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CHAPTER I

INTRODUCTION

In this dissertation, we investigate two subjects in asymptotic analysis: Padé-orthogonal

approximants and Riesz polarization constants. The first focuses on a class of rational

functions called Padé-orthogonal approximants. The second concerns the max-min and min-

max quantities called Riesz polarization constants and associated optimal Riesz polarization

configurations. We give a detailed description of these subjects in what follows.

I.1 Padé-orthogonal approximants

The history of Padé approximation is one of the longest among those of approximation the-

ory. Padé approximants were named after H. Padé who developed them in a table and gave

a connection of these rational functions to continued fractions in his thesis [44] in 1892.

However, the subject had been introduced several times before Padé by J.L. Lagrange [36]

in 1776, C.G.J. Jacobi [35] in 1845, and F.G. Frobenius [22] in 1881. In the last several

decades, these Padé approximants were generalized in various forms such as multipoint Padé

approximants, Padé-Faber approximants, Padé-Laurent approximants, etc. Padé approxi-

mants and their generalizations have been used in diverse areas such as numerical analysis,

number theory, integral equations, the spectral theory of operators, random matrix theory,

quantum mechanics, and quantum field theory. They also can be used as a tool to detect

zeros or singularities of functions and study analytic continuation of power series or Fourier

series.

The first part of this dissertation is devoted to a generalization of the classical construction

of Padé approximants, namely Padé-orthogonal approximants. These rational functions are

based on orthogonal polynomial expansions on some compact set in the complex plane C.

In order to define Padé-orthogonal approximants rigorously, we need to introduce some

notation. Let E be a compact subset of the complex plane C. Let µ be a finite positive Borel
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measure with infinite support contained in E and define the associated inner product

〈g, h〉µ :=

∫
g(ζ)h(ζ)dµ(ζ).

We denote by

pn(z) := κnz
n + · · · , κn > 0, n = 0, 1, . . . ,

the unique sequence of polynomials of respective degrees n with positive leading coefficients

that are orthonormal with respect to dµ; that is, 〈pn, pm〉µ = δn,m. Padé-orthogonal approx-

imants corresponding to µ are defined as follows:

Definition I.1.1. Let F be a holomorphic function in a neighborhood of E. A rational

function [n/m]µF := P µ
n,m/Q

µ
n,m is a (linear) Padé-orthogonal approximant of type (n,m)

corresponding to µ for the function F if P µ
n,m and Qµ

n,m are polynomials satisfying

deg(P µ
n,m) ≤ n, deg(Qµ

n,m) ≤ m, Qµ
n,m 6≡ 0,

〈Qµ
n,mF − P µ

n,m, pj〉µ = 0, for j = 0, 1, . . . , n+m.

It is not difficult to see that if E = {z ∈ C : |z| ≤ 1} and dµ = dθ, then these Padé-

orthogonal approximants are exactly the classical Padé approximants (see the Frobenius

definition [22]). The concept of linear Padé-orthogonal approximants was first introduced

by H.J. Maehly [39] in 1960. In fact, he considered linear Padé-orthogonal approximants

only for the case when dµ = dx/
√

1− x2 on [−1, 1]. These rational functions are called

Padé-Chebyshev approximants (see [6]) or sometimes cross-multiplied approximants (see

[21]). Later, E.W. Cheney defined linear Padé-orthogonal approximants for a general setting

(E is not just a finite interval) in his book [15]. The study of Padé-orthogonal approxi-

mants has mainly concentrated on the case when µ is supported in a finite interval (see

e.g. [55, 56, 54, 29, 38, 28, 59, 12, 13]). S.P. Suetin [55, 54, 56] was the first to prove the

convergence of row sequences of both linear and nonlinear Padé-orthogonal approximants

on [−1, 1] (see the definition of nonlinear Padé-orthogonal approximants1 in his paper [55]).

1S.P. Suetin called this rational functions “nonlinear Padé approximants of orthogonal expansions”.
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Some problems on the convergence of diagonal sequences of these Padé-orthogonal approx-

imants were considered in [29, 38, 28, 59]. For the case that µ is supported on the unit

circle, there are a few articles [47, 46, 14, 1] studying (or using) these rational functions.

However, the study of linear (or nonlinear) Padé-orthogonal approximants corresponding to

µ supported on a general compact set has not yet been thoroughly explored. A rational

function [n/m]µF always exists, but may not be unique as we show in Example II.1.4. We

also would like to emphasize that unlike the classical case, the definitions of linear and non-

linear Padé-orthogonal approximants may lead to distinct rational functions (see [60]). Since

we consider only linear Padé-orthogonal approximants in this dissertation, we will omit the

word “linear” when we refer to linear Padé-orthogonal approximants.

In this work, we focus on the study of a sequence {[n/m]µF}n∈N when m ∈ N is fixed,

which is called a row sequence of Padé-orthogonal approximants. Our goal is to investigate

the relation of the convergence of poles of row sequences of Padé-orthogonal approximants

corresponding to a measure supported on a general compact set and the singularities of the

approximated function F. Under suitable restrictions on the set E, our main contributions

are as follows.

• We prove convergence of row sequences of these rational functions (see Theorem II.2.1),

namely an analogue of the theorem of Montessus de Ballore, under a ratio asymptotic con-

dition on {pk}k∈N. This result generalizes work of S.P. Suetin [56] who studied the case for

measures supported on [−1, 1].

• Under Szegő asymptotic conditions on {pk}k∈N, we prove a direct analogue of the Fabry

ratio theorem (see Theorem II.2.3) concerning the detection of the “nearest” singularity of a

function F by using the limit of the ratio Fn/Fn+1, where Fn := 〈F, pn〉µ. As a consequence of

this, we provide a limit formula for the “nearest” singularity of the reciprocal of the interior

Szegő function 1/Sint in terms of the Verblunsky coefficients (see Corollary II.2.4).

• We prove in Theorem II.2.8 that the row sequences of Padé-orthogonal approximants

satisfy a Fabry ratio theorem when the measure supported on E satisfies Szegő asymptotic

conditions. This result generalizes part of the result of V.I. Buslaev [13].
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I.2 Riesz polarization constants and configurations

The second subject focuses on the study of Riesz polarization constants and optimal Riesz

polarization configurations of infinite compact subsets of the m-dimensional Euclidean space

Rm which are defined as follows.

Definition I.2.1. Let A be an infinite compact subset of the m-dimensional Euclidean space

Rm, ωN = {x1, . . . , xN} denote a configuration of N (not necessarily distinct) points in A,

and #ωN denote the cardinality of the multiset ωN . For s ∈ R, the maximal N-point Riesz

s-polarization constant of A is given by

M s
N(A) := max

ωN⊂A
#ωN=N

min
y∈A

N∑
i=1

1

|y − xi|s
, and M0

N(A) := N, (I.1)

and for s ≤ 0, the minimal N-point Riesz s-polarization constant of A is given by

ms
N(A) := min

ωN⊂A
#ωN=N

max
y∈A

N∑
i=1

1

|y − xi|s
, and m0

N(A) := N. (I.2)

We say that an N -point configuration ωN is optimal for M s
N(A) (optimal for ms

N(A)) if it

attains the maximum in (I.1) (the minimum in (I.2)).

Such max-min quantities (I.1) were first introduced by M. Ohtsuka [43] who showed that

the following limit exists as an extended real number:

Ms(A) := lim
N→∞

M s
N(A)

N

and that the limitMs(A) is not less than the Wiener constant W s(A) corresponding to the

same value of s. This constant is defined as

W s(A) := inf

∫ ∫
1

|x− y|s
dµ(x)dµ(y), (I.3)

the infimum being taken over all Borel probability measures µ supported on A. The con-

stants M s
N(A)/N, ms

N(A)/N,Ms(A), and limN→∞m
s
N(A)/N which were later called the N th
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Chebyshev constant of A, the N th dual Chebyshev constant of A, the Chebyshev constant of

A, and the dual Chebyshev constant of A were studied in [18, 20, 45, 19]. In [18], it was proved

that the Chebyshev constant Ms(A) is the same as the Wiener constant W s(A) whenever

the maximum principle is satisfied on A for the Riesz s-potential. The (abstract) Chebyshev

constants in [20, 19] were used to study the so-called rendezvous or average numbers.

Another occurrence of such max-min and min-max constants is in the study of the N th

linear polarization constant and polarization inequalities in the theory of an infinite dimen-

sional Banach space (see [45, Proposition 19-20], [4, Proposition 5 and Theorem 6], and [2,

Theorem 1.12]). A very special case (see [2, Theorem 1.12]) of those polarization inequalities

is equivalent to the following equality

M2
N(S1) =

N2

4
, (I.4)

where S1 is the unit circle in R2. Of course, if we know an optimal N -point configuration for

M2
N(S1) which is intuitively a configuration of N distinct equally spaced points on S1, we can

compute M2
N(S1). However, proving that a configuration of N distinct equally spaced points

on S1 is optimal for M2
N(S1) (and M s

N(S1), for s ∈ R \ {0} and ms
N(S1), for s ∈ (−∞, 0))

is a nontrivial problem. The optimality for M2
N(S1) of N distinct equally spaced points on

S1 was proved by G. Ambrus in [2] and by G. Ambrus, K. Ball, and T. Erdélyi in [3]. T.

Erdélyi and E.B. Saff [17] established this for M4
N(S1). The cases M s

N(S1) for s > 0 and

ms
N(S1) for −1 ≤ s < 0 were proved by D.P. Hardin, A.P. Kendall, and E.B. Saff in [32].

For some negative even integers s, we will see in Corollary III.2.8 that N distinct equally

spaced points on S1 are not the only optimal configurations for M s
N(S1) and ms

N(S1).

The study of the dominant term of M s
N(A) for s > 0 as N → ∞ is suggested by T.

Erdélyi and E.B. Saff. In [17], they provide upper estimates and lower estimates for M s
N(A)

on infinite compact sets A in Rm and focus on finding the dominant terms of M s
N(Sm)

and M s
N(Bm), where Sm is the unit sphere in Rm+1 and Bm is the closed unit ball in Rm.

In particular, they show that for an infinite compact set A in Rm of positive d-dimensional

Hausdorff measure, one has Md
N(A) = O(N lnN), N →∞, and M s

N(A) = O(N s/d), N →∞,
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for every s > d. Concerning the lower estimate of M s
N(A), it is not difficult to show that

(see [17, 18, 20])

M s
N(A) ≥ 1

N − 1
Es(A;N), N ≥ 2,

where Es(A;N) is the minimal N -point Riesz s-energy of A as defined in the next paragraph.

Combining this lower estimate and the so-called Poppy-seed Bagel Theorems (see [34, 10,

17]), T. Erdélyi and E.B. Saff showed that the order estimate for s = d is sharp when A is

contained in a d-dimensional C1-manifold and the order estimate for s > d is sharp when A

is d-rectifiable.

The minimal N-point Riesz s-energy of an infinite compact set A ⊂ Rm is defined as

Es(A,N) := min
ωN⊂A

#ωN=N

∑
1≤j 6=k≤N

1

|xj − xk|s
, where N ≥ 2, s > 0, (I.5)

and an N -point configuration ωN is called a minimal N-point Riesz s-energy configuration

of A if it attains the minimum in (I.5). The basic asymptotic properties for N fixed and

s varying of the minimal N -point Riesz s-energy are considered in [9, Chapter 2; Section

2.1-2.2]. It is known that as s gets large, the minimal Riesz s-energy problem tends to the

best-packing problem and as s goes to 0, the minimal Riesz s-energy problem tends to the

minimal log-energy problem (see [9, Proposition 2.9 and 2.14]). Similar basic properties

for maximal and minimal Riesz polarization constants and configurations are considered in

this dissertation in Section III.2.1. We will see in Theorems III.2.1-III.2.2 that as s goes to

∞, the maximal Riesz s-polarization problem tends to the best-covering problem and as s

approaches 0 from the right, the maximal Riesz s-polarization problem tends to the maximal

log-polarization problem.

The asymptotic behaviors for s fixed and N → ∞ of the dominant term of Es(A,N)

and the limiting distribution of minimal N -point Riesz s-energy configurations have been

investigated in [37, 41, 10, 34]. It appears that these asymptotic behaviors depend on the

value of s. For an arbitrary compact set A ⊂ Rm with Hausdorff dimension d and 0 < s < d,

classical potential theory provides the relation of the continuous and discrete Riesz energies
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(see [9, Theorem 3.7]). The asymptotic behaviors for s ≥ d were proved by S.V. Borodachov,

D.P. Hardin, and E.B. Saff in [10, 34] for a large class of sets. These results are known as

Poppy-seed Bagel Theorems which we state in the following theorem.

Theorem A. Let d ∈ N, A ⊂ Rm be a compact d-rectifiable set, and s ≥ d. If s = d, we

further suppose that A is a subset of a d-dimensional C1-manifold. Then

lim
N→∞

Ed(A,N)

N2 logN
=
Hd(Bd)
Hd(A)

(I.6)

and

lim
N→∞

Es(A,N)

N1+s/d
=

Cs,d
Hd(A)s/d

,

where Cs,d is a finite positive constant independent of A and Hd denotes d-dimensional Haus-

dorff measure in Rm normalized so that the copy of the d-dimensional unit cube embedded

in Rm has measure 1. Furthermore, under an additional assumption that Hd(A) > 0, if

{xsk,N}Nk=1, N ∈ N, is a sequence of minimal N-point Riesz s-energy configurations of A, we

have in the weak∗ topology of measures

1

N

N∑
i=1

δxsi,N
∗−→ Hd(·)|A
Hd(A)

, N →∞, (I.7)

where δx denotes the unit point mass at the point x.

Results analogous to (I.6) and (I.7) for the maximal Riesz d-polarization constant and

configurations on an infinite compact subset of a d-dimensional C1-manifold embedded in Rm

(or a finite union of such sets provided that their pairwise intersections have d-dimensional

Hausdorff measure zero) are proved in Section III.2.2. As a consequence of this, we show

that maximal N -point Riesz d-polarization configurations are “good points” for discretizing

such subsets of Rm in the uniformly distributed sense.

The main results obtained in this dissertation on the properties of the Riesz polarization

constants and configurations can be summarized as follows:

• We study basic properties of M s
N(A) and ms

N(A) as functions of s in Section III.2.1.

7



We prove that for an infinite compact set A and for a fixed positive integer N , the function

f(s) := M s
N(A) is continuous on R\{0} and is not continuous at 0, and the function g(s) :=

ms
N(A) is continuous on (−∞, 0]. More precisely, we prove that f(s) is right-continuous at

0 but not left-continuous at 0. Moreover, we show that

lim
s→∞

M s
N(A)1/s =

1

ρN(A)
,

where ρN(A) is the N -point mesh norm (or N -point best-covering distance) of A. Addition-

ally, we show that

lim
s→0+

M s
N(A)−N

s
= M log

N (A),

where M log
N (A) is the maximal N -point log-polarization constant of A.

• We determine the optimal configurations for M s
N(Sm) and ms

N(Sm) for those values of

s for which there exists an N -point configuration whose Riesz s-potential function is constant

on Sm in Section III.2.3.

• We prove Conjecture 2 of T. Erdélyi and E.B. Saff in [17] concerning the dominant

term of Md
N(A) as N → ∞ when A is an infinite compact subset of a d-dimensional C1-

manifold embedded in Rm. Moreover, if we assume further that the d-dimensional Hausdorff

measure of A is positive, we show that any sequence of optimal N -point configurations for

Md
N(A) is asymptotically uniformly distributed with respect to the d-dimensional Hausdorff

measure on the set A. These results also hold for finite unions of such sets A provided that

their pairwise intersections have d-dimensional Hausdorff measure zero (see Section III.2.2).

8



CHAPTER II

PADÉ-ORTHOGONAL APPROXIMANTS

II.1 Introduction, background results, and notation

We begin this section by recalling the definition of classical Padé approximants.

Definition II.1.1. Let a pair of nonnegative integers (n,m) be given. The rational function

[n/m]F := Pn,m/Qn,m is called a classical Padé approximant of type (n,m) to a power series

F (z) =
∑∞

k=0 fkz
k if Pn,m and Qn,m are polynomials satisfying

deg(Pn,m) ≤ n, deg(Qn,m) ≤ m, Qn,m 6≡ 0,

(Qn,mF − Pn,m)(z) = O(zn+m+1), as z → 0. (II.1)

It is clear from (II.1) that once Qn,m is determined, then Pn,m is simply the nth truncation

of the power series for Qn,mF. Finding Qn,m is equivalent to solving a system of m homo-

geneous linear equations on m + 1 unknowns. However, the ratio of any pair (Pn,m, Qn,m)

defines the same rational function [n/m]F , although the polynomials Qn,m are not unique.

We will review shortly in this section only some properties of row sequences of classical Padé

approximants which we will consider for Padé-orthogonal approximants. We refer the reader

to the book of G.A. Baker and P. Graves-Morris [6] and survey papers [60, 61, 5] for more

details and recent progresses in the subject of classical Padé approximants.

In this dissertation, we will restrict our consideration to the sets E as described below.

Let E be a compact subset of the complex plane C such that C\E is simply connected. Then,

there exists a unique exterior conformal bijection Φ sending C\E onto C\{w ∈ C : |w| ≤ 1}

satisfying Φ(∞) = ∞ and Φ′(∞) > 0. We assume that E is such that the inverse function

Ψ of Φ can be extended continuously to C \ {w ∈ C : |w| < 1}. Note that the closure of a

Jordan region and a finite interval fall in our consideration.

Let µ be a finite positive Borel measure with infinite support supp(µ) contained in E.
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We write µ ∈M(E) and denote the associated inner product

〈g, h〉µ :=

∫
g(ζ)h(ζ)dµ(ζ), g, h ∈ L2(µ).

We denote by

pn(z) := κnz
n + · · · , κn > 0, n = 0, 1, . . . ,

the unique sequence of polynomials of respective degrees n with positive leading coefficients

that are orthonormal with respect to dµ; that is, 〈pn, pm〉µ = δn,m. Denote by H(E) the

space of all functions holomorphic in some neighborhood of E. Padé-orthogonal approximants

corresponding to µ are defined as follows:

Definition II.1.2. Let F ∈ H(E), µ ∈ M(E), and a pair of nonnegative integers (n,m)

be given. A rational function [n/m]µF := P µ
n,m/Q

µ
n,m is a Padé-orthogonal approximant

corresponding to µ of type (n,m) to F if P µ
n,m and Qµ

n,m are polynomials satisfying

deg(P µ
n,m) ≤ n, deg(Qµ

n,m) ≤ m, Qµ
n,m 6≡ 0, (II.2)

〈Qµ
n,mF − P µ

n,m, pj〉µ = 0, for j = 0, 1, . . . , n+m. (II.3)

Since Qµ
n,m 6≡ 0, we will normalize it by requiring that its leading coefficient equals 1.

Note that if E = {z ∈ C : |z| ≤ 1} and dµ = dθ, then these Padé-orthogonal approxi-

mants are exactly the classical Padé approximants.

Hereafter, we consider only F ∈ H(E). For any ρ > 1, we set

Γρ := {z ∈ C : |Φ(z)| = ρ}, and γρ := {w ∈ C : |w| = ρ}.

Denote by Dρ the interior of Γρ and by B(z, ρ) the open disk centered at z of radius ρ. We

will call Γρ and Dρ a level curve of index ρ and a canonical domain of index ρ (with respect to

E), respectively. For convenience, we let B := B(0, 1) be the open unit ball and T := ∂B be

the unit circle. We denote by ρ0(F ) the maximal index ρ > 1 of the largest canonical domain

Dρ to which F can be extended as a holomorphic function and by ρm(F ) the maximal index

10



ρ > 1 of the largest canonical domain Dρ to which F can be extended as a meromorphic

function whose number of poles does not exceed m (counting their multiplicities). Define

the Fourier coefficient of F corresponding to pn :

Fn := 〈F, pn〉 =

∫
F (z)pn(z)dµ(z). (II.4)

In all that follows, the phrase “uniform convergence inside a domain” means “uniform con-

vergence on each compact subset of the domain”.

One can easily determine the domain of holomorphy Dρ0(F ) of F by the following analogue

of Cauchy’s theorem for power series (see e.g. [53, Theorem 6.6.1] for the proof):

Lemma II.1.3. Let F ∈ H(E). Assume that

lim
n→∞

|pn(z)|1/n = |Φ(z)|, (II.5)

uniformly inside C \ E. Then,

ρ0(F ) =

(
lim sup
n→∞

|Fn|1/n
)−1

.

Moreover, the series
∑∞

n=0 Fnpn(z) converges to F (z) uniformly inside Dρ0(F ) and the series∑∞
n=0 Fnpn(z) diverges pointwise for all z ∈ C \Dρ0(F ).

Therefore, if µ satisfies the condition (II.5), the polynomials P µ
n,m and Qµ

n,m verify

Qµ
n,m(z)F (z)− P µ

n,m(z) =
∞∑

k=n+m+1

〈Qµ
n,mF, pk〉µpk(z)

for all z ∈ Dρ0(F ) and P µ
n,m =

∑n
k=0〈Qµ

n,mF, pk〉µpk is uniquely determined by Qµ
n,m.

In contrast with classical Padé approximants, the rational function [n/m]µF may not be

unique as the following example shows.
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Example II.1.4. Consider E = [−1, 1], dµ = dx/
√

1− x2 and

F (x) =
37

x− 3
+

4∑
k=0

ckpk(x),

where the pk are normalized Chebyshev polynomials, and

c0 := 37, c1 := 6(−271
√
π + 192

√
2π), c2 := −

√
2 + 315

√
π − 222

√
2π,

c3 := 3513
√
π − 2484

√
2π, c4 :=

√
2 + 10674

√
π − 7548

√
2π.

Using the program Mathematica it is easy to check that both Qµ
1,2(x) = x and Qµ

1,2(x) =

(x− 3)2 satisfy

〈Qµ
1,2F, pk〉µ = 0, k = 2, 3.

These denominators Qµ
1,2 give us

[1/2]µF (x) =
4756
√
π − 3363

√
2π − 36

√
2πx+ 144x

4
√
πx

,

and

[1/2]µF (x) =
1404− 28536

√
π + 19827

√
2π − 864x+ 90364

√
πx− 63681

√
2πx

4
√
π(x− 3)2

,

respectively, which are clearly distinct.

However, if

∆n,m(F, µ) :=

∣∣∣∣∣∣∣∣∣
〈F, pn+1〉µ 〈zF, pn+1〉µ · · · 〈zm−1F, pn+1〉µ

...
...

...
...

〈F, pn+m〉µ 〈zF, pn+m〉µ · · · 〈zm−1F, pn+m〉µ

∣∣∣∣∣∣∣∣∣ 6= 0 (II.6)

or for every solution of (II.2)-(II.3), the polynomial Qµ
n,m is of degree m, then Qµ

n,m is unique

and [n/m]µF is also unique. One can easily show that ∆n,m(F, µ) 6= 0 and the condition that

for every solution of (II.2)-(II.3), the polynomial Qµ
n,m is of degree m are equivalent.

12



For the case when E = B and the support of µ is T, D. Barrios Rolańıa, G. López

Lagomasino, and E.B. Saff (see [47]) use the determinants ∆n,m(F, µ) to determine the radii

of meromorphy of F , namely they show that

ρm(F ) =
lm
lm+1

(by convention 0/0 =∞), where

lm := lim sup
n→∞

|∆n,m(F, µ)|1/n, l0 := 1

under the two assumptions that µ satisfies Szegő’s condition and the reciprocal of the interior

Szegő function 1/Sint(z) has an analytic continuation to B(0, r) for some r > 1.

In this dissertation, we focus on row sequences of the Padé table. We use {[n/m]F}n,m=0,1,...

({[n/m]µF}n,m=0,1,...) to denote the classical Padé (Padé-orthogonal) table for the function F

and {[n/m]F}n=0,1,... ({[n/m]µF}n=0,1,...) to represent the mth row of the classical Padé (Padé-

orthogonal) table for the function F . Before proceeding with this study we recall some basic

results for power series and classical Padé approximants.

For a meromorphic function F with exactly m poles within an open disk centered at the

origin, Montessus de Ballore’s theorem (cf. e.g. [6]) asserts the convergence of the mth row

sequence {[n/m]F}n=0,1,... inside the region obtained removing the poles of F from the open

disk.

Theorem (Montessus de Ballore). Let F be a function that is meromorphic in the disk

B(0, R), with poles in the distinct points z1, . . . , zp, where

0 < |z1| ≤ |z2| ≤ · · · ≤ |zp| < R.

Let mk be the multiplicity of zk and
∑p

k=1mk =: m. Then

F (z) = lim
n→∞

[n/m]F (z)

13



uniformly inside B(0, R) \ {z1, . . . , zp}, and

lim
n→∞

Qn,m(z) =

p∏
k=1

(z − zk)mk .

Various generalizations of this theorem were given by e.g. E.B. Saff [49, 31, 30], A.A.

Gonchar [26], and S.P. Suetin [55, 56]. In particular, in [55] a Montessus de Ballore type

result is given for Padé-orthogonal approximants corresponding to a measure supported on

the interval [−1, 1].

In the converse direction, a natural question is: What conclusions can be drawn concern-

ing the singularities of F if we know the asymptotic behavior of the poles of its approximants?

Such problems are called of inverse type in Padé approximation theory. In this direction, an

interest classical result is due to E. Fabry (see [16, p. 377]):

Theorem (Fabry). Suppose that the coefficients of a power series
∑∞

n=0 fnz
n are such that

lim
n→∞

fn
fn+1

= λ 6= 0 (II.7)

exists. Then the series
∑∞

n=0 fnz
nconverges uniformly inside the disk B(0, |λ|) and λ is a

singularity of the function F (z) =
∑∞

n=0 fnz
n.

The boundary of B(0, |λ|) may contain more than one singularity. For example, if

F (z) =
1

z + 1
+

1

(z − 1)2
=
∞∑
n=0

((n+ 1) + (−1)n)zn

then limn→∞ fn/fn+1 = 1. However, the function F has poles at ±1.

The first conclusion of Fabry’s theorem concerning the convergence of the series is a

consequence of the Cauchy-Hadamard formula. The second conclusion, concerning the sin-

gularity, is far from trivial. L. Bieberbach mentioned in [7] that “it requires much effort to

penetrate Fabry’s works so as to get pleasure from them and fully understand the elegance

and simplicity of the arguments of this master”.

It is easy to check that if fn 6= 0 and fn+1 6= 0, then fn/fn+1 in (II.7) is the pole of the

14



classical Padé approximant [n/1]F . In [27], A.A. Gonchar conjectured that Fabry’s theorem

can be generalized to the mth row of the Padé table. In its general form, the conjecture was

proved by S.P. Suetin in [58] (see also [57]).

Theorem (Suetin). Suppose that the coefficients of a power series F (z) :=
∑∞

n=0 fnz
n

are such that, for any fixed m ∈ N and any sufficiently large n ∈ N, the classical Padé

approximants [n/m]F have precisely m finite poles λn,1, . . . , λn,m that are convergent:

lim
n→∞

λn,i = λi 6= 0, i = 1, . . . ,m,

and set Rmin := min1≤i≤m |λi|, Rmax := max1≤i≤m |λi|. Then,

(i) the series
∑∞

n=0 fnz
n converges uniformly inside the disk B(0, Rmin);

(ii) the function F admits a meromorphic continuation to the disk B(0, Rmax);

(iii) λ1, . . . , λm are singularities of F ; those lying in B(0, Rmax) are poles, and F has no

other poles in B(0, Rmax).

Similar inverse type results for row sequences of multipoint Padé approximants, Padé-

Faber approximants, and Padé-orthogonal approximants corresponding to a measure sup-

ported on [−1, 1] were proved by V.I. Buslaev in [13]. In this work, we will use the methods

employed in [12] and [13] to prove analogues of the Fabry and Suetin theorems for Padé-

orthogonal approximants corresponding to a measure supported on a general compact set

E ⊂ C as described above.

II.2 Main results

We will make the following assumptions on the asymptotic behavior of the sequence of

orthonormal polynomials with respect to a given measure µ ∈ M(E). We write µ ∈ R(E)

when the corresponding sequence of orthonormal polynomials has ratio asymptotics; that is,

lim
n→∞

pn(z)

pn+1(z)
=

1

Φ(z)
. (II.8)

15



We say that Szegő or strong asymptotics takes place, and write µ ∈ S(E), if

lim
n→∞

pn(z)

cnΦn(z)
= S(z) and lim

n→∞

cn
cn+1

= 1, (II.9)

The first limit in (II.9) and the one in (II.8) are assumed to hold uniformly inside C \ E,

the cn’s are positive constants, and S(z) is some holomorphic and non-vanishing function on

C \ E. Obviously, (II.9) ⇒ (II.8) ⇒ (II.5).

An analogue of Montessus de Ballore’s theorem for Padé-orthogonal approximants is the

following:

Theorem II.2.1. Suppose F ∈ H(E) has poles of total multiplicity exactly m in Dρm(F )

at the (not necessarily distinct) points λ1, . . . , λm and let µ ∈ R(E). Then, [n/m]µF is

uniquely determined for all sufficiently large n and the sequence [n/m]µF converges uniformly

to F inside Dρm(F ) \ {λ1, . . . , λm} as n → ∞. Moreover, for any compact subset K of

Dρm(F ) \ {λ1, . . . , λm},

lim sup
n→∞

‖F − [n/m]µF‖
1/n
K ≤ max{|Φ(z)| : z ∈ K}

ρm(F )
, (II.10)

where ‖ ·‖K denotes the sup-norm on K and if K ⊂ E, then max{|Φ(z)| : z ∈ K} is replaced

by 1. Additionally,

lim sup
n→∞

‖Qµ
n,m −Qm‖1/n ≤ max{|Φ(λj)| : j = 1, . . . ,m}

ρm(F )
< 1, (II.11)

where ‖ · ‖ denotes (for example) the coefficient norm in the space of polynomials of degree

m and Qm(z) =
∏m

k=1(z − λk).

Remark II.2.2. When K = E, the rate of convergence in (II.10) cannot be improved; that

is,

lim sup
n→∞

‖F − [n/m]µF‖
1/n
E = lim sup

n→∞
σ1/n
n,m =

1

ρm(F )
, (II.12)

where

σn,m := inf
r
‖F − r‖E,
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and the infimum is taken over the class of all rational functions of type (n,m)

r(z) =
anz

n + an−1z
n−1 + · · ·+ a0

bmzm + bm−1zm−1 + · · ·+ b0

.

We refer the reader to [24, 48] for more information on the second equality in (II.12).

In [54, Theorem 1], S.P. Suetin proves this result for measures supported on a bounded

interval of the real line and states without proof that a similar theorem may be obtained for

measures supported on a continuum of the complex plane whose sequence of orthonormal

polynomials and their associated second type functions have strong asymptotic behavior.

The assumptions of our Theorem II.2.1 are substantially weaker.

The natural analogue of Fabry’s theorem is the following:

Theorem II.2.3. Let F ∈ H(E) and µ ∈ S(E). If

lim
n→∞

Fn
Fn+1

= τ,

then Ψ(τ) is a singularity of F and ρ0(F ) = |τ |.

If E = B and the measure µ supported on T satisfies the Szegő condition,

∫ 2π

0

logw(θ)dθ > −∞, (II.13)

(where dµ(θ) = w(θ)dθ/2π + dµs(θ) is the Radon-Nikodym decomposition of µ), it is well

known that the orthonormal polynomials ϕn satisfy the Szegő asymptotics (II.9) (with cn =

1), the leading coefficients of the orthonormal polynomials ϕn satisfy

lim
n→∞

κn = κ := exp

{
− 1

4π

∫ 2π

0

logw(θ)dθ

}
,

and
1

Sint(z)
=

1

κ

∞∑
k=0

ϕk(0)ϕk(z), uniformly inside B,
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where

Sint(z) := exp

(
1

4π

∫ 2π

0

logw(θ)
eiθ + z

eiθ − z
dθ

)
, z ∈ B,

denotes the interior Szegő function (see [23, p. 19-20] for the proof). Therefore, Theorem

II.2.3 can be applied to locate the nearest singularity of the reciprocal of the interior Szegő

function in terms of the Verblunsky (or Schur) coefficients αn (αn := −ϕn(0)/κn).

Corollary II.2.4. Let µ satisfy the Szegő condition (II.13) and assume that 1/Sint ∈ H(B).

Suppose that the Verblunsky coefficients αn corresponding to µ verify

lim
n→∞

αn
αn+1

= λ.

Then λ is a singularity of 1/Sint and 1/Sint is holomorphic on B(0, |λ|).

This result complements [46, Theorem 2] where, under stronger assumptions, it is shown

that λ is a simple pole and 1/Sint has no other singularity in a neighborhood of B(0, |λ|).

Using the definition of Qµ
n,1, it is easy to verify that whenever Fn+1 6= 0, we have

Qµ
n,1(z) = z − 〈zF, pn+1〉µ

Fn+1

.

The next result enables one to locate the singularity of F nearest E using the zeros of Qµ
n,1.

Theorem II.2.5. Let F ∈ H(E) and µ ∈ S(E). If

lim
n→∞

〈zF, pn〉µ
Fn

= λ,

then λ is a singularity of F and ρ0(F ) = |Φ(λ)|.

The proofs of Theorems II.2.3 and II.2.5 are reduced to Fabry’s theorem by using the

following result.

Theorem II.2.6. Let F ∈ H(E) and µ ∈ S(E). Define f(w) := F (Ψ(w)) and denote the

Laurent series of f about 0 by
∑∞

k=−∞ fkw
k. Then, the following limits are equivalent:

(a) limn→∞ Fn/Fn+1 = τ ,
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(b) limn→∞〈zF, pn〉µ/Fn = λ,

(c) limn→∞ fn/fn+1 = τ ,

where τ and λ are finite and related by the formula Φ(λ) = τ.

An analogue of Suetin’s theorem (on the inverse problem) for Padé-orthogonal approxi-

mants is the following:

Theorem II.2.7. Let F ∈ H(E) and µ ∈ S(E). If for all n sufficiently large, [n/m]µF has

precisely m finite poles λn,1, . . . , λn,m, and

lim
n→∞

λn,j = λj, j = 1, 2, . . . ,m,

(λ1, . . . , λm are not necessarily distinct), then

(i) F is holomorphic in Dρmin
where ρmin := min1≤j≤m |Φ(λj)|;

(ii) ρm−1(F ) = max1≤j≤m |Φ(λj)|;

(iii) λ1, . . . , λm are singularities of F ; those lying in Dρm−1(F ) are poles, and F has no other

poles in Dρm−1(F ).

Theorem II.2.7 is an immediate consequence of the following result and Suetin’s theorem

(on the inverse problem).

Theorem II.2.8. Let F ∈ H(E) and µ ∈ S(E). Define f(w) := F (Ψ(w)) and denote the

Laurent series of f about 0 by
∑∞

k=−∞ fkw
k and the regular part of f by f̂(w) :=

∑∞
k=0 fkw

k.

For each fixed m ≥ 1, the following conditions are equivalent:

(a) The poles of [n/m]f̂ have finite limits τ1, . . . , τm, as n→∞.

(b) The poles of [n/m]µF have finite limits λ1, . . . , λm, as n→∞.

Under appropriate enumeration of the sub-indices, the values λj and τj, j = 1, . . . ,m, are

related by the formula Φ(λj) = τj for all j = 1, . . . ,m.

19



II.3 Proofs

II.3.1 Auxiliary lemmas

We collect all lemmas used to prove the main results in this section.

For convenience of the reader, we begin stating two lemmas due to V.I. Buslaev (see [13,

Theorem 5-6]). These results constitute basic tools for proving our inverse type results. We

make use of the following notation. Let f(w) =
∑∞

k=−∞ fkw
k be a Laurent series. We denote

the regular part of f(w) by f̂(w) :=
∑∞

k=0 fkw
k. If f̂(w) is holomorphic at 0, we denote by

Rm(f̂) the radius of the largest disk centered at the origin to which f̂(w) can be extended

as a meromorphic function with at most m poles (counting their multiplicities). Define the

annulus

Tδ,m(f) := {w ∈ C : e−δR0(f̂) ≤ |w| ≤ eδRm−1(f̂)},

where m ∈ N and δ ≥ 0. We will use [·]n to denote the coefficient of wn in the Laurent series

expansion around 0 of the function in the square brackets. Set

U := C \ B.

Lemma II.3.1 (Buslaev [13]). Let m ∈ N, δ > 0, and let f(w) =
∑∞

n=−∞ fnw
n be a Laurent

series such that

0 < R0(f̂) ≤ Rm−1(f̂) <∞, lim
n→∞

|f−n|1/n ≤ R0(f̂). (II.14)

Assume further that

lim
n→∞

[fαnηn,j]nR
n
m−1(f̂)eδn = 0, j = 0, . . . ,m− 1, (II.15)

where the functions αn, ηn,j ∈ H(Tδ,m(f)) have the limits

α(w) := lim
n→∞

αn(w) 6≡ 0, ηj(w) := lim
n→∞

ηn,j(w) = ηj(w), j = 0, . . . ,m− 1,
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uniformly on Tδ,m(f), η(w) is a univalent function on Tδ,m(f), and α(w) has at most m

zeros in the annulus T0,m(f). Then the function α(w) has precisely m zeros τ1, . . . , τm

in T0,m(f) and limn→∞ τn,j = τj, where the τn,j (j = 1, . . . ,m) are poles of the classical

Padé approximants [n/m]f̂ (w). Moreover, for any functions Kn,1, . . . , Kn,m, Ln,1, . . . , Ln,m ∈

H(Tν,m(f)), ν > 0, that converge to K1, . . . , Km, L1, . . . , Lm uniformly on Tν,m(f),

lim
n→∞

det([fKn,iLn,j]n)i,j=1,...,m

det(fn−i−j)i,j=0,...,m−1

=
det(Kr(τs))s,r=1,...,m det(Lr(τs))s,r=1,...,m

W 2(τ1, . . . , τm)
, (II.16)

where W (τ1, . . . , τm) = det(τ r−1
s )s,r=1,...,m is the Vandermonde determinant of the numbers

τ1, . . . , τm (for multiple zeros the right-hand side of (II.16) is defined by continuity). In

particular, for any k1, . . . , km, q1, . . . , qm ∈ Z, the limits

lim
n→∞

det(fn−ki−qj)i,j=1,...,m

det(fn−i−j)i,j=0,...,m−1

=
det(τ krs )s,r=1,...,m det(τ qrs )s,r=1,...,m

W 2(τ1, . . . , τm)

exist.

The assumptions Rm−1(f̂) < ∞ and (II.15) in Lemma II.3.1 can be replaced by the

following: the functions αn(w) and w−jηn,j(w) are holomorphic in the set C\B(0, e−δR0(f̂)),

and

[fαnηn,j]n = 0, j = 0, . . . ,m− 1, n ≥ n0.

Hence, we also have.

Lemma II.3.2 (Buslaev [13]). Let m ∈ N, σ > 1, let f(w) =
∑∞

n=−∞ fnw
n be a holomorphic

function in the annulus {1 < |w| < σ}. Assume further that

[fαnηn,j]n = 0, j = 0, . . . ,m− 1, n ≥ n0, (II.17)

hold, where αn(w) and w−jηn,j(w) are holomorphic functions in U , the limits

α(w) := lim
n→∞

αn(w) 6≡ 0, ηj(w) := lim
n→∞

ηn,j(w) = ηj(w), j = 0, . . . ,m− 1,

exist uniformly inside U \ {∞}, the function α(w) has at most m zeros in U \ {∞}, and

21



η(w) is a univalent function in U such that η(∞) = ∞. Then, only one of the following

assertions takes place:

(i) f̂(w) is a rational function with at most m− 1 poles;

(ii) α(w) has precisely m zeros τ1, . . . , τm in U \ {∞}, these zeros are singularities of

f(w), with an appropriate ordering |τ1| = R0(f̂), . . . , |τm| = Rm−1(f̂), and the lim-

its limn→∞ τn,j = τj exist, where the τn,j, j = 1, . . . ,m, are the poles of the classical

Padé approximants [n/m]f̂ (w).

The second type functions sn(z) (corresponding to the orthonormal polynomials pn(z))

defined by

sn(z) :=

∫
pn(ζ)

z − ζ
dµ(ζ), z ∈ C \ supp(µ),

where supp(µ) is the support of µ, have been extensively used in applications of orthogonal

polynomials to rational approximation (see e.g. [12], [13], and [54]). Since we use these

functions in our proofs, we list some of their properties in the next lemma.

Lemma II.3.3. If µ ∈ R(E), then

lim
n→∞

pn(z)sn(z) =
Φ′(z)

Φ(z)
,

uniformly inside C \ E. Consequently, for any compact set K ⊂ C \ E, there exists n0 (n0

depends on K) such that sn(z) 6= 0 for all z ∈ K and n ≥ n0.

Proof of Lemma II.3.3. From orthogonality, we get

pn(z)sn(z) =

∫
|pn(ζ)|2

z − ζ
dµ(ζ), z /∈ supp(µ).

Since pn is of norm 1 in L2(µ), it readily follows that {
∫
|pn(ζ)|2/(z − ζ)dµ(ζ)}n∈N forms a

normal family in C \ E. Consequently, the limit stated follows from pointwise convergence

in a neighborhood of infinity. Now, for all z sufficiently large, since µ ∈ R(E) from [51,
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Theorem 1.8] it follows that1

lim
n→∞

∫
|pn(ζ)|2

z − ζ
dµ(ζ) = lim

n→∞

∞∑
k=0

1

zk+1

∫
ζk|pn(ζ)|2dµ(ζ) =

∞∑
k=0

1

zk+1

1

2π

∫
T

Ψ(w)k
dw

wi

=
1

2πi

∫
T

1

w(z −Ψ(w))
dw =

1

2πi

∫
Ψ(T)

Φ′(ζ)

Φ(ζ)(z − ζ)
dζ =

Φ′(z)

Φ(z)
.

Since the function on the right-hand side never vanishes in C \E, the rest of the statements

follow at once.

Define

hn(w) := cnw
n+1sn(Ψ(w))Ψ′(w), w ∈ U := C \ B.

This sequence of functions is needed to define the αn(w) and ηn,j(w) in Buslaev’s lemmas.

So, we will list some of their properties.

Lemma II.3.4. Let F ∈ H(E). Define f(w) := F (Ψ(w)). The functions hn(w) are holo-

morphic in U, Fn = [fhn]n/cn and 〈zF, pn〉µ = [Ψfhn]n/cn. If µ ∈ S(E), then the sequence

hn(w) converges to some non-vanishing function h(w) uniformly inside U.

Proof of Lemma II.3.4. Clearly, hn(w) is holomorphic in U. Let ε > 0 be a small number

so that Γ1+ε is in the domain of holomorphy of F (z). By Fubini’s theorem and Cauchy’s

integral formula, we have

Fn =

∫
F (z)pn(z)dµ(z) =

∫ (
1

2πi

∫
Γ1+ε

F (ζ)

ζ − z
dζ

)
pn(z)dµ(z)

=
1

2πi

∫
Γ1+ε

F (ζ)

∫
pn(z)

ζ − z
dµ(z)dζ =

1

2πi

∫
Γ1+ε

F (ζ)sn(ζ)dζ

=
1

2πi

∫
γ1+ε

f(w)sn(Ψ(w))Ψ′(w)dw =
1

cn

1

2πi

∫
γ1+ε

f(w)hn(w)

wn+1
dw =

1

cn
[fhn]n.

1We note that in [51, Theorem 1.8] it is assumed that E is a compact set bounded by a Jordan curve. However,
as pointed out to us by the author, the result remains valid if E verifies the conditions imposed in this paper.
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and

〈zF, pn〉µ =

∫
zF (z)pn(z)dµ(z) =

∫ (
1

2πi

∫
Γ1+ε

ζF (ζ)

ζ − z
dζ

)
pn(z)dµ(z)

=
1

2πi

∫
Γ1+ε

ζF (ζ)

∫
pn(z)

ζ − z
dµ(z)dζ =

1

2πi

∫
Γ1+ε

ζF (ζ)sn(ζ)dζ

=
1

2πi

∫
γ1+ε

Ψ(w)f(w)sn(Ψ(w))Ψ′(w)dw =
1

cn

1

2πi

∫
γ1+ε

Ψ(w)f(w)hn(w)

wn+1
dw =

1

cn
[Ψfhn]n.

If µ ∈ S(E), then µ ∈ R(E) and using Lemma II.3.3, we have

lim
n→∞

hn(w) = lim
n→∞

cnw
n+1sn(Ψ(w))Ψ′(w)

= wΨ′(w) lim
n→∞

cnw
n

pn(Ψ(w))
lim
n→∞

pn(Ψ(w))sn(Ψ(w)) =
1

S(Ψ(w))
=: h(w),

uniformly inside U.

Finally, we state a lemma due to A.A. Gonchar which is quite useful in the theory of

rational approximation. We recall the definition of the logarithmic capacity of A :

cap(A) := e−γ(A),

where

γ(A) := inf{
∫ ∫

log
1

|z − t|
dµ(z)dµ(t) : µ ≥ 0, supp(µ) ⊂ A, ‖µ‖ = 1}.2 (II.18)

Definition II.3.5. Let W (z) and Wn(z), n ∈ N, be functions defined on an open region

Ω. We say that the sequence Wn(z) converges to W (z) in capacity inside Ω, if for any ε > 0

and for any compact subset K of Ω,

lim
n→∞

cap({z ∈ K : |Wn(z)−W (z)| ≥ ε}) = 0.

Lemma II.3.6 (Gonchar [25]). Suppose that the sequence Wn(z) converges to W (z) in

2γ(A) is known as the Ronin constant of A.
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capacity inside an open region Ω. If the Wn(z) are meromorphic and have no more than

m <∞ poles in Ω, and W (z) is meromorphic and has exactly m poles z1, . . . , zm in Ω, then

the sequence Wn(z) converges to W (z) uniformly inside Ω \ {z1, . . . , zm}, for all sufficiently

large n, Wn(z) has exactly m poles in Ω and the poles of the Wn(z) converge to the poles of

W (z) according to their order.

II.3.2 Proofs of main results

Proof of Theorem II.2.1. From (II.8), it follows that

lim
n→∞

pn(z)

pn+l(z)
=

1

Φ(z)l
, l = 0, 1, . . . , (II.19)

uniformly inside C \ E. By (II.19) and Lemma II.3.3, for any l = 0, 1, . . . , we have

lim
n→∞

sn+l(z)

sn(z)
= lim

n→∞

pn(z)

pn+l(z)

pn+l(z)sn+l(z)

pn(z)sn(z)
=

1

Φ(z)l
Φ′(z)/Φ(z)

Φ′(z)/Φ(z)
=

1

Φ(z)l
, (II.20)

uniformly inside C \ E. Furthermore,

lim
n→∞

|pn(z)|1/n = |Φ(z)|, (II.21)

and

lim
n→∞

|sn(z)|1/n =
1

|Φ(z)|
, (II.22)

uniformly inside C \ E, are trivial consequences of (II.19) and (II.20), respectively.

By the definition of Padé-orthogonal approximants and the condition (II.21), we have

Qµ
n,m(z)F (z)− P µ

n,m(z) =
∞∑

k=n+m+1

ak,npk(z), z ∈ Dρ0(F ), (II.23)

where

ak,n := 〈Qµ
n,mF, pk〉µ, k = 0, 1, . . . ,
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ak,n = 0, k = n+ 1, . . . , n+m.

Using Cauchy’s integral formula and Fubini’s theorem, we obtain, for k = 0, 1, . . . ,

ak,n := 〈Qµ
n,mF, pk〉µ =

∫
1

2πi

∫
Γρ1

Qµ
n,m(t)F (t)

t− z
dtpk(z)dµ(z)

=
1

2πi

∫
Γρ1

Qµ
n,m(t)F (t)

∫
pk(z)

t− z
dµ(z)dt =

1

2πi

∫
Γρ1

Qµ
n,m(t)F (t)sk(t)dt, (II.24)

where 1 < ρ1 < ρ0(F ). Let {α1, . . . , αγ} be the set of the distinct poles of F in Dρm(F ) and

mk be the multiplicity of αk so that

Q(z) :=
m∏
j=1

(z − λj) =

γ∏
k=1

(z − αk)mk ,
γ∑
k=1

mk =: m.

Multiplying the equation (II.23) by Q and expanding
∑∞

k=n+m+1 ak,nQpk(= QQµ
n,mF −

QP µ
n,m ∈ H(Dρm(F ))) in terms of the Fourier series corresponding to the orthonormal system

{pν}∞ν=0, we obtain that for z ∈ Dρm(F ),

Q(z)Qµ
n,m(z)F (z)−Q(z)P µ

n,m(z) =
∞∑

k=n+m+1

ak,nQ(z)pk(z) =
∞∑
ν=0

bν,npν(z), (II.25)

where

bν,n :=
∞∑

k=n+m+1

ak,n〈Qpk, pν〉µ, ν = 0, 1, . . . .

First of all, we will estimate |ak,n| in terms of |τk,n| where

τk,n :=
1

2πi

∫
Γρ2

Qµ
n,m(t)F (t)sk(t)dt, ρm−1(F ) < ρ2 < ρm(F ), k = 0, 1 . . . . (II.26)

Note that the only difference between the integral in (II.26) and the last integral in (II.24) is

the domains of the integrals. The greater number ρ of Γρ will allow to have a better bound

on |sk|. For each k ≥ 0, the function Qµ
n,mFsk is meromorphic on Dρ2 \Dρ1 = {z ∈ C : ρ1 ≤

|Φ(z)| ≤ ρ2} and has poles at α1, . . . , αγ with multiplicities at most m1, . . . ,mγ, respectively.
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Applying Cauchy’s residue theorem to the functions Qµ
n,mFsk, we have

1

2πi

∫
Γρ2

Qµ
n,m(t)F (t)sk(t)dt−

1

2πi

∫
Γρ1

Qµ
n,m(t)F (t)sk(t)dt =

γ∑
j=1

res(Qµ
n,mFsk, αj), (II.27)

for k ≥ 0. Recall that the limit formula for residue is

res(Qµ
n,mFsk, αj) =

1

(mj − 1)!
lim
z→αj

((z − αj)mjQµ
n,m(z)F (z)sk(z))(mj−1). (II.28)

By the Leibniz formula and the fact that for n sufficiently large, sn(z) 6= 0 for z ∈ C\E (see

Lemma II.3.3), we can transform the expression under the limit sign as follows

((z − αj)mjQµ
n,m(z)F (z)sk(z))(mj−1) =

(
(z − αj)mjQµ

n,m(z)F (z)sn(z)
sk(z)

sn(z)

)(mj−1)

=

mj−1∑
p=0

(
mj − 1

p

)
((z − αj)mjQµ

n,m(z)F (z)sn(z))(mj−1−p)
(
sk(z)

sn(z)

)(p)

.

To avoid long expressions, let us introduce the following notation:

βn(j, p) :=
1

(mj − 1)!

 mj − 1

p

 lim
z→αj

((z − αj)mjQµ
n,m(z)F (z)sn(z))(mj−1−p),

for j = 1, . . . , γ and p = 0, . . . ,mj − 1 (notice that the βn(j, p) do not depend on k), so we

can rewrite the equality (II.27) as

ak,n = τk,n −
γ∑
j=1

(
mj−1∑
p=0

βn(j, p)

(
sk
sn

)(p)

(αj)

)
, n ≥ n0 and k = 0, 1, . . . . (II.29)

Since ak,n = 0, for k = n+ 1, n+ 2, . . . , n+m, it follows from (II.29) that

γ∑
j=1

mj−1∑
p=0

βn(j, p)

(
sk
sn

)(p)

(αj) = τk,n, k = n+ 1, . . . , n+m. (II.30)
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We will view this as a system of m equations with m unknowns βn(j, p). If we can show that

Λn :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
sn+1

sn

)
(αj)

(
sn+1

sn

)′
(αj) · · ·

(
sn+1

sn

)(mj−1)

(αj)(
sn+2

sn

)
(αj)

(
sn+2

sn

)′
(αj) · · ·

(
sn+2

sn

)(mj−1)

(αj)

...
...

...
...(

sn+m
sn

)
(αj)

(
sn+m
sn

)′
(αj) · · ·

(
sn+m
sn

)(mj−1)

(αj)

∣∣∣∣∣∣∣∣∣∣∣∣∣
j=1,...,γ

6= 0, (II.31)

(this expression represents the determinant of order m in which the indicated groups of

columns are successively written out for j = 1, . . . , γ), then we can express βn(j, p) in terms

of (sk/sn)(p)(αj) and τk,n, for k = n+ 1, . . . n+m. However, since

limn→∞ Λn = Λ :=

∣∣∣∣∣∣∣∣∣∣∣∣

R(αj) R′(αj) · · · R(mj−1)(αj)

R2(αj) (R2)′(αj) · · · (R2)(mj−1)(αj)
...

...
...

...

Rm(αj) (Rm)′(αj) · · · (Rm)(mj−1)(αj)

∣∣∣∣∣∣∣∣∣∣∣∣
j=1,...,γ

=

γ∏
j=1

(mj − 1)!!

γ∏
j=1

(−Φ′(αj))
mj(mj−1)/2

γ∏
j=1

Φ(αj)
−m2

j

∏
1≤i<j≤γ

(
1

Φ(αj)
− 1

Φ(αi)

)mimj
,

where R(z) = 1/Φ(z) and n!! = 0!1! · · · n! (using for example [52, Theorem 1] for proving

this), for sufficiently large n, Λn 6= 0. In fact, for sufficiently large n, |Λn| ≥ c1 > 0 where the

number c1 does not depend on n (from now on, we will denote some constants that do not

depend on n by c2, c3, . . . and we will consider only n large enough so that |Λn| ≥ c1 > 0).

Applying Cramer’s rule to (II.30), we have

βn(j, p) =
Λn(j, p)

Λn

=
1

Λn

m∑
s=1

τn+s,nCn(s, q), (II.32)

where Λn(j, p) is the determinant obtained from Λn replacing the column with index q =

(
∑j−1

l=0 ml) + p + 1 (where we define m0 := 0) with the column [τn+1,n . . . τn+m,n]T and

Cn(s, q) is the determinant of the (s, q)th cofactor matrix of Λn(j, p). Substituting βn(j, p) in
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the formula (II.29) with the expression in (II.32), we obtain

ak,n = τk,n −
1

Λn

γ∑
j=1

mj−1∑
p=0

m∑
s=1

τn+s,nCn(s, q)

(
sk
sn

)(p)

(αj), k ≥ n+m+ 1. (II.33)

Let δ > 0 be sufficiently small so that ρ0(F )− 2δ > 1 and ε > 0 be sufficiently small so that

{z ∈ C : |z − αj| = ε} ⊂ {z ∈ C : |Φ(z)| ≥ ρ0(F )− δ}

and

(
sk
sn

)(p)

(αj) =
p!

2πi

∫
|z−αj |=ε

sk(z)

sn(z)(z − αj)p+1
dz, k = 0, 1 . . . , p = 0, . . . ,mj−1. (II.34)

Applying (II.20) and (II.34), we can easily check that∣∣∣∣∣
(
sk
sn

)(p)

(αj)

∣∣∣∣∣ ≤ c2, p = 0, . . . ,mj − 1, j = 1, . . . , γ, k = n+ 1, . . . , n+m, (II.35)

for n ≥ n1, and∣∣∣∣∣
(
sk
sn

)(p)

(αj)

∣∣∣∣∣ ≤ c3

(ρ0(F )− 2δ)k−n
, p = 0, . . . ,mj − 1, j = 1, . . . , γ, k ≥ n+m+ 1,

(II.36)

for n ≥ n2. The equation (II.35) implies that

|Cn(s, q)| ≤ (m− 1)!cm−1
2 = c4, s, q = 1, . . . ,m, (II.37)

for n ≥ n3. Combining the estimates (II.35), (II.36), (II.37), and |Λn| ≥ c1 > 0, we see from

(II.33) that

|ak,n| ≤ |τk,n|+
mc4c3

c1

1

(ρ0(F )− 2δ)k−n

m∑
s=1

|τn+s,n|

≤ |τk,n|+
c5

(ρ0(F )− 2δ)k−n

m∑
s=1

|τn+s,n|, k ≥ n+m+ 1, (II.38)
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for n ≥ n4.

Secondly, we will give an estimate of |bν,n| in terms of |τk,n|. By the Cauchy-Schwarz

inequality and the orthonormality of pν , we have

|〈Qpk, pν〉µ|2 ≤ 〈Qpk, Qpk〉µ〈pν , pν〉µ ≤ max
z∈E
|Q(z)|2 = c6, k, ν = 0, 1, . . . . (II.39)

By (II.38), (II.39), and the fact that
∑∞

k=n+m+1 (ρ0(F )− 2δ)n−k < ∞, we obtain, for n

sufficiently large and for all ν ≥ 0,

|bν,n| ≤
∞∑

k=n+m+1

|ak,n||〈Qpk, pν〉| ≤
√
c6

∞∑
k=n+m+1

|ak,n|

≤
√
c6

(
∞∑

k=n+m+1

|τk,n|+ c5

∞∑
k=n+m+1

1

(ρ0(F )− 2δ)k−n

m∑
s=1

|τn+s,n|

)

≤ c7

∞∑
k=n+1

|τk,n|. (II.40)

Thirdly, we show that P µ
n,m/Q

µ
n,m converges in capacity to F inside Dρm(F ), as n → ∞.

Let K be a compact subset of Dρm(F ) and σ be the smallest positive number such that σ ≥ 1

and K ⊂ Dσ ⊂ Dρm(F ). Choose δ > 0 so small that

ρ2 := ρm(F )− δ > ρm−1(F ), ρ0(F )− 2δ > 1, and
σ + δ

ρ2 − δ
< 1. (II.41)

We write (II.25) in the form

|Q(z)Qµ
n,m(z)F (z)−Q(z)P µ

n,m(z)| ≤
n+m∑
ν=0

|bν,n||pν(z)|+
∞∑

ν=n+m+1

|bν,n||pν(z)|. (II.42)

Define

A1
n(z) :=

∑n+m
ν=0 |bν,n||pν(z)|
|Q(z)Qµ

n,m(z)|
and A2

n(z) :=

∑∞
ν=n+m+1 |bν,n||pν(z)|
|Q(z)Qµ

n,m(z)|
,

and let Qµ
n,m(z) :=

∏mn
j=1(z − λn,j). Therefore, the relation (II.42) implies

∣∣∣∣F (z)−
P µ
n,m(z)

Qµ
n,m(z)

∣∣∣∣ ≤ A1
n(z) + A2

n(z),
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for all z ∈ D̂σ := Dσ \ (∪∞n=0{λn,1, . . . , λn,mn} ∪ {λ1, . . . , λm}).

Let us bound A1
n(z) from above. We will first estimate |τk,n/Qµ

n,m(z)| for z ∈ D̂σ and for

k ≥ n+ 1. By definition of τk,n,

τk,n
Qµ
n,m(z)

=
1

2πi

∫
Γρ2

sk(t)F (t)
Qµ
n,m(t)

Qµ
n,m(z)

dt, k ≥ n+ 1, (II.43)

so we shall approximate the factors multiplying F (t) in the integral signs separately. For n

sufficiently large,

|sk(t)| ≤
c8

(ρ2 − δ)k
, k ≥ n+ 1.

Define

Qµ
n,m,ρ2

(t) :=
∏

λn,j∈Dρ2

(t− λn,j).

It is easy to see that ∣∣∣∣ t− ζz − ζ

∣∣∣∣ ≤ c9,

for all t ∈ Γρ2 , z ∈ D̂σ, and ζ ∈ C \ Dρ2 (notice that the last condition in (II.41) implies

ρ2 > σ). Then,

∣∣∣∣Qµ
n,m(t)

Qµ
n,m(z)

∣∣∣∣ ≤ c9
m

∣∣∣∣Qµ
n,m,ρ2

(t)

Qµ
n,m,ρ2(z)

∣∣∣∣ ≤ c10

|Qµ
n,m,ρ2(z)|

, z ∈ D̂σ, t ∈ Γρ2 . (II.44)

By (II.43), we obtain

∣∣∣∣ τk,n
Qµ
n,m(z)

∣∣∣∣ ≤ c11

|Qµ
n,m,ρ2(z)|(ρ2 − δ)k

, z ∈ D̂σ, k ≥ n+ 1, n ≥ n5,

which implies ∣∣∣∣ bν,n
Qµ
n,m(z)

∣∣∣∣ ≤ c12

|Qµ
n,m,ρ2(z)|(ρ2 − δ)n

, z ∈ D̂σ, n ≥ n6. (II.45)

Applying (II.21) and the maximum modulus principle, we have

|pν(z)| ≤ c13(σ + δ)ν , z ∈ Dσ, ν ≥ 0. (II.46)
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Using (II.45) and (II.46), we obtain the estimate:

A1
n(z) =

1

|Q(z)|

n+m∑
ν=0

|bν,n||pν(z)|
|Qµ

n,m(z)|
≤ (n+m+ 1)c12c13(σ + δ)n+m

|Q(z)Qµ
n,m,ρ2(z)|(ρ2 − δ)n

, z ∈ D̂σ.

We choose θ > 0 such that (σ + δ)/(ρ2 − δ) < θ < 1. Therefore, for n sufficiently large,

A1
n(z) ≤ c14θ

n

|Q(z)Qµ
n,m,ρ2(z)|

, z ∈ D̂σ. (II.47)

Next, let us approximate A2
n(z). Since deg(QP µ

n,m) ≤ n + m, by a computation similar

to (II.24), we obtain

bν,n = 〈QQµ
n,mF, pν〉µ =

1

2πi

∫
Γρ2

Q(t)Qµ
n,m(t)F (t)sν(t)dt, ν ≥ n+m+ 1. (II.48)

As before, from (II.22) and (II.48), we have

|bν,n|
|Q(z)Qµ

n,m(z)|
≤ c15

|Q(z)Qµ
n,m,ρ2(z)|(ρ2 − δ)ν

, z ∈ D̂σ, ν ≥ n+m+ 1, (II.49)

for n ≥ n7. Then, using (II.46) and (II.49), for n sufficiently large, we obtain

A2
n(z) ≤ c16(σ + δ)n

|Q(z)Qµ
n,m,ρ2(z)|(ρ2 − δ)n

<
c17θ

n

|Q(z)Qµ
n,m,ρ2(z)|

, z ∈ D̂σ. (II.50)

Combining (II.47) and (II.50), we have, for n sufficiently large,

∣∣∣∣F (z)−
P µ
n,m(z)

Qµ
n,m(z)

∣∣∣∣ ≤ c18θ
n

|Q(z)Qµ
n,m,ρ2(z)|

, z ∈ D̂σ. (II.51)

Let Tn(z) := Q(z)Qµ
n,m,ρ2

(z). Then, Tn(z) is a monic polynomial of degree at most 2m. Let

ε > 0. Clearly,

en :=

{
z ∈ D̂σ :

∣∣∣∣F (z)−
P µ
n,m(z)

Qµ
n,m(z)

∣∣∣∣ ≥ ε

}
⊂
{
z ∈ D̂σ :

∣∣Q(z)Qµ
n,m,ρ2

(z)
∣∣ ≤ c18θ

n

ε

}
=: En.
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The capacity function is monotonic and has the well-known property,

cap {z ∈ C : |zn + an−1z
n−1 + . . .+ a0| ≤ ρn} = ρ, ρ > 0.

Hence, we find that for n sufficiently large

cap en ≤ capEn ≤
(

1

ε
c18θ

n

)1/deg Tn

≤
(

1

ε
c18θ

n

)1/2m

≤ c19θ
n/2m.

This means that cap{z ∈ Dσ :
∣∣∣F (z)− Pµn,m(z)

Qµn,m(z)

∣∣∣ ≥ ε} = cap en → 0, as n → ∞. This proves

that [n/m]µF converges in capacity to F inside Dρm(F ), as n → ∞. Applying Gonchar’s

lemma, we have [n/m]µF converges to F uniformly inside Dρm(F ) \ {λ1, . . . , λm}, as n → ∞.

In addition we get that each pole of F in Dρm(F ) attracts as many zeros of Qµ
n,m as its order.

Therefore, degQµ
n,m = m for all sufficiently large n which in turn implies that [n/m]µF is

uniquely determined for such n. We have obtained (II.10) and (II.11) except for the rate of

convergence exhibited in those relations.

To show (II.10), we let K be a compact subset of Dρm(F ) \ {λ1, . . . λm}, σ be the smallest

positive number such that σ ≥ 1 and K ⊂ Dσ ⊂ Dρm(F ), and choose an arbitrarily small

number δ > 0 such that ρ2 satisfies (II.41). Note that what we just proved implies

max
z∈Dρm(F )

|Qµ
n,m(z)| ≤ c20.

From (II.22) and (II.48), for n ≥ n8,

|bν,n| =

∣∣∣∣∣ 1

2πi

∫
Γρ2

Q(t)Qµ
n,m(t)F (t)sν(t)dt

∣∣∣∣∣ ≤ c21

(ρ2 − δ)ν
, ν ≥ n+m+ 1,

|τk,n| =

∣∣∣∣∣ 1

2πi

∫
Γρ2

Qµ
n,m(t)F (t)sk(t)dt

∣∣∣∣∣ ≤ c22

(ρ2 − δ)k
, k ≥ n+ 1. (II.52)

Then, by (II.40), for n ≥ n9,

|bν,n| ≤ c7

∞∑
k=n+1

|τk,n| ≤
c23

(ρ2 − δ)n
, 0 ≤ ν ≤ n+m.
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Using (II.46), we can prove that for z ∈ Dσ and for n ≥ n10,

|Q(z)Qµ
n,m(z)F (z)−Q(z)P µ

n,m(z)| ≤
∞∑
ν=0

|bν,n||pν(z)| ≤ c24

((
σ + δ

ρ2 − δ

)
+ δ

)n
. (II.53)

Dividing the previous inequality by |QQµ
n,m|, we have, for n ≥ n10,∣∣∣∣F (z)−

P µ
n,m(z)

Qµ
n,m(z)

∣∣∣∣ ≤ c25

|Q(z)Qµ
n,m(z)|

((
σ + δ

ρ2 − δ

)
+ δ

)n
, z ∈ K.

Since for n sufficiently large, the zeros of Qµ
n,m(z) are distant from K, it follows that

lim sup
n→∞

‖F − [n/m]µF‖
1/n
K ≤

(
σ + δ

ρ2 − δ

)
+ δ.

Taking δ → 0+ and ρ2 → ρm(F ), we obtain (II.10). Moreover, if K is any compact set

contained in Dρm(F ), we can use similar arguments to show that (II.53) implies

lim sup
n→∞

‖QFQµ
n,m −QP µ

n,m‖
1/n
K ≤ ‖Φ‖K

ρm(F )
. (II.54)

Finally, we prove (II.11). We first need to show that for k = 1, . . . , γ,

lim sup
n→∞

|(Qµ
n,m)(j)(αk)|1/n ≤

|Φ(αk)|
ρm(F )

, j = 0, . . . ,mk − 1. (II.55)

Let ε > 0 be arbitrarily small so that B(αk, ε) ⊂ Dρm(F ) for all k = 1, . . . , γ and the disks

B(αk, ε), k = 1, . . . , γ, are pairwise disjoint. As a consequence of (II.54), we have

lim sup
n→∞

‖(z − αk)mkFQµ
n,m − (z − αk)mkP µ

n,m‖
1/n

B(αk,ε)
≤
‖Φ‖B(αk,ε)

ρm(F )
, (II.56)

so by Cauchy’s integral formula for the derivative, we obtain

lim sup
n→∞

‖
[
(z − αk)mkFQµ

n,m − (z − αk)mkP µ
n,m

](j) ‖1/n

B(αk,ε)
≤
‖Φ‖B(αk,ε)

ρm(F )
, (II.57)
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for all j ≥ 0. Since ε > 0 can be taken arbitrarily small, the inequality (II.56) implies that

lim sup
n→∞

|LkQµ
n,m(αk)|1/n ≤

|Φ(αk)|
ρm(F )

,

where Lk := limz→αk(z−αk)mkF (z) 6= 0 (because F has a pole of order mk at αk). Therefore,

lim sup
n→∞

|Qµ
n,m(αk)|1/n ≤

|Φ(αk)|
ρm(F )

.

Proceeding the proof by induction, we let r ≤ mk − 1 and assume that

lim sup
n→∞

|(Qµ
n,m)(j)(αk)|1/n ≤

|Φ(αk)|
ρm(F )

, j = 0, . . . , r − 1. (II.58)

We want to show that the above inequality also holds for j = r. Using (II.57), since r < mk,

we obtain

lim sup
n→∞

|[(z − αk)mkFQµ
n,m](r)(αk)|1/n ≤

|Φ(αk)|
ρm(F )

. (II.59)

By the Leibniz formula, we have

[(z − αk)mkFQµ
n,m](r)(αk) =

r∑
l=0

(
r

l

)
[(z − αk)mkF ](l)(αk)(Q

µ
n,m)(r−l)(αk).

Therefore, by (II.58), (II.59), and the fact that Lk 6= 0, we have

lim sup
n→∞

|(Qµ
n,m)(r)(αk)|1/n ≤

|Φ(αk)|
ρm(F )

which completes the induction and the proof of (II.55).

Let {qk,s}k=1,...,γ, s=0,...,mk−1 be a system of polynomials such that deg qk,s ≤ m− 1 for all

k, s and

q
(i)
k,s(αj) = δj,kδi,s, 1 ≤ j ≤ γ, 0 ≤ i ≤ mj − 1.
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It is not difficult to check that qk,s exist (using for example [52, Theorem 1]). Then,

Qµ
n,m(z) =

γ∑
k=1

mk−1∑
s=0

(Qµ
n,m)(s)(αk)qk,s(z) +Qm(z).

This formula combined with (II.55) imply

lim sup
n→∞

‖Qµ
n,m −Qm‖1/n ≤ maxk=1,...,γ |Φ(αk)|

ρm(F )
.

Proof of Theorem II.2.6. First of all, we will prove that (a) implies (c) and (b) implies

(c) at the same time by using Lemma II.3.2 for m = 1. Assume that (a) or (b) is satisfied,

that is,

lim
n→∞

Fn
Fn+1

= τ, or lim
n→∞

〈zF, pn〉µ
Fn

= λ. (II.60)

Let

τn :=
Fn
Fn+1

, λn :=
〈zF, pn〉µ

Fn
.

Define

α1
n(w) :=

cn
cn+1

τnhn+1(w)

w
− hn(w), α2

n(w) :=
hn+1(w)(λn+1 −Ψ(w))

w
, w ∈ U

and

ηn,0(w) := 1, w ∈ U.

The functions α1
n(w) and α2

n(w) are holomorphic on U. By Lemma II.3.4, for ε > 0 sufficiently

small so that f(w) is holomorphic in a neighborhood of γ1+ε,

[fα1
nηn,0]n =

cn
cn+1

τn
2πi

∫
γ1+ε

f(w)hn+1(w)

wn+2
dw − 1

2πi

∫
γ1+ε

f(w)hn(w)

wn+1
dw

=
cn
cn+1

Fn
Fn+1

[fhn+1]n+1 − [fhn]n = 0
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and

[fα2
nηn,0]n =

λn+1

2πi

∫
γ1+ε

f(w)hn+1(w)

wn+2
dw − 1

2πi

∫
γ1+ε

Ψ(w)f(w)hn+1(w)

wn+2
dw

=
cn+1

cn+1

〈zF, pn+1〉µ
Fn+1

[fhn+1]n+1 − [Ψfhn+1]n+1 = 0.

If (a) holds, then

α1(w) := lim
n→∞

α1
n(w) = h(w)

( τ
w
− 1
)
, uniformly inside U,

and if (b) holds, then

α2(w) := lim
n→∞

α2
n(w) =

h(w)(λ−Ψ(w))

w
, uniformly inside U.

Since h(w) is never zero on U , each function αj(w), j = 1, 2, has at most one zero in U

(which is τ). It is also easy to check that ηn,0(w) satisfies the rest of the required conditions

in Lemma II.3.2. Moreover, if fn = 0 for n ≥ n0, then Fn = [fhn]n = 0 (recall that hn(w) is

analytic at ∞). Therefore, by (ii) in Lemma II.3.2, τ ∈ U \ {∞} and limn→ fn/fn+1 = τ.

Now, we prove that (c) implies (a) and (b) by Lemma II.3.1 for m = 1. Assume that

limn→∞ fn/fn+1 = τ. By Fabry’s theorem, we have (II.14). Set

τn :=
fn
fn+1

, αn(w) :=
τn
w
− 1, and ηn,0(w) = 1, w ∈ U.

Therefore,

[fαnηn,0]n = τnfn+1 − fn = 0,

α(w) := lim
n→∞

αn(w) =
τ

w
− 1, uniformly inside U,

η0(w) := lim
n→∞

ηn,0(w) = 1 = w0, uniformly on C,

and α(w) has at most one zero in U. Applying (II.16) in Lemma II.3.1, if we select Kn,1(w) =
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hn(w) and Ln,1(w) = 1, we have

lim
n→∞

[fhn]n
fn

= h(τ),

and if we select Kn,1(w) = Ψ(w)hn(w) and Ln,1(w) = 1, we have

lim
n→∞

[Ψfhn]n
fn

= Ψ(τ)h(τ).

Since h(w) vanishes nowhere on the domain U ,

lim
n→∞

Fn
Fn+1

= lim
n→∞

cn
cn+1

[fhn]n
[fhn+1]n+1

= lim
n→∞

cn
cn+1

[fhn]n
fn

fn
fn+1

fn+1

[fhn+1]n+1

= τ,

and

lim
n→∞

〈zF, pn〉µ
Fn

= lim
n→∞

cn
cn

[Ψfhn]n
[fhn]n

= lim
n→∞

[Ψfhn]n
fn

fn
[fhn]n

= Ψ(τ) = λ.

Then, the proof is complete.

Proof of Theorem II.2.8. First of all, we prove (b) implies (a) by using Lemma II.3.2.

We assume that the zeros of Qµ
n,m(z) have limits λ1, . . . , λm, as n → ∞. For w ∈ U, we

define

αn(w) := w−mh(w)Qµ
n,m(Ψ(w)),

ηn,j(w) :=
cn+m−jw

n+m+1sn+m−j(Ψ(w))Ψ′(w)

h(w)
, j = 0, . . . ,m− 1.

The functions αn(w) and w−jηn,j(w) = hn+m−j(w)/h(w), j = 1, . . . ,m− 1, are holomorphic

on U , and

α(w) := lim
n→∞

αn(w) = w−mh(w)
m∏
j=1

(Ψ(w)− λj),

ηj(w) := lim
n→∞

ηn,j(w) = wj, j = 0, 1, . . . ,m− 1,

uniformly inside U \ {∞}. Since h(w) is never zero on U , α(w) has at most m zeros in

U \ {∞}. By Cauchy’s integral formula, Fubini’s theorem, and the definition of Qµ
n,m, we
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have, for ε > 0 sufficiently small so that F (z) is analytic on D1+ε, and for j = 0, . . . ,m− 1,

[fαnηn,j]n =
cn
2πi

∫
γ1+ε

F (Ψ(w))Qµ
n,m(Ψ(w))sn+m−j(Ψ(w))Ψ′(w)dw

=
cn
2πi

∫
Γ1+ε

F (t)Qµ
n,m(t)sn+m−j(t)dt =

cn
2πi

∫
Γ1+ε

F (t)Qµ
n,m(t)

∫
pn+m−j(z)

t− z
dµ(z)dt

= cn

∫
1

2πi

∫
Γ1+ε

F (t)Qµ
n,m(t)

t− z
dtpn+m−j(z)dµ(z) = cn

∫
F (z)Qµ

n,m(z)pn+m−j(z)dµ(z) = 0.

Therefore, we prove the required conditions for Lemma II.3.2. If the regular part of f(w) is

a rational function with at most m− 1 poles, then F (z) is a rational function with at most

m − 1 poles which implies that ∆n,m(F, µ) = 0 for n sufficiently large. This is impossible,

because deg(Qµ
n,m) = m, for n sufficiently large. Therefore, by Lemma II.3.2, α(w) has

precisely m zeros τ1, . . . , τm in U \ {∞} and the limits of the poles of the classical Padé

approximants [n/m]f̂ (w) are τ1, . . . , τm, as n→∞.

Now, we prove (a) implies (b) by using Lemma II.3.1. Assume that the poles of [n/m]f̂ (w)

have limits τ1, . . . , τm, as n → ∞. We assume further that Qn,m(w) is monic. By Suetin’s

theorem, we have (II.14).

Define, for w ∈ U,

α̃n(w) := w−mQn,m(w),

η̃n,ν(w) := wν , ν = 0, . . . ,m− 1.

Then,

α̃(w) := lim
n→∞

α̃n(z) = w−m
m∏
j=1

(w − τj),

η̃ν(w) = wν , ν = 0, . . . ,m− 1,

uniformly inside U \ {∞}. By the definition of Qn,m(z), it follows that, for ε > 0 sufficiently

small so that f(w) is holomorphic on γ1+ε and for n sufficiently large,

[fα̃nη̃n,ν ]n = [f̂ α̃nη̃n,ν ]n =
1

2πi

∫
γ1+ε

f̂(w)Qn,m(w)

wm−ν+n+1
dw = 0, ν = 0, . . . ,m− 1.
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We can easily check the rest of all required conditions in Lemma II.3.1 for α̃n(w) and η̃n,ν(w),

so we can apply the equality (II.16) in Lemma II.3.1.

Next, we set

Q̃n,m(z) :=

∣∣∣∣∣∣∣∣∣∣∣∣

cn+1〈F, pn+1〉µ cn+1〈zF, pn+1〉µ · · · cn+1〈zmF, pn+1〉µ
...

... · · · ...

cn+m〈F, pn+m〉µ cn+m〈zF, pn+m〉µ · · · cn+m〈zmF, pn+m〉µ

1 z · · · zm

∣∣∣∣∣∣∣∣∣∣∣∣
. (II.61)

Note that the polynomials Q̃n,m(z) satisfy

〈Q̃n,mF, pν〉µ = 0, ν = n+ 1, . . . , n+m, (II.62)

and if we can show that ∆n,m(F, µ) 6= 0 (the coefficient of Q̃n,m(z)/
∏m

j=1 cn+j) which we will

show at the end of this proof, then Qµ
n,m(z) is unique and

Qµ
n,m(z) =

Q̃n,m(z)

∆n,m(F, µ)
∏m

j=1 cn+j

.

Using Cauchy’s integral formula and Fubini’s theorem, for ε > 0 sufficiently small so that

F (z) is holomorphic on D1+ε, for j = 1, . . . ,m+ 1, and ν = 1, . . . ,m,

cn+ν〈zj−1F, pn+ν〉µ = cn+ν

∫
1

2πi

∫
Γ1+ε

ζj−1F (ζ)

ζ − z
dζpn+ν(z)dµ(z)

=
cn+ν

2πi

∫
Γ1+ε

ζj−1F (ζ)

∫
pn+ν(z)

ζ − z
dµ(z)dζ =

cn+ν

2πi

∫
Γ1+ε

ζj−1F (ζ)sn+ν(ζ)dζ

=
cn+ν

2πi

∫
γ1+ε

Ψj−1(w)f(w)sn+ν(Ψ(w))Ψ′(w)dw = [f(w)w−νhn+ν(w)Ψj−1(w)]n. (II.63)

Computing the determinant in (II.61) along the last row and applying (II.63), we obtain

Q̃n,m(z) =
m∑
k=0

(−1)m+kzk det([fKn,tLn,r]n)t=1,...,m, r=1,...,k,k+2,...,m+1, (II.64)
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where

Kn,t(w) := w−thn+t(w), t = 1, . . . ,m,

Ln,r(w) := Ψr−1(w), r = 1, . . . ,m+ 1.

Moreover, all functions Kn,t(w) and Ln,r(w), are holomorphic on U \ {∞}, and

Kt(w) := lim
n→∞

Kn,t(w) = w−th(w), t = 1, . . . ,m,

Lr(w) := Ψr−1(w), r = 1, . . . ,m+ 1,

uniformly inside U \ {∞}. By Lemma II.3.1 and (II.64), we have τ1, . . . , τm ∈ U and

lim
n→∞

Q̃n,m(z)

det(fn−i−j)i,j=0,1,...,m−1

= lim
n→∞

m∑
k=0

(−1)m+kzk
det([fKn,tLn,r]n)t=1,...,m, r=1,...,k,k+2,...,m+1

det(fn−i−j)i,j=0,1,...,m−1

=
m∑
k=0

(−1)m+kzk
det(Kr(τt))t,r=1,...,m det(Lr(τt))t=1,...,m, r=1,...,k,k+2,...,m+1

W 2(τ1, τ2, . . . , τm)

=
det(Kr(τt))r,t=1,2,...,m

W 2(τ1, τ2, . . . , τm)

∣∣∣∣∣∣∣∣∣∣∣∣

1 Ψ(τ1) · · · Ψm(τ1)
...

...
...

...

1 Ψ(τm) · · · Ψm(τm)

1 z · · · zm

∣∣∣∣∣∣∣∣∣∣∣∣
(II.65)

=(−1)(m)(m−1)/2

∏m
i=1 h(τi)∏m
i=1 τ

m
i

∏
1≤i<j≤m

(
Ψ(τj)−Ψ(τi)

τj − τi

)
zm + . . . , (II.66)

where W (τ1, τ2, . . . , τm) = det(τ r−1
t )t,r=1,...,m is the Vandermonde determinant of the num-

bers τ1, . . . , τm. Since the degree of the polynomial in the last expression is m, the de-

gree of Q̃n,m(z) is m for all n sufficiently large. This implies that ∆n,m(F, µ) 6= 0 and

Qµ
n,m(z) = Q̃n,m(z)/(∆n,m(F, µ)

∏m
j=1 cn+j). Moreover, the zeros of the polynomial in (II.65)

are λ1, . . . , λm, so the zeros of Q̃n,m(z) (and Qµ
n,m(z)) converge to λ1, . . . , λm, as n→∞.
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CHAPTER III

RIESZ POLARIZATION CONSTANTS AND CONFIGURATIONS

III.1 Introduction, background results, and notation

Throughout this chapter, A will denote an infinite compact subset of the m-dimensional

Euclidean space Rm. Let ωN = {x1, . . . , xN} denote a configuration of N (not necessarily

distinct) points in Rm (such configurations are known as multisets, however, we will still use

the word configurations). The class of Riesz s-potential functions and log-potential function

corresponding to a fixed configuration ωN = {x1, . . . , xN} ⊂ Rm is defined by

U s(ωN ; y) :=


∑N

i=1 |y − xi|−s, if s ∈ R \ {0},

N, if s = 0,∑N
i=1 log |y − xi|−1, if s = log,

where y ∈ Rm and | · | is the Euclidean norm in Rm.

For a configuration ωN = {x1, . . . , xN} ⊂ A, we define the following quantities

M s(ωN ;A) := min
y∈A

U s(ωN ; y), s ∈ R, (III.1)

ms(ωN ;A) := max
y∈A

U s(ωN ; y), s ≤ 0, (III.2)

M log(ωN ;A) := min
y∈A

U log(ωN ; y). (III.3)

For a fixed configuration ωN ⊂ A, since the potential functions f(y) := U s(ωN ; y), s > 0

and g(y) := U log(ωN ; y) are lower semi-continuous in y on A and A is an infinite compact set,

the functions f(y) and g(y) attain their minimums on A. Moreover, for a fixed configuration

ωN ⊂ A, the potential function h(y) := U s(ωN ; y), s ≤ 0 is continuous in y on A, so by the

compactness of A, the function h(y) attains its maximum and minimum on A. Therefore,

the maximum and the minimums in (III.1), (III.2), and (III.3) are well-defined.

Let #W denote the cardinality of the multiset W. The definitions of the maximal and
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minimal N -point Riesz s-polarization constants and configurations of A and the maximal

N -point log-polarization constant and configurations of A are the following.

Definition III.1.1. Let A be an infinite compact subset of the m-dimensional Euclidean

space Rm. For s ∈ R, the maximal N-point Riesz s-polarization constant of A is given by

M s
N(A) := max

ωN⊂A
#ωN=N

M s(ωN ;A), and M0
N(A) := N, (III.4)

for s ≤ 0, the minimal N-point Riesz s-polarization constant of A is given by

ms
N(A) := min

ωN⊂A
#ωN=N

ms(ωN ;A), and m0
N(A) := N, (III.5)

and the maximal N-point log-polarization constant of A is given by

M log
N (A) := max

ωN⊂A
#ωN=N

M log(ωN ;A). (III.6)

We say that a configuration ωN is a maximal N-point Riesz s-polarization configuration of

A, a minimal N-point Riesz s-polarization configuration of A, or a maximal N-point log-

polarization configuration of A, if it attains the maximum in (III.4), the minimum in (III.5),

or the maximum in (III.6), respectively. For short, sometimes, those configurations are

simply called optimal for M s
N(A), ms

N(A), or M log
N (A), respectively.

The existences of optimal configurations in (III.4), (III.5), and (III.6) follow from the

continuities of the functions f(xN) := M s(xN ;A), s ≤ 0 and g(xN) := ms(xN ;A), s ≤ 0 in

xN on AN and the upper semi-continuities of the functions h(xN) := M s(xN ;A), s > 0, and

k(xN) := M log(xN ;A) in xN on AN (see Lemma III.3.1).

For a configuration ωN = {x1, . . . , xN}, its covering distance relative to A is defined by

ρ(ωN ;A) := max
y∈A

min
1≤j≤N

|y − xj|.
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The N-point best-covering distance (or N-point mesh norm) of A is defined by

ρN(A) := min
ωN⊂A

#ωN=N

ρ(ωN ;A). (III.7)

We call an N -point configuration ωN an N-point best-covering configuration of A if it attains

the minimum in (III.7).

In order to state our results in Section III.2.1 about asymptotic properties for N fixed and

s varying of optimal Riesz polarization configurations, we need to introduce the following

definition of cluster point.

Definition III.1.2. We say that a configuration ωN ⊂ A with #ωN = N is a cluster point

as s → t of maximal (minimal) N-point Riesz s-polarization configurations of A if there is

a sequence {ωskN }∞k=1 of maximal (minimal) N -point Riesz sk-polarization configurations on

A such that limk→∞ sk = t, and limk→∞ ω
sk
N = ωN in the product topology on AN .

Our main result in Section III.2.2 about the dominant term of Md
N(A) and the limiting

distribution of maximal N -point Riesz d-polarization configurations will be stated on subsets

of the following d-dimensional C1-manifolds in Rm.

Definition III.1.3. A set W ⊂ Rm is called a d-dimensional C1-manifold embedded in

Rm, d ≤ m, if every point y ∈ W has an open neighborhood V relative to W such that

V is homeomorphic to an open set U ⊂ Rd with the homeomorphism f : U → V being a

C1-continuous mapping and the Jacobian matrix

Jfx :=


∇f1(x)

. . .

∇fm(x)


of the function f having rank d at any point x ∈ U (here f1, . . . , fm denote the coordinate

mappings of f).

Hausdorff measures defined as follows will play a significant role in the study of these
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asymptotic behaviors. For a given set A ⊂ Rm and 0 ≤ α ≤ m, define the quantity

H̃δ
α(A) := inf{

∞∑
i=1

(diam(Ei))
α : A ⊂ ∪∞i=1Ei, diam(Ei) ≤ δ}, δ > 0,

where Ei are arbitrary non-empty subsets of Rm. Define a set function H̃α : {A : A ⊂ Rm} →

[0,∞] by

H̃α(A) := lim
δ→0+

H̃δ
α(A) = sup

δ>0
H̃δ
α(A).

We call H̃α the α-dimensional Hausdorff measure in Rm. For d ∈ N, we denote by Hd the

d-dimensional Hausdorff measure in Rm normalized so that the copy of the d-dimensional

unit cube embedded in Rm has measure 1. Moreover, we will denote by βd = Hd(Bd) the

volume of the d-dimensional unit ball.

For a subset K ⊂ A, we will denote by ∂AK the boundary of K relative to A.

We say that a sequence {µn}∞n=1 of Borel probability measures in Rm converges to a Borel

probability measure µ in the weak∗ topology of measures (and write µn
∗−→ µ, n → ∞) if

for every continuous function f : Rm → R,

∫
f dµn →

∫
f dµ, n→∞. (III.8)

Remark III.1.4. It is well known that to prove (III.8) when µ and all the measures µn are

supported on a compact set A ⊂ Rm, it is sufficient to show that

µn(K)→ µ(K), n→∞,

for every closed subset K of A with µ(∂AK) = 0.

We call a sequence {ωN}∞N=1 of N -point configurations on A asymptotically maximal for

the N-point d-polarization problem on A if

lim
N→∞

Md(ωN ;A)

Md
N(A)

= 1.

The polarization problem is related to the minimal Riesz energy problem described below.
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For a collection ωN = {x1, . . . , xN} of N ≥ 2 pairwise distinct points in Rm and s > 0 we let

Es(ωN) :=
∑

1≤i 6=j≤N

1

|xi − xj|s
.

The minimal N-point Riesz s-energy of an infinite compact set A ⊂ Rm is defined as

Es(A,N) := min
ωN⊂A

#ωN=N

Es(ωN).

D.P. Hardin and E.B. Saff proved in [34] (see also [33]) that if A is an infinite compact

subset of a d-dimensional C1-manifold embedded in Rm, then

lim
N→∞

Ed(A,N)

N2 lnN
=

βd
Hd(A)

. (III.9)

Furthermore, if A is as in above condition and Hd(A) > 0, then for any sequence ωN =

{xk,N}Nk=1, N ∈ N, of asymptotically d-energy minimizing N -point configurations in A in the

sense that

lim
N→∞

Ed(ωN)

Ed(A,N)
= 1,

we have
1

N

N∑
i=1

δxi,N
∗−→ Hd(·)|A
Hd(A)

, N →∞, (III.10)

in the weak∗ topology of measures. Here δx denotes the unit point mass at the point x.

Relations (III.9) and (III.10) have recently been extended by D.P. Hardin, E.B. Saff,

and J.T. Whitehouse to the case of A being a finite union of compact subsets of Rm where

each compact set is contained in some d-dimensional C1-manifold in Rm and the pairwise

intersections of such compact sets have Hd-measure zero. These authors observed that

the methods of [40] could be applied (see [9]). For convenience of the reader, part of this

statement and its proof are reproduced in this dissertation in Proposition III.3.13.
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III.2 Main results

III.2.1 Basic properties of maximal and minimal Riesz polarization constants

and configurations

Theorem III.2.1. Let N ∈ N be fixed and A be an infinite compact subset of Rm. We have

lim
s→∞

M s
N(A)1/s =

1

ρN(A)
,

where ρN(A) is the N-point best-covering distance of A. Furthermore, every cluster point

as s → ∞ of maximal N-point Riesz s-polarization configurations of A is an N-point best-

covering configuration of A.

Theorem III.2.2. Let N ∈ N be fixed and A be an infinite compact subset of Rm. We have

M log
N (A) = lim

s→0+

M s
N(A)−N

s
. (III.11)

Furthermore, every cluster point as s→ 0+ of maximal N-point Riesz s-polarization config-

urations of A is a maximal N-point log-polarization configuration of A.

Remark III.2.3. The equality (III.11) shows that f(s) := M s
N(A) is right differentiable at

0 and its right derivative is M log
N (A).

Theorem III.2.4. Let N ∈ N be fixed and A be an infinite compact subset of Rm. The

function f(s) := M s
N(A) is continuous for all s ∈ (−∞, 0) ∪ (0,∞). More precisely, the

function f(s) is right-continuous but not left-continuous at 0. The function g(s) := ms
N(A)

is continuous for all s ∈ (−∞, 0]. Furthermore, for t ∈ (−∞,∞), every cluster point as

s → t of maximal N-point Riesz s-polarization configurations of A is a maximal N-point

Riesz t-polarization configuration of A, and for t ∈ (−∞, 0], every cluster point as s → t

of minimal N-point Riesz s-polarization configurations of A is a minimal N-point Riesz

t-polarization configuration of A.
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III.2.2 Asymptotics of maximal Riesz d-polarization on subsets of d-dimensional

manifolds

Our main result about the dominant term of Md
N(A) and the limiting distribution of maximal

N -point Riesz d-polarization configurations as N →∞ is the following.

Theorem III.2.5. Let A = ∪li=1Ai be an infinite subset of Rm, where each set Ai is a

compact subset contained in some d-dimensional C1-manifold in Rm, d ≤ m, and Hd(Ai ∩

Aj) = 0, 1 ≤ i < j ≤ l. Then

lim
N→∞

Md
N(A)

N lnN
=

βd
Hd(A)

. (III.12)

Furthermore, under an additional assumption that Hd(A) > 0, if ωN = {xi,N}Ni=1, N ∈ N, is

a sequence of asymptotically maximal configurations for the N-point d-polarization problem

on A, then in the weak∗ topology of measures we have

1

N

N∑
i=1

δxi,N
∗−→ Hd(·)|A
Hd(A)

, N →∞. (III.13)

Remark III.2.6. Note that the conditions imposed on the set A imply Hd(A) <∞. More-

over, if Hd(A) = 0, then the limit in (III.12) is understood to be ∞.

III.2.3 Maximal and minimal N-point Riesz s-polarization configurations of the

m-dimensional sphere

Two 1-dimensional circles in different planes

Let ωN = {x1, . . . , xN} denote N (not necessarily distinct) points in R2. Let R > 0. Denote

by

S1
R := {x ∈ R2 : |x| = R}

the circle centered at 0 of radius R in R2. When R = 1, we simply use the notation S1.

We consider the generalization of Riesz polarization constants and configurations of two
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concentric circles in the following way. For s ∈ R and h ≥ 0,

M s,h
N (S1;S1

R) := max
ωN⊂S1

#ωN=N

min
y∈S1R

N∑
j=1

(√
|y − xj|2 + h

)−s
, and M0,h

N (S1;S1
R) := N, (III.14)

and

ms,h
N (S1;S1

R) := min
ωN⊂S1

#ωN=N

max
y∈S1R

N∑
j=1

(√
|y − xj|2 + h

)−s
, and m0,h

N (S1;S1
R) := N. (III.15)

We will call ωN a maximal (minimal) N-point Riesz (s, h)-polarization configuration of

(S1; S1
R) if ωN attains the maximum in (III.14) (minimum in (III.15)). Clearly, if R = 1

and h = 0, then M s,h
N (S1;S1

R) = M s
N(S1) and ms,h

N (S1;S1
R) = ms

N(S1). The term h of the

potential function
∑N

j=1

(√
|y − xj|2 + h

)−s
in (III.14) and (III.15) can be interpreted as

follows. Let us consider two circles in 3D: one is S1 × {0} and the other is S1
R × {

√
h}.

The potential function f(y) :=
∑N

j=1

(√
|y − xj|2 + h

)−s
is actually the Riesz s-potential

function on S1
R × {

√
h} when ωN := {x1, . . . , xN} is fixed on S1 × {0}.

Because the Euclidean space R2 and the complex space C have the same dimension and

the same norm, we will embed S1 and S1
R into C and adopt the notation xj, where j ∈ N

and 1/x from complex numbers.

A complete characterization of all maximal and minimal N -point Riesz (s, h)-polarization

configurations of (S1;S1
R) when s = −2, . . . ,−2N + 2 is the following.

Theorem III.2.7. Let N ∈ N, p ∈ {1, 2, . . . , N − 1}, R > 0, and h ≥ 0. We have

M−2p,h
N (S1;S1

R) = m−2p,h
N (S1;S1

R) =
N

2p

p∑
j=0

(
p

j

)2

b2j
(
a±
√
a2 − b2

)p−2j

,

where a := R2+h+1 and b := 2R. Furthermore, an N-point configuration ωN = {x1, . . . , xN}

is a maximal or minimal N-point Riesz (−2p, h)-polarization configuration of (S1;S1
R) if and

only if
∑N

i=1 xi =
∑N

i=1 x
2
i = · · · =

∑N
i=1 x

p
i = 0.

Letting R = 1 and h = 0, we have the following corollary.
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Corollary III.2.8. Let N ∈ N and p ∈ {1, 2, . . . , N − 1}. We have

M−2p
N (S1) = m−2p

N (S1) = N

p∑
j=0

(
p

j

)2

R2p−2j.

Furthermore, an N-point configuration ωN = {x1, . . . , xN} is a maximal or minimal N-

point Riesz −2p-polarization configuration of S1 if and only if
∑N

i=1 xi =
∑N

i=1 x
2
i = · · · =∑N

i=1 x
p
i = 0.

The m-dimensional spheres

We will examine optimal configurations for M s
N(Sm) and ms

N(Sm), where

Sm := {x ∈ Rm+1 : |x| = 1},

for some negative even integers.

The simplest case is when s = −2.

Theorem III.2.9. Let N ∈ N. Then

M−2
N (Sm) = m−2

N (Sm) = 2N.

Moreover, an N-point configuration ωN = {x1, . . . , xN} is optimal for M−2
N (Sm) or m−2

N (Sm)

if and only if
∑N

j=1 xj = 0.

The next result shows that if ωN is anN -point configuration on Sm such that its associated

Riesz s-potential function is constant on Sm, then ωN is optimal for M s
N(Sm) and ms

N(Sm).

Theorem III.2.10. Let s ≤ 0. Assume that there exists an N-point configuration ωN :=

{x1, . . . , xN} on Sm such that its Riesz potential function f(y) := U s(ωN ; y) =
∑N

i=1 |xi−y|−s

is constant on Sm. Then, such ωN is optimal for M s
N(Sm) and ms

N(Sm).

As a consequence of this theorem and the results in [42, Theorem 3-5], we show that

many natural configurations on Sm are optimal for M s
N(Sm) and ms

N(Sm) for some certain

negative even integers s and certain positive integer m.
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Corollary III.2.11. Let N ∈ N. We have the following:

(i) Any N + 2-point regular simplex configuration on SN is optimal for M−4
N+2(SN) and

m−4
N+2(SN).

(ii) Any 2N+2-point cross-polytope configuration on SN is optimal for M−4
2N+2(SN), M−6

2N+2(SN),

m−4
2N+2(SN), and m−6

2N+2(SN).

(iii) Any 2N+1-point hypercube configuration on SN is optimal for M−4
2N+1(SN), M−6

2N+1(SN),

m−4
2N+1(SN), and m−6

2N+1(SN).

Remark III.2.12. For those values s and those configurations, their associated Riesz s-

potential functions are constant on SN .

III.3 Proofs

III.3.1 Proofs of III.2.1

Lemma III.3.1. For a fixed vector xN ∈ AN , the functions f(y) := U s(xN ; y), s > 0

and g(y) := U log(xN ; y) are lower semi-continuous on A. Moreover, the functions h(xN) :=

M s(xN ;A), s > 0 and k(xN) := M log(xN ;A) are upper semi-continuous on AN .

Proof of Lemma IV.1.1. For a fixed vector xN ∈ AN , the lower semi-continuities of U s(xN ; y),

s > 0 and U log(xN ; y) as functions of y on A are well-known. We prove only the second state-

ment. Let s > 0 and x′N := (x′1, . . . , x
′
N) ∈ AN and let {xkN}k∈N be a sequence in AN such

that xkN → x′N , as k →∞. Because f(y) := U s(x′N ; y) is lower semi-continuous on A, there

exists y0 ∈ A such that

U s(x′N ; y0) = M s(x′N ;A).

Notice that |y0−x′i| > 0 for all i since the cardinality of A is infinity. Therefore, the function

h(xN) := U s(xN ; y0) is continuous in a small neighborhood of x′N . Hence,

lim sup
k→∞

M s(xkN ;A) ≤ lim sup
k→∞

U s(xkN ; y0) = lim
k→∞

U s(xkN ; y0) = M s(x′N ;A).

The same argument can be applied to the case s = log.
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Lemma III.3.2. For a fixed vector (x1, . . . , xN) ∈ AN , the function f(y) := min1≤j≤N |y−xj|

is continuous on A. Moreover, the function g(xN) := ρ(xN ;A) is continuous in xN on AN .

Proof. The proof of this lemma is trivial.

Proof of Theorem III.2.1. Let s > 0. Clearly, for y /∈ {x1, . . . , xN},

1

min1≤j≤N |y − xj|
≤

(
N∑
j=1

1

|y − xj|s

)1/s

≤ N1/s

min1≤j≤N |y − xj|
. (III.16)

By Lemma III.3.1 and Lemma III.3.2, since the function h(t) := t1/s is increasing and

continuous on [0,∞), we have

1

ρN(A)
≤M s

N(A)1/s = max
ωN⊂A

#ωN=N

min
y∈A

(
N∑
j=1

1

|y − xj|s

)1/s

≤ N1/s

ρN(A)
. (III.17)

This implies that

lim
s→∞

M s
N(A)1/s =

1

ρN(A)
.

Let {ωskN }k∈N := {{xsk1 , . . . , x
sk
N }}k∈N be a sequence of maximalN -point Riesz sk-polarization

configurations of A such that sk → ∞ and ωskN → ω∗N := {x∗1, . . . , x∗N}, as k → ∞. Let

ωN = {x1, . . . , xN} be any N−point configuration on A. Using (III.16) and the fact that

h(t) := t1/s is continuous and increasing on [0,∞), we obtain

1

ρ(ωN ;A)
≤

(
min
y∈A

N∑
j=1

1

|y − xj|sk

)1/sk

≤

(
min
y∈A

N∑
j=1

1

|y − xskj |sk

)1/sk

≤ N1/sk

ρ(ωskN ;A)
.

Now, let k →∞, it follows from the continuity of the function ρ(ωN , A) that

1

ρ(ωN ;A)
≤ 1

ρ(ω∗N ;A)
, for all ωN ⊂ A.

Therefore, ρN(A) = ρ(ω∗N ;A).
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Before we prove Theorem III.2.2, we need to state some lemmas. For s > 0, we define

U s,log(ωN ; y) :=
N∑
i=1

1

|y − xi|s
log

1

|y − xi|
,

where ωN := {x1, . . . , xN}.

Lemma III.3.3. Let ωN := {x1, . . . , xN} be an N−point configuration on A and y be a

point in A such that min1≤i≤N |y − xi| > 0. Then, for s > t ≥ 0,

U t,log(ωN ; y) ≤ U s(ωN ; y)− U t(ωN ; y)

s− t
≤ U s,log(ωN ; y).

Proof of Lemma III.3.3. The lemma follows from the inequalities

at log a ≤ as − at

s− t
≤ as log a, s > t ≥ 0, a > 0. (III.18)

Lemma III.3.4. Let ωN := {x1, . . . , xN} be an N−point configuration on A and y be a

point in A such that min1≤i≤N |y − xi| > 0. Then,

U log(ωN ; y) = lim
s→0+

U s(ωN ; y)−N
s

.

Proof of Lemma III.3.4. This immediately follows from Lemma III.3.3.

Proof of Theorem III.2.2. Let ωlog
N be a maximal N -point log-polarization configuration

of A and ys be a point in A such that

U s(ωlog
N ; ys) = M s(ωlog

N ;A).

Using Lemma III.3.3 for s > t = 0, we have

M log(ωlog
N ;A) ≤ U log(ωlog

N ; ys) ≤ U s(ωlog
N ; ys)−N
s

=
M s(ωlog

N ;A)−N
s

≤ M s
N(A)−N

s
,

53



which implies

lim inf
s→0+

M s
N(A)−N

s
≥M log

N (A). (III.19)

Let ω′N := {x′1, . . . , x′N} be a cluster point as s → 0+ of maximal N -point Riesz s-

polarization configurations ωsN := {xs1, . . . , xsN} of A and y0 be a point in A such that

U log(ω′N ; y0) = M log(ω′N ;A).

Then there is a sequence {ωskN }∞k=1 such that sk → 0+ and ωskN → ω′N , as k →∞. So, we have

M log(ω′N ;A) = U log(ω′N ; y0) = lim
k→∞

U sk(ω′N ; y0)−N
sk

= lim
k→∞

(
U sk(ωskN ; y0)−N

sk
+
U sk(ω′N ; y0)− U sk(ωskN ; y0)

sk

)
≥ lim sup

k→∞

(
M sk(ωskN ;A)−N

sk
+
U sk(ω′N ; y0)− U sk(ωskN ; y0)

sk

)
, (III.20)

which the second equality follows from Lemma III.3.4. If we can show that

lim
k→∞

U sk(ω′N ; y0)− U sk(ωskN ; y0)

sk
= 0, (III.21)

then it follows from (III.20) that

M log(ω′N ;A) ≥ lim sup
k→∞

M sk
N (A)−N

sk
. (III.22)

Combining (III.19) and (III.22), we have

M log(ω′N ;A) ≥M log
N (A).

This implies

lim
k→∞

M sk
N (A)−N

sk
= M log(ω′N ;A) = M log

N (A)

and ω′N is optimal for M log
N (A).
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Now, we prove (III.21). We consider

∣∣∣∣U sk(ωskN ; y0)− U sk(ω′N ; y0)

sk

∣∣∣∣ =

∣∣∣∣∣
∑N

i=1 |y0 − xski |−sk −
∑N

i=1 |y0 − x′i|−sk
sk

∣∣∣∣∣
=

∣∣∣∣∣
N∑
i=1

|y0 − xski |−sk − |y0 − x′i|−sk
sk

∣∣∣∣∣ ≤
N∑
i=1

1

|y0 − x′i|sk

∣∣∣∣(|y0 − x′i|/|y0 − xski |)
sk − 1

sk

∣∣∣∣ .
(III.23)

By (III.18), for i = 1, . . . , N,

∣∣∣∣(|y0 − x′i|/|y0 − xski |)
sk − 1

sk

∣∣∣∣ ≤ max

{
1,

∣∣∣∣ y0 − x′i
y0 − xski

∣∣∣∣sk} ∣∣∣∣log

∣∣∣∣ y0 − x′i
y0 − xski

∣∣∣∣∣∣∣∣ ≤ 2sk
∣∣∣∣log

∣∣∣∣ y0 − x′i
y0 − xski

∣∣∣∣∣∣∣∣→ 0,

as k →∞. By this and (III.23), we obtain

lim
k→∞

U sk(ωskN ; y0)− U sk(ω′N ; y0)

sk
= 0.

Next, we will show (III.11). Let {sk}k∈N be a sequence of positive numbers such that

sk → 0, as k → ∞. Denote by ωskN a corresponding maximal N -point Riesz sk-polarization

configuration of A. By compactness of AN , there exists a convergent subsequence {ωsklN }l∈N ⊂

{ωskN }k∈N, say ω
skl
N → ω′N , as l→∞. Using above argument, we obtain

lim
l→∞

M skl (ω
skl
N ;A)−N
skl

= M log(ω′N ;A) = M log
N (A).

This means for every sequence {(M sk
N (A)−N)/sk}k∈N such that sk → 0+, as k →∞, there

exists a subsequence {
M

skl
N (A)−N

skl

}
l∈N

⊂
{
M sk

N (A)−N
sk

}
k∈N

such that

lim
l→∞

M
skl
N (A)−N

skl
= M log

N (A).

Hence, we prove (III.11).
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To show Theorem III.2.4, we need the following three lemmas.

Lemma III.3.5. Let t > 0. Assume that

sk → t, as k →∞,

ωkN := {xk1, . . . , xkN} → ωN := {x1, . . . , xN}, as k →∞,

yk → y, as k →∞,

U t(ωN ; y) <∞,

and |U sk,log(ωkN ; yk)| and |U t,log(ωkN ; yk)| are uniformly bounded for k sufficiently large. Then,

lim
k→∞

U sk(ωkN ; yk) = U t(ωN ; y).

Proof of Lemma III.3.5. Assume that

max{|U sk,log(ωkN ; yk)|, |U t,log(ωkN ; yk)|} ≤M <∞, for all k ≥ n0.

By Lemma III.3.3,

|U sk(ωkN ; yk)− U t(ωN ; y)| ≤ |U sk(ωkN ; yk)− U t(ωkN ; yk)|+ |U t(ωkN ; yk)− U t(ωN ; y)|

≤ |sk − t|max{|U sk,log(ωkN ; yk)|, |U t,log(ωkN ; yk)|}+ |U t(ωkN ; yk)− U t(ωN ; y)|

≤ |sk − t|M + |U t(ωkN ; yk)− U t(ωN ; y)|.

Then,

lim
k→∞

U sk(ωkN ; yk) = U t(ωN ; y).
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Lemma III.3.6. Let t > 0. Every cluster point as s → t of maximal N-point Riesz s-

polarization configurations is a maximal N-point Riesz t-polarization configuration.

Proof of Lemma III.3.6. Let ω∗N := {x∗1, . . . , x∗N} be a cluster point as s → t of maximal

N -point Riesz s-polarization configurations of A. This implies that there exists a sequence

{ωskN }k∈N of maximal N -point Riesz sk-polarization configurations of A such that sk → t

and ωskN → ω∗N , as k → ∞. Let ωN := {x1, . . . , xN} be any configuration on A. Denote by

ysk ∈ A a point such that

U sk(ωskN ; ysk) = M sk
N (A)

and by y′sk ∈ A a point such that

U sk(ωN ; y′sk) = M sk(ωN ;A).

By compactness of A, we can find convergent subsequences of {ysk}k∈N and {y′sk}k∈N. To

avoid complicated indexes, we will assume that

ysk → ŷ and y′sk → ˆ̂y, as k →∞.

We claim that

lim
k→∞

M sk(ωN ;A) = U t(ωN ; ˆ̂y) = M t(ωN ;A) (III.24)

and

lim
k→∞

M sk(ωskN ;A) = U t(ω∗N ; ŷ) = M t(ω∗N ;A). (III.25)

If we prove (III.24) for all N -point configurations ωN ⊂ A and (III.25), then we will have

for all N -point configurations ωN ⊂ A,

M t(ω∗N ;A) = lim
k→∞

M sk(ωskN ;A) ≥ lim
k→∞

M sk(ωN ;A) = M t(ωN ;A),

which implies M t(ω∗N ;A) = M t
N(A) and the proof will be complete.

Now, we show the claims. Note that we will show only (III.25). The same proof can be
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applied to (III.24). To show the first equality in (III.25), by Lemma III.3.5, we need to show

that |U sk,log(ωskN ; ysk)| and |U t,log(ωskN ; ysk)| are uniformly bounded for k sufficiently large.

Let ε > 0 be a small number that t−ε > 0. For 0 < t−ε ≤ sk < t+1 and for i = 1, . . . , N,

we have

min

{
1

|ysk − xski |t−ε
,

1

|ysk − xski |t+1

}
≤ 1

|ysk − xski |sk
≤M sk(ωskN ;A)

≤ N

ρN(A)sk
≤ N max

{
1

ρN(A)t−ε
,

1

ρN(A)t+1

}
<∞, (III.26)

where the third inequality follows from (III.17). Since A is infinite, ρN(A) > 0. So, there

exists M > 0 such that

diam(A) ≥ |ysk − xski | ≥M > 0, k ∈ N, i = 1, . . . , N.

Therefore, |U sk,log(ωskN ; ysk)| and |U t,log(ωskN ; ysk)| are uniformly bounded for all k. Hence, we

prove

lim
k→∞

M sk(ωskN ;A) = U t(ω∗N ; ŷ). (III.27)

Now, we prove the second equality in (III.25), i.e.

U t(ω∗N ; ŷ) ≤ U t(ω∗N ; y), for all y ∈ A.

Let y ∈ A be such that U t(ω∗N ; y) < ∞ (otherwise the inequality is clear). Since ωskN → ω∗N

as k →∞, we will consider only large k such that |xski −x∗i | ≤ |y−x∗i |/2 for all i. Therefore,

diam(A) ≥ |y − xski | ≥ |y − x∗i | − |x
sk
i − x∗i | ≥

|y − x∗i |
2

≥ min
1≤i≤N

|y − x∗i |
2

= My > 0,

and |U sk,log(ωskN ; y)| and |U t,log(ωskN ; y)| are uniformly bounded for k sufficiently large. Using

Lemma III.3.3 and the equality (III.27), we have

U t(ω∗N ; ŷ) = lim
k→∞

U sk(ωskN ; ysk) ≤ lim
k→∞

U sk(ωskN ; y) = U t(ω∗N ; y).
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This proves the second equality in (III.25). Then the proof is complete.

Lemma III.3.7. Let t ≤ 0. Every cluster point as s → t of maximal (minimal) N-point

Riesz s-polarization configurations is a maximal (minimal) N-point Riesz t-polarization con-

figuration.

Proof of Lemma III.3.7. In this case, the Riesz t-potential function f(y) := U t(ωN ; y) is

nicely continuous on A. It is easy to show Lemma III.3.5 for t ≤ 0 without the uniform

boundedness conditions on |U sk,log(ωkN ; yk)| and |U t,log(ωkN ; yk)| for k sufficiently large. More-

over, the proof of this case can be processed by the same argument as the proof of Lemma

III.3.6. So, we leave the details for the reader.

Proof of Theorem III.2.4. We will omit the proofs of the continuity of M t
N(A) and

mt
N(A) for t ∈ (−∞, 0), because their proofs are exactly the same as the proof of the

continuity of M t
N(A) for t ∈ (0,∞).

Now, we will show that M t
N(A) is continuous as a function of t for all t ∈ [0,∞). Recall

that Theorem III.2.2 shows that M t
N(A) is right differentiable at 0, so M t

N(A) is right-

continuous at 0. Let t > 0. We want to show that for every sequence {M sk
N (A)}k∈N such that

sk → t, as k →∞, there exists a subsequence of {M sk
N (A)}k∈N that converges to M t

N(A). Let

{ωskN }k∈N be a sequence of maximal N -point Riesz sk-polarization configurations of A. By

the compactness of AN , there exists a subsequence {ωsk′N }k′ ⊂ {ω
sk
N }k such that ω

sk′
N → ω∗N

as k′ →∞ for some ω∗N ⊂ A. The proof of Lemma III.3.6 actually shows that we can extract

a subsequence {ωsk′′N }k′′ ⊂ {ω
sk′
N }k′ such that

lim
k′′→∞

M
sk′′
N (A) = M t

N(A).

This proves the continuity of M t
N(A) for t > 0.

Next, we prove that M t
N(A) is not left-continuous at 0. Let ωsN := {xs1, . . . , xsN} denote a

maximal N -point Riesz s-polarization configuration of A and let ys := xs1. Then,

lim sup
s→0−

M s
N(A) ≤ lim sup

s→0−

N∑
i=1

|xsi − ys|−s ≤ lim
s→0−

N−1∑
i=1

diam(A)−s = N − 1 < N. (III.28)
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Therefore, M t
N(A) is not left-continuous at 0.

Finally, we prove that mt
N(A) is left-continuous at 0. Since the function ρ(xN ;A) is

continuous on AN , AN is compact, and ρ(xN ;A) > 0 for all xN ∈ AN , there exists a

constant C > 0 such that

ρ(ωN ;A) ≥ C > 0,

for all N -point configurations ωN ⊂ A. Let ωsN := {xs1, . . . , xsN} be a minimal N -point Riesz

s-polarization configuration of A and y′s be a point in A such that

min
1≤j≤N

|y′s − xsj| = ρ(ωsN ;A).

Then,

N = lim
s→0−

NC−s ≤ lim inf
s→0−

N∑
i=1

|y′s − xsi |−s ≤ lim inf
s→0−

ms
N(A)

≤ lim sup
s→0−

ms
N(A) ≤ lim

s→0−

N∑
i=1

diam(A)−s = N.

Hence, the function mt
N(A) is left-continuous at 0.

III.3.2 Proofs of III.2.2

Upper estimate

For a compact set A ⊂ Rm, define the quantity

αd(A; ε) := sup
0<r≤ε

sup
x∈A

Hd(B(x, r) ∩ A)

βdrd
. (III.29)

Let also

hd(A) := lim inf
N→∞

Md
N(A)

N lnN
and hd(A) := lim sup

N→∞

Md
N(A)

N lnN
.

The main lemma of this section is given below.
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Lemma III.3.8. Let d,m ∈ N, d ≤ m, and A ⊂ Rm be a compact set with 0 < Hd(A) <∞,

containing a closed subset B of zero Hd-measure such that every compact subset K ⊂ A \B

satisfies

lim
ε→0+

αd(K; ε) ≤ 1. (III.30)

Then

hd(A) ≤ βd
Hd(A)

. (III.31)

If an equality holds in (III.31), then any infinite sequence ωN = {xk,N}Nk=1, N ∈ N ⊂ N, of

configurations on A such that

lim
N→∞
N∈N

Md(ωN ;A)

N lnN
=

βd
Hd(A)

(III.32)

satisfies

1

N

N∑
i=1

δxi,N
∗−→ Hd(·)|A
Hd(A)

, N 3 N →∞. (III.33)

We precede the proof of Lemma III.3.8 with the following auxiliary statements.

Lemma III.3.9. Let 0 < R ≤ r, D ⊂ Rm be a compact set with Hd(D) <∞, d ∈ N, d ≤ m,

and y ∈ D. Then

∫
D\B(y,R)

dHd(x)

|x− y|d
≤ r−dHd(D) + βdαd(D; r) ln

( r
R

)d
.

Proof of Lemma III.3.9. We have

∫
D\B(y,R)

dHd(x)

|x− y|d
=

∫ ∞
0

Hd{x ∈ D \B(y,R) : |x− y|−d > t}dt

=

∫ ∞
0

Hd{x ∈ D \B(y,R) : t−1/d > |x− y|}dt

≤
∫ R−d

0

Hd(B(y, t−1/d) ∩D)dt

≤ r−dHd(D) +

∫ R−d

r−d
Hd(B(y, t−1/d) ∩D)dt
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≤ r−dHd(D) + βd

∫ R−d

r−d
αd(D; r)t−1dt

= r−dHd(D) + βdαd(D; r) ln
( r
R

)d
,

which completes the proof.

Lemma III.3.10. Let d,m ∈ N, d ≤ m, and A ⊂ Rm be a compact set with 0 < Hd(A) <∞,

containing a closed subset B of zero Hd-measure such that every compact subset of the set

A \ B satisfies (III.30). Then for any infinite sequence {ωN}N∈N , N ⊂ N, of N-point

configurations on the set A, the inequality

Hd(K)

βd
· lim inf

N→∞
N∈N

Md(ωN ;A)

N lnN
≤ lim inf

N→∞
N∈N

#(ωN ∩K)

N
(III.34)

holds for any compact subset K ⊂ A with Hd(K) > 0 and Hd(∂AK) = 0.

Proof of Lemma III.3.10. Without loss of generality, we can assume that B 6= ∅ since in the

case B = ∅ we can also use as B any non-empty compact subset of A with Hd(B) = 0.

Let x1,N , . . . , xN,N be the points in the configuration ωN , N ∈ N , and let K ⊂ A be any

compact subset of positive Hd-measure such that Hd(∂AK) = 0. Denote

Kρ := {x ∈ K : dist(x,B ∪ ∂AK) ≥ ρ}, ρ > 0.

Choose an arbitrary number ρ > 0 such that Hd(K2ρ) > 0. Let r > 0 be any number such

that 2βdr
d < Hd(K2ρ). For each j = 1, . . . , N , define the set

Dj,N := K2ρ \B(xj,N , rN
−1/d) and let DN :=

N⋂
j=1

Dj,N .

Notice that dist(K2ρ, K \Kρ) ≥ ρ > 0. Furthermore, dist(K2ρ, A \K) > 0. Indeed, if there

were sequences {xn} in K2ρ and {yn} in A \ K such that |xn − yn| → 0, n → ∞, then by

compactness of K2ρ and A there would exist subsequences {xnk} and {ynk} having the same

limit z ∈ K2ρ. Since {ynk} ⊂ A \K the point z must belong to ∂AK, which contradicts to
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the definition of the set K2ρ. Thus, we have

h := dist(K2ρ, A \Kρ) = min{dist(K2ρ, K \Kρ), dist(K2ρ, A \K)} > 0.

Choose N ∈ N to be such that rN−1/d < h and αd(Kρ; rN
−1/d) ≤ 2 (such N exists since

Kρ is a compact subset of A \B, and by assumption, satisfies limN→∞ αd(Kρ; rN
−1/d) ≤ 1).

Then

Hd(DN) = Hd

(
K2ρ \

N⋃
j=1

B(xj,N , rN
−1/d)

)

= Hd

K2ρ \
⋃

xj,N∈Kρ

B(xj,N , rN
−1/d)


≥ Hd(K2ρ)−

∑
xj,N∈Kρ

Hd

(
Kρ ∩B(xj,N , rN

−1/d)
)

≥ Hd(K2ρ)− βdrd
#(ωN ∩Kρ)

N
· αd(Kρ; rN

−1/d)

≥ Hd(K2ρ)− βdrdαd(Kρ; rN
−1/d) ≥ Hd(K2ρ)− 2βdr

d =: γr,ρ > 0.

Let D̃j,N := Kρ \B(xj,N , rN
−1/d). Then

Md(ωN ;A) = min
x∈A

N∑
j=1

1

|x− xj,N |d

≤ 1

Hd(DN)

N∑
j=1

∫
DN

dHd(x)

|x− xj,N |d
≤ 1

γr,ρ

N∑
j=1

∫
Dj,N

dHd(x)

|x− xj,N |d

≤ 1

γr,ρ

 ∑
xj,N∈Kρ

∫
D̃j,N

dHd(x)

|x− xj,N |d
+

∑
xj,N∈A\Kρ

∫
Dj,N

dHd(x)

|x− xj,N |d

 .

Taking into account Lemma III.3.9 with R = rN−1/d and D = Kρ and the fact that
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dist(Dj,N , A \Kρ) ≥ dist(K2ρ, A \Kρ) = h > 0, we will have

Md(ωN ;A) ≤ 1

γr,ρ

(
#(ωN ∩Kρ)

(
Hd(Kρ)

rd
+ βdαd(Kρ; r) lnN

)

+
∑

xj,N∈A\Kρ

Hd(Dj,N)

hd

)
.

Consequently,

Md(ωN ;A)

N lnN
≤ 1

γr,ρ

(
#(ωN ∩Kρ)

N

(
Hd(Kρ)

rd lnN
+ βdαd(Kρ; r)

)
+
Hd(A)

hd lnN

)
. (III.35)

Passing to the lower limit in (III.35) we will have

τ := lim inf
N→∞
N∈N

Md(ωN ;A)

N lnN
≤ βdαd(Kρ; r)

Hd(K2ρ)− 2βdrd
lim inf
N→∞
N∈N

#(ωN ∩Kρ)

N
.

Letting r → 0 and taking into account (III.30) and the fact that Kρ ⊂ K, we will have

τ ≤ βd
Hd(K2ρ)

lim inf
N→∞
N∈N

#(ωN ∩Kρ)

N
≤ βd
Hd(K2ρ)

lim inf
N→∞
N∈N

#(ωN ∩K)

N
.

Since lim
ρ→0+

Hd(K2ρ) = Hd(K \ (B ∪ ∂AK)) = Hd(K), we finally have

τ ≤ βd
Hd(K)

lim inf
N→∞
N∈N

#(ωN ∩K)

N
,

which implies (III.34).

Proof of Lemma III.3.8. Let N0 ⊂ N be an infinite subset such that

hd(A) = lim
N→∞
N∈N0

Md
N(A)

N lnN
.

Let {ωN}N∈N0 be a sequence of N -point configurations on A such that Md
N(A) = Md(ωN ;A),
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N ∈ N0. Then applying Lemma III.3.10 with K = A, we will have

hd(A) = lim
N→∞
N∈N0

Md(ωN ;A)

N lnN
≤ βd
Hd(A)

lim inf
N→∞
N∈N0

#(ωN ∩ A)

N
=

βd
Hd(A)

and inequality (III.31) follows.

Assume now that hd(A) = βdHd(A)−1 and let {ωN}N∈N , N ⊂ N, be any infinite sequence

of N -point configurations on A satisfying (III.32). For any closed subset D ⊂ A with

Hd(D) > 0 and Hd(∂AD) = 0, by Lemma III.3.10 we have

lim inf
N→∞
N∈N

#(ωN ∩D)

N
≥ Hd(D)

βd
lim
N→∞
N∈N

Md(ωN ;A)

N lnN
=
Hd(D)

Hd(A)
. (III.36)

Let now P ⊂ A be any closed subset of zero Hd-measure. Show that

lim
N→∞
N∈N

#(ωN ∩ P )

N
= 0. (III.37)

If P = ∅, then (III.37) holds trivially. Let P 6= ∅. Since Hd(A) < ∞, for every ε > 0, there

are at most finitely many numbers δ > 0 such that the set P [δ] := {x ∈ A : dist(x, P ) = δ}

has Hd-measure at least ε. This implies that there are at most countably many numbers

δ > 0 such that Hd(P [δ]) > 0. Denote also Pδ = {x ∈ A : dist(x, P ) ≥ δ}, δ > 0.

Then there exists a positive sequence {δn} monotonically decreasing to 0 such that every set

∂APδn ⊂ P [δn] has Hd-measure zero. Since Pδn is closed and Hd(Pδn) > 0 for every n greater

than some n1, in view of (III.36), we have

lim inf
N→∞
N∈N

#(ωN ∩ (A \ P ))

N
≥ lim inf

N→∞
N∈N

#(ωN ∩ Pδn)

N
≥ Hd(Pδn)

Hd(A)
, n > n1.

Since Hd(Pδn)→ Hd(A \ P ) = Hd(A), n→∞, we have

lim
N→∞
N∈N

#(ωN ∩ (A \ P ))

N
= 1,

which implies (III.37).
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Since the set A \D is also a closed subset of A and Hd(∂A(A \D)) = Hd(∂AD) = 0, by

(III.36) and (III.37) (with P = ∂AD) we have

lim sup
N→∞
N∈N

#(ωN ∩D)

N
= 1− lim inf

N→∞
N∈N

#(ωN ∩ (A \D))

N

= 1− lim inf
N→∞
N∈N

#(ωN ∩ A \D)

N
≤ 1− Hd(A \D)

Hd(A)
=
Hd(D)

Hd(A)
.

Thus,

lim
N→∞
N∈N

#(ωN ∩D)

N
=
Hd(D)

Hd(A)
(III.38)

for any closed subset D ⊂ A with Hd(D) > 0 and Hd(∂AD) = 0. In view of (III.37) relation

(III.38) also holds when D ⊂ A is closed and Hd(D) = 0. Then in view of Remark III.1.4

we have (III.33).

Auxiliary statements

We will show in this section that for every set A satisfying the assumptions of Theorem

III.2.5, the assumptions of Lemma III.3.8 necessarily hold.

Proposition III.3.11. Let A be a compact subset of a d-dimensional C1-manifold embedded

in Rm, d ≤ m. Then for such a set A,

lim
ε→0+

αd(A; ε) ≤ 1. (III.39)

The proof of this statement is given in the Chapter IV.

Lemma III.3.12. Let A = ∪li=1Ai, where each set Ai is a compact set contained in some

d-dimensional C1-manifold in Rm, d ≤ m, and Hd(Ai ∩ Aj) = 0, 1 ≤ i < j ≤ l. Then there

is a compact subset B ⊂ A with Hd(B) = 0 such that every compact subset K ⊂ A \ B

satisfies lim
ε→0+

αd(K; ε) ≤ 1.

Proof of Lemma III.3.12. Denote B :=
⋃

1≤i<j≤l
Ai ∩ Aj. Let K ⊂ A\B be a compact subset.
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Then

δ0 := min
1≤i<j≤l

dist(Ai ∩K,Aj ∩K) > 0.

Choose any ε ∈ (0, δ0). Choose also arbitrary r ∈ (0, ε] and x ∈ K. We have x ∈ Ai for some

1 ≤ i ≤ l and x /∈ Aj for every j 6= i. Since r < δ0, we have B(x, r) ∩K ⊂ B(x, r) ∩ Ai and

consequently,
Hd(B(x, r) ∩K)

βdrd
≤ Hd(B(x, r) ∩ Ai)

βdrd

≤ sup
t∈(0,ε]

sup
y∈Ai

Hd(B(y, t) ∩ Ai)
βdtd

= αd(Ai; ε) ≤ max
1≤j≤l

αd(Aj; ε).

Consequently,

αd(K; ε) = sup
r∈(0,ε]

sup
x∈K

Hd(B(x, r) ∩K)

βdrd
≤ max

1≤j≤l
αd(Aj; ε). (III.40)

Since each Ai is a compact subset of a d-dimensional C1-manifold, by Proposition III.3.11, we

have lim
ε→0+

αd(Ai; ε) ≤ 1, i = 1, . . . , l. Then in view of (III.40) we have lim
ε→0+

αd(K; ε) ≤ 1.

The following proposition is a part of the result by D.P. Hardin, E.B. Saff, and J.T.

Whitehouse mentioned at the end of Section III.1. For completeness, we will reproduce its

proof.

Proposition III.3.13. Let A = ∪li=1Ai, where each Ai is a compact set contained in some

d-dimensional C1-manifold in Rm and Hd(Ai ∩ Aj) = 0, 1 ≤ i < j ≤ l. Then

g
d
(A) := lim inf

N→∞

Ed(A,N)

N2 lnN
≥ βd
Hd(A)

.

Proof of Proposition III.3.13. Since every set Ai is a compact subset of a d-dimensional C1-

manifold, in view of Theorem 2.4 in [34], there holds g
d
(Ai) ≥ βdHd(Ai)

−1, i = 1, . . . , l. In

view of inequality (34) from Lemma 3.2 in [34], we then have

g
d
(A) = g

d

(
l⋃

i=1

Ai

)
≥

(
l∑

i=1

g
d
(Ai)

−1

)−1

≥

(
1

βd

l∑
i=1

Hd(Ai)

)−1

=
βd
Hd(A)

,
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which yields the desired inequality.

Proof of Theorem III.2.5

Here is the proof of the main theorem in Section III.2.2.

Proof of Theorem III.2.5. The proof of the lower estimate in (III.12) will repeat the proof

of inequality (2.9) in [17]. It is known that (see [17], [18], or [20]) for any infinite compact

set A ⊂ Rm,

M s
N(A) ≥ 1

N − 1
Es(A,N), N ≥ 2, s > 0. (III.41)

Then Proposition III.3.13 and inequality (III.41) give the lower estimate for Md
N(A):

lim inf
N→∞

Md
N(A)

N lnN
≥ lim inf

N→∞

Ed(A,N)

(N − 1)N lnN
≥ βd
Hd(A)

.

Note that if Hd(A) = 0, then limN→∞M
d
N(A)/(N lnN) =∞.

Now, assume that Hd(A) > 0. In view of Lemma III.3.12 and Remark III.2.6, the set A

satisfies the assumptions of Lemma III.3.8. Consequently

lim sup
N→∞

Md
N(A)

N lnN
≤ βd
Hd(A)

.

This implies (III.12).

Every sequence {ωN}∞N=1 of N -point configurations, which is asymptotically maximal

for the N -point d-polarization problem on A must satisfy (III.32) with N = N. Since

hd(A) = βdHd(A)−1, by Lemma III.3.8 we obtain (III.13).

III.3.3 Proofs of III.2.3

Proof of Two one-dimensional circles in different planes

The N -roots of unity, i.e. the solution of zN = 1, z ∈ C, have the following basic property.

Lemma III.3.14. Let {x∗1, . . . , x∗N} be the set of the N-roots of unity. Then
∑N

j=1 x
∗
j
k = 0

for all k ∈ {1, . . . , N − 1}.
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Proof of Lemma III.3.14. For k ∈ N, we define the functions Fk : CN → C and the functions

ek : CN → C by

Fk(x1, . . . , xN) :=
N∑
i=1

xki , and ek(x1, . . . , xN) :=
∑

1≤j1<j2...<jk≤N

xj1 . . . xjk ,

where (x1, . . . , xN) ∈ CN . Let {x∗1, . . . , x∗N} be the set of the N−roots of unity. Since

N∏
i=1

(x− x∗i ) = xN − e1(x∗1, . . . , x
∗
N)xN−1 + e2(x∗1, . . . , x

∗
N)xN−2 − · · ·+ (−1)NeN(x∗1, . . . , x

∗
N),

e1(x∗1, . . . , x
∗
N) = e2(x∗1, . . . , x

∗
N) = · · · = eN−1(x∗1, . . . , x

∗
N) = 0.

Using the Newton’s identities, we have for 1 ≤ k ≤ N − 1,

Fk(x
∗
1, . . . , x

∗
N) =

(
k−1∑
j=1

(−1)j+1ej(x
∗
1, . . . , x

∗
N)Fk−j(x

∗
1, . . . , x

∗
N)

)
+ (−1)k+1kek(x

∗
1, . . . , x

∗
N) = 0.

This completes the proof.

Next, we show that a configuration of N distinct equally spaced points on S1 is a maximal

and minimal N -point Riesz (s, h)-polarization configuration of (S1;S1
R).

Lemma III.3.15. Let N ∈ N, p ∈ {1, 2, . . . , N − 1}, R > 0, and h ≥ 0. Then, any

configuration of N distinct equally spaced points on S1 is a maximal and minimal N-point

Riesz (−2p, h)-polarization configuration of (S1;S1
R).

Proof of Lemma III.3.15. Let ωN := {x1, . . . , xN} be a configuration of N distinct equally

spaced points on S1, p ∈ {1, . . . , N−1} be fixed, and h ≥ 0 be fixed. By [42, Theorem 1], we

know that f(x) :=
∑N

j=1(|x− xj|2 + h)p is constant as a function of x on S1
R, say f(x) ≡ C

for all x ∈ S1
R.

Let {y1, . . . , yN} be any N -point configuration on S1. Then,

CN =
N∑
j=1

N∑
i=1

(∣∣∣∣xi − R

yj

∣∣∣∣2 + h

)p

=
N∑
j=1

N∑
i=1

(∣∣∣∣yj − R

xi

∣∣∣∣2 + h

)p

=
N∑
i=1

N∑
j=1

(∣∣∣∣yj − R

xi

∣∣∣∣2 + h

)p

.

(III.42)
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Therefore, there exists i0, i
′
0 ∈ {1, . . . , N} such that

N∑
j=1

(∣∣∣∣yj − R

xi0

∣∣∣∣2 + h

)p

≥ C and
N∑
j=1

(∣∣∣∣yj − R

xi′0

∣∣∣∣2 + h

)p

≤ C.

Then, we have

max
x∈S1R

N∑
j=1

(
|yj − x|2 + h

)p ≥ C = max
x∈S1R

N∑
j=1

(
|xj − x|2 + h

)p
and

min
x∈S1R

N∑
j=1

(
|yj − x|2 + h

)p ≤ C = min
x∈S1R

N∑
j=1

(
|xj − x|2 + h

)p
,

which imply

max
x∈S1R

N∑
j=1

(
|xj − x|2 + h

)p
= m−2p,h

N (S1;S1
R)

and

min
x∈S1R

N∑
j=1

(
|xj − x|2 + h

)p
= M−2p,h

N (S1;S1
R).

We recall that the usual dot product in C is defined by

a · b := a1b1 + a2b2

where a := a1 + a2i, b := b1 + b2i ∈ C.

Proof of Theorem III.2.7. A simple calculation shows that for y ∈ S1
R and xj ∈ S1,

(|y − xj|2 + h)p = (R2 + h+ 1− 2y · xj)p.

Let y := R cos t+ iR sin t and xj := cos tj + i sin tj. Then

fj(t) := (|y − xj|2 + h)p = (R2 + h+ 1− 2R cos(t− tj))p.
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We know that {
1√
2π
,
cos(t− tj)√

π
, . . . ,

cos(p(t− tj))√
π

}
forms orthonormal system with respect to the inner product

〈f, g〉 :=

∫ 2π

0

f(t)g(t)dt,

and

span

{
1√
2π
,
cos(t− tj)√

π
, . . . ,

cos(p(t− tj))√
π

}
= span{1, cos(t−tj), cos2(t−tj), . . . , cosp(t−tj)}.

Therefore,

fj(t) = 〈fj(t),
1√
2π
〉 1√

2π
+

p∑
k=1

〈fj(t),
cos(k(t− tj))√

π
〉 cos(k(t− tj))√

π

=
1

2π
〈fj(t), 1〉+

1

π

p∑
k=1

〈fj(t), cos(k(t− tj))〉
(yk · xkj )
Rk

.

Let

Ck,j := 〈fj(t), cos(k(t− tj))〉, k ∈ {0, 1, . . . , p}, j ∈ {1, . . . , N}.

Notice that Ck,j do not depend on j, so we will let C̃k := Ck,j. Therefore,

N∑
j=1

(|y − xj|2 + h)p =
NC̃0

2π
+

1

π

p∑
k=1

C̃k
Rk

(
yk ·

N∑
j=1

xkj

)
(III.43)

and

C̃k =

∫ 2π

0

(R2 + h+ 1− 2R cos(t))p cos(kt)dt

=
(−1)kπ

2p−1

p−k∑
j=0

(
p

j

)(
p

k + j

)
b2j+k

(
a+
√
a2 − b2

)p−k−2j

, (III.44)

where

a := R2 + h+ 1, and b := 2R,
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and the square root function in (III.44) can be chosen to be both branches of the complex

square root function (see the computation in Lemma IV.2.1). Moreover, we note that (R2 +

h+1)2 ≥ 4R2 and if we choose the branch that the square root of positive number is positive

number, then clearly, C̃k 6= 0 for all k.

By Lemma III.3.15, we know that the set of theN -roots of unity is optimal forM−2p, h
N (S1;S1

R)

and m−2p, h
N (S1;S1

R). Then, by Lemma III.3.14, we have

M−2p, h
N (S1;S1

R) = m−2p, h
N (S1;S1

R) =
NC̃0

2π
=
N

2p

p∑
j=0

(
p

j

)2

b2j
(
a+
√
a2 − b2

)p−2j

.

Moreover, any configuration {x1, . . . , xN} such that
∑N

j=1 xj =
∑N

j=1 x
2
j = · · · =

∑N
j=1 x

p
j = 0

is optimal for M−2p, h
N (S1;S1

R) and m−2p, h
N (S1;S1

R).

Now, we show that any optimal configuration for M−2p, h
N (S1;S1

R) satisfies

N∑
j=1

xj =
N∑
j=1

x2
j = · · · =

N∑
j=1

xpj = 0.

The proof of the m−2p, h
N (S1;S1

R) case is similar. So, we will prove only the M−2p, h
N (S1;S1

R)

case. Let ωN := {x1, . . . , xN} be an optimal configuration for M−2p, h
N (S1;S1

R). Then, by

(III.43), we have, for all z ∈ S1
R,

NC̃0

2π
= min

y∈S1R

N∑
j=1

(
|y − xj|2 + h

)p ≤ N∑
j=1

(
|z − xj|2 + h

)p
=
NC̃0

2π
+

1

π

p∑
k=1

C̃k
Rk

(
zk ·

N∑
j=1

xkj

)
,

which means

0 ≤ 1

π

p∑
k=1

C̃k
Rk

(
zk ·

N∑
j=1

xkj

)
, for all z ∈ S1

R.

Let z = R cos(t) + iR sin(t) and
∑N

j=1 x
k
j = cos(t′k) + i sin(t′k). Then, for all t ∈ [0, 2π],

0 ≤ 1

π

p∑
k=1

C̃k (cos(kt) cos(t′k) + sin(kt) sin(t′k)) =

p∑
k=1

(Dk cos(kt) +D′k sin(kt)) , (III.45)
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where

Dk =
C̃k cos(t′k)

π
and D′k =

C̃k sin(t′k)

π
.

Because ∫ 2π

0

p∑
k=1

(Dk cos(kt) +D′k sin(kt)) dt = 0

and
p∑

k=1

Dk cos(kt) +D′k sin(kt) ≥ 0, t ∈ [0, 2π],

∑p
k=1 (Dk cos(kt) +D′k sin(kt)) = 0 for all t ∈ [0, 2π]. Then, for all j ∈ {1, . . . , p},

πDj = 〈
p∑

k=1

(Dk cos(kt) +D′k sin(kt)) , cos(jt)〉 = 0

and

πD′j = 〈
p∑

k=1

(Dk cos(kt) +D′k sin(kt)) , sin(jt)〉 = 0.

Since C̃k 6= 0 for all k, cos(t′k) = sin(t′k) = 0 for all k. Hence,
∑N

j=1 x
k
j = 0 for all k ∈

{1, . . . , p}.

Proofs of the m-dimensional sphere case

Proof of Theorem III.2.9. We will prove only the M−2
N (Sm) case. The proof of the

m−2
N (Sm) case is basically the same. For y, xj ∈ Sm,

N∑
j=1

|y − xj|2 = 2N − 2(y ·
N∑
j=1

xj).

Therefore, our maximization problem is equivalent to finding all N -point configurations on

Sm minimizing the following quantity

min
ωN⊂Sm
#ωN=N

max
y∈Sm

(
y ·

N∑
j=1

xj

)
.
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Clearly, if
∑N

j=1 xj = 0, then maxy∈Sm
(
y ·
∑N

j=1 xj

)
= 0. If

∑N
j=1 xj 6= 0, then

max
y∈Sm

(
y ·

N∑
j=1

xj

)
≥

( ∑N
j=1 xj

|
∑N

j=1 xj|

)
·
N∑
j=1

xj = |
N∑
j=1

xj| > 0.

Therefore, the function f(ωN) := maxy∈Sm
(
y ·
∑N

j=1 xj

)
attains its minimum if and only if∑N

j=1 xj = 0. Then, ωN := {x1, . . . , xN} is optimal for M−2
N (Sm) if and only if

∑N
j=1 xj = 0.

Moreover, M−2
N (Sm) = m−2

N (Sm) = 2N.

Proof of Theorem III.2.10. Let ω∗N := {x∗1, . . . , x∗N} ⊂ Sm be a configuration such that

its Riesz potential function f(y) :=
∑N

i=1 |y − x∗i |−s is constant on Sm, say

f(y) ≡ C, y ∈ Sm.

Let ωN = {x1, . . . , xN} be any N−point configuration in Sm. Then,

CN =
N∑
i=1

N∑
j=1

|xi − x∗j |−s =
N∑
j=1

N∑
i=1

|xi − x∗j |−s.

Therefore, there exists j0, j
′
0 ∈ {1, . . . , N} such that

N∑
i=1

|xi − x∗j0|
−s ≥ C and

N∑
i=1

|xi − x∗j′0 |
−s ≤ C.

Then, we have

max
y∈Sm

N∑
i=1

|xi − y|−s ≥ C = max
y∈Sm

N∑
j=1

|x∗j − y|−s,

and

min
y∈Sm

N∑
i=1

|xi − y|−s ≤ C = min
y∈Sm

N∑
j=1

|x∗j − y|−s,

which imply

max
y∈Sm

N∑
j=1

|x∗j − y|−s = ms
N(Sm),
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and

min
y∈Sm

N∑
j=1

|x∗j − y|−s = M s
N(Sm),

respectively. Hence, ω∗N is optimal for M s
N(Sm) and ms

N(Sm).
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CHAPTER IV

AUXILIARY RESULTS

IV.1 Proof of Proposition III.3.11

We say that a set B in Rm is bi-Lipschitz homeomorphic to a set D ⊂ Rn with a constant

M ≥ 1, if there is a mapping ϕ : B → D such that ϕ(B) = D and

M−1 |x− y| ≤ |ϕ(x)− ϕ(y)| ≤M |x− y| , x, y ∈ B.

Lemma IV.1.1. Let U ⊂ Rd be a non-empty open set and f : U → Rm, m ≥ d, be an

injective C1-continuous mapping such that its inverse f−1 : f(U)→ U is continuous and the

Jacobian matrix

Jfx :=


∇f1(x)

. . .

∇fm(x)

 (IV.1)

of f has rank d at any point x ∈ U . Then for every ε > 0 and every point y0 ∈ f(U), there

is a closed ball B centered at y0 such that the set B ∩ f(U) is bi-Lipschitz homeomorphic to

some compact set in Rd with a constant 1 + ε.

Proof of Lemma IV.1.1. Let x0 ∈ U be the point such that f(x0) = y0. Choose any ε > 0

and let δ = δ(x0, ε) > 0 be such that B[x0, δ] ⊂ U and

|∇fi(x)−∇fi(x0)| < ε, x ∈ B[x0, δ], i = 1, . . . ,m.

Let x, y ∈ B[x0, δ] be two arbitrary points. Define the function gi(t) := fi(x + t(y − x)),

t ∈ [0, 1]. Then there exists ξi ∈ (0, 1) such that

fi(y)− fi(x) = gi(1)− gi(0) = g′i(ξi) = ∇fi(zi) · (y − x)
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= ∇fi(x0) · (y − x) + (∇fi(zi)−∇fi(x0)) · (y − x),

where zi = x+ ξi(y − x), i = 1, . . . ,m. Since zi ∈ B[x0, δ], we have

|fi(y)− fi(x)−∇fi(x0) · (y − x)|

= |(∇fi(zi)−∇fi(x0)) · (y − x)| ≤ ε |y − x| , i = 1, . . . ,m,

and hence (we treat x and y as vector-columns below),

∣∣f(y)− f(x)− Jfx0(y − x)
∣∣ ≤ ε

√
m |y − x| , x, y ∈ B[x0, δ]. (IV.2)

Since the matrix Jfx0 has rank d, for every standard basis vector ei from Rd, there is a vector

vi ∈ Rm such that (Jfx0)
Tvi = ei, i = 1, . . . , d, where (Jfx0)

T denotes the transpose of the

matrix Jfx0 . Then the d ×m matrix Z := [v1, . . . , vd]
T satisfies ZJfx0 = Id, where Id is the

d× d identity matrix. Taking into account (IV.2) we have

∣∣f(y)− f(x)− Jfx0(y − x)
∣∣ ≤ ε

√
m
∣∣ZJfx0(y − x)

∣∣
≤ ε
√
m‖Z‖

∣∣Jfx0(y − x)
∣∣ , x, y ∈ B[x0, δ],

where ‖Z‖ := max{|Zu| : u ∈ Rm, |u| = 1}. Consequently,

(
1− ε

√
m‖Z‖

) ∣∣Jfx0(y − x)
∣∣ ≤ |f(y)− f(x)|

≤
(
1 + ε

√
m‖Z‖

) ∣∣Jfx0(y − x)
∣∣ , x, y ∈ B[x0, δ].

Let u1, . . . , ud be an orthonormal basis in the subspace H of Rm spanned by the columns

of the matrix Jfx0 and let D := [u1, . . . , ud] be the m × d matrix with columns u1, . . . , ud.

Since the columns of Jfx0 also form a basis in H, there exists an invertible d × d matrix Q

such that D = Jfx0Q.

Let V ⊂ Rd be the open set such that Φ(V ) = B(x0, δ), where Φ : Rd → Rd is the linear

mapping given by Φ(v) = Qv. Since the columns of the matrix D are orthonormal, for every
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u, v ∈ V , we will have

|f ◦ Φ(u)− f ◦ Φ(v)| = |f(Qu)− f(Qv)|

≤
(
1 + ε

√
m‖Z‖

) ∣∣Jfx0Q(u− v)
∣∣ =

(
1 + ε

√
m‖Z‖

)
|D(u− v)|

=
(
1 + ε

√
m‖Z‖

)
|u− v| .

Similarly,

|f ◦ Φ(u)− f ◦ Φ(v)| ≥
(
1− ε

√
m‖Z‖

)
|u− v| , u, v ∈ V ,

which implies that for 0 < ε < (
√
m‖Z‖)−1, the restriction of the mapping ψ := f ◦ Φ

to the set V is a bi-Lipschitz mapping onto the set f(Φ(V )) = f(B[x0, δ]) with constant

Mε := max{1 + ε
√
m‖Z‖, (1− ε

√
m‖Z‖)−1}.

Since f is a homeomorphism of U onto f(U), the set f(B(x0, δ)) is open relative to f(U).

Then there is a closed ball B in Rm centered at y0 = f(x0) such that B∩f(U) ⊂ f(B(x0, δ)).

Then the set B ∩ f(U) = B ∩ f(B[x0, δ]) is bi-Lipschitz homeomorphic (with constant Mε)

to the set

V1 := ψ−1(B ∩ f(U)) = ψ−1(B ∩ f(B[x0, δ])),

which is compact in Rd. Since Mε → 1 as ε→ 0+, the assertion of the lemma follows.

Proof of Proposition III.3.11. Let W denote the d-dimensional C1-manifold that con-

tains A and let ε > 0 be arbitrary. In view of Definition III.1.3, for every point x ∈ W ,

there is an open neighborhood Vx of x relative to W which is homeomorphic to an open set

Ux ⊂ Rd such that the homeomorphism f : Ux → Vx is a C1-continuous mapping and the

Jacobian matrix Jfu (see the definition Jfu in (IV.1)) has rank d for every u ∈ Ux. There is

also a number εx > 0 such that B(x, εx) ∩W ⊂ Vx. By Lemma IV.1.1, there is a number

0 < δ(x) < εx/2 such that the set B[x, 2δ(x)] ∩ W = B[x, 2δ(x)] ∩ f(Ux) is bi-Lipschitz

homeomorphic to a compact set Dx from Rd with constant 1 + ε. Since A is compact, the

open cover {B(x, δ(x))}x∈A has a finite subcover {B(xi, δ(xi))}pi=1.

Denote δε := min
j=1,...,p

δ(xj). Let x be any point in A and r ∈ (0, δε]. There is an index

78



i such that x ∈ B(xi, δ(xi)). Since B(x, r) ∩ A ⊂ B[xi, 2δ(xi)] ∩W , the set B(x, r) ∩ A is

bi-Lipschitz homeomorphic to a set Di ⊂ Dxi with constant 1 + ε. If ϕ : B(x, r) ∩ A → Di

denotes the corresponding bi-Lipschitz mapping, we have Di ⊂ B(ϕ(x), (1 + ε)r). Then

Hd(B(x, r) ∩ A) ≤ (1 + ε)dLd(Di) ≤ βdr
d(1 + ε)2d.

Consequently,

αd(A; δε) = sup
r∈(0,δε]

sup
x∈A

Hd(B(x, r) ∩ A)

βdrd
≤ (1 + ε)2d,

which implies that lim
δ→0+

αd(A; δ) ≤ 1.

IV.2 Integrals

We collect our computations of all integrals in this section.

Lemma IV.2.1. Let m ∈ N, k ∈ {1, . . . ,m}, z ∈ C. Then,

∫ 2π

0

(z2 + 1− 2z cos(t))m cos(kt)dt = (−1)k2π
m−k∑
j=0

(
m

j

)(
m

k + j

)
z2m−k−2j. (IV.3)

Proof of Lemma IV.2.1. Let m ∈ N and k ∈ {1, . . . ,m}. First, we prove the equality (IV.3)

for z ∈ R.

Let z ∈ R. Then, for ζ = eit,

∫ 2π

0

(z2 + 1− 2z cos(t))m cos(kt)dt =

∫ 2π

0

(z2 + 1− z(eit + e−it))meiktdt

=

∫ 2π

0

(z − eit)m(z − e−it)meiktdt

=
1

i

∫ 2π

0

(z − ζ)m(z − 1/ζ)mζk−1dζ

= 2π · res

(
(z − ζ)m(zζ − 1)m

ζm−k+1
; 0

)
= (−1)k2π

m−k∑
j=0

(
m

j

)(
m

k + j

)
z2m−k−2j,

where the first equality follows from the fact that the last expression is real number. Notice
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that the left-hand side and the right-hand side of the equation (IV.3) are polynomials as

functions of z. Then, both functions are analytic on C and we have the equation (IV.3) for

all z ∈ C.

Lemma IV.2.2. Let m ∈ N and k ∈ {1, . . . ,m}. For a, b ∈ C,

∫ 2π

0

(a− b cos(t))m cos(kt)dt =
(−1)kπ

2m−1

m−k∑
j=0

(
m

j

)(
m

k + j

)
b2j+k

(
a±
√
a2 − b2

)m−k−2j

,

(IV.4)

where the square root function in (IV.4) can be selected to be both branches of the complex

square root function.

Proof of Lemma IV.2.2. Clearly, if b = 0, then the equation in (IV.4) is 0. Let b ∈ C \ {0}

and a ∈ C. To reduce the equation (IV.4) to the equation (IV.3), we need to consider

(λa− λb cos(t))m,

where λ is chosen to that

2z = bλ and z2 + 1 = aλ,

for some z ∈ C. From above equations,

z =
a±
√
a2 − b2

b
and λ =

2a± 2
√
a2 − b2

b2
.

Moreover, λ 6= 0, because if λ = 0, then b = 0. Therefore, by Lemma IV.2.1,

∫ 2π

0

(a− b cos(t))m cos(kt)dt =
1

λm

∫ 2π

0

(λa− λb cos(t))m cos(kt)dt

=
1

λm

∫ 2π

0

(z2 + 1− 2z cos(t))m cos(kt)dt

=
(−1)kπ

2m−1

m−k∑
j=0

(
m

j

)(
m

k + j

)
b2j+k

(
a±
√
a2 − b2

)m−k−2j

.
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[26] A.A. Gonchar. On convergence of Padé approximants for some classes of meromorphic

functions. Mat. Sb., 139(4):607–629, 1975.

[27] A.A. Gonchar. Poles of rows of the Padé table and meromorphic continuation of func-
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[47] D. Barrios Rolańıa, G. López Lagomasino, and E.B. Saff. Determining radii of meromor-

phy via orthogonal polynomials on the unit circle. J. Approx. Theory Appl., 124(2):263–

281, 2003.

[48] E.B. Saff. Regions of meromorphy determined by the degree of best rational approxi-

mation. Proc. Amer. Math. Soc., 29(1):30–38, 1971.

[49] E.B. Saff. An extension of Montessus de Ballore’s theorem on the convergence of inter-

polating rational functions. J. Approx. Theory, 6:63–67, 1972.

[50] B. Simanek. personal communication.

[51] B. Simanek. Ratio asymptotics, Hessenberg matrices, and weak asymptotic measures.

preprint arXiv:1303.4813, 2013.

[52] G. Sobczyk. Generalized Vandermonde determinants and applications. Aportaciones

Matematicas, Serie Comunicaciones, 30:203–213, 2002.

[53] H. Stahl and V. Totik. General orthogonal polynomials, volume 43. Cambridge Univer-

sity Press, 1992.

[54] S.P. Suetin. On the convergence of rational approximations to polynomial expansions

in domains of meromorphy of a given function. Sb. Math., 34(3):367–381, 1978.

[55] S.P. Suetin. On de Montessus de Ballore’s theorem for nonlinear Padé approximants
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