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CHAPTER I 

 

INTRODUCTION 

 

Cardiovascular Tissue Engineering and Cell Sourcing 

 Cardiovascular disease is the number one cause of morbidity and mortality in the developed 

world, which establishes a huge need for therapeutic intervention. For example, the current leading 

technology for coronary artery disease is coronary artery bypass grafting, and 500,000 of these 

procedures are performed per annum in the United States alone [3]. Large vessel repair (>5mm) is 

generally permissive of non-cellular therapies, for example, synthetic vascular grafts such as 

polytetrafluoroethylene (PTFE) conduits. However, these approaches as well as arterial grafting have 

shown poor outcomes for small vessel therapy [2, 3]. The National Heart, Lung, and Blood Institute 

(NHLBI) is currently supporting around 14 million dollars of research directed at engineering small 

blood vessel substitutes. There are three main tissue engineering approaches for tissue engineered 

vascular grafts (TEV): (1) biodegradable synthetic polymer scaffolds, (2) decellularized matrices, and 

(3) cell sheet engineering. While significant advances have been made, there is still no widely 

accepted clinical treatment utilizing tissue engineered products [1, 2]. Moving forward, all tissue 

engineered constructs being utilized must take into account the dynamic mechanical environment in 

the vascular tree and how these forces effect the phenotype of all cell types used in the construct. 

 Cell sourcing is a significant issue for developing TEV. Human vasculature has a highly 

ordered structure including multiple cell types. This composition and function must be recapitulated by 

TEV. This means that the cell source for vascular constructs must be able to differentiate into 

endothelial cells, smooth muscle cells, and fibroblasts and take on the correct organization. This 

imposes the need for an autologous cell source capable of yielding large quantities of cells with 

multipotent differentiation capacity. In the past decade, approaches utilizing stem cells have been 

thoroughly explored. A comprehensive assessment of cell sourcing for TEVs was presented by Bajpai 

et. al. In spite of the advancements in stem cell therapy, there are still significant challenges 

associated with these approaches. For example, autologous multipotent stem cells (mesenchymal 



2 

stem cells (MSCs), bone marrow derived mononuclear cells (BM-MNCs), and endothelial progenitor 

cells (EPCs)) have good differentiation capacity but are fairly rare (0.1-0.5% of bone marrow 

aspirate), often senescent in culture, and may not be active enough to repair vessels in elderly 

patients. Induced pluripotent stem cells can overcome some of these issues, however, they can take 

a long time to genetically re-program and raise significant concerns regarding their oncogenic 

potential and incomplete differentiation. 

 This thesis proposes that omental mesothelium is an alternative cell source for vascular 

repair by TEV. The omentum has been utilized for over a century to promote wound healing during 

surgical intervention in ischemic hearts, perforated gut tubes, damaged brains and spinal cords, for 

revascularization of lower and upper extremities, and for reconstruction of head and neck [4-12]. 

Importantly, the omental mesothelium plays numerous and important roles in development, but it has 

limited function in the adult. This makes it an ideal and abundant autologous cell source for 

transplantation. In development, the mesothelium originates from the pericardial cavity, undergoes 

epithelial to mesenchymal transformation and gives rise to cardiac fibroblasts, endothelial cells and 

smooth muscle of the coronary arteries, and the vasculature of the gut and lungs [13-16], [17, 18] [19] 

[20, 21]. In addition, recent studies by Shelton et al have demonstrated that grafting omental 

mesothelium over an injured carotid artery resulted in near complete recovery of the injured artery. 

They found that Tβ4, a naturally occurring blood protein can mobilize mesothelial graft cells to 

integrate into wounded blood vessels and repopulate the smooth muscle layers of the vessel, thereby 

significantly decreasing healing time (Figure 1) [22]. In spite of the promise of these cells, they still 

have the potential to undergo pathogenic differentiation. For example, mesothelium can be activated 

after injury to form painful, fibrous, vascularized and innervated serosal adhesions [15, 23, 24]. This 

makes it extremely important that we understand the physical and chemical cues that lead to the 

differentiation of this acrobatic cell type in order to purposefully drive it towards reparative phenotypes. 
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Figure 1: Thymosin β4 reactivates adult mesothelial cells to aid in tissue repair. Thymosin β4 
(Tβ4) can activate PKC and AKT signaling in adult epicardial and omental mesothelial cells. In 
epicardial cells, Tβ4 promotes proliferation, migration, differentiation into vasculogenic lineages, 
and endothelial tube formation all of which aid in repair of the myocardium following infarct. 
Similarly, in omental mesothelial cells, Tβ4 promotes proliferation, migration, and differentiation 
into vasculogenic lineages in order to accelerate the repair of injured blood vessels (Image 
courtesy of Shelton et. al.). 

 

Mechanotransduction in Tissue Engineering 

The effects of mechanotransduction need to be investigated for all cells involved in 

cardiovascular tissue engineering. It is becoming clearer that tissues that are cultured in static 

systems cannot fully recapitulate the function of their organ counterparts. In a few particularly 

appropriate examples, Huh et al demonstrate that adding mechanical stimulation to 

microphysiological models of the lung and gut result in recapitulation of organ level functions which 

have never before been observed in vitro [25-27]. There are also numerous bioreactors reported in 

the literature for investigating the formation of bone, cartilage, muscle, and cardiac tissue. 

Furthermore, numerous studies in recent years have demonstrated that mechanical stimuli are 

necessary for tissue engineering of functional tissues, and are particularly important in the case of 

vascular grafts [28, 29]. 
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The human vasculature is one of the most mechanically dynamic systems in nature. During 

each cardiac cycle, complex patterns of pressure, flow, and shear stress propagate through the 

vascular tree and are sensed by endothelial cells, smooth muscle cells, and all other vascular cell 

types. It is well understood that these mechanical parameters are major determinants of vascular 

homeostasis and pathogenesis. Basic arterial hemodynamic forces are shear stress, circumferential 

strain, and normal stress from blood pressure. Typical human arterial values of shear stress, cyclic 

strain, and transmural pressure are 6 to 40 dyne•cm
-2

, 2% to 18% at 1 Hz, and 60 to 110 mmHg, 

respectively [30]. Abnormal hemodynamic mechanical stimuli play a causative role in pathological 

vascular remodeling, including atherosclerosis, restenosis, hypertension, and stroke [31-34]. 

 

Approach 

Bioreactors are an essential component of engineering cardiovascular tissues and studying 

relevant mechanotransduction. Cardiovascular bioreactors are uniquely complex because they 

require the simultaneous application of fluid shear stress and strain. In this thesis, we sought to 

engineer a microfluidic bioreactor system to study the effects of shear stress and strain on cultured 

tissues for use in vascular tissue engineering. One of the major requirements of investigating the role 

of mechanotransduction on cell fate is to use model systems that can supply highly controlled and 

repeatable mechanical stimulation to cultured tissues. There are many examples of bioreactors for 

studying tissue engineering and mechanotransduction in the literature, and many commercially 

available systems. However, there are numerous shortcomings with these systems. A key 

shortcoming that we wanted to address in this thesis was the effect of mechanical strain on the fluidic 

shear conditions in a bioreactor system. For example, when an elastomeric tube is stretched, the 

cross sectional dimensions change. If volumetric flow rate is held constant during the stretch, the 

shear conditions experienced by the cells must change. We sought to characterize this effect in our 

bioreactor system to better understand the mechanical environment experienced by the cells cultured 

in our device. 

The bioreactor system described in this thesis consists of a microfluidic device for tissue 

culture of the cell type to be studied, two linear actuators to apply user-defined strain conditions, and 
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a computer controlled syringe pump to apply user-defined shear conditions. We also describe novel 

methods based on particle image velocimetry that were used to characterize the mechanical 

environment in the microfluidic bioreactor. 
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CHAPTER II 

 

 

DEVELOPMENT AND CHARACTERIZATION OF A NOVEL MICROFLUIDIC BIOREACTOR 

SYSTEM UTILIZED FOR EXAMINING HEMODYNAMIC EFFECTS ON CELLULAR RESPONSE 

 

Introduction 

 Cell sourcing for tissue engineered approaches to vascular repair is a serious issue 

confronting the field of cardiovascular tissue engineering. Omental mesothelium is a promising 

autologous cell source for vascular repair and has been used for numerous other therapies [11]. Until 

recently, omental mesothelium was only thought to play a paracrine role in wound healing but there is 

increasing evidence that omental mesothelium can undergo divergent terminal differentiation to 

reparative vasculogenic cell types including: endothelial cells, fibroblasts, or vascular smooth muscle 

cells[15, 23, 24].  

 This study builds on the previous work by the Bader group that demonstrated that thymosin 

β4 can mobilize mesothelial graft cells to integrate into and repopulate the smooth muscle layers of 

arteries in an in vivo model of vessel damage [22]. In vivo, all vascular cell types are exposed to 

hemodynamic forces such as shear stress, circumferential strain, and normal stress from blood 

pressure. The role of hemodynamic forces on mesothelial potential is underexplored and their impact 

on cell differentiation is completely unknown. Hence, we hypothesized that smooth muscle and 

endothelial cell differentiation from mesothelia is regulated by hemodynamic parameters such as 

shear stress and strain. There is an unmet need to understand how these physicochemical 

parameters regulate mesothelium differentiation into these cell types. 

 To address this issue, we designed, developed and characterized a microfluidic bioreactor 

system and applied the system to study the effects of shear stress and strain on the differentiation of 

murine omental mesothelium. When strain is applied to a PDMS microfluidic device, the channel 

dimensions change. Consequently, if volumetric flow rate is kept constant through the microfluidic 

device, the fluid velocity and therefore wall shear change with applied strain. Therefore, in order to 
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understand the mechanical forces that cells grown in the bioreactor were experiencing, we needed to 

fully characterize the bioreactor during dynamic mechanical stimulation of combined shear stress and 

strain. To characterize the bioreactor system, we developed a coupled numerical model of the 

bioreactor microfluidic dynamics under dynamic strain as well as novel characterization methods to 

simultaneously monitor the three dimensional fluid velocity profile, wall shear stress (WSS) and strain 

during mechanical stimulation.  

 

Methods 

Device Fabrication 

 Poly(dimethylsiloxane) (PDMS) microfluidic devices were fabricated by standard photo-

lithography and soft lithography techniques [35]. Photomasks were designed using Auto-Cad and 

emulsion printed on Mylar (Fineline Imaging, Colorado Springs, CO). Printed photomasks were 

transferred to chrome on soda lime by contact printing using AZ9200 photoresist (AZ Electronic 

Materials, Somerville, NJ), and subsequent ceric ammonium nitrate with nitric acid etching to remove 

chrome from the exposed regions. To fabricate microfluidic master molds, an epoxy-based negative 

photoresist, SU-8 2100 (MicroChem, Newton, MA) was spun onto three inch diameter test grade 

silicon wafers using a spin protocol of 500 RPM for 15 seconds and 4000 RPM for 30 seconds (WS-

400B-6NPP/LITE Benchtop Spin Coater, Laurell Technologies, North Wales, PA). After spinning, the 

wafers were soft baked at 65°C for 5 minutes (Dataplate721A, Barnstead International, Dubuque, IA) 

allowed to cool to room temperature, and then processed with edge bead remover (MicroChem) while 

spinning at 500 RPM. The photoresist coated silicon wafers were exposed at 160 J•cm
-1

 using a UV 

spot curing system with a 365 nm filter (Novacure 2100, EXFO, Vanier, Canada). Additional 

crosslinking was performed by a post exposure bake step at 95°C for 5 minutes. Wafers were cooled 

to room temperature and non-crosslinked SU-8 was removed by SU-8 developer (MicroChem). To 

improve adhesion of the photoepoxy to the wafer and remove cracks due to over-exposure, 

developing was followed by a 5 hour hard bake at 185°C (near the glass transition temperature of 
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SU-8). Finally, Photo epoxy height was measured using a profiliometer. This highly repeatable 

protocol yielded 110±1 µm photoepoxy thickness. X, Y resolution was limited by the mask used 

during photolithography and all features were well within the resolution limits of mylar masks. 

 All microfluidic devices were fabricated using PDMS with an initiator: base ratio of 1:10 (Dow 

Corning, Clarksville, TN) and cured overnight at 70 C. In order to achieve uniform and highly 

repeatable strain on microfluidic channels, unique microfabrication techniques needed to be 

developed. The major requirements for the bioreactor microfluidics were highly uniform and 

repeatable device thickness and integrated harnesses to apply cyclic strain to the device 

perpendicular to the microfluidic channel. Initial attempts at fabrication involved classical soft 

lithography. The major challenge with this approach was the harnessing method. As shown in figure 2 

the device was assembled in PDMS and then bonded to four microscope slides by plasma bonding.  

 

Figure 2. Glass slide approach to bioreactor harnessing. A) Shows a schematic of the device 
construction. B) Shows the assembled bioreactor system with glass slide harnessing 
strategy. 

There were major issues with alignment of the glass slides to ensure they were perfectly 

parallel to the microfluidic channel. To overcome this issue, the glass slide harnessing methods was 

abandoned in favor of embedded fiber glass harnesses. 1 oz fiber glass mat (Saint Gobain Vetrotex 

America, Huntersville, NC) was embedded in the devices to provide structural rigidity for stretcher 

harnessing. Fiber glass mat was first infused with PDMS by dripping a thin layer onto the mat and 

curing at 70 C for 1 hour. This process allowed for easy handling of the fiber glass and reduced the 

production of particulates for handling in a clean room. The embedded mat was then cut to the shape 

of the stretcher harness using a steel rule die (Apple Steel Rule Die, Milwaukee, WI). These methods 
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allowed us to quickly and easily fabricate stretcher harnesses with the same size, shape, and 

thickness. The design for the stretcher harness has one attachment point at the center of the harness 

(Figure 3). This eliminated possible alignment issues with the actuators and was shown to provide 

adequate mechanical stability for all experimental strains.  

 

Figure 3. Microfluidic device design with integrated fiberglass harnesses. Yellow arrows 

indicate the direction of strain. 

 In order to address device thickness and uniformity, all microfluidic devices were cast using a 

sandwich and clamp method. To control the footprint and thickness of the device, 1/16 inch thick 

acrylonitrile butadiene styrene (ABS) sheet was machined to the device outer dimensions by CNC 

(TorMach 770, TorMach, Waunakee WI) and used as the middle layer of the sandwich. The ABS was 

aligned onto the photolithographic silicon master and PDMS was poured to fill the space. The device 

was de-gassed for 15 min at room temperature and then an optical quality glass slide was used to 

seal and clamp the device. The resulting device was then silanized with 

trimethyl(trifluoromethyl)silane (Sigma-Aldrich, St. Louis, MO) by plasma assisted chemical vapor 

deposition with and used to create a PDMS master mold with the exact shape and thickness required. 

The master mold was in turn silanized and all subsequent devices were manufactured from this 

device template, ensuring exact repeatability of device footprint and thickness. Fiber glass harnesses 

were integrated by simply placing them into the mold during fabrication. An un-patterned PDMS piece 

was made by the same methods and plasma bonded to the microfluidic PDMS part yielding fully 

sealed microfluidic devices with overall thickness of 1/8 of an inch. 
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Finite Element Modeling – Coupled Numerical Modeling 

Numerical modeling was performed to predict the effect of microchannel strain on the fluid 

shear stress experienced by cells growing in the microfluidic channel. All finite element numerical 

modeling was conducted using Comsol Multiphysics version 4.2. In the most general situation, where 

the time-waveforms of mechanical strain and fluidic shear stress are to be independently controlled, it 

is absolutely imperative to have an accurate numerical model which captures the coupled solid and 

fluid physics behavior of a dynamically strained microfluidic channel. Using this type of numerical 

model, it is possible to create an automated control algorithm to convert desired mechanical strain 

and shear stress temporal profiles into separate digital control inputs for the stretcher and variable 

flow-rate syringe pump.  

For the solid mechanics half of the problem, the use of poly(dimethylsiloxane), or PDMS 

(Sylgard 184; Dow Corning), as a substrate for the microfluidic bioreactor allowed for simplifying 

assumptions. First, well-mixed PDMS is characterized by a linear elastic and isotropic constitutive 

model, at least below ~40% strain [36]. Second, its relevant mechanical properties may be assumed 

homogeneous across any given device, where the Young’s modulus (E) is about 1.8 MPa [37] and 

the Poisson ratio (ν) is about 0.45 [38]. If we make the further assumptions that stretching is slow 

(neglect PDMS acceleration) and that gravitational body forces are negligible (compared to stress), 

we obtain a simplified set of the Navier-Cauchy equations (Equation 1) where the bulk modulus (λ) ≈ 

5.6 MPa and the shear modulus (μ) ≈ 0.62 MPa are the so-called Lamé parameters. By then 

specifying strain boundary conditions for an otherwise free PDMS surface, as constrained by the 

strain harness (described in device fabrication) the spatially-varying displacement vector (u) was 

found numerically in a stepwise fashion for a full cycle of stretching up to 20% strain. The total strain 

tensor (ε) at the microchannel surface was determined from Equation 2. In order to account for 

possible non-linearity hyperplasticity in the behavior of the PDMS at high strain, and considering the 
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previous assumptions, the Mooney-Rivlin neo-hookean hyperplastic constitutive model was employed 

when modeled in Comsol. 

 

 

To solve the fluid flow problem, we assumed that fluid pressure was insignificant compared to 

the rigidity of the microfluidic device, and therefore the results of the solid mechanics problem were 

used to set the boundary conditions for the fluid mechanics problem. This would fail to be accurate in 

the case where significant pressure drops occur within or downstream of the microfluidic channel. 

However, the bioreactor system is designed with a closed loop push-pull syringe pump so this 

assumption is considered accurate. We therefore combined the flow rate as a function of time as 

applied by the syringe pump with the static solutions to the solid mechanics problem as a sequence 

of deformed wall shapes corresponding with the stretcher time-history in order to achieve a complete 

set of time-step boundary conditions to describe a full cycle. These deformed wall shapes were 

supplied as boundary conditions in a stepwise manner to solve the Navier-Stokes equations. For 

these solutions it was assumed that the cell culture media used behaves as a homogeneous 

incompressible Newtonian fluid with zero buoyant forces (Equation 3) where μ is the dynamic 

viscosity in this case (0.6904 mPa•s for water at 37 °C), ρ is mass density (1000 kg/m
3
 for normal 

saline at 37 °C), t is for time, and n is the spatially-varying fluid velocity vector. The first derivative of v 

was used to find the shear stress at the microchannel surface during a full cycle of stretching. 

 

These models (Eqs. 1-3) were used to optimize device geometry i) to ensure the goal of 

uniform strain across the microchannel surface where cells were cultured; and ii) to determine the 

effect of microchannel strain on the shear stress experienced by cultured cells. These coupled 

numerical models were validated experimentally as described in the following section. 
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Bioreactor Design and Control 

The microfluidic bioreactor is built around a PDMS microfluidic device with a channel 0.1 mm 

tall by 1 mm wide by 25.4 mm long. A low aspect ratio microfluidic channel was chosen to ensure 

maximum uniformity of strain across the entire culture surface. Optimization of the design was 

performed during finite element modeling and is discussed further in the result section.  

 In order to control the strain dynamics on the microfluidic device, a design integrating two 

opposing micro-positioning linear actuators was chosen. The opposing linear actuators allows for 

visualization of the microfluidic channel during dynamic stretching provided that the actuators work in 

concert with each other. A syringe pump was chosen to provide fluid flow for the bioreactor system. 

The entire bioreactor is designed around a compact optical breadboard with a footprint that fits in a 

standard cell culture incubator or on a microscope stage (Figure 4). 

 

Figure 4. Top view schematic of the bioreactor system design. Yellow arrows indicate the 
direction of strain. 

 The design constraints for the linear actuators included the precision and high forces required 

to stretch a 1/8 inch microfluidic device repeatedly. An approximation of the forces required is shown 

in supplementary figure 1 (Appendix A). The actuators used in the bioreactor system are Physik 

Instrumente M-235.5DD high power direct drive DC actuators with a ballscrew driving mechanism 
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(Physik Instrumente, GmbH). The actuators have a total travel length of 50mm. Ballscrew actuators 

were chosen to reduce the backlash when performing cyclic motion. Direct drive DC driven linear 

actuators were chosen to achieve the high speeds and accelerations necessary for 1 Hz cyclic motion 

and produce smooth displacement curves. In addition, these actuators provide forces of over 120 N 

and incremental motion of 0.5 um with 0.5 um repeatability. The actuators are equipped with rotary 

encoders for feedback during the control process. Control of the bioreactor system is achieved 

through a PCI bus card integrated into the control computer and using Labview. Labview drivers 

provided by the company for control needed to be modified in order to control the actuators for 

continuous cyclic motion over extended times. A screenshot of the control software written in Labview 

is shown in supplementary figure 2. Before bioreactor operation, the actuators are first referenced to 

non-contact hall-effect limit switches and then moved into position to load the microfluidics to the 

system. A MATLAB program is used to write the motion profile instructions for the actuators and is 

capable of writing any arbitrary waveform to a set of motion instructions for the actuators. The motion 

profile code can be reviewed in appendix B. 

 Fluid flow is provided to the bioreactor system through a PHD-Ultra push-pull high precision 

syringe pump (Harvard Apparatus, Holliston, MA). Computer control software for the syringe pump 

was written using Labview (Supplementary Figure 3). To achieve a physiological arterial shear stress 

in our microfluidic bioreactor, a high flow rate was achieved (150 ul•min
-1

 for a wall shear stress of 1.5 

dPa). The specific syringe pump used was chosen because it could supply the high flow rates 

necessary as well as precise control over the flow waveform. 

 The bioreactor was also designed to be flexible enough to use for multiple applications. For 

example, it is currently being utilized with a 12 well plate format PDMS well for culturing fetal rat 

cardiomyocytes and induced pluripotent stem cells under dynamic mechanical stimulation. In 

addition, the bioreactor is re-configured to double the throughput when imaging is not required for the 

experiment (Figure 7C). 
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Bioreactor Characterization 

When you stretch a microfluidic channel the channel dimensions change due to the elastic 

properties of PDMS. When flow was supplied to the microfluidic bioreactor at a constant volumetric 

flow rate as defined by the syringe pump input, the shear stress experienced by the cells changed 

with the strain state of the bioreactor. In order to fully understand the mechanical environment 

experienced by cells cultured in the bioreactor device we developed characterization methods to 

simultaneously measure the WSS and strain during dynamic mechanical stimulation. Measurements 

of WSS were accomplished by monitoring the three dimensional fluid velocity profile of the channel; 

and WSS was calculated by taking the gradient of the downstream fluid velocity (u) at the channel 

walls. To measure the three dimensional fluid velocity profile, the device is tilted so that the entire 

cross section of the channel can be imaged in a single frame of video (Figure 5). Devices were made 

with small markers periodically spaced along the channel wall such that the tilt angle of the device 

could be measured by focusing on different markers along the length of the channel. 

 

Figure 5. Bioreactor characterization schematic. The bioreactor is tilted on the microscope 
stage so that the entire velocity profile of the channel can be imaged in one frame. The 
downstream velocity (u) is then calculated using the tilt angle of the device and its location in 
x’ when it is in maximum focus.  

After measuring the angle of the device with respect to the focal plane of the microscope 

objective, cyclic stretch and fluid flow were started. A flow rate of 147 µL•min
-1

 was used for 

characterization experiments because finite element modeling showed this flow rate would supply a 

physiologically relevant arterial WSS of 1.5 dPa. A physiologically relevant arterial cyclic strain of 10 

% at a frequency of 1 Hz was used for all characterization experiments. Polystyrene beads  

(3 µm in diameter) were used as tracer particles in the fluid because they provided good contrast for 
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light microscopy and are nearly neutrally buoyant in water. This allowed us to ignore buoyant forces 

when calculating the fluid streamline velocity in the channel. The devices were imaged using a 

Phantom v310 high speed camera at a frame rate of 3200 fps (Vision Research, Wayne, NJ). Videos 

were captured for 3 full cycles of strain and exported as AVI files for particle image velocimetry 

analysis. 

Particle image velocimetry (PIV) software was developed in both Labview and MATLAB, 

however, final analysis was done using the MATLAB software. The software was developed by Todd 

Lagus in the Edd group and utilizes functions written by John C. Crocker, and was edited by Lucas 

Hofmeister for its final form. The tracking software is freeware available for download from 

http://www.physics.emory.edu/~weeks/idl/. The software consists of several different functions which 

are all called by the main tracking program (Appendix C). The first function, “ChannelWidthMain,” 

(Appendix D) monitored the location of the edges of the channel in order to track strain during the 

experiment. The channel width function segmented each frame so that each channel wall is a single 

object and then measured the separation of the two objects to define channel width. The second 

function, “centroidmain,” (Appendix E) took each frame from a tracking video and processed it by 

thresholding, finding particles, and assigning them shape descriptors. Thresholding was performed by 

Otsu’s method or by manually assigning a threshold value. Next, the program identified the outlines of 

the particles and assigned shape descriptors. The most useful shape descriptor in this case is the 

eccentricity of the particles. To calculate eccentricity of the particles, the function assigned an ellipse 

that had the same second moments as the particle outline. Eccentricity is then defined as the ratio of 

the distance between the foci of the ellipse and its major axis length. A circle has an eccentricity of 0 

and a line segment has an eccentricity of 1. The eccentricity measure is used to determine when 

each particle passes through its point of maximum focus. This information is in turn used to identify 

the particle’s z coordinate in the microfluidic channel. This information was fed into the “track,” 

program (Appendix F) where individual particle locations from each frame were identified and sorted 

into trajectories. The track software was programmed to look for particles that move a maximum 

displacement of 1.5 times the theoretical maximum displacement of the particles estimated from 

channel dimensions and average velocity approximated from volumetric flow rate. This ensured that 

http://www.physics.emory.edu/~weeks/idl/
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the software was not jumping to a new particle between frames and reduced computation time. 

Particles were also tracked if they were not lost for more than 2 frames during the PIV video and if 

they existed for at least 10 frames. After identifying the trajectories of the particles, the software 

identified the local minimum and maximum of the eccentricity of each particle. The program then 

filtered the eccentricity to remove bad tracking data and then assigned each remaining particle a 

frame where it was in maximum focus by its minimum eccentricity (where it appears most circular). 

Figure 6 shows a frame of video with a distribution of particles in and out of focus. The particles were 

less distorted when they were in the center of the focal plane of the objective and therefore maximum 

focus was defined as the minimum eccentricity (=0) of each particle. Next the software excluded 

particles that showed large jumps in velocity. Following tracking and filtering to remove bad data, 

each tracked particle trajectory was assigned to a location in the channel by mapping the x’ location 

of its maximum focus to the particle’s location in the z dimension as shown in Figure 5 above. The 

data was then fit to a parabola for each frame to calculate wall shear stress. 

 

Figure 6. Representative image from PIV acquisition. The beads are round and clear when 
they pass through the center of the focal plane and distorted when they are out of focus. This 
characteristic is measured by eccentricity in the PIV software. 

Strain characterization was also performed by PIV analysis. Tracking the location of the 

channel walls during shear stress measurements provided a baseline measure for the strain 
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dynamics of the microfluidics. In order to obtain a more detailed picture of the strain characteristics of 

the bioreactor device, 10 µm fluorescent polystyrene beads were embedded in a bioreactor 

microfluidic. Fluorescent beads were dried out of aqueous solution and re-suspended in PDMS curing 

agent. Bioreactor devices were then made by the same protocol described above with microparticle 

containing curing agent. The devices were then imaged parallel to the focal plane of the microscope. 

PIV was used to track the fluorescent beads during 3 cycles of 10% cyclic strain. Bead displacements 

were plotted using MATLAB to visualize the strain in the device (Appendix G). Because the data 

points from the embedded beads were relatively sparse in the x,y plane, the data was interpolated 

using a Delaunay triangulation to produce a surface plot of strain for each frame of the video. 

Omental Mesothelium Culture and Cell Assays 

Prior to omentum experiments, human umbilical vein endothelial cells and human aortic 

endothelial cells were cultured in the microfluidic bioreactor system in order to develop culture 

conditions and test cell viability in bioreactor devices. Endothelial cells were cultured in Endothelial 

Growth Medium 2 (Lonza, Allendale, NJ) to confluence in 75 cm
2
 flasks prior to being trypsin digested, 

pelleted, and seeded into bioreactor devices. Cells were cultured for 1-4 days and then stained with 5 

µM Calcein AM (Sigma Aldrich, St. Louis, MO). 

Omental mesothelium was isolated from adult outbred ICR, mice as previously reported [39] 

and cultured in supplemented medium [(10% fetal bovine serum (FBS), 1% penicillin/streptomycin, 

Dulbecco’s modified Eagle’s medium (DMEM)]. For each experiment, four mice were sacrificed by 

CO2 asphyxiation and the stomach, spleen, and pancreas organ complex with associated omentum 

was isolated from the peritoneal cavity and placed in DMEM for dissection. The omentum was further 

separated from the associated organs and fat was trimmed from the thin transparent omental tissue. 

Afterwards the isolated omentum was diced with scissors, spun down at 1200 RPM for 5 minutes, 

and re-suspended in 10 µL media per device being seeded. Microfluidic devices were prepared by 

coating with 10 µg•mL
-1

 fibronectin in PBS without Ca
2+

 and Mg
2+ 

at room temperature for at least 1 

hour before seeding. Before seeding, the devices were washed with PBS and then culture medium. It 

was extremely important during these steps to maintain the devices at physiological temperature and 
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use culture medium that was equilibrated for several hours with the atmosphere inside the culture 

incubator. This helped to maintain the pH of the culture medium and prevented bubble formation in 

the microfluidic channel. Omental cells were cultured for 48 hours prior to applying mechanical 

stimulation. Omental cells were exposed to 10% cyclic strain, 10% static strain, or 5 dynes/cm
2
 WSS 

for 48 hours. Due to the nature of microfluidic cell culture, some flow rate is required to maintain the 

culture in the device. The low flow rate case (<0.01 dPA) was compared to static culture in 

microfluidics and in 4 chamber Lab-Tek glass chamber slides (Electron Microscopy Sciences, 

Hatfield, PA). During the culture period, the microfluidic channels were fed by either a syringe pump 

(PicoPlus, Harvard Apparatus, Holliston, MA) (“active pumping”) or with micropipette barrier tips filled 

with media (“passive pumping”) [40]. Using these techniques a low flow rate could be supplied to 

maintain cultures without having a significant effect on cell phenotype. Active pumping was used to 

apply shear stress conditions with flow rates determined by modeling and device characterization.  

For immunohistochemistry analysis, cells were fixed with 4% paraformaldehyde in PBS for 30 

min at room temperature then blocked with 10% goat serum in PBS -/- with 0.1% Tween20 for an 

additional 30 minutes at room temperature. Wilms tumor protein-1 (WT1) was used as a mesothelial 

marker to determine if omental mesothelium cells had differentiated away from their mesothelial 

lineage. Two markers of smooth muscle lineage were investigated. α smooth muscle actin (αSMA) 

was used as an early smooth muscle marker and smooth muscle myosin heavy chain (smMHC) was 

used as an mature smooth muscle marker. Anti-WT1 primary antibodies raised in mouse were diluted 

1:50 in blocking solution (05-753, Millipore). Anti-αSMA primary antibodies raised in rabbit were 

diluted 1:250 in blocking solution (A2547, Sigma). Anti-smMHC antibodies raised in rabbit were 

diluted 1:100 in blocking solution (bt-562, Biomedical Technologies). Primary antibodies were 

incubated overnight at 4 C. After rinsing, secondary antibodies were diluted 1:2000 in blocking 

solution with 1:10000 hoechst as a nuclear counter stain and incubated for 3 hours at room 

temperature. Secondary antibodies used were Alexa Fluor 488 conjugated goat anti-rabbit IgG 

(Invitrogen, A-11008) and Alexa Fluor 568 conjugated goat anti-mouse IgG (Invitrogen, A-11004). 

Devices were then rinsed and stored in PBS for imaging. Imaging was performed using a Nikon 

inverted microscope (Nikon, Melville, NY). 
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Statistical Analysis 

Statistical analysis was performed with one-way ANOVA followed by a Tukey test to compare 

experimental groups. Analyses were done with Minitab 16 software (State College, PA) or Microsoft 

Excel. Statistical significance was accepted within a 95% confidence limit. Results are presented as 

arithmetic mean ± SEM graphically. 

 

Results 

Bioreactor Design and Fabrication 

 The finalized form of the mechanotransduction bioreactor in both single and double stretching 

configurations is shown in Figure 7. An acrylic housing was added to the bioreactor design in order to 

further humidify the bioreactor environment. This modification was made to account for device drying 

due to the permeability of PDMS to water and the extremely high surface to volume ratio of the 

microfluidic channel. 

 

Figure 7. Mechanotransduction bioreactor assembly. The finalized mechanotransduction 
bioreactor is shown as A) a cross-section schematic of the microfluidic channel with 
embedded fiberglass strain harnesses B) Single device mode with syringe pump input and 
opposing actuators to allow for real-time visualization during strain and C) double device 
mode to increase throughput with micropipette feeding system. 
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Bioreactor Characterization 

Numerical modeling demonstrated that a single monolithic channel in a block of PDMS will 

bow when strain is applied, resulting in non-uniform strain over the culture area (Figure 8A). To 

correct for the nonuniformity in strain, side channels were added to the device in plane with and 

parallel to the main channel. The addition of side channels concentrated stress outside the main 

channel and resulted in uniform strain over the culture surface (Fig 8B).  

 

Figure 8. Neo-Hookean hyperplastic finite element model of microfluidic bioreactors shown in an 
x section view A) The behavior of a device with no side channels is shown. Strain is non-uniform 
across the channel surface and the channel walls bow inward. B) The addition of side channels 
corrects the bowing and results in highly uniform strain across the channel surface. Arrows 
indicate the direction of strain. The channel profile before stretching is shown as outlines on both 
images. 

The modeled fluid velocity profile demonstrated uniform shear stress on >90% of the 

bioreactor channel (Fig 9A). Modeling also predicted that WSS in the bioreactor would change with 

strain and a constant volumetric flow rate (Fig 9B). The coupled numerical model predicted that flow 

rate would need to change by around 8.6 µL•min
-1

 to maintain a sheer stress of 1 dPa in a bioreactor 

device subjected 10% cyclic strain superimposed on 20% static strain. The change in flow rate was 

predicted to be in phase with the change in strain, and decreased strain resulted in decreased flow 

rate to maintain a constant shear stress. Modeling predicted a flow rate of 147 µL•min
-1 

was to 

achieve a physiological shear stress WSS of 1.5 dPa for an un-strained microfluidic bioreactor device. 
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Figure 9. Finite element modeling of flow rate in a microfluidic bioreactor device. A) Shows 
the velocity distribution in a microfluidic device yielding a shear stress of 1.5 dPa B) Shows 
the relationship between strain and flow rate. A change in flow rate of around 8% of the total 
volumetric flow rate is required to maintain a constant shear stress under 10% cyclic strain 
conditions. 

The three dimensional velocity profile during a single frame of PIV video confirms that the 

velocity profile in the channel matches that of the modeled case for no strain (Fig 10A). In addition, 

the dynamic PIV results show that the shear stress changes as predicted by the model in the case of 

1 Hz 10% cyclic strain (Fig 10B).  

 

Figure 10. Bioreactor Characterization. A) Shows a parabolic fit of the measured streamline 
velocities in a microfluidic device during dynamic strain. B) Shows the changes in channel 
width, channel height, shear stress, maximum streamline velocity, and the data points used 
to calculate shear and maximum velocity during one frame of the PIV under 10% strain. 



22 

The strain on the microfluidic bioreactor was also found to be very uniform across the entire 

culture surface, as indicated by finite element modeling and PIV tracking of embedded fluorescent 

microparticles. This data also indicates that the opposing actuator system results in very little 

movement of the device during cyclic strain. 

 

Figure 11. Strain characterization of a microfluidic bioreactor at 10% strain.  

 

In Vitro Studies 

Endothelial cells remained viable in microfluidic devices for up to a week as measured by 

calcein AM staining (Figure 12). Interestingly, endothelial cells were also found to adhere to all 

surfaces of the microfluidic bioreactor. This is confirmed by imaging a cross section of the bioreactor 

device with phalloidin stained endothelial cells.  

 

Figure 12. Endothelial cell culture in the microfluidic bioreactor system. A) Cell viability is 
confirmed by calcein AM staining. B) Phalloidin stained ECs can be seen adhering to all 
surfaces of the bioreactor device in a cross sectional view. 
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Exposure to WSS of 5 dynes.cm
-2

 was shown to decrease expression of alpha smooth 

muscle actin (αSMA, early smooth muscle marker) compared to 0.1 dynes.cm
-2

 WSS, without 

affecting expression of the mesothelial marker Wilm’s tumor protein 1 (Wt1) (Figure 13A,B). 10% 

cyclic strain was found to increase the number of cells expressing the mature smooth muscle marker, 

smooth muscle myosin heavy chain and decrease the expression of Wt1 compared to no strain 

conditions and also induce alignment of αSMA fibers (Figure 13C). A comparison of low shear stress 

vs. static controls shows no statistical difference in expression of Wt1 or αSMA (Fig. 

13D).

 

Figure 13. Effects of mechanical stimuli on omental mesothelium differentiation. A) Omental 
mesothelium under static WSS conditions in a microfluidic device. A majority of cells were shown 
to express αSMA. B) Omental mesothelium exposed to 0.5 dPa WSS was shown to significantly 
decrease αSMA expression compared to the static condition. C) Omental mesothelium exposed 
to 10% cyclic strain for 48 hours has aligned αSMA stress fibers and a low expression of WT1. D) 
comparison of control conditions of static culture and low shear <0.1 dPA shows no statistical 
difference between the low flow and static conditions. 
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Discussion 

Understanding the regulatory role of the hemodynamic forces, WSS, and strain in vascular 

development from an embryonic origin is important to address a long standing issue of cell sourcing 

for vascular repair in the field of tissue engineering. Here we developed a bioreactor system to study 

how hemodynamic forces affect the differentiation of omental mesothelium.  

 The novel characterization techniques developed in this study allowed for the simultaneous 

characterization of WSS and strain, and confirmed the numerical models used to inform the device 

design. Side channels were added to the bioreactor design to eliminate non-uniformities in strain and 

bowing of channel walls. Importantly, we showed that with a constant volumetric flow rate WSS 

changes during stretching due to changes in channel dimensions. This analysis demonstrated that 

flow rate decreases with strain because the change in channel height is less significant than the 

change in channel width and therefore cross sectional area changes during strain. The same trends 

were observed from both modeling and PIV characterization, so we believe the coupled numerical 

model to be an accurate representation of the conditions in the microfluidic bioreactor.  

We found that WSS suppressed the differentiation of omental mesothelium to smooth muscle 

lineages. It may follow that these cells are being pushed more in the direction of endothelial lineages, 

but additional experiments need to be conducted to confirm this speculation. For example, a stain for 

platelet endothelial cell adhesion molecule or Von Willibrand factor would elucidate differentiation to 

endothelial lineages. 

In addition, 10% cyclic strain increased expression of early and late smooth muscle cell 

markers under low shear conditions, indicating that cyclic strain induces the differentiation of omental 

mesothelium toward smooth muscle lineages. Alignment of actin stress fibers is a key component of 

smooth muscle cell mechanotransduction and could represent an early transition event towards 

terminal differentiation of these cells to a smooth muscle lineage [41].  
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Conclusion 

This thesis designed, developed and validated a microfluidic bioreactor system which can 

accurately recapitulate the major hemodynamic mechanical parameters of shear stress and strain. 

Furthermore, we characterized the effects of applying cyclic strain on the shear stress experienced by 

cultured tissues. This information will help us better understand the effects that each parameter has 

on the cells being studied. In addition, we developed the novel characterization techniques that allow 

us to visualize the three dimensional velocity profiles in a microfluidic channel during dynamic strain. 

This technique validated our models of bioreactor behavior, and could also prove useful for other 

studies involving microfluidic fluid dynamics. This study will facilitate the use of omental mesothelium 

as a cell source for tissue-engineered approaches to vascular repair. 
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CHAPTER III 

 

 

ONGOING AND FUTURE WORK 

Future experiments will focus on using this information to decouple shear stress and strain by 

adjusting volumetric flow rate to compensate for changes in WSS in real time. We will investigate the 

effects of hemodynamic mechanical stimulation of the differentiation of omental mesothelium towards 

endothelial and fibroblast lineages. 

In addition to these experiments, the bioreactor system developed is flexible enough to be 

tailored to numerous different studies revolving around mechanotransduction. The system is already 

being applied by other students in the lab to study the effects of mechanical stimuli on mesenchymal 

stem cell differentiation to endothelial lineages as well as cardiac lineages. The system was adapted 

to work with a 12 well plate format PDMS devices and is being applied in this form to study the effects 

of mechanical stimuli on induced pluripotent stem cells. 
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APPENDIX A 

 

Supplementary Figure 1. Force vs velocity and force vs. displacement approximations for the 
mechanotransduction bioreactor. These approximations were used to determine the type of 
actuator that could be used for the bioreactor system. 

 

Supplementary Figure 2. Actuator control software screenshot. 
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Supplementary Figure 3. Syringe pump control software screenshot. 

 

 

 

APPENDIX B 

USER PROFILE CODE FOR ACTUATOR CONTROL 

loadlibrary(‘GCSArrayIODLL’); 
% Macro to produce Spline Interpolation data for external Profile mode 
% for C-843 
%% 
duration = 0.5; %duration in min 

  
for MaxAmp = -0.0625 
    % MaxAmp = 1; 
    for FreqLow = 1 
        %         FreqLow = 2;% Hz 
        MaxAcc = 100000; % mm/s^2 
        AmpLow = MaxAcc / (FreqLow * 2 * pi)^2; % determine maximum 

amplitude from frequency and acc 
        if (AmpLow>MaxAmp) 
            AmpLow = MaxAmp; % reduce amplitude to 5 mm 
        end 
        BufLen = 4; 
        %BufLen = duration*60/FreqLow*4; % length of buffer 
        T_L_inCyc = 4*round(1/4/FreqLow/0.000410); %% period in cycles 
        om_L = 2*pi/T_L_inCyc; % cycle frequency 
        times = (0:BufLen(1))*T_L_inCyc/4; % time steps 
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        om2 = om_L; 

  
        a2 = AmpLow * 10000; % amplitude in counts 
        times_s = times * 0.00041; 

  
        x = round(a2*(1-cos(times*om2))); % position at step times 
        x = x / 10000; % amplitude in mm 

  
        cs = spline(times_s,[0, x ,0]); % spline interpolation 
        xinterp = linspace(times_s(1),times_s(end)); 
        yinterp = ppval(cs,xinterp); % for demonstration of spline 

interpolation 
        %         figure(1); 
        plot(times_s,x,’+-‘,xinterp,yinterp); 
        %         hold off; 
        %% 

  
        SplineCoefs = fliplr(cs.coefs); % for polynomial display 
        Times = diff(times_s); 
        Buffers = []; 
        for n = 1BufLen(1))% build buffers matrix, multiplicate each 

column with its factor 
            Buffers = [Buffers; 
                [Times(n),SplineCoefs(n,1),SplineCoefs(n,2),... 
                SplineCoefs(n,3)*2,SplineCoefs(n,4)*6]]; 
        end 

  
        % write to file 
                 

%dlmwrite(29print(‘NbuffersFor%2dHz.txt’,FreqLow),Buffers,’delimiter’,’;’,

’precision’,’%8.8e’) 
        zeroit = 1; 

  
        %% 
        TableID = 

calllib(‘GCSArrayIODLL’,’GCSArrayCreateNewTable’,size(Buffers,1),size(Buff

ers,2)) 

  
        Xdata = Buffers(:,2); 
        if(zeroit) 
            Buffers(:,2) = Xdata — Xdata(1); 
        end 
        ptr = libpointer(‘doublePtr’,Buffers’); 
        XTData = cumtrapz(Buffers(:,1)); 
        [out1,out2] = 

calllib(‘GCSArrayIODLL’,’GCSArraySetData’,TableID,ptr,length(Buffers()); 
        [out1,out2] = 

calllib(‘GCSArrayIODLL’,’GCSArraySetTableColumnName’,TableID,0,’Time’); 
        [out1,out2] = 

calllib(‘GCSArrayIODLL’,’GCSArraySetTableColumnName’,TableID,1,’Position’)

; 
        [out1,out2] = 

calllib(‘GCSArrayIODLL’,’GCSArraySetTableColumnName’,TableID,2,’Velocity’)

; 
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        [out1,out2] = 

calllib(‘GCSArrayIODLL’,’GCSArraySetTableColumnName’,TableID,3,’Accelerati

on’); 
        [out1,out2] = 

calllib(‘GCSArrayIODLL’,’GCSArraySetTableColumnName’,TableID,4,’Jerk’); 
        [out1,out2] = 

calllib(‘GCSArrayIODLL’,’GCSArrayAddRemark’,TableID,30print(‘Cosinus 

Motion Profile with \nAmplitude: %fmm\n’,AmpLow)); 
        [out1,out2] = 

calllib(‘GCSArrayIODLL’,’GCSArrayAddRemark’,TableID,30print(‘Frequency: 

%fHz\n’,FreqLow)); 
        [out1] = 

calllib(‘GCSArrayIODLL’,’GCSArraySetSampleTime’,TableID,1); 
        %         [out1,out2,out3] = 

calllib(‘GCSArrayIODLL’,’GCSArrayExportCSV’,TableID,’SplineData.csv’,’Line

Nr’); 
        [out1,out2,out3] = 

calllib(‘GCSArrayIODLL’,’GCSArraySave’,TableID,30print(‘.\\CosinusFiles\\C

osinusUPX%03ddHz_%04dum.txt’,FreqLow*10,round(AmpLow*1000)),’’); 
        [out1] = calllib(‘GCSArrayIODLL’,’GCSArrayDelete’,TableID); 
    end 
end 

APPENDIX C 

MAIN TRACKING PROGRAM CODE 

%function [Frame_vel,Xmat_dim, Ymat_dim, channel_width, 

channel_centerline, 

channeldim_avg]=Image_process_lucas_avi(fname1,fname2); 
%% Introduction 
%Image processing example following matlab tutorial 
%TPL 5/12/11 
% %% Clear Variables 
    clear all 
    close all 
%% Initialize Global Variables 
    global num; 
    global numframes; 
    global timestep; 
%% GUI file selection 
%numfiles=input(‘Number of File Pairs (1): ‘); 
numfiles=1; %number of file pairs 
% the first file in the pair should be an unprocessed image for 

determining 
% the c hannel width in each frame 
% The second file should be a processed image with white particles on 

black 
% background from ImageJ 
for i=1:numfiles 
    %file_temp=input(strcat(‘Enter Filename of Cropped and Processed Image 

for Slice’,num2str(i),’ : ‘),’s’); 
    %display(strcat(‘Enter Filename of Cropped and Processed Image for 

Slice’,num2str(i),’ after pause: ‘)); 

  
    [filename,pathname] = uigetfile(‘*.avi’,strcat(‘Enter Filename of 

Original Image Stack’)); 
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    fullname=fullfile(pathname, filename); 
    fnames{I,1}=fullname; 
    [filename,pathname] = uigetfile(‘*.avi’,strcat(‘Enter Filename of 

Processed Image Stack’)); 
    fullname=fullfile(pathname, filename); 
    fnames{I,2}=fullname; 
end 
% test_wall=input(strcat(‘Do all frames show channel walls? (Y/N)’),’s’); 
% if test_wall == ‘Y’ | test_wall == ‘y’ 
%     [filename,pathname] = uigetfile(‘*.avi’,strcat(‘Enter Filename of 

Original Image Stack’)); 
%     fullname=fullfile(pathname, filename); 
%     fnames{I,3}=fullname; 
% end 
%% Specify file name 
%     fname1=’C:\Users\VUBioreactor\Desktop\ForTodd\12_29_Tilted 

Experiments\Result of 3200fps_20x_opto1_147ul_tilt3_subtract_2.avi’; 
%     fname2=’C:\Users\VUBioreactor\Desktop\ForTodd\12_29_Tilted 

Experiments\3200fps_20x_opto1_147ul_tilt3_orig.avi’; 
%     mov1=mmreader(fname1); 
%     mov2=mmreader(fname2); 
    mov1=mmreader(fnames{1,1}); %original movie 
    mov2=mmreader(fnames{1,2}); %processed movie 
    numframes=mov1.NumberOfFrames; 
    startframe=1; 
    %numframes=2; %limit number of frames for diagnostics 
    num=1; %start particle counter at 1 
% User ‘inputs’ 
    framerate=3200; %frames per second 
    flowrate=147; %uL/min 
    channelheight=110; %um %put in minimum values to minimize area 
    channelwidth=1000; %um estimated — measured using video 
    diam=3; %nominal particle size, um 
    scale=1.21; %um/pixel 
    rho=1000; %kg/m3, fluid density 
    mu=0.001; %N-s/m2 
    %cropdims=[220 0 979 800]; % x start y start x length y height % Crop 

unneeded portions of frames 

  
% Calculations based on inputs 
    timestep=1/framerate; 

  
%estimating velocity for downstream displacement of particles from frame 

to 
%frame for threshold calculation 
% Note that pdisp is very important in selecting particles 
    Axsec=channelheight*channelwidth; %um^2 (estimated) 
    u_mean=(flowrate*1e9*(1/60))/Axsec; %um/s 
    u_max=1.5*u_mean; %um/s (estimated) 
    pdisp=1.5*u_max*timestep*(1/scale); %particle displacement (absolute) 

in pixels/frame 
    %pdisp=20; 
    % Create a time vector 
    t=(0:timestepnumframes-1)*timestep)’; 
    f=(1:1:numframes)’; 
%% Loop for Wall Coordinates 
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H=waitbar(0,’Obtaining Wall Locations’); 
for frame=startframe:numframes 
%for frame=600:50:5000 
    f_orig = read(mov1, frame); 
    f_orig = rgb2gray(f_orig); 
    %Measure channel dimensions in pixels 
    channeldim(frame,=channelwidthmain_min(f_orig,frame); 
    % take data points only where left and right wall measurements 
    % obtained 
    % index_real=find(isnan(channeldim(:,1)+channeldim(:,2))~=1); 
    waitbar(frame/(numframes),H); 
    %pause 
    %frame 
end 
close(H); 

  
%% Smooth, scale, and calculate channel width 
smooth_region=250; 
for i=1:size(channeldim,2) 
    

channeldim_smoothed(:,i)=smooth(channeldim(1:numframes,i),smooth_region); 
end 
% channel_width=(channeldim(:,3)-channeldim(:,1))*scale; 
% channel_centerline=(channeldim(:,3)+channeldim(:,1))/2*scale; 
% channeldim_scaled=channeldim*scale; 
channel_width=(channeldim_smoothed(:,3)-channeldim_smoothed(:,1))*scale; 
channel_centerline=(channeldim_smoothed(:,3)+channeldim_smoothed(:,1))/2*s

cale; 
channeldim_scaled=channeldim_smoothed*scale; 
%% Set frame crop dimensions to crop out walls for particle counting 
wall_offset=25; % cut off centroid measurement by wall_offset number of 

pixels from the wall 
x_crop=[(wall_offset+channeldim(:,1)),(channeldim(:,3)-channeldim(:,1))-

2*wall_offset]; 

  
%% Do Loop for particle centroids 
%profile on 

  
H=waitbar(0,’Obtaining Centroid Measurements’); 
for frame=startframe:numframes 
% for frame=1:5    % Extract frame 
    f_subtract = read(mov2, frame); %read selected frame 
    f_subtract = rgb2gray(f_subtract); %drop color matrices 
    cropdims=[x_crop(frame,1) 1 x_crop(frame,2), 800]; 
    f_subtract = imcrop(f_subtract, cropdims); %crop frame 

     

   
    %Call Centroid Function 
    offset=x_crop(frame,1)-1; %offset in x direction for pixel coordinates 

in original frame 
    [C{frame,1}]=centroidmain(f_subtract,frame,offset); 

    
    %Frame counter for updating  
    frame 
    waitbar(frame/(numframes),H); 
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end 
close(H); 

  
%profile report 
save(‘loopone.mat’) 
%%  convert centroid cell array to number array 
    for frame=startframe:numframes 
        Ccorr1{frame,1}=cell2mat(C{frame}); 
    end 
    Ccorr2=cell2mat(Ccorr1); 
%% Call particle counting function — Based on relative reference frame 
    param.mem=2; %maximum time steps for a “lost” particle 
    param.good=10; %minimum frames a particle must exist to be included in 

tracked particle output 
    param.dim=2; %first two cols of Ccorr2 represent centroid data 
    param.quiet=0; %set to 1 to turn off output text 
    results=track(Ccorr2,pdisp,param); %2nd input represents maximum pixel 

displacement between frames — factor may need adjustment if “track” has 

difficulty 
%% Replace all non-values with NaNs and populate position matrices 

    
   unique=max(results(:,9)); %read number of unique tracked particles 
   Xmat=sparse(zeros(unique,numframes)); %creates matrix for x position — 

column number is the frame, row number is the particle number 
   Ymat=Xmat;pixel_intensity=Ymat;eccentricity=Ymat; 
   H=waitbar(0,’Arranging Tracking Data’);    
    for part=1:size(results,1) 
        Xmat(results(part,9),results(part,8))=results(part,1); % x 

position at row = particle number, column = frame 
        Ymat(results(part,9),results(part,8))=results(part,2); % y 

position at row = particle number, column = frame 
        %Nmat(results(part,9),results(part,8))=results(part,7); % particle 

number from centroid tracker at row = particle number, column = frame 
        pixel_intensity(results(part,9),results(part,8))=results(part,6); 

%weighted centroid at row = particle number, column = frame 
        eccentricity(results(part,9),results(part,8))=results(part,5); 

%particle shape at row = particle number, column = frame 
        waitbar(part/(size(results,1)),H); 
    end 
    close(H); 
    %% scale values 
    Xmat_dim=Xmat*scale; %convert x position to um 
    Ymat_dim=Ymat*scale; %convert y position to um 

  

     
% %% Particle velocities based on position vectors- central in time 
%     Xmatrixvel=NaN(size(Xmat_dim)); %initialize matrix with NaNs 
%     Ymatrixvel=Xmatrixvel; 
%     Velmag=Xmatrixvel; 
%     for j=1:size(Xmat_dim,1) 
%         for k=2:numframes-1 
%             if isnan(Xmat_dim(j,k))==0 && isnan(Xmat_dim(j,k+1))==0 && 

isnan(Xmat_dim(j,k-1))==0 
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%                 Xmatrixvel(j,k)=(Xmat_dim(j,k+1)-Xmat_dim(j,k-

1))/(2*timestep); 
%                 Ymatrixvel(j,k)=-(Ymat_dim(j,k+1)-Ymat_dim(j,k-

1))/(2*timestep); 
%                 Velmag(j,k)=sqrt(Xmatrixvel(j,k)^2+Ymatrixvel(j,k)^2); 
%             end 
%         end 
%     end 
%% Particle velocities based on position vectors — forward in time 
Xmatrixvel=sparse(zeros(unique,numframes)); %initialize matrix with NaNs 
Ymatrixvel=Xmatrixvel; 
Velmag=Xmatrixvel; 
H=waitbar(0,’Calculating Particle Velocities’);    
for j=1:size(Xmat_dim,1) 
    for k=1:numframes-1 
        %if isnan(Xmat_dim(j,k))==0 && isnan(Xmat_dim(j,k+1))==0  
        if isfinite(1/Xmat_dim(j,k))==1 && isfinite(1/Xmat_dim(j,k+1))==1 

%calculate if particle exists for the frame 
            Xmatrixvel(j,k)=(Xmat_dim(j,k+1)-Xmat_dim(j,k))/(timestep); 

%calculate x velocity in um/s 
            Ymatrixvel(j,k)=-(Ymat_dim(j,k+1)-Ymat_dim(j,k))/(timestep); 

%calculate y velocity in um/s 
            Velmag(j,k)=sqrt(Xmatrixvel(j,k)^2+Ymatrixvel(j,k)^2); 

%calculate velocity magnitude in um/s 
        end 
    end 
    waitbar(j/(size(Xmat_dim,1)),H); 
end 
close(H); 
%% Particle Acceleration Calculation based on particle positions — central 

in time 
Xmatrixacc=sparse(zeros(unique,numframes)); %initialize matrix with NaNs 
Ymatrixacc=Xmatrixacc; 
Accmag=Xmatrixvel; 
H=waitbar(0,’Calculating Particle Accelerations’);    
for j=1:size(Xmat_dim,1) 
    for k=2:numframes-1 
        %if isnan(Xmat_dim(j,k))==0 && isnan(Xmat_dim(j,k+1))==0 && 

isnan(Xmat_dim(j,k-1))==0 
        if isfinite(1/Xmat_dim(j,k))==1 && isfinite(1/Xmat_dim(j,k+1))==1 

&& isfinite(1/Xmat_dim(j,k-1))==1 %calculate if particle exists for the 

frame 
        Xmatrixacc(j,k)=(Xmat_dim(j,k+1)+Xmat_dim(j,k-1)-

2*Xmat_dim(j,k))/(timestep^2); %calculate x acceleration in um/s2 
        Ymatrixacc(j,k)=(Ymat_dim(j,k+1)+Ymat_dim(j,k-1)-

2*Ymat_dim(j,k))/(timestep^2);%calculate y acceleration in um/s2 
        Accmag(j,k)=sqrt(Xmatrixacc(j,k)^2+Ymatrixacc(j,k)^2); %calculate 

acceleration magnitude in um/s2 
        end 
    end 
    waitbar(j/(size(Xmat_dim,1)),H); 
end 
close(H); 
%% Number individual particles 
Part_num=cell(size(Xmat,1),1); 
H=waitbar(0,’Indexing Particle Data’);   
for part=1:size(Xmat,1) 
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    for frame=1:numframes 
        if isfinite(1/Xmatrixvel(part,frame))==1; 
            %particle number, particle frame, x pixel pos in frame, y 

pixel 
            %pos in frame,relative x velocity (scaled), relative y 

velocity 
            %(scaled), relative x accel (scaled), relative y accel 

(scaled) 
            % [ particle number, frame number, time, Xposition in 

frame(um), 
            % Yposition in frame(um), Xvelocity (um/s), Yvelocity (um/s), 
            % Xacceleration (um/s2),Yacceleration (um/s2), pixel 

intensity, eccecntricity] 

                         
            Part_num{part,1}=[Part_num{part,1};[part, frame, t(frame), 

full(Xmat_dim(part,frame)),full(Ymat_dim(part,frame)), 

full(Xmatrixvel(part,frame)),full(Ymatrixvel(part,frame)),full(Xmatrixacc(

part,frame)),full(Ymatrixacc(part,frame)),full(pixel_intensity(part,frame)

),full(eccentricity(part,frame))]]; 
        else 
        end 
    end 
    waitbar(part/(size(Xmat,1)),H); 
end 
close(H); 

  
%% Smooth data 
H=waitbar(0,’Smoothing Data’);   
smooth_region_vel=20; %moving average filter region for velocity 
smooth_region_int=20; %moving average filter region for intensity 
smooth_region_ecc=15; %moving average filter region for eccentricity 
tic 
for particle=1:size(Part_num,1); 
    if size(Part_num{particle,:},1)>2; 
        

Part_num{particle,:}(:,12)=smooth(Part_num{particle,:}(:,7),smooth_region_

vel); % smoothed velocity profile 
        

Part_num{particle,:}(:,13)=smooth(Part_num{particle,:}(:,10),smooth_region

_int); % smoothed intensity profile 
        

Part_num{particle,:}(:,14)=smooth(Part_num{particle,:}(:,11),smooth_region

_ecc); % smoothed eccentricity profile 
        waitbar(particle/(size(Part_num,1)),H); 
    end 
    %particle 
end 
toc 
close(H); 
%% Test for particles to keep based on eccentricity threshold 
particle_index_1=zeros(0,4); %initialize index matrix — 1st column: 

particle number, 2nd column: frame at which particle is in focus 
ecc_thresh_1=0.75; %min eccentricity threshold for double dips 
ecc_thresh=0.55; %minimum eccentricity threshold 
peak_thresh=50; %peak separation threshold, frames 
H=waitbar(0,’Filtering Data on Eccentricity’); 
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for particle=1:size(Part_num,1) 
    %particle 
    if size(Part_num{particle,:},1)>2 && 

min(Part_num{particle,1}(:,14))<ecc_thresh %check for minimum eccentricity 
        ecci_min=[]; 
        [ecc_min,ecci_min]=findpeaks(-Part_num{particle,1}(:,14)); 

%localextrema for eccentricity 
        ecc_min=-1*ecc_min; 
            if min(ecc_min)<ecc_thresh %discard edge minima 
                ecci_min=ecci_min(find(ecc_min<ecc_thresh_1)); %discard 

local minima with high eccentricity (keep the particles indexed) 
                ecc_min=Part_num{particle,1}(ecci_min,14); 
                [int_max,inti_max]=max(Part_num{particle,1}(:,13)); 
                if size(ecci_min,1)>1 && size(ecci_min,2)==1 %check for 

multiple minima 
                    ecc_min=min(Part_num{particle,1}(ecci_min,14)); 

%update ecc_min value 
                    ecci_min=(find(Part_num{particle,1}(:,14)==ecc_min)); 
                end 
                if size(ecci_min,1)==1 && size(ecci_min,2)==1 
                    if ecci_min(1)>5 && 

ecci_min(1)<(size(Part_num{particle,1},1)-5) && inti_max(1)>5 && 

inti_max(1)<(size(Part_num{particle,1},1)-5) 
                        

peak_separation=abs(Part_num{particle,1}(ecci_min,2)-

Part_num{particle,1}(inti_max,2)); 
                        if peak_separation<=peak_thresh 
                            

particle_index_1=[particle_index_1;particle,Part_num{particle,1}(ecci_min,

2),ecci_min,inti_max]; %particle number, frame number, index within cell 

array 
                        end 
                    end 
                end 
            end 
        waitbar(particle/(size(Part_num,1)),H); 
    end 

  
end 
close(H); 
%% Filter out large changes in velocity data 
n_hood=10; %filter neighborhood 
remove_index=zeros(0,2); 
H=waitbar(0,’Removing Bad Data’); 
for i=1:size(particle_index_1,1); 
    particle=particle_index_1(I,1); 
    ecci_min=particle_index_1(I,3); 
    inti_max=particle_index_1(I,4); 
    %particle 
    temp1=(Part_num{particle,1}(max(1,ecci_min-

n_hood):min(size(Part_num{particle,1},1),ecci_min+n_hood),7)); %raw data, 

test for velocity changes near eccentricity min 
    temp2=(Part_num{particle,1}(max(1,ecci_min-

n_hood):min(size(Part_num{particle,1},1),ecci_min+n_hood),12)); %smoothed 

data 
    spread_pct_raw=abs(max(temp1)-min(temp1))/nanmean(temp1); 
    spread_pct_filt=abs(max(temp2)-min(temp2))/nanmean(temp2); 
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    if spread_pct_raw>0.15 && spread_pct_filt>0.10 
        remove_index=[remove_index;particle,i]; 
    else %test for velocity changes near intensity peak 
        temp1=(Part_num{particle,1}(max(1,inti_max-

n_hood):min(size(Part_num{particle,1},1),inti_max+n_hood),7)); %raw data, 

test for velocity changes near eccentricity min 
        temp2=(Part_num{particle,1}(max(1,inti_max-

n_hood):min(size(Part_num{particle,1},1),inti_max+n_hood),12)); %smoothed 

data 
        spread_pct_raw=abs(max(temp1)-min(temp1))/nanmean(temp1); 
        spread_pct_filt=abs(max(temp2)-min(temp2))/nanmean(temp2); 
        if spread_pct_raw>0.15 && spread_pct_filt>0.10 
            remove_index=[remove_index;particle,i]; 
        end 
    end 
    waitbar(particle/(size(Part_num,1)),H); 
end 
% remove the data rows in the particle index 
particle_index_2=particle_index_1; 
particle_index_2(remove_index(:,2),=[]; 
close(H); 

  
%% assign final data filter 
particle_index=particle_index_2; 

  
% %% Plot intensity,velocity, and eccentricity as a check 
%  
% particle=particle_index(1,1); 
% figure; 
% subplot(1,2,1); 
% 

[haxes_1,hline1_1,hline2_1]=plotyy(Part_num{particle,1}(:,2),[Part_num{par

ticle,1}(:,10),1e2*Part_num{particle,1}(:,11)],Part_num{particle,1}(:,2),P

art_num{particle,1}(:,7));  
% h1=title(strcat({‘Raw Data, Particle ‘},num2str(particle))); 
% axes(haxes_1(1)); 
% ylabel({‘Pixel Intensity’}); 
% set(haxes_1(1),’ytickmode’,’auto’,’ylim’,[0,200]); 
% xlim(‘auto’) 
% xlabel(‘Frame’) 
% axes(haxes_1(2)); 
% ylabel({‘Velocity’;’(um/s)’}); 
% set(haxes_1(2),’ytickmode’,’auto’,’ylim’,[0,10e4]); 
% xlim(‘auto’) 
% xlabel(‘Frame’) 
%  
% subplot(1,2,2); 
% 

[haxes_2,hline1_2,hline2_2]=plotyy(Part_num{particle,1}(:,2),[Part_num{par

ticle,1}(:,13),1e2*Part_num{particle,1}(:,14)],Part_num{particle,1}(:,2),P

art_num{particle,1}(:,12));  
% h2=title(strcat({‘Smoothed Data, Particle ‘},num2str(particle))); 
% axes(haxes_2(1)); 
% ylabel({‘Pixel Intensity’}); 
% set(haxes_2(1),’ytickmode’,’auto’,’ylim’,[0,200]); 
% xlim(‘auto’) 
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% xlabel(‘Frame’) 
% axes(haxes_2(2)); 
% ylabel({‘Velocity’;’(um/s)’}); 
% set(haxes_2(2),’ytickmode’,’auto’,’ylim’,[0,10e4]); 
% xlim(‘auto’) 
% xlabel(‘Frame’) 
% pause 
%  
% for i=2:size(particle_index,1); 
%     particle=particle_index(I,1); 
%     set(hline1_1(1), ‘Xdata’, Part_num{particle,1}(:,2), ‘Ydata’, 

Part_num{particle,1}(:,10)); %intensity 
%     set(hline1_1(2), ‘Xdata’, Part_num{particle,1}(:,2), ‘Ydata’, 

1e2*Part_num{particle,1}(:,11)); %eccentricity 
%     set(hline2_1(1), ‘Xdata’, Part_num{particle,1}(:,2), ‘Ydata’, 

Part_num{particle,1}(:,7)); %velocity 
%     set(hline1_2(1), ‘Xdata’, Part_num{particle,1}(:,2), ‘Ydata’, 

Part_num{particle,1}(:,13)); %smoothed intensity 
%     set(hline1_2(2), ‘Xdata’, Part_num{particle,1}(:,2), ‘Ydata’, 

1e2*Part_num{particle,1}(:,14)); %smoothed eccentricity 
%     set(hline2_2(1), ‘Xdata’, Part_num{particle,1}(:,2), ‘Ydata’, 

Part_num{particle,1}(:,12)); %smoothed velocity 
%     axes(haxes_1(1)); 
%     set(haxes_1(1),’ytickmode’,’auto’,’ylim’,[0,200]); 
%     xlim(‘auto’) 
%     axes(haxes_1(2)); 
%     set(haxes_1(2),’ytickmode’,’auto’,’ylim’,[0,10e4]); 
%     xlim(‘auto’) 
%     set(h1,’String’,(strcat({‘Raw Data, Particle ‘},num2str(particle)))) 
%     axes(haxes_2(1)); 
%     set(haxes_2(1),’ytickmode’,’auto’,’ylim’,[0,200]); 
%     xlim(‘auto’) 
%     axes(haxes_2(2)); 
%     set(haxes_2(2),’ytickmode’,’auto’,’ylim’,[0,10e4]); 
%     xlim(‘auto’) 
%     set(h2,’String’,(strcat({‘Smoothed Data, Particle 

‘},num2str(particle)))) 
%     pause 
% end 
%% Plot the selected particles at each particular captured frame 

  
%% Sort out data 
%part_select=[36,52,65,66,68,94,98,121,122,123,126,161,163,165,173,191,192

,193,196,217,218,220,251,254,255]; 
%part_select=[19,26,27,39,74,75,76,79,81,82,87,89,90,93,95,98,102,103,104,

109,111,112,119,125,129,133,139,143,158,158,160,163,166,168,170,172,173,17

4,175,178,179,180,181,187,188,193,230,232,234,235,236,238,240,242,244,247]

; 

  
theta=17; 
part_select=particle_index(:,1); %particle number 
frame_select=particle_index(:,2); %frame number 
ind_select=particle_index(:,3); %particle index within Part_num cell 

matrix 
vel_data=zeros(size(part_select,1),8); 
for  i=1:size(part_select,1); 
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    vel_data(I,1)=part_select(i); % particle number 
    vel_data(I,2)=Part_num{part_select(i),:}(ind_select(i),2); %frame of 

measurement 
    vel_data(I,3)=Part_num{part_select(i),:}(ind_select(i),3); %time of 

measurement 
    vel_data(I,4)=Part_num{part_select(i),:}(ind_select(i),4); %x 

coordinate 
    vel_data(I,5)=(Part_num{part_select(i),:}(ind_select(i),4)-

channeldim_scaled(vel_data(I,2),1))/channel_width(vel_data(I,2),1); 

%dimensionless x coordinate where 0=left wall, 0.5=centerline, 1=right 

wall 
    vel_data(I,6)=Part_num{part_select(i),:}(ind_select(i),5)/cosd(theta); 

%convert y* coordinate to y coordinates 
    % calculate the z=0 plane (z centerline) based on wall “in focus” data 
    x_star_1=0; 
    x_star_2=channeldim_scaled(vel_data(I,2),3)-

channeldim_scaled(vel_data(I,2),1); 
    y_star_1=channeldim_scaled(vel_data(I,2),2); 
    y_star_2=channeldim_scaled(vel_data(I,2),4); 
    x_star=vel_data(I,4)-channeldim_scaled(vel_data(I,2),1); 
    %x_star=0.5*x_star_2; %comment this out for a non-static, linear fit 

case 
    y_star_0=(y_star_2-y_star_1)/(x_star_2-x_star_1)*x_star+y_star_1; %z=0 

centerline in terms of y* 
    y_star=Part_num{part_select(i),:}(ind_select(i),5); 

     

     
    %dist=((y_star_2-y_star_1)/(x_star_2-x_star_1)*x_star-

y_star+y_star_1)/(sqrt(((y_star_2-y_star_1)/(x_star_2-x_star_1))^2+1)); 
    dist=Part_num{part_select(i),:}(ind_select(i),5)-y_star_0; 
    vel_data(I,7)=(dist)*sind(theta); %z-coordinate 
    

vel_data(I,8)=Part_num{part_select(i),:}(ind_select(i),12)/cosd(theta); 

%streamwise (y) velocity (smoothed) 

  
end 

  
% Plot 2d velocity profile data (all times) 
iptsetpref(‘ImshowBorder’,’tight’); 
f1=figure(‘visible’,’on’); 
velplot=scatter(vel_data(:,7),vel_data(:,8)),ylim([0 7e4]),xlim([-400 

400]); 
% Plot 2d velocity profile data (all times) 
iptsetpref(‘ImshowBorder’,’tight’); 
f1=figure(‘visible’,’on’); 
velplot=scatter(vel_data(:,5),vel_data(:,8)),ylim([0 4e4]),xlim([0 1]); 
% Plot 3d velocity profile (all times) 
iptsetpref(‘ImshowBorder’,’tight’); 
f2=figure(‘visible’,’on’); 
scatter3(vel_data(:,4),vel_data(:,7),vel_data(:,8)); 

  
%% Sort rows based on time 
%iptsetpref(‘ImshowBorder’,’tight’); 
%f3=figure(‘visible’,’on’); 
vel_data_timesort=sortrows(vel_data,3); %sort rows based on time 
% eliminate data too near lateral walls 



40 

x_min=0.15; 
x_max=0.85; 
vel_data_timesort=vel_data_timesort(find(vel_data_timesort(:,5)>x_min & 

vel_data_timesort(:,5)<x_max),; 
% velplot=scatter(vel_data_timesort(:,7),vel_data_timesort(:,8)),ylim([0 

7e4]),xlim([-500 500]); 

  
% %% Plot particle number overlay with velocity (all kept particles, tif 

output) 
% H=waitbar(0,’Creating Check Plots’); 
% framesample=50; 
% for frame=250:350%numframes 
%     frame 
%     f_orig = read(mov1, frame); 
%     f_orig = rgb2gray(f_orig); 
%     %Re-plot new particle numbers 
%     framesample=50; %interval between file outputs 
%     f_orig=imadjust(f_orig); %increase contrast for output 
%     fig=figure(‘visible’,’off’); 
%     axes1 = 

axes(‘Parent’,fig,’Ygrid’,’off’,’Xgrid’,’off’,’LineWidth’,1,... 
%     ‘FontSize’,16); 
%     imshow(f_orig); 
%      
%     hold on 
%     for particle=1:size(Part_num,1) 
%         if size(Part_num{particle,:},1)~=0 
%             for f=1:size(Part_num{particle,1}(:,2),1) 
%                 if Part_num{particle,1}(f,2)==frame %check to see if the 

frame matches 
%                     cx=Part_num{particle,1}(f,4)/scale; %re-scale to 

pixel coordinates 
%                     cy=Part_num{particle,1}(f,5)/scale; %re-scale to 

pixel coordinates 
%                     plot1=plot(cx,cy,’Parent’,axes1,’MarkerEdgeColor’,[0 

0 1],’Marker’,’o’,’MarkerSize’,12,’LineWidth’,2,’LineStyle’,’none’); 
% %                     scatter(cx,cy,’blue’,’o’,’filled’) 
%                     hold on 
%                     text(cx+20, cy, 40print(‘%d’, particle)); %plot 

particle number in overlay 
%                     hold on 
%                     text(75,25,40print(‘%c’,’Frame=’)); 
%                     text(150,25,40print(‘%d’,frame)); 
%                     hold on 
% %                     

scatter(channeldim(frame,1),channeldim(frame,2),’red’,’o’,’filled’) 
% %                     

scatter(channeldim(frame,3),channeldim(frame,4),’red’,’o’,’filled’) 
%                     

plot2=plot(channeldim(frame,1),channeldim(frame,2),’Parent’,axes1,’MarkerE

dgeColor’,[1 0 0],’Marker’,’o’,’LineWidth’,4,’LineStyle’,’none’); 
%                     

plot3=plot(channeldim(frame,3),channeldim(frame,4),’Parent’,axes1,’MarkerE

dgeColor’,[1 0 0],’Marker’,’o’,’LineWidth’,4,’LineStyle’,’none’); 
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%                     

plot4=plot([channeldim(frame,1),channeldim(frame,3)],[channeldim(frame,2),

channeldim(frame,4)],’Color’,[1 0 0],’LineStyle’,’—‘,’LineWidth’,2); 
%                 end 
%             end 
%         end 
%     end 
%     fignum=hardcopy(fig,’-Dzbuffer’,’-r100’); %scale to save memory 
%     %ff=ff(:,:,1); %Grayscale only 
%     imwrite(fignum, ‘numbers.TIFF’, ‘writemode’, ‘append’); 
%     %frame %display current frame 
%     hold off 
%     waitbar(frame/(numframes),H); 
% end 
% close(H); 
%% Static curve fitting 
z_fit=[-100:1:100]; 
channel_z=zeros(1,3); 
vel_fit_coeff(1,=polyfit(vel_data_timesort(:,7),vel_data_timesort(:,8),2)

; 
vel_fit(1,=polyval(vel_fit_coeff(1,,z_fit); 
channel_z(1,1:2)=roots(vel_fit_coeff(1,); 
channel_z(:,3)=abs(channel_z(:,1)-channel_z(:,2)); 

  
figure; 
subplot(2,1,1); %plot static channel width 
axis([0 t(numframes,1)*1000 800 1200]); 
plot(t*1000, channel_width, ‘LineWidth’, 2); 
xlabel(‘time (millisecond)’); ylabel(‘Channel Width (microns)’); 

  
subplot(2,1,2); %plot static velocity profile 
hh3(1) = 

plot(vel_data_timesort(:,7),vel_data_timesort(:,8),’MarkerEdgeColor’,[0 0 

1],’Marker’,’o’,’MarkerSize’,5,’LineWidth’,2,’LineStyle’,’none’); 
hh3(2) = line(z_fit,vel_fit(1,,’LineWidth’,2,’Color’,[1 0 0]) 
axis([-100 100 0 4e4]) 
xlabel(‘z-position (microns)’); ylabel(‘Velocity (micron/s)’); 
% static shear stress calculation 
for i=1:size(vel_fit_coeff,1) 
    du_dz(I,=2*vel_fit_coeff(I,1)*channel_z(I,1:2)+vel_fit_coeff(I,2); 

%micron/s over microns = [1/s] units 
end 

  

  
%% Plot and analyze dynamic Time dependencies 
% determine time range for time binning 
%t_min=(vel_data_timesort(1,3)); 

  
f_min=1; 
f_max=numframes; 
t_min=0; 
t_max=t(f_max,1); 
n_bins=25; %number of bins 
bin_sizet=(t_max-t_min)/n_bins; 
bin_edget=[t_min:bin_sizet:t_max]’; 
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%[a,bin_index]=histc(vel_data_timesort(:,3),bin_edget); 
%create time bin index 
t_bin=zeros(n_bins,1); 
for i=1:n_bins 
    t_bin(I,1)=(bin_edget(I,1)+bin_edget(i+1,1))/2; 
    %f_bin(I,1)=(bin_edgef(I,1)+bin_edgef(i+1,1))/2; 
    tdiff=abs(t-t_bin(I,1)); 
    [idx idx]=min(tdiff); 
    f_bin(I,1)=f(idx); 

     
end 

  
channel_z=zeros(size(t_bin,1),3); 
temp_index=cell(size(t_bin,1),1); 
Frame_plot=cell(size(t_bin,1),1); 
vel_fit_coeff=zeros(size(t_bin,1),3); 
z_fit=[-100:1:100]; 

  
for count=1:size(Frame_plot,1) 
    

temp_index{count,1}=find(vel_data_timesort(:,3)>(bin_edget(count))&vel_dat

a_timesort(:,3)<(bin_edget(count+1))); 
    Frame_plot{count,1}=vel_data_timesort(temp_index{count,1},; 
    % fit to parabola 

     
    

vel_fit_coeff(count,=polyfit(vel_data_timesort(temp_index{count,1},7),vel

_data_timesort(temp_index{count,1},8),2); 
    vel_fit(count,=polyval(vel_fit_coeff(count,,z_fit); 
    %count 
    channel_z(count,1:2)=roots(vel_fit_coeff(count,); 
end 
u_max_fit=max(vel_fit,[],2); 
%infer height from velocity curve fit 
channel_z(find(imag(channel_z)~=0))=NaN; 
channel_z(:,3)=abs(channel_z(:,1)-channel_z(:,2)); 
for i=1:size(vel_fit_coeff,1) 
    du_dz(I,=2*vel_fit_coeff(I,1)*channel_z(I,1:2)+vel_fit_coeff(I,2); 

%micron/s over microns = [1/s] units 
end 

  
%% Plot time dependent velocity data 
mov(1:length(t_bin)) = struct(‘cdata’, [], ‘colormap’, []); 
count=1; 
screen_size = get(0, ‘ScreenSize’); 
ptime=1; % pause time between frames 
f1=figure; 
set(f1, ‘Position’, [0 0 screen_size(3) screen_size(4) ] ); 
subplot(5,1,1); %plot animated channel width 
axis([0 t(numframes,1)*1000 800 1200]); 
plot(t*1000, channel_width, ‘LineWidth’, 2); 
hh1 = line(t_bin(1)*1000, channel_width(f_bin(1),1), ‘Marker’, ‘.’, 

‘MarkerSize’, 20, ‘Color’, ‘b’); 
xlabel(‘time (millisecond)’); ylabel(‘Channel Width (microns)’); 
tt=title(strcat({‘Time = ‘},num2str(round(t_bin(1)*1000)), {‘ ms’})); 
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subplot(5,1,2); %plot animated channel height (calculated) 
plot(t_bin*1000, channel_z(:,3), ‘LineWidth’, 2); 
xlabel(‘time (millisecond)’); ylabel(‘Channel Height (microns)’); 
hh2 = line(t_bin(1)*1000, channel_z(1,3), ‘Marker’, ‘.’, ‘MarkerSize’, 20, 

‘Color’, ‘b’); 

  
subplot(5,1,3); %plot animated du_dz 
plot(t_bin*1000,abs(du_dz(:,1)), ‘LineWidth’, 2); 
xlabel(‘time (millisecond)’); ylabel(‘du/dz (1/s)’); 
hh3 = line(t_bin(1)*1000, abs(du_dz(1,1)), ‘Marker’, ‘.’, ‘MarkerSize’, 

20, ‘Color’, ‘b’); 

  
subplot(5,1,4); %plot animated umax_fit 
plot(t_bin*1000,u_max_fit, ‘LineWidth’, 2); 
xlabel(‘time (millisecond)’); ylabel(‘u_max (fit) (micron/s)’); 
hh4 = line(t_bin(1)*1000, u_max_fit(1,1), ‘Marker’, ‘.’, ‘MarkerSize’, 20, 

‘Color’, ‘b’); 

  
subplot(5,1,5); %plot animated velocity profile 
hh5(1) = 

plot(Frame_plot{1,1}(:,7),Frame_plot{1,1}(:,8),’MarkerEdgeColor’,[0 0 

1],’Marker’,’o’,’MarkerSize’,5,’LineWidth’,2,’LineStyle’,’none’); 
hh5(2) = line(z_fit,vel_fit(1,,’LineWidth’,2,’Color’,[1 0 0]); 
axis([-100 100 0 4e4]) 
xlabel(‘z-position (microns)’); ylabel(‘Velocity (micron/s)’); 
%pause (ptime) 
mov(count) = getframe(gcf); 
for count=2:size(Frame_plot,1) 
   % Update Xdata and Ydata 
   set(hh1, ‘Xdata’, t_bin(count,1)*1000, ‘Ydata’, 

channel_width(f_bin(count),1)); 
   set(hh2, ‘Xdata’, t_bin(count,1)*1000, ‘Ydata’, channel_z((count),3)); 
   set(hh3, ‘Xdata’, t_bin(count,1)*1000, ‘Ydata’, abs(du_dz(count,1))); 
   set(hh4, ‘Xdata’, t_bin(count,1)*1000, ‘Ydata’, u_max_fit(count,1)); 
   set(hh5(1), ‘Xdata’, Frame_plot{count,1}(:,7), ‘Ydata’, 

Frame_plot{count,1}(:,8)); 
   set(hh5(2), ‘Xdata’, z_fit, ‘Ydata’, vel_fit(count,); 
   set(tt,’String’,(strcat({‘Time = 

‘},num2str(round(t_bin(count,1)*1000)), {‘ ms’}))) 
   drawnow 

    
   %pause (ptime) 
   mov(count) = getframe(gcf); 
end 

  
movie2avi(mov, ‘dynamic.avi’,’fps’,1); 

  
clear mov 
%static shear stress calculation 

  
%% end function call 
%end 

 

APPENDIX D 
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“CHANNEL WIDTH MAIN” 

function [channeldim]=channelwidthmain(frame1,frame); 
%Todd Lagus 
%Channel width measurement using minimum pixel values for finding the 

focused wall 
%location. This code assumes that the streamwise direction is vertical in 

the image. Create two images (one for left wall, one for right wall) and 
%find the minima and location in each. 

  
global numframes 
%% Find Minimum and maximum pixel values 
%ymax; 
xwidth=size(frame1,2); 
%yheight=size(frame1,1); 
yheight=size(frame1,1); 
% %% sobel edge filter on original frame 
% filt1=fspecial('sobel'); 
% filt1=filt1'; 
% frame1_filt=imfilter(frame1,filt1,'replicate'); 
frame1_filt=frame1; 
%% Thresholding 
%thresh=graythresh(channel); %automatically find threshold using Otsu's 
%method 
thresh= 70; %manual threshold value 
channel=im2bw(frame1,thresh/255); 
%imshow(channel) 
%% Remove Noise 
channel=1-channel; 
channel=bwareaopen(channel, 200); %removes objects less than pixel area 

specified 
%imshow(channel) 
%% Find ballpark wall coordinate 
[B,L]=bwboundaries(channel, 8,'noholes'); 

  
while size(B,1)~=2 %dilate thresholded walls until each wall section is 

one object 
    channel=imdilate(channel,strel('disk',4)); 
    [B,L]=bwboundaries(channel, 8,'noholes'); 
end 

  
stats=regionprops(L,'Centroid'); 
%% Create a region of interest to determine acutal wall coordinates 
tol_x=15; 
tol_y=100; 
left=[min(B{1,1}(:,2)),min(B{1,1}(:,1));max(B{1,1}(:,2)),max(B{1,1}(:,1))]

;% left wall [xmin ymin; xmax ymax] 
right=[min(B{2,1}(:,2)),min(B{2,1}(:,1));max(B{2,1}(:,2)),max(B{2,1}(:,1))

];% right wall [xmin ymin; xmax ymax] 
framecrop_left=[(left(1,1)-tol_x) (left(1,2)-tol_y) (left(2,1)-

left(1,1)+2*tol_x) (left(2,2)-left(1,2)+2*tol_y)]; 
framecrop_right=[(right(1,1)-tol_x) (right(1,2)-tol_y) (right(2,1)-

right(1,1)+2*tol_x) (right(2,2)-right(1,2)+2*tol_y)]; 

  
% filt_left=fspecial('average',[20 5]); 
% filt_right=fspecial('average',[20 5]); 
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% frame_left=imfilter(frame_left,filt_left,'replicate'); 
% frame_right=imfilter(frame_right,filt_right,'replicate'); 
filt2=fspecial('average',[100,5]); 
frame2_filt=imfilter(frame1_filt,filt2,'replicate'); 
frame_left=imcrop(frame2_filt,framecrop_left); 
frame_right=imcrop(frame2_filt,framecrop_right);%imshow(frame_right); 
%% Find x-y wall coordinate using minimum pixel value 

  
[min_left,x_left]=min(min(frame_left,[],1)); 
[min_left,y_left]=min(min(frame_left,[],2)); 
[min_right,x_right]=min(min(frame_right,[],1)); 
[min_right,y_right]=min(min(frame_right,[],2)); 
x_left=x_left+(framecrop_left(1,1)-1); 
y_left=y_left+(framecrop_left(1,2)-1); 
x_right=x_right+(framecrop_right(1,1)-1); 
y_right=y_right+(framecrop_right(1,2)-1); 

  
channeldim=[x_left,y_left,x_right,y_right]; 

  
%% Average Channel 
h1=subplot(1,2,1);  
imshow(frame1) 
title(strcat({'Un-processed Frame '},num2str(frame), {' of '}, 

num2str(numframes))) 
hold on 
scatter(x_left,y_left,'blue','o','filled'); 
hold on 
scatter(x_right,y_right,'red','o','filled'); 
hold on 
rectangle('position',framecrop_left,'EdgeColor','red'); 
hold on 
rectangle('position',framecrop_right,'EdgeColor','red'); 
hold off 
h2=subplot(1,2,2);  
%imshow(channel) 
imshow(frame2_filt) 
title(strcat({'Processed Frame '},num2str(frame), {' of '}, 

num2str(numframes))) 
end 

APPENDIX E 

 

“CENTROIDMAIN” 

function [A]=centroidmain(cframe,frame,x_offset) 
%% Introduction 
%TPL 5/12/11 
%Recall Global Variables 
global num; 
global numframes; 
    %% Thresholding for particle centers 
    %thresh=graythresh(channel); %automatically find threshold using 

Otsu's 
    %method 
    thresh=30; %manual threshold value 
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    cframe_binary=im2bw(cframe,thresh/255); 
%     imshow(cframe_binary) 
%     %% Fill Holes 1 
%     cframe_binary=imfill(cframe_binary,'holes'); 
%     %imshow(cframe_binary) 
% subplot(1,2,1), imshow(cframe_binary) 
% subplot(1,2,2), imshow(cframe) 
    %% Remove Noise 
    cframe_binary=bwareaopen(cframe_binary, 10); %removes objects less 

than pixel area specified 
    %imshow(cframe_binary) 
    %% filter large particles 
    cframe_binary=cframe_binary-bwareaopen(cframe_binary, 100); 
   %imshow(cframe_binary); 
%     %% Watershed segmentation of "double" particles 
%     D = -bwdist(~cframe_binary);  
%     W=watershed(D); %label matrix W 
%     cframe_binary(W == 0) = 0; 
%     %imshow(cframe_binary) % Segmented image D (above) 
%         %% Remove Noise 
%     cframe_binary=bwareaopen(cframe_binary, 10); %removes objects less 

than pixel area specified 
%     %imshow(cframe_binary) 
%% imclose 
cframe_binary=imclose(cframe_binary,strel('disk',5)); 
 %% Remove Noise 
    cframe_binary=bwareaopen(cframe_binary, 10); %removes objects less 

than pixel area specified 
%% Animated display (optional, disable this on a slow computer) 
h1=subplot(1,2,1);  
imshow(cframe) 
title(strcat({'Pre-processed Frame '},num2str(frame), {' of '}, 

num2str(numframes))) 
h2=subplot(1,2,2);  
imshow(cframe_binary) 
title(strcat({'Processed Frame '},num2str(frame), {' of '}, 

num2str(numframes))) 
%% Find Particles 
    [B,L]=bwboundaries(cframe_binary, 8,'noholes'); %noholes - only finds 

parent and child boundaries 
    s=regionprops(L,'all'); 
    numparticles=max(L(:)); 

  
    %% Find Centroids 
    centers=[s.Centroid]; 
    c=zeros(size(B,1),2); 
    for j=1:length(centers)/2 
        c(j,1)=centers(2*j-1); 
        c(j,2)=centers(2*j); 
    end 
    %% Calculate Intensity 
    average_pixel_values=zeros(size(B,1),1); 
    cmassk=zeros(size(B,1),2); 
    for k = 1:numel(s) 
        idx = s(k).PixelIdxList; 
        pixel_values = double(cframe(idx)); 
        sum_pixel_values = sum(pixel_values); 
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        average_pixel_values(k)=sum_pixel_values/size(pixel_values,1); 
        x = s(k).PixelList(:, 1); 
        y = s(k).PixelList(:, 2); 
        cmassk(k,1) = sum(x .* pixel_values) / sum_pixel_values; 
        cmassk(k,2) = sum(y .* pixel_values) / sum_pixel_values; 
    end 
    %%  
    A=cell(size(B,1),1); 
    shapes=[s.Eccentricity]; 
    areas=[s.Area]; 
    if length(average_pixel_values)==0 
        A{1,1}=[0 0 0 0 0 frame] 
        else 
        for j=1:length(average_pixel_values) 
        A{j,1}=[cmassk(j,1)+x_offset cmassk(j,2) c(j,1)+x_offset c(j,2) 

shapes(j) average_pixel_values(j) num frame]; %added x_offset to obtain 

the proper coordinates 
                num=num+1; 
        end 
    end 
%     %% Diagnostic-Display "keeper" particles over original image 
%     keepers=[1:length(average_pixel_values)];  
%     iptsetpref('ImshowBorder','tight'); 
%     f=figure('visible','on'); 
%     imshow(cframe_orig); 
%     hold on 
%    for n=1:length(keepers) 
%         outline=B{keepers(n)}; 
%         line(outline(:,2),outline(:,1),'Color','r','LineWidth',2) 
%         hold on 
%         cx=A{n,1}(1); 
%         cy=A{n,1}(2); 
%         cn=A{n,1}(7); 
%         %scatter(cmassk(n,1),cmassk(n,2),'blue','o','filled') 
%         hold on 
%         %scatter(cx,cy,'red','o','filled') 
%         text(cx+5, cy, sprintf('%d', cn)); %display particle number 
%         %text(cx+5, cy, sprintf('%d', shapes(n))); %display eccentricity 
%         hold on 
%  
%    end 
%     pause 
%     %% display non-keeper particles 
%     for n=1:length(nokeepers) 
%         nooutline=B{nokeepers(n)}; 
%         line(nooutline(:,2),nooutline(:,1),'Color','g','LineWidth',2) 
%         hold on 
% %         nopoint=c(nokeepers(n),:); 
% %         scatter(nopoint(1),nopoint(2),'green','o','filled') 
% %         hold on 
% %         text(nopoint(1)+20, nopoint(2), sprintf('%d', nopoint(1))); 
% %         hold on 
%     end 
%     %% Write to file to check numbers 
%     ff=hardcopy(f,'-Dzbuffer');%,'-r100'); 
%     %ff=ff(:,:,1); %Grayscale only 
%     imwrite(ff, 'myFile.TIFF', 'writemode', 'append'); 
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%     %frame %display current frame 
%    hold off 
end 

 

 

APPENDIX F 

TRACKING PROGRAM 

function tracks = track(xyzs,maxdisp,param) 

  
%; 
% ; see http://glinda.lrsm.upenn.edu/~weeks/idl 
% ;   for more information 
% ; 
% ;+ 
% ; NAME: 
% ; track 
% ; PURPOSE: 
% ; Constructs n-dimensional trajectories from a scrambled list of 
% ; particle coordinates determined at discrete times (e.g. in 
% ; consecutive video frames). 
% ; CATEGORY: 
% ; Image Processing 
% ; CALLING SEQUENCE: 
% ; result = track( positionlist, maxdisp, param ) 
% ;  set all keywords in the space below 
% ; INPUTS: 
% ; positionlist: an array listing the scrambled coordinates and data  
% ;     of the different particles at different times, such that: 
% ;  positionlist(0:d-1,*): contains the d coordinates and 
% ;     data for all the particles, at the different times. must be 

positve 
% ;  positionlist(d,*): contains the time t that the position  
% ;     was determined, must be integers (e.g. frame number.  These values 

must  
% ;               be monotonically increasing and uniformly gridded in 

time. 
% ; maxdisp: an estimate of the maximum distance that a particle  
% ;     would move in a single time interval.(see Restrictions) 
%  OPTIONAL INPUT: 
%   param:  a structure containing a few tracking parameters that are 
%       needed for many applications.  If param is not included in the 
%       function call, then default values are used.  If you set one value 
%       make sure you set them all: 
% ;         param.mem: this is the number of time steps that a particle 

can be 
% ;             'lost' and then recovered again.  If the particle 

reappears 
% ;             after this number of frames has elapsed, it will be 
% ;             tracked as a new particle. The default setting is zero. 
% ;             this is useful if particles occasionally 'drop out' of 
% ;             the data. 
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% ;         param.dim: if the user would like to unscramble non-coordinate 

data 
% ;             for the particles (e.g. apparent radius of gyration for 
% ;             the particle images), then positionlist should 
% ;             contain the position data in positionlist(0:param.dim-1,*) 
% ;             and the extra data in positionlist(param.dim:d-1,*). It is 

then 
% ;             necessary to set dim equal to the dimensionality of the 
% ;             coordinate data to so that the track knows to ignore the 
% ;             non-coordinate data in the construction of the  
% ;             trajectories. The default value is two. 
% ;         param.good: set this keyword to eliminate all trajectories 

with 
% ;             fewer than param.good valid positions.  This is useful 
% ;             for eliminating very short, mostly 'lost' trajectories 
% ;             due to blinking 'noise' particles in the data stream. 
%;          param.quiet: set this keyword to 1 if you don't want any text 
% ; OUTPUTS: 
% ; result:  a list containing the original data rows sorted  
% ;     into a series of trajectories.  To the original input  
% ;     data structure there is appended an additional column  
% ;     containing a unique 'id number' for each identified  
% ;     particle trajectory.  The result array is sorted so  
% ;     rows with corresponding id numbers are in contiguous  
% ;     blocks, with the time variable a monotonically 
% ;     increasing function inside each block.  For example: 
% ;      
% ;     For the input data structure (positionlist): 
% ;         (x)      (y)      (t) 
% ;     pos = 3.60000      5.00000      0.00000 
% ;           15.1000      22.6000      0.00000 
% ;           4.10000      5.50000      1.00000  
% ;           15.9000      20.7000      2.00000 
% ;           6.20000      4.30000      2.00000 
% ; 
% ;     IDL> res = track(pos,5,mem=2) 
% ; 
% ;     track will return the result 'res' 
% ;         (x)      (y)      (t)          (id) 
% ;     res = 3.60000      5.00000      0.00000      0.00000 
% ;           4.10000      5.50000      1.00000      0.00000 
% ;           6.20000      4.30000      2.00000      0.00000 
% ;           15.1000      22.6000      0.00000      1.00000 
% ;           15.9000      20.7000      2.00000      1.00000 
% ; 
% ;     NB: for t=1 in the example above, one particle temporarily 
% ;     vanished.  As a result, the trajectory id=1 has one time 
% ;     missing, i.e. particle loss can cause time gaps to occur  
% ;     in the corresponding trajectory list. In contrast: 
% ; 
% ;     IDL> res = track(pos,5) 
% ; 
% ;     track will return the result 'res' 
% ;         (x)      (y)      (t)          (id) 
% ;     res = 15.1000      22.6000      0.00000      0.00000 
% ;                   3.60000      5.00000      0.00000      1.00000 
% ;               4.10000      5.50000      1.00000      1.00000 
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% ;               6.20000      4.30000      2.00000      1.00000 
% ;               15.9000      20.7000      2.00000      2.00000 
% ;  
% ;     where the reappeared 'particle' will be labelled as new 
% ;     rather than as a continuation of an old particle since 
% ;     mem=0.  It is up to the user to decide what setting of  
% ;     'mem' will yeild the highest fidelity . 
% ;  
% ; SIDE EFFECTS: 
% ; Produces informational messages.  Can be memory intensive for 
% ; extremely large data sets. 
% ; RESTRICTIONS: 
% ; maxdisp should be set to a value somewhat less than the mean  
% ; spacing between the particles. As maxdisp approaches the mean 
% ; spacing the runtime will increase significantly. The function  
% ; will produce an error message: "Excessive Combinatorics!" if 
% ; the run time would be too long, and the user should respond  
% ; by re-executing the function with a smaller value of maxdisp. 
% ; Obviously, if the particles being tracked are frequently moving 
% ; as much as their mean separation in a single time step, this 
% ; function will not return acceptable trajectories. 
% ; PROCEDURE: 
% ; Given the positions for n particles at time t(i), and m possible 
% ; new positions at time t(i+1), this function considers all possible  
% ; identifications of the n old positions with the m new positions, 
% ; and chooses that identification which results in the minimal total 
% ; squared displacement. Those identifications which don't associate 
% ; a new position within maxdisp of an old position ( particle loss ) 
% ; penalize the total squared displacement by maxdisp^2. For non- 
% ; interacting Brownian particles with the same diffusivity, this 
% ; algorithm will produce the most probable set of identifications  
% ; ( provided maxdisp >> RMS displacement between frames ). 
% ; In practice it works reasonably well for systems with oscillatory, 
% ; ballistic, correlated and random hopping motion, so long as single  
% ; time step displacements are reasonably small.  NB: multidimensional 
% ; functionality is intended to facilitate tracking when additional 
% ; information regarding target identity is available (e.g. size or  
% ; color).  At present, this information should be rescaled by the 
% ; user to have a comparable or smaller (measurement) variance than  
% ; the spatial displacements. 
% ; 
% ; MODIFICATION HISTORY: 
% ;  2/93 Written by John C. Crocker, University of Chicago (JFI). 
% ;  7/93 JCC fixed bug causing particle loss and improved performance 
% ;     for large numbers of (>100) particles. 
% ; 11/93 JCC improved speed and memory performance for large 
% ;     numbers of (>1000) particles (added subnetwork code). 
% ;  3/94 JCC optimized run time for trivial bonds and d<7. (Added 
% ;     d-dimensional raster metric code.) 
% ;  8/94 JCC added functionality to unscramble non-position data 
% ;     along with position data. 
% ;  9/94 JCC rewrote subnetwork code and wrote new, more efficient  
% ;     permutation code. 
% ;  5/95 JCC debugged subnetwork and excessive combinatorics code. 
% ; 12/95 JCC added memory keyword, and enabled the tracking of 
% ;     newly appeared particles. 
% ;  3/96 JCC made inipos a keyword, and disabled the adding of 'new' 
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% ;     particles when inipos was set. 
% ;  3/97 JCC added 'add' keyword, since Chicago users didn't like  
% ;     having particle addition be the default.  
% ;  9/97 JCC added 'goodenough' keyword to improve memory efficiency 
% ;     when using the 'add' keyword and to filter out bad tracks. 
% ;       10/97 JCC streamlined data structure to speed runtime for >200  
% ;               timesteps.  Changed 'quiet' keyword to 'verbose'. Made 
% ;               time labelling more flexible (uniform and sorted is ok). 
% ;  9/98 JCC switched trajectory data structure to a 'list' form, 
% ;     resolving memory issue for large, noisy datasets. 
% ;  2/99 JCC added Eric Weeks's 'uberize' code to post-facto  
% ;     rationalize the particle id numbers, removed 'add' keyword. 
% ;  1/05 Transmuted to MATLAB by D. Blair 
% ;  5/05  ERD Added the param structure to simplify calling. 
%    6/05  ERD Added quiet to param structure 
%    7/05  DLB Fixed slight bug in trivial bond code 
%    3/07  DLB Fixed bug with max disp pointed out by Helene Delanoe-Ayari 
% 
% ; This code 'track.pro' is copyright 1999, by John C. Crocker.  
% ; It should be considered 'freeware'- and may be distributed freely  
% ; (outside of the military-industrial complex) in its original form  
% ; when properly attributed. 
% ; 
% ;- 

  
dd = length(xyzs(1,:)); 

  
%use default parameters if none given 
if nargin==2 
    %default values 
    memory_b=0; % if mem is not needed set to zero 
    goodenough = 0;  % if goodenough is not wanted set to zero 
    dim = dd - 1; 
    quiet=0; 
else 
    memory_b    =   param.mem; 
    goodenough  =   param.good; 
    dim         =   param.dim; 
    quiet       =   param.quiet; 
end 

  

  
% checking the input time vector 
t = xyzs(:,dd); 
st = circshift(t,1); 
st = t(2:end) - st(2:end); 
if  sum(st(find(st < 0))) ~= 0 
    disp('The time vectors is not in order') 
    return 
end 
info = 1; 

  
w = find(st > 0); 
z = length(w); 
z = z +1; 
if isempty(w) 
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    disp('All positions are at the same time... go back!') 
    return 
end 

  
% partitioning the data with unique times 

  
%res = unq(t); 
% implanting unq directly 
    indices = find(t ~= circshift(t,-1)); 
        count = length(indices); 
        if count > 0 
            res = indices; 
        else   
            res = length(t) -1; 
        end 
 %%%%%%%%%%%%%%%%%%%%%%%        

         
res = [1,res',length(t)]; 
ngood = res(2) - res(1) + 1; 
eyes = 1:ngood; 
pos = xyzs(eyes,1:dim); 
istart = 2; 
n = ngood; 

  
zspan = 50; 
if n > 200  
    zspan = 20; 
end 
if n > 500  
    zspan = 10; 
end 
resx = zeros(zspan,n) - 1; 

  
bigresx = zeros(z,n) - 1; 
mem = zeros(n,1); 
%  whos resx 
%  whos bigresx 
uniqid = 1:n; 
maxid = n; 
olist = [0.,0.]; 

  
if goodenough > 0  
    dumphash = zeros(n,1); 
    nvalid = ones(n,1); 
end 

  
%  whos eyes; 
resx(1,:) = eyes; 
% setting up constants 
maxdisq = maxdisp^2; 

  
% John calls this the setup for "fancy code" ??? 
notnsqrd = (sqrt(n*ngood) > 200) & (dim < 7); 
notnsqrd = notnsqrd(1); 
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if notnsqrd 
    %;   construct the vertices of a 3x3x3... d-dimensional hypercube 

     
    cube = zeros(3^dim,dim); 

     

     
    for d=0:dim-1, 
        numb = 0; 
        for j=0:(3^d):(3^dim)-1, 
            cube(j+1:j+(3^(d)),d+1) = numb; 
            numb = mod(numb+1,3); 
        end 
    end     

     
    %   calculate a blocksize which may be greater than maxdisp, but which 
    %   keeps nblocks reasonably small.   

     
    volume = 1; 
    for d = 0:dim-1 
        minn = min(xyzs(w,d+1)); 
        maxx = max(xyzs(w,d+1)); 
        volume = volume * (maxx-minn); 
    end 
    volume; 
    blocksize = max( [maxdisp,((volume)/(20*ngood))^(1.0/dim)] ); 
end 
%   Start the main loop over the frames. 
for i=istart:z 
    ispan = mod(i-1,zspan)+1; 
    %disp(ispan) 
    % get new particle positions 
    m = res(i+1) - res(i); 
    res(i); 
    eyes = 1:m; 
    eyes = eyes + res(i); 

     
    if m > 0 

         
        xyi = xyzs(eyes,1:dim); 
        found = zeros(m,1); 

         
        % THE TRIVIAL BOND CODE BEGINS    

         
        if notnsqrd 
            %Use the raster metric code to do trivial bonds 

             
            % construct "s", a one dimensional parameterization of the 

space  
            % which consists of the d-dimensional raster scan of the 

volume.) 

             
            abi = fix(xyi./blocksize); 
            abpos = fix(pos./blocksize); 
            si = zeros(m,1); 
            spos = zeros(n,1); 
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            dimm = zeros(dim,1); 
            coff = 1.; 

             
            for j=1:dim 
                minn = min([abi(:,j);abpos(:,j)]); 
                maxx = max([abi(:,j);abpos(:,j)]); 
                abi(:,j) = abi(:,j) - minn; 
                abpos(:,j) = abpos(:,j) - minn; 
                dimm(j) = maxx-minn + 1; 
                si = si + abi(:,j).*coff; 
                spos = spos + abpos(:,j).*coff; 
                coff = dimm(j).*coff; 
            end 
            nblocks = coff; 
            % trim down (intersect) the hypercube if its too big to fit in 

the 
            % particle volume. (i.e. if dimm(j) lt 3) 

             
            cub = cube; 
            deg = find( dimm < 3); 
            if ~isempty(deg) 
                for j = 0:length(deg)-1 
                    cub = cub(find(cub(:,deg(j+1)) < dimm(deg(j+1))),:); 
                end 
            end  

             
            % calculate the "s" coordinates of hypercube (with a corner @ 

the origin) 
            scube = zeros(length(cub(:,1)),1); 
            coff = 1; 
            for j=1:dim 
                scube = scube + cub(:,j).*coff; 
                coff = coff*dimm(j);       
            end 

             
            % shift the hypercube "s" coordinates to be centered around 

the origin 

             
            coff = 1; 
            for j=1:dim 
                if dimm(j) > 3 
                    scube = scube - coff; 
                end 
                coff = dimm(j).* coff; 
            end 
            scube = mod((scube + nblocks),nblocks); 
            % get the sorting for the particles by their "s" positions. 
            [ed,isort] = sort(si); 

             
            % make a hash table which will allow us to know which new 

particles 
            % are at a given si. 
            strt = zeros(nblocks,1) -1; 
            fnsh = zeros(nblocks,1); 
            h = find(si == 0); 
            lh = length(h); 
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            if lh > 0 

                 
            si(h) = 1;   
            end 

             
            for j=1:m 
                if strt(si(isort(j))) == -1 
                    strt(si(isort(j))) = j; 
                    fnsh(si(isort(j))) = j; 
                else 
                    fnsh(si(isort(j))) = j; 
                end 
            end 
            if lh > 0 
            si(h) = 0;    
            end 
            coltot = zeros(m,1); 
            rowtot = zeros(n,1); 
            which1 = zeros(n,1); 
            for j=1:n 

                 

                 
                map = fix(-1); 

                 
                scub_spos = scube + spos(j); 
                s = mod(scub_spos,nblocks); 
                whzero = find(s == 0 ); 
                if ~isempty(whzero) 
                    nfk = find(s ~=0); 
                    s = s(nfk); 
                end 

                
                w = find(strt(s) ~= -1); 

                
                ngood = length(w); 
                ltmax=0; 
                if ngood ~= 0 

  
                    s = s(w); 
                    for k=1:ngood 
                        map = [map;isort( strt(s(k)):fnsh(s(k)))]; 
                    end 
                    map = map(2:end); 
%                     if length(map) == 2 
%                         if (map(1) - map(2)) == 0 
%                             map = unique(map); 
%                          end 
%                     end 
                    %   map = map(umap); 
                    %end 
                    % find those trival bonds 
                    distq = zeros(length(map),1); 
                    for d=1:dim      
                        distq = distq + (xyi(map,d) - pos(j,d)).^2; 
                    end 
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                    ltmax = distq < maxdisq; 

                     
                    rowtot(j) = sum(ltmax); 

                     
                    if rowtot(j) >= 1  
                        w = find(ltmax == 1); 
                        coltot( map(w) ) = coltot( map(w)) +1; 
                        which1(j) = map( w(1) ); 
                    end 
                end 

  
            end 

             

           
            ntrk = fix(n - sum(rowtot == 0)); 

         
            w = find( rowtot == 1); 
            ngood = length(w); 

  

            
            if ngood ~= 0  
                ww = find(coltot( which1(w) ) == 1); 
                ngood = length(ww); 
                if ngood ~= 0  
                     %disp(size(w(ww))) 
                    resx(ispan,w(ww)) = eyes( which1(w(ww))); 
                    found( which1( w(ww))) = 1; 
                    rowtot( w(ww)) = 0; 
                    coltot( which1(w(ww))) = 0; 
                end 
            end 

             
            labely = find( rowtot > 0); 
            ngood = length(labely); 
            if ngood ~= 0  
                labelx = find( coltot > 0); 

                 
                nontrivial = 1; 
            else 
                nontrivial = 0; 
            end 

  
        else  

     
            %   or: Use simple N^2 time routine to calculate trivial bonds       

     
            % let's try a nice, loopless way! 
            % don't bother tracking perm. lost guys. 
            wh = find( pos(:,1) >= 0); 
            ntrack = length(wh); 
            if ntrack == 0  
                'There are no valid particles to track idiot!' 
                break 
            end 
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            xmat = zeros(ntrack,m); 
            count = 0; 
            for kk=1:ntrack 
                for ll=1:m 
                    xmat(kk,ll) = count; 
                    count = count+1; 
                end 
            end 
            count = 0; 
            for kk=1:m 
                for ll=1:ntrack 
                    ymat(kk,ll) = count; 
                    count = count+1; 
                end 
            end 

  
            xmat = (mod(xmat,m) + 1); 
            ymat = (mod(ymat,ntrack) +1)'; 
            [lenxn,lenxm] = size(xmat); 
%            whos ymat 
%            whos xmat 
%            disp(m) 

  
            for d=1:dim 
                x = xyi(:,d); 
                y = pos(wh,d); 
                xm = x(xmat); 
                ym = y(ymat(1:lenxn,1:lenxm)); 
                if size(xm) ~= size(ym) 
                    xm = xm'; 
                end 

                 
                if d == 1 
                    dq = (xm -ym).^2; 
                    %dq = (x(xmat)-y(ymat(1:lenxn,1:lenxm))).^2; 
                else 
                    dq = dq + (xm-ym).^2; 
                    %dq = dq + (x(xmat)-y(ymat(1:lenxn,1:lenxm)) ).^2; 
                end 
            end 

             
            ltmax = dq < maxdisq; 

             
            % figure out which trivial bonds go with which 

             
            rowtot = zeros(n,1); 
            rowtot(wh) = sum(ltmax,2); 

             

             
            if ntrack > 1  
                coltot = sum(ltmax,1); 
            else 
                coltot = ltmax; 
            end 
            which1 = zeros(n,1); 
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            for j=1:ntrack  
                [mx, w] = max(ltmax(j,:)); 
                which1(wh(j)) = w; 
            end 

             
            ntrk = fix( n - sum(rowtot == 0)); 
            w= find( rowtot == 1) ; 
            ngood = length(w); 
            if ngood ~= 0 
                ww = find(coltot(which1(w)) == 1); 
                ngood = length(ww); 
                if ngood ~= 0  
                    resx( ispan, w(ww) ) = eyes( which1( w(ww))); 
                    found(which1( w(ww))) = 1; 
                    rowtot(w(ww)) = 0; 
                    coltot(which1(w(ww))) = 0; 
                end 
            end 

             
            labely = find( rowtot > 0); 
            ngood = length(labely); 

             
            if ngood ~= 0 
                labelx = find( coltot > 0); 
                nontrivial = 1; 
            else 
                nontrivial = 0; 
            end 
        end 

         
        %THE TRIVIAL BOND CODE ENDS 

         
        if nontrivial 

             
            xdim = length(labelx); 
            ydim = length(labely); 

             
            %  make a list of the non-trivial bonds             

             
            bonds = zeros(1,2); 
            bondlen = 0; 

             
            for j=1:ydim 
                distq = zeros(xdim,1); 

                 
                for d=1:dim 
                    %distq 
                    distq = distq + (xyi(labelx,d) - pos(labely(j),d)).^2; 
                    %distq     
                end 

                 
                w= find(distq <  maxdisq)' - 1; 
                ngood = length(w); 
                newb = [w;(zeros(1,ngood)+j)]; 
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                bonds = [bonds;newb']; 

                
                bondlen = [ bondlen;distq( w + 1) ]; 

                 
            end 
            bonds = bonds(2:end,:); 

             
            bondlen = bondlen(2:end); 
            numbonds = length(bonds(:,1)); 
            mbonds = bonds; 
            max([xdim,ydim]); 

                 

                 
            if max([xdim,ydim]) < 4 
                nclust = 1; 
                maxsz = 0; 
                mxsz = xdim; 
                mysz = ydim; 
                bmap = zeros(length(bonds(:,1)+1),1) - 1; 

                
            else 

            

  
                %   THE SUBNETWORK CODE BEGINS             
                lista = zeros(numbonds,1); 
                listb = zeros(numbonds,1); 
                nclust = 0; 
                maxsz = 0; 
                thru = xdim; 

                 
                while thru ~= 0 
                    %  the following code extracts connected  
                    %   sub-networks of the non-trivial  
                    %   bonds.  NB: lista/b can have redundant entries due 

to  
                    %   multiple-connected subnetworks       

                     

                     
                    w = find(bonds(:,2) >= 0); 
   %                 size(w) 

                     
                    lista(1) = bonds(w(1),2); 
                    listb(1) = bonds(w(1),1); 
                    bonds(w(1),:) = -(nclust+1); 
                    bonds; 
                    adda = 1; 
                    addb = 1; 
                    donea = 0; 
                    doneb = 0; 
                    if (donea ~= adda) | (doneb ~= addb) 
                        true = 0; 
                    else 
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                    true = 1;    
                    end 

                                         
                    while ~true 

                         
                        if (donea ~= adda) 
                            w = find(bonds(:,2) == lista(donea+1)); 
                            ngood = length(w); 
                            if ngood ~= 0  
                                listb(addb+1:addb+ngood,1) = bonds(w,1); 
                                bonds(w,:) = -(nclust+1); 
                                addb = addb+ngood; 
                            end 
                            donea = donea+1; 
                        end 
                        if (doneb ~= addb)  
                            w = find(bonds(:,1) == listb(doneb+1)); 
                            ngood = length(w); 
                            if ngood ~= 0 
                                lista(adda+1:adda+ngood,1) = bonds(w,2); 
                                bonds(w,:) = -(nclust+1); 
                                adda = adda+ngood; 
                            end 
                            doneb = doneb+1; 
                        end 
                      if (donea ~= adda) | (doneb ~= addb)  
                          true = 0; 
                      else   
                          true = 1; 
                      end 
                    end 

                     
                    [pp,pqx] = sort(listb(1:doneb)); 
                    %unx =  unq(listb(1:doneb),pqx); 
                    %implanting unq directly 
                        arr = listb(1:doneb); 
                        q = arr(pqx); 
                        indices = find(q ~= circshift(q,-1)); 
                        count = length(indices); 
                        if count > 0 
                            unx = pqx(indices); 
                        else 
                            unx = length(q) -1; 
                        end 
                    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                     
                    xsz = length(unx); 
                    [pp,pqy] = sort(lista(1:donea)); 
                    %uny =  unq(lista(1:donea),pqy); 
                    %implanting unq directly 
                        arr = lista(1:donea); 
                        q = arr(pqy); 
                        indices = find(q ~= circshift(q,-1)); 
                        count = length(indices); 
                        if count > 0 
                            uny = pqy(indices); 
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                        else 
                            uny = length(q) -1; 
                        end 
                    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                    

                     

                     

                     

                     
                    ysz = length(uny); 
                    if xsz*ysz > maxsz 
                        maxsz = xsz*ysz; 
                        mxsz = xsz; 
                        mysz = ysz;  
                    end 

                     

                     
                    thru = thru -xsz; 
                    nclust = nclust + 1; 
                end 
                bmap = bonds(:,2);                     
            end 
            % THE SUBNETWORK CODE ENDS 
            % put verbose in for Jaci 

             
            %   THE PERMUTATION CODE BEGINS 

             
            for nc =1:nclust 
                w = find( bmap == -1*(nc)); 

                 
                nbonds = length(w); 
                bonds = mbonds(w,:); 
                lensq = bondlen(w); 
                [pq,st] = sort( bonds(:,1)); 
                %un = unq(bonds(:,1),st); 
                   %implanting unq directly      
                        arr = bonds(:,1); 
                        q = arr(st); 
                        indices = find(q ~= circshift(q,-1)); 
                        count = length(indices); 
                        if count > 0 
                            un = st(indices); 
                        else 
                            un = length(q) -1; 
                        end 
                    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

                 

                 
                uold = bonds(un,1); 

                 
                nold = length(uold); 

                 
                %un = unq(bonds(:,2)); 

                 
                %implanting unq directly   
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                indices = find(bonds(:,2) ~= circshift(bonds(:,2),-1)); 
                count = length(indices); 
                    if count > 0 
                        un = indices; 
                    else   
                        un = length(bonds(:,2)) -1; 
                    end 
                 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    

                     
                unew = bonds(un,2); 
                nnew = length(unew); 

                 
                if nnew > 5 
                    rnsteps = 1; 
                    for ii =1:nnew 
                        rnsteps = rnsteps * length( find(bonds(:,2) == ... 
                            unew(ii))); 
                        if rnsteps > 5.e+4 
                            disp('Warning: difficult combinatorics 

encountered.') 
                        end 
                        if rnsteps > 2.e+5 
                            disp(['Excessive Combinitorics you FOOL LOOK 

WHAT YOU HAVE' ... 
                                    ' DONE TO ME!!!']) 
                            return 
                        end 
                    end 
                end 
                st = zeros(nnew,1); 
                fi = zeros(nnew,1); 
                h = zeros(nbonds,1); 
                ok = ones(nold,1); 
                nlost = (nnew - nold) > 0; 

                 

                 
                for ii=1:nold  
                    h(find(bonds(:,1) == uold(ii))) = ii; 
                end 
                st(1) = 1 ; 
                fi(nnew) = nbonds; % check this later 
                if nnew > 1  
                    sb = bonds(:,2); 
                    sbr = circshift(sb,1); 
                    sbl = circshift(sb,-1); 
                    st(2:end) = find( sb(2:end) ~= sbr(2:end)) + 1; 
                    fi(1:nnew-1) = find( sb(1:nbonds-1) ~= sbl(1:nbonds-

1)); 
                end 
%                if i-1 == 13 
%                    hi 
%                end 
                checkflag = 0; 
                while checkflag ~= 2 

                     
                    pt = st -1; 
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                    lost = zeros(nnew,1); 
                    who = 0; 
                    losttot = 0; 
                    mndisq = nnew*maxdisq; 

                     

                     
                    while who ~= -1 

                     
                        if pt(who+1) ~= fi(who+1) 

                             

                             
                            w = find( ok( h( pt( who+1 )+1:fi( who+1 ) ) ) 

); % check this -1 
                            ngood = length(w); 
                            if ngood > 0 
                                if pt(who+1) ~= st(who+1)-1 
                                    ok(h(pt(who+1))) = 1; 
                                end 
                                pt(who+1) = pt(who+1) + w(1); 
                                ok(h(pt(who+1))) = 0; 
                                if who == nnew -1 
                                    ww = find( lost == 0); 
                                    dsq = sum(lensq(pt(ww))) + 

losttot*maxdisq; 

                                     
                                    if dsq < mndisq  
                                        minbonds = pt(ww); 
                                        mndisq = dsq; 
                                    end 
                                else 
                                    who = who+1; 
                                end 
                            else 
                                if ~lost(who+1) & (losttot ~= nlost) 
                                    lost(who+1) = 1; 
                                    losttot = losttot + 1; 
                                    if pt(who+1) ~= st(who+1) -1; 
                                        ok(h(pt(who+1))) = 1; 
                                    end 
                                    if who == nnew-1 
                                        ww = find( lost == 0); 
                                        dsq = sum(lensq(pt(ww))) + 

losttot*maxdisq; 
                                        if dsq < mndisq 
                                            minbonds = pt(ww); 
                                            mndisq = dsq; 
                                        end 
                                    else     
                                       who = who + 1; 
                                    end 

                                    
                                else 
                                    if pt(who+1) ~= (st(who+1) -1)  
                                        ok(h(pt(who+1))) = 1; 
                                    end 
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                                    pt(who+1) = st(who+1) -1; 
                                    if lost(who+1)  
                                        lost(who+1) = 0; 
                                        losttot = losttot -1; 
                                    end 
                                    who = who -1; 
                                end 
                            end 
                        else   
                            if ~lost(who+1) & (losttot ~= nlost) 
                                lost(who+1) = 1; 
                                losttot = losttot + 1; 
                                if pt(who+1) ~= st(who+1)-1 
                                    ok(h(pt(who+1))) = 1; 
                                end 
                                if who == nnew -1 
                                    ww = find( lost == 0); 
                                    dsq = sum(lensq(pt(ww))) + 

losttot*maxdisq; 

                                     
                                    if dsq < mndisq 
                                        minbonds = pt(ww); 
                                        mndisq = dsq; 
                                    end 
                                else 
                                    who = who + 1; 
                                end 
                            else 
                                if pt(who+1) ~= st(who+1) -1 
                                    ok(h(pt(who+1))) = 1; 
                                end 
                                pt(who+1) = st(who+1) -1; 
                                if lost(who+1)  
                                    lost(who+1) = 0; 
                                    losttot = losttot -1; 
                                end 
                                who = who -1; 
                            end 
                        end 
                    end 

                     
                    checkflag = checkflag + 1; 
                    if checkflag == 1 
                        plost = min([fix(mndisq/maxdisq) , (nnew -1)]); 
                        if plost > nlost  
                            nlost = plost;  
                        else 
                            checkflag = 2; 
                        end 
                    end 

                     
                end   
                %   update resx using the minimum bond configuration                

                 
                resx(ispan,labely(bonds(minbonds,2))) = 

eyes(labelx(bonds(minbonds,1)+1)); 
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                found(labelx(bonds(minbonds,1)+1)) = 1; 

  
            end 

  
            %   THE PERMUTATION CODE ENDS 
        end 

         
        w = find(resx(ispan,:) >= 0); 
        nww = length(w); 

         
        if nww > 0  
            pos(w,:) = xyzs( resx(ispan,w) , 1:dim); 
            if goodenough > 0  
                nvalid(w) = nvalid(w) + 1; 
            end 
        end  %go back and add goodenough keyword thing    
        newguys = find(found == 0); 

         
       nnew = length(newguys); 

       
        if (nnew > 0) % & another keyword to workout inipos 
            newarr = zeros(zspan,nnew) -1; 
            resx = [resx,newarr]; 

  
            resx(ispan,n+1:end) = eyes(newguys); 
            pos = [[pos];[xyzs(eyes(newguys),1:dim)]]; 
            nmem = zeros(nnew,1); 
            mem = [mem;nmem]; 
            nun = 1:nnew; 
            uniqid = [uniqid,((nun) + maxid)]; 
            maxid = maxid + nnew; 
            if goodenough > 0  
                dumphash = [dumphash;zeros(1,nnew)']; 
                nvalid = [nvalid;zeros(1,nnew)'+1]; 
            end 
            % put in goodenough  
            n = n + nnew; 

                 
        end 

  
    else 
        ' Warning- No positions found for t=' 
    end 
    w = find( resx(ispan,:) ~= -1); 
    nok = length(w); 
    if nok ~= 0 
        mem(w) =0; 
    end 

     
    mem = mem + (resx(ispan,:)' == -1); 
    wlost = find(mem == memory_b+1); 
    nlost =length(wlost); 

  
    if nlost > 0  
        pos(wlost,:) = -maxdisp; 
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        if goodenough > 0 
            wdump = find(nvalid(wlost) < goodenough); 
            ndump = length(wdump); 
            if ndump > 0 
                dumphash(wlost(wdump)) = 1; 
            end 
        end 
        % put in goodenough keyword stuff if  
    end 
    if (ispan == zspan) | (i == z) 
        nold = length(bigresx(1,:)); 
        nnew = n-nold; 
        if nnew > 0 
            newarr = zeros(z,nnew) -1; 
            bigresx = [bigresx,newarr]; 
        end 
        if goodenough > 0   
            if (sum(dumphash)) > 0 
                wkeep = find(dumphash == 0); 
                nkeep = length(wkeep); 
                resx = resx(:,wkeep); 
                bigresx = bigresx(:,wkeep); 
                pos = pos(wkeep,:); 
                mem = mem(wkeep); 
                uniqid = uniqid(wkeep); 
                nvalid = nvalid(wkeep); 
                n = nkeep; 
                dumphash = zeros(nkeep,1); 
            end 
        end 

         
        % again goodenough keyword 
        if quiet~=1 
            disp(strcat(num2str(i), ' of ' ,num2str(z), ' done.  Tracking  

',num2str(ntrk),' particles  ', num2str(n),' tracks total')); 
        end 
        bigresx(i-(ispan)+1:i,:) = resx(1:ispan,:); 
        resx = zeros(zspan,n) - 1; 

  

  
        wpull = find(pos(:,1) == -maxdisp); 
        npull = length(wpull); 

         
        if npull > 0 
            lillist = zeros(1,2); 
            for ipull=1:npull 
                wpull2 = find(bigresx(:,wpull(ipull)) ~= -1); 
                npull2 = length(wpull2); 
                thing = 

[bigresx(wpull2,wpull(ipull)),zeros(npull2,1)+uniqid(wpull(ipull))]; 
                lillist = [lillist;thing]; 

                 
            end 
            olist = [[olist];[lillist(2:end,:)]]; 

              
        end 
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        wkeep = find(pos(:,1) >= 0); 
        nkeep = length(wkeep); 
        if nkeep == 0  
                'Were going to crash now, no particles....' 
        end 
        resx = resx(:,wkeep); 
        bigresx = bigresx(:,wkeep); 
        pos = pos(wkeep,:); 
        mem = mem(wkeep); 
        uniqid = uniqid(wkeep); 
        n = nkeep; 
        dumphash = zeros(nkeep,1); 
        if goodenough > 0 
            nvalid = nvalid(wkeep); 
        end 
    end 

    
end 

  
if goodenough > 0  
    nvalid = sum(bigresx >= 0 ,1); 
    wkeep = find(nvalid >= goodenough); 
    nkeep = length(wkeep); 
    if nkeep == 0 
        for i=1:10 
        disp('You are not going any further, check your params and data') 
        end 
        disp('the code broke at line 1045') 
        return 
    end 
    if nkeep < n 
        bigresx = bigresx(:,wkeep); 
        n = nkeep; 
        uniqid = uniqid(wkeep); 
        pos = pos(wkeep,:); 
    end 
end 

  

  
wpull = find( pos(:,1) ~= -2*maxdisp); 
npull = length(wpull); 
if npull > 0 
    lillist = zeros(1,2); 
    for ipull=1:npull 
        wpull2 = find(bigresx(:,wpull(ipull)) ~= -1); 
        npull2 = length(wpull2);    
        thing = 

[bigresx(wpull2,wpull(ipull)),zeros(npull2,1)+uniqid(wpull(ipull))]; 
        lillist = [lillist;thing]; 
    end 
    olist = [olist;lillist(2:end,:)]; 
end 
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olist = olist(2:end,:); 
%bigresx = 0; 
%resx = 0; 

  
nolist = length(olist(:,1)); 
res = zeros(nolist,dd+1); 
for j=1:dd 
    res(:,j) = xyzs(olist(:,1),j); 
end 
res(:,dd+1) = olist(:,2); 

  
% this is uberize included for simplicity of a single monolithic code 

  
ndat=length(res(1,:)); 
newtracks=res; 

     

  
%u=unq(newtracks(:,ndat)); 

  
% inserting unq 
indices = find(newtracks(:,ndat) ~= circshift(newtracks(:,ndat),-1)); 
        count = length(indices); 
        if count > 0 
            u = indices; 
        else   
            u = length(newtracks(:,ndat)) -1; 
        end 

  

  
ntracks=length(u); 
u=[0;u]; 
for i=2:ntracks+1 
    newtracks(u(i-1)+1:u(i),ndat) = i-1; 
end 

  
% end of uberize code 

  
tracks = newtracks; 

  

APPENDIX G 

STRAIN TRACKING PROGRAM 

%% Microchannel striain from bead tracking 
%copyright Lucas Hofmeister 2011 all rights reserved 
clear all 
close all 
clc 
FrameWidth = 1280+20; %video resolution in pixels 
FrameHeight = 980+20; %videwo resolution in pixels 

  
folder = 'E:\2011_10_20_StrainTracking\Attempt1'; %path on laptop 
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%folder = 'K:\2011_10_24_StrainTracking'; %path on desktop 

  
fileName = 'ActuatorMove1001'; 
B = load([folder,'\',fileName]); 
%Bdist = load([folder,'\',fileName,'_Dist']); 
%Binput = load([folder,'\',fileName,'_PointsIn']); 
[num,time] = size(B); 

  
%this will round the x and y points in the feature position data to the 
%nearest pixel 

  
xdata = round(B(:,1:2:time-3))';  
ydata = round(B(:,2:2:time-2))'; 

  
[Gxx,Gxy] = gradient(xdata); %Gxy is the x gradient along each column 

(pixels/frame) 
[Gyx,Gyy] = gradient(ydata); %Gyy is the y gradient along each column 

(pixels/frame) 

  

  
% StrainY = zeros(FrameHeight,FrameWidth); 

  
[row,col] = size(xdata); 

  
%this section pulls out all of the frames where there is a change in 
%position of the beads. I have to do this because the files saved as 

100fps 
%but are actually sampled less than that 
MeanGx = mean(Gxy')'; 
indices = find(MeanGx~=0); 
rows = indices(1:2:length(indices)); 
% MeanGy = mean(Gyy')'; 
% rows = find(MeanGy~=0); 

  
%jason's method 

  
% CompRow = find(Gxy~=0); %find the nonzero points in the x gradient data 
% holder = diff(CompRow); 
% ind_holder = find(holder<0); 
% rows = CompRow(1:ind_holder(1)); 
%may need to do this for Gyy too 

  
%vid = zeros(FrameHeight,FrameWidth,length(rows)); %this would initialize 
%vid, but the size is actually different than the resolution 
n=1; 
r = 1; 
c = 1; 
for r = 1:1:length(rows)    %:14:row-15; 
    StrainX = zeros(FrameHeight,FrameWidth); 
%     StrainY = zeros(FrameHeight,FrameWidth); 
    for c = 1:1:col; 
        StrainX(abs(ydata(rows(r),c)),abs(xdata(rows(r),c))) = 

Gxy(rows(r),c); 
%         StrainY(abs(ydata(rows(r),c)),abs(xdata(rows(r),c))) = 

Gyy(rows(r),c); 
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    end 

  

  
%this section contains the parameters for performing the dilation 
% MN = [10,100]; %shape parameters for rectangular dilation 
% SE = strel('ball', 5,0,0); %grayscale dilation using a ball shape with 

radius 50 and height 1 
%SE = strel('rectangle', MN); %grayscale dilation using a rectangle  

  
% StrainX_dilate =  imdilate(abs(StrainX), SE ,'same'); 
% figure 
% imagesc(StrainX_dilate) 

  
%SX = StrainX_dilate; 
SX = abs(StrainX); 

  
% this section prepares variables for TriScatteredInterp 
NNZ = nonzeros(SX); %nonzero values of the dilated displacement 
[I,J] = find(SX ~= 0); %locations of nonzero values I=row J=column 

  
%V = SX(find(SX~=0)); %an alternative to the 'nonzeros' function 

  
I2 = 1:size(SX,1); 
J2 = 1:size(SX,2); 
[I2,J2] = meshgrid(I2,J2); %this creates a grid to use for the final 

interpolation 

  
X = [I,J]; 
Z  = TriScatteredInterp(X,abs(NNZ), 'linear'); 
Strain = Z(I2',J2'); 
figure 
imagesc(Strain) 
% montage(Strain) 

  
% to make an image stack for a video 
vid(:,:,n) = Strain;  
n=n+1; 
% clear StrainX StrainY Strain StrainX_dilate Z NNZ SX 
end 

  
[Fx Fy] = gradient(vid(:,:,2)); 
[row col frames] = size(Fx); 

  
row = 1:1:row; 
col = 1:1:col; 
figure 
imagesc(vid(:,:,2))  
hold on 
quiver(row,col, Fx, Fy) 
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