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CHAPTER I 
 
 
 

INTRODUCTION 

 

Toxicology and Xenobiotic Metabolism 

Toxicology is the study of the affects of endo/xenobiotics on organisms, the 

environment, etc.  It traces its roots back to the study and use of poisons as weapons of 

war, assassination, and survival (1).  Modern toxicology began during the industrial 

revolution.  One of the by-products of this new productivity was the exposure of many 

workers to new toxins and the release of these toxins into the environment.  Beginning in 

the 1800’s, advances in analytical chemistry allowed detection and identification of these 

new compounds and in turn, how they affected those who were exposed (1).  In more 

recent years, the tools of the toxicologist have become refined so that effects of 

endo/xenobiotics on the cellular and molecular level can be measured.  These tools have 

been of great importance in the pharmaceutical industry.  Drugs (xenobiotics by 

definition) and their metabolites are screened prior to use to eliminate most unwanted 

side effects.  Millions of dollars are saved because many molecular scaffolds are avoided 

at the outset because their metabolism is known to lead to toxic intermediates. In many 

ways, the desire to find new drugs has driven the study of xenobiotic metabolism (1). 

A large majority of xenobiotics are not absorbed into the host cells and upon exposure 

are simply excreted; however, for those that do make it in, there are large numbers of 

enzymes that recognize, bind, react/conjugate, and excrete these invaders (1).  Most 

organs or cell types express some version of these enzymes but they are in highest 
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abundance in the liver.  Those that perform chemistry on xenobiotics are grouped (based 

on chemistry) into either Phase I or Phase II enzymes (Figure 1). 

 

Reaction Enzyme Localization 

Phase I 
Hydrolysis 
 
 
Reduction 
 
 
 
 
 
Oxidation 
 
 
 
 
 
 
 
 

Esterase 
Petidase 
Epoxide hydrolase 
Azo- and nitro-reduction 
Carbonyl reduction 
Disulfide reduction 
Sulfoxide reduction 
Quinone reduction 
Reductive dehalogenation 
Alcohol dehydrogenase 
Aldehyde dehydrogenase 
Aldehyde oxidase 
Xanthine oxidase 
Monoamine oxidase 
Diamine oxidase 
Prostaglandin H synthase 
Flavin-monooxygenases 
Cytochrome P450 

Microsomes, cytosol, lysosomes, blood 
Blood, lysosomes 
Microsomes, cytosol 
Microflora, microsomes, cytosol 
Cytosol, blood, microsomes 
Cytosol 
Cytosol 
Cytosol, microsomes 
Microsomes 
Cytosol 
Mitochondria, cytosol 
Cytosol 
Cytosol 
Mitochondria 
Cytosol 
Microsomes 
Microsomes 
Microsomes 

Phase II 
 Glucuronide conjugation 

Sulfate conjugation 
Glutathione conjugation 
Amino acid conjugation 
Acylation 
Methylation 

Microsomes 
Cytosol 
Cytosol, microsomes 
Mitochondria 
Mitochondria, cytosol 
Cytosol, microsomes, blood 

 
Figure 1.  Enzymatic paths for the biotransformation of endo and xenobiotic compounds.  
Reproduced from (1) page 136 with the permission of the McGraw-Hill Companies. 
 
 

Phase I enzymes perform reactions whose primary consequence is alteration of the 

oxidation state of the compound; while, Phase II enzymes conjugate the compound with 

another construct (Figure 1).  The resulting conjugate is either immediately exported and 

excreted or is broken down further and then excreted (1).  
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Of the Phase II pathways, GSH and its transferase enzymes (GSH transferases) are one 

of the most studied.  This is most likely due to GSH’s constitutive presence in almost all 

cell types.  In the liver, GSH concentrations can be as high as 10mM (1, 2).  

 

GSH Synthesis, Regulation, and Chemistry 

GSH (γ-Glu-Cys-Gly) is a tripeptide that carries out many important cellular reactions.  

Its chemistry is derived from its structure (Figure 2).  The  γ-glutamate linkage gives the 

molecule a unique signature in the cytosol allowing for its regulation by specific 

peptidases and affording resistance to non-specific peptidases allowing its concentration 

to reach chemoprotective levels.  The cysteine gives the molecule its redox/nucleophilic 

characteristics with the sulfur side chain performing almost all of its chemistry (1-6). 

 
  
 

NH2

CHC

H2CHO

O

CH2

C

O

NH

CH C

H2C

O

SH

HN CH

C

H

O

HO

 

 
Figure 2.  Chemical structure of GSH (from left to right): γ-glumate, cysteine, and 
glycine 
 
 

The GSH concentration in the cell is maintained through a cycle of GSH synthesis and 

catabolism via the γ-glutamyl cycle (Figure 3).  It is synthesized in two ATP dependent 

reactions.  The first step is the formation of a peptide bond between the glutamate side 
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chain and cysteine by γ-glutamylcysteine synthethase.  In the second step, glycine is 

attached to the C-terminus of the cysteine moiety via GSH synthetase.  Following its 

synthesis, GSH can either perform chemistry or be catabolized.  It is catabolized in two 

steps.  First, the γ-glutamate is transferred to another amino acid (AA) by γ-glutamyl 

transpeptidase.  In the second step, cysteine and glycine are separated by a general 

peptidase. γ-glutamate-AA is then transformed back into glutamate by two other enzymes 

(Figure 3).  This cycle is controlled by feed-back inhibition so that the cellular GSH 

levels remain constant (2, 3, 5-7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  The γ-glutamyl cycle [adapted from (2, 6, 7)].  5-Oxoprolinase, γ-
glutamylcysteine synthetase, and GSH synthetase are all ATP dependent enzymes. 

 

(GSH) 
γ-glu-cys-gly 

 
γ-glu-AA 

 
5-oxoproline 

glutamate 

γ-glu-cys 

γ-Glutamyl  
transpeptidase 

γ-Glutamyl  
cyclotransferase 

5-Oxoprolinase 

 γ-Glutamylcysteine   
synthetase 

 GSH synthetase 

AA 

cys-gly 

gly 

cys 

peptidase 

AA 
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GSSG GSH 

NADPH NADP+ 

H2O, OH, SH H2O2/ROS/ 
disulfides 

GSH 
reductase 

Non-enzymatic 
Peroxidases 
Thioltransferases 

GSH performs many chemical reactions in the cell.  Most of these fall into two 

categories: redox and nucleophilic substitution.  Both chemistries are accessible because 

of the chemical/physical properties of the sulfur atom.  As a group VI element, sulfur 

completes its octet of electrons with two lone pairs and two covalent bonds (similar to 

oxygen, also group IV).   As a period 3 element, it has a complete s/p shell (that oxygen 

lacks) so it is not as electronegative; therefore sulfur is stable in its reduced (RSH), 

anionic (RS-), and oxidized (RSSR) states.  This also makes it a better nucleophile than 

oxygen because the valence electrons are more distant from the nucleus, therefore more 

polarizable.  These characteristics are similar to the pattern seen in the halogens.    

GSH’s redox chemistry involves recycling GSH from its reduced to oxidized (GSSG) 

states and back (Figure 4).  GSH is oxidized non-enzymatically by ROS and 

enzymatically via peroxidases and thioltransferases.  Peroxidase enzymes use GSH to 

reduce peroxides to water/alcohols.  Thioltransferases use GSH to mediate the oxidation 

state of proteins and small molecule thiols. GSH reductase reduces GSSG back to free 

thiol while oxidizing NADPH (Figure 4) (2, 3, 5, 8). 

 

 

 

 

 

 

 

 
Figure 4.  GSH redox cycle [adapted from (2, 3)]. 
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The second major chemistry of GSH is nucleophilic substitution.  This chemistry can 

be summarized in the generic nucleophilic substitution reaction (Scheme 1), where R is 

the electrophile and X is the leaving group.  Attack of the sulfur displaces the leaving 

group and yields the GSR conjugate. The reduced form will react uncatalyzed with most 

electrophiles to some appreciable rate.  In its anionic (GS- or thiolate) form, GSH is 

orders of magnitude more reactive (4, 9, 10). 

 

GSH + RX            GSR + HX        Scheme 1 

 

Fate of GSH Conjugates: Metabolism versus Catabolism 

In most biological systems, GSH conjugates are metabolized and excreted.  However, 

some bacteria form GSH conjugates on pathways of xenobiotic catabolism (11, 12).  

Some biosynthetic pathways form GSH conjugates or are GSH dependent (4, 13-18); 

however, those functions and pathways are beyond the scope of this thesis.  

When a GSH conjugate falls into a metabolic pathway, it is recognized, broken down, 

and excreted.  The initial steps of its catabolism follow the normal GSH catabolic 

pathway (Figure 3). γ-Glutamyl transpeptidase and another peptidase remove the 

glutamate and glycine moieities in turn.  The resulting cysteine conjugate falls out of the 

γ-glutamyl cycle and into excretory pathways.  It can be passed intact through the bile or 

travel to the kidney where it is acylated (by Acetyl-CoA) to a mercapturic acid and 

excreted.  It can be broken down further by β lyase to the free thiol (HSX).  This free 

thiol can now fall into other Phase II pathways like methylation or glucuronidation for 

further processing and excretion (1, 2, 6, 19, 20). 
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Though bacterial genomes contain many of the same GSH transferases responsible for 

xenobiotic metabolism, additional GSH transferases have been discovered that form 

conjugates as intermediates during xenobiotic catabolism (Figure 5) (11, 12).  The 

chemistries here are the same as seen previously: nucleophilic substitution (Figure 5a,b, 

and d) and reductions (Figure 5c).  However, the fate of the conjugate is different: it is 

only a transient partner during the catabolism (Figure 5).  The GSH is added and then 

removed.  The altered molecule is then passed to the next enzyme in the pathway. 

 

Cl Cl

H H

GSH

HCl
H H

ClGS
H2O

GSH, HCl

O

H H

O

Cl Cl

GSH

Cl Cl

OHGS
H2O

GSH, 2 HCl

OO

H H

HO

O

OCH3

R

HO

HO

OCH3

R
O

O

GSH

GS-SG

+

O
CO2H

OH

GSH GSH
OH

CO2H

O  
 

Figure 5.  GSH and xenobiotic catabolism: (A) dehalogenation of dicholoromethane (B) 
opening of the expoxide ring arising from the oxidation of cis-1,2-dichloroethene and 
isoprene (C) ether bond cleavage of phenolic ethers of lignin (D) isomerization of 2-
hydroxychromene-2-carboxylate [selected reactions from Figure 2 (12)]. 
 

A 
 

B 
 

C 
 

D 
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GSH Transferases: Evolution, Catalysis, and Secondary Structure 

The GSH transferases are a superfamily of enzymes that are present in almost all 

aerobic organisms.   Within the GSH superfamily lie four family groups: the cytoplasmic 

(canonical), mitochondrial (kappa), microsomal (MAPEG), and fosfomycin/glyoxalase 

(VOC) families (16, 17, 21-23).  Enzymes are placed into a particular family based on 

sequence and/or structural homology.  Within each family, enzymes are classified based 

on higher homology constraints, catalytic function, etc (4, 15, 23).  For example, within 

the canonical GSH transferases higher order constraints have given rise to various classes 

(alpha, mu, pi, sigma, theta, zeta, omega, etc.).  Within each class, isozymes are 

numbered 1, 2, etc depending on their sequence homologies.  I will focus on the 

evolutionary, structural, and functional aspects of the canonical and kappa families. 

The primary difference between these two families is their structural topology: a result 

of their divergent evolution. Both families contain two structural elements: a 

thioredoxin/glutaredoxin fold and an all alpha helical domain (22-27).  The 

thioredoxin/glutaredoxin fold consists of two structural motifs (an αβα motif and a ββα 

motif) tied together by a connecting helix (Figure 6a).  These two motifs are arranged 

into a β-sheet to make one fold and form the active site structure. In the canonical family, 

the alpha helical domain is attached to the end of the thioredoxin/glutaredoxin fold.  In 

the kappa family, the alpha helical domain is inserted into the fold in place of the 

connecting helix (Figure 6a).  Location of the helical domain seems to have little effect 

on the overall structure of the thioredoxin fold (Figure 6b) and GSH transferase catalysis, 

but major implications about how these two families evolved (Figure 6c) (22, 23). 
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C

Helical

Domain

Connecting Helix

N

Helical

Domain

N C

N
C

!"! N motif !!" C motif

Thioredoxin/

Glutaredoxin Fold

Connecting Helix

Mitochondrial (Kappa) FamilyCytoplasmic (Canonical) Family

 
 

 
 

Thioredoxin/Glutaredoxin 1 (Grx1): no alpha helical domain

Disulfide Bond Isomerase A (DsbA):

alpha helical domain insertion

Glutaredoxin 2 (Grx2):

alpha helical domain addition

Cytoplasmic (Canonical) Family:

alpha helical domain addition

Mitochondrial (Kappa) Family:

alpha helical domain insertion

Redox Chemistry

GSH Transferases

 
 

Figure 6.  Evolution of the cytoplasmic (canonical) and mitochondrial (Kappa) GSH 
transferase families. Panel A shows that one evolved following a helical domain addition 
and the other an insertion. Panel B shows the similarity of the thioredoxin fold structure 
of glutaredoxin (C14S) (left), the Kappa enzyme rGSTK1 (center), and the canonical 
enzyme rGSTM1-1 (right) [Reprinted with permission from (22).  Copyright 2004 
American Chemical Society].  Panel C shows the redox enzymes that formed prior to the 
appearance of GSH transferase activity (22, 23, 28). 

A 

C 

B 
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Interestingly, this divergence occurred prior to the evolution of GSH transferase 

activity (Figure 6b). It seems early GSH transferase related enzymes performed redox 

chemistry.  The canonical family shows sequence and structural homology with Grx2 

while the kappa family shows similar homology with DsbA (22, 23). The appearance of 

Grx2 and DsbA was not only a branching point for structural topology but was also a 

branching point in catalysis.  Grx2 is a GSH-dependent reductase (22, 23, 29), while 

DsbA is responsible for the formation of disulfide bonds within periplasmic proteins (30-

32).  Grx2 maintained reducing capabilities (like its precursors) while DsbA shifted its 

chemistry to oxidizing protein thiols (there is no evidence to this point that this structural 

alteration led to the shift in chemistry) (33-35).  Because both families arose following an 

evolutionary branch point, GSH transferase chemistry in the canonical and kappa families 

must have converged independently (unless some unknown event, like a circular 

permutation, linked the families down the line) (22).  

Even though they seem to have arisen independently, their tools for GSH catalysis are 

similar.  Beyond binding of GSH (in the G-site) and the xenobiotic (in the H-site), both 

families enhance the reactivity of GSH by assisting its ionization to GS- (4, 9, 10, 22, 27).  

In general, a side chain hydroxyl group is used to lower the pKa of the thiol proton from 

∼9 to ∼6.5.  This allows the majority of the bound GSH to exist as GS- (at physiological 

pH) and, as mentioned previously, enhances the nucleophilicity of the sulfur.  This 

enhancement is accomplished in either a base (Figure 7a) or hydrogen bonding (Figure 

7b) assisted manner.  The canonical family most often uses a tyrosine residue for this 

purpose.  A few classes (theta and zeta) use a serine residue (4, 15).  The kappa family 

use only a serine residue (22, 36). 
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Figure 7.  GSH transferase assisted ionization of GSH via the hydroxyl group of a 
tyrosine residue.  Panel A shows a based assisted mechanism while panel B shows a 
hydrogen bonding assisted mechanism.  Dashed line indicates a hydrogen bond. 
 

 

Tertiary/Quaternary Structure of the Mu Class GSH Transferase 

The canonical GSH transferases are dimeric enzymes with a monomer molecular 

weight of ∼25 kD.  As mentioned previously, each monomer contains both a 

thioredoxin/glutaredoxin domain (domain 1) and a helical domain (domain 2).  These 

domains are connected via a loop and packed tightly together to form a single subunit 

(Figure 8). Despite the fact that GSH transferase subunits from different classes are 

structurally similar (Figure 8), molecular recognition at the dimer interface is highly 

specific. In vivo, only subunits from within the same class (e.g., mu) associate to form 

homodimers (e.g., M1-1, M2-2) and heterodimers (e.g., M1-2) (4, 27, 37). 

A 

B 
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Figure 8.  Ribbon diagrams of the individual subunits from various classes of the 
canonical GSH transferase family.  They are oriented so that the thioredoxin/glutaredoxin 
fold is on the left (contains the β sheet), on the right is the helical domain, and between 
these is the connecting loop (on the bottom): Alpha (1gse), Mu (4gst), Pi (1gss), Sigma 
(2gsq), Beta (1a0f), S. japonicum (1gta), Theta (1ljr), Zeta (1e6b), Omega (1eem), Phi 1 
(1gnw), Phi 2 (1axd), and Tau (gstu2).  Reprinted with permission from (38).  Copyright 
2002 American Chemical Society. 
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The specificity for interclass dimerization is a result of key electrostatic and 

hydrophobic interactions created across the subunit/subunit interface (15, 27, 37, 39-41).  

The Mu class GSH transferase is a good example.  In this case, the dimer is stabilized via 

a series of intrasubunit interactions between domains 1 and 2 of opposing monomers 

(Figure 9c) (37). The key structural elements that form the interface are illustrated in 

Figure 9 for the Mu class rGSTM1-1.  The first is a hydrophobic ball-and-socket motif 

between F56 located on a loop (56-loop) in domain 1 and a group of hydrophobic side 

chains on the α4 and α5 helices of domain 2 (Figure 9). The second is a cluster of 

electrostatic interactions between β4/α3 of domain 1 and α4 of domain 2. These 

interactions include a salt link between R81 of domain 1 and E90/D97 of domain 2 

(Figure 9).  

Both of these interaction motifs appear to be important for dimer stability in Mu class 

as well as other GSH transferase classes with similar interface structures. Interruption of 

the ball-and-socket motif (F56S) in rGSTM1-1 increased the Kd of the dimer 42-fold to 

0.5 µM relative to the native enzyme (42). Individual disruption of both motifs (F52A 

and R69E) in the rGSTA1-1 isoenzyme, as well as both mutations combined, results in a 

shift in the equilibrium from dimer toward monomer in sedimentation assays (43). 

Binding of ligand to the F56S mutant of rM1-1GST has been shown to return the 

mutant to a native-like structure including stabilization of the dimer (42); however, the 

mechanism of this rescue is unknown.  It is also not known what effect mutations in both 

the “ball-and-socket” motif and the electrostatic core would have on the quaternary 

structure of rGSTM1-1.  In Chapter IV, we used HDX-MS to explore the dynamic 

behavior of the native and F56S mutant in both “apo” and ligand (GSH and/or GSO-)  
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Figure 9.  Primary interactions across the dimer interface of rGSTM1-1. Panels A and B 
are ribbon diagrams of the protein backbone: domain 1 (blue) and domain 2 (magenta).  
Panel A shows GSH (yellow) bound in domain 1 and α helices 4 and 5 of domain 2.  
Panel B shows the side chains representative of the hydrophobic “ball and socket" motif 
(F56 “the ball”) as well as the charge cluster  (R81). Panel C shows all of the intersubunit 
interactions with those in cyan for the “ball and socket” motif and those in red for the 
charge cluster.  This figure was made using the program Pymol (44). 
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bound forms to determine how ligand was affecting both the native and F56S mutant 

structures.  We were able to show that the mutation primarily affected domain 1 and that 

binding of ligand to the F56S mutant restored this region to HDX kinetics similar to that 

of the native enzyme.  The results indicate that the “ball-and-socket” motif not only 

stabilizes the dimer but also stabilizes the active site in the absence of ligand.  In Chapter 

V, a mutant was made containing both a “ball-and-socket” (F56S) as well as a charged-

cluster (R81A) mutation and were able to create a soluble monomer.  HDX-MS was used 

in this case to show that the monomer maintained a native-like structure and allowed us 

to hypothesize a mechanism for intersubunit (domain 1 and 2) cooperativity. 

 

The Kappa Class GSH Transferases from Sequence to Structure 

In 1991, mitochondrial matrix fractions of rat livers were shown to have GSH/CDNB 

conjugating activity (45).  N-terminal sequencing of the purified enzyme showed that it 

had sequence similarity to the Theta class.  This new enzyme stayed in that class until its 

DNA was cloned (46).  This study showed that this enzyme had no sequence similarity to 

any other GSH transferase and was given its own class name: Kappa. After this new 

classification, many studies investigated its kinetics, cellular location, and expression 

levels (46-49) but its disconnect from the other canonical GSH transferases remained a 

mystery.  Upon the determination of the structure of the rGSTK1-1 (22), the answer was 

revealed.  As mentioned previously, the sequence similarity was lost due to the helical 

domain insertion.  This firmly placed Kappa into a family of its own.  Since then other 

studies have confirmed its status (23, 28, 36). 
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Tertiary/Quaternary Structure of the Kappa Class GSH Transferase 

Like the canonical GSH transferases, Kappa is a dimer with a monomer molecular 

weight of ~26 kD (45); however, because of the helical domain insertion, the quaternary 

structure is quite different (Figure 9 & 10) (22).  The canonical enzymes are fairly 

spherical in structure while Kappa is elongated (22).  The dimer interface interactions of 

the canonical family are located at one end of the molecule (Figure 9b).  This forms a V-

shaped crevice along the dimer interface (Figure 9b) and a channel to the active site.  

There is no crevice in Kappa because the dimer interface interactions are spread among 

all domains (the dimer buries 2798 Å2 of surface area along its interface) (22).  This 

difference pushes the GSH sulfur toward the surface (Figure 10a) allowing better access 

to the active site and may be one of the reasons this enzyme is highly active (22).   

Because of the orientation of the thioredoxin folds, the active sites are much closer 

together as well.  The N1 atoms of the bound GSH molecules are only 5.4 Å apart (22).  

It is not surprising then that a couple of the GSH interactions come from the opposing 

monomer (figure 10b).  The GSH binding site is made of similar interactions (Figure 

10b), as seen in the canonical family, although they differ in the number of interactions 

(4, 22, 27).  Canonical GSH transferases have between 12 to 15 interactions with GSH (4, 

27) while Kappa only has eight (Figure 10b; L183 has two interactions: main chain amide 

and carbonyl).  This reduction of interactions does not seem to affect the binding energy.  

For example, the Kd for GSH is ~30 µM (22): a typical value for the canonical GSH 

transferases (4, 27, 50).  This may indicate that the Kappa fold contains an intrinsic 

feature that adds binding energy and supplements for the reduction in GSH interactions. 
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Figure 10.  Ribbon diagram and active site of the Kappa GSH transferase rKGST1-1.  
Panel A shows one dimer with the thioredoxin folds [N-terminal αβα motif (red) and the 
C-terminal ββα motif (green)] and the intervening helical domains (blue). GSH (colored 
by atom with the cysteine sulfur highlighted) is shown as a stick in the active site. This 
figure was created with Pymol (44). Panel B is a blow up of the active site with all of the 
GSH [glycine (cyan), cysteine (yellow) and γ-glutamate (purple)] binding residues 
labeled.  Residue labels are located near the side chain.  Note: K62 and R202 are 
interactions from the opposing monomer (B).  This figure was created with InsightII (51). 
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HCCA Isomerase and the Kappa GSH Transferase Connection 

There are two proteins to which Kappa shows sequence homology (~20% sequence 

identity each).  They are the bacterial enzymes DsbA and HCCA Isomerase.  DsbA has 

the same topology as Kappa (Figure 6) (31); however, its active site is fundamentally 

different.  DsbA has a cysteine (that performs redox chemistry) residue in place of the 

GSH ionizing serine (S16) residue (Figure 11) (22, 32).  Even though the sequence 

identity between Kappa, DsbA and HCCA Isomerase is similar, alignment of Kappa and 

HCCA Isomerase (Figure 11) demonstrates that both are more closely related to each 

other than either is to DsbA.  HCCA Isomerase retains all of the residues important for 

GSH binding (with two conservative alterations) including conservation of the catalytic 

serine. Coupled with the suggestion that HCCA Isomerase is GSH dependent (52-54) it 

seems that this enzyme could be a Kappa GSH transferase.  The case for a Kappa 

connection is even more compelling because recent modeling results suggest HCCA 

Isomerase has a Kappa fold (28). 

 

 
Kappa 7  VLELFYDVLSPYSWLGFEVLCRYQHLWNIKLKLRPALLAGIMKDSGNQPPAM--VPHKGQ 64 
Iso   2  IVDFYFDFLSPFSYLANQRLSKLAQDYGLTIRYNAIDLARVKIAIGNVGPSNRDLKVKLD 61 
 
Kappa 65 YILKEIPLLKQLFQVPMSVPKDFFGEHVKKGTVNAMRFLTAVSMEQPEMLEKVSRELWMR 124 
Iso   62 YLKVDLQRWAQLYGIPLVFPANYNSRRMNIGF-----YYSGAEAQAAAYVNVVFNAVW-- 114 
 
Kappa 125IWSRDEDITESQNILSA--AEKAGMATAQAQHLLNKISTELVKSKLRETTGAACKYGAFG 182 
Iso   115----GEGIAPDLESLPALVSEKLGWDRSAFEHFL---SSNAATERYDEQTHAAIERKVFG 167 
 
Kappa 183LPTTVAHVDGKTYMLFGSDRMELLAYLLG 211 
Iso   168VPTMFLGDE----MWWGNDRLFMLESAMG 192 

Figure 11.  Sequence alignment of rKGST1-1 and the P. putida HCCA Isomerase from 
the nah7 plasmid.  Identities are shown in bold.  Kappa GSH binding residues including 
S16 (*) and the corresponding residues in HCCA Isomerase are shown in blue. 
 

 

* 
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Naphthalene Catabolism in Pseudomonads 

In the late 1950’s, Fernley and Evans compiled their work and that of others and first 

hypothesized a pathway for the oxidative catabolism of naphthalene by soil 

Pseudomonads (55).  Over the next few decades, the chemistry of many of the enzymes 

(56-59) and the location and inducers of the pathway were elucidated (60-62).  This work 

culminated in two papers by Eaton et. al. who sequenced much of the operon (63) and 

quelled the debate about the last of the controversial steps (52).  Figure 12 shows the 

finalized details of the upper catabolic pathway on the nah7 plasmid.  The first three steps 

are dioxygenation, oxidation, and dioxygenation (A, B, and C, respectively) transforming 

naphthalene into HCCA.  This is the acetal version of cHBPA and stabilizes the cis 

configuration such that the equilibrium is about 55% cis to 45% trans (52).  The 

uncatalyzed approach to equilibrium is slow (6 hours to reach it at room temperature in 

H2O at pH 7.0) (52).  HCCA Isomerase increases the rate dramatically so that the 

naphthalene can be utilized on a relevant time scale.  Following isomerization, the 

pyruvate is cleaved in a retro-aldol reaction (step E, Figure 12).  The resulting 

salicylaldehyde is oxidized and passed on to the lower pathway (step F, Figure 12) (52). 

Eaton et. al. cleared up the debate about the exact structures of the substrates and 

products of the HCCA Isomerase step (D, Figure 12); however, the enzymatic 

mechanism remained unclear.  He and others have shown that GSH activates the enzyme 

but might or might not be involved in chemistry (52-54).  It has been suggested that GSH 

activates the enzyme by reducing a catalytic cysteine residue (53, 54); however, that has 

been ruled out because alkylating agents were shown not to affect catalysis (53).  In  



 20 

 
 
 

NADH

O2, H+

OH
OH

H

H

NADH, H+

OH

OH

OH
O

CO2
-

OH
CO2

-

O
O

CO2
-

OH

OH

O

CO2
-

E
+

O

CO2
-

OH

O

OH

O

O-

NAD+

H2O

NADH

H+

O2

GSH

GSH

NAD+ NAD+

HCCA

tHBPA

cHBPA

A B

C

D

F

 
 
 

Figure 12.  The upper naphthalene catabolic pathway on the nah7 plasmid from P. putida 
(52, 63).  Panel A shows the organization of upper pathway on the nah7 plasmid (top) 
and the series of fragments created (52) to analyze the enzymes and substrates/products 
of each step [Reprinted with permission from (52).  Copyright 1992 American Society for 
Microbiology].   Panel B shows the substrates/products of the individual steps and the 
associated enzymes: A, naphthalene-1,2-dioxygenase; B, 1,2-dihydroxy-1,2-
dihydronaphthalene dehydrogenase; C, 1,2-dihydroxynaphthalene dioxygenase; D, 2-
hydroxychromene-2-carboxylate isomerase; E, trans-o-hydroxybenzylidene pyruvate 
adolase; F, salicylaldehyde dehydrogenase (52, 63).  Molecules most relevant to this 
study: cHBPA, cis-o-hydroxybenzylidene pyruvate; HCCA, 2-hydroxychromene-2-
carboxylate; and tHBPA, trans-o-hydroxybenzylidene pyruvate. 
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Chapter VI, the role of GSH in the enzymatic mechanism was investigated and a crystal 

structure was solved confirming HCCA Isomerase has a Kappa fold.  In Chapter VII, 

transient state kinetics measurements of the enzymatic reaction with HCCA/tHBPA and 

the analogs MCCA/tMBPA were used to probe the reaction mechanism.  Single turnover 

multiwavelength stopped-flow experiments showed that cHBPA builds up in the active 

site during catalysis and that the enzyme can perform Michael chemistry.  A crystal 

structure with the product analog (tMBPA) in the active site and demonstrated that a 

covalent intermediate could be formed during the reaction coordinate.  This data allowed 

us to hypothesize an enzymatic mechanism. In addition, global modelling showed that 

our mechanism is plausible.  
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CHAPTER II 

 

HDX-MS: THEORY AND PRACTICE 

 

Because of their labile nature, protons exchange readily with solvent on experimentally 

relevant time scales.  This fact combined with advances in detection has made hydrogen-

deuterium exchange (HDX) an excellent probe for study of a proton’s local environment.  

For efficient use of this technique to study proteins, we must be able to differentiate 

among different kinds of protons in the polypeptide.  

 

Intrinsic HDX Rates in Polypeptides 

Peptides and polypeptides (proteins) contain many different kinds of protons (Figure 

13a).  They fall into three main classes (based on HDX rates): main chain amide (on all 

amino acids except proline), side chain (carboxyl/amine/thiol), and hydrocarbon (Figure 

13a).  Because of the nature of the carbon-hydrogen bond, the hydrocarbon group does 

not exchange on experimentally relevant time scales; however, the other two classes do 

(64-67).  Their intrinsic exchange rates versus pH are given in figure 13b.  Note that 

around pH 2.5 the rate of exchange at the backbone amide is two orders of magnitude 

slower than that of any other proton (64, 67, 68).  This allows capture of only amide 

protons.  First, all protons are exchanged at high pH (Figure 13).  Then the sidechain 

deuterium is selectively removed by backexchanging all side chains off at low pH (where 

backbone amides are slow): the key to the HDX-MS experiment (64-66, 69, 70).  
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Figure 13.  Exchangeable peptide protons (A) and the intrinsic exchange rates of those 
protons versus pH (B).  Panel A is the theoretical polypeptide NDSCK with the 
hydrocarbon (green), side chain (blue), and amide (red) protons labeled.  Panel B is the 
exchange rate profile of various side chain protons as well as that of the main chain 
amide* (64, 67, 68).  Because of their extremely slow exchange, hydrocarbon protons are 
not shown. 
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Protein Dynamics and HDX at the Backbone Amide 

Amide protons that are fully exposed to solvent exchange on millisecond timescales (at 

neutral pH) (67, 68).  However, some amide protons (in proteins) are known to take 

seconds to minutes to hours to days to years to exchange (64-66, 70).  This reduction in 

HDX rates is due to the loss of solvent accessibility to the backbone amide proton.  

Exclusion of solvent is a result of the protein’s secondary/tertiary/quaternary structure. 

 

 
Figure 14.  Linderstr∅m-Lang model of HDX (64, 71).  Backbone amides that are 
accessible to solvent will exchange (step 1) at the intrinsic rate constant (ki).  Those that 
are inaccessible must first be exposed to solvent (step 2) via unfolding or opening (ko) 
and can then exchange (step 3).  Once they exchange they can be trapped in the folded 
structure (step 4) via to refolding or closing (kc).  The equation that defines the overall 
rate constant of exchange (kex) can be simplified to either of two cases: kc>>ki (EX2) or 
ki>>kc (EX1).  This figure is based on Figure 1 from (65).   
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The kinetic basis for this reduction in HDX rate was first described by Linderstr∅m-

Lang in 1955 (64, 71) (Figure 14).  Their model suggests that the exchange rate (kex) of a 

particular amide proton is dependent on both the intrinsic rate (ki) of exchange and the 

rate of opening (ko) and closing (kc) of the protein structure (Figure 14).  It also suggests 

that because in most proteins kc is much slower than ki (EX1 exchange, Figure 14) such 

that kex can be simplified to kc (64).  In essence, the rate of HDX is a direct measure of the 

closing rate or the stability of a certain region of protein structure.  Combining this model 

with the ability to capture only backbone amides in their deuterated state, we can explore 

the dynamic characteristics of a protein by examining the amount of deuteration along the 

protein backbone over time. 

 

The HDX-MS Experiment 

The HDX-MS experiment gives us the ability to measure the amount and locality of 

amide deuteration.  Our method is a modified version of that used by others (72-74).  The 

first step is to sequence the protein.  This involves optimization of peptidase (pepsin in 

this case) digestion to yield the most and highest abundance of peptides.  Each digest is 

then optimized for separation on RP-HPLC and ionization by the ESI-MS.  Then the 

peptides are sequenced to identify their location (we used a pepsin map generated 

previously (73)).  Once this is complete, the HDX-MS experiment can commence. 

A schematic of our experiment is given in Figure 15.  Protein at high concentration is 

diluted 10 fold with D2O and then labeled for various time points.  After the appropriate 

amount of time, the deuteration is “stopped” by lowering the pH and temperature.  It is 

then digested and run on the HPLC (in an ice bath) and into the ESI-MS.  During HPLC 
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(which is done at low pH) side chains are backexchanged so that the amide deuterons are 

all that is left (note: ∼10-15% backexchange and exchange-in is corrected for by 

controls).  The amount of deuteration is measured by the change in mass of the isotopic 

envelope of a particular peptide versus a completed deuterated peptide.  This change is 

plotted versus time and fit to single/multiexponential terms to determine the rate 

constants and amplitudes for groups of amide sites.  

 

Equilibrate Label Quench Digest

10µl of 600µM Mu in

100mM KH2PO4

pH 7.0, 250C

90µl D2O

pH 7.0 at 25oC

 for 15s to 8.5hr

100µl 100mM

KH2PO4

pH 2.4, 00C

5µl of 15mg/ml

Pepsin for 5min

pH 2.4, 00C

Pump

A

Pump

B

PumpPump

AA

PumpPump

BB

ESI

Column

MS

Ice Bath

 

Figure 15.  Schematic of the HDX-MS experiment. 
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CHAPTER III 

 

MATERIALS AND METHODS 

 

Materials 

CDNB, DTNB, D2O (99.9 atom % D), TFA, GSH, GSO3
-, protease inhibitor cocktail 

(P2714), streptomycin sulfate, pepsin, chloramphenicol, lysozyme, o-

methoxybenzyaldehyde, 2’-hydroxyacetophenone, pyruvic acid, glyoxylic acid (50% in 

water), pyrrolidine, NaBH4, p-toluenesulfonic acid, dioxane (anhydrous), and toluene 

(anhydrous) were purchased from Sigma-Aldrich Corporation (St. Louis, MO).  SDS-

PAGE ready gels and HA were purchased from Bio-Rad Laboratories (Hercules, CA). 

DEAE and SP-sepharose (both fast flow) resins, pre-packed Superdex S-200 (25 ml 

analytical) and Sephacryl S-100/200 (120 ml preparatory) columns as well as the 

standards for gel filtration calibration were purchased from GE-Healthcare (formerly 

Amersham Biosciences) (Piscataway, NJ). DMSOd6 (99.9 atom % D) was purchased 

from Cambridge Isotope Laboratories (Andover, MA). Methanol, 2-propanol, acetonitrile 

(all HPLC grade), ethanol (100%, laboratory grade), formic acid (90% in water), ethyl 

ether, Tris, NaCl, KCl, KH2PO4, MOPS, and HEPES were purchased from Fisher 

Scientific (Pittsburgh, PA).  LB, DTT, IPTG, and ampicillin were purchased from 

Research Products International (Mt. Prospect, Il). The pET20b(+) expression vector, the 

E. coli strains [BL21(DE3), B834 (DE3), DH5α, and Tuner], the restriction enzymes 

(XbaI and EcoRI), benzonase, T4 ligase, and the DNA Wizard kit were purchased from 

Novagen (Madison, WI). The E. coli strain XL-1 Blue cells and the Quick Change® kit 



 28 

were purchased from Stratagene (Cedar Creek, TX).  Cloning primers were purchased 

from Invitrogen (Carlsbad, CA).  Crystallography screen Wizard I #27 was purchased 

from Emerald Biostructures (Bainbridge Island, WA).  Plasmids pRE657 and pRE718 

were gifts from the Environmental Protection Agency. GSH concentrations were 

confirmed by titration with DTNB (75). 

 

Preparation of Proteins 

Preparation of Native and F56S mutant rGSTM1-1.  The expression vectors for native 

and the F56S mutant had been generated previously (42).  These vectors were 

transformed into the E. coli strain BL21(DE3) for overexpression.  Cells were grown in 

LB medium containing ampicillin (100 µg/mL). The cell culture was grown at 37° C with 

vigorous shaking until the OD600 = 0.8.  Cells were induced with IPTG for 3h (0.5 mM 

final concentration). Cells were then harvested by centrifugation (6,500 x g, 15 min, 4° 

C) and pellets resuspended in 20 mM MOPS buffer containing 1 mM EDTA and DTT at 

pH 6.8. Cells were lysed by sonication, were treated with 1 mL of 10X protease inhibitor 

cocktail solution, and cell debris was removed by centrifugation (35,000 x g, 35 min, 4° 

C).  The supernatant was then treated with benzonase for 2 h at room temperature to 

digest nucleic acids, and then dialyzed against 20 mM MOPS buffer containing 1 mM 

EDTA and DTT at pH 6.8. The proteins were applied to a cationic exchange SP-

sepharose column (2 x 15 cm), previously equilibrated with the same buffer and eluted 

with linear salt gradient (0-500 mM NaCl) in the same buffer. Fractions containing 

protein were pooled together and dialyzed against 20 mM KH2PO4 buffer containing 1 

mM DTT (pH 6.8). The protein solutions were further applied to a HA column (2 x 10 
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cm), previously equilibrated with the phosphate buffer, and eluted with gradient buffer 

(20–400 mM KH2PO4) containing 1 mM DTT (pH 6.8).  The appropriate fractions where 

pooled together and then dialyzed against 100 mM KH2PO4 (pH 7.0).  The purity of the 

proteins was assessed by SDS-PAGE and their identity was confirmed by MALDI-MS. 

The proteins were concentrated, flash-frozen, and stored at –80°C.  The protein was 

stored as 125 µl aliquots at a concentration of 600 µM protein for apo and 900 µM for 

ligand bound studies. Each aliquot was sufficient for 20 HDX-MS analyses and was used 

within one day of thawing. Protein concentrations for the monomeric species of native 

and the F56S mutant enzymes was determined spectrophotometrically using a molar 

extinction coefficient of 40,060 M-1cm-1 at 280 nm (76).  

 

Preparation of the F56S/R81A Mutant rGSTM1-1. The expression vectors for the 

F56S/R81A mutant of rGSTM1-1 were generated by site-specific mutagenesis using 

Quick Change® protocol (Stratagene). The plasmid DNA containing the F56S mutation 

(42) was used as the template for the R81A change.  The codon CGC (R) in the pET20b 

vector of the F56S mutant was switched to GCC (A) via PCR amplification with the 

primers: 5’ CGC  TAC  CTT  GCC  GCC  AAG  CAC  CAC CTG TGT 3’ and  5’ ACA 

CAG GTG GTG CTT GGC GGC AAG GTA GCG 3’ (mutation in bold). The R81A 

mutation was confirmed by submission to the Vanderbilt Sequencing Core. The mutant 

enzyme was overexpressed in E. coli strain BL21(DE3) Tuner®. The cell culture was 

grown at 30° C in LB media, with ampicillin (100 mg/mL) and vigorous shaking until the 

OD600 = 1.0. Cells were cooled to 15° C and then induced with IPTG for 16 h (0.1 mM 

final concentration). Cells were then harvested by centrifugation (7,000 x g, 30 min, 4° 
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C) and pellets resuspended in 20 mM MOPS buffer (pH 6.8). Cells were treated with 

lysozyme for 30 min, lysed by sonication, treated with 1 mL of 10X protease inhibitor 

cocktail solution, and then cell debris was removed by centrifugation (15,000 x g, 60 min, 

4° C). The supernatant was then treated with benzonase for 1 h at room temperature to 

digest nucleic acids, and then dialyzed against 20 mM MOPS buffer containing 1 mM 

EDTA and DTT (pH 6.8). The proteins were applied to a cationic exchange SP-

Sepharose column (2 x 15 cm), previously equilibrated with the same buffer and eluted 

with linear salt gradient (0-300 mM NaCl) in the same buffer. Fractions containing 

protein were pooled together and dialyzed against 20 mM KH2PO4 buffer containing 1 

mM DTT (pH 6.8). The protein solutions were further applied to a HA column (2 x 10 

cm), previously equilibrated with the phosphate buffer, and eluted with a buffer gradient 

(20–400 mM KH2PO4) containing 1 mM DTT (pH 6.8). Fractions containing protein 

were pooled together and dialyzed against 100 mM KH2PO4 buffer (pH 7.0). The protein 

was then loaded onto a 120 ml Sephacryl S-100 gel filtration column that was pre-

equilibrated with the same buffer. Peaks containing protein were pooled together. The 

purity of the protein was confirmed by visual inspection of a commassie stained SDS-

PAGE and the mass was confirmed by ESI-MS. Protein was concentrated to 600 µM and 

then separated into 125 µL aliquots. Individual aliquots were flash frozen on dry ice and 

stored at –800 C. Samples were thawed on ice and used the same day.  Protein 

concentration was measured spectrophotometrically using a molar extinction coefficient 

of 40,060 M-1cm-1 at 280 nm (76).  
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Preparation of native HCCA Isomerase (from the nah7 plasmid).  The HCCA 

Isomerase gene was subcloned from plasmid pRE618 (figure 13) via PCR using the 

following primers: 5’AAAAAATCTAGACATATGATTGTCGATTTTTATTTCGAT3’ 

and 5’AAAAAAGGATCCGAATTCTCAACTACTTAAATCGGCATTTTG3’.  The 

PCR product was purified with an agarose gel.  Both the PCR product and the plasmid 

pET20b(+) were digested sequentially with XbaI for 2 h and then EcoRI overnight .  They 

were ligated with T4 ligase at 150C for 16 h.  The ligated product was transformed into 

XL-1 Blue cells, plated onto LB plates containing 100 µg/ml ampicilin, and then placed 

in an incubator at 370C overnight.   Using a Wizard kit, DNA was harvested from an 

overnight culture of one colony from the LB/ampicilin plate.   The sequence was 

confirmed by submission to the Vanderbilt Sequencing Core. 

The harvested DNA was transformed into E. coli BL-21 (DE3) Tuner cells for protein 

expression.   A glycerol stock of transformed cells was used to inoculate a starter LB 

culture containing 100 µg/ml ampicilin.  The cells were grown for 20 h at 280C (OD600 ≈ 

0.4) and then used to inoculate 5 x 1L LB expression cultures (containing 100 µg/ml 

ampicilin).  The cells were grown in Fernbach® flasks at 300C for 8h (OD ≈ 0.8) and 

then cooled to 150C.  Each culture was induced with 50 µM IPTG for 18 h.  Cells were 

harvested at 7,000 x g for 1 h.  The cells were stored at –800C (after removing the media). 

All 5 L of cells were resuspended into 225 ml of 20mM Tris, 1mM EDTA and DTT pH 

7.4 (at 250C) containing 40 mg of lysozyme.  The cells were stirred for 2 h at room 

temperature and then cooled in an ice bath.  They were lysed with a Bronson sonicator 

(8power/70%duty) in 5 x 3 min cycles with 5 min for cooling.  Sigma P2714 protease 

inhibitors were added to the lysate and then the cell debris was removed at 15,000 x g.  
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The supernate was removed and treated with 2 g of streptomycin sulfate (in 10 ml H20) 

for 15 min at 40C.  The precipitate was removed at 15,000 x g for 1 h.  The supernate was 

removed and placed into dialysis (see below).   

HCCA Isomerase was purified based on a previously published protocol (53) with the 

following alterations.   The protein was dialyzed, purified, and concentrated at 40C unless 

otherwise noted.   The supernate was dialyzed in 6 L of 100 mM NaCl, 20 mM Tris, 

1mM EDTA and DTT pH 7.4 (at 250C) for 24 h., and then 6 L of 20 mM Tris, 1 mM 

EDTA and DTT pH 7.4 (at 250C) for 24 h.  The protein was then loaded onto a 450 ml 

DEAE Separose Fast Flow column pre-equilibrated with the same buffer.  The column 

was washed with 4 L of the same buffer at ∼4 ml/min until the protein eluted (the first 

major peak after the flow through).  All the fractions in that peak were pooled and 

concentrated to 50 ml in a nitrogen concentrator.  The protein was placed into dialysis 

against 2 L of 50 mM HEPES, 150 mM NaCl, 1 mM EDTA and DTT pH 7.0.  The 

protein was concentrated to 30 mg/ml and then loaded in 4 x 2 ml injections onto a 125 

ml Sephacryl S-200 column pre-equilibrated with the same buffer (column was run at 

250C).  The column was washed with the same buffer at 1 ml/min. Peaks containing 

protein were captured, moved immediately to 00C, pooled, and concentrated to >20 

mg/ml for storage.   The protein was quantified based on the number of tyrosine and 

tryptophan residues per monomer using an extinction coefficient of 41,950 M-1cm-1 (76). 

Protein purity was determined by visual inspection of a commassie stained SDS PAGE 

and its identity was confirmed by MALDI mass spectroscopy.  Protein was flash frozen 

on dry ice and then stored at –800C.   The final yield was ∼25 mg–per-liter of culture. 
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Preparation of HCCA Isomerase containing selenomethionine.  Protein was prepared 

as described above with the following alterations.  The pET 20b(+) vector containing the 

HCCA Isomerase gene was transformed into E. coli B834 (DE3) methionine auxtrophic 

cells for expression.  Protein expression was performed in minimal media (1L final 

volume) containing:  M9 salts, 2 ml of 1M MgSO4, 0.1 ml of 1M CaCl2, 20 mg of 

thiamin, biotin, and uracil, 50 mg of each amino acid, and 20 ml of 20% glucose.  

Overnight starter cultures were inoculated with transformed auxtrophic cells.  The next 

day these starters were used to inoculate 3 x 1L cultures.  Once cells reached an OD600 of 

0.8 they were harvested via centrifugation, and then resuspended into 3 x 1L expression 

cultures containing 50 mg selenomethionine.  Once the cells were back in the shaker, 50 

µl of 1M IPTG was added to each culture and expression continued as normal.  Harvest, 

lysis, and purification was performed just as native enzyme except 5 mM DTT (and not 1 

mM) was used throughout the purification.  

 

HDX-MS of Native and Mutant rGSTM1-1 

HDX Protocol. HDX experiments were designed similarly to those reported previously 

(figure 15) (73, 74). Deuterium exchange was initiated by diluting 10 µL of the 

equilibrated protein solution (600 µM) 10-fold with 90 µL D2O. The protein/D2O solution 

was incubated at 25° C for various times (from 15 s to 8 h). At each time point, the 

reaction was quenched by cooling (tubes transferred to an ice bath), and acidified by 

adding 100 µL of quench buffer, [0.1 M KH2PO4, (pH 2.4) in H2O at 0° C]. After 30 s, 5 

µL of pepsin (15 mg/mL in H2O at 0° C) was added to the quenched sample and 
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incubated on ice for 5 min. All of the samples for one protein (12 time points and 3 

controls) were prepared individually and run on the same day. 

The following changes were used to study the HDX of the native enzyme or the F56S 

mutant with ligand bound.  At the start of the day, concentrated protein stocks were 

mixed with GSH or GSO3
-  (ligand solutions prepared in 0.1 M potassium phosphate 

buffer, pH 7.0) to a final concentration of 600 µM protein and 2 mM GSH (native), 1.5 

mM GSO3
- (native), or 200 mM GSO3

- (F56S). The addition of D2O results in a final 

concentration of 60 µM protein and 200 µM GSH, 150 µM GSO3
-, or 20 mM GSO3

- 

respectively.  Final ligand concentrations are equal to 5 x Km for native + GSH and 5 x Ki 

for native or F56S + GSO3
-. The protein/ligand/D2O solution was incubated at 25° C for 

various times (from 15 s to 8.5 h) to generate a total of twelve time points. 

 

Electrospray Ionization Mass Spectrometry. The extent of deuterium incorporation into 

the peptide fragments was determined by LC/MS using the same protocol described 

previously (64, 69, 73, 74). Mass determinations for the free proteins were performed 

using a Finnigan MAT TSQ-7000 triple quadrupole mass spectrometer (Finnigan Corp., 

San Jose, CA), and for the ligand bound proteins using a Finnigan TSQ® Quantum triple 

quadrupole mass spectrometer (Finnigan Corp., San Jose, CA), both equipped with a 

standard electrospray ionization source outfitted with a 100 micron I.D. deactivated fused 

silica capillary. The mass spectrometer was operated in full scan mode using Quad 1. The 

analyzer was calibrated and tuned to unit resolution with a peak width at half-height of 

0.7. The data were collected from 300 to 900 m/z with a 1-s scan time.  
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Data acquisition and spectral analysis were conducted using Finnigan Xcalibur 

software (version 1.3) on a Dell Optiplex GX270 computer running Microsoft® 

Windows 2000 operating system. The centroid data were analyzed using MagTran 1.0 

beta9 software written by Zhang and Marshall (77). 

 

Kinetic Analysis of Deuterium Incorporation. The amount of deuterium incorporated in 

each peptide was adjusted for back-exchange and exchange-in as described previously 

(64, 69, 73, 74), and plotted versus time.  Two data sets were averaged for each 

experiment.  Progress curves for individual peptides were fitted to the sum of first order 

rate terms according to equation 1, using the program Prism 4.0 (Graphpad Software), 

where D is the deuterium content of a peptide, N is the number of peptide amide protons, 

ki   is the exchange rate constant for each amide hydrogen, and t is the time allowed for 

isotope exchange.   
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The total number of exponential terms chosen was based on the goodness of each fit.  

The minimum number of terms were used to get the best fit and smallest error.  The data 

are listed as A1(D), A2(D), etc. and k1(D), k2(D), etc.  These refer to the number of 

deuterons exchanged for exponentials 1, 2, etc. and the rate-constant for the exchange of 

the deuterons for exponential  1, 2, etc. 
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Hydrodynamic Behaviour of Proteins 

Size Exclusion Chromatography. The hydrodynamic behavior of the native and 

F56S/R81A mutant rGSTM1-1 as well as HCCA Isomerase was first characterized by 

size exclusion chromatography using a Varian HPLC system equipped with a Tosohass 

TSK-GEL G3000SWXL column (7.8 mm x 300 mm).  The system was preequillibrated 

with 100 mM KH2PO4 buffer and 1 mM EDTA (pH 7.0).  20 µl (20 mg/ml)samples of 

protein stock were injected onto the system and then eluted with the same buffer at 0.5 

ml/min. Elution of proteins was monitored by absorption at 280 nm.  The system was 

calibrated using known standards, and then the molecular weight of the native and mutant 

proteins was determined by correlating their elution volume to the standard curve. 

  

Molecular Mass from Multi-Angle Laser Light Scattering.  The solution molecular 

masses of the native GSH transferase (rGSTM1-1) and its double mutant (F56S/R81A) 

were determined by multi-angle laser light scattering and interferometric refractometry. 

Samples were subjected to gel filtration chromatography (Shodex KW-802.5; 8 mm X 

300 mm; 0.5 mL/min) in 50 mM HEPES, 100 mM NaCl, 0.1 mM EDTA buffer (pH 7.5) 

prior to in line analysis with a DAWN EOS multi-angle light scattering detector, a 

Optilab DSP refractive index detector, and an Agilent 1000 UV detector.  All samples 

were filtered with a 0.2 micron filter just prior to analysis.  Injection volume was 20 µL.  

Stock protein solutions were 600 µM (mutant) or 770 µM (native). Molecular masses 

were calculated with the ASTRA software package (78). 
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Enzymatic Activity Toward CDNB 

Enzymatic conjugation of GSH and CDNB was measured spectrophotometrically at 

340 nm as described previously (79) with the following alterations for the rGSTM1-1 

mutant F56S/R81A and HCCA Isomerase. 

 

Enzymatic Activity of F56S/R81A. All kinetic experiments were carried out in 100 mM 

KH2PO4 buffer (pH 6.5) and 250 C with 500 nM enzyme. The final concentration of 

CDNB was 1.0 mM while that of GSH was 10-40 mM. All rates are corrected for the 

background reaction. 

 

Enzymatic Activity of HCCA Isomerase.  All kinetic measurements were carried out in 

100 mM KH2PO4 buffer (pH 7.0) at 250 C.  CDNB dependent kinetic parameters were 

determined with 1 µM enzyme, 250 µM GSH and CDNB varied from 50 µM-1000 µM 

(subsaturating but solubility limit). A linear fit of velocity vs [CDNB] was used to 

determine kcat/Km
CDNB. 

 

GSH Binding to HCCA Isomerase 

Removal of exogenous GSH.  The exogenous GSH was removed from the protein by 

further dialysis steps following gel filtration.  The protein was sequentially dialyzed 

against 1 M KCl, 50 mM HEPES, 1 mM EDTA and DTT.  64 L total was needed to 

remove almost all of the GSH from the protein assayed in Figure 3.  174 L was needed to 

remove 93% of the GSH from the protein used for the binding assays in Figure 4.   The 
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removal of GSH was confirmed by titration of free thiols [Ellman assay (75) in 8 M urea] 

and the CDNB/HPLC assay described below. 

 

RP-HPLC of GSH-CDNB adduct.   GSH-CDNB adducts were loaded (25 µl injections) 

onto a Beckman-Coulter (Fullerton, CA) 4.6 mm x 250 mm C-18 column and then 

washed for 5 min with 50 mM sodium acetate pH 5.0.   Peaks were then eluted with a 

linear gradient of 0%-90% acetonitrile over 10 min and monitored at 340 nm.   GSH-

CDNB standard was formed in a reaction of 1 mM GSH and 5 mM CDNB in 200 mM 

Tris pH 8.0 at 250C for 3h.  The adduct concentration was determined at 340 nm (ε = 

9,600 M-1cm-1) (79) and then a standard curve of adduct concentration versus area-under-

the-curve was generated via 25 µl injections of serial dilution of the GSH-CDNB stock.  

The amount of GSH remaining in any protein preparation was measured by adding 1 µl 

of 100mM CDNB (in ethanol) to 100 µl of protein (200-600 µM range) and allowing it to 

react for 1 hr at room temperature.  The reaction was quenched via the addition of 100 µl 

of chloroform.  The sample was vortexed, centrifuged, and then a 25 µl aliquot was 

analyzed on the HPLC. 

 

Kinetics of GSH binding.  Approach to equilibrium kinetic data for GSH binding were 

carried out on an Applied Photophysics Ltd. Model SX17MV stopped–flow spectrometer 

with a 0.2 cm pathlength cell.  All experiments were done in 100 mM KH2PO4 pH 7.0 at 

100C.  The rate of appearance (kobs) of thiolate anion (GS-) was measured in absorbance 

mode at 239 nm by mixing HCCA Isomerase (10µM final) with varying [GSH] from 20 

µM to 2000 µM final.  An average of 4-6 shots was fit to a double exponential.  The off-
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rate of thiolate anion (GS-) was determined by measuring the loss of absorbance at 239 

nm using a Perkin-Elmer (Boston, MA) lambda 45 double-beam spectrometer equipped 

with a 0.2 cm pathlength cell.  A solution of HCCA Isomerase (10 µM final) and GSH 

(100 µM final) was mixed with GSO3
- (5mM to 200mM) and the drop in absorbance at 

239 nm was fit to a double exponential.  Each [GSO3
-] was repeated in triplicate and 

averaged together.  The change in intrinsic protein fluorescence (kobs) was monitored 

(excitation at 275 nm and emission above 320 nm) upon mixing HCCA Isomerase 

(500nM final) with varying [GSH] from 10 µM to 250 µM final.  An average of 4-6 shots 

was fit to a triple exponential.  The final phase (slow phase) of the exponential decay was 

monitored independent of the first two phases for [GSH] from up to 100 mM final. An 

average of 4-6 shots was fit to a single exponential (when the first 2s of the reaction were 

discarded).   

 

Synthesis and Purification of HCCA, tHBPA, tMBPA, and MCCA 

Synthesis and purification of HCCA and tHBPA.  HCCA and tHBPA were synthesized 

as stated previously with the following alterations.  The plasmid pRE657 (figure 15) was 

transformed into E. coli strain DH5α and selected with 100 µg/ml chloramphenicol.  5 x 

1 L of cultures of LB were grown in Fernbach flasks at 370C to OD600 = 0.8 and then 

induced with 1 mM IPTG.  Cells were harvested after 2 h of expression at 7.000 x g for 

30 min (just prior to turning blue).  The supernate was removed and the cells were stored 

at –800C.  The next day the cells were resuspended into a Fernbach flask containing 1L 

M9 salts, 2 mM MgSO4, 0.1 M CaCl2, 25 mM glycerol, and 2 mM FeSO4.  The cells were 

placed at 370C for 2h.  Then 10 ml of 50 mg/ml naphthalene (in ethanol) was added and 
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the cells were left at 370C for 24 h.  Formation of HCCA and tHBPA was checked as 

described previously.  The cells were removed at 7.000 x g for 2 h.  The supernate was 

stored at 40C. 

The supernate was extracted with ether and the organic layer was discarded.  The 

aqueous layer was acidified with 6 M HCl and then extracted again with ether.  The ether 

was removed via rotovapor and the remaining residue was dissolved in a small amount of 

acetonitrile.  The isomers were separated on a Ranin Instrument Company, Inc. (Woburn, 

MA) Microsorb reverse phase C18/C5 (C18 guard) column with an isocratic gradient of 

75% H2O, 25% actetonitrile, and 0.05% TFA.  The elution of the isomers was followed at 

256 nm, and the peaks were trapped on dry ice (HCCA elutes first).  Each peak was 

extracted with ether.  The organic layer was then washed with 100 mM KP pH 7.0.  The 

aqueous layer was separated, frozen on dry ice, and then lyophilized to powder.  For 

elemental analysis, tHBPA was not returned to the aqueous phase with buffer.  The ether 

was removed via roto-vapor and the sample was dried under vacuum. 

 

Characterization of HCCA and tHBPA.  UV-Vis spectra were collected on a Perkin-

Elmer (Boston, MA) lambda45 double-beam spectrometer.  NMR spectra were collected 

on a Bruker (Germany) 300Mhz NMR. Elemental analysis was preformed by Atlantic 

Microlab, Inc. (Norcross, GA).  UV-Vis spectra of HCCA and tHBPA showed identity to 

those given in (52).  Ratios of ε256, ε296, and ε340 were consistent with pure isomers. 1H 

NMR (300 Mhz, 100 mM KP pH 7.0 in 50% D2O) HCCA: δ 5.88, d (J = 9.8); δ 6.78, d (J 

= 9.8); δ 6.97, m; δ 7.23, m. tHBPA: δ 6.70, m; δ 6.79, d (J= 16.4); δ 7.20, t; δ 7.50, d; δ 
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7.96, d (J = 16.4).  Elemental analysis of tHBPA: cal. C = 62.5, H = 4.2, O = 33.3 and 

found C = 61.8, H = 4.4, O = 32.0. 

 

Synthesis, purification, and characterization of MCCA and tMBPA. UV-Vis spectra 

were collected on a Perkin-Elmer (Boston, MA) lambda45 double-beam spectrometer.  

NMR spectra were collected on a Bruker (Germany) 300Mhz NMR.  APCI-MS data 

were collected on a Finnigan MAT TSQ-7000 triple quadrupole mass spectrometer  

(Finnigan Corp., San Jose, CA). Elemental analysis was preformed by Atlantic Microlab,  

Inc. (Norcross, GA).  

 tMBPA was synthesized and purified as described in (80). 1H NMR (300Mhz, 

DMSOd6) δ 3.90, (3H,s); δ 7.03, (1H, t); δ 7.14, (1H, d); δ 7.28, (1H, d) (J= 16.5); δ 7.50, 

(1H, t); δ 7.90, (1H, d); δ 7.98, (1H, d) (J = 16.5).  APCI-MS of tMBPA; cal M+H = 

206.20 and found M+H = 206.22.  UV showed maxima at A297 (ε = 9,700 M-1cm-1) and 

A343 (ε = 7,300 M-1cm-1).  

MCCA synthesis began the formation of the chromanone using the Kabbe 

condensation (81, 82).  200 mmol o-hydroxy benzyaldehyde and 200 mmol pyruvic acid 

were added to 250 ml of 70% isopropanol.  The reaction was moved to an ice bath and 90 

ml of 2 M potassium hydroxide (180mmol) was added dropwise.  Once the reaction was 

cool, 150mmol of pyrrolidine was added dropwise, the ice bath was removed, and the 

reaction was stirred for 3 d at room temperature.  The reaction was then heated to 700 C 

for 3 d. Products were separated from the reactants by lowering the pH and extracting the 

reaction with ether.   The ether was removed via rotovapor, and the residue was used 

without further purification. The resulting product (2-methylchromanone-2-carboxylic 
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acid, 22.5g) was dissolved in 40 ml of 100% ethanol.  It was mixed with 200 ml of dry 

dioxane. The reaction was cooled in an ice bath and then 10 g of NaBH4 was added 

slowly to avoid heating.  After the addition, the bath was removed and the reaction was 

allowed to stir overnight under argon.   The solvent was removed via rotovapor and then 

the products were dissolved into H2O.  The aqueous layer was removed, acidified, and 

then extracted with ether.  The ether was evaporated and the resulting residue was used 

without further purification.  The product (2-methylchromanol-2-carboxylic acid, 20 g) 

was dissolved in 250 ml of toluene.   Then 4 g of p-Toluenesulfonic acid was added to 

the reaction and it was refluxed for 2 hrs using a Dean-Stark trap to capture evolved H2O.  

The reaction was cooled and extracted with basic H2O.  The aqueous layer was removed, 

acidified, extracted with ether and then discarded.  The organics were evaporated to 

dryness and then recrystallized in toluene.   The overall yield was 18% for 2-

methylchromene-2-carboxylic acid.  1H NMR (300Mhz, DMSOd6) δ 1.60, (3H, s); δ 5.82, 

(1H, d) (J= 9.6); δ 6.32, (1H, d) (J = 9.6); δ 6.84, (2H, m); δ 7.12, (2H, m). 13C NMR 

(300Mhz, DMSOd6) 25.47, 78.12, 115.98, 120.50, 121.54, 124.11, 126.18, 127.05, 

129.89, 153.00, 173.18. Elemental analysis: cal. C = 69.5, H = 5.3, O = 25.3 and found C 

= 69.3, H = 5.5, O = 25.2. UV showed maxima at A263 (ε = 3,700 M-1cm-1) and A305 (ε = 

2,200 M-1cm-1). 

 

Steady State Assay of HCCA Isomerase with Native Ligands and Analogs  

HCCA Isomerase activity assay.  The standard activity assay included 20 nM HCCA 

Isomerase, 100 µM GSH, and 920 µM HCCA (ε256 = 7,790 M-1cm-1) (52) in 100 mM 

KH2PO4 (pH 7.0) at 250C.  Activity without the addition of GSH was measured at protein 
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concentrations from 200 nM to 2 µM. Product production was followed at 340 nm (ε340 = 

8,530 M-1cm-1) (52) in a Perkin-Elmer (Boston, MA) lambda 45 double-beam 

spectrometer.  Velocities were calculated from a linear fit of the first 60 s of the reaction 

and then corrected for background isomerization. 

 

Steady-state kinetics.  Steady-state kinetics of the HCCA to tHBPA and tHBPA to 

HCCA isomerization were measured as described above (activity assay) with the 

following alterations. HCCA Isomerase (100 nM final) and GSH (100 µM final) were 

rapidly mixed with varying concentrations of HCCA (5-750 µM final) or tHBPA (10-

2000 µM final) in an Applied Photophysics Ltd. Model SX17MV stopped–flow 

spectrometer with a 0.2 cm pathlength cell.   The concentration dependence of GSH on 

the isomerization was done similarly using HCCA Isomerase (100 nM final) and HCCA 

(920 µM final) while varying the [GSH] (0.5 to 200 µM final).  Changes in A340 were fit 

to a single exponential followed by a linear steady state.  The constants kcat, Km, kcat/Km, 

and Ki were derived from direct fit of the initial velocities extracted from the linear phase 

to the Michealis-Menten equation (HCCA and GSH) or to the Michealis-Menten with 

incomplete substrate inhibition (tHBPA) (83). The dissociation constant, Kd, was 

determined for HCCA and GSH via a hyperbolic fit to the concentration dependence of 

the amplitude of the exponential phase of the reaction.  All fits were done using the 

program Prism (Graphpad Software, Inc.).  All reactions were corrected for any 

background. 
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HCCA Isomerase activity toward tMBPA and MCCA. All activity measurements were 

carried out in 100 mM KH2PO4 (pH 7.0) at 250C. The presence or absence of enzymatic 

conjugation of GSH to tMBPA or MCCA was measured spectrophotometrically on a 

Perkin-Elmer (Boston, MA) lambda45 double-beam spectrometer via loss of absorbance 

by collecting periodic scans from 400 to 220 nm (5 min between scans for tMBPA and 50 

min for MCCA).  Activity toward tMBPA was measured with 2 µM enzyme + 80 µM 

tMBPA + 800 µM GSH and MCCA with 2 µM enzyme + 250 µM tMBPA + 500 µM 

GSH.  All background reactions were assayed as well. 

Steady state kinetic measurements were carried out in 100 mM KH2PO4 (pH 7.0) at 

250C.  Enzymatic conjugation of GSH to tMBPA was measured spectrophotometrically 

via loss of absorbance at 343 nm.   tMBPA dependent kinetic parameters were 

determined with 2 µM enzyme, 1 mM GSH and tMBPA varied from 2.5 µM-100 µM. 

The kinetic constants kcat, Km, Ki and kcat/Km were derived from direct fit of the initial 

velocities to the Michealis-Menten equation with complete substrate inhibition (83) using 

the program Prism (Graphpad Software, Inc.). All reactions were corrected for any 

background. 

 

Characterization of GS-tMBPA adduct.  HCCA Isomerase dependent GSH/tMBPA 

reactions were loaded onto a Beckman-Coulter (Fullerton, CA) 4.6 mm x 250 mm C-18 

column and then washed for 2 min at 1 ml/min with 20 mM ammonium formate pH 3.5 

(5% acetonitrile) using a Varian HPLC system.   Peaks were then eluted with a linear 

gradient of 5%-95% acetonitrile over 18min at 1 ml/min and monitored at 280 nm.  The 

product eluted as two peaks (corresponding to the two diastereomers) at 9.0 and 9.3 min, 
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respectively.  Peaks were captured for UV-Vis spectra collection on a Perkin-Elmer 

(Boston, MA) lambda45 double-beam spectrometer.  LC-MS data were collected on a 

Finnigan MAT TSQ-7000 triple quadrupole mass spectrometer  (Finnigan Corp., San 

Jose, CA) using the same column, solvent system, and gradient.  The peaks showed a 

M+H mass of 514.05 and 514.15, respectively.  Theoretical M+H for GS-tMBPA is 

514.14. 

 

Transient State Kinetics of HCCA Isomerase with HCCA, tHBPA, and tMBPA 

Single-turnover reactions of HCCA Isomerase with HCCA, tHBPA, and tMBPA.  

Transient state kinetic measurements were carried out in 100 mM KH2PO4 (pH 7.0) at 

25OC.  They were acquired on an Applied Photophysics Ltd. Model SX17MV stopped–

flow spectrometer with a 1 cm pathlength cell for HCCA/tHBPA and a 0.2 cm for 

tMBPA.  Each wavelength of data is an average of 4 to 6 shots.  Multiwavelength 

experiments were done by collecting data (averages) at every other wavelength from 360 

to 250 nm.  Fitting of the multiwavelength data was done using ®Pro K software created 

by Applied Photophysics Ltd. 

 

HCCA/tHBPA single turnover reactions were carried out with 25 µM HCCA 

Isomerase, 250 µM GSH and 20 µM isomer.  The instrument was zeroed on a 

background of enzyme, GSH, and isomers at equilibrium.  Data for single wavelength 

shots were fit to a double exponential to extract the amplitudes and observed rate 

constants (kobs).  Data from multiwavelength experiments were fit to a two-step model to 

extract UV spectra and observed rate constants  (kobs). 
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tMBPA single turnover reactions were carried out with 25 µM HCCA Isomerase, 25 

µM GSH and 20 µM tMBPA.  The instrument was zeroed on a background of enzyme, 

GSH, and tMPBA at equilibrium.  Data for single wavelength shots were fit to a single 

exponential (starting at 2 ms) to extract the amplitudes and observed rate constants (kobs).  

Data from multiwavelength experiments were fit to a one-step model (starting at 2 ms) to 

extract UV spectra and observed rate constants  (kobs). 

 

pH dependence of the nonenzymatic isomerization  

pH dependence of the approach to equilibrium of between HCCA and tHBPA.  HCCA 

was obtained as described previously (Thompson, 2006).  Periodic UV-Vis scans from 

500 to 200 nm of 110 µM HCCA in 50 mM citrate, 50 mM KH2PO4, 50 mM borate (pH 

2.0 to 14.0 at 25OC) were taken on a Perkin-Elmer (Boston, MA) lambda45 double-beam 

spectrometer.  Buffer alone was used in the second beam as a background.  The time 

dependence of the absorbance change at 296 nm (average of two runs) was fit to a single 

exponential using the program Prism (Graphpad Software, Inc.). 

 

pH titration and UV-Vis spectra of HCCA and tHBPA.  HCCA and tHBPA were 

obtained as described previously (Thompson, 2006).  UV-Vis scans from 500 to 240 nm 

of 50 µM HCCA or tHBPA in 50 mM citrate, 50 mM KH2PO4, 50 mM borate (pH 7.0 to 

14.0 at 25OC) were taken on a Perkin-Elmer (Boston, MA) lambda45 double-beam 

spectrometer immediately after introduction to buffer.  The pH dependence of absorbance 

at 420 nm (average of three scans) was fit to a double pKa model using the program 

Prism (Graphpad Software, Inc.). 
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Crystallography of HCCA Isomerase GSH and HCCA/tHBPA 

Crystallization.  Stocks of native protein (and selenomethionine protein) with GSH, 

and HCCA/tHBPA were made as follows: the protein was thawed on ice and then mixed 

with GSH and HCCA to a final concentration of 10 mg/ml protein, 1 mM GSH and 1mM 

HCCA (in the storage buffer).  Protein/ligand stock was mixed 1:1 (3µl each) with 

Emerald Biostructures (Bainbrigde Island, WA) Wizard I #27: 1.2 M NaH2PO4, 0.8 M 

K2HPO4, 0.2 M LiSO4, and 0.1 M CAPS pH 6.1. All crystals were grown under 7 ml of 

Al’s oil in a 72 well microbatch plate from Hampton Research (Laguna Niguel, CA).  

The crystal trays were stored at 210C. Crystals normally grew in 1-2 weeks. Crystals were 

removed from the drop and dipped into a cryoprotectant solution (80% Wizard #27 and 

20% ethylene glycol) just prior to mounting on the X-ray goniometer and flash cooling in 

the cold flow. 

 

X-ray data collection and processing.  Data for the native crystals were collected using 

a Rigaku R-Axis IV image plate area detector on a Rigaku RU-200 rotating-anode X-ray 

generator operated at 5.0 kW.  Crystals were maintained at 100 K using an X-Stream 

cryostat.  Data for the selenomethionine crystal were collected using a Rigaku Micro Max 

007 rotating anode generator and a Rigaku RAXIS IV++ detector (Rigaku/MSC, The 

Woodlands, TX).  The crystal was cooled to 106 K with a Rigaku Xtream 2000 

cryocooler.  The diffraction data for the native and selenomethionine crystals were 

processed with CrystalClear/d*Trek.   The statistics are shown in table 12. 
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Structure determination.  The structure was solved using the technique of single 

isomorphous replacement combined with single wavelength anomalous dispersion.  The 

protein has six methionines and a total length of 203 residues.  The Matthews coefficient 

assuming one molecule in the asymmetric unit is 2.22.  The data sets for a native and a 

selenomethionine crystal were both collected at 1.541 Å.  Using SOLVE, six Se sites 

were identified and the initial figure-of-merit was 0.45 to 2.0 Å.  RESOLVE was used in 

an iterative script with REFMAC5 to build the model.  The best model was built in cycle 

9; it included 175 residues with sidechains identified for 170 of the residues.  The overall 

R factor for this model was 0.339 and the Rfree was 0.365.  The model was completed in 

cycles of viewing and modeling with XtalView and refining with REFMAC5.  The final 

model includes all of the residues (1-203), one molecule of glutathione, three molecules 

of CAPS and 199 water molecules.  Nineteen of the residues, the sulfide group of the 

glutathione, and the CAPS molecule found next to the glutathione are modeled with 

double conformations.  Another of the CAPS molecules is found on the two-fold axis.  

Using sigma-a weighted fo-fc difference maps as a guide, the occupancy for the selenium 

was set at 0.8 for all of the selenomethionine residues. The electron density for residues 

200-203 and 98-99 is weak in both structures.  The final refinement statistics are shown 

in table 13. 

 

Crystallography of HCCA Isomerase with GSH and tMBPA 

Crystallization. Stocks of native protein with GSH and tMPBA were made as follows: 

protein was thawed on ice and mixed with GSH and tMPBA to a final concentration of 

10mg/ml protein, 1mM and 1mM respectively. Protein/ligand stock was mixed 1:1 (3µl 
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each) with Emerald Biostructures (Bainbrigde Island, WA) Wizard I #27: 1.2M 

NaH2PO4, 0.8M K2HP O4, 0.2M LiSO4, and 0.1M CAPS pH 6.1.  All crystals were grown 

under 7ml of Al’s oil in a 72 well microbatch plate from Hampton Research (Laguna 

Niguel, CA).  The crystal trays were stored at 210C. Crystals grew in 1-2 days. Crystals 

were removed from the drop and dipped into a cryoprotectant solution (80% Wizard #27 

and 20% ethylene glycol containing 10mM tMPBA) just prior to mounting on the X-ray 

goniometer and flash cooling in the cold flow. 

 

X-ray data collection and processing.   Data for the native crystal with the analog 

tMBPA in the active site were collected using a Bruker-AXS Proteum PT135 CCD area 

detector and a four-circle kappa goniometer mounted on a Bruker-AXS Microstar 

microfocus rotating anode X-ray generator operated at 2.7 kW.  Crystals were maintained 

at 100 K using a Bruker-AXS KryoFlex cryostat (Bruker AXS, Germany).  Data were 

integrated and scaled using HKL2000 (84).  The statistics are shown in table 17. 

 

Structure determination. The analog containing model was solved by molecular 

replacement using a refined structure of the native protein.  The initial R factor when 

dropping in the protein with only the glutathione molecule was 0.230.  The model was 

completed by alternately viewing and adjusting the model in XtalView and refining it 

with REFMAC5.  In this structure, three residues are modeled with two sidechain 

conformations.  The Ramachandran plot has 95.6% of the residues in the most favored 

region and 4.4% in the additional allowed region.  A substrate analog has been modeled 

in the active site, and there are three molecules of CAPS, two phosphate ions, and 193 
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water molecules. The electron density for residues 200-203 and 98-99 is weak.  The final 

refinement statistics are shown in table 18. 
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CHAPTER IV 

 

LIGAND INDUCED STABILITY OF DIMER INTERFACE MUTANT OF THE RAT 
GLUTATHIONE-S-TRANSFERASE ISOZYME M1-1 EXAMINED BY AMIDE 

HYDROGEN-DEUTERIUM EXCHANGE MASS SPECTROMETRY 
 
 
 

It has been shown previously that mutation of F56 (the “ball”) in rMGST1-1 (Figure 

9) impairs its catalytic function and destabilizes its quaternary structure (42).  The same 

work demonstrated that introduction of ligand (GSH) could restore native-like dimer 

stability and CD spectrum in the F56S mutant; however, the mechanism and extent of 

rescue are still unanswered questions. 

 

Results 

Backbone Amide HDX Kinetics of the Native Enzyme (Apo). Rapidly backbone amides 

(kx > 4 min-1) are the best predictors of solvent accessibility and protein secondary 

structure (67, 70, 85).  Figure 16a illustrates the extent of exchange in the rapid kinetic 

phase for the native enzyme.  The N-terminal thioredoxin-like domain shows a modest 

amount (15 to 30%) of fast exchange in the absence of substrate. Solvent exclusion is 

much more apparent in the α-helical domain beginning with the α4-helix and extending 

through the core of the molecule through the α8-helix. The first two helices (α4 and α5) 

of this domain show no rapidly exchanging amides while the loop that connects them  

(peptide 114-126) is 30%-exchanged after 15 s.  Solvent exclusion  
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Figure 16.  Amide HDX profile of the native enzyme.  Panel A shows the amide HDX 
profile of rapidly exchanging amides (those that are exchanged within 15 sec) first across 
the native M1-1 sequence in both apo (solid bars) and ligand bound forms (open bars). 
Ligand bound enzyme showed similar exchange profiles except where noted.  Panel B is 
a ribbon diagram of the rM1-1 backbone (blue) showing peptides that probe vital regions 
of the structure:  the active site = 5-20 (orange), the F56 loop = 49-62 (red), the 
hydrophobic pocket  = 101-110 of α4 and 137-140 of α5  (yellow). 

B 
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from these helices is consistent with the tight dimer interface packing seen in the crystal 

structure (37). The last 30 residues of the enzyme show a gradual increase in solvent 

accessibility. The C-terminal tail, peptide 209-217 is the most solvent exposed with 50% 

of its amides exchanging in the first 15 s. The last helix (α9) and the C-terminal tail are 

on the surface of the protein and would be expected to exchange rapidly. 

There are three peptides in the native enzyme that show no exchange over the 8.5 hr 

length of the experiment (Figure 16a).  These are peptides 19-21, 92-100, and 158-163. 

Peptide 92-100 is contained in α4 and, as mentioned above, is tightly packed against the 

opposing monomer. It is also in close contact with α5. Peptide 158-163 is located in the 

core of a helical-bundle involving α4, α5, and α6. This bundle is believed to be 

responsible for the overall stability of the C-terminal domain.  The lack of exchange in 

this region is consistent with that hypothesis.  Peptide 19-21 is located in the center of 

α1, which is sandwiched between the β-sheet of the N-terminal domain and α5 of the C-

terminal domain (37). 

The digestion gave four peptides that are good probes of the local dynamics at the 

active site, the site of mutation, and the hydrophobic pocket (Figure 16b).  Peptide 5-20 

(including 5-18, 7-18, 7-20 and 8-20) is a good probe of the active site because it contains 

some of the GSH binding residues including Y7 (binds to sulfur of GSH).  Peptide 49-62 

covers the entire loop region including F56.  Peptides 101-100 and 137-140 cover the 

majority of the hydrophobic binding pocket. 

 

Backbone Amide HDX Kinetics of the Native Enzyme with Ligand Bound.  Backbone 

amide HDX experiments where performed in the presence of 200 µM GSH or 150 µM 
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GSO3
-. The enzyme-GSH complex exhibits decreases in HDX in several regions of the 

protein.  These are best illustrated by the rapidly exchangeable amides (Figure 16a).  The 

decreases in the exchange kinetics are observed in but not confined to the GSH binding 

site. Interestingly, there is a marked reduction in the extent of rapid exchange at the turn 

between the α4 and α5 helices (peptide 114-126) and the C-terminal tail including the α9 

helix. These structural elements define the channel for the approach to the active site 

(37). 

The kinetic profiles for the amide HDX of native enzyme in the presence of either GSH 

or the substrate analogue GSO3
- are identical except for four peptides (5-18, 7-18, 7-20 

and 8-20) at the active site (Figure 17). The enzyme-GSO3
- complex exhibits small but 

reproducible changes in the amplitudes and rate constants for exchange of amides in the 

intermediate and slow time regime (kx < 4 min-1). Although the overall changes are small, 

all four peptides across this region show similar behavior. The spatial resolution can be 

increased by subtraction of the kinetic data from two overlapping peptides as illustrated 

in figure 17b for the backbone N-H of N7.  The side chains of the two residues, W7 and 

Y6 contribute hydrogen-bonding interactions with the cysteinyl carbonyl oxygen and the 

sulfur of GSH, respectively (37). The amide HDX kinetics are sufficiently sensitive to 

detect the difference between a thiolate anion and sulfonate group in the active site. 

 

Backbone Amide HDX Kinetics of the F56S Mutant. Not surprisingly, the impact of the 

F56S on the amide HDX kinetics is greatest at the site of mutation (peptide 49-62), and in 

the hydrophobic binding pocket (peptides101-110 and 137-140). Significant changes also 

extend into the GSH binding site (peptide 5-18). 
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Figure 17.  Alteration in the backbone amide HDX between GSH and GSO3
- in the active 

site.  Panel A is the backbone amide HDX profile of peptide 7-20 in the presence of 200 
µM GSH () or 150 µM GSO3

- (). Panel B is the difference in the backbone amide 
HDX profile (peptide 7-20 minus peptide 8-20) in the presence of 200 µM GSH () or 
150 µM GSO3

- (). The lines are fits of the data to exponentials with the amplitudes and 
rate constants given in Table 1. 

 
 

Table 1:  Rate constants and amplitudes for backbone amide HDX into peptides 7-20 and 
8-20 in the presence of GSH or GSO3

-. a Difference kinetics isolating the main-chain 
amide of N7 in the presence GSH and GSO3

-. 
Peptide/ 
ligand A1(D) k1 (min-1) A2 (D) k2 (min-1) A3 (D) k3 (min-1) 

7-20/GSH 
8-20/GSH 

(7-20)-(8-20)a 
7-20/GSO3

- 

8-20/GSO3
- 

(7-20)-(8-20)a 

0.86 ± 0.05 
0.85 ± 0.07 
0.84 ± 0.02 
1.26 ± 0.09 
1.19 ± 0.06 
0.92 ± 0.02 

0.27 ± 0.04 
0.25 ± 0.04 
(7.0 ± 0.6) x 10-3 
0.5 ± 0.1 
0.50 ± 0.06 
(5.1 ± 0.6) x 10-3 

3.6 ± 0.1  
3.1 ± 0.1 
 
2.8 ± 0.5 
2.8 ± 0.5 

0.013 ± 0.002 
0.013 ± 0.001 
 
0.01 ± 0.002 
0.008 ± 0.001 

7.0 ± 0.1 
6.6 ± 0.2 
 
7.9 ± 0.5 
6.9 ± 0.5 

(1.8 ± 0.3) x 10-4 
(8 ± 5) x 10-5 
 
(3 ± 1) x 10-4 
(1 ± 1) x 10-4 

 
 

The F56S mutant shows increases in the fraction of rapidly exchanging amides in the 

loop harboring the mutation, a fact that is indicative of a higher degree of solvent access 

or increased loop dynamics (Figure 18).  The F56S mutant retains the ability to bind the 

substrate analogue inhibitor GSO3
- (Ki = 4 mM) (5), and the addition of ligand (GSO3

-) to 

the F56S mutant tends to restore native-like HDX kinetic profile as shown in Figure 18. 

A B 
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Figure 18.  Kinetic profiles for backbone amide HDX at the site of mutation, peptide 49-
62.  The native (blue) and F56S mutant (green) without ligand and native with 200 µM 
GSH (magenta) and F56S mutant with 20 mM GSO3

- (orange) are shown. The solid lines 
are fits of the data to single/multiple exponentials with the rate constants and amplitudes 
given in Table 2. 

 
 
Table 2: Rate constants and amplitudes for backbone amide HDX into the F56 loop at 
the dimer interface (peptide 49-62). 

sample A1 (D) k1 (min-1) A2 (D) k2 (min-1) A3 (D) k3 (min-1) 

Native 

F56S 

Native/GSO3
- 

F56S/GSO3
- 

3.6 ± 0.2 

1.7 ± 0.1 

4.7 ± 0.5 

5.4 ± 0.3 

0.7 ± 0.1 

0.24 ± 0.05 

0.7 ± 0.2 

2.4 ± 0.2 

2.5 ± 0.1 

 

1.4 ± 0.4 

1.4 ± 0.1 

(2 ± 2) x 10-4 

 

0.024 ± 0.016 

0.04 ± 0.01 

 

 

3.8 ± 0.1 

 

 

(6 ± 1) x 10-4 

 

Like the loop that harbors F56, the helices that define the hydrophobic pocket in both 

the F56S mutants exhibit increases in the amide HDX rates relative to the native enzyme 

(Figure 19). However, the increases observed are in the intermediate and slow phase 

regimes of the exchange kinetics.  This suggests that the α4/α5 helices have not been 

perturbed structurally but that the dynamics of this region have been increased. Addition 

of ligand to the F56S mutant also produces a reduction in exchange kinetics when 
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compared to the apoenzyme. However, the rescue of native-like behavior is not complete 

particularly with respect to the α5-helix, peptide 137-140 (Figure 19b). The F56S mutant 

still shows enhanced exchange kinetics in the slow phase regime.  Thus, binding of GSO3
- 

does not completely restore the native structure or dynamics of this region. 
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Figure 19.  Kinetic profiles for backbone amide HDX of peptides surrounding the 
hydrophobic pocket.  Panel A shows the α4 peptide101-110 and panel B shows the α5 
peptide137-140.  The native (blue) and F56S mutant (green) without ligand and native 
with 200 µM GSH (magenta) and F56S with 20 mM GSO3

- (orange) are shown. The 
solid lines are fits of the data to single/double exponentials with the rate constants and 
amplitudes given in Table 3. 
 
 

Table 3: Rate constants and amplitudes for backbone amide HDX near the 
hydrophobic pocket between the α4- and α5-helices at the dimer interface (peptides 
101-110 and 137-140). 

peptide/sample A1 (D) k1 (min-1) A2 (D) k2 (min-1) 

101-110 Native 

101-110 F56S 

101-110 Native/GSO3
- 

101-110 F56S/GSO3
- 

137-140 Native 

137-140 F56S 

137-140 Native/ GSO3
- 

137-140 F56S/GSO3
- 

3.3 ± 0.4 

3.6 ± 0.3 

1.4 ± 0.1 

1.1 ± 0.1 

0.6 ± 0.1 

2.2 ± 0.2 

2.96 ± 0.02 

2.0 ± 0.1 

0.04 ± 0.01 

0.07 ± 0.01 

0.09 ± 0.01 

0.13 ± 0.02 

0.08 ± 0.02 

0.030± 0.004 

(9.0 ± 0.6) x 10-4 

0.026 ± 0.003 

5.3 ± 0.4 

5.1 ± 0.3 

7.7 ± 0.1 

7.85 ± 0.05  

2.5 ± 0.1 

0.6 ± 0.2 

 

1.0 ± 0.1 

(1.9 ± 0.3) x 10-4 

(3.9 ± 0.4) x 10-3 

(1.5 ± 0.2) x 10-3 

(1.5 ± 0.3) x 10-4 

(1.8 ± 0.1) x 10-3 

(2.6 ± 1.3) x 10-3 

 

(1.2 ± 0.4) x 10-3 

A B 
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Figure 20.  Kinetic profiles for backbone amide HDX exchange at the GSH binding site, 
peptide 5-18. The native (blue) and F56S mutant (green) without ligand and native with 
200 µM GSH (magenta) and F56S with 20 mM GSO3

- (orange) are shown. The solid 
lines are fits of the experimental data to multiple exponentials with rate constants and 
amplitudes given in Table 4. 
 
 
 

Table 4. Rate constants and amplitudes for backbone amide HDX near the GSH 
binding site (peptide 5-18). 

sample A1 (D) k1 (min-1) A2 (D) k2 (min-1) A3 (D) k3 (min-1) 

Native 

F56S 

Native/GSO3
- 

F56S/GSO3
- 

4.7 ± 0.2 

5.1 ± 0.2 

1.7 ± 0.2 

1.7 ± 0.2 

0.21 ± 0.03 

0.47 ± 0.06 

0.5 ± 0.1 

0.4 ± 0.1 

3.9 ± 0.1 

4.5 ± 0.1 

3.7 ± 1.5 

3.6 ± 0.3 

(1.9 ± 0.2) x 10-3 

(1.8 ± 0.2) x 10-3 

0.007 ± 0.003 

0.017 ± 0.004 

 

 

5.9 ± 1.6 

6.1 ± 0.4 

 

 

(4 ± 4) x 10-4 

(6 ± 2) x 10-4 

 

The mutations at the dimer interface also influence the backbone amide HDX behavior 

in the GSH binding site as illustrated in Figure 20 for peptide 5-18.  All of the mutants 

(F56S, E, and R) studied previously (42) have large increases in the KM for GSH and Ki 

for GSO3
- (42) which indicates that the mutations introduce a functional disruption of the 

active site. Though the F56S mutant is also functionally impaired, the backbone HDX 
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kinetics are much more native-like.  In fact, with the addition of GSO3
- (Figure 20), the 

native and F56S mutants are almost indistinguishable in their exchange profiles. 

 

Discussion 

Substrate Binding and the Dimer Interface. Previous functional studies have suggested 

that there is close link between the structure of the dimer interface and the GSH binding 

site (5). This link is apparent in the influence of GSH binding on the backbone amide 

HDX kinetics.  In addition to the reduction in exchange rates at the GSH binding sight, 

there are notable decreases at the dimer interface including the loop harboring F56, the 

junction between the α4 and α5-helices and more remotely at the C-terminal tail as 

illustrated in Figure 21. These results are consistent with previous observations of 

decreased backbone amide HDX by NMR spectroscopy in the human class mu enzyme 

upon ligand binding at the active site (20). The reduced rates of exchange at the subunit 

interface and the C-terminal tail that do not directly interact with GSH are likely due to a 

damping of low-frequency (>10-6 s) conformational excursions that lead to increased 

solvent exposure of the backbone. In this regard it is important to point out that the side-

chain of P60 and the base of the 56-loop is in van der Waals contact with Y6, a residue 

that directly interacts with the sulfur of GSH.   

The substrate analogue inhibitor, GSO3
-, has essentially the same effect on the HDX 

kinetics of the native enzyme with the exception of subtle changes that occur in peptides 

located close to the thiolate or sulfonate groups. The 30% reduction in the rate constant 

for backbone amide HDX at N7 in the E•GSO3
- complex compared to the E•GS- complex 

(Figure 17, Table 1) suggests that GSO3
- forms a tighter complex that more effectively 
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limits conformational fluctuations at the active site. This observation is also consistent 

with the fact that GSO3
- has a lower off rate than GS- (14). 

 

 

  

Figure 21.  Decreases (blue) in backbone amide HDX kinetics in the native + GSH 
versus the apoenzyme.  These changes are viewed down the two-fold axis of the dimer 
(A) and perpendicular to the two-fold axis (B). The GSH molecule and Y6 are shown in 
stick representation. The figure was rendered with the program PyMol (10). 

 
 

Structure and Dynamics of the F56S Dimer Interface Mutant. “Ball and socket” 

hydrophobic interactions are common stabilizing motifs in oligomeric protein structures 
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(39). The mutational disruption of this type of interaction in the class Mu GSH 

transferase has been previously demonstrated to alter dimer stability and impair the 

catalytic function of the mutants (5).  The loss of catalytic function is associated with a  

 

 

 

 

Figure 22.   Overview of the changes in backbone amide HDX behavior of the F56S 
mutant.  Changes in the F56S mutant versus native are shown as increases in the rapid 
phase (red) and slower phases (orange) or decreases (blue).  Panel A shows the difference 
in apo enzymes and panel B shows those containing ligand (GSH for native and GSO3

- 
for the F56S mutant).  The figure was rendered with the program PyMol (44). 
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disruption of the structure of the GSH binding site.   Because the predominant species is 

dimer [all enzymes at 60 µM (42) during deuteration (see methods)] in these 

experiments, the changes in backbone amide HDX kinetics exhibited by the mutant 

enzyme provides new insight into the structural bases for the altered behavior. The F56S 

mutant shows enhanced exchange at the dimer interface as well as in the active site 

indicating that the mutation results in larger coupled conformational excursions in these 

regions (Figure 22).  

The changes in the backbone amide HDX kinetics are most apparent in the α4 (peptide 

101-110) and the α5 (peptide 137-140) helices (Figure 22a) and are not reversed when 

the GSH binding site is occupied with the inhibitor GSO3
- (Figure 22b). Thus it is not 

clear that the conformation of the GSH binding site is completely coupled to the 

conformational integrity of the dimer interface. Residues Y137 and F140 form part of the 

hydrophobic socket located between the α4- and α5-helices. It could be the case that the 

dynamics of the dimer interface in the F56S mutant are similar to the native enzyme. The 

small hydrophilic side-chain of S56 may simply facilitate entry of solvent into the socket 

and therefore enhance exchange in peptide 137-140. 

 

Conclusions.  Main-chain amide HDX kinetics provides a direct readout of the effect of 

mutations on the structure and dynamics on the dimer interface of rGSTM1-1 and the 

remote influence on enzyme function. Disruption of the hydrophobic “ball and socket” 

motif leads to an impairment of catalytic function irrespective of whether dimer stability 

or protein dynamics at the subunit interface are increased or decreased. 
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CHAPTER V 

 

A DOUBLE MUTATION AT THE SUBUNIT INTERFACE OF THE RAT 
GLUTATHIONE-S-TRANSFERASE ISOZYME M1-1 RESULTS IN A STABLE 

FOLDED MONOMER 
 
 
 

Our collaborator on the F56 project, Dr. Heini Dirr, was investigating the role of the 

charge cluster motif (Figure 9) on the stability of the rGSTM1-1 dimer structure and 

discovered that a R81A mutation in an F56S background gave a stable monomer 

structure.  His student, John Walters, performed the initial gel filtration study, 

CD/fluorescence spectroscopy, GSO3
- binding, unfolding work, and ANS binding.  Jim 

Parsons performed the dynamic light scattering experiment.  I did a basic kinetic work-up 

and then used HDX-MS to investigate this mutant and showed that its monomer structure 

was native-like.  

 

Results 

Global Structura1 Properties.  Gel filtration experiments with the F56S/R81A mutant 

indicate that the protein elutes as a single species at concentrations ranging from 0.2 to 

600 µM (data not shown). The elution volume on a calibrated Tosohaas TSKGEL 

G2000SWXL column (7.8 mm x 300 mm) corresponds to the expected size of 26 kDa for 

a folded monomer. This initial observation was confirmed by combining gel filtration 

chromatography with multi-angle laser light scattering (see methods) of both the native 

and mutant proteins. These analyses show that the F56S/R81A mutant is a single species 

with a molecular mass moment of 25,400 ± 200 g/mol, consistent with the protein being a 
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monomer. As expected, the native enzyme behaves as a single species with a mass of 

51,500 ± 200 g/mol.  When a mixture of the two proteins is analyzed, the native enzyme 

and the F56S/R81A mutant are well resolved (Figure 23), and return molecular masses 

consistent with those from analysis of the individual samples (Figure 23, legend).  
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Figure 23. Quaternary structure of the F56S/R81A rGSTM1-1 mutant. Panel A shows 
the chromatogram the output signal from the DAWN light scattering detector (solid line) 
and the concentration trace from the refractometer (dashed line) while panel B shows the 
output from the UV detector (280 nm). The signal at 12.5 min from the 90˚ light-
scattering channel (panel A) represents a small amount of protein aggregate found in both 
samples. The molecular mass moments from the multi-angle laser light scattering 
analysis were 26,100 ± 300 g/mol for the F56S/R81A mutant and 50,800 ± 200 g/mol for 
the native enzyme. 
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Far and near-UV CD and tryptophan fluorescence spectroscopy indicate that the double 

mutant has a secondary structure that is native-like. Small perturbations in the 

environments of the tryptophan residues in the mutant are evident from the far UV 

portion of the CD spectra and the fluorescence emission spectra (data not shown). The 

spectra of the F56R/R81A mutant resembles those of the F56S mutant of rGSTM1-1 (42) 

and the related isoenzyme, rGSTM2-2 (86). 

 

Functional Properties of F56S/R81A rGSTM1. The binding affinity of GSO3
- for 

F56S/R81A was determined by fluorescence titration (Kd = 24 mM). The affinity is 

substantially less than that for the native dimer (Kd = 2.8 µM) and indicates a loss of 

about 9.2 kcal/mol in binding energy for the monomeric protein. Unlike the F56S mutant, 

which shows saturation kinetics and can achieve or exceed wild-type-like activity at 

saturating GSH (42), the reaction velocity of the F56S/R81A mutant exhibited a linear 

concentration dependence up 40 mM GSH. Linear regression of the data resulted in a 

kcat/KM
GSH for the double mutant that was reduced by a factor of 105 compared to the 

native enzyme (87) (Table 5). The KM for GSH is >> 40 mM. 

 

Table 5: Efficiency of CDNB conjugation in the native and 
dimer interface mutants. 

Enzyme kcat (s-1) Km
GSH (mM) kcat/Km

GSH (M-1s-1) 

Nativea 
F56Sb 

F56S/R81A 

18 ± 2 

90 ± 10 

>> 0.2 

0.036 ± 0.004 

20 ± 2 
>> 40 

(5.0 ± 0.8) x 105 

(4.5 ± 0.7) x 103 

5.2 ± 0.4 
                                                               

a Data from reference (87). b Data from reference (42). 
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ANS Binding. The location of the binding site for ANS in the mutant proteins F56S and 

F56S/R81A is unknown, but the dye has been shown to bind to many GSH transferases at 

the active site (88) and/or along the dimer interface (89, 90) making the fluorescent dye a 

useful probe for monitoring intersubunit and intrasubunit structural alterations (42, 86, 

88). The spectral properties of ANS bound to F56S/R81A differ from those of the native 

enzyme (data not shown) but are similar to those for the dye bound to the F56S mutant 

(42). This result suggests that the dye-binding site in the double mutant is affected 

primarily by the loss of the ball-and-socket motif and not by disruption of the dimeric 

structure and provides further evidence that the loss of the dimer interface does not 

substantially destabilize the individual subunits. 

 
Equilibrium Unfolding of F56S/R81A rGSTM1. Like native rGSTM1-1 and its F56S 

variant, the monomeric F56S/R81A mutant unfolds reversibly. Urea-induced unfolding 

of F56S/R81A, monitored by far-UV CD and tryptophan fluorescence is shown in Figure 

24. Both probes yield overlapping transitions indicating a two-state unfolding process 

with the simultaneous loss of secondary and tertiary structures. The monomeric mutant 

does not appear to sample high-energy, partially unfolded states under native (0-3 M 

urea) and denaturing (>3 M urea) conditions. In contrast, the native enzyme and F56S 

mutant, unfold via a three-state process (N ↔ 2I ↔ 2U) with the dimer-monomer 

equilibrium shifted towards the monomeric intermediate, I, for the F56S mutant (86) (see 

Table 6). The lower Cm and ΔG (H2O) values for F56S/R81A, when compared to those 

for the I ↔ U transitions of native enzyme and the F56S mutant (Table 6), indicate a 

reduced stability of the monomeric mutant. Furthermore, the lower experimental m-value 
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than that predicted for the double mutant (Table 6) indicates that its unfolding is less 

cooperative and that less surface area becomes exposed to solvent upon unfolding. 

 

 
 

Figure 24.  Unfolding curves of the F56S/R81A rGSTM1-1 mutant. Fluorescence 
(circles) and CD ellipticity at 222 nm (triangles). The solid line represents a nonlinear 
least-squares regression fit to the data according to a two-state model with folded and 
unfolded monomers (16). 

 
 

Table 6: Data from equilibrium unfolding of the native M1-1, F56S, and F56S/R81A 
rGSTM1-1 mutantsa. 

rGST M1-1 model Cm (M urea) ΔG(H2O) 
(kcal/mol) 

m-value (kcal/mol M-1 urea) 

native 
 

F56S 
 

F56S/R81A 

N2 ↔ 2I 
I ↔ U 

N2 ↔ 2I 

I ↔ U 

I ↔ U 

3.1 
5.2 
2.3 
5.1 
4.6 

10.8 
16.5 
10.3 
15.9 
10.1 

1.0 
3.5 
1.0 
3.1 

2.0 (2.5)b 

a Data for wild-type and F56S taken from references (16) and (10), respectively. b Value 
calculated according to reference (91). 
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Amide HDX and Structural Dynamics. Pepsin digestion yields 42 well-resolved 

peptides that are common to the native, F56S and F56S/R81A proteins representing 

coverage of 97% of the sequence (Figure 25). The two regions not covered are residues 

28-33 and residues 47-48. The profile of rapidly exchanging amide protons for selected 

peptides from native, F56S (92) and F56S/R81A are shown in Figure 25. The kinetic 

profile of the F56S/R81A mutant resembles that for the native and F56S proteins 

indicating that the combined F56S and R81A mutations do not induce major changes in 

the core structure of the monomeric protein, a result consistent with the structural data 

presented above. 

 

 

Figure 25.  Amide protons exchanged by the first 15 sec for peptides from native, F56S 
(92), and F56S/R81A rGSTM1-1. Deviations of F56S and F56S/R81A from the native 
are shown as hashed boxes.  Deviations of the F56S/R81A from both native and F56S are 
open boxes. 
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Although the HDX kinetics of the F56S and F56S/R81A mutants are similar, they do 

exhibit interesting differences. For example, when compared to F56S, the F56S/R81A 

mutant shows enhanced HDX kinetics for peptides 75-91 and 92-96 but reduced rates of 

exchange for peptide 110-119 as illustrated in Figures 25 and 26. Peptides 92-96 and 75-

91 (which contains the R81A mutation) are located at the core of the charge cluster. 

These two peptides are primarily involved in intersubunit interactions and would be 

expected to show increases in HDX kinetics upon loss of the dimeric structure. The 

decrease in solvent accessibility of peptide 110-119 is most likely due to the 

reorganization of the junction between helices α4 and α5 (Figure 26a).  Reorganization 

of this junction is not unexpected because these helices are involved in many of the 

intersubunit interactions (Figure 9c). The loss of solvent accessibility indicates that the 

junction and the a4 and a5 helices form a tighter interaction or are folded in toward the 

core of the monomer structure. The α4 and α5 helices are part of a channel that controls 

access to the active site in the native enzyme (73). The alternate conformation of this 

junction, as reflected in the decreased amide HDX, may contribute to the reduced 

catalytic activity observed in the double mutant.  

The lack of an increase in amide HDX in peptides 19-21 in helix α1, 97-100 in helix 

α4, and 158-163 in helix α6 (Figures 25 and 27), demonstrates that the conformation and 

stability of these regions are preserved after dissociation of the dimer to form the 

F56S/R81A monomer. Peptide 97-100 is involved in intersubunit interactions and 

becomes exposed to solvent upon disruption of the dimer, yet shows no increase in 

exchange. This could result from a close interaction with peptide 158-163 (Figure 27) and 

may indicate an important structural motif for the stability of domain 2.  Peptide 158-163 
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is also in close proximity to peptide 19-21. The absence of increases in exchange for 

either of these peptides in the monomeric F56S/R81A mutant may indicate an important 

interdomain interaction.  
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Figure 26.  Peptides in F56S/R81A with exchange behavior that differs from F56S. Panel 
A is a ribbon diagram of the rGSTM1-1 backbone (green) showing increases in fast phase 
exchange (red), increases in slow phase exchange (orange), and decreases in exchange 
(blue). The kinetics of amide H/D exchange for the three peptides is illustrated in panels 
B (peptide 75-91), C (peptide 92-96) and C (peptide 110-119).  The kinetic profiles for 
the native enzyme, the F56S mutant (92) and the F56S/R81A mutant are shown in blue, 
green and magenta, respectively.   

110-119 

92-96 

75-91 

A 
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Table 7: Rate constants and amplitudes for backbone amide HDX 
into F56S R81A rGSTM1-1 peptides 75-91, 92-96, and 110-119 
(Figure 26). 

Peptide A1 (D) k1 (min-1) A2 (D) k2 (min-1) 

   75-91 
92-96 

110-119 

3.1 ± 0.3 
1.8 ± 0.5 
7.7 ± 0.1 

0.6 ± 0.2 
0.009 ± 0.002 
0.003 ± 0.0001 

3.6 ± 0.3 
2.1 ± 0.5 

 

0.042 ± 0.006 
0.001 ± 0.0005 

 

 
 
 

Discussion 

Properties of a Stable Monomer. We have previously shown that wild-type rGSTM1-1 

undergoes a reversible dissociation of its subunits with an approximate Kd of 0.012 µM. 

Disruption of the ball-and-socket motif, with the introduction of the F56S mutation, shifts 

the equilibrium toward the monomeric species (Kd of 0.5 µM) (42). In the present study, 

the inter-subunit charge cluster motif was disrupted with the R81A mutation. This site 

was chosen because it is the only residue in the cluster that directly participates in an 

intersubunit interaction. While mutations at either the ball-and-socket motif or the charge 

cluster motif have been shown to produce equilibrium mixtures of dimeric and 

monomeric forms of GSH transferases (42, 43), this study demonstrates that the 

simultaneous introduction of single mutations in both motifs is sufficient to generate a 

monomeric enzyme with a compact folded structure, albeit with greatly reduced catalytic 

activity. 

 

Dimer-Dependent Enzyme Activity.  The binding of GSH or the inhibitor GSO3
- to the 

F56S mutant of rGSTM1-1 restores a more native-like conformation in the active site (8). 

At sufficiently high GSH concentrations, the F56S mutant exhibits robust catalytic 



 72 

activity (8, 23). The F56S mutant does not have a fully functional hydrophobic ball-and-

socket motif required to stabilize the 56-loop between α2-β3 near the active site. In fact, 

residues in the 56-loop are in contact with Y6 in the active site, a residue that is crucial 

for efficient catalysis. Although the backbone of the 56-loop appears to have similar 

HDX characteristics in the F56S and F56S/R81A mutants (Figure 25), native-like activity 

cannot be achieved in the monomer (Table 5). These facts suggest that the dimer 

interface helps enforce the conformation of the loop that is vital for GSH binding and 

efficient catalysis.  

The disruption of the 56-loop and the inability to bind GSH in a productive manner is 

probably the principal reason for the reduced catalytic efficiency of the F56S and 

F56S/R81A mutants. However, the HDX results do indicate a change in structure and 

dynamics at the junction between the α4 and α5 helices (peptide 110-119). This region 

contains Y115, a residue that is located atop a channel that is important for substrate 

access and product release in the dimer (14). The reduced HDX suggests a tighter 

interaction between the two helices or with the rest of the monomer. At this point it is 

unclear whether the change in structure and dynamics of this region contributes to the 

further impairment of the catalytic efficiency of the monomer. 

 

Cooperative Unfolding. The tertiary structure of the F56S/R81A mutant enzyme is 

more loosely packed than that of either the native enzyme or the F56S mutant. However 

the double mutation does not significantly impact the intrasubunit interactions between 

domains 1 and 2 as suggested by the similarity in the HDX kinetics. Nevertheless, the 

equilibrium unfolding data for the double mutant demonstrates that intersubunit 
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interactions make significant contributions to stabilizing the tertiary structures of subunits 

in GSH transferase dimers as in the native and F56S proteins. These interactions are not 

obligatory for the stabilizing interaction of domain 1 and 2 in each subunit. At 

equilibrium, domains 1 and 2 do not unfold independently but unfold in a concerted 

manner. 

 

 
 

Figure 27. Ribbon diagram of one subunit of rGSTM1-1: domain 1 (blue) and domain 2 
(magenta). F56S/R81A peptides that show no H/D exchange during the length of the 
experiment are shown in green: 19-21, 97-100, and 158-163. Native and F56S also show 
no HDX into these peptides during the length of the experiment. 

 
 

Molecular Basis for Domain Cooperativity. A concerted unfolding model for the 

monomeric double mutant suggests interdomain cooperativity. The strongest evidence for 

an interdomain interaction comes from the HDX behavior of peptides 19-21, 97-100, and 

158-163 (Figure 27). These peptides show no amide HDX during the time course of the 

experiment, a fact that indicates a very stable monomeric fold and not a molten globule-

19-21 
158-163 

97-100 
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like state. The fact that these protein regions are in close proximity to each other and 

cross the domain barrier [domain 1 (19-21) and domain 2 (158-163)] could indicate a 

stable core of interactions between domain 1 and 2 that constitute the cooperative link. 

The stability of individual GSH transferase subunits in the absence of the dimer 

interface suggests that the evolution of intersubunit interactions has arisen more recently 

than evolution of the monomer itself. This is consistent with the hypothesis that the 

canonical GSH transferases arose from enzymes similar to glutaredoxin 2 (22). It also 

suggests that the selectivity of intersubunit interactions for isoenzymes of a particular 

class arose to fine tune the enzyme structure to broaden substrate specificity and 

biological function. 
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CHAPTER VI 

 

A GLUTATIONE COFACTOR AND KAPPA FOLD DEMONSTRATE THAT 2-
HYDROXYCHROMENE-2-CARBOXLATE ISOMERASE IS A KAPPA CLASS 

GLUTATHIONE TRANSFERASE 
 
 
 

Results 

 Steady-state kinetics of HCCA Isomerase with GSH and CDNB, HCCA, or tHBPA.  

The enzyme showed a slow but significant activity toward CDNB (Table 8).  Due to low 

affinity of the enzyme for CDNB and solubility limits of the compound, saturation of 

CDNB could not be reached.  kcat/Km was determined directly from linear regression of 

the initial velocity data.  Its efficiency for this reaction (Table 8) is two orders of 

magnitude lower than that for Kappa (22).   Lineweaver-Burk regression of the velocity 

data gave an estimated turnover number of 2 s-1.  Slow turnover of the enzyme (in the 

CDNB reaction) suggested the possibility of product release as the rate-limiting step.  

This possibility was dismissed when transient state kinetic experiments showed no burst 

phase for the enzymatic progress curve (data not shown). 

In the Kappa GST, S16 was shown to be key in the enzymatic catalysis as the GSH 

ionizing residue.  Sequence alignments suggested that S11 (Figure 11) should have the 

same role in HCCA Isomerase.  The S11A mutant was created but no soluble protein 

could be extracted from the bacteria to test enzymatic activity. 

Once pure substrate was available (see methods), measurement of native kinetics was 

possible. Due to background reaction of GSH with product (tHBPA) and the enzymatic 

conversion of product back to substrate, HCCA, tHBPA, and GSH dependent kinetics 
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were carried out using stopped-flow (see methods).  Upon mixing HCCA or tHBPA with 

100 nM enzyme and 100 µM GSH or mixing GSH with 100nM enzyme and 1 mM 

HCCA, the absorbance at 340 nm increased for HCCA and GSH dependent reactions or 

decreased for tHBPA dependent reactions following a model of a single exponential 

followed by a steady state. The velocity of the steady state increased with increasing 

[substrate] and fit well to a Michealis-Menten model for HCCA and GSH dependent 

reactions or a Michealis-Menten model with incomplete substrate inhibition for tHBPA 

dependent reactions giving the parameters in Table 8.  The amplitude of the exponential 

phase showed hyperbolic dependence on concentration for HCCA and GSH dependent 

reactions and fit well to a single-site binding hyperbola yielding both a Km and Kd in one 

experiment (Table 8).   

 

Table 8: Kinetic and affinity parameters for HCCA Isomerase 

 kcat (s-1) Km (µM-1) kcat/Km (M-1 s-1) Ki (µM-1) Kd (µM-1) 

CDNB(GSH)   200 ± 7   

HCCA(GSH) 47 ± 2 84 ± 10 5.6 ± 0.7 x 105  19 ± 5 

tHBPA(GSH) 19 ± 7 138 ± 72 1.3 ± 0.9 x 105 136 ± 100  

GSH(HCCA) 39 ± 1 17 ± 2 2.3 ± 0.3 x 106  14 ± 3 

 
  

Multi-wavelength stopped-flow analysis of the exponential phase for both HCCA 

dependent reactions yielded an extracted UV spectrum that correlated to the product 

tHBPA (data not shown); however, the extinction coefficient of the change in amplitude 

is too large to be the build-up of product in the active site and consistent with multiple 
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turnovers of the enzyme during the exponential phase.  This result is consistent with 

product inhibition (93, 94). 

 
 
GSH and HCCA Isomerase chemistry.  The role of GSH in HCCA Isomerase chemistry 

is an unanswered question.  It has been suggested to activate the enzyme, stabilize it, 

and/or be essential for catalysis (52-54).  One possible source of this ambiguity is GSH 

contamination of the enzyme preparation.  As shown in Table 2, our recombinant enzyme 

had significant activity without the addition of exogenous GSH (Table 9) and the 

presence of exogenous thiol in the enzyme preparation was detected by titration with 

DTNB with the Ellman assay (75) (see methods).  The identity of the exogenous thiol 

was determined to be GSH by detection of a CDNB-GSH conjugate (see methods) 

formed upon mixing the enzyme preparation with CDNB, vortexing with chloroform, and 

then injecting a sample onto an HPLC (see methods).  A peak eluted corresponding to a 

GSH-CDNB standard. 

GSH was removed via dialysis against 1 M KCl (see methods) (Figure 28).  The 

concentration of GSH (using the CDNB/HPLC assay) and the corresponding enzymatic 

activity was monitored during dialysis.  The results showed that loss of one equivalent of 

GSH per dimer was accomplished after 4 rounds of dialysis and had little effect on the 

residual activity (Figure 28) while the last equivalent was more difficult to extract taking 

12 additional dialysis steps and showed a 5 fold drop in activity (Table 9 and Figure 28).  

The activity of “apo” enzyme was still 7 fold higher then that enzyme in the presence of 

GSO3
- (Table 9 and Figure 28).  Addition of 100 µM GSH at any time before or after 
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GSH removal resulted in similar activity (data not shown).  This “native activity” was 29 

fold higher than enzyme prior to GSH removal (Table 9).  

Additional “apo” protein was created for GSH binding experiments.  Prior to 1M KCl 

dialysis both the Ellman (75) and CDNB/HPLC assays showed 1.8 ± 0.1 equivalents of 

extra thiol/GSH per dimer.  Following 172 L of dialysis over 28 days (with an ∼50% loss 

of protein), both assays showed 0.14 ± 0.01 equivalents of extra thiol/GSH per dimer.  To 

avoid further protein loss, the dialysis was halted.  Binding experiments were conducted 

at this level of GSH contamination. 

 

Table 9.  Activity of recombinant HCCA Isomerase 

Added Cofactor Specific Activity (µmol s-1 mg-1) 

1 mM GSO3
- (1.5 ± 0.7) x 10-3 

None (after GSH removal) (1.0 ± 0.1) x 10-2 

None (prior to GSH removal) (4.5 ± 0. 5) x 10-2 

100 µM GSH 1.3  ± 0.1 
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Figure 28. Activity and GSH equivalents measured during 1 M KCl dialysis.  Each step 
is labeled from the enzyme after gel filtration (S-200) to that after 16 rounds (16x) of 
dialysis. 
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GSH binding to HCCA Isomerase.  GSH in the enzyme preparation suggested that the 

enzyme binds the ligand very tightly.   First trials at measuring the binding affinity failed 

due to the instability of the “apo” enzyme at 250C.  When experiments were repeated at 

100C, precipitation was no longer an issue and the experiments proceeded normally. 

Upon mixing HCCA Isomerase with GSH there is an increase in absorbance at 239 nm 

(Figure 29a) (see methods) (9).  The absorbance increase fit well to a double exponential 

(Figure 29a).  A plot of kobs versus [GSH] shows linear correlation for both exponentials 

consistent with two-step binding model (Scheme 2) and yielded bimolecular rate 

constants (k1 and k2) for both steps (Table 10).  The intercepts for both fits were negative 

giving no indication of the off-rate for either step (Table 10).  The amplitude of step 1 

was consistently ∼25% less than step 2 with the amplitude of step 2 corresponding to an 

extinction coefficient of 3,500 M-1 cm-1 for the thiolate chromophore.  

 

                                          
E + GSH E-GS- + GSH E-2GS-

k1
k2

k-1

k-2  

 

The off-rate of thiolate anion was measured by trapping the enzyme with GSO3
- (see 

methods).  Upon mixing HCCA Isomerase (pre-loaded with GSH) and GSO3
- the 

absorbance at 239 nm went down in a biphasic manner that fit well to a double 

exponential (Figure 29b).  The kobs and amplitude for the first exponential showed a linear 

relationship to [GSO3
-] with a negative and positive slope respectively.  This is consistent 

with a two-step model for loss of the first thiolate (Scheme 3) in which a slow 

conformational change occurs prior thiolate leaving the active site.  In this case, the slope 

Scheme 2 
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and intercept (of kobs vs [GSO3
-]) gave k3 and k-3 respectively (Table 10).  The kobs for the 

second exponential showed no dependence on [GSO3
-] consistent with a single step 

(Scheme 4) and provided a direct measure of the off-rate of the second thiolate (when one 

site is bound with GSO3
-) (Table 10).  With this additional information, the GSH binding 

model in Scheme 1 was revised to that shown in Scheme 5.   

 

*E-2GS- E-2GS-
E-GS- + GSH

GSO3
-

E-GS--GSO3
-

k-3

k3

k-2

k2

 

 

E-GS--GSO3
- E-GSO3

- + GSH

GSO3
-

E-GSO3
-- GSO3

-

k-1

k1

 

 

                      

E + GSH E-GS- + GSH E-2GS- *E-2GS-

k1
k2

k-1

k-2

k3

k-3  

 

Upon mixing HCCA Isomerase with GSH the intrinsic protein fluorescence increased 

and then decreased (Figure 29c).  The increase fit well to two exponentials while the 

decrease fit well to one (Figure 29c).  This is consistent with the three-step binding model 

proposed in Scheme 5.  kobs for the first two exponentials showed a linear correlation 

Scheme 5 

Scheme 3 

Scheme 4 
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versus [GSH] and yielded bimolecular rate constants (k1 and k2) for both steps (Table 10).  

The first exponential gave a negative intercept and thereby no information about k-1 while 

the second exponential gave a positive intercept and good measure of k-2 (Table 10).  

 The final exponential (slow phase) took 100 s to reach equilibrium and showed no 

dependence of kobs on [GSH] over the range of concentrations suitable to fit all three 

phases together.  In order to determine if the slow phase showed concentration 

dependence, it was monitored independent of the other phases (ie. the first two became 

too fast to measure) at [GSH] up to 100 mM (see methods).  It showed concentration 

dependence consistent with saturation as it increased from ∼0.025 s-1 to ∼0.06 s-1.  These 

minima and maxima were good measures of k-3 and k3 respectively (Table 10).   

The change in intrinsic protein fluorescence was globally modeled to Scheme 4 using 

the program Dynafit (Figure 29d).  The results gave good correlation to the overall model 

including good residuals for both x and y coordinates (data not shown).  The resulting 

rate constants (Table 10) showed good correlation to those extracted from absorbance and 

fluorescence measurements with one major exception, k-1.  The program tried to drive its 

value to zero (Table 10). This is not unexpected considering the slow off-rate for that step 

(Table 10).  Global fitting of the data with k-1 fixed at zero gave similar rate constants 

(data not shown) as those given in Table 10.  

Using the on and off rates extracted from all of the various measurements apparent 

dissociation constants were calculated for each bound GSH molecule (Table 11).  The 

least confident value generated was the Kd for the high affinity site because k-1 is not the 

true off-rate with one GSH (GS-) bound.  This value is the off-rate of GSH (GS-) with it 

bound in one site and GSO3
- bound in the second site. 
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Table 10: Rate constants for GSH binding to HCCA Isomerase 
 Linear 

Regression of 
A239 

Loss of A239 via 
GSO3

- Trapping 
Linear Regression 
of Fluorescence 

Slow 
Phase 

Global Modeling 
of Fluorescence 

Data 

k1 (M-1s-1) (2.0 ± 0.1) x 105  (5.5 ± 0.6) x 105  (3.5 ± 0.1) x 105 

k-1(s-1) negative intercept (9.0 ± 6.0) x 10-4 negative intercept  (1.0 ± 1500) x 10-9 

k2 (M-1s-1) (1.5 ± 0.1) x 104  (2.7 ± 0.1) x 104  (3.1 ± 0.1) x 104 

k-2(s-1) negative intercept  0.3 ± 0.1  0.07 ± 0.04 

k3(s-1)  0.054 ± 0.015  ∼0.06 0.016 ± 0.001 

k-3(s-1)  0.020 ± 0.002  ∼0.025 0.023 ± 0.002 
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Figure 29.  Approach to equilibrium measurements of GSH binding to HCCA Isomerase.  
Panel A shows the increase in A239 upon mixing 40 µM GSH and 10 µM HCCA 
Isomerase. Panel B shows decrease in A239 upon mixing 10 µM HCCA Isomerase loaded 
with 100 µM GSH and 200 mM GSO3

-.  Panel C shows the changes in intrinsic protein 
fluorescence upon mixing 40 µM GSH and 500 nM HCCA Isomerase. Panel D shows the 
changes in intrinsic protein fluorescence upon mixing 30 µM (cyan), 50 µM (magenta), 
80 µM (yellow), or 150 µM (blue) GSH and 500 nM HCCA Isomerase.  Data from 
panels A and B are fit to double exponentials, panel C is fit to a triple exponential, and 
panel D is a global fit to the model in Scheme 4 using the program Dynafit. 
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Table 11.  Calculated dissociation constants for high and low affinity GSH 
binding sites 

 High Affinity (µM-1) Low Affinity (µM-1) 

A239 on & off rates 0.005 ± 0.003  

Fluorescence on & off rates  11 ± 4 

Modeling of Fluorescence Data  2 ± 1 

 
 
 

Overall Structure of HCCA Isomerase.  The crystal structure of HCCA Isomerase was 

solved to 1.8 Å (see methods).  The asymmetric unit contained 1 HCCA Isomerase 

monomer, 1 molecule of GSH and a mix of HCCA and tHBPA (Table 13).  We know 

from gel filtration studies (data not shown) that the native enzyme is a dimer, so the 

dimer was reconstructed using the appropriate symmetry operations (Figure 30 and Table 

13).  The topology of the HCCA Isomerase (Figure 30a) is similar to the Kappa GST 

(Figure 30b) as was predicted (28).  The thioredoxin fold is interrupted by the insertion of 

an alpha helical domain. The backbone RMSD between the enzymes is 2.2Å (for a 

monomer overlay Figure 30c).  The computer models predicted that HCCA Isomerase 

would have a helix preceding the thioredoxin fold.  This is not the case.   

The structures have two major differences.  The first difference is an additional helix in 

the helical domain of Kappa (F87-K94) that is a loop structure in HCCA Isomerase (A82-

N85) (Figure 30c).  The second is at the C-terminus.  In HCCA Isomerase, the final helix 

of the thioredoxin fold continues almost to the C-terminus while in Kappa this helix is 

shorter with longer loop structure extending to the C-terminus (Figure 30c). 
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Table 12: X-ray data collection and processing statistics for HCCA Isomerase 
with native Ligands 

 SeMet Native 

space group P21212 P21212 

cell parameters (a,b,c) (Å) 71.34,76.05,38.37 71.13,75.83,38.30 

wavelength of data collection (Å) 1.541 1.541 

no. of measured intensities 214,768 798,759 

no. of unique reflections (I+ ≠ I-) 53,221 44,029 

resolution of data (Å)  23,499 

highest resolution shell (Å) 1.60 1.70 

Rsym (overall/high resolution shell) 1.66-1.60 1.76-1.70 

completeness (%)(overall/high resolution shell) 0.043/0.273 0.053/0.273 

redundancy (overall/high resolution shell) 100/100 100/100 

mean I/σ (overall/high resolution shell) 4.04/3.83 18.14/17.47 

 

Table 13: Final refinement statistics table for HCCA Isomerase 
with native ligands 

resolution limits (Å) 20.0-1.8 

number of reflections used 22,223 

R-factor (overall/high resolution shell) 0.186/0.265 

Rfree (overall/high resolution shell) 0.236/0.356 

non-protein molecules (not water) 1 glutathione, 0.5 
HCCA, 0.5 HBPA, 3 
CAPS, 2 phosphates 

number of water molecules 157 

rms deviation bond length (Å) 0.022 

rms deviation angle (°) 1.96 

average B main chain/side chain/water (Å2) 23.0/25.6/34.4 
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Figure 30.  Backbone comparison of HCCA Isomerase (A) and Kappa GSH transferase 
(B). GSH is shown as a stick model with the cysteine sulfur colored orange (sulfur has 
two conformations in HCCA Isomerase).  Panel C is an overlay of the individual 
monomers from HCCA Isomerase (magenta) and the Kappa GST (blue). The two major 
structural differences between the enzymes are an extra helix in Kappa (star) and the loop 
(Kappa) versus helix (HCCA Isomerase) at the C-terminus (arrows).   All images were 
created in PYMOL (44), and the overlay was done in DALI (95). 
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GSH Binding Site.  The crystal structure confirms that the GSH binding residues 

conserved in the sequence alignment (Figure 11) bind to GSH in HCCA Isomerase.  

These include S11, V168 (mainchain N and CO), N48, N181, and D182 from the host 

monomer as well as K59 and R183 that reach across the dimer interface (Figure 31).  

There are subtle changes in the GSH binding site that yield two more interactions with 

GSH not found in Kappa.  The first of these arises from the ring nitrogen in W179 (F in 

Kappa) donating an additional hydrogen bond to the cysteine carboxyl group (Figure 31).  

The second comes from the orientation of a H2O molecule.  In Kappa, the side chain of 

S200 interacts directly with the carboxyl end of the γ-glutamate (22).  There is a 

conservative change in HCCA Isomerase to asparagine at this position (Figure 11).  N181 

uses its main chain N to interact with the carboxyl end of γ-glutamate while its side chain 

(along with main chain N of D182 and the side chain of R183) orient a H2O molecule that 

also hydrogen bonds to the carboxyl end of the γ-glutamate.  The overall gain from W179 

and the ordered H2O is two additional hydrogen-bonding partners to GSH.  

 

 

Figure 31.  GSH binding residues in HCCA Isomerase.  GSH is labeled as glycine 
(cyan), cysteine (yellow), and γ-glutamate (magenta).  G180 does not interact with GSH.  
Cysteine side chain of GSH (two conformations) has been removed for clarity. This 
figure was made in the program Insight (51). 
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Active Site.  The active site of the enzyme is shown in Figure 32a.  The electron density 

in the active site could not be fit well to either HCCA or tHBPA alone; however, a model 

using 0.5 occupancy (Table 13) gave a good fit to the data.  In addition, the sulfur side 

chain of GSH appears in two conformations.  

The far end of the active site contains a group of hydrophobic side chains that forms a 

pocket that accepts the aromatic end of HCCA (Figure 32b).  The opposing side of the 

active site is capped by a series of polar/charged side chains that hydrogen bond to 

charged ends of both HCCA and tHBPA (Figure 32b-c).  In addition, the carboxyl group 

of tHBPA has an interaction with the main chain glycine N of GSH (Figure 32c).  The 

side chain sulfur of GSH is in two conformations.  One conformation is closer to S11 

(2.61Å in Figure 32b) while the other is further away (3.28Å in figure 32c).  The 

conformation may be influenced by which ligand is present in the active site but both are 

at a good distance for hydrogen bonding to S11.  The sulfur (GSH) shows no electron 

density corresponding to a covalent bond between HCCA (Figure 32a); however, it does 

make a close approach to C7 of HCCA (Figure 32b). 

 

 

A 
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Figure 32.  The active site of HCCA Isomerase containing native ligands.  P12, F13, 
L60, L63, L67, and F80 (blue) form a hydrophobic binding pocket to accept the aromatic 
end of HCCA while K43, S52, N53, and R54 interact with the charged groups on HCCA 
and/or tHBPA (colored by atom and labeled by residue). Panel A is a sigma style 2mFo-
DFc map with a contour level of 0.6 sigma showing the electron density of the active site 
containing GSH, HCCA (cyan), and tHBPA (yellow). Panels B and C show HCCA and 
tHBPA (respectively) in the active site including the distance of the sulfur to S11 and C7 
(B) or the aromatic hydroxyl group (C).  Panels B and C where made in Insight (51). 

 

Discussion 

GSH and HCCA Isomerase chemistry.  The ability of HCCA Isomerase to catalyze the 

conjugation of GSH and CDNB, albeit at a slow rate, indicates that this enzyme activates 

GSH toward nucleophilic addition reactions, and suggests that native chemistry could 
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involve a GSH conjugate.  Native chemistry does show dependence on [GSH] following 

Michealis-Menten kinetics (Table 8).  This includes an overall activation of 145 fold over 

“apo” enzyme (Table 9). GSH dependent activation has been seen previously (52-54) but 

its catalytic role remained elusive.  When the inhibitor, GSO3
-, was added almost all 

activity was lost (Table 9) indicating direct involvement of the cysteinyl sulfur in 

catalysis at the active site.  Since “apo” protein shows 7x higher activity than enzyme 

with inhibitor bound (Table 9) the active site maintains some catalytic potential beyond 

that donated by GSH. 

 

Complexity of GSH binding.  The detection of GSH after the final purification step 

(Figure 28) suggested high affinity of the protein and ligand.  Inability to easily remove 

all of the GSH even with harsh salt treatment indicated this affinity was likely much 

higher than is typical (10 to 100 µM) for canonical or Kappa GSH transferases (4, 22, 23, 

27).  Approach to equilibrium binding measurements confirmed this suspicion showing 3 

orders of magnitude tighter binding (for the highest affinity site, Table 11).  It is 

noteworthy, however, that the lower affinity site falls within the typical affinity range 

(Table 11) and that maximum activity is not achieved until this site is saturated (Tables 8 

and 9). 

HCCA Isomerase’s cooperative GSH binding  (Figure 28, Scheme 5, Tables 10 and 11) 

is another characteristic atypical for canonical or Kappa GSH transferases (4, 22, 23, 27).  

The only GSH transferase known to show cooperative GSH binding is the MGST1 (14, 

16, 17).  It is a membrane bound trimer that binds GSH in its reduced form in two sites 

and anion form in the last (96).  The cooperativity seen in HCCA Isomerase is not 
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unexpected considering the close approach of GSH molecules in the structure (Figure 

30a).  In hind-sight, it is surprising that Kappa shows no cooperativity (22) considering 

the location of GSH molecules is almost identical (Figure 30b). 

 

The Kappa fold and GSH binding.  Canonical GSH transferases typically have around 

12 interactions with GSH (27) generating dissociation constants within the range given 

above.  Kappa has only eight (22) and has a Kd at the low end of that range.  HCCA 

Isomerase has two additional interactions (Figure 31), and has affinities both similar and 

tighter than in Kappa (Table 11).  This suggests that the Kappa fold contains structural 

characteristics that incorporate additional binding energy upon association with GSH. 

 

GSH and HCCA Isomerase Stability.  Enzyme in which both active sites were not 

occupied with GSH showed diminished stability (data not shown).  This is consistent 

with observations seen previously (52) and suggests that GSH also performs a structural 

role.  The amount of catalytic enhancement could be partially a result of a more ordered 

active site as well as the addition of a nucleophile for catalysis.  Interestingly, no reports 

have shown a loss of structural integrity for “apo” Kappa.   

 

GSH as a cofactor.  Because the enzymatic product is not a GSH conjugate it is 

difficult to demonstrate that GSH is directly involved in catalysis.  The enzymatic 

activation seen with GSH suggests that it is involved in chemistry; however, the low 

activity with one GSH bound and the instability of the enzyme suggests that stabilization 

of the active site is also a major contributor to the activation.  If GSH is involved in 
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catalysis the most likely scenario would be nucleophilic attack at C7 altering the 

hybridization, and freeing the C7-C8 dihedral for rotation to the opposing isomer (Figure 

33).  The crystal structure shows the GSH sulfur is in a good position to attack C7 of 

HCCA even though the electron density of the region shows multiple constructs occupy 

the active site (Figure 32b). 

The lack of significant electron density between the sulfur and C7 suggests that little 

adduct (if formed) is present at any one time in the active site.  This is consistent with the 

increase in absorbance during the exponential phase of the reaction.  Addition of GSH to 

C7 would cause a drop in the UV spectrum of HCCA or tHBPA.  Because the burst phase 

of the reaction shows an absorbance increase, any conjugate formed must be extremely 

transient. 

If a conjugate is formed, it could leave the active site and fall apart to the opposing 

conformer.  This is unlikely however because of the transient nature of this adduct.  It is 

likely formed and cleaved at a rate much faster than any adduct could leave the active 

site.  Consider that the off-rate for the low affinity GSH is slow (0.3 s-1 at 100C, Table 10) 

compared to the turnover number of the enzyme (47s-1 at 250C, Table 8).  We know that 

the adduct formation must be much faster than the turnover number (because we do not 

see it even in the exponential phase).  Therefore the adduct formation must increase the 

off-rate of GSH by several orders of magnitude: a factor extremely unlikely considering 

the instability of the GSH free enzyme. 

 

HCCA Isomerase Mechanism.  In order for the isomerization reaction to occur, two key 

events must happen.  Their order, however, is unknown.  First, the hybridization at C7 
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(HCCA) must change from sp2 to sp3 to allow free rotation around the C7-C8 bond.  

Second, the ketal bond between O1 and C9 must be broken.  There are two possible GSH 

dependent mechanisms that satisfy both of these criteria and are consistent with the data.  

The first is a concerted mechanism in which GSH adds to C7, altering the hybridization 

at the carbon and breaking the ketal bond all at once (Figure 33a).  The second is an 

ordered mechanism in which a transiently formed ring-opened intermediate (cHBPA) is 

attacked by the sulfur nucleophile (Figure 33b).  Both of these mechanisms facilitate a 

change to sp3 hybridization at C7 and free rotation to the trans isomer.  The E-GS- 

complex is then eliminated in a retro-Michael reaction, freeing product (tHBPA) to leave 

the active site (Figure 33).  

The second mechanism seems more likely due to the characteristics of the intermediate 

formed after ring opening.  This molecule (cHBPA) is a precursor in formation of the 

HCCA (Figure 12b) during enzymatic digestion of naphthalene and has been detected in 

equilibrium mixtures of HCCA and tHBPA (52).  Its structure is similar to PBO (Figure 

34), a known GSH transferase substrate (20, 97, 98).  GSH transferase reactions with 

PBO are 1,4 Michael additions of GSH to the electrophile.  This is the same GSH 

addition reaction suggested in Figure 33b. 
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Figure 33.  Proposed enzymatic mechanisms of HCCA Isomerase.  Both involve the 
nucleophilic attack of GSH at C7.  This leads to a transient covalent intermediate and free 
rotation around C7-C8 bond.  Elimination of GSH in a retro-Michael reaction yields the 
tHBPA product.  Panel A is a concerted mechanism in which GSH addition and ring 
opening occur in a single step while panel B is an ordered mechanism in which the ring 
opens and then GSH adds in a 1,4 Michael fashion. 
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HCCA Isomerase and the Kappa GST.  The structural relationship between HCCA 

Isomerase and Kappa firmly places the enzyme into the Kappa class; however, it does not 

give an evolutionary relationship.  Because of its bacterial origins, HCCA Isomerase 

most likely arose first.  But there is no evidence that Kappa came from it.  They could 

both have evolved separately from DsbA (their most likely progenitor).  Their 

relationship is at least intriguing because Kappa is primarily a mitochondrial enzyme and 

might be a bacterial relic from the distant past still present in mammals today. 
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CHAPTER VII 

 

A cHBPA INTERMEDIATE AND A TRANSIENT MICHEAL ADDUCT HIGHLIGHT 
THE HCCA/tHBPA ISOMERIZATION CATALYZED BY HCCA ISOMERASE 

 
 
 

Transient GSH conjugates could be an efficient method for the catalysis of 

isomerizations at α,β unsaturated carbonyls (via reversible Michael adducts) by altering 

hybridization at the 4 position.  A transient conjugate is suspected in the isomerization of 

the unsaturated keto compound MAA (Figure 34a) when it is transformed into its trans 

isomer FAA by the Zeta class GSH transferase (Figure 34a) (99, 100). 

When assaying GSH transferases for Michael activity the model substrate, PBO 

(Figure 34b), is often used (97, 98).  Interestingly, the chemical structure of this 

compound is very similar to tHBPA (Figure 34c): the product of an isomerization 

reaction catalyzed by HCCA Isomerase (Figure 34c).  We and others (52-54) have 

suggested that the enzymatic mechanism could pass through a transient Michael 

conjugate.  

The major caveat with this mechanism is that the predominant cis isomer (at neutral 

pH) is not an α,β unsaturated carbonyl (due to formation of ring via an acetal bond) 

(Figure 34c, d).  Enzymatic addition of GSH to HCCA could occur in a conjugation 

addition scenario altering hybridization and breaking the acetal bound all at once or the 

acetal bond could be broken first and then GSH added (Figure 33).  Breaking of the 

acetal bond gives the compound cHBPA (Figure 34d) an intermediate in the enzymatic 

breakdown of naphthalene (Figure 12), and a compound that can accept a standard 1,4 

Michael adduct. 
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Figure 34.   Compounds of interest in Chapter VII.  Panel A shows the isomerization of 
maleylacetonacetate (MAA) to fumarylacetonacetate (FAA) catalyzed by the Zeta class 
GSH transferase (100).  Panel B shows the structure of trans-4-phenyl-3-buten-2-one 
(PBO).  Panel C shows the isomerization of 2-hydroxychromene-2-carboyxlic acid 
(HCCA) to trans-o-hydroxybenzylidene pyruvic acid (tHBPA) catalyzed by HCCA 
Isomerase.  Panel D shows the structure of cis-o-hydroxybenzylidene pyruvic acid 
(cHBPA).  Panel E shows the analogs synthesized for this study: 2-methylchromene-2-
carboyxlic acid (MCCA) and trans-o-methoxybenzylidenepyruvic acid (tHBPA). 
 

 

Results 

Thermodynamic equilibrium between HCCA and tHBPA.  It has been shown previously 

(52) that the equilibrium between HCCA and tHBPA favored HCCA 55% to 45% at 

neutral pH.  We repeated these measurements by integrating both the areas of their alkene 

trans/cis H-NMR peaks and RP-HPLC peak (at A296 correcting for ε), and found similar 

results: 61% HCCA and 39% tHBPA corresponding to a Keq of 1.53. 
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The nonenzymatic approach to equilibrium between HCCA and tHBPA.  The observed 

rate of the approach to equilibrium between HCCA and tHBPA was measured at variable 

pH from 1 to 14 (Figure 35, see methods).  From pH 1 to 3 and pH 10 to 13, the log of 

the observed rate constant showed a linear relationship (Figure 35).  Neither slope was 

indicative of general acid or base catalysis; however, the observed rate constant increased 

almost 2 orders of magnitude from pH 10 to pH 13. 

 

The pH dependence of HCCA and tHBPA UV-Vis spectra.  UV-Vis scans of tHBPA in 

relation to pH (see methods) showed a change in the spectral characteristics from pH 7 up 

to pH 11 (Figure 36a) consistent with those seen previously (52); however above pH 11, 

no more changes were observed (Figure 36a).  Spectra of HCCA were also then taken 

while varying pH (Figure 36b).  Between pH 7 and 11 there were small changes at 340 to 

420 nm consistent with those for tHBPA (Figure 36b).  This indicated (as was known) 

that a small amount of tHBPA was present in the HCCA preparation.  Above pH 11, 

significant changes began to occur in the HCCA spectrum at 256, 296, and 420 nm  

(Figure 36b).  The appearance of a band at 420 nm was consistent with the formation of 

phenolate anion (52).  Transient state measurements showed that the jump in absorbance 

at 420 nm was complete within the first ms (data not shown) indicating an observed rate 

constant for this step was at minimum a 1,000 s-1.  Because the isomerization rate is 0.005 

s-1 at pH 14.0 (Figure 35) the absorbance was not coming from the phenolate of tHBPA.  

This spectral change was most likely a result of cHBPA (Figure 34d) formation via the 

loss of the hydroxyl proton, formation of the carbonyl, and cleavage of the acetal bond. 
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Figure 35.  pH profile of the observed rate of approach to equilibrium between HCCA 
and tHBPA. 

 
 

The pH dependence of absorbance at 420 nm.  In a separate experiment, the pH 

dependence of the absorbance of HCCA (with slight tHBPA contaminate) at 420 nm was 

measured from pH 8 to 14 (Figure 36c, see methods).  The absorbance change versus pH 

fit well to a double pKa model with an R2 of 0.9981 (Figure 36c).  This observation was 

also consistent with the appearance of cHBPA. The first pKa was loss of tHBPA’s 

phenolic proton (52) while the second was the loss of the hydroxyl proton of HCCA 

(Figure 36c).  Together these data indicated that cHBPA was formed at high pH and its 

absorbance characteristics are similar to HCCA and tHBPA having strong absorbance 

bands at 256, 296, and 420 nm at pH 14.  Note that at pH 7.0 the phenolic oxygen would 

be protonated and the 420 nm band would shift to 340 nm just as seen in tHBPA (Figure 

36a). 
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Figure 36.  pH dependence of the UV-Vis spectrum of HCCA (A) and tHBPA (B).  
Panel C shows the change in absorbance at 420 nm of HCCA at varied pH values.  The 
data were fit to a double pKa model:  pKa 1 = 9.1 ± 0.1 and pKa 2 = 12.21 ± 0.03. 
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Figure 37.  Absorbance change during a single turnover of HCCA Isomerase with HCCA 
(A) or tHBPA (B) recorded at 256 (blue), 296 (magenta), or 340 (red) nm.  Data were fit 
to a double exponential (fit not shown). Observed rate constants are given in Table 1. 

 
Table 14.  Observed rate constants for a single turnover of HCCA Isomerase 
with HCCA and tHBPA 

 256 nm 296 nm 340 nm 250-360 nm global fit 

k1 obs (s-1) 28.9 ± 0.6 52.5 ± 0.5 48.5 ± 0.5 46.8 ± 0.2 HCCA 

k2 obs (s-1) 2.60 ± 0.01 2.38 ± 0.01 2.17 ± 0.02 2.52 ± 0.01 

k1 obs (s-1) 30.2 ± 0.8 56.8 ± 0.7 67 ± 1 77.6 ± 0.3 tHBPA 

k2 obs (s-1) 2.06 ± 0.01 2.25 ± 0.01 2.26 ± 0.02 2.24 ± 0.01 

 
 

Single turnover of HCCA Isomerase with HCCA and tHBPA.  In order to determine if 

any intermediates were present along the enzyme catalyzed reaction coordinate, single 

turnover experiments were employed (Figure 37).  With equilibrium as background (an 

absorbance of zero means the reaction is complete), excess HCCA Isomerase loaded with 

GSH was rapidly mixed with HCCA or tHBPA (see methods).  The resulting absorbance 

change at 256, 296, and 340 nm is given in Figure 37.  The data showed a biphasic 

response consistent with a two-step process.  Fitting of the data to double exponentials 
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gave good fits yielding the observed rate constants (kobs) given in Table 14.  The values of 

k1 obs and k2 obs were consistent at all wavelengths and with both ligands indicating an 

intermediate along the reaction path. 

In order to identify the UV-Vis spectrum of the intermediate single turnover 

multiwavelength global analysis experiments were undertaken (see methods).  Single 

turnover data were obtained at every other wavelength between 250 and 360 nm.  These 

data were then fit to a two-step model using the global analysis software provided (see 

methods) to extract both the observed rate constants (k1 obs and k2 obs, Table 14) as well as 

the UV-Vis spectrum (Figure 38b,c) associated with the intermediate.  Figure 38a shows 

the UV-Vis spectrum of both HCCA and tHBPA in relation to equilibrium.  They have 

characteristic positive and negative absorbances consistent with their extinction 

coefficients at these wavelengths (52).  Global fitting of the single turnover 

multiwavelength experiment gave good correlation of the UV-Vis spectrum of HCCA 

(Figure 38b) and tHBPA (Figure 38c) indicating that no chemistry is occurring in the 

dead time (1-2 ms) of the experiment.  Because of the faster k1 obs for tHBPA (Table 14) 

some of the absorbance at 256 nm is lost so that it does not go entirely negative (Figure 

38c) (also seen in Figure 37b for 256 nm).  The model also finds the UV-Vis spectrum at 

equilibrium (Figure 38b,c) to be about zero as would be expected.  These data indicate 

that the global fit is correctly identifying the starting material as well as the product.  The 

extracted spectrum of the intermediate shows positive absorbance bands at 256, 296, and 

340 nm (Figure 38b, c).  These strong absorbance bands are not indicative of a GSH 

conjugate (loss of pi conjugation means loss of absorbance) but are more consistent with 

the absorbance characteristics of cHBPA (Figure 36b). 
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Figure 38.  Global modeling of the UV-Vis changes during a single turnover of HCCA 
Isomerase with HCCA or tHBPA.  Panel A shows the UV-Vis spectra of HCCA (blue) 
and tHBPA (red) scanned using equilibrium as a background.  Panels B and C show the 
UV-Vis spectra extracted from a global fit of the single turnover multiwavelength 
stopped-flow data.   The starting material (HCCA in B and tHBPA in C) is shown as well 
as the extracted intermediate (magenta) and equilibrium (black) spectra.  Observed rate 
constants are given in Table 14. 

 

Enzymatic activity toward the substrate analog MCCA.  In order to explore the role of 

the acetal bond/hydroxyl group of HCCA in catalysis, the substrate analog MCCA was 

synthesized using a variation on the Kabbe condensation (81, 82) (see methods).  This 

compound has a methyl group in place of the hydroxyl of interest (Figure 34c,e).  

Activity assays with 2 µM HCCA Isomerase, 500 µM GSH, and 250 µM MCCA (see 
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methods) showed no measurable activity after 8 hrs of incubation (Table 15).  When 

reactions were run for 48 hrs with 10 µM enzyme, some measurable GS-MCCA 

conjugate was formed; however, similar levels were detected in the background reaction 

(data not shown). 

 

Enzymatic activity toward the product analog tMBPA.  In order to test if a transient 

conjugate could be formed during turnover, we synthesized the product analog tMBPA 

(see methods).  It has a methoxy group in place of the aromatic hydroxyl of tHBPA 

(Figure 34c,e).  Incubation of 2 µM HCCA Isomerase, 800 µM GSH, and 80 µM tMBPA 

(see methods) showed modest activity (Table 15).  Overall absorbance dropped 

significantly across the spectrum (Figure 39a) indicating GSH conjugation.  RP-HPLC 

showed the appearance of two peaks each with a mass corresponding to a GS-MPBA 

conjugate (data not shown).  This is consistent with the formation of two diastereomers 

(see methods).  The conjugate’s absorbance spectrum (Figure 39a) was obtained by 

capture of its peaks from the RP-HPLC.  Due to instability, its extinction coefficient is 

unknown, but the concentration was estimated at 200 µM.  Together, these data suggest 

that the enzyme forms a GSH-tMBPA conjugate at C7 (Figure 39a). 

Measurement of the steady state kinetics of the HCCA Isomerase catalyzed 

GSH/tMBPA conjugation were done at 343 nm (see methods) due to the absence of 

absorbance of the conjugate at that wavelength (Figure 39a).  The kinetics showed strong 

substrate inhibition (Table 15).  At high substrate concentrations the activity was zero.  

Turnover is slow while affinity for the Michealis complex is high (Table 15).  kcat/Km 

shows an overall low enzymatic efficiency (Table 15). 
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Table 15. Activity of HCCA Isomerase with analogs 

Analog Activity kcat (s-1) Km (µM-1) kcat/Km (M-1s-1) Ki (µM-1) 

tMBPA(GSH) yes 0.07 ± 0.1 30 ± 7 (2.3 ± 0.7) x 103 40 ± 10 

MCCA(GSH) no     

 
 
 

Single turnover of HCCA Isomerase with tMBPA.  Single turnover experiments were 

employed to determine the rate of the chemical step in the HCCA Isomerase catalyzed 

conjugation of GSH and tMBPA. Excess HCCA Isomerase loaded with GSH was rapidly 

mixed with tMBPA while monitoring changes in absorbance at 343 nm (see methods).  

Initially, we believed the reaction was complete within the dead time of the experiment; 

however, close inspection of short time scales (10 ms) showed a drop in absorbance 

(Figure 39b).  The last 8 ms of the data fit well to a single exponential (Figure 39b) with 

an amplitude (0.0257 ± 0.0006) consistent with the absorbance of 20 µM tMPBA in a 0.2 

cm cell (absorbance = 0.0292).  The observed rate constant is given in Table 16. 

Further evidence that this step was in fact chemistry came from a single turnover 

multiwavelength global fit of the data.  As before, single turnover experiments were 

performed every 2 nm from 250 to 360 nm (see methods).  These data were compiled and 

then the last 8 ms of the data was fit to a one-step model using the associated software 

(see methods).  The model yielded UV spectra for the starting material and product 

consistent with that of tMBPA and GS-MBPA, respectively (Figure 39a, c).  The 

observed rate constant (kobs) matched well that of the single wavelength experiment 

(Table 16).  A reversible model gave similar spectra (data not shown) and individual rate 

constants corresponding to a chemical step of 1100 s-1 (Table 16). 
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Figure 39.  Global modeling of the UV-Vis changes during a single turnover of HCCA 
Isomerase with tMBPA. Panel A shows the UV-Vis spectrum of 100 µM tMBPA (black) 
and ∼200 µM GS-MBPA conjugate (gray). Panel B shows a single turnover of enzyme at 
343 nm fit to a single exponential (fit starts at 2 ms).  Panel C shows the UV-Vis 
spectrum extracted from a global fit of the single turnover multiwavelength stopped-flow 
data.  The spectra of the starting material (tMBPA in black) and the product (gray) are 
shown.  Observed rate constants are given in Table 16. 
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Table 16. Observed rate constants for a single 
turnover of HCCA Isomerase with tMPBA 

 kobs (s-1) k1 (s-1) k-1 (s-1) 

343 nm 1220  ± 9    

250-360 nm 
global fit 

1093  ± 5 1096  ± 5 0.051  ± 0.004 

 

Table 17: X-ray data collection and processing statistics for HCCA 
Isomerase with tMPBA 

space group P21212 

cell parameters (a,b,c) (Å) 71.34,76.05,38.37 

wavelength of data collection (Å) 1.541 

no. of measured intensities 214,768 

no. of unique reflections (I+ ≠ I-) 53,221 

resolution of data (Å) 1.75 

highest resolution shell (Å) 1.60 

Rsym (overall/high resolution shell) 1.66-1.60 

completeness (%)(overall/high resolution shell) 0.043/0.273 

redundancy (overall/high resolution shell) 100/100 

mean I/σ (overall/high resolution shell) 4.04/3.83 

 

Table 18: Final refinement statistics table for HCCA Isomerase 
with tMPBA 

resolution limits (Å) 30.0-1.8 

number of reflections used 16,582 

R-factor (overall/high resolution shell) 0.195/0.251 

Rfree (overall/high resolution shell) 0.253/0.328 

non-protein molecules (not water) 1 glutathione, 1 tMBPA, 
3 CAPS, 2 phosphates 

number of water molecules 193 

rms deviation bond length (Å) 0.021 

rms deviation angle (°) 1.92 

average B main chain/side chain/water (Å2) 24.0,26.1,33.4 
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Crystallization of HCCA Isomerase with tMBPA.  Similar crystallization conditions 

were used for tMBPA as for native ligands (see methods).  The data collection and 

statistics are given in Tables 17 and 18.  The space group, resolution, etc. were all very 

similar to the structure with the native ligand. 

 

Active site of HCCA Isomerase with tMBPA.  Overlay of the active site with native 

ligands and the product analog show high correlation (Figure 40).  The hydrophobic 

pocket, GSH, and the polar/charged side chains overlay nicely with the exception of R54 

and the cysteinyl sulfur of GSH (Figure 40).  The side chain of R54 has moved inward 

toward tMPBA.  The absence of the second ring structure seen in HCCA frees up space 

for this movement.  The side chain sulfur is now locked into position (Figure 40).  The 

phenyl rings of tMPBA and HCCA overlay well.  This positional correlation extends out 

to C7 of both ligands (Figure 40). 

 

Atomic positions of tMBPA in the active site.  The electron density around GSH and 

tMBPA shows density between C7 and the sulfur of GSH (Figure 41a).  The distance 

between these atoms is 2.1 Å (Figure 41b).  The temperature (B) factors for atoms in the 

active site (Figure 41b) show that GSH and the phenyl ring of tMBPA are ordered.  In 

contrast, atoms beyond C7 of tMPBA are highly dynamic.  The dihedral angles 

associated with this carbon chain (Figure 41c) show an offset down C6-C9 (Figure 41c, 

left) and planarity down C7-C10 (Figure 41c, right).  These data indicated a loss of the 

double bond character between C7-C8 and an increase in double bond character between 

C8-C9 as if the double bond has moved down one carbon atom. 
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Figure 40.  Overlay the HCCA Isomerase structures containing HCCA (magenta) and 
tMBPA (colored by atom) in the active site.  The HCCA structure is cyan and has two 
sulfur conformations.  The tMPBA structure is blue and has one sulfur conformation.  
This figure was made with the program Insight II (51). 
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Figure 41.  tMBPA in the active site of HCCA Isomerase.  Panel A shows the electron 
density around tMBPA (top) and GSH (bottom). The map is a sigma style 2mFo-DFc 
with a contour level of 1.0 sigma. Panel B shows the temperature factors associated with 
the atoms of GSH (top) and tMBPA (bottom).  The gradient runs from blue (small) to red 
(large).  Panel C shows the dihedral angles of C6-C9 (left) and C7-C10 (right).  Panels B 
and C were made with the program Insight II (51). 

 
 

Global mechanism of HCCA Isomerase.  These results suggest that both ring opening 

and a transient GSH adduct could be involved in native catalysis.  Figure 42a shows our 

hypothesis about the mechanistic path of HCCA Isomerase.  In the first step, cHBPA is 

formed by proton extraction or transfer.  Then a 1,4 Michael adduct is formed changing 
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hybridization and freeing the molecule for rotation around C7-C8.  Next, the Michael 

adduct is removed, and then tHBPA is released from the active site.   

Initially, global models of this mechanism (Figure 42a) showed poor results when fit to 

single turnover data.  The global model was then altered by the addition of known 

inhibitory complexes.  It has been shown previously (Chapter 6) that the enzyme turns 

over several times (27 in the HCCA to tHBPA direction and 7 in the tHBPA to HCCA 

direction) during the burst phase: a result consistent with product inhibition (93, 94), and 

that the trans isomer, tHBPA, shows substrate inhibition (Table 8).   

Product and substrate inhibitory complexes (Figure 42b) were then used in the model 

of Figure 42a to globally fit a single turnover reaction of HCCA to tHBPA (including in 

values for HCCA and tHBPA binding affinity, the tHBPA substrate inhibition constant, 

and the response given by formation of cHBPA and then a return to equilibrium), the 

model converges and shows fair correlation for both x and y residuals.  It yields 

inhibitory binding constants for EPS and ESP that are both nanomolar (Table 19): 

consistent with the number of turnovers of the enzyme during the burst phase.  As a 

whole the resulting rate constants are consistent with known values:  the rate constants 

for Michael chemistry (Table 19, k2 and k-3) are similar to those measured for the tMPBA 

reaction (Table 16); the rate of deprotonation of HCCA to cHBPA (Table 19, k1) is much 

faster than the known lower limit for that step (1,000 s-1); and the slowest steps (Table 19, 

k2 and k-3) are consistent with turnover of the enzyme (47 s-1, Table 8).  The best test of 

the model is its ability to recapitulate the known equilibrium constant between HCCA 

and tHBPA.  A combination of the forward and reverse rate constant gives a Keq of 2.7 ± 

1.5.  This is within error of the known value of 1.53. 
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Figure 42.  Global model of HCCA Isomerase catalysis where S = HCCA, I = cHBPA, A 
= GSH adduct, and P = tHBPA.  Panel A shows the hypothetical pathway of catalysis 
beginning with the formation of cHBPA, followed by a GSH adduct at C7, rotation to the 
trans conformer, and then release of tHBPA.  Panel B shows the global model used to fit 
single turnover data.  Inhibitory complexes are formed with either HCCA and tHBPA or 
two tHBPA molecules in the active site. 
 
 

Table 19. Rate and Binding Constants from the Global Fit of Single Turnover Data 

k1 (s-1) k-1 (s-1) k2 (s-1) k-2 (s-1) k3 (s-1) k3 (s-1) KESP (nM) KEPS (nM) 

(3.2 ± 1.8) x 103 (8.8 ± 5.4) x 103 540  ± 20 122  ± 5 200  ± 100 (1.6 ± 0.7) x 103 440  ± 70 210  ± 150 

A 

B 
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S 
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Discussion 

The HCCA/cHBPA equilibrium. At neutral pH, the ring closed (HCCA) form of the cis 

conformer predominates (52).  This is the most likely reason that the cis/trans equilibrium 

favors the cis conformation at neutral pH.  During pH titration (from pH 11 to pH 14), 

HCCA goes through significant changes in its UV-Vis spectrum consistent with the 

formation of a phenolate anion (Figure 36b, c).  The phenol is only present in the cHBPA 

and tHBPA conformers.  Because the increase happens so fast (at more than 1,000 s-1), 

the phenolate absorbance must be due to the formation of cHBPA.  The dual pKa fit of 

the phenolate absorbance is also consistent with the formation of cHBPA.  The phenolic 

proton of tHBPA is ionized first (pKa 1), and then hydroxyl of HCCA is removed (pKa 

2) breaking the acetal bond and forming the cHBPA and its phenolate. 

The shifting of the HCCA/cHBPA equilibrium should have two consequences.  First, 

breakage of the acetal bond leads to a sterically hindered cis conformation instead of a 

stable ring structure.  The result should be an equilibrium shift toward the trans 

conformer. It is known that above pH 10, the trans conformer, tHBPA, predominates 

(52). The equilibrium is trans dominant where it should be; however, up to pH 12 (Figure 

36b) a large amount of HCCA still exists. Therefore factors beyond just cHBPA 

formation must contribute to this equilibrium shift. Second, increasing concentrations of 

cHBPA would be expected to increase the rate of approach to equilibrium between the cis 

and trans conformers. Figure 35 demonstrates that increasing pH increases the rate of 

approach to equilibrium. 

In concert, these data indicate the absorbance changes seen during the pH titration of 

HCCA (Figure 36b) are a result of cHBPA formation.  This means that cHBPA has 
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absorbance characteristics similar to HCCA and tHBPA.  At neutral pH, it has major 

bands at 256, 296, and 340 nm (ie. 420 nm shifts to 340 nm at neutral pH). 

 

The acetal bond and native HCCA Isomerase catalysis.  Two chemical transformations 

must occur to isomerize HCCA to tHBPA:  the acetal bond must be broken and the 

hybridization at C7 must be changed from sp2 to sp3 (Figure 42).  It has been suggested 

that the hybridization at C7 could be changed via addition of GSH (52-54).  Such adducts 

break pi conjugation and cause a loss of the molecular absorbance characteristics (Figure 

39a).  Single turnover reactions of HCCA Isomerase with HCCA and tHBPA do indicate 

the build up of an intermediate along the enzyme catalyzed reaction coordinate; however, 

the intermediate shows robust absorbance (Figure 38b, c) whose bands are consistent 

with those of cHBPA (Figure 36b). 

Though the model does not give the individual rate constants for each step, the 

resulting observed rate constants for steps 1 and 2 (Table 14) are consistent among all 

experiments. Single turnover reactions beginning with either isomer yield the same 

extracted UV-Vis spectrum for the intermediate (Figure 38b, c).  The intermediate decays 

at the same rate in both cases (Table 14).  Finally, the observed rate constants for the first 

step in either direction are consistent with the thermodynamic equilibrium between 

isomers.  The measured equilibrium constant between HCCA and tHBPA is 1.53 (pH 

7.0).  Division of k1 obs for HCCA by k1 obs tHBPA gives a Keq of 1.52 (in a HCCA/tHBPA 

equilibrium k1 obs for HCCA = k1 and k1 obs for tHBPA = k-1). 

The appearance of cHBPA along the reaction coordinate suggests that the enzymatic 

mechanism likely involves two distinct steps.  First, is ring cleavage and the second is 
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isomerization (Figure 42).  To determine if the enzyme could perform both of these steps 

in a concerted manner, MCCA [a compound without the chromene ring hydroxyl group 

(Figure 34c)] was synthesized and assayed.  The enzyme showed no activity toward 

MCCA (Table 15).  This suggests that acetal ring cleavage must occur for catalysis to 

proceed.  These results are consistent with an ordered mechanism (Figure 42) and makes 

the concerted mechanism proposed previously (Figure 33a) unlikely. 

 

HCCA Isomerase and the product analog tMBPA.  Cleavage of the acetal ring is only 

one of the factors important for catalysis.  The other is alteration of orbital hybridization 

at C7 (Figure 34c).  It is known that GSH is vital for efficient catalysis (Table 9), but 

single turnover reactions with the native substrate/product showed no indication of a 

GSH adduct (Figure 38b, c).  This does not mean that one is not occurring: it could be 

transient.  The product analog tMBPA was synthesized to determine if C7 was a viable 

site for GSH addition and to possibly capture an adducted intermediate in the active site.  

Due to its bulk at the ortho position (Figure 34e), all cis isomers (HCCA and cHBPA) are 

highly unlikely; therefore, the GSH adduct and not free ligand might be the most stable 

structure in the active site. 

HCCA Isomerase showed activity in the catalytic conjugation of GSH with tMBPA.   

The conjugation occurs at C7 as expected (Figure 41a).  Overlay of the active site with 

HCCA or tMBPA bound (Figure 40) shows the correlation of C7 for each.  This suggests 

C7 is viable site for nucleophilic attack during native turnover.  Steady state turnover 

with tMBPA is slow (Table 15); however, single turnover reactions show that the enzyme 
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catalyzes chemistry at a rate of ∼1100 s-1 (Table 16).  This indicates that Michael 

chemistry is fast and makes a transient conjugate during native turnover possible.  

The crystal structure of the active site of HCCA Isomerase containing tMBPA contains 

many of the characteristics expected of a GSH adduct (ie. a native-like intermediate).  

The electron density suggests most of the crystal contains GSH-tMBPA adduct (Figure 

41a).  The temperature factors show high dynamic motion beyond C7, as would be 

expected for isomerization back and forth (Figure 41b).  The dihedral angles suggest the 

hybridization at C7 has single bond characteristics (Figure 41c). 

 

Global mechanism of HCCA Isomerase.  Figure 42 shows our hypothesis about the 

mechanistic path of this enzyme.  This mechanism is based on evidence from 

crystallographic and transient state kinetic studies with HCCA/tHBPA and the analog 

tMPBA including the absence of activity toward the substrate analog MCCA. The 

apparent flaw in this model is the inconsistency between two kinetic observations.  First, 

the observed rate constant for the burst seen during multiple turnover analysis of HCCA 

and tHBPA tops out at ~5 s-1 (at high ligand concentrations): a result inconsistent with the 

turnover number of the enzyme.  Second, single turnover analysis of HCCA and tHBPA 

(Figure 37 and 38) showed a two-step process whose second step gave an observed rate 

constant of ~2.5 s-1 (Table 14), again inconsistent with turnover.  The clue to reconciling 

these observations comes from the multiple turnover reactions.  During the burst phase, 

the enzyme travels through several turnovers before reaching the steady state.  This 

suggested that product inhibition maybe key (93, 94).  In conjunction with the substrate 

inhibition seen by tHBPA, these inhibitory complexes resulted in a good global fit to our 
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model.  The fit converges and shows moderate correlation for both x and y residuals.  It 

yields inhibitory binding constants for EPS and ESP that are similar and nanomolar: a 

result consistent with severe product inhibition. It also results in rate constants consistent 

Michael chemistry, the known lower limit for the rate of deprotonation of HCCA, and the 

turnover number of the enzyme. 
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APPENDIX  

 

THE HDX-MS DATA OBTAINED ON THE LIGAND BOUND AND APO FORMS 
OF NATIVE rGSTM1-1 (N) AND THE F56S MUTANT AS WELL AS THE CURVES 

AND KINETIC CONSTANTS DERIVED FROM FITTING OF THE DATA  
 
 
 

Enzyme  A1 (D) k1 (m-1) A2 (D) k2 (m-1) A3 (D) k3 (m-1) 
N 
N+GSH 
F56S 
F56S+GSO3

- 

1-4  
 

 
 
0.3±0.1 

 
 
0.03±0.01 

 
 
2.6±0.1 

 
 
0.001±0.00006 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

5-18  4.6±0.7 
1.4±0.1 
4.9±0.3 
1.7±0.2 

0.9±0.3 
0.4±0.1 
0.8±0.1 
0.4±0.1 

2.6±0.7 
4.2±0.4 
1.3±0.4 
3.6±0.3 

0.09±0.04 
0.01±0.002 
0.04±0.03 
0.02±0.004 

4.2±0.2 
5.3±0.4 
3.3±0.4 
6.1±0.4 

0.001±0.0003 
0.004±0.002 
0.002±0.0004 
0.0006±0.0002 

N 
N+GSH 
F56S 
F56S+GSO3

- 

7-18 4.4±0.5 
1.2±0.1 
4.3±0.3 
1.4±0.1 

0.8±0.2 
0.2±0.03 
0.8±0.2 
0.3±0.05 

1.9±0.5 
3.8±0.2 
0.8±0.3 
3.1±0.2 

0.06±0.001 
0.01±0.002 
0.03±0.025 
0.02±0.003 

3.7±0.3 
4.3±0.3 
3.2±0.4 
5.5±0.2 

0.001±0.0003 
0.0002±0.0001 
0.002±0.0004 
5±0.9x10-4 

N 
N+GSH 
F56S 
F56S+GSO3

- 

7-20 4.2±0.4 
0.9±0.1 
4.1±0.2 
1.3±0.2 

0.7±0.2 
0.3±0.04 
0.8±0.1 
0.3±0.07 

1.9±0.4 
3.6±0.1 
1.2±0.3 
2.9±0.2 

0.05±0.02 
0.01±0.001 
0.02±0.01 
0.02±0.003 

5.8±0.3 
7.0±0.1 
5.3±0.3 
7.9±0.2 

0.0006±0.0001 
2±0.4x10-4 
0.0006±0.0002 
4±0.6 x10-4 

N 
N+GSH 
F56S 
F56S+GSO3

- 

8-20 3.2±0.3 
0.8±0.1 
3.4±0.2 
1.0±0.2 

0.9±0.2 
0.2±0.04 
0.7±0.1 
0.3±0.09 

1.8±0.3 
3.1±0.1 
1.4±0.3 
2.3±0.1 

0.04±0.004 
0.01±0.001 
0.01±0.008 
0.02±0.004 

6.0±0.2 
6.6±0.9 
5.0±0.5 
7.7±0.1 

0.0006±0.0001 
8±4x10-4 
0.0005±0.0002 
2±0.4 x10-4 

N 
N+GSH 
F56S 
F56S+GSO3

- 

19-
21 

      

N 
N+GSH 
F56S 
F56S+GSO3

- 

20-
29 

5.8±0.4 
5.6±0.3 
5.0±0.3 
5.8±0.2 

0.7±0.1 
0.3±0.05 
0.5±0.1 
0.5±0.1 

1.5±0.2 
1.2±0.2 
1.0±0.1 
1.7±0.1 

0.0002±0.0005 
0.0008±0.0008 
0.0006±0.0006 
0.0004±0.0003 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

22-
27 

2.1±0.4 
2.5±0.2 
0.9±0.2 
2.7±0.5 

1.1±0.4 
0.7±0.1 
0.8±0.4 
2.3±0.6 

1.7±0.1 
0.9±0.1 
1.3±0.1 
1.9±0.1 

0.0003±0.0003 
0.0004±0.0004 
0.0003±0.0003 
0.0002±0.0002 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

23-
33 

6.1±0.5 
4.5±0.4 
 
 

1.2±0.2 
1.1±0.2 
 

2.4±0.1 
2.4±0.3 
 

3.0±2.0 x10-7 
0.06±0.02 
 

 
2.5±0.2 

 
0.0003±0.0002 
 

N 
N+GSH 
F56S 
F56S+GSO3

- 

34-
46 

4.3±0.5 
4.7±0.4 
2.9±0.4 
3.5±0.4 

0.8±0.2 
0.3±0.1 
0.5±0.2 
1.7±0.4 

3.9±0.2 
3.8±0.3 
2.5±0.2 
2.5±0.3 

0.001±0.0003 
0.0005±0.03 
0.0004±0.0004 
0.09±0.01 

 
 
 
3.3±0.3 

 
 
 
0.0005±0.0002 
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N 
N+GSH 
F56S 
F56S+GSO3

- 

49-
56 

6.2±0.5 
6.4±0.3 
 

1.6±0.2 
0.9±0.1 
 

    

N 
N+GSH 
F56S 
F56S+GSO3

- 

49-
59 

7.8±0.5 
6.9±0.3 
1.9±0.5 
4.7±0.3 

1.4±0.1 
0.8±0.1 
0.9±0.5 
2.3±0.9 

 
1.6±0.1 
1.6±0.2 
0.9±0.1 

 
0.01±0.003 
0.001±0.0001 
0.04±0.01 

 
 
 
2.9±0.1 

 
 
 
0.0008±0.0001 

N 
N+GSH 
F56S 
F56S+GSO3

- 

49-
62 

6.6±0.4 
5.1±0.4 
2.5±0.6 
5.4±0.3 

1.1±0.1 
0.8±0.1 
0.9±0.5 
2.4±0.1 

2.5±0.1 
1.9±0.4 
2.5±0.2 
1.4±0.1 

0.0003±0.0002 
0.04±0.01 
0.01±0.001 
0.04±0.01 

 
 
 
3.8±0.1 

 
 
 
0.0006±0.0001 

N 
N+GSH 
F56S 
F56S+GSO3

- 

51-
62 

5.7±0.4 
4.5±0.4 
 

1.3±0.2 
0.3±0.1 
 

2.7±0.1 
3.9±0.2 
 

0.0005±0.0002 
0.0007±0.0003 
 

 
 

 
 

N 
N+GSH 
F56S 
F56S+GSO3

- 

57-
74 

3.7±0.4 
3.8±0.3 
 

1.0±0.3 
0.4±0.1 
 

2.0±0.3 
10.4±0.2 
 

0.03±0.01 
0.0007±0.0003 
 

8.5±0.3 
 
 

0.0002±0.0001 
 
 

N 
N+GSH 
F56S 
F56S+GSO3

- 

60-
74 

2.7±0.5 
3.3±0.2 
3.5±0.4 
3.4±0.1 

1.1±0.4 
0.7±0.1 
0.3±0.08 
2.0±0.2 

2.0±0.4 
9.2±0.1 
7.5±0.2 
1.5±0.1 

0.05±0.02 
0.0001±0.00004 
0.0006±0.0001 
0.07±0.008 

7.7±0.3 
 
 
9.2±0.1 

0.0004±0.0003 
 
 
2.0±0. 2x10-4 

N 
N+GSH 
F56S 
F56S+GSO3

- 

63-
74 

2.9±0.5 
3.1±0.3 
3.7±0.3 
3.2±0.3 

0.9±0.4 
1.1±0.2 
0.5±0.1 
1.6±0.4 

2.2±0.4 
0.8±0.2 
3.7±0.2 
1.4±0.2 

0.04±0.02 
0.07±0.05 
0.001±0.0003 
0.1±0.04 

4.3±0.3 
6.0±0.1 
 
6.2±0.1 

0.0004±0.0003 
8.0±7.0x10-5 
 
5.0±0.6x10-4 

N 
N+GSH 
F56S 
F56S+GSO3

- 

75-
91 

3.9±0.3 
4.1±0.3 
2.1±0.6 
3.0±0.3 

0.5±0.1 
0.3±0.1 
0.6±0.4 
1.7±0.4 

9.6±0.2 
8.9±0.1 
1.1±0.6 
1.5±0.2 

9.0±7.0 x10-5 
8.0±7.0 x10-5 
0.05±0.06 
0.1±0.03 

 
 
9.4±0.3 
9.7±0.1 

 
 
0.0002±0.0001 
4.0±3.0x10-5 

N 
N+GSH 
F56S 
F56S+GSO3

- 

89-
96 

1.2±0.3 
1.4±0.1 
2.7±0.2 
1.5±0.2 

0.9±0.6 
1.1±0.3 
0.5±0.1 
1.2±0.3 

1.8±0.3 
0.6±0.1 
2.6±0.1 
0.9±0.3 

0.04±0.02 
0.09±0.04 
0.001±0.0002 
0.06±0.03 

3.1±0.2 
4.4±0.1 
 
4.3±0.1 

0.0005±0.0002 
1.0±0.4x10-5 
 
6.0±0.8x10-5 

N 
N+GSH 
F56S 
F56S+GSO3

- 

92-
96 

      

N 
N+GSH 
F56S 
F56S+GSO3

- 

92-
100 

      

N 
N+GSH 
F56S 
F56S+GSO3

- 

93-
100 
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N 
N+GSH 
F56S 
F56S+GSO3

- 

97-
100 

      

N 
N+GSH 
F56S 
F56S+GSO3

- 

101-
110 

1.9±0.2 
1.4±0.1 
5.2±0.4 
1.8±0.1 

0.8±0.2 
0.09±0.01 
0.15±0.02 
0.06±0.06 

3.4±0.3 
7.7±0.1 
3.8±0.4 
7.2±0.1 

0.02±0.004 
0.0002±0.00002 
0.007±0.001 
0.0004±0.00003 

4.0±0.3 
 
 
 

0.001±0.0002 
 
 
 

N 
N+GSH 
F56S 
F56S+GSO3

- 

103-
110 

2.9±0.3 
0.5±0.3 
4.4±0.3 
0.8±0.1 

0.03±0.01 
0.09±0.02 
4.6±0.9 
0.03±0.006 

3.8±0.3 
6.5±0.3 
2.4±0.3 
6.2±0.1 

0.001±0.0003 
8.0±8.0x10-5 
0.005±0.001 
0.0004±0.00005 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

110-
119 

2.5±0.2 
2.6±0.2 
1.9±0.2 
1.9±0.2 

0.6±0.1 
0.3±0.1 
0.4±0.1 
1.9±0.3 

4.5±0.1 
4.1±0.1 
4.5±0.1 
0.9±0.1 

1.1±0.9x10-5 
0.0001±0.0001 
0.0004±0.00009 
0.12±0.03 

 
 
 
4.8±0.1 

 
 
 
6.0±3.0x10-5 

N 
N+GSH 
F56S 
F56S+GSO3

- 

111-
113 

1.2±0.1 
0.2±0.03 
1.3±0.06 
0.1±0.02 

0.05±0.01 
0.3±0.1 
0.01±0.001 
0.05±0.02 

0.7±0.1 
1.8±0.0 
0.7±0.1 
1.8±0.0 

0.001±0.0005 
0.0005±0.00004 
0.0009±0.0002 
0.0003±0.00003 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

114-
126 

6.7±0.4 
4.0±0.5 
6.6±0.4 
3.4±0.5 

0.5±0.1 
0.7±0.2 
0.3±0.05 
0.9±0.3 

0.9±0.2 
4.8±0.5 
0.6±0.3 
5.5±0.5 

0.0002±0.001 
0.03±0.006 
0.002±0.0002 
0.05±0.008 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

116-
126 

4.7±0.5 
4.5±0.4 
5.6±0.4 
5.6±0.3 

0.05±0.01 
0.03±0.005 
0.08±0.01 
0.04±0.005 

2.5±0.5 
2.8±0.4 
1.9±0.4 
1.9±0.3 

0.003±0.001 
0.002±0.0005 
0.005±0.002 
0.0009±0.0005 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

120-
126 

3.8±0.3 
1.7±0.2 
3.4±0.2 
1.8±0.2 

0.6±0.1 
1.0±0.3 
0.2±0.03 
1.9±0.3 

0.5±0.1 
3.0±0.1 
0.3±0.1 
3.3±0.1 

0.0006±0.001 
0.03±0.003 
0.002±0.9 
0.003±0.003 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

127-
136 

2.5±0.3 
2.2±0.1 
2.7±0.1 
2.6±0.1 

1.1±0.3 
0.9±0.1 
0.7±0.2 
1.7±0.1 

2.5±0.3 
2.2±0.1 
2.6±0.1 
2.2±0.1 

0.04±0.01 
0.03±0.003 
0.03±0.004 
0.02±0.001 

3.0±0.3 
3.6±0.1 
2.5±0.1 
3.6±0.1 

0.001±0.0003 
3.0±0.7x10-5 
0.001±0.0002 
5.0±0.6x10-5 

N 
N+GSH 
F56S 
F56S+GSO3

- 

137-
140 

3.0±0.04 
3.0±0.01 
2.5±0.1 
2.0±0.1 

0.002±0.002 
8.0±0.4x10-5 
0.09±0.09 
0.03±0.003 

 
 
0.6±0.1 
1.0±0.1 

 
 
0.0003±0.0003 
0.001±0.0004 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

141-
154 

4.2±0.2 
4.5±0.1 
4.6±0.2 
4.3±0.2 

0.07±0.008 
0.06±0.005 
0.1±0.01 
0.08±0.008 

7.5±0.2 
7.2±0.1 
7.1±0.2 
7.4±0.1 

0.0003±0.00001 
0.0002±0.00007 
0.0002±0.00008 
0.0002±0.00006 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

141-
157 

4.2±0.1 
4.5±0.1 
4.5±0.2 
4.1±0.2 

0.06±0.005 
0.06±0.005 
0.1±0.02 
0.07±0.01 

11±0.1 
10±0.1 
10±0.2 
10±0.2 

0.0003±0.00004 
0.0002±0.00004 
0.0002±0.00006 
0.0002±0.00007 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

158-
163 

      

N 
N+GSH 

164-
174 

2.6±0.3 
2.4±0.1 

1.0±0.2 
0.6±0.1 

5.5±0.1 
5.3±0.1 

0.005±0.00008 
0.0001±0.00005 

  



 120 

F56S 
F56S+GSO3

- 
2.2±0.2 
2.9±0.2 

0.6±0.1 
1.2±0.2 

5.1±0.1 
4.9±0.1 

0.0004±0.00007 
0.0001±0.00006 

N 
N+GSH 
F56S 
F56S+GSO3

- 

167-
174 

1.6±0.1 
1.6±0.05 
2.2±0.2 
1.6±0.08 

0.4±0.07 
0.3±0.03 
0.6±0.1 
0.5±0.06 

3.8±0.1 
3.7±0.1 
5.1±0.1 
3.6±0.1 

0.002±0.00006 
0.0001±0.00004 
0.0004±0.00007 
9.0±5.0x10-5 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

175-
184 

3.5±0.2 
3.4±0.2 
4.3±0.2 
3.7±0.2 

0.03±0.004 
0.03±0.005 
0.07±0.008 
0.05±0.006 

4.2±0.2 
4.3±0.2 
3.5±0.2 
3.7±0.2 

0.0005±0.0001 
0.0007±0.0002 
0.0005±0.0002 
0.0004±0.0002 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

177-
184 

2.1±0.1 
2.2±0.2 
2.6±0.1 
1.0±0.2 

0.05±0.008 
0.04±0.0007 
0.08±0.01 
0.4±0.16 

3.6±0.1 
3.5±0.2 
3.1±0.1 
2.0±0.2 

0.0007±0.0001 
0.0007±0.0002 
0.0005±0.0001 
0.02±0.005 

 
 
 
2.6±0.2 

 
 
 
0.0002±0.0002 

N 
N+GSH 
F56S 
F56S+GSO3

- 

177-
187 

2.4±0.3 
2.9±0.4 
2.3±0.4 
2.0±0.2 

1.1±0.3 
0.2±0.1 
0.6±0.2 
1.3±0.3 

1.9±0.2 
4.6±0.3 
1.7±0.4 
1.7±0.2 

0.03±0.01 
0.0005±0.0002 
0.04±0.02 
0.06±0.01 

3.9±0.2 
 
3.4±0.2 
4.3±0.1 

0.0005±0.0002 
 
0.0006±0.0002 
2.0±0.8x10-5 

N 
N+GSH 
F56S 
F56S+GSO3

- 

185-
195 

3.7±0.3 
3.6±0.2 
3.7±0.2 
3.6±0.1 

0.4±0.1 
0.3±0.04 
0.5±0.08 
0.4±0.04 

5.1±0.1 
4.9±0.1 
4.7±0.1 
4.7±0.1 

0.0003±0.0001 
0.0002±0.00008 
0.0002±0.0001 
0.0002±0.00007 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

188-
195 

3.5±0.2 
3.6±0.1 
3.6±0.2 
3.4±0.1 

0.4±0.1 
0.3±0.03 
0.5±0.08 
0.4±0.04 

2.1±0.1 
1.8±0.1 
1.7±0.1 
1.9±0.1 

0.0003±0.0003 
0.0002±0.0002 
0.0003±0.0003 
0.0001±0.0001 

 
 
 
 

 
 
 
 

N 
N+GSH 
F56S 
F56S+GSO3

- 

196-
202 

3.2±0.2 
4.0±0.2 
3.6±0.2 
3.5±0.1 

0.4±0.1 
0.2±0.03 
0.4±0.06 
0.3±0.02 

1.8±0.1 
0.7±0.1 
0.9±0.1 
1.6±0.1 

0.00005±0.0002 
0.0008±0.0008 
0.0004±0.0004 
0.0003±0.0002 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

196-
208 

7.1±0.5 
7.3±0.4 
7.1±0.8 
6.1±0.3 

0.7±0.1 
0.3±0.05 
0.8±0.2 
1.1±0.1 

1.5±0.2 
1.4±0.3 
0.9±0.3 
2.7±0.4 

0.0001±0.0006 
0.001±0.001 
0.002±0.002 
0.1±0.02 

 
 
 
1.7±0.1 

 
 
 
0.0006±0.0002 

N 
N+GSH 
F56S 
F56S+GSO3

- 

209-
217 

3.7±0.4 
5.2±0.3 
2.5±0.3 
5.8±0.2 

1.0±0.2 
0.8±0.1 
0.9±0.2 
0.9±0.07 

0.9±0.1 
0.7±0.1 
0.5±0.1 
0.8±0.1 

0.0005±0.0005 
0.0009±0.0009 
0.0008±0.0008 
0.0004±0.0004 

  

N 
N+GSH 
F56S 
F56S+GSO3

- 

212-
217 

2.5±0.3 
3.1±0.2 
1.7±0.2 
3.1±0.1 

1.2±0.3 
0.8±0.1 
1.0±0.2 
1.1±0.07 

0.8±0.3 
0.6±0.1 
0.6±0.1 
1.0±0.1 

0.0004±0.0004 
0.0008±0.0007 
0.0004±0.0004 
0.0001±0.0001 
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Peptide 1-4 (3)

0.1 1 1 0 100 1000
0

1

2

3 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 5-18 (12)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0

1 2 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 7-18 (10)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0
Native
F56S
Native + 0.2mM GSH

F56S + 20mM GSO3
-

Time (min)

Peptide 7-20 (12)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0

1 2 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 8-20 (11)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 19-21 (2)

0.1 1 1 0 100 1000

0

1

2
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 20-29 (9)

0.1 1 1 0 100 1000
0

2

4

6

8
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 22-27 (5)

0.1 1 1 0 100 1000
0

1

2

3

4

5
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 34-46 (11)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 49-59 (9)

0.1 1 1 0 100 1000
0

2

4

6

8
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 49-62 (11)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 60-74 (14)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0

1 2

1 4 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 63-74 (11)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 75-91 (15)

0.1 1 10 100 1000
0

3

6

9

12

15
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 89-96 (7)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6

7
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 92-96 (4)

0.1 1 1 0 100 1000
0

1

2

3

4
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 92-100 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 93-100 (7)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6

7
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 97-100

0.1 1 1 0 100 1000
0

1

2

3
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 101-110 (9)

0.1 1 10 100 1000
0

2

4

6

8
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 103-110 (7)

0.1 1 10 100 1000
0

1

2

3

4

5

6

7
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 110-119 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
 

 
 



 132 

Peptide 111-113 (2)

0.1 1 10 100 1000
0.0

0.5

1.0

1.5

2.0 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 114-126 (10)

0.1 1 10 100 1000
0

2

4

6

8

10
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 116-126 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 120-126 (5)

0.1 1 1 0 100 1000
0

1

2

3

4

5 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 127-136 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 137-140 (3)

0.1 1 1 0 100 1000
0

1

2

3
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 141-154 (12)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0

1 2 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 141-157 (15)

0.1 1 10 100 1000
0

3

6

9

12

15 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 158-163 (5)

0.1 1 1 0 100 1000
0

1

2

3

4

5 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 164-174 (9)

0.1 1 10 100 1000
0

2

4

6

8
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
 

 
 



 137 

Peptide 167-174 (6)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 175-184 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
 

 
 



 138 

Peptide 177-184 (6)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 177-187 (9)

0.1 1 1 0 100 1000
0

2

4

6

8
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
 

 
 



 139 

Peptide 185-195 (10)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 188-195 (7)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6

7 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
 

 
 
 



 140 

Peptide 196-202 (6)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 196-208 (11)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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Peptide 209-217 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)

Peptide 212-217 (5)

0.1 1 1 0 100 1000
0

1

2

3

4

5
Native
F56S
Native + 0.2mM GSH
F56S + 20mM GSO3-

Time (min)
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THE HDX-MS DATA OBTAINED ON THE F56S R81A MUTANT OF rGSTM1-1AS 
WELL AS THE CURVES AND KINETIC CONSTANTS DERIVED FROM FITTING 

OF THE DATA 
 
 
 

Peptide A1 (D) k1 (m-1) A2 (D) k2 (m-1) A3 (D) k3 (m-1) 

1-4 0.5±0.1 0.03±0.01 2.2±0.1 0.0014±0.0002   

5-18 4.4±0.3 0.9±0.2 2.5±0.3 0.04±0.01 3.3±0.3 0.0007±0.0003 

7-18 3.6±0.2 0.6±0.1 1.6±0.2 0.03±0.01 2.8±0.2 0.0006±0.0002 

7-20 3.6±0.2 0.6±0.1 1.8±0.3 0.019±0.006 4.6±0.3 0.0003±0.0002 

8-20 2.8±0.2 0.7±0.1 1.6±0.2 0.028±0.009 5.1±0.2 0.0005±0.0001 

19-21       

20-29 3.6±0.5 0.4±0.1 1.0±0.1 0.05±0.03   

22-27 0.9±0.2 0.6±0.3     

34-46 1.8±0.1 1.0±0.2 1.9±0.1 0.073±0.008   

49-59 1.5±0.2 0.5±0.1 2.0±0.1 0.0019±0.003   

49-62 2.2±0.2 0.6±0.1 1.1±0.1 0.008±0.002   

60-74 2.1±0.2 0.6±0.1 2.7±0.2 0.027±0.006 4.4±0.2 0.0005±0.0002 

63-74 2.3±0.2 0.9±0.1 1.6±0.2 0.031±0.007 2.7±0.2 0.0003±0.0002 

75-91 3.1 ± 0.3 0.6 ± 0.2 3.6 ± 0.3 0.042 ± 0.006   

89-96 1.3±0.1 1.0±0.2 1.4±0.1 0.03±0.006 1.5±0.1 0.0004±0.0002 

92-96 1.8 ± 0.5 0.009 ± 0.002 2.1 ± 0.5 0.001 ± 0.0005   

92-100 4.82 ± 0.02 0.0048 ± 0.0001     

93-100 3.86 ± 0.03 0.0052 ± 0.0002     

97-100       
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101-110 3.8±0.2 0.29±0.03 3.6±0.2 0.02±0.002   

103-110 2.1±0.2 0.4±0.1 3.5±0.2 0.04±0.004   

110-119 7.7 ± 0.1 0.003 ± 0.0001     

111-113 0.3±0.1 0.03±0.02 1.5±0.1 0.003±0.0003   

114-126 2.7±0.5 0.8±0.3 3.3±0.6 0.08±0.02   

116-126 1.2±0.4 0.3±0.1 4.6±0.4 0.03±0.003   

120-126 1.1±0.2 1.6±0.7 2.6±0.2 0.09±0.009   

127-136 2.0±0.1 0.8±0.1 2.9 ±0.1 0.019±0.001 2.7±0.1 0.0003±0.0001 

137-140 2.17±0.03 0.048±0.002     

141-154 4.4±0.2 0.070±0.006 0.7±0.1 0.001±0.001   

141-157 1.7±0.3 0.3±0.1 3.7±0.3 0.035±0.004   

158-163       

164-174 1.6±0.1 0.50±0.07 0.55±0.06 0.010±0.003   

167-174 1.33±0.06 0.36±0.04 0.51±0.03 0.0007±0.0004   

175-184 1.0±0.2 0.25±0.09 3.5±0.3 0.028±0.003   

177-184 1.0±0.2 0.23±0.08 2.0±0.2 0.026±0.004   

177-187 2.1±0.2 0.36±0.07 1.8±0.2 0.021±0.04   

185-195 2.9±0.1 0.34±0.03 0.69±0.05 0.0019±0.0005   

188-195 2.8±0.1 0.31±0.02     

196-202 3.0±0.1 0.22±0.02     

196-208 4.6±0.8 0.6±0.1 1.8±0.8 0.1±0.04   

209-217 3.0±0.2 0.68±0.08     

212-217 1.9±0.1 0.8±0.1 0.30±0.04 0.002±0.001   
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Peptide 1-4 (3)

0.1 1 1 0 100 1000
0

1

2

3 Native
F56S
F56S R81A

Time (min)

Peptide 5-18 (12)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0

1 2 Native
F56S
F56S R81A

Time (min)
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Peptide 7-18 (10)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0
Native
F56S
F56S R81A

Time (min)

Peptide 7-20 (12)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0

1 2 Native
F56S
F56S R81A

Time (min)
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Peptide 8-20 (11)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0
Native
F56S
F56S R81A

Time (min)

Peptide 19-21 (2)

0.1 1 1 0 100 1000

0

1

2
Native
F56S
F56S R81A

Time (min)
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Peptide 20-29 (9)

0.1 1 1 0 100 1000
0

2

4

6

8
Native
F56S
F56S R81A

Time (min)

Peptide 22-27 (5)

0.1 1 1 0 100 1000
0

1

2

3

4

5
Native
F56S
F56S R81A

Time (min)
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Peptide 34-46 (11)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0
Native
F56S
F56S R81A

Time (min)

Peptide 49-59 (9)

0.1 1 1 0 100 1000
0

2

4

6

8
Native
F56S
F56S R81A

Time (min)
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Peptide 49-62 (11)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0
Native
F56S
F56S R81A

Time (min)

Peptide 60-74 (14)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0

1 2

1 4 Native
F56S
F56S R81A

Time (min)
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Peptide 63-74 (11)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0 Native
F56S
F56S R81A

Time (min)

Peptide 75-91 (15)

0.1 1 10 100 1000
0

3

6

9

12

15
Native
F56S
F56S R81A

Time (min)
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Peptide 89-96 (7)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6

7
Native
F56S
F56S R81A

Time (min)

Peptide 92-96 (4)

0.1 1 1 0 100 1000
0

1

2

3

4
Native
F56S
F56S R81A

Time (min)
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Peptide 92-100 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
F56S R81A

Time (min)

Peptide 93-100 (7)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6

7
Native
F56S
F56S R81A

Time (min)
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Peptide 97-100

0.1 1 1 0 100 1000
0

1

2

3
Native
F56S
F56S R81A

Time (min)

Peptide 101-110 (9)

0.1 1 10 100 1000
0

2

4

6

8
Native
F56S
F56S R81A

Time (min)
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Peptide 103-110 (7)

0.1 1 10 100 1000
0

1

2

3

4

5

6

7
Native
F56S
F56S R81A

Time (min)

Peptide 110-119 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
F56S R81A

Time (min)
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Peptide 111-113 (2)

0.1 1 10 100 1000
0.0

0.5

1.0

1.5

2.0 Native
F56S
F56S R81A

Time (min)

Peptide 114-126 (10)

0.1 1 10 100 1000
0

2

4

6

8

10 Native
F56S
F56S R81A

Time (min)
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Peptide 116-126 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
F56S R81A

Time (min)

Peptide 120-126 (5)

0.1 1 1 0 100 1000
0

1

2

3

4

5 Native
F56S
F56S R81A

Time (min)
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Peptide 127-136 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
F56S R81A

Time (min)

Peptide 137-140 (3)

0.1 1 1 0 100 1000
0

1

2

3
Native
F56S
F56S R81A

Time (min)
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Peptide 141-154 (12)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0

1 2 Native
F56S
F56S R81A

Time (min)

Peptide 141-157 (15)

0.1 1 10 100 1000
0

3

6

9

12

15 Native
F56S
F56S R81A

Time (min)
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Peptide 158-163 (5)

0.1 1 1 0 100 1000
0

1

2

3

4

5 Native
F56S
F56S R81A

Time (min)

Peptide 164-174 (9)

0.1 1 10 100 1000
0

2

4

6

8
Native
F56S
F56S R81A

Time (min)
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Peptide 167-174 (6)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6 Native
F56S
F56S R81A

Time (min)

Peptide 175-184 (8)

0.1 1 1 0 100 1000
0

2

4

6

8 Native
F56S
F56S R81A

Time (min)
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Peptide 177-184 (6)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6 Native
F56S
F56S R81A

Time (min)

Peptide 177-187 (9)

0.1 1 1 0 100 1000
0

2

4

6

8
Native
F56S
F56S R81A

Time (min)
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Peptide 185-195 (10)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0 Native
F56S
F56S R81A

Time (min)

Peptide 188-195 (7)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6

7 Native
F56S
F56S R81A

Time (min)
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Peptide 196-202 (6)

0.1 1 1 0 100 1000
0

1

2

3

4

5

6 Native
F56S
F56S R81A

Time (min)

Peptide 196-208 (11)

0.1 1 1 0 100 1000
0

2

4

6

8

1 0
Native
F56S
F56S R81A

Time (min)
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