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CHAPTER I 

INTRODUCTION 

Motivation 

Modeling and simulation of cyber-physical systems is a key component for designing dependable 

next-generation automotive, avionics and space systems, power plants and manufacturing 

processes. Cyber-physical systems (CPS) are typically large-scale, distributed control systems, 

where computational devices are tightly coupled with physical processes [1]. Therefore, they are 

inherently concurrent and often enormously complicated. CPSs are prevalent in industry, and the 

degree of their complexity has reached a level, where component-based modeling and effective 

simulation approaches are essential to analyzing their behavior and predicting their performance 

under different operating conditions. The design process of these complex systems includes 

building preliminary mathematical behavior models to create simulation artifacts, and carry out 

virtual testing and verification, before the physical design commences. 

This thesis discusses the implementation of a visual modeling environment that supports 

component-based modeling and simulation of cyber-physical systems. The system is built on the 

Generic Modeling Environment (GME), developed at ISIS, Vanderbilt University [2] and a set of 

Matlab™ toolboxes [3]. GME provides a flexible environment, implementing the Multigraph 

architecture for model-based development and analysis [4]. The workflow begins with the 

software engineer, who defines the modeling language, allowing domain experts to build the 

necessary models in the domain, while model interpreters whose development is facilitated by the 

GME environment completely automate the process of generating simulation models. 
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Cyber-physical systems include a set of physical processes and the associated computational 

components, which monitor and control those processes and their interactions, initiate actuation 

mechanisms and facilitate human interaction. Therefore, a cyber-physical system includes a large 

number of hybrid subsystems, whose state evolves in both continuous and discrete time. CPSs are 

often distributed in physical space, such as the various subsystems that make up an aircraft 

system, which necessitates that the system models constructed include properties, such as time-

delay and power-dissipation occurring during the interaction. Today, the typical size-scale of 

cyber-physical systems – especially in the avionics industry – requires non-standard approaches 

to design and analysis. 

From a systems-engineering point of view, cyber-physical system models are often considered as 

a composition of three layers, often called the Function, Behavior and Structure (FBS) 

representation of the system. Models of the physical assembly defines the structural description 

of the system, the behavior of this structure can be simulated under a variety of circumstances to 

verify system functionality and properties, and the well-defined view of the expectations of the 

system are captured as system functions. Typically the goal of the system design is to translate 

these functional requirements into system models [5]. For a modeling tool that is designed to aid 

complex cyber-physical system development, it is essential to capture and relate the Structural, 

Behavioral and Functional aspects of the system. 

Our modeling tool employs a component-based approach to capture the functional, behavioral 

and structural layers of the cyber-physical system. Component based models preserve the 

hierarchy in the system, keeping models human-readable and supporting the reuse of previously 

factored components, while Function-Behavior-Structure (FBS) models allow for simulating the 

behavior and verify high-level functional properties too. Finally, such a modeling environment 

has to provide clean semantics to integrate physical models from various physical domains, such 

as hydraulic, electrical, mechanical, and thermal subsystems. 
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Problem statement 

In this thesis, we introduce a Domain Specific Modeling Language (DSML) to model cyber-

physical systems, including the notions of abstract and concrete syntax. A DSML is a set of 

modeling elements and abstract rules, designed to describe artifacts of a particular problem 

domain. The definition of the DSML also contains the visual syntax of the modeling language. 

The language is implemented as a modeling paradigm in the Generic Modeling Environment tool, 

and is made up of two components: (1) the hybrid bond graph language and (2) an extended 

version of the Grafcet notation [6]. After developing the DSML specifics, we formally define the 

mapping between the semantics of hybrid bond graphs and Matlab Simulink® models [7] to 

provide a simulation environment for studying system behaviors. The Simulink signal-flow 

representation is designed to allow efficient reconfigurations as the mode changes occur. A 

mapping between the Grafcet notation and Matlab SimEvents® [8] block diagrams is also 

presented. 

As part of the system, we developed two model-interpreters. One interpreter is built to generate 

Matlab simulation artifacts from hybrid models defined in GME, and the other to extract 

functional requirements defined within the Grafcet language in a form of Hoare triples [9]. Both 

interpreters are implemented in C++ and use the Universal Data Model [10] interface to access 

the model. When generating a Simulink signal-flow graph from the hybrid bond graph, we have 

to add the notion of causality to the model. This happens in the Matlab environment, based on the 

“Sequential Causality Assignment Procedure” (SCAP) [11]. In a hybrid bond graph, as the 

reconfigurations occur along with the discrete mode changes, the correct causality should be 

efficiently maintained in the system. This is performed by a library of Matlab functions. 
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Organization of the thesis 

The following chapters are organized as follows. Chapter 2 gives background information on the 

hybrid bond graph modeling language, describing its syntax and semantics, the causality 

assignment procedure and the hybrid behavior. It also introduces the Grafcet notation, which is 

used to model the computation elements for the CPS models. Chapter 3 gives an overview on the 

Generic Modeling Environment, and Chapter 4 discusses the BDM Sketcher tool
1
, the related 

GME paradigm and Matlab libraries, and other implementational details. Chapter 5 presents a 

case study; the Reverse Osmosis system, part of the Advanced Water Recovery system built at 

NASA [12,13], and Chapter 6 summarizes the results and conclusions. 

                                                           
1
 The names “BDM” and “BDM Sketcher” come from Airbus UK Limited. The abbreviation means 

“Behavioral Dependency Modeling”. 
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CHAPTER II 

BACKGROUND 

Modeling hybrid systems 

Systems are considered hybrid, if their state variables can evolve in both continuous time and at 

discrete time points. While physical systems are always continuous by nature, from a modeling 

point of view, some of their behaviors which include fast nonlinearities may be simplified as 

discrete changes at points in time. For example, a bouncing ball is usually modeled with a set of 

equations describing free fall in a gravitational field, with the collision with the ground being 

abstracted and represented as a discrete event. The change in the ball‟s behavior may be described 

by one or more equations that are only valid at the point of collision. This simplification or 

approximation abstracts away the complex energy transfers from kinetic to potential to kinetic 

that happen during an elastic collision. An equation based on the coefficient of restitution 

simplifies the resulting simulation model for the system. 

Cyber-physical systems, where components with their behavior regulated by the laws of physics 

are coupled with computational devices that are modeled to operate in a discrete manner, are 

naturally hybrid in their behavior. A standard approach to model these kinds of systems is the 

hybrid automaton model of computation [14]. The different modes of operation are represented as 

states of the automata model. In each state, continuous behavior evolution is defined by a set of 

differential algebraic equations. Discrete changes that occur at points in time are modeled as 

transitions between states; they are triggered by evaluation of guard conditions associated with a 

state transition function. Transitions can be extended with an arbitrary function to recompute the 

state variables when the transition occurs; this is called the hybrid reset function [15]. 



6 

The bond graph modeling language represents a domain-independent formalism to model 

physical systems. It abstracts away the specific details of particular physical domains, providing a 

common notation for defining cross-domain systems using a power- and energy-based formalism. 

The standard bond graph language contains only 9 different modeling elements and their 

connections [16]. This is discussed in greater detail in the next section. An extended version of 

bond graphs is the hybrid bond graph language, which can be used to capture the discrete mode-

changes by defining reconfiguration conditions that apply to the junction elements of the bond 

graph model. 

The physical layer modeling is based on the hybrid bond graph language, while computational 

units which trigger mode switches in the hybrid bond graph are modeled with an extended 

version of the Grafcet language [6]. These two concepts are integrated in an environment called 

the “BDM Sketcher”. 

Hybrid bond graphs 

Introducing bond graphs 

The concept of bond graphs was developed in 1959 at Massachusetts Institute of Technology by 

Henry Paynter, and was further developed by his students: Karnopp, Margolis, Rosenberg and 

others. The introduction below is based on the fourth edition of their book on modeling 

mechatronic systems [16], which is still the most comprehensive reference to bond graphs. 

The bond graph formalism is a graphical modeling language to describe cross-domain physical 

systems. It generalizes components of various physical domains, providing a domain-independent 

notation for system modeling, consisting of 9 types of atomic elements: energy storage elements: 

the capacitor (C) and inertia (I), a dissipative element, the resistor (R), sources of effort (Se) and 

flow (Sf), the transformer (TF) and gyrator (GY) and two types of junctions (0, 1).  Bond graphs 

are energy based; energy transfer between the elements of the system is defined by connections, 



7 

called bonds. They capture the power exchange between components, and each bond is 

represented with two generalized variables, the effort ( ) and flow ( ), such that        ×      

        ( )   rate of energy transfer between the connected components. Therefore, the 

integral of the exchanged power corresponds to the energy ( ) exchange between components on 

the two sides of the bond. 

 ( )   ( )   ( )  ( )  ∫  ( )
 

   ∫  ( )   ( )
 

   

Table 1 lists the effort and flow variables in the different domains. There are two additional 

variables called energy variables: the displacement ( ), corresponding to potential energy and 

momentum ( ), corresponding to kinetic energy. They are associated with the integral of flow and 

effort respectively, and they define the formal state variables of the system. Table 1 also presents 

their domain-specific versions. Formally they are: 

 ( )   ∫  ( )
 

      ∫  ( )
 

  

    ( )  ∫  ( )
 

      ∫  ( )
 

  

   

Table 1. Domain-specific equivalents of bond-graph variables  

Domain \ Variable Effort ( ) Flow ( ) Displacement ( ) Momentum ( ) 

Mechanical translation Force,   Velocity,   Displacement,   Momentum,   

Mechanical rotation Torque,   Angular velocity,   Angle,   
Angular 

momentum,    

Hydraulic Pressure,   Volumetric flow,   Volume,   
Pressure 

momentum,    

Electrical Voltage,   Current,   Charge,   
Flux linkage 

variable,   

Thermal Temperature,   Heat flow rate,  ̇ Entropy,   - 
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The thermal domain is different from the others in that there is no inertia element defined in it, 

and the product of effort and flow is not power. (The heat flow rate,  ̇ defines power, as flow of 

energy in the thermal domain). However, to maintain uniformity of representation and allow for 

multi-domain modeling that includes the thermal domain, a pseudo bond graph representation is 

adopted, where temperature,   represents the effort variable, and flow rate,  ̇ is the flow variable. 

Bond graph components 

The bond graph modeling language describes the power interaction of subsystems that are 

considered atomic. Places where a subsystem can be interconnected with other subsystems are 

called ports. The primary bond-graph formalism consists of 5 one-port elements, 2 two-port 

elements and 2 junction types to define their connections. One-ports are the effort source (Se), 

flow source (Sf), capacitor (C), inertia (I) and resistor (R); two-port elements are the 

transformers (TF) and gyrators (GY). Other multiport elements include the common effort- (0) 

and common flow junctions (1). In general, junctions are „n-ports‟; they can interconnect arbitrary 

number of components. One-port and two-port elements are again generalized versions of 

subsystems in real physical domains. Source elements model ideal effort and flow sources (i.e. 

    ( ), or     ( )). Their output does not depend on the rest of the bond graph. The 

capacitor and the inertia are called storage elements, and they maintain the energy variables, and 

therefore, the state of the system. The resistor is used to model energy dissipation. We have two 

types of two-ports. Both of these conserve power: the transformer relates the effort to the effort 

and the flow to flow between its two bonds, while the gyrator relates flow to effort and vice versa. 

Junctions define the interconnection of the port-elements; one- and two-port elements can only be 

connected to junctions, while junctions can also be connected to other junctions. Common effort 

and common flow junctions are also called 0-junctions and 1-junctions respectively. 0-junctions 

force a common effort value on each adjacent bond, while 1-junctions correspond to a common 



9 

flow connection. They can be thought of as parallel and serial connections in the electrical 

domain: the analogies of the 0- and 1-junction are Kirchhoff‟s first and second laws, respectively. 

Bonds are directional; they are represented with a half-arrow, and the direction of the arrow 

denotes the positive direction of power exchange between the components. A negative value of 

power implies that the direction of power flow is opposite to the direction of the bond. Associated 

with the nine primitive bond graph elements are constituent equations that define the relationship 

between effort and flow for the particular bond. 

Modulation and signals 

Every one-port element has a parameter, and both of the two-ports have a modulus associated 

with the function that relates the pairs of efforts and flows. For linear systems, these parameters 

assume constant values. To model components with nonlinear behaviors, we introduce the notion 

of modulated elements, where the parameter value can be made a function of one or more signal 

inputs to the component. Signal paths are distinct from power connections in the bond graph; they 

represent transfer of information as opposed to bonds that represent transfer of energy. Signal 

paths are denoted with lines ending with regular arrows. As an approximation, we assume that 

zero power is required to transmit signals. Signals can be made external, i.e. they originate from 

outside the bond graph model, or they can be internal, in which case they transmit the current 

value of any particular bond graph variable from one part of the graph to another. The notion of 

modulated components adds seven more elements to the bond graph language, since every one- 

and two-port element has its modulated version (   ,    ,   ,   ,   ,    ,    ). 

Figure 1 demonstrates the bond graph notation, including the notion of signals, which carry 

effort, flow and energy variables to modulate bond graph elements. In this example, the 

modulated source value is a function of the displacement variable from capacitor C, and 

momentum variable from inertia, I. Similarly, the resistance value is modulated by a function 
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whose input parameters are the common effort of the 0-junction, and the common flow of the 1-

junction. 

 

Figure 1. Bond graph with modulated resistor (MR) and effort source (MSe) 

Causality 

It is important, that when we model physical systems, components cannot be thought as 

something that performs a function on a set of input-variables, generating the corresponding 

output-variables. In reality, the behavior of each component is concurrent; the relationships are 

described by equations, and their causal structure cannot always be determined [17]. However, 

some of the bond graph elements impose causality constraints on the system model, which is 

propagated, and results in a consistent causal assignment to bonds in the bond graph model. 

Bonds are assigned a causal direction, and this may or may not be independent of its power 

direction. The causal direction is indicated by a perpendicular stroke to one end of the bond, 

meaning that the effort value is imposed from the side of the bond without the causal stroke to the 

side with the causal stroke. Once causality is assigned to a bond, the direction of effort and flow 

is known, and it generates a response in the opposite direction. 

To derive a block diagram from a bond graph with regular, directed signals, we have to come up 

with a consistent causality assignment to every bond. To perform simulation efficiently on the 

C

R MR0 1

I

   

MSe   

effort signal

flow signal

displacement signal

momentum signal

0 R
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bond graph model, we convert it into a signal-flow block-diagram, which determines the 

sequence of computations necessary to establish system behavior over time. 

The state variables of the system are maintained in the storage elements, where we consider only 

integral causality. Integral causality means that energy-variables are expressed as the integral of 

the input effort or flow, instead of using derivatives. An energy storage element forced to accept 

derivative causality would mean that its energy variable is dependent on another state-variable; 

therefore, it could be eliminated from the state equations based on the rest of the equations. By 

assuming integral causality, the equations describing the storages remain independent from the 

rest of the bond graph, and a single state equation will be associated with each storage element. 

Therefore, computationally the capacitor accepts flow as input, and generates an effort value, 

whereas the inertia accepts effort as input, and produces flow. 

The causality of source elements is also constrained; the effort source imposes effort, while the 

flow source imposes flow onto its adjacent bond. The causality of the resistor can be assigned 

arbitrarily. The transformer and the gyrator both have two possible combinations of causality 

assigned on their bonds, based on their equations, as shown in Table 2. Junctions mean a common 

effort or flow value in the associated points of the system: one of their bonds imposes this effort 

or flow on them, which bond is called the determining bond. This incoming effort or flow is then 

transmitted on every other bond as an output, while the responded flows or efforts coming in via 

those bonds are summed within the junction (with the power directions taken into account), and 

that will be the output of the determining bond. Therefore, the determining bond of 0-junctions 

has the causal stroke on the side closer to the junction, while every other bond has it on the 

further side, and this is true the other way around for 1-junctions. Table 2 shows the regular bond 

graph elements with their possible causal assignments, equations and block-diagram 

representation. 
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Table 2. Chart of bond graph elements 

 Sign Causality Equation Block diagram 

Source of effort Se Se : u     

 

Source of flow Sf Sf : u     

 

Capacitor C C : c   
 

 
∫    

 

Inertia I  I : i   
 

 
∫    

 

Resistor R 

R : r      
 

R : r       
 

Transformer TF 

TF:m 
      ⁄  

      ⁄  
 

TF:m 
       

       
 

Gyrator GY 

GY:m 
       
       

 

GY:m 
      ⁄  
      ⁄  

 

0-junction 0 

0 

         

         

 

1-junction 1 

1 
         

         

 

  

  

    

  

  

  

    

  

  ∫  

    

  ∫  
    

  ∫  

    

  ∫  
    

  

  

    

  

  

  

    

  
   ⁄

   ⁄

  

  

   ⁄

   ⁄

  

  

   ⁄

   ⁄

  

  

   ⁄

   ⁄

  

  
+

+

+

+

I 1

C 0 Se 0
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I 1
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C 0 Se 0
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C 0 Se 0
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Causality assignment procedure 

Based on the causality restrictions of the elements discussed above, a bond graph can be 

augmented with causality information using an incremental algorithm. One such algorithm is 

called “SCAP”, which stands for Sequential Causality Assignment Procedure [16,11]. The SCAP 

algorithm plays a pivotal role in the conversion from bond graphs to block diagrams. An 

important part of the procedure is the propagation of the causality, where we take advantage of 

the fact, that a particular causality assignment of a bond usually constraints the assignment of a 

set of other bonds. For example, setting a bond to be the determining bond of its neighboring 

junction causes every other bond adjacent to that junction to be set to the opposite direction; or 

setting the causality on one side of a two-port determines the assignment of the bond on the other 

side. These effects of assigning causality on bonds are propagated all through the bond graph 

after every step of the algorithm. Below is the outline of “SCAP”: 

1. While source with unassigned bond exists 

a. Pick an unassigned source and assign the required causality to its bond 

b. Propagate the effects via junctions and two-ports where possible 

2. While storage with unassigned bond exists 

a. Pick an unassigned storage and assign integral causality to its bond 

b. Propagate the effects via junctions and two-ports where possible 

3. While resistor with unassigned bond exists 

a. Pick an unassigned resistor and assign the causality to its bond arbitrarily 

b. Propagate the effects via junctions and two-ports where possible 

4. While there is unassigned bond left (they must be between junctions or two-ports) 

a. Pick one of these bonds, and assign its causality arbitrarily 

b. Propagate the effects via junctions and two-ports where possible 

 

Hybrid behavior 

Regular bond graphs have the same expressiveness as a set of differential equations that describe 

continuous system behavior. To incorporate hybrid behavior in the bond graph modeling 

language, we introduce the notion of controlled (or switching) junctions [18]. This means that 
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junctions may switch on and off to model discontinuous behavior: when a 0-junction is switched 

off, it functions as a source of effort with a zero value, while a closed 1-junction becomes a flow 

source with zero parameter. Note that a zero effort or flow on a bond implies that the bond is 

inactive because it does not transmit power. The on-off configuration of the set of controlled 

junctions in a component corresponds to a discrete state of the related hybrid automaton. 

Controlled junctions define two logical expressions: the ON-condition and OFF-condition. 

Junctions have their initial state defined, and when they are in the ON state and their OFF-

condition becomes true, a switching is triggered, while in the OFF state they turn back on as soon 

as the ON-condition evaluates to true. These switching conditions must be defined carefully to 

avoid Zeno executions, when an infinite number of transitions occur in finite amount of time [19]. 

The switching behavior, just like the modulation of one- and two-port elements, relies on signals. 

A discrete transition can be triggered by explicit control signals originating from outside the 

graph, or they can be defined based on local conditions. These two types are called controlled and 

autonomous switching functions, respectively. For example, in a water-heating system, where a 

controller maintains a cycle of filling the tank, heating the water, and emptying the tank, a series 

of controlled switches occur according to a predetermined schedule to set the valves of the input 

tap and the drain. An example of an autonomous switch is opening a safety outlet on the tank if 

the fluid level reaches a level where a risk of overflow arises. The example is illustrated in Figure 

2. 
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Figure 2. Hybrid bond graph and schematic of a tank system 

The three controlled junctions correspond to the three valves in the schematic. Two of these 

junctions are controlled by an external logic, while the safety valve is controlled by a simple 

function defined of the displacement variable (i.e., height of the liquid) in the capacitor. 

An important issue emerging from the notion of controlled junctions is that causality of bonds 

may change when the bond graph model configuration changes, because junctions may switch on 

and off. Every state-configuration of the set of switching junctions in the graph corresponds to a 

different model configuration, which may imply a different causality configuration too. We 

cannot ensure that a particular bond will have the same causal direction in every discrete state. An 

example of changing causality is shown on Figure 3: 

 

Figure 3. Effect of switching on causality 

The determining bond of the 0-junctions is removed when the 1-junction is turned off. As a result, 

the bond, incident on the resistor must take on the role of the determining bond, and its causality 

direction changes. As described in the previous sections, different causality assignments of bonds 
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map to different signal-flow diagram structures, therefore, the generated hybrid simulation model 

should employ reconfigurable components and an online version of the SCAP algorithm. 

Example bond graph 

A bond graph example from the mechanical domain is shown in Figure 4. The schematic of a 

simple vehicle-suspension system is on the left, including a mass attached to a wheel via a spring 

and a damping element [20]. Figure 4 also presents the causal bond graph of the model. 

     

Figure 4. Example mechanical system 

a) Physical model; b) Causal bond graph model 

The wheel of the modeled vehicle rolls on the ground, and the unevenness of the ground results in 

vertical motion input to the wheel. This is modeled in terms of the bond graph as a source of flow 

(  ), function of time, while the gravitational force is a source of effort (  ) in the opposite 

direction, with parameter   , where   is the weight of the mass, and   is the gravitational 

constant. The direction of the power exchange between the system and the environment is 

captured by the power directions of source elements‟ bonds. The spring is modeled with a 

capacitor ( ) because of its ability to store potential energy, and the capacitance is the reciprocal 

of the spring constant. Masses are capable of storing kinetic energy, and they are associated with 

inertia ( ) elements in bond graphs, and the inductance parameter is the weight of the mass. The 

damping element dissipates power, and should be modeled with a resistor ( ), with the damping 
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parameter,  . The spring and the damping element are connected via a 1-junction, because of 

their “common flow” relationship. 

The causality of the bond graph is assigned using the SCAP algorithm. Flow and effort sources 

determine the causality of their bonds, but these assignments have no causal effects to propagate 

through junctions in this case. The next step assigns the integral causality to the inertia, and this 

determines the causality of the rest of the bond graph. On Figure 4b, bonds are numbered to 

associate the related effort and flow variables with them. Below we present the equations of the 

system, and derive the state-space description with the energy variables as state-variables. In the 

equations    denotes the effort on bond  , while    denotes the flow on bond  . 

Table 3. Bond-equations of the suspension system 
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The state-variables are    and   . The state space equations can be derived by eliminating the 

other effort and flow variables. The resulting state-space equations are presented below. 
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These equations can be used to simulate the behavior of the suspension system. The BDM 

Sketcher tool eliminates the procedure of deriving state-space equations by directly converting 

bond graphs into simulation models. 
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Grafcet notation 

Standard Grafcet 

The BDM Sketcher environment uses an extended version of the Grafcet model of computation 

[6], to model controller elements and software components associated with hybrid bond graphs. 

The standard Grafcet formalism was developed in the mid „70s, and was standardized in 1988, 

with the primary purpose of modeling the logic of process controllers. Grafcet is a discrete event 

modeling language motivated by Petri nets. There are two types of modeling elements in standard 

Grafcet: steps and transitions. Steps correspond to the notion of places in the Petri net notation, 

while transitions have the same purpose and notation as Petri nets. The Grafcet graph is a directed 

bipartite graph like a Petri net: transitions can only be connected to steps and vice versa. 

In Petri nets, we associate tokens with places, and the token distribution – also called marking – 

denotes the actual state of the model. Places and transitions are connected via directed arcs, and a 

transition is enabled to fire when every incoming arc has a token to consume in its source place. 

When the firing happens, the incoming arcs consume those tokens from the origin, and another 

token is produced via every outgoing edge. This works the same way in Grafcet; however a Petri 

net place may contain an arbitrary number of tokens, the Grafcet step is either contains a single 

token or it is empty. The presence of the single token determines whether that step is active or 

not. Grafcet steps are represented with squares on the chart, and there is no initial token-marking; 

only a single initial step is selected, which contains a token in the beginning. The initial step is 

denoted with a double square. The initial step of the model is usually drawn on the top of the 

chart, and the layout is designed such that tokens flow downwards. 
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Figure 5. Example of Grafcet and Petri net notation 

Another major difference between Petri nets and Grafcet is the expressiveness of transitions: 

while Petri net transitions always require a token on every input arc and produce a token on every 

output arc, Grafcet transitions can be more elaborate. By default, if a step receives multiple input 

arcs, those enable the transition in an „OR‟ logical relationship: having one token in one of the 

previous nodes enables the firing. Multiple output arcs introduce nondeterminism, as the 

incoming token is transferred to only one of the successor steps. To require an enabling token on 

every input arc, or to distribute tokens via every output arc, a different notation is used involving 

a double bar before or after the transition bar, respectively. From left to right, Figure 6 displays a 

simple transition, an „AND‟ junction, an „AND‟ distribution and their combined version. 

 

Figure 6. ‘AND’ type token-junction and distribution in Grafcet 

The Grafcet chart can be augmented with logical expressions. Steps are associated with actions, 

and transitions have a so called receptivity, which is a boolean function defined on external 
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signals or the current token distribution. The true evaluation of the receptivity condition is 

another requirement for a transition to be enabled, in addition to the token availability in their 

preceding steps. 

Signal-Action Graphs 

The Grafcet notation was chosen by Airbus Ltd to model the functional level of the Cyber-

Physical System (CPS). They developed an extended version of Grafcet called the Signal-Action 

Graph (SAG) [21]. The standard Grafcet refers to macro-states and hierarchical Grafcet 

components, but the SAG notation has a stronger support for hierarchy. Compound steps are 

called modes and phases. In Signal-Action Graphs the transition concept of Grafcet is 

generalized, the token distribution after the firing can occur based on „AND‟, „OR‟ or „XOR‟ 

logical functions, while multiple token paths can also be joined based on any arbitrary predefined 

token distribution on the set of preceding steps before the transition. Elements that define these 

logical functions are called junctions in SAGs, which is different from the notion of junction in 

bond graphs. 

Grafcet plays a dual role in the BDM modeling language. They capture functional level 

requirements and procedures of the CPS, and the associated signals and actions of the nodes 

facilitate verification of various properties of the process, such as state reachability and other 

safety-properties. On the other hand, Grafcet also functions as modeling language for 

computation blocks, and allows generating hybrid simulation models from the combined 

modeling language incorporating hybrid bond graphs along with Grafcet. 
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Figure 7. Interaction of Grafcet and HBG 

Figure 7 elaborates on the example of the water-heating tank in Figure 2. For the sake of 

simplicity, only the hydraulic domain is modeled in the HBG component, the temperature of the 

water is considered an external input signal for the Computation logics. The three Steps in the 

Grafcet model are (1) the filling phase, when water flows in, so the “inflow” valve is open and the 

“drain” is closed, (2) the heating phase, when both controlled valves are closed until the water 

temperature reaches the desired level, and (3) the purging mode, when the “drain” valve opens, 

and the warm water flows out. The safety outlet is controlled autonomously. The switching 

conditions of controlled junctions and the enabling conditions of Grafcet transitions are defined in 

their attributes based on their input signals. 

Hoare logic 

As discussed in the previous chapter, both the standard and the extended version of the Grafcet 

notation incorporate logical expressions and external actions. In the standard version, receptivity 

conditions provide an additional requirement to enable transitions, while actions are associated 

with the activation of steps. In the Signal-Action Graph notation, this approach is extended. Every 

transition has a related set of signals, and a precondition expression. If the precondition evaluates 
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to true and the sufficient amount of tokens are available in the preceding steps, then the transition 

fires, those signals are indicated, and the next step – or set of steps – becomes active. Steps 

usually have a set of associated actions, which are performed on entry to that step. The effects of 

these actions are captured in a postcondition, associated with the step. 

This series of actions and signal indications along with the pre- and postconditions can be 

expressed using Hoare logic [9]. Hoare logic was developed in the late „60s for program 

verification purposes. In the BDM Sketcher environment, it is possible to extract the requirements 

captured by Grafcet signals and actions in the form of Hoare triples. A Hoare triple consists of 

three expressions:   * +  , where   denotes a precondition, which is a logical expression that 

must evaluate to true before command   can be executed. The triple expresses that if   is true, 

then by executing  ,   will be always true.   is called the result or postcondition. After 

extracting the functional requirements of the Signal-Action Graph into Hoare triples, it is possible 

to perform a variety of verification operations. Preconditions associated with the transitions and 

the postconditions associated with the steps are mapped to   and  , respectively, while the 

combination of the indicated signals and the performed actions correspond to  . The relation 

between Hoare triples and Grafcet is shown in Figure 8. A related example is also presented in 

Appendix D. 

  * +   

 

Figure 8. Relationship of Grafcet and Hoare triples 
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CHAPTER III 

THE GENERIC MODELING ENVIRONMENT 

Model integrated computing 

The BDM sketcher tool relies on a metamodeling environment, called the Generic Modeling 

Environment (GME) [2] developed at ISIS in Vanderbilt University. GME is a part of a software 

toolset related to the concept of Model Integrated Computing [22]. GME enables developing 

Domain Specific Modeling Languages (DSMLs) and manipulating domain models. It employs a 

visual interface to aid the design of metamodels, including the abstract and concrete syntax, and 

then these custom modeling languages are encapsulated in a so called paradigm. Using the 

paradigm, GME allows domain experts to build their own models corresponding to the syntax of 

the defined language. These domain models can be manipulated through different software 

interfaces using model interpreters, and the final software artifacts can be automatically 

generated. This approach is an implementation of the Multigraph architecture, which was also 

developed at ISIS, Vanderbilt University [4]. The key ideas are illustrated on Figure 9. 

 

Figure 9. Multigraph architecture
2
 

There are two main activities of software development in the Multigraph architecture. One is the 

metalevel process, including the paradigm definition and implementation of the related software 

                                                           
2
 Figure 9 is a version of a figure taken from [22] 
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to manipulate models and generate output. These are the model interpreters. The actual system 

development is the process of building models which comply with the paradigm using the 

modeling environment. The first step involves software engineers, while the second involves 

domain experts. The paradigm is refined based on the feedback from domain experts, and then it 

is frozen, and used to develop domain-specific models repeatedly. The domain models are refined 

using the experience with the actual product. 

These concepts are applied in the BDM Sketcher. The purpose of the work related to this thesis 

was to implement the first step of the procedure, discussed above. A paradigm for defining cyber-

physical systems was created along with two model-interpreters, to generate Matlab simulation 

models and export the constraints defined within the models. 

MetaGME 

The definition of the domain specific modeling language in GME follows the same pattern as the 

creation of domain models: there is a predefined paradigm that describes the metamodel for 

creating domain specific modeling languages, called MetaGME. While the expectation from a 

domain specific language is to be as specific as possible, restricting the expressiveness of the 

language as much as possible to prevent building invalid models, the requirement of the 

MetaGME language is to be as general as possible. 

The MetaGME modeling language is defined using Unified Modeling Language (UML) as the 

metamodel. UML complies with the Meta Object Facility (MOF) language, and MOF is self-

descripting [23]. MetaGME employs various concepts to provide a most expressive domain-

definition language. Atoms represent atomic elements and Models are compound types. 

Inheritance can be used between identical classes and FCO elements. The FCO abbreviation 

stands for First Class Object, and it is designed to allow defining of inheritance between different 

classes, such as to provide a common ancestor for an Atom and a Model. FCOs are abstract by 
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definition. The modeling elements are organized into a tree structure: every instance is contained 

by a Model. The root-level modeling element in MetaGME is called ParadigmSheet. 

ParadigmSheets can be organized into Folders. 

Sets are weak containers; they may contain any number of elements from heterogeneous classes, 

assuming they are in the same parent Model. This containment corresponds to aggregation in 

UML terminology while the containment in a Model is composition. It is also possible to use 

Reference types, which can point to any instance of a chosen class in the domain model. For 

example, to make the modeling process easier, this concept is implemented at the MetaGME 

level; there are Proxy elements for every modeling class to allow referring to any instance of that 

class across the hierarchy. 

Various types of Attributes can be connected to every modeling class, to store the type-specific 

fields of element instances. Using the Connector element, it is possible to add an Association 

between any elements, not just between instances of the same class. Attributes and visibility of 

connections are defined using Association classes. An important concept is the notion of Aspects. 

Aspects can contain a subset of the defined modeling elements, and every Model has an 

associated set of Aspects. They are used as a filter: when working on the domain model in GME, 

one Aspect is activated at a time for a Model, so that only those elements which are contained in 

the chosen Aspect become visible. 

The MetaGME paradigm is extended with constraints, to express additional requirements that 

cannot be defined using the syntax of the paradigm. Typical examples are validation of Attributes 

or enforcing complex cardinality requirements. Constraints can be expressed using the standard 

OCL language [24]. Figure 10 presents a simplified version of the MetaGME paradigm structure, 

expressed with a UML class diagram. 
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Figure 10. MetaGME UML class diagram 
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CHAPTER IV 

DESCRIPTION OF THE SYSTEM 

Previous work 

The BDM Sketcher tool was developed as the second phase of a research project for Airbus UK 

Ltd. In the first phase, a regular bond graph paradigm was built along with a model-interpreter to 

generate Matlab Simulink simulation models. The bond graph modeling language was augmented 

with additional features to accommodate the needs of the domain experts for the Airbus projects. 

In this second phase of the project, the functionality of the bond graph language was extended to 

hybrid bond graphs, and an extended version of the Grafcet modeling language was incorporated 

to model the discrete behaviors of the system. Grafcet is used to model the computational 

elements that control the discrete junction switching across the hybrid bond graph. As discussed 

in the previous chapter, the Simulink signal-flow graph is built from the bond graph by adding 

causality information generated using the SCAP algorithm. Previously, this was done in the 

interpreter: the causality assignments were derived, and a static block diagram was generated. 

However, in the hybrid bond graph, the causality direction of bonds might change when 

switching occurs; therefore, performing the SCAP in the interpreter was not sufficient. The 

incorporation of controlled junctions necessitated implementing the SCAP algorithm in the 

Matlab environment, to be invoked during the simulation to reconfigure junctions‟ inner structure 

based on the current causality scenario. Because of this, most of the block-structures in the 

previous Simulink® bond graph library were also re-implemented to include the reconfiguration 

logic. 
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Overview 

The BDM environment works as follows. The modeling language was created as a GME 

paradigm, which includes the hybrid bond graph (HBG from now on) and Grafcet language. The 

domain models are cyber-physical systems represented with these notations. There are two model 

interpreters associated with the paradigm: one to generate simulation models, and the other to 

extract the logical constraints from the Grafcet subsystems in the format of Hoare triples. The 

structure of the BDM environment, including GME and Matlab is visible on Figure 11. 

 

Figure 11. Structure of the BDM environment 

The SimulinkInterpreter follows the same approach to generate simulation artifacts as the one 

described in [25]. It flattens the hierarchical bond graph and converts it into an intermediate 
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algorithm. Two outputs are generated; one is the datastructure script, which represents the 

structure of the bond graph converted into Matlab variables – this is the intermediate 

representation – and the other output is the buildscript, which is again in Matlab format. The 

buildscript runs the datastructure script and invokes the SCAP algorithm from the Matlab library 

on the stored HBG structure to create the initial causality assignment. The rest of the buildscript 

consists of a series function calls, called buildfunctions. Buildfunctions are also defined in the 

HBG Matlab library; they are used to assemble predefined Simulink® subsystems corresponding 

to different parts of the HBG, customizing them according to the function parameters. The 

buildscript also creates the SimEvents® structures from the Grafcet library, adds the connections 

and opens the finalized simulation model. During the simulation, whenever a discrete switching 

occurs, the SCAP algorithm is invoked to compute the new causality assignment on each bond, 

and the junctions are reconfigured accordingly. 

When running the ConstraintInterpreter, it traverses the selected Computation elements, and 

extracts the constraints associated with the signals, actions, pre- and post-conditions in the SAG 

model. The export format is a simple XML representation. 

The BDM paradigm 

Structure and hierarchy 

The BDM modeling language is a composite metamodel incorporating a hybrid bond graph 

language and an extended version of the Grafcet notation called Signal-Action Graphs. The 

purpose of the language is to build and maintain domain models represented with these 

formalisms, and automatically generate the simulation artifacts for them. The HBG and Grafcet 

language is augmented with signals, and has a strong support for hierarchy. Grafcet elements can 

be added in distinct containers called Computation, and the interaction between the discrete and 

continuous components is defined by signals traveling across the hierarchy. There are several 

other types of container elements used for different purposes, and the organization of these 
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elements is based on the idea of the Four Variable Model approach [26], which is a system model 

used in the Software Cost Reduction (SCR) method of requirements definition [27]. We model a 

subsystem of a cyber-physical system with four components, performing operations on four sets 

of variables. The four components are the system assembly, the actuating element, the sensing 

element and the system control component. The system assembly has a set of state variables, 

driven by the laws of physics, representing the current motion, position, and other values in the 

physical system. A subset of interest is the set of monitored variables of the sensing component. 

Through the analog-digital mappings in the sensors of the sensing subsystem, these variables 

become the input variables for the system control component, which performs the necessary 

computations and generates a set of output variables that influence the system. Output variables 

are then transmitted to the actuating component, to be mapped back to physical variables in the 

system assembly, and they are called the controlled variables. Figure 12 visualizes the idea 

below. 

 

Figure 12. The Four Variable Model 
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modeled as operations on these four sets of variables are often called Parnas systems. An essential 
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interactions of these Four Variable subsystems, and ports can be added in these Models (Models 

are compound type elements in MetaGME – discussed in the previous chapter). Ports are atomic 
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elements that are visible from the parent of the container, enabling connections to be added across 

the hierarchy levels. Inside the ParnasSystem, the modeling element called Computation contains 

a Grafcet model, while the other three components of the Four Variable Model can be realized 

using general-purpose elements, which contain hybrid bond graphs and the related signal-

manipulation elements. 

Signal and power flow 

Following up from the previous chapter, the bond graph language is augmented with signals. 

Therefore, it is important to distinguish signal paths from the power-exchange paths. However, in 

the Simulink® simulation model, as the signal-flow graph is generated, this separation will be 

lost. Signals are used to modulate the M-versions of the bond graph elements, to control 

junctions, or to carry any variable from one component to another. The modeling language 

employs different port-types for power-flow and signal-flow. Signal ports are directed, we have 

input and output signals. Ports connecting junctions are direction-independent, and are called 

PowerPorts. They are used to extend bond-connections between bond graph junctions placed into 

different containers in the hierarchy. A set of junctions can be connected to each PowerPort at 

and those ports can be connected with a bond on the upper levels – or they can be propagated 

further by using additional PowerPorts. A bond which is extended using one or more PowerPorts 

is called power-path, and will be mapped to multiple bonds: one between each junction-pair on 

different ends or branches of the path. PowerPorts are domain specific for the five physical 

domains: mechanical displacement, mechanical rotation, electrical, hydraulic and thermal. The 

reason for this is that domain conversions are intended to be modeled with a dedicated component 

employing the adequate two-port element to model the multiplicative factor of the domain 

conversion. 

There can be several invalid configurations for both signal ports and PowerPorts or power paths; 

the interpreter checks the configuration before generating the simulation model, and error 
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messages or warnings are passed back to the modeling environment to notify the modeler if 

invalid configurations are found. 

Signals can traverse through the hierarchy, including the Computation elements, and the Grafcet 

hierarchy inside them. When a Grafcet Step is active, the originating signal has a boolean true 

value, while the incoming boolean signals – if connected to a Transition – function as enabling 

signals. 

ControlNodes 

There are two types of elements in the BDM language to define real-valued and boolean-valued 

functions of signals. These are the Modulation and the Switching elements, respectively; they are 

both descendants of the abstract ControlNode element in the metamodel. 

ControlNodes may take inputs from arbitrary signals originating from a port, a Constant, 

junctions, and Sensing elements. Signals coming from junctions denote whether the junction is 

turned on or off. This is always true for non-switching junctions. Sensing elements are visually 

distinct modeling elements that denote the conversion from the effort or flow variables of 

junctions, or energy variables of storage elements to the corresponding signals (see Appendix A 

for details). Then a real-valued or boolean function can be defined in their attribute using standard 

Matlab syntax; then the parameter of modulated one- and two-ports can be replaced with the 

value of the connected Modulation element. Junctions are considered controlled, when a 

Switching element is connected to them. In the junctions‟ attributes, the modeler defines the on- 

and off conditions as logical functions of one or more Switching inputs. Another purpose of the 

Switching elements is to define enabling functions for Grafcet transitions outside the 

Computation element. 

The third element derived from the ControlNode is the Reset node, which implements the hybrid 

reset function. It is used to reset the energy variables of the connected Capacitors or Inertias. The 
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Reset element may have the same type of signal inputs as the Modulation or the Switching, and it 

defines a boolean and a real-valued function: the boolean function triggers the reset event while 

the real-valued function defines the new value of the energy variable. 

On Figure 13, the example shows a simple RLC circuit with a modulated resistor, and a source 

that can be turned off by controlling its adjacent 0-junction. The actual resistance of the resistor 

depends on the Modulation element, which defines a function on the effort value imposed on the 

0-junction. The conditions of turning on and off the same junction are defined in the Switching 

element, and are based on the flow value in the circuit, measured at the 1-junction. The charge 

stored in the capacitor is set to a new value anytime when the flux on the inductor exceeds a 

value, and the 0-junction is turned off. 

 

Figure 13. Example of the ControlNode elements 

Other features of the paradigm 

The BDM paradigm contains lots of additional functionality in addition to the standard hybrid 

bond graph language and the Grafcet notation. Some of these were discussed in the previous 

sections, and we refer to the rest here. A detailed list of the modeling elements is included in 

Appendix A. 
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The paradigm includes elements to perform mathematical functions on signals, such as delay, 

time integral, and time derivative. The ControlFunction elements allows the modeler to write 

arbitrary Matlab code in the block manipulating a set of input signals to produce a set of output 

signals. A previously built Simulink model can be referred in a modeling element, the 

connections can be made via ports and it will be copied into the final system. The Pack and 

UnPack block can be used to multiplex and de-multiplex signal groups, while there are monitor 

elements which translate to Simulink Scopes to observe signal values. 

The simulation model in Matlab® 

Overview 

The BDM Sketcher provides a metamodel for building cyber-physical system models. The 

SimulinkInterpreter is a model interpreter associated with the paradigm, and it is able to generate 

textual script-files to automatically assemble simulation models. These scripts rely on the BDM 

Matlab library. Models are defined in the domain language, and all the modeler has to do is to run 

the interpreter and the generated buildscript. The BDM Matlab library defines the mapping 

between the hybrid bond graph elements, and Simulink, and the Grafcet Signal-Action Graphs 

and SimEvents. To construct the models, both of these toolboxes are accessed via the Simulink 

API [28]. 

Simulink® is a complex cross-domain simulation platform within the Matlab environment, where 

the modeler can define signal-flow diagrams from blocks, implementing mathematical functions, 

and the framework allows performing various simulations and analyses. Simulink is an 

environment primarily for continuous time simulation; however, it integrates with a large set of 

other Matlab toolboxes, which can be used to model discrete behavior. For each hybrid bond 

graph element, a composite Simulink block is generated by the related buildfunction. It assembles 

the block, based on a set of parameters passed to it from the buildscript, from which it is invoked. 
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SimEvents® is a discrete event system modeling language included in the Matlab environment as 

a toolbox, and its models can be incorporated into Simulink models. SimEvents operates with 

tokens and provides several blocks to build queuing systems and perform time analyses. Among 

the Matlab toolboxes, the semantics of SimEvents is the closest to Grafcet models, because the 

notion of token is preserved. For example, the logic of distributing tokens to multiple token paths 

can be done dynamically, instead of allocating static states for each combination, which is the 

way to implement this in Stateflow. 

The Simulink model interpreter 

The Simulink model interpreter processes a single model or a set of models in GME, and 

generates two output files for each of them. These are the datastructure script, and the 

buildscript. The first task of the interpreter is to traverse the hierarchy of containers and unite the 

fragmented bond graph segments, which are connected via PowerPorts. The traversal is a simple 

Depth-First Search (DFS), because internal containers in the ParnasSystems are hierarchical. 

First, the interpreter converts the power paths to simple bonds, and then creates an internal object-

oriented representation of the bond nodes with a map in each node, identifying adjacent nodes. 

This flattened representation is then exported to the datastructure script in the format of Matlab 

variables. This intermediate representation contains all the properties of bond graph nodes which 

are necessary to perform the SCAP algorithm. To generate the simulation model, the user runs the 

buildscript, and the first task in the buildscript is invoking this datastructure script to feed the 

flattened bond graph into the Matlab workspace, to run the SCAP algorithm and create an initial 

causal assignment. After exporting the datastructure script, the interpreter generates the 

buildscript. First, a skeleton of the containers is constructed. Because power paths and signal 

paths are both mapped onto the same ordered set of Simulink ports for each container, port-

numbers are carefully assigned, and these ports are added. Computation elements are also 

processed in the first traversal cycle and SimEvents blocks are generated inside them. In a second 
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traversal cycle, the hybrid bond graph elements and other specific elements are added. 

Connections are collected into an intermediate set during both traversal cycles, and they are 

added only after every node is processed. One of the greatest challenges of developing the 

Simulink interpreter was to find the correct order of processing the different modeling elements, 

and to serialize the tasks of the buildscript to incrementally build the model, and avoid 

dependency conflicts in its execution. 

HBG-Simulink mapping 

The BDM Sketcher tool converts hybrid bond graphs to Simulink signal-flow graphs. During the 

conversion, atomic bond graph elements become composite Simulink subsystems. The 

parameters of these subsystems are taken from GME, and they are masked, so that they can be 

refined easily from the Matlab GUI. 

Having the causality assigned to each bond in the bond graph, it is straightforward to generate a 

static block diagram based on the mathematical functions implemented by bond graph elements. 

However, for hybrid bond graphs, we have to take into account the changing causality of bonds. 

This requires additional logic in certain components, and the causality information of bonds has 

to be maintained during the simulation. As the next section describes, we handle the changing 

causality by generalizing the structure of junctions, two-ports and resistors; the rest of the 

elements have fixed causality. The modified elements implement every required routing behavior, 

and use the appropriate one at any point in time, based on the current causality. 

The difference between regular and modulated elements in Simulink is that regular elements have 

a “Constant” Simulink block inside them, determining their parameter (or modulus), while 

modulated elements take those as an input, via a port. Modulated elements may cause algebraic 

loops when the modulation function depends on the output of the modulated block. This usually 

slows down the operation of Matlab solvers significantly. When the duration of the simulation is 
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critical, a unit delay can be used in modulated elements as an approximation to break up the 

algebraic loop. The initial value for the delay element can be chosen heuristically, and during the 

first few sampling hits, the simulation approximates the real value. Using an appropriately small 

maximum sampling step size eliminates the negative effects of the heuristic initialization of the 

delay. 

In this section, we present the Simulink versions of non-modulated bond graph elements with 

fixed causality. Fixed causality means that all the adjacent bonds of the element have the same 

causality direction across every possible discrete state. The next section explains the 

implementation of the switching logics. Table 4 presents the Simulink block structures. 

Every Simulink subsystem implements the block structure, presented earlier in Table 2 (Chapter 

2). The resistor with changing causality, junctions and two-port elements are discussed in the next 

section. We should note that in modulated storage elements, we had to ensure that the law of 

conservation of energy was not violated. This requires using a block structure, where modulating 

the capacitance and inductance only affects the output flow and effort values, respectively, and 

the amount of energy stored as displacement and momentum remains the same. 
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Table 4. Simulink structure of regular bond graph elements 

Name GME icon Simulink structure 

Sources  

 
  

Capacitor 
 

 

Inertia 
 

 

Resistor 
 

 
flow input 

 
effort input 

Transformer 
 

 

effort direction is the opposite 

of power flow direction 

 

effort direction is the same as 

the power flow direction 
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Gyrator 
 

 

effort is an output on both 

sides of the gyrator 

 
effort is an input on both 

sides of the gyrator 

Junctions 
 

 

 

 
Example 0-junction 

4 bonds: one in, three out; the determ. bond is an outbond 

Controlled 

junction  

Controlled junctions are extended with switches to impose zero 

output on all their bonds. They also store the current value of the 

guard conditions in global data-storage elements to facilitate the 

causality update. The structure is shown on Figure 14. 

Hybrid switching structures 

As discussed in the previous chapter, the signal-flow structure of the hybrid bond graph changes 

with every discrete mode transition if the causality direction of one or more bond changes. These 

scenarios are enumerated during the construction of the model, and the required switching 

mechanisms are added to the block-structure during the build process. As mentioned, the 

flattened bond-graph is loaded into the Matlab workspace, and then the SCAP algorithm is 

invoked to derive the initial configuration. This algorithm computes the causality assignment for 

every combination of the states of controlled junctions. As mentioned in the previous section, a 

hybrid bond graph element is called fixed if the causality of its adjacent bond(s) remains 
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unchanged in every possible discrete state. We should note that both controlled and regular 

junctions can have fixed or variable causality. The procedure assigns a determining bond to every 

junction, and it creates a list of the fixed junctions [25]. 

The discrete reconfigurations are handled by the CausalityUpdate procedure, which is 

implemented as a set of Matlab functions. This is invoked using a Level-2 Matlab S-function 

[29]. As discussed in Chapter 2, the causality of the source and storage elements are always fixed 

because of the integral causality assumption [16]; therefore, the change of bond directions affects 

the junctions, the resistor, and the two-port elements only. To maintain the current causality 

information across mode changes, data-storage blocks are allocated to store the identifier of the 

determining bond for each non-fixed junction during the simulation. Controlled junctions store 

their evaluated guard conditions in another set of data-storage blocks in every sampling step, and 

then the CausalityUpdate method is called to determine whether a discrete switch has occurred or 

not based on these guard conditions. When a switch occurs, the SCAP is invoked to update the 

data-storages with the current determining bond identifiers. Based on this information, the 

appropriate signal routing structure can be applied in the non-fixed elements. 

Port directions cannot change in Simulink, therefore, the effort-flow roles of ports change instead. 

Non-fixed junctions implement every causality scenario, and the active routing structure is 

selected with multiport switches, controlled by the data storage blocks, containing the identifier 

of the current determining bonds. The internal structure of a hybrid, non-fixed junction with three 

bonds is displayed on Figure 14 as an example. 



41 

 

Figure 14. Internal structure of a hybrid, non-fixed junction 

When controlled junctions turn off, they ignore inputs, and force zero output on all of their bonds. 

The section outlined on the bottom right of Figure 14 performs the evaluation of the guard 

conditions to store them for the CausalityUpdate method to access. Junctions have an extra output 

port, where the common value of the junction is routed out to facilitate the use of signals. The 

common value is the effort of the determining bond for 0-junctions and the flow of the 

determining bond for 1-junctions. Controlled junctions have one more additional port, where the 

output denotes their current on-off state. 

In resistors and the two-port elements, the causal assignment of adjacent bonds only determine 

whether the resistance parameter or the modulation factor is applied to the signal as division or 

output 

value

current 

state

determining bond

select routing

send current guards to CausalityUpdate

when off

signal from Switching
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multiplication. This is again decided based on the values read from these data-storage blocks with 

the current causality information. The structure on Figure 15 implements the varying causal 

interpretation and the corresponding behavior for a resistor. The same idea applies to the two-port 

elements, TFs and GYs. The “CalcCausality” block determines which operation should be 

applied based on the (1) identifier of the current determining bond for the adjacent junction, (2) 

identifier of the bond in the adjacent junction‟s bond-map on which the current element is 

connected and (3) the type of the adjacent junction. Then the appropriate operation is applied in 

the “CalcOutput” block. 

 

Figure 15. Simulink structure of a resistor with changing causality 

Grafcet-SimEvents mapping 

The “Computation” element of the BDM modeling language contains Grafcet diagrams to model 

the discrete modes of the Cyber-Physical System. When the simulation model is generated, 

Grafcet models are mapped onto SimEvents subsystems. The interface to the continuous part of 

the model includes signals, routed into the SimEvents system to enable Transitions; and signals 

routed out from the Computation to trigger mode switches. The interpreter flattens the 

hierarchical Grafcet model, and generates a new layout for the subsystem. Because Grafcet 

elements require less customization than bond graph elements, we employ a block-library of 

((u(1) == u(2)) && (u(3) == 1))

||

((u(1) != u(2)) && (u(3) == 0))

(u(1)*u(2)^u(3))
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prebuilt SimEvents blocks instead of buildscripts. Table 5 shows the SimEvents block diagrams 

generated from the GME Grafcet elements. 

Table 5. SimEvents subsystems for Grafcet entities 

Name GME icon Simulink structure 

AtomicStep 
 

 

Initial 

AtomicStep  

 

Transition  

 

AND 
(distribution) 

 

 

XOR 
(distribution) 

 

 

...

...
See above... 
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AND 
(join) 

 
This can 

implement an 

arbitrary join 

function 

 

 

A minimum execution time must be provided for each Grafcet Step in the model. This facilitates 

time-triggered execution of the Computation model when using transitions that are enabled by 

default. To implement this in SimEvents, the “Step” block contains a Server element that has an 

associated processing time. After the time is up, the token is emitted and stored in a temporary 

Queue (still inside the “Step” block), until the following Transition enables and the token 

proceeds. A step is considered active, if the internal Server OR the Queue contains a token. When 

transitions are enabled by default, tokens spend zero time in Queues. The “InitialStep” block 

includes additional elements to generate a single token initially. Transitions are implemented with 

an “Enabling Gate” block in SimEvents, which prohibit or enable tokens to pass through based on 

a boolean control signal. The modeling language implements two types of distribution junctions, 

the „AND‟ and the „XOR‟. The „AND‟ junction replicates the incoming token and distributes a 

new token on each outgoing path, while the „XOR‟ block uses an “Output switch” to determine 

the path on which the incoming tokens proceeds. Joining multiple token paths is done with the 

same modeling element as the „AND‟ distribution; the interpreter determines the required 

SimEvents block based on the number of input and output arcs. The “Join” subsystem contains a 

Queue element for each incoming path to store the tokens temporarily. The “LOGIC” block 

defines an arbitrary boolean function based on the number of tokens in each queue, and when this 

function evaluates to true, tokens are deleted and a new token is emitted via the output. 
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CHAPTER V 

CASE STUDY – THE REVERSE OSMOSIS SYSTEM 

In this chapter we present a case study to demonstrate the capabilities of the BDM Sketcher tool. 

The subject of the case study is a subsystem of the Advanced Life Support System (ALS), built 

by NASA, for long-duration manned missions [12]. A previous project has already been 

completed at the Institute of Software Integrated Systems, Vanderbilt University, to perform 

model-based diagnosis on the Water-Recovery subsystem of the ALS [30]. However, the 

previous project only implemented one mode of system operation. In this project, we build a 

more complete hybrid model with three modes of operation. 

The Water Recovery System 

The studied system is the Reverse Osmosis (RO) subsystem of the Water Recovery System part 

of the ALS. The purpose of the Water Recovery System is to recover potable water from 

wastewater. The RO subsystem operates on the effluent of the Biological Water Processing 

subsystem that has already removed the organic matter from the wastewater, and removes the 

inorganic impurities from the liquid. 

 

Figure 16. The NASA Water Recovery System 
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In the RO system, the water is circulated at high speed, and is pushed through a membrane. This 

process typically cleans about 85% of the water, which is then fed into the Post Processing 

system to apply Ultra-Violet treatment and produce potable water. The remaining 15% of the 

input cannot be cleaned efficiently within the RO system, because of the increased concentration 

of brine. This effluent is periodically purged into the Air Evaporation System, where it is 

continuously evaporated and condensed until the rest of the water is recovered. 

Operation of the Reverse Osmosis system 

The RO system is a Cyber-Physical System; it has three modes of operation, and the discrete 

mode transitions are triggered by a controller, based on values monitored in the system. Figure 17 

shows the schematic of the system. 

 

Figure 17. Schematic of the RO system 

The feed pump keeps pushing water extracted from the Biological Waste Processor (BWP) into 

the main RO loop. The recirculation pump boosts the liquid flow rate in the loop, thus facilitating 

pushing the water into the membrane module. Some of the water passes through the membrane, 

and on the other side, the filtered permeate leaves the system towards the Post Processing System. 
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The rest of the water flows back through the loop. The tubular reservoir helps balance 

fluctuations in the flow through the loop. Inorganic impurities collect on the membrane, and also 

increase the concentration of impurities in the circulating water. In Mode 2, a valve, which 

controls the direction of the liquid flow in the back-flow pipe is turned to position 2 (see the 

schematic on Figure 17), so that the liquid, flowing back from the membrane is routed straight 

back to the recirculation pump, skipping the reservoir. This smaller circulation loop increases the 

pressure and flow rate, causing more water to permeate through the membrane, and the brine 

concentration in the system to increase more rapidly. 

Because the throughput of the membrane degrades as the water gets dirtier, after some time, the 

concentration reaches a level where very little water can be pushed through the membrane. This 

causes a transition to the Purge Mode, where the recirculation pump is turned off, the routing 

valve is set to position 3 on the back-flow pipe, and the feed pump slowly pushes out the 

remainder of the liquid through the drain, into the Air Evaporation System. 

Bond graph model of the RO system 

The hybrid bond graph model of the RO system structure was built during the previous work on 

the Water Recovery System, described in [30]. A few changes and refinements were applied to 

the bond graph, and we used a different set of parameters that were measured more recently at 

NASA Johnson Space Center. The detailed list of the parameters is available in Appendix B. The 

model involves two physical domains: (1) the mechanical rotation, and (2) the hydraulic domain, 

and a fictive domain with no direct physical representation, the conductivity domain. The pumps 

are modeled as ideal effort sources in the mechanical rotational domain, while the pipe system is 

modeled in the hydraulic domain, and the flow routing is implemented using a set of controlled 

junctions. 
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The conductivity ( ) is the measure of the concentration of impurities in the water. Because the 

current conductivity value affects the resistance of the membrane, we include a bond graph 

fragment to compute the conductivity value in the system. This segment of the bond graph does 

not have a direct physical representation; we associate the conductivity value with the effort value 

of a capacitor element (this captures the accumulation of impurities in the water), and construct 

the bond graph such that it corresponds to the equations governing the conductivity. The 

complete bond graph, including the three domains is shown on Figure 18. 

 

Figure 18. Bond graph model of the RO system 

The two pumps are modeled in the mechanical rotation domain, as sources of effort (Sefp and 

Serp); they maintain a constant torque of the rotor. The rotational inertia of the rotor and the 

power dissipation associated with friction are modeled with inertias and resistors connected to the 
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sources with 1-junctions (Ifp, Irp, Rfp, Rrp). The source element of the recirculation pump can be 

disconnected with a controlled 1-junction, but the resistor and the inertia still remains attached to 

the pipe, because the water flow still has to push the rotor of the pump when it is turned off. A 

transformer and a gyrator connect the rotational domain to the hydraulic domain. Hydraulic bond 

graphs are constructed such, that a 0-junction is associated with every location that has different 

pressure level, and the connections are defined by 1-junctions [16]. The tubular reservoir is 

modeled as a capacitor (Cres), while the membrane module is modeled as a capacitor (Cmemb) and a 

modulated resistor (MRmemb). The resistor is detached in the Purge Mode, because no fluid passes 

the membrane during that. The pipe between the membrane module and the reservoir is modeled 

with two resistors (Rpipe, Rpipe_p); one is used in the first two modes, and the other, having different 

resistance is activated in the Purge Mode. The membrane resistor is modulated by a signal, which 

is defined as a function of the current value of conductivity, which is computed in the 

conductivity domain. The back-flow pipe is modeled with two resistors: one has a larger 

resistance (Rbrine) and is used in Mode 1 and Mode 2 when the water circulates, and another is 

used when the water is purged from the RO system (Rdrain). 

The conductivity domain includes three sources of flow; all of them are modulated with some 

function of signals coming from the hydraulic domain. These are the flow rates of the back-flow 

pipe and the input pipe of the membrane. The conductivity is measured as the effort value of a 

capacitor in the conductivity domain, and is transmitted back to the Pipe system as a signal to 

modulate the membrane resistor. The transition from the Purge Mode to Mode 1 is triggered 

when the membrane capacitor gets completely empty. This event also triggers the hybrid reset 

function associated with the capacitor on which the conductivity is measured: the displacement is 

reset to the conductivity of the incoming fluid. 

Figure 18 is does not include the causality information, since it represent the causality changes 

across the three modes. The causal bond graphs are included in Appendix C. In Figure 18, the 
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conditions of the junction-switches are denoted by boxes connected to the junctions via dashed 

arrows. These boxes include a logical condition referring to modes names, in which the junction 

is on, or off, if a bar is visible above the mode name. We should note that in the BDM modeling 

language, junctions are also controlled with signals, originating from the Computation subsystem. 

The structure of the Computation subsystem is shown in Figure 19. 

 

Figure 19. Grafcet model of the three modes of operation 

Simulation 

The RO system model was built in GME, using the BDM paradigm. The model interpreter 

generates the buildscript, and the simulation can be performed on the constructed model. We built 

two versions of the RO system: one is completely time triggered, and the other relies on 

monitoring signals. We present the monitored version here. The GME model is shown on Figure 

20. 

The Procedure component contains the Grafcet model, including the three Steps to model the 

three discrete behavior modes of the system. The Controller component generates the enabling 

signals for the Grafcet transitions, and the Grafcet subsystem produces the control signals for the 

switching junctions. The black connection paths are bonds, propagating between components via 

PowerPorts, while the blue lines are signal-connections. Each part of the bond graph, which 
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corresponds to a different domain, is built in a distinct Component. The PowerLink container 

represents the conversion between the mechanical rotation and hydraulic domain. 

 

Figure 20. GME model of the RO system 

During the simulation in Simulink, we monitored four physical variables, which are marked on 

the schematic, on Figure 17. These are (1) the pressure at the output of the recirculation pump, (2) 

the pressure of the back-flow pipe, (3) the flow rate of the filtered output of the membrane 

module, and (4) the conductivity of the water. In addition to these, the liquid level in the 

hydraulic capacitors (the tubular reservoir, and the membrane module), the mode-switch signals, 

and the computed membrane resistance were monitored. We started the simulation from the 

initial state: the pumps were turned off and the tanks were empty. Because of this, the first cycle 

is different from the rest, as the tubular reservoir had to fill up, and it does not get completely 

empty in the Purge Mode. We defined the mode switches based on the given parameters and 

simulated 4 full cycles, which resulted in a simulation length of 60000 seconds, more than 16 and 

a half hours. We present the simulation results below. 
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Figure 21. Mode switches, conductivity and hydraulic displacement values 

 

 

Figure 22. Pressures, output flow and membrane resistance values 
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Figure 21 shows the mode changes triggered by the Grafcet interpreter, the change of the 

conductivity, and the liquid level in the tubular reservoir and the membrane module. When the 

conductivity reaches 30% of the maximum allowed conductivity increment, Mode 2 activates, 

and the water keeps circulating faster until it reaches the maximum level, where the Purge Mode 

starts. In the Purge Mode, the recirculation pump turns off as visible on its output pressure, and 

the membrane empties almost instantaneously as the feed pump pushes cleaner water in the 

system. The tubular reservoir does not get empty during the purge, but the liquid level drops 

noticeably. Figure 22 shows the recirculation pump output pressure, the back-flow pressure, the 

permeate output flow rate, and the resistance of modulated membrane resistor. The permeate flow 

rate and the pressure in the back-flow loop keep increasing during the first two periods, and drop 

back in the purge mode. The pressure at the output of the recirculation pump converges to a 

steady state, but falls back in every purge mode, when the recirculation pump turns off, and only 

the feed pump continues to operate. The computed membrane resistance follows the change of 

the conductivity. 

The Reverse Osmosis System was built at the NASA Johnson Space Center as part of the Water 

Recovery System. Our simulation results matched the expected values, derived from the test data 

measured during experiments on real system [30].  



54 

CHAPTER VI 

DISCUSSION & CONCLUSIONS 

Summary 

Building preliminary behavior models for complex Cyber-Physical Systems is an essential step of 

developing vehicles, aircraft, and other large-scale systems, where computational devices are 

embedded in a physical environment. The bond graph formalism is an abstract energy-based 

mathematical description, which is perfect for modeling cross-domain physical systems. While 

bond graphs capture the system structure and the continuous-time behavior evolution of the 

physical system, hybrid bond graphs also provide a way to incorporate discrete mode changes in 

the model, applying the standard hybrid automaton model of computation. To perform hybrid 

simulation, we have to model the discrete phases, modes and states that the HBG models exhibit, 

and define a two-way interaction between the computation model and the physical structure of the 

system, to monitor state variables and control mode trajectories. 

In this thesis, we introduced a composite modeling language based on hybrid bond graphs, where 

we employ an extended version of the Grafcet formalism to model the computation elements and 

control the switching behavior of the bond graph. Grafcet is a token-based discrete events system 

with Transitions and Steps, alike to Petri-nets. The hybrid bond graph domain is augmented with 

signals, so that the modeler is able to define the interaction between the computation and the 

physical subsystems. Such composite models encapsulate the three layers of Function, Behavior 

and Structure, and allow for generating hybrid simulation models to verify system properties. 

The result of this work is a visual modeling environment, in which modelers are able to construct 

hybrid models by formally describing both the continuous and discrete state evolution. The 
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models preserve the hierarchy in the system, and capture the three levels of structure, behavior 

and function as well. Domain models are built using the visual interface of the Generic Modeling 

Environment, and the generation of hybrid simulation models is completely automated by the 

model-interpreter. The simulation models are built using the Simulink® and SimEvents® 

toolboxes of Matlab, and the Matlab environment allows for studying behavior and functional 

properties of the system. The modeling language incorporates several augmentations to aid the 

design process of Cyber-Physical Systems, and also provides a method to define functional 

constraints of the operation, using a calculi language based on the Hoare triples. 

Other tools 

There are plenty of tools and modeling languages on the market that allow for creating cross-

domain system models, and provide simulation methods for them. These modeling tools include 

Modelica [31], 20-sim [32], Ptolemy [33]. All of these tools have different purposes, but an 

abstract visual modeling environment that provides hybrid simulation does not exist yet. 

While the Modelica library allows for simulation of models built with Modelica, it only provides 

a textual language for defining the models. 20-sim incorporates the bond graph modeling 

language, but 20-sim models are not hybrid, they cannot capture discrete behavior evolution. 

Ptolemy implements the hybrid automaton model of computation, and defines a simulation 

method to simulate heterogeneous models; however, it is not suitable to describe complex 

systems, since the required number of states of the Ptolemy model is exponential in the number of 

controlled junctions in the corresponding hybrid bond graph.  

Future work  

The most important direction where this work should be continued is the constraint language, 

incorporated in the Grafcet formalism (see Appendix D). Currently, the ConstraintInterpreter is 

able to extract the logical constraints expressed using the SAG calculi, and present them in the 
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form of Hoare triples. A constraint checker module should be developed, to verify high-level 

safety properties in the system. 

Another direction in which the development could continue is model-based diagnosis. Hybrid 

bond graph nodes could be extended with fault insertion points, to simulate fault-tolerant systems, 

where the fault-detection and fault-isolation logic is modeled in the computation domain. 
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APPENDIX 

A. LIST OF MODELING ELEMENTS IN THE BDM FRAMEWORK 

Hybrid bond graph elements 

Zero junction, One junction 

These are the two types of bond graph junctions. ZeroJunctions 

are also called common effort-junctions while OneJunctions are 

called common-flow junctions. They can connect all the 

elements in the bond-graph. Junctions all have an OnCondition 

and an OffCondition attribute where their switching function 

can be defined – if they are meant to be controlled junctions. 

The conditions are defined with the standard Matlab syntax, and 

Switching inputs of the junction can be used as variables. The 

modeler can also specify the initial state of the junction. 

  

Sources (effort, flow) 

Power sources in the bond-graph. “Se” is a source of effort, 

while “Sf” represents the source of flow. 

The “Value” parameter must be filled out! 

  

Storage elements (capacitor, inductance) 

These elements represent the relationship between effort and 

displacement or flow and momentum in the bond graph 

respectively. They store the energy variables, which are the 

state-variables of the system. 

The “Value” parameter must be filled out! 

  

Resistor 

Dissipative element in the bond graph. 

The “Value” parameter must be filled out! 
 

2-ports (transformer, gyrator) 

These elements can connect two junctions, establishing 

relationship between effort and effort or effort and flow on the 

two sides respectively. 

The “Value” parameter must be filled out! 
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Modulated sources and one-ports 

Modulated version of the source of effort, source of flow, 

capacitor, inertia and resistor elements. This means that their 

parameter field is not taken into account, but they must have an 

input signal to determine their parameter value. This signal 

connection may come from an input signal or an autonomous 

Modulation function element. 

    

    

Modulated two-ports 

Modulated version of the transformer and gyrator. They have 

the same features as the modulated one-ports above, but these 

elements can also have an input signal-connection from the 

Actuation modeling element. In this case, that signal will 

modulate the input power of the modeled actuator by connecting 

a source element on one side of the 2-port and the realization of 

the actuation function on the other side. 

   

 

HBG-related elements 

PowerPorts 
(Displacement, Electrical, Hydraulic, Rotation, Thermal) 

These are domain-specific ports to establish bond-connections 

between junctions at different locations in the component-

hierarchy. They can be connected to junctions or to another 

PowerPort of the same type. Because they are ports, they are 

visible from their container‟s parent element. 

 

Autonomous switching function 

The purpose of this element is to define the switching condition 

for controlled junctions. The Switching element can be 

connected to junctions to control them or to Grafcet Transitions 

to directly define their enabling condition. The Switching 

accepts input connections from other junctions, local constant 

values, signals and sensing elements. In the “Expression” 

attribute a boolean function can be defined using the standard 

Matlab syntax; and its inputs can be referred to with their 

names. 
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Autonomous modulation function 

The Modulation element defines a function to control the actual 

value of Modulated bond-graph nodes. This element – like the 

Switching function above – can accept connections from other 

junctions, local constant values, signals and sensing elements. 

Its “Expression” attribute defines a real-value function, and the 

connected modulated one- and two-ports use that value instead 

of their parameters. 

 

Reset function 

The Reset function is a modeling element that implements the 

standard Reset function of the hybrid automaton on the energy 

variables of the connected storage whenever a discrete transition 

occurs. The reset is triggered by a boolean condition defined in 

the Reset block, (much like the Switching element), and the 

assigned value can also be defined as a function of any arbitrary 

input signal of the Reset block. 

 

 

Containers 

BDMsheet 

This is the root level container in the BDM paradigm. The 

RootFolder object can only contain these elements. These 

components will be mapped onto distinct Simulink models. 

no visual representation 

ParnasSystemSet 

The purpose of this element is to group ParnasSystems and 

connect them via signals. 

 

ParnasSystem 

Parnas system is the most important component of the BDM 

language: it models subsystems with autonomous computation, 

actuation, mechanics and sensing elements, implementing the 

Four Variable Model. 
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Component 

This is a universal container, which is able to contain bond 

graphs and signal-related elements as well. A Component is 

recursively hierarchical so it can also contain other Components. 

It handles PowerPorts (for bonds) and SignalPorts as well. 
 

InfoLink 

This is a ParnasSystem-level element; it models the Signal-flow 

between other container types. It contains SignalPorts and signal 

paths only. 
 

PowerLink 

This is a ParnasSystem-level element as well. The PowerLink 

contains physical models (hybrid bond graphs) only, so the 

interface consists of the five types of PowerPorts. 
 

Computation 

This is the Grafcet container of the BDM Sketcher. This can be 

placed in any ParnasSystem, and its interface can be defined 

with SignalPorts. A hierarchical Grafcet model can be built 

inside. 
 

Controller 

This is the signal processing element of the framework. It can be 

used on the ParnasSystem-level or in Components. The 

Controller is also recursively hierarchic. Mathematical 

operators, ControlFunctions and these types are the children 

elements, and the interface is realized with SignalPorts. 

 

 

Grafcet elements 

Step and InitialStep 

These are the most basic elements of the Grafcet notation; they 

represent states (steps, phases) of the logical system. The 

component framed with double line is the initial step in each 

container. 
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MacroStep and InitialMacroStep 

Macro-steps have the same purpose as their atomic version, but 

are modeled with “Model” elements in GME, so they can 

contain children elements. They realize the hierarchic nature of 

the Grafcet model. 

 

 

Transition 

The transition guards the token exchange along the arcs between 

steps. The actual firing can be triggered by input-signals; or they 

can generate output-signals when a token passes through a 

transition. They can be placed directly between two steps, or 

they can have Junctions (see below) both on their input and 

output side to establish relationship between multiple paths. The 

well-formedness rule in Grafcet is that between every two step, 

there has to be at least one Transition element. 

 

ExitMacro 

This element is used to denote when a token path ends in a 

MacroStep (or InitialMacroStep). Here, the token goes one level 

up. 

 

Junctions 

Junctions are defining logical relationship between their input or 

output arcs, coming either directly from a Step or from a 

Transition. In the model we have only implemented the XOR 

and “AND” junctions – according to the presentation. 

Introducing additional junction-types and the exact definition of 

these two are topic of further discussion. 

     

 

   

 

Signal-related elements 

Pack and Unpack element 

These two elements are created to group and ungroup signals. 

They are containers, so SignalPorts can be created inside them 

(input-signalports in the Pack and output-signalports in the 

UnPack), and then they can be connected through a signalport 

(ISignal, OSignal or LocalSignal). They map to multiplexers 

and demultiplexers in Simulink.  
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Constant element 

This is element defines a value, and can be connected to 

Switching or Modulation elements (or even SignalPorts). This 

way, constants can be reused in multiple functions without 

duplicating the data in several places. 

 

Mathematical operations 

(delay, differentiate, integrate) 

These elements represent mathematical operations that can be 

performed on signals. They can be used in Controllers and on 

the ParnasSystem-level. 

   

Signal ports (ISignal, OSignal, LocalSignal) 

(input-port, output-port, localport) 

Input and output signalports are defining the interface of 

containers. These ports are visible from the parent element of 

the container (just as PowerPorts), and they accept input 

connections from-, and route output connections to one level 

higher than their origin. 

The LocalSignal is an abstract element, to connect elements, 

which are not connectable directly. For example we can use the 

LocalSignal to connect the Pack to an UnPack, to connect 

Sensing elements to ControlFunctions and so on. 

   

Sensing elements (De, Df, Dq, Dp) 

Sensing elements are abstract modeling elements that allow us 

to detect the gateway between the power and signal domain. We 

use this element to connect junctions and storages onto the 

signal flow with their actual  ,  ,   or   value. We can connect 

the De (detect effort) Sensing element to ZeroJunctions and the 

Df (detect flow) element to OneJunctions while Dq can be 

connected to Capacitors and the Dp can be connected to Inertias. 

    

Actuation 

This is the opposite of the Sensing elements; the Actuation 

element models the Signal-to-Power domain transformation. We 

can only connect this to Modulated Two-Port bond graph 

elements (MTF and MGY), and it represents a power-input to 

the system 
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Other elements 

Simulink system 

Using this element, a Simulink model can be integrated 

into the BDM model, by specifying the .mdl file. The 

file should be in the same folder as the GME project-

file, and the same number of input- and output ports 

should be added in GME as it is in the .mdl file. 

 

Parameter 

The Parameter element is a block-level parameter with 

its name and value attribute in Simulink. It can be used 

to specify block parameters for bond graph elements. 

 

ControlFunction 

The ControlFunction element is mapped onto an 

Embedded Matlab Function in Simulink. Its source can 

be specified in the “Code” attribute. The standard 

Matlab syntax can be used. The syntax for the function 

header is the following: 

function [OSignalName1, OSignalName2] = 

arbitraryName(ISignal1, ISignal2) 

 

Monitor effort and flow 

These elements can only be connected to the 

appropriate junctions (e to ZJ, f to OJ), and they will 

mapped to Simulink Scopes to monitor the actual value 

on the junction. 
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B. PARAMETERS OF THE RO SYSTEM 

Parameters of the physical system 

Parameter Name Value Unit 

Feed pump – Rotational mass Ifp                

Feed pump – Energy dissipation Rfp                 

Feed pump – Rotor torque Sefp          

Recirculation pump – Rotational mass Irp 9600       

Recirculation pump – Energy dissipation Rrp         

Recirculation pump – Rotor torque Serp              

Capacitance of the tubular reservoir Cres               

Hydraulic resistance to memb. (M1, M2) Rpipe                  

Hydraulic resistance to memb. (Purge) Rpipe_p                  

Capacitance of the membrane module Cmemb                

Hydraulic resistance of the back-flow pipe Rbrine                  

Hydraulic resistance of the drain pipe Rdrain                 

 

Modulation functions and parameters of the conductivity domain  

Brine flow source (F1)                       

M1 flow source (F2)            ((               )     )         

M2 flow source (F3)            ((                    )     )         

Memb. resistance (F4)       (((       )             )             ) 

Brine capacitor Cbrine             

Conductivity capacitor CK                   

Resistance to purge the brine capacitor Rpurge       
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C. CAUSAL BOND GRAPH OF THE RO SYSTEM 

IN THE THREE MODES 

Mode 1 and Mode 2 
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D. DOOR SYSTEM SAG CALCULI EXAMPLE 

 

 

DOOR_UNLK <-- T; DOOR_CLS <-- T; 

MNT <-- [T,F]; OPS <-- [T,T] 

 

POSTCONDITION: 

DOOR_CLSD == T & ACT_LCKD == T 

PRECONDITION: 

MNT_STS=F & oph = 0.0 

 

PBIT; ¬RBIT; ¬IBIT; CBIT; 

DOOR_CLSD; DOOR_ UPLKD; ACT_LCKD 

DOOR_UNLK <-- T; 

DOOR_OPN <-- T 

 

POSTCONDITION: 

DOOR_OPND == T & ACT_LCKD == T & 

GND2FLT = [T,F] 

PRECONDITION: 

GND2FLT = [T,T] & FLT == F & 

0.0 < oph < 2.1 & GND == T 

 

DOOR_OPND; DOOR_ DNLKD; ACT_LCKD 

GND <-- F; FLT <-- T; 

DOOR_UNLK <-- T; DOOR_CLS <-- T 

 

POSTCONDITION: 

FLT == T & DOOR_CLSD == T & 

ACT_LCKD == T & FLT2 GND = [T,F] 

PRECONDITION: 

FLT2GND == [T,T] & 

FLT == F & oph > 2.3 & GND == T 

 

DOOR_OPND; DOOR_ DNLKD; ACT_LCKD 

DOOR_UNLK <-- T; DOOR_OPN <-- T; 

MNT <-- [T,T]; OPS <-- [T,F] 

 

POSTCONDITION: 

DOOR_OPND == T & ACT_LCKD == T 

PRECONDITION: 

oph == 0.0 & GND == T 

 

DOOR_OPND; DOOR_DNLKD; ACT_LCKD 

 

 



67 

REFERENCES 

[1] Edward A. Lee, "Cyber Physical Systems: Design Challenges," in 11th IEEE Symposium on 

Object Oriented Real-Time Distributed Computing (ISORC), 2008, pp. 363-369. 

[2] Akos Ledeczi et al., "The Generic Modeling Environment," Workshop on Intelligent Signal 

Processing, May 2001. 

[3] Matlab®. [Online]. http://www.mathworks.com/products/matlab/ 

[4] Janos Sztipanovits et al., "Multigraph: An Architecture for Model-Integrated Computing," 

Proceedings of the IEEE, pp. 361-368, November 1995. 

[5] Y. Umeda, H. Takeda, T. Tomiyama, and H. Yoshikawa, "Function, Behavior and 

Structure," 1990. 

[6] David Renè, "Grafcet: A Powerful Tool for Specification of Logic Controllers," IEEE 

Transactions on control systems technology, vol. 3, no. 3, pp. 253-268, September 1995. 

[7] Simulink®. [Online]. http://www.mathworks.com/products/simulink/ 

[8] SimEvents®. [Online]. http://www.mathworks.com/products/simevents/ 

[9] C. A. R. Hoare, "An axiomatic basis for computer programming," CACM, pp. 576-580, 

1969. 

[10] Arpad Bakay and Endre Magyari, "The UDM framework," 2004. 

[11] Jan Top and Hans Akkermans, "Computational and Physical Causality," Proceedings of the 

IJCAI, pp. 1171-1176, 1991. 

[12] D. Kortenkamp and S. Bell, "BioSim: An Integrated simulation of an advanced life support 

system for intelligent control research," in Proc. of the 7th Symp. on Artificial Intelligence, 

Robotics and Automation in Space, 2003. 

[13] K. D. Pickering et al., "Early results of an integrated water recovery system test," in Proc 

29th Int Conf Environmental Sys, 2001. 

[14] Rajeev Alur et al., "The algorithmic analysis of hybrid systems," Theoretical Computer 

Science, vol. 138, pp. 3-34, 1995. 

[15] Gautam Biswas and Sriram Narasimhan, "An approach to model-based diagnosis of hybrid 

systems," Hybrid Systems: Computation and Control, 2002. 

[16] Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg, System Dynamics: 

Modeling and Simulation of Mechatronic Systems.: John Wiley & Sons, Inc., 2005. 

[17] Jan C. Willems, "The Behavioral Approach to Open and Interconnected Systems," IEEE 

Control Systems Magazine, pp. 46-99, December 2007. 

[18] P. J. Mosterman and Gautam Biswas, "A theory of discontinuities in physical system 

models," J Franklin Institute, vol. 335B, pp. 401-439, 1998. 

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simevents/


68 

[19] Panos J. Antsaklis and Xenofon D. Koutsoukos, "Hybrid Systems: Review and Recent 

Progress," Software-Enabled Control, pp. 272-298, 2003. 

[20] Raul G. Longoria, Modeling of Physical Systems: Lecture summaries, 2006, 

http://www.me.utexas.edu/~longoria/. 

[21] Marcelin Fortes da Cruz and Sanjiv Sharma, Grafcet and SAG calculi, Proprietory 

documents of Airbus UK Ltd. 

[22] Janos Sztipanovits and Gabor Karsai, "Model-Integrated Computing," IEEE Computer, vol. 

30, pp. 110-112, April 1997. 

[23] Object Management Group. Unified Modeling Language (UML) ®. [Online]. 

http://www.uml.org/ 

[24] Object Management Group. Object Constraint Language (OCL) ®. [Online]. 

http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL 

[25] Indranil Roychoudhury, Matthew J. Daigle, Gautam Biswas, and Xenofon Koutsoukos, 

"Efficient Simulation of hybrid systems: A hybrid bond graph approach," Simulation: 

Transactions of the Society for Modeling and Simulation International, pp. 467-498, 2010. 

[26] D. L. Parnas and J. Madey, "Functional documentation of computer systems," Science of 

Computer Programming, pp. 41-61, October 1995. 

[27] Constance Heitmeyer, R. D. Jeffords, and B. G. Labaw, "Automated Consistency Checking 

of Requirements Specifications," ACM Transactions on Software Engineering Methodology, 

vol. 5, no. 3, pp. 231-261, July 1996. 

[28] Simulink® API. [Online]. 

http://www.mathworks.com/help/toolbox/simulink/slref/bq3cxmi.html 

[29] Level-2 S-functions in Matlab®. [Online]. 

http://www.mathworks.com/help/toolbox/simulink/slref/level2matlabsfunction.html 

[30] Gautam Biswas, Eric-J. Manders, John Ramirez, Nagabhusan Mahadevan, and Sherif 

Abdelwahed, "Online Model-based Diagnosis to support autonomous operation of an 

Advanced Life Support System," Habitat.: Int. J. Human Support Res., pp. 21-38, 2004. 

[31] Modelica®. [Online]. https://www.modelica.org/ 

[32] 20-sim®. [Online]. http://www.20sim.com 

[33] UC Berkeley EECS Department. Ptolemy Project. [Online]. 

http://ptolemy.eecs.berkeley.edu/ 

[34] Carl-Johan Sjöstedt, Doctoral Thesis: Modeling and Simulation of Physical Systems in a 

Mechatronical Context, 2009. 

 

http://www.uml.org/
http://www.omg.org/technology/documents/modeling_spec_catalog.htm#OCL
http://www.mathworks.com/help/toolbox/simulink/slref/bq3cxmi.html
http://www.mathworks.com/help/toolbox/simulink/slref/level2matlabsfunction.html
https://www.modelica.org/
http://www.20sim.com/
http://ptolemy.eecs.berkeley.edu/

