STUDIES ON SRC TYROSINE KINASE IN TUMORIGENIC

CELL GROWTH AND INVASION

By

Sabata Silva Constancio Lund

Dissertation

Submitted To the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the Requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Cell and Developmental Biology

August, 2008

Nashville, TN

Approved:

Robert J. Coffey, M.D.

Stephen R. Hann, Ph.D.

Matthew J. Tyska, Ph.D.

Ambra Pozzi, Ph.D.

Steven K. Hanks, Ph.D.

To my dear friend Sandy Singleton...

...who opened her home and her heart for me

...who was my family since my first day in the United States

...who trusted and supported me

My parents and I are forever grateful for your kindness and generosity.

ACKNOWLEDGEMENTS

My Brazilian family – I am so proud of my parents, Henry and Regina Constancio, because although they did not have the opportunity themselves to get a college degree, they made all kinds of sacrifices and right choices to allow my sisters and I to obtain a higher education. Their love, care and guidance allowed me to be part of the first generation in my family to obtain a graduate degree, and for that I am very grateful.

I would like to say a special thank you to my sisters, Cheiene and Natasha, who visited me in Nashville as often as they could. It meant a lot to me. Our vacations together were always the best ones I could dream of.

I could not be any luckier with my "American family." Mr. Randy Lund and Mrs. Marilyn Lund were always welcoming to me in their house and their family. Thank you for making me feel at home every time I visited you, for your interest in my work and for supporting David and I to become a family.

I would like to thank my best friend and husband David Lund, for his endless support and love. I am everyday grateful for your presence in my life.

I very much appreciated my mentor, Dr. Steven K. Hanks for accepting me in his lab and giving me the freedom to pursue my research interests.

My Ph.D. committee members Dr. Ambra Pozzi, Dr. Bob Coffey, Dr. Matt Tyska and Dr. Stephen Hann were supportive and enthusiastic about my work. I would like to thank you for guiding and challenging me as my work progressed.

I have many thanks to give to my lab colleagues; for helping me to improve and develop my work, but also for supporting me when I was missing home or hopeless that my studies would never succeed. Many thanks to Anna Cunningham, Dominique Donato, Larisa Ryzhova, Leslie Meenderink and Weifeng Luo (present lab members) and Jan Brabek, Nah Young Shin, Pranathi Matta, Priscila Fonseca-Siesser and Uri Vaknin (past lab members).

My special thanks to Larisa, our outstanding lab manager, who was very helpful in the development of this project.

I would like to thank Anna Cunningham, Dominique Donato and David Lund for their patience and efforts on reviewing this dissertation and improving the use of English language, grammar and clarity. They were very generous with their time, very patient and I appreciated their kindness.

The Kaverina lab was a wonderful lab to have joint meetings with and share space. I would like to thank them for reagents, protocols and expert advice in microscopy.

A special thanks to my 'American sisters' Ana Rita Maia (visiting student in the Kaverina Lab) and Dominique Donato, who were kind and supportive friends, knowledgeable scientists and my partners in all kinds of crimes; including starting our band 'Las Latinas', playing *Locorococorecho* on the PS3 until late night, eating giant *Thickburgers* from *Hardee's* or *Sonic* shakes, shopping at *Costco* on Saturday mornings only for the free samples, supporting the Nashville *Predators* (even if we are overall clueless about hockey) and buying plane tickets for a trip to Chicago exactly when the city was hit by a huge tornado.

I do not have enough words to thank Jan and Martina Brabek. Jan gave me intensive training and support, in particular during my first year in Nashville. As my

iv

supervisor, he was patient, always willing to listen and discuss science with me. Jan and his wife Martina always had their house open for me and I will always remember the good times we spent together in Nashville.

I am very thankful to Dr. Bob Whitehead, a wonderful scientist, who shared not only the IMCE/YAMC cells with me, but also his enthusiasm about this project. I very much appreciated your words of incentive and support. I am delighted he will be able to attend my dissertation defense.

Many times during the development of my project I could count on the help of Dr. Jeff Franklin (Coffey Lab, Vanderbilt University) and Dr. Lynne Lapierre (Goldenring Lab, Vanderbilt University), in particular with the quantification of the soft agar colonies and the use of their microscope for this purpose.

I would like to thank Ramona Deal (Coffey Lab) allowed me to use the Millicell Electrical Resistance System, offered extensive and patient assistance with transepithelial cell resistance measurements and epithelial cell cultivation. Her help was critical and very constructive in many ways on the development of the cell polarization project.

I would like to thank Dr. Jeff Franklin, Dr. Fiona Yull, Dr. Jim Goldenring and Dr. Jan Brabek for critical reading of my qualifying exam proposal.

For the liver metastasis studies, I would like to thank Dr. Nipun Merchant and Alan Coe Fourth for the mice injections and follow-up using PET-SCAN.

I would like to thank Monica Red (Carpenter Lab, Vanderbilt University) for sharing antibodies, protocols and for nice words of encouragement.

I am grateful to Dr. Yang Wang (Coffey Lab) and Dr. Kristi Neufeld (Neufeld Lab, University of Kansas) for the anti-APC antibody and Sergey Ryzhova for Histone H1 antibody.

Several DNA constructs were made available to me for my project and I would like to thank Dominique Donato and Dr. Larisa Ryzhova for CAS *venus* plasmids, Dr. Jan Brabek for LZRS-Src plasmids and Dr. Anna Cunningham for shRNA-CAS plasmids.

The Super TOPFlash construct is originally from Randall Moon (University of Washington, WA) and was made available to us by Curtis Thorne and Alison Hanson (Ethan Lee Lab, Vanderbilt University).

I would like to mention the outstanding work of Cathy Alford (Flow Cytometry Special Resource Center, Vanderbilt University), Ian McCullough (Cell and Developmental Biology Equipment Resource) and Mark Wozniak (Cell and Developmental Biology) who provided excellent technical support.

Many thanks go out to Elaine Caine (Cell and Developmental Biology Graduate Program) for assistance throughout my graduate studies and during the preparation for the defense and submission of my dissertation.

My gratitude also goes to the excellent Cell and Developmental Biology Department administrative team. I was lucky to always be surrounded by efficient, kind, patient and motivated people. Many thanks to Dr. Susan Wente (Chair), Jim Slater, Angela D. Land-Dedrick, Carol Haas, Carol Johnson, Elaine O. Caine, Ian McCullough, Marc Wozniak and Cindy Young. This work was supported by several grants, including NIH grant R01 GM-49882, GI-SPORE grant 2P50 CA95103-06, and a contract from Astrazeneca UK, Ltd.

TABLE OF CONTENTS

DEDI	CATION	ii
ACKN	NOWLEDGEMENTS	iii
LISTS	S OF FIGURES	xii
LIST (OF ABBREVIATIONS	xiv
01		
Chapte	er	
I.	INTRODUCTION	18
	Non-receptor tyrosine kinase Src	18
	Regulation of Src kinase activity	20
	Src kinase substrates	22
	Cell-ECM adhesion molecules and Src signaling	22
	Cell-cell adhesion molecules and Src signaling	24
	Ras and Src signaling	25
	PI3K and Src signaling	29
	STAT3 and Src signaling	31
	Src kinase and cancer	33
	Src-specific kinase inhibitor AZD0530	37
	Hypothesis and experimental overview	39
II.	MATERIAL AND METHODS	42
	Reagents	42
	Immortalized mouse colon epithelial cell lines	43
	Human colon epithelial cell lines	43
	<i>Phoenix</i> ecotropic and amphotropic packaging cell lines	44
	Retroviral infection	44
	Plasmids	45
	Immunoblotting	45
	Nuclear isolation	47
	Cell staining and confocal imaging	48
	FITC-gelatin degradation assay	50
	Growth curve	49
	Soft agar assay	50
	PolyHEMA assay	51
	Statistical analysis	52
	Genotyping of APC	52
	Analysis of β-catenin reporter gene assay	52
	Intrasplenic injection and liver metastasis in syngeneic C57Bl/6 mice	53
	CAS depletion using small hairpin RNA	54
	Transepithelial cell resistance	55

III.	SRC KINASE PROMOTES COLON EPITHELIAL CELL	
	TRANSFORMATION	. 56
	Introduction	. 56
	APC tumor suppressor	. 58
	APC and Wnt signaling	. 61
	p53 tumor suppressor	. 63
	YAMC/IMCE model	. 65
	Results	. 68
	Oncogenic Src promotes similar morphologic transformation in YAMC and IMCE cells	. 68
	Oncogenic Src similarly enhances the invasive properties of YAMC and IMCE cells	. 70
	IMCE-SrcF cells have enhanced adherent cell proliferation compared to YAMC-SrcF cells	. 75
	IMCE-SrcF cells have enhanced anchorage-independent growth compared to YAMC-SrcF cells	. 75
	<i>In vivo</i> evaluation of the metastatic capacity of IMCE-SrcF cells using an orthotropic model of tumor formation assay in immuno-competent mice.	. 76
	IMCE-SrcF cells selected for their ability to grow in anchorage independent manner retain the wild type <i>APC</i> allele	. 79
	Discovering and somehorized	01
	Discussion and conclusions	. 81
IV.	DISTINCT SIGNALING PATHWAYS ARE IMPLICATED IN THE ANCHORAGE-INDEPENDENT GROWTH CAPACITY OF IMCE-SRC AND IMCE-RAS CELLS	. 85
	Introduction	. 85
	Results	. 86
	Evaluation of MAPK pathway activation	. 86
	Evaluation of β-catenin pathway activation	. 87
	Discussion and conclusions	. 91
V.	THE ROLE OF CAS IN COLON EPITHELIAL CELL POLARIZATION	. 93
	Introduction	02
	Src_CAS signaling and cell transformation	05
	The role of CAS on the invasiveness and metastasis of Sra transformed	. 95
	fibroblasts	. 96

Src-CAS signaling and epithelial cell polarization	101
Results	102
Polarizing colon epithelial cell lines Caco2 and HCA7 cells have enhanced CAS phosphorylation compared to non-polarizing cell lines	102
Generation of Caco2 and HCA7 cells lines stably expressing fluorescently-tagged CAS (CAS <i>venus</i>)	104
CASvenus localization	106
Generation of Caco2 and HCA7 cells lines stably expressing CAS small hairpin RNA	107
CAS depletion enhances Caco2 polarization, but does not affect polarization of HCA7 cells	107
Discussion and conclusions	111
VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS REFERENCES	.116 124

LIST OF FIGURES

Figure		Page
1.	Diagram of Src kinase structure	19
2.	Diagram of Src kinase activation	21
3.	Diagram of Src-mediated activation of Ras	28
4.	Diagram of Src kinase target sites within the cell	35
5.	Diagram of bicistronic retroviral system used to stably express oncogenic Src (SrcY529F) in colonic epithelial cell lines	46
6.	Diagram of colon cancer progression and the associated molecular lesions	59
7.	Structure of the wild type and min APC (adenomatous polyposis coli) proteins	61
8.	Wnt signaling pathway in colon epithelial cells	63
9.	Immunoblotting analyses of IMCE, YAMC and derivatives with antibodies against pSrc, total Src and total phosphotyrosine	71
10.	β-catenin immunostaining of IMCE, YAMC and derivatives	73
11.	Immunoblotting analyses of β -catenin immunoprecipitates of IMCE, YAMC and derivatives with antibodies against β -catenin and total phosphotyrosine	73
12.	Phalloidin staining of IMCE, YAMC and derivatives	75
13.	FITC-gelatin assay with IMCE, YAMC and derivatives	76
14.	Growth curves of attached IMCE, YAMC and derivatives	78
15.	Soft agar assay of IMCE, YAMC and derivatives	80
16.	PolyHEMA assay with IMCE-SrcF cells treated with AZD0530	81
17.	APC genotyping of IMCE-SrcF cells	82
18.	Immunoblotting analyses of IMCE, YAMC and derivatives with antibody against APC	83

19.	Immunoblotting analyses of IMCE, YAMC and derivatives with antibodies against pERK and total ERK	89
20.	Immunoblotting analyses of IMCE, YAMC and derivatives with antibody against β -catenin	91
21.	Immunoblotting analyses of nuclear extracts of IMCE, YAMC and derivatives with antibody against β -catenin	92
22.	TOPFlash assay with IMCE, YAMC and derivatives	93
23.	Diagram of CAS phosphorylation by Src kinase	97
24.	Soft agar assay of Src-transformed fibroblasts	100
25.	Matrigel and zymography assay of Src-transformed fibroblasts	103
26.	Immunoblotting analyses of a set of colon epithelial cell lines with antibodies against pCAS and total CAS	106
27.	Diagram of CASvenus and venus (vector only) constructs	107
28.	FACS analyses of HCA7 cells expressing venus	108
29.	Immunoblotting analyses of Caco2, HCA7 and derivatives with antibody against CAS	109
30.	CASvenus and venus localization in HCA7 cells	111
31.	CASvenus and venus localization in Caco2 cells	112
32.	Immunoblotting analyses of Caco2, HCA7 and derivatives with antibody against CAS	113
33.	Transepithelial resistance curve of Caco2 cells	114
34.	Growth curves of attached Caco2 cells and derivatives	115
35.	Transepithelial resistance curve of HCA7 cells	116
36.	Growth curves of attached HCA7 cells and derivatives	117

LIST OF TABLES

Table	Pa	age
1.	Comparison between IMCE and YAMC cell lines	.66

LIST OF ABBREVIATIONS

Δ	Delta
γ	Gamma
μ	Micro
Ω	Ohm
ACF	Aberrant Crypt Foci
AJC	Apical Junctional Complex
APC	Adenomatous Polyposis Coli
bp	Base Pairs
CAS	Crk-Associated Substrate
СНО	Chinese Hamster Ovary
Csk	Carboxy-Terminal Src Kinase
DAPI	4',6-Diamidino-2-Phenylindole
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Dimethylsulfoxide
DNA	Deoxyribonucleic Acid
ECM	Extracellular Matrix
EDTA	Ethylene Diamine Tetraacetic Acid
EMT	Epithelial-To-Mesenchymal Transition
ERK	Extracellular Signal-Regulated Kinase
FACS	Fluorescence Activated Cell Sorting
FAK	Focal Adhesion Kinase

FAP	Familial Adenomatous Polyposis
FBS	Fetal Bovine Serum
FDG	F-18-Deoxyglucose
FITC	Fluorescein Isothiocyanate
GAP	GTPase-Activating Protein
GDP	Guanosine Diphosphate
GEF	Guanine Exchange Factor
GFP	Green Fluorescent Protein
Grb	Growth-Factor-Receptor Bound Protein
GTP	Guanosine Triphosphate
HEPES	N-2-Hydroxyethylpiperazine-N'-2-Ethanesulfonic Acid
HI-FBS	Heat-Inactivated Fetal Bovine Serum
HNPCC	Hereditary Nonpolyposis Colorectal Cancer
IMCE	Immorto-Min Colonic Epithelial
IRES	Internal Ribosomal Entry Site
kDa	kiloDaltons
m	Meter, Milli
М	Molar
MAP	MYH-Associated Polyposis
MDCK	Madin-Darby Canine Kidney
MEK	MAPK/ERK Kinase
MMP	Matrix Metalloproteinase
NP-40	Nonidet P-40

р	Probability
PBS	Phosphate Buffered Saline
PCR	Polymerase Chain Reaction
PDK	PI3K-Dependent Protein Kinase
PET	Positron Emission Tomography
Phoenix A	Phoenix Amphotropic
Phoenix E	Phoenix Ecotropic
PI3K	Phosphatidylinositol-3-OH kinase
PIPES	Piperazine-1,4-Bis-2-Ethanesulfonic Acid
polyHEMA	Polyhydroxymethacrylate
PR	Proline Rich
RNA	Ribonucleic Acid
RIE	Rat Intestinal Epithelial
RIPA	Radio Immunoprecipitation Assay
RPMI	Roswell Park Memorial Institute Medium
RT	Room Temperature
RTK	Receptor Tyrosine Kinase
SBD	Src Binding Domain
SDS-PAGE	Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis
SH	Src Homology
shRNA	Short Hairpin RNA
siRNA	Small Interfering RNA
SrcF	Src Y529F

Shc	Src Homology Containing-Protein
SOS	Son of Sevenless
SV40	Simian Virus 40
TCF	T-Cell Factor
TGF	Transforming Growth Factor
Ts	Temperature Sensitive
Tyr	Tyrosine
U	Units
UV	Ultraviolet
WT	Wild Type
Y	Tyrosine
YAMC	Young Adult Mouse Colonic
YFP	Yellow Fluorescent Protein
YxxP	Tyrosine-X-X-Proline