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CHAPTER I

INTRODUCTION

Animation is a sequence of images that people perceive as a continuous movement. These

images could be hand-drawn or computer generated. Computer animation starts with mod-

els of objects then generates from the models sequences of images. Computer animation

is widely used in video games and special effects in films. It also has many applications

outside of entertainment such as learning and training in virtual environment, education,

and information visualization.

Computer animation in three dimensions involves constructing a virtual world where

characters may move and interact. Human characters in such a virtual world are described

as virtual humans and their movement and interaction as behaviors. Designing a rich reper-

toire of appealing behaviors for virtual humans is an important problem for virtual envi-

ronments and video games. It is a challenging task because of the complexity and variety

of human motion and the extensive experience of humans’ observance of movements.

I.1 Goal

One approach to designing a repertoire of human motion is to collect segments of motion

generated by motion capture, a technique for recording motion from a human performer,

and pre-process it to form a structure that can be traversed in various orders to re-sequence

the data in new ways. In such an approach creating visually pleasing transitions between

motion streams is critical. Such transitions are the topic of the research described in the

thesis. One goal of this research is to develop methods for determining optimal transition

points. Secondly, we want to develop ways to produce visually compelling transitions

without manual intervention.

How can we assess the quality of the motion transitions generated? We could develop

a measurement formula and compare the output signal, but “visual appeal” is based on
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subtleties that are difficult to characterize; we could use machine learning to “learn what

represents good motion”, but it is often difficult to interpret the learned function; we could

cross validate the data to assess the generalizability of the method, but it does not tell us

about the visual quality; or we could empirically evaluate the result.

Empirically evaluating the plausibility of motions by conducting user studies is an ef-

fective way for determining the quality of the motions. The results of user studies can be

used to measure some quantity of perceptual difference or be used to compare different

methods for generating motions. Another goal of this research is to evaluate methods for

synthesizing motions. We want to use empirical evaluation as a method to compare our

methods for detecting transition points and creating transitions with other methods, and to

measure the sensitivity of users to changes in motion transitions.

I.2 Research Contribution

Much animation research deals with the development of methods to specify, create, and

evaluate visually pleasing motion. New motion can also be generated by concatenating

existing motion clips in a motion library instead of capturing them. The proper selection

of transition points, points at which the motion will change from one segment of captured

motion to another segment, is important in such an approach. Because these transition

points represent discontinuities in the motion stream, selection of good transition points can

be crucial to the quality of the resulting motion. A cost function is used to calculate the cost

of transitioning from one frame to another. The cost function is a function that takes two

poses of a figure, or equivalently in our terminology, two frames of motion, and evaluates

quantitatively how similar they are. That is, it is a metric in the configuration space of the

figure. Several researchers [Lee et al. 2002; Kovar et al. 2002a; Arikan and Forsyth 2002]

have proposed different cost functions and they are all parameterized through user-selected

weights. In this work, we compute a set of optimal weights for the cost function proposed

by Lee et al. [2002] using a constrained least-squares technique (Chapter IV). The weights
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are then evaluated in two ways: first, through a cross-validation study and second, through a

medium-scale user study. The cross-validation shows that the optimized weights are robust

and work for a wide variety of behaviors. The user study demonstrates that the optimized

weights select more appealing transition points than the weights originally used by Lee et

al. [2002].

Blending is a basic way to create transitions between motions. It is one way to produce

visually compelling and optimal transitions without manual intervention. However, gener-

ating high quality transitions using blending is still difficult and involves significant manual

labor. An animator often needs to go back and forth to modify parameters for blending to

obtain a pleasing transition. Some automatic systems simply pre-specify a fixed blend

length for all motions. The blend length or duration of the transition is a critical component

in the visual fidelity of a spliced animation stream. We develop two methods for deter-

mining an optimal blend length for motion transitions, the geodesic distance method and

the velocity method (Chapter V). These methods are suited to different types of motion.

The geodesic distance method works well for locomotions that are cyclic in nature, i.e.,

motions that are repetitive or predictable such as walking. The velocity method works well

for activities which are not often predictable such as boxing and free-style dancing. In

these motions a user does not have an a priori expectation of what the next pose will be.

We call these motion “physical activities” as a way of categorizing them separately from

cyclic motions, although obviously walking is a physical action. Although, not optimal,

we decided this nomenclature was superior to terms such as “acyclic”, which carry conno-

tation we wish to avoid. These categories are necessarily loose. It is not the focus of this

dissertation to try to categorize motions. Rather, we are trying to label broad sets of motion

data that work well with these methods in a reasonable way. These methods are empirically

evaluated through user studies. We find (1) that visually pleasing transitions can be gener-

ated using our optimal blend lengths without further tuning of the blending parameters; (2)

by conducting user studies users prefer the transition methods we developed over a generic
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fixed-length blend. (3) that users prefer the geodesic distance method for locomotions and

the velocity method for physical activities. To our knowledge, the present work is the first

that is explicitly concerned with determining the optimal blend length of a transition.

We also ran a set of experiments to determine the sensitivity of subjects to changes

in blend length of motion transitions, i.e., to estimate the psychometric function of the

just noticeable difference (Chapter VI). The “just noticeable difference” is the amount by

which something must be changed for the difference to be noticeable. We conducted the

just noticeable difference study on two transition specifications, what we call the “start-

end specification” and the “center-aligned specification”. We found that people are very

sensitive to changes in blend length of motion transitions on both transition specifications.

More specifically, the studies show that people can differentiate between transition lengths

that differ by -7 (i.e., shorter by 7 frames from a reference duration) or 10 frames (i.e.,

longer by 10 frames from a reference duration) for center-aligned transitions, and by 2 or

-3 frames for start-end transitions.

The methods and experimental evaluation described later in this work give guidance to

designers of animation systems who wish to incorporate automatic methods of determining

transition points and varying blend lengths into their systems, such as video games. This

work also opens a door for a number of other interesting psychophysical experiments that

could be conducted on assessing motion transition methods. For example, one could con-

duct experiments using different transition methods to categorize motions, and determine

how much, if any, overlap there is. One could determine classes of motions and transitions

for which people are sensitive or insensitive to a transition method.

I.3 Overview

This chapter addressed the goal and contribution for this thesis. The remainder of this thesis

is organized as follows. Chapter II provides some needed background and notation of this

work. Chapter III presents recent research in motion editing, motion transition creation, and

4



empirical evaluations. Chapter IV presents the weight optimization of a cost function for

picking transition points. Chapter V presents the methods developed for creating motion

transitions. Chapter VI presents the just noticeable difference study for motion transitions.

Chapter VII concludes this thesis and presents the future work.
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CHAPTER II

BACKGROUND

Traditionally, an animation was in the form of hand-drawn, 2D images. In modern 3D

animation, 3D models for the character and environments are generated and animated,

and then a sequence of images are rendered from the 3D models. A simple 3D anima-

tion might be just moving the camera or the relative motion of rigid bodies in the scene,

while many sophisticated animation techniques have been developed to generate realistic

animated scenes.

Many of the principles of traditional animation can be applied to 3D computer ani-

mation [Lasseter 1998]. These principles, such as squash and stretch and timing, were

developed in the 1930’s at the Walt Disney studios. They were developed to make anima-

tion, especially character animation, more realistic and entertaining. This chapter gives an

overview of the background of character animation and notation of mathematics involved

in this thesis.

II.1 Character Animation

II.1.1 Hierarchical Model

A major part of animation is motion control. One common way to produce the motion

of an animated character is to use an articulated model such as the one shown in Figure

II.1. The animation of a character is described by the movement of multiple, hierarchical,

articulated joints. The articulated joints are connected by rigid lengths in a hierarchy for

a character. The hierarchy is then combined with a 3D geometric model of the human or

creature to produce animation. The 3D geometric model is normally a polygonal mesh.

The animation specifies the trajectories or orientations of the joints in the skeleton. The

transformation of a parent joint propagates down to all of its sub-joints. For example, a

rotation of a hip joint rotates the entire leg, just as in human movement. The number of
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Figure II.1: An articulated human model, both the structure of joint hierarchy and the
geometric model are shown.

degrees of freedom (DOF) of a joint is the number of parameters of the joint which may be

independently varied. For example, moving a simple rigid object such as a sphere requires

six degrees of freedom. Some of the human joints have three DOFs but most have one or

two. For example, the shoulder joint is usually modeled with three DOFs, but the elbow

joint is usually modeled with only two DOFs. The root of the skeleton normally has three

translational DOFs and three rotational DOFs.

II.2 Motion Generation

There are roughly three categories for producing 3D character animation: keyframing, pro-

cedural methods, and motion capture. In keyframing, the animator specifies key values for

the animated DOFs and the computer interpolates between these values. Procedural meth-

ods specify motions algorithmically. Motion capture is the process of recording motions

of a performer and mapping them to a virtual character. These three techniques will be
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discussed in this section.

II.2.1 Keyframing

Keyframing is the oldest type of animation technique. It is still the dominant type of ani-

mation used in film. Keyframing requires the animator to outline a motion by specifying

key positions for the object being animated. Keyframing was originally used in a tradi-

tional 2D animation such as Tom and Jerry, where all the frames of the animation had to

be drawn by hand. The drawing or painting is usually done by more than one person. The

lead animators will draw the important frames, or the keyframes. Associate and assistant

animators are responsible for drawing the intermediate frames, or the in-betweens.

With computer animation, the term keyframe has been generalized to apply to any vari-

able whose value is specified at important frames. The computer calculates the in-betweens

by interpolating. Computer software has been developed for generating keyframing anima-

tion. The software provides graphical interfaces for animators to model, animate, and ren-

der the animation. Keyframing gives the animator a fine level of control of the animation.

However, it requires intense manual labor to generate a finished product and is thus very

time consuming. For example, the animated film Shrek took almost three years to produce.

II.2.2 Procedural Methods

Procedure methods generate motions by following steps in an algorithm. The algorithm

can be based on laws of physics, or an approximation of those laws. In particular, dynamic

simulation is a type of procedural method. Dynamic simulation uses physical properties

associated with the graphical character to generate physically accurate motion. Dynamic

simulations are well suited to generate simulations of fluids and phenomena such as water

and fire because the motions are dominated by physical laws. However, achieving real-

istic and appealing character animations using dynamic simulation is extremely difficult

because it is hard to find the underlying control strategy for character motion. Moreover,

the simulated motion is often lacking in detail, which conveys the mood and individuality
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Figure II.2: Runner in a park: All the objects in this image were animated using dynamic
simulation. Image courtesy of the Graphics, Visualization and Usability Center, Georgia
Institute of Technology.

of the character. Figure II.2 shows an example of dynamic simulation; all the objects were

animated using dynamic simulation, the running, the child on the swing, and the clothing.

The advantage of procedural methods is the convenience of high level control. After

a control system is built, the user can create animation by giving high-level commands

such as walk, run, or jump. Moreover, dynamic simulated clothing, hair, and muscle and

their interaction with the surfaces of the figure has shown to contribute significantly to the

appearance of an animation as we can see in the animated film The Incredibles.

II.2.3 Motion Capture

Motion capture is the evolution of a technique known since the 1930’s called rotoscoping,

a method used in 2D traditional animation, which traces motions from moving video into

an animation. Motion capture has grown to be very popular for generating realistic motion

9



and has become a viable option for computer animation production. The nice thing about

motion capture is that it allows you to do scenes that would normally be expensive or

impossible. We believe that, as the technology develops, motion capture will become one

of the basic tools of animators.

In motion capture, sensors attached to various parts of the performer’s body communi-

cate with a recording device. The sensors report position and rotational information. The

motion capture process maps the data from each sensor on the performer to that sensor’s

corresponding node in the virtual skeleton. An articulated, hierarchical rigid-body model

is then constructed by analyzing the captured input data. There are two popular types of

systems for motion capture, optical and magnetic. Magnetic motion capture systems uti-

lize sensors (receivers) attached to the joints of the performer’s body to measure the spatial

relationship to the transmitter source. The advantage of the magnetic approach is the lack

of occlusion problems normally associated with optical systems. One of the limitations of

magnetic system is that the tracker’s sensitivity to metal can result in irregular output. Fig-

ure II.3 shows a performer in a typical configuration of magnetic motion capture sensors.

Optical motion capture systems utilize video cameras to record the positions of reflective

markers that are attached to joints of the performer’s body. The marker images are matched

from the various camera views (three video cameras at least) to compute their 3D positions.

Figure II.4 shows an optical motion capture apparatus. Compared to magnetic system, op-

tical system has much larger range and the data obtained from optical system has greater

accuracy. However, optical system is normally more expensive. Also, as mentioned earlier,

optical systems suffers from occlusion problems where one or more markers were hidden

by actions of the performer.

Motion capture provides an easy way of generating many human motions. The process

automatically captures the subtle details of human motion that convey the personality and

the mood of a character. For this reason, motion capture is very popular in video games

and special effects in films. However, problems exist when using motion capture to record
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Figure II.3: A performer in a typical configuration of magnetic motion capture sensors.
Image courtesy Bobby Bodenheimer.
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Figure II.4: An optical motion capture apparatus. Image courtesy of Vicon Motion Sys-
tems.

Figure II.5: Forward kinematics solves the position of the end effector X , given the angles
θ1 and θ2 of each of the joints. Inverse kinematics solves the angles θ1 and θ2 for given
desired position of the end effector X .
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motion. Motion capture data is often noisy and contains gross errors that were introduced in

the capture process. Another limitation of motion capture data is that it requires a recording

session. Once the motion is finished recording, it is the motion we have. It is hard to modify

and re-use in new contexts, and small changes to the data might destroy the realism of the

motion.

Additionally, motion capture allows one to construct a large library of raw motion, but

processing that motion into a finished product such as a video game is still a labor intensive

process. Minimizing the amount of manual intervention in processing motion capture data

has been the focus of much recent research. Extending the use of these motion libraries is

the motivation for much of the work described in this thesis.

Inverse Kinematics

Inverse kinematics is often used in motion capture system to support editing the data. For-

ward and inverse kinematics are terms to describe mapping from the space of inputs to the

space of outputs of mechanical systems. Forward kinematics solves the position of the end

effector X , as shown in Figure II.5, given the angles θ1 and θ2 of each of the joints. On

the other hand, inverse kinematics solves the angles at all of the joints for given desired

position of the end effector. Inverse kinematics is important for 3D character animation. It

allows the animator to treat a 3D character’s limbs as a kinematics chain. For instance, the

animator can manipulate the arm by moving the hand (the end effector). In motion capture

process, raw motion capture data are usually made up of points representing sensors mov-

ing frame-by-frame in 3D space. Inverse kinematics will be often used to produce desired

joint angle trajectories given raw motion capture data. It solves for the angles of the body

joints and compensates for the fact that the sensors are often offset from the actual joint’s

center.
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Figure II.6: A joint with local coordinate system. G: global coordinate system. L: local
coordinate system.

II.3 Representation of Motion and Interpolation

As mentioned in Section II.1.1, one common way to represent the motion of a character is to

use an articulated model. The motion of a skeletal model is specified by a global translation

and orientation, and local orientations of the joints. Figure II.6 shows a joint with local

coordinate systems. There are several ways to describe rotations in three dimensions. Euler

Angles and quaternions are the most common ways and are discussed in the following

sections.

II.3.1 Euler Angles

Euler Angles are used to represent rotations in many fields. According to Euler’s rotation

theorem [Murray et al. 1994], any rotation may be described using three angles at most.

Euler angles represent rotation in 3D Euclidean space as a product of three successive 2D

coordinate rotations φ , θ , ψ about the x-axis, the y-axis and the z-axis. Many different

orderings of these axes of rotation can be used to represent a 3D orientation. Elementary
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rotation matrices around x, y and z axis are given by

Rx (φ) =




1 0 0

0 cosφ sinφ

0 −sinφ cosφ




(II.1)

Ry (θ) =




cosθ 0 −sinθ

0 1 0

sinθ 0 cosθ




(II.2)

Rz (ψ) =




cosψ sinψ 0

−sinψ cosψ 0

0 0 1




(II.3)

As a representation of rotations, Euler angles have drawbacks. One drawback is that a

single rotation can be represented by several different sets of Euler angles. We may also

encounter so-called “gimbal lock”, the loss of one degree of rotational freedom. Moreover,

Euler angles are difficult to interpolate smoothly, or in a coordinate-independent way.

II.3.2 Quaternion Calculus and Exponential Map

Quaternions can also be used to represent rotation [Shoemake 1985]. The quaternion was

invented by William Hamilton, an Irish mathematician, as an extension of complex num-

bers. A quaternion is composed of four elements. It is now often interpreted as (s, v) where

s is a real number and v is 3D vector. Quaternion addition is defined by

q1 +q2 = (s1 + s2,v1 +v2) (II.4)
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Quaternion multiplication is not commutative but is associative. Quaternion multiplication

is defined as

q1 ·q2 = (s1,v1) · (s2,v2) = (s1s2−v1 ·v2,s1v2 + s2v1 +v1×v2) (II.5)

The quaternion (1,(0,0,0)) is the multiplicative identity; that is, (s,v) ·(1,(0,0,0)) = (s,v).

The inverse of a quaternion is denoted by q−1, which is defined as

q−1 = (s,−v)/‖q‖ (II.6)

where ‖q‖ is the norm of the quaternion and given by ‖q‖=
√

s2 +‖v‖2. A unit quaternion

is a quaternion q for which ‖q‖= 1. A unit quaternion can be represented as

q = cosθ + ûsinθ (II.7)

where û is a 3D vector having length 1. A unit quaternion represents the rotation of the 3D

vector x by an angle 2θ about the axis û. When plotted in 4D space, these unit quaternions

lie on a sphere of radius one. Rotation of a vector x, represented as (0, (x)) by quaternion

q is given by

x
′
= q ·x ·q−1 (II.8)

The exponential form of quaternion is defined as

q = exp(ûθ) = cosθ + ûsinθ (II.9)

which is consistent with the Taylor series definition of ex. The power and the logarithm of

a unit quaternion then can be defined as

qt = cos(tθ)+ ûsin(tθ) (II.10)
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Figure II.7: Visualization of quaternions on a sphere.

log(q) = log(exp(ûθ)) = ûθ (II.11)

We can visualize unit quaternions as a rotation in 4D space where the û forms the axis

of rotation and the θ forms the angle of rotation. All the unit quaternions form a sphere

of unit length in the 4D space as shown in Figure II.7. This sphere of unit quaternions

forms a sub-group, S3, of the quaternion group and the spherical metric of S3 is the same

as the angular metric of SO(3). Given two unit quaternions q1 and q2, the unit quaternion

q3 = q−1
2 q1 gives a rotation that transforms the orientation q1 into a new orientation q2.

The value of log(q−1
2 q1) is a vector ûθ which represents the rotation about û by an angle

2θ . The norm of ûθ , which equals to θ (the angle of rotation), then can be understood

as the geodesic distance between two orientations q1 and q2. Thus, as we will see in later

chapters,
∥∥log(q−1

2 q1)
∥∥ = |θ |, where θ is the angle subtended by q1 and q2 along a great

circle of the hypersphere.

Notice that a quaternion q and its negative −q, which is (−s, −v), both represent the

same rotation because −q indicates a negative rotation around the negated axis. Therefore,

the geodesic distance between two orientations q1 and q2 should be

min(
∥∥log(q−1

2 q1)
∥∥ ,

∥∥log(q−1
2 (−q1))

∥∥).
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II.3.3 Interpolation

Interpolation is an important issue for most computer generated animations. Available data

are usually discrete and it’s desirable to estimate values in between sample data points. In-

terpolation determines a curve that passes through given control points, such as keyframed

data by the animator. The interpolation method chosen depends on the properties one de-

sires the resulting curve to have. There are many interpolation methods; linear interpolation

and spline interpolation are discussed in this section.

Linear interpolation is the most popular and widely used reconstruction method. Linear

interpolation in one dimension is simply connecting control points with straight lines. More

specifically, let α be a number between 0 and 1, the linearly interpolated value P(u) is

defined as follows:

P(α) = (1−α) ·P0 +α ·P1 (II.12)

where P0 and P1 are the two control points.

An alternative method performs interpolation using splines. Spline interpolation con-

sists of the approximation of a function by means of series of polynomials over adjacent in-

tervals with high order continuity. Common used splines include Bezier splines, B-splines,

and Catmull-Rom splines. B-splines are perhaps the most popular in computer graphics

applications. One of the advantages of using splines to interpolate is higher order of conti-

nuity. However, compared to linear interpolation, splines are more difficult and expensive

to implement.

Interpolation of Orientations

Many applications in computer animation interpolate orientations using Euler Angles. As

mentioned earlier, we may encounter “gimbal lock” , the loss of one degree of rotational

freedom, using Euler Angles. Quaternions are safe from gimbal lock and have been used for

years to handle spacecraft [Shoemake 1985]. We can interpolate orientations represented

by quaternions on the 4D sphere formed by unit quaternions. However, if interpolating by
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cutting across the sphere, the rotation would speed up in the middle. An interpolation of

orientations as quaternions without speeding up corresponds to a great arc along the sphere

as shown in Figure II.7. It is called spherical linear interpolation and given by

Slerp(q1,q2;u) = q1
(
q−1

1 q2
)u

(II.13)

II.4 Psychophysics

Plausibility rather than accuracy is acceptable for computer graphics and animation because

of the limitation of observer’s visual perceptions. For example, it is increasingly difficult

for an observer to distinguish many of the computer-generated or computer-altered images

from photographs. To determine or predict the visual quality of computer generated ani-

mations or images, it is often necessary to measure the sensitivity of observers to physical

parameters involved in the process.

Psychophysics is the scientific study of relationships between physical stimuli and per-

ception. In a typical psychophysical experiment, a variable of physical simulation is applied

to a subject and then the corresponding variable of his response is recorded. A psychome-

tric function reports the underlying relation between the performance on psychophysical

tasks and physical stimulus level. It is normally a plot of the percent of a particular re-

sponse against stimulus level. Figure II.8 shows an example of a psychometric function

[Leek 2001]. A detection threshold is a limit to perception, i.e., the smallest amount of

stimulus required for the subject to detect. It can be measured on the psychometric func-

tion developed by psychophysical experiments.

There are two general strategies for choosing the sequence of stimuli to obtain a com-

plete characterization of psychometric function and detection thresholds, methods of con-

stant stimuli and adaptive methods. In methods of constant stimuli, the experimenter de-

cides in advance which stimuli to use, and how many of each to present. The stimuli are

normally presented in a random series. However, methods of constant stimuli are often
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Figure II.8: An example of a psychometric function, measuring the number of times a par-
ticular stimulus was detected, depending on what the strength of the stimulus was. Image
from [Leek 2001].

expensive in terms of experiment time. Adaptive methods of measurement have been de-

veloped with the goal of preserving accuracy and reliability, while maximizing efficiency

and minimizing subject and experimenter time [Leek 2001]. It is based on the fact that

some trials are not as informative about threshold as others in terms of the stimulus level

the trial was placed. Essentially, in adaptive methods, the stimulus on each trial is deter-

mined by the stimuli and responses that occurred in the previous trial or sequence of trials.

In sum, the method of constant stimuli has the advantage of reducing the influence of stim-

ulus history, and the adaptive methods increase the efficiency of threshold estimation by

concentrating on stimuli near the threshold.

II.4.1 Design of Adaptive Procedures

An experimenter must make several decisions when designing an adaptive procedure. First,

one must decide when to change the stimulus level (the decision rule). The stimulus level

may be changed after every trial, or when results match a predetermined pattern, or when

performance deviates from its target by a critical amount. Second, one must decide to what

level should the stimulus be changed for each trial (the step size). In other words, how large

a “step” shall we take in the direction determined? We could use fixed steps or adjustable
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Figure II.9: An adaptive track following a simple up-down staircase procedure. Image from
[Leek 2001].

steps. Third, one must specify when to end an experimental run (the stopping rule). The

experimenter can decide to stop the run after a fixed number of trials, or fixed number of

reversals, or other rules. After the design decisions are made, the actual experiment could

be run and the psychometric function and the threshold could be measured.

The staircase procedure is one of the commonly used adaptive methods. For example,

a simple up-down staircase reduces the stimulus level when the response is positive and

increases the stimulus level when the response is negative as shown in Figure II.9 [Leek

2001]. Such an staircase procedure targets the 50% level for which the probability of a

correct responce equals to the probability of an incorrect response. To target a higher

performance level, the sequence for upward or downward movement maybe be two or

more corresponding (positive or negative) responses. For instance, a two-down, one-up

procedure targets at the 70.7% level on the psychometric function [Wetherill and Levitt

1965].

Regarding the methods of assessment, forced-choice methods are often used in studies

of measuring psychometric functions. In forced-choice methods, the subject is presented a

number of alternative choices in each trial in which the stimulus is presented. The subject

is forced to choose one of the alternatives. For example, in a two-alternative forced choice

(2AFC) procedure, the subject would have to choose one of the two alternatives for each

trial.
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CHAPTER III

RELATED WORK

Related work is discussed in this chapter. It can be characterized into three topics, work on

inverse kinematics solvers, work on motion editing, more specifically motion signal pro-

cessing techniques and motion generation frameworks, work on motion transitions meth-

ods, and work on empirical studies.

III.1 Inverse Kinematics

As mentioned previously, the inverse kinematics (IK) problem is to find the angles for

each joint in an articulated model to achieve a goal position for an end effector. Inverse

kinematics solvers can be roughly divided into two categories: numerical and analytic

solvers. A numerical method is an iterative procedure to solve a numerical optimization

problem. The numerical method is often a practical approach for a general-purpose inverse

kinematics problem. An analytic method, on the other hand, is used when the problem is

simple and because of its computational efficiency.

Inverse kinematics is an essential part of many motion editing techniques. Motion

blending is often used to generate motion transitions, but blending may introduce artifacts

into the resulting motion. One common scenario is that the character’s feet move when they

are supposed to remain planted, an artifact called foot-slide. To fix such problem, inverse

kinematics is often used as a post-process.

Numerical methods have been used to solve an inverse kinematics problem of an artic-

ulated human figure. Rose et al. [1996] used this approach to handle spacetime constraints

and inverse kinematics constraints. Their method for creating motion transitions uses a

combination of these two constraints in order to generate seamless and dynamically plau-

sible transitions. To enforce the inverse kinematics constraint, they developed an algorithm

based on techniques presented in [Zhao and Badler 1994]. The algorithm kinematically
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Figure III.1: Effect of inverse kinematics constraint on placement of feet. Image from
[Rose et al. 1996].

controls the support limbs by optimizing for coefficients influencing a range of time. Fig-

ure III.1 shows the effect of inverse kinematics constraint on placement of feet in their

work.

Lee and Shin [1999] presented an approach for interactive motion editing that com-

bines a hierarchical curve fitting technique with inverse kinematics solver. They introduced

the hierarchical motion representation for manipulating motion to satisfy constraints and

for editing motion sequences. They introduced two inverse kinematics algorithms, a nu-

merical approach for a general tree-structured figure and a faster specialized approach that

combines the numerical techniques with an analytical method for a human-like figure with

limb linkages.

Kovar et al. [2002b] presented an algorithm for removing foot-slide artifacts introduced

by motion capture editing. They used an analytic IK algorithm for foot-slide constraints.

They then added smooth adjustments to skeletal parameters when trying to satisfy con-

straints. They maintained continuity of the final motion by blending neighborhoods of

constrained frames. Figure III.2 shows an example of their algorithm.
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Figure III.2: An example of foot-slide and the result after applying inverse kinematics. The
pictures show the location of the right foot over a portion of a walking motion. Image from
[Kovar et al. 2002b].

Inverse kinematics has been used primarily to position limbs to maintain constraints in

motion editing systems. In our work, linear blending was used to generate motion tran-

sitions. Inverse kinematics is then used as a post process to fix foot-slide introduced by

linear blending. Many algorithms have been proposed in previous works to address these

artifacts. We used the inverse kinematics solver provided by MotionBuilder 6.0 to constrain

support limbs and correct foot-slide.

III.2 Motion Editing

Generalizing motion capture beyond simple playback requires the ability to edit the motion.

For example, one could take a walking motion and stylize and alter it to create a new

walking style. Or one could apply a sequence of captured motion to a character with

different proportion. We will discuss research work in motion editing in this section.

III.2.1 Motion Signal Processing

The motion data of an articulated figure can be treated as signals that contain the values

at each frame for each degree of freedom. Techniques from signal processing then can be

adopted to provide ways to edit and modify animated motion.

Bruderlin and Williams [1995] discussed basic signal processing techniques applied

to motion signal processing. They presented a method of multiresolution filtering and
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multitarget motion interpolation. They introduced several important editing techniques for

motion interpolation, dynamic timewarping, waveshaping, and motion displacement map-

ping. Multiresolution filtering and interpolation used the knowledge that low frequencies

contain general information of the signal and high frequencies contain detail and subtleties.

Multiresolution filtering filtered bands of frequencies of the signal and multiresolution in-

terpolation interpolates the signal at each frequency band. Timewarping plays a critical role

in motion interpolation when speed of the motions to be blended varies. The timewarp pro-

cedure finds the optimal sample correspondence between the motion signals which implies

a combination of stretching and compressing of the signals. We developed a timewarping

method in our work based on the timewarping procedure discussed in this work.

Witkin and Popovic [1995] presented motion warping as a technique for editing mo-

tion. New motions can be created by joining captured motion clips and blending the overlap

region. A timewarp curve is constructed to find the reasonable alignment of the correspond-

ing points. Their motion warping technique fits well into the traditional keyframe anima-

tion. The timewarping technique discussed in this paper provided an alternative way for

timewaping during motion blending. However, this technique requires manual intervention

for selecting scale or shift factors.

Lee et al. [2002] introduced a method for applying filters to orientation data repre-

sented by unit quaternions. The orientation data is transformed to vector space and the

filter mask is applied in the vector space. This method preserves coordinate-invariance,

time-invariance, and symmetry properties of the orientation data. We are interested in ex-

ploring a distance metric of orientation data represented by linearized quaternions.

Signal processing techniques can be used to edit or modify animated motion data or

higher level motion parameters. For example, blending of motion is essentially interpo-

lation of joint angles and joint coordinates representing the movement. Signal processing

techniques such as filtering and timewarping provide better control of the blending and can

also be used to modify the motions to create better correspondences. In our work, linear
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blending was used to generate motion transitions and a timewarping algorithm was de-

veloped to find better correspondences (see Chapter V). Signal processing technique thus

form the core of our methods.

III.2.2 Motion Synthesis

Motion capture research has concentrated on studying ways to editing and modifying ex-

isting motions to synthesize new motions. One of the earliest techniques for editing motion

capture was Perlin’s work [Perlin 1995]. They proposed a high level “textural” approach

using modulated sine waves and stochastic noise to create responsively animated charac-

ters in real time. They aligned the natural cycles of walks and other rhythmic motions so

that they can be blended together. In particular, they addressed the importance of transition

durations by saying, “It is surprising how much expressiveness one can achieve by tuning

these transition times”. This thought is a key motivation of the present work.

Lamouret and van de Panne [1996] discussed motion synthesis by example. They pre-

sented the idea that new animations can be created by re-sequencing the example motion

segments. Best-fit motion primitives are selected and tailored for the desired motion. The

fitness of the sample motion for the desired motion is measured by the distance metric that

considered both the continuity of the motion as well as its suitability for the terrain. They

validated their technique on physically based animation. This work provided an insight

into constructing motion generation frameworks by re-sequencing.

Wiley and Hahn [1997] focused on real-time interpolation synthesis of motion based

on motion capture data. Interpolation synthesis is limited to small numbers of parameters

and is specified by a value that occurs over the entire motion or at a specific point in time.

They pointed out that the combination of motion capture and interpolation synthesis has

the potential to animate the characters needed in virtual reality environments.

Rose et al. [1998] presented a technique called “verbs and adverbs” for creating believ-

able human motions. Verbs describe motions and adverbs describe emotional expressive-
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Figure III.3: Mapping between generic time and keytimes. Image from [Rose et al. 1998].

ness or control behaviors. Verbs can be combined with seamless transitions to construct

verb graph. Adverbs provide interactive control over the virtual character’s action and

style. Radial basis functions are used to interpolate between motions. Timewarping is used

to parameterize the motion to generic time as shown in Figure III.3. Motion examples

are interpolated within the generic timeframe with an ease-in ease-out blending function.

Transitions between two verbs are created by blending with a monotonically decreasing

blending function. The duration of the transition is calculated by taking the average of the

lengths of the two blending regions. Park et al. [2002] described a timewarping scheme

similar to Rose et al. [1998] for aligning motion clips of different speeds. Both these tech-

niques required manual construction of transition intervals. We are interested in developing

timewarping methods similar to these methods but in an automatic way.

Pullen and Bregler [2000] described a method for motion synthesis by manipulating
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motion capture data. They started from motion capture data and synthesize the data by

breaking it into frequency bands. They synthesized important joint angles and translation

data. They applied their technique on a wallaby hopping motion data and used the synthe-

sized data to animate wallaby-like characters.

Brand and Hertzmann [2000] introduced a framework called a “style machine”, a prob-

abilistic model for synthesizing motion capture data in interpolation or extrapolation of

styles and using cross-entropy optimization to learn motion patterns. They applied style

machines to synthesize new style of the existing motion. New choreography was gener-

ated by applying style machines on modern dance. This probabilistic method is powerful

but may eliminate subtleties of the motion during synthesis that give the motion a sense of

richness. Our work focuses on creating motion based on example motions while preserving

the the subtleties of the original motion.

Popovic et al. [2000] described an interactive method for manipulation of rigid multi-

body dynamic simulations. They implemented their system by first constructing a control

module, secondly building a rigid body simulator and finally developing a user interface for

motion editing. An animator can manipulate the position and velocity of the object directly

through the interface so that the he can guide the system to the appropriate solution. The

relevance of this work is that transition durations in this work can be computed based on

the dynamics of the motions whereas transition durations in our work are computed based

on the correspondences of the motions.

Gleicher [2001] compared a range of methods for constraint-based editing of motion

capture data. He compared different approaches for motion editing at performance, range

of constraints handled, order independence, and other aspects.

Galata et al. [2001] presented an approach of learning structured behavior models

using variable length Markov models. The experimental data was obtained by tracking

using a simple contour tracker of individuals performing exercise routines. Their goal was

to develop models with recognition and generative capabilities. They used variable length
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Figure III.4: Motion capture-driven simulations. Image from [Zordan and Hodgins 2002].

Markov models for learning complex behavioral dependencies and constraints at a lower

level and temporal dependencies at a higher level. This work can be applied to motion

editing techniques since it used Markov models to learn complex behaviors.

Zordan and Hodgins [2002] described a framework for producing dynamic character

animation by combining dynamic simulation and human motion capture data. They aimed

at interactive motions between characters, such as collisions and external force. They used a

dynamic motion controller to control the acceleration of the character based on the physics

of the character. They introduced a motion transition method that incorporates constraint

information to generate continuous motion. Figure III.4 shows an example of a boxing mo-

tion generated using their approach. We would like to incorporate our methods of generat-

ing new motion into dynamical simulation systems that produce long streams of animation

like the way they presented in this paper.

Dontcheva et al. [2003] introduced a system that allows the animator to mimic aspects

of the desired motion and creates and edits the character animation in real-time. They
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used widgets to prove connections between the actor and the character. The animation

was created layer by layer where each layer concentrates on editing different aspect of the

animation.

Zordan et al. [2005] presented a technique for synthesizing motion capture sequences

and incorporating physics-based response for transitions. They first find a transition-to

motion capture sequence by comparing simulated data with sequences in motion capture

library. Secondly, they used a joint controller to simulate a transition and interpolate be-

tween them to create the final motion. The controller uses an inertia-scaled PD-servo at

each joint to computer torques. They also manipulated the delay time during the transition

to make the character’s action appear realistic.

Manifold Learning

Manifold learning of high dimensional motion data has gained attention recently in the

graphics community. It has been shown that most dynamic human behaviors are intrinsi-

cally low dimensional, for example, legs and arms operate in a coordinated way. Bowden

[2000] discussed modeling motion capture data by reducing dimensionality and construct-

ing a Markov chain. Motion data were captured by retro-reflective IR markers. They used

Principal Component Analysis (PCA) [Jolliffe 1986] on a training set such that a low num-

ber of key frames can reproduce the motion. They modeled temporal constraints as Markov

chain and constructed discrete probability density functions indicating transition probabil-

ities.

Safonova et al. [2004] described a method that utilized the low dimensional repre-

sentation of motion. They used PCA to represent motion as six to ten dimensional basis

vectors. Optimization is then used to find a motion that minimizes some objective function

relating these vectors and satisfies the user-specified physics constraints.
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Figure III.5: Finding good transitions in a pendulum sequence. Frame i in the top row
matches both frames j1 and j2 of the bottom row very closely. However, of these two
possibilities, only frame j2 comes from a sequence with the correct dynamics. Image from
[Schödl et al. 2000].

Motion Graphs

Recently, many researchers have drawn inspiration from the work of Schödl et al. [2000]

on video textures to retain the original motion sequences but play them back in non-

repetitive streams. The video texture is a stream of video images which is synthesized

from a repertoire of images by assembling and blending the source images. Finding the

transition points in the video sequences and smoothing visual discontinuities at the tran-

sitions are two important factors in this framework. They compute the L2 distance as the

measure of similarity between all pairs of frames in the input sequence and the probability

of transitioning between frames in the sequence. Figure III.5 shows an example of find-

ing good transitions in a pendulum sequence. Figure III.6 shows the distance matrix and

transition probabilities for the clock pendulum sequence.

Lee et al. [2002] modeled motion as a two layer structure. The lower layer is a

first-order Markov process that generates motion sequences by creating transitions among
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Figure III.6: Distance matrix and transition probabilities for the clock pendulum sequence.
Image from [Schödl et al. 2000].
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motion clips, based upon probabilities of transitioning. The higher layer is a cluster forest

that captures the connection between motion frames by constructing cluster trees and the

similarities in motion frames by clustering. They explored three types of interfaces, the

choice-based interface, the sketch-based interface and the vision-based interface. They

applied their system on four different examples: maze, terrain, playground and step stool.

When creating transitions in the lower layer, they used a blend interval ranging from 1

to 2 seconds, depending on the example. To fix constraint violations such as foot-slide,

they used the hierarchical motion fitting algorithm presented by Lee and Shin [1999]. The

probability of transitioning is calculated based on the difference between motion frames.

The distance function reflects the weighted differences of joint angles and joint velocities.

The weights on joints are set to one for shoulders, elbows, hips, knees, pelvis and spine.

Weights are set to zero for joints at the neck, ankle, toes and wrists. Our work evaluates the

cost function for determining transition points proposed by this paper and proposes a new

set of weights on joints.

Another motion editing framework was presented by Kovar et al. [2002a] for gener-

ating motions by synthesizing streams of captured motion and creating transitions auto-

matically. Figure III.7 shows an example of motion created using their algorithm. After

the motion graph is constructed, the motion that satisfies the user’s need can be extracted

from the graph. They apply their approach to cyclic locomotion. They generate transi-

tions by first calculating the similarities metric for motions, secondly selecting transition

points which are local minima with small error values, and finally creating transitions using

SLERP.

The similarity metric as shown in Figure III.8 is calculated based on the distance be-

tween two point clouds generated by sampling the mesh of the animated character. The

point clouds are generated over of window of n frames, typically 10 (corresponding to one-

third of a second), and consist of the point clouds of the sample mesh at each frame in the

window. The distance between two frames is computed as a weighted sum of squared dis-
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Figure III.7: Motion generated using the search algorithm presented in the paper. Image
from [Kovar et al. 2002a].

tances between corresponding points in the point clouds. The main difference between the

cost metrics used in our work and this work is that, the cost metric for transitioning used

in our work is joint based, where the cost metric used in this work is model based. There

are several complicated factors involved in evaluating such a model based metric. First, we

need to determine how many points to sample in total and how many points to sample for

each body part. Second, the metric potentially includes a weight on each individual sample

point of the mesh at each frame. Kovar et al. do not report what their weighting scheme

was. A tractable approach is to assign uniform weights to each body part, possibly tapering

them depending on position within the window. Based on this cost metric, in their recent

work they developed automated methods for identifying and extracting logically similar

motions and using them to build a continuous parameterized space of motions by applying

blending techniques [Kovar et al. 2004].

Similarly, Arikan and Forsyth [2002] presented a framework for motion synthesis of

motion capture data meeting a wide variety of constraints. A motion graph is first con-

structed by collecting existing motion sequences and creating edges between motion frames

and labeling cost for edges. New motion can be generated by a randomized search of the

motion graph. Instead of creating transitions between the discontinuity of the motions, they
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Figure III.8: An example error function for two motions. The entry at (i, j) contains the
error for making a transition from frame i of the first motion to frame j of the second.
White values correspond to lower errors and black values to higher errors. The colored
dots represent local minima. Image from [Kovar et al. 2002a].

used localized smoothing and adding the result back to the signal. They chose the smooth-

ing domain to be 0.1 second. Smoothing provided an alternative way for concatenating

between motion segments, but it can cause artifacts like foot-slide on the ground.

Sidenbladh et al. [2002] discussed modeling human motion for synthesis. They mod-

eled high dimensional motion data as an implicit empirical distribution. They structured

the motion database as a binary tree and used a probabilistic search method to stochas-

tically generate sample motions. The search algorithm exploited the coefficients of the

low-dimensional representation of motion data.

Li et al. [2002] described a motion texture as a statistical model for synthesizing and

editing motion capture data. They synthesized new motion based on motion textons and

their distributions. Motion textons are represented by linear dynamic system to capture

the dynamic nature of the motion. They synthesized the motion textons by sampling noise.

They developed transition matrices to define the likelihood of transitioning between motion
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Figure III.9: Correlation between joint angles. Shown is the ankle angle versus the hip
angle for human walking data. The fact that this plot has a definite form demonstrates that
the angles are related to each other. Image from [Pullen and Bregler 2002].

textons.

Pullen and Bregler [2002] described a method for creating new motion by using both

keyframes and motion capture data. Their framework allows the animator to keyframe the

rough motion. They showed that joint motions are often correlated as shown in Figure

III.9 so that a fraction of the DOFs can be used to sketch an animation. They used the

information in motion capture data to add details to the desired motion. Note that in this

work they found a duration of 0.2s to 0.8s for smoothing to work well, based on user selec-

tion and depending on the particular motions, whereas we focus on developing methods to

automatically determine the optimal transition durations in our work.

Arikan and Forsyth [2003] presented an interactive motion synthesis framework. The

motion database is annotated by describing actions before synthesis. A small part of the
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motion database is annotated by the user first, Support Vector Machine (SVM) classifiers

are used to generalize the annotation for the whole database. The motion that meets the

user’s specification is assembled from the motion database. The motion synthesis algorithm

for the system is based on dynamic programming optimizations.

Reitsma and Pollard [2004] described an algorithm for assessing motion graph for its

utility in navigation tasks. One problem with motion graph data structure is that the qual-

ity of result may not be easy to predict from the input motion segments. They defined

metrics for evaluating motion path quality and reaching ability of motions and presented

an embedding algorithm for capturing all possible paths. This work showed that evalua-

tion techniques can provide insight into character capabilities captured in a motion graph

structure.

III.3 Motion Interpolation and Transition

Transitions are an essential component of motion editing systems. Most of the previous

work emphasized selecting appropriate transition points while creating new motions rather

than on the durations of the transition. While it is true that transitions are less of a problem

if the motions are similar, visual artifacts can still appear if the duration is too short or

too long. One of our goals in this research is to determine optimal transition duration for

creating motion transitions.

Blending is a basic way to create motion transitions. If incorrectly applied, simple

blending can produce undesirable results for cases where the motions are not properly

aligned. In contrast, Rose et al. [1996] used dynamic simulation to generate transitions,

using a combination of spacetime constraints and inverse kinematics constraints to create

dynamically plausible transitions. Figure III.10 shows an example of transitions created

using this technique. Motion data are spliced and mixed to create new motions. Spacetime

constraints are formulated by minimizing joint torque over time. The time for transitioning

usually ranges from 0.3 to 0.6 seconds. Spacetime transitions are more computationally
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Figure III.10: Walk motion transitioning to salute motion and back to walk motion. Arm
degrees of freedom affected by the transition are colored green. Image from [Rose et al.
1996]

expensive than joint angle interpolation techniques. This paper proposed a range of the

transition duration, but left the exact specification of the duration to the operator.

Mizuguchi and Calvert [2001] presented a framework for data driven transitions. The

objective for designing this framework is to ease the communication between the animator

and the programmer. They developed an Application Programming Interface (API) which

allowed the programmer to access and apply the transition data. An interactive editor was

also developed to allow the animator to define the transitions. They discussed the role of

blend length for creating transitions by blending. Their impression is that 10 frames is a

good starting point and 20 frames is generally good enough. Also, by changing the target

frame of a transition, the correspondence of motions to be blended are changed as shown

in Figure III.11. They also conducted an informal user evaluation for the framework and

had encouraging feedbacks for the potential of pursuing such a system. We develop ways

to determine optimal blend length and compare them with constant blend lengths proposed
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Figure III.11: Three transitions of jog to run with only target frame varied between them.
(a) Good - There is a good correspondence causing the feet to strike the ground properly
and the legs to move in a proper cycle, (b) Poor - The target frame has a different support
leg causing a hop, (c) Moderate - The correspondence is improved over (b) but the right
foot loops at one of the contact points. Image from [Mizuguchi et al. 2001]

by this work.

Kovar and Gleicher [2003] introduced registration curves for motion blending. Reg-

istration curves determine relationships of the input motions automatically. A registration

curve is built by creating a timewarp curve, creating an alignment curve and identifying

constraint matches. They discussed the application of the registration curve for creating

transitions, motion interpolation and continuous motion control. The distance function for

calculating the frame correspondence is based on the position of two point clouds, which

are windows of 5 frames of neighborhoods. The timewarp curve is created by fitting a
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strictly increasing function to the frame correspondences. The algorithm for creating tran-

sitions takes as input two frames and the width of the transition.

There is little work in computer animation that directly evaluates the visual appeal and

physical correctness of synthesized human motion. Natural human motion can be obtained

by motion capture technique. However, motion editing, especially creating transitions be-

tween segments of captured motion, often introduce artifacts such as hops and foot-slide

into the resulting motion. Several recent works address these issues.

Ren et al. [2005] developed an approach to quantifying the naturalness of human

motion. They trained classifiers to distinguish between natural and unnatural movement

based on human-labeled, ground-truth data. The training motions are composed of a

repertoire of captured natural human motions including locomotions and other behav-

iors. The testing motions contains both natural and unnatural motions obtained from mo-

tion editing, keyframed motions, motions with intentionally added noise, or insufficiently

cleaned motion capture data. They explored the performance of three motion learning

techniques, naive Bayes, hidden Markov models (HMM), and switching linear dynamic

systems (SLDS). They implemented a simple marginal histogram probability density esti-

mator based on the naive Bayes models the baseline to compare to these three motion learn-

ing techniques. Receiver operating characteristic (ROC) curves were utilized to present

and compare the result. They found that, for all of their learning methods except SLDS,

the most difficult unnatural motions to detect were the bad motion graph transitions.

Interpolation of motion capture data has shown to be able to generate visually pleasing

motion. Safonova and Hodgins [2005] analyzed the motions produced by interpolation

for physical correctness in terms of a number of basic physical properties such as linear

and angular momentum during flight phase, foot contact, static balance and friction with

the ground during stance, and continuity between flight and stance phases. They suggest

small modifications to the standard interpolation technique such as interpolating using the

position of the center of mass instead of using root positions during a flight. These modifi-
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cations in some circumstances will improve the visual quality of interpolated motions while

guaranteeing their physical correctness. For example, while interpolating a forward jump

with no turn and forward jump with 360 degree turn, they found that the interpolation of

the root results in an unnatural motion during the flight phase but a natural looking motion

if the center of mass is interpolated.

III.4 Empirical Evaluation

Empirical evaluation has recently gained popularity in the graphics community, although

there is considerable work on point light experiments in the psychophysics literature, e.g.,

[Johansson 1973]. He was concerned about visual perception of biological motion. The

motion of the living body was represented by a few bright spots describing the motions of

the main joints. These elements are abstract mathematical points as carriers of the motion.

The results of their studies showed that the proximal motion patterns presented carried all

the essential information needed for immediate visual identification of motions such as

human walking, running, dancing, etc. The model for visual vector analysis is applied in

their study for motion and space perception. The result of the vector analysis showed that

subtracting or adding common components to the element motions do not have a disturbing

effect on the identification of the motion. The relevance of these experiments is that users

can discriminate between subtle effects given a point-light representation of human motion

and absent other visual cues.

Hodgins et al. [1998] conducted studies on the perception of human motion with

polygonal model and stick figure model as shown in Figure III.12. They used A/B compar-

ison tests. They conducted experiments on three types of motion variations, torso rotation,

dynamic arm motion and additive noise. The motion used in the study were generated

by making kinematic modifications to dynamically simulated motions. They used the re-

sponses from the subjects to compute the sensitivity measure. The study shows that the sub-

jects were more sensitive to changes of the motion when rendering with polygonal model.
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Figure III.12: Images of animated human runner. (a) Two running motions rendered using
a polygonal model. (b) The same pair of motions are rendered with a stick figure model.
Image from [Hodgins et al. 1998]

This work conducted user studies to explore the perception of human motion with different

models, our work conducted user studies to compare different methods for creating motion

transitions.

Bodenheimer et al. [1999] conducted studies to determine the “naturalness” of motion.

They introduced natural-looking variability by constructing noise function into cyclic ani-

mations of human motion. The experiment is designed to vary the amount of noise in the

simulation and ask the subject to decide what level of noise appeared most “natural”. The

experiment showed that for the male running simulation most users prefer some noise over

no noise or higher amounts of noise.

Oesker et al. [2000] explored the effect of level of details in naturalistic character an-

imations. They conducted experiments to test the influence of articulated body animations

on the judgment of human observers of the level of overall skill exhibited by four simulated

soccer teams. Four levels of details were added to a two teams playing soccer motion and

the observers failed to notice the difference. This work performed a study methodologically

similar to our own but trying to assess the effects of level of details in animation.

42



O’Sullivan et al. [2003] discussed the visual fidelity of animations by proposing a

metric for measurement. They conducted a set of psychophysical experiments to establish

acceptance thresholds for visual sensitivity. They used randomly interleaved staircase de-

signs in the study. They examined the effects of angular distortions, momentum distortions

and spatial-temporal distortion. They investigated two case studies, simulation levels of de-

tail and constrained dynamics. This work is similar to our work in the aspect of conducting

experiments to determine thresholds for visual sensitivity.

Reitsma and Pollard [2003] presented results of a study of user sensitivity to errors in

ballistic motion. Errors in the motion were entered by twisting the translational velocity of

the center of the mass. They proposed a perceptual metric based on the results of the user

study. The results from the user study also showed that subjects are more prone to detect

errors in horizontal velocity than in vertical velocity; subjects are more prone to detect

added accelerations than decelerations. This work conducted user studies on perception of

errors in ballistic motion and our work conducted user studies on perception of difference

using different blend length for generating motion transitions.

The visual perception of length change in animation was investigated in [Harrison et al.

2004]. They conducted studies to examine to what extent the lengths of the links in an

animated articulated-figure can be changed without the viewer being aware of the change.

In terms of the design of the user study, they used a two alternative forced choice paradigm

and a staircase method to dynamically vary the change in length following each observer’s

response. All the detection thresholds are presented in terms of relative changes of length.

The results of the experiments provided guidelines for obscuring length changes during an-

imation, for example, length changes should never be greater than 20%, even if the viewer

is not attending to the figure, and changes are more difficult to perceive during fast motions.

The above experiments explored various aspects of visual perception of an animation.

We are interested in exploring the effects of physical parameters on the visual perception

of motion transitions. It is relatively easy to make high quality motion using motion cap-
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ture, but generating visually pleasing transitions among those motions is still difficult and

involves significant manual labor. An animator often needs to manually tune the param-

eters such as the transition interval. Many methods of generating motion transitions have

been proposed. Each method has its own strengths and weaknesses. Evaluation of these

methods regarding the subjective qualities such as naturalness is essential. In the following

chapters, we will present several methods for generating motion transitions and empirical

studies evaluating them.
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CHAPTER IV

THE COST FUNCTION: OPTIMIZING THE WEIGHTS

High quality motion can be obtained by motion capture. However, once a sequence of

motion is captured, it is hard to modify and reuse. Much recent research has focused on

creating new motion by re-ordering the original motion [Lee et al. 2002; Kovar et al. 2002a;

Arikan and Forsyth 2002]. These authors developed re-sequencing systems for libraries of

motion capture data. Motion transition plays an important role in such systems and in

video games. Determining an optimal transition point between motion clips and generating

a seamless transition are two critical components to the visual appearance of the resulting

motion. Transition points are the points at which the motion will change from one segment

of captured motion to another segment, either within the same motion or another motion.

Because these transition points represent discontinuities in the motion stream, selection of

good transition points can be crucial to the quality of the resulting motion.

Each of the works cited above uses a different distance function to calculate the cost

of transitioning from one frame to another. These distance functions are all parameterized

through user-selected weights. In this phase of the work, we evaluate the cost function

described by Lee et al.[2002] for determining good transition points. Lee et al. proposed

an original set of weights for their metric. We compute a set of optimal weights for the cost

function using a constrained least-squares technique.

The weights are then evaluated in two ways: first, through a cross-validation study and

second, through a medium-scale user study. The cross-validation shows that the optimized

weights are robust and work for a wide variety of behaviors. The user study demonstrates

that the optimized weights select more appealing transition points than the original weights.
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IV.1 The Cost Function

In this section, the specifics of the cost function are reviewed. Given two sequences of

motion, indexed by their frame number, we construct a probability matrix. The (i, j)th

element of the probability matrix is the probability of transitioning from frame i to frame

j. The probabilities are constructed from a measure of similarity between the frames using

an exponential function and given by

Pi j ∝ exp(−D j, j−1/σ) (IV.1)

where Di, j−1 represents the cost for transitioning between frame i and frame j−1, and σ

controls the mapping between the cost measure and the probability of transition.

The cost for transitioning between frame i to frame j is given by

Di j = d(pi, p j)+d(vi,v j) (IV.2)

where d(vi,v j) is the weighted distance of joint velocities, and d(pi, p j) is the weighted

difference of joint orientations. This term is given by

d(pi, p j) =
∥∥pi,0− p j,0

∥∥2 +
m

∑
k=1

wk

∥∥∥log
(

q−1
j,k qi,k

)∥∥∥
2

(IV.3)

=
∥∥pi,0− p j,0

∥∥2 +
m

∑
k=1

wk|θ(i, j),k|2 (IV.4)

where pi,0, p j,0 ∈R3 are the global translational positions of the figure at frames i and j, re-

spectively (zero denotes the root joint); m is the number of joints in the figure; and qi,k,q j,k

are the orientations of joint k at frames i and j, respectively, expressed as quaternions. The

log-norm term represents the geodesic norm in quaternion space, which equals to θi j,k.

θi j,k is the angle of rotation that transforms the orientation qi,k to the orientation q j,k (see

explanation in Chapter 2). Each term is weighted by wk.

For this work, our skeleton consisted of 16 joints and the complete figure had 54 degrees
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of freedom. Each joint was a three degree of freedom joint, and there were degrees of

freedom for global position and orientation. All motion capture data was sampled at 30

frames per second.

IV.2 Optimizing the Weights

The cost function contains parameters to modify the transition cost. The parameters take

the form of weights. The cost function weights both the geodesic norm between joint

orientations and the joint velocities, and contains another parameter, ν , trading off the

velocity and position distances. Lee et al. report setting the weights to one for the shoulders,

elbows, hips, knees, pelvis, and spine; others are set to zero. No value for ν is given.

We would like to use motion capture to determine optimal values for the weights. We

will contrast motions using optimized weights versus the weights Lee et al. report. We will

refer to the sets of weights used by Lee et al. as the original weights. An example of the

cost function for transitions from one motion to another for the original weights is shown in

Figure IV.1 with ν = 1. The figure is normalized so that an intensity of zero corresponds to

the minimal value of the cost function for that motion and an intensity of 255 corresponds

to the maximum cost. The minimum and maximum before normalization are 0.0993 and

20.0677. The cost function is reasonably uniformly distributed over its ranges, so the linear

normalization gives an accurate picture of the function’s variation. In the figure, the vertical

axis represents one motion and the horizontal axis represents the other motion. A pixel i,

j in the figure corresponds to the cost of transitioning from frame i in the first motion to

frame j in the second motion. Darker values correspond to lower costs for transition.

To optimize the weights, we took a set of 16 different segments of captured motion,

each several seconds long. These segments consisted of a variety of motions including

walking in different styles, running in different styles, jogging, dancing, and gesturing. For

these segments we manually selected 16 good transitions and 26 bad transitions. A good

transition was one in which the visual discontinuity of the transition was minimal; a bad
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Figure IV.1: The cost matrix for two clips of dance motion with original weights. Each
motion is 10 seconds long. Darker values correspond to lower costs for transition.

48



transition was one in which the visual discontinuity was disconcerting. The transitions

were selected by a single person with animation experience and critically examined by two

other experienced viewers for approval. Our optimization will depend on how well these

transitions were selected, but in our experience it is not difficult to manually select good

and bad transitions.

We then solved for the optimal values of the weights using a constrained least-squares

minimization, we form a matrix A of example motions and joint distances as follows: the

(i, j)th entries of A are the velocity and position difference terms for the jth joint in Equa-

tion IV.2 in motion i. We then solve

min
w
‖Aw−b‖2

2 (IV.5)

where w is a vector of weights, A is the matrix of the position and velocity distances of

Equation IV.2 described above, and b is a vector of ones and zeros—an entry is one if

it corresponds to a bad transition, and zero if it corresponds to a good transition. The

optimization was constrained such that the weights were non-negative and symmetric, i.e.,

the weight for the left shoulder must be identical to the right shoulder. The symmetry

constraint makes intuitive sense but will generally not be the result of the optimization

without this constraint. The optimization problem was solved using an active set method

similar to that described in [Gill et al. 1981].

Lee et al. actually use a slightly different cost function than Equation IV.4. They have

a weight ν on the velocity term that trades off position and velocity. The weight ν enters

the terms in the A matrix above non-linearly, thus requiring solving a more complicated

constrained non-linear optimization problem. However, for motions in our database, our

experience is that the velocity term makes little effective difference in the cost. Figure IV.2

shows this insensitivity to ν for transitioning from one dance motion to another dance mo-

tion, with ν = 0.1 and ν = 10. In fact, the global minimum for this motion was unchanged

49



To Motion

Fr
om

 M
ot

io
n

To Motion

Fr
om

 M
ot

io
n

Figure IV.2: The cost matrix for two clips of dancing motion using the original weights. In
(a) ν = 0.1 and in (b) ν = 10.

as ν was varied from 0 to 100. Thus, ν remained one in the optimization process.

The normalized weights (largest scaled to one) from the optimization process are shown

in Table IV.1. The cost matrix for the motions using the optimal weights are shown in Fig-

ure IV.3. This figure is for the same motions that have the cost matrix shown in Figure IV.1.

There is substantial difference between the original weights and the new weights. In gen-

eral, the cost with new weights has become more restrictive. Numerically, the optimization

zeroed weights associated with joints found to be unimportant. Most of the weights were

found to be unimportant: only the hips, knees, shoulders and elbows were important. Note

that a least-squares minimization is a quadratic optimization, so that the weights that don’t

help are driven to zero. The result is consistent with our expectation that those joints are the

most important ones, but surprising nonetheless since they imply the rest are unimportant

in selecting a reasonable transition.
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Figure IV.3: The cost matrix for two clips of dance motion with optimized weights. Each
motion is 10 seconds long. Darker values correspond to lower costs for transition.

Table IV.1: Joints with non-zero weights and their associated weights when solved as de-
scribed in the text. The optimization zeroed the weights for the remaining joints.

Joint Original Weight Optimized Weight
Right and Left Hip 1.0000 1.0000
Right and Left Knee 1.0000 0.0901
Right and Left Shoulder 1.0000 0.7884
Right and Left Elbow 1.0000 0.0247
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IV.3 Cross-Validation

To estimate the generalization rate of the optimized weights, we employed a full leave-one-

out cross-validation study [Duda et al. 2001]. In this technique, the weights are optimized

with one set of training data deleted, and the resulting weights are then used to compute the

optimal value of a transition for the deleted data set. Recall that our training set contained

a rich variety of motions. The results of this study were quite encouraging. The average

absolute deviation between the full optimization and that of the leave-one-out optimization

was less than one frame in the animation sequences. The median absolute deviation was

zero frames. Additionally, we performed a similar test by again deleting one set of train-

ing data, re-computing the optimal weights, and then computing the optimal transition for

a completely different motion than the weights were trained on, a dancing motion from

a different performer containing different dynamics. For this study, the resulting weights

computed the same optimal transition in 41 of 42 cases. For the case where the optimal

transition was not computed identically to the other cases, it was one frame different. Based

on these empirical approaches, we believe that the optimal weights we computed are both

robust and generalize to pick reasonable transitions for a wide variety of motions. How-

ever, whether the optimal weights are necessarily better than the original weights cannot be

verified by this technique. Instead, we must conduct a user study to determine the result.

IV.4 Experimental Evaluation

IV.4.1 User Study of the weights

A user study was conducted to evaluate the weighting determined by the optimization. A

motion capture sequence of dancing was created by a performer different from the one used

to capture the motions used in Section IV.2 for optimizing the weights. This practice was

employed to eliminate the possibility of any performer-dependent effects on the weighting.

Several frames of an animated sequence used in the study are shown in Figure IV.4.

The participant group consisted of 26 adults with normal color vision who had no prior
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Figure IV.4: The animated character used in the user study.
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experience working with animation outside of computer games and the like. Participants

in the study were told they would be viewing an animation of motion sequences and shown

an example animation of a walking sequence using the model that would be used in the

experiment. They were then told the motions they would be viewing would have a discon-

tinuity in the motion, and shown an example of an egregious discontinuity. Participants

were told they would be asked to rate how noticeable and natural the discontinuities were,

both individually and in comparison to another motion. Participants were shown two mo-

tions. Each motion was a six-second clip; the transition from the first motion sequence to

the second occurred at t = 3s in the clip. The motions consisted of the globally optimum

Lee cost transition with the weights used in Lee at al.[2002], and the globally optimum Lee

cost transition using weights determined in Section IV.2. These two motions were different,

i.e., the lowest cost transition occurred at different points in the motion for each cost func-

tion. In particular, for the dancing motion used in the user study, the optimal transition for

the original cost occurred from frame 91 to frame 281, whereas the optimal cost transition

occurred from frame 232 to frame 280.

The sets of motions participants were asked to compare were the original cost versus

the optimal cost. To best evaluate the transition, no interpolation or smoothing between the

sequences was done. Since a complete animation system, such as that present in a video

game, will employ some sort of motion transition mechanism, this decision may seem odd.

However, we believe that this decision is necessary for the following reasons. Employing a

motion transition mechanism involves making many engineering decisions about how the

motions are to be blended. For example, the time over which the transition will occur must

be specified. The method of blending must be determined, e.g., linear interpolation, ease-

in ease-out, or employing a very sophisticated mechanism such as in Rose et al.[1996].

Additionally, some sort of inverse kinematics routine is usually required, because blending

introduces the problem of foot-skate or foot-slide [Kovar et al. 2002b]. There are a number

of inverse kinematics routines available,[Lee and Shin 1999; Kovar et al. 2002b; Rose et al.
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1996] and each of them also makes engineering decisions that affect the quality of the

resulting motion.

Additionally, blending works two ways. It can mask the selection of a bad transition (for

example, it can smooth a discontinuity), or it can make a bad transition extremely obvious

(for example, if the transition causes one part of the body to intersect with another). Which

effect predominates depends on the quality of the transition selected. Our work tries to

evaluate the quality of transitions in the absence of the other confounding factors such as

the decisions made in creating smooth transitions. Once we have empirically established

that a metric produces reasonable or good transitions, then we can begin to evaluate the

engineering factors associated with producing visually compelling and optimal transitions.

We note, however, for each transition the global position and orientation of the character

was matched at the point of transition.

We controlled for order effects in the presentation by randomly dividing the partici-

pants into two equal-sized groups. The first group was presented the original and optimized

weighted motion sequences first, the second was presented the optimally weighted motion

sequences first. After viewing each sequence, participants completed a post-sequence ques-

tionnaire consisting of questions asking them to compare and rate their impressions of the

motions using a five-point Likert scale. Likert scale responses rather than forced choice

responses were chosen to exploit the statistical power the former offers in distinguishing

subtle differences. Users were asked which sequence seemed to have better quality, was

more natural, and compare the sequences based on realism of the motions and the notice-

ability of the transitions.

Four questions were asked of the subjects in our study. The first was to rate the realism

of motion generated using the original weights; the second question was to rate the realism

of motion generated using the optimized weights; the third question was to rate the notice-

ability of the transition generated using the original weights; and the fourth was to rate the

noticeability of the transition generated using the optimized weights. In analyzing the re-
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sults of this study the null hypothesis regarding the realism and noticeability of the results

is that the two methods are identical. The null hypothesis regarding the order condition is

that the order of presentation is unimportant. Results of all the analysis were considered

significant if p < 0.05.

If order effects were not tested as part of the design of this experiment, then statistical

analysis of the results would be a classical example of a study suitable for analysis using the

Wilcoxon signed ranks test, since the responses are ordinal. The inclusion of presentation

order as a condition in the experiments complicates the analysis, since there is no 2× 2

non-parametric tests suitable for application [Hayter 1986]. We could analyze the results

straightforwardly using a 2-way ANOVA. When we did this, we found that order was not

significant (F = 0.87, MS = 0.94, p = 0.35), i.e., that we cannot reject the null hypothesis

for presentation order; that there were no interaction effects; and that subjects found the

optimally weighted metric significantly more realistic that the original weights (F = 6.39,

MS = 6.94, p = 0.01) but not significantly more noticeable (F = 1.24, MS = 1.23, p =

0.27). However, assuming that the Likert responses are samples of underlying continuous

interval data is questionable. The problem here, of course, is that we don’t know if the

distance between “somewhat realistic” and “realistic” is the same as the distance between

“not realistic” and “somewhat realistic” (for example). We could convert the Likert scale

responses to continuous variables by analyzing responses based on frequency, which would

be continuous. The drawback of this approach is the loss of statistical power we would

encounter in the conversion.

We therefore analyzed our data using the following approach. The 2×2 design of the

experiment means that we have four sets of data, which we will denote as indicated in Ta-

ble IV.2. For the realism and noticeability questions, we applied a Wilcoxon to the data sets

O1M1 and O2M1, and then to O2M1 and O2M2. Results from this analysis show that the

order effects are not significant, so that we cannot reject the null hypothesis for order. Con-

cluding that we then grouped the O1M1 and O2M1 data together to form a Method 1 data,
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Table IV.2: Symbols denoting the data cells from the original weights versus optimized
weights user study.

Original Weights First
Order 1

Optimized Weights First
Order 2

Original Method O1M1 O2M1
Optimized Method O1M2 O2M2

Table IV.3: Summary of results for direct comparisons of optimized versus original func-
tions. Preferences were rated on a scale of zero to four where zero corresponded to looking
much worse (or very unnatural) and four corresponded to looking much better (or very
natural). For example, participants were asked if they thought that the optimized motion
“looked better” than the original motion.

Comparison Mean Std. Dev.
Optimized Weight vs. Original Weight
Looks Better? 2.73 1.00
More Natural? 2.69 0.84

and the O1M2 and O2M2 data together to form a Method 2 data. Analyzing this data using

a Wilcoxon signed rank test shows that the optimal transition for the weighted cost was

significantly more realistic than the original cost (p = 0.01). Regarding the noticeability of

the transitions, there was no statistically significant preference for either of the transition

methods (p = 0.34) of the transition methods one over another. These results are shown

in Table IV.3. This latter result may be because the relative transitions were not obvious

to the users, or it may be that both transitions were noticeable, and that users simply pre-

ferred the noticeable transition using the optimized weights to the original weights. Since

we are ultimately interested in transitions using blending, we did not pursue this question

further. Finally, as an aside, we used the above “powering up” approach of combining or-

ders into methods because a pairwise test of all combinations of order against method did

not individually yield significant results for all comparisons.
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IV.5 Discussion

This work produced weights for the cost function described by Lee et al. that led to the

determination of superior transitions. We cross-validated the weights to assess the gen-

eralizeability and robustness of the optimization procedure. We compared the optimized

weights with the original weights by running a user study. The user study showed that

optimized weights produce perceptually better transition points.

However, there are several limitations and possible sources of bias in our results. When

optimizing the weights, our motion data did not contain highly dynamic motions such as

would be typical from a gymnastic floor exercise or other sources. The weights may not be

a good predictor of good transitions for such motions. It was also limited to 16 different

sequences of motion for the optimization. We would like to repeat our experiments using

a larger library with more dynamic motion. Rendering style can affect the quality of the

perceived motion as shown by Hodgins et al.[1998]. Our weight optimization used only

one performer, although our motions were tested in the cross-validation and the user study

on motion generated by a different performer. Finally, our motion data did not contain a

large repertoire of “backward” motions, which may have resulted in the position-velocity

weight ν having marginal impact for the Lee cost. Our data suggest that the velocity

component of the cost function is not significant for a wide variety of motions. Removing

these limitations or better understanding their necessity is an on-going project.
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CHAPTER V

TRANSITION METHOD

Another important component of creating new motion is the ability to generate seamless

transition. This research develops methods for determining a visually appealing blend

length for a motion transition, i.e., a segue between two sequences of character anima-

tion. For reasons of efficiency and speed, linear interpolation is often used as the transition

method. The blend length of a transition using this technique is critical to the visual ap-

pearance of the motion. Two methods for determining an optimal blend length for such

transitions are presented. These methods work for different types of motion.

We chose to build our transition methods on top of linear blending because linear blend-

ing is the most common and widely used method for generating transitions between motion

segments. However, linear blending violates the laws of physics because it distorts the real

motions, being the weighted sum of two or more motions. Linear blending is nonetheless

a popular method because it is simple and often generates visually pleasing results.

For two motions, spherical linear interpolation is used to blend between the quaternions

of each joint using a linear weight function. A sigmoidal weight function produces similar

results with only subtle differences. The facing direction and the position of the figure

on the floor plane are aligned during the blending. We assume in this work that a start

frame in a from motion and an end frame in a to motion are specified. The start and end

frames indicate the beginning and end of the transition, respectively. In next chapter, we

will discuss other ways of specifying motion transitions and blending motions.

Linear blending may introduce artifacts such as foot-slide. To fix such problems, in-

verse kinematics or other techniques [Kovar et al. 2002b] are often used as a post-process.

These methods may be automatic. We used the inverse kinematic solver provided by Mo-

tionBuilder 4.02 to constrain support limbs and correct foot-slide. Other than correcting
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foot-slide, it rarely affects the visual appearance of the motion.

The methods for generating transitions are empirically evaluated by conducting user

studies. The studies for the transition methods show (1) that visually pleasing transitions

could be generated using our optimal blend lengths without further tuning of the blend

parameters; and (2), that the users prefer these methods over a generic fixed-length blend.

V.1 Methods for Computing Blend Length

We develop two methods to compute blend length based on two hypotheses on the nature

of blending.

V.1.1 Method I: Using the Geodesic Distance

One hypothesis for motion blending is that a transition will be smooth if two windows

of the motions to be blended have strong correspondences, which implies that these two

pieces of motion have consistent velocities. We compute the best blend length for blending

between two arbitrary frames by calculating the cost for blending where the blend length

normally ranges from 0.03 to 2 seconds (1 to 60 frames), and pick the blend length with

minimum cost.

The per-frame cost for transitioning from frame i to frame j with blend length b is

computed by averaging the difference of all pairs of corresponding frames within the blend

window and is given by

D fi f j =
b

∑
t=1

d fi f jt/b. (V.1)

In this equation, d fi f jt is the difference between two corresponding frames given by

d fi f jt =
m

∑
k=1

wk

∥∥∥log
(

q−1
j−b+t,kqi+t−1,k

)∥∥∥
2

(V.2)

where m is the number of joints in the figure, and qi,k,q j,k are the orientations of joint k at

frames i and j, respectively, expressed as quaternions. The log-norm term represents the

geodesic norm in quaternion space, and each term is weighted by wk. Note the difference
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Figure V.1: The cost for blend length b is the average of the difference of corresponding
frames. The transition is from frame i to frame j.

between two corresponding frames is basically calculated by the cost function described in

the last chapter. The weights were those determined in the last chapter. Global degrees of

freedom of the beginning of the second motion were matched to the end of the first motion

and interpolated during the transition.

Figure V.1 illustrates how the cost as a function of the blend length b is calculated. The

cost is the sum of the difference of corresponding frames. Once the costs for a blend length

from 0.03 to 2 seconds are computed, the minimum cost can be computed; the optimal

blend length is given by this minimum. An example of the cost for a walking to walking

transition versus different blend lengths is shown in Figure V.2. The optimal blend length

is 0.5s.

V.1.2 Method II: Using Joint Velocities

Another approach for predicting optimal blend length is inspired by the idea that the rate

of change for any joint in the pose should not change radically for a smooth transition.

We calculate the joint difference between the start frame and the end frame for each major

joint, i.e., shoulders, elbows, hips and knees. We then compute the optimal blend length

based on the velocity of the joint that has the maximum difference between the start and
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Figure V.2: An example of cost as a function of blend length. The optimal blend length is
0.5s for this example. The transition is from a walking motion to another walking motion.
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Table V.1: An example of the joint differences between two frames of motions. The maxi-
mum difference is on the right shoulder.

Right Hip 0.0352
Right Knee 0.0481
Right Shoulder 0.3029
Right Elbow 0.0167
Left Hip 0.0044
Left Knee 0.0288
Left Shoulder 0.1192
Left Elbow 0.0178

end frames.

The difference between frame i and frame j for joint k is

dk
fi f j

=
∥∥∥log

(
q−1

j,k qi,k

)∥∥∥ . (V.3)

The optimal blend length is then the joint difference of the joint with maximum difference

divided by the velocity of that joint

dp
fi f j

/‖v‖ (V.4)

where p is the joint with the maximum joint difference, and v is the average of the joint

velocity for the beginning frame and the end frame of joint p, respectively. Table V.1

shows an example of the joint differences between two frames of motions. The maximum

difference is on the right shoulder.

V.1.3 Ad Hoc Comparison

Our experience is that of these two methods, the geodesic distance is more suitable for

cyclic locomotion such as walking and running as shown in Figure V.3 for which corre-

spondences in the blend are critical. One possible reason is that cyclic motion has a fixed
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pattern and people are sensitive to movements that are out of phase. The geodesic distance

method aims at the phase requirement of these motions and finds the best correspondence

of frames of motion for blending.

On the other hand, the velocity method is more suitable for physical activities such as

boxing and free-style dancing, etc. Figure V.4 shows example of motions in this category.

For motions like these, people do not have strict perceptual predictions for the next move.

However, a longer blend length does not necessarily mean a better transition. For exam-

ple, a rather quick punch by a boxer might become a slow punch after a long blending.

Therefore, finding the optimal blend length that produces smoothness and still preserves

the quality of the target motion becomes important. The velocity method meets these re-

quirements by smoothing the movement of every joint and does not unnecessarily stretch

the resulting motion.

V.1.4 Alternative Methods

We studied alternative techniques for computing a good blend length, more complex and

computationally expensive than the previous two. As noted in Section III, timewarping

has been used for generating transitions. Thus, we modified the geodesic distance method

to compute a blend length where the from and to motions can be timewarped. Given a

transition from frame i to frame j, a timewarped blend length is calculated by computing a

cost matrix of blend lengths in the from motion versus blend lengths in the to motion. Each

entry in this cost matrix Ci j is given by

Ci j(b f rom,bto) =
bto

∑
t=1

m

∑
k=1

wk

∥∥∥∥log
(

q−1
j−bto+t,kq

i+
b f rom

bto
t−1,k

)∥∥∥∥
2

(V.5)

if b f rom ≤ bto, and

Ci j(b f rom,bto) =
b f rom

∑
t=1

m

∑
k=1

wk

∥∥∥∥∥log

(
q−1

j−bto+
bto

b f rom
t,k

qi+t−1,k

)∥∥∥∥∥
2

(V.6)
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Figure V.3: Examples of walking motion and running motion in the category of cyclic
locomotion. The geodesic distance method is suitable for these types of motion.
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Figure V.4: Examples of boxing motion and free-style dancing motion. The velocity
method is suitable for these types of motion.
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Figure V.5: An illustration showing the method for computing the cost of a blend length
with timewarping. The blend length for the from motion is b f rom and the blend length for
the to motion is bto. In this example, b f rom < bto.

if b f rom > bto, where b f rom and bto are the blend lengths in the from and to motions, re-

spectively, and the other terms are defined as in Equation V.2. Figure V.5 illustrates how

this cost is computed. The minimal cost from the cost matrix Ci j then gives the appropriate

motion intervals with which to perform timewarped blending. When a computed frame

time is not an integer, joint values of the pose are obtained by spherical linear interpolation

between the two adjacent frames. Note that computing the optimal blend length using the

geodesic distance method is O(b) whereas the timewarped blend method is O(b2).

The second alternative we explored is the idea of using a non-uniform blend schedule

on the degrees of freedom to produce a transition. We could, for example, transition a

shoulder degree of freedom over 10 frames and a hip degree of freedom over 20. There

are two drawbacks to this method, both related to the physical properties of the motion.

First, as shown in Figure V.6, the physical coherence of the individual joints indicates that

the optimal blend length as computed by the geodesic distance occurs at the same value

for most important degrees of freedom. This figure shows the geodesic cost for individual

joints of the motion shown in Figure V.1. The joints that do not have minima at 0.5s are the

left shoulder, right shoulder, and right elbow, although the cost for the left shoulder is nearly
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Figure V.6: The geodesic distance cost for each of the joints of the motion transition shown
in Figure V.1 (walking to walking). The joints that do not have minima at 0.5s are the left
shoulder (black), right shoulder (yellow) and right elbow (magenta).

constant. The second, more important drawback is that different blending schemes destroy

the physical coherence of the degrees of freedom. When trying to adapt the methods to

different blend schedules, visual artifacts were apparent.

We additionally tried to modify the velocity method according to the methods imple-

mented by [Grassia 2000]. We found no improvement from the basic method described

above.
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V.2 Experimental Evaluation of the Transition Methods

There are a number of interesting psychophysical evaluations that could be conducted to the

methods described previously. In this study, the methods described above were compared

to a typical transition scheme that employed a fixed blend length. The goal of these ex-

periments was to determine whether users preferred the methods’ results and how strongly

over a wide repertoire of motions.

V.2.1 Procedure

The fixed blend length we chose was 0.33s (10 frames). This value was chosen because it

is the value suggested by Mizuguchi et al. [2001], used by [Kovar et al. 2002a], and in the

range specified by both [Rose et al. 1996] and [Pullen and Bregler 2002]. Our experience

from conducting pilot studies prior to these experiments leads us to believe that the results

described here will hold for any fixed blend length.

All experiments were run in a single session consisting of four distinct studies. The

participants were volunteers from our institution with no prior animation experience be-

yond exposure to video games and film. Thirty-five people volunteered: 20 male and 15

female, aged 22 to 40 years. All participants had normal or corrected-to-normal vision.

Additionally, participants were naı̈ve as to the purpose of these experiments.

Motion transitions were created from a variety of motion capture data and shown in

the same rendering style. Groups of motions were shown from the same camera position.

Consistent with the point light experiments mentioned in Section III, we chose to omit

rendering a ground plane. While the ground plane can provide important visual cues for

some perceptual studies, e.g., [Reitsma and Pollard 2003], we judged it unnecessary for

our purposes.

Study One: Geodesic distance method versus fixed blend-length

In this experiment, we studied whether participants judged that motions containing a tran-

sition generated by the geodesic distance method appeared more natural than motions con-
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taining a transition using a fixed blend-length of 10 frames. We selected eight different

motion transitions consisting of such motions as standing and idling to walking or running

(of different speeds), walking to running (of different speeds), and various turning mo-

tions. As discussed previously, these motion types are those we believed most suitable for

the geodesic distance method. None of the optimal blend lengths were close to 10 frames.

Optimal blend lengths for the motions tested ranged from 5 frames to 35 frames. Motion

pairs were generated, one containing the optimal blend length and one containing the 10

frame blend length. The order of these was randomized.

Participants were presented eight motion pairs and asked to determine whether the first

or second motion of a pair was more natural. They were again given five seconds between

each motion pair to make their determination.

Study Two: Velocity method versus fixed blend-length

This experiment was conducted to determine whether participants judged motions con-

taining a transition generated by the velocity method to appear more natural than motions

containing a transition generated by a fixed blend-length. The experimental procedures

and preparation of stimuli were identical to Study One above, except that the eight mo-

tions chosen for study consisted of boxing, dancing, and tai-chi motions, motions of a type

we believed most suitable for the velocity method. Participants were again presented with

eight motion pairs.

Study Three: Geodesic distance method versus timewarping method

In this experiment we studied whether participants judged that motions containing a tran-

sition generated by the geodesic distance method appeared more natural than motions con-

taining a transition generated using the timewarping strategy discussed in Section V.1.4.

The experimental procedures and stimuli were identical to those of Study One. The time-

warped transitions averaged a warp of 10 frames; for example, one motion blended 18

frames in the from motion to 28 frames in the to motion.
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Study Four: Geodesic distance method versus velocity method

This experiment was composed of two parts. The first part is to determine whether par-

ticipants judged motions in the cyclic locomotion category such as walking and running

containing a transition generated by the geodesic distance method to appear more natu-

ral than motions containing a transition generated by velocity method. The second part

is to determine whether participants judged motions in the physical activity category such

as boxing and dancing containing a transition generated by the velocity method to appear

more natural than motions containing a transition generated by geodesic distance method.

The experimental procedures and preparation of stimuli were identical to Study One above,

except that participants were presented with three motion pairs while each pair contains

transitions using geodesic distance method and velocity method presented in random order

for the each of the two parts.

V.2.2 Results and Analysis for Studies of Transition Methods

Comparison of Methods

Table V.2.2 shows the percentage of study participants preferring various methods over the

others as tested in Studies One, Two, Three, and Four. In particular, we see that 96.4% of

the participants thought that the geodesic distance looked more natural when compared to

a 10-frame blend for the motions studied, 65.7% of the participants favored the velocity

method over the 10-frame blend when asked which produced more natural motion, 55.7%

of participants favored the geodesic distance method over the timewarping method, 75% of

participants favored the geodesic distance method over the velocity method for cyclic loco-

motions, and 88.9% of participants favored the velocity method over the geodesic distance

method for physical activities.

Also shown in Table V.2.2 is the χ2 test statistic applied to these studies. The χ2 test

is used to test the significance of a preference. In other words, we wonder whether the

observed percentage deviates from the value expected by chance or sampling error alone.
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The expected frequencies are equal–that is, half the sample would be expected to be in each

of the two categories by “chance.” An alpha level of .01 was used for all statistical tests

(the critical value of χ2 for this alpha is 6.64). There is one degree of freedom and a sample

size of 280 (35× 8) for studies One, Two, and Three. The sample size is 36 (12× 3) for

each part of study Four.

The observed percentages of users preferring the geodesic distance method and veloc-

ity methods over 10-frame blending is statistically significant. However, it is not clear

that users can successfully distinguish between the geodesic method and our timewarping

method. This result is supported by the comments of many of the participants who noted

that the motions seemed very similar. The same results are found when the data is analyzed

on a per motion basis. Also, for Studies One and Two, there were no individual motions

for which users preferred the 10-frame blend.

Study Four shows that users have preference of methods for generating transitions

one over another. More specifically, users prefer geodesic distance method over velocity

method for cyclic locomtions such as walking, running, and jogging, and velocity method

over geodesic distance method for physical activities such as boxing and free style dancing.

This observation is consistent with our hypothesis that geodesic distance method targets at

the correspondence of motions thus it is suitable for motions with fixed pattern, whereas

for motions like boxing, movements of the player are often not predictable, and people are

rather sensitive to changes in velocity.

V.3 Discussion

We developed two methods for determining the best blend lengths for generating a transi-

tion between two motions using linear blending. Visually appealing transitions are critical

in the re-use of large motion data-sets, and the transition duration is one of the most im-

portant factors in creating a compelling transition. Human motions are highly varied, and

developing a universal method for generating compelling transitions may not be possible.
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Table V.2: The percentage of users that preferred various methods against other methods
in Studies One, Two, Three, and Four. The first column gives the percentage favoring the
first method listed over the second, and the second column gives the χ2 test statistic for the
experiment.

Method % favoring χ2(1,N = 280)
Geo. dist. over 10-frame 96.4 241.4, p < .01
Velocity over 10-frame 65.7 27.7, p < .01

Geo. dist. over Timewarping 55.7 3.66

Method % favoring χ2(1,N = 36)
Geo. dist. over Velocity on cyclic locomotion 75 9, p < .01
Velocity over Geo. dist. on physical activities 88.9 21.8, p < .01

Thus, investigating methods that work for categories of motions seems reasonable.

The first method, which we call the geodesic distance method, determines the best blend

lengths for motions that have a cyclic nature, such as running and walking. The second

method, which we call the velocity method, determines the best blend lengths for motions

that are non-repetitive, activities such as free-form dancing and boxing. These methods

automatically generate a blend length for linear blending given two motions and the frames

in those motions to transition between. This information is readily available from such

systems as [Lee et al. 2002; Kovar et al. 2002a; Arikan and Forsyth 2002]. There is no

need for further modification of blend parameters by a user or animator.

In our experience, our methods work on a wide variety of motions and transition points.

However, we also performed a quantitative evaluation of these methods through a user

study. Users were shown transitions between motions appropriate to the particular methods.

These motions consisted of running at different speeds, walking at different speeds, stand-

ing, idling, boxing, dancing, and tai-chi. When compared against a fixed blend length, users

preferred both the geodesic distance and velocity methods for calculating blend lengths.

The geodesic distance method was strongly preferred. In our user study, there were no
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motion transitions for which users consistently preferred the fixed blend length.

A surprising result of our study was that users showed no preference for our time-

warping method over the geodesic distance method. Timewarping was found to be helpful

for generating transitions by a number of researchers, e.g., [Bruderlin and Williams 1995;

Rose et al. 1998; Kovar and Gleicher 2003]. We conjecture that there are two major rea-

sons for this contradictory finding. First, the method of timewarping used by [Bruderlin

and Williams 1995; Kovar and Gleicher 2003] is more sophisticated and powerful than

our technique, involving dynamic programming. We avoided employing dynamic pro-

gramming because its computational cost precludes its use in a system where performance

demands are interactive and high, e.g., a video game. However, there are quite likely

advantages to the more expensive approach. Another reason may be that timewarping has

been found to be useful when the motions transitioned between have very different timings.

While we included such motions in our user study, we may not have included motions with

significant enough time variations to make timewarping necessary. More investigation of

this area is ongoing.

The methods described in this research could be easily integrated into the systems de-

scribed by [Lee et al. 2002; Kovar et al. 2002a; Arikan and Forsyth 2002; Arikan et al.

2003]. These systems determine transition points as part of their function. The only addi-

tional information needed would be the category of the motions, so that either the geodesic

distance method or the velocity method could be chosen. The same holds true for integra-

tion into a video game. In particular, the computational cost of these methods is minimal

and well within the performance bounds set for animation by most rendering engines.

An important issue for any automatic technique for re-using motion data is its appli-

cability to motions for which it has not been tested. While our motion capture library is

reasonably extensive, it does not contain highly specific motions that would be needed in,

for example, a video game dealing with hockey. We may find new categories of motion for

which we require different methods. Moreover, the perception of visual artifacts depends
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upon the task [Oesker et al. 2000] and upon the rendering style [Hodgins et al. 1998]. In-

sofar as task differs from the motion itself we assume that these effects are not significant,

but have not tested this assumption.

Also, linear blending often exhibits artifacts when foot-slide occurs. In this work, a

support limb is constrained to prevent foot-slide using a particular inverse kinematics for-

mulation. There are other solutions to this problem [Kovar et al. 2002b; Lee and Shin

1999]. We believe that the artifacts present in the motion are dominated by the relative

velocities of the two motions and differences in pose, and thus not by the mechanism of

support limb constraint.
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CHAPTER VI

THE JUST NOTICEABLE DIFFERENCE

This work has so far focused on improving the cost metric for picking transition points

and developing methods to compute good blend lengths using linear blending. There is an

important issue involved in determining blend length for transitions, that is, how noticeable

the blend length of a transition was, i.e., how sensitive users are to changes in motion

transition duration. If users are largely insensitive to changes in blend length, then the

methods used to determine those lengths may be unimportant.

In this chapter, the results on the noticeability of transitions between two segments

of motion are reported, for two transition specifications, start-end transitions and center-

aligned transitions, respectively. These two transition specification are first discussed, and

the methods for conducting a study for determining sensitivity of users are presented, fi-

nally the results are reported and analyzed.

VI.1 Transition Specification

There is no generally accepted standard for generating or specifying a transition in graphics

community. [Rose et al. 1996; Rose et al. 1998; Mizuguchi et al. 2001; Kovar et al. 2002a]

specify transitions using a start and end frame and blend from there, as shown in Figure

VI.1. An alternative way is to specify a transition from frame i to frame j, what is meant is

that frame i and frame j are the 50% in the blend (“center-aligned”). [Arikan and Forsyth

2002; Arikan et al. 2003; Kovar and Gleicher 2003] use this transition specification. Figure

VI.2 illustrate the center-aligned transition scheme.

There are advantages and disadvantages to each of these two methods. Start and end

frames have the advantage that they are intuitive and easy to specify. They also work

well if the transition points are at the end or beginning of motion segments. They can

change the alignment of the motions as the duration of transition is changed. Center-aligned
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Figure VI.1: An illustration of center-aligned transition.

Figure VI.2: An illustration of start-end transition.

transitions have fixed alignment, which is both an advantage and a disadvantage. If the

center-aligned poses are quite similar, then a center-aligned transition is more robust to

variations in the blend length. On the other hand, if the poses are mismatched, then no

amount of blending will make the transition look good. Thus the center-aligned transitions

put a burden on the cost metric for picking transition points. Center-aligned transitions also

have the disadvantage that depending on the blend length there is a region at the beginning

and end of each motion segment for which a true blended transition can not be made.

VI.2 Method

We ran a set of experiments to determine the sensitivity of subjects to changes in blend

lengths of motion transitions, i.e., to estimate the psychometric function of the differential
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threshold (or “just noticeable difference”). The “just noticeable difference” is the amount

that something must be changed for the difference to be noticeable. It is observed by Ernst

Weber, a 19th century psychologist, that the size of the differential threshold appeared to

be related to the original stimulus magnitude [Hita et al. 1984]. In this experiment, the

original stimulus, i.e., the blend length for the baseline transition, varies for the start-end

transitions according to motions used in the study with relatively small variation, and are

constant for the center-aligned transition.

We asked users to make a series of two-alternative forced choice responses. Participants

were asked to watch two sets of animations. Each set contains a pair of motions. One set

is the reference pair, consisted of two identical motions containing a baseline transition, a

length k transition. K varies for motions and transition schemes used in the study as men-

tioned earlier. The motions in the other set are different, consisting of a length k transition

and a transition with other lengths. Participants were asked to watch two motion sets and to

determine which motion pair consisted of different motions. This somewhat cumbersome

design is necessary to make a two-alternative forced choice test with an objective answer,

meaning that there are two choices and a correct answer as to which set of motions is dif-

ferent. The presentation of the transitions was randomized, both pairwise and among pairs

to eliminate the order effect. Subjects were allowed to guess if they were not sure about the

answer.

VI.2.1 Constant Stimulus vs. Adaptive Method

First we conducted a pilot study using a constant stimulus to determine both the shape of the

underlying psychometric function and the granularity with which a fine-grained study must

be conducted. The pilot study uses “method of constant stimuli” [Leek 2001], where the

threshold is extracted from a fully sampled function. However, in terms of experiment time,

the method of constant stimuli is very expensive. The pilot study takes approximately four

hours per person and is thus impractical for testing many subjects. Many trials are placed
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on locations that are not informative. Thus the pilot study conducted by two people only

serves as the basis for the adaptive experiment, where most trials focus on the interesting

region around the threshold with finer sampling. We chose a staircase adaptive method that

employs an up-down procedure and minimizes the number of the trials.

In an adaptive study, the motion in the two sets of motions that is not of length k will

be increased or decreased according the subject’s past responses. We used a variant of

the asymmetric staircase described by [Wetherill and Levitt 1965]. In our staircase the

difference is continually decreased provided the subject has correctly differentiated the two

previous tests. Upon an incorrect response, the difference is continually increased until the

subject again correctly differentiate two consecutive sets of motions (See Figure VI.4 for

an example). Our staircase converges to a discrimination of 69%, determined by Monte

Carlo simulations. The staircase of [Wetherill and Levitt 1965] converges to 71% correct

discrimination. As an aside, a symmetric staircase was used in the graphics community in

[O’Sullivan et al. 2003].

VI.3 Experiments and Results

In the experiment for both center-aligned transitions and start-end transitions, the following

variables were recorded: the sample point (transition duration) visited, the motion showed

to the participant, the correct answer of the trial, and the answer of the participant. Motions

were shown with randomly picked order of presentation in real time, i.e., the order of the

reference pair and comparison pair and whether the different motion appears first or second

in the comparison pair are both randomized in real time. The stopping condition for the

adaptive procedure occurs when any sample point is visited ten times. The user interface

for the adaptive study is shown in Figure VI.3. Figure VI.4 shows the adaptive track of one

participant in the study. We can see that the number of trials is significantly reduced, and

most of the trials were conducted around the threshold, which is the blue line in the figure.

Such an adaptive study normally takes only around half an hour.
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Figure VI.3: The user interface of the adaptive procedure.
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VI.3.1 Center-aligned Transitions

For the center-aligned transitions between two different motions, transitions using blend

length of 10 frames (k = 10) were generated, and also transitions of lengths 2 (k-8) to 22

(k+12) at two frame intervals were generated. Two different motions were used. Twelve

adults participated in the study. Figure VI.5 shows the result of the study. The result we

conclude from this study is that people can differentiate between center-aligned transition

lengths that differ by -7 or 10 frames for center-aligned transitions. There was no statisti-

cally significant difference in the performance of the test across motions.

VI.3.2 Start-end Transitions

Similar studies were conducted for the start/end transitions between two different motions.

Transitions using the optimal transition length k computed using the geodesic distance

method were generated, and transitions of lengths k-15, k-10, k-5, k, k+5, k+10, and k+15

were generated for the pilot study. Three different motions are used for the adaptive study,

k = 9, 15, and 16 respectively. More transitions of lengths around the thresholds determined

by the pilot studies were generated for the adaptive studies. Again, twelve adults partic-

ipated in the adaptive study. Figure VI.6 shows the results of the adaptive study for the

start-end transitions. We found that people can normally distinguish between transitions

length that differ by 2 or -3 frames for start-end transitions. There was no statistically sig-

nificant difference in the performance of the test across motions. People are more sensitive

to start-end transitions since some of the natural alignment of the motion is wrapped into

the transition.

VI.4 Discussion

The blend length or duration of the transition is a critical component in the visual fidelity

of a spliced animation system. The purpose of the just noticeable difference study is to

know how well one can discriminate transitions differing in blend length. It saves the time

for the animator of any unnecessary and overdone change of the blend length and provides
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a guideline for developing transition methods and comparing results by changing blend

length. But note that the just noticeable difference experiment does not inform of us of the

difference in visual appeal, which in general is a difficult quantity to measure without bias.

The results of the studies showed that it is important which specification you use to

generate motion transitions. People are more sensitive to the changes in blend length of the

start-end transitions than the center-aligned transitions. This finding makes sense because

of the inherent phase component or alignment in the start-end transitions. Remember that

the start frame of transition in the from motion and end frame for transition in the to mo-

tion are specified when creating a start-end transition. Therefore, the correspondence of

frames of two motion segments for blending is shifted if the blend length is made shorter

or longer. For cyclic locomotions such as walking and running, each frame in the motion

normally corresponds to a certain phase of a cycle, namely, stance phase and swing phase.

Consequently, the phase alignment of two motion segments for blending are shifted while

changing the blend length. So far, the transition points for the start-end transitions were

randomly picked, and the optimal blend length computed by the geodesic distance method

was used as the baseline.

Center-aligned transitions are less sensitive to variations in the blend length. However,

center-aligned transitions rely at present too heavily upon transition metrics. Many motion

generation systems identify similar frames using different transition metrics and create

transitions between them. However, there are no guarantees that optimal transition points

selected by a method leads to visually appealing transitions regardless of the blend length.

The quality of the result motion is directly related to the degree of the phase matching of

the whole blending period. If there is a strong correspondence of the major joints such

as legs and arms all through the blending, the resulting motion is normally smooth and

without hops. Therefore, changing the transition points by changing the alignment, if it

can be done in a computationally efficient way, represents a second-pass process that can

improve the visual appeal of a transition. The optimal blend length determined by geodesic
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distance method for start-end transitions maximize the phase matching. For center-aligned

transitions, if the poses picked by a distance metric are out of alignment, a longer blend

length sometimes helps but there is often still artifacts in the resulting motion.
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CHAPTER VII

SUMMARY AND FUTURE WORK

In this thesis we focused on three problems involved in character animation generation us-

ing motion capture. First, we improved a cost metric for pose comparison by optimizing

weights used in its computation. Second, we developed methods to compute a good dura-

tion for blending when creating a motion transition. Third, we determined the sensitivity

of observers to a blend duration by conducting psychophysical studies. These methods and

studies provide insights for motion editing and for interactive video games.

New motion can be created by piecing together sequences of motion and generating

transitions between them. The visual quality of these transitions is critical to the resulting

motion. Several cost metrics have been proposed for pose comparison and determining

good transition points. We demonstrated that a cost metric could be improved for deter-

mining good transition points by optimizing the parameters involved in the metric using

examples of good and bad motion transitions. Prior to this work, such parameters were

tuned in an ad hoc manner by animators and game designers. Moreover, we employed a

leave-one-out cross validation of the weights to show that the optimized weights are robust

and work for a wide variety of behaviors.

Once these transition points are selected, blending is often used to generate smooth

transitions among segments of motions. The duration of such a transition is an important

factor in the visual appearance of the synthesized motion. Many motion editing systems

simply set fixed duration for motion transitions. However, using a fixed duration does not

ensure the plausibility of the synthesized motion. We showed that by computing an opti-

mal duration for blending, visually pleasing transitions could be generated without further

tuning.

We developed two methods for determining an optimal blend length for motion tran-
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sitions, the geodesic distance method and the velocity method. These two methods are

suited to different types of motion. The geodesic distance method works well for cyclic

locomotion such as walking and running; the velocity method works well for other phys-

ical activities such as boxing and dancing. These methods give guidance to designers of

animation systems who wish to incorporate varying blend lengths into their systems.

All of our results were tested empirically. This testing allows us to have confidence

in the robustness and generalizability of our results. We first conducted a user study to

evaluate the weights obtained by optimization. The user study demonstrated that the opti-

mized weights select more appealing transition points than the original weights. Second,

we empirically evaluated the methods developed to determine the optimal blend length.

We found that users prefer the transition method we developed over a generic fixed-length

blend. Moreover, we found that users prefer the geodesic distance method over the velocity

method for cyclic locomotion; users prefer the velocity method over the geodesic distance

method for physical activities. This finding is consistent with our understanding of different

transition requirements for different types of motions. Phase correspondence is important

for transitions among cyclic locomotion; changes in velocity are important for transitions

among physical activities.

Additionally, we conducted studies to determine how noticeable the blend length of

a transition was, in other words, the “just noticeable difference” to the changes in blend

length. We explored two transition specifications and found that it is important which

specification we chose; people are more sensitive to changes in blend length of start-end

transitions than the center-aligned transitions because of the inherent phase alignment in the

start-end transitions. We concluded that people can differentiate between transition lengths

that differ by -7 (i.e., shorter by 7 frames from a reference duration) or 10 frames (i.e.,

longer by 10 frames from a reference duration) for center-aligned transitions; people can

distinguish between transition length that differ by -3 or 2 frames for start-end transitions.

The increasing richness of human characters in three-dimensional computer games
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should make transitions in motion data an increasingly important problem. We believe

that these results give significant guidance to those concerned with creating virtual humans

with a rich repertoire of behaviors, and may help in the re-use of large motion capture

data-sets.

VII.1 Future Work

This work, while answering several important questions about motion transitions, gives rise

to other questions, potentially as interesting. One important issue is the extent to which the

methods we developed extend to motions and categories of motions different from those

we have tested, especially some highly dynamic motions such as acrobatic gymnastics. We

would like to test the methods developed in this work in a larger library with a greater

variety of behaviors. For instance, we would like to include some “backward” motions (for

example, backward running like a baseball outfielder backing up to catch a ball), which

may result in the position-velocity weight having marginal impact for the cost function.

Moreover, motions with significant time variations are necessary to investigate the effect of

timewarping methods. It is difficult to find examples of such motions in current libraries,

but examples of such motion would be dance or floor exercise where the tempo varies.

We may also find new categories of motion for which we require different methods for

determining duration of transitions. This work has ignored one of the main drawbacks of

linear blending, that a linear blend may cause the geometry of the character to intersect

with itself. For our motions, such intersections have usually not been a problem. It appears

to be a difficult problem, determining if this occurs and what to do about it, but it is an

important problem to consider for future work. Determining a fast way of detecting this

situation would extend its utility.

Another approach to generating motion transitions uses dynamic simulation to generate

motions from one segment to another [Zordan and Hodgins 2002; Rose et al. 1996]. It

is particularly useful for behaviors such as multiple player sport motions, for example,
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football games, for which we need to create physics based transitions between motion

capture segments to simulate the physical contact between players. We would like to test

and incorporate our methods into such dynamical simulation systems that produce streams

of animation. These types of systems typically impose torque constraints that will affect

the duration of transitions, but it is likely that leeway exists in picking the transition.

Another interesting avenue to explore would be the evaluation of the naturalness of syn-

thesized human motion. Much of the research in motion capture has focused on techniques

for adapting existing data to new situations. They propose hypothesis on creating natural-

looking motion, but a measure of naturalness does not exist to assess the quality of the

resulting motion. The evaluation of naturalness of human motion is a difficult problem be-

cause humans are familiar with these motions and very sensitive to anything unusual. Also

note that the just noticeable difference study we did measured how sensitive people are to

changes in transitions, but it doesn’t tell us about the difference in visual appeal. To assess

the visual appeal, one possible method is to label example motions based on their natural-

ness manually, and train classifiers to distinguish between natural and unnatural motions

based on these examples.

VII.2 New Directions

In this section we discuss interesting novel directions of research that represent an out-

growth of the current work, but for which only preliminary results are available. Human

motion is usually highly correlated, as shown in Figure III.9. One approach to manipulat-

ing human motion data is to characterize it using a model with a lower dimensionality than

the intrinsic dimensionality of the data (the configuration space of the body). The lower-

dimensional space describes a lower-dimensional manifold of the configuration space. It

also provides a geometric structure of the motion data that defines a controllable surface by

which new motion data can be generated.

Principle component analysis (PCA) and multidimensional scaling (MDS) are classical

90



techniques for dimensionality reduction. PCA and MDS discover the structure of data lying

on or near a linear subspace of the high-dimensional input space and thus reduce the dimen-

sion of the input data. Tenenbaum et al. introduced Isometric feature mapping (Isomap)

[Tenenbaum et al. 2000] as a nonlinear dimensionality reduction technique. Isomap pro-

vides a way to discover the essential nonlinear structure that are invisible to PCA. Isomap

combines the major algorithmic features of PCA and MDS to learn a broad class of non-

linear manifolds. The Isomap algorithm has three steps: (1) Construct the neighborhood

graph. (2) Compute the shortest paths. (3) Construct d-dimensional embedding.

The Isomap algorithm (Isomap algorithm from http://isomap.stanford.edu) takes as in-

put the distance between all pairs of data points in the high-dimensional input space. We

also need a distance metric that measures the dissimilarity between motion frames. We

used the distance metric proposed in Chapter 2, which is based on joint orientations. We

ran Isomap with 7 neighbors/point. Figure VII.2 shows the residual variance of a 120 frame

walking motion shown in Figure VII.1. We pre-select the number of dimensions in which

to embed the data, from one to 10 dimensions. We usually select the “knee” of the curve

as the dimensionality of the embedding space. In this example, the “knee” occurs at three

dimensions and the three dimensional Isomap embedding of the motion is shown in Figure

VII.3. The intrinsic cyclic property of the motion is captured and shown as three circles

by the Isomap algorithm. We also explored other types of motion, for example, dancing.

Figure VII.5 shows the residual variance of a 700 frame hiphop dancing motion shown in

Figure VII.4 for dimension one to 10. For this motion, it is not as clear what the dimension

of the embedding should be. We selected five dimensions for training purpose (see next

section). To have an idea of what the embedding space looks like, the three dimensional

Isomap embedding of the motion is shown in Figure VII.6. It is difficult to discern any

structure in this figure. It is probably because of the lack of correlation between joints of

the motion. A small number of degree of freedom is not sufficient to describe such an

animation behavior.
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Figure VII.1: The walking motion used for dimensionality reduction.

VII.2.1 Neural Networks

After obtaining the low dimensional manifold of motions, we could potentially estimate

new poses and thus, transitions, in this space. The important issue here is how to re-

construct the motion data in the space of the original data given the poses in the low dimen-

sional manifold. Re-construction of animation data must also deal with the global position

and orientation of the body in space, as well as contact-constraint information such as

avoiding foot-slide.

We explored one of the popular machine learning techniques, neural networks, to es-

timate motion data in the space of the original data. Neural networks provided a gen-

eral, practical method for learning real-valued, discrete-valued, and vector-valued func-

tions from examples [Mitchell 1997]. It has been successfully applied to problems such

as speech recognition, face recognition, and learning robot control strategies. We tried the

BACKPROPAGATION algorithm in our work. The BACKPROPAGATION algorithm is
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Figure VII.4: The dancing motion used for dimensionality reduction.
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the most commonly used Neural Networks learning technique. It employs gradient descent

to attempt to minimize the squared error between the network output values and the target

values for these outputs. It is appropriate for problems where interpreting the learned target

function is not important and long training times are acceptable.

The termination condition for the BACKPROPAGATION algorithm needs to be spec-

ified by the user, for example, how many epochs are needed or what the error threshold

of the training should be. However, since the BACKPROPAGATION algorithm has been

shown to suffer from overfitting, an early stopping technique has been used to improve gen-

eralization. In this technique the available data is divided into three subsets, the training

set, the validation set, and the testing set. The validation set is used to monitor the training

process. When the network begins to overfit the data, the error on the validation set will

typically begin to rise. The training is stopped if the validation error increases for a spec-

ified number of iterations. The testing set is used for comparing models, not for training

purpose.

VII.2.2 Motion Synthesis

The parameterized low dimensional space obtained by neural networks allows us to esti-

mate natural in-between frames. The input of the network is a low-dimensional Isomap

embedding of the motion. The target is then the full dimensional motion except the global

translation and orientation for training. The learned network is a parameterized space of

motion. We can specify a arbitrary curve in low dimension, and generate the corresponding

sequence of motion.

For the walking motion we used, the input is the three dimensional embedding of

Isomap. For the hiphop dancing motion, the input is the five dimensional embedding of

Isomap. We applied this method on motion re-sequencing whereas frames of motion were

randomly picked and linear interpolated in the low dimensional Isomap embedding space,

and then projected onto full dimensional motion space using the trained network. The cur-
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rent results need further improvement as of tuning the dimensionality reduction and training

the network. This is the subject of on-going work.
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[Schödl et al. 2000]SCHÖDL, A., SZELISKI, R., SALESIN, D. H., AND ESSA, I. 2000. Video
textures. In Proceedings of ACM SIGGRAPH 2000, ACM Press / ACM SIGGRAPH /
Addison Wesley Longman, Computer Graphics Proceedings, Annual Conference Series,
489–498. ISBN 1-58113-208-5.

[Shoemake 1985]SHOEMAKE, K. 1985. Animating rotation with quaternion curves. ACM
Transactions on Graphics 19, 3 (July), 245–254.

[Sidenbladh et al. 2002]SIDENBLADH, H., BLACK, M. J., AND SIGAL, L. 2002. Implicit
probabilistic models of human motion for synthesis and tracking. In Computer Vistion —
ECCV 2002 (1), Springer-Verlag, Copenhagen, Denmark, A. Heyden, G. Sparr, M. Nielsen,
and P. Johansen, Eds., Lecture Notes in Computer Science, 784–800. 7th European Con-
ference on Computer Vision.

[Tenenbaum et al. 2000]TENENBAUM, J., SILVA, V., AND LANGFORD, J. 2000. A global
geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–
2323.

[Wetherill and Levitt 1965]WETHERILL, C. B., AND LEVITT, H. 1965. Sequential estimation
of points on a psychometric function. British Journal of Mathematical and Statistical
Psychology 18, 1–10.

103



[Wiley and Hahn 1997]WILEY, D. J., AND HAHN, J. K. 1997. Interpolation synthesis for
articulated figure motion. In Proceedings of the Virtual Reality Annual International Sym-
posium, IEEE Computer Society Press, 157–160.
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