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CHAPTER I 

 

INTRODUCTION 

 

New reform goals and standards for students’ mathematical learning have been put in 

place over the past two decades (e.g., see National Council of Teachers of Mathematics 

[NCTM], 1989, 2000; National Governors Association for Best Practices & Council of Chief 

State School Officers, 2010). These goals for students’ mathematical learning imply new 

expectations for mathematics teachers’ work in their classrooms. The Curriculum and 

Evaluation Standards and Principles and Standards for School Mathematics documents 

published by the National Council of Teachers of Mathematics (1989, 2000) and the more recent 

Common Core State Standards (National Governors Association for Best Practices & Council of 

Chief State School National Governors Association for Best Practices & Council of Chief State 

School Officers, 2010) reflect a consensus within the mathematics education research and policy 

communities for comprehensive reforms in how mathematics is taught. A fundamental aspect of 

high quality, inquiry-oriented mathematics instruction proposed in these documents is the use of 

challenging, or cognitively demanding, mathematical tasks. The level of challenge of the tasks 

that students solve and discuss impacts students’ mathematical learning opportunities (Doyle, 

1988; Hiebert & Grouws, 2007; Stein, Remillard, & Smith, 2007). In particular, there is evidence 

that challenging mathematical tasks support students in developing conceptual understanding 

(Stein & Lane, 1996).  

The cognitive demand of a task refers to “the cognitive processes students are required to 

use in accomplishing it” (Doyle, 1988, p. 170). Stein, Grover, and Henningsen (1996) classified 
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mathematics tasks into those with low and high cognitive demand. Mathematics tasks with low 

cognitive demand require students to memorize or reproduce facts, or perform relatively routine 

procedures without making connections to the underlying mathematical ideas. Tasks with high 

cognitive demand (or CDTs) require students to make connections to the underlying 

mathematical ideas. In addition, students are asked to engage in the disciplinary activities of 

explanation, justification, and generalization, or to use procedures to solve tasks that are open 

with regard to which procedures to use.  I define the enactment of CDTs as involving two 

aspects: 1) selecting such tasks; and 2) maintaining the cognitive demand of those tasks during 

classroom implementation. 

Teachers in the U.S. generally do not use cognitively demanding mathematics tasks in 

their classrooms, and when they do, they often implement them in ways that make them less 

challenging for students (Hiebert et al., 2003; Hiebert et al., 2005; Stein et al., 1996). Further, 

there is considerable evidence that it is challenging for teachers to develop the types of 

instructional practices described in the Standards documents, including enacting CDTs (e.g., 

Ball & Cohen, 1999; Elmore, Peterson, & McCarthey, 1996; Lambdin & Preston, 1995; C. L. 

Thompson & Zeuli, 1999), and even when they believe they are teaching in a manner consistent 

with the reforms, their classroom practices frequently diverge from the reforms (e.g., D. K. 

Cohen, 1990). Therefore, in order to determine how to support teachers to enact CDTs, the field 

needs to know more about which teacher and contextual factors might influence the enactment 

of CDTs. Further, we need to understand how teacher and contextual factors influence teachers’ 

development of high quality instructional practice so that we can design effective and efficient 

ways to support teachers’ development of such practice at scale.  
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The distinction between teacher and contextual factors requires clarification. Teacher 

factors include straightforward characteristics such as years of experience teaching as well as 

more latent and difficult-to-measure characteristics such as teacher knowledge and beliefs. A 

factor’s inclusion in this category does not imply anything about whether the factor is static or 

changeable or whether it is exclusively a teacher factor or is influenced by the context. 

Contextual factors refer to aspects of the school settings in which teachers work that can 

potentially influence teachers’ knowledge and practice. For example, when considering the 

practice of teaching, various student characteristics (e.g., students’ current mathematical 

knowledge) are contextual factors. 

Five recent studies have investigated teacher and contextual factors that influence the 

enactment of CDTs (Boston & Smith, 2009; Charalambous, 2010; Choppin, 2011; Son, 2008; 

Stein & Kaufman, 2010). Across these studies, there is evidence that a number of factors might 

influence the enactment of CDTs including: knowledge of students’ thinking, conceptions of 

knowing and doing mathematics, teaching goals, alignment between teaching goals and 

textbooks, teacher perceptions about student achievement, test accountability, and teacher 

professional development. Further, there are mixed findings regarding the influence of 

mathematical knowledge for teaching and the type of curriculum (i.e., reform-oriented or 

traditional). These five studies contribute to our understanding of the enactment of CDTs, but 

there is still much to be learned about both critical factors that influence the enactment of CDTs 

and supporting teachers in enacting CDTs effectively.  These three dissertation papers—one 

research synthesis and two empirical papers—attempt to build upon these five studies and other 

relevant literature to identify promising directions for future research and begin to address some 

of those questions.    
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In paper 1, I set an agenda for investigating the enactment of CDTs. After reviewing the 

five existing studies of different factors related to the enactment of CDTs, I cast a wide net to 

determine which other teacher and contextual factors might be worthy of investigation. In doing 

so, I identified 13 potentially relevant factors that were empirically and theoretically justified in 

their potential to be related to the process of enacting CDTs. This list sets an agenda for future 

studies of the enactment of CDTs. In addition to identifying these factors, another important 

aspect of the proposed research agenda concerns research methods. I argue that future large-scale 

studies of the enactment of CDTs should account for contingencies in expected relationships. For 

example, although we might expect that teachers’ knowledge is related to their instructional 

practice, there is evidence that this relationship might be contingent upon their beliefs. Without 

accounting for that possible contingency, the relationship between knowledge and practice might 

not be statistically apparent across a large sample of teachers. In sum, the goal of paper 1 is to set 

the agenda for future research on the enactment of CDTs by suggesting both factors to 

investigate and an approach for carrying out those investigations in large-scale studies. 

The empirical studies reported in papers 2 and 3 investigate some of those teacher and 

contextual factors, and the associated contingencies. Paper 2 investigates how mathematics 

teachers’ mathematical knowledge for teaching and beliefs about teaching and learning 

mathematics are related to the enactment of CDTs. In this analysis, I examine task selection and 

maintenance of the cognitive demand separately to investigate whether knowledge and beliefs 

are related to these two aspects of the enactment of CDTs in different ways. Also, I account for 

potential contingences in how mathematical knowledge for teaching and beliefs about teaching 

and learning mathematics are related to the enactment of CDTs to allow for possible 

interrelationships between teachers’ knowledge and beliefs. An understanding of how teachers’ 
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mathematical knowledge for teaching and beliefs about teaching and learning mathematics are 

related to their enactment of CDTs, will allow us to design better supports for teachers’ 

development in enacting CDTs. 

Current research on teacher learning and professional development suggests that ongoing 

interactions with relatively accomplished colleagues involving activities that are close to practice 

might support teachers’ development. On the surface, work with a coach, collaborative teacher 

meetings, advice-seeking interactions, and professional development meet those criteria. Paper 3 

investigates changes in teachers’ enactment of CDTs over time and whether teachers’ 

interactions with colleagues are related to change in their enactment of CDTs. In this paper, I 

investigate the influence of teachers’ interactions in different settings (i.e., work with a coach, 

collaborative teacher meetings, advice-seeking interactions, and formal professional 

development) and the expertise available within those interactions. By examining interactions 

that have the potential to support teachers in enacting CDTs more effectively, I hope to 

contribute to the field’s understanding of how to design better supports for teachers.  

In sum, I seek to understand how to support and improve mathematics teachers’ 

enactment of CDTs at scale. Together, these three interrelated studies set a direction for ongoing 

research in service of this goal, and begin to address some the key unresolved questions. In 

particular, the two empirical studies help to resolve some of the previously contradictory or weak 

findings within the recent studies of factors related to the enactment of CDTs and contribute 

ideas about how to support teachers in enacting CDTs.  
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CHAPTER II 
 

 
PROMISING DIRECTIONS FOR FUTURE RESEARCH ON THE ENACTMENT OF 

COGNITIVELY DEMANDING MATHEMATICS TASKS 
 
 

Introduction 

The mathematics education research community has reached a general consensus on 

several key aspects of high quality mathematics instruction (National Council of Teachers of 

Mathematics [NCTM], 1989, 2000). One key aspect is the use of cognitively demanding, or 

challenging, mathematics tasks. The use of cognitively demanding tasks (CDTs) in the classroom 

has been linked to greater conceptual gains for students (Stein & Lane, 1996).  

Developing high quality instructional practices is challenging for teachers (Stein et al., 

1996). It involves changes in teacher knowledge and beliefs, as well as the development of new 

routines of practice (Ball & Cohen, 1999; Stein, Smith, & Silver, 1999; C. L. Thompson & Zeuli, 

1999). Hence, teachers need considerable support to develop this type of practice. In order to 

determine what productive supports might entail, the field needs to know more about which 

factors might influence teachers’ selection and implementation of CDTs. Knowledge of how 

various factors influence teachers’ development of high quality instructional practice in general 

can inform the design of supports for teachers at scale. Well-designed large-scale studies can 

contribute to the development of this knowledge because they allow for generalization to larger 

populations. In particular, well-designed large-scale studies complement the analysis about 

processes produced by well-designed small-scale studies by examining phenomena in the 

aggregate and by providing information about general trends and critical patterns of variation. 

For example, a well-designed large-scale study might examine the effect of a policy on teachers’ 

development, and identify meaningful variation in the effects (e.g., variation in policy 
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implementation by school leadership or variation due to compatibility with other existing 

supports) with the aim of making policy recommendations to other school districts. 

 I define the enactment of CDTs as involving two aspects: 1) the selection of such tasks; 

and 2) the maintenance of the cognitive demand of those tasks during classroom implementation. 

Although it is very useful to understand what takes place in classrooms, it is also important to 

consider the influence of teacher and contextual factors on the enactment of CDTs. The 

distinction between these two types of factors requires clarification. Teacher factors might 

include both straightforward characteristics such as years of experience teaching and gender, and 

more latent and difficult-to-measure characteristics such as teacher knowledge and beliefs. A 

factor’s inclusion in this category does not imply anything about whether the factor is static or 

changeable, or whether it is exclusively a teacher factor or is influenced by the context. 

Contextual factors refer to aspects of the school situations in which teachers work that can 

potentially influence teachers’ knowledge and practice. For example, when considering the 

practice of teaching, various student characteristics (e.g., students’ current mathematical 

knowledge) are contextual factors. 

In this paper, I attempt to summarize and organize what is currently known in this area in 

order to understand the following: 1) What are potentially important teacher and contextual 

factors to study? 2) What is an effective approach for studying those factors on a large scale? 

The first major section of this paper is a review of the existing literature on CDTs. I begin 

by reviewing studies that describe processes associated with the selection of CDTs and the 

maintenance of the cognitive demand of those tasks. Second, I define teacher and contextual 

factors and describe the implications for the study of the enactment of CDTs. Finally, I review 
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the five studies that have explored how teacher and contextual factors are related to the 

enactment of CDTs. The results from these studies are mixed and inconclusive, and there is 

considerable variation in how they measure the enactment of CDTs. Hence, the findings of these 

five studies are insufficient to serve as a coherent basis for strategies or policies that would 

support teachers’ enactment of CDTs. I therefore turn to the broader educational research 

literature to identify factors that might also influence the enactment of CDTs and are worthy of 

further investigation. 

While few studies focused explicitly on teachers’ enactment of cognitively demanding 

mathematical tasks, a significant number have investigated the relationships among teacher 

factors, contextual factors, and teachers’ instructional practice more generally. In addition, many 

of those studies focused on aspects of teachers’ instructional practice that are closely related to 

the enactment of CDTs. To identify all potentially relevant studies, I systematically searched 

databases and mined the reference lists of seminal literature reviews. I then limited the final set 

of studies to those that: (a) produced empirical results, (b) focused on aspects of mathematics 

teachers’ instructional practice that are broadly related to the enactment of CDTs, (c) utilized 

classroom observation or student surveys to characterize instruction, and (d) went beyond 

descriptive characterizations of instructional practice to examine factors influencing practice. 

Applying these criteria resulted in a set of 63 studies that yielded 33 different teacher or 

contextual factors identified as potentially related to the enactment of CDTs. In the second 

section of the paper, I report the results of this review. 

These factors, of course, vary in how they might be related to the enactment of CDTs. In 

the third section of this paper, I attempt to synthesize and reduce the set of potential factors to a 

more manageable and relevant subset: factors were excluded or adjusted if they could not be 
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linked to specific processes associated with enactment of CDTs or if they were closely related to 

another key factor. I maintained the two broad categories of teacher factors and contextual 

factors. Six major teacher factors were identified: (a) mathematical knowledge for teaching, (b) 

knowledge of students’ mathematical thinking, (c) beliefs about mathematics, (d) beliefs about 

teaching and learning mathematics, (e) beliefs about students’ capabilities, and (f) classroom 

management skills. Seven major contextual factors were identified: (a) class time, (b) class size, 

(c) student characteristics (e.g., background knowledge, student expectations), (d) departmental 

culture, (e) school leaders’ expectations for instructional improvement, (f) nature of the 

curriculum (e.g., whether it is inquiry-oriented, there are supports for teachers in teacher’s 

guide), and (g) learning opportunities through interactions (e.g., work with a math coach or 

formal professional development). For each of factor, I describe the links to processes of 

enacting CDTs. I contend that we need to investigate how these 13 factors influence teachers’ 

practice if we are to understand how we can successfully support teachers’ enactment of CDTs in 

their classrooms. 

While conducting the broad review, I tried to identify effective approaches for studying 

how factors are related to the enactment of CDTs on a large scale. In doing so it became clear 

that most of the large-scale studies assume that the factors are related to teacher practice in 

straightforward ways, while the small-scale studies are much more likely to describe 

contingencies in the way that particular factors influence practice. For example, large-scale 

studies have investigated relationships between teachers’ knowledge and their practice while 

small-scale studies frequently describe how the expected relationship between teachers’ 

knowledge and their practice might not hold under particular circumstances. I argue that it is 

both necessary and possible to consider contingencies in large-scale studies. We need to better 
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understand the nuanced relationships in how specific factors influence the enactment of CDTs on 

a large scale by considering contingencies. In the fourth section, I illustrate a methodological 

approach for addressing contingencies by focusing on two categories of teacher factors: teacher 

beliefs and teacher knowledge. I describe some of the contingencies that should be considered in 

future large-scale studies of the relationship between teachers’ knowledge, beliefs, and the 

enactment of CDTs. 

Cognitive Demand of Mathematical Tasks 

Over the last 25 years, mathematics educators and researchers have proposed new 

approaches for teaching mathematics that change the nature of activity in the classroom. The 

Curriculum and Evaluation Standards and Principles and Standards for School Mathematics 

documents published by the National Council of Teachers of Mathematics (1989, 2000) and the 

more recent Common Core State Standards (National Governors Association for Best Practices 

& Council of Chief State School National Governors Association for Best Practices & Council of 

Chief State School Officers, 2010) reflect a consensus within the mathematics education research 

and policy communities for comprehensive reforms in how mathematics is taught. Two 

fundamental aspects of high quality mathematics instruction outlined in these documents are the 

use of genuine, challenging tasks and students’ participation in classroom discourse that focuses 

on key mathematical ideas that emerge from individual and collective efforts to solve such 

problems. While these two aspects center on students’ activity in the classroom, they have clear 

implications for the role of the teacher (Hiebert et al., 1997). For example, the teacher is 

expected to choose and set up the challenging tasks for students and to orchestrate productive 

discourse within the classroom (Stein, Engle, Smith, & Hughes, 2008). Although classroom 

discourse both while solving the task and sharing solution methods provides critical learning 
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opportunities for students, the level of challenge of the tasks selected is the foundation for those 

learning opportunities. For example, a task that requires students to reproduce memorized facts is 

unlikely to provide conceptual learning opportunities for students, no matter how well-

orchestrated the classroom discourse. Hence, the cognitive demand, or level of challenge, of 

tasks is a critical aspect of high-quality mathematics instruction that requires further 

investigation. In the following paragraphs, I define cognitive demand, describe processes of 

enacting CDTs in the classroom, and review the five studies that have investigated how teacher 

and contextual factors are related to the enactment of CDTs. 

The cognitive demand of a task refers to “the cognitive processes students are required to 

use in accomplishing it” (Doyle, 1988, p. 170). When examining the cognitive demand of 

mathematical tasks, Doyle (1988) chose familiar and novel as descriptors of two categories of 

mathematical tasks. Familiar tasks ask students to engage in routinized activities, whereas novel 

tasks are flexible with regard to how to carry out the task. Stein, Grover, and Henningsen (1996) 

built on Doyle’s work by more systematically delineating the cognitive demand of different 

types of mathematical tasks. They classified tasks into those with low and high cognitive demand 

(with parallels to familiar and novel tasks, respectively). Tasks with low cognitive demand 

require students to memorize or reproduce facts, or perform relatively routine procedures without 

making connections to the underlying mathematical ideas. Tasks with high cognitive demand (or 

CDTs) require students to make connections to the underlying mathematical ideas. In addition, 

students are asked to engage in one or more of the disciplinary activities of explanation, 

justification, and generalization, or to use procedures to solve tasks that are open with regard to 

which procedures to use. Although implied in the definition, it is important to emphasize that the 
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distinctions between familiar and novel tasks, and between high and low cognitive demand tasks, 

are relative to students’ current understanding and, thus, are situation-dependent. 

There is evidence that CDTs can provide critical learning opportunities for all students. 

Stein and Lane (1996) found that the use of tasks with high cognitive demand was related to 

greater student gains on an assessment requiring high levels of mathematical thinking and 

reasoning. In particular, the greatest gains occurred when teachers assigned tasks that were 

initially of high cognitive demand, and teachers and students maintained the cognitive demand 

throughout the lesson. Further, there is evidence that high cognitive demand thinking affords 

valuable learning opportunities for all students, not just previously high-achieving students 

(Zohar & Dori, 2003). The enactment of high cognitive demand tasks in the classroom therefore 

appears to be important in supporting all students’ learning.  

Unfortunately, it is clear that CDTs are not often enacted in US classrooms. In attempting 

to understand more about changes in cognitive demand during a lesson, Stein, Grover, and 

Henningsen (1996) documented the initial cognitive demand of mathematical tasks as written or 

verbally posed to students, and examined whether teachers and students maintained, increased, 

or decreased the demand in different phases of a math lesson. They found that in classrooms 

where tasks with the potential for high levels of cognitive demand were used, teachers and/or 

students often decreased the cognitive demand during implementation of the tasks. The results 

from the 1999 Trends in International Math and Science Study (TIMSS) video study are 

consistent with those of Stein and colleagues in that they suggest that the mathematical activity 

in US middle school classrooms tends to be procedural in nature, and when teachers do select 

high-level tasks they often implement them in low-level ways (Hiebert et al., 2003; Hiebert et al., 

2005). 
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The Math Task Framework proposed by Stein, Grover, and Henningsen (1996) is useful 

when analyzing how teachers enact tasks. The Framework divides a lesson up into phases and 

transitions between phases of the lesson (see Figure 1). The squares denote different phases of 

the lesson and flow from left to right. In the subsequent paragraphs, I describe how my definition 

of the enactment of CDTs maps onto the Math Task Framework. In this analysis, I focus on the 

cognitive demand of the written task as selected from the curricular materials (represented in the 

leftmost square) and then the changes in the cognitive demand from how it is written to the 

implementation by the teacher and students (denoted in the second and third squares). Both of 

these aspects of cognitive demand influence whether students engage in cognitively demanding 

mathematical activity in the classroom.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Modified “Math Tasks Framework” (Stein et al., 1996, p.459) 

 

First, teachers select a task from the curriculum materials (in Figure 1, the leftmost 

square). In selecting a task to pose to students, teachers might choose to use a task directly from 

the curriculum as suggested by the district pacing guide, use other tasks from the curriculum, 
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adjust tasks from the curriculum, use tasks from supplementary materials, or create their own 

tasks. In doing any one of these options, the teacher may have to balance a range of issues 

including: teaching goals, class time, knowledge of the students, what he or she feels capable of, 

and others’ expectations. For example, a teacher who only has 45 minutes for each class period 

might decide that she does not have enough class time to engage students in a high cognitive 

demand task. It is unlikely that teachers consider each of these concerns individually, but instead 

they weigh them against each other when deciding which to prioritize and how they fit with their 

goals for the class period (Remillard, 1999). The cognitive demand of the selected task sets the 

stage for the cognitive demand over the course of the lesson.  

Once a CDT has been selected, maintenance of the cognitive demand concerns both the 

task set-up and implementation (in Figure 1, the second and third squares). In the first of those 

phases, the task is set up for the students in the classroom (in Figure 1, the second square from 

the left). In other words, the teacher explains what students are expected to do to complete the 

task. During this phase a teacher can alter the cognitive demand of the task by clarifying or 

changing the expectations set out in the written task. For example, a teacher might tell students to 

complete only part of the written task or might go through a series of examples that change the 

nature of the task in which students will engage.  

The next phase (in Figure 1, the third square from the left) is the implementation of the 

task by the students in the classroom. This phase includes all of the remaining class time spent on 

the task. For example, it might include both student work time and a concluding whole-class 

discussion. The cognitive demand of the task can also change within this phase of instruction, 

depending on teacher and student actions as they carry out the task. There are several reasons 

why cognitive demand might decrease: 1) the teachers’ expectations for students’ work might be 
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unclear, 2) the classroom environment might not be conducive to engaging in challenging 

mathematical activity (e.g., poor classroom management or unproductive classroom norms), 3) 

the task might not be appropriate for students given their current mathematical knowledge, or 4) 

the appropriate level of scaffolding or teacher support for students to productively engage in 

high-level ways might not occur (Henningsen & Stein, 1997; Stein et al., 1996). Given the range 

of the reasons why cognitive demand might decrease, it is clear that maintaining the cognitive 

demand of CDTs can be quite difficult. 

Teacher and Contextual Factors 

To this point the description I have given of the enacting CDTs highlights classroom-

specific reasons why the level of challenge in the classroom might be reduced. This, however, 

gives little attention to teacher factors and the contexts in which teachers work. Possible teacher 

factors include both straightforward characteristics like years of experience teaching and gender, 

and more latent and difficult to measure characteristics like teacher knowledge and beliefs. A 

factor’s inclusion in this category does not imply anything about whether the factor is static or 

changeable, or whether it is exclusively a teacher factor or is influenced by the context. For 

example, mathematical knowledge for teaching is a teacher factor but is specific to the context of 

teaching mathematics and can develop through practice (Hill, Sleep, Lewis, & Ball, 2007; 

Sherin, 2002).  

From the perspective of supporting teachers’ instructional practice, the notion of 

contextual factors refers to aspects of the school and district settings in which teachers work that 

are relevant to teachers’ practice. For example, when considering the practice of teaching, 

various student characteristics (e.g., the current mathematical knowledge of students) are 



16 
 

contextual factors. In addition to teacher and classroom factors, school and district contextual 

factors are likely to influence teacher’s practice (Cobb & Smith, 2008). For example, school 

factors might include the opportunities for teacher collaboration, the school culture, and the 

expectations of the principal. District factors might include the curriculum and professional 

development opportunities for teachers. When considering a particular teacher’s practice, I 

define curriculum to be the adopted curriculum and/or supplementary materials that a teacher 

uses in the classroom. Contextual factors can influence a teacher’s current practice and/or 

influence whether teachers change their practice. For example, the adopted curriculum might 

influence teacher’s current practice, but it might also include supports for teachers in developing 

their practice. I include both types of influence when considering factors influencing practice. In 

sum, when accounting for teachers’ instructional practices, it is also important to look beyond 

teacher factors to the contextual factors within the school and district to understand their 

practices (Cobb, McClain, Lamberg, & Dean, 2003; Coburn, 2005).  

The school and district contexts in which teachers work are themselves influenced by the 

broader state and national policy environment. However, the impact of the state and national 

policy environment on teachers’ practice is typically mediated by decisions made by district and 

school leaders (Coburn, 2001, 2005; Coburn & Russell, 2008; James P. Spillane et al., 2002). For 

example, the federal No Child Left Behind Act (NCLB) requires states to assess whether schools 

are making adequate yearly progress on standardized tests, and this can result in different 

responses by district or school leaders’, which are then likely to influence teachers’ practice. 

Some district leaders might respond to the NCLB requirements by pressing teachers to develop 

high quality instructional practices whereas others might press teachers to focus on test 

preparation. Therefore, the broader state and national policy environment is not likely to have a 
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direct impact on teachers’ practice, but instead affects teachers’ practice indirectly through 

aspects of the school and district contexts. In the following literature reviews, I limit factors to 

those that are likely to directly influence teachers’ practice. 

Review of Literature of Factors influencing the Enactment of CDTs 

In recent years, five studies have investigated particular teacher and contextual factors as 

they relate to teachers’ enactment of CDTs. Son (2008) examined elementary teachers’ 

mathematics textbook use with an emphasis on teachers’ patterns of cognitive demand using 

survey data from 169 teachers, with classroom observational data and artifacts from eight of 

those teachers. In the observational analysis Son focused on three different patterns of cognitive 

demand between the problems used from the textbook and the types of questions asked of the 

students over the course of the lesson: high-level problems to high-level questions, high-level 

problems to low-level questions, and low-level problems to low-level questions. This approach is 

similar to examining the changes in cognitive demand from the task as selected to the task as 

implemented. Several key factors related to the cognitive demand patterns emerged including: 

teachers’ conceptions of knowing and doing mathematics, teachers’ goals for student learning, 

alignment between the teachers’ goals and textbooks, the nature of the textbook, teachers’ use of 

the textbook, teachers’ perceptions about student achievement, time for mathematics instruction, 

and test accountability. While these factors were identified through observation and case study 

analysis, the author did not provide explanations of the process by which they were related to the 

cognitive demand patterns. Therefore, it is hard to discern which of these factors are most critical 

or most likely to influence teachers’ enactment of CDTs in the future. An additional factor that 

emerged from the survey was the teachers’ perceived mathematical knowledge for teaching. 

Teachers were asked to rate their content, pedagogical, and curriculum knowledge (e.g., 



18 
 

Mathematics content knowledge on whole numbers) from very poor to excellent. However, 

teacher self-reports of this type are difficult to interpret with regard to what is actually being 

assessed. In fact, Son’s study corroborates this difficulty: Son found that two of the six case 

study teachers who reported that they used high-level problems and then asked high-level 

questions, did use high-level problems but tended to ask low-level questions in their classrooms. 

In other words, the teachers’ self-reports of their classroom practice were not consistent with 

their actual practice.  

In another study that considered how teacher knowledge relates to maintenance of the 

cognitive demand of mathematical tasks, Charalambous (2010) examined the relationship 

between teachers’ mathematical knowledge for teaching and their “task unfolding” (i.e., changes 

in the cognitive demand over the course of a lesson) for two teachers who differed dramatically 

in their mathematical knowledge for teaching. He found that mathematical knowledge for 

teaching was related to maintenance of the cognitive demand of CDTs and as a result of his case 

analyses, he proposed several hypotheses about how high levels of mathematical knowledge for 

teaching are integral to the work of teaching. For example, his first hypothesis was that “strong 

mathematical knowledge for teaching supports teachers in using representations to attach 

meaning to mathematical procedures rather than to simply show answers” (Charalambous, 2010, 

p. 273). His hypotheses suggest mechanisms by which mathematical knowledge for teaching is 

integral to teacher practice. These hypothesized mechanisms make a fairly convincing argument 

for how mathematical knowledge for teaching is integral to the enactment of CDTs. As a part of 

his analysis of the cases, Charalambous also suggested other factors that may influence the 

relationship between mathematical knowledge for teaching and task unfolding, but his focus was 
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how mathematical knowledge for teaching is integral to maintenance of the cognitive demand, 

rather than examining multiple factors simultaneously. 

Stein and Kaufman (2010) examined how several different factors are related to inquiry-

oriented curriculum implementation. In particular, they focused on curricular materials and 

teacher capacity, conceptualized as teacher education, experience, professional development, and 

mathematical knowledge for teaching, as they related to inquiry-oriented curriculum 

implementation (with one of three foci being maintaining high levels of cognitive demand) for 

48 elementary teachers in two large, urban school districts. To investigate the enactment of 

CDTs, they created a total cognitive demand score that was the sum of the cognitive demand of 

the task as selected and as implemented: if high-level tasks were selected and the cognitive 

demand was maintained, then the total cognitive demand score would be at its maximum value. 

They found that the way teachers used curriculum materials, hours of professional development, 

and perceptions of curriculum usefulness each were positively related to the total cognitive 

demand in the classroom for the 24 observed elementary teachers in one large, urban district. 

However, those relationships were not significant for the 24 teachers in the other large, urban 

school district. In addition, although they expected that teacher knowledge, education, and 

experience would be related to curriculum implementation, they did not find any significant 

relationships between those teacher factors and instructional quality. In fact, they found that 

mathematical knowledge for teaching was not significantly related to the cognitive demand of 

the tasks in the classroom, directly contradicting Charalambous’ findings. This suggests that the 

relationship between mathematical knowledge for teaching and the cognitive demand of 

mathematical tasks might not be straightforward, and should be explored further. 
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Choppin (2011) investigated how the things that teachers noticed when they reviewed 

video-recordings of their own teaching were related to their enactment of CDTs. In particular, he 

studied five middle school teachers who had at least three years of experience in using the same 

inquiry-oriented curriculum and found that teachers who attended to student thinking when they 

viewed recordings, used their knowledge of students’ thinking to enact CDTs, whereas teachers 

who only evaluated student thinking as right or wrong when reviewing recordings of their 

teaching knew less about their students’ thinking and often decreased the cognitive demand of 

tasks. Further, he found that by attending to students’ thinking, teachers developed in their 

general understanding of students’ learning (i.e., learning trajectories) over time, which also 

influenced their enactment of CDTs. Results from this study suggest that teachers’ knowledge of 

students’ thinking, another dimension of teachers’ knowledge, is integral to teachers’ enactment 

of CDTs. 

Lastly, Boston and Smith (2009) studied the effects of professional development (PD) 

focused specifically on the cognitive demand of mathematical tasks on teachers’ enactment of 

CDTs. Their sample included 18 secondary mathematics teachers who participated in the PD and 

10 contrast teachers who did not. The participating and contrast teacher samples were split with 

regard to whether their schools used inquiry-oriented or traditional curricula. Boston and Smith 

found that their PD program had a significant and positive influence on both teachers’ choices of 

tasks posed to students and the implementation of those tasks in the classroom. In particular, 

after participation in professional development, teachers chose more CDTs and were more likely 

to implement them in high-level ways. It is important to note that for some teachers the cognitive 

demand of high-level tasks still decreased over the course of the lesson. Therefore, there is still 

more to understand about supporting teachers to consistently maintain the cognitive demand of 
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high-level tasks. Another dimension that the researchers explored was the influence of the type 

of curriculum on those PD effects. They were surprised to find that there were not significant 

curriculum-related differences in terms of the cognitive demand of tasks or effects of PD. This 

contradicts the significant curriculum-related findings of Son (2008) and Stein and Kaufman 

(2010), and suggests that, like the relationship between MKT and the enactment of CDTs, the 

relationship between curriculum materials and the enactment of CDTs requires further 

exploration. 

Looking across the findings of these five studies, there is some evidence that enacting 

CDTs may be related to both teacher and contextual factors. Only the Boston and Smith (2009) 

study and the Choppin (2011) study examined the cognitive demand of tasks posed to students 

and the maintenance of the cognitive demand of high-level tasks separately. All of the other 

studies focused on task enactment patterns (i.e., “task unfolding”) or they used a measure of 

cognitive demand that aggregated across the selection and implementation. Yet, there is some 

evidence that numerous factors might influence the enactment of CDTs, including: knowledge of 

students’ thinking, conceptions of knowing and doing mathematics, teaching goals, alignment 

between teaching goals and textbooks, teacher perceptions about student achievement, test 

accountability, and professional development. However evidence concerning the influence of 

teachers’ mathematical knowledge for teaching and the type of curriculum materials used is 

inconsistent. These inconsistencies may be related to either a lack of attention to the 

contingencies associated with different factors or the way mathematical knowledge for teaching 

and type of curriculum are defined and measured.  
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 Category Factor References Included Excluded Closely 
Related 

T
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Teacher 
Knowledge 

Mathematical 
Knowledge for Teaching 

(Charalambous, 2010; Escudero & Sánchez, 2007; Hill, Ball, Blunk, 
Goffney, & Rowan, 2007; Hill, Blunk, et al., 2008) 

X   

Knowledge of 
Mathematics 

(Ball, 1991; Baumert et al., 2010; D. K. Cohen, 1990; Lambdin & 
Preston, 1995; Manouchehri & Goodman, 2000; Sherin, 2002; Yun-
peng, Chi-chung, & Ngai-ying, 2006) 

X   

Pedagogical Content 
Knowledge 

(Baumert et al., 2010; Manouchehri & Goodman, 1998, 2000; Philipp, 
Flores, Sowder, & Schappelle, 1994; Sherin, 2002; Yun-peng et al., 
2006) 

X   

Knowledge of Student 
Thinking 

(Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Choppin, 2011; 
Peterson, Carpenter, & Fennema, 1989) 

X   

General Pedagogical 
Knowledge or Skills 

(Manouchehri & Goodman, 2000; Opdenakker & Van Damme, 2006) X   

Teacher 
Beliefs 

Beliefs about 
Mathematics 

(Aguirre & Speer, 1999; Beswick, 2005; Cross, 2009; Lloyd & Wilson, 
1998; Putnam, Heaton, Prawat, & Remillard, 1992; Raymond, 1997; 
Remillard, 1999; Remillard & Bryans, 2004; Stipek, Givvin, Salmon, 
& MacGyvers, 2001; Stodolsky & Grossman, 2000; A. G. Thompson, 
1984) 

X   

Beliefs about Curriculum (Lambdin & Preston, 1995; Lloyd, 1999; Manouchehri & Goodman, 
2000; Remillard & Bryans, 2004; Sowder, Philipp, Armstrong, & 
Schappelle, 1998; Superfine, 2009) 

  X 

Beliefs about Teaching 
and Learning 
Mathematics 

(Aguirre & Speer, 1999; D. K. Cohen, 1990; Cross, 2009; Fennema et 
al., 1996; Lambdin & Preston, 1995; Lloyd, 1999; Manouchehri & 
Goodman, 1998; Philipp et al., 1994; Putnam et al., 1992; Remillard, 
1999; Remillard & Bryans, 2004; Schoenfeld, 2011; Skott, 2001; 
Stipek et al., 2001; Superfine, 2009; A. G. Thompson, 1984) 

X   

Beliefs about Teaching (Barrett Paterson, 2009; Beswick, 2005; D. K. Cohen, 1990; 
Manouchehri & Goodman, 2000; A. G. Thompson, 1984; Wood, 
Cobb, & Yackel, 1991) 

X   

Beliefs about Student 
Learning 

(Cooney, 1985; Jamar & Pitts, 2005; Manouchehri, 2004; Prawat & 
Jennings, 1997; Son, 2008; Sowder et al., 1998; Stipek et al., 2001; 
Stodolsky & Grossman, 2000; Sullivan & Leder, 1992; Sztajn, 2003; 
Turner, Warzon, & Christensen, 2011; Yun-peng et al., 2006) 

X   

Beliefs about Affective 
Issues 

(Aguirre & Speer, 1999; Hill, Blunk, et al., 2008)   X 

Teacher 
Affect 

Job Satisfaction (Opdenakker & Van Damme, 2006)  X  
Reflectiveness (Philipp et al., 1994; Smith, 2000; A. G. Thompson, 1984)  X  
Disposition toward Math (Stipek et al., 2001)  X  
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Teacher Goals Teachers’ Goals (Aguirre & Speer, 1999; Manouchehri & Goodman, 2000; Schoenfeld, 
2011; Skott, 2001; Son, 2008; Sowder et al., 1998; Stodolsky & 
Grossman, 2000) 

  X 

Teacher 
Experience 

Experience As Students (Anderson, White, & Sullivan, 2005; Cross, 2009; Raymond, 1997)   X 
Experience Teaching 
Math 

(Charalambous, 2010; Manouchehri & Goodman, 1998; Superfine, 
2009) 

 X  

Experience with 
Curriculum 

(Remillard & Bryans, 2004)  X  

C
on
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xt
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l F
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rs
 

Aspects of 
Teachers’ 
Work 

Time Demands (Barrett Paterson, 2009; Cooney, 1985; Rousseau & Powell, 2005; 
Son, 2008).  

X   

Class Size (Rousseau & Powell, 2005) X   
Student-
Related 
Factors 

Background Knowledge 
of Students 

(McGinnis, Parker, & Graeber, 2004; Opdenakker & Van Damme, 
2006; Son, 2008) 

X   

Student Expectations for 
Instruction 

(Cooney, 1985; Herbel-Eisenmann, Lubienski, & Id-Deen, 2006; 
McGinnis et al., 2004; Sullivan & Leder, 1992) 

X   

Mobility/Absenteeism (Rousseau & Powell, 2005) X   
Students’ Backgrounds  (Anderson et al., 2005; Goos, Dole, & Makar, 2007; Raymond, 1997; 

Yun-peng et al., 2006) 
X   

School 
Context 

School leadership (Manouchehri & Goodman, 1998; Philipp et al., 1994) X   
Culture of math 
department 

(Anderson et al., 2005; Manouchehri & Goodman, 1998; McGinnis et 
al., 2004; Raymond, 1997; Stodolsky & Grossman, 2000) 

X   

Curriculum (Barraugh, 2011; Diaz, 2004; Herbel-Eisenmann et al., 2006; Lambdin 
& Preston, 1995; Manouchehri & Goodman, 2000; McGinnis et al., 
2004; Remillard, 1999; Remillard & Bryans, 2004; Rousseau & 
Powell, 2005; Schoenfeld, 2011; Son, 2008; Stein & Kaufman, 2010; 
Wang & Paine, 2003) 

X   

Parents’ Expectations  (Herbel-Eisenmann et al., 2006; McGinnis et al., 2004)  X  
Accountability Accountability Pressures (Barraugh, 2011; McGinnis et al., 2004; Rousseau & Powell, 2005; 

Son, 2008; Yun-peng et al., 2006) 
 X  

Interactions Access to Expertise (Diaz, 2004; Manouchehri & Goodman, 1998; Neuberger, 2010) X   
Teacher Collaboration (Barraugh, 2011; Bruce & Ross, 2008; Franke, Carpenter, Levi, & 

Fennema, 2001; Smith, 2000; Wang & Paine, 2003; Yun-peng et al., 
2006) 

X   

Formal Professional 
Development 

(Barton, 2005; Boston & Smith, 2009; Carpenter et al., 1989; Fennema 
et al., 1996; Franke, Carpenter, Fennema, Ansell, & Behrend, 1998; 
Neuberger, 2010; Owston, Sinclair, & Wideman, 2008; Remillard, 
1999; Swafford, Jones, Thornton, Stump, & Miller, 1999; Turner et al., 
2011; Walker, 2007; Yun-peng et al., 2006) 

X   

Figure 2. Factors Related to Teachers’ Instructional Practice, by Category 
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Review of Literature of Factors Influencing Teachers’ Instructional Practice 

Although few studies have investigated the enactment of CDTs, a significant number of 

studies have investigated the relationships between teacher factors, contextual factors, and 

teachers’ instructional practice more generally. Importantly, many of these additional studies 

have focused on aspects of teachers’ instructional practice that are closely related to the cognitive 

demand of mathematical tasks in the classroom. These aspects range from general characteristics 

of instructional quality (e.g., inquiry-oriented curriculum implementation) to specifics of the 

classroom activity (e.g., whether the activity in the classroom is procedurally or conceptually 

oriented). Given the widespread inclusion of aspects of instructional practice that are closely 

related to the cognitive demand of mathematical tasks in the classroom, I use the general term 

teachers’ instructional practice to refer to them. In this section I report on a review of studies 

that sought to identify relationships between teacher factors, contextual factors, and teachers’ 

instructional practice.  

The first stage of the review process was to search the literature for relevant studies. To 

generate the list of studies to include in this review, I utilized several complementary search 

strategies. First, I drew on 1992 and 2007 handbook chapters in mathematics education 

pertaining to teacher knowledge, beliefs, and curriculum implementation (Fennema & Franke, 

1992; Hill, Sleep, et al., 2007; Philipp, 2007; Stein et al., 2007; A. G. Thompson, 1992). In 

addition, I read all pertinent studies referenced in the handbook chapters and obtained references 

from those studies. Lastly, I searched ERIC and PsychINFO databases for dissertations and 
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published studies pertaining to K-12 mathematics instruction that attended to influential factors1. 

This database search resulted in a list of 1511 unique studies, 140 of which warranted closer 

review based on reading the abstract. I read each article to determine whether the study was 

empirical in nature (rather than a literature review or theoretical article), which aspects of 

teachers’ instructional practice were investigated and how they were measured, and whether the 

study examined factors that influenced the quality of those aspects of instructional practice. I 

then limited the final set of studies that I reviewed to those that produced empirical results, 

focused on aspects of mathematics teachers’ instructional practice that are broadly related to the 

enactment of cognitively demanding mathematical tasks, utilized classroom observation or 

student surveys to characterize instruction, and went beyond characterizations of instructional 

practice to examine factors influencing practice. Recall that by “factors influencing practice” I 

mean both factors that influence a teacher’s practice and factors that influence whether teachers 

change their practice. A set of 63 studies met these criteria and were included in this broad 

review.  

Taken together, these studies suggest that a large number of potentially relevant teacher 

and contextual factors might influence teachers’ enactment of CDTs (see Figure 2). Because the 

review draws on 30 years of research in the mathematics education field which has continued to 

develop over time, some factors studied in the past now seem either less central or less useful in 

accounting for the quality of teachers’ instructional practices (e.g., teacher reflectiveness). Other 

                                                            
1 The following search strings were used: Eric:DE=("teaching methods" or teachers or "mathematics instruction" or 
"mathematics teachers") and AB=math* and AB=(factor* or influence* or effects*) and NOT DE=("college 
mathematics" OR "community colleges" OR "preservice teachers") 
Psychinfo:DE=(teaching or "task complexity" or "teacher characteristics") and AB=(math* and (teach* or instruct*))  
and AB=(factor* or influence* or effect*) AND NOT DE=("college teachers" or colleges) 
 



26 
 

factors have continued to be refined over the years and have been linked to teachers’ 

instructional practice (e.g., beliefs about teaching and learning mathematics).  

Synthesis: Refining Factors Relevant to the Enactment of CDTs 

In an effort to narrow the list of factors from the broad literature review to a set of 

potentially relevant factors, I developed criteria for excluding, adjusting, or retaining potential 

factors. The most important criterion for whether factors were potentially relevant with regard to 

the enactment of CDTs was whether the factors could plausibly be linked to processes associated 

with enacting CDTs. A second criterion was whether factors were closely related to another key 

factor. When closely related and the other factor had more evidence linking it to the enactment of 

CDTs, the second factor was removed from the list of potentially relevant factors. In this section 

I first describe how I excluded or adjusted factors if they could not be linked to specific 

processes associated with enactment of CDTs or if they were closely related to another key 

factor. Then, for each of the factors that could be plausibly linked to processes of enacting CDTs, 

I describe those links.  

Some factors that were identified as related to teachers’ instructional practice in the broad 

review were excluded because they could not be linked to specific processes associated with 

enactment of CDTs. For example, several of the reviewed studies focused on teacher 

reflectiveness as a characteristic that is related to teachers’ instructional practice in the classroom 

(Philipp et al., 1994; Smith, 2000; A. G. Thompson, 1984). While teachers who are reflective 

may learn from their practice, there are no direct links between reflectiveness and selecting high 

cognitive demand tasks or maintaining the cognitive demand of those tasks. For example, 

teachers who are reflective may analyze their teaching to determine how to make the procedural 
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practice in their classroom more effective while others, who teach in more inquiry-oriented 

ways, might analyze students’ questions or responses to learn about their students’ thinking. But 

reflectiveness in itself is too broadly defined to influence the enactment of CDTs. Therefore, 

teacher reflectiveness was one of the previously investigated factors that I excluded from the set 

of potentially relevant factors. For similar reasons, I also excluded several other factors including 

job-satisfaction, teachers’ dispositions toward math, and experience teaching math and with the 

curriculum (see Figure 2 and the column labeled “Excluded”). I excluded parent expectations 

and accountability pressures because they may be indirectly related to teachers’ enactment of 

CDTs and buffered through school leader expectations, which is included in the set of potential 

factors. 

In addition to excluding some factors, I also adjusted other factors identified in prior 

studies so that they could be linked to specific processes associated with enactment of CDTs. For 

example, school leader expectations was a factor that was indicated in only two studies, yet has 

the potential to influence teachers’ enactment of CDTs. It required additional adjustment (mostly 

in the form of specification) in order to link it to specific processes associated with enactment of 

CDTs. The specific adjustments related to school leader expectations are described in detail 

below. A second potential factor that I also found necessary to adjust was professional 

development which is included in the category of learning opportunities through interactions 

with colleagues.  

Lastly, I excluded some factors from the set of potentially relevant factors because they 

were closely related to another key factor. For example, teachers’ goals, beliefs about 

mathematics, and beliefs about teaching and learning mathematics are all factors that were 

identified in prior studies. Yet, there is considerable evidence that teachers’ goals are closely 
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related to their beliefs (Aguirre & Speer, 1999; Schoenfeld, 2011; Sowder et al., 1998). Because 

of this close relationship, it is reasonable to focus on beliefs about mathematics and beliefs about 

teaching and learning mathematics and exclude teachers’ goals. This is not to say that teachers’ 

goals are inconsequential for teachers’ enactment of CDTs, but rather that teachers’ goals do not 

appear to add much insight to teachers’ enactment of CDTs if beliefs about mathematics and 

beliefs about teaching and learning mathematics have already been considered. The factors that I 

excluded because they were closely related to teachers’ knowledge or beliefs are teachers’ 

beliefs about the curriculum, teachers’ beliefs about affective issues, teachers’ goals, and 

teachers’ experiences as students (see Figure 2 and the column labeled “Closely Related”). 

As I made decisions about the potential significance of factors, two different categories of 

factors emerged: teacher factors and contextual factors. As specified above, teacher factors are 

specific to the individual teachers whereas contextual factors pertain to the classroom, school, or 

district context. For all of the potentially significant factors, I define the factor, summarize 

supporting evidence from the five studies of factors influencing the enactment of CDTs and the 

broad literature review, and give conceptual examples of how the factors might be linked to 

processes associated with the enactment of CDTs.  

Teacher Factors  

In this synthesis, I focus on three categories of teacher factors that encompass the bulk of 

the studies contained in the broad literature review (see Figure 2): teacher knowledge, teacher 

beliefs, and teacher skills. I concentrate on six constructs across the three categories and describe 

each below. 
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Teacher knowledge. Recent work has made progress in conceptualizing what it means 

for teachers to understand the content they teach and in clarifying other aspects of teacher 

knowledge that fall outside the traditional conceptualization of content knowledge yet are 

integral to the work of teaching. Based on this work and understandings of the processes 

associated with the cognitive demand of mathematical tasks in the classroom, there is some 

indication that two key categories of mathematics teacher knowledge might be integral to 

selecting high cognitive demand tasks and maintaining the cognitive demand of those tasks: 

mathematical knowledge for teaching, and knowledge of students’ thinking. 

Mathematical knowledge for teaching. Within the mathematics education community, 

mathematical knowledge for teaching (MKT) is generally conceptualized as a combination of 

subject matter knowledge and pedagogical content knowledge (PCK) (Hill, Ball, & Schilling, 

2008). In the view of Hill and colleagues, subject matter knowledge is conceptual knowledge of 

mathematics that is necessary for solving mathematics problems but that is not specific to the 

work of teaching. On the other hand, PCK is specific to the work of teaching. Shulman (1986, 

1987) introduced the notion of PCK and suggested that it “represents the blending of content and 

pedagogy into an understanding of how particular topics, problems, or issues are organized, 

represented, and adapted to the diverse interests and abilities of learners, and presented for 

instruction” (1987, p. 228). Hence, MKT goes beyond pure mathematical content knowledge to 

also include PCK for mathematics teachers.  

As indicated above, the empirical findings pertaining to the relationship between 

mathematical knowledge for teaching and the enactment of CDTs are mixed. However, the 

process-oriented argument made in Charlambous’ (2010) study and the considerable evidence 

from the broad literature review provides some evidence that MKT might be related to teachers’ 
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instructional practice. Within this broader literature, some studies have explored mathematics 

PCK (Manouchehri & Goodman, 1998; Philipp et al., 1994), some have explored mathematics 

content knowledge , some have explored both aspects separately (Baumert et al., 2010; Escudero 

& Sánchez, 2007), and others have explored the two aspects together (Charalambous, 2010; 

Escudero & Sánchez, 2007; Hill, Ball, et al., 2007; Hill, Blunk, et al., 2008; Manouchehri & 

Goodman, 2000; Sherin, 2002; Yun-peng et al., 2006). These studies suggest that mathematical 

knowledge, pedagogical content knowledge, and combinations of the two (i.e., mathematical 

knowledge for teaching) are related to teachers’ instructional practice.  

The conceptual connections between mathematical knowledge for teaching and processes 

of selecting CDTs and maintaining the cognitive demand of those tasks provide further evidence 

that teachers with deeper MKT may be more likely to provide more cognitively demanding 

learning opportunities to their students. There are indications that MKT is integral to teachers’ 

work as they try to understand the mathematical ideas within tasks and decide whether those 

ideas and thus the tasks are worthwhile (Clarke, 2008). In addition, teachers with deeper MKT 

are more likely to feel more confident in their ability to handle CDTs in the classroom (Sowder 

et al., 1998). This, in turn, might make it more likely that teachers will select CDTs for their 

students.  

Teachers’ MKT is also likely to play a critical role in maintaining the cognitive demand 

of high-level tasks. MKT is integral to teachers’ decisions about how to support students and to 

their ability to provide that support (Henningsen & Stein, 1997; Herbst, 2003; Stein et al., 1996). 

For example, MKT seems to be integral to teachers’ selection and use of representations to help 

students make sense of mathematical ideas (Charalambous, 2010), which might have an impact 

on maintenance of the cognitive demand of high-level tasks (Herbst, 2003). This same argument 
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can be made for the potential importance of MKT on other instructional decisions teachers make 

in the classroom (e.g., which questions they ask students and when to ask those questions). 

Therefore, there is some indication that MKT might be related to the enactment of CDTs in the 

classroom. 

Knowledge of students’ thinking. Most definitions of MKT include “knowledge of 

students and content.”  This aspect of MKT includes deep knowledge of how students typically 

progress in learning particular mathematical concepts (Hill, Schilling, & Ball, 2004). As it is 

defined, that type of knowledge is not specific to the students in a teacher’s classroom, but 

instead, concerns typical students. For instance, it might include a teacher’s understanding of 

how students (in general) develop their understanding of fractions, but it does not include 

knowledge about how the students in the teacher’s classroom fit within that learning trajectory.  

Another aspect of teachers’ knowledge of students is important: knowledge of their 

individual students’ thinking. This is the type of understanding that Choppin (2011) found is 

related to teachers’ enactment of CDTs. He found that teachers who attended to their students’ 

thinking were better at selecting CDTs and implementing them in cognitively demanding ways. 

Further, there is a body of work pertaining to teachers’ knowledge of their students that has 

stemmed from work on Cognitively Guided Instruction (CGI) (e.g., Carpenter et al., 1989; 

Franke & Kazemi, 2001; Peterson et al., 1989). One study of the CGI program demonstrated that 

teachers’ knowledge of students’ thinking is related to teachers’ instructional practice (Peterson 

et al., 1989). In particular, the findings suggest that teachers with greater knowledge of students’ 

thinking are more likely to provide cognitively challenging learning opportunities for students. 

Also, CGI professional development focused on helping teachers understand the development of 

children’s mathematical thinking changed teachers’ instructional practices (Carpenter et al., 
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1989; Fennema et al., 1996). Those studies found that changes in teachers’ knowledge of 

students’ thinking coincided with changes in teachers’ instructional practice. This suggests that 

there is a relationship between teachers’ knowledge of students’ thinking and teachers’ 

instructional practice. 

The connections between teachers’ knowledge of students’ thinking and processes of 

selecting CDTs and maintaining the cognitive demand of those tasks provide further evidence 

that teachers with knowledge of their students’ mathematical thinking might be more likely to 

provide more cognitively demanding learning opportunities to their students. Knowledge of 

students’ thinking is likely to feature prominently in teachers’ decision-making as it involves 

coordinating information about students with their teaching goals (Henningsen & Stein, 1997; 

Lampert, 2001). For example, if teachers know more about their individual students’ thinking, 

then they might be better able to judge whether tasks are appropriate for their students (Peterson 

et al., 1989). As with MKT, teachers’ knowledge of students’ thinking is also likely to play a 

critical role in maintaining the cognitive demand of high-level tasks through the provision of the 

appropriate levels of support in the classroom. If teachers have deep knowledge of their 

individual students’ thinking, then they might be more likely to provide appropriate scaffolding 

that supports students without decreasing the cognitive demand of high-level tasks (Choppin, 

2011; Henningsen & Stein, 1997; Peterson et al., 1989). Hence, given the evidence from 

Choppin’s (2011) study and the processes associated with the selection of tasks and maintenance 

of the cognitive demand of high-level tasks, knowledge of students’ thinking might be related to 

the enactment of CDTs in the classroom. 

Teacher beliefs. I follow Thompson (1992) in drawing the following distinction between 

knowledge and beliefs: beliefs can be held to varying degrees and they are not necessarily agreed 
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upon whereas knowledge is agreed upon by a professional community and assumed to be true. In 

this review, I consider references to teachers’ “views”, “conceptions”, “ideas”, or “beliefs” 

pertaining to mathematics or teaching and learning mathematics as teachers’ mathematics-

related beliefs. A considerable number of studies have investigated how mathematics teachers’ 

beliefs are related to their instructional practice. Before reviewing the studies, I define three 

crucial dimensions of teachers’ mathematics-related beliefs: beliefs about mathematics, beliefs 

about teaching and learning mathematics, and beliefs about students’ mathematical capabilities. 

Beliefs about mathematics pertain to conceptions of the discipline of mathematics (A. G. 

Thompson, 1992). One key distinction that underlies many of the characterizations is the 

distinction between a relational understanding of mathematics and an instrumental understanding 

of mathematics (Skemp, 1978). An instrumental understanding of mathematics involves thinking 

about mathematics as a set of unrelated tools used to solve problems in a procedural manner. In 

contrast, a relational understanding of mathematics involves thinking about mathematics as a set 

of conceptual relationships that enable people to solve problems in a variety of ways. Viewing 

mathematics as relational is more compatible with the enactment of CDTs in that CDTs allow for 

multiple solution methods and require students to draw on their conceptual understanding to 

devise an appropriate solution to the task.  

Beliefs about teaching and learning mathematics extend beyond conceptions of the 

discipline and include ideas about how students learn best and what should happen 

instructionally. These beliefs concern what teachers’ consider to be high quality teaching rather 

than what they do themselves in their classrooms, although the two might be related. For the sake 

of clarity, I define beliefs about teaching and learning mathematics that are compatible with 

inquiry-oriented instruction as inquiry-oriented beliefs. Different aspects of inquiry-oriented 
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beliefs appear to be interrelated. For example, teachers’ beliefs about the types of tasks in which 

students should engage are likely to be linked to their beliefs about how students learn by 

working on tasks (A. G. Thompson, 1992). Analogously, a teacher who has developed inquiry-

oriented beliefs might believe that students learn math best by participating in a classroom where 

those aspects of instruction are present (A. G. Thompson, 1992). Some key aspects of inquiry-

oriented beliefs about teaching mathematics include the importance of high cognitive demand 

tasks, the importance of discourse, and the proactive role of the teacher in scaffolding students’ 

work on those tasks and facilitating discussion (Munter, Under review).  

In contrast to beliefs about mathematics and about teaching and learning mathematics, 

teachers’ beliefs about students’ mathematical capabilities have received less attention in the 

literature but could be integral to teachers’ enactment of CDTs. These beliefs about students’ 

mathematical capabilities include teachers’ beliefs about student motivation, inherent ability, and 

teacher and student agency with regard to altering motivation and ability. The notion of students’ 

mathematical capabilities builds on Horn’s (2007) work. Horn examined teachers’ category 

systems with regard to students’ mathematical capabilities as groups of teachers discussed 

students’ learning of mathematics. She found that some teachers described students’ capabilities 

in terms of inherent characteristics (e.g., lazy kids, fast kids, slow kids, etc.) whereas other 

teachers situated students’ capabilities with respect to the learning opportunities provided to 

them in the classroom. Further, when teachers characterized students’ capabilities in terms of 

inherent characteristics, they tended to describe the problem of student achievement as residing 

with the students or their families and communities rather than as something that they could 

influence through instruction. If we are interested in enabling all students to engage in 

cognitively demanding mathematical activity, then a particular set of beliefs about students’ 
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mathematical capabilities is more productive: that is, beliefs that do not treat students’ ability as 

inherent, but instead explain students’ capabilities in terms of learning opportunities provided to 

them. 

There are signs that the relationship between the three types of teachers’ mathematics-

related beliefs and the enactment of CDTs might be complicated. In particular, it seems that 

teachers’ beliefs about mathematics and beliefs about teaching and learning mathematics are 

related to teachers’ instructional practice, but that their influence depends on their alignment. In 

other words, if one type of a teacher’s beliefs is compatible with the enactment of CDTs, but 

another type is not compatible with the enactment of CDTs then that teacher might be less likely 

to enact CDTs than a teacher with aligned and compatible beliefs. Because of the potential 

complexity of these relationships, I first review the evidence that the individual types of beliefs 

are related to teachers’ instructional practice, discuss the evidence pertaining to the complexity 

of the relationships in greater detail, and then review the evidence that these same relationships 

might hold for the enactment of CDTs.  

Only one study of the enactment of CDTs focused specifically on mathematics teacher’s 

beliefs. Son’s (2008) study identified several dimensions of teachers’ beliefs about teaching and 

learning mathematics as factors that contributed to the enactment of CDTs. However, her 

analysis did not explicate the mechanisms behind those relationships. Aspects of beliefs about 

teaching and learning mathematics on which she focused included conceptions of knowing and 

doing mathematics and perceptions of student achievement (described as “students’ diversity in 

terms of mathematics ability” (Son, 2008, p.219). Her definition of teachers’ perceptions of 

student achievement seems to be related to teachers’ beliefs about students’ mathematical 

capabilities. Although Son’s results give some suggestion that teachers’ beliefs about teaching 



36 
 

and learning mathematics, including beliefs about students’ mathematical capabilities, might be 

related to their enactment of CDTs, additional process-oriented investigations and large-scale 

studies are needed to better understand this relationship. None of the studies of factors related to 

teachers’ enactment of CDTs have focused on teachers’ beliefs about mathematics. 

A number of studies included in the larger review found relationships between one of the 

three types of mathematics teachers’ beliefs and their practice. In particular, there is evidence 

that beliefs about mathematics (Beswick, 2005; Philipp et al., 1994; Putnam et al., 1992; 

Remillard, 1999; Sowder et al., 1998; Stipek et al., 2001; Stodolsky & Grossman, 2000; A. G. 

Thompson, 1984), beliefs about teaching (Barrett Paterson, 2009; Beswick, 2005; D. K. Cohen, 

1990; Manouchehri & Goodman, 2000; A. G. Thompson, 1984), beliefs about student learning 

(Son, 2008; Stodolsky & Grossman, 2000; Yun-peng et al., 2006), beliefs about students’ needs 

(Prawat & Jennings, 1997; Sullivan & Leder, 1992; Sztajn, 2003), expectations for students 

(Jamar & Pitts, 2005), beliefs about student motivation (Cooney, 1985; Manouchehri, 2004; 

Turner et al., 2011), beliefs about teaching and learning mathematics (Lloyd, 1999; Manouchehri 

& Goodman, 1998; Philipp et al., 1994; Putnam et al., 1992; Remillard, 1999; Remillard & 

Bryans, 2004; Stipek et al., 2001; Superfine, 2009) and mathematics teachers’ beliefs, in general 

(Aguirre & Speer, 1999; Schoenfeld, 2011; Skott, 2001), are related to teachers’ instructional 

practice. Overall, the evidence suggests that beliefs about teaching and learning mathematics, 

beliefs about students’ mathematical capabilities, and beliefs about mathematics are related to 

teachers’ instructional practices. However, several studies suggest that it is important to consider 

multiple types of mathematics-related beliefs when attempting to understand how they relate to 

teachers’ instructional practice because the relationship is not always straightforward. In the 

following paragraphs, I review the evidence that the enactment of CDTs might require that not 
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only are teachers’ mathematics-related beliefs compatible with the enactment of CDTs, but also 

that different types of beliefs are all aligned.  

There are some indications that the relationship between beliefs about teaching and 

learning mathematics and teachers’ practice is not straightforward. In particular, several case 

studies suggest that teachers’ beliefs about teaching and learning mathematics are not consistent 

with teachers’ actual classroom practices. These studies of individual teachers attempted to 

document both participants’ beliefs about teaching and learning mathematics and their teaching 

practices, and then examined the degree of congruence (D. K. Cohen, 1990; Cooney, 1985; 

Raymond, 1997; Skott, 2001). For example, Cohen (1990) studied one teacher’s practice in the 

context of state-wide reform of mathematics instruction. He found that she believed she had 

adopted the reform notions of teaching and learning but the changes in her practices did not 

match, she had filtered the reform practices through her traditional approach to teaching.  

One possible explanation for this lack of congruence between teachers’ beliefs about 

teaching and learning mathematics and their instructional practice focuses on a lack of alignment 

between teachers’ beliefs about teaching and learning mathematics and their beliefs about 

mathematics. Several studies suggest that beliefs about mathematics are, in fact, more closely 

related to teachers’ instructional practice than teachers’ beliefs about teaching and learning 

mathematics (Cross, 2009; Lloyd & Wilson, 1998; Raymond, 1997). Results from Raymond’s 

(1997) case study of one beginning elementary teacher suggest that the teacher’s beliefs about 

mathematics, rather than beliefs about teaching mathematics, were more closely aligned with her 

instructional practices. Both Cross (2009) and Lloyd and Wilson (1998) suggest that beliefs 

about mathematics are part of the foundation for mathematics teachers’ beliefs and practice, and 

that changes in teachers’ beliefs about mathematics can lead to changes in teachers’ beliefs about 
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teaching and learning mathematics. In the case of Cohen’s (1990) focal teacher, although she 

seemed to have adopted more reform-oriented beliefs about teaching mathematics, she may have  

struggled to enact the reform teaching practices because her beliefs about mathematics had not 

changed. 

There is some evidence that the existence of a relationship between teachers’ beliefs 

about mathematics or teaching and learning mathematics and their instructional practices might 

also require that their beliefs about students’ mathematical capabilities are aligned. Cooney 

(1985) studied one novice teacher and found that despite the fact that his beliefs about 

mathematics and teaching mathematics were consistent with a problem-solving approach, his 

beliefs about students and motivation appeared to more directly influence his choice of tasks for 

students. The teacher believed that he needed to use “recreational” mathematics problems to 

catch his students’ interest and used superficially interesting problems that were unconnected to 

key mathematical ideas to capture students’ attention. Hence, his beliefs about student 

motivation were not aligned with his other mathematics-related beliefs and seemed to be more 

closely linked to his instructional practice. Therefore, there is evidence that alignment between 

different types of teachers’ mathematics-related beliefs is likely to be important in identifying 

relationships between particular dimensions of teachers’ beliefs and their instructional practice. 

To this point, I have summarized the one study examining how teachers’ mathematics-

related beliefs are related to their enactment of CDTs (Son, 2008) and summarized the evidence 

from the larger review that suggests how the different types of teachers’ mathematics-related 

beliefs are related to teachers’ instructional practice. In this section I review the conceptual 

evidence that teachers’ beliefs about mathematics, teaching and learning mathematics, and 

students’ mathematical capabilities might be integral to teachers’ enactment of CDTs. Further, it 
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is likely that it will also be equally important that different types of teachers’ mathematics-

related beliefs be aligned in order for any one of them to be related to teachers’ enactment of 

CDTs. First, with regard to the selection of tasks to pose to students, teachers’ goals for 

instruction and their beliefs about what it means to do mathematics and beliefs about how 

students learn best are likely to influence their decision (Schoenfeld, 2011). For example, 

teachers who hold an instrumental view of mathematics or believe that students learn best by 

practicing procedures that they have been shown how to use might be more likely to choose tasks 

that give students opportunities to practice procedures. This relationship becomes more 

complicated if there are teachers who hold instrumental views of mathematics but believe that 

students learn best through productive struggle with CDTs. Those teachers are unlikely to 

consistently enact CDTs despite their inquiry-oriented beliefs about student learning. Therefore, 

individual types of teachers’ mathematics-related beliefs might be related to the enactment of 

CDTs provided that they are aligned with other dimensions of those teachers’ mathematics-

related beliefs. 

Beyond the selection of high-level tasks, teachers’ mathematics-related beliefs might also 

be related to maintenance of the cognitive demand of those tasks. In particular, they could 

influence maintenance of the cognitive demand through the level or type of support that teachers 

provide to students. For example, as with the choice of tasks to pose to students, teachers’ beliefs 

about how students learn best might influence the types of supports they provide for students in 

the classroom (Smith, 2000; Sztajn, 2003). If teachers believe that students learn best by 

practicing procedures that they have been shown how to use, yet the teachers do select a CDT, 

they might attempt to support students by first demonstrating how to solve similar tasks, thereby 

decreasing the cognitive demand of those tasks. On the other hand, if they believe that students 
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should struggle to solve CDTs teachers might be less likely to intervene in ways that decrease the 

cognitive demand of high-level tasks. Further, if they generally believe that students learn best 

through productive struggle with CDTs but believe that the majority of the students in their class 

are not capable of solving CDTs, then they might not be as likely to enact CDTs with that class 

of students (Henningsen & Stein, 1997). Again, the compatibility of particular types of beliefs 

with the enactment of CDTs along with the alignment between different types might be critical 

to how teachers support students. Therefore, there is evidence that it might be important to 

consider teachers’ beliefs about mathematics, teaching and learning mathematics, and students’ 

mathematical capabilities, as well as the alignment between those different dimensions of 

teachers’ mathematics-related beliefs in considering how they relate to the enactment of CDTs.  

Teacher skills. One teacher capability that should not be overlooked in its potential to 

facilitate the enactment of CDTs is classroom management skills. Studies of teacher quality from 

over 20 years ago identified links between teachers’ classroom management skills and student 

achievement (Brophy, 1986; Evertson, Emmer, & Brophy, 1980; Good & Brophy, 1987). That 

line of work has been criticized for its inattention to the content (e.g., mathematics) of instruction 

(Confrey, 1986), and recent work has taken on a stronger content-based focus. While this 

criticism has some validity, classroom management skills are still acknowledged as critical in 

more recent studies of mathematics teachers’ instructional practice. Many studies, particularly 

those of new teachers, indicate the importance of teachers developing adequate classroom 

management if they are to provide their students cognitively challenging learning opportunities 

(e.g., D. K. Cohen, 1990; Hill, Blunk, et al., 2008; Opdenakker & Van Damme, 2006; Raymond, 

1997; Skott, 2001; Sullivan & Leder, 1992). Stein and colleagues found that a lack of classroom 

management was one reason for decline in cognitive demand of high-level tasks (Henningsen & 
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Stein, 1997; Stein et al., 1996). In particular, if teachers are unable to manage how their students 

engage in classroom activities, they might find it difficult to enact CDTs because high cognitive 

demand tasks tend to gives students more freedom and depend on students working together in 

groups.  

In sum, teacher factors that have the potential to be related to teachers’ enactment of 

CDTs and should be investigated further include: (a) mathematical knowledge for teaching 

(including content knowledge and pedagogical content knowledge), (b) knowledge of students’ 

thinking, (c) beliefs about mathematics, (d) beliefs about teaching and learning mathematics, (e) 

beliefs about students’ mathematical capabilities, and (f) classroom management skills.  

Contextual Factors 

The categories of contextual factors within the set of factors identified in the literature as 

promising include: class time, class size, characteristics of students, departmental culture, school 

leader expectations, the nature of the curriculum, and learning opportunities through interactions. 

Contextual factors have received less attention and are less developed in the literature than the 

teacher factors (see Figure 2), yet most of the studies of teachers’ knowledge and beliefs 

mentioned the importance of considering the context in which teachers work. I report evidence 

from the broad literature review concerning the relationships between contextual factors and 

teachers’ instructional practice and give examples of how the contextual factors might be related 

to processes associated with the enactment of CDTs to justify their inclusion in the list of 

promising factors to investigate.  

Class time. Several studies give accounts of teachers who reported that the amount of 

class time available to work on challenging tasks influences their instructional practice (Barrett 
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Paterson, 2009; Cooney, 1985; Raymond, 1997; Son, 2008). In particular, teachers in Son’s 

study of enacting CDTs who did not use CDTs in their classroom explained that they felt they 

had limited time to cover the content and that CDTs would take too much time. Specific to the 

enactment of CDTs in the classroom, Henningsen and Stein (1997) reported that time allocated 

to work on tasks (either too much or too little) was a common reason for decline in cognitive 

demand of high-level tasks. Although teachers generally see a lack of time as the primary 

constraint, too much time was also a reason for decline in cognitive demand in Henningsen and 

Stein’s study. Hence, it seems that sufficient time needs to be allocated for work on CDTs and 

that time needs to be carefully managed to maintain the cognitive demand of high-level tasks. 

Class size. Another contextual factor that appears to be an important consideration in 

teachers’ enactment of CDTs is the size of the class (e.g., the number of students in the class). 

Rousseau and Powell (2005) studied four secondary teachers’ mathematics reform efforts and 

found that the teachers mentioned the size of their classes as a reason why enacting CDTs was 

difficult. Teachers who had large classes explained that they did not engage students in 

collaborative activity because that type of activity would be difficult to manage with a large 

class. Productive learning opportunities for students with challenging tasks often involve 

students working in groups (E. G. Cohen, 1994). The large number of students in the classroom 

makes this type of group interactive activity more difficult, possibly due to space constraints or 

the challenge of keeping all groups engaged. Although the size of the class does not necessarily 

prohibit the enactment of CDTs in the classroom, it is likely to make it more challenging to do 

so. 

Student characteristics. Students are crucial partners in the enactment of CDTs. As 

described above, there are important aspects of teachers’ knowledge and beliefs that might be 
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related to the enactment of CDTs, and the specific relationships between teachers’ knowledge, 

beliefs, and practice will depend on the individual students in the class. Also, there is 

considerable evidence that teachers perceive students as having a great impact on their 

instructional practices. Several studies suggest that there is a relationship between students’ 

background knowledge or the ability level of the class and teachers’ instructional practice 

(Anderson et al., 2005; Goos et al., 2007; McGinnis et al., 2004; Opdenakker & Van Damme, 

2006; Son, 2008; Yun-peng et al., 2006). One study suggests that the amount of student mobility 

and absenteeism is related to teachers’ instructional practice (Rousseau & Powell, 2005). Lastly, 

a number of studies describe students’ expectations as influential (Cooney, 1985; Herbel-

Eisenmann et al., 2006; McGinnis et al., 2004; Sullivan & Leder, 1992). The inclusion of student 

characteristics in the list of promising factors to investigate should not be construed as implying 

that enacting CDTs is only possible with certain students. CDTs are appropriate for students with 

different levels of background knowledge (Zohar & Dori, 2003); yet, the challenges associated 

with and resources necessary for successful enactment might vary depending upon the individual 

students in the class (Stein et al., 1996). Therefore, in attempting to understand teachers’ 

enactment of CDTs across a variety of contexts, it will be important to consider the 

characteristics of the students in the class. 

Departmental culture. I define departmental culture to be the norms and attitudes of the 

mathematics colleagues with whom teachers work. Several studies have found that the culture of 

the mathematics department has an impact on teachers’ instructional practice (Manouchehri & 

Goodman, 1998; McGinnis et al., 2004; Stodolsky & Grossman, 2000). For example, Stodolsky 

and Grossman (2000) combined case study and survey data to study teachers who worked in 

schools with changing student populations and found that if colleagues are generally resistant to 
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changing their instructional practices, then it may be more difficult for individual teachers to 

implement new practices. Similarly, if the other teachers in the school do not teach in a way that 

is consistent with a teacher’s practice, then that teacher may feel pressure to adjust her practice to 

match those of her colleagues (McGinnis et al., 2004). These pressures could have an impact on 

both teachers’ selection of CDTs and maintenance of the cognitive demand of those tasks. With 

regard to selection, if the mathematics teachers in the school generally select low cognitive 

demand tasks then there might be normative pressure for all teachers to do the same (Bidwell & 

Yasumoto, 1999). Similarly, if the norm in the school is to use CDTs but teach in ways that 

decrease the cognitive demand of tasks as they are implemented, then a teacher might conform to 

those pressures and decrease the cognitive demand. Hence, if a teacher’s colleagues are generally 

not attempting to enact CDTs, then that teacher could find it challenging to select high cognitive 

demand tasks and maintain the cognitive demand of those tasks in her classroom.  

School leader expectations. Another contextual factor that is likely to have an impact on 

teachers’ practice is school leader expectations for instructional practice. First, there is evidence 

that school leaders’ instructional leadership is critical to teachers’ instructional improvement 

(Bryk, Sebring, Allensworth, Luppesco, & Easton, 2010). For example, school leaders might 

respond to the NCLB requirements by expecting teachers to develop high quality instruction or 

by expecting teachers to engage in test preparation. These different expectations for teachers’ 

instructional practice might have implications for their practice itself. Based on the evidence 

below, there are some signs that if school leaders’ expectations include the enactment of CDTs, 

then teachers are more likely to select high cognitive demand tasks and maintain the cognitive 

demand of those tasks. 
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Several studies within the broad literature review identified the support from or 

expectations of the principal—the primary school leader—as a factor that influences teachers’ 

instructional practice (Anderson et al., 2005; Manouchehri & Goodman, 1998; Philipp et al., 

1994). Surprisingly, this factor was only investigated in three studies that qualified for the 

review. It is important to note that other studies that did not meet the review criteria have 

investigated the influence of principal support and expectations on teachers’ practice or student 

achievement (Quinn, 2002; Robinson, Lloyd, & Rowe, 2008; Stein & Nelson, 2003; Trenkamp, 

2007). These studies typically did not meet the review criteria because they assessed teachers’ 

instructional practice via teacher survey rather than classroom observation. There is some 

evidence that if expectations from the principal are aligned with reform efforts, then those reform 

efforts are more effective (Coburn, 2005). Hence, in order for principals’ expectations to more 

directly influence teachers’ enactment of CDTs in the classroom, those expectations might need 

to specifically include the enactment of CDTs. Also, as mentioned above, schools leaders can 

buffer the influence of other external pressures. For example, the pressures of accountability 

(Barraugh, 2011; McGinnis et al., 2004; Rousseau & Powell, 2005; Son, 2008; Yun-peng et al., 

2006) and parental expectations (Herbel-Eisenmann et al., 2006; McGinnis et al., 2004) were 

both identified as factors influencing teachers’ instructional practice in the literature review. By 

clarifying expectations for teachers to enact CDTs in the face of testing pressures and 

communicate about those expectations with parents, school leaders can help to buffer the 

external pressures and support teachers’ enactment of CDTs. In sum, there is some suggestion 

that if school leaders’ expectations include the enactment of CDTs then teachers might be more 

likely to select high cognitive demand tasks and maintain the cognitive demand of those tasks.  
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Curriculum. The term curriculum has many different meanings. Recall that I use the 

term curriculum to mean the adopted curriculum and/or supplementary materials that a teacher 

uses in the classroom. In the following paragraphs I describe the evidence indicating that the 

more the curriculum is specifically designed to support teachers’ enactment of CDTs, the more 

likely teachers might be to select high-level tasks and maintain the cognitive demand of those 

tasks. 

A handful of studies within the broad literature review have concluded that 

straightforward curriculum-related characteristics such as the type of adopted curriculum (e.g., 

inquiry-oriented or traditional) (Barraugh, 2011; Herbel-Eisenmann et al., 2006; McGinnis et al., 

2004; Rousseau & Powell, 2005; Son, 2008) and teachers reliance on the adopted curriculum (or 

use of supplementary resources) (Lambdin & Preston, 1995; Manouchehri & Goodman, 2000; 

Son, 2008) are related to teachers’ instructional practice. These studies suggest that the more 

teachers have access to materials with high cognitive demand tasks as part of either the adopted 

curriculum or supplementary materials, the more likely they are to provide cognitively 

challenging learning opportunities for students. Therefore, some studies suggest that an 

important first step in supporting teachers’ enactment of CDTs might be to provide them with 

curriculum materials containing CDTs. 

As noted above, findings from the studies of factors related to the enactment of CDTs are 

less definitive: Son’s (2008) study suggests that the type of textbook (inquiry-oriented or 

traditional) was related to enactment of CDTs, while Boston and Smith (2009) expected but did 

not find the same result. In the case of the Boston and Smith study, they characterized the type of 

curriculum adopted by the school district as either inquiry-oriented or traditional. There is 

evidence that teachers do not necessarily use the school or district-adopted curriculum in their 
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classrooms (Freeman & Porter, 1989). Hence, this characterization might not capture the nature 

of the materials that the teachers in their study actually used in their classrooms. On the other 

hand, Son characterized the textbook that was the source of tasks used in the classroom, 

regardless of whether tasks came from the adopted curriculum or supplementary materials. And 

Son found that type of textbook characterized in this way was related to teachers’ enactment of 

CDTs. This suggests that the nature of the materials from which teachers select tasks might have 

an impact on the extent to which they select high cognitive demand tasks. Further, their choice 

between the adopted curriculum and supplementary materials might be related to their beliefs 

about mathematics and teaching and learning mathematics (Remillard, 1999). Although it is 

important to consider the nature of the adopted curriculum as a critical resource for teachers’ 

enactment of CDTs, it is also essential to consider any supplementary materials that they actually 

use as well.  

Several studies in the broad review go beyond the availability of challenging tasks in the 

curriculum to suggest that the nature of support for teachers provided by the curriculum is related 

to teachers’ instructional practice (Diaz, 2004; Remillard, 1999; Stein & Kaufman, 2010; Wang 

& Paine, 2003). Supports within the curriculum might include ties to the state standards or 

examples of student responses. Wang and Paine (2003) studied the development of a beginning 

Chinese middle-school teacher and found that the deliberately supportive structure of Chinese 

curriculum materials (e.g., well-articulated teaching objectives) supported her implementation of 

that curriculum.  

Consistent with these findings, Stein and Kaufman found a relationship between the 

nature of support and learning opportunities within the curriculum and the enactment of CDTs. 

They studied teachers’ use of two different inquiry-oriented elementary mathematics curricula 
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and found that one of the curricula provided more support for teachers that resulted in higher 

quality enactment of CDTs. They defined support as “additional information written specifically 

for teachers in order to help them better understand and teach the lessons” (2010, p.666). For 

example, the more supportive curriculum that they studied gave teachers additional information 

(e.g., clear objectives, details about student thinking) to help them understand the big 

mathematical ideas (i.e., concepts or ideas that are the focus of the lesson). An understanding of 

the big mathematical idea can help teachers understand the overall goal for the lesson and how 

the different aspects of the task serve that goal, which might support them in maintaining the 

cognitive demand of tasks. Therefore, there is some indication that the greater the supports 

provided by the curriculum to enact CDTs, the more likely teachers might be to select high-level 

tasks and maintain the cognitive demand of those tasks. 

Learning opportunities through interactions. Opportunities to learn on the job include 

formal PD as well as informal learning opportunities through conversations with colleagues and 

while working in the classroom with students. I follow Kaufman and Stein (2010) by defining 

define learning opportunities through interactions with others to include both formal PD and 

informal interactions with colleagues, but exclude work in the classroom with students. I exclude 

work in the classroom with students because those learning opportunities are likely to require 

design of a different nature. In the following paragraphs I summarize the evidence that specific 

types of interactions with colleagues might support teachers to improve their enactment of CDTs 

in the classroom. 

First, there are strong a priori theoretical reasons to believe that certain types of 

interactions with colleagues might to support teachers’ development of enacting CDTs. In 

particular, studies of professional learning indicate that co-participation in activities that 
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approximate the targeted practices with more accomplished others is critical for the learning of 

complex practices (Bruner, 1996; Lave & Wenger, 1991). Further, these activities typically occur 

over an extended period of time (Lave & Wenger, 1991). Therefore, there are theoretical grounds 

for the notion that interactions with colleagues that are ongoing in nature, involve co-

participation in activities that are related to the enactment of CDTs, and involve colleagues who 

are relatively accomplished in enacting CDTs, might support teachers’ in enacting CDTs.  

In addition to theoretical grounds, there is empirical evidence that interactions with 

colleagues in several different settings can support teachers in developing their instructional 

practice, and in one case their enactment of CDTs. Reviewing the empirical evidence in light of 

the theories of professional learning helps to clarify what might be potentially productive 

interactions with colleagues.  

There is evidence that PD can support teachers’ development, and that ongoing PD 

focused on the enactment of CDTs can influence teachers’ enactment of CDTs. First, the 

findings of several studies from the broad review suggest that participation in formal PD is 

related to change in teachers’ instructional practice (Barton, 2005; Remillard, 1999; Yun-peng et 

al., 2006). Others go further to emphasize the content of the PD and suggest that PD focused on 

supporting teachers’ development of particular types of knowledge, beliefs, and practice is likely 

to result in related changes in teachers’ instructional practice (e.g., Carpenter et al., 1989; 

Fennema et al., 1996; Turner et al., 2011). As described above, Boston and Smith (2009) found 

that ongoing PD focused on the enactment of CDTs had an impact on participants’ enactment of 

CDTs in the classroom. The PD program they studied was theoretically sound in that it was 

ongoing and involved activities that approximated the enactment of CDTs with accomplished 

peers and mathematics education experts. However, while teachers’ enactment of CDTs 
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generally improved, they did not all enact CDTs successfully after participating in PD. 

Therefore, that there is still more to be understood about designing effective PD for supporting 

teachers’ enactment of CDTs.  

Within the broad review, there is some evidence that work with expert colleagues, 

collaborative meetings and one-on-one interactions with colleagues can all support changes in 

teachers’ instructional practice. However, there has been little simultaneous attention to expertise 

and interactions. For example, some studies suggest the importance of access to colleagues in the 

school with mathematics instructional expertise (Manouchehri & Goodman, 1998), often in the 

form of mathematics coaching. Other studies have found relationships between change in 

teachers’ instructional practice and both teacher collaboration through meeting together  

(especially about the curriculum) (D. K. Cohen, 1990; Diaz, 2004; Smith, 2000; Wang & Paine, 

2003) and peer coaching (Bruce & Ross, 2008). Despite the evidence from the professional 

learning literature suggesting that co-participation with relatively accomplished colleagues is an 

important criterion for the productivity of interactions, Diaz’s (2004) study was the only study in 

the broad review that investigated interactions with experts and collaboration with colleagues. 

Diaz’s dissertation study included two components: 1) a study of four second grade teachers’ use 

of curriculum materials, and 2) a cross-site comparison of five studies—her findings and studies 

by Collopy (2003) Lloyd and Behm (2002), Remillard (2000), and Schneider and Krajcik (2002). 

Diaz’s findings from the cross-site comparison suggest both the importance of interactions with 

experts and teacher meetings. However, she analyzed them as two separate supports and did not 

investigate whether expertise is important in teacher collaboration.  

In addition, none of these studies of settings outside of formal PD have focused on the 

activities that occur within the interactions, which is an important aspect of the theoretical 
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grounding for the potential productivity of such interactions. Further, there is some empirical 

evidence that the occurrence of interactions with colleagues is not necessarily sufficient to 

support teacher learning unless the interactions focus on problems of practice (Horn & Little, 

2010). Given the productivity of the interactions described in the studies above, it is likely that 

the interactions focused on problems of practice, despite the lack of emphasis on the content of 

interactions within the studies. Therefore, there is theoretical and empirical evidence suggesting 

that interactions with colleagues can provide valuable learning opportunities for teachers, 

assuming that they involve ongoing interactions centered on the practice of enacting CDTs with 

relatively accomplished colleagues.  

Accounting for Contingencies Associated with Factors Influencing the Enactment of CDTs 

Beyond generating a list of promising factors to investigate, I also set out to understand 

an effective approach for studying these factors on a large scale. In conducting the review, I 

found that most of the large-scale studies treat the factors I have discussed as if they are related 

to teacher practice in straightforward ways, while the small-scale studies frequently describe 

contingencies associated with the ways that particular factors influence practice. For example, 

large-scale studies have investigated relationships between teachers’ knowledge and their 

practice while a small-scale study might describe how the expected relationship between 

teachers’ knowledge and their practice does not appear to hold for a particular teacher under 

particular circumstances. Despite this trend, it is necessary and possible to consider 

contingencies when conducting large-scale studies.  

We need to investigate more precisely how factors are related to the enactment of CDTs 

on a large scale by considering factors and associated contingencies. I draw on information about 
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contingencies associated with particular relationships from small-scale studies within the broad 

review to suggest contingencies that should be investigated in future large-scale studies of the 

enactment of CDTs. In this section, I illustrate this approach for two different categories of 

factors from the set of factors to investigate: teachers’ knowledge and teachers’ beliefs. One 

reason I focus on contingencies associated with teachers’ knowledge and beliefs in this paper is 

because, of all of the factors, they have received the most attention in both small- and large-scale 

studies. Because contextual factors have received much less attention in the literature, it will be 

much harder to develop conjectures about contingencies. 

Contingencies Associated with Mathematics Teacher Knowledge 

Despite all of the evidence that MKT is integral to enacting CDTs, there is evidence from 

small-scale studies that the relationship between MKT and the enactment of such tasks has some 

associated contingencies. I focus on three key contingencies in the relationship between MKT 

and the enactment of CDTs: beliefs about teaching and learning math, beliefs about students’ 

capabilities, and curriculum supports.  

First, there is evidence that that the relationship between MKT and instructional practice 

is contingent on teachers’ beliefs about teaching and learning mathematics (Ball, 1991; 

Schoenfeld, 2011; Turner et al., 2011). The studies signaling this contingency suggest that an 

inquiry-orientation in teachers’ beliefs about teaching and learning mathematics is necessary for 

teachers who have developed sufficient mathematical knowledge for teaching to support 

conceptually-rich mathematical activity in the classroom. In particular, several studies suggest 

that beliefs about teaching and learning mathematics that are incongruent with inquiry-oriented 

practice can limit teachers’ ability to enact mathematical tasks in conceptual ways. Schoenfeld 
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(2011) demonstrated that one teacher who seemed to have developed relatively sophisticated 

mathematical knowledge but his belief that "what he said should be an elaboration or 

clarification of what a student had said," (p.82) limited the conceptual resources within the 

classroom. Ball (1991) described a similar phenomenon and argued that teachers’ beliefs about 

teaching and learning mathematics might interfere with whether or not they draw on their 

mathematical knowledge. 

With regard to more specific beliefs about learning mathematics, there is also evidence 

that the relationship between teacher knowledge and the enactment of CDTs might be contingent 

on teachers’ beliefs about students’ capabilities. Turner, Warzon, and Christensen (2011) studied 

changes in three middle school mathematics teachers’ beliefs about motivation and instructional 

practices, and found that one teacher with a high level of mathematical knowledge for teaching 

did not enact conceptually-rich mathematical activity in the classroom and held negative views 

of students’ abilities. In other words, she did not believe that her students were motivated or 

capable of being motivated to engage in conceptually-challenging mathematical tasks. Hence, 

unproductive beliefs about students’ mathematical capabilities limited her instructional practice 

even though her mathematical knowledge for teaching was deep. This finding indicates that the 

relationship between mathematics teacher knowledge and the enactment of CDTs might be 

contingent on productive beliefs about students’ capabilities. 

The relationship between mathematics teacher knowledge and the enactment of CDTs is 

likely to be contingent on the supports available within the curriculum used by teachers. One 

dissertation study of factors influencing seven upper elementary grade teachers’ mathematics 

instruction found a positive effect of supportive curricular materials for teachers with low levels 

of MKT (Barraugh, 2011). The author suggests that in cases where teachers have less developed 
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MKT, by using well-designed, reform-oriented curricular materials, teachers may be supported 

to enact higher quality instructional practices than would otherwise be expected given their 

MKT. Therefore, there is some indication that the influence of MKT on the enactment of high 

cognitive demand tasks is contingent on supports available through the curriculum. 

No studies have investigated contingencies associated with the relationship between 

knowledge of students’ thinking and teachers’ instructional practice. Yet, it is plausible that the 

same contingencies hypothesized for MKT and the enactment of CDTs also occur for knowledge 

of students’ thinking.  

Contingencies Associated with Mathematics Teacher Beliefs 

Although there is evidence that aligned beliefs about mathematics and beliefs about 

teaching and learning mathematics might be related to the enactment of CDTs, there may be 

several key contingencies associated with these relationships. Those contingencies include: (a) 

teachers’ knowledge, (b) curriculum supports, and (c) student characteristics.  

First, the relationship between mathematics teachers’ beliefs and the enactment of CDTs 

is likely to be contingent on aspects of teachers’ mathematical knowledge for teaching. Ball 

(1991) describes mathematical knowledge as a “critical part of the resources available which 

comprise the realm of pedagogical possibility in teaching mathematics" (p.36). Putnam and 

colleagues (1992) studied the beliefs and mathematics instructional practices of four fifth grade 

teachers and reported a similar finding: they describe the cases of two teachers who, despite their 

inquiry-oriented beliefs about teaching mathematics, were limited by their MKT. In these 

situations, it appears that a sufficient level of MKT might be necessary for the relationship 
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between mathematics teachers’ beliefs about mathematics or beliefs teaching and learning 

mathematics and the enactment of CDTs to hold. 

Second, the relationship between mathematics teachers’ beliefs about teaching and 

learning mathematics and the enactment of CDTs might be contingent on curriculum supports. In 

particular, based on Boston and Smith’s (2009) and Stein and Kaufman’s (2010) findings, it 

seems that the nature of curriculum materials (e.g., whether they are inquiry-oriented or 

traditional) might be less consequential, and that it is really only the ways in which teachers use 

those curriculum materials (guided by the supports within the curriculum materials) that has an 

impact on the enactment of CDTs. Specifically, curriculum materials that support teachers to 

focus on the big ideas in tasks or lessons might increase the likelihood that teachers will enact 

CDTs (Stein & Kaufman, 2010). Therefore, it is likely that the relationship between teachers’ 

mathematics-related beliefs and enactment of CDTs is contingent on the use of supportive 

curriculum materials. While this contingency on the relationship between teachers’ beliefs and 

the enactment of CDTs has not been investigated, there is one study that provides initial support 

for this conjecture. Remillard (1999) found that when the curriculum did not address the less 

visible aspects of teaching (e.g., deciding what tasks to pose to students), teachers were left to 

interpret how that work should be carried out. In other words, without explicit support from the 

curriculum, beliefs about teaching and learning were increasingly related to teachers’ 

instructional practice. The following relationship therefore might hold for enactment of CDTs: if 

the curriculum materials are not supportive of the enactment of CDTs then the relationship 

between mathematics-related beliefs and teachers’ enactment of CDTs is likely to be weaker.  

Lastly, one critical contingency associated with the relationship between beliefs about 

students’ mathematical capabilities and enactment of CDTs is student characteristics. In 



56 
 

particular, unproductive beliefs about specific students’ mathematical capabilities only apply in 

cases when those specific students are present in the classroom. Although somewhat self-evident, 

it is important to account for this contingency in future large-scale studies.  

Five studies have identified how the relationship between teachers’ beliefs about students 

and teachers’ instructional practice is contingent on characteristics of the students in the 

classroom. First, three studies suggest that teachers’ beliefs vary for different groups of students 

(Anderson et al., 2005; Beswick, 2005; Cross, 2009). Next, Sztajn (2003) conducted case studies 

of two elementary teachers’ implementation of reform recommendations. She found that both 

teachers conceptualized students’ capabilities in terms of a deficit model, attributing a lack of 

success for students from certain socioeconomic groups to cultural or community characteristics. 

Because the two teachers taught students with different socioeconomic backgrounds, their beliefs 

influenced their teaching in different ways. Both teachers believed that students need basic skills 

in order to succeed, but because one teacher taught students who came from higher 

socioeconomic backgrounds and believed that those students could gain some of those skills at 

home, she did not feel the need to place such an emphasis on basic skills in the classroom, and 

therefore, had time for more mathematically rich activities. This was not the case for the other 

teacher. Although the two teachers’ perceptions of students’ needs were similar, the teachers’ 

practices differed due to the relevance of those perceptions with the students they were teaching. 

Turner and colleagues (2011) similarly suggest that teachers’ beliefs about students capabilities 

may have more of an impact on their practice in schools with low-achieving (and often high-

minority, low-SES) populations. Therefore, there is some indication that the relationship between 

beliefs about students’ mathematical capabilities and the enactment of CDTs may be contingent 

on the students in the classroom. 
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In sum, I have suggested several different contingencies associated with the relationships 

between mathematics teachers’ knowledge and beliefs and the enactment of CDTs. This same 

approach of building on contingencies identified with small-scale studies and attending to the 

situated nature of these relationships should be followed for the other factors when conducting 

large-scale investigations. 

Discussion 

In this paper, I have attempted to synthesize the findings of existing research related to 

the enactment of CDTs in order to suggest directions for future research. I have proposed a set of 

potentially productive teacher and contextual factors to study and have suggested an approach 

for studying those factors on a large scale. 

 I have defined the enactment of CDTs as involving: 1) selecting such tasks; and 2) 

maintaining the cognitive demand of those tasks during classroom implementation. There is 

considerable evidence that enacting CDTs is very challenging work. Hence, teachers need 

significant support to do so. In order to understand the appropriate supports for teachers, we need 

to understand how particular teacher and contextual factors influence the enactment of CDTs.  

All five of the studies that examined the enactment of CDTs from this perspective were 

conducted recently (Boston & Smith, 2009; Charalambous, 2010; Choppin, 2011; Son, 2008; 

Stein & Kaufman, 2010). The methodological approaches and findings from the studies are 

mixed and inconclusive. For example, Charalambous (2010) examined the instructional practices 

of two elementary teachers and described how the enactment of CDTs was related to the 

teachers’ mathematical knowledge for teaching, but Stein and Kaufman (2010) studied a larger 

sample of 48 elementary teachers and found that teachers’ MKT was not related to their 
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enactment of CDTs. Similarly, results were mixed for the influence of curricular materials. I 

argue that these mixed findings are likely related to differences in measurement of the constructs 

of interest and a lack of attention to the contingencies associated with the relationships. Several 

factors have only been investigated in one study at this point so there has not been an opportunity 

for vetting the findings, but they appear to be promising factors to continue to explore. Those 

factors include: knowledge of students’ thinking (Choppin, 2011), conceptions of knowing and 

doing mathematics (i.e., beliefs about teaching and learning mathematics), and teacher 

perceptions about student achievement (i.e., beliefs about students’ mathematical capabilities) 

(Son, 2008).  

Given the importance of supporting the enactment of CDTs at scale, we need to continue 

to study the influence of teacher and contextual factors on the enactment of CDTs. As an attempt 

to build on these five existing studies I have focused on two major goals: 1) identifying 

potentially important teacher and contextual factors that can be related to processes of enacting 

CDTs, and 2) describing an effective approach for studying these factors on a large scale.  

In service of the first goal, I conducted a broad literature review of factors related to the 

nature of students’ mathematical activity which identified a set of promising factors to 

investigate. I drew on evidence from the broad literature review and on an analysis of the 

processes associated with enacting CDTs to justify each potential factor’s inclusion in the list of 

promising factors. Promising teacher factors included: (a) mathematical knowledge for teaching 

(including content knowledge and pedagogical content knowledge), (b) knowledge of students’ 

mathematical thinking, (c) beliefs about mathematics, (d) beliefs about teaching and learning 

mathematics, (e) beliefs about students’ capabilities, and (f) classroom management skills. 

Promising contextual factors included: (a) class time, (b) class size, (c) characteristics of 
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students, (d) departmental culture, (e) school leaders’ expectations for instructional 

improvement, (f) nature of the curricular materials, and (g) learning opportunities through 

interactions. The majority of the studies in the broad review focused on teacher factors and less 

attention has been given to contextual factors. More work is therefore needed on how contextual 

factors influence teachers’ instructional practice- in particular, the enactment of CDTs. Given 

that teachers’ work is situated in schools and districts and that there is considerable variation in 

those contexts, it is unreasonable to expect that we can understand the work of enacting CDTs at 

scale without considering the school and district contexts in which teachers work. 

With regard to the second goal of understanding an effective approach for studying the 

promising factors on a large scale, I drew on results from small-scale studies to identify possible 

contingencies to investigate in large-scale studies. In doing so, I identified several potentially 

important contingencies associated with the relationship between teachers’ knowledge and the 

enactment of CDTs: (a) beliefs about teaching and learning mathematics, (b) beliefs about 

students’ mathematical capabilities, and (c) curriculum supports. Similarly, potentially important 

contingencies associated with the relationships between mathematics teachers’ beliefs and the 

enactment of CDTs include: (a) teachers’ knowledge, (b) curriculum supports, and (c) student 

characteristics. Recall that these hypothesized contingencies are based on small-scale studies and 

that relatively few small-scale studies have investigated relationships between contextual factors 

and teachers’ instructional practice. Therefore, there is a pressing need for small-scale studies 

that investigate how contextual factors influence teachers’ instructional practices.  

Given the set of promising teacher and contextual factors along with potential 

contingencies between some of those factors and the enactment of CDTs, the next steps are to 

build on existing work to develop reliable measures of these different factors and to design large-
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scale studies to explore the important relationships. Once we have an understanding of how 

different factors influence the enactment of CDTs, we will be able to design and adjust supports 

for teachers as they work to enact CDTs, and thus promote efforts for all students to learn 

mathematics. 
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CHAPTER III 
 
 

MIDDLE SCHOOL MATHEMATICS TEACHERS’ ENACTMENT OF COGNITIVELY 
DEMANDING TASKS: INVESTIGATING LINKS TO TEACHERS’ MATHEMATICAL 

KNOWLEDGE FOR TEACHING AND BELIEFS ABOUT TEACHING AND LEARNING 
MATHEMATICS 

 
 

Introduction 
 

New reform goals and standards for students’ mathematical learning have been put in 

place over the past two decades (e.g., see National Council of Teachers of Mathematics 

[NCTM], 1989, 2000). These goals for students’ mathematical learning also imply new 

expectations for mathematics teachers’ work in their classrooms. The Curriculum and 

Evaluation Standards and Principles and Standards for School Mathematics documents 

published by the National Council of Teachers of Mathematics (1989, 2000) reflect a consensus 

within the mathematics education research community for comprehensive reforms to traditional 

mathematics instruction. Two fundamental aspects of high quality mathematics instruction 

proposed in these documents are the use of challenging mathematical tasks and discussions of 

students’ solutions to such tasks that focus on key mathematical ideas. These aspects have clear 

implications for the role of the teacher (Hiebert et al., 1997). For example, the teacher is 

expected to choose and set up the challenging tasks for students and to orchestrate productive 

discourse within the classroom (Stein et al., 2008).  

The level of challenge of the tasks students solve and discuss is the foundation for 

students’ learning opportunities. For example, it would require considerable teacher expertise to 

provide conceptual learning opportunities for students based on a task that requires students to 

reproduce memorized facts. On the other hand, cognitively demanding, or challenging, tasks are 

much more likely to set the stage for conceptual conversations about mathematics. The use of 
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cognitively demanding tasks (CDTs) is a critical aspect of high-quality mathematics instruction 

that requires further investigation.  

Developing instruction centered around CDTs  requires considerable learning on the part 

of most U.S. teachers, requiring changes in knowledge and beliefs along with related changes in 

practice (Ball & Cohen, 1999; Kazemi & Franke, 2004; Stein et al., 1999; C. L. Thompson & 

Zeuli, 1999). More generally, in order to improve mathematics teachers’ instructional practices, 

we need to understand more about what influences different aspects of teachers’ instructional 

practice. 

One way to better understand teachers’ instructional practice is to examine actions that 

occur in the classroom and try to discern reasons for those actions. For example, Stein, Grover, 

and Henningsen (1996) found that teachers changed the nature of tasks by stressing more or less 

challenging aspects of the tasks. While this information helps explicate how teachers’ actions 

change the cognitive demand of tasks, it is not clear why teachers might stress different aspects 

of the tasks or engage in other actions. Further, knowing how particular actions influence the 

cognitive demand of tasks in the classroom allows us to recommend or discourage particular 

teacher actions, but it does not allow us to attend to underlying supports for the development of 

those actions. In order to understand how to support teachers to enact instruction centered on 

CDTs, we need to study what influences such actions and decisions. In particular, we need to 

look beyond actions that occur in the classroom to teacher and school context factors (e.g., 

teachers’ knowledge and beliefs, interactions with colleagues, principal expectations, and formal 

professional development) to examine what influences teachers’ practice.  In this study, I 

investigate the following research questions: 
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1) How are mathematics teachers’ mathematical knowledge for teaching and beliefs 

about teaching and learning mathematics related to the cognitive demand of the tasks 

they select? 

2) How are mathematics teachers’ mathematical knowledge for teaching and beliefs 

about teaching and learning mathematics related to maintenance of the cognitive 

demand of high-level tasks? 

Conceptual Framework 

The cognitive demand of a task refers to “the cognitive processes students are required to 

use in accomplishing it” (Doyle, 1988, p. 170). Stein, Grover, and Henningsen (1996) classified 

mathematical tasks into those with low and high cognitive demand. Mathematical tasks with low 

cognitive demand require students to memorize or reproduce facts, or perform relatively routine 

procedures without making connections to the underlying mathematical ideas. Tasks with high 

cognitive demand (or CDTs) require students to make connections to the underlying 

mathematical ideas. In addition, students are asked to engage in disciplinary activities of 

explanation, justification, and generalization, or to use procedures to solve tasks that are open 

with regard to which procedures to use. While implied in the definition, it is important to 

emphasize that the distinctions between high and low cognitive demand are relative to students’ 

current understanding and, thus, are situation-dependent. 

There is evidence that CDTs can provide critical learning opportunities for all students. 

Stein and Lane (1996) found that the use of tasks with high cognitive demand was related to 

greater student gains on an assessment requiring high levels of mathematical thinking and 

reasoning. In particular, the greatest gains occurred when teachers assigned tasks that were 



64 
 

initially of high cognitive demand, and teachers and students maintained the cognitive demand 

throughout the lesson, rather than engaging the students in a procedural activity. Further, there is 

evidence that CDTs afford valuable learning opportunities for all students, not just previously 

high-achieving students (Zohar & Dori, 2003). The enactment of CDTs in the classroom 

therefore appears to be important in supporting all students’ learning.  

There is also evidence that in classrooms in the U.S., CDTs are not often posed, and 

when they are posed the cognitive demand of the tasks are not maintained. In attempting to 

understand more about changes in cognitive demand during a lesson, Stein, Grover, and 

Henningsen (1996) documented the initial cognitive demand of mathematical tasks as written or 

verbally posed to students and examined whether teachers and students maintained, increased, or 

decreased the demand in different phases of a math lesson. They found that in classrooms where 

tasks with the potential for high levels of cognitive demand were used, teachers and/or students 

often decreased the cognitive demand during implementation of the tasks. The results from the 

1999 TIMSS video study are consistent with those of Stein and colleagues in that they suggest 

that the mathematical activity in U.S. middle school classrooms tends to be procedural in nature, 

and when teachers do select high-level tasks they often implement them in low-level ways 

(Hiebert et al., 2003; Hiebert et al., 2005). 

The Math Task Framework proposed by Stein, Grover, and Henningsen (1996) is useful 

when analyzing how teachers enact tasks. The Framework divides a lesson up into phases and 

transitions between phases of the lesson (see Figure 1). The squares denote different phases of 

the lesson and flow from left to right. In the subsequent paragraphs, I describe how my definition 

of the enactment of CDTs maps onto the Math Task Framework. In this analysis, I focus on the 

cognitive demand of the written task as selected from the curricular materials and then the 
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changes in the cognitive demand from how it is written to the implementation by the teacher and 

students (denoted in the second and third squares). Both of these aspects of cognitive demand 

influence whether students engage in cognitively demanding mathematical activity in the 

classroom.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Modified “Math Tasks Framework” (Stein et al., 1996, p.459) 

 

First, teachers select a task from the curriculum materials (in Figure 1, the leftmost 

square). In selecting a task to pose to students, teachers might choose to use a task directly from 

the curriculum as suggested by the district pacing guide, use other tasks from the curriculum, 

adjust tasks from the curriculum, use tasks from supplementary materials, or create their own 

tasks. In doing any one of these options, the teacher may have to balance a range of issues 

including: teaching goals, class time, knowledge of the students, what he or she feels capable of, 

and others’ expectations. For example, a teacher who only has 45 minutes for each class period 

might decide that she does not have enough class time to engage students in a high cognitive 

demand task. It is unlikely that teachers consider each of these concerns individually, but instead 
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they weigh them against each other when deciding which to prioritize and how they fit with their 

goals for the class period (Remillard, 1999). The cognitive demand of the selected task sets the 

stage for the cognitive demand over the course of the lesson.  

Once a CDT has been selected, maintenance of the cognitive demand concerns both the 

task set-up and implementation (in Figure 1, the second and third squares). In the first of those 

phases, the task is set up for the students in the classroom (in Figure 1, the second square from 

the left). In other words, the teacher explains what students are expected to do to complete the 

task. During this phase a teacher can alter the cognitive demand of the task by clarifying or 

changing the expectations set out in the written task. For example, a teacher might tell students to 

complete only part of the written task or might go through a series of examples that change the 

nature of the task in which students will engage.  

The next phase (in Figure 1, the third square from the left) is the implementation of the 

task by the students in the classroom. This phase includes all of the remaining class time spent on 

the task. For example, it might include both student work time and a concluding whole-class 

discussion. The cognitive demand of the task can also change within this phase of instruction, 

depending on teacher and student actions as they carry out the task. There are several reasons 

why cognitive demand might decrease: 1) the teachers’ expectations for students’ work might be 

unclear, 2) the classroom environment might not be conducive to engaging in challenging 

mathematical activity (e.g., poor classroom management, unproductive classroom norms), 3) the 

task might not be appropriate for students given their current mathematical knowledge, or 4) the 

appropriate level of scaffolding or teacher support for students to productively engage in high-

level ways might not occur (Henningsen & Stein, 1997; Stein et al., 1996). Given the range of 
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the reasons why cognitive demand might decrease, it is clear that maintaining the cognitive 

demand of CDTs is quite demanding. 

 In the following section, I describe the existing research on how teachers’ knowledge and 

beliefs are related to their enactment of CDTs and describe the particular aspects of teachers’ 

knowledge and beliefs that I investigate in this study. 

Mathematical Knowledge for Teaching and Beliefs about Teaching and Learning 
Mathematics  

The question of which aspects of teachers’ knowledge and beliefs are related to teachers’ 

enactment of CDTs has just begun to be investigated. In recent years, two studies have 

investigated how mathematics teachers’ knowledge is related to their enactment of CDTs, with 

conflicting results. Both of these studies examined one aspect of mathematics teachers’ 

knowledge: mathematical knowledge for teaching. Within the mathematics education 

community, mathematical knowledge for teaching is generally conceptualized as a combination 

of subject matter knowledge and pedagogical content knowledge (PCK) (Hill, Ball, et al., 2008). 

In the view of Hill and colleagues, subject matter knowledge is conceptual knowledge of 

mathematics that is necessary for solving mathematics problems but that is not specific to the 

work of teaching. On the other hand, PCK is specific to the work of teaching. Shulman (1986, 

1987) introduced the notion of PCK and suggested that it “represents the blending of content and 

pedagogy into an understanding of how particular topics, problems, or issues are organized, 

represented, and adapted to the diverse interests and abilities of learners, and presented for 

instruction” (1987, p. 228). Hence, mathematical knowledge for teaching (MKT) goes beyond 

pure mathematical content knowledge to also include PCK for mathematics teachers.  
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Charalambous (2010) examined the relationship between teachers’ mathematical 

knowledge for teaching and changes in the cognitive demand over the course of a lesson for two 

elementary teachers who differed dramatically in their mathematical knowledge for teaching. He 

found that mathematical knowledge for teaching was related to maintenance of the cognitive 

demand of CDTs and as a result of his case analyses, he proposed several hypotheses about how 

high levels of mathematical knowledge for teaching are integral to the work of teaching. For 

example, his first hypothesis was that “strong mathematical knowledge for teaching supports 

teachers in using representations to attach meaning to mathematical procedures rather than to 

simply show answers” (Charalambous, 2010, p. 273). These hypotheses suggest mechanisms by 

which mathematical knowledge for teaching is integral to teacher practices.  

Instead of focusing only on mathematical knowledge for teaching, Stein and Kaufman 

(2010) focused on curricular materials and teacher capacity, conceptualized as teacher education, 

experience, professional development, and mathematical knowledge for teaching, as they related 

to inquiry-oriented elementary mathematics curriculum implementation (with one of three foci 

being maintaining high levels of cognitive demand). To investigate the enactment of CDTs, they 

created a total cognitive demand score that was the sum of the cognitive demand of the task as 

selected and as implemented. In particular, if high-level tasks were selected and the cognitive 

demand was maintained, then the total cognitive demand score would be at its maximum value. 

Although they expected that teacher knowledge, education, and experience would be related to 

curriculum implementation, they did not find any significant relationships between those teacher 

factors and instruction. In fact, they found that mathematical knowledge for teaching was not 

significantly related to the cognitive demand of the tasks in the classroom, directly contradicting 

Charalambous’ findings. This suggests that the relationship between mathematical knowledge 
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for teaching and the cognitive demand of mathematical tasks might not be straightforward, and 

should be explored further. 

 According to A. G. Thompson (1992) teachers’ beliefs about mathematics teaching 

include: “what a teacher considers to be desirable goals of the mathematics program, his or her 

own role in teaching, the students’ role, appropriate classroom activities, desirable instructional 

approaches and emphases, legitimate mathematical procedures, and acceptable outcomes of 

instruction” (p.135). Only one study has examined how teachers’ beliefs about teaching and 

learning mathematics are related to their enactment of CDTs. Son (2008) found that several 

aspects of teachers’ beliefs about teaching and learning mathematics were related to teachers’ 

enactment of CDTs.  

Son (2008) examined elementary teachers’ mathematics textbook use with an emphasis 

on the patterns of cognitive demand in their classrooms using survey data from 169 teachers, 

with observational data and artifacts from eight of those teachers. In the observational analysis 

Son focused on three different patterns of cognitive demand in the problems used from the 

textbook and the types of questions asked of the students over the course of the lesson: high-level 

problems to high-level questions, high-level problems to low-level questions, and low-level 

problems to low-level questions. This approach is similar to examining the changes in cognitive 

demand from the task as selected to the task as implemented. She found that teachers’ beliefs 

about teaching and learning mathematics were related to the cognitive demand patterns. Aspects 

of beliefs about teaching and learning mathematics that she named included conceptions of 

knowing and doing mathematics, goals for student learning, and perceptions about student 

achievement (described as “students’ diversity in terms of mathematics ability” (Son, 2008, 

p.219)). Another way to conceptualize perceptions about student achievement is as beliefs about 
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students’ mathematical capabilities (e.g., Stipek et al., 2001; Stodolsky & Grossman, 2000; A. G. 

Thompson, 1984). Son’s results give some indication that teachers’ beliefs about teaching and 

learning mathematics, and, specifically, beliefs about students’ mathematical capabilities are 

related to their enactment of CDTs, yet they are limited to elementary teachers’ described 

practices with regard to the enactment of CDTs, which she found to be inaccurate representations 

of teachers’ actual classroom practice. This leaves open the question of whether teachers’ beliefs 

about teaching and learning mathematics are related to their observed enactment of CDTs. 

One dimension of beliefs about teaching and learning mathematics that has not yet been 

investigated but might be integral to teachers’ enactment of CDTs is teachers’ beliefs about 

supporting struggling students (which is related to teachers’ beliefs about students’ mathematical 

capabilities). For example, some teachers believe that CDTs should be simplified for struggling 

students, while others believe that teachers should use CDTs with multiple entry-points to 

support struggling students. In fact, there is evidence that many teachers believe that high 

cognitive demand tasks are not appropriate for currently low-achieving students (Zohar, Degani, 

& Vaaknin, 2001). If we are interested in enabling all students to engage in cognitively 

demanding mathematical activity, then a particular set of beliefs about supporting students are 

more productive: the belief that struggling students should be supported to participate in rigorous 

mathematical activity. Hence, teachers’ beliefs about supports for struggling students is one 

aspect of beliefs about teaching and learning mathematics that might be integral to enacting 

CDTs, especially in large, urban districts where many of the students have been identified as 

“struggling.” 



71 
 

Contingencies Associated with Knowledge and Beliefs and the Enactment of CDTs 

The relationships between knowledge and beliefs and the enactment of CDTs are often 

more complex than the relationships assumed in simple regression analysis. In other words, the 

relationships between teachers’ knowledge and beliefs and the enactment of such tasks might 

have some associated contingencies. Further, the presence of unexamined contingencies could 

account for the mixed results in recent studies of how mathematical knowledge for teaching is 

related to the enactment of CDTs. As a part of this analysis, I draw on evidence from several 

small-scale studies suggesting one key set of contingencies: an interaction between mathematical 

knowledge for teaching and beliefs about teaching and learning math. Interactions between 

mathematical knowledge for teaching and beliefs about teaching and learning math can be 

interpreted in two different ways: (a) the relationship between mathematical knowledge for 

teaching and the enactment of CDTs is contingent on beliefs about teaching and learning 

mathematics, or (b) the relationship between beliefs about teaching and learning math and the 

enactment of CDTs is contingent on a teachers’ mathematical knowledge for teaching. Evidence 

from small-scale studies supports both of these interpretations.  

On the one hand, there is evidence that the relationship between mathematics teacher 

knowledge and the enactment of CDTs is contingent on teachers’ beliefs about teaching and 

learning mathematics (Ball, 1991; Schoenfeld, 2011; Turner et al., 2011). The studies indicating 

this contingency suggest that an inquiry-orientation in teachers’ beliefs about teaching and 

learning mathematics is necessary for teachers who have developed sufficient mathematical 

knowledge for teaching to support conceptually-rich mathematical activity in the classroom. In 

particular, several studies suggest that beliefs about teaching and learning mathematics can limit 

teachers’ ability to enact mathematical tasks in conceptual ways. Schoenfeld (2011) 
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demonstrated that for one teacher who seemed to have developed relatively sophisticated 

mathematical knowledge, his belief that "what he said should be an elaboration or clarification of 

what a student had said" (p.82) limited the nature of the mathematical activity in the classroom. 

Ball (1991) described a similar phenomenon and argued that teachers’ beliefs about teaching and 

learning mathematics might interfere with whether or not they draw on their mathematical 

knowledge. 

There are also indications that the relationship between mathematics teachers’ beliefs 

about teaching and learning mathematics and the enactment of CDTs might be contingent on 

teachers’ knowledge. Putnam et al. (1992) studied the beliefs and mathematics instructional 

practices of four fifth grade teachers and reported such a contingency: They describe cases of 

two teachers who, despite their inquiry-oriented beliefs about teaching mathematics, were 

limited by their mathematical knowledge for teaching. In these situations, it appears that a basic 

level of mathematical knowledge for teaching is necessary for the relationship between 

mathematics teachers’ beliefs and the enactment of CDTs to hold. In sum, there is evidence 

suggesting complex interrelationships between mathematical knowledge for teaching, beliefs 

about teaching and learning mathematics, and the enactment of CDTs, with several different 

interpretations. I modeled these complexities as I investigated the relationships between teachers’ 

mathematical knowledge for teaching and beliefs about teaching and learning mathematics and 

their enactment of CDTs.  

Method 

In this study, I investigated the relationships between aspects of teachers’ knowledge and 

beliefs and their enactment of CDTs. In doing so, I considered both the cognitive demand of the 
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tasks selected and the extent to which the cognitive demand of high-level tasks is maintained, 

separately, and I also explored potential contingencies in the relationships. 

Sample 

I drew on data collected in the course of a four-year study that sought to address the 

question of what is needed to improve the quality of middle-grades mathematics teaching, and 

thus student achievement, at the scale of a large urban district (Cobb & Jackson, 2011; Cobb & 

Smith, 2008). The research team collaborated with the leaders of four large, urban districts that 

were attempting to achieve a vision of high-quality mathematics instruction that was compatible 

with the National Council of Teachers of Mathematics’ (2000) Principles and Standards for 

School Mathematics. In each of the four districts, the research team selected a sample of 6 to 10 

middle-grades schools that reflected variation in student performance and in capacity for 

improvement in the quality of instruction across the district. Within each school, up to five 

mathematics teachers were randomly selected to participate in the study, for a total of 

approximately 30 teachers per district. Although we tried to retain as many teachers as possible 

throughout the study, the sample varies from year to year as we recruited replacements when 

teachers left schools or changed teaching assignments. 

The four collaborating school districts were typical of large, urban districts in that they 

had limited resources, large numbers of traditionally low-performing students in mathematics, 

high teacher turnover, and disparities among subgroups of students in their performance on state 

standardized tests (Darling-Hammond, 2007). The districts were atypical in their response to 

high-stakes accountability pressures: they responded by focusing on improving the quality of 

instruction rather than focusing exclusively on student test scores. Consistent with this response, 
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three of the four districts (which I will call Districts A, B, and D) adopted the Connected 

Mathematics Project 2 (CMP2) as their primary curriculum. District C adopted a more traditional 

curriculum but encouraged teachers to supplement with CMP2 and another internally-developed 

inquiry-oriented curriculum. District B, C, and D began implementation of their respective 

curricula in Year 1 of the study. In contrast, District A began implementation of CMP2 in Year 2 

of the study, but their district had a 10-year history of using the original Connected Mathematics 

Project Curriculum, prior to the adoption of CMP2. Additionally, each district attempted to 

implement a number of strategies to support teachers in improving their instruction (e.g., 

curriculum frameworks, coaching, regularly scheduled time to collaborate with colleagues on 

issues of instruction, or professional development for instructional leaders). 

In each of the four years of the study (2007-2011), we collected several types of data to 

test and refine a set of hypotheses and conjectures about district and school organizational 

arrangements, social relations, and material resources that might support mathematics teachers’ 

development of high-quality instructional practices at scale. The primary data sources used for 

my analysis were video-recordings of teachers’ classroom instruction, an assessment of teachers’ 

mathematical knowledge for teaching, and interviews with teachers. My primary analytic sample 

was 214 middle-school mathematics teachers pooled over the four years of the study, with 406 

lessons in total (24 teachers with 4 years of data, 40 teachers with 3 years, 41 teachers with 2 

years, and 108 teachers with 1 year of data). 

Focal Measures 

I first describe the primary outcome measures of teachers’ enactment of CDTs and then 

describe the measures that I use to assess teachers’ knowledge and beliefs. Lastly, I describe the 

measures I used to control for teachers’ experience of teaching and with the curriculum, the prior 
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mathematics achievement of their students, the number of students in their class, and the duration 

of their class period.  

Enactment of CDTs. I constructed measures of teachers’ enactment of CDTs by drawing 

on the measures of the quality of teachers’ instructional practice used in the larger research 

project: the Instructional Quality Assessment (IQA, Boston & Wolf, 2006; Matsumura et al., 

2006). We used this instrument to code video-recordings of the participating teachers’ classroom 

instruction. In each of the four years of the study, we video-recorded two (ideally consecutive) 

mathematics lessons conducted by each of the 120 teachers in the study in late winter. Teachers 

were asked to engage students in a problem-solving lesson with a related whole-class discussion.  

The IQA was developed by a team of researchers at the University of Pittsburgh, and the 

larger study used eight of their developed rubrics to assess the quality of teachers’ instruction. I 

focus on two of those rubrics: Task Potential and Task Implementation. The Task Potential and 

Implementation rubrics were based on the earlier work by Stein and colleagues (e.g., see Stein et 

al., 1996; Stein & Lane, 1996), described above. These rubrics were designed to measure the 

cognitive demand of the task posed to students (Task Potential) and the cognitive demand of the 

task as implemented by the students and the teacher in the classroom (Implementation). Both 

rubrics use the same scale with five levels of cognitive demand. A task is coded as 0 if it is not 

mathematical in nature. Tasks coded as levels 1 and 2 are low in cognitive demand, with a level 

1 task requiring only memorization or the reproduction of facts and a level 2 task requiring 

students to perform relatively routine procedures without making connections to the underlying 

mathematical ideas. Tasks coded at levels 3 and 4 represent tasks of high cognitive demand. A 

level 3 task requires students to make connections to underlying mathematical ideas, but tasks do 

not include explicit requests for generalization or justification. At the highest level, a level 4 task 
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asks students to engage in the disciplinary activities of explanation, justification and 

generalization, or to use procedures to solve tasks that are somewhat open-ended in nature. One 

critical distinction is between low-level tasks (level 2 or less) and high-level tasks (level 3 or 4).  

Recall that my definition of teachers’ enactment of CDTs includes: 1) the choice of such 

tasks; and 2) the maintenance of the cognitive demand of those tasks during classroom 

implementation. The cognitive demand of the selected task is measured by the Task Potential 

rubric. The maintenance of the cognitive demand is derived by comparing the Task Potential and 

Implementation scores; maintenance of the cognitive demand of a task is a measure of whether 

the score for Implementation is at least as high as the score for the Task Potential. Maintenance 

is generally a measure of whether the score for Task Potential is equal to the score for 

Implementation because in this sample tasks rarely2 increase from selection to implementation.  

Table 1  

Reliability Information for Task Potential and Implementation 
 Y1 Y2 Y3 Y4 
 Potential Impl Potential Impl Potential Impl Potential Impl 

% Agreement 59.4 78.1 56.9 78.5 75 89.3 59.1 63.6 
kappa 0.37 0.51 0.29 0.37 0.63 0.75 0.36 0.29 

 

Using the IQA requires experience with mathematics and teaching. Therefore, each year 

we recruited doctoral students in education and master’s students in mathematics education, to 

serve as IQA coders. An IQA developer trained coders in each year of the study. Coders were 

required to achieve 80 percent agreement with previously consensus-coded videos during the 

training reliability phase and inter-rater agreement was assessed every other week over the 

course of the 10 weeks of coding (resulting in double-coding of about 15% of the video sample). 

                                                            
2 16 times in the sample, with the majority in district A 
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Table 1 gives the reliability information for each rubric in each study year because coding the 

video-recordings from each study year were coded each summer, which produced four sets of 

reliability information. Ongoing reliability was calculated with percent exact agreement and 

kappa scores. A kappa score is a measure of reliability based on percent exact agreement that is 

adjusted for the chance agreement based on the actual distribution of the data (J. Cohen, 1960). 

The exact agreement percentages for the Task Potential rubric were between 56.9% and 75% and 

kappa scores were between 0.29 and 0.63. Task Implementation reliability was slightly higher 

with exact agreement ranging from 63.6% to 89.3% and kappa scores between 0.29 and 0.75. 

Hartmann, Barrios, and Wood (2004) suggest that appropriate agreement rates are between 80 

and 90 percent, but that for more complex instruments 70% could be sufficient. The kappa scores 

are at worst “Fair” agreement and at best “Substantial” agreement (Landis & Koch, 1977),  

There is some evidence that percent agreement is not the best measure of inter-rater reliability, 

and that kappa scores are more accurate in measuring inter-rater agreement. Unfortunately, there 

is evidence that kappa scores are often negatively skewed when the actual scores are not well 

distributed (Gwet, 2010).  Therefore, given the complex nature of this instrument and the 

imperfection in the measures of inter-rater agreement, a case can be made that these inter-rater 

reliability scores are sufficient. 

Descriptive statistics for Task Potential and Task Implementation, by District, are given 

in Table 2. While scores for Task Potential had the potential to range from 0 to 4, only 1 of 

observation received a Task Potential score less than 2. Therefore, for this set of analyses, I 

considered all tasks with Task Potential less than or equal to 2 as tasks with “Low Task 

Potential.” Therefore, there were 3 primary categories of interest for Task Potential: Low, 3, and 

4. 
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Table 2  

Descriptive Statistics of Task Potential and Implementation, By District 

 District A District B District C District D 
 Potential Impl Potential Impl Potential Impl Potential Impl 

Mean 3.08 2.64 3.03 2.32 2.51 2.17 3.03 2.38 
Score=1 0 1 1 2 0 2 0 2 
Score=2 15 36 28 81 49 80 31 66 
Score=3 47 38 60 39 43 14 41 33 
Score=4 22 9 34 1 3 1 34 5 

N 84 123 95 106 
 

Mathematical knowledge for teaching. In March of each of the four years of the larger 

study, we assessed all participating teachers’ mathematical knowledge for teaching (MKT) by 

using a pencil-and-paper instrument developed by the Learning Mathematics for Teaching 

project at the University of Michigan (Hill et al., 2004). The instrument has a reliability index of 

.70 or above and can be used to assess teachers' knowledge with respect to two dimensions: 

number concepts and operations (NCOP); and patterns, functions and algebra (PFA). For each of 

the two subtests (NCOP and PFA), raw scores were translated into IRT (item response theory) 

scale scores (provided by MKT developers), the determination of which was based on results 

from a pilot administration of the assessment to a national sample of approximately 640 

practicing middle school teachers. To investigate how teachers’ mathematical knowledge for 

teaching is related to their enactment of CDTs, I used a combined average of these two scale 

scores to form a single MKT score for each participant in each year. The use of IRT scores based 

on the national sample allows me to interpret the MKT scores of the teachers in our sample to the 

national average and distribution (i.e., a mean score of 0 and standard deviation of 1). 

Descriptive statistics for MKT are given in Table 3. In addition to the inclusion of the IRT score 
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as a continuous factor, I examined differences by score quartile to try to understand differential 

effects for different categories of quartile membership.   

Table 3  

Descriptive Statistics of Independent Variables, By District 

 Yrs 
Exp 

New to 
CMP 

# Stud Class 
Time 

Stud 
Prior M 

Stud 
Prior SD 

MKT VHQMI BSSS 

Dist A          
N=82         N=47 
Mean 15.4 0.037 20.1 65.4 -0.54 0.71 0.44 2.74 1.47 
SD 8.58 0.19 6.06 22.3 0.65 0.2 0.96 0.52 0.75 
Min 1 0 6 40 -1.82 0.21 -1.47 1 0 
Max 40 1 36 120 1.66 1.57 2.01 3.83 2 
Dist B          
N=124         N=54 
Mean 7.63 0.30 18.2 85.0 -0.70 0.68 -0.19 2.34 0.93 
SD 8.61 0.46 4.84 24.8 0.55 0.18 0.68 0.61 0.91 
Min 1 0 7 39 -1.88 0.19 -1.85 0.5 0 
Max 40 1 31 184 1.35 1.21 1.53 3.67 2 
Dist C          
N=99         N=33 
Mean  8.71 0 18.1 74.0 -0.44 0.75 -0.32 2.15 0.85 
SD 7.79 0 5.19 33.9 0.52 0.20 0.7 0.71 0.91 
Min 1 0 4 40 -1.65 0.27 -1.81 0 0 
Max 37 0 29 200 1.22 1.09 1.40 3.4 2 
Dist D          
N=109         N=44 
Mean 7.83 0.42 21.5 65.8 -0.52 0.75 -0.15 2.16 0.89 
SD 8.51 0.50 4.62 19.8 0.45 0.13 0.57 0.73 0.84 
Min 1 0 7 43 -1.42 0.40 -1.83 0 0 
Max 34 1 32 130 0.79 1.14 1.35 3.71 2 
 

Vision of high quality mathematics instruction. Several of the measures pertaining to 

teachers’ beliefs about teaching and learning mathematics that I utilized are derived from 

interviews conducted with the 120 participating teachers in January of each year of the larger 

study. In general, in the interviews we ask about the school and district settings in which teachers 

work as well as their vision of high quality math instruction and to what they attribute the lack of 

success of particular groups of students. To understand teachers’ Visions of High Quality 
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Mathematics Instruction (VHQMI; Munter, Under review), teachers were asked what they would 

look for when observing another mathematics teacher’s instruction to determine if the instruction 

was of high quality. Depending on the breadth of their responses, teachers were then asked a 

series of probes (see Appendix A for details).   

Each year, teacher interviews were transcribed and then coded. Teachers’ responses to 

the interview question were coded on several different dimensions: the role of the teacher, 

mathematical tasks, classroom activity, and discourse (including the structure, the nature of talk, 

teacher questions, student questions, and student explanations) (see Appendix A for details). For 

each rubric, scores range between 0 and 4. Teachers who describe more traditional instruction 

are at the bottom of the scale and the top of the scale is inquiry-oriented instruction that includes 

CDTs, rich whole-class discussions, and a proactive role of the teacher in guiding these 

activities. Coders were trained by the developer of the measure and expected to reach an 80% 

agreement level prior to beginning coding. Overall, the ongoing reliability percent exact 

agreement between coders was 80%.  

To estimate teachers’ VHQMI, I used standardized mean scores that are the mean across 

the scored dimensions (i.e., if only two dimensions received scores, then the mean would be 

calculated across those two dimensions). Descriptive statistics for VHQMI scores are provided in 

Table 3. In the models, the scores are standardized based the sample of 406 lessons for ease of 

interpretation of interaction effects. As with MKT, I examined quartile membership within the 

sample of teachers to investigate contingencies and differential effects at different levels of 

VHQMI.  
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Beliefs about supporting struggling students. The second measure derived from the 

interviews was developed to assess the extent to which a teacher believes that all students can be 

supported to participate in high cognitive demand activity. Teachers were asked how they adjust 

their instruction for different groups of students. In coding for this measure, coders examined 

each interview transcript to look for instances when teachers described what they view as 

appropriate supports for students who struggle with mathematics. Segments of talk were coded 

as Unproductive, Mixed, or Productive with regard to whether the teachers’ descriptions of 

supports for struggling students are aimed at enabling them to participate in rigorous 

mathematical activity. Productive views are indicated by accounts of supports that allow all 

students to participate in rigorous mathematical activity. Unproductive views are indicated by 

accounts of supports that diminish the cognitive demand of the activity for struggling students. 

For the purposes of this analysis, I focus on three categories of Beliefs about Supporting 

Struggling Students (BSSS): Productive, Not-Productive (i.e., Mixed or Unproductive), and Un-

coded. The Un-coded category is included because in this sample of teachers, there were 236 

yearly interviews for which we were unable to code the productivity of teachers’ beliefs about 

supporting struggling students. Our inability to code is likely a result of interviewing (e.g., a lack 

of probing for details or reasoning following a particular response) rather than any characteristics 

of the teachers, but we include a dummy variable to account for the un-coded interviews to test 

that hypothesis empirically. Coders were trained and required to achieve 80% exact agreement 

with previously coded transcripts before beginning coding. Ongoing reliability was also assessed 

and coders achieved 64% exact agreement with corresponding kappa score of 0.47. This kappa 

score falls into the range of “Moderate” agreement (Landis & Koch, 1977). Given the 
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complexity of this instrument these reliability scores are acceptable.  Descriptive statistics for 

beliefs about struggling students are given in Table 3.  

Control Measures   

 I included a set of control variables to account for other factors that, according to 

previous research, might influence the enactment of CDTs. The measures corresponding to these 

control variables are described below.  

 Teacher experience. Several studies have noted the potential importance of teaching 

experience with regard to teachers’ instructional practices (Charalambous, 2010; Escudero & 

Sánchez, 2007; Remillard & Bryans, 2004). Also, from the perspective of reform 

implementation, there is evidence that experience with a particular curriculum matters in that it 

takes time to implement a new program effectively (Fullan, 2000). To control for the possibility 

of teachers’ experience contributing to relationships between teachers’ knowledge and beliefs 

and their instructional practice, I included two measures of teachers’ experience: their years of 

experience teaching mathematics (Yrs Exp) and whether or not they are new to Connected 

Mathematics Project 2 (New to CMP2). Recall that three of the districts (Districts A, B, and D) 

were using CMP2 at the start of this study- with two of them beginning their use in the first year 

of the study and District A having a history with the Connected Mathematics program that began 

long before the start of this study. District C officially adopted a more traditional curriculum but 

encouraged teachers to supplement with CMP2 and another internally-developed inquiry-

oriented curriculum. Descriptive statistics for these variables are given in Table 3.  

Students’ prior achievement. To control for differences in the students’ prior 

achievement, I included measures of students’ mean prior achievement (STUD M), and the 
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standard deviation of students’ prior achievement (STUD SD), representing the degree to which 

the class is made up of “struggling” students and the heterogeneity of the prior achievement of 

student in the class, respectively. Descriptive statistics for this variable are provided in Table 3. 

Class time. Several studies suggest that the amount of class time available to work on 

challenging tasks influences teachers’ instructional practices (Barrett Paterson, 2009; Cooney, 

1985; Raymond, 1997; Son, 2008). In particular, the teachers in Son’s study of enacting CDTs 

who did not use CDTs in their classroom explained that they felt they had limited time to cover 

the content and that using CDTs would take too much time. Specific to the enactment of CDTs in 

the classroom, Henningsen and Stein (1997) reported that time allocated to work on the task 

(either too much or too little) was a common reason for decline in cognitive demand of high-

level tasks. Although teachers generally see a lack of time as the primary constraint, too much 

time was also a reason for decline in cognitive demand in Henningsen and Stein’s study. Because 

the enactment of CDTs may depend on the amount of class time (CLASS TIME), I controlled for 

it in the subsequent analyses. Descriptive statistics for this variable are given in Table 3 and a 

standardized version of this variable is used in the models. 

Class size. Another structural factor that might be an important consideration in teachers’ 

enactment of CDTs is the size of the class (e.g., the number of students in the class). Rousseau 

and Powell (2005) studied four secondary teachers’ mathematics reform efforts and found that 

the teachers mentioned the size of their classes as a reason why enacting CDTs was difficult. 

Teachers who had large classes explained that they did not engage students in collaborative 

activity because that type of activity would be difficult to manage with a large class. Productive 

learning opportunities for students with challenging tasks often involve students working in 

groups (E. G. Cohen, 1994). The large number of students in the classroom might make group 
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activities more difficult due to space constraints or the challenge of keeping all groups engaged. 

Although the size of the class is not prohibitive of enacting high cognitive demand tasks in the 

classroom, it is likely to make it more challenging. Therefore, I controlled for the number of 

students in the class (# STUD) in each model. Descriptive statistics for this variable are given in 

Table 3. 

Hypothesized Contingencies 

 In addition to looking for relationships between teachers’ mathematical knowledge for 

teaching and beliefs about teaching and learning mathematics and their enactment of CDTs, I 

also investigated the possible contingencies in these relationships. Recall that the literature 

suggests that the relationship between VHQMI and the enactment of CDTs might depend on 

MKT, and that the relationship between MKT and the enactment of CDTs might depend on 

VHQMI. Statistically, there is one test for both of the contingencies: a statistical interaction 

between MKT and VHQMI. However, the qualitative evidence in the literature suggests that 

considering an interaction of continuous variables might not be the most precise way to represent 

or interpret the expected contingencies. Instead, grouping teachers by score categories improved 

precision and interpretation. More specifically, the hypothesis that teachers need to have 

achieved a particular level of sophistication in their VHQMI in order for MKT to be related to 

the enactment of CDTs, suggests a threshold effect rather than a continuous interaction. The 

same possible threshold effect applies for the influence of MKT on the relationship between 

VHQMI and the enactment of CDTs. As a consequence, beyond examining a continuous 

interaction, I also considered interactions between the continuous variables and quartile score 

category representations of the variables.  Those continuous by categorical interactions attempt 
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to model the following two additional specifications of the interactions between MKT and 

VHQMI: 

Specification (a): The relationship between MKT and the enactment of CDTs is likely to vary 

for different levels of VHQMI. In particular, the positive relationship between MKT and the 

enactment of CDTs will not hold if teachers have not developed an inquiry-oriented VHQMI.  

Specification (b): The relationship between VHQMI and the enactment of CDTs is likely to 

vary for different levels of MKT. In particular, the positive relationship between VHQMI and 

the enactment of CDTs will not hold if teachers MKT is undeveloped.    

Analyses 

 I used multi-level logistic regression models to model two different aspects of the 

enactment of CDTs: (a) the cognitive demand of tasks posed to students (Task Potential), and (b) 

maintenance of the cognitive demand of tasks. Logistic regression models are appropriate 

because the scores for Task Potential and maintenance of the cognitive demand are ordinal 

(rather than continuous). Given the distribution of Task Potential scores and my primary interest 

in the enactment of high-level tasks, the 3 categories for Task Potential within the models will be 

Low, 3, and 4. Because there are 3 categories of interest, I use multinomial logistic regression 

models so that I can consider differences between categories: Low compared with 3 and 3 

compared with 4. The use of multinomial logistic regression treats each comparison separately 

and does not assume any consistency in how the variables are related between the difference 

comparisons. In practice, for example, this means that knowledge and beliefs might be related to 

the choice between a low and a level 3 task differently from how they are related to the choice 

between a level 3 and a level 4 task. Multi-level models are used because of the structure of the 
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data: there are multiple observations for some teachers and teachers are nested within schools.3  

To control for unmeasured differences between school districts in the sample, I included district-

level dummy variables. 

For the models of maintenance of the cognitive demand, the sample is limited to teachers 

who initially posed a high-level task (i.e., Task Potential of 3 or 4), and I consider whether the 

cognitive demand of task stayed at the same level (i.e. Task Implementation greater than or equal 

to Task Potential) or decreased (i.e., Task Implementation less than Task Potential). For these 

models, the sample is limited to 171 teachers and 286 total observations because the remaining 

observations in the primary sample involve tasks with low Task Potential.  

For both Task Potential and Maintenance of the Cognitive Demand of High-Level Tasks, 

I examined several models. First, I considered the simplest model with mathematical knowledge 

for teaching, vision of high-quality mathematics instruction, and beliefs about supporting 

struggling students. The level 1 equations were of the following form: 

ሺܶܭܵܣ	ܮܣܫܶܰܧܱܶܲ	ݎ݋	ܧܥܰܣܰܧܶܰܫܣܯሻ௜௝௞

ൌ 2ሻଵ௜௝௞ܲܯܥ	݋ݐ	ݓଵ௝௞ሺܰ݁ߨ଴௝௞൅ߨ	 ൅	ߨଶ௝௞ሺܻݏݎ	݌ݔܧሻଶ௜௝௞ ൅ ሻଷ௜௝௞ܦܷܶܵ	#ଷ௝௞ሺߨ

൅ ሻସ௜௝௞ܧܯܫܶ	ܵܵܣܮܥସ௝௞ሺߨ ൅ ሻହ௜௝௞ܯ	ܦହ௝௞ሺܷܵܶߨ ൅ ሻ଺௜௝௞ܦܵ	ܦ଺௝௞ሺܷܵܶߨ

൅ ሻ଻௜௝௞ܶܭܯ଻௝௞ሺߨ ൅	଼ߨ௝௞ሺܸܫܯܳܪሻ଼௜௝௞ ൅ ሻଽ௜௝௞ܵܵܵܤଽ௝௞ሺߨ ൅  ௜௝௞ߝ

 With level 2 equations of the form: 

௣௝௞ߨ ൌ ௣଴௞ߚ ൅  .௣௝௞ for p = 0 to 9ݎ

                                                            
3 I used the HLM software to estimate models of Task Potential and the GLLAMM software package (Rabe‐Hesketh, 
Skrondal, & Pickles, 2005) in STATA to estimate models of Maintenance of the Cognitive Demand 
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 And, level 3 equations of the following form: 

଴଴௞ߚ ൌ ଴଴଴ߛ ൅ ሻ௞ܣ	ܶܵܫܦ଴଴ଵሺߛ ൅	ߛ଴଴ଶሺܶܵܫܦ	ܥሻ௞ ൅	ߛ଴଴ଷሺܶܵܫܦ	ܦሻ௞ ൅  ଴଴௞ݑ

௣௝௞ߚ ൌ ௣௝௞ߛ ൅  .௣௝௞ for p= 1 to 9ݑ

Before examining the contingencies, I examined the possibility of differential effects in 

the relationships between mathematical knowledge for teaching and beliefs about teaching and 

learning mathematics and the enactment of CDTs.  Lastly, I examined the hypothesized 

contingencies in the relationships, with several different model specifications. Those model 

specifications included: 1) a continuous interaction between MKT and VHQMI, 2) an interaction 

between a MKT and quartile membership categories for VHQMI, and 3) an interaction between 

VHQMI and quartile membership categories for MKT. 

Results 

 Prior to modeling the enactment of CDTs, I examined correlations among the variables to 

be investigated to check for potential sources of multicollinearity and to document basic 

relationships between variables. Table 4 shows that only two pairs of variables were correlated 

above .40: Task Potential and Implementation (r=0.42, p<.05), and BSSS-P and BSSS-Un-coded 

(r=-0.54, p<.05). Neither of these relationships is surprising: Task Potential serves as the starting 

value for Implementation; and, teachers who espouse productive beliefs about supporting 

struggling students were able to be coded (so they are, by default, not un-coded). Also, several 

other variables were correlated at or above the 0.20 level: MKT and Implementation (r=0.22, 

p<.05), VHQMI and Implementation (r=0.21, p<.05), MKT and VHQMI (r=0.24, p<.05), 

VHQMI and being brand new to the curriculum (r=-0.22, p<.05), years of experience teaching 

math and being brand new to the curriculum (r=-0.22, p<.05), years of experience teaching 
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mathematics and students’ mean prior math achievement (r=0.25, p<.05), and the number of 

students in the class and students’ mean prior math achievement (r=0.25, p<.05). The first few 

correlations suggest that MKT and VHQMI are positively related to each other and to 

implementation scores. The positive correlation between years of experience teaching 

mathematics and students’ mean prior math achievement is consistent with the notion that 

teachers who are more experienced often teach the highest achieving students (Darling-

Hammond, 2007). Also, the positive correlation between the number of students in the class and 

students’ mean prior math achievement suggests that the classes with higher achieving students 

tend to be the ones with a larger number of students in them. Overall, there were some modest 

correlations, but none that suggest that multicollinearity would be a problem in modeling 

relationships between these factors and the enactment of CDTs.   

With regard to the models of the enactment of CDTs, I first report the results of the 

analyses conducted for Task Potential and then Maintenance of the Cognitive Demand of High-

Level Tasks (which I refer to as “Maintenance”). As described above, in all of the models I 

included the same set of control variables, including district dummy variables (with District B as 

the reference because of its typicality), years of experience teaching math, a dummy variable 

indicating whether it was a teachers’ first year using CMP2, the number of students in the class, 

the class time, the mean prior mathematics achievement of the students in the class, and the 

heterogeneity of the prior mathematics achievement of the students in the class. 
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Table 4 

Correlations between Variables 

 Task 
Pot 

Impl. Yrs 
Exp 

New 
to 

CMP 

# 
Stud 

Class 
Time 

Stud 
Prior 

M 

Stud 
Prior 
SD 

MKT VHQMI BSSS-P BSSS-
Un-

coded 
Task Potential 1            
Implementation 0.42* 1           
Yrs Exp -0.06 0.07 1          
New to CMP 0.06 -0.10* -0.22* 1         
# Stud 0.09* 0.10* 0.04 0.02 1        
Class Time 0.04 -0.08 0.004 -0.08 -0.08 1       
Stud Prior M -0.05 0.04 0.25* -0.03 0.25* 0.03 1      
Stud Prior SD 0.04 -0.01 -0.07 0.01 0.05 -0.06 -0.06 1     
MKT 0.13* 0.22* 0.09* -0.08 -0.01 -0.03 0.04 -0.04 1    
VHQMI 0.13* 0.21* 0.05 -0.22* 0.02 0.08 -0.06 -0.11* 0.24* 1   
BSSS-P 0.09* 0.18* 0.08 -0.06 -0.03 0.02 -0.05 -0.01 0.09* 0.11* 1  
BSSS-Un-coded -0.04 -0.05 0.01 0.01 0.03 -0.002 0.06 0.02 -0.11* -0.02 -0.54* 1 
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Table 5  

Task Potential Models, MKT and VHQMI/VHQMI-S 

 MKT, VHQMI, BSSS MKT and VHQMI (Categories) 
 Low v 3 4 v 3 Low v 3 4 v 3 

 Coef 
(SE) 

RRR Coef 
(SE) 

RRR Coef (SE) RRR Coef (SE) RRR 

District A -.46 
(.45) 

0.63 -.44 
(.43) 

0.64 -.50 
 (.45) 

0.61 -.47 
(.44) 

0.63 

District C 1.15** 
(.35) 

3.16 -1.85** 
(.66) 

0.16 1.08** 
(.36) 

2.94 -1.90** 
(.66) 

0.15 

District D .35 
(.36) 

1.42 .29 
(.35) 

1.34 .39 
(.36) 

1.48 .29 
(.36) 

1.34 

Yrs Exp .04** 
(.01) 

1.04 .02 
(.02) 

1.02 .04** 
(.02) 

1.04 .02 
(.02) 

1.02 

New to CMP .75** 
(.35) 

2.12 .86** 
(.35) 

2.36 .70** 
(.35) 

2.01 .84** 
(.36) 

2.32 

# Students -.001 
(.02) 

1.00 .03  
(.03) 

1.03 -.002 
(.02) 

1.00 .02 
(.03) 

1.02 

Class Time -0.05 
(.12) 

0.95 .21  
(.15) 

1.23 -.05 
(.13) 

0.95 .19 
(.15) 

1.21 

Stud Prior M .10  
(.23) 

1.11 .12  
(.27) 

1.13 .13 
(.24) 

1.14 .15 
(.27) 

1.16 

Stud Prior SD -.88 
(.69) 

0.41 .79 
(.78) 

2.20 -.90 
(.70) 

0.41 .92 
(.79) 

2.51 

MKT -.04 
(.17) 

0.96 .24  
(.19) 

1.27     

MKT (Q2)     -.41 
(.33) 

0.66 -.21 
(.42) 

0.81 

MKT (Q3)     -.33 
(.35) 

0.72 .33 
(.40) 

1.39 

MKT (Q4)     -.25 (.36) 0.78 .19 
(.43) 

1.21 

VHQMI .10  
(.13) 

1.11 .34** 
(.15) 

1.40     

VHQMI (Q2)     .14 
(.34) 

1.15 .19 
(.44) 

1.21 

VHQMI (Q3)     .06 
(.36) 

1.06 .42 
(.44) 

1.52 

VHQMI (Q4)     .31 
(.38) 

1.36 1.13** 
(.44) 

3.10 

BSSS-P -.47 
(.40) 

0.63 -0.002 
(.41) 

1.00 -.48 
(.41) 

0.62 -.07 
(.42) 

0.93 

BSSS-Un-
coded 

.08  
(.28) 

1.08 .11 
(.32) 

1.12 -.08 
(.29) 

0.92 .05 
(.33) 

1.05 

Constant -.63 
(.75) 

 -2.1** 
(.90) 

 -.40  
(.86) 

 -2.62** 
(1.02) 

 

N 414 414 
Note. RRR= Relative Risk Ratios.  
* p<.1. **p<.05 
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Task Potential 

Tables 5, 6, and 7 contain results for the set of models of Task Potential, or teachers’ 

choice of tasks. First, results from the model examining the relationship between MKT, VHQMI, 

BSSS, and Task Potential (see Table 5) suggest that when controlling for MKT, BSSS, and the 

other factors listed above, a teacher’s VHQMI is significantly related to his or her choice of tasks 

between a level 3 task and a level 4 task (B=.34, p<.05), but not between low-level and level 3 

tasks (B=.10, p=.45). In other words, the relative risk of selecting a level 4 task over a level 3 

task for a teacher who had a VHQMI score that was one standard deviation higher than the mean, 

or more inquiry-oriented in their beliefs, is 1.40 times the relative risk for a teacher who had a 

VHQMI score that was equal to the sample mean. In this model, MKT was not significantly 

related to teachers’ choice of tasks between a low-level task and a level 3 task or between tasks 

of levels 3 and 4. Also, productive or un-coded beliefs about supporting struggling students were 

not significantly related to teachers’ choice of tasks. Another significant result is that the greater 

a teacher’s years of experience teaching, the greater the relative risk that he or she would pose a 

low-level task over a level 3 task (B=.04, RRR= 1.04, p<.05). While this is a relatively small 

relative risk ratio, the influence is more substantial than it initially appears. For example, for 

every 5 additional years of experience, a teacher is 1.22 times more likely to have posed a low-

level task over a level 3 task. Also, teachers who were new to the curriculum are over 2 times 

more likely to have posed a low-level task or level 4 task, rather than a level 3 task (RRR=2.12 

and RRR=2.36, respectively, p<.05). One explanation for this result is that teachers who were 

new to the curriculum might have been more likely to use a task directly from the curricular 

materials without altering it dramatically, or might have chosen a task from a curricular resource 

with more procedural tasks because it was more aligned with their prior experience. Lastly, the 
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results for district fixed effects suggest that differences in MKT, VHQMI, and BSSS do not 

account for all of the significant differences between teachers in Districts B, the reference 

district, and District C. Teachers from District C are over 3 times more likely to have posed a 

low-level task over a level 3 task and over 6 times more likely to have posed a level 3 tasks over 

a level 4 task (RRR=3.06 and RRR=.16, respectively, p<.05). In other words, when comparing 

levels of Task Potential, teachers in District C were more likely to choose lower level tasks, 

possibly attributable to curricular differences. 

I examined the possibility of differences in the relationships between VHQMI and Task 

Potential and MKT and Task Potential by score quartile. The results from the analysis with 

categories of quartile membership are given in the second set of columns in Table 5. Because 

this model only includes changes with regard to the variables MKT and VHQMI, I focus on 

those results here. Results from this model indicated that there are no differential relationships by 

categories of quartile membership between MKT and Task Potential, but they do suggest 

differential relationships by categories of quartile membership for VHQMI (see Figure 2). In 

particular, it appears that having a VHQMI score in the top quartile is significantly related to 

teachers’ choices of a level 4 task over a level 3 task (RRR= 3.10, p<.05): if teachers scored in 

the top quartile for VHQMI, they are over 3 times more likely than a teacher who scored in the 

first quartile to have chosen a level 4 task over a level 3 task. In Figure 2 this increased 

probability of selecting a level 4 task is demonstrated by the longer green section of the bar 

representing VHQMI Quartile 4—the right-most bar. In other words, when comparing teachers 

who espoused inquiry-oriented beliefs about teaching and learning mathematics with the teachers 

who espoused traditional beliefs, the teachers who espoused inquiry-oriented beliefs were more 

likely to choose a level 4 task over a level 3 task. The results also suggest that there were not 
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significant differences in the likelihood of choosing a level 4 task over a level 3 task for teachers 

in the first and second or first and third quartiles of VHQMI scores. Thus, the critical difference 

in this sample is between teachers who espoused inquiry-oriented beliefs and teachers who 

espoused traditional beliefs or were transitioning toward inquiry-oriented beliefs, but had not yet 

fully developed inquiry-oriented beliefs. There are not significant differences by VHQMI score 

quartile for the choice of a low-level task over a level 3 task. 

 

Figure 2. Task Potential by VHQMI Score Quartile 

 

Task Potential and Hypothesized Contingencies 

 Following examination of simple relationships between MKT, VHQMI, and the selection 

of tasks, I modeled the hypothesized contingencies in several different ways. First, I modeled the 

existence of a continuous interaction between MKT and VHQMI. Those results are given in 

Table 6. The results do not suggest a significant interaction between MKT and VHQMI for the 
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choice between a level 3 and level 4 task, but there is a marginally significant interaction 

between MKT and VHQMI for the choice between a low-level and level 3 task (B=-.26, 

RRR=0.77, p=.088 ). For the model specifications assuming simple relationships (given in Table 

5), there is no indication that MKT and VHQMI are significantly related to the choice between a 

low-level task and a level 3 task. The marginally significant statistical interaction between MKT 

and VHQMI is a sign that the prior non-significant results might have been due to an interaction 

between MKT and VHQMI.  

To more fully investigate specification (a) of the hypothesized contingencies, I examined 

the interaction of VHQMI by quartile with MKT (see model (a) in Table 7). Again, none of the 

interaction terms are statistically significant, but the marginally significant effects in the model 

of low-level tasks v. level 3 tasks gives some indication of differential effects of MKT on 

teachers’ choices of tasks when teachers had VHQMI scores in the third quartile. Further, the 

model suggests that when teachers had VHQMI scores in the third quartile, compared with 

teachers in the first quartile of scores for VHQMI, increases in MKT correspond to decreased 

likelihood of choosing a low-level task over a level 3 task. In other words, when teachers had 

VHQMI scores in the third quartile, or espoused beliefs about teaching and learning mathematics 

that were approaching inquiry-oriented, the more developed their MKT, the more likely they 

were to choose a high-level task. 
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Table 6 

Task Potential Model, Continuous MKT/VHQMI Interaction 

 MKT/VHQMI Interaction 
 Low v 3 4 v 3 

 Coef 
(SE) 

RRR Coef 
(SE) 

RRR 

District A -.34 
(.45) 

0.71 -.44 
(.45) 

0.64 

District C 1.17** 
(.36) 

3.22 -1.85** 
(.66) 

0.16 

District D .36 
(.36) 

1.43 .28 
(.35) 

1.32 

Yrs Exp .05** 
(.02) 

1.05 .02 
(.02) 

1.02 

New to CMP .74** 
(.35) 

2.10 .85** 
(.35) 

2.34 

# Students -.003 
(.02) 

1.00 .03 
(.03) 

1.03 

Class Time -.05 
(.13) 

0.95 .20 
(.15) 

1.22 

Stud Prior M .09 
(.24) 

1.09 .11 
(.27) 

1.12 

Stud Prior 
SD 

-.89 
(.69) 

0.41 .81 
(.78) 

2.25 

MKT -.05 
(.17) 

0.95 .22 
(.19) 

1.25 

VHQMI .04 
(.13) 

1.04 .32** 
(.15) 

1.38 

VHQMI * 
MKT 

-.26* 
(.15) 

0.77 -.01 
(.19) 

0.99 

BSSS-P -.49 
(.41) 

0.61 0.002 
(.41) 

1.00 

BSSS-Un-
coded 

.08 
(.28) 

1.08 .11 
(.41) 

1.12 

Constant -.60 
(.75) 

 -2.12** 
(.91) 

 

N 414 
Note. RRR= Relative Risk Ratios. 
* p<.1. **p<.05, ***p<.001 
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Table 7 

Task Potential Models, Hypothesized Contingency: Specifications a and b 

 (a): VHQMI Moderates MKT  (b): MKT Moderates VHQMI 
 Low v 3 4 v 3  Low v 3 4 v 3 

 Coef 
(SE) 

RRR Coef 
(SE) 

RRR  Coef 
(SE) 

RRR Coef 
(SE) 

RRR 

District A -.50 
(.46) 

0.61 -.64 
(.46) 

0.53 District A -.53  
(.46) 

0.59 -.41 
(.44) 

0.66 

District C 1.10** 
(.36) 

3.00 -1.89** 
(.66) 

0.15 District C 1.15** 
(.36) 

3.16 -1.92** 
(.66) 

0.15 

District D .33 
(.36) 

1.39 .28  
(.36) 

1.32 District D .40 
(.36) 

1.49 .28 
(.36) 

1.32 

Yrs Exp .05** 
(.02) 

1.05 .02  
(.02) 

1.02 Yrs Exp .05** 
(.02) 

1.05 .02 
(.02) 

1.02 

New to CMP .68* 
(.35) 

1.97 .82** 
(.35) 

2.27 New to CMP .65* 
(.36) 

1.92 .78** 
(.35) 

2.18 

# Students -.003 
(.03) 

1.00 .03 
 (.03) 

1.03 # Students -.0004 
(.02) 

1.00 .03 
(.03) 

1.03 

Class Time -.04 
(.13) 

0.96 .19  
(.15) 

1.21 Class Time -.05 
 (.13) 

0.95 .23* 
(.15) 

1.26 

Stud Prior M .11 
(.39) 

1.12 .17  
(.28) 

1.19 Stud Prior M .07 
(.24) 

1.07 .10 
(.27) 

1.11 

Stud Prior SD -.78 
(.69) 

0.46 1.05 
(.80) 

2.86 Stud Prior 
SD 

-.74  
(.70) 

0.48 .90 
(.80) 

2.46 

MKT .50 
(.35) 

1.65 .66  
(.50) 

1.93 MKT     

VHQMI     VHQMI .54** 
(.23) 

1.72 .28 
(.33) 

1.32 

VHQMI (Q2) -.09 
(.36) 

0.91 -.12 
(.47) 

0.89 MKT (Q2) -.56 
 (.34) 

0.57 -.23 
(.43) 

0.79 

VHQMI (Q3) -.21 
(.39) 

0.81 .33  
(.45) 

1.39 MKT (Q3) -.47  
(.36) 

0.63 .36 
(.40) 

1.43 

VHQMI (Q4) .11 
(.39) 

1.12 1.06** 
(.45) 

2.89 MKT (Q4) -.38  
(.37) 

0.68 .13 
(.45) 

1.14 

MKT* 
VHQMI (Q2) 

-.73 
(.48) 

0.48 -1.23* 
(.66) 

0.29 MKT (Q2)* 
VHQMI  

-.65* 
(.33) 

0.52 .27 
(.45) 

1.31 

MKT* 
VHQMI (Q3) 

-.91* 
(.49) 

0.40 -.47 
(.63) 

0.63 MKT (Q3)* 
VHQMI 

-0.88** 
(.34) 

0.41 -.29 
(.41) 

0.75 

MKT * VHQMI 
(Q4) 

-.49 
(.47) 

0.61 -.20 
(.58) 

0.82 MKT (Q4) * 
VHQMI  

-.38  
(.37) 

0.68 .26 
(.45) 

1.30 

BSSS-P -.44 
(.41) 

0.64 .07 
(.42) 

1.07 BSSS-P -.42 
(.40) 

0.66 0.003 
(.41) 

1.00 

BSSS-Un-coded .09 
(.29) 

1.09 .12 
(.33) 

1.13 BSSS-Un-
coded 

.10 
(.29) 

1.11 .15 
(.33) 

1.16 

Constant -.59 
(.83) 

 -2.60** 
(1.00) 

 Constant -.42  
(.81) 

 -2.36** 
(.96) 

 

N 414  414 
Note. RRR= Relative Risk Ratios.  
* p<.1. **p<.05, ***p<.001 
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With regard to the alternate specification of the interrelationship, specification (b), I 

examined whether MKT moderates the relationship between VHQMI and teachers’ choice of 

tasks. Analogous to the previous specification, I examined the interaction between the quartile 

category version of MKT and VHQMI scores (see model (b) of Table 7). In this case, there are 

significant results for the model examining the choice of a low-level task over a level 3 task and 

those results are represented in Figure 3. In particular, results suggest that when teachers scored 

in the first quartile for MKT, a higher VHQMI score increases the likelihood of posing a low-

level task over a level 3 task, in fact a teacher with a VHQMI score 1 standard deviation higher is 

1.72 times more likely to pose a low-level task over a level 3 task (RRR= 1.72, p<.05). But, that 

result does not hold for teachers in the second and third quartiles for MKT; the interaction effect 

is in the opposite direction: the higher the VHQMI score the more likely they were to pose a 

level 3 task over a low-level task (RRR=.52, p<.10, RRR=.41, p<.05). The latter result is more in 

line with what one would expect—teachers with more sophisticated VHQMI are more likely to 

pose higher level tasks—but the former result suggests a need for more investigation of the 

relationship between teachers’ beliefs about teaching and learning and their choice of tasks when 

their MKT is relatively undeveloped. 

In sum, results from the investigation of specifications (a) and (b) of the hypothesized 

contingencies suggest that there is a significant interaction between VHQMI and MKT with 

regard to teachers’ choice of low-level tasks over level 3 tasks, but no significant interaction 

between VHQMI and MKT for teachers’ choice of level 4 tasks over level 3 tasks. Further, the 

original results for the choice of low-level over level 3 tasks (given in column 1 of Table 5) did 

not show any indication of significant linear relationships between MKT or VHQMI and 

teachers’ choice of tasks. Yet, the examination of the statistical interactions suggests that the 
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moderating effects at different levels of VHQMI and MKT may have been the reason for the lack 

of general significant effects when considering the teachers’ choice of low-level or level 3 tasks. 

 

Figure 3. VHQMI and Predicted Probability of Selecting and Low-level Task, by MKT Score 
Quartile 

 

Maintenance of the Cognitive Demand of High-Level Tasks 

 The models of maintenance of the cognitive demand of high-level tasks are similar to 

those of task potential, especially with regard to the independent variables included in each 

model. One key difference is that these models are limited to the lessons with tasks that were 

initially of high cognitive demand, or level 3 or 4 tasks. The outcome of interest is whether the 
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example, did a level 3 task stay at a 3 in implementation (maintained) or was it proceduralized to 

a 2 (decreased)?  The first model with results in Table 8 uses the same control variables as the 

previous set of models and includes MKT, VHQMI, and BSSS. From the results in the first 

column of Table 8, we can see that MKT, VHQMI, and BSSS are significantly related to 

maintenance of the cognitive demand. In particular, the model suggests that the odds of 

maintaining the cognitive demand of a high-level task they pose for a teacher with an MKT score 

that was one standard deviation above the mean is 1.52 times the odds for a teacher who had the 

mean MKT score (B=.42, OR=1.52, p<.05). A similar result holds for VHQMI (B=.45, OR= 

1.57, p<.05). In other words, the odds of maintaining the cognitive demand for teachers with 

VHQMI scores one standard deviation above the mean, or more inquiry-oriented VHQMI, are 

1.57 times the odds of maintaining the cognitive demand for a teacher who had the sample mean 

VHQMI score. In addition, the odds of maintaining the cognitive demand of a high-level task for 

teachers who espoused productive beliefs about supporting struggling students are 2.92 times the 

odds for teachers who described unproductive or mixed beliefs about supporting struggling 

students to maintain the cognitive demand of high-level tasks (B=1.07, p<.05). Lastly, all else 

equal, teachers who were new to CMP2 were less likely to maintain the cognitive demand of a 

high-level task (B=-.91, OR=.40, p<.10). Unlike the models for Task Potential, there are no 

significant differences between districts for maintenance of the cognitive demand of high-level 

tasks, after controlling for experience, classroom and student characteristics, teachers’ 

knowledge and beliefs, and limiting the sample to teachers who selected CDTs. 
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Table 8  

Maintenance of the Cognitive Demand of High-Level Tasks, Models 

 MKT and VHQMI MKT and VHQMI 
(Categories) 

MKT/VHQMI 
Interaction 

 Coef 
(SE) 

OR Coef 
(SE) 

OR Coef 
(SE) 

OR 

District A .10  
(.49) 

1.11 .12 
(.52) 

1.13 .08 
(.50) 

1.08 

District C .15  
(.52) 

1.16 .14  
(.55) 

1.15 .14 
(.52) 

1.15 

District D .36  
(.47) 

1.43 .44 
(.50) 

1.55 .36 
(.47) 

1.43 

Yrs Experience .01  
(.02) 

1.01 .02 
(.02) 

1.02 .01 
(.02) 

1.01 

New to CMP -.91* 
(.47) 

0.40 -0.99 
(.49) 

0.37 -.91* 
(.47) 

0.40 

# Students .01  
(.03) 

1.01 .02 
(.03) 

1.02 .01 
(.03) 

1.01 

Class Time -.15 
(.16) 

0.86 -.11 
(.16) 

0.90 -.15  
(.16) 

0.86 

Stud Prior M .08  
(.30) 

1.08 .03 
(.31) 

1.03 .07 
(.30) 

1.07 

Stud Prior SD -.55 
(.83) 

0.58 -.73 
(.85) 

0.48 -.54  
(.83) 

0.58 

MKT .42** 
(.20) 

1.52   .41* 
(.21) 

1.51 

MKT (Q2)   .002 
(.51) 

1.00   

MKT (Q3)   .57 
(.49) 

1.77   

MKT (Q4)   1.08** 
(.49) 

2.94   

VHQMI .45** 
(.18) 

1.57   .45** 
(.18) 

1.57 

VHQMI (Q2)   1.22** 
(.57) 

3.39   

VHQMI (Q3)   1.31** 
(.58) 

3.71   

VHQMI (Q4)   1.28** 
(.58) 

3.60   

BSSS-P 1.07** 
(.44) 

2.92 1.07** 
(.45) 

2.92 1.07** 
(.44) 

2.92 

BSSS-Un-coded .39  
(.37) 

1.48 .48  
(.38) 

1.62 .39 
(.37) 

1.48 

MKT * VHQMI     0.04 
(.20) 

1.04 

Constant -1.36 
(.93) 

 -3.02** 
(1.18) 

 -1.37 
(.93) 

 

N 286  286  286  
Note. OR= Odds Ratio  
* p<.1. **p<.05.  
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Figures 4 and 5. Predicted Probability of Maintaining the Cognitive Demand, by VHQMI Score 
Quartile and MKT Score Quartile 

 

The results from the model with categorical specifications for VHQMI and MKT, based 

on quartile membership, are given in the second set of columns in Table 8. Because this model 

only includes changes to the specification of MKT and VHQMI, I focus on those results here. 

Results from this model suggest differential effects for categories of VHQMI score quartile 

membership and MKT score quartile membership (see Figures 4 and 5). In particular, it appears 

that teachers with VHQMI scores in the first quartile were significantly less likely to maintain 

the cognitive demand of the task. As demonstrated in Figure 4, for teachers’ with VHQMI scores 

in second, third and fourth quartiles, there are not significant differences in their predicted 

probability of maintaining the cognitive demand of high-level tasks. With regard to MKT, 

having an MKT score in the top quartile is significantly related to teachers’ maintenance of the 

cognitive demand: if teachers scored in the top quartile for MKT, they were nearly 3 times more 

likely than teachers with scores in the first quartile to maintain the cognitive demand of the task 

(B=1.08, RRR=2.94, p<.05). The results also suggest that there are not significant differences in 
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the likelihood of maintaining the cognitive demand for teachers in the first and second or first 

and third quartiles for MKT. Therefore, there is evidence of non-linear relationships between 

MKT, VHQMI, and the likelihood of maintaining the cognitive demand. 

 
Table 9 

Maintenance of the Cognitive Demand of High-Level Tasks, Models Continued 

 VHQMI Moderates MKT  MKT Moderates VHQMI 
 Coef (SE) OR  Coef (SE) OR 
District A .11  

(.50) 
1.12 District A .02  

(.51) 
1.02 

District C .15  
(.52) 

1.16 District C .07  
(.54) 

1.07 

District D .45  
(.47) 

1.57 District D .39  
(.49) 

1.48 

Yrs Experience .01  
(.02) 

1.01 Yrs 
Experience 

.01  
(.02) 

1.01 

New to CMP -.98**  
(.48) 

0.38 New to CMP -1.10**  
(.50) 

0.33 

# Students .02  
(.03) 

1.02 # Students .02  
(.03) 

1.02 

Class Time -.09  
(.16) 

0.91 Class Time -.14  
(.16) 

0.87 

Stud Prior M .04  
(.31) 

1.04 Stud Prior M .09  
(.30) 

1.09 

Stud Prior SD -.52  
(.85) 

0.59 Stud Prior SD -.53  
(.86) 

0.59 

MKT .66  
(.63) 

1.93 VHQMI .51 
(.40) 

1.67 

VHQMI (Q2) 1.15*  
(.57) 

3.16 MKT (Q2) -.05  
(.52) 

0.95 

VHQMI (Q3) 1.30** 
(.57) 

3.67 MKT (Q3) .65  
(.48) 

1.92 

VHQMI (Q4) 1.16  
(.58) 

3.19 MKT (Q4) 0.95*   
(.50) 

2.59 

MKT* VHQMI 
(Q2) 

-.30 
(.73) 

0.74 VHQMI* 
MKT (Q2) 

.26  
(.54)  

1.30 

MKT* VHQMI 
(Q3) 

-.51  
(.75) 

0.60 VHQMI * 
MKT (Q3) 

-.55  
(.49) 

0.58 

MKT* VHQMI 
(Q4) 

.04  
(.71) 

1.04 VHQMI* 
MKT (Q4) 

0.13 
(.52) 

1.14 

BSSS-P 1.09** 
(.46) 

2.97 BSSS-P 1.14** 
(.45) 

3.13 

BSSS-Un-coded .44 
(.37) 

1.55 BSSS-Un-
coded 

.47 
(.38) 

1.60 

Constant -2.68** 
(1.13) 

 Constant -1.88*  
(1.03) 

 

N 286  N 286  

Note. OR= Odds Ratio 
* p<.1. **p<.05 
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Maintenance and Hypothesized Contingencies 

Following an examination of the simple relationships, I then tested the hypothesized 

contingency of an interaction between MKT and VHQMI. First, I examined a continuous 

interaction between MKT and VHQMI, which was not statistically significant (B=0.04, 

OR=1.04, p=.845, see the last set of columns in Table 8). To investigate specification (a) and (b) 

of the contingency, I examined the interaction of VHQMI by quartile with MKT and the 

interaction of MKT by quartile with VHQMI, respective (see Table 9). None of the interaction 

terms are statistically significant. Given the results of these three models, I conclude that there is 

not a statistically significant interaction between VHQMI and MKT as they relate to 

maintenance of the cognitive demand. In other words, the hypothesized contingency does not 

hold for maintenance of the cognitive demand for this sample of teachers.  

Discussion and Conclusion 

There is evidence that CDTs provide all students with important learning opportunities 

(Stein & Lane, 1996; Zohar & Dori, 2003). Unfortunately, CDTs are very challenging for 

teachers to enact (Hiebert et al., 2003; Stein et al., 1996). Only a few studies have examined the 

relationships between teachers’ knowledge and beliefs and the enactment of CDTs, and findings 

from those studies have been mixed. The results from this study shed light on middle-school 

mathematics teachers’ enactment of CDTs in several ways. First, they confirm the findings that 

mathematical knowledge for teaching and beliefs about teaching and learning mathematics are 

related to teachers’ enactment of CDTs. Second, they suggest that the relationships are nuanced 

both with regard to the specification of the outcome of interest and the nature of the 

relationships. In the following paragraphs, I highlight the key findings pertaining to 
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mathematical knowledge for teaching and beliefs about teaching and learning mathematics and 

compare them to previous findings, and then I discuss implications of those findings. 

 The findings of this investigation suggest that MKT is related to the enactment of CDTs, 

even when controlling for other potentially related factors including teachers’ experience and 

beliefs. Yet, MKT was only significantly related to some aspects of the enactment of CDTs, and 

the nature of the relationship varied for different levels of VHQMI. First, teachers’ MKT was 

significantly related to maintenance of the cognitive demand of high-level tasks. Further, 

teachers with scores in the top quartile for MKT were better able to maintain the cognitive 

demand of a high-level task. Overall, MKT was not consistently and significantly related to 

teachers’ task selection. Hence, teachers’ MKT seems to feature more prominently in the actual 

enactment in the classroom, rather than the selection of the tasks. The variation in how MKT is 

related to the enactment of CDTs may be the reason for the surprisingly non-significant 

relationship between MKT and the enactment of CDTs in Stein and Kaufman’s (2010) study 

where they combined task potential and implementation to create a score for the enactment of 

CDTs rather than examining the different score for enactment separately and examined MKT as 

a continuous measure. Another possibility is that controlling for teachers’ visions of high-quality 

mathematics instruction increased the precision in the model. Neither of the previous studies of 

MKT and the enactment of CDTs has included measures of beliefs about teaching and learning 

mathematics in their examination of the relationship between knowledge and the enactment of 

CDTs. 

 Only one study has investigated how teachers’ beliefs about teaching and learning 

mathematics are related to their enactment of CDTs. Son’s (2008) study used survey measures of 

beliefs about teaching and learning mathematics, whereas my measures of beliefs come from 
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interviews. My findings suggest that beliefs about teaching and learning mathematics are an 

important area to continue to investigate. In particular, teachers’ visions of high quality 

mathematics instruction are related to both teachers’ task selection and the subsequent 

maintenance of the cognitive demand of high-level tasks. With regard to teachers’ task selection, 

I found that VHQMI was related to teachers’ choice of a level 4 task over a level 3 task. Further, 

being in the top quartile of VHQMI, or describing an inquiry-oriented vision of high-quality 

mathematics instruction, was particularly important. This suggests that choosing a level 4, 

“doing mathematics” task over a level 3, “procedures with connections” task requires a particular 

level of sophistication with regard to beliefs about teaching and learning mathematics. 

 Beliefs about students’ mathematical capabilities is an aspect of teachers’ beliefs about 

teaching and learning mathematics that has received relatively little attention in the literature. My 

findings suggest that this aspect is worthy of more attention, especially as it relates to the 

enactment of CDTs. I found that teachers who espoused productive beliefs about supporting 

struggling students in interviews were more likely to maintain the cognitive demand of high-

level tasks. Further, this is in addition to the increased likelihood predicted by MKT and 

VHQMI. Therefore, beliefs about supporting struggling students are an important factor 

influencing the enactment of CDTs that needs to be investigated further. However, beliefs about 

supporting struggling students were not significantly related to teachers’ task selection. Because 

the measure used in this study was developed as a part of the larger study and has not been 

previously examined, it is important that more work is done to confirm these findings and further 

investigate the relationship between teachers’ beliefs about students’ mathematical capabilities 

and the enactment of CDTs. 
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 While the focus of this analysis was on teachers’ knowledge and beliefs, several findings 

pertain to measures included as controls. First, there is evidence that in this sample, teachers with 

more teaching experience were more likely to pose a low-level task over a level 3 task, but 

experience teaching mathematics was not significantly related to the enactment of CDTs in any 

of the other analyses. This is consistent with the literature suggesting that teachers who are more 

experienced tend to be less likely to implement new reform curricula in the intended ways 

(Remillard & Bryans, 2004). Also, teachers who were new to the curriculum were more likely to 

choose either a low-level task or level 4 task, over a level 3 task, and more likely to decrease the 

cognitive demand of a high-level task. There is evidence that teachers use new curricular 

materials in different ways (Lambdin & Preston, 1995; Remillard, 2005; Stein et al., 2007). 

Further, the different ways that teachers use curricular materials could result in a variety of 

adaptations. For example, Lambdin and Preston (1995) describe one teacher who adapted the 

Connected Mathematics curricular materials by: 1) demonstrating an investigation for the 

students to watch; and 2) incorporating more practice with procedural problems. The former 

adaptation would result in a Task Potential score of a 4, while the later adaptation would likely 

result in a Task Potential score of a 2. The case of the demonstrated investigation would be a 

high-level task in which the cognitive demand was not maintained. This adaptation maps onto 

the findings for teachers’ who are new to the curriculum. Combining the findings pertaining to 

task selection and maintenance of the cognitive demand of high-level tasks when teachers are 

new to the curriculum leads to the findings that teachers who are in their first year of using the 

curriculum generally either pose a low-level task or decrease the cognitive demand of the high-

level task they pose. This suggests a need for further research in how to support teachers to enact 

CDTs in their first year of curriculum use. 
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Another finding was that teachers in District C were significantly less likely to select 

tasks of high cognitive demand; given the choice between tasks of low-level and level 3, or tasks 

of level 3 and level 4, teachers in District C were more likely to select the lower level task. 

Further, since the models controlled for differences in knowledge and beliefs, this district 

difference was not attributed to differences in teachers’ mathematical knowledge for teaching or 

beliefs about teaching and learning mathematics. One possible explanation is that Districts A, B, 

and D, all adopted the same inquiry-oriented curriculum—CMP2–but District C did not. 

Therefore, teachers in District C did not have the same access to CDTs as teachers did in the 

other districts. Lastly, despite evidence from other studies of the potential importance of the 

other control variables, the enactment of CDTs was not significantly related to the time allocated 

for the lesson, the number of students in the class, the mean prior mathematics achievement of 

the students in the class, or the heterogeneity of the prior achievement of students in the class.  

 Several qualitative studies of the relationship between teachers’ knowledge and beliefs 

and their practice suggest that the relationships between knowledge and practice and between 

beliefs and practice are not necessarily straightforward. I investigated possible interrelationships 

between teachers’ knowledge and beliefs and their enactment of CDTs by considering different 

hypotheses based on previous findings. I found that relationships between knowledge and beliefs 

and the enactment of CDTs are indeed complex. The most convincing evidence for this claim is 

the significant relationships between MKT and VHQMI and teachers’ selection of low-level 

tasks over level 3 tasks when contingencies were examined. The initial lack of significant 

findings between mathematical knowledge for teaching and beliefs about teaching and learning 

mathematics and the choice between low-level tasks and level 3 tasks was disconcerting because 

this choice between low-level tasks and level 3 tasks is considered especially critical. While 
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there are added benefits of engaging students in level 4 tasks, the choice between of a level 3 

task over a low-level task is much more critical because level 3 tasks allow students access to the 

concepts underlying the mathematics, whereas low-level tasks do not.  

The findings of this investigation suggest that teachers’ choice between low-level and 

level 3 tasks is related to MKT and VHQMI, but the relationships are not straightforward. For 

example, in different score quartiles for MKT, increases in VHQMI had differential effects on 

the likelihood of choosing between a low-level and level 3 task. To some extent, these results are 

consistent with specification (b) which was derived from the literature: Teachers need a certain 

level of mathematical knowledge for teaching for their beliefs about teaching and learning 

mathematics to have the expected positive effect on their enactment of CDTs (Putnam et al., 

1992). For teachers whose MKT scores were in the second and third quartiles, compared with 

those in the first quartile, having a higher VHQMI score increased the chances of choosing a 

level 3 task over a low-level task, but this relationship was not statistically significant for 

teachers with MKT scores in the fourth quartile. The lack of statistical significance at this level 

appears to be due to the large standard error, implying that there is more variation in this 

moderating relationship for teachers with MKT scores in the fourth quartile. 

Across the different models, there are several results suggesting that teachers who scored 

in the top quartile for VHQMI or MKT were the most likely to enact CDTs, but the result from 

the examination of the hypothesized contingency and teachers’ choice of tasks suggests that 

there is variation in how VHQMI and MKT are related for teachers who scored in the top 

quartile for MKT. This suggests that a more in-depth analysis of teachers within these top 

quartiles is warranted, but that we also need to consider the remaining majority of teachers as we 

work to support teachers to enact CDTs. 
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 My results indicate the value of examining contingencies in large-scale studies: Without 

considering contingencies, I would have concluded that MKT and VHQMI are not related to the 

choice between low-level and level 3 tasks. Although there is still much to be learned about 

selecting high rather than low cognitive demand tasks, the results from investigating 

contingencies suggest that MKT and VHQMI are related to that choice of tasks, but that they are 

interrelated in complicated ways. 

 A second methodological implication is the importance of modeling different phases of 

the enactment of CDTs separately. There is good reason to believe that teachers’ knowledge and 

beliefs are not related to teachers’ choice of tasks and to the maintenance of the cognitive 

demand of high-level tasks in the same ways. For example, it is somewhat intuitive that teachers’ 

beliefs about supporting struggling students might have a greater impact of their maintenance of 

the cognitive demand of high-level tasks, than with the choice of tasks, assuming that the district 

has adopted a rigorous curriculum. Without modeling choice of tasks and maintenance of the 

cognitive demand separately, that distinction would have been impossible to investigate. Further, 

Stein and Kaufman’s (2010) combining of these measures might be the reason why they did not 

find a statistically significant relationship between MKT and the enactment of CDTs. 

 The finding that sophisticated mathematical knowledge for teaching, vision of high 

quality mathematics instruction, and beliefs about supporting struggling students are related to 

the enactment of CDTs indicate the importance of continuing to investigate ways to support the 

development of teachers’ knowledge, beliefs, and practice. First, by better understanding how 

teachers’ mathematical knowledge for teaching and beliefs about teaching and learning 

mathematics are related to their enactment of CDTs, teachers can be better supported to enact 

CDTs. Given the statistical significance and lack of prior research, more investigation is 
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warranted with regard to teachers’ beliefs about supporting struggling students and the enactment 

of CDTs. Also, further investigation of mathematical knowledge for teaching and beliefs about 

teaching and learning mathematics is warranted with particular attention to variations in effects 

at different levels of sophistication and interrelationships between knowledge and beliefs.  

 The findings of this study suggest that teachers’ knowledge, beliefs, and practice are 

interconnected and all related to their enactment of CDTs. Therefore, as we work to support 

teachers’ enactment of CDTs it is important that we work on developing the many facets of 

teachers’ knowledge, beliefs, and practice simultaneously. Since the enactment of CDTs is just 

one dimension of ambitious teaching practice (Lampert & Graziani, 2009), it will be important to 

situate the enactment of CDTs within the larger activity structure that makes up ambitious 

teaching practice. Effective supports will center on teachers’ problems of practice and push 

teachers to discuss and develop their mathematical knowledge for teaching and beliefs about 

teaching and learning mathematics. Given the complexity of these aims, it will likely be 

important for there to be someone or something that guides and focuses conversations (e.g., 

Borko, 2004; Borko, Jacobs, Eiteljorg, & Pittman, 2008; Elliott et al., 2009; Remillard & Kaye, 

2002). Whether it is a mathematics coach, PD leader, or instructional tool that helps to focus 

teachers’ conversations, the most important aspect will be intentional foci on developing 

teachers’ knowledge, beliefs, and practice in concert.  

 In service of this goal, future research should examine existing supports and their effects 

on teachers’ development of ambitious instructional practice. Hopefully this research will lead to 

new ideas about minor adjustments to existing supports that will make those supports more 

productive as well as more dramatic innovation as we work to support teachers’ development of 

ambitious instructional practice. Given the complexity of the enactment of CDTs and other 
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aspects of ambitious instructional practice, coordinated supports for pre- and in-service teachers’ 

development of mathematical knowledge for teaching, beliefs about teaching and learning 

mathematics, and practice are critically important. 
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CHAPTER IV 

 

MIDDLE SCHOOL MATHEMATICS TEACHERS’ ENACTMENT OF COGNITIVELY 
DEMANDING TASKS: INVESTIGATING TEACHER DEVELOPMENT THROUGH 

INTERACTIONS WITH COLLEAGUES 

 

Introduction 

New reform goals and standards for students’ mathematical learning have been put in 

place over the past two decades (e.g., see National Council of Teachers of Mathematics 

[NCTM], 1989; National Council of Teachers of Mathematics [NCTM], 2000; National 

Governors Association for Best Practices & Council of Chief State School National Governors 

Association for Best Practices & Council of Chief State School Officers, 2010). These goals for 

students’ mathematical learning also imply new expectations for mathematics teachers’ work in 

their classrooms. The Curriculum and Evaluation Standards and Principles and Standards for 

School Mathematics documents published by the National Council of Teachers of Mathematics 

(1989, 2000) and the more recent Common Core State Standards (National Governors 

Association for Best Practices & Council of Chief State School National Governors Association 

for Best Practices & Council of Chief State School Officers, 2010) reflect a consensus within the 

mathematics education research and policy communities for comprehensive reforms to 

traditional mathematics instruction. A fundamental aspect of high-quality, inquiry-oriented 

mathematics instruction proposed in these documents is the use of challenging, or cognitively 

demanding, mathematical tasks. In particular, the level of challenge of the tasks students solve 

and discuss is the foundation for students’ mathematical learning opportunities (Doyle, 1988; 

Hiebert & Grouws, 2007; Stein et al., 2007). Challenging mathematical tasks support students in 

developing conceptual understanding (Stein & Lane, 1996). Teachers in the U.S. generally do 



113 
 

not use cognitively demanding mathematical tasks in their classrooms, and when they do, they 

often enact them in ways that make them less challenging for students (Hiebert et al., 2003; 

Hiebert et al., 2005; Stein et al., 1996). 

There is considerable evidence that it is challenging for teachers to develop the types of 

instructional practices described in the Standards documents (e.g., Ball & Cohen, 1999; Elmore 

et al., 1996; Lambdin & Preston, 1995; C. L. Thompson & Zeuli, 1999), and even when they 

believe they are teaching in a manner consistent with the reforms, practices frequently diverge 

from the reforms (e.g., D. K. Cohen, 1990). While researchers have begun to identify 

characteristics of effective teacher professional development (Desimone, Porter, Garet, Yoon, & 

Birman, 2002; Wilson & Berne, 1999), we still need to understand more about the design and 

implementation of formal professional development and about other opportunities for 

mathematics teacher learning (Borko, 2004). Further, what we know about professional learning 

(e.g., see Bruner, 1996; Lave & Wenger, 1991) suggests that interactions with colleagues in 

several different settings (e.g., formal professional development, teacher collaborative meetings, 

work with a math coach, and informal interactions with colleagues) have some potential to serve 

as productive sites for learning as teachers work to enact CDTs. 

This study investigates changes in teachers’ enactment of cognitively demanding tasks 

(CDTs) over time and seeks to understand whether teachers’ interactions with colleagues in 

different settings (e.g., formal professional development, teacher collaborative meetings, work 

with a math coach, and informal interactions with colleagues) are related to change in their 

enactment of CDTs. 
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Conceptual Framework 

The Cognitive Demand of Mathematical Tasks 

The cognitive demand of a task refers to “the cognitive processes students are required to 

use in accomplishing it” (Doyle, 1988, p. 170). Stein, Grover, and Henningsen (1996) built on 

Doyle’s work as they classified tasks into those with low and high cognitive demand. Tasks with 

low cognitive demand require students to memorize or reproduce facts, or perform relatively 

routine procedures without making connections to the underlying mathematical ideas. Tasks with 

high cognitive demand or cognitively demanding tasks (CDTs) require students to make 

connections to the underlying mathematical ideas. In addition, students are asked to engage in 

mathematical activities of explanation, justification, and generalization, or use procedures to 

solve tasks that are open with regard to which procedures to use. It is important to emphasize that 

the distinctions between high and low cognitive demand are relative to students’ current 

understanding and, thus, are situation-dependent. 

There is evidence that CDTs can provide critical learning opportunities for all students. 

Stein and Lane (1996) found that the use of tasks with high cognitive demand was related to 

greater student gains on an assessment requiring high levels of mathematical thinking and 

reasoning. In particular, the greatest gains occurred when teachers assigned tasks that were 

initially of high cognitive demand, and teachers and students maintained the cognitive demand 

throughout the lesson. Further, there is evidence that cognitively demanding tasks afford 

valuable learning opportunities for all students, not just previously high-achieving students 

(Zohar & Dori, 2003). The enactment of high cognitive demand tasks in the classroom therefore 

appears to be important in supporting all students’ learning.  
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Unfortunately, it is clear that CDTs are not often enacted in U.S. classrooms. In 

attempting to understand more about changes in cognitive demand during a lesson, Stein, 

Grover, and Henningsen (1996) documented the initial cognitive demand of mathematical tasks 

as written or verbally posed to students and examined whether teachers and students maintained, 

increased, or decreased the demand in different phases of a math lesson. They found that in 

classrooms where tasks with the potential for high levels of cognitive demand were used, 

teachers and/or students often decreased the cognitive demand during implementation of the 

tasks. The point is not whether the teacher or students decreased the cognitive demand but that 

the cognitive demand decreased during the interactions between the students and the teacher 

(e.g., the students pressed the teacher to demonstrate a solution method). The results from the 

1999 TIMSS video study are consistent with those of Stein and colleagues in that they suggest 

that the mathematical activity in U.S. middle school mathematics classrooms tends to be 

procedural in nature, and when teachers do select high-level tasks they often implement them in 

low-level ways (Hiebert et al., 2003; Hiebert et al., 2005). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Modified “Math Tasks Framework” (Stein et al., 1996, p.459) 
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The Math Tasks Framework 

Of central importance to analyzing how teachers enact tasks is a framework for 

examining the nature of classroom activity over the course of a lesson. The Math Tasks 

Framework proposed by Stein, Grover, and Henningsen (1996) is useful in thinking about 

changes in cognitive demand over different phases of a lesson (see Figure 1). When examining 

the use of CDTs in the classroom, it is important to consider both the cognitive demand of the 

task in particular phases of the lesson and changes in the cognitive demand from one phase to 

another. In this analysis, I focus on the cognitive demand of the task as selected by the teacher 

(corresponding to the phase in the left-most square in Figure 1) and the transition from that phase 

to the task as implemented by the teacher and students in the classroom (the third square from 

the left). This transition from selection to implementation corresponds to the maintenance of the 

cognitive demand over the course of the lesson. Both task selection and maintenance of the 

cognitive demand influence whether students engage in cognitively demanding mathematical 

activity in the classroom. 

Supporting Teachers’ Enactment of Cognitively Demanding Tasks 

 Only one study has investigated change in teachers’ enactment of CDTs. Boston and 

Smith (2009) studied 18 secondary mathematics teachers’ enactment of CDTs before, during, 

and after their participation in the Enhancing Secondary Mathematics Teacher Preparation (ESP) 

professional development project that focused specifically on selecting and enacting challenging 

mathematical tasks. They contrasted the participating teachers with 10 secondary math teachers 

who did not participate in the professional development program and found that through their 

participation in the professional development program, teachers improved in their selection and 

implementation of cognitively demanding tasks. Therefore, there is evidence that teachers can 
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improve their enactment of CDTs and that focused professional development is one effective 

support for such change. 

Teachers’ Learning Opportunities through Interactions with Colleagues 

In addition to professional development, interactions with colleagues in other settings 

(e.g., collaborative teacher meetings, informal interactions with colleagues) might be potential 

sites for teacher learning. Studies of professional learning indicate that co-participation in 

activities that approximate the targeted practices with more accomplished others is critical for the 

learning of complex practices (Bruner, 1996; Lave & Wenger, 1991). Further, these activities 

typically occur over an extended period of time (Lave & Wenger, 1991). Therefore, there are 

three crucial criteria to consider when investigating the potential learning opportunities that 

might arise for teachers through interacting with colleagues: 1) whether there are ongoing 

opportunities to work with others, 2) whether they involve activities that approximate targeted 

practices, and 3) whether they occur with someone who is more accomplished. The goal of this 

study was to identify a set of potentially productive interactions and empirically test whether 

they supported teachers’ development with regard to enacting CDTs. In the following paragraphs 

I begin by reviewing the evidence that clarifies the importance of opportunities for interaction in 

ongoing, close-to-practice activities with someone who is relatively accomplished. Then, I use 

these three criteria to assess a priori teachers’ interactions with colleagues within several 

different settings for their potential in supporting teachers to enact CDTs.  

Opportunities for ongoing interaction. There is evidence that effective supports for 

improvement in teachers’ instructional practice include interactions with other individuals 

(Frank, Zhao, & Borman, 2004; Penuel, Riel, Krause, & Frank, 2009; Putnam & Borko, 1997). 
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Further, several studies of effective professional development programs suggest that teachers’ 

co-participation in PD sessions with colleagues influenced teachers’ learning from the PD 

programs (Franke & Kazemi, 2001; Kazemi & Franke, 2004). There is also evidence that other 

forms of ongoing interactions with colleagues (e.g., collaborative teacher meetings, interactions 

with a math coach) might support teachers’ development of their practice (e.g., Bruce & Ross, 

2008; Diaz, 2004; Neuberger, 2010; Smith, 2000; Wang & Paine, 2003). In addition, several 

studies demonstrate that content of the ongoing interactions matters for supporting teachers’ 

development (Horn & Little, 2010; Kruse & Louis, 1995). Therefore, the evidence suggests that 

interactions with colleagues might support teachers’ development. 

Activities close to practice. The findings of a number of studies indicate that engaging in 

activities close to practice is an effective way to support teachers’ development (Ball & Cohen, 

1999; Franke & Kazemi, 2001; Kazemi & Franke, 2004; Wilson & Berne, 1999). Grossman and 

colleagues (2009; 2008) built on these findings to suggest that activities that are close to practice 

should consist of both pedagogies of investigation and pedagogies of enactment. Pedagogies of 

investigation are more common in teacher education and professional development, and involve 

analyzing and critiquing practice (e.g. reviewing student work, watching and critiquing 

classroom video) (Kazemi, Franke, & Lampert, 2009). On the other hand, pedagogies of 

enactment are less common in teacher education and professional development and involve 

teachers actually practicing and receiving feedback on aspects of teaching. Specific to the 

enactment of CDTs, pedagogies of enactment could involve making decisions about tasks to be 

used in the classroom or rehearsing specific questions to ask students that maintain the cognitive 

demand, whereas pedagogies of investigation could involve looking over student work to 

determine whether the teacher and students maintained the cognitive demand. 
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Relatively accomplished colleagues. The findings of several studies indicate that co-

participation with relatively accomplished colleagues is critical for teacher learning through 

interaction (Kruse & Louis, 1995) and that interactions with such colleagues are linked to 

instructional improvement (Frank et al., 2004; Penuel et al., 2009). Teachers who are attempting 

to develop inquiry-oriented instructional practices need support from people who are already 

relatively accomplished mathematics teachers, with a range of knowledge and skills including: 

using curriculum materials effectively to support students’ attainment of ambitious mathematical 

learning goals, having deep mathematical knowledge for teaching, and having a vision of high-

quality inquiry-oriented instruction (Hill, Schilling, & Ball, 2004). Therefore, it is important to 

consider the expertise of the individuals within the interactions to understand the potential for 

supporting teachers’ development.  

In sum, in considering teachers’ potential learning opportunities through interactions with 

colleagues, it is critical to examine whether there are opportunities for ongoing interaction, 

whether those opportunities involve activities that approximate targeted practices, and whether 

they occur with someone who is more accomplished instructionally. 

Possible Settings for Potentially Productive Interactions with Colleagues  

The most common opportunities for mathematics teachers to interact with colleagues 

include: formal pull-out professional development, collaborative mathematics teacher meetings, 

interactions with a math coach, and informal interactions with colleagues. In this section, I assess 

the extent to which each of these types of interactions has the potential to support teachers’ 

enactment of CDTs by determining the extent to which they meet the criteria described above. 
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Formal Pull-Out Professional Development 

The three criteria described above are consistent with the characteristics of effective 

professional development (PD) described in the literature. In particular, the criterion that teachers 

have ongoing opportunities to co-participate in activities close to practice implies that they 1) 

involve active learning, 2) are grounded in teachers’ practice 3) are coherent with other learning 

opportunities, 4) focus on content, 5) involve collective participation of teachers from the same 

school or grade, and 6) are ongoing in duration (Desimone et al., 2002; Garet, Porter, Desimone, 

Birman, & Yoon, 2001; Horn & Little, 2010; Putnam & Borko, 1997; Wilson & Berne, 1999). 

The last criterion that PD be ongoing in duration is especially important because many formal 

PD sessions provide recommendations for practice but do little to support teachers in 

incorporating them into their practice (Wilson & Berne, 1999). In evaluating the potential of 

professional development programs, it will be important to consider the three criteria described 

above. 

The one PD program that supported teachers in enacting CDTs, the ESP project (Boston 

& Smith, 2009), involved opportunities for co-participation in activities close to practice with 

people who are relatively accomplished. In particular, the ESP project PD gave teachers ongoing 

opportunities to interact with peers and mathematics education experts to work closely on the 

enactment of CDTs. The PD program took place over the course of two years with 11 days of 

professional development sessions in each the first year and 5 half-day sessions in the second 

year. The PD program was close to the practice of enacting CDTs in that it was centered on a 

framework and tools specific to the enactment of CDTs, which were used to analyze 

instructional episodes and written work produced by students and designed to allow teachers to 

use them flexibly in their classrooms (Boston & Smith, 2009). In addition, teachers participated 
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in cycles of planning, enacting tasks in the classroom, and then reflecting on the lesson. 

Therefore, there is evidence that the PD program involved both pedagogies of investigation and 

pedagogies of enactment which may have contributed to its success in supporting teachers’ 

development. In sum, teachers who co-participated in ongoing activities specific to the 

enactment of CDTs with peers and mathematics education experts generally improved their 

enactment of CDTs. It is unclear whether PD programs that are less specifically focused on the 

enactment of CDTs have the potential to support teachers in enacting CDTs. 

Collaborative Mathematics Teacher Meetings 

Collaborative mathematics teacher meetings might provide teachers with opportunities to 

interact with one another. Meetings of this sort are theoretically promising because they have the 

potential to involve activities that are close to teachers’ practice. For example, teachers might use 

this time to plan lessons together, which is central to their practice. Yet, empirical results 

regarding the effect of teachers meeting together on their practice are mixed. Several studies 

found that teacher meetings (especially about the curriculum) support teachers’ development of 

inquiry-oriented instructional practices (Diaz, 2004; Smith, 2000; Wang & Paine, 2003).  

On the other hand, there is evidence that the presence of collaborative teacher meetings is 

a necessary but not sufficient condition in supporting teachers’ development. It is also important 

to consider whether activities are close to practice and involve co-participation with relatively 

accomplished colleagues. For example, Peterson, McCarthey, and Elmore’s (1996) study of three 

elementary schools undergoing restructuring found that allocating time for teacher collaboration 

was a necessary but not a sufficient condition for instructional improvement. This finding is 

broadly consistent with Horn and Little’s (2010) findings from a study of two teacher work 

groups in the same high school. Horn and Little found dramatic differences in teachers’ 
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opportunities to develop their practice within interactions with colleagues in the two work groups 

and attributed those differences to contrasting conversational routines and the leadership within 

the groups. Therefore, it may also be important to account for the expertise within the meetings. 

The leaders in the more effective work group had a learning-centered vision for the work group 

which seemed to influence the conversational routines. Therefore, collaborative mathematics 

teacher meetings involving relatively accomplished colleagues, effective leaders, and activities 

that are close to practice might be potentially productive interactive settings for supporting 

teachers’ enactment of CDTs. 

Interactions with a Mathematics Coach 

 It is becoming increasingly common for districts to provide district- or school-based 

mathematics coaches to support teachers’ improvement of their instructional practices (Coburn 

& Russell, 2008). Interactions with a mathematics coach are theoretically likely to provide 

productive learning opportunities for teachers provided the coach is relatively accomplished and 

the interactions involve activities that are close to practice. No empirical studies have 

investigated the influence of interactions with a coach on teachers’ enactment of CDTs. 

However, there is some empirical evidence that interactions with a coach can support teachers’ 

development of inquiry-oriented instructional practices. As mentioned above, Diaz (2004) found 

in her cross-site comparison that interactions with a content specialist (i.e., coach) supported 

teachers’ implementation of an inquiry-oriented curriculum. In addition, Neuberger (2010) found 

that work with a mathematics coach assisted an elementary teacher in developing her 

mathematics instructional practice. Further, there is evidence that interactions with a coach can 

influence the nature of a teacher’s informal interactions with other colleagues (Coburn & 

Russell, 2008), which might in turn support the development of teachers’ instructional practice, 
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as described in the next section. Hence, both theoretical considerations and empirical evidence 

suggests that interactions with a coach have the potential to support teachers’ enactment of 

CDTs. 

Informal Interactions with Colleagues 

 In addition to collaborative teacher meetings, more informal interactions with colleagues 

might also give rise to learning opportunities. In particular, certain advice-seeking interactions 

with colleagues theoretically have the potential to support teacher learning because they are 

likely to be closely related to teachers’ instructional practice. It is not clear whether advice-

seeking interactions will necessarily involve relatively accomplished colleagues. For example, a 

teacher might not have any colleagues who are relatively accomplished teachers at his or her 

school. There is some evidence that teachers’ informal interactions with someone who is 

relatively accomplished positively influence their practice. For example, Frank, Zhao, and 

Borman (2004) found that teachers’ informal interactions with technologically expert peers 

increased their use of technology in the classroom. Similarly, Sun, Garrison, Larson and Frank 

(Under review) found that mathematics teachers’ advice seeking interactions with colleagues 

influenced their instructional practice. Despite the fact that no studies have specifically focused 

on the influence of teachers’ informal interactions with colleagues on their enactment of CDTs, it 

is reasonable to conjecture that teachers’ informal, advice-seeking interactions with relatively 

accomplished colleagues might support change in their enactment of CDTs.  

 In sum, there is evidence that several types of common interactions with colleagues have 

some potential to serve as productive sites for learning as teachers work to enact CDTs. The 

extent to which these interactions are productive is likely to depend on whether they involve 

relatively accomplished colleagues and the activities within in the meetings are related to the 
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enactment of CDTs. My goal was to investigate empirically whether each of the interactional 

settings discussed above is associated with improvement in enacting CDTs. As I clarify below, 

the data set that I analyzed allowed me to investigate whether interactions in the various types of 

settings with colleagues who are relatively accomplished is associated with change in enacting 

CDTs. However, I was not able to investigate whether engaging in specific activities pertaining 

to the enactment of CDTs in those settings is associated with change in enacting CDTs.   

Method 

 The two objectives of the study are as follows: 1) To describe change in teachers’ 

enactment of cognitively demanding tasks over time, and 2) to investigate how interactions with 

colleagues and the expertise of colleagues within those interactions are related to any change in 

teachers’ enactment of CDTs.  

Sample 

I drew on data collected in the course of a four-year study that sought to address the 

question of what it takes to improve the quality of middle-grades mathematics teaching, and thus 

student achievement, at the scale of a large urban district (Cobb & Jackson, 2011; Cobb & 

Smith, 2008). The research team collaborated with the leaders of four large, urban districts that 

were attempting to achieve a vision of high quality mathematics instruction that was compatible 

with the National Council of Teachers of Mathematics’ (2000) Principles and Standards for 

School Mathematics. In each of the four districts, the research team selected a sample of 6 to 10 

middle grades schools that reflected variation in student performance and in capacity for 

improvement in the quality of instruction across the district. Within each school, up to six 

mathematics teachers were randomly selected to participate in the study, for a total of 
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approximately 30 teachers per district. In general, the three to six teachers in our sample from 

each school are just a subset of all of the mathematics teachers in the school. Further, although 

we tried to retain as many teachers as possible throughout the study, the sample varies from year 

to year as we recruited replacements when teachers left schools or changed teaching 

assignments. 

The four collaborating school districts (Districts A, B, C and D) were typical of large, 

urban districts in that they had limited resources, large numbers of traditionally low-performing 

students in mathematics, high teacher turnover, and disparities amoung subgroups of students in 

their performance on state standardized tests (Darling-Hammond, 2007). For example, on 

average 75.7% of the students in the study schools were eligible for free or reduced price lunch, 

ranging from 17% to 96.3%. There were significant differences (p<.05) between districts in the 

mean percentage of students within the school eligible for free or reduced price lunch, with a 

District A mean of 67.4% (SD=25.1%) and a District C mean of 88.9% (SD=6.7%). 

The districts were atypical in their response to high-stakes accountability pressures: they 

responded by focusing on improving the quality of instruction rather than teaching for the test. 

Consistent with this response, three of the four districts (which I will call Districts A, B, and D) 

adopted the Connected Mathematics Project 2 (CMP2) as their primary curriculum. The CMP2 

curriculum is consistent with an inquiry-oriented approach to teaching mathematics and includes 

a high proportion of cognitively demanding tasks (Choppin, 2011). District C adopted a more 

traditional curriculum but encouraged teachers to supplement it with CMP2 and another 

internally-developed inquiry-oriented curriculum. District B, C, and D began implementing their 

respective curricula in Year 1 of the larger study. District A began implementing CMP2 in Year 
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2 of the larger study but had a 10 year history of using the original Connected Mathematics 

Project Curriculum, prior to adopting CMP2.  

Each district implemented a number of strategies that were designed to support teachers 

in improving their instruction (e.g., curriculum frameworks, mathematics coaching, regularly 

scheduled time to collaborate with colleagues on issues of instruction, professional 

development). With respect to the types of interactions on which this study focused, there was 

considerable variation in strategies. Initially District A had no math coaches but subsequently 

assigned math coaches to some schools and also increasingly tried to encourage collaborative 

teachers meetings. District B hired school-based math coaches who were expected to support 

curriculum implementation by working with all of the teachers in the school, often in groups. 

District C assigned district-based math coaches to the lowest performing schools where they 

were expected to work with teachers in whatever way the coach and principal decided were 

appropriate. District C also mandated daily collaborative teacher meetings during the school day. 

Lastly, District D assigned district-based math coaches to all schools, with the amount of time 

that they spent at each school depending on student achievement. The coaches were expected to 

work with the weakest teachers and build capacity with groups of teachers during collaborative 

teacher meetings. In comparing the four districts with regard to coaching, District A, C, and D 

employed math coaches to varying degrees but they all encouraged coaches to work with weaker 

teachers, while coaches in District B were expected to work with all teachers. The emphasis on 

collaborative teacher meetings also varied across the districts with District C requiring daily 

collaborative meetings and District B not even making teacher meetings a specific strategy 

(although there were regular mathematics teacher meetings in some schools). All four districts 

offered math-specific PD on curriculum use or high quality mathematics instruction (including 
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the use of rigorous math tasks). Although the four districts attempted to support teachers in 

improving their instruction, there was not an explicit focus on the enactment of CDTs in any of 

the districts. 

In each of the four years of the study (2007-2011), we collected several types of data to 

test and refine a set of hypotheses and conjectures about district and school organizational 

arrangements, social relations, and material resources that might support mathematics teachers’ 

development of high-quality instructional practices at scale. The primary data sources on which I 

drew for this study were video-recordings of teachers’ classroom instruction, an assessment of 

teachers’ and coaches’ mathematical knowledge for teaching, and an online teacher survey and 

teacher interviews focused on the school and district settings in which teachers work (e.g., 

working with a coach and time allocated for collaboration with colleagues). In order to avoid 

omitted variable bias when accounting for colleagues’ expertise, I used an expertise score from 

the prior year (Allison, 2005). For example, expertise scores for colleagues in Year 2 came from 

Year 1 of the study, and there are no prior expertise scores for Year 1. For this reason, my 

primary analytical sample of teachers for whom I am investigating change in their enactment of 

CDTs is limited to teachers in Years 2 through 4. Also, because the study sample varied each 

year, a cost of using prior scores is that there are missing prior scores in any given year. I used 

multiple imputation4 to estimate prior scores for participants in Years 2 through 4 who were 

missing prior scores (i.e., scores in Years 1 through 3).  

                                                            
4 I imputed several different measures of expertise (described below) using chained equations (ICE) in STATA by 
using information from other years of study to impute expertise information for years in which that information 
was missing for participants. I also took into account that participants were nested within schools by including 
information dummy variables for school membership in the model. For 98% of the teachers in the sample, some 
measure of colleagues’ expertise includes imputed data to some extent, the majority of which were for some 
advice‐seeking interaction. In comparison, only about 31% of scores were imputed for coach MKT, for example. 
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Measures of the Enactment of Cognitively Demanding Tasks and Other Expertise 

I first describe the primary outcome measures of teachers’ enactment of CDTs and the 

additional measures that I use to assess colleagues’ expertise. Then, I describe the measures I 

used to represent different types of interactions with colleagues and explain how I created 

different aggregate measures of expertise within those interactions. Descriptive statistics for all 

of the measures are given in Table 2. 

Enactment of CDTs. I constructed measures of teachers’ enactment of CDTs by drawing 

on the measures of the quality of teachers’ instructional practice used in the larger research 

project: the Instructional Quality Assessment (IQA, Boston & Wolf, 2006; Matsumura et al., 

2006). We used this instrument to code video-recordings of the participating teachers’ classroom 

instruction. In each of the years of the study, we video-recorded two (ideally consecutive) 

mathematics lessons conducted by each of the 120 teachers in the study in late winter. Teachers 

were asked to engage students in a problem-solving lesson with a related whole-class discussion.  

The IQA was developed by a team of researchers at the University of Pittsburgh, and the 

larger study used eight of their developed rubrics to assess the quality of teachers’ instruction. I 

focus on two of those rubrics: Task Potential and Implementation. Recall that my definition of 

teachers’ enactment of cognitively demanding tasks includes: 1) selecting such tasks; and 2) 

maintaining the cognitive demand of the high-level tasks during classroom implementation. The 

cognitive demand of the selected task is measured by the Task Potential rubric. Maintenance of 

the cognitive demand of high-level tasks is measured by comparing the Task Potential and 

Implementation rubrics. The Task Potential and Implementation rubrics were based on the earlier 

work by Stein and colleagues (e.g., see Stein et al., 1996; Stein & Lane, 1996), described above. 
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These rubrics were designed to measure the cognitive demand of the task posed to students (Task 

Potential) and the cognitive demand of the task as implemented by the students and the teacher in 

the classroom (Implementation). Both rubrics use the same scale with five levels of cognitive 

demand embedded within one larger distinction: low cognitive demand or high cognitive 

demand. In an effort to reduce the complexity of investigating change in teachers’ practice over 

time, in this study I focus on the crucial distinction between low cognitive demand and high 

cognitive demand to describe teachers’ practice. Tasks coded as levels 1 and 2 are low in 

cognitive demand, with a level 1 task requiring only memorization or the reproduction of facts 

and a level 2 task requiring students to perform relatively routine procedures without making 

connections to the underlying mathematical ideas. Tasks coded at levels 3 and 4 represent tasks 

of high cognitive demand. A level 3 task requires students to make connections to underlying 

mathematical ideas, but tasks do not include explicit requests for generalization or justification. 

At the highest level, a level 4 task asks students to engage in the disciplinary activities of 

explanation, justification and generalization, or to use procedures to solve tasks that are 

somewhat open-ended in nature.  

I use the Task Potential rubric to determine whether the teacher selected a high or low 

level task. My examination of maintenance of the cognitive demand is limited to teachers who 

selected a high-level task. If a teacher’s scores for Task Potential and Implementation are both of 

high cognitive demand, then the cognitive demand of the high-level task was “maintained.”  If 

the score for Task Potential is high but the score for Implementation is low, then the cognitive 

demand of the high-level task “decreased.”   
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Table 1 

Reliability Information for Task Potential and Implementation 

 Y1 Y2 Y3 Y4 
 Potential Impl Potential Impl Potential Impl Potential Impl 

% Agrmt 59.4 78.1 56.9 78.5 75 89.3 59.1 63.6 
kappa 0.37 0.51 0.29 0.37 0.63 0.75 0.36 0.29 

 

Each year we recruited doctoral students in education and master’s students in 

mathematics education, to serve as IQA coders. An IQA developer trained coders in the summer 

of each year of the study. Coders were required to achieve 80 percent agreement with previously 

consensus-coded videos during the training reliability phase and inter-rater agreement was 

assessed every other week over the course of the 10 weeks of coding (resulting in double-coding 

of about 15% of the video sample). Table 1 gives the reliability information for each rubric in 

each study year because coding the video-recordings from each study year were coded each 

summer, which produced four sets of reliability information. Ongoing reliability was calculated 

with percent exact agreement and kappa scores. There is some evidence that percent agreement 

is not the best measure of inter-rater reliability, and that kappa scores are more accurate in 

measuring inter-rater agreement. A kappa score is a measure of reliability based on percent exact 

agreement that is adjusted for the chance agreement based on the actual distribution of the data 

(J. Cohen, 1960). Unfortunately, there is evidence that kappa scores are often negatively skewed 

when the actual scores are not well distributed (Gwet, 2010). Despite the fact that both percent 

agreement and kappa are imperfect measures of reliability, there are not commonly used 

measures that are less imperfect for measures of this complexity. Therefore, I report both percent 

agreement and kappa to justify the reliability of the data.  
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The exact agreement percentages for the Task Potential rubric were between 56.9% and 

75% and kappa scores were between 0.29 and 0.63. Task Implementation reliability was slightly 

higher with exact agreement ranging from 63.6% to 89.3% and kappa scores between 0.29 and 

0.75. There are no hard rules about sufficient reliability, but, instead, several rules of thumb. 

Hartmann, Barrios, and Wood (2004) suggest that appropriate agreement rates are between 80 

and 90 percent, but that for more complex instruments 70% could be sufficient. The kappa scores 

indicate at worst “Fair” agreement and at best “Substantial” agreement (Landis & Koch, 1977),  

Therefore, given the complex nature of this instrument and the imperfection in the measures of 

inter-rater agreement, there is some indication that these inter-rater reliability scores are 

sufficient.  

I created one set of scores for each teacher in each study year by choosing the better set 

of scores across the two days of coded instruction. Because teachers knew we were coming to 

video-record and we asked them to engage students in a problem-solving lesson, I do not 

consider our sample of their instruction to be representative of their typical classroom practice. 

Instead, the better of the two sets of scores represents the teachers’ best shot at enacting CDT in 

their current school context. Across the three years, 67% of teachers chose a high-level task (see 

Table 2). For the imputed sample across all four years, 68.0% of participants chose a high-level 

task (see Appendix B for a table comparing expertise in the original sample and the imputed 

sample).5  In addition, across the three years, 45.0 % of teachers who posed high-level tasks 

implemented them in high-level ways (e.g., maintained the cognitive demand of the tasks). For 

the imputed sample across all four years, 42.1% of teachers who posed high-level tasks 

maintained the cognitive demand as high. Because understanding change in teachers’ enactment 

                                                            
5 Imputed values for Task Potential and Implementation were only used to assess colleagues’ prior expertise and 
not with the outcome variable in the models of change in enactment of CDTs. 
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of CDTs is one of the objectives of this study, detailed analysis of change in the enactment of 

CDTs is discussed in the results section. 

Mathematical knowledge for teaching. In March of each of the four years of the larger 

study, we assessed all participating teachers’ and mathematics coaches’ mathematical knowledge 

for teaching (MKT) by using a pencil-and-paper instrument developed by the Learning 

Mathematics for Teaching project at the University of Michigan (Hill et al., 2004). The 

instrument has a reliability index of .70 or above and can be used to assess teachers' knowledge 

with respect to two dimensions: number concepts and operations (NCOP); and patterns, 

functions and algebra (PFA). For each of the two subtests (NCOP and PFA), raw scores were 

translated into IRT (item response theory) scale scores (provided by MKT developers), the 

determination of which was based on results from a pilot administration of the assessment to a 

national sample of approximately 640 practicing middle school teachers. I used a combined 

average of these two scale scores to form a single MKT score for each participant in each year. 

The use of IRT scores based on the national sample allows me to relate the MKT scores of the 

teachers in our sample to the national average and distribution (i.e., a mean score of 0 and 

standard deviation of 1). For the imputed sample, the MKT scores range from -3.84 to 3.56 with 

a mean of -0.18 and a standard deviation of 0.95 (see Appendix B for a table comparing 

expertise in the original sample and the imputed sample).  

Vision of high quality mathematics instruction. The Vision of High Quality 

Mathematics Instruction (VHQMI; Munter, Under review) measure pertains to teachers’ beliefs 

about teaching and learning mathematics and is derived from interviews conducted with the 

participating teachers and coaches in January of each year of the larger study. In the interviews 

we asked teachers what they would look for when observing a mathematics teacher’s instruction 
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to determine if the instruction was of high quality. Depending on the breadth of their responses, 

participants were then asked a series of probes (see Appendix A for details).  

Nine doctoral students in education and three post-doctoral education researchers were 

trained by the developer to code participants’ VHQMI and began coding when they reached an 

80% agreement level. Transcribed responses to the interview question were coded on eight 

different dimensions: the role of the teacher, mathematical tasks, classroom activity, and 

discourse (including the structure, the nature of talk, teacher questions, student questions, and 

student explanations) (see Appendix A for details). For each of these dimensions, scores range 

between 0 and 4. Participants who described more traditional instruction are at the bottom of the 

scale and the top of the scale is inquiry-oriented instruction that includes cognitively demanding 

tasks, rich whole-class discussions, and a proactive teacher who guides these activities. It was 

common for participants to receive scores for only some of the dimensions because there was not 

always enough information for coders to assign a score. Overall, the ongoing reliability percent 

exact agreement between coders was 80%.  

To estimate participants’ Visions of High Quality Mathematics Instruction (VHQMI), I 

used standardized mean scores that are the mean across the scored dimensions (i.e., if only two 

dimensions received scores, then the mean would be calculated across those two dimensions). 

For the imputed sample, VHQMI scores range from -0.95 to 5.15 with a mean of 2.42 and a 

standard deviation of 0.72 (see Appendix B for a table comparing expertise in the original 

sample and the imputed sample). In the models, the scores are standardized based the model 

sample for ease of interpretation of interaction effects. Descriptive statistics for specific 

measures of expertise are described below.  
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Measures Associated with Interactions and Contingencies 

District professional development. In the spring of each year of the larger study, a 

survey was administered to teachers. The survey included items that asked teachers to report the 

extent to which the use of challenging, problem-solving tasks was addressed in professional 

development sessions. I used these self-reports regarding professional development as proxies 

for the amount of formal pull-out professional development (PD) teachers had received that 

related to cognitively demanding tasks. Unfortunately, I do not have information about whether 

the professional development they reported was specific to the enactment of CDTs and whether 

it involved pedagogies of investigation and enactment. Also, I do not have information about the 

expertise of individuals present within the PD sessions. Scores range from a 0 indicating no 

focus on use of challenging, problem solving tasks within professional development to a 3 

indicating that professional development sessions addressed the use of challenging, problem-

solving tasks to a great extent. The sample mean is 2.08 (with a standard deviation 0.90), 

corresponding to an average teacher reporting that district PD addressed the use of challenging, 

problem-solving tasks to a moderate extent.  

 Teacher collaborative time. In the interviews conducted in January of each year of the 

larger study, teachers were specifically asked about the time provided for mathematics teachers 

to collaborate. Teachers described the amount of time and the typical activities within the 

meetings. Teachers’ responses to these questions were triangulated across the 3-6 interviewed 

teachers in each school. Because teacher meetings are only likely to support teachers’ in 

developing their practice if they focus on problems of practice, I limited my measure of teacher 

collaboration (TCT) to the time in which the primary focus was on activities closely linked to 

teachers’ practices (e.g., lesson planning). For example, I excluded meetings that were primarily 
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administrative in nature (e.g., scheduling teachers to chaperone Saturday school, working on 

school improvement plan). Due to the nature of the data, I was able to discern whether the 

activities were generally related to teaching or more administrative in nature, but I was not able 

to identify whether this time focused on the enactment of CDTs. I estimated the number of hours 

per month of teacher collaborative time for each teacher. In some cases, the number of hours of 

teacher collaborative time was consistent across all math teachers in a school, whereas in other 

cases, the number of hours of teacher collaborative time varied by grade-level within a school. In 

the primary analytical sample, the mean is 6.06 (SD=5.27), indicating that the average teacher 

met with other math teachers to work on activities that are related to teaching for about 6 hours 

each month. The range is from 0 to 22 hours a month. 

Table 2.  

Descriptive Statistics for the Enactment of CDTs, Interactions in Different Settings, and 
Expertise within those Interactions 

 Mean  SD Min Max N 
High Potential 0.67 0.47 0 1 381 
Maintain 0.45 0.50 0 1 257 
Work w/ Coach 13.60 15.96 0 100 377 
Task PD 2.08 0.90 0 3 372 
TCT 6.06 5.27 0 22 381 
Advice In 68.80 109.55 0 776 378 
Advice Out 13.89 44.53 0 360 378 
Coach MKT -0.003 0.85 -2.26 1.82 281 
Coach VHQMI 2.53 0.71 0.68 3.85 281 
TCT MKT 0.58 0.66 -1.49 1.72 381 
TCT VHQMI 2.75 0.63 0 3.83 341 
TCT High Pot. 0.64 0.35 0 1 378 
TCT Maintain 0.17 0.33 0 1 381 
MKT Advice 60.54 130.25 0 876.9 378 
VHQMI Advice 77.19 168.52 0 1105.7 378 
High Pot. Advice 18.38 53.31 0 360 378 
Maintain Advice 8.95 34.27 0 360 378 
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Access to expertise in teacher collaborative time. I assessed the expertise available 

during teacher collaborative time (EXPERTISETCT) by using the maximum VHQMI and MKT 

for the other attendees of the meetings (including mathematics coaches). I also considered the 

percentage of teachers in attendance who selected high-level tasks and maintained the cognitive 

demand of high-level tasks, respectively.6  The mean maximum available VHQMI score during 

teacher collaborative time is 2.75 (SD=0.63), with a range of 0 to 3.83. This mean indicates that 

on average there was someone in the meeting who described mostly inquiry-oriented 

instructional practices but did not consistently describe the function of inquiry-oriented forms of 

instruction (e.g., described that the teacher should facilitate but not the teacher’s proactive role). 

The mean maximum available MKT score during teacher collaborative time is 0.58 (SD=.66), 

with a range of -1.49 to 1.72. This mean indicates the average teacher did have access to 

someone with more developed MKT during teacher collaborative time, but the range suggests 

that this was not always the case. The mean percentage of participants within teacher 

collaborative time who chose high-level tasks is 64% (SD=35%), and the mean percentage of 

participants who maintained the cognitive demand of those tasks is 17% (SD=33%). Teachers 

generally had access to people who chose high-level tasks and maintained the cognitive demand 

of those tasks, but not all of the teachers in the meetings choose high-level tasks and only about 

one third of teachers who chose high-level tasks maintained the cognitive demand.  

 Advice-seeking interactions. In the 2nd through 4th years of the larger study, the teacher 

survey administered in the spring included questions about teachers’ advice-seeking interactions 

related to mathematics instruction. Teachers were asked “During this school year (including last 

summer), to whom have you turned for advice or information about teaching mathematics?”  

                                                            
6 The fact that we did not collect MKT and VHQMI data for the entire mathematics department is a limitation on 
the precision of these measures of access to expertise 
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They were also asked about the frequency of those interactions. Choices for frequency were: (1) 

daily or almost daily, (2) once or twice a week, (3) once or twice per month, or (4) a few times 

per year. This information was re-coded to approximate the number of advice-seeking 

interactions teachers have with people both in (ADVICE-IN) and out (ADVICE-OUT) of their 

schools. District mathematics coaches who were assigned to a school are considered “in” that 

school. Because these advice-seeking interactions were teacher-initiated and pertaining to 

teaching mathematics, it is likely that they were generally close to practice, but it is not possible 

to infer whether they pertained to the enactment of CDTs. The mean number of times that 

teachers reported seeking advice from their colleagues within their schools is 68.8 (SD=109.6), 

with a range of 0 to 766 times. The mean number of times that teachers reported seeking advice 

from people outside the school is 13.9 (SD=44.5) with a range of 0 to 360 times.  

Access to expertise in advice-seeking interactions. I assessed the expertise of the 

individuals with whom teachers interacted (EXPERTISEADVICE-IN) when possible by using the 

total available expertise in each teacher’s in-school network. The total available expertise was 

included as an exposure term, as is common in network influence models (Frank, Kim, & 

Belman, 2010). This means that the frequency of interactions was weighted by expertise and then 

summed across all interactions. In other words, expertise was integrated into the ADVICE-IN 

term rather than treating expertise as a separate main effect and indirect effect. As with 

collaborative teacher meetings, I considered colleagues’ VHQMI, MKT and their task selection 

and maintenance of the cognitive demand when applicable7. To avoid negative quantities of 

MKT advice, MKT scores were shifted by the minimum value to make all values positive. The 

mean MKT advice is 60.5 (SD=130.3), and the mean VHQMI advice is 77.2 (SD=168.5). Recall 

                                                            
7 The fact that we did not collect MKT, VHQMI, and IQA data for the entire mathematics department is a limitation 
on the precision of these measures of access to expertise 
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that these are the number of interactions weighted by the expertise of the people from whom they 

report seeking advice. I also calculated the number of times they reported seeking advice from 

someone who posed a high-level task: mean=18.4 (SD=53.3). Similarly I calculated the number 

of times they reported seeking advice from a colleague who maintained the cognitive demand of 

a high-level task: mean=9.0 (SD=34.3). Using the mean of 68.8 times as a reference, this 

suggests that nearly one quarter of teachers’ reported interactions were with someone who posed 

a high-level task and about one half of those interactions were with someone who maintained the 

cognitive demand of a high-level task.  

 Work with a mathematics coach. In the teacher survey administered every year of the 

larger study, teachers were asked “So far this school year, how often have the following events 

occurred?”: 1) a mathematics coach observed my teaching (for at least 10 minutes); 2) a 

mathematics coach reviewed my students’ work; 3) I discussed my teaching with a mathematics 

coach; and 4) I observed a mathematics coach demonstrate teaching in a classroom (for at least 

10 minutes). The response options were: never, 1-2 times, 3-5 times, 6-10 times, 11-20 times, 

and more than 20 times. These results were recoded as counts of the number of times and 

summed across the four events (Work with Coach). Sums range from 0 to 100 with a mean of 

13.6 and a standard deviation of 16.0. These particular interactions are likely to represent a 

subset of all of a teacher’s interactions with a coach, but these activities are potentially 

productive ways to work with a coach because they are focused on teaching and learning 

(Gibbons, 2012), and are therefore a reasonable proxy for one-on-one work with a coach that 

might support teachers’ development. 

Access to expertise in working with a coach. I assessed the expertise of the 

mathematics coach (EXPERTISECoach), by using their MKT and VHQMI. Because the majority 
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of the coaches in our sample were not concurrently teaching, I do not have information about 

their task selection and maintenance of the cognitive demand practices. In cases where more than 

one coach was assigned to a school8, I consider the expertise of the coach with the greatest 

expertise because it is impossible to discern which coach the teachers referred to (or whether 

they referred to multiple coaches) when responding to the survey. The mean MKT score for 

coaches was -0.003 (SD=0.85). The mean VHQMI score for coaches was 2.53 (SD=0.71) with a 

range of 0.68 to 3.85. Compared to the sample means of -0.18 and 2.42 for MKT and VHQMI 

respectively these results suggest that, on average, the MKT or VHQMI of the coaches in the 

sample were not significantly more developed than those of the teachers in the schools that they 

served.  

 District fixed effects. As I have indicated above, District B and D began using an 

inquiry-oriented curriculum, CMP2, at the same time. In addition, District A had already been 

using a version of the inquiry-oriented curriculum for several years. District C only used this 

curriculum to supplement the more traditional curriculum it had adopted for middle-school 

mathematics. I use District B as the reference district and include district fixed effects (DIST A, 

DIST C, and DIST D) to control for differences in the adopted curriculum and the time of the 

adoption as well as other district contextual factors, such as district professional development 

and accountability climate, which are otherwise excluded from the model.  

Analyses 

My primary analytical sample was 195 teachers in Years 2 through 4 of the larger study, 

with 380 lessons in total (67 teachers with 3 years of data, 51 teachers with 2 years, and 77 

                                                            
8 This was only the case for 6 schools in District D for some of Years 2‐4 of the larger study: For three schools there 
were multiple coaches in two years and for three schools there were multiple coaches in one year. 
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teachers with 1 year). While teachers for whom there is only 1 year of data provide no 

information about change, they are included in the sample because they provide information that 

pertains to average behavior. The average teacher in the sample was fairly experienced in 

teaching mathematics when they entered the sample, with a mean of 8.12 years of experience 

and a range of 1 to 40 years of experience. Teachers in District A were significantly more 

experienced than teachers in the other 3 districts (mean=12.1 for District A, mean=7.1 for the 

other districts, t=-3.3375, p<.001). 

I first set out to understand patterns of change in teachers’ enactment of CDTs. To 

investigate this, I grouped teachers by patterns in their enactment across years and used t-tests 

and regression models to examine whether there were significant differences in their interactions 

with colleagues in different settings or available expertise within those interactions for the 

groups. The different task selection patterns include: 1) All high, 2) All low, 3) High then low, 4) 

Low then high, and 5) Mixed. The patterns for maintenance of the cognitive demand of high-

level tasks are similar: 1) All maintain, 2) All decrease, 3) Maintain then decrease, 4) Decrease 

then maintain, and 5) Mixed. 

As my goal was to understand how interactions with colleagues might support teachers’ 

enactment of CDTs, I focused on teachers who had the potential for development: Teachers who 

initially chose low level tasks for the models of task selection and teachers who chose high-level 

tasks but decreased the cognitive demand of tasks when enacting them in their classroom for 

models of maintenance of the cognitive demand. For task selection, this includes teachers who 

were in the “All Low” group and teachers who were in the “Low then High” group. For 

maintenance of the cognitive demand, this includes teachers who were in the “All Decrease” 

group and teachers who were in the “Decrease then Maintain” group. There were a few teachers 
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who started off with the less desirable outcome (e.g., selected a low level task) in the first year, 

then achieved the desired outcome (e.g., high-level task) in the second and third years. I 

excluded these teachers’ third year from the models because they no longer had room for further 

development on the scale used in this analysis in the final year. The teachers who started 

similarly with the less desired outcome (e.g., selecting a low-level task) in the first year, 

improved in the second year (e.g., high-level task), but returned to the less desirable outcome 

(e.g., low-level task) in the third year were assigned the Mixed group and excluded from the 

models of development. Before modeling interactions with colleagues and change in the 

enactment of CDTs, I investigated differences between the primary sample (e.g., “All Low” and 

“Low then High”) and the relatively accomplished group of teachers (i.e., “All High” or “All 

Maintain”) with regard to the number of interactions and colleagues’ expertise within those 

interactions. I assessed differences by using t-tests and regression models9 to compare the means 

for the two groups. This set of analyses compared interactions and available expertise during 

interactions for teachers who are already relatively accomplished and the primary sample of 

weaker teachers for whom I then investigate improvement.  

I investigated how interactions with colleagues and the expertise of colleagues involved 

in those interactions were related to any changes in teachers’ enactment of CDTs by using multi-

level logistic regression models that account for the clustering associated with multiple 

observations for some teachers who are nested within schools. I modeled both task selection and 

maintenance of the cognitive demand as dichotomous outcomes. For task selection the outcome 

was either high-level or low-level task. For maintenance of the cognitive demand of high-level 

                                                            
9 I use regression instead of T‐tests for measures of expertise because of the use of multiply imputed data. STATA 
does not have a routine for estimating t‐tests with multiply imputed data, but using regression with the group as a 
predictor accomplishes the same thing (see http://www.stata.com/statalist/archive/2010‐11/msg00235.html)  
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tasks the outcome was whether the cognitive demand was maintained or decreased, and was 

limited to teachers who selected high-level tasks. I investigated the effect of interactions with 

colleagues on task selection and on maintenance of the cognitive demand by using several 

rounds of models. The first round of models include only structural aspects of the interactions 

(e.g., how many times teachers worked with a coach, how much time each month they spent in 

collaborative teacher meetings), and exclude the expertise of the participants: 

ሺܪܩܫܪ	ܮܣܫܶܰܧܱܶܲ	ݎ݋	ܧܥܰܣܰܧܶܰܫܣܯሻ

ൌ ሻܦଵሺܲߚ	 ൅ ܧܥܫܸܦܣଶሺߚ െ ሻܰܫ ൅ ܧܥܫܸܦܣଷሺߚ െ ܱܷܶሻ ൅ ሻܶܥସሺܶߚ

൅ ሻ݄ܿܽ݋ܥ	݄ݐ݅ݓ	݇ݎ݋ହሺܹߚ ൅ ሻݎ଺ሺܻ݁ܽߚ ൅ ሻܣ	ܶܵܫܦ଻ሺߚ ൅ ሻܥ	ܶܵܫܦሺ଼ߚ

൅ ሻܦ	ܶܵܫܦଽሺߚ ൅  ߝ

The second, third, and fourth rounds of models include the expertise of colleagues within those 

meetings. For each round, models include a different type of expertise (VHQMI, MKT, and Task 

Selection or Maintenance, respectively), and I first model the direct effect of the expertise, 

followed by a model that includes direct and interaction effects for each measure of expertise. 

Because coach expertise only applies when there was actually a coach in the school and this 

further reduces the sample of teachers, I examined the effects of coach expertise as it pertains to 

working with a coach separately from the effects of other expertise. If coaches were present in 

collaborative teacher meetings or were indicated as people from who teachers seek advice, their 

expertise was also included in the measures associated with those settings. Models of coach 

expertise were of the form:  
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ሺܪܩܫܪ	ܮܣܫܶܰܧܱܶܲ	ݎ݋	ܧܥܰܣܰܧܶܰܫܣܯሻ

ൌ ሻܦଵሺܲߚ	 ൅ ܧܥܫܸܦܣଶሺߚ െ ሻܰܫ ൅ ܧܥܫܸܦܣଷሺߚ െ ܱܷܶሻ ൅ ሻܶܥସሺܶߚ

൅ ߚ ሺܹ݇ݎ݋	݄ݐ݅ݓ	݄ܿܽ݋ܥሻ ൅ ߚ ሺܧܵܫܴܶܧܲܺܧ஼௢௔௖௛ሻ ൅ ଻ሺܶ݅݉݁ሻߚ ൅ ሻܣ	ܶܵܫܦሺ଼ߚ

൅ ሻܥ	ܶܵܫܦଽሺߚ ൅ ሻܦ	ܶܵܫܦଵ଴ሺߚ ൅  ߝ

Models of expertise within other interactions were of the form: 

ሺܪܩܫܪ	ܮܣܫܶܰܧܱܶܲ	ݎ݋	ܧܥܰܣܰܧܶܰܫܣܯሻ

ൌ ሻܦଵሺܲߚ	 ൅ ܧܥܫܸܦܣଶሺߚ െ ሻܰܫ ൅ ߚ ሺܧܵܫܴܶܧܲܺܧ஺஽௏ூ஼ாିூேሻ

൅ ܧܥܫܸܦܣସሺߚ െ ܱܷܶሻ ൅ ሻܶܥହሺܶߚ ൅ ஼்ሻ்ܧܵܫܴܶܧܲܺܧ଺ሺߚ

൅ ߚ ሺܹ݇ݎ݋	݄ݐ݅ݓ	݄ܿܽ݋ܥሻ ൅ ߚ ሺܶ݅݉݁ሻ ൅ ሻܣ	ܶܵܫܦଽሺߚ ൅ ሻܥ	ܶܵܫܦଵ଴ሺߚ

൅ ሻܦ	ܶܵܫܦଵଵሺߚ ൅  ߝ

By first examining the effect of participation in different types of interactions with colleagues 

that have the potential to be close to practice, then including the expertise, and finally including 

statistical interactions between participation and expertise, I considered the incremental effect of 

several forms of expertise over and above the sole effect of participation and how the availability 

of expertise might moderate the effects of participation. Lastly, in the cases where the models 

produced significant results that were difficult to interpret, I conducted additional analyses to aid 

in interpretation. For example, I estimated additional models to better understand possible district 

differences with regard the effect of working with a coach on task selection. When comparing 

models that did not involve multiple imputation, the Akaike information criterion (AIC) and 

Bayesian information criterion (BIC) model fit statistics are provided.  
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Results 

 Recall that my two objectives were to characterize change in the enactment of CDTs and 

investigate how interactions with colleagues in different settings and the availability of expertise 

within those interactions were related to change in the enactment of CDTs. In addressing these 

questions, I examined task selection and maintenance of the cognitive demand of high-level tasks 

separately. In presenting the results for each aspect of enacting CDTs, I first describe patterns of 

change, then examine differences in interactions and expertise for different patterns of change, 

and finally model relationships between interactions and change in the enactment of CDTs for 

teachers who had the potential for development (i.e, “All Low” and “Low then High” for task 

selection or “All Decrease” and “Decrease then Maintain” for maintenance).  

Table 3 

Teachers and Number of Observations for Task Selection, by Change Pattern 

Trend 1 observation 2 observations 3 observations Total 
All High 56 21 25 102 
Mixed --- --- 9 9 
High then Low --- 9 13 22 
Low then High --- 10 15 25 
All Low 21 11 5 37 
Total 77 51 67 195 
 

Patterns of Change in Teachers’ Task Selection 

To understand change in teachers’ enactment of CDTs, I first classified teachers by their 

patterns of change in task selection across Years 2 through 4 of the larger study. Table 3 

summarizes the distribution of teachers by change pattern and number of observations. As 

mentioned above, teachers who were observed in only one year are included in this analysis 

because they provide information about average behavior. There are two groups that make up the 
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primary sample of 62 teachers for further investigation of change in Task Selection: the 25 

teachers classified as “Low then High” and the 37 teachers classified as “All Low.”  All of these 

teachers started with a low-level task and some of them eventually selected a high-level task 

whereas others did not. The “Low then High” group is made up of the 25 teachers who selected a 

low-level task the first time they were observed, but in Year 3 or 4 selected a high-level task (and 

then did not drop back down to a low level task in the subsequent year). The “All Low” group 

includes the 37 teachers who only posed low level tasks. There is only one observation for 21 of 

these teachers, who contribute no information about change. I will call the sample of teachers in 

the “Low then High” and “All Low” groups the primary task selection sample. 

There were 102 teachers who posed high-level tasks in every year we observed them, and 

46 of those teachers were observed for multiple years of the study. There were 22 teachers who 

selected a high-level task in the first year we observed them, but in Year 3 or 4 selected a low 

level task. Further, there are 9 teachers who fluctuated between high- and low-level tasks over 

the three years of the study and were classified as “Mixed”: 7 teachers posed a high-level task, 

then a low-level task, then another high-level task, and 2 teachers began with a low-level task, 

then posed a high-level task, and then a low-level task. The 22 teachers classified as “High then 

Low” and the 9 teachers classified as “Mixed” were excluded from the analyses of interactions 

or expertise within interactions because they represent decline and inconsistency which are not 

the foci of this study. The teachers within the “All High” category are an interesting comparison 

group, but they provide no information about change. 
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Group Differences for Patterns of Change in Task Selection 

Prior to investigating whether participation in different types of interactions is related to 

change in the primary task selection sample, I examined whether there were any descriptive 

differences between the primary sample (i.e., the teachers who had the potential for 

development) and the other teachers (e.g., the “All High” group). I first examined the distribution 

of teachers across the four school districts (see Table 4) for three categories of teachers: the 

primary sample (i.e., “All Low” or “Low then High”), teachers who always selected a high-level 

task (i.e., “All High”), and the other teachers (i.e., “Mixed” and “High then Low”). First, a 

Kolmogorov-Smirnov test for equality of distribution functions suggests that there are 

marginally significant differences in how the three categories of teachers were distributed across 

the districts (p=.069). In particular, over 60% of the teachers in district A and D, and nearly 60% 

of the teachers in District B were in the “All High” group. On the other hand, only 17.5% of the 

teachers from District C were in the “All High” group and 50% of the teachers from District C 

were in the primary sample. In contrast, 23.1%, 24.1%, and 32.8% of teachers from Districts A, 

B, and D, respectively, were in the primary sample. There is also a higher percentage of teachers 

in District C who fall into the “other” category. Given what we know about the curricular 

differences between District C and the other three districts, it is not surprising that more teachers 

in District C either entered the study selecting low level tasks or waivered between low and high 

cognitive demand tasks over time. 
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Table 4.  

Teacher Distributions across three Categories of Task Selection Change Patterns and School 
District 

District Primary Sample All High Other Totals 
 # % of District Total # % of District Total # % of District Total  

A 9 23.1 25 64.1 5 12.8 39 
B 14 24.1 34 58.6 10 17.3 58 
C 20 50.0 7 17.5 13 32.5 40 
D 19 32.8 36 62.1 3 5.1 58 

 

Table 5 

Descriptive Statistics for Interactions in Different Settings and Expertise within those 
Interactions for the Primary Task Selection Sample and the “All High” Change Pattern   

 Primary Task Selection Sample All High 
 Mean SD N Mean SD N 
Work w/ Coach 14.0  15.8 109 14.0  17.0 171 
Task PD** 2.0  1.0 109 2.2  0.9 168 
TCT** 6.8  5.6 109 4.3  4.2 173 
Advice In** 85.8  122.0 109 59.2  110.7 172 
Advice Out** 3.4  9.4 109 17.6 47.1 172 
Coach MKT -0.0005  0.93 80 0.15  0.76 123 
Coach VHQMI 2.53  0.74 80 2.55  0.70 123 
TCT MKT 0.51  0.72 109 0.60  0.66 173 
TCT VHQMI** 2.62  0.75 109 2.84  0.59 173 
TCT High Potential 0.63  0.33 109 0.66  0.37 171 
MKT Advice* 83.08  162.65 109 52.67  118.81 172 
VHQMI Advice 89.11  172.59 109 75.49  180.52 172 
High Potential 
Advice 

23.63  63.96 109 18.84  52.80 172 

*p< 0.1, **p<0.05.  

 

To begin to understand how participation in different types of interactions might be 

related to teachers’ task selection, I compared means and standard deviations of interactions with 

colleagues (i.e., interactions variables) and expertise available in those interactions (i.e., 

expertise variables) for the primary sample and the “All High” group (see Table 5). T-tests 

suggest that there are at least marginally significant differences between the primary sample and 
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the “All High” group for all of the interactions variables except work with a coach. However, the 

direction of the difference is not consistent across different interactional settings. Teachers in the 

primary sample participated in less professional development that focused on enacting 

challenging, problem-solving tasks (p<.05), participated in more collaborative teacher meetings 

focused on practice (p<.05), reported more advice-seeking interactions within their schools 

(p<.05), and reported fewer advice-seeking interactions outside of their schools (p<.05).  

There are two significant differences between the primary sample for task selection and 

the “All High” group with regard to access to expertise: colleagues’ VHQMI in collaborative 

teacher meetings (p<.05), and MKT expertise through advice-seeking interactions (p<.10). 

Results suggest that teachers in the “All High” group had access to colleagues with more 

sophisticated VHQMI during collaborative teacher meetings and less access to MKT expertise 

through advice-seeking interactions than teachers in the primary task selection sample. Another 

relevant finding that is true for both the primary sample and the “All High” group is that the 

maximum available expertise in collaborative teacher meetings (i.e., TCT MKT and TCT 

VHQMI) was generally greater than the available coach expertise (i.e., coach MKT and coach 

VHQMI). These finding suggests that mathematics coaches in these districts were generally not 

the most expert colleagues with regard to MKT and VHQMI, and that collaborative teacher 

meetings usually gave teachers access to relatively accomplished colleagues.  

Given the differences in district strategies related to these types of interactions (e.g., 

coaching and collaborative teacher meetings), I also investigate differences between the primary 

sample for task selection and the “All High” group within districts. Table 6 reports the means, 

standard deviations, and the number of observations for the primary sample and the “All High” 

group within districts, and identifies statistically significant differences. Several results shed 
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additional light on the differences between the primary sample and the “All High” group. 

Although there were no significant overall differences between the samples with regard to 

working with a coach, there are important differences between samples when separated by 

districts. For District B, teachers in the “All High” group reported significantly more interactions 

with a coach (t= 1.76, p<.05). In the other districts, the differences between groups were not 

statistically significant, but the means tended in the opposite direction: teachers in the primary 

sample reported working more with a coach than did teachers in the “All High” group. These 

findings are consistent with the differences in district designs for coaching: in District B, coaches 

were expected to work with all teachers, whereas in the other districts, coaches were expected to 

work with the neediest teachers. These differences between districts also provide an explanation 

for why there is no significant overall difference with regard to working with a coach. 

Another notable difference between districts with regard to task selection concerns the 

level of accomplishment of colleagues in collaborative teacher meetings. Although there was no 

significant overall difference between the primary sample and the “All High” group, there were 

significant differences between the samples within districts. Further, the differences were in 

opposite directions. In particular, in District B, the mean percentage of teachers in collaborative 

teacher meetings who selected high-level tasks was higher for the “All High” group than the 

primary task selection sample (b=0.17, SE=0.08, p<.05), but in District C, the mean percentage 

of teachers in collaborative teacher meetings who selected high-level tasks was higher for the 

primary sample than for the “All High” group (b=-0.18, SE=0.10, p<.10). These results seem to 

suggest that participants in District B teacher meetings had similar instructional practices, but 

that in District C there was less consistency in meeting participants’ instructional practices. This 

variation explains why there was no significant overall difference between the two samples. 
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There is no clear explanation for why more accomplished teachers in District B tended to 

participate in meetings with colleagues who were also more accomplished, while more 

accomplished teachers in District C tended to participate in meetings with teachers who were less 

accomplished. This gives some indication that schools in District B might be more homogeneous 

than schools in District C with regard to task selection.  
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Table 6 

Descriptive Statistics for Interactions in Different Settings and Expertise within those Interactions for the Primary Task Selection 
Sample and the “All High” Change Pattern, By District   

 District A District B District C District D 
 P. Sample All High P. Sample All High P. Sample All High P. Sample All High 
 Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N 

Work w/ 
Coach 

9.4 
(11.4) 

19 6.9 
(17.1) 

51 8.7  
(9.7) 

23 14.6** 
(14.6) 

55 11.9 
(15.1) 

37 8.5 
(10.3) 

11 23.6 
(18.8) 

30 21.4 
(17.2) 

54 

Task PD 1.7  
(0.7) 

19 2.4** 
(0.7) 

51 1.7  
(1.0) 

23 2.0  
(0.9) 

53 2.3  
(0.8) 

37 2.5  
(0.8) 

11 2.0 
 (1.1) 

30 2.1 
(0.9) 

53 

TCT 1.9  
(1.8) 

19 1.6  
(1.8) 

52 5.0  
(3.7) 

23 5.9  
(3.0) 

55 13.3 
(2.9) 

37 12.0 
(4.7) 

12 3.3  
(2.8) 

30 3.5 
(4.1) 

54 

Advice In 59.6 
(101.4) 

19 40.6 
(80.7) 

52 101.7 
(133.1) 

23 75.9 
(137.0) 

55 112.2 
(147.7) 

37 131.6 
(196.8) 

11 57.6 
(78.6) 

30 45.7 
(70.0) 

54 

Advice 
Out 

4.2  
(8.8) 

19 31.7** 
(63.0) 

52 4.3 
(10.4) 

23 10.7 
(34.7) 

55 5.1 
(12.2) 

37 17.5* 
(54.0) 

11 0 
(0) 

30 11.1** 
(35.9) 

54 

Coach 
MKT 

0.38 
(1.29) 

7 0.72 
(0.66) 

7 -0.24 
(0.62) 

23 -0.11 
(0.60) 

55 -0.64 
(1.00) 

20 
 

-0.77 
(0.87) 

7 0.52 
(0.59) 

30 0.47 
(0.70) 

54 

Coach 
VHQMI 

1.84 
(0.57) 

7 3.08 
(0.75) 

7 2.44 
(0.66) 

23 2.36 
(0.68) 

55 2.17 
(0.84) 

20 2.45 
(0.82) 

7 2.78 
(0.63) 

30 2.69 
(0.63) 

54 

TCT MKT 0.90 
(0.74) 

19 0.66 
(0.76) 

52 0.41 
(0.68) 

23 0.59 
(0.63) 

55 0.30 
(0.80) 

37 0.28 
(0.71) 

12 0.59 
(0.50) 

30 0.62 
(0.55) 

54 

TCT 
VHQMI 

2.84 
(0.66) 

19 2.93 
(0.55) 

29 2.77 
(0.48) 

23 2.74 
(0.51) 

54 2.21 
(0.91) 

37 2.45 
(0.88) 

11 2.94 
(0.50) 

30 2.98 
(0.57) 

52 

TCT High 
Pot. 

0.44 
(0.48) 

19 0.49 
(0.47) 

51 0.60 
(0.29) 

23 0.78** 
(0.28) 

55 0.61* 
(0.28) 

37 0.44 
(0.33) 

12 0.79 
(0.25) 

30 0.76 
(0.26) 

54 

MKT 
Advice 

114.1 
(211.3) 

19 51.2 
(105.3) 

52 47.0 
(97.1) 

23 71.9 
(160.9) 

55 96.0 
(188.8) 

37 50.1 
(85.5) 

11 75.2* 
(132.1) 

30 35.0 
(80.0) 

54 

VHQMI 
Advice 

82.5 
(167.9) 

19 62.9 
(153.0) 

52 72.8 
(145.5) 

23 125.1 
(256.5) 

55 103.0 
(198.4) 

37 104.4 
(168.7) 

11 88.7** 
(167.5) 

30 31.2 
(73.1) 

54 

High Pot. 
Advice 

26.4 
(61.8) 

19 18.7 
(37.6) 

52 7.9 
(37.5) 

23 28.1 
(77.2) 

55 27.8 
(71.0) 

37 10.0 
(23.2) 

11 28.7 
(72.7) 

30 11.3 
(36.0) 

54 

*p< 0.1, **p<0.05.  
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Lastly, although there are not significant differences between teachers in the primary 

sample for task selection and teachers in the “All High” group with respect to VHQMI expertise 

through advice-seeking interactions across the four districts, there are significant differences 

between the two samples in District D. In particular, District D teachers in the primary sample 

have greater access to VHQMI expertise through advice-seeking interactions (p<.05).  

Overall, there are some notable differences between teachers who initially posed low-

level tasks and teachers who posed all high-level tasks. Teachers who posed all high-level tasks 

reported more of an emphasis on challenging, problem-solving tasks in PD, fewer hours of 

collaborative teacher meetings each month, fewer advice-seeking interactions within their 

schools, more advice-seeking interactions outside of their schools, had access to colleagues with 

more inquiry-oriented VHQMI in collaborative teacher meetings, and had access to greater MKT 

expertise through advice-seeking interactions10. These findings might be partially explained by 

the distribution of teachers across the districts, especially as only 9 teachers from District A are 

in the primary sample, and only 7 teachers from District C are in the “All High” group. Also, 

there are some notable differences by district: teachers in District B who posed all high-level 

tasks reported more interactions with a coach, teachers in District C who posed all high-level 

tasks had access to fewer colleagues who also posed high-level tasks, and teachers in District D 

who posed all high-level tasks had less access to VHQMI expertise through advice-seeking 

interactions. In sum, there is some indication that weaker teachers (i.e., teachers in the primary 

sample) participated in fewer PD sessions that focused on enacting challenging tasks, but 

participated in more collaborative teacher meetings and advice-seeking interactions within their 

                                                            
10 While some of these behaviors might be consistent with teachers who are more experienced, these trends are 
not attributable to teachers’ experience in this case: In fact, teachers in the primary sample for Task Selection were 
significantly more experienced in teaching mathematics (mean=10.9 for primary sample and mean=8.5 for All High 
Sample, p<.05). 
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schools11. Also, coaches in District B tended to work more with stronger teachers (i.e., “All 

High”), and coaches in the other districts tended to work more with the weaker teachers (i.e., the 

primary sample). The next step in the analysis was to investigate whether interactions with 

colleagues and the available expertise within those interactions were related to improvement in 

selecting high-level tasks. 

Models of Interactions and Change in Teachers’ Task Selection 

In this section, I describe results from models of interactions and available expertise 

within those interactions on change in teachers’ task selection in order to understand how 

different types of interactions might support teachers to improve their task selection. The primary 

sample for addressing these questions consists of 62 teachers in 25 different schools who initially 

selected low-level tasks. Recall that 25 of those teachers improved (i.e., eventually chose a high-

level task), 16 teachers continued to select low level tasks, and 21 teachers were only in the study 

for one year and selected a low level task in that year. Results from the 11 models of time spent 

interacting with colleagues and the expertise of colleagues within those interactions are given in 

Tables 7 and 8. Because quite a few of the models only differ slightly in which variables were 

included, I first explain the initial model and then describe trends and notable results across the 

other models.  

A first general finding is that the number of interactions that teachers reported with a 

coach is negatively related to the selection of high-level tasks. For example, results from model 

(1), the model of interactions without considering expertise, suggest that if a teacher worked with 

a coach one standard deviation more than the average (approximately 30 times, instead of 14 

                                                            
11 This set of results is not significantly associated with the poverty level of the school (i.e., the percentage of 
students eligible for free or reduced price lunch). 
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times), then their odds of choosing a high-level task are 0.10 (i.e., approximately 1 to 10) the 

odds of a person who reported working with a coach 14 times this year (p<.05). In other words, 

the more a teacher worked with a coach, the less likely they were to choose a high-level task. 

There are two possible interpretations: 1) the more a teacher worked with a coach, the less likely 

they were to improve in their task selection, or 2) coaches tended to work with teachers who 

were less likely to select a high-level task. I investigate and discuss these different 

interpretations, below. 

A second general finding is that the number of within-school, advice-seeking interactions 

teachers reported is positively related to the selection of high-level tasks (see models (1)-(3), (6), 

and (7)). For example, results from model (1) suggest that the odds of choosing a high-level task 

for teachers who reported one standard deviation more advice-seeking interactions with 

colleagues than the mean, or 206 total advice-seeking interactions, are 3.06 times the odds for a 

teacher who reported the mean of about 86 interactions. While 206 advice-seeking interactions 

might seem high, it is equivalent to interacting with one person daily and two other people once a 

month. Further, this finding holds when the number of advice-seeking interactions is weighted 

by the VHQMI and task selection expertise of the colleagues with whom the teachers interacted 

(p<.1 and p<.05, respectively, see models (8)-(11)), but it does not hold when advice-seeking 

interactions are weighted by their colleagues’ MKT (see models (4) and (5)). One possible 

interpretation is that the effect of advice-seeking interactions is reduced by different forms of 

expertise to different degrees. I discuss this interpretation further below. 
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Table 7 

Models of Interactions with Colleagues and Expertise within those Interactions on Improvement 
in Teachers’ Task Selection: Interactions and MKT Expertise  

Model (1) (2) (3) (4) (5) 
 Interactions with 

Colleagues 
Coach 
MKT 

Coach 
MKT 2 

MKT MKT 2 

High 
Potential 

Coef  
(SE) 

Odds 
Ratio 

Coef  
(SE) 

Coef  
(SE) 

Coef  
(SE) 

Coef 
(SE) 

Year 2.75** 
(0.64) 

15.64 
 

2.77** 
(0.82) 

2.83** 
(0.86) 

2.04** 
(0.55) 

2.19** 
(0.59) 

District A 1.07 
(1.00) 

2.92 1.09 
(1.17) 

1.18 
(1.19) 

0.54 
(0.93) 

0.72 
(0.96) 

District C -0.98 
(1.21) 

0.38 -0.28 
(1.78) 

-0.39 
(1.79) 

-0.98 
(1.19) 

-0.90 
(1.18) 

District D 2.14** 
(1.07) 

8.50 2.08* 
(1.21) 

2.08* 
(1.22) 

1.46 
(0.96) 

1.60 
(0.99) 

Task PD -0.17 
(0.33) 

0.84 -0.35 
(0.41) 

-0.34 
(0.41) 

0.12 
(0.30) 

0.08 
(0.31) 

TCT -0.08 
(0.61) 

0.92 -0.15 
(0.70) 

-0.13 
(0.70) 

-0.03 
(0.60) 

-0.03 
(0.58) 

TCT 
Expertise 

    0.17 
(0.34) 

0.02 
(0.36) 

TCT*Exp      -0.33 
(0.32) 

Advice-In 1.12** 
(0.43) 

3.06 1.31** 
(0.53) 

1.28** 
(0.54) 

  

Advice-In 
Expertise 

    0.20 
(0.33) 

0.26 
(0.34) 

Advice-Out 3.09* 
(1.76) 

21.98 1.25 
(2.52) 

1.09 
(2.51) 

2.31 
(1.65) 

2.48 
(1.73) 

Work with 
Coach 

-2.26** 
(0.69) 

0.10 -2.63** 
(0.92) 

-2.66** 
(0.98) 

-1.90** 
(0.64) 

-1.98** 
(0.66) 

Coach 
Expertise 

  0.15 
(0.55) 

0.06 
(0.66) 

  

WWC*Exp    -0.34 
(0.87) 

  

Constant -4.08** 
(1.20) 

 -4.43** 
(1.54) 

-4.47** 
(1.59) 

-3.66** 
(1.19) 

-3.83** 
(1.23) 

N 109  87 87 109 109 
*p< 0.1, **p<0.05.  
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Table 8 

Models of Interactions with Colleagues and Expertise within those Interactions on Improvement 
in Teachers’ Task Selection: VHQMI and Task Selection Expertise 

Model (6) (7) (8) (9) (10) (11) 
 Coach 

VHQMI 
Coach 

VHQMI 2 
VHQMI VHQMI 

2 
Task Selection Task 

Selection 2 
High 
Potential 

Coef  
(SE) 

Coef 
(SE) 

Coef  
(SE) 

Coef  
(SE) 

Coef 
(SE) 

Odds 
Ratio 

Coef  
(SE) 

Year 2.82** 
(0.79) 

2.84** 
(0.82) 

2.20** 
(0.58) 

2.23** 
(0.59) 

2.42** 
(0.59) 

11.24 2.52** 
(0.62) 

District A 0.90 
(1.17) 

0.96  
(1.18) 

0.50 
(0.95) 

0.46 
(0.96) 

0.50 
(0.97) 

1.64 0.23  
(1.02) 

District C -0.24 
(1.72) 

-0.13 
(1.78) 

-1.14 
(1.25) 

-1.33 
(1.26) 

-1.16 
(1.28) 

0.31 -0.79  
(1.36) 

District D 1.97 
(1.20) 

2.02  
(1.22) 

1.53 
(1.00) 

1.39 
(1.03) 

1.50 
(1.06) 

4.48 1.41 
 (1.05) 

Task PD -0.36 
(0.39) 

-0.35 
(0.40) 

-0.02 
(0.32) 

-0.02 
(0.32) 

0.003 
(0.32) 

1.003 -0.03  
(0.32) 

TCT -0.19 
(0.67) 

-0.18 
(0.68) 

-0.6 
(0.61) 

0.04 
(0.59) 

-0.06 
(0.68) 

0.94 -0.25  
(0.73) 

TCT 
Expertise 

  0.14 
(0.59) 

0.16 
(0.56) 

0.01 
(0.37) 

1.01 0.21  
(0.43) 

TCT*Exp    -0.30 
(0.41) 

  0.47  
(0.47) 

Advice-In 1.28** 
(0.54) 

1.28** 
(0.55) 

     

Advice-In 
Expertise 

  0.66* 
(0.36) 

0.68* 
(0.36) 

0.79** 
(0.34) 

2.20 0.69*  
(0.35) 

Advice-Out 1.38 
(2.47) 

1.20  
(2.53) 

2.27 
(1.69) 

2.34 
(1.71) 

2.60 
(1.69) 

13.46 2.36 
(1.64) 

Work with 
Coach 

-2.64** 
(0.91) 

-2.93** 
(1.11) 

-2.18** 
(0.73) 

-2.22** 
(0.76) 

-2.13** 
(0.75) 

0.12 -2.05** 
(0.70) 

Coach 
Expertise 

0.24 
(0.47) 

0.45  
(0.59) 

     

WWC*Exp  0.53  
(0.85) 

     

Constant -4.34** 
(1.50) 

-4.64** 
(1.66) 

-3.71** 
(1.21) 

-3.68** 
(1.21) 

-3.86** 
(1.28) 

 -4.08** 
(1.30) 

N 87 87 109 109 109  109 
*p< 0.1, **p<0.05.  

 

The third general finding is that the results from models which included measures of 

expertise (i.e., models (2)-(11)) suggest that colleagues’ MKT, VHQMI, and task selection are 

mostly not significantly related to change in teachers’ task selection, and there are no statistically 
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significant indirect effects of expertise within the interactions on the effect of the interactions. In 

particular, coach MKT and VHQMI are not significantly related to teachers’ task selection, nor 

do they moderate the relationship between working with a coach and task selection. Further, the 

MKT, VHQMI, and task selection expertise of colleagues within collaborative teacher meetings 

are not significantly related to teachers’ task selection and they do not moderate the effect of 

collaborative teacher meetings on change in task selection. The only expertise measures that are 

significantly related to the selection of high-level tasks are VHQMI and task selection expertise 

through advice-seeking interactions (see table 8). These results are discussed further below.  

Table 9 

District differences in the Effect of Working with a Coach 
 
Model (1) (2) 
 Compared to District B Compared to District D 
High Potential Coef (SE) Coef (SE) 
Year 3.04** (0.72) 3.04** (0.72) 
District A 0.84 (1.43) -0.99 (1.19) 
District B  -1.82 (1.32) 
District C -0.57 (1.64) -2.39 (1.60) 
District D 1.82 (1.32)  
Task PD -0.13 (0.34) -0.13 (0.34) 
TCT -0.29 (0.64) -0.29 (0.63) 
Advice-In 1.13** (0.44) 1.13** (0.44) 
Advice-Out 2.94* (1.73) 2.94* (1.73) 
Work w/ Coach -2.07 (1.70) -5.60** (2.53) 
Work w/ Coach in A -0.19 (2.10) 3.34 (2.73) 
Work w/ Coach in B  3.53 (2.87) 
Work w/ Coach in C 0.46 (1.88) 3.99 (2.59) 
Work w/ Coach in D -3.53(2.87)  
Constant -4.46** (1.65) -2.64** (1.36) 
N 109 109 
*p< 0.1, **p<0.05.  
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Understanding Findings: Work with a Coach and Task Selection 

One significant finding that required further investigation was the negative relationship 

between teachers’ selection of high-level tasks and their reported work with a coach. Given the 

differences in coaching designs across the four districts, I first investigated differences in the 

relationship between working with a coach and teachers’ selection of high-level tasks by district. 

Results of several models that include statistical interactions between district membership and 

working with a coach suggest that there are not statistically significant differences between 

districts (see Table 9). Results of the model with District D as the reference district suggest that 

the odds of a teacher in District D who reports approximately 30 interactions with a coach 

selecting a low-level task are about 270 times the odds of a teacher in District D who reports 

only 14 interactions with a coach (see column (2) of Table 9, OR=1/270, p<.05). While there are 

not significant differences by district, the coefficients on the interactions between dummy 

variables for Districts A, B, and C, and work with a coach tend in the direction of a decrease in 

the magnitude of the coefficient, with larger standard errors. In other words, the negative 

relationship between working with a coach and improvement in selecting high-level tasks is most 

profound in District D and there is considerable variation in Districts A, B, and C. For none of 

the districts is the magnitude of the interaction coefficient large enough to offset the negative 

relationship between working with a coach and task selection in District D. Overall, the results 

suggest that teachers who reported more interactions with a coach were less likely to select a 

high-level task, but that the odds vary by school district. This result is consistent with the 

coaching designs in Districts A, C, and D where coaches were expected to work with the weakest 

teachers.  
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Understanding Findings: Advice-Seeking Interactions and Task Selection 

The second set of findings that required additional investigation pertains to the 

relationship between teachers’ advice-seeking interactions and their selection of high-level tasks. 

Recall that there is evidence of a positive relationship between teachers’ reported number of 

advice seeking interactions within schools and their selection of high-level tasks (see Table 7). 

Further, the significant relationships persist even when the expertise of the colleagues from 

whom they seek advice is considered. In particular, I found that the expertise of colleagues from 

whom teachers sought advice (as measured by their VHQMI and task selection), weighted by the 

frequency of those interactions, is positively and significantly related to their selection of high-

level tasks (see Table 8). However, the effect size was greatest for the number of advice-seeking 

interactions, regardless of expertise. These findings suggest that on average, colleagues’ MKT, 

VHQMI, and task selection expertise might not be as critical as the number of advice-seeking 

interactions that teachers’ have with colleagues. 

This result and the fact that the coefficient for teachers’ advice-seeking interactions 

outside of their schools is large, positive, and nearly significant in most of the task selection 

models (see Tables 7 and 8) raises the question of whether there are differences in the influence 

of interactions within schools and outside of schools. It is also not clear whether the influence of 

a large number of advice-seeking interactions is due to interacting with more people or to 

interacting with the same number of people more frequently. I investigated these questions by 

estimating several different models. First, I combined the number of advice-seeking interactions 

within schools with the number of advice-seeking interactions outside of schools. The mean for 

this variable for the primary task selection sample is 89 interactions and the standard deviation is 

123.5 interactions. Recall that the mean for advice-seeking interactions within schools for this 
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sample is 85.8 interactions and the standard deviation is 122.0 interactions. The results for the 

original model for task selection from Table 7, with advice-seeking interactions within the school 

and outside the school separated, are given in column (1) of Table 10 for reference. In the 

original model, the number of advice-seeking interactions within the school is significantly and 

positively related to teachers’ selection of high-level tasks (OR=3.06, p<.05). The results for the 

model with advice-seeking interactions within the school and outside the school combined are 

given in column (2) of Table 10. These results suggest that the combined number of advice-

seeking interactions is similarly related to teachers’ selection of high-level tasks (OR=2.97, 

p<.05). Further, the Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

are similar for these two models. The AIC is slightly lower for the original model but the BIC is 

lower for the combined model. Therefore, neither of these models is necessarily a better fit. This 

result suggests that the distinction between interactions within school and outside of school is not 

critical; instead it might be the number of advice-seeking interactions in either setting that is 

important.  

The next model investigated the question of whether the significance of advice-seeking 

interactions was due to the number of people that teachers turned to for advice or the frequency 

of the interactions with those people. I investigated this question by including a variable for the 

number of people who teachers turned to for advice (# Advice Givers) and a variable for the 

average number of interactions across those people (Avg. Freq. Advice). Results from this model 

suggest that the statistical significance of the number of advice-seeking interactions is due to the 

average frequency of advice-seeking interactions (OR=2.56, p<.05) rather than the number of 

people teachers turn to for advice. For teachers in the primary sample for task selection, the 

average frequency of advice-seeking interactions is about 49 (SD=60.3), which is more than 
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once a week during the school year. The results from the model suggest that for teachers who 

averaged 109 advice-seeking interactions, or sought advice about 3 times a week, their odds of 

selecting a high-level task are 2.56 times the odds of teachers who average 49 advice-seeking 

interactions. The relatively higher AIC and BIC for this model suggest that modeling the number 

of advice givers and the average frequency of the advice is not as good of a fit as combining 

them into one measure of the number of advice-seeking interactions. However, it seems that the 

frequency of advice-seeking interactions is related to teachers’ improvement in their selection of 

high-level tasks.  

Lastly, the large and marginally significant effect for advice-seeking interactions outside 

the school is notable (OR=21.98, p<.10). What is notable is that the coefficient and standard 

error for advice-seeking interactions outside the school in the original model are both large. This 

means that for some teachers, there was a strong positive relationship between the number of 

advice-seeking interactions outside of school and their improvement in task selection, but for 

other teachers, that relationship did not hold. Given the size of this sample it is difficult to 

investigate district or other variation in that relationship, but it is worthy of future investigation. 

For example, it would be good to know whether it was advice-seeking interactions outside of 

teachers’ schools with particular people (e.g., district math leaders) or in particular districts that 

supported teachers’ improvement.  
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Table 10 

Supplemental Analyses Pertaining to Advice-Seeking Interactions 

Model (1) (2) (3) 
High 
Potential 

Coef  
(SE) 

Odds 
Ratio 

Coef 
(SE) 

Odds 
Ratio 

Coef  
(SE) 

Odds 
Ratio 

Year 2.75** 
(0.64) 

15.64 
 

2.71** 
(0.61) 

15.06 2.61** 
(0.59) 

13.66 

District A 1.07 
(1.00) 

2.92 0.83 
(0.95) 

2.30 1.04 
(0.98) 

2.82 

District C -0.98 
(1.21) 

0.38 -0.58 
(1.17) 

0.56 -0.41 
(1.19) 

0.66 

District D 2.14** 
(1.05) 

8.50 1.82* 
(1.03) 

6.19 2.04* 
(1.06) 

7.72 

Task PD -0.17 
(0.33) 

0.84 -0.13 
(0.33) 

0.88 -0.12 
(0.33) 

0.88 

TCT -0.08 
(0.61) 

0.92 -0.33 
(0.58) 

0.72 -0.25 
(0.58) 

0.78 

Advice-In 1.12** 
(0.43) 

3.06     

Advice-Out 3.09* 
(1.76) 

21.98     

Advice-Any   1.09** 
(0.43) 

2.97   

Avg. Freq. 
Advice 

    0.94** 
(0.38) 

2.56 

# Advice 
Givers 

    0.05 
(0.25) 

1.05 

Work w/ 
Coach 

-2.26** 
(0.69) 

0.10 -2.33** 
(0.72) 

0.10 -2.38** 
(0.75) 

0.09 

Constant -4.08** 
(1.20) 

 -4.89** 
(1.22) 

 -5.06** 
(1.26) 

 

N 109  109  109  
AIC 89.5  89.9  91.9  
BIC 121.8  119.5  124.2  
*p< 0.1, **p<0.05.  

 

Patterns of Change in Maintenance of the Cognitive Demand of High-Level Tasks 

The second aspect of the enactment of CDTs that I investigated is maintenance of the 

cognitive demand of high-level tasks. To understand change in maintenance of the cognitive 

demand of high-level tasks, I first classified teachers by their patterns of change across the years 

in which they selected high-level tasks. Table 11 summarizes the distribution of teachers by 
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pattern of change in maintenance of the cognitive demand and number of observations. Recall 

that this set of analyses is limited to teachers who selected a high-level task. There are 153 

teachers who posed at least one high-level task, with 249 total observations.  

Similar to the analysis of task selection, my primary sample for maintenance of the 

cognitive demand is the set of teachers who initially did not maintain the cognitive demand of 

the high-level task they posed.  There are two groups that make up the primary maintenance 

sample of 90 teachers who initially decreased the cognitive demand of the high-level task they 

posed: the 19 teachers classified as “Decrease then Maintain” and the 71 teachers classified as 

“All Decrease.”  Note that this sample of 90 teachers includes 48 teachers who posed a high-

level task only one year, 23 teachers who continued to decrease the cognitive demand of the 

high-level tasks they posed in subsequent years, and 19 teachers who maintained the cognitive 

demand of the high-level task they posed at least one subsequent year.  

Table 11 

Teachers and Number of Observations for Maintenance of the Cognitive Demand of High-Level 
Tasks, by Change Pattern 

Trend 1 observation 2 observations 3 observations Total 
All Maintain 33 5 9 47 
Mixed --- --- 7 7 
Maintain then Decrease --- 6 3 9 
Decrease then Maintain --- 16 3 19 
All Decrease 48 21 2 71 
Total 81 48 24 153 
 

As described in Table 11, 47 of the 153 teachers maintained the cognitive demand in 

every year in which they selected a high-level task, and they made up the “All Maintain” group. 

Only 14 of these 47 teachers posed high-level tasks and maintained the cognitive demand of 

those tasks in multiple years. There are 9 teachers who initially maintained the cognitive demand 
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of the high-level task but later decreased the cognitive demand of a high-level task, and they 

made up the “Maintain then Decrease” group. Further, there are 7 teachers who fluctuated across 

years between maintaining and decreasing the cognitive demand of the high-level tasks they 

posed: 3 teachers maintained the cognitive demand, then decreased, and then maintained again, 

and 4 teachers initially decreased, then maintained, and then decreased again. These teachers 

comprise the “Mixed” group. The 9 teachers classified as “Maintain then Decrease” and the 7 

teachers classified as “Mixed” are excluded from the analyses of interactions or expertise within 

interactions because they represent decline and inconsistency which are not the foci of this study. 

The teachers within the “All Maintain” category are an interesting comparison group because 

they are relatively accomplished in enacting CDTs. 

Group Differences for Patterns of Change in Maintenance of the Cognitive Demand 

 Similar to the analysis of task selection, I first examined whether there were any 

differences between the primary sample for maintenance of the cognitive demand and the other 

teachers. I first inspected the distribution of teachers across the four school districts (see Table 

12) for three categories of teachers: the primary sample, teachers who always maintained the 

cognitive demand of a high-level task (i.e., “All Maintain”), and the other teachers (i.e., “Mixed” 

and “Maintain then Decrease”). First, overall, there are fewer teachers from District C than from 

their other districts. Recall that this sample is related to the Task Selection sample because it 

only includes teachers who selected high-level tasks and there were fewer teachers in District C 

who selected a high-level task. Hence, it makes sense that it includes only 23 teachers from 

District C. Second, a higher percentage of teachers from District A fall into the “All Maintain” 

group than in the other districts, which suggests that teachers in District A are generally more 
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likely to consistently maintain the cognitive demand of a high-level task. Relatedly, 60 of the 90 

teachers in the primary sample for maintenance are from Districts B or D.  

Table 12 

Distribution of Teachers across three Categories of Maintenance Change Patterns and School 
District 

District Primary Sample All Maintain Other Totals 
 # % of District Total # % of District Total # % of District Total  

A 14 38.9 15 41.7 7 19.4 36 
B 29 59.2 15 30.6 5 10.2 49 
C 16 69.6 4 17.4 3 13.0 23 
D 31 68.9 13 28.9 1 2.5 45 

 

Table 13 

Descriptive Statistics for Interactions with Colleagues and Expertise within those Interactions for 
the Primary Maintenance Sample and the “All Maintain” Change Pattern  

 Primary Maintenance Sample All Maintain 
 Mean 

(SD) 
SD N Mean 

(SD) 
SD N 

Work w/ Coach** 15.0  15.9 135 10.8  15.6 90 
Task PD 2.1  0.8 135 2.1  0.9 90 
TCT** 6.6  5.3 135 3.9  3.8 91 
Days In** 77.3  120.9 135 51.9  92.5 91 
Days Out* 11.5  39.0 135 21.4  52.9 91 
Coach MKT* 0.03  0.83 110 0.27 0.77 61 
Coach VHQMI 2.47  0.68 110 2.56  0.68 61 
TCT MKT 0.66  0.60 135 0.66  0.68 91 
TCT VHQMI* 2.72  0.57 135 2.88  0.48 91 
TCT Maintain 0.16  0.30 135 0.18  0.36 91 
MKT Advice 57.71  131.54 135 56.61  126.32 91 
VHQMI Advice 81.07  188.24 135 63.94  141.51 91 
Maintain Advice 11.39  43.93 135 7.78  22.55 91 
*p< 0.1, **p<0.05.  

 

To begin to understand how participation in interactions might be related to change in 

maintenance of the cognitive demand, I compared means and standard deviations of interactions 

with colleagues (i.e., interactions variables) and expertise available in those interactions (i.e., 
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expertise variables) for the primary maintenance sample and the “All Maintain” group (see Table 

13). T-tests and regression models for expertise suggest that there are significant differences 

between the two groups for work with a coach, collaborative teacher meetings and the number of 

advice-seeking interactions inside the school (p<.05), and marginally significant differences for 

the number of advice-seeking interactions outside the school, for coach MKT, and for 

colleagues’ VHQMI in collaborative teacher meetings (p<.10). For the three significant 

interactions variables (i.e., working with a coach, collaborative teacher meetings, and within-

school advice-seeking interactions), teachers in the primary maintenance sample reported more 

interactions than teachers in the “All Maintain” group. In contrast, teachers in the primary 

maintenance sample reported fewer advice-seeking interactions outside of their schools than 

teachers in the “All Maintain” group. These group differences in reported advice-seeking 

interactions within and outside of schools are similar to those for Task Selection. Lastly, for the 

two expertise variables (i.e., coach MKT and colleagues’ VHQMI in collaborative teacher 

meetings), access to expertise is higher for teachers in the “All Maintain” group.  

I next investigated differences between the primary sample and the “All Maintain” group 

within the four school districts (see Table 14). There are several notable differences between the 

two groups within districts. First, while there was no significant overall difference between 

teachers’ reports of the extent to which PD emphasized challenging, problem-solving tasks, there 

are marginally significant differences for District A and District C. In particular, the task PD 

mean for teachers in the “All Maintain” group in District A is higher than the task PD mean for 

teachers in the primary maintenance sample (t=1.30, p<.10). In contrast, in District C, the task 

PD mean for teachers in the “All Maintain” group is lower than the task PD mean for teachers in 

the primary sample (t=-1.65, p<.10). This difference could explain why there is no significant 
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overall difference between the primary sample and the “All Maintain” group for professional 

development on tasks. Further, it might suggest differences in the quality of professional 

development between District A and District C. 

Another set of notable differences pertain to MKT expertise in District C. First, teachers 

in the “All Maintain” group worked with coaches with more developed MKT (b=0.74, SE=0.35, 

p<.10). Second, teachers in the primary maintenance sample had greater access to MKT 

expertise in collaborative teacher meetings (b=-0.66, SE=0.25, p<.05). Lastly, teachers in the 

“All Maintain” group had greater access to MKT expertise through advice-seeking interactions 

in their schools (b=110.5, SE=58.4, p<.10). In sum, the “All Maintain” group had greater 

available coach MKT and MKT within advice-seeking interactions however the primary sample 

had greater available MKT within collaborative teacher meetings. It is possible that these 

significant findings are attributable to the small samples of District C teachers in this 

comparison. In other words, with just four teachers in one sample, a statistical trend for particular 

variables (e.g., coach MKT), suggests that those four teachers had coaches with higher MKT, but 

that result might not generalize to a larger population of teachers.  

In sum, there are significant differences between the primary maintenance sample and the 

“All Maintain” group with regard to working with a coach, time in collaborative teacher 

meetings, advice-seeking interactions within schools, coach MKT, and colleagues’ VHQMI in 

collaborative teacher meetings. In general, the weaker teachers (i.e., the primary sample) 

reported more interactions but had less access to expertise. Further, there are differences within 

districts pertaining to the extent that PD focused on challenging, problem-solving tasks. Lastly, 

there are significant differences in MKT expertise available in different interaction settings for 

the two groups of teachers in District C. The next step in the analysis was to investigate whether 
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interactions with colleagues in different settings and the available expertise within those 

interactions were related to improvement in maintenance of the cognitive demand of high-level 

tasks. 
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Table 14   

Descriptive Statistics for Interactions and Expertise for the Primary Maintenance Sample and the “All Maintain” Change Pattern, by 
District   

 District A District B District C District D 
 P. Sample All Maintain P. Sample All Maintain P. Sample All Maintain P. Sample All Maintain 
 Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N Mean 

(SD) 
N 

Work w/ 
Coach 

13.2** 
(23.9) 

21 4.2  
(8.6) 

34 16.9** 
(17.7) 

47 10.2 
(12.0) 

26 10.0 
(12.3) 

22 9.0  
(8.4) 

8 18.4 
(12.4) 

45 21.8 
(22.8) 

22 

Task PD 2.2  
(0.7) 

21 2.4* 
(0.7) 

34 2.0  
(0.9) 

47 1.7  
(1.0) 

26 2.5* 
(0.9) 

22 1.9  
(0.8) 

8 2.0 
(0.88) 

45 2.2  
(1.1) 

22 

TCT 2.0 
(2.0) 

21 2.2 
 (1.8) 

35 6.6** 
(3.4) 

47 4.2  
(2.9) 

26 13.5 
(2.7) 

22 12.9 
(2.5) 

8 4.2  
(4.6) 

45 3.1 
 (2.8) 

22 

Advice In 36.3 
(46.8) 

21 32.5 
(68.6) 

35 94.6 
(151.0) 

47 60.5 
(84.3) 

26 112.2 
(148.3) 

22 103.8 
(171.3) 

8 61.2 
(84.8) 

45 53.8 
(95.3) 

22 

Advice 
Out 

21.5 
(53.9) 

21 33.9 
(65.7) 

35 19.6 
(53.3) 

47 11.1 
(35.8) 

26 2.5  
(8.0) 

22 0  
 

8 2.8  
(8.5) 

45 21.3** 
(54.0) 

22 

Coach 
MKT 

0.63 
(0.80) 

4 0.69 
(1.19) 

9 -0.10 
(0.58) 

47 -0.07 
(0.52) 

26 -1.12 
(0.82) 

14 0.07* 
(0.27) 

4 0.46 
(0.67) 

45 0.53 
(0.65) 

22 

Coach 
VHQMI 

3.05 
(0.72) 

4 2.97 
(0.59) 

9 2.28 
(0.65) 

47 2.23 
(0.69) 

26 2.39 
(0.62) 

14 2.65 
(0.37) 

4 2.66 
(0.64) 

45 2.78 
(0.58) 

22 

TCT MKT 0.90 
(0.75) 

21 0.94 
(0.71) 

35 0.53 
(0.56) 

47 0.56 
(0.63) 

26 0.74** 
(0.62) 

22 0.07 
(0.53) 

8 0.64 
(0.52) 

45 0.54 
(0.57) 

22 

TCT 
VHQMI 

2.80 
(0.68) 

21 2.97 
(0.31) 

24 2.70 
(0.47) 

47 2.73 
(0.52) 

26 2.44 
(0.70) 

22 2.54 
(0.47) 

8 2.86 
(0.54) 

45 3.08 
(0.50) 

22 

TCT 
Maintain 

0.22 
(0.38) 

21 0.26 
(0.43) 

35 0.18 
(0.32) 

47 0.11 
(0.24) 

26 0.04 
(0.13) 

22 0 8 0.16 
(0.31) 

45 0.20 
(0.39) 

22 

MKT 
Advice 

34.6 
(67.3) 

21 57.0 
(112.6) 

35 92.9 
(192.2) 

47 38.5 
(83.6) 

26 32.6 
(55.6) 

22 143.0* 
(265.9) 

8 44.1 
(92.0) 

45 46.1 
(112.3) 

22 

VHQMI 
Advice 

43.5 
(77.7) 

21 55.9 
(108.8) 

35 134.9 
(275.2) 

47 51.3 
(103.7) 

26 80.2 
(146.5) 

22 169.3 
(313.1) 

8 42.8 
(102.4) 

45 53.3 
(128.6) 

22 

Maintain 
Advice 

7.4 
(18.3) 

21 11.6 
(17.4) 

35 21.6 
(67.2) 

47 2.5  
(9.3) 

26 9.8 
(38.8) 

22 22.5 
(63.6) 

8 3.3  
(9.5) 

45 2.5  
(8.0) 

22 

*p< 0.1, **p<0.05.  
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Models of Interactions and Change in Maintenance of the Cognitive Demand  

 The analyses I conducted to investigate relationships between types of interactions and 

changes in maintenance of the cognitive demand draw on the primary maintenance sample 

described above which consists of 90 teachers in 26 different schools who initially decreased the 

cognitive demand of the high-level tasks they selected. Nineteen of those teachers improved in 

subsequent years (i.e., eventually maintained the cognitive demand), 23 teachers continued to 

decrease the cognitive demand of the tasks, and 48 teachers were only in the sample of teachers 

who selected a high-level task for one of Years 2, 3, or 4 and decreased the cognitive demand of 

the high-level task they selected in that year.  

Results from the models of time spent interacting with colleagues and the expertise of 

colleagues within those interactions on change in maintenance of the cognitive demand are given 

in Tables 15 and 16. As can be seen, very few of the variables of interest are significantly related 

to changes in teachers’ maintenance of the cognitive demand. Results from model (1) and (3) 

suggest that the number of interactions with a coach is significant and negatively related to the 

maintenance of the cognitive demand (p<.10). According to model (1), teachers who worked 

more with a coach were less likely to maintain the cognitive demand of the high-level task they 

posed (OR=0.51, p<.10). There is one other marginally significant relationship pertaining to 

coach expertise. Results from model (3) suggest that although working with a coach is negatively 

related to maintenance of the cognitive demand, if the coach’s MKT was sufficiently developed, 

the direction of the result changes (p<.10). Given the magnitude of the coefficients (b=-1.45 and 

b=0.97, for working with a coach and the interaction between coach MKT and working with a 

coach, respectively), it would require working with a coach who had an MKT score two standard 

deviations above the mean to reverse the generally negative relationship associated with working 
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with a coach. None of the other variables are significantly related to maintenance of the cognitive 

demand of high-level tasks. Potential reasons for this lack of significant results are discussed 

below. 

Table 15 

Models of Interactions with Colleagues and Expertise within those Interactions  
on Improvement in Maintenance of the Cognitive Demand: Participation in  
Interactions and MKT Expertise  

 (1) (2) (3) (4) (5) 
 Interactions with 

Colleagues 
Coach 
MKT 

Coach 
MKT 2 

MKT MKT 2 

Maintenance Coef 
(SE) 

Odds 
Ratio 

Coef  
(SE) 

Coef  
(SE) 

Coef 
(SE) 

Coef 
(SE) 

Year 1.27** 
(0.43) 

3.56 1.22** 
(0.49) 

1.43** 
(0.54) 

1.24** 
(0.44) 

1.28** 
(0.44) 

District A 0.55 
(0.89) 

1.73 0.75 
(1.41) 

0.52 
(1.51) 

0.63 
(0.91) 

0.78  
(0.95) 

District C -0.23 
(1.10) 

0.79 0.43 
(1.49) 

0.02 
(1.59) 

-0.56 
(1.14) 

-0.43  
(1.14) 

District D 1.12 
(0.70) 

3.06 0.96 
(0.76) 

1.22 
(0.83) 

1.11 
(0.72) 

1.20  
(0.74) 

Task PD 0.13 
(0.34) 

1.14 0.02 
(0.36) 

0.09 
(0.38) 

0.15 
(0.34) 

0.15  
(0.34) 

TCT 0.07 
(0.37) 

1.07 -0.16 
(0.42) 

-0.08 
(0.41) 

0.20 
(0.40) 

0.22  
(0.40) 

TCT Expertise     0.37 
(0.30) 

0.29  
(0.31) 

TCT*Exp      -0.20  
(0.33) 

Advice-In -0.36 
(0.30) 

0.70 -0.24 
(0.49) 

-0.20 
(0.53) 

  

Advice-In 
Expertise 

    -2.67 
(1.94) 

-2.74  
(1.98) 

Advice-Out -0.30 
(0.31) 

0.74 -0.20 
(0.32) 

-0.32 
(0.35) 

-0.37 
(0.30) 

-0.38  
(0.32) 

Work with 
Coach 

-0.68* 
(0.40) 

0.51 -0.73 
(0.44) 

-1.45** 
(0.73) 

-0.64 
(0.41) 

-0.66  
(0.42) 

Coach 
Expertise 

  0.19 
(0.41) 

0.34 
(0.46) 

  

WWC*Exp    0.97* 
(0.57) 

  

Constant -4.18** 
(1.12) 

 -3.91** 
(1.18) 

-4.82** 
(1.50) 

-4.89** 
(1.37) 

-5.05** 
(1.42) 

N 135  110 110 135 135 
*p< 0.1, **p<0.05.  
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Table 16 

Models of Interactions and Expertise on Improvement in Maintenance of the  
Cognitive Demand: VHQMI and Maintenance of the Cognitive Demand Expertise 

 (6) (7) (8) (9) (10) (11) 
 Coach 

VHQMI 
Coach 

VHQMI  
2 

VHQMI VHQMI 2 
 

Maintain Maintain 
2 

Maintenance Coef 
(SE) 

Coef 
(SE) 

Coef 
(SE) 

Coef  
(SE) 

Coef  
(SE) 

Coef  
(SE) 

Year 1.13** 
(0.51) 

1.18** 
(0.52) 

1.09** 
(0.53) 

1.06** 
(0.52) 

1.54** 
(0.50) 

1.53** 
(0.45) 

District A 0.61 
(1.45) 

0.63 
(1.46) 

0.75 
(0.91) 

0.77 
(0.91) 

0.91 
(0.95) 

0.87 
(0.96) 

District C 0.16 
(1.40) 

0.12 
(1.41) 

-0.18 
(1.13) 

-0.28 
(1.15) 

-0.07 
(1.16) 

-0.09 
(1.15) 

District D 0.88 
(0.77) 

0.91 
(0.78) 

0.78 
(0.77) 

0.71 
(0.77) 

1.01 
(0.76) 

0.98 
(0.74) 

Task PD 0.02 
(0.36) 

0.02 
(0.37) 

0.12 
(0.34) 

0.08 
(0.35) 

0.15 
(0.35) 

0.16 
(0.35) 

TCT -0.17 
(0.42) 

-0.16 
(0.43) 

0.19 
(0.40) 

0.23 
(0.41) 

0.03 
(0.35) 

0.01 
(0.40) 

TCT Expertise   0.39 
(0.43) 

0.45 
(0.42) 

0.45 
(0.28) 

0.43 
(0.29) 

TCT*Exp    -0.25 
(0.25) 

 -0.09 
(0.42) 

Advice-In -0.31 
(0.52) 

-0.25 
(0.52) 

    

Advice-In 
Expertise 

  -2.69 
(1.76) 

-2.67 
(1.75) 

-5.44 
(4.11) 

-5.43 
(4.11) 

Advice-Out -0.21 
(0.33) 

-0.27 
(0.35) 

-0.39 
(0.32) 

-0.38 
(0.32) 

-0.46 
(0.35) 

-0.45 
(0.33) 

Work with 
Coach 

-0.72 
(0.44) 

-1.06 
(0.64) 

-0.53 
(0.41) 

-0.52 
(0.41) 

-0.69 
(0.42) 

-0.67 
(0.41) 

Coach 
Expertise 

0.32 
(0.45) 

0.44 
(0.47) 

    

WWC*Exp  0.57 
(0.56) 

    

Constant -3.76** 
(1.22) 

-3.96** 
(1.31) 

-4.64** 
(1.38) 

-4.55** 
(1.37) 

-5.72** 
(1.75) 

-5.70** 
(1.60) 

N 110 110 135 135 135 135 
*p< 0.1, **p<0.05.  
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Limitations of the Study 

 Before turning to a discussion of my findings, I acknowledge several limitations of this 

study. First, my assessment of teachers’ enactment of CDTs, and, hence, change in their 

enactment of CDTs is based on two class periods of instruction for each year. I take the better of 

the two class periods to represent teachers’ best shot at enacting CDTs rather than representing 

their typical enactment of CDTs. It is possible that more information about how their best shot 

relates to their typical instruction might shed additional light on their improvement in enacting 

CDTs.  

 Second, while the types of interactions I focus on in this study involved activities close to 

teachers’ practice (e.g., lesson planning, advice pertaining to mathematics teaching), I generally 

do not know if the activities that teachers engaged in during interactions pertained to the 

enactment of CDTs. Therefore, it is possible that within certain types of interactions teachers did 

not actually work on the enactment of CDTs, which could explain why interactions with 

colleagues were not significantly related to change in the enactment of CDTs in some settings. It 

is methodologically challenging to collect information on the specific activities that take place 

within interactions across a large sample of teachers. Therefore, we need more small-scale 

studies of how work on the enactment of CDTs within interactions in different settings 

influences teachers’ enactment of CDTs. Also, future research should investigate ways to collect 

information about the content of interactions for large samples of teachers.  

 Finally, two other limitations of this study might explain the general lack of significant 

findings pertaining to expertise. First, the data on expertise was limited to a sample of 3 to 6 

teachers per school. In some schools this sample consisted of all of the math teachers, but in 
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other schools it was as little as a third of the math teachers. Therefore, it is likely that I have 

underestimated colleagues’ expertise within collaborative teacher meetings for some schools. 

Second, I used multiple imputation based on existing scores and other information about 

participants to create expertise scores for teachers or coaches with missing scores, which might 

have introduced additional error into the measures of expertise. Multiple imputation was 

particularly necessary because of my use of colleagues’ expertise scores from the prior year, 

which meant there were even more missing values. While this is an accepted method for 

accounting for missing data, it has the potential to introduce extra error into the measures of 

expertise, which is especially problematic with a small sample. It is therefore possible that the 

lack precision of the measures of expertise might have contributed to a lack of significant 

findings pertaining to colleagues’ expertise.  

Discussion and Conclusion 

 The enactment of CDTs is critically important in supporting students’ development of 

conceptual understanding in mathematics (Stein & Lane, 1996; Zohar & Dori, 2003). Further, 

there is evidence that teachers in U.S. classrooms rarely enact CDTs, and that they struggle when 

they attempt to do so (Hiebert et al., 2005; Stein et al., 1996). Therefore, we need to learn more 

about productive supports for mathematics teachers’ learning to enact CDTs. Prior research on 

professional learning suggests that ongoing interactions with relatively accomplished colleagues, 

involving activities that are close to practice might support teachers’ development (Bruner, 1996; 

Lave & Wenger, 1991). Work with a coach, collaborative teacher meetings, advice-seeking 

interactions, and professional development each have the potential to meet those criteria. In this 

study, I investigated whether change in teachers’ enactment of CDTs over time was related to 

interaction with colleagues in those settings, with special attention to the available expertise.  
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  Despite the fact that this analysis involved middle school mathematics teachers from four 

school districts that were attempting to support teachers to improve their practice, there was not 

widespread change in teachers’ enactment of CDTs. This is further confirmation that changing 

teachers’ practice is difficult and complicated, even when improvement is a district focus 

(Coburn, 2001; Coburn & Stein, 2006; D. K. Cohen, 2011; Matsumura, Sartoris, Bickel, & 

Garnier, 2009). Yet, over one-half of the teachers did improve in some aspects of the enactment 

of CDTs. Given the lack of widespread change, identifying types of interactions that were related 

to the improvements that some teachers made is particularly important. Unfortunately, in this 

analysis, interactions in most settings were not significantly related to improvement in teachers’ 

enactment of CDTs, although there were a few significant relationships that I discuss below. 

 With regard to change in teachers’ enactment of CDTs over three years, there was 

slightly more change in teachers’ task selection than in their maintenance of the cognitive 

demand of high-level tasks. In particular, approximately 61% of teachers who initially posed a 

low level task eventually posed a high-level task, whereas 45% of teachers who initially 

decreased the cognitive demand of a high-level task they posed eventually maintained the 

cognitive demand. There is good reason to believe that selecting a high-level task is not as 

challenging as maintaining the cognitive demand of a high-level task because maintaining the 

cognitive demand of a high-level task goes beyond choosing from materials to managing 

interactions in the classroom (Stein et al., 1996). Further, findings from Paper 2 of this 

dissertation suggest that teachers’ knowledge and beliefs are related to their task selection and 

maintenance of the cognitive demand in different ways, which implies that perhaps different 

supports are appropriate for task selection and for maintenance of the cognitive demand of high-

level tasks. 
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 The findings of this analysis shed some light on how interactions with colleagues might 

support teachers’ enactment of CDTs. First, results from models of task selection and 

maintenance of the cognitive demand suggest that work with a coach was significantly and 

negatively related to teachers’ development in enacting CDTs except in the case when a coach 

had very sophisticated mathematical knowledge for teaching. When a coach had very 

sophisticated mathematical knowledge for teaching (i.e., two standard deviations above the 

mean), working with a coach supported teachers’ development in maintaining the cognitive 

demand.  

One possible explanation for the negative relationship between working with a coach and 

the enactment of CDTs is a selection bias in coach-teacher matching: coaches tended to work 

more with teachers who were weaker instructionally. This interpretation is consistent with 

several other pieces of evidence: 1) the district designs for coaching in Districts A, C, and D 

expected coaches to work with the neediest teachers, and 2) the significantly higher mean 

number of interactions with a coach for teachers in the primary maintenance sample compared 

with teachers in the “All Maintain” group. Although this interpretation could explain why the 

teachers who did not improve worked more with a coach, it does not explain why those teachers 

still did not seem to improve.  

A possible reason why the teachers did not seem to improve as a result of working with 

the coach is that, on average, the MKT and VHQMI of coaches in this sample were not more 

developed than the teachers they were expected to support. The fact that coaches were generally 

not relatively accomplished might have limited their ability to support teachers’ development. 

The marginally significant result suggesting that teachers who worked with coaches whose MKT 

was well developed were more likely to maintain the cognitive demand of the high-level tasks 
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gives some credence to this interpretation. In sum, these findings on coaching suggest that, in 

general, coaches worked with weaker teachers, and that only those teachers who worked with 

relatively accomplished coaches improved.  

Another key finding from this study is that teachers’ advice-seeking interactions were 

positively related to the selection of high-level tasks. In other words, teachers who reported 

seeking advice more often were more likely to select high-level tasks. Further, it appears to be 

the frequency of interactions rather than the number of people with whom teachers interact that 

is important. One possible interpretation is that the teachers who seek advice more often are 

actually learning to select high-level tasks through their advice-seeking interactions. 

Alternatively, it is also possible that the teachers who seek advice about math instruction more 

frequently have a stronger desire to improve than those who seek advice less often. Future 

research should investigate this result further by taking account of teachers’ propensities toward 

change while examining the effect of advice-seeking interactions on their enactment of CDTs. 

Even if it is the case that teachers learn to enact CDTs from their advice-seeking 

interactions, the policy implications are challenging. Teachers’ advice-seeking networks are 

emergent and cannot be mandated (Smylie & Evans, 2006; James P Spillane, Reiser, & Gomez, 

2006). However, there are some indications that district and school policies can influence these 

advice-seeking interactions. Most of the research investigating the formation of teacher networks 

has focused on the characteristics of individuals (e.g., teachers and colleagues), but some recent 

studies have begun to investigate how district policy and other aspects of school context might 

influence teacher networks (Coburn, Choi, & Mata, 2010; Coburn & Russell, 2008). In 

particular, there is evidence that district policy that creates structures for interaction with a 

particular focus (e.g., mathematics curriculum implementation) can influence teacher networks 
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(Coburn et al., 2010). Further, aspects of the school context can have an impact on: (1) the 

formation of teacher networks (Gibbons, Garrison, & Cobb, 2011), and (2) the influence of 

district policies on the formation of teacher networks (Atteberry & Bryk, 2010). More research is 

needed on how and under what conditions particular support structures might influence teachers’ 

advice-seeking behavior. 

Overall, there is little indication from this sample that teachers’ learning through 

interactions was moderated by their colleagues’ mathematical knowledge for teaching, vision of 

high-quality mathematics instruction, and sophistication of their instructional practices. Further, 

colleagues’ expertise was generally not significantly related to change in teachers’ enactment of 

CDTs. These findings contradict a number of prior studies suggesting the importance of 

colleagues’ expertise within interactions (e.g., Frank et al., 2004; Gibbons, 2012; Horn & Little, 

2010; Penuel et al., 2009). There are several possible explanations for the contradictory findings. 

First, as I described above, the sampling of teachers within schools and the use of multiple 

imputation may have contributed to a lack of significant findings pertaining to expertise. Second, 

it might be that colleagues’ expertise was generally not developed enough to support teachers in 

improving their instructional practices. The marginally significant and positive moderating 

relationship of coach MKT on work with a coach gives some credence to this interpretation. 

Third, it is possible that these forms of colleagues’ expertise are not as relevant to the enactment 

of CDTs as other forms of expertise (e.g., knowledge of the curriculum materials). Lastly, as 

described in the limitations above, perhaps teachers did not actually work on the enactment of 

CDTs during interactions. If that was the case, we would not necessarily expect there to be 

changes in teachers’ enactment of CDTs, regardless of the available expertise. In future research, 

it will be important to consider specific forms of expertise, in the context of specific activities in 
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which teachers engage with others during interactions, as they relate to the development of 

associated practices.  

The findings of several prior studies indicate that time allocated for collaboration is not 

sufficient for supporting teachers’ development of specific practices (Horn & Little, 2010; Kruse 

& Louis, 1995). The results of this study confirm those findings for collaborative teacher 

meetings and extend the findings to work with a coach and formal professional development. 

There is evidence that, in general, the mere occurrence of interactions—whether they are with a 

coach, in collaborative teacher meetings, or within formal professional development—is not 

sufficient to support teachers’ development in enacting CDTs. In future research, it will be 

important to consider the actual activities during interactions when investigating how they 

support teachers’ development. However, the results from this study suggest that the occurrence 

of advice-seeking interactions both within and outside of schools might support teachers’ 

improvement in enacting CDTs. Future research should investigate advice-seeking interactions 

to understand how they might support teachers’ improvement of classroom practice. As schools 

and districts work to support teachers’ development of inquiry-oriented instructional practices, it 

will be important to create structures that promote interactions with colleagues (e.g., 

mathematics coaches, collaborative teacher meetings) and be intentional about activities that will 

foster the desired development.   
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APPENDIX A 

 

VISION OF HIGH QUALITY MATHEMATICS INSTRUCTION (VHQMI) 

 

Interview Questions: 

“If you were asked to observe a teacher's math classroom for one or more lessons, what would 
you look for to decide whether the mathematics instruction is high quality?”  

“Why do you think it is important to use/do _____ in a math classroom? Is there anything 
else you would look for? If so, what? Why?”  

For each of these three topics the participants did not identify spontaneously, we prompted by 
asking, respectively, 

1) What are some of the things that the teacher should actually be doing in the classroom for 
instruction to be of high quality?  

2) What type of tasks do you think the teacher should be using for instruction to be of high 
quality?  

3) Can you please describe what classroom discussion would look and sound like if instruction 
was of high quality? 

 

VHQMI Rubric Categories include: 

Role of the Teacher 

Classroom Discourse (including: Patterns and Structure of Classroom Talk, Nature of Talk, 
Student Questions, Teacher Questions, Student Explanations) 

Mathematical Tasks 

Nature of Classroom Activity 

 

Abbreviated versions of the VHQMI Rubrics are provided on the following pages.  See Munter 
(Under review) for a more thorough explanation of the measure. 
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Level Description Potential ways of characterizing teacher’s role 

4) Teacher as ‘more 

knowledgeable other’ 
Describes the role of the teacher as proactively 
supporting students' learning through co‐

participation. Stresses the importance of designing 

learning environments that support problematizing 

mathematical ideas, giving students mathematical 

authority, holding students accountable to others 

and to shared disciplinary norms, and providing 

students with relevant resources (Engle & Conant, 

2002). 

Influencing classroom discourse: Suggests that the teacher should purposefully intervene in classroom discussions to elicit & 

scaffold students' ideas, create a shared context, and maintain continuity over time (Staples, 2007). 

Attribution of mathematical authority: Suggests that the teacher should support students in sharing in authority (Lampert, 1990), 

problematizing content (Hiebert et al., 1996), working toward a shared goal (Hiebert et al, 1997), and ensuring that the 

responsibility for determining the validity of ideas resides with the classroom community (Simon, 1994). 

Conception of typical activity structure: Promotes a ‘launch‐explore‐summarize’ lesson (Lappan et al., 1998), in which a) the 

teacher poses a problem and ensures that all students understand the context and expectations (Jackson et al., in press), b) 

students develop strategies and solutions (typically in collaboration with each other), and c) through reflection and sharing, the 

teacher and students work together to explicate the mathematical concepts underlying the lesson’s problem (Stigler & Hiebert, 

1999). 

3) Teacher as 

‘facilitator’  
Focuses on the forms of "reform instruction" without 

a strong conception of the accompanying functions 

that underlie those forms: either (a) views the 

teacher’s role as passive, as students discover new 
mathematical insights as the result of collaborative 

problem solving (e.g. "romantic constructivism"), or 

(b) describes a transitional view that incorporates 

both teacher demonstration or introduction (e.g., at 

the beginning of the lesson) and ‘turning it over’ to the 

students (who then make the remaining ‘discoveries’). 

Description likely stresses 'rules' for structuring 

lessons, discussion, etc. or describes posing problems 

and asking students to describe their strategies but 

does not detail a proactive role in supporting students 

in engaging in genuine mathematical inquiry (Kazemi 

& Stipek, 2001). 

Influencing classroom discourse: Describes the teacher facilitating student‐to‐student talk, but primarily in terms of students 

taking turns sharing their solutions; Hesitates to ‘tell’ too much for fear of interrupting the ‘discovery’ process (Lobato et al, 

2005). 
Attribution of mathematical authority: Supports a 'no‐tell policy': Stresses that students should figure things out for themselves 

and play a role in 'teaching.' Suggests that if students are pursuing an unfruitful path of inquiry or an inaccurate line of reasoning, 

the teacher should pose a question to help them find their mistake, but the reason for doing so focuses more on not telling than 

helping students develop mathematical authority. Is open to students developing their own mathematical problems, but these 

inquiries are not candidates for paths of classroom mathematical investigation. 
Conception of typical activity structure: Promotes a ‘launch‐explore‐summarize’ lesson (Lappan et al., 1998), in which a) the 

teacher poses a problem and possibly completes the first step or two with the class or demonstrates how to solve similar 

problems, b) students work (likely in groups) to complete the task(s), and c) students take turns sharing their solutions and 

strategies and/or the teacher clarifies the primary mathematical concept of the day (i.e., how they ‘should have’ solve the task). 

Figure A1. Abbreviated VHQMI Rubric: Role of the Teacher   
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2) Teacher as ‘monitor’ 

  

Describes the teacher as the primary source of 

knowledge, but stresses the importance of providing 

time for students to work together, to try on their 

own and make sense of what the teacher has 

demonstrated, to (first) explain things to each other, 

and then get help from the teacher. 

Influencing classroom discourse: Suggests the teacher should promote student‐student discussion in group work. 

Attribution of mathematical authority: Suggests a view of teacher as an “adjudicator of correctness” (Hiebert et al, 1997). 
Students may participate in 'teaching' but only as mediators of the teacher's instruction, adding clarification, etc. If students are 

pursuing an unfruitful path of inquiry or an inaccurate line of reasoning, the teacher stops them and sets them on a ‘better’ path. 

Conception of typical activity structure: Promotes a two phase, ‘acquisition and application’ lesson (Stigler & Hiebert, 1999), in 

which a) the teacher demonstrates or leads a discussion on how to solve a type of problem, and then b) students are expected to 

work together (or “teach each other”) to use what has just been demonstrated to solve similar problems, while the teacher 

circulates throughout the classroom, providing assistance when needed. 

1) Teacher as 'deliverer 

of knowledge' 

  

Describes the teacher as the primary source of 

knowledge, focusing primarily on mathematical 

correctness and thoroughness of explanations (i.e., 

showing all steps). Description suggests that students 

are welcome to ask questions, but that there is no 
expectation that the teacher will facilitate student 

collaboration or discussion. 

Influencing classroom discourse: Focuses exclusively on TS discourse. Considers quality of teacher's explanations in terms of 

clarity and mathematical correctness. 

Attribution of mathematical authority: Suggests that the responsibility for determining the validity of ideas resides with the 

teacher or is ascribed to the textbook (Simon, 1994). (This includes insistence that teachers be mathematically knowledgeable 

and correct.) 

Conception of typical activity structure: Promotes efficiently structured lessons (in terms of coverage) in which the teacher 

directly teaches how to solve problems. Periods might include time for practice while teacher checks students’ work and answers 

questions, but this is likely quiet & individually‐based with no opportunity for whole‐class discussion. Description suggests no 

qualms with exclusive lecture format. 

0) Teacher as 

‘motivator’ 
Suggests that the teacher must first and foremost be 

sufficiently captivating to attract and hold students' 

attention. 

 

 

  

Figure A1, continued.  
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Level 

Patterns/structure of Classroom Talk  Nature of Classroom Talk Student Questions Teacher Questions Student Explanation

Description  Description Description Description Description

4 

Promotes whole‐class conversations, 
including student‐to‐student talk that is 
student‐initiated, not dependent on the 
teacher (Hufferd‐Ackles, Fuson, & Sherin, 
2004); Promotes developing & supporting a 
"mathematical discourse community" 
(Lampert, 1990), 

Suggests that classroom talk should be 
conceptually oriented—including 
articulating/refining conjectures and arguments 
for explaining mathematical phenomena—for the 
purpose of supporting students in ‘doing 
mathematics’ and/or spawning new investigations.

Values student questions that 
drive instruction, leading to 
new mathematical 
investigations, questions 
characteristic of ‘doing 
mathematics’ (e.g., 
generalization).  

Describes the role of teacher questions that are 
conceptually oriented (‘why’ questions) in 
driving investigations, helping students explain 
their problem‐solving strategies, and/or helping 
the teacher understand students’ thinking 
(Borko, 2004) 

Student explanations 
include both explanation 
and justification (Kazemi & 
Stipek, 2001) with little 
prompting from the teacher 
(Hufferd‐Ackles, Fuson, & 
Sherin, 2004) 

3 

Promotes whole‐class conversations (about 
ideas, not just whole‐class lecture or task 
set‐up), but description places the teacher 
at the center of talk, likely doing most of 
the prompting and pressing, or calling upon 
students/groups to take turns presenting 
their strategies. 

Insists that the content of classroom talk be about 
mathematics (e.g., asking questions, providing 
explanations), but description of such talk either 
(a) characterizes talk that is of a calculational 
orientation; or (b) fails to specify expectations for 
the nature/quality of the questions, explanations, 
etc. 

Values student questions in the 
math classroom, but description 
suggests that procedurally‐
oriented questions are 
adequate; possibly considers 
the occurrence of student 
questions primarily among 
groups of students (and not 
during whole‐class instruction). 

Either (a) stresses the importance of asking 
conceptually‐oriented questions (and details 
such questions with more than ‘catch‐phrases’ 
such as or 'higher‐order') but does not elaborate 
on the function of such questions in progressing 
classroom discourse or understanding student 
thinking, or (b) suggests that the teacher’s 
questions can serve such functions but describes 
questions of a calculational orientation (‘how’ 
questions)—which would not actually achieve 
the intended function. 

Description suggests an
emphasis on student 
explanations of strategies 
that have primarily a 
calculational (rather than 
conceptual) orientation 
(Thompson et al, 1994; 
Kazemi & Stipek, 2001) or 
are not characterized 

2 

Values student‐student discourse but 
describes it exclusively in the context of 
small group/partner work (if there’s 
mention of whole‐class discussion, it’s 
characterized only as an option, not a vital 
element) 

Insists that the content of students’ classroom talk 
(with each other) be about mathematics, but 
provides no description of content (i.e., does not 
specify things such as questions and explanations). 

Emphasizes the presence of 
student questions in the math 

classroom; may consider 

students' questions as 

differentiable in quality, but 

provides no specific criteria 

Names the quality of teacher questions as an 
important criterion, but either (a) provides no 
criteria for differentiating in quality, (b) uses 
only ‘catch‐phrases’ (e.g., ‘higher‐order’, 
‘extension’) to describe the quality of questions, 
or (c) examples include probing for steps taken 
or questioning to determine whether (but not 
how) a student understands (‘what/how’ 
questions, but not ‘why’ questions). 

 

  

  

 

1 

Describes traditional lecturing and/or IRE 
(Mehan, 1979), or IRF (Sinclair & 
Coulthard, 1975) dialogue patterns. (Note 
that this can occur in a ‘whole‐class’ 
setting, but is not considered a genuine 
whole‐class discussion.)  

  Does not value student 
questions, or suggests that 
students should be welcome to 
ask questions, but that the 
presence of student questions 
is not inherently a good aspect 
of classroom discourse.  

Names the presence or quantity of teacher's 
questions as an important criterion, or describes 
a scenario where students offer one‐word or 
short‐phrase answers to questions the teacher 
asks as (s)he demonstrates, or suggests that the 
role of teacher’s questions is to keep students 
on task. 

  

  

Figure A2. Abbreviated VHQMI Rubric: Classroom Discourse
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Level 

4) Emphasizes tasks that have the potential to engage students in “doing mathematics” (Stein, Grover, & Henningsen, 1996; 

Smith & Stein, 1998), allowing for "insights into the structure of mathematics" & "strategies or methods for solving 

problems" (Hiebert et al, 1997). 

3) Emphasizes tasks that have the potential to engage students in complex thinking, including tasks that that allow multiple 

solution paths or provide opportunities for students to create meaning for mathematical concepts, procedures, and/or 

relationships. "Application" is characterized in terms of problem‐solving. However, tasks described lack complexity, do not 

press for generalizations, do not emphasize making connections between strategies or representations, or require little 

explanation (Boston & Wolf, 2006). Instead, they emphasize connections to "the real world, or "prior knowledge." Reasons 

for multiple strategies are not tied to rich discussion or making connections between ideas. 

2) Promotes 'reform'‐oriented aspects of tasks without specifying the nature of tasks beyond broad characterizations (e.g., 

"hands‐on," "real world connections," “higher order"), and without elaborating on their function in terms of providing 

opportunities for “doing mathematics” (Stein, Grover, & Henningsen, 1996; Smith & Stein, 1998). "Application" is 

characterized in terms of "real world" context and/or students being active. 

1) Emphasizes tasks that provide students with opportunity to practice a procedure before then applying it conceptually to a 

problem (Hiebert et al, 1997) 

0) (a) Does not view tasks as inherently higher‐ or lower‐quality; or (b) Does not view tasks as a manipulable feature of 

classroom instruction 

Figure A3. Abbreviated VHQMI Rubric: Mathematical Tasks 

 

Level Description 

2) Specifies WHAT Ss should be doing using typical reform 

language, without describing the nature of classroom 

activity in content‐specific ways‐‐focuses primarily on the 

organization/structure of the activity (form view). 

Describes what students should be doing without mention of the content 

of their interactions (i.e., describes a 'non‐traditional' classroom, full of 

activity, but does not specify how the activity is specific to mathematics). If 

reasons WHY particular forms of activity are important are provided they 

are not in terms of supporting students' participation in doing 

mathematics. 

1) Stresses the importance of students being engaged 

and "on‐task", either taking for granted the quality of 
classroom activity (i.e., students should be doing 

whatever the teacher asked), or specifying traditional 

classroom activities as what should take place. 

(a) Stresses THAT students should be engaged and participating in 

classroom activities (i.e., on‐task, paying attention), without specifying 

WHAT those activities should be; OR, (b) Describes nature of classroom 

activity as traditional classroom activity. 

Figure A4. Abbreviated VHQMI Rubric: Nature of Classroom Activity 
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APPENDIX B 

 

ORIGINAL AND MULTIPLY IMPUTED EXPERTISE DATA FOR PAPER 3 

 
 
Table B1 

Comparing Expertise in Original and Imputed Sample 
 
 Original Sample Imputed Sample 
 Mean SD Min Max N Mean SD Min Max N 
MKT -0.06 0.81 -2.01 2.01 584 -0.18 0.95 -3.84 3.56 1808 
VQHMI 2.44 0.63 0 4 816 2.42 0.72 -0.95 5.15 1808 
High Potential 0.70 0.46 0 1 499 0.68 0.47 0 1 1808 
Maintain 0.45 0.50 0 1 347 0.42 0.49 0 1 1229 
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