab, captures the statistical correlation of two amino acid sites i and 

j based on mutations observed at each site respectively within a multiple sequence alignment 

 

Figure 1: Depiction of Correlation Between Positions in a MSA and the Related Physically 
Proximal Site-Site Pair 

In a MSA (panel A), a correlated pattern of mutations at sites i and j is indicative of the two 
amino acids having some mutually shared evolutionary pressure. This is often indicative of 
both sites being near one another in the final folded structure. 
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(MSA). This correlation often captures pairs correlated due to an important role in maintaining 

local structure, or clusters of correlated sites near functionally essential regions, such as 

enzymatic active sites. Consequently, sites determined to have higher MI values are enriched for 

“contacts”, put simply, amino acid pairs in closer proximity to one another than random selections 

(Gloor, Martin, Wahl, & Dunn, 2005). As described in Equation 1., Cij
ab is the deviation of the 

pairwise frequency fij
(ab) of amino acids a and b at positions i and j respectively, from the expected 

pairwise frequency based on the individual frequencies fi
a and fj

b of a at i and b at j (Gloor et al. 

2005; Shackelford and Karplus 2007). 

 

 

𝑀𝐼(𝑖, 𝑗) =  ∑ ∑ 𝑓𝑖𝑗
(ab)

log20 (
𝑓𝑖𝑗

(ab)

𝑓𝑖
𝑎𝑓𝑗

𝑏)

20

𝑏=1

20

𝑎=1

 (1.) 

Equation 1: Equation Used to Determine the Mutual Information at Site i,j 

MI is calculated by summing the observed frequency of amino acid types a and b multiplied by 
the log of the observed frequency of each pair a, b divided by the expected pair probability 
given the observed frequencies for a and b individually at the columns i and j, respectively. 
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Direct Information 

 

Correlations can be direct or transitive. A network of interacting sites can couple two 

distant sites, resulting in a correlation between sites that are distant in the final folded structure. 

As depicted in Figure 2, correlations between site “A” and “D” in addition to “D” and “E” may also 

lead to a significant detected correlation between sites “A” and “E”. This is commonly true for the 

MI algorithm and consequently decreases the accuracy of contact prediction methods that rely 

on MI. DI’s entropy maximization step searches for the minimal set of correlations that explain all 

statistical couplings seen from the internal MI calculation. In so doing, it filters out the indirect or 

transitive correlations such as the correlation depicted below between site “A” and “E” (Marks, 

Colwell, Sheridan, Hopf, Pagnani, & Sander, 2011). 

 

Figure 2: Schematic of Direct information and Transitive Correlations 

DI isolates direct correlation, the detected correlation between sites “A” and “D” as well 
as “D” and “E”, while filtering out false transitive correlations as symbolized above with 
the connection between sites “A” and “E”. DI accomplishes this goal via an entropy 
maximization step, which attempts to explain all couplings seen with a minimal set of 
correlated sites. 
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Recent work using DI has achieved positive predictive values (the proportion of contact 

predicted to be in contact which actually are in contact) of up to 0.8 for the top-ranked predictions 

of some proteins by including a global correlation approach (Marks, Colwell, Sheridan, Hopf, 

Pagnani, Sander, et al., 2011). Evolution selects for new mutations at sites adjacent in the folded 

structure that can compensate for prior deleterious mutations. Given a sufficient set of related 

but evolutionarily diverse protein sequences, it is possible to detect these “coupled” mutations. 

DI minimizes transitive correlations by examining correlations simultaneously across an entire 

protein (Marks, Colwell, Sheridan, Hopf, Pagnani, & Sander, 2011). Thus, DI achieves 

unprecedented accuracy by filtering correlations most likely to arise from “direct” association. 

Morcos et al. and Marks et al. have combined DI with distance geometry methods to 

predict the structures of larger soluble and membrane-bound proteins of varying sizes. They 

achieve especially high accuracy near key functional areas, which suggests DI is particularly useful 

for determining structure around important protein sites (Hopf et al., 2012a; Morcos et al., 2011). 

The entropy maximization step improves the accuracy of DI in comparison to previous correlation 

measures – specifically local methods such as mutual information. The global nature of this 

approach leverages the information from all sites, resulting in significant improvement for protein 

structure predictions that use DI. 
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Figure 3: Top 10 Direct Information-based contact predictions for serine protease  

The top 10 DI pairs are mapped onto the native structure of S1A serine protease. I have highlighted 
the top ten DI pairs in matching colors. All top ten pairs are within the 8Å cutoff traditionally used 
to determine contacts. Pairs are well distributed across the protein structure. However, some pairs 
are within loop regions, and therefore of no utility to BCL::Fold which only scores contact restraints 
within SSEs. 
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Limitations of Direct Information 

The dynamic nature of proteins and their interactions complicates correlation-based 

contact prediction. Sites on opposite sides of a folded protein may be “adjacent” in a homodimer. 

Similarly, different protein conformational states can drastically alter site-site proximity. One 

would have to determine which subset of correlations was due to each conformational state to 

avoid confounding structure prediction with a mixed set of evolutionary constraints for different 

structures (Hopf et al., 2012a). 

Recent publications have shown DI to produce more accurate contact predictions. 

However, DI cannot distinguish between subsets of contacts from different conformation states, 

thereby limiting potential accuracy. Results in this work were promising, but required manual 

contact filtering based on topological predictions, as well as predicted secondary structure and a 

conservation filter. Furthermore, additional constraints were included during model folding that 

were based on the predicted secondary structure (Hopf et al., 2012b; Marks, Colwell, Sheridan, 

Hopf, Pagnani, & Sander, 2011; Morcos et al., 2011). These filtering steps must be performed in 

addition to the calculation of DI and are non-trivial to implement. 
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Significance 

Overview 

Sequencing significantly outpaces structure determination. The protein family database 

(Pfam) is a database of known protein families. It is sub-divided into a curated set, Pfam-A, and 

automatically generated families, Pfam-B. There are approximately 12,000 well-characterized 

protein families within Pfam-A and only approximately half of them have an associated 3D 

structure. Pfam-B contains approximately 200,000 families and is growing briskly. De novo 

prediction that leverages this rapidly expanding pool of sequence information is poised to 

increase our knowledge of protein structure. Such computational methods can scale more 

favorably than current experimental methods to keep pace with the increasing number of protein 

sequences (Finn et al., 2010). Most importantly, the difficulty of experimentally determining 

membrane protein-structure further hampers progress. This is of special importance as 

membrane proteins are the targets of over 50% of current therapeutics. Understanding protein 

structure is key to identifying druggable targets and developing pharmaceuticals for the ultimate 

benefit of human health (Bakheet & Doig, 2009). 

Membrane Proteins 

Determining membrane protein (MP) structures is difficult as they are often too large for 

nuclear magnetic resonance experiments and are difficult to crystallize. Understanding MP 

structure is critical as in silico methods estimate that MPs comprise 15-39% of the human 

proteome and are particularly important players in cell signaling pathways often disturbed in 
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human disease (Ahram, Litou, Fang, & Al-Tawallbeh, 2006). However, only about 2.0% of reported 

tertiary structures (Raman, Cherezov, & Caffrey, 2006) and 100 unique MP topologies (“Scop 

Classification Statistics,” 2009) consisting of more than one TM span are represented in the 

Protein Data Bank (PDB) (Berman et al., 2002; Raman et al., 2006; Tusnády, Dosztányi, & Simon, 

2004). Furthermore, MPs are targeted by a majority of therapeutics and as such are especially 

important for the successful understanding and treatment of human disease (Bakheet & Doig, 

2009; Fagerberg, Jonasson, von Heijne, Uhlén, & Berglund, 2010). Finally, the advent of 

personalized medicine necessitates non-promiscuous and targeted therapeutics. Computational 

methods can address these challenges and assist in de novo MP structure elucidation. Predictions 

that are more accurate will enable the development of pharmaceuticals and the determination of 

disease mechanisms. 
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Innovation 

Current methods for contact prediction rely on sequence information, which includes the 

amino acid’s biophysical properties and conservation, or site-site correlation information gleaned 

from multiple sequence alignments (MSA) (Di Lena et al., 2012; Jones et al., 2012; Karakaş et al., 

2010; Olmea & Valencia, 1997; Shindyalov, Kolchanov, & Sander, 1994; Xue et al., 2009). Some 

correlation measures have also been used with machine learning methods to predict contacts 

(Shackelford & Karplus, 2007). However, no measure combines correlation information from 

Direct Information (DI), the current gold standard, and other sequence information with machine 

learning methods. Prior literature has shown that a small number of constraints derived from 

evolutionary information can be sufficient to predict some smaller protein structures (Ortiz, 

Kolinski, Rotkiewicz, Ilkowski, & Skolnick, 1999; Ortiz, Kolinski, & Skolnick, 1998; Skolnick, Kolinski, 

& Ortiz, 1997; Wu, Szilagyi, & Zhang, 2011). I have also shown that contact restraints derived from 

DI incorporating methods improves protein fold prediction in BCL::Fold for transmembrane 

proteins. 

Furthermore, DI yields promising results and successfully separates most indirect from 

direct correlations. However, certain interactions – especially direct interactions between sites 

within homomultimers and interactions between sites in different conformational states – are 

not distinguishable by DI. Manual filtering addresses some of these issues, but the approach 

described in this manuscript provides automated topology-based filtering as part of the normal 

course of contact prediction. 
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Results and discussion 

Benchmark Dataset Analysis 

This work focuses on the contact and structure prediction of a set of 25 membrane 

proteins with known structure and enough known homologous sequences to construct 

sufficiently deep and accurate MSA to calculate DI values for the majority of amino acid sites in 

each protein. 

 

Table 1: The 25 membrane proteins used as the benchmark set for this work 

Protein Initial Sequence Filtered Unfiltered 

Name PDBID L Opt. Eval TMhelix Malign Meff Cov Malign Meff Cov 

ADIC_SALTY 3NCYA 422 1.00E-20 12 1215 1205 0.891 16975 5560 0.884 

ADRB2_HUMAN 2RH1A 442 1.00E-20 8 818 451 0.652 22822 5228 0.559 

ADT1_BOVIN 1OKCA 292 1.00E-40 6 1068 1043 0.890 8631 3516 0.890 

AMTB_ECOLI 1XQFA 362 1.00E-05 11 1048 1021 0.961 4051 1416 0.925 

AQP4_HUMAN 3GD8A 223 1.00E-10 7 1073 1062 0.964 5400 1933 0.955 

BTUC_ECOLI 1L7VA 324 1.00E-10 10 1049 1045 0.914 9399 4125 0.910 

C3NQD8_VIBCJ 3MKTA 460 1.00E-20 12 1072 1068 0.917 11067 5591 0.913 

C6E9S6_ECOBD 3RKON 473 1.00E-10 14 1745 1722 0.831 59616 5932 0.588 

COX1_BOVIN 1OCCA 514 1.00E-40 12 1157 754 0.979 47394 1289 0.089 

COX3_BOVIN 1OCCC 261 1.00E-03 6 684 521 0.958 9105 1444 0.709 

CYB_BOVIN 1PP9C 379 1.00E-03 8 1069 581 0.921 49258 855 0.272 

FIEF_ECOLI 3H90A 283 1.00E-05 6 1050 1039 0.968 7610 3473 0.933 

GLPG_ECOLI 3B45A 180 1.00E-05 6 1092 1073 0.867 4625 2323 0.739 

GLPT_ECOLI 1PW4A 434 1.00E-30 12 1611 1604 0.878 25199 10789 0.882 

METI_ECOLI 3DHWA 203 1.00E-15 5 1086 1065 0.877 13418 4788 0.877 

MIP_BOVIN 1YMGA 233 1.00E-10 7 1032 1010 0.901 5431 1937 0.897 

MSBA_SALTY 3B60A 572 1.00E-03 6 1576 1568 0.881 65525 29777 0.388 

O67854_AQUAE 2A65A 510 1.00E-03 12 1135 1043 0.825 4351 1657 0.818 

OPSD_BOVIN 1HZXA 340 1.00E-20 7 1165 1151 0.803 40460 8873 0.782 

Q87TN7_VIBPA 3PJZA 468 1.00E-10 12 1019 923 0.793 3340 1587 0.791 

Q8EKT7_SHEON 2XUTA 456 1.00E-10 14 1055 1040 0.706 8196 2983 0.697 

Q9K0A9_NEIMB 3ZUXA 308 1.00E-10 10 1024 1005 0.899 3928 1549 0.903 

SGLT_VIBPA 2XQ2A 538 1.00E-05 15 1515 1380 0.820 8075 3177 0.784 
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TEHA_HAEIN 3M71A 306 1.00E-03 10 822 646 0.971 1503 735 0.948 

URAA_ECOLI 3QE7A 407 1.00E-03 14 1371 1355 0.818 11244 3384 0.747 

Statistics 

Mean 376 2.42E-04 9.68 1142 1055 0.875 17865 4557 0.755 

Standard Deviation 109 4.26E-04 3.07 244 309 0.080 18581 5691 0.218 

Maximum 572 1.00E-03 15 1745 1722 0.979 65525 29777 0.955 

Minimum 180 1.00E-40 5 684 451 0.652 1503 735 0.089 

Protein names and Protein Data Bank IDs (PDBID) are accompanied by the length of the initial 
target sequence L, the optimal E-value (representing the likelihood of false positive matches 
allowed in the MSA – lower values are more stringent) used to generate the alignment (Opt. 
Eval) (Hopf et al., 2012a), the number of transmembrane helices predicted with SPOCTOPUS 
(TMhelix), in addition to the number of sequences in the created alignments (Malign), the effective 
number of alignment sequences, which takes into consideration sequence diversity (Meff), and 
the percent coverage of the initial sequence by the final alignment with columns containing 
over 30% gaps removed (Cov). The MSA-related data is included for both filtered and unfiltered 
datasets. 

The 25 membrane proteins listed in Table 1 are a diverse set of non-trivial (having more 

than four transmembrane helices) α-helical transmembrane proteins with more than 1000 

homologous sequences of sufficient coverage. Site-coverage (Cov) is the percent of the target 

sequence sites that map onto the final MSA after one removes columns with a large number of 

gaps. Based on prior work (Morcos et al., 2011), a threshold of 30% gaps was used for this analysis. 

These 25 membrane proteins come from 23 different Pfam families, contain a maximum of 15 

helices, and have a maximum initial target length of 572 (Hopf et al., 2012a). 

Both filtered and unfiltered alignments are included in Table 1. Filtered MSA are 

significantly smaller – on average nearly 16 fold so. Maximum, minimum, and average unfiltered 

alignment sizes are 65525, 1503, and 17865 respectively. The maximum, minimum, and average 

filtered alignment sizes are 1745, 684, and 1142, respectively. Coverage increases nearly 16% 

from approximately 76% coverage in unfiltered to 88% in filtered alignments. Effective alignment 

size (Meff) significantly decreases the number of MSA sequences. Meff captures the number of 

sequences in the alignment after down-weighting sequences that are highly similar to the original 
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target sequence – over 80% identity (Morcos et al., 2011). Meff is nearly five-fold higher in 

unfiltered alignments on average. However, the minimum Meff for filtered alignments is still 451. 

Sequence coverage is a proxy for determining whether functional pressures were similar 

across all sequences included in the MSA. Evolutionary pressures result in the detected DI 

correlations essential to accurate contact prediction. Sequence diversity is necessary to capture 

sufficient mutations for an accurate DI. However, the functional role and selective pressures must 

be similar between all proteins included, enabling DI to detect the relevant and same overarching 

signal due to functional short-range interactions. An ideal DI calculation would isolate 

evolutionary coupling produced by the selective pressures associated with the overall functions 

of a single protein. The results seem relatively robust to the exact coverage value used, but 

generally, target sequence coverage in the range of 70% indicates a high probability of similar 

functional pressures. 

Figure 5 depicts the maximum number of contacts, amino acid pairs with C-β to C-β 

distances within 8Å based on their respective Protein Databank (PDB) file, that are possible across 

the benchmark set at various minimum separation values – 0, 3, 6, and 12. Some atoms within 

the PDB files have undefined coordinates and as such their positions cannot be accurately 

determined. I excluded all pairs that contained C-β atoms with undefined position from this 

analysis. A minimum separation of 0 shows the total number of possible contacts if the sequence 

aspect is disregarded. Separations of 3 and 6 were selected to visualize the rapidity with which 

the number of possible contacts decreases as sequence separation is increased. Using a minimum 

separation of 6 removes the vast majority of contacts that would be considered trivial and are of 

especially low utility to BCL::Fold, which uses idealized secondary structures during folding and as 
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such contacts within an SSE do not alter folding predictions. However, given an L-based fraction 

of contact restraints, such trivial predictions do limit the number of more informative contacts 

that could be included. In addition, a minimum separation of 6 is generous enough to avoid 

removing valuable contact information between the ends of adjacent SSEs. Finally, a minimum 

separation of 12 is the traditional cutoff for “long-range” contact restraints. However, the 

difference between the total number of contacts is relatively similar between a minimum 

separation of 6 and 12. The maximum decrease is 22.3%, the minimum decrease is 6.3%, and the 

average decrease is only 10%. The topology of alpha-helical membrane proteins and the high SSE 

content are such that pairs with a minimum separation between 6 and 12 are unlikely to be in 

contact. Such pairs are often within and thus “held” apart by a relatively linear SSE. The pairs that 

do form contacts within this range are either on adjacent ends of SSEs separated by short loop 

regions and are thus valuable for determining SSE rotation and orientation within the membrane. 

These pairs may also lie within long flexible loop regions that the BCL does not leverage during 

folding runs. 

One should also note that for minimum separations of 6 and 12 the maximum number of 

possible contacts is on average 1.6 and 1.5 times the length of the trimmed protein. Thus, for a 

perfectly or mostly accurate contact ranking by direct information or some other method, taking 

any L-fraction beyond this range would be counter-productive as it would likely extend beyond 

the set of possible contacts. However, if the method used also enriches for near-contacts 

(contacts outside of the traditionally strict 8Å cutoff but still within approximately 14Å) an 

extension of the selected restraints that extends beyond traditional contacts could still be 

 

Figure 4: A contact depicted between two amino acids in serine protease 

Above is a contact within serine protease between a serine at position 32 and a histidine at 
position 40. The nearest heavy-atom distance is 2.8 Å and the distance from the residues’ 
respective Cβ is 5.1 Å. Both distances are within the traditional 8Å cutoff used by CASP to 
define “contacts”, which focuses on the Cβ-Cβ distance between two amino acids. 
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beneficial if it includes near-contacts that provide information regarding areas of a protein 

structure not already addressed by the predicted contacts. 

 

 

Figure 5: Number of Possible Contacts at Varying Minimum Separations Compared to 
Trimmed Protein Length 

The total possible contacts across the benchmark set is depicted above sorted by the 
trimmed length L for each protein at various minimum separation thresholds – 0, 3, 6, and 
12. These values were determined from Protein Databank Files that have a small number of 
positions with undefined coordinates. Thus, there is a small discrepancy between these 
totals and the ideal. The average L-fraction of contacts at the thresholds of 0, 3, 6, and 12 
are approximately 5, 2.5, 1.6, and 1.5 respectively. Thus, while there is some difference 
between the possible contacts between a minimum separation of 6 and 12 the average 
decrease is only ~10%. The maximum and minimum decreases across the benchmark set 
from minimum separations of 6 to 12 are 22.3% and 6.3%. 
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Naïve Direct Information-Based Contact Restraints 

I calculated DI for all 25 membrane proteins listed in Table 1 for both filtered and 

unfiltered MSA. The filtering process removes sequences that individually do not align to cover at 

least 70% percent of the original target sequence used to create the alignment. This is the same 

cutoff used by Hopf et al. to determine membrane protein structure for the same set of 

membrane proteins (Hopf et al., 2012a). In both cases, I used e-value cutoffs for sequence 

aggregation of 1E-03, 1E-05, 1E-10, 1E-15, 1E-20, 1E-30, and 1E-40. In addition, Hopf et al. also 

provided a set of “optimal e-values” for prediction within the work. They selected e-values by 

 

Figure 6: Direct Information Receiver Operating Characteristic Curves (Filtered and 
Unfiltered MSA for All Site-Site Pairs at Minimum Separations of 1 and 12) 

The above graph displays ROC curves created by calculating the DI for the pairwise contacts 
for all 25 membrane proteins, aggregating all pairs, and ranking them by the magnitude of 
the DI values assuming that higher DI indicates two residues are in contact. AUC given a 
minimum separation of 1 is approximately 0.700 and 0.729 for filtered and unfiltered 
respectively. AUC given a minimum separation of 12 is approximately 0.611 and 0.601 for 
filtered and unfiltered respectively. A minimums separation of 6 performs very similarly to 
a minimum separation of 12 (not shown). Filtered outperforms unfiltered for long-range 
contacts, which are of special importance for structure prediction. 
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comparing Meff against coverage and selecting the e-value that balanced between having good 

target sequence coverage but also sufficient sequences for a deep and accurate MSA. Table 1 

contains the optimal e-values (Opt. Eval). This set represents the default for experiments in this 

thesis unless otherwise specified. 

Figure 6 displays a ROC curve for DI values from unfiltered and filtered MSA, at minimum 

separations of 1 and 12, created using the set of optimal e-values described in Table 1. A minimum 

separation of 1 focuses on all predictions regardless of how trivial. The minimum separation of 12 

isolates the long-range contacts, which are more informative for protein structure prediction. 

Knowing that two amino acids separated by only one other amino acid are near each other is not 

helpful. However, this threshold does exclude amino acid pairs that are directly connected via a 

peptide bond (a minimum separation of 0). AUC values are 0.700 and 0.729 for filtered and 

unfiltered at a minimum separation of 1 respectively. When one only considers long-range 

contacts (minimum separation of 12) the AUC values are 0.611 and 0.601 for filtered and 

unfiltered respectively. Thus, looking at overall prediction unfiltered outperforms the filtered set 

when one includess trivial contacts but when one only considers long-range contacts the filtering 

step results in a small improvement in AUC. The AUC is also significantly decreased for long-range 

contact prediction as more distant contacts are more challenging to predict. One possible 

explanation is that positions near one another in the final folded structure and also in primary 

sequence are near one another and thus influence one another more frequently. In other words, 

their increased interaction frequency may amplify the detected evolutinary influence in 

comparison to pairs distant in primary sequence. Of note, results graphed from a set with a 



 

22 
 

minimumse separation of 6 nearly superimpose upon those from a minimum separation of 12. 

This is due in large part to the fact that there are relatively few contacts in the intervening range. 

To leverage contact prediction for protein folding one only  needs to predict a relatively 

small subset of accurate long-range contacts. Thus, I have focused on the most confident 

predictions using the precision as one increases the fraction predicted positive. It is especially 

important to focus on this upper segment, as a relatively small set of accurate contact predictions 

is sufficient for accurate three-dimensional protein structure prediction. Prior work has estimated 

that accurately predicting 25-35% of the possible contacts is satisfactory for folding (Marks, 

Colwell, Sheridan, Hopf, Pagnani, Sander, et al., 2011). 

To compare the precision versus fraction predicted positive graphs across this range of 

the most confidence contacts I have determined that the top L contacts across the entire 

benchmark set comprise 0.55% of all possible pairs. As such, I will use the integral of the precision 

versus fraction predicted positive curve from 0.01% to 0.55%, a range that should capture the 

number of contacts desired and focuses on only the most confident predictions. A starting point 

of 0.0001 minimizes the effects of noise at extremely low fractions predicted positive. 

The relative ordering between filtered and unfiltered is the same for the precision versus 

fraction predicted positive (Figure 7) as it was for the ROC curves (Figure 6). Unfiltered 

outperforms filtered for pairs with a minimum separation of 1, but is outperformed by filtered for 

long-range contacts (minimum separation of 12). The integrals from 0.0001 to 0.0055 are 0.656 

and 0.787 for filtered and unfiltered respectively, at a minmum separation of 1. For long-range 

contacts (minimum separation of 12) the AUC values are 0.537 and 0.494 for filtered and 

unfiltered respectively. Using this metric the improvement in accuracy for the most confident 
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predictions for filtered over unfiltered is more appropriately represented than with the area 

under the ROC curve. Also, there is also a signficant decrease in magnitude transitioning from 

results from a minimum separation of 1 to 12 – once again highlighting the increased difficulty of 

predicting long-range contacts. Unfortunately, contacts between pairs near one another in 

primary sequence are much less informative for protein folding. Many such close-range contact 

restraints lie within the same SSE and therefore are of no benefit to BCL::Fold, which assembles 
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idealized SSE into protein fold predictions. As such, only contacts between SSEs, very often long-

range contacts, are informative for assembling protein models.  

Thus, based on these metrics across the aggregated set of predicted contacts, filtering, or 

isolating for sequence sets that are more likely to maintain functional similarity to the original 

target sequence used to create the MSA, leads to more precise top-ranked DI predicted long-

range contact pairs. 

 

Figure 7: Direct Information Logarithmic Positive Predictive Value Curves (Filtered and 
Unfiltered MSA for All Site-Site Pairs at Minimum Separations of 1 and 12) 

The above contains a graph showing precision as the fraction predicted positive increases. I 
determined each curve using DI for all pairwise contacts across the benchmark set, and 
ranking by the magnitude of the DI values assuming that higher DI indicates two residues 
were in contact. The percent of contacts selected across the benchmark for all top 1L 
contacts is 0.55%. Thus, integrating from 0.0001 to 0.0055 for the desired minimum 
separation most accurately reflects the final top L contact restraint set accuracy. The integral 
of the precision at a minimum separation of 1 from 0.0001 to 0.0055 is approximately 0.656 
and 0.787 for filtered and unfiltered respectively. The integral of the precision at a minimum 
separation of 12 from 0.0001 to 0.0055 is approximately 0.537 and 0.494 for filtered and 
unfiltered respectively. A minimums separation of 6 performs very similarly to a minimum 
separation of 12 (not shown). Greater precision initially and continuing out as the fraction 
predicted positive increases is better. The black dashed line depicts ideal performance. 
Predictions derived from filtered MSA once again perform best for long-range contacts, 
which are most informative for protein fold prediction. 
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Figure 8, Figure 9, and Figure 10 depict DI restraint file accuracy across the top L/10, L/5, 

L/2, L, and 2L for both unfiltered and filtered MSA. The protein with the highest L/10 accuracy is 

3GD8A with 91% (filtered) and 54% for 3MKTA (unfiltered). For a minimum separation of 6 the 

average accuracies at L/10, L/5, L/2, L, and 2L are 39.8%, 34.4%, 24.3%, 17.2%, and 11.3% for 

filtered and 23.0%, 18.1%, 12.7%, 8.8%, and 6.0% for unfiltered respectively. For a minimum 

separation of 12 the average accuracies at L/10, L/5, L/2, L, and 2L are 41.1%, 35.0%, 24.1%, 

16.5%, and 10.7% for filtered and 20.3%, 16.1%, 10.7%, 7.5%, and 5.0% for unfiltered respectively. 
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Figure 8: DI-Based Restraint Accuracy for Filtered Alignments across the Protein Benchmark 
Set at Various L-Fractions 

I ranked contact pairs by the magnitude of their direct information and the top L-fractions 
were taken and predicted as contacts. I then evaluated contacts by comparing predictions 
to the C-β distances (within 8Å) as resolved in the Protein Data Bank structures. The accuracy 
for all DI-based restraints from filtered alignments achieves a maximum of 91% for protein 
3GD8A. As one uses larger fractions of the top L contacts (predicts more contacts) the 
accuracy drops significantly in most cases. In all but 6 of the 25 benchmark proteins the top 
L/10 contact fraction accuracy is highest. 
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Figure 9: DI-Based Restraint File Accuracy for Unfiltered Alignments across the Protein 
Benchmark Set at Various L-fractions 

I ranked contact pairs by their direct information and isolated the top L-fractions as 
predicted contacts. I determined accuracy by verifying whether C-β distances were within 8 
Å as resolved in the Protein Data Bank structures. The accuracy for all DI-based restraints 
from unfiltered alignments achieves a maximum of 54% for protein 3MKTA. As more 
contacts are predicted (increasing fractions of L) the accuracy drops significantly. In all but 4 
of the 25 benchmark proteins the L/10 accuracy is highest. 
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Results in Figure 10 confirm the conclusion from Figure 6 and Figure 7, which indicate that 

filtering MSA improves the accuracies for the top ranked DI predictions. These top ranked 

predictions are used at various L cutoffs as restraints for folding and the accuracy is consistently 

higher across L fractions and for both a minimum separation of 6 and 12. The significant decrease 

in accuracy as one uses more of the top ranked direct information pairs, and thus includes less 

confident predictions, suggests that confidence-based scoring is a promising avenue for further 

 

Figure 10: Filtering MSA Improves the Accuracy of Top Ranked DI Predictions at Minimum 
Separations of 6 and 12 

Accuracies for different top L-fraction cutoffs across the entire benchmark set of 25 proteins 
were averaged and are depicted above. Average accuracies for DI-based contact restraints 
are consistently higher from filtered than unfiltered MSA. This accuracy discrepancy 
decreases as the total number of constraints predicted increases towards 3L. Additionally, 
average accuracy at a minimum separation of 6 is higher across all unfiltered direct 
information-based contact predictions as well as for filtered contact predictions larger than 
L/5. 
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leveraging ranking information during model scoring. If higher ranked positions are more accurate 

they should also be weighted more highly when scoring a predicted protein model using a contact-

restraint score. 

After determining accuracy for all proteins using a naïve implementation of direct 

information (one that does not include any topology or secondary structure filtering), I examined 

how accuracy correlated with several protein and MSA characteristics including protein length 

and the effective MSA depth (Meff). I compared sets individually for predictions from both filtered 

and unfiltered MSA (Figure 11). For both sets, as protein size increases the accuracy decreases 

(Figure 11 panels A and B). This was intuitive as large proteins have many more contacts and 

increased complexity. In addition, the shift upwards in accuracy is also prominent in Figure 11 

panel B compared to A. In addition, when gauged linearly, there is a slight downward trend as Meff 

increases for both predictions from filtered and unfiltered MSA. However, the lower portion of 

the range is truncated, as all benchmark proteins were selected such that a minimum total 

number of sequences is greater than 1,000. In addition, when analyzed using higher order trend 

lines, one can detect that the highest accuracies occur in the middle of the Meff range. Thus, too 

many and too few sequences appear to hinder prediction accuracy. Too few sequences results in 

too little evolutionary information, while using too many increases the odds that one incorporates 

related but functionally distant proteins who introduce confounding evolutionary pressures. 

More intelligently selecting or filtering sequences from large MSA such that functional similarity 

is preserved can likely increase the accuracy of proteins from the middle of the range upward as 

confounding sequences would be excluded. 
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One potential method could include examining whether sequences contribute to or 

detract from the major DI trends. For example, one could construct MSA using decreasingly strict 

 

Figure 11: Top L/10 DI Accuracy vs. Length and Meff for Unfiltered and Filtered MSA 

Above accuracy for the top L/10 direct information-based predicted contacts is compared to 
protein length and the effective MSA size. Contacts from Unfiltered MSA are displayed in 
panels (A) and (C) while results from Filtered MSA are given in panels (B) and (D). Accuracy 
for the top L/10 DI restraints decreases as protein size increases for predictions from both 
unfiltered and filtered MSA. The decrease is less significant for predictions based on filtered 
MSA as accuracy in general is increased and most of all for larger proteins. Performance from 
unfiltered and filtered MSA also decreases as the effective number of sequences increases, 
if gauged by a linear trend. However, one can also see a trend of improvement followed by 
decline such that the maximum accuracy coincides with the center of the range of Meff for 
this benchmark set. 
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coverage parameters and calculate at each stage the effect on DI across sites. By evaluating by 

site one may also be able to preserve snippets of the sequence, which still seem to functionally 

match thus preventing excessive exclusion of valuable evolutionary information. 

Furthermore, some proteins may undergo some small degree of conformational shift such 

that contacts are false if paired with the incorrect state. Automated methods for detecting such 

cases and separating contacts based on conformation would increase accuracy and our 

understanding of protein structure and function. Regardless, DI appears to be very promising for 

cases with the correct balance of substantial evolutionary information and functionally similar 

proteins.  
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Figure 12, Figure 13, and Figure 14 display the range of contact accuracy possible when 

one applies naïve DI.  

 

Figure 12 includes one of the best examples of DI prediction, 3GD8A in this benchmark 

set, which has an accuracy of 91%. This particular set of constraints for the top L/10 has identical 

accuracy for both the filtered and unfiltered MSA. The accuracy is especially impressive given the 

stringency of the 8Å cutoff and the fact that one of the “incorrect” contact predictions is still 

within 9.2Å – only slightly outside the cutoff. Predicted constraints for the other members of this 

benchmark set do not perform as well using this strict cutoff. However, restraints are enriched for 

  

Figure 12: High Accuracy Top L/10 Visualized Contacts for 3GD8A (Filtered) 

Above is an example of the top L/10 predicted contacts for 3GD8A showing both the 
distribution across the protein structure and the potential accuracy of the top DI pairs for 
contact prediction.  The accuracy is approximately 91%. Blue lines connect sites correctly 
predicted to be within 8Å of one another. Yellow lines connect incorrect pairs that are “near-
contacts” (between 8Å and 12Å). Red lines connect incorrectly predicted pairs. For this set, 
only two pairs are incorrect at 9.2Å and 18.1Å. The latter is a predicted contact between 
flexible loop regions. 
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pairs within enough proximity of one another to significantly improve BCL::Fold predictions as can 

be seen in the section on protein structure prediction with contact information. 

Figure 13 contains a more representative example of top L/10 constraints. The accuracy 

for 3MKTA is 56.5%. Some of the proteins within this dataset have significantly lower accuracies. 

 

 

 

  

Figure 13: Medium Accuracy Top L/10 Visualized Contacts for 3MKTA by DI (Filtered) 

Above is an example of the top L/10 predicted contacts for 3MKTA showing both the 
distribution across the protein structure and another example of the high accuracy levels 
possible for the top DI pairs. Accuracy for this protein is 56.5%. Blue lines connect correct 
contact pairs (within 8Å of one another). Yellow lines connect incorrect pairs that are “near-
contacts” (between 8Å and 12Å). Red lines connect incorrect pairs. Few pairs are incorrect, 
and most of them are within the 8-11Å range. Many of the incorrect pairs are still “near-
contacts”. 
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Figure 14 shows how poorly DI can perform in some cases. Accuracy for the top L/10 for 

2RH1A is 18.9% with many incorrect contacts predicted between opposite sides of the membrane 

topology. Elimination of such predictions, which one can easily identify in the most extreme cases, 

can significantly improve accuracy. Hopf et al. manually filter out trans-topology predictions, and 

I address them within my machine learning models by using a transmembrane position descriptor 

and a descriptor indicating whether a pair is within the same SSE (Hopf et al., 2012a). In addition, 

I have also evaluated the improvement of such filtering techniques across the benchmark within 

  

Figure 14: Low Accuracy Top L/10 Visualized Contacts for 2RH1A from DI (Filtered) 

Above is an example of the top L/10 predicted contacts for 2RH1A showing both the 
distribution across the protein structure and poor accuracy in the absence of topology 
prediction assistance. Blue lines connect correct contact pairs (within the 8Å threshold). 
Yellow lines connect incorrect pairs that are “near-contacts” (between 8Å and 12Å). Red 
lines connect incorrect pairs. Accuracy for top L/10 is approximately 18.9%. 
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the section “Improving Direct Information-Based Contact Prediction Accuracy with Predicted 

Topology and Secondary Structure”. 

While incorrect pairs within the same SSE diminish the number of informative contact 

restraints, they do not necessarily alter BCL::Fold model prediction once SSEs are selected. The 

BCL utilizes idealized SSEs and any negative impact on the contact score for such a pair would be 

equivalent across generated models. However, it is possible that incorrect contact restraints may 

alter the SSEs selected from the initial pool which would affect the final model prediction. When 

obvious topological false positives are removed most of the remaining incorrect restraints are 

outside the traditional 8Å cutoff but still in relatively close proximity to one another – potentially 

providing useful information to BCL::Fold. DI’s accuracy coupled with filtering and scoring 

functions that allow for near-contacts enables BCL::Fold to achieve higher prediction accuracies 

on membrane proteins. 
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Evaluation of Aggregated (Maximum/Mean) Direct Information Values Across 

Multiple Sequence Alignment Parameters 

The accuracy of contacts predicted using direct information varies significantly across 

results computed from MSAs determined using different e-value thresholds and with or without 

filtering. Filtering, as has been previously shown, usually improves results. However, the loss of 

evolutionary sequence space by reducing the number of usable sequences sometimes results in 

decreased prediction accuracy. Performance across e-value thresholds can differ greatly. Hopf et 

al. chose an optimal e-value for each protein in their benchmark set by comparing the number of 

effective sequences in each MSA to the coverage of the original target protein used to create the 

MSA. This approach enabled them to approximate the balance between more data, the number 

of diverse sequences, and the noise introduced by proteins no longer constrained by the same 

functional pressures (that covered less of the target protein’s sequence). Using e-values from the 

transition point between coverage and included sequences does not yield ideal results as can be 

seen from the large variability in accuracy. Thus, I attempted other simple methods to determine 

whether it would be possible to use all the MSA alignment data to make more consistently 

accurate predictions than the previous approach, which employed manual analysis. These six 

methods take either the maximum or mean direct information value across results produced 

using all filtered, unfiltered, or both sets of MSA. 

Figure 15 displays a comparison of the accuracies resulting from each of these methods 

compared to both the filtered and unfiltered naïve direct information based methods as well as 

the most accurate processed and filtered direct information based method. Some parameter sets 

show improvement over unfiltered naïve direct information, however all six aggregated sets 
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perform significantly worse than a naïve filtered set of predictions. Interestingly, the mean instead 

of the maximum yields better results for each set of MSA. I had originally hypothesized that the 

maximum would perform best as random noise in an alignment created using the non-optimal e-

value should result in low direct information values. In such a case, only the signal from the best 

aligned MSA should be detected. However, it appears that false signals from noncontact sites that 

have been poorly aligned due to improper e-value selection outcompete the true positives. 

Exceptionally poor sampling of evolutionary space, as can occur from overly restrictive e-values, 

can introduce selection noise that obscures correlation due to functional pressures and physical 

proximity. Thus, the mean may reduce the effects of noise at the margin by decreasing the impact 

of one high direct information value arising as an artifact of sequence selection and alignment. 

Nevertheless, utilizing all correlation values across MSAs and filtering status using these simple 

methods performs significantly worse than carefully selecting a single MSA for each protein that 

balances evolutionary space sampling against target sequence coverage. 



 

38 
 

 

 

Figure 15: Highest Accuracy for DI Filtered Naïve and DI Filtered Processed When Compared 
across L-Fractions and Different Correlation Aggregation Methods 

I calculated correlation information using the optimal set of e-values (the naïve direct 
information based contact predictions) from both filtered and unfiltered MSA. In addition, I 
have also improved accuracy by excluding contact predictions separated by too large a 
distance as determined by topology prediction – the processed set. These filtered processed 
and unprocessed sets are the most accurate predictions. The other sets combine results 
across all e-values ( 1e-03, 1e-05,  1e-10, 1e-10, 1e-15, 1e-20, 1e-30, and 1e-40) and are 
unfiltered,  filtered, or combine both.  For these sets the mean of the correlation values 
across sets results in higher accuracy than the max for each pair. In addition, results are also 
best for the combination across all sets, followed by filtered, and then unfiltered MSA sets. 
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Improving Direct Information-Based Contact Prediction Accuracy with 

Predicted Topology and Secondary Structure 

While direct information is usually high for amino acid pairs in close proximity in the 

native protein fold there are often false positives. These occur due to several reasons including: 

homomultimers with contradicting evolutionary pressures confound intra-protein contact 

prediction, selection pressures across proteins with multiple receptor/signaling domains that are 

evolutionarily related but not in physical proximity, as well as other random associations possibly 

due to sequence selection. It is possible to increase the accuracy of direct information-based 

contact prediction by filtering out contacts that are not likely by leveraging secondary structure 

 

Figure 16: Secondary Structure Predicted by SPOCTOPUS with Relatively High Accuracy for 
Contact Prediction Filtering 

1HZXA, 1OCCC, and 1XQFA (left to right) secondary structure predictions using SPOCTOPUS 
are depicted above in rainbow spectrum. Whenever a string of predictions changes between 
inner-membrane, outer-membrane, and transmembrane (i/o/M) amino acids are assigned 
a new index in sequence and different indices are displayed with new colors along the 
rainbow spectrum. I re-assigned the short re-entrant loops to inner or outer loops as 
appropriate to simplify SSE separation prediction. Accuracy is high with only minor overlap 
at the edges of secondary structure in most cases. An especially good example of this overlap 
can be seen in the right most helix of 1OCCC. In addition, a rare case where SPOCTOPUS 
predicts a transition near the center of an alpha-helix can also be seen on the left side of 
1OCCC. 
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and topology prediction. For example, two sites predicted to be on either end of a transmembrane 

helix are very unlikely to be in contact. However, such a pair may yield a high direct information 

value if they are part of a receptor-signaling pathway, which would constrain their evolution 

similar to functional roles that rely on the physical proximity of both amino acid sites. Thus, 

removing such pairs using SSE or topology prediction may improve contact prediction accuracy. 

Hopf et al. filtered their results using such methods with the same membrane protein benchmark 

set that is the focus of this work (Hopf et al., 2012a). 
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I have recreated this filtering by focusing on both SSE and topology prediction. Both 

               

           

Figure 17: Predicted Transmembrane Position Descriptor Effectively Captures Membrane 
Topology Information 

I used SPOCTOPUS to predict topology and then assigned each amino acid within all proteins 
a 0 for inner membrane (blue), 1 for outer membrane (red), and a value between 0 and 1 for 
all transmembrane helices based on the distance along the predicted transmembrane helix 
normalized by the size of the containing helix. Above I have included 1HZXA, 2RH1A, 1OCCC, 
and 3QE7A (top left to right, bottom left to right). The vast majority (23 of the 25 benchmark 
proteins) are similar to the top two examples – well defined and aligned gradients across 
the structure from inner to outer membrane portions (blue to red). The only two proteins 
with significant errors are on the bottom (1OCCC and 3QE7A). One can see in 1OCCC that the 
foremost helices do not align to the expected gradient due to their inaccurate prediction as 
a single unbroken helix. A similar error exists in 3QE7A where a small portion is incorrect 
due to a missing helix break prediction.  
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filtering methods leverage SPOCTOPUS, which predicts transmembrane as well as inner/outer 

membrane coil regions (Viklund, Bernsel, Skwark, & Elofsson, 2008). For SSE filtering, each 

predicted SSE was assigned a sequential index value based on ordering from N to C-terminus. All 

amino acids within an SSE are assigned that index value and then each pair has a calculated index 

difference value. Pairs predicted to be within the same SSE have an index difference of zero. Pairs 

predicted between adjacent predicted SSEs have an index difference of one. I evaluated 

secondary structure separation as a filter by comparing the final accuracy average top L-fractions 

of L/10, L/2, and L for direct information rankings calculated from filtered MSA using the optimal 

set of e-values previously described (Hopf et al., 2012a). I also filtered contact predictions based 

on a minimum sequence separation of 6 and 12 to determine whether there was an appreciable 

difference in accuracy between both sets. Results are shown in Figure 18. A minimum SSE 

difference of zero represents no filtering and separations up to 9 were examined. A very small 

increase in average accuracy can only be seen for the top L/10 contacts with a minimum 

separation of 6. In this case, the maximum accuracy occurs at a minimum SSE difference of 2 – 

40.68% compared to 39.81% with no SS-based filtering. Otherwise, maximum average accuracies 

across the benchmark set occur without filtering. For the remaining L-fractions with a minimum 

separation of 6 these accuracies are 24.34% and 17.21% for the top L/2 and L respectively. 

Accuracies are similar for a minimum separation of 12 although also consistently highest without 

SSE-based filtering - 41.08%, 24.07%, and 16.50% for the top L/10, L/2, and L contacts. This 

coincides with the scatterplot in Figure 20 for secondary structure index separation, as there is 

not a good separation of contacts from noncontacts as the separation increases. 



 

43 
 

The improvement seen is likely negated by a minimum separation of 12 as this increased 

separation greatly decreases the likelihood of two amino acids being within the same SSE – 

limiting the number of cases where SSE-based filtering could increase prediction accuracy. 

Improvement for this filtering method is likely trivial in part because SPOCTOPUS SSE prediction 

is not perfectly accurate. As such, many adjacent transmembrane helix ends, which would be 

predicted to be in contact and inform protein structure prediction, are incorrectly included as part 

of the connecting coil region. Furthermore, removing pairs within coils is not ideal as coil regions 

are flexible enough to contain many intra-element contacts. However, this latter issue is irrelevant 

when one uses BCL::Fold as coils are not included during folding. Finally, as one excludes more 

possible pairs based on imperfect thresholds one also requires selection for a top L-fraction set to 

extend further into the direct information pair ranking and thus into smaller less confident direct 

information pair values. The positive predictive value of direct information rapidly decreases as 

the number of predictions increases and must be taken into account whenever one excludes 

possible contact pair predictions. 
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Figure 18: Filtering Based on Simple Secondary Structure Element Difference Does Not 
Improve Contact Prediction Accuracy 

I used SPOCTOPUS to predict secondary structure and then assigned each amino acid within 
each SSE an index value representing the position of the SSE from N to C terminus. Amino 
acids within the same SSE have a minimum SSE index difference of zero. Above, each 
position along the x-axis indicates the minimum SSE index difference included in the top L-
fraction of predicted contacts. Overall accuracy decreases as one increases the filtering 
threshold except for the smallest fractions of top L constraints (L/10) with a minimum 
separation of six. In this case, maximum average accuracy coincides with a minimum SSE 
difference of 2 – 40.68% compared to 39.81% with no SS-based filtering. The rest of the 
minimum separation 6 average accuracies are highest without SSE filtering – 24.34% and 
17.21% for the top L/2 and L respectively. When one uses a minimum separation of 12 this 
improvement is erased. Maximum accuracy for contacts with a minimum separation of 12 
are 41.08%, 24.07%, and 16.50% for the top L/10, L/2, and L contacts. A larger minimum 
separation for contact prediction likely decreases the number of cases where both elements 
in a predicted contact pair are close enough to be in the same SSE. 
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I also evaluated the potential of a topology-based filtering method to improve prediction 

 

 

Figure 19: Predicted Transmembrane Separation Filtering Improves Contact Prediction 
Accuracy (Minimum Separation of 6 and 12) 

I determined vertical transmembrane position using SPOCTOPUS topology predictions and 
then filtered contacts based on the difference between predicted transmembrane positions. 
Pairs predicted to be separated vertically by a significant distance are unlikely to be in 
contact. I calculated the optimal value to use as the filtering threshold by determining 
accuracies across a wide range of potential separation values and averaging the results 
across the entire 25 membrane protein benchmark set. Above is the percent change in 
accuracy across thresholds compared to the unfiltered predictions for both minimum 
separations of 6 and 12 across different top L fractions. The dotted line shows the threshold 
chosen that optimizes the improvement in accuracy across L fractions. 
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accuracy. To filter based on topology I first devised a simple normalized transmembrane position 

descriptor, which I have visualized and partially described in Figure 17. Positions predicted to be 

on the inner-membrane side as part of a coil are assigned a value of zero (consistent with a 

SPOCTOPUS prediction of “i”). Positions predicted to be outside of the membrane and part of a 

coil are assigned a value of one (consistent with a SPOCTOPUS prediction of “o”). Transmembrane 

helices are predicted as “M” in SPOCTOPUS and their values are determined by the position within 

the helix (from inner to outer membrane) and normalized based on the helix size. Given a 

hypothetical helix size of nineteen (nineteen “M” sites in a row in the SPOCTOPUS prediction) the 

first amino acid on the inner-membrane side would be assigned a value of 1/20 or 0.05. The 20 

arises from the addition of 1 such that the final amino acid within this helix on the outer-

membrane side would have a value of 0.95 to differentiate it from the subsequent outer-

membrane coil. The few short re-entrant loops encountered were simply treated as inner or 

outer-membrane coils as appropriate. 
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Figure 20: Scatterplots Comparing Predicted Transmembrane Position and Secondary 
Structure to Distance 

I aggregated the top L/10 predicted contacts (using direct information calculated from 
filtered MSA and optimal e-values) and graphed their predicted vertical transmembrane 
separation/secondary structure index separation against their actual distances. A clear 
pattern exists for transmembrane separation where sites are much less likely to be near one 
another once the separation value surpasses approximately 0.35 (indicated with a vertical 
black dotted line). Secondary structure index separation does not separate contacts from 
non-contacts as well – explaining why such filtering does not result in the significant 
improvement seen with topology filtering. 
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As one can see in Figure 17, this descriptor results in a very consistent gradient along a 

blue-white-red spectrum (inner to outer membrane) with similar colors nearly always being very 

near one another with regards to their vertical membrane position. This is of course simplified by 

the fact that the alpha-helices within membrane proteins are perpendicularly oriented to the 

membrane in the vast majority of cases. Furthermore, the scatterplot in Figure 20 illustrates how 

distances increase for DI-based contact predictions, as there is predicted vertical separation 

distinguishing between contact and noncontact after the threshold of 0.35. Thus, the descriptor 

proves to be highly informative as amino acids cannot be in contact if they have a large difference 

in their vertical membrane position. It should also be noted that while two sites may have identical 

and accurately predicted vertical transmembrane positions they may still be on opposite sides of 

a protein and as such well outside the contact threshold. Furthermore, sites predicted simply to 

be inner or outer-membrane coils are less reliable due to the inherent flexibility of coils. Thus, 

position along coil SSE was not considered as it was for transmembrane helices, which further 

contributes to the unreliable nature of this filtering metric when solely considering positions that 

are inner or outer membrane. Once again, this is irrelevant to BCL::Fold, which does not include 

coil regions during protein fold prediction. 

To determine the optimal difference threshold for filtering contacts to maximize accuracy 

I evaluated thresholds from zero to 0.95 for all top L-fractions and minimum separations of 6 and 

12. Accuracy decreases initially for overly stringent cutoffs (near zero), which eliminate too many 

possible contacts for most sets of parameters. Values begin improving for most L-fractions and 

minimum separation values beginning around a maximum predicted transmembrane separation 

of 0.2. This improvement is optimal around 0.35 across L-fractions and as such, the filtering 
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threshold was set to a maximum predicted vertical separation of 0.35. As the threshold increases 

beyond 0.35, the beneficial effects of topology prediction decrease slowly towards zero. The top 

1L contact predictions decreases beyond zero during this latter range likely due to a clustering of 

contacts with inaccurate transmembrane separation values of 1.0 due to incorrect topology 

predictions in the range between the top L/2 and L contacts. 

Later optimization identified a top L-fraction of L/2 to be optimal for folding with BCL::Fold 

and improvement from filtering based on topology is 8.9% and 8.4% for minimum separations of 

6 and 12 respectively. Thus, topology-based filtering significantly improves contact prediction 

accuracy for all L-fractions including ranges ideal for contact prediction. 
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Machine Learning Based Contact Prediction 

DI, while promising, has many limitations. Separate topology and SSE based filtering are 

necessary to achieve the best results. Homomultimers and conformational changes can also 

confound the method. Finally, Di is calculated from a single MSA. Thus, additional information 

that may be present in correlation values determined from other MSA is excluded. Similarly, DI 

does not leverage other available information unless it is manually included via filtering. Thus, I 

hypothesized that a machine learning approach that incorporated correlation measures as well 

 

 

Figure 21: Diagram of Descriptors Used for Machine Learning Leveraging DI and Sequence 
Information 

Descriptors used for model training include three categories: global, sequence information, 
and correlation descriptors. Global descriptors include sequence position for sites i  and j, 
the separation from i to j, and the number of amino acids in the sequence. Sequence 
information descriptors include windows of biochemical properties surrounding sites i and j 
such as volume, hydrophobicity, sterical parameter, polarizability, isoelectric point, and 
their BLAST profiles. The probability of each SSE state helix/strand/coil (by JUFO9D) as well 
as membrane/transition/solution state are also included in sequence information. Finally, 
correlation information includes the symmetric matrix around sites i and j, all unique 
pairwise combinations from i ± half_window_size with j ± half_window_size, the mean, max, 
and normalized mean of this window, and the overall mean sequence correlation. All 
windows are set to a size of 9 for this work. 
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as other sequence and global position data could outperform methods relying solely on DI and a 

few manual filtering steps. 

The descriptors assessed for model training encompass three basic categories: global, 

sequence information, and correlation descriptors (which indirectly result in MSA statistics that 

are useful for machine learning models). There were a total of 1,505 descriptors and 46,930 

contacts and 1,639,181 noncontacts. I have provided a visual depiction of a descriptor vector in 

Figure 21. Table 2 lists all categories of descriptors. The most basic category includes global 

descriptors, which cover basic sequence information and element position information: sequence 

ID, which is indexed starting at 1, for sites i and j, the separation between i and j, and overall 

sequence length. 

Sequence information descriptors include windows of biochemical properties 

surrounding sites i and j. Properties used include volume, hydrophobicity, sterical parameter, 

polarizability, isoelectric point, and the BLAST profiles for each site in the pair. These sequence 

descriptors and the aforementioned global descriptors were used previously in the Meiler lab to 

predict long-range contacts (Karakaş et al., 2010). I have added the probability of each SSE state 

helix/strand/coil (by JUFO9D) as well as membrane/transition/solution state to the set of 

sequence information descriptors. Prior work used an older version of the JUFO algorithm with 

several ANNs, each trained specifically on certain SSE type interactions to improve accuracy. I 

have not included that aspect of the previous approach for this thesis, as all members of this 

benchmark set are α-helical transmembrane proteins. In addition, I developed and included the 

SSE index difference and predicted vertical separation using OCTOPUS for topology prediction 

(covered in detail within the section on “Improving Direct Information-Based Contact Prediction 
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Accuracy with Predicted Topology and Secondary Structure”). Several other descriptors related to 

the size of the containing SSEs, the distance from the center of the SSE, and the position of each 

position i and j are part of the sequence descriptors. 

Finally, I have included correlation information in the form of various aggregated sets of 

DI values. Correlation information was included from the unfiltered and filtered MSAs using the 

optimal set of e-values, as well as from sets of all filtered, all unfiltered, and both sets across each 

e-value. These sets were included via windows around the position i and j as well as by taking the 

maximum, mean, normalized mean, standard deviation, and sum across windows or the entire 

protein sequence. Windows refer to the lower triangle of the surrounding symmetric matrix for 

sites i and j. In other words, this set includes all unique pairwise combinations for i ± 

half_the_window_size with j ± half_the_window_size.  All windows are set at a size of nine. The 

normalized mean calculation reduces the impact of variations in DI between proteins by dividing 

the mean DI for a symmetric matrix by the mean DI across the entire protein sequence (Equation 

2. Evaluations of the descriptors using information gain, F-score, and input sensitivity all suggested 

that the normalized mean is one of the most useful correlation descriptors for contact prediction. 

This is likely due to the reduction in noise due to normalization as well as the fact that if a pair i,j 

has neighbors with high DI values, i,j are also more likely to be in contact. Examining a window of 

width nine appears to capture this relationship well – chosen because it completely encompasses 

two complete turns of an alpha helix. There are 7.2 amino acids, or eight after rounded up. One 

is added to achieve an odd number such that amino acids to be predicted are centered in the 

window. 
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𝑁𝑀(𝑖, 𝑗) =
∑ ∑

𝑫𝑰(𝒙, 𝒚)
𝟐

𝒋+𝒌
𝒚=𝒋−𝒌

𝒊+𝒌
𝒙=𝒊−𝒌

(
∑ 𝑫𝑰(𝒛)𝑳

𝒛=𝟏
𝑳 )

 
(2.) 

Equation 2: Normalized Mean Calculation for the Given Correlation Window Surrounding 
Position i,j 

Normalized mean (NM) for i,j is determined by calculating the average DI for the 

symmetric matrix surrounding i,j and dividing that by the average DI across the entire protein 

sequence. L is the length of the protein sequence and k represents half the window size desired 

rounded down. Window size was set to nine for this study. 

Statistics derived from the many MSA alignments created are also included within the 

correlation descriptors. These are the length of the aligned target sequence including gaps, the 

depth of the alignments, the effective depths of the alignments (Meff), which adjusts for sequence 

redundancy within the alignment, and the coverage of target sequence for the given MSA 

(percent of the columns with fewer than 30% gaps). 

The number of descriptors balloons to 1,505 when all the categories above are used with 

all permutations (windows, aggregations of windows, different MSA parameters, applied to each 

property etc.). To optimize performance for the models chosen, it was necessary to reduce the 

number of descriptors significantly. Many were not beneficial for contact prediction and added 

noise and increased computational time. Ideally, one would use backwards elimination or forward 

feature selection one descriptor at a time. However, due to computational constraints it was 

necessary to filter descriptors using a modified method. I scored descriptors using information 

gain and F-score to determine their individual potential for contact prediction. One can see the F-

score for all descriptors along with a focused view of the top ten in Figure 22. F-score rapidly drops 
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off from a maximum of 0.966 for predicted transmembrane separation and is nearly zero by the 

217th descriptor. I used this descriptor ranking to train decision tree models using the top N 

descriptors. I evaluated performance with AUC initially. The smallest number of N descriptors was 

10 and increased in increments of 50 descriptors to cover all descriptors. At each threshold I 

perform a fivefold cross validation and average the predictions across all generated models. 

During descriptor and parameter optimization I allowed data points from a single protein to span 

across training and monitoring or monitoring and independent datasets. However, at no point 

was any data point included within multiple datasets. 

 

Table 2: Categories of Global, Sequence, and Direct Information (Correlation) Descriptors 

 
 

The table above contains all the categories of descriptors initially analyzed. They are divided 
into the three broad categories. The first is global position descriptors - the location of each 
element of the pair i,j being predicted within the context of the sequence. The second category 
is the sequence descriptors – biochemical, BLAST, and predicted secondary structure 
information regarding the amino acids as well as aggregated descriptors (mean and standard 
deviation) calculated across the entire sequence for the given properties and BLAST data. 
Finally, the third lists correlation descriptors, which includes various aggregated descriptors 
such as the max, mean, sequence normalized mean, standard deviation, and sum across 
collections of the elemental correlation descriptors (by window or across e-value/filtering 
parameters). 

AUC does not ideally reflect the end goal of predicting the top L-fraction of cutoffs. 

However, AUC seemed to be a more stable objective function as it is cutoff agnostic and thus 

seemed more appropriate for initial descriptor and parameter optimization. Performance 

plateaued after the top 210 descriptors and a calculation of input sensitivity across the 20 

generated models is essentially zero (numerical artifact) above 210. This indicates that the 
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Global Position Descriptors 

Sequence IDs for Positions i and j Distance from Beginning of Sequence to i 

Distance from i to j Distance from j to End of Sequence 

  

Sequence Descriptors 

Properties Predicted Secondary Structure 
Descriptors 

Sterical Parameter SSE Size 

Polarizability Position in SSE 

Hydrophobicity Distance from SSE Center 

IsoelectricPoint Predicted Position in Membrane  

Volume SSE Index Difference 

Helix Probability 
Strand Probability 

Predicted Vertical Membrane Separation 
(Topology-Based) 

Free Energy Helix JUFO Helix/Strand/Coil Probabilities 

Free Energy Coil 
Transfer Free Energy Punta-Maritan 3D 

JUFO9D  Membrane Transition Solution 
Probabilities 

Free Energy Core JUFO9D Membrane and SSE Probabilities 

Free Energy Transition 
Free Energy Solution 

OCTOPUS  Membrane Transition Solution 
Probabilities 

Free Energy Core Helix  

Free Energy Transition Helix 
Free Energy Solution Helix 

Whole Sequence Descriptors (Applied to 
All Properties and BLAST Descriptors) 

Free Energy Core Coil Sequence Mean 

Free Energy Transition Coil Sequence Std. Deviation 

Free Energy Solution Coil  

 Window Types (Applied to All Properties) 

 Window 

BLAST Descriptors Window Average 

BLAST Profile 
BLAST Conservation 

Window Standard Deviation 

 Window with Properties Weighted by 
BLAST Log Probability 

 Sequence Mean across All Properies 

 Sequence Std. Deviation across All 
Properies 

  

Direct Information Descriptors 

Correlation Groups 
Filtered MSA Using Opt. E-values 

Window Types (Applied to All Correlation 
Groups) 

Unfiltered MSA Using Opt. E-values Window Max 

Across All Filtered MSA (1E-03, 1E-05, 1E-10, 1E-
15, 1E-20, 1E-30, and 1E-40) 

Window Mean 
Window Normalized Mean 

Across All Unfiltered MSA (1E-03, 1E-05, 1E-10, Window Std. Deviation 



 

56 
 

decision tree models found little additional relevant information above that threshold. As such, I 

only included the top 210 descriptors by F-score for further descriptor selection.  

1E-15, 1E-20, 1E-30, and 1E-40) Window Sum 

Across All Filtered and Unfiltered MSA (1E-03, 1E-
05, 1E-10, 1E-15, 1E-20, 1E-30, and 1E-40) 

 

  

  

MSA Statistics Descriptors  

MSA Length  

Effective MSA Depth (Meff)  

MSA Depth (M)  

Target Sequence Coverage  
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Figure 22: F-Score across all Descriptors and the Top Ten Descriptors 

I ranked all 1505 descriptors by F-score and graphed those results above. In addition, I have 
highlighted the top 10 descriptors by F-score in the column chart above. The most useful 
descriptor by F-score is the predicted transmembrane separation (0.966), followed by 
sequence separation and amino acid sequence ID difference (which are essentially the 
same). The remaining elements among the top ten are correlation descriptors. The 
maximum of the current position window scores very highly - followed by the mean of a 
position’s correlation window. As expected, predictions using the optimized set of e-values 
perform very well although surprisingly the unfiltered MSA with optimized e-values score 
slightly higher than the descriptors from filtered MSA. F-score drops very rapidly across the 
set and descriptors after approximately the first 217 have near zero scores. However, these 
cannot be discounted as F-score does not identify descriptors that are only valuable when 
combined with others. 
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I further reduced the number of descriptors from among the top 210 iteratively. The best 

scoring threshold was used to determine the next set of descriptors to be kept. I then ranked this 

subset using input sensitivity – calculated using the models created at this new threshold. This 

new ranked set of descriptors was then divided using multiple thresholds, models trained at each, 

and each set scored to continue the iterative descriptor selection process. To decrease the 

likelihood of removing useful descriptors, thresholds never eliminated more than half of the 

descriptors before re-ranking descriptors. I also used enrichment average as the objective 

function and evaluated each set of models generated by calculating the integral of the precision 

over the range 0.01% to 0.55% of the fraction predicted positive. This range closely captures the 

contacts predicted when taking the top 1L predictions across all proteins while decreasing the 

noise present below 0.01%. The modest number of data points results in drastic changes from 

small perturbations in overall predictions. 
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Figure 24 displays the results for input sensitivity scored for iterations with the top 160, 

130, and 70 descriptors. For 160 descriptors, there is a plateau beginning at 30 descriptors and 

another increase in performance near 130 resulting in a second plateau. To evaluate more 

carefully this second plateau, I recalculated input sensitivity using the models generated with 130 

descriptors and repeated the evaluation. Result variability decreases significantly after rescoring 

and is relatively consistent above 30. I further examined this transition point by rescoring using 

models produced with the top 70 descriptors from the current round and decreased the 

increment step size to three descriptors. In this final round, the same pattern is seen – a consistent 

 

Figure 23: Performance (AUC) across Top Descriptors Ranked by F-Score 

After ranking all 1505 descriptors, I used increasing thresholds of the top N descriptors to 
predict contacts with decision trees. Each set of the top N descriptors was used within a 
fivefold cross validation and the results for each set are given above. Maximum AUC is 0.949 
using only the top 10 descriptors. Performance decreases significantly from the top 210 and 
up. Examining the input sensitivity calculated, one sees that scores above that point are 
numerical artifacts and thus essentially zero. Descriptors ranked that poorly by F-score were 
not used in further decision tree training due to computational resource limitations. This 
step essentially filtered down the initial descriptor set. It is important to note that AUC does 
not perfectly mirror the final desired performance measure. 
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plateau beginning around the top 30 descriptors. As such, I selected these top 30 descriptors as 

the optimal for training the final decision tree models. 

Table 3 lists all 30 descriptors, and includes a large number of correlation-based 

descriptors. The highest ranked descriptor is the correlation window maximum using filtered MSA 

created with the set of optimal e-values. This set of DI values also performs best for naïve DI 

contact prediction. The second highest by input sensitivity is the sequence separation, which 

intuitively fits as knowing this descriptor alone provides a great deal of information regarding 

whether two sites are in contact. Sites adjacent in sequence are almost certainly in contact and 

sites at disparate positions in sequence are very unlikely to be in contact. The third highest 

descriptor is predicted transmembrane separation, which is derived from the topology-based 

filtering leveraged by Hopf et al. to achieve such high accuracy predictions. The normalized 

window mean and maximum correlation from the unfiltered optimized are also ranked very 

highly. Polarizability is the first traditional biochemical property to show up in the descriptor 

ranking but even in this case it is an aggregated sequence mean and not just the polarizability for 

positions i and/or j. 
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Overall, decision trees favor correlation descriptors very strongly. Only 8 out of the 30 

descriptors are sequence descriptors. Global position descriptors occupy 3 of the 30 and 

 

Figure 24: Integral of Precision Over Fraction Predicted Positive from 0.01% to 0.55% for 
Input Sensitivity Iterations Using Decision Trees 

Above are the average of integrals of the positive predictive value from 0.01% to 0.55% of 
the fraction predicted positive from fivefold cross validated models. Panels A, B, and C cover 
iterations done using input sensitivity scores to rank the descriptors before taking increasing 
thresholds of the top descriptors. The first 210 were determined using F-score generating 20 
models via a fivefold cross validation and using those models to calculate input sensitivity. 
Panel A shows two promising regions beginning around the top 30 and 130 descriptors. 
Panel B shows a large decrease in variability after rescoring the top 130 descriptors with the 
plateau beginning around the top 30 and upwards. Finally, the focused set above of the 
results, scoring the top 70, shows an overall peak and the beginning of a similar plateau at 
the top 30 descriptors. I used this set of 30 descriptors to train the final decision tree models 
for contact prediction. 
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correlation descriptors comprise the remaining 19 positions. This once again suggests that 

correlation descriptors, especially those aggregated or processed in some way (window max, 

normalized mean, or sequence mean) are a beneficial addition to the input for machine learning 

methods predicting protein contacts. 

 

Table 3: Table of Top 30 Descriptors Used for Best Decision Tree Model 

Descriptor Name 
Input 

Sensitivity 
Score 

Type Rank 

Window Maximum Correlation Filtered [Optimized] 0.02013 Correlation 1 
Amino Acid Sequence Separation 0.01601 Sequence 2 
Predicted Transmembrane Separation 0.01027 Topology 3 
Normalized Window Mean Correlation Unfiltered 
[Optimized] 0.00604 Correlation 4 
Window Max Correlation Unfiltered [Optimized] 0.00545 Correlation 5 
Sequence Mean Polarizability 0.00298 Sequence 6 
Normalized Window Mean Correlation E-value 1E-10 
Unfiltered MSA 0.00193 Correlation 7 
SequenceMean(Correlation(Filtered [Optimized] 0.00179 Correlation 8 
Position i Sequence Position 0.00172 Sequence 9 
Coverage for E-value 1E-10 Filtered MSA 0.00127 MSA Statistics 10 
Probability  (JUFO9D) Amino Acid j is a Transition Region 
Coil 0.00121 Sequence 11 
Normalized Mean Window Correlation E-value 1E-40 
Unfiltered MSA 0.00119 Correlation 12 
Max Correlation All Filtered and Unfiltered MSA 0.00118 Correlation 13 
Normalized Mean Correlation Filtered [Optimized] 0.00074 Correlation 14 
Correlation Unfiltered [Optimized] Center Position 0.00072 Correlation 15 
Normalized Window Mean Correlation E-value 1E-30 
Unfiltered MSA 0.00067 Correlation 16 
Sequence Length (L) 0.00065 Sequence 17 
Correlation Filtered [Optimized] Center Position 0.00049 Correlation 18 
Amino Acid Sequence ID Difference 0.00046 Global Position 19 
Distance to End of Sequence 0.00040 Global Position 20 
Sequence Mean IsoelectricPoint 0.00036 Sequence 21 
Meff for E-value 1E-03 Filtered MSA 0.00035 MSA Statistics 22 
Window Average of Blast Log Weighted Free Energy 
Transition Coil with Triangular Weighting at Index 7 0.00034 Sequence 23 
Correlation E-value 1E-10 Unfiltered MSA 0.00031 Correlation 24 
Mean Correlation All Filtered MSA 0.00031 Correlation 25 
Probability (JUFO9D) Amino Acid I is in a Helix 0.00030 Sequence 26 
Mean Correlation All Filtered and Unfiltered MSA 0.00030 Correlation 27 
Normalized Window Mean Correlation E-value 1E-40 
Filtered MSA 0.00028 Correlation 28 
Correlation E-value 1E-03 Unfiltered MSA 0.00027 Correlation 29 
Distance from Beginning of Sequence to Position i 0.00026 Global Position 30 

Above is a table listing the final set of 30 descriptors selected for use with decision trees to 
predict long-range contacts. I determined this set using an iterative process whereby I scored 
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the usefulness of descriptors for a given model type initially using F-score and then input 
sensitivity. I evaluated models using increasing subsets of the ranked descriptors. I then 
selected optimal thresholds and repeated the scoring and evaluation process until 
improvement plateaued or decreased. The top 30 descriptors are described above along with 
the type of descriptor and the input sensitivity at the last iteration. 

While decision trees perform well, I have also leveraged ANNs to predict protein contacts. 

Decision trees were used first as they require much less time to train and have fewer parameters 

to optimize. However, I believed that ANNs could outperform decision trees and bolster my 

hypothesis that machine learning can predict contacts more accurately than using direct 

information alone. The ANN used contained a single hidden layer of eight hidden nodes with a 

single input and a single output node. I determined some reasonable learning rate (eta) and 

momentum (alpha) parameters by using a grid search across a broad range of values. Figure 25 

contains a heatmap of the resulting AUC values calculated for each pairing of the eta and alpha 

values examined. I determined each AUC by averaging the predictions across all 20 models 

generated during a fivefold cross validation with the given parameters. Each ANN trained on a 

balanced dataset of contacts and noncontacts with RMSD as the enrichment function, as it is more 

stable than enrichment, and a single hidden layer with eight nodes. An eta of 0.000017 delivered 

peak AUCs and alpha made little difference. In retrospect this was due to the step size of one, 

which negates the effect of alpha. I set alpha to 0.2 initially but changed it to 0.0, as the step size 

used was one. 
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Using the parameters selected above, I used a similar input sensitivity based iteration 

method to determine the optimal set of descriptors for ANNs but the best results were achieved 

using an iterative method that examines the weights between nodes with ANNs trained on the 

descriptors to be optimized. Jeffrey Mendenhall from the Meiler Lab developed the method as 

part of the BCL. At its core, the method utilizes the weights between the nodes of an ANN to 

calculate an approximate derivative for each descriptor. For the weight matrix between layer x 

and y (Mxy), this method computes the product of the transpose of Mxy for each model given. The 

result of that product of matrices is the approximate partial derivative of the result dependent on 

the feature in question. This method then scores the descriptors using two previously 

implemented statistical measures. The first evaluates the consistency, whether the descriptor 

 

Figure 25: Initial ANN Alpha and Eta Grid Search Heatmap (AUC) 

I evaluated various eta and alpha values using a grid search across pairings, to determine 
reasonable initial parameters for descriptor optimization and training. The results, average 
AUC values for the fivefold cross validation run for each pair, are depicted above. Step size 
was only 1 - explaining the minimal effects of varying alpha. For final training I set alpha to 
0.0 and alpha to 0.000017. 

Top 300 Features 0.002 0.02 0.1 0.2 0.3 0.5

0.00000017 0.589676 0.589676 0.589676 0.589676 0.589676 0.589676

0.0000017 0.932091 0.932117 0.931931 0.93269 0.932742 0.931962

0.000017 0.9301 0.932308 0.930813 0.932449 0.927344 0.924182

0.00017 0.846374 0.844601 0.882601 0.864614 0.872312 0.880432

0.0017 0.714922 0.674375 0.595411 0.636499 0.624858 0.589676

0.017 0.589676 0.589676 0.606709 0.589676 0.589676 0.589676

Top 500 Features 0.002 0.02 0.1 0.2 0.3 0.5

0.00000017 0.537884 0.535901 0.537075 0.546484 0.55679 0.580362

0.0000017 0.929841 0.929821 0.930257 0.930451 0.93052 0.930616

0.000017 0.924989 0.923166 0.929511 0.931659 0.919764 0.919941

0.00017 0.793821 0.779113 0.81613 0.825275 0.844451 0.80905

0.0017 0.5904 0.679239 0.636572 0.617231 0.585773 0.4917

0.017 0.503165 0.504108 0.493002 0.553126 0.504553 0.4917

Alpha

Eta

Eta
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tends to increase or decrease the likelihood of a contact across all models given. The second is 

the average (pseudo) derivative squared. Each is then rescaled between 0 and 0.5, summed, and 

squared. Descriptors that are not generally useful should show little consistency and have small 

weights, so the outcome of this measure will range between 0 for non-general descriptors, and 1 

for descriptors that are broadly useful. I have calculated the AUC and the integral of the precision 

from the previously specified range for each set of models and have graphed the results across all 

29 iterations in Figure 26. The AUC slowly trends upwards across the entire set of runs with a peak 

at the 27th iteration, which uses 94 descriptors. However, using the integral results, performance 

stays range-bound around 0.4 until the 23rd iteration at which point there is a jump up to 

approximately 0.569 followed by a slow decline over the next two runs before returning to similar 

performance as the initial iterations interspersed with a few nearly equivalent runs. For final ANN 

training I selected this 23rd round as it had both the highest value as well as several subsequent 

iterations with promising results. Thus, I selected these 146 descriptors for final ANN training. 

I trained decision trees and ANNs with a very similar protocol once I determined the 

optimal parameters and descriptor sets. Training, monitoring, and independent (prediction) data 

sets were created by randomizing proteins and then selecting without replacement 15, 5 and 5 

for each set respectively. Once the independent set was selected, I performed five iterations 

where at each one the proteins within only the training and monitoring datasets were shuffled. I 

averaged the results from the five models produced to create the final contact predictions for the 

five proteins within the independent dataset. At no point was data from the independent proteins 

shown to the models during training. Datasets were unbalanced between contacts and 

noncontacts for decision trees but were balanced for ANNs. All predictions were combined to 
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generate the graphs of AUC and the integral for precision representing the final model 

performance depicted in Figure 27 and Figure 28. 
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Figure 26: AUC and Integral for Precision across Fraction Predicted Positive After All 29 
Rounds of ANN Weights-Based Optimization 

In addition to the input sensitivity iteration method used with decision trees I also 
attempted a descriptor optimization that determines which descriptors are most useful by 
analyzing the weights of the ANN models trained. The results of a 29 round optimization are 
graphed above for both the AUC and the integral of the positive predictive value across the 
fraction predicted positive from 0.01% to 0.55%. The AUC trends upwards slowly as 
descriptors are removed. There is a slight plateau once one reaches 203 descriptors. 
However, the positive predictive value integral is largely steady within a range until one 
reaches 146 descriptors. This is the highest point, followed by several higher but declining 
values as one approaches the final round of optimization. Given that the positive predictive 
value integral is more representative of the top L contact predictions desired for protein fold 
prediction, I used the top 146 descriptors for final contact prediction (round 23). 
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Figure 27 displays the ROC curves generated for decision trees (light and dark green) and 

ANNs (light and dark blue) for their predictions across the entire benchmark set in comparison to 

the results from naïve DI using filtered MSA (light and dark red) at minimum separations of 1 and 

12. The lighter colors indicate the more trivial minimum separation of 1 and the darker colors 

distinguish the task of long-range contact prediction (minimum separation of 12). Most notably, 

the AUC is drastically higher for both machine learning methods in comparison to naïve DI. 

 

Figure 27: Best Decision Tree and ANN Contact Prediction ROC Curve Compared to Naïve 
Direct Information for All Pairs with a Minimum Separation of 1 and 12 

The above contains the ROC curves of the merged predictions averaged from five different 
training iterations for each protein. Above I have also included results from contact 
prediction based solely on naïve direct information (using the optimal filtered MSA) for 
comparison. The training, monitoring, and independents set included data from 15, 5, and 5 
proteins respectively. The independent predictions are the ones presented above. AUC is 
approximately 0.7000.700, 0.938, and 0.928 at a minimum separation of 1 for the filtered 
direct information, decision tree, and ANN methods respectively. For a minimum separation 
of 12 the AUC is approximately 0.611, 0.862, and 0.855 for the filtered DI, decision tree, and 
ANN methods respectively. A minimums separation of 6 performs very similarly to a 
minimum separation of 12 (not shown). Both methods significantly outperform naïve DI with 
a slight edge for decision trees. Performance is especially impressive for cases with a 
minimum separation of 12 given the difficulty of such predictions. 
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Performance for either decision trees or ANNs on the harder long-range contact prediction task 

is still significantly higher than naïve DI predicting for contacts using a minimum separation of 1. 

AUC shows overall prediction, however the goal is to predict approximately L contacts for each 

protein with especially high accuracy. To evaluate these predictions across the dataset in a 

manner that more closely reflects the final prediction task, I have also graphed positive predictive 

value on a logarithmic scale focusing in on the most confident predictions (Figure 28). Once again, 

both decision trees and ANNs outperform naïve DI for the key range of 0.01% to 0.55%. Decision 

trees perform best for a minimum separation of 1 and ANNs perform best at the more important 

minimum separation of 12. The especially high performance for decision trees on closer range 

contacts may not easily translate to useful results for protein folding but may be of use for closer 

range protein structure prediction problems, such as secondary structure prediction.  

Finally, I evaluated the accuracy for the entire benchmark set and averaged the final 

accuracies across all top L fractions used previously for this work. I have included a comparison 

for average benchmark set accuracy at a minimum separation of 6 between naïve DI using filtered 

and unfiltered MSA, processed filtered DI, and the best decision tree and ANN sets (Figure 29). 

Decision trees outperform all DI-only methods for all L-fractions L/5 and higher. ANNs outperform 

all DI-only methods for L-fractions of L/2 and higher. ANNs actually outperform all methods, 

including decision trees, by a significant margin for L-fractions of 1L and higher. L-fractions of L-2 

and higher result in the best protein structure prediction performance using the BCL as is 

discussed in the section on “Protein Structure Prediction Using BCL::Fold and Contact Restraints”. 

Thus, machine learning methods achieve the best average benchmark accuracies for L-fractions 

most suitable for protein fold prediction using BCL::Fold. This suggests that machine learning 
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methods that incorporate direct information in addition to other global position as well as 

sequence descriptors are a more accurate method for predicting contacts. Table 4 contains 

aggregated benchmark set contact prediction accuracies across the best results for naïve DI, 

processed and filtered DI, the best decision tree, and the best ANN model. The best accuracy for 

each PDBID and L-fraction is bolded. The table clearly shows that decision trees outperform other 

methods at lower L-fractions () and ANNs are able to predict larger numbers of contacts more 

 

Figure 28: Best Decision Tree and ANN Prediction Logarithmic Precision vs. Fraction Positive 
Predicted (FPP) Values Compared to Naïve Direct Information for All Site-Site Pairs with a 
Minimum Separation of 1 and 12 

The above contains a graph showing precision as the fraction predicted positive increases. 
Each curve includes the aggregated predicted contacts from five training iterations using 
decision trees or ANNs. Models were trained using all contacts with a minimum separation 
of 1 and were tested on pairs with a minimum separation of 12. Each iteration uses 15, 5, 
and 5 proteins for the training, monitoring, and hold-out sets respectively. The integral of 
the precision from 0.01% to 0.55% is approximately 0.656, 1.921, and 0.865 at a minimum 
separation of 1 for direct information, decision tree, and ANN based methods respectively. 
At a minimum separation of 12 the integral is approximately 0.537, 0.469, and 0.549 for 
direct information, decision tree, and ANN based methods respectively. A minimums 
separation of 6 performs very similarly to a minimum separation of 12 (not shown). Greater 
precision initially and continuing out as FPP increases is better. The black line depicts ideal 
performance. 
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accurately than any other method across the entire benchmark set. ANNs have the highest 

accuracy at 3L and a minimum separation of 12 for 19 of the 25 benchmark proteins. 

 

Table 4: Table of Aggregated Contact Prediction Accuracies from Best Methods Across 
Categories and Optimal L-fractions for Each Included Method 

Part I  

 DI Filtered MSA Stats DI Naïve Accuracy (%) DI Processed Filt Accuracy (%) 

PDBID L TMhelix Meff Cov 
L/10            

ms 12 
L/2              

ms 6 
1L                    

ms 12 
3L                    

ms 12 
L/10            

ms 12 
L/2              

ms 6 
1L                    

ms 12 
3L                    

ms 12 

3NCYA 422 12 1205 0.891 42.2 25.1 18.7 9.3 44.4 26.5 20.9 10.0 

2RH1A 442 8 451 0.652 18.9 9.7 6.7 3.6 21.6 14.0 8.9 5.1 

1OKCA 292 6 1043 0.89 43.3 34.2 19.5 10.2 36.7 34.2 22.2 10.9 

1XQFA 362 11 1021 0.961 28.6 23.9 15.3 7.3 52.4 28.2 17.7 8.3 

3GD8A 223 7 1062 0.964 90.9 59.8 39.5 18.5 90.9 53.6 36.3 18.4 

1L7VA 324 10 1045 0.914 0.0 1.8 1.2 1.4 0.0 3.1 3.1 2.3 

3MKTA 460 12 1068 0.917 52.2 32.2 18.7 8.7 50.0 32.6 20.9 10.7 

3RKON 473 14 1722 0.831 44.9 18.9 13.4 7.2 49.0 22.2 15.9 9.4 

1OCCA 514 12 754 0.979 70.8 42.7 31.1 14.7 77.1 52.7 34.4 17.6 

1OCCC 261 6 521 0.958 65.4 29.0 19.2 8.7 61.5 29.8 18.8 7.9 

1PP9C 379 8 581 0.921 73.7 29.0 17.4 7.9 79.0 32.1 21.1 9.5 

3H90A 283 6 1039 0.968 45.0 31.7 19.9 10.0 50.0 29.7 16.4 9.1 

3B45A 180 6 1073 0.867 66.7 41.1 28.3 12.4 77.8 44.4 27.2 13.2 

1PW4A 434 12 1604 0.878 8.9 11.1 7.8 4.5 13.3 10.2 9.5 5.3 

3DHWA 203 5 1065 0.877 54.6 30.3 23.0 10.6 50.0 31.2 24.4 11.4 

1YMGA 233 7 1010 0.901 15.4 12.1 9.9 5.3 15.4 12.9 9.1 5.6 

3B60A 572 6 1568 0.881 42.4 20.9 16.0 8.3 42.4 27.6 16.9 8.7 

2A65A 510 12 1043 0.825 59.6 31.9 22.2 11.2 55.8 35.0 25.8 13.4 

1HZXA 340 7 1151 0.803 31.3 23.3 17.7 8.1 43.8 29.6 21.1 9.5 

3PJZA 468 12 923 0.793 6.1 6.1 3.4 2.0 10.2 7.3 3.2 2.2 

2XUTA 456 14 1040 0.706 32.7 14.1 8.6 5.0 38.5 17.6 11.6 6.4 

3ZUXA 308 10 1005 0.899 66.7 34.9 23.2 12.2 69.7 38.0 26.2 14.1 

2XQ2A 538 15 1380 0.82 0.0 1.7 1.0 0.9 1.7 2.7 1.2 1.4 

3M71A 306 10 646 0.971 6.5 10.8 8.0 6.2 9.7 16.6 13.4 8.1 

3QE7A 407 14 1355 0.818 60.5 32.1 22.8 11.9 69.8 31.2 23.5 12.4 

AVERAGE 376 9.68 1055 0.875 41.1 24.3 16.5 8.2 44.4 26.5 18.0 9.2 
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Part II 

 DI Filtered MSA Stats Best Dtree Accuracy (%) Best ANN Accuracy (%) 

PDBID L TMhelix Meff Cov 
L/10            

ms 12 
L/2              

ms 6 
1L                    

ms 12 
3L                    

ms 12 
L/10            

ms 12 
L/2              

ms 6 
1L                    

ms 12 
3L                    

ms 12 

3NCYA 422 12 1205 0.891 42.2 32.7 20.9 13.8 8.9 15.7 15.1 13.5 

2RH1A 442 8 451 0.652 37.8 19.9 13.4 8.7 56.8 28.0 23.7 13.4 

1OKCA 292 6 1043 0.89 30.0 32.9 19.5 11.0 33.3 25.5 18.5 15.2 

1XQFA 362 11 1021 0.961 57.1 31.1 21.5 12.7 35.7 25.4 19.6 14.0 

3GD8A 223 7 1062 0.964 63.6 49.1 36.3 20.9 95.5 58.9 48.4 27.7 

1L7VA 324 10 1045 0.914 15.2 12.3 11.4 8.8 12.1 15.3 13.5 11.2 

3MKTA 460 12 1068 0.917 39.1 35.7 29.1 15.7 39.1 36.1 29.1 22.0 

3RKON 473 14 1722 0.831 63.3 38.3 24.5 13.1 51.0 32.1 31.6 19.2 

1OCCA 514 12 754 0.979 77.1 57.7 36.1 18.1 72.9 36.9 30.5 20.2 

1OCCC 261 6 521 0.958 61.5 35.9 22.2 12.3 80.8 41.2 27.2 13.7 

1PP9C 379 8 581 0.921 76.3 36.3 23.2 11.3 34.2 30.0 21.9 12.3 

3H90A 283 6 1039 0.968 45.0 37.6 24.4 16.9 55.0 35.6 25.9 16.6 

3B45A 180 6 1073 0.867 77.8 46.7 28.3 16.5 50.0 43.3 35.6 21.7 

1PW4A 434 12 1604 0.878 8.9 12.4 15.5 11.5 33.3 20.8 17.1 12.8 

3DHWA 203 5 1065 0.877 40.9 37.6 28.1 14.4 45.5 32.1 28.6 17.1 

1YMGA 233 7 1010 0.901 15.4 14.4 11.0 10.0 38.5 31.1 26.2 19.0 

3B60A 572 6 1568 0.881 15.2 4.3 4.0 3.2 15.2 4.9 7.7 6.3 

2A65A 510 12 1043 0.825 67.3 37.3 22.5 12.8 63.5 31.5 26.8 15.1 

1HZXA 340 7 1151 0.803 65.6 28.3 24.0 14.3 56.3 29.6 31.6 19.7 

3PJZA 468 12 923 0.793 10.2 6.9 4.5 2.6 8.2 6.1 7.7 6.0 

2XUTA 456 14 1040 0.706 51.9 32.4 22.0 12.2 42.3 27.5 21.8 11.6 

3ZUXA 308 10 1005 0.899 66.7 45.8 32.5 18.5 66.7 44.0 36.1 19.8 

2XQ2A 538 15 1380 0.82 0.0 4.7 1.7 2.1 6.8 7.1 6.6 4.8 

3M71A 306 10 646 0.971 29.0 12.7 12.7 10.9 38.7 29.3 21.7 14.4 

3QE7A 407 14 1355 0.818 67.4 32.6 23.8 16.5 39.5 33.0 27.0 15.1 

AVERAGE 376 9.68 1055 0.875 45.0 29.4 20.5 12.3 43.2 28.8 24.0 15.3 

Above is a two part table listing the final set of accuracies for the best model from each method 
category (naïve DI, processed filtered DI, decision trees, ANNs) with all optimal L-fractions for 
the given methods as well as L/10 at a minimum separation of 12 to show some of the highest 
precision prediction sets. All are given with the length (L), number of transmembrane helices 
(TMhelix), the effective alignment depth (Meff), and target sequence coverage (Cov) matched to 
each PDBID for comparison. Additionally, the best accuracy for each PDBID and L-fraction is 
bolded. Decision trees outperform all other methods at L/10 and a minimum separation of 12 
(45.0%) and also at L/2 and a minimum separation of 6 (29.4%). ANNs outperform all other 
methods at 1L and a minimum separation 12 (24.0%) and also at 3L and a minimum separation 
of 12 (15.3%). 
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Figure 29: Accuracy Comparison across Best Decision Tree, ANN, Naïve Direct Information, 
and Processed Direct Information Contact Prediction for a Minimum Separation of 6 

The graph above depicts the average accuracies of each method across the entire benchmark 
set for each of the top L fractions examined. Accuracy is significantly higher for DI contact 
predictions from filtered MSA in comparison to unfiltered and is further improved by 
processing (filtering based on predicted transmembrane topology). The processed method 
is best for the top L/10 predictions (43.89%) only slightly in comparison to the best decision 
trees (43.61%). For the top L/5 and L/2 decision trees are best (at 38.78% and 29.42%). For 
1L, 2L and 3L ANNs optimized using an analysis of weights between nodes produces the best 
results (23.25%, 18.43%, and 15.64% respectively). Thus, for all L-fractions above L/10, one 
or more commonly both machine learning methods have a higher average accuracy.  This is 
shown here for a minimum separation of 6 as that has been determined to be more useful 
for protein folding within BCL::Fold, however the effect is even more pronounced for a 
minimum separation of 12. 
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Contact Score Function Optimization 

The BCL::Fold method relies on a series of knowledge-based scores to evaluate models 

generated during Monte Carlo simulations and determine whether any given step has improved 

the protein fold prediction. Of note for this work is the contact scoring function, which evaluates 

how well a protein model satisfies a set of contact predictions or “contact restraints”. This 

function, depicted in Figure 30, consists of a sinusoidal transition function and two threshold 

values. The first value represents the upper bound of the contact range. Anything below this value 

receives a -1.0, which is the best score possible for a contact restraint. The second parameter 

 

Figure 30: Original Scoring Function vs. Optimal Direct Information Scoring Function 

The scoring function assigns an ideal score of -1.0 to all contacts within the contact distance 
threshold of 8 Å. The original parameters employed by BCL::Fold assign a score of 0.0, or no 
benefit nor penalty to anything outside of 16 Å, and assign anything between the two 
thresholds a value based on the sinusoidal transition function that increases from the ideal 
of -1.0 to 0.0. This transition region is designed to funnel near contacts towards the 8Å 
threshold during fold prediction. However, benchmarking determined that a wider 
transition of 12 Å (from 8 Å to 20 Å) both enriches for native–like model identification within 
a set of decoys as well as decreases RMSD100 if used during folding runs. As such, I used this 
parameter set for all predicted contact fold prediction. 
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represents the width of the transition region (indirectly setting the maximum of the transition 

function).  Ideally, the contact threshold should represent the boundary for where two sites are 

near enough that the evolutionary forces from their interaction are equivalent. Similarly, the 

threshold for where the transition function ends should represent the distance at which 

interaction and thus direct evolutionary entanglement is negligible. Further, this threshold must 

also capture the maximum distance to extend to “pull” contact restraint pairs towards one 

another during the folding process. During the search across the energy landscape for low energy 

(and thus likely native-like) topologies, creating wider energy wells around minima simplifies 

discovery of minima by traveling down these wider gradually sloping gradients. Increasing the 

width of the transition function can widen these energy wells as long as it does not proceed to 

the point of obscuring the minima. 

Initially, to evaluate these parameters for the BCL::Fold scoring function I used models 

previously created with the assistance of direct information based constraints as decoy models. I 

took ten random samplings for each protein and parameter set comprised of 10% “good” models 

– models below an 8Å RMSD100 threshold. The 8Å threshold for determining “good” models was 

used as this is approximately the RMSD100 of a native fold with a single transmembrane helix 

inverted (and thus a very close fold but an incorrect topology). In other words, this threshold 

roughly captures whether one has found the correct topology. I scored and ranked each set, then 

averaged the enrichment for “good” models in the top 10% by rank across all ten runs. The 

enrichment here is the fold difference between the percent of good models in this top 10% 

compared to that expected by random selection in the top 10%. The results are compared across 

parameter sets in Figure 31. The maximum enrichment of 3.76 occurred with a contact threshold 
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of 8Å and a transition function width of 12Å. There is also a trend for the lower thresholds of 6Å 

and 8Å that enrichment increases with wider transition functions. A lower initial threshold, up to 

a point, seems to enrich for models approaching the native topology. The trend is reversed for 

initial contact thresholds of 10Å and higher. 

Detecting a native-like model by score may not accurately reflect that scoring function’s 

ability to guide predicted structures towards a native-like fold. In other words, the scoring 

 

Figure 31: Comparison of Enrichment for Native-Like Models across Contact Scoring Function 
Parameter Sets Using the Entire Benchmark Set 

The bar graph above depicts the enrichment for native-like models obtained by the BCL::Fold 
scoring function utilizing different contact threshold parameters (shading is used to group 
sets with equal initial thresholds). Enrichment was calculated by taking random subsets from 
models folded using direct information based contact predictions such that 10% were 
models within 8Å RMSD100 of the native fold (this threshold reflects whether a predicted 
fold likely captures the correct topology). Models within this threshold are labeled “good” 
and then all models in the subset are scored and ranked using the scoring function with the 
given parameters. The enrichment is then determined by calculating how much the top 10% 
ranked by the scoring function deviates from random or enriches for “good” folds. The 
maximum enrichment of is 3.76, which is seen for a contact threshold of 8Å with a transition 
function width of 12Å. 
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function may have a very narrow well around the native structure – discriminating correct models 

very accurately but unable to discern between models further from the native fold. A wide sloping 

energy well drives the folding process. To verify the parameter set’s capacity for model folding as 

well as enriching a decoy set of models with varying accuracy for native-like folds, a subset of the 

benchmark set was actively folded using a scoring function with the more promising parameter 

sets by enrichment. I then averaged the best ten models by RMSD100 and compared each set’s 

results across parameter sets. The greatest average RMSD100 improvement is 1.991Å, using a 

contact threshold of 8Å and a transition function width of 12Å (Figure 32). However, a contact 

threshold of 6Å and a transition function width of 12Å also performs very similarly - 1.989Å. The 

trend for improved results as width increases when using a lower contact threshold is relatively 

preserved for folding a subset of proteins in comparison to the enrichment analysis (Figure 31). 

For the remaining contact-assisted structure prediction results a contact threshold of 8Å 

and transition function of width of 12Å are used as this set of parameters performed best for both 

the enrichment as well as protein folding analyses. Interestingly, while similar to the original 

parameters (8Å cutoff threshold and 8Å transition width) there is an improvement from using a 

more generous width. This is likely related to the fact that direct information is both imperfect 

and the evolutionary influence captured by direct information does not necessarily cease at such 

a short distance as 8Å. As can be seen in the previous section on direct information based contact 

predictions, “incorrect” contacts often include near-contacts that are still informative for protein 

structure prediction. A more lenient set of scoring function parameters seems to coincide well 

with this point as the results are improved. 
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Figure 32: Average RMSD100 Improvement for Top 10 Models Across Various Contact Score 
Function Parameters 

To verify that the best parameters for enriching for native-like folds also improved folding, I 
folded a representative subset of the benchmark set with contact scoring functions utilizing 
several parameter set combinations.  I included all combinations of contact thresholds at 
6Å, 8Å, and 10Å with transition function widths of 8Å, 10Å, and 12Å. I excluded thresholds 
above 10Å due to the exceptionally poor performance seen in Figure 31. The graph above 
shows the improvement in angstroms for the average RMSD100 of the top 10 models across 
a subset of the benchmark set. The maximum improvement for folding of 1.991Å is also 
achieved with a contact threshold of 8Å and a transition function width of 12Å. However, a 
cutoff threshold of 6Å and width of 12Å performs nearly as well with an average RMSD100 
improvement of 1.989Å. 
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Protein Structure Prediction Using BCL::Fold and Contact Restraints 

Accurate contact restraints limit the potential protein-fold search space thereby enabling 

more efficient conformational sampling. For methods such as BCL::Fold, the decrease in search 

complexity increases the likelihood of sampling native-like topologies. To first analyze the effect 

of including accurate contact restraints on BCL::Fold predictions I created sets of known contact 

restraints – having accuracies of 100% – for varying minimum separations and fractions of L. To 

determine how sensitive BCL::Fold is to variation in the distribution of contacts provided I used 

ten different randomly created sets of known contacts for the proteins shown in Figure 33. The 

 

Figure 33: Comparison of RMSD100 Predicted Model Distributions across Runs with 
Different Sets of Known Constraints with Standard Deviation 

Above are the resulting RMSD100 distributions for four proteins (3GD8A, 2RH1A, 1OCCA, 
and 3B6OA) aggregating the results from ten different simulations each generating 100 
models (1,000 total with 2L contacts and a minimum separation of 12). The proteins above 
represent the diverse distribution morphologies present and how each morphology is 
relatively stable across different sets of known restraints. 
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distributions displayed represent the best performing parameter set for known contacts – an L-

fraction of 2L and a minimum separation of 12 amino acids. For each restraint set, I generated 

100 models with BCL::Fold and then took the average of the distributions for all 10 runs with error 

bars representing the standard deviation at each RMSD100. As one can see from the resulting 

merged distribution, the morphologies are relatively constant despite the variation between 

distributions for each run. Peaks range from near the 11.5Å down to the 3.5Å range. Cases of 

bimodal distributions are also included in Figure 33. The four proteins displayed also represent a 

diverse set of the morphologies seen across the entire benchmark set. This is true for both runs 

with and without contact restraints. Other distributions in this work are the result of 1,000 

generated models using a single set of constraints determined using either DI or the machine 

learning models. For comparison, the positive control will be the aggregated result of all 10 sets 

of 100 models, or in other words the distribution resulting from all 1,000 models from the 10 

randomly generated known constraint sets. This decreases the effect of the variation from a single 

randomly generated restraint set. 

I also examined the effects of using minimum separations of 1, 6, and 12. Low minimum 

separations artificially decrease the number of informative contacts by including contacts with 

trivial sequence separations. In other words, positions separated by one or two amino acids are 

very frequently in contact due to their connection via peptide bonds. A minimum separation of 

approximately six ensures that contacts are on separate SSE and therefore contain useful 

information regarding the orientation of SSEs in three-dimensional space. As the minimum 

separation increases, the distribution of predicted models shifts towards lower RMSD100 models. 

However, once one reaches a minimum separation of six there appears to be an insignificant 
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benefit to increasing separation further. The shift from including contact restraints is significant. 

Thus, for known contacts, there is little difference between the results from sets using a minimum 

separation of 6 or 12 and the latter includes more information. However, as one can observe in 

Figure 36, predicted contact sets occasionally benefit from the use of a minimum separation of 6, 

although the results are still relatively similar. This is likely because contacts with a minimum 

separation between 6 and 12 may still be useful and more easily predicted than those above the 

more stringent cutoff of 12. Using a more conservative cutoff, occasionally decreases accuracy to 

a point that is more detrimental than the benefit of focusing on more informative long-range 

contacts. As such, I also optimized between the use of a minimum separation of 6 and 12 while 

examining the improvements from various L-fractions of contacts. 

One can observe the potential improvement from using increasingly large L-fractions of 

known contacts in Figure 34. The resulting distributions for 2RH1A, 3GD8A, and 1OCCA are 

depicted in darker colors as the number of contacts increases. Concordantly, the distributions 

shift towards lower RMSD100.  I have ordered them from most to least dramatic. The first, 2RH1A, 

results in a dramatic shift of the peak from 9.5Å to 3.5Å. However, it is more useful to examine 

the shift in the tail nearest the origin. This represents the best models sampled. This tail also 

experiences a significant shift (from 4.5Å to 2.5Å). The large increase in the fraction at these and 

nearby points also shows that there is a much higher sampling frequency for more native-like 

models. This enables faster structure determination and also simplifies the selection of models 

with correct topology. The increase in sampling frequency is less intense for 3GD8A and even less 

so for 1OCCA. However, a shift is still present in the tail of the distribution towards lower 

RMDS100 models. This trend of increasingly small RMSD100 across models exists across the 
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benchmark set and represents the upper limit on performance from using predicted contacts with 

BCL::Fold. In addition, these results also verify that including constraints of 100% accuracy 

significantly improve protein structure prediction accuracy. 
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Figure 34: RMSD100 Distribution of Predicted Models as Increasing L-Fractions of Known 
Contacts are Used 

The above set of proteins represents the range of improvement in model distributions from 
most to least drastic (2RH1A, 3GD8A, and 1OCCA). 2RH1A has a drastic shift from a peak at 
9.5Å to 3.5Å. 3GD8A represents an intermediate improvement where the distribution 
becomes bimodal, with the original peak diminished at 10.5Å but not to the extent of 
2RH1A. There is also a new peak at 3.5Å. Finally, 1OCCA has a peak which does not shift 
substantially but the tail is shifted towards lower RMSD100 scores, indicating some 
improved sampling with increasing numbers of contact restraints. 
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Having determined the upper limit of improvement, I compared the results using the 

above positive control restraint sets to the imperfect predicted contacts. I have included the 

comparison across negative control, naïve DI, processed DI, the best decision trees, the best 

ANNs, and the positive control in Figure 35. The negative control (black) shows the performance 

of BCL::Fold without any contact information. The predicted contacts all shift this distribution 

towards lower RMSD models although none of which are on par with the improvement achieved 

using known contacts (red). However, the shift seen with 1OCCA is very close to the performance 

of known contacts and is likely due to 1OCCA’s high contact prediction accuracy. Both machine 

learning methods perform noticeably better than the DI based methods for 2RH1A. This is very 

encouraging and likely due to the many false positives that exist between opposite sides of the 

membrane which are removed by the use of machine learning and additional descriptors. 

Prediction accuracy is much better for 2RH1A when one the machine learning methods, even in 

comparison to the processed DI 12.37% the best ANNs achieve an accuracy of 30.65% for the top 

L/2 contacts at a minimum separation of 12. This is a nearly 2.5 fold increase in accuracy. Thus, 

contacts derived from machine learning methods result in similar or improved distributions as 

compared to DI based methods with and without further processing. Substantial improvement is 

still possible by further increasing the accuracy of contact prediction methods as evidenced by the 

significant discrepancy between distributions from known contacts to imperfectly predicted 

contacts. One may attain further improvement by leveraging the confidence associated with each 

contact prediction or dynamically adjusting the contact restraints used based on scoring and 

confidence values. Nevertheless, it is still encouraging to see a significant improvement using 

these imperfect contact sets over the performance seen from using no contact information. 
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Figure 35: Comparison of Protein Model Distribution across Methods for 2RH1A, 1OCCA, and 
1HZXA 

The distributions across naïve DI (brown), processed DI (orange), the best decision trees 
(green), and the best ANNs (blue) above are book-ended by the distributions of the positive 
and negative controls (red and black respectively). The addition of contact restraints 
consistently shifts the distributions towards lower RMSD100 models. There is little 
difference between methods for 1OCCA and 1HZXA. However, both machine learning 
methods shift more substantially towards lower RMSD100 values in the case of 2RH1A. One 
should also note that the distributions for all experimental methods approach that of the 
positive control for 1OCCA. 
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Before progressing to a final comparison across methods, I first determined the best 

minimum separation and L-fraction (on average) for each method. I have included the results of 

this separation and L-optimization in Figure 36.  For each method, I generated 1000 models for 

the same subset of 9 of the 25 benchmark proteins across all L-fractions examined for a minimum 

separation of 6 and 12. I then determined the 10 best models by RMSD100 for each set of 

conditions and calculated the difference between the average for this top set compared to the 10 

best models for the models generated without any contact information. I determined the average 

RMSD100 improvement across all nine proteins and linked these values across L-fractions in the 

line graph in Figure 36. 

The positive control, with a minimum separation of 6 and 12 (gray and black), plateaus at 

approximately 2L contacts. The maximum occurs at 2L with a minimum separation of 12. There is 

very little difference between the different separation parameters for the control, but the 

predicted contacts have much more variation between the two separations – especially for 

contact fractions greater than L/2. Naïve DI is especially similar between the two for contact 

fractions less than or equal to L/2. The difference in performance also seems anti-correlated with 

the increasing accuracy from naïve DI, to the best decision trees, and finally to the best ANNs. In 

addition, there also appears to be a correlation between accuracy and the L-fraction that results 

in the best BCL::Fold performance. As accuracy increases across these three examples the best L-

fraction also increases – L/2 to 1L and finally to 3L. Naïve DI is also the only method with a 

maximum resulting from a set on contacts with a minimum separation of six. This may indicate 

that the method’s accuracy drops off more rapidly as one attempts to predict increasing numbers 
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of contacts. Machine learning based methods appear to reduce this trend, which may be because 

they do not rely solely on DI to rank potential contact pairs. I also examined processed DI and it 

performed nearly identically to naïve DI, as such, I did not include it. Finally, it is also interesting 

that the results from the best ANN models do not peak but rather continue to improve across the 

entire set of L-fractions examined. This is similar to the pattern seen with known contacts, as a 

larger fraction of false positive does not accompany the additional information that can confound 

predictions. Thus, the similarity of the ANN based method to the L-optimization trend seen with 

known constraints further suggests that ANNs are most accurate as well as beneficial for protein 

structure prediction. 
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I applied the optimal L-fractions and minimum separations determined using the nine 

protein subset of the benchmark set to predict structures for the entire benchmark set. I have 

depicted the distribution of the average angstrom improvement for the top 10 models from each 

protein across the top DI and machine learning methods in Figure 37. The improvement of each 

set is in comparison to the top 10 models from the negative control set, which was generated 

 

Figure 36: L-Fraction Optimization for Structure Prediction Using Contacts from the Positive 
Control, Naïve Direct Information, Best Decision Tree, and Best ANN 

Above is the average RMSD100 improvement for the top 10 models across the L-fractions 
examined with a minimum separation of 6 and 12 (light and dark colors respectively) for the 
positive control (black), naïve DI (red), best decision tree (green), and the best ANN (blue). 
Using known contacts leads to greater improvement, which plateaus at 2L and a maximum 
average improvement with a minimum separation of 12 of 2.90Å. Naïve DI, and the best 
decision tree peak for L-fractions of L/2 and 1L at a minimum separation of 6 and 12 
respectively (1.81Å for both). Finally, the best ANN peaks for the maximum L-fraction of 3L 
and a minimum separation of 12 with a maximum average improvement of 2.05Å. 
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without contact information. Known contacts result in the greatest average improvement - 4.14Å. 

The other experimental methods all significantly improve over the negative control but are not 

statistically significantly different from one another as determined by the Wilcoxon signed-rank 

test. However, the distributions as indicated by the box plots do suggest that the higher accuracy 

from ANNs does lead to more consistent improvement as compared to the DI only methods and 

the best decision trees. In addition, the average improvement is highest for results from structures 

predicted using the contacts from the best ANNs (1.70Å) compared to the second best, processed 

DI (1.65Å). Thus, predicted contacts are beneficial for protein structure prediction and results 

suggest that increased prediction accuracy in this range improve BCL::Fold performance. Other 

modifications to BCL::Fold that take better advantage of contact predictions may serve to 

highlight the ANN’s higher accuracy within the realm of protein structure prediction. 
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In addition, Figure 40 shows how the performance is improved individually across the 

entire benchmark set of 25 proteins. All points are below the diagonal indicating that the average 

 

Figure 37: Box Plot Comparing Top 10 Models by Average Angstrom Improvement in 
RMSD100 across Benchmark Set for Best Direct Information, Decision Tree, and ANNs 

The box plot depicted above shows the distribution of the average improvement in 
RMSD100 across the entire benchmark set for the best L-fraction and minimum separation 
across naïve DI, processed DI, the best decision trees, and the best ANNs in comparison to 
the positive control set (4.14Å). Among the experimental set the best ANN has the highest 
average improvement (1.70Å) as opposed to the average for naïve DI, processed DI, and the 
best decision trees (1.60Å, 1.65Å, and 1.52Å). Calculating the statistical significance of the 
minor average improvement using ANNs using the Wilcoxon signed-rank test found no 
statistically significant difference between that and the DI-based or decision tree sets. 
However, the distribution as gauged by the quartiles does appear to be consistently higher 
for ANNs. Lastly, there is still further room for improvement before these methods are able 
to match the performance achieved with known contacts. 
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RMSD100 of the top 10 predicted models is improved by the inclusion of contact restraints (in this 

case from the best model – the optimized ANN with the top 3L using a minimum amino acid 

separation of 12). Two proteins show relatively little improvement and have larger RMSD100 

values regardless of method – 2XQ2A and 3B6OA at (9.28Å, 8.85Å) and (10.01Å, 9.60Å) 

respectively.  
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Table 5 and Table 6 display the aggregated results for the best runs across the entire 

benchmark set. The former contains the baselines provided by both the negative and positive 

 

Figure 38: RMSD-RMSD Comparison of the Top 10 Models from Runs with Contact Restraints 
from the Best Model (ANN) and without Any Contact Restraints 

The plot shows the relative benefit of using predictions from the best model, the optimized 
ANN at 3L minimum separation of 12, in comparison to folding without any contact 
restraints. Average RMSD100 for the top 10 models in each run are plotted such that the 
result from the negative control set is given on the x-axis and the set using the best 
predictions is on the y-axis. Equal performance is depicted via the dotted x=y line and any 
point below this diagonal is improved by inclusion of our predicted restraints. All 25 points 
are below the diagonal showing consistent improvement across the benchmark set. 
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control sets. The inclusion of known contacts significantly reduces the RMSD100 across the entire 

set. These results indicate the potential upper bound for BCL::Fold using contact predictions with 

perfect accuracy. Table 6 contains the folding results for runs that included predicted contact 

constraints from the best naïve DI, processed filtered DI, decision tree, and ANN methods. Of the 

predicted methods, our best ANN method’s predicted contact restraints result in the lowest 

average best single model (5.50Å) and best average top 10 models (6.05Å) by RMSD100. The best 

result for each PDBID is bolded in the table. The ANN is best for the most benchmark models for 

both metrics, with 10 of the 25 best single models and 8 of the 25 best average top 10 models. 

The next best method for best model is processed and filtered DI, with 7 of the 25 best single 

models. The next best method for the top 10 is naïve DI, with 8 of the 25 best top 10 average. 

 

Table 5: Table of Full Benchmark Positive and Negative Control Folding Results (Top 10 Average 
RMSD100) 

 DI Filtered MSA Stats Negative Best RMSD100 Pos. Control 2L ms 12 

PDBID L TMhelix Meff Cov Best Top 10 Avg S.D. Best Top 10 Avg S.D. 

3NCYA 422 12 1205 0.89 7.90 8.56 0.28 2.53 2.78 0.11 

2RH1A 442 8 451 0.65 5.52 6.17 0.27 2.22 2.44 0.09 

1OKCA 292 6 1043 0.89 6.45 7.61 0.42 3.56 3.89 0.17 

1XQFA 362 11 1021 0.96 7.46 7.75 0.16 2.34 2.45 0.07 

3GD8A 223 7 1062 0.96 6.25 6.58 0.20 2.88 3.08 0.13 

1L7VA 324 10 1045 0.91 6.53 7.37 0.47 2.90 3.12 0.11 

3MKTA 460 12 1068 0.92 6.33 7.93 0.57 3.86 4.17 0.20 

3RKON 473 14 1722 0.83 7.80 8.30 0.29 2.86 3.36 0.21 

1OCCA 514 12 754 0.98 7.33 7.71 0.23 2.32 2.85 0.32 

1OCCC 261 6 521 0.96 7.44 8.00 0.21 5.36 5.59 0.08 

1PP9C 379 8 581 0.92 7.15 7.59 0.22 3.56 4.04 0.27 

3H90A 283 6 1039 0.97 6.62 7.26 0.37 3.17 3.84 0.24 

3B45A 180 6 1073 0.87 6.30 6.53 0.12 3.46 3.66 0.10 

1PW4A 434 12 1604 0.88 6.98 7.57 0.33 2.46 2.82 0.21 

3DHWA 203 5 1065 0.88 6.94 7.52 0.30 5.33 5.51 0.11 

1YMGA 233 7 1010 0.9 6.42 6.64 0.24 2.84 3.08 0.12 

3B60A 572 6 1568 0.88 9.37 10.01 0.33 5.56 6.27 0.40 
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2A65A 510 12 1043 0.83 8.64 9.06 0.24 2.20 2.63 0.15 

1HZXA 340 7 1151 0.8 5.77 6.28 0.23 2.08 2.16 0.06 

3PJZA 468 12 923 0.79 7.69 8.59 0.36 4.14 4.82 0.35 

2XUTA 456 14 1040 0.71 7.74 8.31 0.34 3.18 3.74 0.26 

3ZUXA 308 10 1005 0.9 7.11 7.61 0.22 2.66 2.79 0.08 

2XQ2A 538 15 1380 0.82 8.75 9.28 0.23 3.40 3.88 0.39 

3M71A 306 10 646 0.97 5.88 6.41 0.34 2.34 2.45 0.08 

3QE7A 407 14 1355 0.82 8.43 9.05 0.32 4.37 4.64 0.18 

AVERAGE 376 9.68 1055 0.875 7.15 7.75 0.29 3.26 3.60 0.18 

The table above displays the average, best, and standard deviation with respect to the 
RMSD100 across the entire benchmark set for both the positive and negative controls. The 
positive control shown was the best performing run analyzed and utilized 2L contacts at a 
minimum separation of 12. In addition, each result row has the length (L), number of 
transmembrane helices (TMhelix), the effective alignment depth (Meff), and target sequence 
coverage (Cov) matched to each PDBID. 

 
 

Table 6: Table of Full Benchmark Folding Results with Predicted Contact Restraints from the 
Best Methods Across Categories (Top 10 Average RMSD100 Å) 

  DI Naïve L/2 ms 6 DI Processed Filt L/2 ms 6 Best Dtree 1L ms 12 Best ANN 3L ms 12 

PDBID Best 
Top 10        

Avg 
S.D. Best 

Top 10  
Avg 

S.D. Best 
Top 10      

Avg 
S.D. Best 

Top 10      
Avg 

S.D. 

 
3NCYA 

6.15 6.84 0.39 6.17 6.89 0.47 6.26 6.85 0.38 6.66 7.19 0.26 

2RH1A 5.84 5.98 0.08 5.49 5.86 0.23 4.26 4.47 0.10 4.24 4.60 0.21 

1OKCA 5.12 5.90 0.32 5.49 5.99 0.30 5.28 5.47 0.13 4.56 5.27 0.26 

1XQFA 5.87 6.81 0.51 5.76 6.53 0.38 5.81 6.46 0.31 6.01 6.70 0.27 

3GD8A 3.58 3.68 0.06 4.08 4.26 0.11 3.62 3.82 0.13 3.54 3.72 0.09 

1L7VA 5.19 6.34 0.54 5.71 6.33 0.33 6.09 6.91 0.41 6.31 6.82 0.24 

3MKTA 6.27 6.67 0.14 5.65 5.85 0.12 6.11 6.50 0.24 4.73 5.57 0.39 

3RKON 6.11 6.98 0.48 5.69 6.34 0.31 7.17 7.86 0.30 4.98 5.85 0.38 

1OCCA 3.94 4.23 0.22 3.84 4.16 0.20 4.45 4.79 0.17 4.46 5.06 0.27 

1OCCC 5.63 6.06 0.22 6.20 6.39 0.16 6.02 6.19 0.13 5.52 6.18 0.24 

1PP9C 5.26 5.63 0.21 5.30 5.62 0.20 5.04 5.51 0.23 6.41 6.81 0.22 

3H90A 4.78 4.90 0.09 5.71 5.80 0.05 5.05 5.33 0.14 4.79 4.95 0.09 

3B45A 4.29 4.54 0.12 4.64 4.93 0.17 4.43 4.63 0.15 4.70 4.82 0.10 

1PW4A 5.20 5.47 0.17 4.50 5.11 0.34 5.35 5.67 0.23 5.78 6.23 0.23 

3DHWA 6.41 6.63 0.11 5.81 6.30 0.21 6.88 7.19 0.13 5.91 6.30 0.21 

1YMGA 3.89 4.22 0.18 4.06 4.23 0.12 4.29 4.43 0.06 3.99 4.25 0.16 

3B60A 8.69 9.36 0.32 8.57 8.86 0.18 9.84 10.13 0.23 9.25 9.55 0.11 

2A65A 4.78 5.59 0.37 4.67 5.33 0.32 6.02 6.42 0.29 5.72 6.32 0.36 

1HZXA 3.95 4.14 0.16 3.31 3.61 0.17 3.64 4.12 0.20 3.28 3.60 0.16 

3PJZA 8.01 8.44 0.18 7.95 8.53 0.25 7.41 8.02 0.32 6.42 7.02 0.33 
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2XUTA 8.34 8.84 0.28 8.19 8.47 0.16 8.00 8.27 0.12 6.73 7.50 0.42 

3ZUXA 4.88 5.14 0.14 4.50 4.84 0.21 4.87 5.17 0.21 4.33 5.31 0.53 

2XQ2A 8.27 9.51 0.48 9.12 9.32 0.10 8.44 9.08 0.35 8.38 8.96 0.27 

3M71A 4.69 5.19 0.28 4.56 5.53 0.35 4.88 5.31 0.18 4.57 5.42 0.37 

3QE7A 5.98 6.69 0.40 6.23 7.30 0.43 6.81 7.12 0.21 6.13 7.16 0.56 

AVERAGE 5.64 6.15 0.26 5.65 6.09 0.24 5.84 6.23 0.21 5.50 6.05 0.27 

The table above displays the average, best, and standard deviation with respect to the 
RMSD100 Å across the entire benchmark set with contacts predicted from one of the following 
methods: naïve DI at L/2 and minimum separation of 6, processed and filtered DI at L/2 and 
minimum separation of 6, best decision tree at 1L and minimum separation of 12, or best ANN 
at 3L and a minimum separation of 12. The L-fraction and minimum separation for each method 
was independently optimized by sampling across L-fractions of L/10, L/5, L/2, 1L, 2L, and 3L as 
well as minimum separations of 6 or 12. Results are all matched to each PDBID and further 
alignment details can be found in Table 5. Additionally, the best single model and top 10 
average results from all shown contact prediction methods for each PDBID is bolded. Our 
method using ANNs has both the lowest average RMSD100 for the best model (5.50Å) as well 
as the lowest top 10 average across the benchmark (6.05Å). 
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Finally, Figure 39 shows how close the best model by RMSD100 replicates the native fold 

for 1HZXA. Topology is correct and there is substantial superimposition of model helices with 

those of the native structure.  One expects some deviation as BCL::Fold uses idealized helices 

without bends or kinks. These models still require the addition of side chains as well as other 

refinement but the similarity between the predicted model and the native greatly simplifies 

refinement and final all-atom predictions. 

  

Figure 39: Visualization of Best Protein Model by RMSD100 Aligned to Native from Contact 
Predictions Made by the Best ANN (3L and Minimum Separation 12 for 1HZXA) 

The best model by RMSD100 (3.3Å) is aligned above to the native structure. The model was 
produced as part of a folding run of 1000 proteins using the top 3L contacts as predicted by 
the best ANN with a minimum sequence separation of 12. Helices line up well, as can be 
seen from both an in-membrane and above-membrane view. Deviation from the native 
structure is due in part to the use of idealized SSEs that do not bend. 
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BCL::Fold Structure Prediction with Confidence-Based Scoring 

The decrease in accuracy as one uses larger numbers of contact restraints highlights an 

opportunity for improving protein structure prediction within BCL::Fold. I have explored one 

potential adjustment to the algorithm, which differentiates between restraints at different 

positions within the ranking by weighting their respective scores differently. Equation 3 describes 

this modified weighting; each model’s contact score is the sum of the scores as determined by 

the optimized scoring function multiplied by the normalized confidence of each prediction. The 

normalized weight is the contact prediction’s confidence divided by the average confidence for 

the given restraint set. As such, this method weights scores of contact predictions with confidence 

values above the mean more heavily and vice versa. Thus, the higher accuracy contacts at the top 

of the ranking have more influence over the contact score while the false positives, which are 

more numerous among the lower ranked predictions, have less influence. In addition, true 

positives ranked lower within the given contact restraint set also have less influence on the 

model’s contact score. 

 

𝐶𝑆(𝑝) =  ∑ 𝑆(𝑐𝑖)
𝐷(𝑐𝑖)

𝑐̅

𝑓

𝑖=1

 (3.) 

 

  

Equation 3: Simple Confidence-Based Scoring Algorithm 

The algorithm for confidence-based scoring (CS) for a given protein p is the sum of the fraction 
of L (f) restraint scores. Each restraint score (S) is multiplied by the confidence (direct 
information value) for the restraint divided by the mean confidence across all f restraints. 

I evaluated the promise of such confidence based scoring by folding 1,000 models using 

contact predictions from direct information rankings both with and without confidence weighting. 
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I have presented the average RMSD100 for the top 10 best models for each protein from both 

conditions in Figure 40 (error bars are given displaying the standard deviation for each ten protein 

set). Average RMSD100 for models produced using confidence weighting is displayed along the y-

axis and results from predictions without confidence weighting are on the x-axis. Points that lie 

along or very near the black dashed line have roughly equivalent average RMSD100 values 

regardless of confidence weighting.  The points in Figure 40 suggest improvement from the 

addition of confidence weighting and vice versa. Of the eight proteins examined, five lie very near 

the diagonal – showing essentially no difference, two (2RH1A and 3MKTA) lie slightly below it – 

suggesting some possible improvement, and one (1OCCA) is far above the diagonal and is 
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significantly and negatively impacted by confidence weighting. The large variation in performance 

is likely related to the wide range of accuracies seen in this benchmark set. The distribution of 

direct information values, and consequently the distribution of confidence based weights, are 

much more similar across proteins than their accuracy. Thus, in cases where the confidence 

weights appropriately match the accuracy of the predicted contacts, the final models are closer 

to the native-like fold. 

 

Figure 40: RMSD-RMSD Comparison of DI with and without Confidence-Based Scoring at 1L 
and Minimum Separation 6 for a Diverse Subset of 8 Benchmark Proteins 

I calculated the mean of the top 10 models by RMSD100 for each protein for both folding 
runs performed with and without confidence-based scoring. There is little difference from 
adding confidence-based scoring across seven of eight proteins (points are very close to the 
diagonal dashed line, which indicates no change). One protein is significantly worse after the 
addition of confidence based scoring – 10CCA. This is likely due to its relatively poor accuracy 
using an early direct information based contact prediction set. The negative effects of the 
false positives included appears to be amplified by confidence scoring. 
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In most cases, the decrease in accuracy for DI predictions, as one uses contact restraints 

with lower DI values, does not properly match the simple formula of Equation 3. Cases with 

especially high accuracy lose information, as the formula will reduces the influence of still useful 

contact restraints below the mean. This results in an effectively smaller number of usable contact 

restraints. While confidence based scoring can reduce the effect of false positives, it is more 

appropriate for larger numbers of predicted contacts and must match the accuracy across the 

contact restraint set. 

In Figure 41, I have also depicted the accuracy, direct information, and confidence 

functions for 3MKTA and 1OCCA, which improve and worsen respectively. The increased 

weighting for the highest ranked contact predictions for 3MKTA does increase the effect of 

restraints that are slightly more accurate, although accuracy remains relatively high across the 

entire set. The point at which the confidence weights cross the 1.0 threshold also coincides 

roughly with the beginning of a steady decline in accuracy for 3MKTA. On the other hand, the 

confidence weighting formula in Equation 3 does not capture the sharper decrease in accuracy in 

1OCCA, which has a much smaller range of accurate contacts. 3MKTA’s DI values do decrease 

more gradually than 1OCCA despite its smaller number of contacts. Further analysis of the 

distribution and magnitude of direct information values may elucidate methods to better predict 

the contact prediction accuracy for a given protein. 

Confidence based scoring prediction is a promising potential avenue of research for 

further improvement of protein structure prediction accuracy, but results from this simple 

implementation suggest that significant work is necessary to achieve reliable improvement. 

Results would benefit from a better understanding of prediction accuracy for a given protein 
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based on the distribution of DI values. In addition, improved methods will likely be less reliant on 

information regarding the number of top contacts given. It would be ideal to determine an 

expected accuracy across a set of predicted contacts based on their direct information values 

alone – adjust weights to maximize the effects of true positives while minimizing the effects of 

false positives within the restraint set. In this way, one would enable the prediction of more 

native-like models despite the imperfect nature of DI-based restraints. 
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Figure 41: Comparison of Direct Information, Running Accuracy, and Confidence Weights 
across the Top 1L Contacts for 3MKTA and 1OCCA 

Above I have included a comparison of the direct information values, running accuracy, and 
confidence weighting for 3MKTA, an average example of good contact prediction using 
direct information, and 1OCCA, a poorly performing example from an early direct 
information based method. The distribution and magnitude of the confidence weighting is 
relatively similar, while the direct information values are much larger and decrease more 
slowly for 3MKTA. The point where confidence weighting crosses the 1.0 threshold – 
distinguishes between the set of contacts weighted more and less heavily by confidence 
scoring. The accuracy for 3MKTA is much higher initially and stays around 30% across the 
entire set of the top L contact predictions. 1OCCA’s accuracy drops off much more 
precipitously and quickly approaches 0%. Thus, the confidence based score increases the 
weighting for many contacts that are in a range at or below 10% accuracy. 
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BCL::Fold Structure Prediction Using Fractions of the Given Contact Restraints 

The top L-fractions of contact predictions using solely direct information or combinations 

of such correlation descriptors with other sequence data via machine learning include some 

number of false positives. Such incorrect contact restraints negatively affect protein structure 

prediction. One potential approach to reduce their impact includes only attempting to satisfy 

fractions of the given contact restraints. I evaluate each contact restraint across a given model 

based on the scoring function discussed in the section “Contact Score Function Optimization”. I 

then sort all restraints by their individual values and only the top indicated fraction is included in 

the model’s score. If the fraction used is close to the actual positive predictive value and sampling 

is not biased against satisfying correct contact restraints, then some structure prediction runs may 

eventually satisfy most if not all correct restraints while excluding incorrect restraints. Such cases 

may more closely replicate the performance of the positive control sets, which consistently 

outperform current imperfect prediction methods. 

Figure 42 displays the average improvement in RMSD100 for the top ten models for 

across a nine protein subset of the benchmark. I employed fraction thresholds of 0.25, 0.5, 0.75, 

0.95, and 1.0, which are also compared to results from the positive and negative controls. Contact 

restraints are derived from the naïve filtered DI-based set. Including a fraction of contact 

restraints always improves accuracy for eight of the nine proteins. For 2RH1A, which does not 

consistently benefit from contact restraints, there is some improvement when one uses the top 

2L restraints with a 0.25 fraction threshold. It is clear that inclusion of contact restraints improves 
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results and that the optimum fraction threshold varies with little difference between most 

thresholds. This is especially true when one uses the top 1L constraints. There is a slight shift 

towards lower contact fractions when one uses the top 2L constraints, which are usually far less 

accurate. Thus, enabling the scoring function to ignore results from a subset of the provided 

restraints seems to provide a slight but unreliable benefit for protein structure prediction when 

used with lower accuracy contact restraint sets. One of the most significant issues with this 

approach is the inability to determine the ideal fraction before knowing the accuracy of one’s 

contact predictions. The fraction thresholds used in Figure 42 cover a very large range and as a 

result, most are very distant from the ideal. Using too low a fraction may underutilize correct 

contact predictions, while too large a fraction forces one to include false positives. The slight shift 

between the two different sized sets of contact predictions suggests that performance may 

benefit from a more nuanced application of contact fractions. It is also possible that the benefits 

of fractional scoring require one to more rigorously sample the search space to detect a significant 

benefit. Furthermore, while sampling all fractions may be too computationally demanding, one 

may be able to dynamically explore fraction thresholds during folding. Given a contact prediction 

method with reasonable accuracy, the smaller set of false positives should be included in the high 

scoring set less often; this is as the overall BCL::Fold scoring function guides each model towards 

a native-like structure. As such, one may explicitly eliminate contacts that score poorly more 

often. One may also gradually decrease the fraction threshold by monitoring the score across 

restraints over time. For example, beginning with all given constraints and finding that models 

score 90% of the contacts very highly, one could adjust the fraction threshold to 0.90 to see if 

overall scoring improved further. 
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Regardless, scoring based on fractions was not further evaluated, as the benefit appears 

to be relatively minor and unreliable given the large variation in contact prediction accuracy 

across proteins. In addition, these results also confirm that simply including relatively accurate 

contact prediction already significantly improves BCL::Fold performance. 
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Figure 42: Comparison of RMSD Improvement with Different Sample Fraction Sizes 

I modified BCL::Fold to use a threshold value to determine a fraction of contacts to satisfy - 
including them in scoring. Above are the average RMSD100 improvements for a subset of 
nine benchmark proteins. Results range from the negative (using zero of the predicted 
constraints), to the full restraint set, and finally the improvement seen using randomly 
selected known contacts. I evaluated initial sets of the top 1L and 2L constraints with a 
minimum separation of six. There is little difference between the different fractions used. 
Even satisfying 25% of the top 1L contacts already significantly improves folding, although 
not as much as higher fractions nor as much as the positive control set of restraints. The top 
2L constraints are far less accurate and thus contain several examples where smaller 
fractions of contact restraints perform better than all larger fractions. The difference in 
performance is minimal and unreliable. All nine proteins potentially benefit from including 
some fraction of the predicted contact restraints and eight of the nine improve with any 
fraction of the predicted contact restraints. 
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Conclusion 

Predicted contacts which leverage global position, sequence, and correlation information 

significantly outperforms DI-only prediction. The best ANNs outperform the best decision trees 

and the increased accuracy of these methods carries through to protein structure prediction. The 

average RMSD100 improvement is highest for models generated using contact predictions from 

the best ANNs as compared to the best decision trees or DI-based methods. 

DI from filtered MSA with manually optimized e-values yield much more accurate contact-

predictions than traditional methods and most pairs outside the 8Å cutoff are still relatively close 

to that threshold. However, the highest accuracies require topology-based filtering. Regardless, 

DI-based constraints without such filtering can still significantly improve BCL::Fold performance. 

Furthermore, filtering does not necessarily always yield the best BCL::Fold performance. 

Increased performance with such constraints is substantial but not equivalent to using known 

contacts. As such, further increases in contact prediction accuracy will further improve fold 

predictions. 

Finally, initial results from the addition of confidence-based scoring suggest that such 

scoring may improve results and specifically increase the sampling frequency of native-like 

topologies in those cases. However, the confidence scoring method must appropriately match the 

accuracy distribution across the L-fraction used. This distribution is highly variable across the 

benchmark set and requires new methods that are able to predict the accuracy distribution to 

maximize the benefits of confidence-based scoring. 
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Methods 

Project Overview 

The process for all contact predictions begins with a target protein sequence and the 

aggregation of sufficient homologous protein sequences with sufficient coverage (Lunt et al., 

2010a). I then used HHBlits to align these sequences and columns with greater than 30% gaps are 

 

Figure 43: Contact Prediction Flowchart for Both Direct Information and Machine Learning 
Based Methods 

The process overview for producing contacts is above divided into the DI is divided above 
into the DI based (solid black outline) and machine learning (dashed black outline). Select 
steps have been quantified in the adjacent sections. Both branches result in sets of predicted 
contacts, which were then used in combination with BCL::Fold to predict the structures of 
the 25 membrane proteins in the benchmark set. 
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removed. One may then calculate DI between the remaining columns. For the prediction of 

membrane proteins, I also removed soluble domains focusing solely on the transmembrane 

domain for all proteins in my benchmark set. DI can be used to rank and select the top L-fractions 

of contacts or one can provide DI for each contact pair position as a descriptor to a machine 

learning method. In this case I also created aggregate statistics of the aggregated mean, max, 

standard deviation, and normalized mean for each e-values used to create MSA. These correlation 

descriptors are combined with sequence information and global sequence position descriptors to 

create a set of 1,505 descriptors for each contact pair. I then selected from these descriptors an 

optimal set of 30 descriptors for use with decision trees and 146 for ANNs. For predictions, I used 

the average prediction across 5 models from each method to rank contact pairs and then used 

the top L-fractions of those rankings as contact predictions. In the case of a non-zero minimum 

separation, filtering is performed before the top L-fraction was selected. Contact prediction 

restraint sets are then provided to BCL::Fold for inclusion during generation of protein structure 

predictions. These contacts, if sufficiently accurate, guide structure prediction by influencing the 

scoring of each model produced during the Monte Carlo simulation performed within BCL::Fold. 

 

Multiple Sequence Alignments 

I generated MSA using the HHBlits software suite. HHBlits is a hidden markov-based 

iterative homologous sequence identifier and multiple sequence aligner. The sheer size of the 

alignments necessary for accurate DI calculation necessitate such an exceptionally fast alignment 

method (Remmert, Biegert, Hauser, & Söding, 2012). The package also contains several utility 
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scripts that reformat and filter MSA, as well as renumber PDB files such that they correspond to 

the generated alignments. I used the following parameters: maximum identity 100, sequence 

coverage of 70%, two iterations, and e-values at thresholds of 1E-3, 1E-5, 1E-10, 1E-15, 1E-20, 1E-

30, and 1E-40. I filtered MSA based on these parameters where indicated. I also removed MSA 

columns with greater than 30% gaps before DI calculation. All sequence alignments were done 

using the nr20 Uniprot dataset last updated on August 11th, 2012 (Eddy, 2010; Lunt et al., 2010b; 

Remmert et al., 2012). 

Calculating Direct Information 

DI calculation begins with accumulating a significant number of evolutionarily diverse but 

related sequences. Morcos et al. use a minimum of 1000 non-redundant sequences after filtering 

with higher E-value thresholds than default for the HMMer software package. The E-values used 

are - 1E-3, 1E-5, 1E-10, 1E-15, 1E-20, 1E-30, and 1E-40. After alignment, the DI algorithm re-

weights element frequencies to reduce the impact of overly similar sequences. One can then 

compute mutual information from the re-weighted frequency counts (for columns and column 

pairings). One then applies the maximum entropy principle to compute the direct coupling 

between sites. Finally, one determines direct information - separating direct from indirect 

correlations. The direct information is essentially the mutual information between columns that 

is solely a result of the direct coupling in the prior step. The output is a symmetric matrix of 

significant pairwise correlation Cij
ab. HHBlits scripts re-align contacts by mapping the MSA to the 

original target structure. 
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Selection of Restraints for Positive Control 

The positive control benchmark runs use random samplings of known contacts based on 

the solved protein structures documented in each protein’s respective PDB file. Cβ to Cβ distances 

(Cα in the case of glycine) which are within 8Å of one another determine all contacts. After 

randomization, I create each contact file based on the necessary fraction of L and minimum 

separation. L is based on the length of the sequence file trimmed to solely the transmembrane 

region of the protein at multiples of L/10, L/5, L/2, L, and 2L. Minimum separations used include 

0, 3, 6, and 12. 

Selection of Direct Information Restraints 

All pairwise positions included within the final MSA after gaps are removed for columns 

with greater than 30% gaps are assigned their value from the DI correlation matrix. Pairs are 

ranked according to the magnitude of the accompanying DI value. Then, depending on the desired 

L-based cutoff or minimum separation filter, a restraint file is generated beginning with the 

highest ranked pairs and excluding pairs that violate these parameters. The length of the 

sequences determined the L values, after trimming down to encompass only the portion of the 

protein that includes the transmembrane helices. Soluble domains and experimentally added 

domains to aid in crystallization were removed. 



 

112 
 

Machine Learning Model (ANN and Decision Tree) Training 

Once I determined optimal parameters and descriptors, I trained five models for each set 

of five proteins using datasets with 15, 5, and 5 proteins forming the training, monitoring, and 

independent sets respectively. The five models were created by randomizing proteins between 

the training or monitoring test sets. Data points never appears in more than one set and no data 

from proteins in the independent set was ever included in either the training or monitoring data 

sets. The objective function used for training during initial descriptor selection was RMSD and 

then average enrichment for final training. For decision trees, I attempted to reduce the effect of 

overtraining by setting the minimum split size to 20. To determine the optimal alpha and eta 

parameters for the ANNs I performed a grid search settling on an eta of 0.000017 and an alpha of 

0.0 as my step size during training was always set to 1. For all correlation descriptors, any 

undefined values were replaced by the average correlation across the protein sequence. Finally, 

the average of all five predictions across each set of five models are used to rank all possible 

pairwise amino acid pairings and the top ranked L-fractions are selected as the contacts for the 

given protein. 

Machine Learning Descriptor Optimization 

Decision Trees – Descriptors were optimized by iteratively scoring all descriptors using 

input sensitivity (with a delta of 1.0) across the 20 models from a five fold cross validation for each 

set of ranked descriptors.  The first scoring indicated that only the top 210 had non-trivial scores. 

As such I iteratively rescored the top descriptors (starting from this set of 210) with input 

sensitivity using the best run from the previous stage. The best threshold is set as the new top 
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descriptor threshold. To decrease the likelihood of removing useful descriptors, I removed no 

more than half of the descriptors before rescoring at each stage. Thus, I subsequently examined 

the top 160, 130, and 70 descriptors. For the top 70 the range around the top 30 of this set 

resulted in the best performance. I used the enrichment average as the objective function and 

evaluated each set of models generated by calculating the integral of the precision over the range 

0.01% to 0.55% of the fraction predicted positive. This range closely captures the contacts 

predicted when taking the top 1L predictions across all proteins while decreasing the noise 

present below 0.01%. The modest number of data points results in drastic changes from small 

perturbations in overall predictions below 0.01%. 

ANNs - Descriptors were optimized with a descriptor selection method that was previously 

introduced to the BCL. At its core, utilizes the weights that comprise the neural network to calculate 

an approximate derivative for each feature column on the result, specifically, terming the weight 

matrices between layer i and layer j Mij, it computes product(Transpose(Mij)) for each model in the 

cross validation.  Two statistical measures previously implemented in the BCL were used score 

descriptors: consistency of effect (e.g. does descriptor i tend to increase (or decrease) the likelihood 

of a contact across all models in the cross validation ensemble, or not), and average (pseudo) 

derivative squared.  Each measure was rescaled between 0-0.5, summed, and squared.  The 

rationale is that features that are just noise will tend to have small overall weights and that they 

should be centered about zero.  It is possible for non-noise columns that have approximately 0 

distribution about 0 though, so that's why the derivatives squared also helps. 
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Predicted Contact Restraint Generation 

Once an optimal set of machine learning training parameters were determined for DTs 

and ANNs, I trained a set of 5 models that did not include any information from the proteins to 

be predicted with each set of models. All possible pairwise contacts for each model are then 

ranked by the contact predictions averaged from all 5 models and the top L-fraction of the ranking 

is used as the contact restraints for folding simulations. In the case that a minimum separation is 

used, all pairs are removed from the ranking before the top L-fraction is selected. 

BCL::Fold Membrane Protein Structure Prediction 

BCL::Fold creates each model through a Monte Carlo optimization with two stages. It 

begins with the assembly of models by placing and performing large SSE-based moves. The second 

stage is focused on the refinement of the generated models and utilizes small amplitude SSE 

translations and rotations to arrive at a final model. After each SSE move the models are scored 

using knowledge-based potentials that examine membrane protein topology, environment 

prediction accuracy, SSE alignment, as well as radius of gyration, amino acid environment, contact 

order, amino acid clashes, and a loop score among others(Karakaş et al., 2012; B. Weiner, 

Woetzel, & Karakaş, 2013; Woetzel et al., 2012). If given, contact information is also used to score 

models. Distributions are generated by repeating this process in parallel 1,000 times and 

comparisons between runs are done using the average of the top 10 models by RMSD100. 
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RMSD-RMSD Comparison 

RMSD-RMSD points are the average of the top 10 models by RMSD100 from model folding 

runs of 1,000 models. BCL::Score also filters models before ranking, such that incomplete models 

which may receive arbitrarily low RMSD100 scores (due to the fact that atoms with largely 

deviating positions which would elevate the RMSD100 score) are excluded in cases where some 

SSE are not included in the final model. Error bars are the standard deviations of the average for 

each 10 model set. 
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Overview 

This protocol capture contains the steps necessary to obtain the results presented in the 

master's thesis titled "Using Evolutionarily-Based Correlation measures and Machine Learning to 

Improve Protein Structure Prediction in BCL::Fold" by Pedro Teixeira. While the actual protocol 

was carried out on every protein within Table 1 of the thesis, this protocol capture only uses 

1HZXA as an example for simplification. The BCL software suite is publically available and the 

license is free for non-commercial users at 

http://www.meilerlab.org/index.php/bclcommons/show/b_apps_id/1.  

http://www.meilerlab.org/index.php/bclcommons/show/b_apps_id/1
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Background 

SUMMARY 

De novo protein structure prediction is a challenge due to the sheer size of the potential 

search space. One can limit the set of possibilities with long-range contact restraints (positions 

distant in the primary sequence but known to be in close proximity within the tertiary structure). 

Most available contact prediction methods achieve accuracies insufficient for de novo protein 

folding. Direct Information (DI) is a notable exception. DI has been used to determine the 

structures of some membrane and soluble proteins with large numbers of homologous sequences 

compiled into deep alignments. However, DI has many limitations. 

This work documents the usage of machine learning methods to predict contacts more accurately 

by combining DI with sequence information. In addition, we used predicted contacts to improve 

the accuracy of protein structure within the Biochemical Library (BCL). This innovative resource 

will augment the elucidation of traditionally challenging membrane protein structures – 

specifically larger proteins, which are customarily computationally difficult to address. 

This protocol capture covers the following: 

1. Generating multiple sequence alignments (MSA) and determine DI between all pairwise 
amino acid sites in a given protein 

2. Training machine learning models to predict more accurately long-range protein 
contacts using DI and other sequence information 

3. Predicting long-range contacts using the aforementioned machine learning models 
4. Visualizing the contacts generated 
5. Leveraging the predicted contacts to enrich for native-like models during de novo 

prediction using BCL::Fold 
6. Initiating iterative folding runs to further refine protein fold models 
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Protocol 

Environment and Directory Setup (Required Before All Other Steps) 
setup and source cshrc 
cd <installation directory> 

Step Commands Comment 

1A. Prepar

e directory 

and file set 

Create Project Directory with Similar Structure as 

Example:  

mkdir data/1HZXA/ 
mkdir pbs/ 
mkdir -p training/COMBINED/ 
mkdir folding/ 

 

Download the BCL: Place the executable in the top level 

directory of this project as bcl.exe (at the same level as the 

folding/ training/ data/ pbs/ directories)  

Obtain PDB files:  

Download GPCR crystal structures from the Protein Data 

Bank at http://www.rcsb.org. Visualize to assist in 

trimming long non-membrane loops using pymol (and 

here's a handy script for turning on cartoon and rainbow 

spectrum):  

PyMOL>run scripts/pymol.py 

 

(Set of all trimmed .pdb files used in manuscript is 

included in trimmed_pdbs/)  

Copy over .pdb and .fasta files with PDBID.<pdb>|<fasta> 

and include the chain IDDownload the BCL and place the 

executable in the top level directory of this project (at the 

same level as the folding/ training/ data/ directories). Files 

should be named as 1HZXA.pdb, 1HZXA_trim.pdb, and 

1HZXA.fasta within data/1HZXA/  

Get secondary structure outputs (within data/PDBID/ 

directory):  

runss 1HZXA.fasta 
run_octopus.pl --fasta 1HZXA.fasta 
runBCLjufo9D 1HZXA.fasta 
 

Input:  

Crystal structure PDB 

files from the Protein 

Data Bank 

at http://www.rcsb.or

g. Subdirectory 

created to house 

1HZXA specific data, 

improves organization 

as remaining data files 

are generated.  

 

All proteins in the 

paper were trimmed, 

only the 

transmembrane 

domain and short 

internal loops are 

used for contact 

prediction and 

folding.  

 

*.fasta|.pdb|_trim.pd

b  

 

Output:  

1HZXA.ascii, 

1HZXA.fasta, 

1HZXA.jufo9d_ss, 

1HZXA.jufo9d_tmh, 

1HZXA.jufo9d_topo, 

1HZXA.nnprf, 

1HZXA.pdb, 

1HZXA.psipred_blast, 

1HZXA.psipred_ss, 

1HZXA.rdb6Prof, 

1HZXA.topo,  

1HZXA.ascii6, 

http://www.rcsb.org/
http://www.rcsb.org/
http://www.rcsb.org/
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1HZXA.jufo9d, 

1HZXA.jufo9d_tm, 

1HZXA.jufo9d_tms, 

1HZXA.jufo_ss, 

1HZXA.octo_topo@, 

1HZXA.png, 

1HZXA.psipred_horiz, 

1HZXA.psipred_ss2, 

1HZXA.rdbProf  

1B. Create 

a pdbs.ls 

file that 

lists all 

PDBIDs on 

which 

scripts will 

run 

Make a pdbs.ls file for other scripts to use so they can 

run through all PDBIDs that you are using (format is 

PDBID with chain id separated by newlines:  

1HZXA  

1GZMA  

etc.. 

Output (located in top 

level project 

directory):  

pdbs.ls  

2A. Downlo

ad and 

prepare 

the BCL 

1. cd into the protocol capture directory 

2. install the bcl directly into this directory (the extracted 

protocol-capture directory) 

3. When following the protocol capture directions, 

replace bcl.exe some:Application with ./bcl/bcl-apps-

release-static.exe some:Application 

Output:  

Unpacked BCL directory 

in protocol home  

2B. Downlo

ad and 

prepare 

the 

HHSuite 

Download and unpack HHBlits such that the directory 

path for scripts is as such link to software: 

hhsuite/hhsuite-

2.0.15/scripts/renumberpdb.pl 

Output:  

Unpacked hhsuite/ 

directory in project 

root  

ftp://toolkit.genzentrum.lmu.de/pub/HH-suite/
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GENERATE MSA AND DI FOR ALL AMINO ACID SITE PAIRS 

Identify Sequences and Create MSA 

I generated MSA using the HHBlits software suite. HHBlits is a hidden markov-based 

iterative homologous sequence identifier and multiple sequence aligner. The sheer size of the 

alignments necessary for accurate DI calculation necessitate such an exceptionally fast alignment 

method (Remmert, Biegert, Hauser, & Söding, 2012). The package also contains several utility 

scripts that reformat and filter MSA, as well as renumber PDB files such that they correspond to 

the generated alignments. I used the following parameters: maximum identity 100, sequence 

coverage of 70%, two iterations, and e-values at thresholds of 1E-3, 1E-5, 1E-10, 1E-15, 1E-20, 1E-

30, and 1E-40. I filtered MSA based on these parameters where indicated. I also removed MSA 

columns with greater than 30% gaps before DI calculation. All sequence alignments were done 

using the nr20 Uniprot dataset last updated on August 11th, 2012 (Eddy, 2010; Lunt, Szurmant, 

Procaccini, Hoch, Hwa, & Weigt, 2010b; Remmert et al., 2012). Calls across many proteins are 

simplified using python scripts as shown below. 

Step Text Commands Comment 

1A. Run script 

to get all 

alignments for 

your fasta with 

filtering (true) 

The 25 membrane 

proteins listed in 

Table 1 are a diverse 

set of non-trivial 

(having more than 

four transmembrane 

helices) α-helical 

transmembrane 

proteins with more 

than 1000 

homologous 

sequences of 

python 

scripts/make_pbs_to_run_hhbl

its_for_all_E.py     

1HZXA.fasta 1HZXA_RUN1 

data/1HZXA/ pbs/ true 70 

Input:  

1HZXA.fasta  

 

Output (in pbs/):  

1HZXA_RUN1_cov_

70_FILTERED_01.p

bs  
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sufficient coverage. 

1B. Run script 

to get all 

alignments for 

your fasta 

without filtering 

(false) 

I generated MSA 

using the HHBlits 

software suite. 

HHBlits is a hidden 

markov-based 

iterative 

homologous 

sequence identifier 

and multiple 

sequence aligner. 

The sheer size of the 

alignments 

necessary for 

accurate DI 

calculation 

necessitate such an 

exceptionally fast 

alignment method 

(Remmert, Biegert, 

Hauser, & Söding, 

2012). The package 

also contains several 

utility scripts that 

reformat and filter 

MSA, as well as 

renumber PDB files 

such that they 

correspond to the 

generated 

alignments.  

python 

scripts/make_pbs_to_run_hhbl

its_for_all_E.py     

1HZXA.fasta 1HZXA_RUN1 

data/1HZXA/ pbs/ false 70 

Input:  

1HZXA.fasta     

 

Output:  

1HZXA_RUN1_cov_

70_UNFILTERED_0

1.pbs   

1B.  Run pbs 

scripts 

I used the following 

parameters: 

maximum identity 

100, sequence 

coverage of 70%, 

two iterations, and 

e-values at 

thresholds of 1E-3, 

1E-5, 1E-10, 1E-15, 

1E-20, 1E-30, and 

1E-40.  

Run pbs scripts to generate MSA 

outputs:  

Due to large resource requirements it is 

often best to run MSA generation and DI 

calculation on a cluster using the 

generated pbs files above.  

ssh vmplogin <or> ssh 

piranha 

cd pbs/ 

qsub 

1HZXA_RUN1_cov_70_FILTERED_0

1.pbs 

qsub 

1HZXA_RUN1_cov_70_UNFILTERED

Input:    

n/a  

 

Output:  

(The following set 

of files will be 

produced for each 

e-value cutoff: 1E-

03, 1E-05, 1E-10, 

1E-15, 1E-20, 1E-

30, 1E-40)  

1HZXA_RUN1_e_1

E-

05_cov_70_FILTER

ED.a3m  
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_01.pbs 1HZXA_RUN1_e_1

E-

05_cov_70_FILTER

ED.log  

   

1HZXA_RUN1_e_1

E-

05_cov_70_UNFILT

ERED.a3m  

1HZXA_RUN1_e_1

E-

05_cov_70_UNFILT

ERED.log  

2A. Convert 

PDBI.pdb to BCL 

type pdb file 

with PDBID.pdb 

name that 

includes chain 

ID (if you didn't 

start with a BCL 

PDB or for 

intermediately 

created files) 

n/a Run within appropriate 

data/SUBDIRECTORY/ : 

bcl.exe PDBConvert 1HZX.pdb 

-fasta -

convert_to_natural_aa_type -

split_ensemble -

output_prefix 1HZX -bcl_pdb 

Input:  

1HZX.pdb      

 

Output:  

1HZX_0bcl.pdb     

2B. Move over 

output .pdb file 

to better 

naming 

n/a mv 1HZX_0bcl.pdb 

1HZXA_trim.pdb 

Input:  

1HZX_0bcl.pdb      

 

Output:  

1HZXA_trim.pdb     

3. Fix top line of 

the .a3m files 

for all the 

alignments such 

that the naming 

is correct which 

is necessary for 

running 

renumber pdb 

perl script 

n/a  python scripts/fixtopline.py 

--dir=data/ 

 

Input:  

         

 

Output:  
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Calculate DI for all Amino Acid Site Pairings 

DI calculation begins with accumulating a significant number of evolutionarily diverse but 

related sequences. Morcos et al. use a minimum of 1000 non-redundant sequences after filtering 

with higher E-value thresholds than default for the HMMer software package. The E-values used 

are - 1E-3, 1E-5, 1E-10, 1E-15, 1E-20, 1E-30, and 1E-40. After alignment, the DI algorithm re-

weights element frequencies to reduce the impact of overly similar sequences. One can then 

compute mutual information from the re-weighted frequency counts (for columns and column 

pairings). One then applies the maximum entropy principle to compute the direct coupling 

between sites. Finally, one determines direct information - separating direct from indirect 

correlations. The direct information is essentially the mutual information between columns that 

is solely a result of the direct coupling in the prior step. The output is a symmetric matrix of 

significant pairwise correlation Cijab. HHBlits scripts re-align contacts by mapping the MSA to the 

original target structure. 

4A. Obta

in and 

prepare 

matlab 

Direct 

Coupling 

Analysis 

(DCA) 

script/bi

nary 

n/a  To obtain a copy of the script one has to contact via the 

excerpt provided below and abide by the following  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Copyright for this implementation:  

%             2011/12 - Andrea Pagnani 

and Martin Weigt 

%                       

andrea.pagnani@gmail.com  

%                       

martin.weigt@upmc.fr 

% 

% Permission is granted for anyone to 

copy, use, or modify this 

% software and accompanying documents 

for any uncommercial 

Input:  

DCA.m  

run_DCA_50.sh 

         

Output:  

DCA_50.m  

DCA_50 
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% purposes, provided this copyright 

notice is retained, and note is 

% made of any changes that have been 

made. This software and 

% documents are distributed without any 

warranty, express or 

% implied. All use is entirely at the 

user's own risk. 

% 

% Any publication resulting from 

applications of DCA should cite: 

% 

%     F Morcos, A Pagnani, B Lunt, A 

Bertolino, DS Marks, C Sander,  

%     R Zecchina, JN Onuchic, T Hwa, M 

Weigt (2011), Direct-coupling 

%     analysis of residue co-evolution 

captures native contacts across  

%     many protein families, Proc. 

Natl. Acad. Sci. 108:E1293-1301. 

% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

In addition, I have set the pseudocount 

weight to 0.5 and renamed the function 

and scriptname to DCA_50 and DCA_50.m. 

I have also added a stat output to be 

used later as a descriptor by including 

the following code after one computes 

true frequencies: 

% Added stat output - Pedro Teixeira 

    fprintf('### N = %d M = %d Meff = 

%.2f q = %d, L = %d\n', N,M,Meff,q,L); 

    statstring = sprintf('### N = %d M 

= %d Meff = %.2f q = %d, L = %d', 

N,M,Meff,q,L); 

  

    % Output N, M, Meff, and q to file 

for future processing 

    statfilename = strtok( outputfile, 

'.'); 

    statfilename = [ statfilename, 

'.statlog']; 
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    statfp = fopen( statfilename, 'w'); 

    tempout = 

sprintf('%d,%d,%.2f,%d,%d', 

N,M,Meff,q,L); 

    fprintf( statfp, '%s\n', 

statstring); 

    fprintf( statfp, '%s\n', tempout); 

    fclose( statfp);Lastly, compile the 

script into a matlab binary named 

DCA_50 - which is then used by the 

provided script script/run_DCA_50.sh 

(additional details found in 

scripts/run_DCA_script_readme.txt). The 

compilation step is necessary to run on 

a cluster regardless of provided MATLAB 

libraries/licenses. 

4B. Gen

erate 

and Run 

PBS files 

to 

generate 

DI and 

scoring 

files 

I calculated DI for 

all 25 membrane 

proteins listed in 

Table 1 for both 

filtered and 

unfiltered MSA. 

The filtering 

process removes 

sequences that 

individually do 

not align to cover 

at least 70% 

percent of the 

original target 

sequence used to 

create the 

alignment. This is 

the same cutoff 

used by Hopf et 

al. to determine 

membrane 

protein structure 

for the same set 

of membrane 

proteins (Hopf, 

Colwell, Sheridan, 

Rost, Sander, & 

Marks, 2012a). In 

both cases, I used 

e-value cutoffs for 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-03_cov_70_FILTERED.a3m 

1HZXA.pdb data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-05_cov_70_FILTERED.a3m 

1HZXA.pdb data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-10_cov_70_FILTERED.a3m 

1HZXA.pdb data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-15_cov_70_FILTERED.a3m 

1HZXA.pdb data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-20_cov_70_FILTERED.a3m 

1HZXA.pdb data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-30_cov_70_FILTERED.a3m 

Bump up 

time/memory 

for 

DI_01_1HZXA_

RUN1_e_1E-

03_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs  

to 22GB and 

9hrs due to 

extra size 

outside of 

approximation 

algorithm's 

range and 

cluster 

constraints  

Input:  

1HZXA.pdb 

1HZXA_RUN1_

e_1E-

XX_cov_70_[U

N]FILTERED.a3

m      

 

Output:  

DI_01_1HZXA_

RUN1_e_1E-

03_cov_70_FIL
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sequence 

aggregation of 1E-

03, 1E-05, 1E-10, 

1E-15, 1E-20, 1E-

30, and 1E-40. In 

addition, Hopf et 

al. also provided a 

set of “optimal e-

values” for 

prediction within 

the work.  

1HZXA.pdb data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-40_cov_70_FILTERED.a3m 

1HZXA.pdb data/1HZXA/ pbs/ DI_01 

  

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-

03_cov_70_UNFILTERED.a3m 1HZXA.pdb 

data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-

05_cov_70_UNFILTERED.a3m 1HZXA.pdb 

data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-

10_cov_70_UNFILTERED.a3m 1HZXA.pdb 

data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-

15_cov_70_UNFILTERED.a3m 1HZXA.pdb 

data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-

20_cov_70_UNFILTERED.a3m 1HZXA.pdb 

data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

1HZXA_RUN1_e_1E-

30_cov_70_UNFILTERED.a3m 1HZXA.pdb 

data/1HZXA/ pbs/ DI_01 

python 

scripts/make_pbs_for_contact_and_scorin

g_from_alignment_and_pdb.py 

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

15_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

40_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

20_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

10_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

30_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s  

 

DI_01_1HZXA_

RUN1_e_1E-

03_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-
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1HZXA_RUN1_e_1E-

40_cov_70_UNFILTERED.a3m 1HZXA.pdb 

data/1HZXA/ pbs/ DI_01 

15_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

40_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

20_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

10_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

30_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs  

    

5. Run 

generate

d DI and 

scoring 

calculati

on pbs 

scripts 

on 

cluster 

After alignment, 

the DI algorithm 

re-weights 

element 

frequencies to 

reduce the impact 

of overly similar 

sequences. One 

can then compute 

mutual 

information from 

the re-weighted 

 

ls DI_01*.pbs | awk '{system("qsub 

"$1)}' 

Some 

sequences may 

require more 

time or RAM 

than the above 

script's formula 

allots, in which 

case you may 

have to 

increase one or 

both to ensure 

the process 
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frequency counts 

(for columns and 

column pairings). 

One then applies 

the maximum 

entropy principle 

to compute the 

direct coupling 

between sites. 

Finally, one 

determines direct 

information - 

separating direct 

from indirect 

correlations.  

runs to 

completion  

Input:  

DI_01_1HZXA_

RUN1_e_1E-

03_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

15_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

40_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

20_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

10_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s 

DI_01_1HZXA_

RUN1_e_1E-

30_cov_70_FIL

TERED_GAPSRE

MOVED_01.pb

s  

 

DI_01_1HZXA_

RUN1_e_1E-
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03_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

15_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

40_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

20_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

10_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs 

DI_01_1HZXA_

RUN1_e_1E-

30_cov_70_UN

FILTERED_GAP

SREMOVED_01

.pbs  

     

Output:  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED_sep_4

_.RR_MI_DCA  
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DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED.statlog

  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED.a3m  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED.corr_

mat_bcl  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED.dca  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED_renu

mbered_1HZX

A_bcl.pdb  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED_renu

mbered_1HZX

A.pdb  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED.RR  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED.RR_MI

_DCA  

DI_01_1HZXA_



 

131 
 

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED.score  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_FIL

TERED_GAPSRE

MOVED_sep_4

_.RR 

 

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED.a3

m  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED.cor

r_mat_bcl  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED.dca

  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED_re

numbered_1HZ

XA_bcl.pdb  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED_re

numbered_1HZ

XA.pdb  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED.RR  
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DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED.RR

_MI_DCA  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED.sco

re  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED_se

p_4_.RR  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED_se

p_4_.RR_MI_D

CA  

DI_01_1HZXA_

RUN1_e_1E-

05_cov_70_UN

FILTERED_GAP

SREMOVED.sta

tlog  

    

6. Create 

BCL 

correlati

on files 

(see step 5)  python 

scripts/dca_to_corrmat_converter_GENERA

L.py data/1HZXA/ 

Input:  

All .dca files in 

the given 

subdirectory      

 

Output:  

Matching 

.corr_mat_bcl 

files for each 

given .dca file     

7. Run 

filename 

preparat

ion 

n/a   

When all MSA have been created run the following script 

to create appropriately named versions for downstream 

use (include the PDBID and E-value to be used as the 

Input:  

 

Output:  

Within 
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script optimal threshold)  

Note:  

Run from within training/COMBINED/ 

Usage general:python 

prep_and_ss_link_msa_and_corrmat_filena

mes.py file_prefix PDBID 1E-opt_value 

/data/directory/ /target/directory/ 

Usage specific (run from within 

training/COMBINED/): 

python 

../../scripts/prep_and_ss_link_msa_and_

corrmat_filenames.py DI_01 1HZXA 1E-20 

data/ training/COMBINED/ 

training/COMB

INED/1HZXA/  

1HZXA_1E-

03_FILT.corr_m

at_bcl@ 

1HZXA_1E-

10_FILT.mfasta

@ 1HZXA_1E-

20_UNFILT.corr

_mat_bcl@ 

1HZXA_1E-

40_UNFILT.mfa

sta@ 

1HZXA.jufo9d_

tmh@ 

1HZXA_OPT_FI

LT.mfasta@ 

1HZXA.rdb6Pro

f@ 1HZXA_1E-

03_FILT.mfasta

@ 1HZXA_1E-

10_UNFILT.corr

_mat_bcl@ 

1HZXA_1E-

20_UNFILT.mfa

sta@ 

1HZXA.ascii@ 

1HZXA.jufo9d_

tms@ 

1HZXA_OPT_U

NFILT.corr_mat

_bcl@ 

1HZXA.rdbProf

@ 1HZXA_1E-

03_UNFILT.corr

_mat_bcl@ 

1HZXA_1E-

10_UNFILT.mfa

sta@ 

1HZXA_1E-

30_FILT.corr_m

at_bcl@ 

1HZXA.ascii6@ 

1HZXA.jufo9d_

topo@ 

1HZXA_OPT_U

NFILT.mfasta@ 

1HZXA.topo@ 
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1HZXA_1E-

03_UNFILT.mfa

sta@ 

1HZXA_1E-

15_FILT.corr_m

at_bcl@ 

1HZXA_1E-

30_FILT.mfasta

@ 

1HZXA_contact

.bin 

1HZXA.jufo_ss

@ 

1HZXA.pdb@ 

1HZXA_1E-

05_FILT.corr_m

at_bcl@ 

1HZXA_1E-

15_FILT.mfasta

@ 1HZXA_1E-

30_UNFILT.corr

_mat_bcl@ 

1HZXA.fasta@ 

1HZXA.mfasta

@ 

1HZXA.png@ 

1HZXA_1E-

05_FILT.mfasta

@ 1HZXA_1E-

15_UNFILT.corr

_mat_bcl@ 

1HZXA_1E-

30_UNFILT.mfa

sta@ 

1HZXA_full_dat

aset.bin 

1HZXA.nnprf@ 

1HZXA.psipred

_blast@ 

1HZXA_1E-

05_UNFILT.corr

_mat_bcl@ 

1HZXA_1E-

15_UNFILT.mfa

sta@ 

1HZXA_1E-

40_FILT.corr_m

at_bcl@ 
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1HZXA.jufo9d

@ 

1HZXA_noncon

tact.bin 

1HZXA.psipred

_horiz@ 

1HZXA_1E-

05_UNFILT.mfa

sta@ 

1HZXA_1E-

20_FILT.corr_m

at_bcl@ 

1HZXA_1E-

40_FILT.mfasta

@ 

1HZXA.jufo9d_

ss@ 

1HZXA.octo_to

po@ 

1HZXA.psipred

_ss@ 

1HZXA_1E-

10_FILT.corr_m

at_bcl@ 

1HZXA_1E-

20_FILT.mfasta

@ 1HZXA_1E-

40_UNFILT.corr

_mat_bcl@ 

1HZXA.jufo9d_

tm@ 

1HZXA_OPT_FI

LT.corr_mat_bc

l@ 

1HZXA.psipred

_ss2@  
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Train Contact Prediction Models and Score Descriptors (F-Score, Information 

Gain, and Input Sensitivity) 

Once I determined optimal parameters and descriptors, I trained five models for each set 

of five proteins using datasets with 15, 5, and 5 proteins forming the training, monitoring, and 

independent sets respectively. The five models were created by randomizing proteins between 

the training or monitoring test sets. Data points never appears in more than one set and no data 

from proteins in the independent set was ever included in either the training or monitoring data 

sets. The objective function used for training during initial descriptor selection was RMSD and 

then average enrichment for final training. For decision trees, I attempted to reduce the effect of 

overtraining by setting the minimum split size to 20. To determine the optimal alpha and eta 

parameters for the ANNs I performed a grid search settling on an eta of 0.000017 and an alpha of 

0.0 as my step size during training was always set to 1. For all correlation descriptors, any 

undefined values were replaced by the average correlation across the protein sequence. Finally, 

the average of all five predictions across each set of five models are used to rank all possible 

pairwise amino acid pairings and the top ranked L-fractions are selected as the contacts for the 

given protein. 

Step Text Commands Comment 

1. Prepare 

necessary 

files 

I trained five 

models for 

each set of five 

proteins using 

datasets with 

15, 5, and 5 

proteins 

forming the 

training, 

monitoring, 

Create object files - input, output, and ID (.obj files) 

with the descriptors you want to use (examples 

given at -training/)  

 

Create a msa_stats.csv file if you want to include 

that information/descriptor, data given below for 

an example file  

Format summary (data below) =  

Meff, M, Coverage, L  

For each of the above the sub-order is Filtered at all 

Input:  

 

Output:  

initial_code_inputCOM

BINED.obj 

initial_code_output_ex

tensive.obj 

initial_code_idTEST.obj
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and 

independent 

sets 

respectively.  

E-values (decreasing), Unfiltered at all E-values 

(decreasing) - example at:  

training/msa_stats.csv  

msa_stats.csv  

2. Generat

e binaries 

of data for 

each 

protein 

(see step 1)  Usage general: python 

generate_datasets_COMBINED.py 

/run/directory/ 

PDBID1,PDBID2,PDBID3,PDBID4,... 

/obj/file/directory/ 

bcl_filename.exe num_threads 

input.obj output.obj id.obj" 

  

Usage specific (run from within 

training/COMBINED/):python 

../../scripts/generate_datasets_CO

MBINED.py ../training/ 1HZXA 

../training/ ../../bcl.exe 2 

initial_code_inputCOMBINED.obj 

initial_code_output_extensive.obj 

initial_code_idTEST.obj 

Input:  

Data files and links 

within 

training/COMBINED/S

UBDIR/ and 

initial_code_inputCOM

BINED.obj 

initial_code_output_ex

tensive.obj 

initial_code_idTEST.obj

  

 

Output:  

1HZXA_full_dataset.bi

n   

3A. Split 

binaries 

into 

contact 

and 

noncontac

t 

(see step 1)  Create the separated binaries for each protein, one 

contacts, one non-contacts (useful for balancing 

and separating by protein for different training and 

test datasets) 

Usage general:python 

split_into_contact_non_contact.py 

/run/directory/ 

PDBID1,PDBID2,PDBID3,PDBID4,... 

bcl_filename.exe num_threads 

  

Usage specific (run from within 

training/COMBINED/): 

python 

../../scripts/split_into_contact_n

on_contact.py training/ 1HZXA 

../bcl.exe 6 

Input:  

1HZXA_full_dataset.bi

n  

 

Output:  

1HZXA_contact.bin   

1HZXA_noncontact.bin  

3B. Make 

sure you 

have at 

least 3 

proteins to 

generate 

training, 

I trained five 

models for 

each set of five 

proteins using 

datasets with 

15, 5, and 5 

proteins 

Training expects at least 3 proteins, one for each of 

training, monitoring, and test. There are two 

dummy proteins based on 1HZXA for the sake of 

example training dividing up by protein (one 

training, one monitoring, one test, make sure these 

are non-overlapping sets for actual model training) 

python (run from within 

Input:  

 

 

Output:  
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monitoring

, and test 

data 

forming the 

training, 

monitoring, 

and 

independent 

sets 

respectively.  

training/COMBINED/) 

 ../../scripts/make_fake_PDBID.py 

1HZXA 1HZXB 

training/COMBINED/python 

../../scripts/make_fake_PDBID.py 

1HZXA 1HZXC training/COMBINED/ 

4. Create 

parameter 

input files 

based on 

examples 

given 

(see step 3B)  Input example files are given in 

training/COMBINED/aggregate_noncontacts.input 

and training/COMBINED/aggregate_contacts.input  

Input:  

 

 

Output:  

aggregate_noncontact

s.input  

aggregate_contacts.inp

ut  

4B. Aggreg

ate 

binaries 

into one 

set of all 

contact 

and 

noncontac

ts 

respectivel

y 

(see step 3B)  Aggregate the binaries for each protein, into only on 

all protein contacts and one all protein non-

contacts (useful for comparing and analyzing 

datasets, also simplifies some test training since 

multiple files don't have to be 

manipulated/combined via the command line): 

Usage general: 

bcl.exe descriptor:GenerateDataset 

@aggregate_noncontacts.input > 

compare_noncontact_DATE.log 

bcl.exe descriptor:GenerateDataset 

@aggregate_contacts.input > 

compare_contact_DATE.log 

  

Usage specific (run from within 

training/COMBINED/): 

bcl.exe descriptor:GenerateDataset 

@aggregate_noncontacts.input > 

compare_noncontact_2013-11-30.log 

bcl.exe descriptor:GenerateDataset 

@aggregate_contacts.input > 

compare_contact_2013-11-30.log 

Input:  

aggregate_noncontact

s.input  

aggregate_contacts.inp

ut  

Given .bin files as listed 

in *.input files  

Output:  

all_noncontact_datase

t.bin  

all_contact_dataset.bi

n  

5. Determi

ne F-

score/Infor

mation 

Gain (can 

use these 

We scored 

descriptors 

using 

information 

gain and F-

score to 

Make sure you have an appropriate object file e.g. 

initial_code_outputCONTACT.obj in training/ 

Update paths and filenames in score_combined.sh 

if necessary 

bash score_combined.sh 

Input:  

all_noncontact_datase

t.bin  

all_contact_dataset.bi

n  

initial_code_outputCO
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metrics to 

filter and 

optimize 

which 

descriptors 

are used 

for 

training) 

determine 

their 

individual 

potential for 

contact 

prediction.  

 NTACT.obj  

Output:  

all_comb_fs_ig.score  

all_comb_fs.score  

all_comb_ig.score  

6. Train 

ANNs 

separating 

by proteins 

and 

making the 

final 

prediction 

on each 

protein 

using only 

other 

proteins 

for 

training/m

onitoring 

(This is 

obviously 

just a test 

case as the 

other 

proteins 

are just 

dummy 

copies of 

the 

original) 

Once an 

optimal set of 

machine 

learning 

training 

parameters 

were 

determined 

for DTs and 

ANNs, I 

trained a set of 

5 models that 

did not include 

any 

information 

from the 

proteins to be 

predicted with 

each set of 

models.  

Usage general: 

python scriptname directory eta 

alpha #node window_size 

min_separation_train 

min_separation_test train_num 

monitor_num independent_num 

iteration_num ARCHIVE_DIRNAME Mode 

PDBID_PDBID_PDBID 

/path/input_code.obj 

/path/result_code.obj 

  

Usage specific (run from within 

training/): 

python2.7 

../scripts/automate_focused_membra

ne_training_separate_independent_s

elected_balance_ann.py COMBINED/ 

0.000017 0.0 8 9 1 12 1 1 1 2 

ANN_trainsep1_testsep12_tmi_1-1-

1_iter2_ALLDESC_contact ANN 1HZXA 

initial_code_inputWEIGHTS_OPT_DESC

_146.obj 

initial_code_outputCONTACT.obj 

Input:  

initial_code_inputWEI

GHTS_OPT_DESC_146.

obj  

initial_code_outputCO

NTACT.obj  

Output:  

commandline_0.input  

monitor_1000_w9_eta

_0.000017_alpha_0.0_

8n_tr_1_mon_1_test_

1_ANN_1HZXA_00.bcl.

gnuplot_txt  

commandline_1.input  

monitor_1000_w9_eta

_0.000017_alpha_0.0_

8n_tr_1_mon_1_test_

1_ANN_1HZXA_00.bcl.

gnuplot_txt.png 

indep_1000_w9_eta_0

.000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_00.bcl  

monitor_1000_w9_eta

_0.000017_alpha_0.0_

8n_tr_1_mon_1_test_

1_ANN_1HZXA_00.tabl

e  

indep_1000_w9_eta_0

.000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_00.bcl.gn

uplot  

monitor_1000_w9_eta

_0.000017_alpha_0.0_

8n_tr_1_mon_1_test_

1_ANN_1HZXA_01.bcl  

indep_1000_w9_eta_0

.000017_alpha_0.0_8n
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_tr_1_mon_1_test_1_

ANN_1HZXA_00.bcl.gn

uplot_txt  

monitor_1000_w9_eta

_0.000017_alpha_0.0_

8n_tr_1_mon_1_test_

1_ANN_1HZXA_01.bcl.

gnuplot  

indep_1000_w9_eta_0

.000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_00.bcl.gn

uplot_txt.png  

monitor_1000_w9_eta

_0.000017_alpha_0.0_

8n_tr_1_mon_1_test_

1_ANN_1HZXA_01.bcl.

gnuplot_txt  

indep_1000_w9_eta_0

.000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_00.table  

monitor_1000_w9_eta

_0.000017_alpha_0.0_

8n_tr_1_mon_1_test_

1_ANN_1HZXA_01.bcl.

gnuplot_txt.png 

indep_1000_w9_eta_0

.000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_01.bcl  

monitor_1000_w9_eta

_0.000017_alpha_0.0_

8n_tr_1_mon_1_test_

1_ANN_1HZXA_01.tabl

e  

indep_1000_w9_eta_0

.000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_01.bcl.gn

uplot  

run1000_w9_eta_0.00

0017_alpha_0.0_8n_tr

_1_mon_1_test_1_AN

N_1HZXA_00.log  

indep_1000_w9_eta_0

.000017_alpha_0.0_8n

_tr_1_mon_1_test_1_
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ANN_1HZXA_01.bcl.gn

uplot_txt  

run1000_w9_eta_0.00

0017_alpha_0.0_8n_tr

_1_mon_1_test_1_AN

N_1HZXA_01.log  

indep_1000_w9_eta_0

.000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_01.bcl.gn

uplot_txt.png  

stats1000_w9_eta_0.0

00017_alpha_0.0_8n_t

r_1_mon_1_test_1_AN

N_1HZXA_.log  

indep_1000_w9_eta_0

.000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_01.table  

train_1000_w9_eta_0.

000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_00.bcl  

model000000.descript

or  

train_1000_w9_eta_0.

000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_00.bcl.gn

uplot  

model000000.info  

train_1000_w9_eta_0.

000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_00.bcl.gn

uplot_txt  

model000000.model  

train_1000_w9_eta_0.

000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_00.bcl.gn

uplot_txt.png  

model000001.descript

or  

train_1000_w9_eta_0.

000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_00.table  
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model000001.info  

train_1000_w9_eta_0.

000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_01.bcl  

model000001.model  

train_1000_w9_eta_0.

000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_01.bcl.gn

uplot  

model.result  

train_1000_w9_eta_0.

000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_01.bcl.gn

uplot_txt  

monitor_1000_w9_eta

_0.000017_alpha_0.0_

8n_tr_1_mon_1_test_

1_ANN_1HZXA_00.bcl  

train_1000_w9_eta_0.

000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_01.bcl.gn

uplot_txt.png  

monitor_1000_w9_eta

_0.000017_alpha_0.0_

8n_tr_1_mon_1_test_

1_ANN_1HZXA_00.bcl.

gnuplot  

train_1000_w9_eta_0.

000017_alpha_0.0_8n

_tr_1_mon_1_test_1_

ANN_1HZXA_01.table  

7. Determi

ne input 

sensitivity 

Descriptors 

were 

optimized by 

iteratively 

scoring all 

descriptors 

using input 

sensitivity 

(with a delta 

of 1.0) across 

the 20 models 

from a five 

Script code is included in 

training/scoring_combined.sh similar to F-Score 

and Information Gain to handle many parameters 

and models. Uncomment/comment code as desired 

to calculate descriptor scores with each method. 

(run from within training/)bcl.exe 

descriptor:ScoreDataset -

feature_labels 

./initial_code_inputWEIGHTS_OPT_DE

SC_146.obj -result_labels 

./initial_code_outputCONTACT.obj -

source 'Chunks( number chunks=1, 

Input:  

initial_code_inputWEI

GHTS_OPT_DESC_146.

obj  

initial_code_outputCO

NTACT.obj  

all_noncontact_datase

t.bin  

all_contact_dataset.bi

n  

model* in given 

directory 
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fold cross 

validation for 

each set of 

ranked 

descriptors. 

The first 

scoring 

indicated that 

only the top 

210 had non-

trivial scores. 

As such I 

iteratively 

rescored the 

top 

descriptors 

(starting from 

this set of 

210) with 

input 

sensitivity 

using the best 

run from the 

previous 

stage. The 

best threshold 

is set as the 

new top 

descriptor 

threshold. To 

decrease the 

likelihood of 

removing 

useful 

descriptors, I 

removed no 

more than 

half of the 

descriptors 

before 

rescoring at 

each stage. 

Thus, I 

subsequently 

examined the 

top 160, 130, 

and 70 

descriptors. 

chunks="[0, 10000)", 

dataset=Combined(Subset(filename = 

'./COMBINED/all_contact_dataset.bi

n'), Subset(filename = 

'./COMBINED/all_noncontact_dataset

.bin')))' -output 

all_comb_is_ann_10000_top146.score 

-score 

'InputSensitivity(delta=0.1,storag

e=File(directory=./COMBINED/ARCHIV

E/ANN_trainsep1_testsep12_tmi_1-1-

1_iter2_ALLDESC_contact_1HZXA/,pre

fix=model),weights=ScoreDerivative

Ensemble(consistency=0,consistency 

best=0,square=0,absolute=0,utility

=0,average=0,balance=1,categorical

=1))' -message_level Verbose 

Scores were used to manually cut down total 

descriptors used based on the criteria described in 

the manuscript text. Descriptor files obtained after 

each round of scoring are included in 

training/intermediate_descriptors/  

COMBINED/ARCHIVE/

ANN_trainsep1_testse

p12_tmi_1-1-

1_iter2_ALLDESC_cont

act_1HZXA/  

Output:  

all_comb_is_ann_1000

0_top146.score  
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For the top 70 

the range 

around the 

top 30 of this 

set resulted in 

the best 

performance. 
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PREDICTING CONTACTS AND GENERATING CONTACT RESTRAINT FILES 

Once an optimal set of machine learning training parameters were determined for DTs 

and ANNs, I trained a set of 5 models that did not include any information from the proteins to 

be predicted with each set of models. All possible pairwise contacts for each model are then 

ranked by the contact predictions averaged from all 5 models and the top L-fraction of the ranking 

is used as the contact restraints for folding simulations. In the case that a minimum separation is 

used, all pairs are removed from the ranking before the top L-fraction is selected. 

Step Text Commands Comment 

1. Prepare 

directory by 

creating 

links for all 

mfasta files, 

corr_mat, 

and SS 

prediction 

files in 

folding/ 

directory 

All possible pairwise contacts 

for each model are then 

ranked by the contact 

predictions averaged from all 

5 models and the top L-

fraction of the ranking is used 

as the contact restraints for 

folding simulations.  

(run from within folding/) 

python 

../scripts/prep_and_ss_link_msa

_and_corrmat_filenames.py DI_01 

1HZXA 1E-20 ../data/ 

../folding/ 

Input:  

 

 

Output:  

Predict using machine learning models (step 2A) 

Predictions may be done in two ways. The first uses the models generated previously, 

which take into account DI as well as sequence information. The second method only uses ranked 

DI to create contact restraint files. 

Note - Multiple proteins can be addressed with an awk line as written below (modify 

for model-predicted contacts): 
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(run from within folding/) 

cat ../pdbs.ls | awk '{ system("python 

../scripts/convert_simple_DI_csv_to_PROCESSED_modified_RR.py --

input_path "$1"/"$1"_DI_UNFILT_SIMPLE.csv --output 

"$1"_UNFILT_SIMPLE_UNprocessed.RR")}' 

 

2A.I. Crea

te or 

update 

prediction

.obj files 

(see 

step 

1)  

Object files should be set such that desired outputs 

and paths to generated models are correct. 

Examples given at training/initial_code_pred.obj  

Model path in this case is: 

training/COMBINED/ARCHIVE/ANN_trainsep1_test

sep12_tmi_1-1-1_iter2_ALLDESC_contact_1HZXA/ 

Models used should not have 

been trained using any data 

from the contacts/noncontacts 

of proteins one is about to 

predict!  

*Input:*  

 

 

Output:  

initial_code_pred.obj  

2A.II. Gen

erate .csv 

files that 

will be 

parsed for 

model-

generated 

contact 

restraint 

files 

(see 

step 

1)  

(run from within 

folding/)\\bcl.exe GenerateDataset 

-source 

'ProteinDirectory("./1HZXA/")' -

feature_labels 

../training/initial_code_inputWEIG

HTS_OPT_DESC_146.obj -

result_labels 

initial_code_pred.obj -id_labels 

initial_code_idTEST.obj -output 

./1HZXA/1HZXA_ANN_TOP146_pred.csv 

Models used should not have 

been trained using any data 

from the contacts/noncontacts 

of proteins one is about to 

predict!  

*Input:*  

initial_code_inputWEIGHTS_OPT

_DESC_146.obj  

initial_code_pred.obj  

initial_code_idTEST.obj  

data within ./1HZXA/  

 

Output:  

1HZXA_ANN_TOP146_pred.csv  

2A.III. Par

se .csv 

files into 

modified 

restraint 

(.RR) files 

(see 

step 

1)  

(run from within 

folding/)python2.7 

../scripts/convert_predicted_csv_t

o_modified_RR.py 

1HZXA_ANN_TOP146_pred.csv 

1HZXA_FILT_pred.RR 

Models used should not have 

been trained using any data 

from the contacts/noncontacts 

of proteins one is about to 

predict!  

*Input:*  

1HZXA_ANN_TOP146_pred.csv  

Output:  

1HZXA_FILT_pred.RR  
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Predict using only ranked DI (step 2B) 

2B.I. Create 

.csv files 

necessary for 

parsing out 

DI files 

The top L-

fraction of the 

ranking is used 

as the contact 

restraints for 

folding 

simulations. In 

the case that a 

minimum 

separation is 

used, all pairs 

are removed 

from the 

ranking before 

the top L-

fraction is 

selected.  

The following line uses the descriptor generation 

process with the model to create predictions for 

the contacts which are then used downstream to 

sort the contacts and take the top L-fraction as the 

positive cases for folding constraints 

(run from within folding/)bcl.exe 

descriptor:GenerateDataset -source 

'ProteinDirectory(./1HZXA)' -

feature_labels input_simple.obj -

result_labels output.obj -

id_labels id.obj -output 

./1HZXA/1HZXA_DI_UNFILT_SIMPLE.csv 

Make sure you have the input, id, and output 

object files in folding/ they are needed to create 

the appropriate output .csv files for parsing.  

Input:  

input_simple.obj  

id.obj  

output.obj  

Output:  

1HZXA/1HZXA_DI_

UNFILT_SIMPLE.csv  

2B.II. Parse 

.csv files into 

modified 

restraint 

(.RR) files 

(see step 2B.I.)  (run from within folding/)python 

../scripts/convert_simple_DI_csv_t

o_PROCESSED_modified_RR.py --

input_path 

1HZXA/1HZXA_DI_UNFILT_SIMPLE.csv -

-output 

1HZXA_UNFILT_SIMPLE_UNprocessed.RR 

Input:  

1HZXA_DI_UNFILT_

SIMPLE.csv  

 

Output:  

1HZXA_UNFILT_SIM

PLE_UNprocessed.R

R 

Trim and score contact restraint files for analysis and use in protein folding 

3. Tri

m 

conta

ct 

files 

to L-

based 

lengt

hs 

The 

top L-

fracti

on of 

the 

rankin

g is 

used 

as the 

conta

ct 

restra

ints 

for 

This example is done with model-predicted contacts and no .RR file suffix 

Usage general: 

python trim_contact_files_to_L.py 

/directory/with/trimmed/fasta/data/ 

/directory/to/process/with/PDBIDs/ input_RR_suffix 

<output_suffix_for_RR> 

  

Usage specific (predicted contacts example, run from 

within folding/): 

python ../scripts/trim_contact_files_to_L.py 

../data/ ./ FILT_pred 

Input:  

 

Output:  
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foldin

g 

simul

ations

.  

4. Sco

re 

conta

ct 

files 

for 

analy

sis 

and 

visuali

zation 

n/a Creates a copy with the _SCORE.RR suffix of all contact files scored (uses PDB 

files to calculate running accuracy, true positives/false positives, good for 

analysis of output results, also necessary for visualization). Requires 

directory to hold aggregated data across proteins 

mkdir aggregated_data/ 

Usage general: 

python score_contact_files.py 

/dir/with/trimmed/fastas/ 

/run/dir/with/PDBID/SUBDIRs/ /dir/aggregated_data/ 

  

Usage specific (run from within folding/): 

python ../scripts/score_contact_files.py ../data/ ./ 

./aggregated_data/ 

Input:  

All *.RR 

files in 

the 

given 

director

y  

 

Output:  

Matchin

g 

*_SCOR

ED.RR 

file for 

each .RR 

file 

found  



 

149 
 

FOLDING PROTEINS USING CONTACT RESTRAINT FILES 

BCL::Fold creates each model through a Monte Carlo optimization with two stages. It 

begins with the assembly of models by placing and performing large SSE-based moves. The second 

stage is focused on the refinement of the generated models and utilizes small amplitude SSE 

translations and rotations to arrive at a final model. After each SSE move the models are scored 

using knowledge-based potentials that examine membrane protein topology, environment 

prediction accuracy, SSE alignment, as well as radius of gyration, amino acid environment, contact 

order, amino acid clashes, and a loop score among others(Karakaş et al., 2012; Weiner, Woetzel, 

Karakaş, Alexander, & Meiler, 2013; Woetzel et al., 2012). If given, contact information is also 

used to score models. Distributions are generated by repeating this process in parallel 1,000 times 

and comparisons between runs are done using the average of the top 10 models by RMSD100. 

1. Prepar

e files for 

protein 

folding 

 You will need the following 

files in your folding directory:  

assembly_01_contact.scorew

eights  

assembly_02_contact.scorew

eights  

assembly_03_contact.scorew

eights  

assembly_04_contact.scorew

eights  

assembly_05_contact.scorew

eights  

refinement_contact.scorewei

ghts  

pred_stages_with_rest.txt  

Update 

pred_stages_with_rest.txt file 

to point to the correct 

scoreweights files  

Change the script 

"create_fold_with_rest_pred.

pl" such that bcl.exe 

Input:  

assembly_01_contact.scoreweigh

ts  

assembly_02_contact.scoreweigh

ts  

assembly_03_contact.scoreweigh

ts  

assembly_04_contact.scoreweigh

ts  

assembly_05_contact.scoreweigh

ts  

refinement_contact.scoreweights  

pred_stages_with_rest.txt  

Output:  
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some:Application 

becomes ./bcl/bcl-apps-

release-static.exe 

some:Application -

histogram_path 

./bcl/histogram/ -

models_path ./bcl/models/ 

Ensure correct data directory 

in the 

create_fold_with_rest_pred.p

l script  

2. Genera

te .pbs 

script 

files to 

run the 

protein 

folding 

BCL::Fold creates each 

model through a Monte 

Carlo optimization with 

two stages. It begins with 

the assembly of models 

by placing and 

performing large SSE-

based moves. The second 

stage is focused on the 

refinement of the 

generated models and 

utilizes small amplitude 

SSE translations and 

rotations to arrive at a 

final model. After each 

SSE move the models are 

scored using knowledge-

based potentials that 

examine membrane 

protein topology, 

environment prediction 

accuracy, SSE alignment, 

as well as radius of 

gyration, amino acid 

environment, contact 

order, amino acid 

clashes, and a loop score 

among others(Karakaş et 

al., 2012; Weiner, 

Woetzel, Karakaş, 

Alexander, & Meiler, 

2013; Woetzel et al., 

2012).  

Run for L-10, L-5, L-2, 1L, 2L, 

and 3L fractions of L and 

minsep6 and minsep12 

(run from within 

folding/)\\cat 

../pdbs.ls | awk 

'{system("perl 

../scripts/create_f

old_with_rest_pred.

pl 1.0 20 50 "$1" 

../folding/ L-

10_minsep6 L-

10_minsep6 8 12")}' 

Input:  

 

Output (in 1HZXA/build_L-

10_minsep6/pbs/):  

pbs_1HZXA_L-10_minsep6_0.pbs  

pbs_1HZXA_L-10_minsep6_16.pbs  

pbs_1HZXA_L-10_minsep6_4.pbs  

pbs_1HZXA_L-10_minsep6_10.pbs  

pbs_1HZXA_L-10_minsep6_17.pbs  

pbs_1HZXA_L-10_minsep6_5.pbs  

pbs_1HZXA_L-10_minsep6_11.pbs  

pbs_1HZXA_L-10_minsep6_18.pbs  

pbs_1HZXA_L-10_minsep6_6.pbs  

pbs_1HZXA_L-10_minsep6_12.pbs  

pbs_1HZXA_L-10_minsep6_19.pbs  

pbs_1HZXA_L-10_minsep6_7.pbs  

pbs_1HZXA_L-10_minsep6_13.pbs  

pbs_1HZXA_L-10_minsep6_1.pbs  

pbs_1HZXA_L-10_minsep6_8.pbs  

pbs_1HZXA_L-10_minsep6_14.pbs  

pbs_1HZXA_L-10_minsep6_2.pbs  

pbs_1HZXA_L-10_minsep6_9.pbs  

pbs_1HZXA_L-10_minsep6_15.pbs  

pbs_1HZXA_L-10_minsep6_3.pbs  

3. Submit 

.pbs 

n/a  (run from within 

folding/)find . -

Check to make sure a single script 

command runs locally as well as 
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script 

files to 

the 

cluster 

maxdepth 4 -name 

"?????/build_L-

10_minsep6/pbs/*.pbs

" -type f -exec qsub 

{} \; > 

submit_all_build_L-

10_minsep6.log 

on the given cluster to ensure the 

paths are all correct. Should at 

least get to the minimization step 

before stopping the test 

run.Input:  

*.pbs files in 

folding/SUBDIR/pbs/  

.RR contact restraint file chosen  

Output:  

*.out files in folding/SUBDIR/pbs/  

*.pdb fold model files  

4. Analyz

e output 

models 

(see step 3)  Create list of model 

filenames: 

(run from within 

folding/)cat 

../pdbs.ls | awk '{ 

system("ls 

"$1"/pdbs/"$1"build_

L-

10_minsep6_?_final_*

.pdb > "$1"/"$1"_L-

10_minsep6_filenames

.ls")}' 

Get top 10 by RMSD100 

(run from within 

folding/)cat 

../pdbs.ls | awk 

'{system("../bcl.exe 

FoldAnalysis -

table_from_file 

./"$1"/scores_L-

10_minsep6.ls -sort 

RMSD100 -

output_value RMSD100 

10 "$1"_L-

10_minsep6_top10_RMS

D.out")}' 

Run general analysis and 

visualization (make sure path 

is set correctly within 

analyze_folding_run_general.

py) 

python2.7 

scripts/analyze_fold

ing_run_general.py 

Input:  

pdbs.ls  

*.pdb resulting models  

Output:  

pngs/1HZXA_L-

10_minsep6_compare_memmod

el_0_0.png 

pngs/1HZXA_L-

10_minsep6_mem.pml  

pngs/1HZXA_L-

10_minsep6_sum_dist.gnuplot.pn

g  

pngs/1HZXA_scatter_L-

10_minsep6.gnuplot  

pngs/1HZXA_L-

10_minsep6_comparemodel_0_0.

png  

pngs/1HZXA_L-10_minsep6.pml  

pngs/1HZXA_L-

10_minsep6_sum_mem.pml  

pngs/1HZXA_scatter_L-

10_minsep6_sum.gnuplot  

pngs/1HZXA_L-

10_minsep6_dist.gnuplot  

pngs/1HZXA_L-

10_minsep6_sum_dist.gnuplot  

pngs/1HZXA_L-

10_minsep6_sum.pml  

pngs/1HZXA_scatter_L-

10_minsep6_sum.gnuplot.png  
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folding/ pdbs.ls 
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ITERATIVE FOLDING OF PROTEINS USING CONTACT RESTRAINT FILES 

Iterative folding was tried but did not substantially change results for the set examined. 

The protocol is listed below as some proteins did benefit slightly. 

1. Analyze 

results from 

normal 

folding run 

by score 

n/a python2.7 

scripts/analyze_folding_run_general_

by_score.py folding/ pdbs.ls 

Input:  

pdbs.ls  

*.pdb files in 

appropriate 

filenames.ls file  

Output:  

scores_L-

10_minsep6_sum.ls  

OUTPUT.FILE  

1. Copy 

over 20 

best models 

by score 

n/a cat pdbs.ls | awk 

'{system("scripts/fold_start_models.

pl -table "$1"/scores_L-

10_minsep6_sum.ls -d pdbs/ -p 

"$1"/iter1_ -n 20")}' 

Input:  

 

Output:  

1. Create 

.pbs scripts 

for folding 

run 

n/a cat pdbs.ls | awk 

'{for(i=0;i<20;i++){system("perl 

folding/create_fold_with_rest_pred_i

teration.pl 1.0 1 50 "$1" folding/ 

1L_minsep6_iter1_m"i" 1L_minsep6 8 

12 iter1_"i".pdb")}}' 

Input:  

iter1_*.pdb files  

 

Output:  

1. Check 

and submit 

.pbs scripts 

n/a Check submit size: 

find ?????/*iter1_m*/pbs/ -maxdepth 

1 -name "*pbs" -type f -exec echo {} 

\; | wc -l 

  

Submit pbs files: 

find ?????/*iter1_m*/pbs/ -maxdepth 

1 -name "*pbs" -type f -exec qsub {} 

\; > & submit_all_iter1.logt 

Input:  

*.pbs scripts  

INPUT.FILE  

 

Output:  

same as for regular 

protein submission 

with 

different iter suffix 

1. Analyze 

iteration 

output 

n/a (run from within folding)cat 

../pdbs.ls | awk '{ system("ls 

"$1"/pdbs/"$1"build_L-

10_minsep6_iter1_m*_*_final_*.pdb >> 

Input:  

pdbs.ls  

*_L-

10_minsep6_iter1_s
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"$1"/"$1"_L-

10_minsep6_iter1_sum_filenames.ls")}

' 

  

Usage general: python scriptname --

directory folding/ --

pdblist_filename pdbs.ls --prefix R 

--suffix tmdiff0-35 --l_frac 1L --

minimum_separation 6 

  

Usage specific: 

python 

scripts/analyze_folding_run_super_ge

neral_by_score.py --sub_directory 

folding/ --pdblist_filename pdbs.ls 

--l_frac 1L --suffix iter1 --

minimum_separation 6 

um_filenames.ls  

*.pdb files generated 

for this run  

Output:  

Same as for normal 

folding runs (types 

listed above) 
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VISUALIZING CONTACT RESTRAINT FILES 

Below is a simple script for visualizing contact restraint files on the given PDB file to 

quickly see accuracy and distribution of errors. This script was used to generate many of the 

visuals in the manuscript as well as provide confirmation that predictions were successful. 

1. Visualiz

e contact 

restraints 

on PDB 

n/

a 

Usage general: 

perl display_contacts_pymol.pl --

pdb_file <pdb_file> --contact_file 

<contact_file> 

  

Usage specific (run from within 

folding/SUBDIR/): 

From directory folding/1HZXA/ 

perl 

../../scripts/display_contacts_pymol.p

l --pdb_file 1HZXA.pdb --contact_file 

1HZXA_L-10_minsep12_SCORED.RR 

  

Display with: 

pymol 1HZXA_L-10_minsep12_SCORED.py 

Displays output PDB in 

gray with correct contacts 

in blue (<=8) close 

(between 8 and 12) and 

wrong (further than 12 

angstroms)  

*Input:*  

1HZXA.pdb  

1HZXA_L-

10_minsep12_SCORED.RR

  

 

Output:  

1HZXA_L-

10_minsep12_SCORED.py  
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