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PREFACE

Model-Integrated Computing is increasingly used for designing Cyber-Physical
Systems (CPS), since it increases productivity and product quality through simu-
lators, automated testing, code generators and verification tools. In this approach,
models are represented using Domain-Specific Modeling Languages (DSMLs). A
DSML is defined by its syntax and semantics, and while meta-modeling (and meta-
modeling environments) provides a mature methodology for tackling the syntax of
DSMLs, expressing the semantics of a DSML is still in its infancy. Without unam-
biguous specifications, different tools may interpret the languages in different ways,
which could easily lead to situations when the compiler generates code with different
behavior than what the verification tool analyzes. Therefore, in order to help the de-
velopment of consistent tools, we need to formalize the semantics of these languages.

In this work, we discuss the formalization of the structural and behavioral seman-
tics of CPS DSMLs using a logic programming based approach. We introduce For-
Spec, an executable formal specification language for the structural and behavioral
semantics of CPS DSMLs. ForSpec is a constraint logic programming language
based on fixed-point logic over algebraic data types with support for both denota-
tional and operational specifications.

In order to help the development of denotational semantic specifications, we
introduce an extension of the semantic anchoring framework, and define several
reusable semantic units for CPS modeling languages in ForSpec. Using these se-
mantic units, we demonstrate the complete formalization of the structural and deno-
tational semantics of a bond graph language and a CPS modeling language.

Finally, in order to demonstrate operational specifications in ForSpec, we develop
the structural and operational semantic specifications for the MathWorks Stateflow
language.
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CHAPTER 1

INTRODUCTION

Cyber-Physical Systems (CPSs) are integration of computational and physical
systems. CPSs have gained significant traction in the past few decades with major
applications in the automotive industry, avionics, health-care systems, plants, smart
grids and manufacturing.

Recently, Model-Integrated Computing (MIC) has become a well-established dis-
cipline for designing complex CPS systems [63][125]. In this approach, both compu-
tational and physical systems are modeled using computer-based tools, and the mod-
els are used for performing various activities, such as running virtual tests (computer
simulations), generating software implementations, checking for safety properties
with formal analysis and formal verification tools and others. Such an approach mit-
igates the risks of faulty system designs by pinpointing possible design flaws during
the design phase, and by leveraging automated code generation instead of error-prone
manual coding. In summary, MIC improves product quality, while decreases devel-
opment time and costs by the usage of automated tool-suites.

In the MIC approach, models are represented using Domain-Specific Modeling
Languages (DSMLs). These are relatively small languages tailored for describing the
concepts of specific domains. As any language, a DSML is defined by its syntax and
semantics: the syntax describes the structure of the language (e.g., syntactic elements
and their relations), and the semantics describes the meaning of its models.

While meta-modeling (and meta-modeling environments) provides a mature method-
ology for tackling the syntax of DSMLs, expressing the semantics of DSMLs is still
in its infancy. Nonetheless, the semantics of a language should not be taken lightly,
especially not in the CPS domain. Without unambiguous specifications, different
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tools may interpret the language in different ways, which could easily lead to situa-
tions when the compiler generates code with different behavior than what the veri-
fication tool analyzes. This can potentially render the results of the formal analysis
and verification tools invalid. Furthermore, developing the formal semantics of a
language requires the developer to clearly think over all the details of the language,
therefore avoiding common design errors in the language. In order to support the

development of a CPS DSML along with tools operating on the language, it is highly

recommended to rigorously define and formalize both the syntax and semantics of the

language. Of course, even with formal semantic specifications, a tool may be faulty
with respect to these specifications, but as long as the specifications are unambiguous,
this is a problem with the tool, and not a problem with the language.

In this paper, we develop a framework for specifying the semantics of typical
CPS DSMLs. As most of the research is found in the semantics of programming
languages, first, let us enumerate some of the differences between CPS modeling
languages and regular programming languages, in order to demonstrate some of the
challenges we have to circumvent (some of them already discussed in [57]):

• Syntax: while the syntax of programming languages are usually described us-
ing grammars, and their abstract structure is an abstract syntax tree, the syntax
of modeling languages is more complicated. The syntax of DSMLs is usually
described using meta-models, and the underlying abstract syntax is an abstract
syntax graph.

• Structure: while programming languages have static semantics, the analogous
structural semantics of modeling languages is not necessarily static. For ex-
ample, models and model transformations can describe dynamically changing
structures.

• Behavior: in programming languages time is completely abstracted away.
In contrast, the notion of time is essential for CPS models. Furthermore,
while programs always describe sequences of computations, CPS models can
describe other behaviors as well (e.g., trajectories over continuous time and
space).

2



In order to specify the semantics of a language, we need a specification language.
Ideally, we need a specification language satisfying the following requirements:

• Mathematical foundations: the specification language needs to be unambigu-
ous, and have a rigorous mathematical foundation to support sound reasoning.

• Comprehensibility: in order to help the human reader, the language should
be lightweight and easy to understand. The language should provide a good
balance between expressiveness and comprehensibility.

• Executability: the language should be executable to help debugging the spec-
ifications, as well as facilitate rapid prototyping of compilers and interpreters.

• Support for meta-modeling: The language should provide structures for ex-
pressing meta-models and models with ease; preferably in their abstract syntax
graph form (in contrast with a tree representation, where cross-references are
resolved by identifiers).

• Versatility: the language should be able to define behaviors in different styles,
such as operational or denotational semantics, as well as to describe the struc-
tural semantics.

• Symbolic representation: the language should be able to operate on a sym-
bolic level in order to support advanced model verification techniques, such as
symbolic model checking or model finding.

FORMULA – a constraint logic programming language developed at Microsoft Re-
search – performs well with regards to these requirements, and FORMULA was al-
ready used for the structural semantic specifications in [57]. In this work, we present
an extension of the FORMULA language to support the specification of the behav-
ioral semantics of CPS modeling languages. This has the advantage that both the
structural and behavioral semantics are specified using the same formalism, and
therefore they can be used together for formal analysis. Other advantages of our
approach are the following:
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• Comprehensibility. We provide a “literate programming” environment, where
formal specifications and informal documentation are written within the same
document, therefore helping comprehensibility of the specifications. The same
specifications are used for execution, as well as for generating high-quality
(formatted) documentation for the language. This helps keeping the documen-
tation and specifications consistent.

• Unified specifications. Both the structural and behavioral semantics are de-
scribed using the same formal language, thus both of them are available for the
verification tool(s). Furthermore, this is a significant advantage for users, as
they need to learn only one language.

• Executable specifications. The specifications are executable, therefore they
can be used for prototyping languages: the structural semantics can be used
for model conformance checking, the operational semantics for generating ex-
ecution traces, and the denotational semantics for automated compilation and
code generation.

• Symbolic evaluation. The specifications can be compiled to symbolic ex-
pressions that can be solved by state of the art Satisfiability Modulo Theo-
ries (SMT) solvers. This can be leveraged for automated test-case generation,
bounded model checking, design-space exploration and resource allocation,
such as scheduling, deployment and others.

Our contributions are the following:

1. ForSpec, a language based on FORMULA, that provides improved support for
behavioral semantic specifications.

2. Identification of different semantic specification styles in FORMULA/ForSpec.

3. Specification of reusable semantic units, which are used by subsequent behav-
ioral semantic specifications.

4. Semantic specification of CPS languages, in particular, the most complete for-
mal specification of the MathWorks Stateflow language at present.

4



5. Tool support for the specifications: a compiler for ForSpec, and a LATEX docu-
mentation generator that facilitates “literate programming” in ForSpec.

The paper is organized as follows. Chapter 2 describes the challenges related to
the model-based design of CPS. These challenges are related to the heterogeneous
behavior of CPS, and therefore directly affect the behavioral semantic specifications.
In Chapter 3, modeling languages and their semantics are discussed. Chapter 4 is
a review of existing approaches and languages for formal semantic specification of
DSMLs. Chapter 5 introduces a formal specification language for CPS modeling lan-
guages. In Chapter 6, we discuss the extension of the semantic anchoring framework
to denotational specifications, and describe several reusable semantic units. We use
these semantic units to develop several case studies in Chapter 7. Finally, in Chapter
8 we conclude with the contributions and possible future work.
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CHAPTER 2

CHALLENGES IN MODEL-BASED DESIGN OF CYBER-PHYSICAL
SYSTEMS

2.1 Model-based design for Cyber-Physical Systems

Cyber-Physical Systems (CPSs) are integration of computational and physical
systems. One of the key challenges in the engineering of CPSs is the integration of
heterogeneous concepts, tools and languages [125]. In order to address these chal-
lenges, a model-integrated development approach for CPS design is introduced by
Karsai and Sztipanovits [63], which advocates the pervasive use of models through-
out the design process: such as application models, platform models, physical system
models, environment models, and the interaction models between these models. For
embedded systems, a similar approach is discussed in [124][65], in which both the
computational processes as well as the supporting architecture (hardware platform,
physical architecture, operating environment) are modeled within a common model-
ing framework.

Arguably, modeling the vastly diverse set of CPS concepts using a single generic
modeling language is impractical. Instead, we can adopt a set of Domain Specific
Modeling Languages (DSMLs) – each of which describes a particular domain –, and
interconnect them through a model-integration language. This is well aligned with
the content creation as well: models are created by domain experts, who are used to
their own domain-specific concepts and terminology. In order to help their work, we
need to provide an environment (such as the Generic Modeling Environment (GME)
[68]) that allows them to work with these domain-specific languages. In the CPS
domain, typical examples for Domain-Specific Modeling Languages (DSMLs) are
circuit diagrams for electrical engineers, or data-flow diagrams for control engineers.

An important question in CPS modeling is how to model the integration of the in-
dividual domains, such that the cross-domain interactions are properly accounted for
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[125]. A recently proposed solution [134][67][117] uses a model-integration DSML
for describing model interactions. Such a model-integration language is built upon
the paradigm of component-based modeling, where complex systems are built from
interconnected components. From the model integration point of view, the most
important part of a component is its interface: through which it interacts with its
environment. Then, the role of the model-integration language is to unambiguously
define the heterogeneous interactions (e.g., message passing, variable sharing, func-
tion call or physical interactions) between the interconnected interfaces.

As discussed in the introduction, for CPS modeling, we need unambiguous se-
mantic specifications for the modeling languages. One of the key challenges for
developing these specifications is found in the heterogeneity of the behaviors repre-
sented by the languages: ranging from untimed discrete computations to trajectories
over continuous time and space.

In CPS modeling, we can distinguish four fundamental dimensions of hetero-
geneity that affects the semantics of the languages:

• causality considerations (causal vs. acausal relations),

• time semantics (e.g. continuous-time, discrete-time, etc.),

• physical domains (e.g. electrical, mechanical, thermal, acoustic, hydraulic),

• interaction models (e.g. MoC-based, interaction algebra).

2.2 Causality

Classical system theory and control theory are traditionally based on input/out-
put signal flows, where causality – that the inputs of a system determine its outputs
– plays a key role. However, such a causal model is artificial and inapplicable for
physical systems modeling [132], because the separation of inputs and outputs is
generally unknown at the time of modeling. The problem stems from the mathemat-
ical models of physical laws and systems: these models are equation based and there
are no causal relationships between the involved variables. Indeed, the only causal
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law in physics is the second law of thermodynamics [11], which defines the direction
in which the time flows. Recently, acausal physical modeling has gained traction
and several acausal physical systems modeling languages have been designed, such
as the bond graph formalism [62], Modelica [35, 8], Simscape [76], EcosimPro [28]
and others.

Even though the mathematical models for the laws of physics are acausal, we
often rely on their causal abstraction: for example, operational amplifiers are often
abstracted as input-output systems, such that the output is solely determined by its
input and it has no feedback effects on the input. For real operational amplifiers these
assumptions are only approximations, but they are reasonably accurate in many sit-
uations and they greatly simplify the design process. Therefore, physical modeling
languages usually support both causal and acausal modeling. Clearly, this is the case
with all state of the art modelers and languages (e.g. Simulink/Simscape, Modelica,
Bond graph modeling with modulated elements [62], etc.). Consequently, our be-
havioral semantic specifications need to be able to describe both acausal and causal
models.

2.3 Semantic domains for time

In software design, one of the most powerful abstraction is the abstraction of time
[69]. Such an abstraction is harmless as long as time is a non-functional property of
programs. However, in CPSs and real-time systems this premise is often invalid
[70], and timing is a key concept from a functional point of view of the system. For
example, in hard real time systems, results are often worthless or – worst-case – even
catastrophic, if not delivered in time.

Therefore, in CPSs, we have to properly account for the timely behavior of mod-
els. It is known that the behaviors of CPS models are interpreted over a diverse set
of semantic domains for time. Let us summarize some of these semantic domains in
the following.
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Logical time is a time model for computational processes, whose behaviors are
described by sequences of states. Logical time is a countable totally ordered time
domain, and is typically represented by the natural numbers.

Continuous-time (also known as real time, physical time) is a dense time model
and is often represented by the non-negative real numbers (where zero represents the
start of the system) or the non-negative hyper-reals. Physical systems are usually
considered to have their behavior in the continuous-time regime.

Super-dense time [74] is a time model that extends real time with causal ordering
for simultaneous events. Super-dense time is usually used for describing the behavior
of discrete-event systems [71].

Discrete-time denotes a finite number of events on any finite time interval. There-
fore, the events can be indexed by the natural numbers. For instance, clock-driven
systems have discrete-time semantics.

Hyper-dense time [88, 89] is a time model that extends hyper-real time with
causal ordering for simultaneous events. Hyper-dense time is used for describing
discontinuities in the behavior of physical systems.

In real-time systems, time is a functional property and we need to explicitly ac-
count for the execution times of the software. However, on modern architectures, the
exact execution times cannot be accurately predicted because of caching, pipelining
and other advanced techniques. In order to resolve the problem, several abstractions
of time were proposed [66], such as Zero Execution Time, Bounded Execution Time
and Logical Execution Time.

The Zero Execution Time (ZET) model abstracts away time by assuming that the
execution time is zero, in other words, the computation is infinitely fast. ZET is the
basis for synchronous reactive programming.

In the Bounded Execution Time (BET) model execution time has an upper bound.
A program execution is correct as long as the output is produced within this temporal
bound. Note that this model is not really an abstraction, rather a specification that
can be verified for correctness.
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The Logical Execution Time [50] (LET) model abstracts away the real execu-
tion time but does not discard it completely as ZET. LET denotes the time it takes
from reading the input to producing the output, regardless of the real execution time.
Compared to BET, the LET abstraction also defines a lower bound equal to the upper
bound, i.e., LET precisely defines the time when the output is produced. Such an
abstraction has significant impact on the complexity of the behavior, for example, it
protects against timing anomalies [102] (i.e., when a faster local execution leads to
slower global execution).

Timed automata are introduced as a time model for real-time systems by Abdel-
latif et al. [1]. Compared to LET semantics, timed automata provide more generic
constraints, such as lower time bounds, upper time bounds and time non-determinism.
To avoid timing anomalies, the authors introduce the notion of time-robustness along
with some sufficient conditions to guarantee it.

2.4 Interaction models for computational processes

When modeling heterogeneous computational systems, a key question is how to
define the interactions between different subsystems. We can distinguish two ap-
proaches here.

The interactions may be modeled with Model of Computations (MoCs), e.g., in
Ptolemy II [37, 38]. Ptolemy II is based on the hierarchical composition of vari-
ous MoCs, such as process networks, dynamic and synchronous dataflows, discrete-
event systems, synchronous-reactive systems, finite-state machines and modal mod-
els. Each actor in the hierarchy has a director – a Model of Computation – that
determines the interaction model between its children. The actor abstract semantics

[71] of Ptolemy II is a common abstraction of all MoCs in Ptolemy II, which defines
an interface with action methods and method contracts. An actor that conforms to
these contracts is said to be domain polymorphic, and a domain polymorphic actor is
compatible with any director.

Alternatively, the interactions may be modeled using algebras, e.g., in the BIP
[13] framework. In BIP, connector and interaction algebras [15] are defined for
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characterizing different interaction types: such as rendezvous, broadcast, or atomic
broadcast. In the BIP framework, the behaviors of components are abstracted as La-
beled Transition Systems (LTSs) and the interaction algebra establishes the relations
between these transition systems.

2.5 Conclusion

In this chapter, we discussed some of the challenges in the modeling of hetero-
geneous CPSs, such as causality, timing and different interaction models. These
concerns have important consequences on semantic specifications: due to them, the
classical results of programming language specifications are only applicable to the
computational languages of CPSs. In order to express the semantics of other CPS
languages, such as physical modeling languages and model-integration languages,
we need to extend the existing specification styles as proposed in the rest of this
thesis.
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CHAPTER 3

SEMANTICS OF CPS DOMAIN-SPECIFIC MODELING LANGUAGES

In this chapter, we discuss the syntax and semantics of modeling languages and
existing work in semantic specifications. In particular, we discuss the structural,
denotational, translational and operational semantics of languages.

3.1 Syntax and semantics

In [21], a (modeling) language is defined as a tuple of 〈C,A, S,MA,MS〉, the
concrete syntax C, the abstract syntax A, the semantic domain S, and two mappings
MA : C → A and MS : A → S that map from the concrete syntax to the abstract
syntax, and from the abstract syntax to the semantic domain, respectively.

The concrete syntax of a language is the concrete representation that is used for
representing programs/models. Traditional programming languages are usually text-
based, whereas modeling languages often have visual representations. A language
describes a set of concepts and relations between these concepts, which is represented
by its abstract syntax. The syntactic mapping MA maps elements of the concrete
syntax to corresponding elements of the abstract syntax. Finally, semantics defines
the meaning of models by means of semantic mapping(s) MS from the concepts and
relations of the abstract syntax to some semantic domain(s).

In order to discuss existing work in language semantics, first, we need to un-
derstand the syntax and semantics of programming languages. The concrete syntax
of a programming language is usually described with some context-free grammar –
typically in the (extended) Backus-Naur form (BNF) [9]. Such a grammar describes
production rules, which can be used to build parse trees from the source code. The ab-
stract syntax tree of a program is an abstract version of the parse tree, which typically
removes some parser-specific details from the parse tree. The static semantics of a
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programming language describes those properties of its programs that are statically
(that is, without executing the program) computable; this is also called the well-
formedness rules of the language. Typically, this corresponds to context-sensitive
parts of the grammar that are not expressible with a context-free grammar: such as
unique naming of variables, static type checking and scoping. Finally, the dynamic

semantics of a language describes its dynamic aspects: what are the sequences of
computations described by its programs.

In contrast, the syntax of a Domain-Specific Modeling Language (DSML) is typ-
ically described with a meta-model. Generally, meta-models describe graph struc-
tures, thus models are represented using abstract syntax graphs. Furthermore, instead
of static semantics, models have structural semantics [57]. In [22], structural seman-
tics is defined as the meaning of the models in terms of the structure of model in-
stances. Similar to static semantics, structural semantics describes the well-formedness
rules of a language; however, structural semantics is not necessarily static. In model-
based design, models may represent dynamic structures that evolve through model
transformations, in which case the structural semantics describes invariants for these
transformations. The dynamic behavior of a model is described by its behavioral

semantics. Note that the behaviors represented by modeling languages are generally
interpreted on different semantic domains than those of programming languages. For
example, models can represent physical systems, for which the behaviors are trajec-
tories over the continuous time and space.

In the following, we discuss some of the most well-known specification styles for
expressing the behavior of (programming) languages. Note that the list is far from
being complete – other approaches are discussed in [85].

One of the earliest styles for semantic specifications is the denotational semantics

– formerly known as mathematical semantics – introduced by Christopher Strachey
and Dana Scott in the late 1960s [113, 114, 115, 122]. Denotational semantics de-
scribes the language semantics by mapping its phrases to mathematical objects, such
as numbers, tuples, functions, etc. An advantage of denotational semantics is that it
provides mathematically rigorous specifications for programs without specifying any
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computational procedures for calculating the results. This results in abstract specifi-
cations that describe what programs do instead of describing how they do it. Such an
approach is especially useful for reasoning about equivalence of programs [120].

Operational semantics (the term possibly coined by Dana Scott [113]), in con-
trast, defines a procedure, which – if executed – results in the semantics of the pro-
gram. The most well-known approaches to operational semantics are the Structural
Operational Semantics [97, 61] and Abstract State Machines [40]. An advantage of
operational semantics is that the specifications are natural and relatively easy to un-
derstand in general. A disadvantage is that understanding the consequences of the
specifications is challenging.

Algebraic semantics [30] uses algebraic structures and equational logic to de-
scribe the semantics of programs. The idea is to define modules that consist of many-
sorted signatures Σ and equality axiomsE. Then, a corresponding algebraic structure
(that is, an interpretation for the signature: a carrier set and functions) is an imple-
mentation of the module, if the equalities hold in the structure. This is particularly
efficient for specifying abstract data types, since the specification only describes the
properties of the operations. Furthermore, algebraic semantics can efficiently de-
scribe algebraic data types and programs [120]. In this approach, the program is
represented using the term algebra TΣ over Σ. From TΣ, a quotient algebra TΣ/E

(isomorphic to any initial algebra) is obtained by factoring out the congruences de-
scribed by equations E. Then, the semantics of the program is the initial algebra
(selecting one from the isomorphic initial algebras).

Axiomatic semantics was introduced by Robert Floyd [34] and C.A.R. Hoare [51]
in the late 1960s. Axiomatic semantics is even more abstract than denotational se-
mantics, as there is no notion for the state of a machine. Instead, the semantics is
established by pre- and postconditions described in predicate logic.

In summary, operational semantics defines a computational process transform-
ing states of a machine, denotational semantics defines a mathematical function that
describes state transformations, algebraic semantics defines programs by describing
congruences, and axiomatic semantics defines programs by establishing predicates
over their behavior.
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3.2 Structural semantics

Structural semantics describes the well-formed structures of a modeling language,
which is defined by a set of constraints that express the well-formedness rules of the
language. A model is said to conform to its meta-model, if it satisfies all these con-
straints.

While analogous to static semantics, there are a number of differences between
static and structural semantics. First, since the abstract syntaxes of DSMLs are gen-
erally graph structures, some well-formedness rules are unique for the structural se-
mantics: for instance, the lack of cycles [54] in a graph. Second, structural semantics
can describe dynamic properties. For example, given a graph model for the net-
work topology of some communicating agents, the structural semantics can describe
constraints over the connectivity of the graph during its dynamic reconfigurations.
Third, for some languages (e.g., UML class diagram) structural semantics is the only
semantics, because they do not represent behaviors.

Jackson et al. [57, 60] introduce a formal model for defining the structural se-
mantics of DSMLs in a logic framework. In this work, a DSML L = 〈D, (JKj)j∈J〉
is a pair comprised of a domain D and a set of interpretations.

The domain D = 〈Υ,ΥC ,Σ, C〉 is a tuple, where Υ is a (possibly many-sorted
or order-sorted) domain signature that defines the concepts of the language, ΥC is a
constraints signature for auxiliary definitions, Σ is an (infinite) alphabet and C is a
set of logic formulas. The term algebra TΥ(Σ) over Υ generated by Σ defines the
structures of the language, and the set of model realizations RΥ = P (TΥ(Σ)) is the
power-set over this term algebra. The constraint signature ΥC is an extension of Υ

that contains all the necessary auxiliary symbols for expressing the well-formedness
of the domain. Then, the well-formed models of a domain is the set of {r ∈ RΥ |
Ψ(r), C ` Ψ(wellformed)}, where Ψ is a function that converts model realizations
into logic formulas, ` represents deducibility, and wellformed ∈ ΥC is a special
constant tagging well-formed models [59].

An interpretation J.K : RΥ → RΥ′ is a mapping from the model realizations of a
domain D to a domain D′. Such interpretations generalize model transformations,
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and most importantly for us, they can provide behavioral semantics for language D,
in which case J.K describes a semantic mapping.

3.3 Behavioral semantics

3.3.1 Denotational semantics

Christopher Strachey and Dana Scott [113, 114, 115, 122] developed denotational
semantics to assign precise mathematical meaning to programs. Denotational seman-
tics (also known as mathematical semantics) describes the semantics of a language by
defining semantic equations (semantic functions) that map phrases and subphrases to
mathematical objects. Compositionality is an important property of denotational se-
mantics: it means that the semantics of a phrase is explained in terms of the semantics
of its subphrases. This has many important consequences:

• Compositional specifications are easier to understand.

• Compositionality facilitates bottom-up reasoning based on structural induc-
tion.

• In a compositional specification, if two phrases denote the same mathematical
object (i.e., they are semantically equivalent), they can be substituted for each
other.

Another advantage of denotational semantics is its capability to describe a compila-
tion process that can be leveraged for automated compiler generation [83, 101, 44].

Application to DSMLs In order to specify the denotational semantics of a DSML,
we need the following constituents:

• a mathematical semantic domain that is sufficiently rich to capture behaviors
of the models,
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• a semantic function that maps the elements of the abstract syntax to the seman-
tic domain.

There are numerous choices for the semantic domain, and choosing the ”right”
domain is specific to each problem. Programming languages are usually mapped
to λ-calculus. However, it would be extremely cumbersome to describe program-
ming languages using pure λ-calculus. In order to gain conciseness and clarity in the
specifications, we can choose higher-level semantic domains. For example, applied
λ-calculus has pre-defined constants for numbers, Boolean values, operators and oth-
ers. This raised level of abstraction greatly simplifies the specifications and improve
their comprehensibility by removing uninteresting details. For the semantic specifi-
cation of concurrent processes there are a number of possible choices: e.g., process
calculi (e.g. CCS [80] and CSP [52]), Petri nets [96] and the Actor model [2]. For
embedded and CPS systems we may map our languages to hybrid models, such as
timed automata [4], hybrid automata [5, 49] or hybrid IO automata [73]. Finally, for
physical modeling languages, we can use differential algebraic equations (DAE) to
represent trajectories over continuous time and space, as we demonstrate in [119,
116].

Note that the graph structure of a modeling language can possibly cause prob-
lems with regard to the compositionality property. For modeling languages, we need
to develop denotational specifications that do not contain loops: definitions are not
allowed to directly or indirectly depend upon themselves.

Example As an example, we discuss the denotational semantics of a simple imper-
ative language SIMP (a similar but simplified version of IMP languages [133, 108])
that contains natural numbers, Boolean values, variables, addition operator, if-then-
else structure and while loop. The abstract syntax of the language is the following:

Statement ::= skip | Identifier:=Expression | Statement;Statement

| if (BoolExpression) then Statement else Statement

| while (BoolExpression) Statement.
Expression ::= Numeral | Identifier | Expression+Expression.
BoolExpression ::= Boolean | Expression==Expression

| not BoolExpression.
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The semantic domains (and metavariables) are:

b ∈B = {tt, ff}

n ∈N = {0, 1, . . .}

+: N× N→ N

=: N× N→ B

σ ∈Σ = [Identifier→ N ∪ ⊥]

where B is the set of Boolean values, N is the set of natural numbers, + is a function
that maps two natural numbers to their sum, = is an equality predicate that maps pairs
of natural numbers to Boolean values, and σ is a store function that maps identifiers to
natural numbers or ⊥, where ⊥ denotes an undefined value (which makes σ a partial
function). We use [Identifier → N ∪ ⊥] to denote all the functions mapping
identifiers to natural numbers or ⊥.

Furthermore, assume that we have a store update function denoted σ[x 7→ s] that
returns a new environment, where variable x equals s, and the rest of the store is
intact:

σ[x 7→ s](y) =

σ(y) if y 6= x

s otherwise

The semantic functions S, E and B have the following signatures:

S : Statement→ (Σ→ Σ)

E : Expression→ (Σ→ N)

B : BoolExpression→ (Σ→ B)

Note how these functions define mappings from the abstract syntax to the semantic
domains.
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The semantic equations are the following:

SJx:=EKσ = σ[x 7→ EJEKσ]

SJS1;S2K = SJS2K ◦ SJS1K

SJif (EB) then S1 else S2Kσ =

if BJEBKσ then SJS1Kσ else SJS2Kσ

SJwhile (EB) SKσ = repeat BJEBK SJSK σ

where repeat = λt λs λσ(if tσ then repeat (sσ) else σ)

SJskipKσ = σ

EJIdentifierKσ = σ(Identifier)

EJNumKσ = n

EJE1+E2Kσ = EJE1Kσ + EJE2Kσ

BJtrueKσ = tt

BJfalseKσ = ff

BJE1==E2Kσ = EJE1Kσ equals EJE2Kσ

BJnot EBKσ = not BJEBKσ

where the object language is distinguished from the meta-language with J.K. Note
that the meaning of the recursive repeat function is the least fixed-point solution of
Y F = F (Y F ), where Y = λf.(λx.f(xx))(λx.f(xx)) is the Y combinator in λ-
calculus, and

F = λf λt λs λσ(if tσ then f(sσ) else σ).

The existence and uniqueness of such a solution is provided by Scott’s domain theory
and the Kleene fixed-point theorem.

A good tutorial introduction with many examples to the theory of denotational se-
mantics is presented by Tennent in [127] and by Slonneger in [120]. A more detailed
explanation of semantic domains and denotational semantics is found in [39].
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Note that the specification style presented for SIMP is called the direct semantics
style. While this approach works for simple languages, many extensions have been
proposed during the years:

• continuation semantics was proposed for handling jumps [123],

• monads and monad transformers were proposed for achieving modularity [81,
72],

• action semantics was introduced as a modular approach for denotational de-
scriptions [82],

• VDM semantics was proposed for achieving simpler specifications by using a
larger set of combinators [86].

3.3.2 Translational semantics

Translational semantics describes the behavior of a language by mapping its
phrases to a target language that has well-defined semantics. If the target language is
a programming language, this mapping defines a code generator.

The advantage of translational semantics is that the tools of the target language
may be used for running simulations, performing formal analysis techniques and
others. Its disadvantage is that the semantics of the source language is hidden in the
semantics of the target language, and therefore, it is not explicitly formalized.

3.3.3 Operational semantics

Operational semantics describes a procedure that results in the semantics of the
program when executed. There are different variants based on how the procedure is
described. In this chapter, we discuss the Structural Operational Semantics, and in the
next chapter, we refer to other methods (rewriting systems, Abstract State Machines).
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Structural Operational Semantics

A well-known notation for operational semantics is the Structural Operational Se-
mantics (SOS). SOS was proposed by Gordon Plotkin [97] in 1981 to define the oper-
ational semantics of programming languages. Interestingly, it was only 23 years later
– in 2004 – that the original manuscript was finally published as a journal publication
[98]. By this time, SOS has already become one of the most prominent specification
styles.

As Plotkin notices in his “The Origins of Structural Operational Semantics” paper
[99], the term ‘structural‘ reflects that the SOS specifications are syntax-directed,
therefore the behavior is specified in terms of the structure of the language, and the
behavior function can be found by using structural induction over the specifications.

The original SOS specification is now known as small-step SOS. In contrast,
what is now known as the big-step SOS, was developed by Gilles Kahn [61] and
called natural semantics originally.

While the small-step semantics contains all the rules for the step-by-step exe-
cution of a program (model), the big-step semantics describes a much higher level
abstraction: the overall result of executing it. Due to its abstract nature, big-step
semantics looks similar to denotational semantics. Under the hood, there are dif-
ferences though: while big-step semantics ignores the non-termination of programs,
denotational semantics takes special care of such cases.

Small-step SOS SOS uses syntactic rules (“symbol pushing”) to describe the trans-
formation of programs and manipulation of data. Syntactic rules are based on the
notion of Transition Systems (TSs). A TS is a structure 〈Σ,−→〉, where Σ is a
set of configurations and −→⊆ Σ × Σ is a transition relation. Transition relation
C1 −→ C2 (infix form) expresses a transition from configuration C1 to configuration
C2. The SOS syntactic rules are then expressed using inference rules of the form:

A1 . . . Ak [condition],
A0

21



where A0 . . . Ak are transition relations. The meaning of this rule is that whenever
the premises A1 . . . Ak and [condition] hold, we can infer the consequence A0.

For example, a configuration could be 〈e, σ〉, a pair of expression e and store σ,
where σ : Ide → Values is a function that assigns a value to each identifier. Or,
for languages with variable definitions, it is common to replace the store function
with σ : Location→ Values, a function that assigns values to abstract locations,
and defining an environment ρ : Ide→ Values∪Location that maps identifiers
either to values (constants) or to locations (variables). Then, a configuration is a
tuple 〈e, σ, ρ〉. For clarity, if the environment does not change in a rule, usually
the alternative notation of ρ ` 〈e, σ〉 −→ 〈e′, σ′〉 is used instead of 〈e, σ, ρ〉 −→
〈e′, σ′, ρ〉.

Example For instance, the SOS semantics of the addition operator in our SIMP
language is the following (here, σ is a store, E is an expression, n and m are natural
numbers, x is an identifier):

(ide) 〈x, σ〉 −→ 〈σ(x), σ〉

〈E1, σ〉 −→ 〈E ′1, σ〉(left) 〈E1 + E2, σ〉 −→ 〈E ′1 + E2, σ〉

〈E, σ〉 −→ 〈E ′, σ〉
(right)

〈n+ E, σ〉 −→ 〈n+ E ′, σ〉

(add) m is the sum of n ∈ N and n′ ∈ N〈n+ n′, σ〉 −→ 〈m,σ〉

The (ide) rule expresses how the value of an identifier is retrieved from the store;
the (left) rule describes the evaluation order for the ‘+‘ operator (left-to-right); the
(right) rule expresses that if the first argument is a number, the second argument
may be rewritten; and finally the (add) rule defines how to evaluate ‘+‘ if both of its
arguments are numbers.

As another example, here are the semantic specifications for the if-then-else struc-
ture:
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〈B, σ〉 −→ 〈B′, σ〉
〈if B then S1 else S2, σ〉 −→ 〈if B′ then S1 else S2, σ〉

〈if true then S1 else S2, σ〉 −→ 〈S1, σ〉

〈if false then S1 else S2, σ〉 −→ 〈S2, σ〉

And the semantics of the while loop is:

〈while B do S, σ〉 −→ 〈if B then (S; while B do S) else skip, σ〉

SOS suffers from modularity problems similar to the original denotational se-
mantic specifications. Just as how monads and monad transformers are used for
achieving modularity in denotational semantics, Modular Structural Operational Se-
mantics (MSOS) [84] was introduced to achieve modularity in SOS specifications.
The main difference between SOS and MSOS is that MSOS is based on labeled tran-
sition systems, where the labels describe the changes in the environment (store, etc.).

Natural semantics (big-step SOS) Kahn introduced natural semantics [61] as an
alternative way for defining behavioral semantics. Kahn proposed the usage of ax-
ioms and inference rules (similar to natural deduction, hence the name: natural se-
mantics) to define the semantics of the language phrases. Based on these rules, the
semantics of a program can be inferred in an operational style.

Similar to the small-step SOS, a rule has premises and consequences, which are
sequents written in the form of C ⇓ R, denoting that evaluating configuration C

results in configuration R.

In natural semantics, a rule is of the form:

C1 ⇓ R1 . . . Ck ⇓ Rk [conditions],
C ⇓ R

where R and Ri . . . Rk are irreducible configurations. This is the main difference
between SOS and natural semantics: while SOS rules produced intermittent config-
urations, in natural semantics the rules are describing final configurations.
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Example To demonstrate the difference with the other semantic specifications, we
define the natural semantics of the SIMP language. The natural semantics of addition
is:

(number) 〈n, σ〉 ⇓ 〈n〉

(identifier) 〈v, σ〉 ⇓ 〈σ(v)〉

〈E1, σ〉 ⇓ 〈n1〉 〈E2, σ〉 ⇓ 〈n2〉(add) m is the sum of n1 ∈ N and n2 ∈ N〈E1 + E2, σ〉 ⇓ 〈m〉

The semantics of if-then-else is the following (note that the evaluation of Boolean
expressions do not result in the change of state – they are side-effect free):

〈B, σ〉 ⇓ 〈true〉 〈S1, σ〉 ⇓ 〈σ′〉
〈if B then S1 else S2, σ〉 ⇓ σ′

〈B, σ〉 ⇓ 〈false〉 〈S2, σ〉 ⇓ 〈σ′〉
〈if B then S1 else S2, σ〉 ⇓ σ′

And the semantics of the while loop is:

〈B, σ〉 ⇓ 〈true〉 〈S, σ〉 ⇓ 〈σ′〉 〈while B do S, σ′〉 ⇓ σ′′

〈while B do S, σ〉 ⇓ σ′′

〈B, σ〉 ⇓ 〈false〉
〈while B do S, σ〉 ⇓ σ

Natural semantics combines the advantages of denotational semantics and SOS:
it provides good abstraction while retaining notational easiness. In most situations,
natural semantics is a good choice for semantic specifications, which is further sup-
ported by the easiness of writing interpreters for the specifications in any functional
or logic languages. However, there are some cases when natural semantics is incon-
venient or impossible to use: for example, non-deterministic behavior or concurrent
processes cause troubles. Furthermore, similar to small-step SOS, lack of modularity
is another problem, which can be remedied using MSOS [84].
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3.4 Conclusion

In this chapter, we surveyed some approaches for the behavioral specification of
programming languages. In particular, we covered three types of semantics, which
have different advantages and disadvantages:

• Denotational semantics is a concise, high-level representation for semantics.
Its conciseness is also a disadvantage, since generally denotational specifica-
tions are very hard to understand. Its compositionality facilitates bottom-up
reasoning and formal proofs through structural induction. While it is not neces-
sary, denotational semantic specifications often determine an implementation,
which can be leveraged to generate compilers based on the specifications.

• Operational semantics defines an interpretation of the language, therefore it
can be easily used for writing interpreters, running simulations and performing
model checking. Compared to denotational semantics, operational semantics
is easier to understand; however, it is often more verbose. The disadvantage
of operational semantics is that it is not capable of describing the semantics of
modeling languages with behavior in the continuous-time domain.

• Translational semantics is executable and may be used for performing auto-
mated code generation to the target language. A distinct advantage of transla-
tional semantics is that the tools of the target language may be used for running
simulations, performing formal analysis techniques and others. A hindrance is
that the semantics of the source language is hidden in the semantics of the target
language, and in most cases, it requires significant efforts to reverse engineer
this semantics.

We will use these specification styles for the formalization of Cyber-Physical
System (CPS) modeling languages. In particular,

• We will use the operational specification style to describe the behavior of com-
putational languages in CPSs, e.g., the semantics of synchronous data-flow or
statechart languages.
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• We will extend the denotational specification style to describe CPS modeling
languages. For this, we need to identify the mathematical objects, where the
CPS language elements are mapped to, and provide semantic units (reusable
semantic domains) for representing collections of these mathematical objects.

– We define semantic units for physical modeling languages in the field of
differential calculus (differential equations to represent continuous time
and space trajectories), and for synchronous data-flow languages in the
field of discrete calculus (difference equations).

– We define semantic units for CPS integration languages that can represent
the composition of continuous-time and discrete-time behavior: such as
hybrid automata, or the composition of differential and difference equa-
tions using sample-hold operators.

Note that here we diverge from the traditional meaning of denotational semantics,
since we map our languages to another languages, i.e., we describe translational se-
mantic mappings. However, since there is a tight coupling between the abstract ele-
ments of the target domain and the corresponding mathematical objects, we consider
them (pseudo-)denotational semantic specifications.
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CHAPTER 4

FORMAL SPECIFICATION LANGUAGES FOR CPS DSMLS

In this chapter, we discuss several formal specification languages that have been
used for specifying the semantics of modeling languages – their advantages and dis-
advantages, as well as their tool support.

First, we shall clarify the advantages of formal semantic specifications:

• Unambiguity: they provide an unambiguous and precise documentation for
the language.

• Reasoning: a formal specification facilitates sound reasoning using the tools
of mathematical logic.

• Guidelines: they provide guidelines for an implementation without specifying
any particular implementation techniques.

• Tool support: formal specifications facilitate automated generation of language-
based tools such as compilers, editors, inspectors, debuggers and visualizers
[48].

Many formal languages have been promoted for formal specifications. They dif-
fer in data representation (relational structures [53], term algebra [55], etc.), their
underlying logic (relational logic [53], rewriting logic [75], fixed point logic [55],
higher-order logic [94], etc.) and the tool-support and formal analysis techniques
they facilitate. Some of these languages are highly expressive but not executable,
while others sacrifice expressiveness for executability.

In the modeling language context, a different classification is obtained by group-
ing approaches based on the location of the specifications [20]. In the weaving ap-
proach, meta-models and semantic specifications are woven together, which has the
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benefit of encapsulated syntactical and semantical specifications. In the rewriting ap-
proach, the semantics is described by performing (graph) rewrites on the meta-model.
The benefit is that the semantics is directly expressed in terms of the meta-model. In
the translational approach, the meta-model is translated to an external specification
language, and the semantics is defined in that language. The advantage is that we can
use the available tools of the external language for performing formal analysis.

In the following, we discuss these approaches in detail, and provide an overview
of some of the most well-known formal languages found in the literature. Note that
there are other specification languages for semantic specifications (e.g., the K frame-
work [109]), but we are not aware of their usage for the specification of Domain-
Specific Modeling Languages (DSMLs), hence we do not discuss them in this chap-
ter.

4.1 Specification approaches

4.1.1 Weaving approach

In the weaving approach, the behavior is woven into the abstract syntax by a meta-
language that describes the operations of the model elements in the meta-model. The
advantage of this approach is that both the syntax and the semantics are defined in
the meta-model. Furthermore, since the operations are described in a meta-language,
by choosing an executable meta-language the models are also executable.

KerMeta [91] is a representative of this approach, in which a statically typed
meta-language is introduced for defining the operational semantics of meta-models.
This action language is woven into a meta-data language using aspect-oriented mod-
eling techniques, which results in an executable meta-language. The authors describe
a case study using KerMeta for defining a Finite-State Machine (FSM) model.

Gargantini et al. [36] describe a specification based on Abstract State Machine
(ASM). The authors weave ASM specifications into meta-models and compare this
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technique to three ASM-based translational approaches. As a case study, they provide
the specification of a FSM model.

Di Ruscio et al. [27] introduce a weaving approach using the XASM language
for defining the dynamic semantics of Domain-Specific Languages (DSLs) using
the Model-Driven Engineering (MDE) framework called Atlas Model Management
Architecture (AMMA). In this work, the authors integrate the ASM language in
AMMA, and use it as the transformation language between meta-models.

4.1.2 Rewriting approach

Alternatively, the behavioral semantics can be specified using rewriting systems.
A rewriting system consists of a set of rewrite rules, each of which defines a mapping
from the left-hand side of the rule to its right-hand side. Whenever the left-hand
side of a rule matches a sub-phrase, it is substituted with the right-hand side of the
rule. Often, rewrite systems are executed by applying these rewrite rules as long as
there are applicable rules left. In other systems, control flow structures are used for
defining the application order of the rules.

Wachsmuth [130] leverages Query/View/Transformation (QVT) relations [92]
(an Object Management Group (OMG) standard for model transformations) to de-
scribe the structural operational semantics of DSMLs. In particular, they develop the
operational semantics for Petri nets, as well as for a stream-oriented language for
earthquake early warning systems.

In graph rewriting systems (graph transformation systems), the rules are specified
using graph grammars and the pattern matching for the LHS is subgraph matching.

Agrawal, et al. [3] describe a semantic translation of Simulink Stateflow models
to hybrid automaton models by defining a series of graph transformations using the
graph transformation system GReAT [64, 10].
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4.1.3 Translational approach

In the translational approach, the meta-model of a language is translated to a for-
mal specification language and its semantics is described using the constructs of the
specification language. An advantage is that the tools developed for the specifica-
tion language can be used for performing formal analysis. A disadvantage of this
approach is that the semantics is indirectly defined in an external language; therefore
the user has to learn another language. Most of the work presented in the following
section is based on the translational approach.

4.2 Specification languages

In this section, we discuss several specification languages for the specification of
DSMLs. Note that the list is far from being exhaustive, but contains only the most
prominent languages.

4.2.1 Constraint logic programming languages

FORMULA

FORMULA [56, 55] is a constraint logic programming language based on fixed-
point logic over algebraic data types. Based on an initial set of facts specified using
algebraic data types and a set of inference rules, FORMULA can deduce a set of final
facts that is the least fixed-point solution for the specifications. Furthermore, given a
partial model - a model with underspecified facts - and some constraints, FORMULA
can find a completion of the model such that the constraints are satisfied, or return
‘unsatisfiable‘ if no such model exists. For this, FORMULA leverages Microsoft Z3
[26], a state of the art Satisfiability Modulo Theories (SMT) solver.

In FORMULA, domains are composed of data types and rules. A special constant
called ‘conforms‘ is defined for representing well-formed models: if ‘conforms‘ is
deduced by the inference engine, the model is well-formed. Furthermore, mapping
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between domains is supported by FORMULA transformations that are sets of rules
describing the mapping process. FORMULA comes with a bounded model checking
tool that can be used for model checking sequences of transformations.

Jackson et al. [57, 60] use FORMULA as a formal language for specifying the
structural semantics of DSMLs. Simko et al. [117, 116] use FORMULA for speci-
fying the denotational semantics of a physical modeling language, a bond graph lan-
guage. Furthermore, Simko et al. [119] describe both the structural and denotational
specifications of a Cyber-Physical System (CPS) modeling language.

The advantage of FORMULA is that the language is designed for specifying the
semantics of modeling languages; therefore, it provides comprehensible syntax for
describing domains along with their structural semantics, as well as for describing
behavioral semantic mappings with transformations.

Alloy

Alloy is a specification language based on first-order relational logic over first-
order (flat) relational structures. An Alloy specification contains a set of signatures
describing atoms, a set of declarations that defines relations over atoms, a set of facts
(constraints that always hold), predicates and functions to define operations over the
relational structure, and a set of assertions. The Alloy Analyzer tool can analyze these
specifications by reducing them to Satisfiability (SAT)-formulas, which can be solved
by the Kodkod [128] constraint solver. A significant limitation of this approach is that
numbers are also mapped as atoms, and therefore, they are only evaluated in a limited
scope.

Alloy has been used by many authors as a formal underpinning for graph trans-
formations. In these works, the operational semantics is specified as graph transfor-
mations, but executed and analyzed in the Alloy framework.

Baresi and Spoletini [12] discuss how a graph transformation system specified
in the AGG environment [126] can be encoded as an equivalent Alloy model, and
demonstrate how to exploit Alloy’s tools to answer bounded reachability questions
with regards to the transformations.
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Similarly, in the case study by Demirezen et al. [25], the operational semantics
of a DSML is specified using a sequence of graph transformation rules modeled in
AGG [126]. The authors describe how to manually encode the graph transformation
rules in Alloy.

Although we are not aware of any work of expressing the structural semantics
of DSMLs in Alloy, its relational algebra and the constraints could be leveraged to
develop similar specifications as in FORMULA. A similar line of work (i.e., defining
structural rules) is presented by Anastasakis et al. in [6]. UML2Alloy is a tool that can
transform a subset of the static Unified Modeling Language (UML) class diagrams
and Object Constraint Language (OCL) constraints to Alloy. The generated Alloy
model can be used to discover design flaws in UML designs with the Alloy Analyzer
tool.

Alloy is a powerful modeling language for software-based systems; however, it
also has some limitations for describing the semantics of DSMLs. First, its flat rela-
tional structure is inconvenient for representing hierarchical structures, e.g., algebraic
expressions. Second, in some scenarios – such as the specification of resource allo-
cations – the lack of support for real numbers may be too limiting.

4.2.2 Rewriting logic

Rewriting logic [78] is a framework for expressing both the static and dynamic
semantics of programming languages and concurrent systems. A rewrite theoryR =

(Σ, E,R) consists of an equational theory (Σ, E) and rewrite rulesR. The equational
theory describes the statics and the rewrite rules describe the dynamics of the system.

An equational theory (Σ, E) consists of function symbols Σ and equations E,
which together define the semantics by their initial algebra. Non-deterministic sys-
tems are supported through the rewrite rules R that are of the form r : t → t′, where
r is a label, and t, t′ ∈ TΣ(X) are elements of the term algebra over Σ and a finite set
of variables X .
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Maude

An implementation of rewriting logic is the Maude language [23, 24]. Maude’s
equational theory is a Membership Equational Logic (MEL), which is a generaliza-
tion of order-sorted logic (which is a generalization of many-sorted logic, which is
a generalization of unsorted logic). MEL is a sorted logic that supports partial or-
dering of sorts by subsort relations, subsort polymorphic overloading of operators,
(conditional) membership axioms of the form t : S, asserting that t has sort S, and
(conditional) equational axioms of the form t = t′ expressing the equality of terms
t and t′. Maude extends MEL with a rewriting logic part that adds the notion of
non-deterministic rewriting rules. Maude ships with a Linear Temporal Logic (LTL)
model checker, and a real-time simulation tool that can be used for executing the
specifications.

Boronat and Meseguer [19] use Maude for developing the algebraic semantics of
the MetaObject Facility (MOF). Besides providing an unambiguous specification for
MOF, such a formal semantics is executable, and can be used for formal analysis,
such as consistency checks.

Romero et al. [107] use Maude to specify the static semantics of models and
meta-models. In particular, they demonstrate how model subtyping, type inference,
and metric evaluation can be specified and implemented in Maude.

Rivera and Vallecillo [103] describe the addition of operational semantics to mod-
els of DSLs in Maude. The specifications are used for running simulations, perform-
ing reachability analysis and model checking. In [104], Rivera et al. describe an
upgraded version that is based on the core language of Maude. As part of the spec-
ifications, a sort is defined for each meta-meta-model element, such as for classes,
attributes, references, and others. Then, the concepts of the meta-model are subsorts
of these sorts, and a model is a set of Maude objects, where an object has a name, a
sort, which defines its meta-model type, and a set of attributes and relations. Finally,
rewriting rules are used for specifying the operational semantics of the DSML.

Rivera et al. [106] propose Maude to serve as a formal verification tool for graph
rewriting transformations. They present a Maude code generator that is integrated
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into a meta-modeling and model-transformation system called AToM3. The code
generator can automatically generate Maude specifications for both models and meta-
models, and generate the rewriting rules corresponding to the graph transformations.

A specification framework called e–Motions is presented by Rivera et al. in
[105] for describing the semantics of real-time Domain-Specific Visual Languages
(DSVLs). In e–Motions, translational semantics is specified with the ATL Trans-
formation Language that maps models to Real-Time Maude specifications. This
mapping together with the behavioral semantics of Real-Time Maude defines the
behavioral semantics of the language.

Egea and Rusu [29] present a Maude-based framework for specifying and check-
ing model conformance based on OCL constraints. Rusu extends this work in [111]
with the addition of operational semantics, which provides executable behavioral se-
mantics for the models.

Maude is a well-known specification language that is a good fit for specifying the
semantics of languages. The main disadvantage of Maude is that its syntax can easily
become overwhelming. Nonetheless, as shown in the related works, Maude can be
efficiently used for describing the structural and behavioral semantics of DSMLs.

4.2.3 Abstract State Machine languages

Abstract State Machine (also called dynamic or evolving algebras) is a widely
used formal method developed by Yuri Gurevich for describing the semantics of
sequential and non-sequential algorithms [40, 16]. ASM is a specification method
based on the notion of states and updates: a computation is modeled as a sequence
of states and state updates starting from an initial state. States are generic first-order
structures, i.e., non-empty sets with functions and relations. Some of these functions
are marked static, which means they are never updated. A state update describes the
change in the interpretation of some dynamic functions, while static functions and
the rest of the dynamic functions are left intact.
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There are several specification languages for expressing the Abstract State Ma-
chine semantics of languages. Examples are the Abstract State Machine Language
(AsmL) by Microsoft Research [79, 41], or the open source XASM language [7].

The research in ASM-based semantic specifications is abundant, it has found hun-
dreds of applications in the specification of algorithms and programming languages,
such as the specification of the C language [42], C# [17], Prolog [18], or the simula-
tion semantics of SystemC [90].

Lately, ASM was proposed as the language for the operational semantics spec-
ification of DSMLs. Broadly, these attempts can be classified as translational and
weaving approaches.

A translational approach using AsmL is introduced by Chen et al. [22], where a
semantic anchoring framework is presented that defines the operational semantics of
DSMLs by specifying a model transformation from the meta-model of the DSML to
the meta-model of a semantic unit with well-defined semantics in AsmL. The model
transformation is based on the graph transformation language GReAT [64, 10]. The
operational semantics of the DSML is indirectly defined by the operational seman-
tics of the semantic unit, which in turn is specified using the AsmL language. This
semantic anchoring framework supports the composition of heterogeneous semantic
units as discussed in [21].

Gargantini et al. [36] discuss different ASM based techniques for the semantic
specification of modeling languages. They identify three translational techniques:
semantic mapping, semantic hooking (anchoring) and semantic meta-hooking, and
a weaving approach by augmenting the meta-model of the language with ASM con-
structs. As a case study, they provide the specification of a FSM language using these
techniques.

Abstract State Machine is a powerful method for the operational semantic speci-
fication of languages. However, ASM does not support the specification of structural
or denotational semantics; therefore, it provides only partial solution for the semantic
specification challenge.
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4.2.4 High-level specification languages

Z notation

The Z notation [121] is a mathematical notation for specifying computing sys-
tems. In Z, mathematical data types (sets, relations, functions, sequences, etc.) are
defined based on the Zermelo-Fraenkel (ZF) set theory and predicate logic – together
with operations that act on them. Specifications consist of schemes, where a schema
contains a definition for a set of states, state invariants, operations and state update
functions. Operations – respecting the invariants – are defined through the state up-
date functions. A state update function is defined with predicates describing its pre-
and post-conditions.

Esfahani et al. [31] introduce an activity-oriented DSML for modeling the func-
tional and quality of service requirements of software systems using the Z notation.
Evans et al. [33, 32] propose the Z notation for defining a precise formal semantics
for UML class diagrams.

The main disadvantages of the Z notation are its unusual mathematical syntax
and its lack of executability. Note however, that restricted sets of the language are
executable, and several theorem prover and testing tools (testers and animators) are
available for the language. A comprehensive comparison of Z-based tools is pre-
sented in [129].

PVS

The Prototype Verification System (PVS) [93, 94] is an interactive theorem prover
based on higher-order logic with built-in proof tactics and automated theorem prov-
ing capabilities. PVS ships with a vast library of theories, which are reusable in
subsequent proofs. Higher-order logic and the reusable library of theories make PVS
capable of concisely expressing complex theorems.

Paige et al. [95] use PVS for developing the structural semantic specifications
of the BON (Business Object Notation) language, which is a modeling language
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similar to UML. Using the specifications, the authors use the PVS theorem prover to
verify model conformance, and by adding semantics to the routines (pre- and post-
conditions) they perform multi-view consistency checking.

The PVS language, similar to Z, is a powerful specification language with the
same drawback: the specifications are generally not executable.

4.3 Conclusion

In this chapter, we discussed several formal languages for semantic specifications:

• FORMULA is a specification language based on constraint logic programming
over algebraic data types that was specifically designed for the specification
of modeling languages. FORMULA specifications are executable, and it has
bounded model checking and model finding tools. Furthermore, there is a
straightforward representation of models and meta-models in FORMULA.

• Alloy is a specification language based on constraint logic programming and
relational structures. Alloy’s advantages are its executability and support for
model finding. Its main disadvantage is the lack of support for infinite domains.

• Maude is a well-known high-level specification language based on rewriting
logic and MEL. Maude is executable and it has tools for performing model
checking and running real-time simulations. Maude is a capable language that
can be used for specifying the structural, operational and denotational seman-
tics of DSMLs.

• ASM is a formal method for writing operational specifications; however, ASM
lacks features for structural and denotational semantic specifications. The
AsmL language (an implementation of ASM) has an execution engine, an
explicit-state model checker and a conformance checker that compares imple-
mentations to specifications through automated testing.

• PVS and Z are generic high-level specification languages with support for in-
teractive theorem proving; however, they are not executable.
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An important aspect of a formal specification language is whether the specifi-
cations written in the language are analyzable and executable. Arguably, it is hard
to gain confidence in a specification without extensive analysis and testing. Daniel
Jackson, author of the Alloy specification language, writes the following in his book
[53] (p. XIII):

The experience of exploring a software model with an automatic ana-
lyzer is at once thrilling and humiliating ... Then the sense of humilia-
tion sets in, as you discover that there’s almost nothing you can do right.
What you write doesn’t mean exactly what you think it means. And
when it does, it doesn’t have the consequences you expected ... I now
cringe at the thought of all the models I wrote (and even published) that
were never analyzed, as I know how error-ridden they must be.

For this reason, we prefer specification languages with support for the following
functions:

• Checking whether a model is well-formed according to its structural semantics.

• Evaluating the denotational semantic mapping to compile a model to its se-
mantic domain.

• Simulating a model based on its operational semantics. Performing model
checking based on some specifications (e.g., LTL specifications).

• Automatically finding well-formed models that satisfy some structural and/or
behavioral properties (model finding).

Besides executability, there are three important questions that can help us choos-
ing a language for the semantic specification of CPS DSMLs:

• Does the language support the concise and comprehensible representation of
DSMLs and their models?

• Does it support the specification of structural semantics, as well as different
types of behavioral semantics (e.g., denotational and operational)?
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• What is the tool support for the language? Does it support model conformance
checking, model finding, testing and model checking?

FORMULA Alloy Maude ASM PVS Z
Structural Semantics x x x x x

Denotational Semantics x x x x x
Executable Operational Sem. x x x x

Model conformance checking x x x
Bounded Model checking x x x x

Model finding x x

Table 1: Comparison of different specification languages for DSML specification.

Table 1 compares the specification languages discussed in this chapter based on
these criteria. The marked cells indicate that either the language provides language/-
tool support for the given feature, or developing the feature is straightforward using
the built-in features of the language. Based on these criteria, FORMULA, Maude and
Alloy are probably the best choices for the semantic specification of CPS DSMLs.
In the rest of this thesis, we will define a language extending FORMULA with addi-
tional language constructs to help the development of concise behavioral specifica-
tions for CPS modeling languages.
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CHAPTER 5

A FORMAL LANGUAGE FOR SEMANTIC SPECIFICATIONS

In this chapter, we introduce a specification language that can efficiently describe
the behavioral semantics of modeling languages. The language is based on the Mi-
crosoft FORMULA language but extends it with useful features for behavioral se-
mantic specifications.

5.1 Introduction to ForSpec

ForSpec is a logic-based language for writing formal specifications. The syntax
and semantics of ForSpec largely overlap with FORMULA [56, 55], a constraint
logic programming language developed at Microsoft Research based on fixed-point
logic over algebraic data types. We discuss the language in two parts: first, we
introduce the overlapping concrete syntax with FORMULA. The abstract syntax and
semantics of these elements are the same as in FORMULA [58]. In the second part,
we introduce the new syntactic elements and describe their semantics.

5.1.1 Core language

The domain keyword specifies a domain (analogous to a meta-model), which is
composed of type definitions, data constructors and rules. A model of the domain
consists of a set of facts (also called initial knowledge) that are defined using the
data constructors of the domain. The well-formed models of the domain are defined
with the conforms rules. Given a model, if the constraints of the conforms rules
are satisfied by the least fixed-point model obtained from the initial set of facts by
applying the domain rules, the model is said to conform to its domain.
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ForSpec has a complex type system based on built-in types (Natural, Integer,
Real, String, and Bool), enumerations, data constructors and union types. Enumer-
ations are sets of constants defined by enumerating all their elements; for example,
bool ::= {true,false} denotes the usual 2-valued Boolean type.

Union types are unions of types in the set-theoretical sense, i.e., the elements of
a union type are the union of the elements of the constituent types. Union types are
defined using the notation of T ::= Natural + Integer, which defines type T as
the union of natural and integer numbers; that is, type T denotes the integer numbers.

Data constructors can be used for constructing algebraic data types. Such terms
can represent sets, relations, partial and total functions, injections, surjections and
bijections. Consider the following type definitions:

A ::= new (x:Integer, y:String).

B ::= fun (x:Integer -> y:String).

C ::= fun (x:Integer => y:A).

D ::= inj (x:Integer -> y:String).

E ::= surj (x:Integer -> y:String).

F ::= bij (x:A => y:B).

G ::= Integer + H.

H ::= new (Integer, any G).

I ::= (x:Integer, y:String).

Data type A defines A-terms by pairing Integers and Strings (and A also stands for
the data constructor for this type; for example, A(5,"f") is an A-term), where the
optional x and y are the accessors for the respective values. Data type B defines a
partial function (functional relation) from Integers to Strings. Similarly, C defines
a total function from Strings to A-terms, D defines a partial injective function, E
defines a partial surjective function, and F defines a bijective function between A-
terms and B-terms. Type G is the union of the integers and H, where H is a data type
composed of an integer and a G term. Note that G and H are mutually dependent,
which would cause an error message during static type checking. In order to avoid
the error message, we use the any keyword in the definition of H.

While the previous data types (and constructors) are used for defining initial facts
in models, derived data types are used for representing facts derived from the initial
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knowledge by means of rules. For example, derived data type I defines terms over
pairs of Integers and Strings.

Set comprehensions are defined in the form of {head|body}, which denotes the
set of elements formed by head that satisfies body. Set comprehensions are used by
built-in operators such as count or toList. For instance, given a relation Pair ::=

new (State,State), the expression X is State, n = count({Y|Pair(X,Y)}) counts
the number of states paired with state X.

Rules are used for deducing constants and derived data types. Rules have a left-
hand side part called head, and a right-hand side part called body. The semantics of a
rule is that whenever the body can be made satisfied (its variables can be substituted
such that the resulting term is a fact in the model), then the head (after substituting
with the same variable values) is also added to the facts. Negation (no keyword) is
supported in the body by the restriction that the rules must be stratified in this case.

For example, we can calculate all the paths between nodes in a graph with the
following specifications:

// node is a type that consists of an integer
node ::= new (Integer).

// edges are formed from pairs of nodes
edge ::= new (node,node).

// path is a derived data type generated by the following rules:
path ::= (node,node).

path(X,Y) :- edge(X,Y).

path(X,Y) :- path(X,Z), edge(Z,Y).

In order to help writing multiple rules with the same left-hand side term, the semi-
colon operator is used: its meaning is logical disjunction. For instance, in A(X) :-

S(X); T(X) any substitution for X, such that S(X) or T(X) is derivable, results in the
deduction of A(X).

Type constraint x:A is true if and only if variable x is of type A, while x is A is
satisfied for all derivations of type A. Similarly, A(x,"a") is a type constraint, which
is satisfied by all substitutions for variable x such that the resulting ground term is a
member of the knowledge set (note that the second sub-term is already grounded in
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this example). Besides type constraints, ForSpec supports relational constraints, such
as equality of ground-terms, and arithmetic predicates (e.g., less-than, greater-equal,
etc.) over reals and integers. The special symbol _ denotes an anonymous variable,
which cannot be referenced anywhere else.

Domain composition is supported by the extends and includes keywords. Both
denote the inheritance of all types, data constructors and rules, but while domain A

extends B ensures that all the well-formed models of A are well-formed models of
B, definition domain A includes B may contain well-formed models in A, which
are ill-formed models of B.

Namespaces are used for handling multiple definitions with the same name in
different ancestor domains. For example, domain A extends b::B uses the name b
for referring elements of B. In A, we can refer to these elements by inserting a dotted
qualification b. in front of the type identifiers defined in domain B.

Finally, transformations define rules for creating output models from a set of
input models and parameters. Transformations are specified as sets of rules. The
semantics of a transformation is simple: if a non-derived data type of the output
domain is deducible using the transformation rules, it will be a fact in the output
domain. The syntax of a transformation has the following form:

transform name (list of inputs) returns (list of outputs)

{

local type declarations

rules

}

Here, the list of inputs consist of namespaced domain references (e.g., in1::Stateflow
refers to the Stateflow domain by the name in1) and elementary arguments (e.g.,
k:Integer is an integer variable named k, which can be accessed by %k in the trans-
formation rules). Similarly, the outputs are namespaced domain references. We
can refer to elements in different namespaces by using the dotted notation discussed
above.

Transformation rules have the same syntax and semantics as in domains with the
only exception that a special type _ is introduced for each output domain that defines
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an identity constructor for its types. The identity constructor is useful for copying
terms from the input domains to the output domains.

For instance, the following transformation describes the firing of a Finite-State
Machine (FSM), where all the data constructors belonging to in.frame are automat-
ically copied to the output domain:

transform fire (in::FSM, trigger:String) returns (out::FSM)

{

// Copy the frame data (static structure of FSMs)
out._(X) :- X is in.frame.

// Take triggered transition
out.currentState(Next) :- in.currentState(C), in.Transition(C,

%trigger, Next).

// If no transition triggered, take stuttering step
out.currentState(C) :- in.currentState(C), no in.Transition(C,

%trigger, _).

}

5.1.2 Full language

ForSpec extends the core language with goal-driven and functional terms, seman-
tic functions and semantic equations.

Goal-driven types The grammar rule for goal-driven type declarations is the fol-
lowing:

<gd-def> ::= <id> "::=" "[" <field>+ "=>" <field>+ "]".

For example, F ::= [lhs:Integer,rhs:Integer => Integer] defines a goal-driven
type F as a tuple of three integers (the first two of which are accessed by the names lhs

and rhs). Furthermore, it automatically defines a trigger type F ::= (Integer,Integer)

as a pair of integers (the arguments lhs and rhs before the arrow) that triggers the eval-
uation of the goal-driven type. Since both the goal-driven type and its trigger type
have the same names, ForSpec uses the number of arguments to decide which type
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a term belongs to. Because the trigger type has always less arguments than the cor-
responding goal-driven type, the number of arguments uniquely defines the type of a
term.

Besides the regular use of data constructors (e.g., F(2,3,5)), goal-driven terms
can be also written according to the following syntax:

<gd-term> ::= <id> "(" <term>+ ")" "=>" (<term> | "(" <term>+ ")").

For instance, F(2,3) => 5 and G(1) => (2,3) are valid goal-driven terms. Note
that the => operator is only a syntactic sugar in these cases, and the examples are
equivalent to F(2,3,5) and G(1,2,3).

The specialty of these goal-driven terms is the following:

• Whenever they appear on the left-hand side of a rule, the corresponding trigger
term is appended to the right-hand side; i.e., the inference of a goal-driven term
is dependent on its trigger term.

• Whenever they appear on the right-hand side of a rule, the corresponding trig-
ger term is extracted as the head of a new rule that has all the constraints of the
left-hand side of the original rule up to the point of the goal-driven term under
question. This means that whenever a rule is dependent on a goal-driven term,
a rule is generated for deriving the corresponding trigger term.

In order to describe the formal semantics of a goal-driven term, we will inject it
in the semantics of the core language. Provided the semantics of the core language
is given in terms of a knowledge-set K [58], the semantics of goal-driven rules is the
following (note that goal-driven terms can be used only in rules that are free of set
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comprehensions and negations):

RJt← pKn def
= ∀x.

((
GJt[x]K ∧

∧
pi∈p

RJpi[x]Kn

)
⇒ K(t[x], n)

)
∧∧

pi∈p∧gd(pi)

RJtr(pi)← {p1, . . . , pi−1}Kn

RJF (t)Kn def
= ∃i.(i ≤ n ∧K(t, i))

RJr(t, t′)Kn def
= r(t, t′)

GJtK def
=

RJF (tr(t))Kn if gd(t)

> otherwise

Here, φ[x] refers to the substitution of x for the variables of the corresponding rule
in term/predicate φ, gd(φ) is true iff φ is a goal-driven term or find-predicate, tr(φ)

refers to the trigger term corresponding to φ, F (t) is a find-predicate for term t, and
r(t, t′) is a binary relation between terms. In the first line, the semantic function GJK
is used for making goal-driven heads dependent on their corresponding trigger term,
and the second line extracts the rules for deriving the trigger terms for the body of
the rule.

Functional terms Besides providing a goal-driven evaluation scheme, goal-driven
trigger types have another use in functional terms. A goal-driven trigger term can
be used as a function application, in which case its semantics is the result of its
evaluation. For instance, if we have a goal-driven type add ::= [expr, expr =>

Integer] that evaluates to the addition of expressions, then the term add(X,add(Y,5))

=> T is equivalent to add(Y,5) => Z, add(X,Z) => T, where Z is a variable not
used anywhere else. This automatic unfolding of the internal trigger type (add(Y,5))
is a useful feature for writing behavioral specifications.

The semantics of functional terms is the following (assuming t and s are goal-
driven terms):

RJF (t(a, s(b)))Kn def
= RJF (t(a,nv))Kn ∧RJF (s(b,nv))Kn
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where nv is a set of new variables that is not used anywhere else in the specifications,
and a and b are the other arguments of s and t.

Union type extension ForSpec supports the extension of existing union type decla-
rations with additional components. This is especially important in language design,
since it facilitates the composition of languages.

For example, consider the following domain for describing expressions:

domain Equations

{

expr ::= var + Real + op.

op ::= neg + add.

var ::= new (name:String).

neg ::= new (any expr).

add ::= new (any expr, any expr).

}

If we wanted to create a language that supports multiplication, we would need to
copy these specifications and add the multiplication operator. This results in code
duplication, which can be avoided by using union type extension.

In ForSpec, the extended domain can be defined the following way:

domain Equations_Ext extends Equations

{

op += mul.

mul ::= new (any expr, any expr).

}

Here, the first line expresses that we add mul to the op union type. The resulting
Equations_Ext domain is equivalent to the following domain:

domain Equations_Ext

{

expr ::= var + Real + op.

op ::= neg + add + mul.

var ::= new (name:String).

neg ::= new (any expr).
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add ::= new (any expr, any expr).

mul ::= new (any expr, any expr).

}

Union type extension improves the quality of the specifications by avoiding code
duplication and by helping the language designer to use existing language compo-
nents.

Semantic functions In order to support writing denotational semantic specifica-
tions, ForSpec introduces syntactic elements for defining semantic functions. A se-
mantic function declaration has the following form:

<sem-func> ::= <id> ":" <field>+ "->" <field>+

The semantics of such a semantic function has two components: first, it declares
a data type of the same name; second, it creates rules for extracting information
from the semantic functions as discussed below. For example, the semantic function
name : dom_types -> codom_types declares a data type equivalent to name ::=

[dom_types => codom_types], and the generated rules extract every possible in-
stantiations of the codom_types over which the function ranges for a concrete model.

Consider a semantic function p : x1, ..., xk− > xk+1, ..., xm. The semantics of
the generated rules is the following:

RJp : x1, . . . , xk → xk+1, . . . , xmKn def
=

∀x.∀i ∈ [k + 1,m]. (RJF (p(x))Kn⇒ K(xi, n))

In words, for every derived term of type p, the rules derive each of the sub-terms
found in the co-domain of p.

Semantic equations ForSpec contains syntactic elements for writing semantic equa-
tions. The form of a semantic equation is the following:

<sem-eq> ::= <id> "[[" <id> "]]" <term>* "=" <term>+ ["where" <rule-body>+]
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For example, the following specification defines the semantic equation for the
add operator:

add ::= new (expr,expr).

expr ::= add + ...

S : expr -> Integer.

S [[add]] = summa

where summa = S [[add.lhs]] + S [[add.rhs]].

Note that add is a data type in the domain; still, it is used as a variable on the right-
hand side of the where keyword. This is possible due to the semantics of the semantic
equations as follows. Consider a semantic equation

S [[Elem]] Args = M_1 M_2 ... M_k where C

The semantic equation defines how semantic function S maps element Elem and ar-
guments Args to elements M_1, M_2 ... M_k, whenever constraints C hold. The
semantics of the equation is the following:

RJS(Elem,Args) = M1M2 . . .Mk where CKn def
=

∀x.∀y.∀i ∈ [1, k].

(RJy : ElemKn∧

RJF (y)Kn∧

RJC[x]Kn)⇒ K(S(y, Args,Mi), n)

In words, for every ground-term y of type Elem (note that Elem is an element of the
meta-model, thus a type of the model) that is found in the knowledge-set we generate
a mapping from y and Args to each of the Mi-s.

Pretty-printing Note that the documentation generator will pretty-print the seman-
tic functions and equations, so the previous example will have the following form in
the documentation:

add ::= new (expr,expr).

expr ::= add + ...

S : expr → Integer.
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S JaddK = summa

where summa = S Jadd.lhsK + S Jadd.rhsK.

Example In order to demonstrate the use of the previous syntactic elements, con-
sider the following example:

domain ExprLanguage

{

expr ::= add + sub + Integer.

add ::= (lhs:expr, rhs:expr).

sub ::= (lhs:expr, rhs:expr).

}

domain Integers

{

int ::= (Integer).

}

transform ExprSemantics (in::ExprLanguage)

returns (out::Integers)

{

// Semantic function mapping expressions to integers.
expr_sem : expr -> int.

// Semantic equation for integers.
expr_sem[[Integer]] = int(Integer).

// Semantic equation for addition operator using functional rules:
expr_sem[[add]] = summa

where

expr_sem[[add.lhs]] = int(n),

expr_sem[[add.rhs]] = int(n’),

summa = int(n+n’).

}

Oftentimes, denotational mapping works by mapping a single concept of the lan-
guage to several concepts of the semantic domain. In order to support the concise
representation of such multi-mappings, ForSpec supports the specification of multi-
ple terms on the right-hand side of a denotational equation separated by white-spaces.

For example,

50



S [[ConnectedPower]] =

eq(sum("CyPhyML_powerflow",flow1.id), 0)

addend(sum("CyPhyML_powerflow",flow1.id), flow1)

addend(sum("CyPhyML_powerflow",flow1.id), flow2)

eq(effort1, effort2)

where

x = ConnectedPower.src, y = ConnectedPower.dst, x != y,

DesignElementToPortContainment(cx,x), cx:Component,

DesignElementToPortContainment(cy,y), cy:Component,

PP [[x]] = (effort1,flow1),

PP [[y]] = (effort2,flow2).

defines four semantic equations (lines 2–5), each of which defines the semantics of
the ConnectedPower element with the same constraints on the right-hand side of the
where keyword.

5.2 Semantic specification in ForSpec/Formula

In this section, we explore four approaches for writing behavioral specifications
in ForSpec. Furthermore, for each approach, we identify the possible applications of
the symbolic analysis techniques provided by the FORMULA engine.

5.2.1 Operational semantics in ForSpec

Transformation-based operational semantics The operational semantics of a lan-
guage can be easily formalized in ForSpec (and in FORMULA as well) using trans-
formations. Given the abstract syntax of a language (a domain in ForSpec), first,
we enrich it with the details of the execution environment. Then, the operational
semantics is an endogenous transformation for this domain.

For example, given the following domain for FSMs:

domain FSM

{

State ::= new (String).
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Event ::= new (String).

Transition ::= fun (State, Event -> State).

InitialState ::= new (State).

}

We can extend this domain to an executable FSM domain by adding a data construc-
tor for representing the current state:

domain Executable_FSM extends FSM

{

CurrentState ::= new (State).

// ensure that there is exactly one current state
conforms count({Y | CurrentState(Y)}) = 1.

}

The transformation describing the operational semantics is the following:

transform fire (in::Executable_FSM, event:String) returns

(out::Executable_FSM)

{

// copy the frame data
out._(X) :- X is in.FSM.Data.

// successful firing
out.CurrentState(Next) :-

in.CurrentState(Current),

in.Transition(Current, Event(%event), Next).

}

Such a specification can be used with the symbolic execution engine of FOR-
MULA to answer the following question: given an input model, are there any events
that lead to an ill-formed output model? In the FSM example, FORMULA could find
such an event, if the input model has any states, from which an event does not trigger
any transitions. In this case, the output model would not have a current state, and
therefore it would be an ill-formed Executable_FSM model.

Rule-based operational semantics Describing rule-based operational semantics
in ForSpec is more complicated. In this case, a transformation consists of many
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smaller steps – each one expressed as a rule. While in the transformation-based
operational semantics we had only two environments – the a priori and a posteriori
environments for the transformation – in the rule-based operational semantics each
rule produces a new environment.

As an example, consider a simple expression language with side effects:

domain SIMP

{

...

// An algebraic data type for representing sequents.
expr ::= [Expression, Environment => Natural, Environment].

// Axiom schema for (number).
expr(n,env) => (n,env) :- n:Natural.

// Axiom schema for (identifier). Retrieve variable from environment.
expr(v,env) => (n,env) :- v:Variable, retrieve(env,v,n).

// Rule for (add).
expr(Add(E1,E2),env) => (m,env’’) :-

expr(E1,env) => (n,env’), n:Natural,

expr(E2,env’) => (n’,env’’), n’:Natural,

m = n + n’.

}

The main difference compared to the transformation-based operational semantics is
that in this case each rule is evaluated with respect to its own environment, and there-
fore the whole environment needs to be represented as a single algebraic data type.
Furthermore, to support working with such environments, we also need auxiliary
goal-driven functions that operate on them: such as the retrieve function in the ex-
ample.

For both the transformation-based and the rule-based cases, there are many ways
to leverage the specifications:

• Symbolic model checking: by attaching a monitoring language to the original
language and specifying its semantics in the same operational style, the model
finder can perform bounded model checking on a model by finding an input
vector that produces a counterexample for a safety specification.
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• Automated test-case generation: given a coverage requirement (e.g., modi-
fied condition/decision coverage [47]), the model finder can generate test vec-
tors that exercise the required parts of the specification [110].

• Non-determinism of the specification: the model finder can be used to gen-
erate configurations that are reducible to different conclusions. If no such con-
figuration exists, the specification is deterministic.

• Existence of stuck configurations: a stuck configuration is a non-final con-
figuration, which has no applicable rules. If such configurations exist, we can
use the model finder to find them.

5.2.2 Translational and denotational semantics

One of the most straightforward semantic specification styles in ForSpec is the
translational semantic specification. In this case, ForSpec is used as a rewriting sys-
tem between different abstract syntaxes (domains). Hence, for developing transla-
tional specifications, we need domains describing the meta-model of the source and
target languages, and a transformation that translates models of the source language
to the target language.

Based on the “distance” of the semantics of the source and target languages, the
translation could be simple element-wise mapping, or more complicated rewriting
rules. For example, a simple translational semantics is described by the following
transformation:

transform TranslateESMoL (esmol::ESMoL_statechart)

returns (sf::Matlab_Stateflow)

{

map_ts : esmol.TransStart -> sf.transition + sf.transition_type

+ sf.transition_order.

// The translational semantics of ESMoL TransStart element.
map_ts [[TransStart]] =

sf._(m_trans)

sf.transition_type(m_trans, DEFAULT)
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sf.transition_order(m_trans, T.Order)

where

// Find the transition with TransStart as its source
T is esmol.Transition, T.Src = TransStart,

// Find the parent state of the TransStart element
esmol.StateToTransConnectorContainment(parent,TransStart),

// Construct the corresponding transition
m_trans = sf.transition(

map_state [[parent]],

map_node [[T.Src]],

map_node [[T.Dst]],

map_event [[T.Event]]).

...

}

This excerpt demonstrates how the TransStart concept of the Embedded Systems
Modeling Language (ESMoL) [100] is translated to a default transition element of
Matlab Stateflow. Function map represents the mapping from elements of the source
domain to the target domain. A TransStart element is mapped to a sf.transition
element along with sf.transition_type and sf.transition_order attributes.

There are important questions that can be answered by performing model finding
on translational semantics:

• Completeness: are there any elements in a well-formed source model that are
not mapped to any elements in the target domain? It is tricky to answer this
question, since beside symbolically executing the behavioral specifications, we
also need to consider the structural semantics of the language. For example,
ESMoL contains a definition for history nodes, but they are not supported by
the tools of ESMoL at the moment, and they are forbidden in well-formed
models. Therefore, the specifications are complete, even though we do not
specify the mapping of these history nodes.

• Uniqueness: are all the mappings unique? In many cases it indicates an error
if multiple rules map a single concept. We can use model finding to explore
these errors.
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Note that the same approach can be used to specify the denotational semantics
of a language, as we demonstrate in [116, 119]. In order to describe the denotational
semantics, first, we need to define a semantic domain that is capable of describing the
semantics of the language; second, we need to define semantic equations that relate
the abstract syntax of the language to the semantic domain. As an example, consider
the denotational semantics of a bond graph language (see Chapter 7 for details):

domain DAE

{

term ::= cvar + Real + mul + ...

cvar ::= new (name:String,id:Integer).

mul ::= new (any term,any term).

eq ::= new (term,term).

diffEq ::= new (term,term).

...

}

transform BondgraphSemantics (graph::BondGraph)

returns (dae::DAE)

{

// Semantic function for (B)onds
B : graph.Bond -> dae.cvar, dae.cvar.

// Semantic function for (N)odes
N : graph.Node -> dae.eq.

// The semantics of a bond is a variable pair (effort and flow).
B [[Bond]] =

(dae.cvar("effort",Bond.id),

dae.cvar("flow",Bond.id)).

// The semantics of a resistance R is an equation over the variables of its bond.
N [[R]] = dae.eq(EffortVar, mul(FlowVar,R.Value))

where

// Find the bond of the resistance R
graph.connects(Bond,R),

B [[Bond]] = (EffortVar,FlowVar).

...

}
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In practice, developing denotational semantics is a highly error-prone task, where
tool support can greatly improve the consistency of a specification. On one hand,
static type checking of the semantic functions filters out many problems. On the
other hand, we can leverage model finding to provide further help for the designer:

• Completeness: if there are any undefined (not mapped) syntactic elements,
the model finder can find them. This is a non-trivial problem, because the
mappings are usually defined with respect to some constraints, and we need to
answer if the union of all the mappings cover all the cases.

• Consistency: if the model finder can find a syntactic element that is defined
twice with different semantics, the specification is inconsistent. Note that this
is not as easy as checking the left-hand side of the semantic equations, because
a syntactical element may be defined in several rules that only differ in their
constraints on their right-hand side.

5.3 Conclusion

In this chapter, we introduced ForSpec, a specification language for the structural
and behavioral specifications of Domain-Specific Modeling Languages (DSMLs).
We discussed in details how the operational, translational and denotational semantics
of a language can be formalized using ForSpec.

In order to avoid confusion about the possible uses of these specifications, Table 2
summarizes the different use cases for different modeling languages and specification
styles.
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Language type Specification type Usage
Any Structural Model conformance checking

Model finding based on some specs
Any Translational Compiler to a different language
Computational Operational Interpreter

Generating Traces
Bounded model checking
Model coverage
Checking for stuck configurations
Checking for non-deterministic specs

Denotational Compiler (e.g., to λ-calculus)
Code generator to functional languages
Checking for completeness of specs
Checking for consistency of specs

Physical Denotational Compiler (e.g., to differential equations)
Code generator to equation-based lan-
guages
Checking for completeness of specs
Checking for consistency of specs

Table 2: Use cases for the ForSpec specifications.
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CHAPTER 6

REUSABLE SEMANTIC UNITS FOR FORMALIZING THE
DENOTATIONAL SEMANTICS OF CPS MODELING LANGUAGES

In this chapter, we define a set of reusable semantic units for the denotational
semantic specification of CPS modeling languages. We will use these semantic units
in the following chapter to specify the behavioral semantics for several CPS modeling
languages.

6.1 Semantic anchoring

Specifying the behavioral semantics using semantic mappings is a challenging
and time-consuming task. In order to help this process, Chen et al. [22] introduced
semantic anchoring earlier. In the semantic anchoring framework, the language de-
signer anchors the semantics of the language to a previously defined semantic unit (a
language with well-defined semantics). By maintaining a library of semantic units
and reusing them for the specification of several languages, the cost of writing a
specification can be greatly reduced.

A semantic unit LSU is a language with a well-defined semantic mapping MSi

as shown in Fig. 1. By specifying the semantic mapping (anchoring) MS from our
language L to a semantic unit LSU , the semantics of L is defined by MSi ◦MS , i.e.
this transformation maps each concept of L to the semantic domain used by LSU .

Earlier, semantic units were used in the context of operational semantics. In this
thesis, we extend the notion of semantic units to denotational semantics. In this case,
a semantic unit is a reusable formal representation for a mathematical domain, and
for specifying the denotational semantics of a language L we only need to describe a
semantic anchoring from L into an appropriate semantic unit.
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Figure 1: Formalization of behavioral semantics by semantic anchoring. The behavioral se-
mantics of language L is expressed as a semantic anchoring MS from its abstract
syntax AL to the abstract syntax ASU of the semantic unit. The semantic mapping
MSi and the mathematical domain are unique for the semantic unit, and developed
only once.

Another difference compared to the original semantic anchoring framework is in
the language used for specifying the semantic units. Chen et al. [22] use the AsmL
language for specifying the syntax and semantics of the semantic units. In this the-
sis, we develop the abstract syntax of the semantic units using ForSpec, and specify
their structural semantics using logic rules. The behaviors described by the Cyber-
Physical System (CPS) semantic units are too generic (e.g., trajectories described
by differential equations) to be easily expressed in ForSpec (or any other executable
specification language for that matter); therefore, we step out from the specification
language, and specify them using mathematical logic and calculus. The consequence
is that while we can produce the equations belonging to a model, we cannot calculate
the trajectories described by them.

Note that this is a more generic problem than choosing a specification language
that is powerful enough: calculating the exact trajectory described by some differen-
tial equations is generally not possible – only rigorous over-approximations can be
calculated (this is the topic of verified integration [14] with applications in particle
beam physics and hybrid system verification [118]).
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6.2 Primary CPS semantic units

In order to formalize the denotational semantics of the heterogeneous languages
used in CPS design, we need heterogeneous semantic units. For instance, the seman-
tics of physical systems modeling languages requires the representation of continuous-
time trajectories that are best described by differential algebraic equations. On the
other hand, data flow languages used in controller design are often described in terms
of discrete-time difference equations. Or, the formalization of high-level controller
design languages often require Finite-State Machines (FSMs).

In this section, we define primary semantic units for typical CPS languages.
These primary semantic units are then reusable for the specification of CPS lan-
guages, as well as for the specification of other semantic units as discussed in the
following sections.

6.2.1 Differential algebraic equations

Physical processes are often described using Differential Algebraic Equations
(DAEs). A first-order DAE is an equation in the generic form of

F(t,x, ẋ,y) = 0,

where F is an arbitrary function, x and y are vectors of time-dependent variables and
t is the independent time variable.

A special class of DAEs is the class of semi-explicit DAEs that can be written in
the following form:

ẋ = f(x,y, t)

0 = g(x,y, t)

Hence, a semi-explicit DAE can be written as a pair of a differential equation and an
algebraic equation.
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In the following, we consider only semi-explicit DAEs. We define a language for
representing semi-explicit DAEs: first, we define its abstract syntax, then define a
semantic mapping that maps each element to the mathematical domain of differential
equations. The abstract syntax is formalized by the following algebraic data types:

domain DAE

{

term ::= cvar + Real + op + {time}.

op ::= unaryOp + binaryOp + summa.

unaryOp ::= neg + inv.

binaryOp ::= add + sub + mul + div.

equation ::= eq + diffEq.

cvar ::= new (name:String,id:Integer).

summa ::= new (name:String,id:Integer).

neg ::= new (any term).

inv ::= new (any term).

add ::= new (any term, any term).

sub ::= new (any term, any term).

mul ::= new (any term, any term).

div ::= new (any term, any term).

addend ::= new (summa, term).

eq ::= new (term, term).

diffEq ::= new (cvar, term).

}

A term is a (continuous-time) variable, a real number, the application of an oper-

ator, or the independent variable time. We define two unary operators (negation,
inversion), four binary operators (addition, subtraction, multiplication and division),
and an n-ary operator summation. Variables and summations are uniquely identified
by their names and integer identifiers, and the addends of a sum is represented as
relations between the sum and its addends. An equation is either an algebraic equa-
tion eq that denotes the equality of the left-hand side and the right-hand side, or a
differential equation diffEq that denotes the derivative of the left-hand side variable
being equal to the right-hand side term.

A trajectory is a real-valued function ν that assigns a real value to each variable
in the system at each time t ∈ T (typical time domains are the real-time R and
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the hyper-real time ∗R). Then, the semantics of algebraic equations and differential
equations define constraints over the possible trajectories of the system. To develop
this idea, first, we have to extend the trajectories from variables to arbitrary terms:

νE : T× term→ R
νE(t,r)

def
= r r ∈ R

νE(t,time)
def
= t

νE(t,u)
def
= ν(t,u) u is cvar

νE(t,neg(u))
def
= −νE(t,u)

νE(t,inv(u))
def
= 1/νE(t,u)

νE(t,add(u,v))
def
= νE(t,u) + νE(t,v)

νE(t,sub(u,v))
def
= νE(t,u)− νE(t,v)

νE(t,mul(u,v))
def
= νE(t,u) · νE(t,v)

νE(t,div(u,v))
def
= νE(t,u)/νE(t,v)

νE(t,summa(i))
def
=
(∑

addend(summa(i),x) ν
E(t,x)

)
Here, the operators on the right-hand side are the standard operators of real numbers
with the usual constraints: e.g., division by zero is undefined.

The semantics of equations are given by the trajectories that satisfy the following
formulas:

ν |= eq(u,v) if νE(t,u) = νE(t,v) for all t ∈ T
ν |= diffEq(u,v) if d(νE(t,u))/dt = νE(t,v) for all t ∈ T

Finally, the semantics of an equation system is defined by the trajectories ν that
simultaneously satisfy all the equations.
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6.2.2 Difference equations

Discrete controllers are often described using Difference Equations (DE). A DE
is a recurrence relation that defines the next value of a variable based on its previ-
ous values. For example, the following recurrence relation describes the Fibonacci-
numbers:

X[0] = 1, X[1] = 1

X[k] = X[k − 2] +X[k − 1], k ≥ 2

The abstract syntax of our semantic unit for Difference Equations (DEs) is very
similar to that of DAEs:

domain DE

{

term ::= pre + Real + op + {dtime}.

op ::= unaryOp + binaryOp + summa.

unaryOp ::= pre + neg + inv.

binaryOp ::= add + sub + mul + div.

dvar ::= new (name:String, id:Integer).

summa ::= new (name:String, id:Integer).

pre_dvar ::= pre + dvar.

pre ::= new (any pre_dvar).

neg ::= new (any term).

inv ::= new (any term).

add ::= new (any term, any term).

sub ::= new (any term, any term).

mul ::= new (any term, any term).

div ::= new (any term, any term).

addend ::= new (summa, term).

equation ::= new (dvar, term).

}

A term is a previous value of a (discrete-time) variable, a real number, the application
of an operator, or dtime standing for discrete time. Similar to synchronous languages
(e.g., Lustre [43]) we define a pre operator that denotes the previous value of a vari-
able. Furthermore, we define two unary operators – negation and inversion –, four
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binary operators – addition, subtraction, multiplication and division –, and an n-ary
operator summation. The addends of sums are represented as relations between the
sum and its addend terms. Finally, an equation denotes a recurrence relation, where
the left-hand side is the current value of a discrete-time variable, and the right-hand
side refers to previous values of variables.

A trace is a function τ that assigns a value to each variable in the system at each
time t ∈ N. Then, the semantics of equations define constraints over the possible
traces of the system. Again, we have to extend traces from variables to terms:

τE : N× term→ R
τE(k,r)

def
= r r ∈ R

τE(k,dtime)
def
= k

τE(k,u)
def
= τ(k,u) u is dvar

τE(k,pre(u))
def
= τE(k − 1,u)

τE(k,neg(u))
def
= −τE(k,u)

τE(k,inv(u))
def
= 1/τE(k,u)

τE(k,add(u,v))
def
= τE(k,u) + τE(k,v)

τE(k,sub(u,v))
def
= τE(k,u)− τE(k,v)

τE(k,mul(u,v))
def
= τE(k,u) · τE(k,v)

τE(k,div(u,v))
def
= τE(k,u)/τE(k,v)

τE(k,summa(i))
def
=

(∑
addend(summa(i),x) τ

E(k,x)
)

Here, the right-hand side operators are the standard operators for real numbers with
the usual constraints.

The semantics of equations are given by the traces that satisfy the following for-
mula:

τ |= eq(u,v) if τ(k,u) = τ(k,v) for all k ∈ N

Finally, the semantics of an equation system is defined by the trajectories τ that
simultaneously satisfy all the equations.

65



6.2.3 Finite-state machines

FSMs are tuples of 〈state, event, transition, init〉 consisting of

• state, a finite set of states,

• event, a finite set of events,

• a transition relation transition ⊆ state×event× state that relates pairs of states
and events,

• an initial state init ∈ state.

We can represent FSMs using the following abstract syntax:

domain FSM {

state ::= new (String).

event ::= new (String).

transition ::= new (src:state, ev:event, dst:state).

init ::= new (state).

}

A trace s0 →e0 s1 →e1 . . . is a chain of states and events. A FSM generates (accepts)
a trace if s0 = init and (si, ei, si+1) ∈ transition for any i ≥ 0. The behavioral
semantics of a FSM is the traces it generates (accepts).

6.3 Semantic unit extension and restriction

Next, we discuss the extension and restriction of semantic units. Let models(SU) =

{M |M conforms to SU} denote the set of conforming models for the semantic unit
SU . The restriction restrict(SU) of a semantic unit SU is a semantic unit with ad-
ditional well-formedness constraints on its models. Then, models of the restricted
unit are a subset of the models of the original semantic unit: models(restrict(SU)) ⊆
models(SU).

The extension of a semantic unit augments the original language structures by
additional elements, i.e. the models of the extended semantic unit is a superset of the
models of the original semantic unit: models(extend(SU)) ⊇ models(SU).
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Of course, extensions and restrictions can be combined, in which case the rela-
tions between the original and the modified semantic units are more complicated.

Figure 2: Examples for restriction, extension and composition of semantic units.

In the following, we discuss some semantic units that are restrictions or ex-
tensions of the previously introduced primary semantic units. Fig. 2 provides an
overview of the discussed semantic units.

6.3.1 Ordinary differential equations

Ordinary Differential Equations (ODEs) are differential algebraic equations with-
out algebraic equation components. The explicit form of a first-order ODE is written
as:

ẋ = f(t,x),

where x are the dependent variables and t is the independent (time) variable.

Clearly, we can restrict (extend with constraints) our primary DAE semantic unit
to represent such ODEs:

domain ODE extends DAE at "dae.4ml"

{

conforms no DAE.eq(_,_).

}
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This conformance rule captures the structural semantics of the ODE domain: a well-
formed ODE model is a well-formed DAE model that does not contain any algebraic
equations.

6.3.2 Linear ordinary differential equations

An ODE is linear if it can be written as the linear combination of the dependent
variables:

x(n) =
n−1∑
i=0

ai(t) · x(i) + b(t)

where x are the dependent variables, x(i) denotes the ith derivative of x with respect
to t, and t is the independent variable.

For first-order ODEs this means the following correspondence:

ẋ = a(t) · x + b(t)

We can restrict our first-order ODE semantic unit to describe first-order linear
ODEs by adding further constraints to its conformance rule:

domain linearODE extends ODE at "ode.4ml"

{

subterm ::= (ODE.term, ODE.term).

subterm(X,X) :- ODE.diffEq(_,X).

subterm(X,Z) :-

subterm(X,neg(Z));

subterm(X,inv(Z));

subterm(X,add(Z,_)); subterm(X,add(_,Z));

subterm(X,sub(Z,_)); subterm(X,sub(_,Z));

subterm(X,mul(Z,_)); subterm(X,mul(_,Z));

subterm(X,div(Z,_)); subterm(X,div(_,Z));

subterm(X,Y), Y:sum, addend(Y,Z).

nonlinear ::= (ODE.term).

nonlinear(X) :-

subterm(X,inv(Z)), subterm(Z,V), V:cvar;
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subterm(X,mul(S,T)), subterm(S,V1), subterm(T,V2),

V1:cvar, V2:cvar;

subterm(X,div(S,T)), subterm(T,V), V:cvar;

conforms no nonlinear(_).

}

Here, subterm extracts subterms of the right-hand side of equations, and nonlinear

marks all the terms that contain any non-linear subterms. The definition of nonlinear

consists of rules for the three operators that introduce non-linearity in the system: inv,
mul and div. Notice that this means that our semantic unit does not allow equations
that could be possibly simplified to linear equations: e.g., ẋ = (x · x) · ( 1

x
) is an

ill-formed equation.

6.3.3 Tagged differential algebraic equations

A different way to extend our equation domains is to associate tags with the
variables. This is especially useful for formalizing physical modeling languages,
where variables represent physical quantities with units. The following extension of
the DAE domain attaches tags to variables:

domain TaggedDAE extends DAE at "dae.4ml"

{

Tag ::= (cvar, String).

}

In this case, the tag is a string that can represent arbitrary information. Note that it
would be possible to build an algebraic representation for the units; however, we will
not pursue this idea in this thesis.

6.3.4 Parallel hybrid automata

Finally, we define a parallel hybrid automata semantic unit that extends the dif-
ferential algebraic equations semantic unit with parallel running machines. Each
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machine has two locations – on and off –, which are associated with a set of equa-
tions, and an initial location. Furthermore, the transition between the two locations –
switchOn and switchOff – are controlled by events.

A parallel hybrid automaton is a tuple H = 〈V, machine, event, act, onAct, offAct,

label, switchOn, switchOff, initialLoc 〉 consisting of

• V , a finite set of variables,

• a finite set of machines,

• a finite set of events,

• a set of location-independent activities (equations) act,

• a set of location-dependent activities (equation) onAct and offAct,

• a set of transitions switchOn ⊆ machine × event that defines the events, upon
which a machine transitions from location off to location on,

• a set of transitions switchOff ⊆ machine × event that defines the events, upon
which a machine transitions from location on to location off,

• a finite set of initial locations initialLoc, one for each machine in the hybrid
system.

We formalize this domain as follows:

domain ParallelHybridAutomata extends DAE at "dae.4ml"

{

location ::= { on, off }.

event ::= new (String).

machine ::= new (id:Integer).

onAct ::= new (m:machine, act:eq+diffEq).

offAct ::= new (m:machine, act:eq+diffEq).

initialLoc ::= fun (m:machine => init:location).

switchOn ::= new (m:machine, ev:event).

switchOff ::= new (m:machine, ev:event).

}
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Note that the variables V and location-independent activities act are inherited from
the DAE domain. In particular, V is the continuous-time variables, and act consists
of the algebraic and differential equations from the DAE domain.

In the following, we describe the semantics of our parallel hybrid automata do-
main borrowing ideas from the seminal paper by Alur et al. [5]. The behavior of a
parallel hybrid automaton is given in terms of the trajectories it produces. At any
time instant, the state σ ∈ state of the system is completely determined by the cur-
rent locations L = {l1, l2, . . .} of the machines (li being the location of machine i)
and the valuation of variables V . The state can change in two ways: either by a
discrete transition between locations, or by the continuous evolution of the variables
according to the activities.

We can represent the behavior as a transition system 〈Σ,→〉, where Σ denotes the
states of the system, and →⊆ Σ2 is a binary transition relation between states. We
distinguish two types of transitions, t→ denotes a transition during which the real time
advances, and d→ denotes a discrete jump. A trajectory of the system is a sequence
σ0 → σ1 → · · · of states, such that each 〈σi, σi+1〉 ⊆→ for every i ∈ N. The time
advancing transitions t→ are defined by the location-dependent activities onAct and
offAct and the location-independent activities act. The discrete jumps d→ are defined
by the observed events: on the receipt of event e, machine m is fired if there is a
transition T of switchOn or switchOff, such that T = 〈m, e〉. Upon firing, the system
jumps to the next state according to the update function defined in the following.

The update function of the parallel automaton is given as a parallel update of the
individual machines. In the following, upm is the update function for machine m:

update : state× event→ state

upm : location× event→ location

update((Li−1, v), e) = ((up1(l1i−1, e), . . . , upn(lni−1, e)), v)

upm(l, e) =


off if l =on ∧〈m, e〉 ∈ switchOff

on if l =off ∧〈m, e〉 ∈ switchOn

l otherwise
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This concludes the definition of the parallel hybrid automata semantic unit.

6.4 Composition of semantic units

Earlier, Chen et al. introduced [21] the composition of semantic units. Based
on the semantic units introduced in the previous sections, we can define useful com-
posite semantic units. In this section, we develop two of them: one for representing
hybrid differential-difference equations (for describing sampled-data systems), an-
other one for hybrid automata models.

6.4.1 Hybrid differential-difference equations

We can combine the differential algebraic equation and the difference equation
domains to create a hybrid equations domain. For this, we need to create syntac-
tic elements for relating continuous-time and discrete-time variables, and define the
semantics of these elements.

In our case, we want to describe periodic discrete-time difference equations;
therefore, we create the following hybrid domain by adding a timing function for
discrete-variables, and sample and zero-order hold operators:

domain Hybrid_DAE_DE extends DAE::DAE at "dae.4ml", DE::DE at

"de.4ml"

{

// Add hold operator to DAE terms
DAE.term += hold.

// Add sample operator to DE terms
DE.term += sample.

// Define timing, sample and hold
timing ::= fun (DE.dvar ⇒ period:Real, phase:Real).

sample ::= new (DAE.cvar, period:Real, phase:Real).

hold ::= new (DE.dvar).

// Redefine term and equation for the hybrid domain
term ::= DAE.term + DE.term + DE.dvar.

eq ::= new (term,term).

}
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The timing relation specifies the timing of discrete-time variables by assigning sam-
pling period and initial phase to them. The interpretation for periodic discrete-time
variables is that they have well-defined values at real times {p0 + n · p | n ∈ N}, and
everywhere else they are absent. This allows us to migrate the traces τ of DE with
the trajectories ν of DAE. We define a hybrid trajectory σ that assigns a real number
σ(t, x) to each continuous-time variable x and continuous-time t, and assigns a value
σ(t, x) ∈ R ∪ ⊥ to each discrete-time variable x, such that σ(t, x) = ⊥ when x is
absent. The semantics of the sample and hold operators are given by the following
extension of σ:

σE : T× term→ R ∪ ⊥
σE(t,u)

def
= σ(t,u)

σE(t,sample(u,p,ph))
def
= σ(tx,u)

where tx = max({x = p+ n · ph | x ≤ t and n ∈ N})
σE(t,hold(u))

def
= σ(tx,u)

where tx = max({x | x ≤ t and σ(x,u) 6= ⊥})

6.4.2 Hybrid automata

A well-known model for hybrid systems is the hybrid automaton [5]. Here, we
introduce a slightly different definition for hybrid automaton by renaming the label-
ing functions. A hybrid automaton is a tuple of 〈V,Q, flow, inv, jump〉 that consists
of

• V , a finite set of real-valued variables,

• Q, a finite set of locations (discrete states),

• a labeling function flow that assigns a set of possible activities to each location
q ∈ Q, where an activity is a C∞-function from R+ to R. We can represent the
activities as a set of equations,

• a labeling function inv that assigns a set of invariant conditions to each location
q ∈ Q,
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• a labeling function jump that assigns a set of jump conditions to pairs of loca-
tions.

Note that hybrid automata can be represented as a composition of ODEs and FSMs.
The variables V are the continuous-time variables of the ODE, the locations are states
of the FSM, flow is described by assigning equations to states, inv assigns predicates
to states, and jump assigns equations to transitions (furthermore, in the hybrid au-
tomata domain the events corresponding to a transition are only used for distinguish-
ing parallel edges in the graph – the transitions are not triggered by external stimuli).

Therefore, we can define our semantic unit for hybrid automata as follows:

domain HybridAutomata extends ODE at "ode.4ml", FSM at "fsm.4ml"

{

flow ::= new (state, equation).

inv ::= new (state, predicate).

jump ::= new (transition, equation).

predicate ::= ODE.eq + less + lessEqual + greater +

greaterEqual.

less ::= new (cvar, term).

lessEqual ::= new (cvar, term).

greater ::= new (cvar, term).

greaterEqual ::= new (cvar, term).

freeEq :- X is equation, no flow(_,X), no act(_,X).

freePred :- X is predicate, no inv(_,X), no guard(_,X).

conforms no freeEq, no freePred.

}

Here, the structural semantics requires that each ODE equation is either a flow for
some state, or an activity equation for some transition, and each predicate is either an
invariant for some state, or a guardian predicate for some transition.

The behavioral semantics of a hybrid automaton is given by the set of runs it
accepts as described in [5].
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6.5 Conclusion

In this chapter, we discussed the extension of semantic anchoring to denotational
specifications. First, we defined several primary semantic units for CPS modeling
languages, then we discussed the extension, restriction and composition of these se-
mantic units. We specified the abstract syntax and the structural semantics of these
semantic units using the ForSpec language, and defined their behavioral semantics
using the tools of calculus and discrete mathematics. The advantage of our approach
is that we only need to define these semantic units once, and we can reuse them for
the specification of many CPS modeling languages. In the following chapter, we will
demonstrate this by discussing several case studies.
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CHAPTER 7

CASE STUDIES

In this chapter, we discuss the semantic specification of three Cyber-Physical Sys-
tem (CPS) modeling languages. The first case study will cover a physical modeling
language, a bond graph language. The second case study will be a CPS model-
integration language called CyPhyML that describes the integration of various phys-
ical and controller modeling languages. The third case study will describe the se-
mantics of the MathWorks Stateflow language, a complex language for designing
controllers.

While the two first case-studies describe the denotational semantics of the lan-
guages, we specify the operational semantics for the MathWorks Stateflow language.
Since the operational semantics can be used for calculating the possible trajectories
of a system, this opens up the possibility of performing interesting symbolic analysis.
In this thesis, we will not pursue this idea; however, it is an important and very useful
consequence of the ForSpec specification language.

7.1 Specification of a bond graph language

Bond graph is a multi-domain graphical representation describing the flow of
energy in physical systems [62]. Regardless of the domain – electrical, mechanical,
thermal, magnetic or hydraulic – the same representation is used for describing the
flows. In this section, we define and formalize a bond graph language to demonstrate
the formalization of a physical modeling language in our framework.

A bond graph contains nodes and bonds (links) between the nodes (see Fig. 3).
Bonds represent the energy exchange between components and are characterized by
the power variables: the effort and the flow. The name of these variables is explained
by the equation power = effort · flow , i.e., their product is the power. Furthermore,
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Figure 3: A quarter car suspension model using the bond graph language.

in the basic bond graph, five types of node are distinguished: (i) a dissipative element
called resistance R having exactly one port, (ii) two storage elements – capacitance
C and inertia I – each having exactly one port, (iii) two source elements – source of
effort Se and source of flow Sf – each having exactly one port, (iv) two transformation
elements – transformer TF and gyrator GY – having exactly two ports, (v) two multi-
port topological elements – 0-junction and 1-junction.

The description of the nodes provides some hints about their possible meanings
(storage, source); however, it is our formal specification that will precisely define
their semantics. It is well-known that the behavioral semantics of bond graphs can
be described using a set of Differential Algebraic Equations (DAEs) [62]; therefore,
we will describe the denotational semantics of our bond graph modeling language
by specifying the semantic mapping from the abstract syntax of the language to the
DAE semantic unit defined in Chapter 6.

7.1.1 Bond graph structural semantics

The structure of a bond graph represents the energy flows in the physical system.
Hence, the structure cannot be arbitrary: it must properly reflect physical reality,
which is captured by the structural semantics of the language.
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Figure 4: A language for bond graphs as defined in GME.

We have modeled bond graphs in the meta-programmable DSML modeling tool
called Generic Modeling Environment (GME) [68]. First, we review the abstract syn-
tax of the language, and then we present its formal structural semantics.

GME meta-model of bond graphs

The GME meta-model of our bond graph language is shown in Fig. 4 with a simi-
lar notation to Unified Modeling Language (UML) class diagrams. In brief, the atom

elements of the meta-model describe classes with attributes, and connection elements
describe association types. Abstract classes are denoted with italic names, and they
are used for creating abstractions of other classes. Triangles denote inheritance, in
which case descendants inherit the attributes of their ancestors(s), and whenever an
ancestor is allowed to be the source or target of a connection, their descendants can
also be used in the same role.

The models of the bond graph domain contain Nodes and Bonds between them.
The multiplicity of the Bond element describes that each bond connects exactly one
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source Node to exactly one destination Node. A Node is either an Element or a
Junction, where an Element is either a OnePort or a TwoPort element, and Junction is
either a ZeroJunction or a OneJunction. Each Element has a ParameterValue attribute
that describes its parameter (e.g. resistance), and is inherited by its children. OnePort

elements are either Sources, Resistors or Storages. Finally, Storage elements have
InitialValue attributes that describe their initial states.

In GME, the well-formedness rules of the language are expressed with Object
Constraint Language (OCL) constraints. For example, we have the following con-
straint attached to OnePort models (not shown in the figure):

context: OnePort

inv: self.attachingConnections(Bond)->size = 1

This constraint expresses that OnePort elements must have exactly one adjacent
bond.

ForSpec domain for bond graphs

In order to formalize the semantics of bond graphs, we need to map the GME
meta-model to our specification language. In general, we can define a one-to-one
mapping from GME meta-models to their ForSpec representation. Each non-abstract
class of the meta-model corresponds to a data constructor in the ForSpec domain that
can be used to instantiate the class. Furthermore, each class contributes to a union
type containing the constructor of the class itself, and the constructors of all their
descendant classes. Abstract classes are mapped to union types containing all their
descendants. Note that since data constructors and union types cannot have the same
name, we distinguish data constructors and corresponding union types by appending
c to the data constructors.

The following types denote the atomic elements of the bond graph domain:

Se_c ::= new (name:String, id:Integer).

Sf_c ::= new (name:String, id:Integer).

R_c ::= new (name:String, id:Integer).

C_c ::= new (name:String, id:Integer).
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I_c ::= new (name:String, id:Integer).

TF_c ::= new (name:String, id:Integer).

GY_c ::= new (name:String, id:Integer).

ZeroJunction_c ::= new (name:String, id:Integer).

OneJunction_c ::= new (name:String, id:Integer).

In order to support inheritance, each type has a corresponding abstract union type that
contains the type itself and all the inherited subtypes. In our bond graph meta-model,
none of the base classes are inherited, so the union types consist of a single element
only:

Se ::= Se_c.

Sf ::= Sf_c.

R ::= R_c.

C ::= C_c.

I ::= I_c.

TF ::= TF_c.

GY ::= GY_c.

ZeroJunction ::= ZeroJunction_c.

OneJunction ::= OneJunction_c.

The abstract classes of the bond graph meta-model are formalized as follows:

Source ::= Se + Sf.

Storage ::= C + I.

OnePort ::= Source + R + Storage.

TwoPort ::= TF + GY.

Element ::= OnePort + TwoPort.

Junction ::= ZeroJunction + OneJunction.

Node ::= Element + Junction.

We define a bond as a data type with an identifier and two arguments for its source
and destination. Each bond has exactly one source and one destination, which is
captured by the following functional relation:

Bond_c ::= fun (id:Integer → src:Node, dst:Node).

Bond ::= Bond_c.
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Finally, attributes are defined as functional types over the corresponding union types.
Notice that our encoding correctly represents the inheritance of attributes, and the
usage of total functions ensures the correct multiplicity of the attributes.

ParameterValue ::= fun (Element ⇒ Real).

InitialValue ::= fun (Storage ⇒ Real).

So far, we formalized the original GME meta-model with an equivalent ForSpec
domain that faithfully represents its structure: classes, abstract classes, attributes and
connections.

Next, we specify the structural semantics of our bond graph language (this cor-
responds to the OCL constraints of the meta-model). In order to achieve a concise
formalization of the structural and behavioral semantics of bond graphs, we define
some derived relations first. We define src and dst to represent the source and desti-
nation of a bond, and connects to represent the end-points of a bond:

src ::= (Bond,Node).

dst ::= (Bond,Node).

connects ::= (Bond,Node).

src(A,A.src), dst(A,A.dst) :- A is Bond.

connects(A,X) :- src(A,X); dst(A,X).

A bond graph is well-formed if it does not contain any invalid nodes:

conforms no invalidNode(_).

For this, we define a derived data type for deducing invalid nodes:

invalidNode ::= (Node).

A one-port element is invalid if it is not adjacent to exactly one bond:

invalidNode(X) :- X is OnePort, count({Y | connects(Y,X)})!=1.

A two-port element is invalid if it is not adjacent to exactly two bonds:

invalidNode(X) :- X is TwoPort, count({Y | connects(Y,X)})!=2.

Furthermore, a two-port element should have a well-directed energy flow; i.e., each
two-port element needs to have exactly one incoming and one outgoing bond:
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invalidNode(X) :- X is TwoPort, no Bond_c(_,_,X);

X is TwoPort, no Bond_c(_,X,_).

7.1.2 Bond graph denotational semantics

The behavior of physical systems is usually described by differential algebraic
equations, and the interconnections of physical components is described by variable
sharing and zero-sum equations [132]. Hence, we define the denotational semantics
of our bond graph Domain-Specific Modeling Language (DSML) by specifying the
translation from its abstract syntax to the DAEs semantic unit defined in Chapter 6.

We specify the behavioral semantic mapping using a transformation that maps
each language concept to a concept in the DAE semantic unit. Each bond bondi is
mapped to two variables – the flow fi and effort ei variables indexed by the bond –
and each node is mapped to a set of equations constraining the behaviors (possible
values over time) of the variables of its bonds. The rules of denotational semantic
mapping is described in the following.

We define the semantic functions for bonds and nodes as follows. Bonds are
mapped to pairs of continuous-time variables, and nodes are mapped to algebraic
equations, differential equations and addends of summations:

B : Bond → cvar,cvar.

N : Node → eq+diffEq+addend.

The semantics of a bond is a pair of continuous-time variables, an effort and a flow
variable:

B JBondK = (cvar("effort",Bond.id), cvar("flow",Bond.id)).

The semantics of a source of effort is the equation e = p that constrains the effort e
to the node’s parameter value p:

N JSeK = eq(E, p)

where connects(X,Se), B JXK = (E,_), ParameterValue(Se, p).
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The semantics of a source of flow is the equation f = p that constraints the flow f to
the node’s parameter value p:

N JSfK = eq(F, p)

where connects(X,Sf), B JXK = (_,F), ParameterValue(Sf, p).

The semantics of a resistance is the equation e = r · f relating the effort e and flow
f , where r is the resistance:

N JRK = eq(E,mul(r,F))

where connects(X,R), B JXK = (E,F), ParameterValue(R, r).

The semantics of a capacitance is the differential equation ė = 1
c
·f relating the effort

e and flow f , where c is the value of the capacitance:

N JCK = diffEq(E,mul(inv(c),F))

where connects(X,C), B JXK = (E,F), ParameterValue(C, c).

The semantics of an inductance is the differential equation ḟ = 1
i
·e relating the effort

e and flow f , where i is the value of the inductance:

N JIK = diffEq(F,mul(inv(i),E))

where connects(X,I), B JXK = (E,F), ParameterValue(I, i).

The semantics of a transformer is two equations (e1 = p · e2 and f2 = p · f1) relating
the efforts e1, e2 and flows f1, f2, where p is the value of the transformer:

N JTFK =

eq(Ea,mul(p,Eb))

eq(Fb,mul(p,Fa))

where

dst(X,TF), src(Y,TF),

B JXK = (Ea,Fa), B JYK = (Eb,Fb),

ParameterValue(TF, p).

The semantics of a gyrator is two equations (e1 = p · f2 and e2 = p · f1) relating the
efforts e1, e2 and flows f1, f2, where p is the value of the gyrator:

N JGYK =

eq(Ea,mul(p,Fb))

eq(Eb,mul(p,Fa))
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where

dst(X,GY), src(Y,GY),

B JXK = (Ea,Fa), B JYK = (Eb,Fb),

ParameterValue(GY, p).

The semantics of a one-junction is defined by ∀a, b.(fa = fb),
∑

e = 0, where a
and b are bonds connected to the junction, and the summation is over all its bonds.

// Zero−sum equations
N JOneJunctionK = eq(summa("OneJunction",OneJunction.id),0).

// Addends of the sum
N JOneJunctionK = addend(summa("OneJunction",OneJunction.id),E)

where dst(X,OneJunction), B JXK = (E,_).

N JOneJunctionK =

addend(summa("OneJunction",OneJunction.id),neg(E))

where src(X,OneJunction), B JXK = (E,_).

// Equality of flows
N JOneJunctionK = eq(Fa,Fb)

where connects(X,OneJunction), connects(Y,OneJunction), B JXK =

(_,Fa), B JYK = (_,Fb).

The semantics of a zero-junction is defined by ∀a, b.(ea = eb),
∑

f = 0, where a
and b are bonds connected to the junction, and the summation is over all its bonds.

// Zero−sum equations
N JZeroJunctionK = eq(summa("ZeroJunction",ZeroJunction.id),0).

// Addends of the sum
N JZeroJunctionK = addend(summa("ZeroJunction",ZeroJunction.id),F)

where dst(X,ZeroJunction), B JXK = (_,F).

N JZeroJunctionK =

addend(summa("ZeroJunction",ZeroJunction.id),neg(F))

where src(X,ZeroJunction), B JXK = (_,F).

// Equality of efforts
N JZeroJunctionK = eq(Ea,Eb)

where connects(X,ZeroJunction), connects(Y,ZeroJunction), B JXK =

(Ea,_), B JYK = (Eb,_).
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7.1.3 Example

In order to demonstrate the execution of the specifications, consider the bond
graph model for an RLC series circuit shown in Fig. 5. The model consists of a
resistance, an inductance, a capacitance and a source of effort interconnected with a
one-junction.

By loading and executing the structural semantic specifications until reaching a
fix-point, we obtain the following facts:

model RLC of RLC

{

...

BondGraph.conforms.

connects(a, j1).

connects(a, se).

connects(b, ca).

connects(b, j1).

connects(c, i).

connects(c, j1).

connects(d, j1).

connects(d, r).

dst(a, j1).

dst(b, ca).

dst(c, i).

dst(d, r).

RLC.conforms.

src(a, se).

src(b, j1).

src(c, j1).

src(d, j1).

}

By observing that BondGraph.conforms could be inferred, we know that the RLC
model is a well-formed bond graph model.

After executing the denotational semantic mapping, we obtain the semantic model
shown in Listing 1 for the circuit.
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(a) GME model for the RLC circuit.
// Serial RLC circuit
model RLC of BondGraph at "bg.4ml"
{
j1 is OneJunction_c("j1",1).
se is Se_c("se",2).
ca is C_c("ca",3).
i is I_c("i",4).
r is R_c("r",5).
a is Bond_c(1,se,j1).
b is Bond_c(2,j1,ca).
c is Bond_c(3,j1,i).
d is Bond_c(4,j1,r).
ParameterValue(se,5).
ParameterValue(ca,1).
ParameterValue(i,1).
ParameterValue(r,2).
InitialValue(ca,1).
InitialValue(i,0).

}

(b) ForSpec model for the RLC circuit.

Figure 5: Bond graph model for an RLC series circuit.
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Listing 1: Semantic model for the RLC series circuit

model r of DAE at
"file:///c:/work/documents/thesis/bondgraph/dae.4ml"

{
addend(summa("OneJunction", 1), cvar("effort", 1)).
addend(summa("OneJunction", 1), neg(cvar("effort", 2))).
addend(summa("OneJunction", 1), neg(cvar("effort", 3))).
addend(summa("OneJunction", 1), neg(cvar("effort", 4))).
cvar("effort", 1).
cvar("effort", 2).
cvar("effort", 3).
cvar("effort", 4).
cvar("flow", 1).
cvar("flow", 2).
cvar("flow", 3).
cvar("flow", 4).
diffEq(cvar("effort", 2), mul(inv(1), cvar("flow", 2))).
diffEq(cvar("flow", 3), mul(inv(1), cvar("effort", 3))).
eq(cvar("effort", 1), 5).
eq(cvar("effort", 4), mul(2, cvar("flow", 4))).
eq(cvar("flow", 1), cvar("flow", 1)).
eq(cvar("flow", 1), cvar("flow", 2)).
eq(cvar("flow", 1), cvar("flow", 3)).
eq(cvar("flow", 1), cvar("flow", 4)).
eq(cvar("flow", 2), cvar("flow", 1)).
eq(cvar("flow", 2), cvar("flow", 2)).
eq(cvar("flow", 2), cvar("flow", 3)).
eq(cvar("flow", 2), cvar("flow", 4)).
eq(cvar("flow", 3), cvar("flow", 1)).
eq(cvar("flow", 3), cvar("flow", 2)).
eq(cvar("flow", 3), cvar("flow", 3)).
eq(cvar("flow", 3), cvar("flow", 4)).
eq(cvar("flow", 4), cvar("flow", 1)).
eq(cvar("flow", 4), cvar("flow", 2)).
eq(cvar("flow", 4), cvar("flow", 3)).
eq(cvar("flow", 4), cvar("flow", 4)).
eq(summa("OneJunction", 1), 0).

}
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7.1.4 Extensibility

Component reusability and extensibility are important concepts for the efficient
design of CPS systems. In this section, we demonstrate a possible extension of the
bond graph language.

We will extend the language with physical domain-specific elements and with
switchable junctions that can be turned on and turned off by (external) controllers.
Physical domain-specific elements are labeled with the physical domain they belong
to. Such elements can be considered typed elements, where types range over different
physical domains. Switchable junctions extend the bond graph language with discrete
modes of operations. Such bond graphs are also known as hybrid bond graphs [87].

Physical domain specific elements

A straightforward extension of our bond language is the explicit specification of
physical domains for the graph elements (e.g., marking that an inductance stands
for an element in the mechanical domain, that is, for a mass). Beside the already
discussed well-formedness rules, the structural semantics of the extended language
further constrains the allowed connections of nodes.

We can easily augment the abstract syntax of our bond graph language with the
necessary marking for the domain types:

// Domain is an enumeration of different physical domains.
Domains ::= {Electrical, Translational, Rotational, Hydraulic,

Electric}.

// DomainType assigns a domain to one−port and junction elements.
DomainType ::= fun (OnePort + Junction ⇒ Domains).

// DomainTypeTwoPort assigns two domains to two−port elements: one for each port.
DomainTypeTwoPort ::= fun (TwoPort ⇒ Domains, Domains).

Then, we can express the well-formedness of the extended language. An ex-
tended bond graph is well-formed if it is a well-formed bond graph (automatically
inherited from the BondGraph domain), and all the bonds are valid:

conforms no invalidBond(_).
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A bond is invalid, if it interconnects elements from different domains:

invalidBond ::= (Bond).

invalidBond(A) :- A is Bond, DomainType(A.src,X),

DomainType(A.dst,Y), X != Y.

invalidBond(A) :- A is Bond, DomainType(A.src,X),

DomainTypeTwoPort(A.dst,Y,_), X != Y.

invalidBond(A) :- A is Bond, DomainType(A.dst,X),

DomainTypeTwoPort(A.src,_,Y), X != Y.

invalidBond(A) :- A is Bond, DomainTypeTwoPort(A.src,_,X),

DomainTypeTwoPort(A.dst,Y,_), X != Y.

Here, the first rule says that a bond is invalid if it interconnects 1-port or junction
elements from different domains, the second and third rules say that a bond is invalid
if it interconnects a 1-port or junction element with a 2-port element from a differ-
ent domain, and the fourth rule says that a bond is invalid if it interconnects 2-port
elements from different domains.

Structure of hybrid bond graphs

In this section, we develop the semantics for a hybrid bond graph language that
extends our bond graph language with switchable junctions. Fig. 6 shows the GME
meta-model for the language, and an example model is shown in Fig. 7.

Switchable junctions are inherited both from the abstract class SwitchableJunc-

tion and from the original junction classes, ZeroJunction and OneJunction. There-
fore, switchable junctions inherit the attributes of the original junctions, while they
are extended with three further attributes: InitialState, OnEvent and OffEvent.

The corresponding ForSpec domain extends the original bond graph domain with
data constructors for the new junctions:

SwZeroJunction_c ::= new (name:String, id:Integer).

SwOneJunction_c ::= new (name:String, id:Integer).

SwZeroJunction ::= SwZeroJunction_c.

SwOneJunction ::= SwOneJunction_c.

Also, the union types are updated to reflect the structure of hybrid bond graphs:
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Figure 6: A hybrid bond graph language.

Figure 7: A hybrid bond graph model for a lamp with a switch.

SwitchableJunction ::= SwZeroJunction

+ SwOneJunction.

ZeroJunction ::= ZeroJunction_c + SwZeroJunction.

OneJunction ::= OneJunction_c + SwOneJunction.

Junctions ::= ZeroJunction + OneJunction

+ SwitchableJunctions.

In the GME meta-model, an enumeration is defined with two values – On and
Off – to represent the initial state of switchable junctions. Furthermore, two string
attributes – OnEvent and OffEvent – are defined to store the guards (triggering events)
belonging to the switchable junctions. The corresponding attributes in ForSpec are
as follows:
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InitialStateEnum ::= { On, Off }.

InitialState ::= fun (SwitchableJunction =>

InitialStateEnum).

OnEvent ::= fun (SwitchableJunction => String).

OffEvent ::= fun (SwitchableJunction => String).

A hybrid bond graph conforms to the hybrid bond graph language if it conforms
to the original bond graph language, which is expressed by extending the original
bond graph domain.

Behavior of Hybrid Bond Graphs

In order to describe the behavioral semantics of the language, we can use the par-
allel hybrid automata semantic unit defined in Chapter 6. The behavior of a switch-
able junction is defined by an automaton with two modes (On and Off ) and two tran-
sitions that are triggered by external events (identified by strings). Therefore, each
switchable junction is mapped to a machine in the parallel hybrid automata unit.

We specify the denotational semantics of the hybrid bond graph language by
extending the denotational semantics of our original bond graph language. This
means that the original mappings for the basic bond graph elements result in location-
independent activities for the hybrid bond graph language.

Since we extend the original denotational semantic mapping, we reuse the map-
ping of the original bond graph elements, and we only need to define the mappings
for the switchable junctions:

SNode [[SwitchableJunction]] = machine(SwitchableJunction.id).

SNode [[SwitchableJunction]] =

switchOn(machine(SwitchableJunction.id),E)

where OnEvent(SwitchableJunction,E).

SNode [[SwitchableJunction]] =

switchOff(machine(SwitchableJunction.id),E)

where OffEvent(SwitchableJunction,E).

SNode [[SwitchableJunction]] =

initialLoc(machine(SwitchableJunction.id),on)
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where InitialState(X,On).

SNode [[SwitchableJunction]] =

initialLoc(machine(SwitchableJunction.id),off)

where InitialState(X,Off).

Second, we need to define the location-dependent activities for the switchable
junctions. As long as they are turned on, the behavioral semantics of switchable
junctions is exactly the same as the behavior of ordinary junctions, thus the location-
dependent activities onAct are empty in the turned-on mode. However, when a
switchable junction is turned off, it extends the governing differential algebraic equa-
tions by forcing the flows across the junction to zero:

SNode [[SwitchableJunction]] =

offAct(machine(SwitchableJunction.id),eq(F,0))

where connects(B,SwitchableJunction), SBond [[B]] => (_,F).

Note that this is equivalent to saying that when a junction is turned off, there is no
energy flowing through it.

7.1.5 Conclusion

In this chapter, we discussed the semantic specifications of a bond graph lan-
guage. We specified both its structural and behavioral semantics, as well as presented
the extensibility of the language specifications by adding physical domain-specific
elements and hybrid behavior.

Since our specifications are executable, model conformance can be automatically
computed. This can be used for verifying the well-formedness of a concrete model.
Furthermore, by executing the denotational semantic mapping, we can obtain the
DAEs describing the behavior of a well-formed model. These equations can be used
as an input for other tools, such as simulators and verification tools. For instance, by
executing the semantic mapping for a bond graph model, we could use the resulting
DAEs to simulate the model in a DAE solver tool (e.g., Modelica [8]).
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7.2 Specification of the Cyber-Physical Systems Modeling Language

In this section, we discuss the formalization of the Cyber-Physical Systems Mod-
eling Language (CyPhyML), which is a model integration language for heteroge-
neous CPS components. CyPhyML is the composition of several sub-languages,
such as a language for describing the composition of CPS components, a language
for describing design-spaces with multiple choices, and others. In the following,
we discuss only the composition sub-language, and by CyPhyML we refer to this
language. The GME meta-model [68] of CyPhyML is shown in Fig. 8.

Components are the main building blocks of CyPhyML. Components represent
physical or computational elements with ports on their interfaces. Component assem-
blies are used for building composite structures by composing components and other
component assemblies. Component assemblies also facilitate encapsulation and port
hiding. There are two types of ports in CyPhyML: acausal power ports for represent-
ing physical interaction points, and causal signal ports for representing information
flow between components. Both the physical and information flows are interpreted
over the continuous time-domain. CyPhyML distinguishes power ports by types,
such as electrical power ports, mechanical power ports, hydraulic power ports and
thermal power ports.

Formally, a CyPhyML modelM is a tupleM = 〈C,A, P, contain, portOf, EP , ES〉
with the following interpretation:

Figure 8: GME meta-model for the composition sub-language of CyPhyML
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• C is a set of components,

• A is a set of component assemblies,

• (D = C ∪ A is the set of design elements),

• P is the union of the following sets of ports: ProtMech is a set of rotational
mechanical power ports, PtransMech is a set of translational mechanical power
ports, Pmultibody is a set of multi-body power ports, Phydraulic is a set of hy-
draulic power ports, Pthermal is a set of thermal power ports, Pelectrical is a set
of electrical power ports, Pin is a set of continuous-time input signal ports, Pout

is a set of continuous-time output signal ports. Furthermore, PP is the union of
all the power ports and PS is the union of all the signal ports,

• contain : D → A∗ is a containment function, whose range is A∗ = A∪{root},
the set of design elements extended with a special root element root,

• portOf : P → D is a port containment function, which uniquely determines
the container of a port,

• EP ⊆ PP × PP is the set of power flow connections between power ports,

• ES ⊆ PS ×PS is the set of information flow connections between signal ports.

We can formalize this language using the following algebraic data types:

// Components, component assemblies and design elements
Component ::= new (name: String, ..., id:Integer).

ComponentAssembly ::= new (name: String, ..., id:Integer).

DesignElement ::= Component

+ ComponentAssembly.

// Components of a component assembly (containment)
ComponentAssemblyToCompositionContainment ::=

(src:ComponentAssembly, dst:DesignElement).

// Power ports
TranslationalPowerPort ::= new (..., id:Integer).

RotationalPowerPort ::= new (..., id:Integer).

ThermalPowerPort ::= new (..., id:Integer).

HydraulicPowerPort ::= new (..., id:Integer).

ElectricalPowerPort ::= new (..., id:Integer).

// Signal ports
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InputSignalPort ::= new (..., id:Integer).

OutputSignalPort ::= new (..., id:Integer).

// Ports of a design element (port containment)
DesignElementToPortContainment ::= new (src:DesignElement,

dst:Port).

// Union types for ports
Port ::= PowerPortType

+ SignalPortType.

MechanicalPowerPortType ::= TranslationalPowerPort

+ RotationalPowerPort.

PowerPortType ::= MechanicalPowerPortType

+ ThermalPowerPort

+ HydraulicPowerPort

+ ElectricalPowerPort.

SignalPortType ::= InputSignalPort

+ OutputSignalPort.

// Connections of power and signal ports
PowerFlow ::=

new (name:String,src:PowerPortType,dst:PowerPortType,...).

InformationFlow ::=

new (name:String,src:SignalPortType,dst:SignalPortType,...).

7.2.1 Formalization of semantics

Structural Semantics

Next, we formalize the structural semantics of the language. A CyPhyML model
is well-formed if it does not contain any dangling ports, distant connections or invalid
port connections, hence it conforms to the domain:

conforms

no dangling(_),

no distant(_),

no invalidPowerFlow(_),

no invalidInformationFlow(_).
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For this, we need to define a set of auxiliary rules as discussed next. Dangling ports
are ports that are not connected to any other ports:

dangling ::= (Port).

dangling(X) :- X is PowerPortType,

no { P | P is PowerFlow, P.src = X },

no { P | P is PowerFlow, P.dst = X }.

dangling(X) :- X is SignalPortType,

no { I | I is InformationFlow, I.src = X },

no { I | I is InformationFlow, I.dst = X }.

A distant connection connects two ports belonging to different components, such that
the components have different parents, and neither component is parent of the other
one:

distant ::= (PowerFlow+InformationFlow).

distant(E) :-

E is PowerFlow+InformationFlow,

DesignElementToPortContainment(PX,E.src),

DesignElementToPortContainment(PY,E.dst),

PX != PY,

ComponentAssemblyToCompositionContainment(PPX,PX),

ComponentAssemblyToCompositionContainment(PPY,PY),

PPX != PPY, PPX != PY, PX != PPY.

A power flow is valid if it connects power ports of the same type:

validPowerFlow ::= (PowerFlow).

validPowerFlow(E) :- E is PowerFlow,

X=E.src, X:TranslationalPowerPort,

Y=E.dst, Y:TranslationalPowerPort.

validPowerFlow(E) :- E is PowerFlow,

X=E.src, X:RotationalPowerPort,

Y=E.dst, Y:RotationalPowerPort.

validPowerFlow(E) :- E is PowerFlow,

X=E.src, X:ThermalPowerPort,

Y=E.dst, Y:ThermalPowerPort.

validPowerFlow(E) :- E is PowerFlow,

X=E.src, X:HydraulicPowerPort,

Y=E.dst, Y:HydraulicPowerPort.
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validPowerFlow(E) :- E is PowerFlow,

X=E.src, X:ElectricalPowerPort,

Y=E.dst, Y:ElectricalPowerPort.

If a power flow is not valid, it is invalid:

invalidPowerFlow ::= (PowerFlow).

invalidPowerFlow(E) :- E is PowerFlow, no validPowerFlow(E).

An information flow is invalid if a signal port receives signals from multiple sources,
or an output port receives signal from an input port:

invalidInformationFlow ::= (InformationFlow).

invalidInformationFlow(X) :-

X is InformationFlow,

Y is InformationFlow,

X.dst = Y.dst, X.src != Y.src.

invalidInformationFlow(E) :-

E is InformationFlow,

X = E.src, X:InputSignalPort,

Y = E.dst, Y:OutputSignalPort.

Note that output ports can be connected to output ports.

Denotational Semantics

The denotational semantics of a language is described by a semantic domain
and a mapping that maps the syntactic elements of the language to the semantic do-
main. In this section, we specify a semantic mapping from CyPhyML to the hybrid
differential-difference equations semantic unit defined in Chapter 6.

We use the semantic anchoring framework for the denotational semantic specifi-
cation of CyPhyML as shown in Fig. 9.

CyPhyML distinguishes acausal power ports and causal signal ports. In Cy-
PhyML, each power port contributes two variables to the equations, and the deno-
tational semantics of CyPhyML is defined as equations over these variables. Signal

ports transmit signals with strict causality. Consequently, if we associate a signal
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Figure 9: Denotational semantic specification of CyPhyML using semantic anchoring for the
semantic interface of the integrated languages and the integration language itself.

variable with each signal port, the variable of a destination port is enforced to denote
the same value as the variable of the corresponding source port. This relationship
is one-way: the value of the variable at the destination port cannot affect the source
variable along the connection in question.

The semantic function of power ports maps power ports to pairs of continuous-
time variables:

PP : PowerPort → cvar, cvar.

PP JCyPhyPowerPortK =

(cvar("CyPhyML_effort",CyPhyPowerPort.id),

cvar("CyPhyML_flow",CyPhyPowerPort.id)).

The semantic function of signal ports maps signal ports to continuous-time vari-
ables:

SP : SignalPort → cvar.

SP JCyPhySignalPortK = cvar("CyPhyML_signal",CyPhySignalPort.id).
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Denotational semantics of power port connections The semantics of power port
connections is defined through their transitive closure. Using fixed-point logic, we
can easily express the transitive closure of connections as the least fixed point solu-
tion for ConnectedPower. Informally, ConnectedPower(x,y) expresses that power
ports x and y are interconnected through one or more power port connections:

ConnectedPower ::= (src:CyPhyPowerPort, dst:CyPhyPowerPort).

ConnectedPower(x,y) :-

PowerFlow(_,x,y,_,_), x:CyPhyPowerPort, y:CyPhyPowerPort;

PowerFlow(_,y,x,_,_), x:CyPhyPowerPort, y:CyPhyPowerPort;

ConnectedPower(x,z), PowerFlow(_,z,y,_,_), y:CyPhyPowerPort;

ConnectedPower(x,z), PowerFlow(_,y,z,_,_), y:CyPhyPowerPort.

In other words, Px = {y | ConnectedPower(x, y)} is the set of power ports reach-
able from power port x.

The behavioral semantics of CyPhyML power port connections is defined by a
set of equations generalizing the Kirchoff-equations. Their form is the following:

∀x ∈ CyPhyPowerPort.

isCP (x)→
∑

y∈Px∧isCP (y)

fy = 0


∀x, y.(ConnectedPower(x, y) ∧ isCP (x) ∧ isCP (y)→ ex = ey)

Here, predicate isCP is true for port x iff x is the port of a component (that is, not a
port of a component assembly). We can formalize this the following way:

P : ConnectedPower → eq+out1.DAE.addend.

P JConnectedPowerK =

eq(out1.DAE.summa("CyPhyML_powerflow",flow1.id), 0)

out1.DAE.addend(summa("CyPhyML_powerflow",flow1.id), flow1)

out1.DAE.addend(summa("CyPhyML_powerflow",flow1.id), flow2)

eq(effort1, effort2)

where

x = ConnectedPower.src, y = ConnectedPower.dst,

DesignElementToPortContainment(cx,x), cx:Component,

DesignElementToPortContainment(cy,y), cy:Component,

PP JxK = (effort1,flow1),
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PP JyK = (effort2,flow2).

Semantics of Signal Port Connections A signal connection path is a directed path
along signal connections. We can use fixed-point logic to express the transitive clo-
sure of signal connections (ConnectedSignal) to find the signal connection paths.
Informally, ConnectedSignal(x,y) expresses that there is a signal path (chain of
connections) from signal port x to signal port y.

ConnectedSignal ::= (CyPhySignalPort,CyPhySignalPort).

ConnectedSignal(x,y) :-

InformationFlow(_,x,y,_,_),

x:CyPhySignalPort,

y:CyPhySignalPort.

ConnectedSignal(x,y) :-

ConnectedSignal(x,z),

InformationFlow(_,z,y,_,_),

y:CyPhySignalPort.

In other words, Px = {y | ConnectedSignal(x, y)} is the set of signal ports reach-
able from signal port x.

A SignalConnection is a connectedSignal such that its end-points are signal
ports of components (therefore leaving out any signal ports that are ports of compo-
nent assemblies).

SignalConnection ::= (src:CyPhySignalPort,dst:CyPhySignalPort).

SignalConnection(x,y) :-

ConnectedSignal(x,y),

DesignElementToPortContainment(cx,x), cx:Component,

DesignElementToPortContainment(cy,y), cy:Component.

The behavioral semantics of CyPhy signal connections is defined as variable assign-
ment. The values of the variables associated with the source and the destination of
the signal connection are equal.

∀x, y.(SignalConnection(x, y)→ sy = sx)
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S : SignalConnection → eq.

S JSignalConnectionK =

eq(SP JSignalConnection.dstK, SP JSignalConnection.srcK).

7.2.2 Formalization of language integration

So far, we formally defined the semantics of the compositional elements of Cy-
PhyML but we have not specified how components are integrated into CyPhyML.
In this section, we develop the semantics of the integration of external languages: a
bond graph language, the Modelica language and the Embedded Systems Modeling
Language (ESMoL). Note that in the future we can easily add other languages to the
list following the same steps as presented here.

Bond Graph is a multi-domain graphical representation for describing the flow
of energy in physical systems [62]. In Section 7.1, we introduced a bond graph lan-
guage along with its formal semantics. Here, we consider an extended bond graph
language that defines power ports in addition: these are ports, through which a bond
graph component interacts with its environment. Each power port is adjacent to ex-
actly one bond; therefore, a power port represents a pair of power variables: the
power variables of its (unique) bond. The bond graph language we consider here
also contains output signal ports for measuring efforts and flows at bond graph junc-
tions, and modulated bond graph elements that are controlled by input signals fed
to the bond graph through input signal ports. Note that the effort and flow variables
of the bond graph language are different from the effort and flow variables of Cy-
PhyML: they denote different entities in different physical domains. The semantics
of the languages formalize these differences precisely.

Modelica is an equation-based object-oriented language [35] used for systems
modeling and simulation. Modelica supports component-based development through
its model and connector concepts. Models are components with internal behavior
and a set of ports called connectors. Models are interconnected by connecting their
connector interfaces. A connector is a set of variables (input, output, acausal flow or
potential, etc.) and the connection of connectors define relations over their variables.
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In the following, we discuss the integration of a restricted set of Modelica models in
CyPhyML: we consider models that contain connectors that consists of either exactly
one input/output variable, or a pair of potential and flow variables.

The Embedded Systems Modeling Language (ESMoL [100]) is a language and
tool-suite for modeling and implementing computational systems and hardware plat-
forms. ESMoL consists of several sub-languages for defining platform and software
architectures, describing the deployment of software on hardware, and specifying
the scheduling of execution. In the following, by ESMoL we refer to the dataflow
sub-language of ESMoL that is used for modeling discrete controllers. This sub-
language is based on a periodic time-triggered execution semantics, and its models
expose periodic discrete-time signal ports on their interfaces.

Integration of structure

The role of CyPhyML in the integration process is to establish meaningful and
valid connections between heterogeneous models. Component integration is an error-
prone task because of the slight differences between different languages. For in-
stance, during the formalization we found the following discrepancies:

1. power ports have different meaning in different modeling languages,

2. even if the semantics is the same, there are differences in the naming conven-
tions,

3. connecting the signals of ESMoL to the signals of CyPhyML needs conversion
between discrete-time and continuous-time signals.

In order to formalize the integration of external languages, we extend CyPhyML
with the semantic interfaces of these languages. Hence, we need language elements
for representing models of these heterogeneous languages, their port structures, and
the port mapping between the ports and the corresponding CyPhyML ports.

We formalize the models and their containment in CyPhyML as follows:
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BondGraphModel ::= new (URI:String, id:Integer).

ModelicaModel ::= new (URI:String, id:Integer).

ESMoLModel ::= new (URI:String, id:Integer, sampleTime:Real).

Model ::= BondGraphModel + ModelicaModel + ESMoLModel.

// A relation describing the containment of bond graph models in CyPhyML components
ComponentToBondGraphContainment ::= new (Component =>

BondGraphModel).

...

Note the sampleTime field of ESMoLModel: since ESMoL models are periodic
discrete-time systems, we need real values describing their period in the continuous-
time world. The interface ports and port mappings are the following:

// Bond graph power ports (and similarly for the other languages)
BGPowerPort ::= MechanicalDPort + MechanicalRPort + ...

...

// Port mappings for bond graph power ports (and similarly for other languages)
BGPowerPortMap ::= (src:BGPowerPort,dst:CyPhyPowerPort).

...

// All the power ports in CyPhyML and the integrated languages:
PowerPort ::= CyPhyPowerPort + BGPowerPort + ModelicaPowerPort.

// All the signal ports in CyPhyML and the integrated languages:
SignalPort ::= ElectricalSignalPort

+ BGSignalPort

+ ModelicaSignalPort

+ ESMoLSignalPort.

// List of all ports:
AllPort ::= PowerPort + SignalPort.

// Mapping from model ports to CyPhyML ports
PortMap ::= BGPowerPortMap

+ BGSignalPortMap

+ ModelicaPowerPortMap

+ ModelicaSignalPortMap

+ SignalFlowSignalPortMap.
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An integrated model (that is, CyPhyML model integrated with other models) is
well-formed if it conforms to the original CyPhyML domain, and its port mappings
are valid:

conforms no invalidPortMapping.

A port mapping is invalid if it connects incompatible ports, or the interconnected
ports are not part of the same CyPhyML component:

invalidPortMapping :- M is PortMap, no compatible(M).

invalidPortMapping :-

M is BGPowerPortMap,

BondGraphToPortContainment(BondGraph,M.src),

DesignElementToPortContainment(CyPhyComponent,M.dst),

no ComponentToBondGraphContainment(CyPhyComponent,BondGraph).

...

// Compatible denotes that port mapping M is valid (i.e., the corresponding ports are compatible)
compatible ::= (PortMap).

compatible(M) :- M is BGPowerPortMap(X,Y), X:MechanicalRPort,

Y:RotationalPowerPort.

...

Bond Graph integration The semantics of bond graph power ports are explained
by mapping to pairs of continuous-time variables:

BGPP : BGPowerPort → cvar, cvar.

BGPP JBGPowerPortK =

(cvar("BondGraph_effort",BGPowerPort.id),

cvar("BondGraph_flow",BGPowerPort.id)).

The semantics of bond graph signal ports is explained by mapping to continuous-
time variables:

BGSP : BGSignalPort → cvar.

BGSP JBGSignalPortK = cvar("BondGraph_signal",BGSignalPort.id).

The behavioral semantics of bond graph power port mappings for the hydraulic
and thermal domains is the equality of the associated port variables. We can formalize
this with the following rules:
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BGP : BGPowerPortMap → eq+diffEq.

BGP JBGPowerPortMapK =

eq(cyphyEffort, bgEffort)

eq(cyphyFlow, bgFlow)

where

bgPort = BGPowerPortMap.src,

cyphyPort = BGPowerPortMap.dst,

bgPort : HydraulicPort + ThermalPort,

PP JcyphyPortK = (cyphyEffort, cyphyFlow),

BGPP JbgPortK = (bgEffort, bgFlow).

In mechanical translational domain, the effort of CyPhyML power ports denote
absolute position and the flow denotes force, whereas for bond graphs the effort
is force, and the flow is velocity. In mechanical rotational domain, the effort of
CyPhyML power ports denote absolute rotation angle and the flow denotes torque,
whereas for bond graphs the effort is torque and the flow is angular velocity. Their
interconnection in CyPhyML is formalized by the following equations:

BGP JBGPowerPortMapK =

diffEq(cyphyEffort, bgFlow)

eq(bgEffort, cyphyFlow)

where

bgPort = BGPowerPortMap.src,

cyphyPort = BGPowerPortMap.dst,

bgPort : MechanicalDPort + MechanicalRPort,

PP JcyphyPortK = (cyphyEffort, cyphyFlow),

BGPP JbgPortK = (bgEffort, bgFlow).

For the electrical domain, bond graph electrical power ports denote a pair of
physical terminals (electrical pins), while in the CyPhyML language they denote
single electrical pins. In both cases, the flows (the currents) through the pins are
the same; however, there are differences in the interpretation of the voltages. In the
bond graph case, the effort variable belonging to the electrical power port denotes the
difference of the voltages between the two electrical pins. In the CyPhyML case, the
effort variable denotes absolute voltage with respect to an absolute zero voltage. The
semantics of electrical power port mapping is the equality of the flows and efforts,
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which means that the negative terminal of the bond graph electrical power port is
automatically grounded to zero voltage:

BGP JBGPowerPortMapK =

eq(bgFlow, cyphyFlow)

eq(bgEffort, cyphyEffort)

where

bgPort = BGPowerPortMap.src,

cyphyPort = BGPowerPortMap.dst,

bgPort : ElectricalPort,

PP JcyphyPortK = (cyphyEffort, cyphyFlow),

BGPP JbgPortK = (bgEffort, bgFlow).

Finally, the denotation of bond graph and CyPhyML signal port mapping is equality
of the interconnected port variables:

BGS : BGSignalPortMap → eq.

BGS JBGSignalPortMapK =

eq(BGSP JBGSignalPortMap.srcK, SP JBGSignalPortMap.dstK).

Modelica integration The semantics of Modelica power ports (that is, a connector
with a flow and a potential variable) are explained by mapping to pairs of continuous-
time variables:

MPP : ModelicaPowerPort → cvar,cvar.

MPP JModelicaPowerPortK =

(cvar("Modelica_potential",ModelicaPowerPort.id),

cvar("Modelica_flow",ModelicaPowerPort.id)).

The semantics of Modelica signal ports (that is, a connector with an input or
output variable) is explained by mapping to continuous-time variables:

MSP : ModelicaSignalPort → cvar.

MSP JModelicaSignalPortK =

cvar("Modelica_signal",ModelicaSignalPort.id).

The semantics of Modelica and CyPhyML power port mappings is equality of the
power variables. Formally,
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MP : ModelicaPowerPortMap → eq.

MP JModelicaPowerPortMapK =

eq(cyphyEffort, modelicaEffort)

eq(cyphyFlow, modelicaFlow)

where

modelicaPort = ModelicaPowerPortMap.src,

cyphyPort = ModelicaPowerPortMap.dst,

PP JcyphyPortK = (cyphyEffort, cyphyFlow),

MPP JmodelicaPortK = (modelicaEffort, modelicaFlow).

The semantics of Modelica and CyPhyML signal port mappings is equality of the
signal variables.

MS : ModelicaSignalPortMap → eq.

MS JModelicaSignalPortMapK =

eq(MSP JModelicaSignalPortMap.srcK,
SP JModelicaSignalPortMap.dstK).

SignalFlow integration The semantics of ESMoL signal ports is explained by
mapping to discrete-time variables, and the periodicity of the discrete variable is
determined by the sample time of its container block.

ESP : ESMoLSignalPort → dvar, timing.

ESP JESMoLSignalPortK = (Dvar, timing(Dvar, container.SampleTime,

0))

where

Dvar = dvar("ESMoL_signal", ESMoLSignalPort.id),

IOSignal2InPort(_,ESMoLSignalPort,inport,_,_),

BlockToSF_PortContainment(container,inport).

ESP JESMoLSignalPortK = (Dvar, timing(Dvar, container.SampleTime,

0))

where

Dvar = dvar("ESMoL_signal", ESMoLSignalPort.id),

OutPort2IOSignal(_,outport,ESMoLSignalPort,_,_),

BlockToSF_PortContainment(container,outport).

While signal ports in signal-flow have discrete-time semantics, signal ports in
CyPhyML are continuous-time. Thus, signal-flow output signals are integrated into
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CyPhyML by means of the hold operator.

∀x, y.(SignalF lowSignalPortMap(x, y)→ ey = hold(ex))

ES : SignalFlowSignalPortMap → eq.

ES JSignalFlowSignalPortMapK = eq(cyphySignal,

hold(signalflowSignal))

where

signalflowPort = SignalFlowSignalPortMap.src,

cyphyPort = SignalFlowSignalPortMap.dst,

signalflowPort : OutSignal,

SP JcyphyPortK = cyphySignal,

ESP JsignalflowPortK = (signalflowSignal,_).

For the opposite direction, we can use the sampling operator.

∀x, y.(SignalF lorSignalPortMap(x, y)→ sx = sample(sy, rate, phase))

The sampling rate and phase of the sampling function is calculated from the timing
of the discrete variable corresponding to the ESMoL port:

ES JSignalFlowSignalPortMapK = eq(signalflowSignal,

sample(cyphySignal,samp.period,samp.phase))

where

signalflowPort = SignalFlowSignalPortMap.src,

cyphyPort = SignalFlowSignalPortMap.dst,

signalflowPort : InSignal,

SP JcyphyPortK = cyphySignal,

ESP JsignalflowPortK = (signalflowSignal,samp).

Power Port Units Next, we define the physical units for each of the physical power
ports. The Units enumeration contains all the supported physical units:

Units ::= {

"V", // Voltage
"A", // Ampere
"m", // meter
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"N", // Newton
"N.m", // Newton−meter
"m/s", // meter/second
"rad", // radian
"rad/s",// radian/second
"kg/s", // kilogram/second
"Pa", // Pascal
"K", // Kelvin
"W", // Watt
"NA", // Not available
"J/kg", // Joule/kilogram
"Pa,J/kg",

"kg/s,W" // Modelica FlowPort
}.

PortUnit assigns two units to each power port: one to its effort variable, and one
to its flow variable:

PortUnit ::= [port:PowerPort ⇒ effort:Units, flow:Units].

PortUnit(x,"V","A") :- x is ElectricalPowerPort;

x is ElectricalPin;

x is ElectricalPort.

PortUnit(x,"m","N") :- x is TranslationalPowerPort;

x is TranslationalFlange.

PortUnit(x,"N","m/s") :- x is MechanicalDPort.

PortUnit(x,"rad","N.m") :- x is RotationalPowerPort;

x is RotationalFlange.

PortUnit(x,"N.m","rad/s") :- x is MechanicalRPort.

PortUnit(x,"kg/s","Pa") :- x is HydraulicPowerPort;

x is FluidPort;

x is HydraulicPort.

PortUnit(x,"K","W") :- x is ThermalPowerPort;

x is HeatPort;

x is ThermalPort.

PortUnit(x,"NA","NA") :- x is MultibodyFramePowerPort.

PortUnit(x,"Pa,J/kg","kg/s,W") :- x is FlowPort.
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It is an interesting future work to use these units to verify the consistency of the lan-
guage; in particular the consistency of the port mappings, where different modeling
languages may use different units.

7.2.3 Conclusion

In this chapter, we discussed how the ForSpec language can be used for specify-
ing both the structural and the denotational behavioral semantics of a CPS integration
language. Our approach has two advantages: (i) we used an executable formal spec-
ification language, which lends itself to model conformance checking, model check-
ing and model synthesis; (ii) both the structural and behavioral specifications are
written using the same logic-based language, therefore both can be used for deduc-
tive reasoning: in particular, structure-based proofs about behaviors become feasible.
It remains a future work to leverage the specifications for performing such symbolic
formal analysis.
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7.3 Specification of the Stateflow language

7.3.1 Introduction

Model-based engineering has been successfully applied to tackle the increasing
complexity of embedded software by raising the level of abstraction. By now, it
is common practice to use high-level modeling languages – such as the statechart
formalism or one of its variants – to model controller systems.

In this chapter, we develop executable formal semantic specifications for one
of the most prominent modeling language for embedded systems, the MathWorks’
Stateflow language [77]. Stateflow is a complex language integrated into the Mat-
lab Simulink environment combining hierarchical state diagrams (similar to Harel’s
statecharts [46]) with flowcharts, truth tables, graphical functions, a built-in action
language, and external Simulink, Matlab and C functions. The complexity of the
language is hallmarked by its 896-page long user’s guide.

As Stateflow is one of the most widely used statechart variant in the industry,
many authors have developed the formal specification of its semantics. We base
our semantic specifications on these works, but provide additional formalization for
lacking features, and fix some errors. Our contributions are the following:

• Static (structural) semantics: formalization of the well-formedness rules of
Stateflow.

• Action and condition languages: previous attempts abstracted away the ac-
tion language. We provide the formalization of the action and condition lan-
guages.

• Name resolution for identifiers: formalization of the name resolution in the
action and condition languages.

• Early return logic: formalization of the early return logic rules for transition,
condition, entry, during and exit actions.
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• History junctions: formalization of history junctions.

• On actions: formalization of on actions besides entry, during and exit actions.

• Ordering of outer and inner transitions: proper formalization of inner and
outer transitions.

• Super-step semantics: we formalized both the single-step and super-step se-
mantics of Stateflow.

• Default transitions: we fixed an error in previous formalizations with regards
to the default transitions in an AND composition.

7.3.2 Related work

Hamon [45] formalizes the structural operational semantics for a subset of the
Stateflow language. The restrictions are the following: local event broadcasts can
only be sent to parallel states; loops are forbidden in event broadcasting; history
junctions, the action language and name resolution, as well as the early return logic
are missing from the specification. The authors use the specifications to develop an
interpreter for translating Stateflow models to the SAL language, which is the input
language for SRI’s formal tools.

Caspi et al. [112] describe a translation from a subset of Stateflow to Lustre.
They define a safe subset of Stateflow that can be mapped to Lustre, and provide an
informal presentation of the translation process.

Hamon and Rushby [44] formalize the denotational semantics for a larger sub-
set of Stateflow, still missing several of the above-mentioned features. They claim
that the advantage of formalizing the denotational semantics is that the specifications
define a compiler for Stateflow, which is much easier to maintain compared to the
interpreter based on the operational semantics. Their implementation is based on
the OCaml language, and by adding pretty-printers, they can produce SAL, C and
OCaml code from Stateflow models. We found a bug in this work with regards to the
ordering of outer transitions, during actions and inner transitions.
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Whalen [131] describes a more complete formalization of Stateflow. Besides the
structural operational semantics (SOS) of Stateflow, Whalen also describes the SOS
of UML Statecharts and Rhapsody, another two prominent statechart variants. The
specifications are parametric, and highlight the commonalities and differences be-
tween these variants. Our operational semantics is based on Whalen’s work, but we
extend it with many additional features. An important basic feature of Stateflow miss-
ing from Whalen’s specifications is the notion of inner transitions, which we added
in this work. Furthermore, we also address history junctions, the action language,
name resolution and the early return logic.

7.3.3 Semantics by example

Figure 10: A tricky Stateflow example.

In this section, we demonstrate the execution of Stateflow through an example.
For a complete discussion to the topic, we refer the reader to the user guide [77]. We
designed the example with the specific aim to show several tricky features of State-
flow that were either not addressed in earlier works, or were incorrectly formalized.
Fig. 10 shows the example. The chart is an exclusive composition of two states – On

and Off – with two unguarded transitions inbetween. The transition from On to Off

is triggered by local event e, while the transition from Off to On is always enabled.

The On state contains two substates – Run and Paused –, and its default transition
leads to Paused. Furthermore, On has a during action setting data variable x to one, a
history junction, and an inner flowchart (connective junctions interconnected through
transitions) guarded by [in(Run)], i.e., only executed if substate Run is active. The
Off state contains a single Stopped state.
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We describe the execution of the chart through four steps. The title for each step
emphasizes the important features explained at that step.

Step 1. Initialization: Initially, the chart is inactive and is triggered by the execu-
tion environment. This activates the chart, and its default transition is executed. The
default transition leads to the On state, which in turns executes the default transition
of the On state, therefore the On and Paused states become active. No more actions
are performed at this point, and the chart goes to sleep.

Step 2. Outer, inner transitions and during actions: On the next trigger of the
chart, the chart is already initialized, therefore it executes its active child: state On.
The outer transition of On is executed, but it fails because event e was not triggered.
Therefore, the execution of On’s during action follows, which sets x to one. Next, the
inner transition is evaluated, but state Run is not active, therefore it fails. This leads
to the execution of On’s active child, state Paused, which has an enabled (since it has
no guards or trigger events) outer transition leading to state Run. The transition is
taken by exiting Paused and entering Run, after which the chart goes to sleep.

Step 3. Flowchart execution, backtracking, event broadcast: Similarly, on the
third trigger, state On executes, but its outer transition fails. Next, the during action
successfully sets x to one. This time, the inner transition is taken, because state Run

is active: first the upper branch is taken (order 1), where the value of x is set to two.
Probing the next transition fails (because of guard [false]), thus after backtracking the
next transition is taken, and variable x is set to three. Again, the outgoing transition
fails, and backtracking leads back to the lower branch. Here, event e is broadcast,
which immediately executes the chart from the top level:

• Since this time the outer transition is triggered, the active states are exited
(first Run, then On) and state Off entered. Even though Off does not have a
default transition, a special rule states that if a state has only one substate, it is
automatically activated. Therefore, Stopped is entered as well. This completes
the execution of the broadcast event.
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At this point, the execution returns to the lower branch in the inner transition of On.
Since On is inactive by now, the early return logic prescribes that the rest of the
actions are not performed. The chart goes to sleep.

Step 4. Inter-level transition path, history junction: On the fourth trigger, the
inter-level transition path is taking the chart from state Stopped to state On through
the connective junction in Off . Since the parent of the transition path is the chart,
state Stopped and Off are exited, and state On is entered, respectively. Because of
On’s history junction, its last active state is entered, that is state Run. The chart goes
to sleep.

7.3.4 Informal semantics

A Stateflow chart is a reactive model, that is externally triggered by the envi-
ronment: either by an event, or the passage of time. During the reaction, the chart
executes and produces some output. Stateflow is composed of two main parts:

• Diagram language: structurally, Stateflow is a hierarchical diagram – a forest
–, where the roots are charts, the internal nodes are states or graphical func-
tions, and the leafs are either states or junctions. The nodes of the diagram are
interconnected through transitions that are of three types: default transitions,
inner transitions and outer (outgoing) transitions.

• Action language: Stateflow has an action language that defines operations
over the chart’s input, output and local data variables. The input variables
obtain their values from the environment, the local variables are used by the
chart for internal computations, and the output variables store return values
that the environment can access.

At any point, the status of the system is completely determined by its active states
and the valuation of its local variables.
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Diagram language

The diagram language has the following concepts:

• Charts are top-level containers that are activated by the environment. A chart
has a set of default transitions that are executed if the chart has no active sub-
states upon its activation – otherwise, its active sub-states are executed. Charts
are either parallel (AND) or exclusive (OR) compositions. An exclusive chart
may have at most one active sub-state. In contrast, if a parallel chart has at
least one active sub-state, all its sub-states must be active.

• States form the backbone of Stateflow. States have a set of default transitions,
a set of inner transitions and a set of outer transitions. The default transitions
of a state are executed upon the entry of the state. Otherwise, upon the ex-
ecution of an active state, its outer and inner transitions are executed. States
have entry, during, exit and on actions, which are expressions in the action lan-
guage. States have local variable definitions that can shadow variables from
upper levels in the hierarchy, whenever an action expression is evaluated in the
context of the state. Similar to charts, states are either parallel or exclusive
compositions.

• Subcharts: to facilitate compact models Stateflow allows the creation of sub-
charts from states. This serves only visualization purposes and the semantics
of the states remains unchanged.

• Graphical functions are Stateflow diagrams that can be called from the action
language. Graphical functions have input and output variables, a set of con-
nective junctions and transitions that define the calculations performed by the
function.

• Connective junctions are used for defining decision points for alternative
paths. This can be used for visually describing sequential algorithms, or for
simplifying otherwise complicated transitions.
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• History junctions are used for tracking the activity of states. If a superstate
containing a history junction has been activated before, instead of executing its
default transition path upon entry, its last activated sub-state is entered.

• Transition segments are connections between charts, states and junctions. A
transition segment has a source and destination, optional triggering events, an
optional event guard, and optional condition actions and transition actions. A
transition segment is enabled if its triggering event matches the current trigger-
ing event of the chart (or it has no triggering events), and its guard evaluates to
true (or it has no guard).

• Transition paths are sequences of transition segments that connect charts and
states. A transition path is valid, if all its transition segments are enabled.

• Flow charts are directed subgraphs composed of transition segments, such that
– except for the source and sink nodes – all its nodes are junctions. A flow chart
defines a set of transition paths between its source and sink nodes.

• Transition segment parent is the container state (or chart or graphical func-
tion) that contains inclusively (that is, a state contains itself) the source and the
destination of the transition segment.

• Transition path parent is the lowest common ancestor state (or chart or graph-
ical function) that contains inclusively the parents of each transition segment
in the transition path.

Stateflow distinguishes the following types of transitions:

• Default transitions are transition segments that are executed upon the entry of
an inactive state (or chart). The source of a default transition is the same as its
parent.

• Outer transitions are transition segments that are executed upon the execution
of an active state. The source of an outer transition is the state from which the
transition points away.
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• Inner transitions are transition segments that are executed upon the execution
of an active state, if its outer transitions fail. The source of an inner transition
is the same as its parent.

• Outgoing transitions are transitions from junctions. They are executed upon
the evaluation of a flow chart.

When triggered, a Stateflow chart is executed by evaluating its active states and
finding a valid transition path. This includes executing the during actions of states,
and executing the condition actions of transition segments. Upon finding a valid
transition path, the source state(s) are exited and the destination state(s) are entered
by executing the entry and exit actions of the corresponding states, and executing the
transition actions of the transition path.

Being one of the most important steps in the execution, we describe the search
for a valid transition path in the following. For other steps, we refer the reader to the
Stateflow user guide [77]. Given a flow chart, the search for a valid transition path is
as follows:

1. Start with the source node of the flow chart,

2. evaluate the first transition segment of the node,

3. if the transition segment is enabled:

(a) perform its condition actions,

(b) if this inactivates the source of the flow chart, perform early return (the
flow chart fails to execute),

(c) evaluate the transition segment’s destination:

i. if the destination is a state, a valid transition path is found. Evaluate
the list of transition actions along the transition path and return with
success. If any of the transition actions inactivates the source of the
flow chart, do not execute the rest of the actions (early return, and
the flow chart fails to execute).
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ii. if the destination is a terminal junction (junction without outgoing
transition segments), return with success.

iii. otherwise, repeat from step 2 for the destination. If it returns with
fail, continue with step 4.

4. Try the next transition segment from step 3, until there are more transition
segments.

5. Otherwise, return with failure.

Upon the successful execution of a flow chart, we need to exit and enter some of the
states according to the rules of Stateflow. For the exact details, see the Stateflow user
guide [77]. We formalized these rules using the ForSpec language, and in the next
section we will discuss excerpts from the specification.

Action language

The action language of Stateflow is an imperative language (with side-effects)
similar to the C language. It is beyond the scope to discuss the complete language
here, but we describe the process how variable (data) names are resolved in the lan-
guage.

In Stateflow, actions are performed in a context. A context is a state, chart or
graphical function: for state actions, the state itself is the execution context; for tran-
sition actions, the parent state is the context. An identifier is resolved by looking up
if it is defined in the current context. If it is, the data belonging to the identifier is
used. Otherwise, the identifier is recursively looked up in the ancestors of the context
until it is not found.
The action language also defines additional constructs for interacting with Stateflow
diagrams:

• Send broadcast event: broadcasts an event to the chart. This results in an
embedded execution of the chart (self-recursion), after which it returns to the
original execution.
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• Send local broadcast event: broadcasts an event to a state specified as a path
(list of identifiers) in the chart. This results in an embedded execution of the
state.

These constructs introduce much of the challenges in the semantics of Stateflow:
since they allow a chart to recursively trigger itself leading to complicated executions.

7.3.5 Structural semantics

In this section, we introduce an abstract syntax for the Stateflow language, and
describe its well-formedness rules.

Syntax of Stateflow

A Stateflow model is a hierarchical state diagram, in which the root elements
are charts. A chart is a uniquely named container that contains states, junctions and
graphical functions, as well as a set of default transitions. Furthermore, a chart has
a set of (local, input and output) data, and settings related to its execution semantics
(single-step vs. super-step semantics and its related settings):

chart ::= new (name: String).

chart_type ::= fun (chart ⇒ {OR,AND}).

chart_substate ::= new (chart, state).

chart_default_transition ::= new (chart, transition).

chart_junction ::= new (chart, junction).

chart_function ::= new (chart, function).

chart_data ::= new (chart, data).

chart_event ::= new (chart, event).

chart_enableNonTerminalStates ::= fun (chart ⇒ Boolean).

chart_nonTerminalMaxCounts ::= fun (chart ⇒ Integer).

chart_nonTerminalUnstableBehavior ::= fun (chart ⇒ {PROCEED,

THROW_ERROR}).

In Stateflow, a state is a container with a name possibly containing other substates.
There are two types of states: OR and AND state. An OR state represents exclusivity:
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at any moment, at most one of its substates is active. In contrast, an AND state
represents concurrency: at any moment, either none, or all of its substates are active.
States have default, inner and outer transitions, as well as entry, during, exit and on
actions that describe the actions taken on the activation, execution, deactivation of a
state, and the receipt of an event. A state is uniquely identified by its parent and its
name:

state ::= new (parent: any state+chart, name: String).

state_type ::= fun (state ⇒ {OR,AND}).

state_order ::= fun (state ⇒ Integer).

state_default_transition ::= new (state, transition).

state_inner_transition ::= new (state, transition).

state_outer_transition ::= new (state, transition).

state_substate ::= new (state, state).

state_junction ::= new (state, junction).

state_function ::= new (state, function).

entry_actions ::= fun (state ⇒ action_list).

during_and_on_actions ::= fun (state ⇒ action_list).

exit_actions ::= fun (state ⇒ action_list).

state_data ::= new (state, data).

state_event ::= new (state, event).

Besides regular states, Stateflow contains connective and history junctions that
are special unnamed states only used for intermittent steps. A junction is identified
by its parent and its identifier. A junction has a type and a set of outgoing transitions:

junction ::= new (parent: any state+chart, id:String).

junction_type ::= fun (junction ⇒ {CONNECTIVE, HISTORY}).

junction_outgoing_transition ::= new (junction, transition).

Graphical functions are named functions that perform actions by the execution
of a flowchart (a chart containing only junctions). A graphical function has a set of
(local, input, and output) data:

function ::= new (parent:any state+chart, name:String).

function_default_transition ::= new (function, transition).

function_junction ::= new (function, junction).

function_data ::= new (function, data).
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A transition is a directed connection between two locations. A transition has a
(possible empty) list of trigger events and an optional guard condition, which together
determines whether the transition is enabled at a given time instant. A transition has
two types of optional actions: condition action and transition action that are executed
upon the execution of the transition. The difference is that while the condition action
is immediately executed upon the firing of a transition, the transition actions are
collected until a valid transition path is found. The execution of a valid transition
path includes the execution of the collected transition actions. Otherwise, if no valid
transition path is found, the transition actions are not executed at all.

transition ::= new (parent: state+chart+function,

src: chart+state+junction,

dst: state+junction,

ev : event_list).

transition_type ::= fun (transition ⇒
{DEFAULT,INNER,OUTER,OUTGOING}).

transition_order ::= fun (transition ⇒ Integer).

guard ::= fun (transition ⇒ condition + {null}).

condition_actions ::= fun (transition ⇒ action_list).

transition_actions ::= fun (transition ⇒ action_list).

Data and events are named entities with unique owners and scopes:

datatypes ::=

{DOUBLE,SINGLE,INT32,INT16,INT8,UINT32,UINT16,UINT8,BOOLEAN}.

scopes ::= {LOCAL,INPUT,OUTPUT}.

data ::= new (owner: state+chart+function, name: String,

datatype:datatypes, scope:scopes).

event ::= new (owner: state+chart, name:String, scope:scopes).

A path is a list of strings identifying a location in the hierarchy:

path ::= path_cons + {null}.

path_cons ::= new (String, any path).
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Well-formedness rules of Stateflow

In this section, we formalize the well-formedness rules of Stateflow. A Stateflow
model conforms if the following holds:

conforms

no invalid_data_name,

no invalid_event_name,

no invalid_history_junction,

no invalid_transition_type,

no invalid_parent,

no invalid_owner,

no invalid_state_order,

no invalid_transition_order,

no invalid_transition_cross,

no invalid_data(_,_),

no invalid_path,

no invalid_broadcast,

no invalid_transition_parent,

no invalid_transition.

In the following, we discuss the definition of each of these terms. Data and event
shall have unique names within their owner.

invalid_data_name :- A is data, B is data, A != B, A.owner =

B.owner, A.name = B.name.

invalid_event_name :- A is event, B is event, A != B, A.owner =

B.owner, A.name = B.name.

Charts, graphical functions and parallel composition states shall have no history
junctions.

invalid_history_junction :-

chart_junction(_,H), junction_type(H) ⇒ HISTORY;

function_junction(_,H), junction_type(H) ⇒ HISTORY;

state_junction(S,H), state_type(S) ⇒ AND, junction_type(H) ⇒
HISTORY.

The type of a transition shall match its usage in its parent.

invalid_transition_type :-
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chart_default_transition(_,T),

transition_type(T) ⇒ Type, Type != DEFAULT.

invalid_transition_type :-

state_default_transition(_,T),

transition_type(T) ⇒ Type, Type != DEFAULT.

invalid_transition_type :-

function_default_transition(_,T),

transition_type(T) ⇒ Type, Type != DEFAULT.

invalid_transition_type :-

state_inner_transition(_,T),

transition_type(T) ⇒ Type, Type != INNER.

invalid_transition_type :-

state_outer_transition(_,T),

transition_type(T) ⇒ Type, Type != OUTER.

invalid_transition_type :-

junction_outgoing_transition(_,T),

transition_type(T) ⇒ Type, Type != OUTGOING.

The parent of each state, junction and function contained within a chart or state shall
be the container itself. Conversely, each state, junction and function shall have a
parent state or chart that indeed contains it.

invalid_parent :-

chart_substate(P,S), P != S.parent;

chart_junction(P,S), P != S.parent;

chart_function(P,S), P != S.parent;

state_substate(P,S), P != S.parent;

state_junction(P,S), P != S.parent;

state_function(P,S), P != S.parent;

S is state, P = S.parent, P:chart, no chart_substate(P,S);

S is state, P = S.parent, P:state, no state_substate(P,S);

S is junction, P = S.parent, P:chart, no chart_junction(P,S);

S is junction, P = S.parent, P:state, no state_junction(P,S);

S is function, P = S.parent, P:chart, no chart_function(P,S);

S is function, P = S.parent, P:state, no state_function(P,S).

The owner-child relationships shall be valid for data and events.

invalid_owner :-

chart_data(P,S), P != S.owner; chart_event(P,S), P != S.owner;
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state_data(P,S), P != S.owner; state_event(P,S), P != S.owner;

function_data(P,S), P != S.owner;

S is data, P = S.owner, P:chart, no chart_data(P,S);

S is data, P = S.owner, P:state, no state_data(P,S);

S is data, P = S.owner, P:function, no function_data(P,S);

S is event, P = S.owner, P:chart, no chart_event(P,S);

S is event, P = S.owner, P:state, no state_event(P,S).

States shall have a unique ordering under a parallel composition (state or chart).

invalid_state_order :-

P is chart, chart_type(P,AND), chart_substate(P,S1),

chart_substate(P,S2), S1 != S2, state_order(S1,o1),

state_order(S2,o2), o1 = o2;

P is state, state_type(P,AND), state_substate(P,S1),

state_substate(P,S2), S1 != S2, state_order(S1,o1),

state_order(S2,o2), o1 = o2.

Transitions from a single source shall have different orders.

invalid_transition_order :-

chart_default_transition(P,T1), transition_order(T1,o1),

chart_default_transition(P,T2), transition_order(T2,o2),

T1 != T2, o1 = o2.

invalid_transition_order :-

state_default_transition(P,T1), transition_order(T1,o1),

state_default_transition(P,T2), transition_order(T2,o2),

T1 != T2, o1 = o2.

invalid_transition_order :-

function_default_transition(P,T1), transition_order(T1,o1),

function_default_transition(P,T2), transition_order(T2,o2),

T1 != T2, o1 = o2.

invalid_transition_order :-

state_outer_transition(P,T1), transition_order(T1,o1),

state_outer_transition(P,T2), transition_order(T2,o2),

T1 != T2, o1 = o2.

invalid_transition_order :-

state_inner_transition(P,T1), transition_order(T1,o1),

state_inner_transition(P,T2), transition_order(T2,o2),

T1 != T2, o1 = o2.
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invalid_transition_order :-

junction_outgoing_transition(P,T1), transition_order(T1,o1),

junction_outgoing_transition(P,T2), transition_order(T2,o2),

T1 != T2, o1 = o2.

A transition shall not cross the border of an AND composition:

invalid_transition_cross :-

T is transition, ancestor_or_self(T.src,A),

ancestor(A,T.parent), state_type(A) ⇒ AND;

T is transition, ancestor_or_self(T.dst,A),

ancestor(A,T.parent), state_type(A) ⇒ AND.

All the data identifiers shall be well-defined.

invalid_data ::= (identifier, state+junction+function+chart).

invalid_data(Var,Context) :- actionsInContext(Actions,Context),

subexpr(Actions,Var), undefined_var_by_name(Var,Context).

Each path shall refer to valid elements in the chart.

invalid_path :-

guard(Trans,G), subexpr(G,IN(Path)), Path:path, no

StateAtPath(Trans.parent,Path,_);

actionsInContext(A,Context), subexpr(A,identifier(Path)),

Path:path, no DataAtPath(Context,Path,_);

actionsInContext(A,Context),

subexpr(A,directedEventBroadcast(_,Path)), Path:path, no

StateAtPath(Context,Path,_).

Only local events shall be broadcast.

invalid_broadcast :-

actionsInContext(Actions,_),

subexpr(Actions,eventBroadcast(E)), E.scope != LOCAL;

actionsInContext(Actions,_),

subexpr(Actions,directedEventBroadcast(E,_)), E.scope != LOCAL.

The parent of an inner transition or default transition shall be its source.

invalid_transition_parent :-

T is transition, transition_type(T,INNER), T.src != T.parent;
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T is transition, transition_type(T,DEFAULT), T.src != T.parent.

The parent of a transition shall be ancestor for both the source and destination.

invalid_transition_parent :-

T is transition, no ancestor_or_self(T.src,T.parent);

T is transition, no ancestor_or_self(T.dst,T.parent).

A transition shall connect elements within the same chart.

invalid_transition :-

T is transition,

ancestor(T.src,Chart1), Chart1:chart,

ancestor(T.dst,Chart2), Chart2:chart,

Chart1 != Chart2.

7.3.6 Operational semantics

In this section, we discuss excerpt from the Structural Operational Semantics
(SOS) of Stateflow. For brevity, we only present the formal semantics of chart exe-
cution and transition execution.

Execution Environment

First, we define an environment that stores the actual status of the system, that is,

• the set of active states,

• the set of variable valuations,

• the current triggering event and

• the last active substate for each state that has been activated before (in order to
support history junctions).

We can formalize the environment with the following quadruple:
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environment ::= (active_states: in.state_list,

data_values: in.valuation_list,

current_event: in.event+{null},

last_active_substates: in.state_pair_list).

Chart execution

A Stateflow chart is a reactive system that produces responses to external events.
In the following, we formalize the execution of a chart as specified in the Simulink
user guide. The execution of an inactive chart (a chart that has only inactive states)
results in the initialization of the chart, that is, the entry of the root state of the chart.
After executing the inactive chart, it becomes a sleeping but active chart (unless the
chart has no states, in which case every triggering results in initialization). A sleeping
chart is activated by another event, in response to which the chart executes its active
states. In its default single-step operation mode, the chart executes only once for each
received event.

The execute chart rule formalizes these rules. If the chart has any active sub-
states, we execute the active chart; otherwise, we initialize the chart. The arguments
for execute chart are the chart to execute and the current environment, and it returns
the updated environment after executing the chart exactly once:

execute_chart ::= [ in.chart, environment ⇒ environment].

If the chart has any active states, execute it as an active chart:

execute_chart(C,Env) ⇒ Env’ :-

anyActiveSubstate(C,Env) ⇒ TRUE,

execute_active_chart(C,Env) ⇒ Env’.

Otherwise, activate an OR chart by evaluating its default flow path:

execute_chart(C,Env) ⇒ Env’’ :-

in.chart_type(C) ⇒ OR, anyActiveSubstate(C,Env) ⇒ FALSE,

execute_default_transitions(C,Env,null) ⇒ (Env’,Res),

enter_sole_child_if_any(C,Env’) ⇒ Env’’.
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And activate an AND chart by entering all its sub-states:

execute_chart(C,Env) ⇒ Env’ :-

in.chart_type(C) ⇒ AND, anyActiveSubstate(C,Env) ⇒ FALSE,

in.ordered_list_of_substates(C) ⇒ List,

enter_each_state(List,Env) ⇒ Env’.

The execute active chart rule formalizes the execution of an active chart. The argu-
ments for execute active chart are the chart to execute and the current environment,
and it returns the updated environment after executing the chart exactly once:

execute_active_chart ::= [ in.chart, environment ⇒ environment].

Upon the execution of an active chart, if the chart has no active sub-states, return the
intact environment:

execute_active_chart(C,Env) ⇒ Env :-

anyActiveSubstate(C,Env) ⇒ FALSE.

If a sub-state of an OR chart is active, execute that sub-state:

execute_active_chart(C,Env) ⇒ Env’ :-

in.chart_type(C) ⇒ OR,

in.chart_substate(C, Child),

is_active(Env,Child) ⇒ TRUE,

execute_state(Child,Env) ⇒ Env’.

If any sub-state of an AND chart is active, execute all its sub-states:

execute_active_chart(C,Env) ⇒ Env’ :-

in.chart_type(C) ⇒ AND, anyActiveSubstate(C,Env) ⇒ TRUE,

execute_each_active_substate(C,Env) ⇒ Env’.

The execute each active substate rule describes the execution of all the substates
of a state:

execute_each_active_substate ::= [in.chart+in.state, environment

⇒ environment].

// Retrieve the list of substates, and call execute each active state.
execute_each_active_substate(C,Env) ⇒ Env’ :-

in.ordered_list_of_substates(C) ⇒ List,

129



execute_each_active_state(List,Env) ⇒ Env’.

The execute each active state rule describes the execution of all the states in a list:

execute_each_active_state ::= [in.state_list, environment ⇒
environment].

// If the list is empty, return the intact environment.
execute_each_active_state(null,Env) ⇒ Env.

// Otherwise, execute first state in list, and repeat for the rest of the list.
execute_each_active_state(in.state_cons(S,Rest),Env) ⇒ Env’’ :-

execute_state(S,Env) ⇒ Env’,

execute_each_active_state(Rest,Env’) ⇒ Env’’.

The enter each state rule enters each state in a list of states:

enter_each_state ::= [in.state_list, environment ⇒ environment].

// If the list is empty, return the intact environment.
enter_each_state(null,Env) ⇒ Env.

// Otherwise, enter first state in list, and repeat for the rest of the list.
enter_each_state(in.state_cons(Child,Rest),Env) ⇒ Env’’ :-

enter_state(Child,null,Env) ⇒ Env’,

enter_each_state(Rest,Env’) ⇒ Env’’.

This concludes the execution of a chart.

Transition rules

The transition rules describe the execution of a flow chart in Stateflow. A transi-
tion segment interconnects two locations, and a flow chart is a directed graph formed
by a set of transition segments. Stateflow distinguishes three types of flow charts:

• default flow charts that start with a default transition segment of the state;

• outer flow charts that leave the state;

• inner flow charts that stay within the state.

A transition path is a sequence of transition segments that connects two states.
A valid transition path is composed of transition segments that are all enabled: the
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current event triggers them, and their guards evaluate to true. A flow chart is executed
by probing the transitions from the current state one-by-one (and backtracking if
necessary), until either a valid transition path is found, or the list of transitions is
exhausted.

We describe the semantics of a transition path by maintaining a list of constituent
transition segments. If the transition path is invalid, the list is thrown away. Other-
wise, at the execution of the valid transition path, they describe the states that must
be entered and exited, as well as the actions to be taken.

The following rules describe the execution of default, outer and inner transitions
by retrieving the corresponding list of transition segments and handing it over to the
execute transitions rule:

execute_default_transitions(C,Env,TL) ⇒ (Env’,Res) :-

in.list_of_default_transitions(C) ⇒ List,

execute_transitions(List,Env,TL) ⇒ (Env’,Res).

execute_outer_transitions(C,Env,TL) ⇒ (Env’,Res) :-

in.list_of_outer_transitions(C) ⇒ List,

execute_transitions(List,Env,TL) ⇒ (Env’,Res).

execute_inner_transitions(C,Env,TL) ⇒ (Env’,Res) :-

in.list_of_inner_transitions(C) ⇒ List,

execute_transitions(List,Env,TL) ⇒ (Env’,Res).

The execute transitions rule defines the execution of a flow chart given its initial
transition segments. The arguments to the execute transitions rule are

• a list of transitions to try,

• the current environment,

• the list of transitions that have been stored so far in the transition path.

The rule returns the updated environment after executing the flow chart, and a status
flag indicating whether or not the transition successfully reached a terminal state:

execute_transitions ::= [in.transition_list, environment,

in.transition_list ⇒ environment, result].
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If there are no more transitions to try, return failed:

execute_transitions(null,Env,TL) ⇒ (Env,FAILED).

If a successful transition path was found, return the modified environment:

execute_transitions(in.transition_cons(T,R),Env,TL)⇒(Env’,Res) :-

execute_transition(T,Env,in.transition_cons(T,TL))⇒(Env’,Res),
Res != FAILED.

If the current transition failed, try the rest of the transitions:

execute_transitions(in.transition_cons(T,R),Env,TL)⇒(E’’,Res’) :-

execute_transition(T,Env,in.transition_cons(T,TL))⇒(E’,FAILED),
execute_transitions(R,E’,TL) ⇒ (E’’,Res’).

A transition segment can fire if the current event is its triggering event and its
guard evaluates to true. On firing, the condition action is immediately executed, and
the transition action is stored in a list of actions, which are executed if a successful
transition path is found. The context for the condition action is the parent of the
transition segment. Normally, after the condition action, the destination of the tran-
sition is executed. Otherwise, if the condition action inactivates the source state of
the transition path under examination, the destination is not executed, and the en-
vironment produced by the condition action along with the status flag ‘FAILED‘ is
returned. If a node cannot fire, it returns the intact environment along with the status
flag ‘FAILED‘.

The arguments to the transition operation are

• the transition segment,

• the current environment,

• the list of transitions that have been stored so far in the transition path.

The result of a transition segment is a pair that describes the updated environment and
a status flag indicating whether or not the transition successfully reached a terminal
state:

132



execute_transition ::= [ in.transition, environment,

in.transition_list ⇒ environment, result].

Executing an enabled transition segment:

execute_transition(T,Q,TL) ⇒ (Q’’,Result) :-

is_any_event_triggered(Q,T.ev) ⇒ TRUE, // a transition event is triggered
evaluate_guard(T,Q) ⇒ TRUE, // guard evaluates to true
condition_actions(T,Q) ⇒ Q’, // executing condition action
destination(T.dst,Q’,TL) ⇒ (Q’’, Result). // execute the destination

If either the transition event is not triggered, or the guard evaluates to false, the tran-
sition is disabled:

execute_transition(T,Q,TL) ⇒ (Q,FAILED) :-

is_any_event_triggered(Q,T.ev) ⇒ FALSE.

execute_transition(T,Q,TL) ⇒ (Q,FAILED) :-

is_any_event_triggered(Q,T.ev) ⇒ TRUE,

evaluate_guard(T,Q) ⇒ FALSE.

This concludes the execution of a transition segment, a transition path and a flow
chart.

7.3.7 Testing

In order to test the specifications, we developed a testing harness in Matlab. The
workflow of the testing is shown in Fig. 11. The testing environment consists of a
set of unit test models and scripts for translating the tests to ForSpec and executing
them. We used the Matlab Stateflow user guide to extract test cases that provide a
good coverage of the language: most of them exercise corner cases of the language.
We also designed several other test cases, such as the example shown at the beginning
of this section. Overall, we developed 20 test cases, all of which were passed by the
specifications.

In order to be able to compare the output produced by Matlab versus the output
produced by our semantic specifications, we wrote a parser using the Matlab script
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Figure 11: Testing harness for the specifications.

language that can translate Matlab Stateflow models to ForSpec models. After per-
forming the translation, we can execute the tests by ForSpec and compare it to the
execution by Matlab Stateflow.

Such a testing harness greatly helped the development of the semantic specifica-
tions: after changing the specifications we could immediately run the tests to see if
the modification has broken any of them.

7.3.8 Conclusion

In this section, we demonstrated the formal semantic specification of the Matlab
Stateflow language. The complete specification with the English language documen-
tation is approximately 2000 lines long. This includes both the diagram language
and the action language, their abstract syntaxes, and their structural and behavioral
semantic specifications.
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The sections discussing the structural and operational semantics were directly
generated from the specifications, which shows the advantage of writing specifica-
tions in a literate programming style: we can easily keep the documentation up-
to-date. In particular, the same specification is used by the testing harness and the
generated documentation.
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CHAPTER 8

CONCLUSION

In this thesis, we discussed the formal semantic specification of CPS DSMLs.
The motivation for developing formal semantics for languages is to provide unam-
biguous documentation, and to facilitate the interoperability of the tools of the lan-
guages.

On one hand, for safety-critical CPS, we need formal guarantees that the devel-
oped systems are safe, therefore we need tool support for verifying properties of the
CPS models. On the other hand, we wish to leverage the same models for auto-
matically generating controller code, performing design-space exploration and other
functions. By developing formal semantic specifications for the languages used by
the models, we can develop tools that are based on common interpretations - the
unambiguous semantics of the languages. It remains a future work to use these spec-
ifications for the above-mentioned functions.

Our contribution is the following:

• ForSpec, a specification language with support for operational, denotational
and translational style specifications.

• A set of reusable semantic units for CPS languages that facilitate the deno-
tational semantic specification of acausal physical modeling languages, con-
troller design languages and hybrid languages.

• Identification of different specification styles in ForSpec and FORMULA, such
as denotational, operational and translational styles.

• Three case studies discussing the specification of a physical modeling lan-
guage, a CPS integration language and a controller design language.
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• Tool support for executing the ForSpec specifications, translating them to FOR-
MULA specifications, and for generating documentation from the specifica-
tions.

There are several directions for future work. The most plausible one is the us-
age of the FORMULA verification tool to perform bounded model checking for ac-
tual controller models. Based on our previous experiences, the Satisfiability Modulo
Theories (SMT) encoding of the problem greatly influences the scalability of the ap-
proach. We expect that by further advancement of the FORMULA tool, we may
reach a point, where the tool can be efficiently used for performing the verification
of the models based on their formal semantic specifications.

Another important future work is the semantic specification of concurrent pro-
cesses. Since FORMULA performs forward-inference until reaching a fix-point, the
execution of a concurrent specification leads to the simultaneous enumeration of all
the possible trajectories. It needs further work to evaluate the scalability of this ap-
proach.

In conclusion, we provided a discussion of the formal semantic specification of
CPS modeling languages that serves as a mathematically rigorous foundation for
these languages and their tools. Providing this foundation is an important step to-
wards the design and implementation of provably safe Cyber-Physical Systems.
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