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CHAPTER I 

 

INTRODUCTION  

 

Overview 

Diabetes is a growing pandemic both in the United States and around the world. 

In the last decade the number of cases of diabetes has risen steadily with the current 

approximation being 26 million people affected in the United States alone.
1
 Much of this 

rise is due to the increase in prevalence of type 2 diabetes. While type 1 and type 2 

diabetes have different etiologies, the symptoms and complications of each are similar. 

Diabetes starts with dysfunction in the pancreas, but it has many systemic effects that 

contribute to serious health problems. It is the currently leading cause of kidney failure, 

new cases of blindness, and non-traumatic lower limb amputations. Other major 

complications of diabetes include heart disease, stroke, hypertension, periodontal disease 

and nerve damage. The main focus of this work is to study the molecular changes 

associated with kidney damage due to diabetes.  

Approximately one-third of all diabetic patients will develop diabetic nephropathy 

(DN) and many will go on to develop end stage renal disease (ESRD) requiring continual 

renal dialysis or kidney transplant.
2
 Much still remains unknown about the pathogenesis 

of this disease and insight for prevention and better treatment options of DN can lower 

the incidence of ESRD. This project will investigate the molecular changes that take 

place in glomeruli and tubules to explore the pathogenic mechanisms of this disease by 
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use of mass spectrometry. Specifically, matrix assisted laser desorption/ionization 

(MALDI) imaging mass spectrometry (IMS) will be used to determine the spatial 

distribution of different molecules within the kidney. The goal of this research project is 

to develop MALDI MS methods for direct tissue analysis of individual glomeruli and 

tubules within the kidney cortex by imaging mass spectrometry and histology directed 

profiling techniques. These methods will then be applied to study an experimental model 

of diabetic nephropathy. Determining biomolecules that undergo change in disease 

conditions and evaluating response to treatment may lead to new molecular markers of 

disease, provide insight into disease pathogenesis, and characterize treatment response. 

Diabetic Nephropathy 

Diabetic nephropathy (DN) is a major health complication for diabetic patients 

and is the leading cause of end stage renal disease (ESRD).
2
 Diabetic patients with ESRD 

are more difficult to manage and experience an increased death rate.
1 

The incidence of 

diabetes has increased rapidly over the past decade and thus the number of cases of DN is 

rising as well. DN develops in 30 to 40% of type 1 and type 2 diabetic patients. Poor 

treatment and/or genetic disposition in diabetic individuals lead to increased severity of 

complications. DN is a progressive disease and is classified into stages: microalbuminuria 

and macroalbuminuria.
3
 Pathologic and morphologic changes that are characteristic of 

late stage diabetic nephropathy include albuminuria, increased glomerular basement 

membrane thickness, mesangial expansion, focal segmental and early nodular 

glomerulosclerosis, and markedly decreased glomerular filtration rate. Although there is 

not a clear understanding of the molecular basis of the pathology of DN, it is known that 

early detection and maintenance are critical in delaying the progress of the disease.  
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Molecular Mechanisms of Disease 

Diabetic nephropathy is a complex disease that involves many factors. It is 

characterized by the accumulation of extracellular matrix (ECM) in the glomerular and 

tubular basement membranes and expansion of the glomerular mesangial matrix 

decreasing the kidney’s function to filter the body’s blood. While DN develops in some 

patients with diabetes, it does not develop in others, even with persistent hyperglycemia. 

This observation has led to the idea that a subset of patients have an increased 

susceptibility to DN
3
 likely based on both genetic and environmental factors. While much 

remains unknown about the pathogenesis of DN, sustained hyperglycemia and 

hypertension are important in both initiation and progression of this kidney disease. 

These metabolic and hemodynamic factors are the main focus of both research and 

treatment efforts.
3-7

 There are several pathways that have been found to contribute to 

pathogenic mechanisms in diabetic kidney disease. These pathways include increased 

generation of advanced glycation end products (AGEs), activation of protein kinase C, 

and increased flux through the hexosamine and polyol pathways.
5, 8-10

 There is cross-talk 

among these pathways but all have been shown to contribute to ECM accumulation and 

renal injury. Protein kinase C, hexosamines, and AGEs have been shown to activate 

transforming growth factor-β (TGF-β) signaling. TGF-β is a major molecule responsible 

for increased synthesis of collagen type I and IV, fibronectin, laminin and other ECM 

proteins.
11

 
12

 AGEs are a group of molecules formed by the non-enzymatic reaction of a 

sugar with free amino groups on proteins, lipids, and nucleic acids and can form both 

intracellularly and extracellularly. AGEs are produced in small amounts under normal 

conditions of aging; however their formation increases under high glucose conditions. In 
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the extracellular environment, AGEs can accumulate in long-lived ECM proteins which 

have been shown to alter the ECM composition and effect glomerular cell-matrix 

interactions and thus may cause cellular dysfunction.
13-15

 All of these pathways have been 

found to have high glucose and reactive oxygen species (ROS) as common denominators. 

This has led to the proposition of a unifying mechanism by Brownlee et al whereby 

hyperglycemia induces overproduction of mitochondrial ROS
8, 16

 leading to pathogenesis 

of diabetic complications.  

Diagnosis, Prevention, and Current Treatment Options 

The most accurate diagnosis of DN in the clinic is kidney biopsy revealing 

arteriolar hyalinosis, increased GBM thickness, mesangial expansion, mesangiolysis, 

focal segmental and early nodular glomerulosclerosis.
17

 However, due the invasive nature 

of biopsy, DN is most often diagnosed with positive proteinuria.
3
 Currently there is no 

way to reverse the damage in kidneys of DN patients, and as damage accumulates over 

time these patients will progress to ESRD. Prevention is the first line of defense. Tightly 

controlled blood glucose has been found to be the best prevention of DN. 

Current treatment options are limited and include tighter control of glucose levels 

for better maintenance along with drugs to control blood pressure. These therapies will 

only slow, and not prevent, progression to ESRD. Once kidney damage has begun, 

maintenance becomes very important. Pharmaceuticals that target the rennin-angiotensin 

pathway and control renal hemodynamics are currently the only approved drugs for DN
18

 

as it has been found that in conjunction with blood glucose control, blood pressure 

control also becomes paramount in maintaining kidney function. Angiotensin-converting 
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enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs) are the most 

commonly prescribed drugs.  

A new drug, pyridoxamine (PM) (Figure 1.1), currently in phase II clinical trials, 

has a different mechanism of action than the currently approved DN drugs by targeting 

molecules directly involved in the disease mechanism. Prolonged hyperglycemia disrupts 

many metabolic pathways by production of reactive oxygen species (ROS), reactive 

carbonyl intermediates, and AGEs. Mechanisms whereby PM protects renal function 

include inhibition of toxic oxidative and glycoxidative reactions via scavenging of 

reactive oxygen and carbonyl species and via sequestration of catalytically active 

transition metal ions.
19-23

 A number of preclinical and phase II trials have shown that 

pyridoxamine preserves kidney function,
24-28

 particularly at the early stages of the 

disease.
29

  

 

 

 

Figure 1.1. Structure of pyridoxamine (PM).  
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Structure and Function of the Kidney 

The kidney’s primary function is to remove waste from the bloodstream and to 

maintain proper electrolyte and fluid balance for the body. Filtration is achieved through 

the nephron which is the main structural and functional unit of the kidney. Humans have 

about one million of these functional nephron units per kidney. A single nephron is 

composed of a glomerulus enclosed by the Bowman’s capsule, a proximal tubule, loop of 

Henle, distal tubule and a collecting duct (Figure 1.2). Filtration begins at the glomerulus 

which is a small spherical structure consisting of mesangial cells, capillary endothelial 

cells, podocytes, and extracellular matrix (see Figure 1.3). The glomerular filtration 

membrane functions as both a size and charge barrier
30

 where water, small molecules, 

and small proteins can pass through while large proteins and red blood cells do not pass 

through the capillary walls. Unfiltered blood enters into the glomerulus through the 

afferent arteriole and travels through the densely packed capillaries. The water and 

soluble waste that pass through the fenestrated endothelial cells of the capillaries leaves 

the glomerulus and continues to the proximal tubule to be excreted as urine. Filtered 

blood exits the glomerulus through the efferent arteriole to return to the body. About 150 

liters of blood are filtered through the glomeruli per day. Most of this fluid is reabsorbed 

along the tubule concentrating to produce about 1 liter of urine per day. In humans the 

glomerulus is about 150 μm in diameter and in mice it is approximately 80 μm in 

diameter. Diseases of the kidney, such as diabetic nephropathy, disrupt the filtering 

process and reduce the function of the kidney. 
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Figure 1.2. Kidney structure.  The nephron is the basic structural and functional unit of 

the kidney. Each nephron of the kidney contains a renal corpuscle and tubule. The 

corpuscle consists of the glomerulus and the Bowman’s capsule and is shown on the left. 

The tubular portion of the nephron consists of the proximal convoluted tubule, the loop of 

Henle, and the distal convoluted tubule. As the filtrate flows through the tubule of the 

nephron, it becomes increasingly concentrated into urine. Waste products are transferred 

from the blood into the filtrate, while nutrients are absorbed from the filtrate into the 

blood. 

 

* Reproduced with permission of Encyclopædia Britannica® Online from: renal 

corpuscle, in Encyclopædia Britannica Online [Online] 2014. 

http://www.britannica.com/EBchecked/media/107139/Each-nephron-of-the-kidney-

contains-blood-vessels-and-a. 
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Figure 1.3. Schematic of a mature glomerulus in cross section. Fewer capillary loops are 

shown than normal for clarity, and the size of cells are exaggerated in proportion to the 

overall size of the glomerulus. The four major cell types of the glomerulus are the 

Bowman's capsule (BC) or parietal epithelium (grey), podocytes (P, blue) or visceral 

epithelium, mesangial cells (M, orange) and endothelial cells (E, red). The mature 

glomerulus is encompassed by the Bowman's capsule. The glomerulus comprises a self-

contained network of capillary loops (C, red), with mesangial cells forming a nexus at the 

base of the capillary network. The glomerular basement membrane (GBM, green) divides 

the glomerulus into two compartments, an inner one containing the capillaries and the 

mesangial cells, and an outer one containing podocytes and the space into which the 

filtrate passes. The glomerulus remains connected to the remainder of the nephron 

through an opening in the Bowman's capsule that connects the glomerulus to the 

proximal tubule, shown on the right. The arrows in the capillaries indicate the flow of 

blood in and out of the glomerulus. Also omitted for clarity is the branching of the single 

capillary loop into the multiple loops within each glomerulus. 

 

* Reproduced with permission of COMPANY OF BIOLOGISTS from: Quaggin S E, and 

Kreidberg J A Development 2008; 135:609-620. 
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Current Research in DN 

Current DN research involves studies using both humans and animal models of 

the disease. Research with human subjects is usually in the form of clinical trials
31-33

 or 

cohort studies.
34

 These often look at end-points in accessible material such as blood or 

urine.  Kidney biopsy is not standard procedure for diagnosis due to its invasiveness. As 

such, research directly with human renal tissue is less common but include proteomic 

studies of human glomeruli
35

 and  histopathology studies from biopsies that have 

established structural and functional relationships between biopsies and clinical 

manifestations.
36

  

Animal models are important in clinical research. These give investigators more 

control over the experimental system and allow for more in-depth investigation directly at 

the site of disease with access to organs. Animal models allow for a variety of 

experimental designs including controlled studies of experimental therapies, 

investigations into disease progression, specific molecular pathways or proteins and full 

scale proteomics studies. Specific to DN, a number of rodent models have been 

employed.
37

 In this present study the double mutant eNOS
-/-

 db/db mouse was utilized. 

The db/db mouse is a common strain used as a Type II diabetes model and has a mutation 

in the leptin receptor leading to obesity and hyperglycemia. Mice with a mutation 

targeting endothelial nitric oxide synthase (eNOS
-/-

) have a deficiency in eNOS which 

leads to hypertension. Crossing these two mouse strains leads to double mutant mice that 

exhibit hyperglycemia and hypertension and also develop significant albuminuria, 

basement membrane thickness, mesangial expansion and decreased glomerular filtration 
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rate. This is the most robust DN model available and closely mimics the human 

disease.
38, 39

 

Along with this mouse model, a new technology to DN research being utilized in 

this work is imaging mass spectrometry (IMS). This technology has specific advantages 

in that it provides native molecular distributions while maintaining the spatial integrity of 

the tissue, can be interfaced directly with histology, is inherently multiplexed, and 

suitable for investigations of a wide variety of biomolecules including metabolites, lipids, 

peptides, and proteins. Additionally, IMS is a good discovery tool as no target specific 

reagents are required. This is an intriguing application of IMS as much remains unknown 

about the molecular pathways involved in the pathogenesis of DN.  

MALDI Mass Spectrometry  

Mass spectrometry (MS) allows for simultaneous detection of multiple analytes 

without the need for labeling or a priori knowledge of the system under investigation. A 

mass spectrum is a graph of ion intensity plotted as a function of the mass-to-charge (m/z) 

ratio of ions detected in the gas phase. Two common sources of these gas phase ions are 

matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). 

MALDI was developed in the 1980’s through the pioneering work in the lab of Tanaka
40

 

and the lab of Karas and Hillenkamp.
41, 42

 Around this same time John Fenn developed 

ESI.
43

 The development of these two soft ionization techniques revolutionized the 

analysis of large biomolecules. Fenn and Tanaka earned a share of the 2002 Nobel Prize 

in chemistry for their respective developments of ESI and MALDI. As MALDI MS is the 

focus of this present work, a brief description of the process and instrumentation used 

will be described below. 
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In a typical MALDI experiment, a sample is mixed and co-crystallized with a 

suitable matrix (Figure 1.4). The matrix is usually a small organic compound that 

functions to absorb the energy of the laser light and assist in desorption and ionization of 

a sample. As most commercial MALDI instruments are equipped with UV lasers of 

nitrogen (337 nm), or solid state frequency tripled Nd:YAG (355 nm) or Nd:YLF (349 

nm), matrix compounds that strongly absorb the wavelength of the UV laser are generally 

required. Common matrices that have been used successfully for a variety of 

biomolecules include 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA) and α-

cyano-4-hydroxycinnamic acid (CHCA). The MALDI process generally produces singly 

charged ions and usually does not induce fragmentation allowing for easy spectral 

interpretation.   

TOF Analyzers 

MALDI sources are commonly interfaced with time of flight (TOF) mass 

analyzers. TOF analyzers determine the mass-to-charge of an ion based on the time it 

takes an ion to traverse a field free region following acceleration and subsequently hit a 

detector. These are some of the simplest mass analyzers containing the basic components 

of an accelerating electrode, a field free drift region, and a detector (Figure 1.5). The 

detector in TOF instruments is often a multi-channel plate detector. The basis of TOF 

mass analyzers is that when ions are given the same kinetic energy through acceleration, 

ions with different masses will have different velocities and therefore will be separated in 

time. The pulsed nature of a laser provides an inherent ‘start’ time that makes TOF 

analyzers a perfect match with a MALDI source. When ions are created in the source 

region after the laser pulse, they are accelerated and enter a field-free drift region where  
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Figure 1.4. Schematic of MALDI process. A laser pulse irradiates a sample-matrix 

surface. The matrix absorbs the laser energy to assist in desorption and ionization of 

sample analytes. 
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Figure 1.5. TOF schematic. A simplified linear mode MALDI TOF schematic where ions 

generated from the sample by the laser are accelerated and traverse a field-free drift 

region of length d and hit a detector. The time of flight is measured and converted to a 

mass-to-charge ratio (m/z).   
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they are separated based on their velocity. The kinetic energy of an ion is described by 

the following equation:  

      
   

 
 

where z is the charge of the ion, V is the ion acceleration voltage, m is the mass of the ion, 

and v is the velocity of the ion. All ions are given the same kinetic energy based on the 

voltage applied in the source; therefore, the time it takes for an ion to reach the detector is 

given by the equation: 

   √
 

   
 

where t is time and d is the distance the ion travels (i.e., the length of the flight tube). 

Based on the equation above, an ion’s mass is proportional to the time that it travels; 

therefore ions with higher m/z will reach the detector at a later time than smaller m/z ions.  

A major limitation of the basic TOF analyzer is mass resolution. Two key 

instrumental advancements, the reflectron configuration and delayed extraction,
44, 45

 have 

greatly improved the practical mass resolution achieved with MALDI TOF mass 

spectrometers. Both the reflectron analyzer and delayed extraction can correct for the 

broad initial velocity distribution of ions in the plume after a laser pulse. Reflectron 

instruments use an electrostatic field to reflect the ions toward the detector. Ions with 

higher initial velocities will penetrate deeper into the field and therefore travel a longer 

distance than an ion of the same mass-to-charge but a lower initial velocity. This focuses 

the ions of the same mass-to-charge and allows them to reach the detector at the same 

time. Reflectron instruments also have a longer flight path further improving resolution. 

Delayed extraction is used on both linear and reflectron TOF analyzers to improve 
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resolution. When instruments are operated under constant electric fields, ions of the same 

mass but different initial velocities will arrive at the detector at different times. The 

spread of initial velocities can be corrected by pulsing the acceleration field after a given 

delay, typically one to several hundred nanoseconds. In this manner, ions with higher 

initial velocities towards the extraction region will be accelerated slower to reach the 

potential and ions with lower initial velocities will be accelerated faster to reach this same 

potential. With the correct parameters for delay time and pulsed field strength, ions with 

different initial velocities but the same mass should arrive at the detector at the same 

time.   

MALDI TOF instruments have a very high duty cycle with some instruments 

equipped with 5 kHz lasers. This high duty cycle along with the theoretically unlimited 

mass range of TOF analyzers make these instruments well-matched for bimolecular 

imaging as they are fast and suitable for detection of a wide range of biomolecules from 

small molecules to large proteins.  

FTICR Mass Analyzers 

Fourier transform ion cyclotron resonance (FTICR) mass spectrometers are another type 

of mass analyzer that can be interfaced with MALDI. Reviews and fundamentals are 

covered extensively elsewhere
46-48

 and only the basics will be covered here. FTICR mass 

spectrometers consist of an ICR cell located in the center of a super-conducting magnet 

which provides a uniform magnetic field. The basis for FTICR mass analyzers is that ions 

will undergo cyclotron motion in a magnetic field. This cyclotron motion causes ions to 

travel in a circular orbit with a frequency that is dependent on its mass. A typical ICR cell 

consists of three sets of plates: two trapping plates, two excitation plates, and two 
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detection plates (Figure 1.6). The trapping plates are perpendicular to the magnetic field 

and after ions are transferred into the ICR cell a small voltage is applied to each end 

creating a potential well that traps the ions in the cell. Ions typically have very small 

initial orbits inside the cell. For detection, a radio frequency (RF) potential is applied to 

the excitation plates. When the RF frequency corresponds to the cyclotron frequency of 

an ion it will spiral outward with increasing orbit radius (see Figure 1.6). The RF is then 

turned off and the ion undergoes cyclotron motion with a radius large enough for an 

image current to be produced at the detection plates. If applied continuously, the ions will 

spiral outward until they hit one of the plates and are neutralized. 

The force on an ion as it enters a magnetic field is described by the following 

equation: 

       

where B is the strength of the magnetic field and z and v are the charge and velocity of 

the ion, respectively. This force is call the Lorentz force and causes the ion to have 

circular motion that is perpendicular to the magnetic field. The centripetal force must 

equal the magnetic force therefore the following equation is true: 

      
   

 
 

Since the distance an ion travels in one rotation is 2πr, the above equation can be 

rearranged to describe the frequency as:  

  
  

   
 

As seen in the above equation, the ion’s cyclotron frequency is only dependent on the 

strength of the magnetic field and its mass-to-charge ratio and is independent of its 
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Figure 1.6. FTICR schematic. Incoherent ion cyclotron orbital motion (top left) is 

converted to coherent (and, therefore, detectable) motion (top right) by the application of 

a rotating electric field, which rotates in the same sense and at the ICR frequency of the 

ions of a given m/z value. The electronic circuitry is shown in the bottom diagram. 

 

* Reproduced with permission from: Marshall, A. G.; Hendrickson, C. L.; 

Jackson, G. S., Fourier transform ion cyclotron resonance mass spectrometry: A primer. 

Mass Spectrometry Reviews 1998, 17 (1), 1-35. 
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velocity and kinetic energy. Therefore, constant, homogenous, and unidirectional 

magnetic fields allow for high mass accuracy and high mass resolving power.   

FTICR instruments are the highest performance mass spectrometers available. 

They achieve both high resolving power (routinely >100,000) and high mass accuracy 

(sub ppm) lending great value in the analysis of biomolecules. Unlike MALDI TOF 

instruments where every laser shot results in a detection event, MALDI FTICR 

instruments can accumulate ions from multiple laser shots before the detection event 

leading to increased sensitivity for detection of low abundant molecules. However, the 

detection event is much longer in an FTICR compared to a TOF (typically seconds vs. 

microseconds) leading to longer analysis times, particularly in an imaging experiment.   

Imaging Mass Spectrometry 

Combining mass spectrometry with an imaging approach adds yet another layer to 

the dataset providing the spatial distribution of each detected ion within an analysis area. 

Current imaging MS technologies include secondary ion mass spectrometry (SIMS), laser 

desorption ionization (LDI), desorption electrospray ionization (DESI), and MALDI. 

SIMS is one of the earliest platforms used for imaging and provides the highest spatial 

resolution by using a focused primary ion beam incident on the surface of a sample. 

Resolution of 50 nm can be achieved but this technique has a limited mass range of ~ m/z 

1000, often producing elemental ions or fragments of surface molecules.
49, 50

 

Applications with LDI have reported spatial resolutions of <1 µm but again, has been 

limited in mass range due to fragmentation of molecules.
51-53

 MALDI IMS is probably 

the most widely used MS imaging platform due to the extended mass range and low 

fragmentation of ionized molecules. Conventional MALDI MS can detect masses that 
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span several orders of magnitude, extending beyond m/z 300,000. However, the spatial 

resolution is lower than that of SIMS and LDI imaging where typical MALDI laser spot 

sizes are 30-200 μm, although spot sizes of 1 μm have been reported.
54

  

MALDI IMS is the focus of this work and has been described extensively 

elsewhere,
55-58

 but advancements and applications will be briefly outlined here. Since 

MALDI IMS was first described in 1997 where it was applied to map peptides and 

proteins in a thin tissue section,
59

 this technology has been used in many other studies to 

map a wide range of biomolecules including proteins, peptides,
60

 lipids,
61, 62

 

pharmaceuticals and metabolites.
63

 The diversity of molecules suitable for detection with 

this technology has lent itself to use in a broad range of applications, most notably, in the 

arenas of biology and medicine. With respect to these areas, MALDI IMS has been 

instrumental in classifying tumor types in studies including lung, melanoma, and breast 

cancers,
64-66

 determining proteomic patterns of specific cell types in autoimmune liver 

diseases,
67

 determining tissue drug distributions,
63, 68

 and identifying candidate markers 

of disease.
69, 70

  

The value of MALDI IMS has increased as the technology has developed. 

Progress in the areas of spatial resolution,
71-74

 sensitivity,
75, 76

 speed,
77

 and sample 

preparation
61, 78-81

 have opened the doors for this technology to have an impact in ever 

expanding biological applications. With particular interest for this present work, spatial 

resolution advancements have been necessary for imaging of small tissue structures such 

as the glomerulus. Resolution of most reported MALDI imaging experiments is in the 

range to 30-200 µm. A push to higher resolution has involved development of both the 

instrument laser technology and sample preparation techniques. One of the major 
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challenges for achieving high resolution images of biological tissue sections is sample 

preparation in terms of matrix deposition methods, matrix crystal size, and sensitivity. 

For example, use of a solvent to aid in the deposition of the MALDI matrix onto a tissue 

section may contribute to analyte delocalization and formation of crystals >20 μm 

limiting the usefulness of a <10 μm beam.  

Summary and Research Objectives 

DN leads to progressive decline in renal function and is the leading cause of end-

stage renal disease. Much still remains unknown about the pathogenesis of this complex 

disease. This project investigates the molecular changes that take place in kidney 

glomeruli and tubules to explore the pathogenic mechanisms of this disease by use of 

MALDI IMS. The first goal of this research project was to develop MALDI MS methods 

for direct tissue analysis of glomeruli within a kidney cortex by imaging mass 

spectrometry and histology directed profiling techniques. The small size of the 

glomerulus had previously made MALDI IMS of this tissue structure a challenge; 

however, advances in imaging resolution and sample preparation have made this 

accessible. These methods have now been applied to study an experimental mouse model 

(eNOS
-/-

 db/db) of diabetic nephropathy. This is one of the most robust models; 

mimicking the progressive functional and structural damage documented in human DN. 

Kidneys from three experimental groups have been studied: wild type (non-diabetic), 

eNOS
-/-

 db/db (diabetic), and pyridoxamine (PM) treated eNOS
-/-

 db/db mice. PM, a 

promising drug candidate for the treatment of DN and an inhibitor of AGE pathways, has 

been shown to have a renal protective effect in Phase II clinical trials. In this work, 

changes in different classes of biomolecules including proteins and lipids have been 
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investigated with specific signatures found in diseased and healthy kidneys. Determining 

biomolecules that undergo change in disease conditions and evaluating response to 

treatment may lead to new molecular markers of disease, provide insight into disease 

pathogenesis, and characterize treatment response. 

The purpose of this work was to achieve the following goals: 

Objective 1: Develop methods for direct tissue analysis of kidney micro-structures 

including the glomerulus and tubules. 

Objective 2: Assess the biological significance of lipid changes and their spatial 

distributions in healthy and diabetic kidneys and evaluate the response of lipid signatures 

in disease after treatment with PM, an inhibitor of oxidative and glycoxidative reactions.  

Objective 3: Assess the biological significance of protein changes and their spatial 

distributions in healthy and diabetic kidneys and evaluate the response of protein 

signatures in disease after treatment with PM. 
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CHAPTER II 

 

METHODS FOR HIGH SPATIAL RESOLUTION IMAGING AND TARGETING 

OF MICROSTRUCTURES IN THE KIDNEY WITH MASS SPECTROMETRY  

 

Overview 

This chapter will describe the application and use of MALDI IMS with specific 

considerations and procedures required for kidney analysis. Two common workflows of 

MALDI IMS will be described: the histology directed workflow and the imaging 

workflow. These general workflows have been described previously
56, 66, 82, 83

 but 

presented here are specific considerations for sample preparation and instrumentation for 

high spatial resolution imaging to target microstructures of the kidney including specific 

tubular and glomerular structures. In this work high spatial resolution is defined by 

imaging at ≤25 µm. Specific procedures for both lipid and protein analysis will be 

presented.   

MALDI IMS as a Tool to Study Kidney Disease 

Innovation and new technology enable advancements in medical and biological 

research. Despite the significance of glomerular diseases, there is still incomplete 

understanding of the underlying pathogenic mechanisms. Uncovering molecular events 

that define mechanisms of susceptibility and progression in glomerular pathology such as 
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DN will require novel research technologies. MALDI IMS is one such technology that is 

being utilized in kidney research. 

Direct kidney tissue analysis by MALDI MS has been used in previous studies of 

kidney diseases in both humans and animal models of disease.
84, 85

 MALDI IMS of 

human kidney biopsies from renal cell carcinoma patients has shown molecular margins 

between tumor and normal kidney that differ from histological margins.
86

 Groups have 

used this technology in animal models to study polycystic kidney disease,
69

 

glycosphingolipid storage disease,
87

 immunoglobulin A nephropathy,
88

 and drug 

distribution within a kidney section after dosing.
68, 70

 Specific to the glomerulus, laser 

capture microdissection has been used to isolate glomeruli from kidney sections and 

profile pooled glomeruli with MALDI MS in a rat model of focal segmental 

glomerulosclerosis.
89

 None of these studies however has shown molecular changes at the 

level of single glomerulus within a kidney section. In this chapter, we demonstrate the 

use of MALDI IMS to analyze the molecular composition of single glomeruli and tubules 

within the kidney cortex. 

MALDI IMS Overview 

MALDI IMS acquires molecular information in a spatially defined manner. There 

are two general workflows that can be followed in a MALDI IMS experiment: the 

traditional imaging workflow and the histology directed workflow. Each has utility in 

analysis of kidney glomeruli and involves careful tissue preparation and matrix 

application steps before analysis in the mass spectrometer. Each aspect will be described 

in more detail later in this chapter but the general steps of the two workflows are as 

follows. In the imaging mode (Figure 2.1), a chemical matrix to aid in the absorption of  
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Figure 2.1. Schematic representation of IMS analysis of kidney sections.   Frozen kidneys 

are cryo-sectioned at 10 μm and thaw-mounted on a glass slide. A thin coating of the 

MALDI matrix is applied across the entire tissue section by sublimation. An ordered 

array is set up across the kidney section and the MALDI laser is directed at each pixel to 

acquire a mass spectrum at every point. Molecular images are then constructed by 

selecting m/z values in the spectra to determine where different molecules are localized 

throughout the kidney section.  Artificial color scale is used to indicate differences in 

signal intensity for each m/z value. 
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laser energy is applied uniformly over the sample.  The laser is moved in a raster pattern 

and a spectrum is collected at every pixel in an ordered array across the tissue.  Data can 

then be displayed as molecular maps of the spatial localization of given m/z values 

throughout the tissue.  If required, molecular identification can be performed directly on 

the tissue section by MS/MS analysis. In the histology-directed mode (Figure 2.2), 

classical histology guides the analysis of specific regions of the tissue.  First, a chemical 

matrix is applied in the discrete areas of interest within the tissue section. A laser beam is 

used to irradiate the matrix and ionize tissue molecules. As the result, the mass-to-charge 

ratio of each detected molecule is assigned to a corresponding spatial location within the 

tissue section. Each workflow requires the basic steps of tissue sectioning, matrix 

application and mass spectrometry analysis.  

As with any methodology, MALDI IMS also has specific limitations. Analysis 

comes directly from a tissue section where a high concentration of salts and major plasma 

proteins may interfere with detection of other molecules of interest. Tissue washing can 

often be successfully used to reduce this interference.
75, 90

 Also, with MALDI IMS there 

are no upstream separation steps which could help increase the depth of coverage. Other 

MS techniques such as ion mobility MS or LC/MS can be used in conjunction with IMS 

to address these shortcomings.  It is important to note that up-stream pre-separation 

procedures may also introduce artifacts thus complicating sample analysis. Further, 

MALDI IMS involves the addition of a chemical matrix to the tissue section.  The choice 

of MALDI matrix influences what is detected, with certain matrices favoring certain 
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Figure 2.2. Schematic representation of histology directed profiling. (A) A fresh frozen 

kidney is cryo-sectioned at 10 um and thaw-mounted on an ITO glass slide. The kidney 

section is stained with cresyl violet (a MALDI MS compatible stain) for visualization of 

the glomeruli. (B) Position of glomeruli is determined using MIRAX Viewer, indicated 

by red dots. The coordinates are exported to the robotic spotter. (C) The robotic spotter 

deposits trypsin at selected glomeruli for in situ digestion followed by the MALDI matrix 

at the same locations. (D) The sample is inserted in to the mass spectrometer and the laser 

fires at the matrix covered glomeruli producing ions from individual glomeruli.  
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classes of molecules.  On the other hand, careful matrix choice or use of different 

matrices in parallel sample analyses can enhance detection of analytes of interest. 

Given the limitations, there are also many advantages with this technology. 

MALDI IMS involves minimal tissue processing, and there is little dilution effect, when 

compared with other proteomic technologies such as laser capture microdissection or 

whole tissue homogenization followed by LC/MS. Unlike immunohistochemical 

analysis, the knowledge of protein identities prior to the analysis is not required, there is 

no need for any target-specific reagents, and there are no issues with hidden epitopes for 

antibody binding. In a single experiment, potentially hundreds of molecules can be 

analyzed from spatially discrete regions of a single tissue section, making MALDI IMS 

technology an invaluable discovery tool.   

There are many aspects to consider in a MALDI imaging experiment including 

tissue preparation, matrix application, image size and resolution, instrumentation and data 

analysis. The following will discuss each of these aspects.   

Fresh Frozen Tissue Preparation 

Sample collection, freezing, and sectioning 

MALDI IMS can be applied to fresh frozen tissue as well as FFPE tissue. Use of 

fresh frozen tissue allows for robust analysis of a variety of molecules including drugs, 

metabolites, lipids, and proteins. However, FFPE tissue comprises a large portion of what 

is stored in tissue banks which can be a valuable source of samples. As such, methods 

have been developed for MALDI IMS of FFPE tissue
64, 91

 but studies are generally 

limited to enzymatically digested peptides. Fresh frozen tissue was used for all analyses 

in this study and will be the focus of the methods described in this chapter. 
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At the time of procurement, organs should be removed and immediately flash 

frozen in liquid nitrogen to limit degradation of tissue molecules. When doing animal 

studies, this can and should be controlled; however for samples such as human biopsy or 

tissue resection the researcher may not be able to control the procurement conditions as 

tightly. It is best to freeze organs in a way that will best maintain the original shape. This 

can be done by placing the organ on aluminum foil shaped as a boat and slowly lowering 

it into the liquid nitrogen. The tissue should completely freeze in a few minutes and can 

then be transferred to a -80°C freezer for storage. Organs stored at -80°C can be 

preserved for analysis for several years with minimal degradation.  

Tissues stored at -80°C are warmed to -20°C for sectioning on a cryostat. Frozen 

tissues are usually sectioned between 8 and 20 µm thickness. After a section is cut it 

should be manipulated carefully with a fine brush, positioned onto a cooled MALDI 

target, and then thaw mounted to adhere to the target by placing a warm thumb or finger 

under the target where the tissue was placed. The MALDI TOF instruments used in this 

study require target plate conductivity. Gold coated metal targets and indium tin oxide 

(ITO)-coated microscope glass slides are two common conductive surfaces used. Metal 

targets are often used as a sample substrate because of their high conductivity. When 

these are used, a section serial to the analysis section is cut and mounted on a glass slide 

for histological staining allowing for co-registration of histological features with the 

molecular signals detected. However, for small histological features such as the 80 µm 

glomeruli in the mouse kidney, it is difficult to track the same structures in a serial 

section and it is best to use the same section for mass spectrometry analysis and 
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histological staining. For this reason, conductive ITO slides were used for all applications 

in this work.   

Tissue washing 

It is often advantageous to wash a tissue section before matrix application and 

analysis. Many tissues, and kidneys in particular, contain many salts that can contribute 

to signal suppression with MALDI MS. The washing procedure is, of course, dependent 

on the molecules of interest that are to be analyzed. The two major classes of molecules 

studied in this work are proteins and lipids and each requires a unique tissue preparation. 

Procedures that have been found to work well for kidney analysis of both lipids and 

proteins are described below.  

Lipids are abundant molecules on the tissue surface. In many cases, no additional 

washing steps are required and the matrix can be applied directly after sectioning for 

MALDI MS analysis. Recent work by Angel et al.
76

 has shown that using an aqueous 

wash with a volatile buffer can enhance the sensitivity of lipids detected from the tissue 

surface, in part by removing salts and reducing matrix clusters. Based on this report, an 

ammonium formate wash was found useful for the lipid experiments conducted for 

kidney imaging in this work. This wash for lipid enhancement was done by dipping the 

sample slide in 50 mM ammonium formate at 4°C three times for five seconds followed 

by desiccation prior to matrix application. 

Proteins can also be detected from a tissue sections without any wash, however, 

due to the high concentration of lipids and salts in the tissue, suppression of the MALDI 

MS signal is often observed. A common wash documented in the literature for protein 

studies uses a graded ethanol series. For high spatial resolution imaging in the kidney, it 
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was found that a more stringent wash was necessary to remove the lipids to increase 

sensitivity for protein detection. Given this, kidney sections were processed using a 

washing procedure described by Yang et al.
81

 Specifically, the sample slide was 

immersed in 70% ethanol for 30 s, 100% ethanol for 30 s, Carnoy’s fluid for 2 m, 100% 

ethanol for 30 s, water for 30 s, and then 95% ethanol for 30 s.  

Matrix Application for Micro-Structure Analysis 

Matrix Deposition Methods for Imaging 

A major issue for achieving high resolution images of biological tissue sections 

with MALDI MS is sample preparation. Appropriate sample preparation methods will 

create a fine, uniform, and densely packed matrix crystal surface that has sufficient 

sensitivity for the analytes of interest. Current matrix application methods for protein 

analysis involve spraying or spotting the matrix in a solvent solution on to the tissue 

section. The solvent aids in the extraction of proteins and peptides from the tissue, which 

then co-crystallize with the matrix on the sample surface, and increase the availability of 

these analytes for detection. However, applying the matrix in a solvent solution in this 

way may contribute to analyte delocalization and formation of crystals >20 μm, limiting 

the usefulness of a <10 μm laser beam for high spatial resolution imaging. Figure 2.3A 

shows crystals formed using micro-spotting and spraying matrix dissolved in solvent. 

Micro-spotting involves deposition of matrix droplets in an array with a robotic spotter. 

Imaging resolution is thus limited by the size of the dried droplets and the pitch in which 

they are spotted (typical resolution ≥150 μm). Spraying the matrix has the advantage of 

continuous matrix coverage across the sample, but crystals tend to be larger than 25 μm 

and there are gaps on the order of 15 μm. The large crystals and gaps introduce imaging 
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Figure 2.3. Optical and SEM analysis after MALDI matrix deposition. (A) Optical 

images of matrix crystals applied by microspotting, spraying, and sublimation. Scale bar 

= 100 μm. (B) SEM micrographs of sublimated DHB, SA, and CHCA on a gold plate. 

Sublimated matrix layers lack gaps in the surface and the crystals are on the order of 1 

μm. Scale bar = 10 μm. 
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artifacts when the laser spot size is on the order of or smaller than these features. Matrix 

deposition by sublimation has overcome the crystal size and coverage problem for lipid 

analysis by producing a uniform and fine grain size of the matrix.
61

 As seen in the optical 

image and the SEM micrographs in Figure 2.3, sublimation produces uniform and 

complete matrix coverage and crystals on the order of 1 μm. SEM micrographs of three 

commonly used MALDI matrices are shown for demonstration. Sublimation was first 

introduced as a method of matrix deposition for imaging by Hankin et al. in 2007. 

However, due to the dry coating conditions this method was limited to analysis of lipids 

which are abundant on the tissue surface. Proteins were not detected with this solvent-

free preparation method, presumably due to lack of sufficient contact between the 

proteins within the tissue and the matrix deposited on the surface. A method was recently 

published that involves recrystallization of a sublimated matrix on plate spotted 

samples.
80

 The recrystallization process retained the small crystal size produced by the 

sublimation but was able to detect peptides with increased sensitivity. This concept has 

been extended to tissue imaging applications for the detection of peptides and proteins. A 

spectrum from a single pixel acquired from a kidney sublimated with CHCA followed by 

rehydration is displayed in Figure 2.4 showing detection of protein signals. Without 

rehydration no protein signal was detected. With sublimation now amenable to both lipid 

and protein imaging, high spatial (≤ 25 μm) resolution is now achievable for both of these 

classes of molecules. 
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Figure 2.4. Protein IMS at high spatial resolution. The optical image shows the MALDI 

laser ablation regions from a sublimated/rehydrated CHCA matrix coating. The spectrum 

displayed is from a single pixel in the image. Scale bar = 10 um. 
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Matrix Choice for Lipids and Proteins 

While hundreds of compounds have been tested for use as MALDI matrices, only 

a handful are used for most applications. As discussed in the previous section, matrix 

deposition by sublimation was found to be necessary for the spatial resolution required 

for imaging glomeruli and tubules in the mouse kidney. In Table 2.1, matrices and their 

sublimation conditions are listed that were found to produce high quality signal in the 

kidney.  

For many reported lipid studies 2,5-dihydroxybenzoic acid (DHB) has been a 

widely used matrix but, recently, 1,5-diaminonaphthalene (DAN) has garnered more 

attention due to its high sensitivity in both positive and negative mode.
92

 Figure 2.5 

shows an average spectrum from serial kidney sections prepared with DAN or DHB. The 

spectra were collected using the same laser and instrumental conditions and the signal 

intensity increased approximately an order of magnitude with DAN compared to DHB in 

both positive and negative mode. As laser spot sizes get smaller, the sample ablation area 

(and thus number of molecules ablated) gets smaller as well so the increased sensitivity 

that DAN yields is especially important at high spatial resolution. DAN has been found to 

produce high quality lipid spectra with laser spot sizes at 10 μm down to even 2 μm, 

which is the smallest laser beam used in this work. In Figure 2.6, a kidney cortex is 

imaged at 10 μm spatial resolution for lipids with DAN displaying a number of unique 

kidney structures with specific lipid patterns. While DAN has been found to produce high 

quality spectra for many phospho- and glyco- lipids, surveying of matrices for best 

sensitivity is recommended particularly if a specific analyte of interest is being targeted. 

For example, in this work, we were interested in detecting glucose modified 
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Matrix                         

(Abbr.) 
Formula 

MW 

(Da) 
Structure 

Sub 

T  

(°C) 

Sub 

Time 

(min) 

Use 

2,5-dihydroxybenzoic 

acid                                            

(DHB) 

C7H6O4 154.026 

 

110 7 lipids 

1,5-

Diaminonaphthalene 

(DAN) 

C10H10N2 158.084 

 

110 7 lipids 

9-Aminoacridine                   

(9-AA) 
C13H10N2 194.084 

 

150 12 lipids 

2,5-

Dihydroxyacetophenone 

(DHA) 

C8H8O3 152.047 

 

105 6 
lipids, 

proteins 

α-Cyano-4-

hydroxycinnamic acid 

(CHCA) 

C10H7NO3 189.042 

 

135 30 
peptides, 

proteins 

Sinapinic Acid                          

(SA) 
C11H12O5 224.068 

 

120 18 proteins 

Table 2.1. Matrices and sublimation conditions used for high spatial resolution IMS. 
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Figure 2.5. Comparison of DAN and DHB as a matrix for kidney lipid analysis. Negative 

mode (A) and positive mode (B) spectra from a kidney cortex comparing DAN matrix 

(blue) and DHB matrix (red). The same laser and instrumental conditions were used for 

both matrices. 
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Figure 2.6. 10 μm resolution lipid imaging with DAN. (A) Selected ion images showing 

lipid localization in micro-structures of the kidney cortex. (B) Spectra selected from 

regions of the kidney where the color of the spectrum corresponds to the region from 

panel A with the same color.  
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aminophospholipids (i.e.- phosphatidylethanolamine (PE), described in chapter 3) which 

were suspected to be present in diabetic tissue. Use of DAN did not detect any glucose 

modified PEs in the kidney tissue but 9-aminoacridine (9-AA) increased the sensitivity of 

detection for this class of molecules. It should also be noted that while negative mode 

MALDI MS of lipids typically produces [M-H]
-
 ions, the use of both 9-AA and DAN can 

produce [M-CH3]
-
 ions of phosphatidylcholine (PC) and sphingomyelin (SM) species, 

lipids usually detected in positive mode due to their permanent positive charge.
93, 94

 

These [M-CH3]
-
 ions can overlap in mass with [M-H]

-
 ions of PEs so care needs to be 

taken to distinguish these classes when making lipid assignments.     

For protein and peptide analysis, sinapinic acid (SA) and α-cyano-4-

hydroxycinnamic acid (CHCA) are the most commonly used compounds. These matrices 

were able to be sublimated on to a tissue surface but no protein signal could be detected 

with sublimation alone. As mentioned above, a rehydration step was found to be 

necessary to produce peptide and protein signal from matrix sublimated on a tissue 

surface. Rehydration is accomplished in a sealed petri dish containing 1 mL of 5% TFA 

at 85°C for 3.5 minutes. Sublimation/rehydration is suitable for high spatial resolution 

IMS of proteins as can be seen in the 25 μm image in Figure 2.7. Protein signals specific 

to the glomerulus are displayed.  

Matrix Deposition for Histology Directed IMS to Target Glomeruli 

Histology-directed MALDI MS is an approach to imaging that combines 

histological information with robotics to target specific tissue regions. This method is 

advantageous in that it is targeted and much faster than imaging an entire tissue section. 

Histology-directed IMS has been previously described,
66

 but some specific modifications 
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Figure 2.7. 25 μm resolution protein imaging with sublimated/rehydrated CHCA. Protein 

signals specific to the glomerulus are displayed. 
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to the published procedure are necessary to target glomeruli. Previous work used a 

histology stain on a serial section to guide the coordinate selection for analysis. However, 

targeting glomeruli requires use of the same section for both identification of tissue 

features (i.e. - glomeruli) and MALDI MS analysis. This is demonstrated in Figure 2.8A 

where it can be seen that a glomerulus observed in one section may not be present in the 

serial section. Additionally, while many glomeruli do track from one section to the next 

one, the relative positions of each translate differently in space with respect to another. 

Serial sections are often used because many common histology stains (such as H&E and 

PAS) interfere with MALDI MS signal. However, certain stains have been found to be 

compatible with MALDI MS such as cresyl violet.
95

 Though this stain does not give as 

much histological information as H&E or PAS, it provides enough contrast to pick out 

glomeruli structures. Kidney sections mounted on an ITO glass slide can be stained with 

0.5% cresyl violet for 30 s followed by an ethanol rinse for 15 s to aid in distinguishing 

the glomeruli under a microscope. After scanning the sample slide, the glomeruli can be 

identified and their coordinates recorded with respect to a set of fiducials on the MALDI 

slide. These coordinates can then be transferred to the automated acoustic robotic spotter 

(Portrait 630, Labcyte). In addition to spotting MALDI matrix, this robotic spotter can 

also deposit picoliter volumes of trypsin for in situ enzymatic digestion of proteins before 

matrix spotting.
96

 In this way, MALDI MS/MS can be performed on peptides from these 

spots for identification of proteins. In this work, trypsin solution (76 ng/µL trypsin in 100 

mM ammonium bicarbonate/10% acetonitrile) was spotted on the selected glomeruli in 

single droplets (~120 pL) for a total of 40 iterations allowing each droplet to dry for two 

minutes before spotting the next droplet. Proteolytic digestion was allowed to take place  
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Figure 2.8 Glomerulus analysis with histology-directed profiling. (A) PAS stain of serial 

sections showing glomeruli. Glomeruli circled in yellow and green represent the same 

glomerulus in each section. The glomerulus circled in black is not found in the serial 

section demonstrating that the same section for picking coordinates (i.e. glomeruli) needs 

to be used for MS analysis. (B1) Cresyl violet stained glomerulus from eNOS
-/-

 db/db 

kidney section. (B2) MALDI MS spectrum of tryptic peptides from a selected 

glomerulus; peptide at m/z 1198 was sequenced using tandem MS mode. (B3) Tandem 

MS (MS/MS) spectrum and corresponding amino acid sequence of the peptide at m/z 

1198; the peptide was identified as a tryptic fragment of actin by searching the mouse 

SwissProt database with MASCOT software. 
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for approximately two hours. Subsequently, MALDI matrix (10 mg/mL CHCA in 1:1 v/v 

mixture of acetonitrile and 0.2% trifluoroacetic acid) was robotically spotted on the 

trypsin digested glomeruli. An example of a spectrum from a single glomerulus is shown 

in Figure 2.8B. This type of workflow allows for protein identification directly from the 

tissue section by MS/MS fragmentation of the tryptic peptides along with database 

searching. 

MALDI MS Instrumental Considerations for Direct Kidney Analysis  

Imaging Resolution Considerations  

 The spatial resolution of an imaging experiment is most simply determined by the 

size of the laser beam spot on target and the pitch, or step size of the stage, between laser 

ablation spots. However, in practice, this is also dependent on the matrix crystal size. 

Lenses and improved optics have been used to focus the laser beam on the target. The 

commercial instruments used in this study can achieve a spot size of ~10 µm. However, 

others have achieved smaller laser spot sizes with special lenses with a co-axial laser 

beam path
52

 and laser beam filtration with a pinhole.
74

 It is possible to image at a higher 

spatial resolution than the size of the laser beam using a technique is called oversampling. 

In oversampling, the matrix is completely ablated in an area and then the stage is moved 

a distance smaller than the ablation spot but enough so fresh material is available for 

ablation. While this has been used with some success, often it results in degradation of 

signal quality.  

While increasing spatial resolution allows one to resolve smaller features and 

structures in a tissue section, there is a tradeoff. One has to consider the size of the 

features of interest, the time of the experiment, the size of the data and the sensitivity 



43 
 

required. In general, smaller spot sizes ablate less material and therefore the sensitivity 

goes down. One structure of interest in this study is the glomerulus. In humans this is 

~200 μm, but in the mouse, the model used in this study, it is only ~80 μm (Figure 2.9A). 

To adequately reconstruct ion images of a mouse glomerulus, a minimum of 50 µm 

spatial resolution has been found to be necessary but ≤ 30 µm is more desirable. While 

decreasing the pixel size increases the resolution of the glomerulus, it also increases the 

time of analysis and the data size if you are to image the same unit area. The number of 

pixels (i.e. number of spectra) is a square function of step size. As can be seen in Figure 

2.9B, reducing the laser spot size from 100 µm to 25 µm (a factor of 4) increases the 

number of pixels (spectra) by 16 times. 

Instrumentation for Imaging 

MALDI sources can be interfaced with a number of different mass analyzers. In 

this work MALDI TOF and MALDI FTICR mass spectrometers are the main instruments 

used and the fundamentals of each have been described in Chapter I. As a general 

guideline, protein imaging is typically performed using linear TOFs and lipid imaging is 

most often done using reflectron TOFs and FTICR instruments where higher mass 

resolution is needed. In general, a linear TOF is the preferred instrument for protein 

imaging due to its speed, sensitivity, and theoretically unlimited mass range. In practice 

however, sensitivity and resolution cannot be optimized for all m/z values across a large 

mass range so instrument tuning is usually performed to optimize for given mass range. 

A Bruker Ultraflextreme MALDI TOF mass spectrometer equipped with a Smartbeam 

laser was the major instrument used for both lipid and protein imaging in this work. 
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Figure 2.9. Spatial resolution considerations for IMS of glomeruli. (A) Comparison of 

size between a mouse glomerulus and a human glomerulus. (B) Schematic representation 

of how the laser spot size (and therefore resolution) affects the number of pixels acquired 

per glomerulus.  
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Protein imaging was performed using linear mode in the range of m/z 1,000 - 25,000 at a 

spatial resolution of 25 µm. Lipid imaging was performed on the same instrument in 

reflectron mode in the range of m/z 400 - 1,500 at a spatial resolution of 10 µm.  

A MALDI FTICR MS was used in parallel to the TOF imaging experiments. 

Profiling and imaging experiments were performed on a 9.4T and 15T Bruker SolariX 

FTICR MS to obtain accurate mass measurements for ions of interest which assisted in 

the identification. In addition to high mass accuracy measurements, data can be acquired 

in continuous accumulation of selected ion (CASI) mode to increase the sensitivity of an 

experiment. In this mode, a selected m/z range is filtered in the quadrupole and 

accumulated in a hexapole before being sent into the ICR cell. By removing high 

intensity ions from other regions of the spectrum, low abundance species can be 

accumulated with a number of laser shots (hundreds to tens of thousands) before FTICR 

detection. Figure 2.10 demonstrates the increase in sensitivity and signal to noise across 

the lipid range in negative mode with CASI, where each color in Figure 2.10B represents 

a single CASI analysis. In this work CASI was utilized in the initial experiments that 

found glucose modified lipids in diabetic kidneys. This feature was also used extensively 

for lipid identification to increase the signal intensity of the parent ion before 

fragmentation. 
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Figure 2.10. Sensitivity increase using CASI. (A) Standard full spectrum FTICR MS scan 

in negative ion mode. (B) Combined CASI spectra overlaid across the same mass range 

as in (A). Each color represents a single spectrum collected with a narrow mass window. 

Using CASI results in increased sensitivity and signal to noise as seen in the inset regions 

of (A) and (B).   
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Data Processing, Image Co-registration, and Image Analysis 

Spectral Pre-processing 

 Spectral pre-processing is an important first step in analyzing imaging datasets. 

Pre-processing reduces experimental variance so that spectra within a single dataset and 

across multiple datasets can be better compared. Mass spectra are processed by 

background subtraction, normalization, and spectral realignment.
97

 This helps reduce 

chemical noise, day to day instrument variations and signal intensity differences due to 

matrix coating. This not only allows for better comparison of expression differences 

between spectra but also increases image quality by increasing contrast and compensating 

for matrix inhomogeneity.  

Histological Staining and Image Co-registration 

 After an imaging experiment is completed, the matrix can be washed off of the 

tissue section in a series of graded ethanols to allow for histological staining. H&E stain 

is a common and versatile stain that is often used. PAS is a stain of choice for kidney 

disease as it shows extracellular matrix build-up. After staining, the slide can be scanned 

and then the histology of the same section that was imaged with MS can be co-registered 

together to map ions of interest to specific structures within in the tissue section. This is 

particularly helpful for small tissue structures where it is difficult to find the 

corresponding histology without an overlay or in a serial section. Figure 2.11 shows an 

example of a co-registered PAS stain with the IMS data where specific lipid species can 

be seen to localize to specific kidney structures of glomeruli and tubules. 
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Figure 2.11. Co-registration with histology. Above is an example of several selected ion 

signals overlaid which show localization to distinct tissue structures. The PAS stained 

image on the left is the same section that the 10 μm IMS data was collected on. Ion image 

overlay displaying m/z 687.5 (red), m/z 896.6 (cyan), m/z 906.6 (white), and m/z 996.6 

(green).  
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Data Analysis and Relative Quantitation with ImageJ 

For MALDI imaging datasets, ImageJ software (National Institutes of Health, 

Bethesda, MD, USA) was used for relative quantitation of the lipid and protein species of 

interest. Monochromatic TIFF images were exported from FlexImaging to ImageJ. Areas 

of interest were selected in each image as individual glomeruli, tubules, or the entire 

kidney section. Signal intensity was measured as the mean intensity per area of interest. 

The general workflow for the ImageJ processing of ion images is shown in Figure 2.12. 

The mean and standard error were calculated for each MS peak of interest across the 

experimental groups. Differences were evaluated by the Kruskal-Wallis rank-sum test. 

Differences were considered statistically significant if p values were less than 0.05. 

Conclusions 

As demonstrated in this chapter, it is now possible to analyze the molecular 

composition in distinct renal tissue regions and even within smaller structures, such as 

individual renal glomeruli and tubules.  In the following chapters these methods and 

workflows were applied to elucidate molecular changes under conditions of DN and 

examine the effect of a drug treatment.  Chapter III will focus on changes in the lipid 

composition while Chapter IV will present findings on protein composition and changes 

in the kidneys of different experimental groups.   
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Figure 2.12. Workflow of ion image analysis with ImageJ. 
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Chapter III 

 

DIABETIC NEPHROPATHY INDUCES ALTERATIONS IN THE 

GLOMERULAR AND TUBULE LIPID PROFILES 

 

Overview 

Diabetic nephropathy (DN) is a major life-threatening complication of diabetes. 

Renal lesions affect glomeruli and tubules but the pathogenesis is not completely 

understood. Phospholipids and glycolipids are molecules that carry out multiple cell 

functions in norm and disease and their role in DN pathogenesis is unknown. We 

employed high spatial resolution matrix-assisted laser desorption/ionization imaging 

mass spectrometry (MALDI IMS) to determine lipid changes in kidneys of eNOS
-/-

 db/db 

mice, a robust model of DN. Phospholipid and glycolipid structures, localization patterns, 

and relative tissue levels were determined in individual renal glomeruli and tubules 

without disturbing tissue morphology. Significant increase in the levels of specific 

glomerular and tubular lipid species from four different classes, i.e. gangliosides, 

sulfoglycosphingolipids, lysophospholipids, and phosphatidylethanolamines, were 

detected in diabetic kidneys compared to non-diabetic controls. Inhibition of non-

enzymatic oxidative and glycoxidative pathways attenuated the increase in lipid levels 

and ameliorated renal pathology, even though blood glucose levels remained unchanged. 

Our data demonstrate that the levels of specific phospho- and glycolipids in glomeruli 

and/or tubules are associated with diabetic renal pathology. We suggest that 
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hyperglycemia-induced DN pathogenic mechanisms require intermediate oxidative steps 

that involve specific phospholipid and glycolipid species. 

Introduction 

Diabetic nephropathy (DN) can develop in about 1/3 of diabetic individuals and 

is characterized by specific glomerular and tubular lesions in the kidney. These lesions 

are associated with progression to end stage renal disease with subsequent requirement 

for renal dialysis and transplantation.
2
 Despite the significance of DN, there is still 

incomplete understanding of the pathogenic mechanisms, particularly those underlying 

the differential susceptibility to DN.   

Lipids may play a role in DN, but to date, the research focus has been on neutral 

lipids such as triacylglycerols and cholesterol.
98

  Phospho- and glycolipids are two major 

classes of lipid molecules that carry out many biological functions ranging from 

regulation of physical properties of cellular membranes to cell signaling.
99, 100

  In 

diabetes, changes in the levels of these lipids in blood and tissues cause dysregulation of 

different cellular processes associated with pathogenesis.
99, 101-105

 Thus, phospho- and 

glycolipids may have a role in DN.   

 The present study is the first report of the application of MALDI IMS to 

investigate molecular changes in renal glomerular and tubular phospho- and glycolipids 

in DN.   We utilized a set of experimental tools: a robust DN mouse model, which 

develops renal lesions comparable to those found in human disease;
106

 a high spatial 

resolution MALDI IMS technology; and pyridoxamine (PM), which was employed to 

elucidate whether hyperglycemia induced oxidative pathways play a role in phospho- 

and glycolipid changes relevant to DN.  PM is an inhibitor of oxidative and 
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glycoxidative reactions and has been shown to act via sequestration of redox active 

metal ions, scavenging of reactive carbonyl compounds, and scavenging of hydroxyl 

radical both in vitro and in vivo.
21, 28, 107-110

  We also used several different mouse models 

to further assess the association between renal damage and lipid profile.  We determined 

molecular changes at the level of a single glomerulus or tubule, which has not been 

achieved in the previous studies of renal tissues using MALDI IMS.
69, 87, 88

  Our data 

demonstrated that the levels of specific phospho- and glycolipids in glomeruli and/or 

tubules of the kidney are associated with diabetic renal pathology.  Inhibition of 

glycoxidative pathways, without lowering hyperglycemia, ameliorated lipid levels and 

renal lesions.  We suggest that hyperglycemia-induced DN pathogenic mechanisms 

require intermediate oxidative steps that involve phospho- and glycolipids. 

Results 

Renal pathology in the eNOS
-/-

 C57BLKS db/db mouse model of Type 2 DN.  

We employed eNOS
-/-

 C57BLKS db/db mice, the most robust mouse model of Type 2 

DN to date.  At >20 weeks of age, these mice exhibit albuminuria, arteriolar hyalinosis, 

increased glomerular basement membrane (GBM) thickness, mesangial expansion, 

mesangiolysis, focal segmental and early nodular glomerulosclerosis, and markedly 

decreased glomerular filtration rate.
106

  In our study, eNOS
-/-

 C57BLKS db/db mice 

developed significant albuminuria at 6 weeks of age which increased dramatically by 22 

weeks of age (Figure 3.1A).  Treatment of diabetic mice with PM significantly 

ameliorated albuminuria at 22 weeks of age (Figure 3.1B). Kidneys of three animals from 

each treatment group were isolated and subjected to MALDI IMS analyses of lipids.  
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Figure 3.1. Urinary albumin-to-creatinine ratio (ACR) in diabetic mice and effect of PM 

treatment. (A) Urinary albumin-to-creatinine ratio in diabetic mice of different age. 

Urinary ACR was determined in non-diabetic control group and in diabetic group at the 

indicated age. (B) PM treatment of diabetic mice (400 mg/kg/day) started at 6 weeks of 

age and continued until 22 weeks of age. Urinary ACR in diabetic (DB) and diabetic + 

PM (DB+PM) groups was determined before and at the end of PM treatment; urinary 

ACR in non-diabetic control group was determined at 22 weeks of age. Each bar graph 

represents the mean ± SEM (n=8). N.S. – not significant. 
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Blood glucose levels and renal pathology data for these mice are presented in Figure 3.2.  

Diabetic mice exhibited dramatic increase in glomerular and tubular pathologic lesions; 

PM treatment significantly ameliorated these lesions (Figure 3.2B-E). Interestingly, PM 

treatment did not inhibit hyperglycemia itself (Figure 3.2A).  Therefore, use of PM 

treatment allowed us to compare renal lipid profiles in hyperglycemic animals with 

significantly different degrees of renal pathology. 

 Composition of mouse renal glomerular and tubular phospho- and glycolipids. 

MALDI IMS was performed on renal sections from three biological replicates in each 

experimental group (non-diabetic, diabetic, and diabetic + PM).  Because DN lesions 

affect primarily glomeruli and tubules, we focused on the lipid molecular patterns 

localized specifically within glomerular and tubular areas of the renal cortex.  We 

examined 60-70 glomeruli and/or tubules per mouse in each experimental group. 

Multiple species that belong to different lipid classes were identified within glomerular 

and tubular structures (Table 3.1).   

 We then focused only on those specific phospho- and glycolipid species that 

exhibited significant changes in glomerular and/or tubular levels in diabetes compared to 

control. These species belonged to four lipid classes: gangliosides, 

sulfoglycosphingolipids, lysophospholipids, and phosphatidylethanolamines and are 

highlighted in Table 3.1. 

 Glomerular levels of major ganglioside NeuGc-GM3 are increased in DN. 

Gangliosides are anionic glycosphingolipids located to the outer leaflet of plasma 

membranes and characterized by the presence of sialic acid in their structure.
111
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Figure 3.2. Renal injury and effect of PM treatment in kidneys. Animal groups and 

treatments were the same as in Figure 1. (A) Blood glucose levels. Correlation between 

tubular basement membrane (TBM) (B) or GBM (C) thickness and albuminuria: non-

diabetic control (triangles), diabetic (circles), and diabetic treated with PM (squares). 

Expansion of renal mesangial matrix (D) and renal sclerosis/fibrosis (E) were scored on a 

scale of 0 to 3 as described under Methods. Sclerosis/fibrosis score is an average of the 

scores for global sclerosis, interstitial fibrosis and vascular fibrosis. Each bar graph 

represents the mean ± SEM. * - p<0.05, diabetic vs. non-diabetic groups; ** - p <0.05, 

diabetic vs. diabetic + PM groups; n=3. 
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Table 3.1. Composition of mouse renal glomerular and tubular lipids determined by 

direct tissue MALDI MS analysis. Lipids shown in red bold font were detected only in 

diabetic kidneys while the rest were detected in all experimental groups. All lipids were 

identified by MS/MS fragmentation analysis. *- lipid species identified with accurate 

mass and only head group specific fragments. Probable side chains included. 
†
- resulted 

from the decomposition of SB1a during the ionization process.
87, 112

 

Lipid Class Lipid ID 
Theoretical 

m/z 

Ion 

Species 

Error  

(ppm) 
Localization 

I. Phospholipids  

Lysophospholipids 

LPA (18:0) 437.2673 [M-H]
-
 -0.23 Glomerular 

LPC (16:0) 480.3095 [M-CH3]
-
 -0.42 Glomerular 

LPC (18:2) 504.3095 [M-CH3]
-
 -0.40 Glomerular 

LPC (18:0) 508.3408 [M-CH3]
-
 -0.39 Glomerular 

Glycerophospholipids 

PA (18:0/18:1) 701.5127 [M-H]
-
 0.57 Glomerular 

PE (16:0/20:4) 738.5079 [M-H]
-
 0.70 Tubular 

PE (18:1/18:2) 740.5236 [M-H]
-
 0.63 Tubular 

PE (18:2/18:0) 742.5392 [M-H]
-
 0.85 Tubular 

PA (18:0/22:5) 749.5127 [M-H]
-
 0.67 Glomerular 

PE (16:0/22:6) 762.5079 [M-H]
-
 -0.31 Tubular 

PE (18:1/20:4) 764.5236 [M-H]
-
 1.03 Tubular 

PE (18:0/20:4) 766.5392 [M-H]
-
 -0.01 Tubular 

PE (40:8) 786.5079 [M-H]
-
 0.12 Tubular 

PE (18:1/22:6) 788.5236 [M-H]
-
 1.09 Tubular 

PE (18:0/22:6) 790.5392 [M-H]
-
 -0.37 Tubular 

PS (38:3) 812.5447 [M-H]
-
 0.49 Glomerular 

PS (40:5) 836.5447 [M-H]
-
 1.20 Glomerular 

PS (40:4) 838.5603 [M-H]
-
 1.19 Glomerular 

PI (18:0/22:4) 909.5499 [M-H]
-
 -0.22 Tubular 

PI (18:0/22:4) 913.5811 [M-H]
-
 1.42 Glomerular 

Plasmalogens 

PE (P-36:4) 722.513 [M-H]
-
 0.97 

Glomerular, 

tubular 

PE (P-16:0/22:6) 746.513 [M-H]
-
 0.45 

Glomerular, 

tubular 

PE (P-38:5) 748.5287 [M-H]
-
 0.67 

Glomerular, 

tubular 

PE (P-18:0/20:4) 750.5443 [M-H]
-
 0.24 

Glomerular, 

tubular 

PE (P-18:0/22:6) 774.5443 [M-H]
-
 -0.08 

Glomerular, 

tubular 

Sphingophospholipids 
SM (d18:1/16:0) 687.5446 [M-CH3]

-
 1.02 Glomerular 

SM (d18:1/18:0) 715.5759 [M-CH3]
-
 0.00 Glomerular 
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Table 3.1 (continued). 

Lipid Class Lipid ID 
Theoretical 

m/z 

Ion 

Species 

Error  

(ppm) 
Localization 

I. Phospholipids (cont.)  

Glycated    

Phosphatidylethanolamine 

Amadori-PE (P-36:4) 884.5658 [M-H]
-
 -0.97 

Glomerular, 

tubular 

Amadori-PE (36:5) 898.5451 [M-H]
-
 0.56 Tubular 

Amadori-PE 

(16:0/20:4) 
900.5607 [M-H]

-
 -0.33 Tubular 

Amadori-PE 

(18:1/18:2) 
902.5764 [M-H]

-
 0.55 Tubular 

Amadori-PE 

(18:2/18:0) 
904.592 [M-H]

-
 0.55 Tubular 

Amadori-PE (P-38:6) 908.5658 [M-H]
-
 0.28 

Glomerular, 

tubular 

Amadori-PE (P-

18:1/20:4) 
910.5815 [M-H]

-
 1.76 

Glomerular, 

tubular 

Amadori-PE (P-

18:0/20:4) 
912.5971 [M-H]

-
 -0.33 

Glomerular, 

tubular 

Amadori-PE 

(16:0/22:6) 
924.5607 [M-H]

-
 -0.54 Tubular 

Amadori-PE 

(18:1/20:4) 
926.5764 [M-H]

-
 -0.86 Tubular 

Amadori-PE 

(18:0/20:4) 
928.592 [M-H]

-
 -0.32 Tubular 

Amadori-PE (P-40:7) 934.5815 [M-H]
-
 0.21 

Glomerular, 

tubular 

Amadori-PE (P-

18:0/22:6) 
936.5971 [M-H]

-
 -0.11 

Glomerular, 

tubular 

Amadori-PE (40:8) 948.5607 [M-H]
-
 -0.95 Tubular 

Amadori-PE 

(18:1/22:6) 
950.5764 [M-H]

-
 0.21 Tubular 

Amadori-PE 

(18:0/22:6) 
952.592 [M-H]

-
 0.52 Tubular 

II. Glycolipids  

Sulfoglycosphingolipids 

SM4s(d18:1/h20:0) 850.571 [M-H]
-
 0.94 Tubular 

SM4s(d18:1/h22:0) 878.6033 [M-H]
-
 0.23 Tubular 

SM4s(d18:1/h24:1) 904.6189 [M-H]
-
 -0.33 Tubular 

SM4s(d18:1/h24:0) 906.6346 [M-H]
-
 -0.22 Tubular 

SM3(t18:0/20:0)* 1014.6405 [M-H]
-
 -0.10 Tubular 

SM3(d18:1/22:0) 1024.6612 [M-H]
-
 0.20 Tubular 

SM3(d18:1/h22:0) 1040.656 [M-H]
-
 0.29 Tubular 

SM3(t18:0/22:0) 1042.6718 [M-H]
-
 0.86 Tubular 

SM3(d18:1/24:1) 1050.6768 [M-H]
-
 -0.10 Tubular 

SM3(d18:1/24:0) 1052.6925 [M-H]
-
 0.09 Tubular 

SM3(t18:0/h22:0) 1058.666 [M-H]
-
 1.04 Tubular 

SM3(d18:1/h24:1) 1066.671 [M-H]
-
 0.66 Tubular 

SM3(d18:1/h24:0) 1068.6874 [M-H]
-
 0.19 Tubular 

SM3(t18:0/24:0) 1070.7031 [M-H]
-
 0.28 Tubular 
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Table 3.1 (continued). 

Lipid Class Lipid ID 
Theoretical 

m/z 

Ion 

Species 

Error  

(ppm) 
Localization 

II. Glycolipids (cont.)  

Sulfoglycosphingolipids 

(cont.) 

SM3(t18:0/h24:1) 1084.682 [M-H]
-
 0.92 Tubular 

SM3(t18:0/h24:0) 1086.697 [M-H]
-
 0.18 Tubular 

SM2a(d18:1/22:0)* 1227.7406 [M-H]
-
 -0.57 Tubular 

SM2a(t18:0/22:0)* 1245.7511 [M-H]
-
 -0.16 Tubular 

SM2a(d18:1/24:0)* 1255.7719 [M-H]
-
 1.04 Tubular 

SM2a(d18:1/h24:0)* 1271.7668 [M-H]
-
 -0.94 Tubular 

SM2a(t18:0/24:0)* 1273.7824 [M-H]
-
 0.47 Tubular 

SB1a(t18:0/20:0)* 1379.7727 [M-SO3H]
-
 -0.94 Tubular 

SM1a(t18:0/20:0)*† 1379.7727 [M-H]
-
 -0.94 Tubular 

SB1a(d18:1/22:0)* 1389.7934 [M-SO3H]
-
 0.07 Tubular 

SM1a(d18:1/22:0)*† 1389.7934 [M-H]
-
 0.07 Tubular 

SB1a(t18:0/22:0)* 1407.804 [M-SO3H]
-
 0.92 Tubular 

SM1a(t18:0/22:0)*† 1407.804 [M-H]
-
 0.92 Tubular 

SB1a(d18:1/24:0)* 1417.8247 [M-SO3H]
-
 -0.42 Tubular 

SM1a(d18:1/24:0)*† 1417.8247 [M-H]
-
 -0.42 Tubular 

SB1a(d18:1/h24:0)* 1433.8196 [M-SO3H]
-
 -0.70 Tubular 

SM1a(d18:1/h24:0)*† 1433.8196 [M-H]
-
 -0.70 Tubular 

SB1a(t18:0/24:0)* 1435.8353 [M-SO3H]
-
 -0.42 Tubular 

SM1a(t18:0/24:0)*† 1435.8353 [M-H]
-
 -0.42 Tubular 

Gangliosides 

NeuAc-GM3 

(d18:1/16:0)* 
1151.7059 [M-H]

-
 -0.17 Glomerular 

NeuGc-GM3 

(d18:1/16:0)* 
1167.7008 [M-H]

-
 -0.51 Glomerular 
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Gangliosides are known to play major roles in cell-cell and cell-matrix recognition via 

interactions with integrins, matrix proteins and other glycosphingolipids as well as in 

innate immunity, apoptosis and carcinogenesis.
113-115

  We determined renal localization 

and levels of two abundant mammalian gangliosides, NeuAc-GM3 (m/z 1151.7) and its 

hydroxylated derivative NeuGc-GM3 (m/z 1167.7) (Figure 3.3).  Both ganglioside 

species were localized exclusively to renal glomeruli (Figure 3.3A and B).  However, 

there was a distinct difference in the response of these species to our experimental 

treatments.  NeuAc-GM3 was detected at relatively high levels that were not significantly 

different in all treatment groups (Figure 3.3A, top row and 3.3D). In contrast, NeuGc-

GM3 was present at relatively low levels in the glomeruli of non-diabetic animals but 

increased ~8-fold in the glomeruli of diabetic mice (Figure 3.3A, bottom row and 3.3D). 

Diabetic mice treated with PM had significantly lower levels of NeuGc-GM3 compared 

to untreated diabetic mice. (Figure 3.3A, bottom row and 3.3D).  Levels of NeuGc-GM3 

were proportional to the degree of renal damage as determined using 13 week old eNOS
-/-

 

db/db mice (Figure 3.1A and 3.4A) and 22 week old db/db and eNOS
-/-

 mice (Figure 

3.4B).
106

  

Levels of long-chain series sulfoglycolipids are increased within renal tubules 

in DN.  Sulfoglycolipids are produced from glycosphingolipids via addition of one or 

several sulfate esters catalyzed by the enzyme cerebroside sulfotransferase (CST).  

Sulfoglycolipids are essential in such key biological processes as nerve fiber myelination 

and spermatogenesis.
116

  They are also enriched in mammalian kidneys where they have 

been shown to be involved in osmoregulation and acid-base homeostasis.
117, 118

  We have   
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Figure 3.3. Gangliosides NeuAc-GM3 and NeuGc-GM3 show distinct changes in 

diabetic glomeruli. (A) MALDI TOF IMS ion images of m/z 1151.7 (NeuAc-GM3) and 

m/z 1167.7 (NeuGc-GM3) in kidneys from non-diabetic control mice, diabetic mice, and 

diabetic mice treated with PM. MALDI IMS was performed at 10 μm spatial resolution 

and compared with PAS staining of the same section to confirm localization to glomeruli. 

(B) IMS of the signal at m/z 1167.7 and corresponding PAS staining showing the specific 

localization of NeuGc-GM3 to glomerulus. (C) Structures of gangliosides corresponding 

to the signals at m/z 1151.7 and m/z 1167.7 as identified using FTICR MS. The bar graph 

(D) represents Mean ± SEM for three biological replicates per group analyzing 200 

glomeruli total. The average signal per glomerulus was determined in ImageJ and data 

were normalized to non-diabetic NeuAc-GM3. * - p <0.05, diabetic vs. non-diabetic 

groups; ** - p <0.05, diabetic vs. diabetic + PM groups. 

 

 

 



62 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.4. Gangliosides NeuAc-GM3 and NeuGc-GM3 in different mouse models.  

NeuAc-GM3 (m/z 1151.7) and NeuGc-GM3 (m/z 1167.7) were determined in kidneys of 

13 and 22 week old eNOS
-/-

 db/db mice (A), and in 22 week old db/db and eNOS
-/-

 mice 

(B). Imaging was performed using MALDI TOF MS at 15 µm spatial resolution in the 

cortex region of the kidney. 
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identified several species of sulfoglycolipids localized specifically to mouse renal 

tubules: SM4s (sulfogalactoceramide), SM3 (sulfolactoceramide), SM2a 

(gangliotriosylceramide sulfate), and SB1a (gangliotetraosylceramide-bis-sulfate) and 

their different acyl chain derivatives (Table 3.1 and Figure 3.5).  There was a significant 

increase in the levels of sulfoglycolipid species SB1a in diabetic kidneys from 22 wk old 

eNOS
-/-

 db/db mice compared to controls (Figure 3.6A and B). This increase was 

ameliorated in diabetic mice treated with PM (Figure 3.6A and B). Levels of SB1a 

showed an intermediate increase in 13 wk old eNOS
-/-

 db/db and in 22 wk old db/db 

mice; the levels did not increase in non-diabetic eNOS
-/-

 mice (Figure 3.7). In contrast to 

SB1a, levels of SM3, a less polar species that possesses a relatively short sugar chain, 

remained unchanged in the DN model (22 wk old eNOS
-/-

 db/db mice) compared to 

control (Figure 3.6A and B).  Tubular localization of both sulfoglycolipids was confirmed 

by comparing the 10 μm spatial resolution IMS data to a PAS stained image of the same 

section (Figure 3.6C).  Similarly, level of SM4s, another sulfoglycolipid with a short 

sugar chain, was also unchanged in diabetic tubules compared to controls.  Interestingly, 

SM3 and SM4s had very distinct non-overlapping tubular localization patterns (Figure 

3.8). 
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Figure 3.5. Structures of sulfoglycolipids.  
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Figure 3.6. Levels of long-chain series sulfoglycolipids are increased within diabetic 

renal tubules. (A) Spectral region containing sulfoglycosphingolipids from tubular 

regions of non-diabetic, diabetic, and diabetic + PM kidneys. (B) Sulfoglycolipid 

SM3(t18:0/22:0), m/z 1042.7 (cyan), was common to the renal tubules and has similar 

levels in all the treatment groups. Sulfoglycolipid SB1a(t18:0/22:0), m/z 1407.8 (yellow), 

was increased in the tubules of the diabetic kidney and reduced upon PM treatment.  

These ion signals are marked with an arrow of corresponding color in panel A.  (C) IMS 

overlay of the m/z 1042.7 (cyan) and m/z 1407.8 (yellow) ion signals displayed in panel 

B. An ion in red specifically localized to the glomeruli is shown for reference (left panels) 

and the corresponding PAS stained sections are shown in the right panels. Imaging 

performed using MALDI TOF MS at 10 µm spatial resolution. 
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Figure 3.7. Long-chain series sulfoglycolipids in kidneys of different mouse models. 

Sulfoglycolipid SB1a(t18:0/22:0), m/z 1407.8 (yellow) were determined in the tubules of 

13 and 22 week old eNOS
-/-

 db/db mice (A), and in 22 week old db/db and eNOS
-/-

 mice 

(B). Imaging was performed using MALDI TOF MS at 15 µm spatial resolution in the 

cortex region of the kidney. 
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Figure 3.8. Tubular localizations patterns of sulfoglycolipids SM3 and SM4s. (A) 

MALDI IMS ion images of SM4s and SM3 localization in the cortex region of the 

kidney. SM4s(d18:1/h24:0) at m/z 906.6 and SM3(t18:0/24:0) at m/z 1070.7 are shown 

and are representative of other SM4s and SM3 localization. MALDI TOF IMS was 

performed at 10 µm spatial resolution. Scale bar = 500 µm.  (B) PAS stain of the section 

analyzed with IMS and zoom-in of overlay from panel A to show specific tubular 

localization. Scale bar = 50 µm. 

 

 

 

 



68 
 

 Major bioactive lysophospholipids are elevated in renal glomeruli in DN.  

Bioactive lysophospholipids (LPLs) are important signaling and regulatory molecules 

involved in multiple pathogenic pathways including inflammation and fibrosis, key 

features of kidney disease.
119, 120

  However, renal LPL levels in DN have not been 

reported.  We have detected LPL species comprising two major classes, 

lysophosphatidylcholine (LPC) and lysophosphatidic acid (LPA), in the mouse renal 

glomeruli (Table 3.1). The levels of both LPL classes were significantly increased in 

glomeruli of diabetic mice (Figure 3.9).  Moreover, LPC levels were most prominently 

increased within those individual glomeruli exhibiting higher levels of fibrosis as 

determined by PAS staining (Figure 3.10) and were proportional to the degree of renal 

pathology in different mouse models (Figure 3.11).   Levels were significantly 

diminished in diabetic mice treated with PM (Figure 3.9B-D).  Other LPL classes such as 

lysophosphatidylserine, lysophosphatidylglycerol, and lysophosphatidylethanolamine 

were not detected in our study, possibly due to the sensitivity limits as their reported 

physiological levels in mouse plasma are 2-to-3 orders of magnitude lower compared to 

major LPLs.
120

   

Non-enzymatic modification of phosphatidylethanolamine by glucose is 

increased in the cortex of the DN kidney.  Non-enzymatic adduction of glucose to 

aminophospholipids has been shown to increase in diabetic human plasma and animal 

tissues including kidney.
121, 122

  However, with the exception of diabetic atherosclerotic 

lesions,
123

 the role of glycated lipids in diabetic complications has not been investigated.   

We utilized MALDI IMS to analyze glycation of different 

phosphatidylethanolamine (PE) species in the kidney of a mouse model of DN.  The 
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Figure 3.9. Levels of lysophosphatidic acid (LPA) and lysophosphatidylcholine (LPC) 

increase in the glomeruli of diabetic kidneys. (A) MALDI TOF IMS images showing 

glomerular localization and levels for representative LPA and LPC species (LPA 18:0) 

and (LPC 18:0).  Distribution of LPA (B) and LPC (C) levels within individual glomeruli 

and summary statistical analyses (D). Data are normalized to non-diabetic LPL signal 

intensity. Each circle in the box plots represents the averaged intensity measurement from 

a single glomerulus as determined in ImageJ. * - p<0.05, diabetic vs. non-diabetic 

groups; ** - p<0.05, diabetic vs. diabetic + PM groups.  
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Figure 3.10. Comparison between the levels of LPC and degree of fibrosis within 

individual renal glomeruli. Upper right: Ion image of lysophosphatidylcholine (LPC 

(18:0)) in diabetic kidney. PAS stain of the same section used for IMS showing increased 

signal in more fibrotic glomeruli (red circles) compared to less fibrotic glomeruli (green 

circles). 
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Figure 3.11. MALDI IMS of lysophosphatidylcholine (LPC) in kidneys of different 

mouse models. The signal at m/z 508 (LPC 18:0) was measured in glomeruli of 13 and 22 

week old eNOS
-/-

 db/db mice (A), and in 22 week old db/db and eNOS
-/-

 mice (B). 

Imaging was performed at 15 µm spatial resolution in the cortex region of the kidney. 

 

 

 

 

 

 

 

 

 



72 
 

identities of PE species and their glucose modification (Amadori adduct) were 

determined in renal tissue sections using characteristic fragmentation patterns generated 

by tandem MS (Figure 3.12B).  Unmodified PE species as well as unmodified 

plasmalogen PE species, characterized by the presence of a vinyl ether bond at the sn-1 

position,
124

 did not significantly change in diabetes compared to controls (Figure 3.12A). 

Several Amadori-PE species, containing glucose adducted to the lipid amino 

group, were identified in the diabetic kidneys but were not detected in the non-diabetic 

kidneys (Table 3.1, Table 3.2, and Figure 3.12A, and Figure 3.13).  MALDI IMS of 

transverse sections through the kidney showed that these signals were present in the 

cortex of the kidney.  Treatment of diabetic mice with PM, did not significantly affect 

Amadori-PE levels (Figure 3.12 and Table 3.2), however, a tendency toward lower 

levels was observed in renal specimens from PM-treated mice (Table 3.2).  Again, 

examining different time points and mouse models, the levels of Amadori-PEs seemed 

to correlate with the degree of renal pathology (Figure 3.13). 

To determine more precise localization patterns of Amadori-PE species within 

the renal cortex, a region of the cortex in the diabetic kidney was imaged at high spatial 

resolution with a 10 µm step size (Figure 3.14).  First, we found that PE lipids were not 

uniformly distributed throughout the cortex but had uniquely localized patterns.  Further, 

we established that the unmodified and the Amadori forms of the same lipid species co-

localize to the same areas of the cortex.  This can be seen in Figure 3.14A where PE (P-

18:0/20:4) and Amadori-PE (P-18:0/20:4) show the same localization pattern.  

Additionally, we determined that the majority of Amadori-PE species follow two major 

localization patterns in the renal cortex exemplified by the complementary patterns of
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Figure 3.12. Analysis of glucose-modified (Amadori) phosphatidylethanolamine (PEs) 

species in non-diabetic, diabetic, and diabetic + PM mouse kidneys.  (A) FTICR IMS at 

40 µm of transverse kidney sections showing localization and relative abundance of two 

different PE lipids along with their corresponding Amadori species. These glucose-

modified species were detected in the cortex of the diabetic kidneys but not in non-

diabetic kidneys. The colors represent relative signal intensity according to the scale bar 

on the right. (B) Identification of lipid species using Amadori-PE (16:0/20:4) as an 

example.  The FTICR MS/MS spectrum with Amadori-PE (16:0/20:4) molecular ion (m/z 

900.56), product ions and product ion assignments (inset) are shown.   
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 Ratio of Amadori-PE  to PE, % 

Treatment PE (16:0/20:4) PE (16:0/22:6) PE (P-18:0/20:4) PE (P-18:0/22:6) 

Control 0.4 ± 0.4 0.3 ± 0.3 0.2 ± 0.1 0.3 ± 0.2 

Diabetic 23.2 ± 9.4* 18.9 ± 6.8* 17.5 ± 8.9* 16.1 ± 5.7* 

Diabetic + PM 8.5 ± 2.5 7.4 ± 2.5 6.1 ± 1.8 7.8 ± 2.3 

 

 

 

Table 3.2. Relative quantitation of Amadori-PE levels within renal cortex. Ratio of 

integrated Amadori-PE signal to unmodified PE signal from kidney imaging experiments. 

* - p <0.05, diabetic vs. non-diabetic groups.  
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Figure 3.13. Analysis of glucose-modified (Amadori) phosphatidylethanolamine (PE) 

species in kidneys of different mouse models. Glucose-modified PE was determined in 

13 and 22 week old eNOS
-/-

 db/db mice (A), and in 22 week old db/db and eNOS
-/-

 mice 

(B). Imaging was performed using FTICR MS at 40 µm spatial resolution in the cortex 

region of the kidney. 

 

 



76 
 

 

 

 

 

Figure 3.14. High spatial resolution (10 µm) MALDI FTICR IMS of glycated 

phosphatidylethanolamines (PEs). (A) Unmodified PEs and corresponding Amadori-PEs 

are co-localized to the same areas of the cortex. As an example, an overlay of PE (P-

18:0/20:4) (green) and Amadori-PE (P-18:0/20:4) (red) shows co-localization in yellow. 

(B) Two distinct spatial localization patterns of glycated PE species in the renal cortex. 

Amadori-PE (16:0/22:6) (blue) displays the opposite localization pattern to Amadori-PE 

(P-18:0/20:4) (red, shown as a single ion image in panel A).  (C) Zoom in on the IMS 

overlay from panel B (left) and corresponding region of the same section after staining 

with PAS (right). Amadori-PE (P-18:0/20:4) (red) is localized to glomeruli and some 

tubules while Amadori-PE (16:0/22:6) (blue) is localized to a distinct set of tubules. g = 

glomerulus  
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Amadori-PE (16:0/22:6) and plasmalogen Amadori-PE (P-18:0/20:4) (Figure 3.14B). 

The former is localized exclusively to a distinct set of tubules while the latter has a 

mixed glomerular and tubular localization (Figure 3.14C).  

Discussion 

Progress in science and medicine is closely associated with development of new 

experimental technologies that allow investigations to answer previously intractable 

questions concerning biological differences in normal and diseased tissue.  The recent 

development of MALDI IMS technology enables molecular profiling of specific areas of 

the tissues while preserving tissue morphology.  As demonstrated in this study, it is now 

possible to analyze the molecular composition and molecular modifications in distinct 

renal tissue regions and even within smaller structures, such as glomeruli and tubules.  

With the expected further improvement of spatial resolution (<1 µm), specific structural 

features within the glomerulus such as mesangium, GBM and even individual 

glomerular cells could be targeted for analysis.   

Here, we utilized MALDI IMS technology to determine DN-related changes of 

molecular species from four major lipid classes in renal cortex, including individual 

glomeruli and tubules, determined directly from thin kidney sections.  We employed a 

mouse model of DN known to exhibit severe renal damage
125

 which was also observed in 

our study (Figure 3.1 and 3.2).  Additionally, PM treatment was utilized in one 

experimental group which showed a reduction in albuminuria (Figure 3.1).  This is 

consistent with the observed protective effects of PM on renal function demonstrated in 

several diabetic animal models
24, 26, 28, 126

 and in clinical trials, particularly at the early 

stages of the disease.
25, 127
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Previous studies reported changes in ganglioside levels and metabolism in 

diabetic animal models.
128-130

  However, this is the first report on specific glomerular 

localization and levels of major gangliosides in DN.  Of particular interest is the observed 

dramatic increase in the levels of NeuGc-GM3 in diabetic glomeruli (Figure 3.3).  As 

sialic acids are synthesized via a branch of the glycolytic pathway, the increased flux 

through this pathway in diabetes may contribute to such increase.  However, since sialic 

acid NeuAc is a precursor of NeuGc and ganglioside NeuAc-GM3 did not increase in 

diabetes (Figure 3.3A, top row) this mechanism is unlikely.  Alternatively, NeuGc-GM3 

may derive via non-enzymatic hydroxylation of the acetyl moiety of NeuAc-GM3 by 

hydroxyl radicals produced in diabetic oxidative stress.
131, 132

  This mechanism is 

consistent with decreased NeuGc-GM3 levels in the glomeruli of diabetic mice treated 

with PM, which has been shown to scavenge hydroxyl radical under high glucose 

conditions.
20, 21

  Interestingly, unlike in all other mammals, ganglioside NeuGc-GM3 is 

not metabolically produced in humans and is present only at trace levels in normal human 

tissues, most likely due to dietary sources.
133

  However, NeuGc-GM3 is significantly 

increased in many human tumors where it may act as xeno-autoantigen causing chronic 

inflammation.
133

  Therefore, it is possible that diabetic oxidative stress facilitates 

oxidation of NeuAc-GM3 and accumulation of NeuGc-GM3 in glomeruli, thus 

contributing to chronic inflammation in DN.  

 Our results suggest that sulfoglycolipids may play a role in DN pathogenesis. The 

exact mechanism remains to be elucidated.  However, it is interesting that isolated rat 

renal tubules exposed to exogenous glucose in vitro showed increases in the levels of 

SM2a and SB1a but not SM3 sulfoglycolipids,
134

 similar to our results in DN mouse 
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model (Figure 3.6).  Experiments using cerebroside sulfotransferase (CST) knock-out 

mice, which do not synthesize sulfoglycolipids, have demonstrated significant reduction 

in monocyte infiltration of renal interstitium after ureteral obstruction in the knock-out 

compared to the wild-type mice.  These studies suggested that sulfoglycolipids may 

promote renal inflammation and tubulointerstitial injury, possibly via ligation of L-

selectin.
135

 

  It is well established that lysophospholipids (LPLs) are important signaling and 

regulatory molecules involved in multiple pathogenic pathways.
119, 120

  LPL species may 

regulate cell signaling through altering the structure and fluidity of a lipid bilayer, 

particularly above their critical micelle concentration (CMC).
120

  In this regard, the 

significant increase in glomerular LPL demonstrated in our study may facilitate CMC 

transition, thus affecting activities of membrane proteins.
136, 137

   However, most of the 

biological effects of LPL are mediated via G-protein coupled receptors.  Particularly 

interesting is pro-fibrotic activity of lysophosphatidic acid (LPA) mediated via LPA1 

receptor as has been demonstrated in UUO mouse model of renal fibrosis.
138

  More 

recently, the receptor for advanced glycation end products (RAGE) has been shown to 

mediate pro-inflammatory action of LPA.
139

  Since expression of RAGE is upregulated in 

diabetic kidney,
140

 LPA-RAGE interaction may contribute to inflammatory damage in 

DN.  Involvement of lysophosphatidylcholine (LPC) in renal pathology is indirectly 

suggested by the elevated LPC levels in plasma of patients with renal disease.
141, 142

  In 

the in vitro studies, LPC induced proliferation of cultured mesangial cells via a 

mechanism involving activation of EGF receptor signaling.
143

  LPC is also a ligand for 

two G-protein coupled receptors G2A and GPR4, which are expressed in many human 
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tissues including kidney.
144, 145

  It is yet unknown whether these receptors are involved in 

pathogenesis of renal disease.   

 While prior studies have shown the elevated levels of Amadori-PEs in plasma of 

diabetic patients and in different organs of diabetic animal models,
121, 122

 ours is the first 

report establishing a relationship between glycated PEs and DN.  Glycated PEs have been 

shown to alter the structure and stability of cell membrane proteins and promote lipid 

peroxidation,
123, 146

 thus exhibiting pathogenic potential.  Our results suggest that 

Amadori-PEs play a minor role in DN pathogenesis. The levels of different Amadori-PE 

species in renal cortex were significantly elevated in diabetes but were not significantly 

inhibited upon PM treatment, even though a tendency toward lower levels was observed 

(Table 3.2).  The notion that non-oxidative glucose adduction to PE has low 

pathogenicity is consistent with the previous findings using mice deficient in 

fructosamine-3-kinase (FN3K), the enzyme that facilitates dissociation of Amadori 

adducts to amino groups. These mice did not exhibit a pathogenic phenotype in any 

organs, including kidney, despite having significantly elevated levels of Amadori-

modified tissue proteins.
147

  

 In summary, our data demonstrate that the levels of specific phospho- and 

glycolipids in glomeruli and/or tubules of the kidney are associated with diabetic renal 

pathology.  These lipid changes were detected in tubules and glomeruli, major sites of 

DN lesions and corresponded with the level of renal damage in the time course studies as 

well as in the models with different extent of renal damage.  Through the use of PM, we 

also demonstrated that the inhibition of non-enzymatic oxidative pathways ameliorated 

lipid levels and renal pathology, suggesting that hyperglycemia-induced oxidative 
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pathways are required for the observed changes of lipid profiles in DN.  The propensity 

to these oxidative pathways may contribute to individual susceptibility to DN in diabetes. 

Methods 

Animal studies. Animal experiments were performed at the AAALAC-accredited 

animal facilities at Vanderbilt University Medical Center according to institutional 

guidelines and IACUC-approved experimental protocol.  Mice were housed in a 

pathogen-free barrier facility and given standard chow (Lab Diet 5015; PMI Nutrition 

International, Richmond, IN) and water ad libitum.  Upon development of hyperglycemia 

(about 6 wks of age), eNOS
-/-

 C57BLKS db/db mice were randomized according to body 

weight and assigned to either diabetic or diabetic/PM treatment groups.  Mice in 

diabetic/PM treatment group received PM in drinking water at a daily dose of 400 mg/kg 

body weight, based on previously published reports of PM protection from kidney injury 

in diabetic mice.
26

  To minimize possible chemical degradation of PM, a light-sensitive 

compound, fresh solutions were prepared twice a week and administered in water bottles 

wrapped in aluminum foil as previously described.
148

 PM treatment continued until mice 

were sacrificed at 22 wks of age.  The control group included wild type C57BLKS mice. 

Kidneys were removed and either fixed for histological analyses by light and electron 

microscopy or flash frozen in liquid nitrogen and stored at -80°C for IMS analyses.  

Determination of blood glucose and urinary albumin excretion. Glucose levels 

were measured in blood collected from the tail vein using OneTouch glucometer and 

Ultra test strips (LifeScan, Milpitas, CA) as previously described.
106, 149

  Albumin and 

creatinine excretion was determined in spot urine collected from individually caged mice 

using Albuwell-M kits (Exocell Inc, Philadelphia, PA) as previously described.
106, 149
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Histological Analyses. Renal histology was assessed in mice at 22 weeks of age. 

The kidneys were removed and fixed overnight in 10% formalin at 4°C, and 3-μm-thick 

sections were stained with periodic acid-Schiff (PAS) and Jones’ silver staining.  

Histological evaluation by light microscopy was performed without knowledge of the 

identity of the various groups. A semi-quantitative index was used to evaluate the degree 

of glomerular mesangial expansion and sclerosis. Each glomerulus on a single section 

was graded from 0 to 3, where 0 represents no lesion, and 1, 2, and 3 represent mesangial 

matrix expansion or sclerosis, involving < 25, 25 to 50, and > 50% of the glomerular tuft 

area, respectively. 

 For electron microscopy, kidneys were cut into small tissue blocks (1 mm
3
) and 

fixed in 2.5% glutaraldehyde fixative with 0.1 mol/L cacodylate buffer, pH 7.4, overnight 

at 4°C. After postfixation with 1% osmium tetroxide, tissues were dehydrated in a series 

of graded ethanol preparations and embedded in epoxy resin (Poly/Bed 812 Embedding 

Media; Polysciences, Warrington, PA). Ultrathin sections were stained with uranyl 

acetate and lead citrate. Sections were observed by transmission electron microscopy (H-

7000; Hitachi, Tokyo, Japan) at 75 kV to determine TBM and GBM thickness. 

MALDI mass spectrometry. MALDI TOF Lipid Imaging: Frozen kidneys were 

sectioned on a cryostat at 8 µm thickness, thaw mounted on conductive indium tin oxide 

coated glass slides, and dried in a desiccator.  The tissue sections were washed by dipping 

the slide in 50 mM ammonium formate at 4°C three times for five seconds each to 

remove salts and increase the sensitivity for lipid analysis.
76

  MALDI matrix was applied 

using a custom built sublimation apparatus which uses reduced pressure and heat for 

vapor deposition of the MALDI matrix on to the sample slide
61

 resulting in a uniform 
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MALDI matrix coating over the tissue.  1,5-Diaminonaphthalene (DAN) was sublimed at 

110°C and 50 mTorr for 7 minutes.  The resulting matrix coating contained 0.13 ± 0.02 

mg DAN/cm
2
.  MALDI imaging experiments were performed in negative ion mode using 

a Bruker Ultraflextreme time-of-flight (TOF) mass spectrometer in reflectron geometry.  

Spectra were collected in the range of m/z 400-1500 with 10 shots/spectra.  Raster steps 

were taken in 10 µm stage increments and the laser spot size was also 10 µm in diameter 

as measured on a thin matrix coating.  Each imaging experiment was run as a set 

containing a kidney section from each experimental group.  Areas of the cortex were 

selected for imaging of approximately 20,000 pixels per kidney.  FlexImaging was used 

for image visualization.   

MALDI FTICR Lipid Imaging: Frozen kidneys were sectioned as above.              

9-aminoacridine (9-AA) MALDI matrix was applied by sublimation at 140°C and 50 

mTorr for 12 minutes.  The resulting matrix coating contained 1.1 ± 0.2 mg 9-AA/cm
2
.  

MALDI imaging experiments were performed in negative ion mode using a 9.4 T 

SolariX MALDI Fourier transform ion cyclotron resonance (FTICR) mass spectrometer 

(Bruker Daltonics).  Spectra were collected in the range of m/z of 400-1500 with 500 

shots/spectra. Image resolution was set at 40 µm or 10 µm.  FlexImaging and 

DataAnalysis were used for image visualization and data analysis.   

After all imaging experiments, the MALDI matrix was removed from the slides 

by immersion in 70% ethanol followed by 95% ethanol for 30 s each.  Kidney sections 

were then stained with PAS and renal tissue structures were matched to MALDI IMS 

data via image overlay. 
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Lipid Identification: All lipids reported were identified using MS/MS 

fragmentation along with accurate mass data.  Accurate masses were determined after 

imaging experiments by profiling an adjacent tissue section using MALDI FTICR MS.  

Phospholipid species were isolated and fragmented with the FTICR MS using sustained 

off-resonance irradiation collision-induced dissociation (SORI-CID) for identification.  

Glycolipid species MS/MS fragmentation experiments were performed on a MALDI-

LTQ-XL hybrid linear ion trap instrument (Thermo Scientific) using pulsed q-

dissociation.  The LipidMaps database (lipidmaps.org) was used to search the accurate 

mass data.  Fragmentation patterns were interpreted manually along with tools from 

lipidmaps.org.   

Relative quantitation of lipid levels. For the MALDI imaging datasets, ImageJ 

software (National Institutes of Health, Bethesda, MD, USA) was used to measure the 

relative abundance of the lipid species of interest between experimental groups.  

Monochromatic TIFF images were exported from FlexImaging to ImageJ.  Areas of 

interest were selected in each image as individual glomeruli, tubules, or the entire kidney 

section.  Signal intensity was measured as the mean intensity per area of interest (i.e.- 

glomeruli, tubules, or entire kidney cross-section).  Glomerular and tubular signals were 

evaluated as single ions and the Amadori-PEs were evaluated as the ratio of the Amadori-

PE signal to the unmodified PE signal. 

Statistical analysis. Data were expressed as means  SEM and statistical analysis 

was performed using Student’s t test for unpaired samples or ANOVA followed by post-

hoc Student-Newman-Keuls comparisons.  For the MALDI imaging datasets, the mean 

and standard error were calculated for each MS peak of interest.  Differences were 
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evaluated by the Kruskal-Wallis rank-sum test followed by post-hoc Tukey test.  

Differences were considered statistically significant if p values were less than 0.05. 
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CHAPTER IV 

 

HIGH SPATIAL RESOLUTION IMAGING MASS SPECTROMETRY FOR 

DETECTING SPATIAL DISTRIBUTIONS OF PROTEINS IN HEALTHY, 

DIABETIC AND DIABETIC TREATED KIDNEYS 

 

Overview 

  Imaging mass-spectrometry (IMS) allows for molecular profiling of specific 

morphologically distinct tissue regions, such as fibrotic glomerular lesions, without 

disturbing the overall tissue morphology. For this study, a robust mouse model of 

diabetes (eNOS
-/-

 db/db) with and without pyridoxamine (PM) treatment was investigated 

with high spatial resolution IMS to investigate protein expression changes in 

microstructures of kidney sections. We report histology-directed analysis of individual 

glomeruli as well as 25 µm MALDI IMS which revealed molecular localization at the 

level of single glomeruli and tubules. Differential relative abundances of a number of 

protein signals were found between the experimental groups. Identified markers with 

increased expression in DN included fibronectin, fragments of albumin and fragments 

alpha-1-antitrypsin (A1AT). These proteins were found to be absent or attenuated in the 

non-diabetic and PM treatment groups.  
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Introduction 

 While diabetic nephropathy (DN) takes years to develop, it is largely irreversible 

and remains a major health complication for diabetic patients. The pathogenic 

mechanisms underlying this disease remain unclear and so uncovering molecular events 

that define mechanisms of susceptibility and disease progression can improve early 

detection and provide potential targets for drug therapy. Proteomic technologies have 

been used in this vein to discover biomarkers and uncover proteins and pathways that 

contribute to the pathophysiology of the kidney. A number of previous proteomic studies 

have looked for biomarkers in the urine and blood
151-154

 but fewer have looked in the 

kidney itself.
35, 89, 155, 156

 The ability to localize molecular changes in tissue, at the site of 

disease, may provide insight into new molecular markers and provide a better 

understanding of disease progression. 

Here, on-tissue histology-directed profiling and high spatial resolution imaging 

has been used to determine protein changes in the kidney of a robust model of DN, the 

eNOS-/- db/db mouse. The present study is the first report of direct kidney MALDI IMS 

for protein analysis with the spatial specificity to analyze individual renal glomeruli and 

tubules. Proteomic signatures that correlated with disease were identified and their 

localization within the kidney was determined. The relative abundance of these signatures 

was evaluated after treatment with PM; an experimental drug being that has been shown 

to slow the progression of kidney disease.
25, 28, 127
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Results 

Histology-directed profiling for protein expression in glomerular lesions. 

Histology-directed MALDI IMS was utilized to analyze individual glomeruli in renal 

sections of wild-type mice and eNOS
-/-

 db/db mice which develop robust DN.
106

 

Glomeruli from eNOS
-/-

 db/db mice exhibited significant ECM deposition in PAS-stained 

sections (Figure 4.1A). Kidney sections were stained with cresyl violet, a stain that does 

not interfere with MALDI MS, and glomeruli were identified and selected for trypsin 

spotting (Figure 4.1B). After in situ tissue digestion, tryptic peptides from the individual 

glomeruli were analyzed by MALDI MS and the most abundant peptide signals were 

identified using tandem MS. In the MS spectrum from a single diabetic mouse 

glomerulus (Figure 4.1C), a peptide at m/z 1906 was identified as a tryptic fragment of 

fibronectin (Figure 4.1D). The fibronectin deposition was detected in glomeruli but not in 

non-glomerular cortical areas of the diabetic mice. In the wild-type mice, levels of 

fibronectin were not statistically different from the background noise (Figure 4.1E). The 

peaks at m/z 1363 and 2572 were also identified as fibronectin peptides and exhibited 

similar intensity patterns as the fibronectin tryptic peptide at m/z 1906. In addition, peaks 

at m/z 1529 and 1274 were identified as tryptic fragments of hemoglobin, a peak at m/z 

1744 was a tryptic fragment of histone H2B, and the peak at m/z 1198 was a tryptic 

fragment of smooth muscle actin (Figure 4.1C).  

Proteomic studies have established that protein abundance in complex biological 

samples is proportional to the abundance of corresponding proteolytic peptide 

fragments.
157, 158

 In MALDI IMS studies, the intensities of proteolytic peptide ions 

resulting from in situ trypsin digestion corresponded to the intact protein ion intensity.
96
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Figure 4.1. Identification of fibronectin deposition in individual glomeruli. (A) PAS 

stained glomerulus from eNOS
-/-

 db/db kidney section exhibiting abnormal extracellular 

matrix deposition and sclerotic regions. (B) Cresyl violet stain of the same glomerulus 

shown in panel A from a serial kidney section. (C) MALDI MS spectrum of tryptic 

peptides from a selected glomerulus; peptide at m/z 1906 was sequenced using tandem 

MS mode. (D) Tandem MS (MS/MS) spectrum and corresponding amino acid sequence 

of the peptide at m/z 1906; the peptide was identified as a tryptic fragment of fibronectin 

by searching mouse SwissProt database with MASCOT software. (E) MALDI MS 

spectra in the region of the tryptic fibronectin peptide at m/z 1906 from glomeruli and 

non-glomerular cortex areas of eNOS
-/-

 db/db and wild-type mice. Increases in renal 

fibronectin deposition occurred specifically in glomeruli of eNOS
-/-

 db/db mice. 
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Therefore, we used the abundance of fibronectin peptide with m/z 1906 to determine 

relative deposition of fibronectin in different areas of the kidney and in kidney glomeruli. 

Ten random glomeruli from each kidney section of wild-type mice, eNOS-/- db/db mice 

and PM treated eNOS-/- db/db mice were subjected to in situ tryptic digestion followed 

by MALDI MS analysis. As shown in Figure 4.2A and B, glomerular fibronectin 

deposition was significantly increased in eNOS
-/-

 db/db mice and PM treatment reduced 

the amount of glomerular fibronectin deposition in eNOS
-/-

 db/db mice. This increase in 

fibronectin deposition by IMS was consistent with that determined using classical 

immunohistochemistry (Figure 4.3). Interestingly, there was also ~2.5-fold increase in 

smooth muscle actin, a well-known marker of DN,
159

 in the eNOS
-/-

 db/db glomeruli 

compared to that of control. This increase was completely inhibited in PM treated   

eNOS
-/-

 db/db mice.  
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Figure 4.2. Treatment of eNOS
-/-

 db/db mice with PM inhibited glomerular fibronectin 

deposition. (A) MALDI MS spectra of tryptic fibronectin peptide at m/z 1906 were 

determined in glomeruli of non-diabetic wild type C57BKS mice (dotted line), eNOS
-/-

 

db/db mice (dashed-and-dotted line), and eNOS
-/-

 db/db mice treated with PM (solid 

line). (B) The mean intensity of tryptic fibronectin peptide at m/z 1906.  * - the difference 

between eNOS
-/-

 db/db and WT was significant,  P < 0.001 (n=10);  ** -  the difference 

between eNOS
-/-

 db/db and eNOS
-/-

 db/db  + PM was significant,  P < 0.001 (n=10).  
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Figure 4.3. Increase in glomerular fibronectin deposition in eNOS
-/-

 db/db mice by 

MALDI MS and validation by IHC. MALDI MS spectra in the region of the tryptic 

fibronectin peptide at m/z 1906 from glomeruli of wild type (A) and eNOS
-/-

 db/db (B) 

mice. Immunohistochemical analysis of fibronectin deposition in wild type (C) and 

eNOS
-/-

 db/db (D) mice using fibronectin antibody.  
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High spatial resolution MALDI IMS reveals protein differences in specific 

regions of DN kidney cortex. Protocols were developed for high spatial resolution 

MALDI IMS protein analysis of small renal structures such as glomeruli and tubules. 

Kidney sections were coated with CHCA matrix by sublimation which produced a 

uniform coating with crystal sizes ~1 µm. After sublimation and deposition of the matrix 

on to the tissue surface, the slides were rehydrated in a humid environment which 

increased protein incorporation into the matrix layer. High spatial resolution imaging was 

performed on thin kidney sections from DN and wild type mice to determine protein 

expression differences between the experimental groups. Tissues were imaged at a 25 µm 

spatial resolution in the mass range of m/z 1000 to 25000 and then co-registered with the 

PAS stained histology image of the same section. At this spatial resolution, and with co-

registration, features such as glomeruli could be determined in the MALDI IMS data. 

 Since the glomerulus is one of the structures known to be damaged in DN, we 

examined the protein expression differences in the glomeruli between the experimental 

groups. Figure 4.4 shows the average spectra from glomeruli of non-diabetic and DN 

kidneys. Signals such as m/z 1851, 4343, 4965, and 15600 were present in all glomeruli. 

Several signals were found to be increased in DN glomeruli such as m/z 3650, 4415, and 

8710. The signal at m/z 4415 was particularly interesting because it has a mass difference 

of 72 Da from the common glomerulus signal at m/z 4343. Because a mass shift of 72 Da 

could represent a carboxyethyl lysine (CEL) modification, a known AGE to be increased 

in DN, the expression and localization of this signal was examined more closely. 

Additionally, we were interested in the expression of this signal in the PM treated mouse 

kidney, since PM is an inhibitor of AGEs. Figure 4.5A shows the localization of m/z 4343 



94 
 

 

 

 

Figure 4.4. Average spectra from glomeruli in non-diabetic and diabetic mouse kidneys. 
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Figure 4.5. High spatial resolution IMS shows protein changes in glomeruli of diabetic 

kidneys. (A) MALDI IMS of kidneys imaged at 25 µm spatial resolution showed a signal 

at m/z 4343 localize to glomeruli of all experimental groups.  A signal at m/z 4415 (+72 

Da from m/z 4343), localizes specifically to the diabetic glomeruli and is absent in the 

non-diabetic glomeruli. (B) The signal at m/z 4415 is present in glomeruli with more 

intense PAS staining.   
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and m/z 4415 in kidneys of each experimental group. The signal at m/z 4415 was not 

present in the glomeruli of wild type kidneys. In the PM treated animals, this signal was 

lower than in the untreated counterparts. Because this signal was not completely absent in 

PM treated glomeruli, we wanted to more closely examine the glomeruli where this 

signal was localized. As seen in Figure 4.5B, this signal in present in more sclerotic 

glomeruli as determined by the more intense pink staining from the PAS which highlights 

extracellular matrix.  

Beyond the differences in the glomerulus, the high spatial resolution imaging 

revealed a number of other signals to be differential between the wild type and DN 

kidneys. These signals were present in discrete regions in the DN kidney and one 

example is shown in Figure 4.6. It was not obvious based on histology or mass spectral 

patterns what the corresponding region in the wild type kidney was to compare it with. 

Because of this, spectra from across the tissue were extracted for further analysis. About 

1,000 spectra from each a wild type cortex and a DN cortex were loaded into 

ClinProTools (Bruker) for peak picking. The integrated areas of 240 peaks were 

calculated for all individual spectra. The free statistics program Tanagra was used for 

further analysis of this set of peaks.  PCA was performed and a plot of the first two 

principle components is shown in Figure 4.7A. The first principal component was able 

to describe the variation between the wild type spectra and the DN spectra in this 

dataset. Therefore, the loadings of the first component were examined to determine what 

peaks influenced this separation (Figure 4.7B). These peaks were examined in the 

imaging datasets of biological replicates and peaks which showed a consistent pattern 

were selected for further analysis.  
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Figure 4.6 Low molecular weight species increased in diabetic kidney cortex. An 

example of one low molecular weight species, m/z 1903, that was not detected in the non-

diabetic kidney and present in the diabetic kidney with a highly localized distribution. 

The top right shows the average spectrum from the non-diabetic kidney. The bottom 

spectrum shows the average selected spectrum from the region of interest shown to the 

left. There is an increase of signals in the range of 1-4.5 kDa. Imaging performed with 

MALDI IMS at 25 µm. 
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Figure 4.7. PCA based differentiation of spectra from IMS. (A) Scores plot of the first 

two principle components differentiating spectra from IMS of diabetic (red circles) and 

non-diabetic (green triangles) kidneys. (B) Plot of loadings from PC1 vs each m/z. 
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Identification of peaks from IMS. A number of peaks could differentiate wild 

type and DN kidneys; however, it is important to determine the molecular identity to 

investigate the biological roles. Because many of the peaks of interest were localized to 

small regions of the tissue, targeted approaches were necessary for identification. Two 

strategies were used to identify peaks of interest from the IMS experiments: image 

directed on-tissue MS/MS of peaks 1-3kDa and LC-MS/MS of homogenized serial 

sections targeting IMS signals of interest using top-down electron transfer dissociation 

(ETD) for fragmentation. Additionally, high mass resolution on-tissue MS was performed 

using a 15T FTICR MS on diabetic kidneys for accurate mass measurements to assist in 

identification. Table 4.1 lists proteins identified. Of particular interest were signals 

related to albumin and alpha-1-antitrypsin (A1AT) and these were further investigated.  

Identification and localization of alpha-1-antitrypsin. Closer examination of the 

discriminating peaks revealed two unique sets of peaks increased in diabetic kidneys 

(Figure 4.8A). The three signals in each peak set showed the same localization and were 

each separated by 14 Da. The first peak in both sets was targeted for ETD MS/MS 

(Figure 4.8B) by selecting precursor ions at m/z 589.5, [M+7H
+
]
7+

 and m/z 601.9, 

[M+7H
+
]
7+

 which correspond to the MALDI TOF peaks at m/z 4120 and m/z 4208, 

respectively. These two peaks were identified as C-terminal fragments of alpha-1-

antitrypsin 1-4, differing by one serine amino acid. In the mouse, alpha-1-antitrypsin 

(A1AT) is represented by a cluster of related genes. Based on accurate mass 

measurements the sets of triplicate peaks which are separated by 14 Da are most likely 

the same C-terminal 35 and 36 fragments of alpha-1-antitrypsin 1-2 and alpha-1- 
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Table 4.1. Table of identified proteins. Italicized entries are probable identifications based on 

FTICR MS measurements. The parentheses annotate the amino acid sequence and modifications 

represented by the signal.  

MALDI 

TOF m/z 

Clusters 

With 
Identification ID Method 

1018 DB Albumin (359-366) LIFT 

1108 DB Albumin (356-363) LIFT 

1211 DB Napsin-A (387-398) LIFT 

1237 DB Albumin (557-567) LIFT 

1474 DB Albumin (356-366) LIFT 

1479 DB Albumin (557-569) LIFT 

1802 DB Histone H2A (115-130) LIFT 

2008 DB Transgelin (183-201) LIFT 

2042 DB Albumin (557-574) LIFT 

2398 DB Transgelin (179-201) LIFT 

2665 DB Albumin (26-48) LIFT 

2794 DB Albumin (25-48) LIFT 

4120 DB A1AT (379-413) ETD 

4208 DB A1AT (378-413) ETD 

4938 DB Thymosin B10 (2-44 acetylated) ETD 

4965 DB Thymosin B4 (8-50 acetylated) ETD 

5445 WT 
Cytochrome C oxidase polypeptide 7C 

(17-63) 
Accurate Mass 

5708 WT 
ATP synthase subunit epsilon, 

mitochondrial (2-52) 
Accurate Mass 

8709 DB Apolipoprotein A-II (25-102) 
Trypsin Bottom  

up, LIFT 

8944 WT 
ATP synthase-coupling factor 6, 

mitochondrial (33-108) 
ETD 

9912 WT 
Acyl-CoA-binding protein (2-87 

acetylated) 
ETD 

9978 WT 
Cytochrome c oxidase subunit 6B1 (2-

86, acetylated, 2 disulfide bonds) 
ETD 

 

 



101 
 

 

Figure 4.8. MALDI and ESI analysis of C-terminal fragments of A1AT. (A) MALDI FTICR 

spectrum from diabetic kidney tissue showing C-terminal A1AT fragments present in the 

diabetic mouse kidney. The first set of peaks represents the C-terminal 35 amino acids of three 

forms of A1AT while the second set of peaks represents the C-terminal 36 amino acids. (B) ETD 

fragmentation spectrum of m/z 589.5, [M+7H
+
]

7+
 (inset, corresponds with m/z 4120.17 [M+ H

+
]
+
 

from panel A) which was identified as the C-terminal 35 amino acids of A1AT 1-4.  
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antitrypsin 1-1. A1AT 1-2 differs from A1AT 1-4 by one leucine in place of one valine amino 

acid while A1AT 1-1 has two leucines in place of two valines from A1AT 1-4. These amino acid 

differences would result in mass shifts of 14 Da each. Figure 4.9 shows the spatial distribution of 

the C-terminal 35 amino acids at m/z 4120 along with the relative abundance of this signal in the 

kidney determined from three biological replicates in each group. Both the images and relative 

quantitation show a clear increase in this signal in the diabetic kidney and a decrease with PM 

treatment. Additionally, this signal appears to be more concentrated in cast regions of the 

diabetic cortex.  

Albumin fragments in the DN kidney. On tissue MS/MS analysis revealed a number of 

albumin fragments were present in diabetic kidneys (Table 4.1). To further investigate this, high 

mass resolution IMS was performed on diabetic kidneys using a 15T FTICR MS. Mass signals 

were then compared to theoretical albumin fragments using the FindPept tool from ExPASy 

(http://web.expasy.org/findpept). This search returned a number of ‘hits’ that included those that 

already had MS/MS confirmation and additional probable albumin fragments. Interestingly, all 

of the possible albumin fragments originated from three main regions of the intact albumin. 

Table 4.2 lists identified and probable peptides detected in the DN kidneys. Several albumin 

fragments were selected for further analysis to determine the relative abundance of these 

peptides within non-diabetic, diabetic, and PM treated diabetic kidneys. These fragments had 

unique and localized distributions within the diabetic kidney as shown in Figure 4.10. As can be 

seen in the box plots in Figure 4.10, these fragments are dramatically increased in DN and 

further, attenuated by PM treatment.  
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Figure 4.9. Localization and relative abundance of A1AT C-terminal fragment. (A) 

Representative example of m/z 4120 localization in non-diabetic, diabetic, and PM treated 

diabetic kidney cortex. This signal appears to be present in tubular regions of the kidney. (B) 

Relative abundance of m/z 4120 between experimental groups. n = 3 per group. Imaging 

performed with MALDI TOF at 25 µm spatial resolution. 
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Figure 4.10. IMS and relative quantitation of albumin fragments. Imaging performed with 

MALDI TOF at 25 µm spatial resolution. Relative abundance determined by the average 

intensity per imaged region. n=3 per group. 
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Immunofluorescence staining shows tubular localization of albumin fragments. After 

determining the presence of albumin fragments in the DN kidney, we wanted to further 

determine the precise structures where these were localized. Serial sections were cut and MALDI 

IMS was performed on one section at a spatial resolution of 25 µm and immunofluorescence 

staining for tubular specific proteins was performed on the other. Two antibodies were used, one 

which stained proximal tubules, and another which stained distal tubules and collecting ducts. 

The resulting images of the immunofluorescence and IMS were co-registered. Fragments of 

albumin were found in these tubular structures (Figure 4.11). 

Discussion 

DN is characterized by structural and functional changes in glomeruli and tubular regions 

of the kidney cortex; however, much remains unknown about the molecular mechanisms of this 

disease. In this study we sought to detect and identify markers of DN at the site of disease and 

evaluate their response with therapeutic intervention. To do so, histology-directed profiling and 

high spatial resolution imaging was applied to a robust mouse model of DN to determine relative 

protein expression differences in pathologic lesions in microstructures of the kidney.  

Protein mass signals with the specificity to single glomeruli were detected in this study. 

One of these was fibronectin, which through histology-directed profiling we demonstrated 

identification and relative quantitation. Glomerular fibronectin deposition is a prominent known 

feature of diabetic kidney injury.
160

 Previous studies have shown that high glucose can increase 

ECM expression
161, 162

 through reactive oxygen species generation.
163

 In this study, we found 

tryptic peptides of fibronectin increased in glomeruli of eNOS
-/-

 db/db kidneys compared to 

healthy kidney glomeruli.   
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Figure 4.11. Albumin fragments localize in tubules of diabetic kidney. Albumin fragments co-

localize with  dolichos biflorus agglutinin (DBA), a distal tubule and collecting duct marker, and 

Lotus tetragonolobus lectin (LTL), a proximal tubule marker. All scale bars = 200 µm. 
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We also determined that PM treatment attenuated the levels of fibronectin deposition in the 

eNOS
-/-

 db/db kidney glomeruli, suggesting that increased renal ECM deposition involves 

oxidative pathways.  

In addition to profiling, high spatial resolution IMS of intact proteins was used to detect 

expression patterns in glomeruli. Signals at m/z 3650 and 4415 were unique to DN glomeruli and 

may be a marker of disease progression. It was noted that the peak at m/z 4415 in the DN 

glomeruli has a mass shift of +72 Da from a glomerular protein found in the wild type kidney. 

This mass shift is consistent with the AGE modification carboxyethyl lysine and its presence is 

reduced significantly with PM treatment, a known inhibitor of AGE modifications. In the present 

study, identification of this molecule was unsuccessful. Further work is needed to both identify 

this molecule and confirm the modification.  

IMS of the kidney cortex revealed differential signals outside of the glomerulus as well. 

Further, many of these differential signals were identified through targeted approaches. 

Identification of protein peaks from IMS experiments is a challenge and a bottleneck in the IMS 

workflow. Two main approaches commonly used to identify signals from IMS are on-tissue 

fragmentation
164

 and off-line tissue homogenization/extraction and LC separation followed by 

bottom-up or top-down approaches. Efficiency of on-tissue fragmentation can be limited with 

singly charged proteins, particularly for signals >5 kDa, and works best for abundant ions. 

Bottom-up approaches with LC/MS have been used to identify proteins from IMS but it can 

often be difficult to match intact masses from protein databases to those detected in IMS. Top-

down
70, 165, 166

 MS/MS approaches are becoming more popular and useful for identification of 

IMS signals as the intact mass from each experiment can be directly compared. However, 

identification becomes even more of a challenge when signals of interest are localized to very 
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small tissue structures as was the case in this study. Here we used two targeted strategies for 

protein identification that used very little tissue. First, image-directed on-tissue MS/MS was used 

to identify proteins that localized to small tissue structures, where the MS/MS sampling area was 

guided by the IMS data on a serial section. Using this approach a number of albumin fragments 

were identified directly from tissue in highly localized tubule regions. In the second strategy 

several thin serial sections were collected and homogenized followed by a targeted LC-MS/MS 

run. The nearness of the sections to the one imaged helped ensure that the same signals would be 

present in the homogenized sample and targeting the m/z of interest increased the sensitivity of 

analysis versus data dependent approaches.  

A1AT is an inhibitor of serine proteases. It has activity against a number of proteases but 

its main target is elastase, which not only breaks down elastin but other ECM proteins as well. It 

should be noted then that an increase in A1AT could lead to ECM accumulation. Upon 

interaction with a target protease, A1AT is cleaved in its reactive center loop generating a 4kDa 

fragment. Alternatively, non-target proteolytic cleavage has been reported in the reactive center 

loop as well without known inhibitory function.
167-169

 In this study we report two sites in the 

reactive center loop where A1AT is cleaved. Further studies are needed to determine the nature 

and function of these A1AT fragments in the DN kidney. However, in a number of other studies, 

both A1AT and C-terminal fragments of A1AT have been found in the urine of patients with 

diabetes and other forms of kidney damage
151, 152, 170-173

 indicating this protein as a potential 

biomarker of kidney disease.   

It is well established that processing of albumin is mishandled in the diabetic kidney. 

Detection of albumin in the urine indicates kidney damage and is in fact the main diagnostic used 

to assess early disease and disease progression.
3, 174

 It was generally accepted that in healthy 
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kidneys only a small amount of albumin passed through the glomerular filter and then was taken 

up by the proximal tubules and degraded.
175

 The albumin that was not taken up was excreted 

intact in the urine.  While intact albumin is the main measure in the clinic, more studies are 

showing that albumin fragments increase as well and these are not always detected by traditional 

assay methods.
176-178

 The origin of albumin fragments is also of interest. Some studies suggest 

fragments are made in the urine by urine proteases.
173, 179

 While this may happen, others have 

found fragments present in the kidney as well.
180-182

 Our data are in support of the hypothesis 

that albumin fragments are formed in the kidney. We have detected them in post-glomerular 

regions (Figure 4.11) suggesting that they may be formed during processing in the tubules. Our 

data are in agreement with other studies which have suggested that after lysosomal degradation 

in the proximal tubule, albumin fragments are returned to the lumen of the tubule to be excreted 

in urine. The extent of fragments found in our study also seem to correlate with disease severity 

as PM treatment reduced the abundance of albumin fragments detected in the kidney (Figure 

4.10).  

In summary, using IMS, we have demonstrated identification and relative quantitation of 

disease related molecular changes in different renal regions, including individual glomeruli and 

tubules, directly from thin kidney sections. Low molecular weight albumin fragments and C-

terminal A1AT were detected in the DN kidney. Without reducing hyperglycemia, a known 

influencer of kidney damage, PM treatment attenuated these markers of disease. Here, MALDI 

IMS is shown to be a tool to evaluate the efficacy of a therapeutic intervention, identify markers, 

and gain understating of the molecular mechanisms of kidney diseases.  
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Methods 

Mouse model of diabetic nephropathy. Animal experiments were performed at the 

AAALAC-accredited animal facilities at Vanderbilt University Medical Center according to 

institutional guidelines and IACUC-approved experimental protocol.  In this study, we employed 

eNOS
-/-

 C57BLKS db/db mice, the most robust mouse model of Type 2 DN to date.  At >20 

weeks of age, these mice exhibit dramatic albuminuria, arteriolar hyalinosis, increased GBM 

thickness, mesangial expansion, mesangiolysis, focal segmental and early nodular 

glomerulosclerosis, and markedly decreased GFR.
106

  Control group included wild type 

C57BLKS mice.  Experiment continued until mice were sacrificed at 22 wks of age.  Kidneys 

were removed, flash frozen in liquid nitrogen and stored at -80°C. Glucose levels were measured 

in blood collected from the tail vein using OneTouch glucometer and Ultra test strips (LifeScan, 

Milpitas, CA). Albumin and creatinine excretion was determined in spot urine collected from 

individually caged mice using Albuwell-M kits (Exocell Inc, Philadelphia, PA). 

Immunohistochemistry and immunostaining. Immunohistochemical detection of 

fibronectin was performed using an anti-fibronectin antibody (Sigma, St. Louis, MO). The 

kidney sections then were incubated using the avidin-biotin-horseradish peroxidase technique 

(Elite Vectastain ABC kit; Vector Laboratories, Burlingame, CA), and staining was visualized 

using 3,3`-diaminobenzidine. Fluorescein-labeled lotus tetragonolobus lectin (LTL) and 

fluorescein-labeled dolichos biflorus agglutinin (DBA) kits were from VectorLabs (Burlingame, 

CA). Immunostaining was performed as previously described.
183

 

Renal tissue preparation. Frozen kidneys were sectioned on a cryostat at 10 µm 

thickness and thaw mounted on to ITO coated glass slides. Kidney tissue sections were washed 

by immersion in 70% ethanol for 30s, 100% ethanol for 30s, Carnoy’s fluid for 2 min, 100% 
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ethanol for 30s, water for 15s, and then 95% ethanol for 30s. Slides were then stored in a 

desiccator until further processing on the same day. 

Histology-directed profiling: Histology-directed IMS was performed as described 

previously,
66

 with some modifications. After washing, kidney sections were stained with 0.5% 

cresyl violet for 30s followed by an ethanol rinse. The cresyl violet stain aided in distinguishing 

the glomeruli under a microscope and is compatible with MALDI MS. Sample slides were 

scanned using a Mirax slide scanner from Zeiss. Mirax Viewer, Adobe Photoshop, and ImagePro 

were used to identify and record the coordinates of the glomeruli within the kidney sections on 

the digital images. Coordinates of non-glomerular cortical areas were also recorded. The 

coordinates of the selected areas in the kidney were transferred to the automated acoustic robotic 

spotter (Portrait 630, Labcyte) for deposition of trypsin and the MALDI matrix. Trypsin solution 

(76 ng/µL trypsin in 100 mM ammonium bicarbonate/10% acetonitrile) was spotted on the tissue 

(on the glomeruli and non-glomerular cortex coordinates) in single droplets (~120 pL) for a total 

of 40 iterations allowing each droplet to dry for two minutes before spotting the next droplet. 

Proteolytic digestion was allowed to take place for approximately two hours. Subsequently, 

MALDI matrix (10 mg/mL CHCA in 1:1 v/v mixture of acetonitrile and 0.2% trifluoroacetic 

acid) was robotically spotted on the trypsin digested glomeruli.  

For high spatial resolution IMS: MALDI matrix was applied using a custom built 

sublimation apparatus which uses reduced pressure and heat for vapor deposition of the MALDI 

matrix on to the sample slide
61

 resulting in a uniform MALDI matrix coating over the tissue. α-

Cyano-4-hydroxycinnamic acid (CHCA) was sublimed at 135°C and 50 mTorr for 30 minutes. 

Matrix coated sample slides were then rehydrated in a petri dish containing 1 mL of 5% TFA for 

3.5 min at 85°C. 
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MALDI mass spectrometry. Histology-directed profiling: MALDI MS analyses of tryptic 

peptides were acquired on a Bruker UltrafleXtreme TOF/TOF mass spectrometer in positive ion 

reflectron mode. Analysis was performed with 250 shots/spectra.  Digestion peptide profiles 

from the glomeruli were acquired in the range of m/z 600-3900.  Peaks with significant intensity 

changes between the groups were manually selected for MS/MS fragmentation using the LIFT 

mode. The LIFT device raises the potential energy of the ions to induce fragmentation. MS/MS 

spectra were submitted to the MASCOT (Matrix Science) database search engine to match 

tryptic peptide sequences to their respective intact proteins.  

MALDI TOF IMS: MALDI imaging experiments were performed in positive ion mode 

using a Bruker Ultraflextreme mass spectrometer in linear geometry.  Spectra were collected in 

the range of m/z 1000-20000.  Raster steps were taken in 25 µm stage increments and the laser 

spot size was also 25 µm in diameter as measured on a thin matrix coating.  Each imaging 

experiment was run as a set containing a kidney section from each experimental group and areas 

of the cortex were selected for imaging. FlexImaging was used for image visualization.   

MALDI FTICR MS: MALDI imaging experiments were performed in positive ion mode 

using a 15 T SolariX MALDI Fourier transform ion cyclotron resonance (FTICR) mass 

spectrometer (Bruker Daltonics).  Spectra were collected in the range of m/z of 800-10000. 

Image resolution was set at 60 µm. FlexImaging and DataAnalysis were used for image 

visualization and data analysis.   

After all imaging experiments, the MALDI matrix was removed from the slides by 

immersion in 70% ethanol followed by 95% ethanol for 30 s each.  Kidney sections were then 

stained with PAS and renal tissue structures were matched to MALDI IMS data via image 

overlay. 
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Protein Identification. For identification using image-directed on-tissue MS/MS, serial 

sections were cut and mounted on the MALDI target with the same orientation. One section was 

imaged to determine the localization of signals of interest. The imaged tissue was used as a guide 

for regions to sample on the serial section for MS/MS of the peaks of interest. Peaks were 

isolated and fragmented using LIFT mode on a Bruker Ultraflextreme. MS/MS spectra were 

searched using MASCOT. For identification using LC-MS/MS, five sections immediately 

following the section used for IMS were collected in 30 µl of 50% methanol with 0.1% TFA. 

The sample was vortexed and then sonicated for 5 m. The homogenized sample was diluted 10-

fold with 0.1% formic acid and loaded onto a C8 reverse-phase capillary trap column using a 

helium-pressurized cell. The sample in the trap column was then loaded on to an analytical 

column for LC separation followed by mass analysis on a LTQ Orbitrap Velos (Thermo 

Scientific). The instrument was operated using both data-dependent and targeted scan events. To 

determine the mass for the targeted scan events, accurate mass measurements for the singly 

charged peaks of interest were acquired from tissue with a 15T MALDI FTICR MS. Two charge 

states per peak were then calculated to target for fragmentation in the LTQ Orbitrap Velos. For 

LC-MS/MS analyses, full scan (m/z 400-2000) spectra were acquired followed by electron 

transfer dissociation (ETD) fragmentation.    

Relative abundance of protein signals: For the MALDI imaging datasets, ImageJ 

software (National Institutes of Health, Bethesda, MD, USA) was used to measure the relative 

abundance of the protein signals of interest between experimental groups.  Monochromatic TIFF 

images were exported from FlexImaging to ImageJ. Signal intensity was measured as the mean 

intensity per imaged area. 
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Statistical analysis. Data were expressed as means  SEM and statistical analysis was 

performed using Student’s t test for unpaired samples or ANOVA followed by post-hoc Student-

Newman-Keuls comparisons.  For the MALDI imaging datasets, the mean and standard error 

were calculated for each MS peak of interest.   
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CHAPTER V 

 

CONCLUSION AND PERSPECTIVES 

 

High Spatial Resolution Imaging for Elucidating Markers of Kidney Disease 

This project investigated the molecular changes that take place in the glomerulus and 

kidney cortex to explore the pathogenic mechanisms of this disease by use of MALDI IMS. 

MALDI IMS was utilized in this study to image tissue sections of kidneys both in a healthy state 

and in severe DN to elucidate lipid and protein changes that occur with disease. Additionally, the 

response of these lipids and proteins was investigated after treatment with PM, a promising drug 

candidate for the treatment of diabetic nephropathy.   

The first goal of this research project was to develop MALDI MS methods for direct 

tissue analysis of glomeruli and tubules within a kidney cortex by imaging mass spectrometry 

and histology directed profiling techniques. The small size of the glomerulus (~ 75 um in mice) 

had previously made MALDI IMS of this tissue structure a challenge; however, recent advances 

in imaging resolution and sample preparation have made this accessible. Sublimation as a matrix 

application method has been developed for imaging of both lipids and proteins from thin kidney 

sections. SEM analysis (Figure 2.3) showed that this sample preparation technique resulted in a 

homogenous crystal coating lacking gaps with crystal sizes on the order of 1 µm, thus suitable 

for high spatial resolution imaging. Rehydration of the sublimated matrix coating has been found 

to be critical for detection of proteins from tissue. Routine MALDI MS protein imaging is now 

performed at 25 μm spatial resolution (Figure 2.7) and MALDI MS lipid imaging is performed at 
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10 μm spatial resolution (Figure 2.6). At these resolutions the glomeruli are easily imaged within 

the kidney cortex. This work integrated multiple modalities including high spatial resolution 

imaging, high mass accuracy and resolving power measurements, and standard histology (Figure 

2.11) to increase the information measured from tissue sections. 

After developing methods for micro-structure analysis in kidneys, kidneys from three 

experimental groups were studied: wild type (non-diabetic control), eNOS
-/-

 db/db (diabetic) and 

PM treated eNOS
-/-

 db/db mice. The eNOS
-/-

 db/db mouse was chosen for these studies because 

it is one of the most robust models, mimicking the progressive functional and structural damage 

documented in human diabetic nephropathy.  

In Chapter III, high spatial resolution MALDI IMS (10 µm) revealed unique lipid 

expression in small kidney structures such as the glomeruli and tubules of the cortex. 

Identification and renal localization of over 75 lipids was determined (Table 3.1) with many of 

these differentiating disease. Overall, changes in four lipid classes- gangliosides, 

sulfoglycosphingolipids, lysophospholipids, and phosphatidylethanolamines were determined. 

One example is the ganglioside NeuAc-GM3 (m/z 1151.7) and its hydroxylated derivative 

NeuGc-GM3 (m/z 1167.7). The former was found to localize to the glomeruli of all three kidney 

types whereas the latter was observed only in the DN glomeruli (Figure 3.3). Attenuated levels 

of NeuGc-GM3 were observed in PM treated DN glomeruli. Additionally, high mass accuracy 

measurements using FTICR MS indicate early glycation product modifications (Amadori, 

+162.0528 Da) on specific phosphatidylethanolamine (PE) lipids in the diabetic kidney tissue 

(Figure 5.1). It has been found that the modified PEs localize to the cortex region of the diabetic 

kidneys. Over 15 glucose modified PEs have been detected and imaged. This is the first report of 

the detection along with spatial localization of Amadori-PEs in tissue.   
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Figure 5.1. Glucose modified PE’s are increased in the cortex region of the diabetic kidneys.  
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In Chapter IV, protein expression changes were investigated in the kidney cortex of the 

different experimental groups. Specific to glomeruli, fibronectin (Figure 4.2) and a signal at m/z 

4415 (Figure 4.5) were found to be increased. The signal at m/z 4415 is suspected to be a 

carboxyethyl lysine AGE modification on the signal at m/z 4343 based on the co-localization of 

the two signals, the increase in DN, and the reduction with PM treatment. Interestingly this 

marker seems to correlate with more diseased glomeruli (Figure 5.2). Further, other signals 

increased in the DN kidneys were identified which included C-terminal regions of A1AT (Figure 

4.9) and fragments of albumin (Table 4.2, Figure 4.10).  The renal localization and differential 

relative abundance of these proteins between experimental groups was determined. In all cases, 

these were the most abundant in untreated DN tissue and attenuated in PM treated DN kidneys. 

A1AT may have a role in ECM accumulation and albumin is a known marker to increase in 

diabetic urine and so the increased detection of albumin fragments provides further data on how 

its processing is altered in DN. These data provide new molecular insight on what is happening 

in DN and may prove to be useful markers of disease and progression.    

Future Research Directions 

Investigation of Other Organs Affected by Diabetes 

 Future work will extend this study to other organs affected by diabetes.  It is of interest to 

not only explore other molecules that change in organs such as the liver, brain, heart and eyes, 

but to investigate if the findings in the kidney are unique to this organ or extend to other organs. 

The liver is in fact a major source of A1AT and so tracking the expression and form of this 

protein at different stages of diabetes in the liver could be of interest. Additionally, lipids are a 

part of every organ and so determining the expression and localization of modified lipids in 

different organs affect by diabetes should be done. In fact, work is already being done in livers to 
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Figure 5.2. Markers of diseased glomeruli. The signal at m/z 4415 (plotted in red in the MALDI 

image) was found to localize to more sclerotic glomeruli (as observed with the brighter pink PAS 

staining). Note- yellow indicates co-localization of the red and green signals. Scale bar = 50 μm. 
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look for modified PEs. Figure 5.3 shows two different PE modifications detected in the diabetic 

liver, the Amadori-PE that was described in kidneys in Chapter III, and a carboxymethyl (CM)-

PE that is more abundant in the diabetic liver as well. CM is another AGE modification. 

Increasing Spatial Resolution and Sensitivity 

 MALDI imaging was first introduced almost two decades ago. Since this time, aside from 

the applications it was used for, much of the research surrounding it was focused on 

advancements in spatial resolution and sensitivity. Significant progress has been made and these 

efforts are still ongoing. It is expected that routine imaging will soon be performed at a spatial 

resolution of < 1 µm. The average mammalian cell is ~8 µm and so this will provide structural 

resolution below the single cell level. This will truly put IMS on par with standard optical 

pathology but with multiplexed molecular specific images. The level of detail provided at this 

spatial resolution is highlighted in Figure 5.4 where a human kidney section was imaged 

showing a unique display of specific biomolecules highlighting different tubular structures and a 

single glomerulus. This was imaged with a 2 µm spatial resolution using a custom built 

instrument with transmission geometry laser optics to achieve a highly focused beam. As laser 

spot sizes get smaller and smaller however, the number of molecules ablated is reduced as well. 

Much effort will need to be focused on further improving sample preparation and increasing 

sensitivity.   

Application to Human Studies 

 The present study found a number of lipids and proteins that correlated with disease in a 

robust mouse model of DN. It would be of great interest to extend these studies to human 

diabetes to determine if these molecules are involved in human DN pathogenesis and are 



122 
 

 

 

Figure 5.3. Modified lipids in diabetic livers. (A) Example of an Amadori-PE shown to increase 

in the diabetic liver. (B) Example of a carboxymethyl-PE (CM-PE) shown to increase in the 

diabetic liver. (C) H&E histology of a liver from each group.
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Figure 5.4. Lipid IMS of human kidney section. On the right is an ion image overlay of four lipid 

species imaged at 2 µm spatial resolution using transmission geometry MALDI IMS. On the left 

is a PAS stain of the section serial to the one imaged with IMS. Scale bar = 100 µm.



124 
 

biomarkers of human disease. Kidney biopsy is not currently the standard care for 

diagnosis of DN so tissue sources are not abundant. However there are cases where 

biopsy is performed and this could be valuable tissue to apply the methods described in 

this work. New and specific knowledge gained from these studies may lead to more 

accurate diagnosis and prognosis potentially raising the need to reevaluate the use of 

biopsy. The methods described in this work are directly applicable to human tissue for 

both lipid and protein imaging as demonstrated in Figure 5.4 and Figure 5.5, respectively. 

Conclusions 

In summary, high spatial resolution molecular imaging was used to elucidate 

changes in different classes of biomolecules including proteins and lipids in diseased and 

healthy kidneys. These measurements have shown lipid and protein alterations directly at 

the site of disease (i.e. - glomerular and tubular lesions).  Additionally, PM treatment was 

found to reduce the severity of DN assessed by both pathology analysis and molecular 

analysis as determined by imaging mass spectrometry. Without reducing hyperglycemia, 

PM, an inhibitor of non-enzymatic oxidative pathways, attenuated the levels of lipids and 

proteins found in this study to associate with DN. This suggests that these molecules 

require hyperglycemia-induced oxidative pathways. This high resolution imaging 

technology is a powerful tool to determine the spatial context of molecular changes, 

specifically to detect protein and lipid modifications associated with diabetic nephropathy 

from specific structures within the renal cortex. Determining proteins that undergo 

change in disease conditions and evaluating response to treatment may lead to new 

molecular markers of disease, provide insight into disease pathogenesis, and characterize 
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treatment response. This technology can have an impact not just in diabetic nephropathy, 

but any kidney disease as we are measuring minute changes in intact tissue. 
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Figure 5.5.  Protein IMS of human kidney. On the right is a 20 µm spatial resolution IMS 

ion image overlay displaying m/z 1618 (blue), m/z 1950 (white), m/z 2592 (green), m/z 

8415 (yellow), and m/z 13787 (red). The PAS stain on the left is of the same section. 

 

 

 



127 
 

REFERENCES 

 

1. Centers for Disease Control and Prevention. National diabetes fact sheet: national 

estimates and general information on diabetes and prediabetes in the United 

States, 2011. Atlanta, GA: U.S. Department of Health and Human Services, 

Centers for Disease Control and Prevention, 2011. 

2. Collins, AJ, Foley, RN, Chavers, B, Gilbertson, D, Herzog, C, Johansen, K, Kasiske, 

B, Kutner, N, Liu, J, St Peter, W, Guo, H, Gustafson, S, Heubner, B, Lamb, K, Li, 

S, Peng, Y, Qiu, Y, Roberts, T, Skeans, M, Snyder, J, Solid, C, Thompson, B, 

Wang, C, Weinhandl, E, Zaun, D, Arko, C, Chen, SC, Daniels, F, Ebben, J, 

Frazier, E, Hanzlik, C, Johnson, R, Sheets, D, Wang, X, Forrest, B, Constantini, 

E, Everson, S, Eggers, P, Agodoa, L: 'United States Renal Data System 2011 

Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in 

the United States. Am J Kidney Dis, 59: A7, e1-420, 2012. 

3. Gross, JL, de Azevedo, MJ, Silveiro, SP, Canani, LH, Caramori, ML, Zelmanovitz, T: 

Diabetic Nephropathy: Diagnosis, Prevention, and Treatment. Diabetes Care, 28: 

164-176, 2005. 

4. Cooper, ME: Pathogenesis, prevention, and treatment of diabetic nephropathy. The 

Lancet, 352: 213-219, 1998. 

5. Brownlee, M: Biochemistry and molecular cell biology of diabetic complications. 

Nature, 414: 813-820, 2001. 

6. Adler, AI, Stratton, IM, Neil, HAW, Yudkin, JS, Matthews, DR, Cull, CA, Wright, 

AD, Turner, RC, Holman, RR: Association of systolic blood pressure with 

macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): 

prospective observational study. BMJ, 321: 412-419, 2000. 

7. Ravid, M, Brosh, D, Ravid-Safran, D, Levy, Z, Rachmani, R: MAin risk factors for 

nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood 

pressure, and hyperglycemia. Archives of Internal Medicine, 158: 998-004, 1998. 

8. Nishikawa, T, Edelstein, D, Du, XL, Yamagishi, S-i, Matsumura, T, Kaneda, Y, 

Yorek, MA, Beebe, D, Oates, PJ, Hammes, H-P, Giardino, I, Brownlee, M: 

Normalizing mitochondrial superoxide production blocks three pathways of 

hyperglycaemic damage. Nature, 404: 787-790, 2000. 



128 
 

9. Kanwar, YS, Sun, L, Xie, P, Liu, F-y, Chen, S: A Glimpse of Various Pathogenetic 

Mechanisms of Diabetic Nephropathy. Annual Review of Pathology: Mechanisms 

of Disease, 6: 395-423, 2011. 

10. Forbes, JM, Coughlan, MT, Cooper, ME: Oxidative Stress as a Major Culprit in 

Kidney Disease in Diabetes. Diabetes, 57: 1446-1454, 2008. 

11. LEASK, A, ABRAHAM, DJ: TGF-β signaling and the fibrotic response. The FASEB 

Journal, 18: 816-827, 2004. 

12. Ziyadeh, FN: Mediators of Diabetic Renal Disease: The Case for TGF-β as the Major 

Mediator. J Am Soc Nephrol, 15: S55-S57, 2004. 

13. Mott, JD, Khalifah, RG, Nagase, H, Shield Iii, CF, Hudson, JK, Hudson, BG: 

Nonenzymatic glycation of type IV collagen and matrix metalloproteinase 

susceptibility. Kidney Int, 52: 1302-1312, 1997. 

14. Zent, R, Yan, X, Su, Y, Hudson, BG, Borza, DB, Moeckel, GW, Qi, Z, Sado, Y, 

Breyer, MD, Voziyan, P, Pozzi, A: Glomerular injury is exacerbated in diabetic 

integrin [alpha]1-null mice. Kidney Int, 70: 460-470, 2006. 

15. Pedchenko, VK, Chetyrkin, SV, Chuang, P, Ham, A-JL, Saleem, MA, Mathieson, 

PW, Hudson, BG, Voziyan, PA: Mechanism of Perturbation of Integrin-Mediated 

Cell-Matrix Interactions by Reactive Carbonyl Compounds and Its Implication for 

Pathogenesis of Diabetic Nephropathy. Diabetes, 54: 2952-2960, 2005. 

16. Brownlee, M: The Pathobiology of Diabetic Complications: A Unifying Mechanism. 

Diabetes, 54: 1615-1625, 2005. 

17. Alsaad, KO, Herzenberg, AM: Distinguishing diabetic nephropathy from other causes 

of glomerulosclerosis: an update. Journal of Clinical Pathology, 60: 18-26, 2007. 

18. Williams, ME: New Potential Agents in Treating Diabetic Kidney Disease: The 

Fourth Act. Drugs, 66: 2287-2298, 2006. 

19. Voziyan, PA, Hudson, BG: Pyridoxamine: The Many Virtues of a Maillard Reaction 

Inhibitor. Annals of the New York Academy of Sciences, 1043: 807-816, 2005. 



129 
 

20. Chetyrkin, S, Mathis, M, Hayes McDonald, W, Shackelford, X, Hudson, B, Voziyan, 

P: Pyridoxamine protects protein backbone from oxidative fragmentation. 

Biochem Biophys Res Commun, 411: 574-579, 2011. 

21. Chetyrkin, SV, Mathis, ME, Ham, AJ, Hachey, DL, Hudson, BG, Voziyan, PA: 

Propagation of protein glycation damage involves modification of tryptophan 

residues via reactive oxygen species: inhibition by pyridoxamine. Free Radic Biol 

Med, 44: 1276-1285, 2008. 

22. Onorato, JM, Jenkins, AJ, Thorpe, SR, Baynes, JW: Pyridoxamine, an Inhibitor of 

Advanced Glycation Reactions, Also Inhibits Advanced Lipoxidation Reactions: 

Mechanism of Action of Pyridoxamine. Journal of Biological Chemistry, 275: 

21177-21184, 2000. 

23. Voziyan, PA, Khalifah, RG, Thibaudeau, C, Yildiz, A, Jacob, J, Serianni, AS, 

Hudson, BG: Modification of Proteins In Vitro by Physiological Levels of 

Glucose: Pyridoxamine inhibits conversion of Amadori intermediate to advanced 

glycation  end-products through binding of redox metal ions. Journal of 

Biological Chemistry, 278: 46616-46624, 2003. 

24. Tanimoto, M, Gohda, T, Kaneko, S, Hagiwara, S, Murakoshi, M, Aoki, T, Yamada, 

K, Ito, T, Matsumoto, M, Horikoshi, S, Tomino, Y: Effect of pyridoxamine (K-

163), an inhibitor of advanced glycation end products, on type 2 diabetic 

nephropathy in KK-A(y)/Ta mice. Metabolism, 56: 160-167, 2007. 

25. Williams, ME, Bolton, WK, Khalifah, RG, Degenhardt, TP, Schotzinger, RJ, McGill, 

JB: Effects of Pyridoxamine in Combined Phase 2 Studies of Patients with Type 1 

and Type 2 Diabetes and Overt Nephropathy. American Journal of Nephrology, 

27: 605-614, 2007. 

26. Zheng, F, Zeng, YJ, Plati, AR, Elliot, SJ, Berho, M, Potier, M, Striker, LJ, Striker, 

GE: Combined AGE inhibition and ACEi decreases the progression of established 

diabetic nephropathy in B6 db/db mice. Kidney Int, 70: 507-514, 2006. 

27. Alderson, NL, Chachich, ME, Youssef, NN, Beattie, RJ, Nachtigal, M, Thorpe, SR, 

Baynes, JW: The AGE inhibitor pyridoxamine inhibits lipemia and development 

of renal and vascular disease in Zucker obese rats. Kidney Int, 63: 2123-2133, 

2003. 



130 
 

28. Degenhardt, TP, Alderson, NL, Arrington, DD, Beattie, RJ, Basgen, JM, Steffes, 

MW, Thorpe, SR, Baynes, JW: Pyridoxamine inhibits early renal disease and 

dyslipidemia in the streptozotocin-diabetic rat. Kidney Int, 61: 939-950, 2002. 

29. Lewis, EJ, Greene, T, Spitalewiz, S, Blumenthal, S, Berl, T, Hunsicker, LG, Pohl, 

MA, Rohde, RD, Raz, I, Yerushalmy, Y, Yagil, Y, Herskovits, T, Atkins, RC, 

Reutens, AT, Packham, DK, Lewis, JB, Group, ftCS: Pyridorin in Type 2 

Diabetic Nephropathy. J Am Soc Nephrol, 23: 131-136, 2012. 

30. Haraldsson, B, Nyström, J, Deen, WM: Properties of the Glomerular Barrier and 

Mechanisms of Proteinuria. Physiological Reviews, 88: 451-487, 2008. 

31. Parving, H-H, Smidt, U, Andersen, A, Svendsen, P: Early Aggressive 

Antihypertensive Treatment Reduces Rate of Decline In Kidney Function In 

Diabetic Nephropathy The Lancet, 321: 1175-1179, 1983. 

32. Parving, H-H, Lehnert, H, Bröchner-Mortensen, J, Gomis, R, Andersen, S, Arner, P: 

The Effect of Irbesartan on the Development of Diabetic Nephropathy in Patients 

with Type 2 Diabetes. New England Journal of Medicine, 345: 870-878, 2001. 

33. Lewis, EJ, Hunsicker, LG, Bain, RP, Rohde, RD: The Effect of Angiotensin-

Converting-Enzyme Inhibition on Diabetic Nephropathy. New England Journal of 

Medicine, 329: 1456-1462, 1993. 

34. Viberti, GC, Jarrett, RJ, Mahmud, U, Hill, RD, Argyropoulos, A, Keen, H: 

Microalbuminuria as a Predictor of Clinical Nephropathy in Insulin-dependent 

Diabetes Mellitus. The Lancet, 319: 1430-1432, 1982. 

35. Satoskar, AA, Shapiro, JP, Bott, CN, Song, H, Nadasdy, GM, Brodsky, SV, Hebert, 

LA, Birmingham, DJ, Nadasdy, T, Freitas, MA, Rovin, BH: Characterization of 

glomerular diseases using proteomic analysis of laser capture microdissected 

glomeruli. Mod Pathol, 25: 709-721, 2012. 

36. Mauer, SM, Steffes, MW, Ellis, EN, Sutherland, DER, Brown, DM, Goetz, FC: 

roStructural-Functional Relationships in Diabetic Nephropathy. J Clin Invest, 74: 

1143-1155, 1984. 

37. Alpers, CE, Hudkins, KL: Mouse models of diabetic nephropathy. Curr Opin 

Nephrol Hypertens, 20: 278-284, 2011. 



131 
 

38. Zhao, HJ, Wang, S, Cheng, H, Zhang, M-z, Takahashi, T, Fogo, AB, Breyer, MD, 

Harris, RC: Endothelial Nitric Oxide Synthase Deficiency Produces Accelerated 

Nephropathy in Diabetic Mice. J Am Soc Nephrol, 17: 2664-2669, 2006. 

39. Mohan, S, Reddick, RL, Musi, N, Horn, DA, Yan, B, Prihoda, TJ, Natarajan, M, 

Abboud-Werner, SL: Diabetic eNOS knockout mice develop distinct macro- and 

microvascular complications. Lab Invest, 88: 515-528, 2008. 

40. Tanaka, K, Waki, H, Ido, Y, Akita, S, Yoshida, Y, Yoshida, T, Matsuo, T: Protein 

and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass 

spectrometry. Rapid Communications in Mass Spectrometry, 2: 151-153, 1988. 

41. Karas, M, Bachmann, D, Bahr, U, Hillenkamp, F: Matrix-assisted ultraviolet laser 

desorption of non-volatile compounds. International Journal of Mass 

Spectrometry and Ion Processes, 78: 53-68, 1987. 

42. Karas, M, Hillenkamp, F: Laser desorption ionization of proteins with molecular 

masses exceeding 10,000 daltons. Analytical Chemistry, 60: 2299-2301, 1988. 

43. Fenn, J, Mann, M, Meng, C, Wong, S, Whitehouse, C: Electrospray ionization for 

mass spectrometry of large biomolecules. Science, 246: 64-71, 1989. 

44. Wiley, WC, McLaren, IH: Time‐of‐Flight Mass Spectrometer with Improved 

Resolution. Review of Scientific Instruments, 26: 1150-1157, 1955. 

45. Vestal, ML, Juhasz, P, Martin, SA: Delayed extraction matrix-assisted laser 

desorption time-of-flight mass spectrometry. Rapid Communications in Mass 

Spectrometry, 9: 1044-1050, 1995. 

46. Marshall, AG, Hendrickson, CL, Jackson, GS: Fourier transform ion cyclotron 

resonance mass spectrometry: A primer. Mass Spectrometry Reviews, 17: 1-35, 

1998. 

47. Marshall, AG, Hendrickson, CL: Fourier transform ion cyclotron resonance detection: 

principles and experimental configurations. International Journal of Mass 

Spectrometry, 215: 59-75, 2002. 

48. Amster, IJ: Fourier Transform Mass Spectrometry. Journal of Mass Spectrometry, 

31: 1325-1337, 1996. 



132 
 

49. Colliver, TL, Brummel, CL, Pacholski, ML, Swanek, FD, Ewing, AG, Winograd, N: 

Atomic and Molecular Imaging at the Single-Cell Level with TOF-SIMS. 

Analytical Chemistry, 69: 2225-2231, 1997. 

50. Gillen, G, Bennett, J, Tarlov, MJ, Burgess, DRF: Molecular Imaging Secondary Ion 

Mass Spectrometry for the Characterization of Patterned Self-Assembled 

Monolayers on Silver and Gold. Analytical Chemistry, 66: 2170-2174, 1994. 

51. Hillenkamp, F, Unsöld, E, Kaufmann, R, Nitsche, R: A high-sensitivity laser 

microprobe mass analyzer. Appl Phys, 8: 341-348, 1975. 

52. Spengler, B, Hubert, M: Scanning microprobe matrix-assisted laser desorption 

ionization (SMALDI) mass spectrometry: Instrumentation for sub-micrometer 

resolved LDI and MALDI surface analysis. Journal of the American Society for 

Mass Spectrometry, 13: 735-748, 2002. 

53. Wilk, ZA, Hercules, DM: Organic and elemental ion mapping using laser mass 

spectrometry. Analytical Chemistry, 59: 1819-1825, 1987. 

54. Zavalin, A, Todd, EM, Rawhouser, PD, Yang, J, Norris, JL, Caprioli, RM: Direct 

imaging of single cells and tissue at sub-cellular spatial resolution using 

transmission geometry MALDI MS. Journal of Mass Spectrometry, 47: 1473-

1481, 2012. 

55. McDonnell, LA, Heeren, RMA: Imaging mass spectrometry. Mass Spectrometry 

Reviews, 26: 606-643, 2007. 

56. Chaurand, P, Norris, JL, Cornett, DS, Mobley, JA, Caprioli, RM: New Developments 

in Profiling and Imaging of Proteins from Tissue Sections by MALDI Mass 

Spectrometry. Journal of Proteome Research, 5: 2889-2900, 2006. 

57. Seeley, EH, Schwamborn, K, Caprioli, RM: Imaging of Intact Tissue Sections: 

Moving beyond the Microscope. Journal of Biological Chemistry, 286: 25459-

25466, 2011. 

58. Cornett, DS, Reyzer, ML, Chaurand, P, Caprioli, RM: MALDI imaging mass 

spectrometry: molecular snapshots of biochemical systems. Nat Meth, 4: 828-833, 

2007. 



133 
 

59. Caprioli, RM, Farmer, TB, Gile, J: Molecular Imaging of Biological Samples: 

Localization of Peptides and Proteins Using MALDI-TOF MS. Analytical 

Chemistry, 69: 4751-4760, 1997. 

60. Chaurand, P, Caprioli, RM: Direct profiling and imaging of peptides and proteins 

from mammalian cells and tissue sections by mass spectrometry. Electrophoresis, 

23: 3125-3135, 2002. 

61. Hankin, JA, Barkley, RM, Murphy, RC: Sublimation as a Method of Matrix 

Application for Mass Spectrometric Imaging. Journal of the American Society for 

Mass Spectrometry, 18: 1646-1652, 2007. 

62. Puolitaival, SM, Burnum, KE, Cornett, DS, Caprioli, RM: Solvent-Free Matrix Dry-

Coating for MALDI Imaging of Phospholipids. Journal of the American Society 

for Mass Spectrometry, 19: 882-886, 2008. 

63. Khatib-Shahidi, S, Andersson, M, Herman, JL, Gillespie, TA, Caprioli, RM: Direct 

Molecular Analysis of Whole-Body Animal Tissue Sections by Imaging MALDI 

Mass Spectrometry. Analytical Chemistry, 78: 6448-6456, 2006. 

64. Groseclose, MR, Massion, PP, Chaurand, P, Caprioli, RM: High-throughput 

proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using 

MALDI imaging mass spectrometry. PROTEOMICS, 8: 3715-3724, 2008. 

65. Lazova, R, Seeley, EH, Keenan, M, Gueorguieva, R, Caprioli, RM: Imaging Mass 

Spectrometry—A New and Promising Method to Differentiate Spitz Nevi From 

Spitzoid Malignant Melanomas. The American Journal of Dermatopathology, 34: 

82-90 10.1097/DAD.1090b1013e31823df31821e31822, 2012. 

66. Cornett, DS, Mobley, JA, Dias, EC, Andersson, M, Arteaga, CL, Sanders, ME, 

Caprioli, RM: A Novel Histology-directed Strategy for MALDI-MS Tissue 

Profiling That Improves Throughput and Cellular Specificity in Human Breast 

Cancer. Molecular & Cellular Proteomics, 5: 1975-1983, 2006. 

67. Bowlus, CL, Seeley, EH, Roder, J, Grigorieva, J, Roder, H, Caprioli, RM, Gershwin, 

M: In situ mass spectrometry of autoimmune liver diseases. Cell Mol Immunol, 8: 

237-242, 2011. 

68. Römpp, A, Guenther, S, Takats, Z, Spengler, B: Mass spectrometry imaging with 

high resolution in mass and space (HR2 MSI) for reliable investigation of drug 



134 
 

compound distributions on the cellular level. Analytical and Bioanalytical 

Chemistry, 401: 65-73, 2011. 

69. Ruh, H, Salonikios, T, Fuchser, J, Schwartz, M, Sticht, C, Hochheim, C, Wirnitzer, B, 

Gretz, N, Hopf, C: MALDI imaging MS reveals candidate lipid markers of 

polycystic kidney disease. Journal of Lipid Research, 2013. 

70. Meistermann, Hln, Norris, JL, Aerni, H-R, Cornett, DS, Friedlein, A, Erskine, AR, 

Augustin, Al, De Vera Mudry, MC, Ruepp, S, Suter, L, Langen, H, Caprioli, RM, 

Ducret, A: Biomarker Discovery by Imaging Mass Spectrometry. Molecular & 

Cellular Proteomics, 5: 1876-1886, 2006. 

71. Guenther, S, Römpp, A, Kummer, W, Spengler, B: AP-MALDI Imaging of 

neuropeptides in mouse pituitary gland with 5 [mu]m spatial resolution and high 

mass accuracy. International Journal of Mass Spectrometry, In Press, Accepted 

Manuscript. 

72. Lagarrigue, M, Becker, M, Lavigne, R, Deininger, S-O, Walch, A, Aubry, F, Suckau, 

D, Pineau, C: Revisiting rat spermatogenesis with MALDI imaging at 20 Âµm 

resolution. Molecular & Cellular Proteomics. 

73. Chaurand, P, Schriver, KE, Caprioli, RM: Instrument design and characterization for 

high resolution MALDI-MS imaging of tissue sections. Journal of Mass 

Spectrometry, 42: 476-489, 2007. 

74. Zavalin, A, Yang, J, Caprioli, R: Laser Beam Filtration for High Spatial Resolution 

MALDI Imaging Mass Spectrometry. Journal of the American Society for Mass 

Spectrometry, 24: 1153-1156, 2013. 

75. Seeley, EH, Oppenheimer, SR, Mi, D, Chaurand, P, Caprioli, RM: Enhancement of 

Protein Sensitivity for MALDI Imaging Mass Spectrometry After Chemical 

Treatment of Tissue Sections. Journal of the American Society for Mass 

Spectrometry, 19: 1069-1077, 2008. 

76. Angel, PM, Spraggins, JM, Baldwin, HS, Caprioli, R: Enhanced Sensitivity for High 

Spatial Resolution Lipid Analysis by Negative Ion Mode Matrix Assisted Laser 

Desorption Ionization Imaging Mass Spectrometry. Analytical Chemistry, 84: 

1557-1564, 2012. 



135 
 

77. Spraggins, J, Caprioli, R: High-Speed MALDI-TOF Imaging Mass Spectrometry: 

Rapid Ion Image Acquisition and Considerations for Next Generation 

Instrumentation. Journal of the American Society for Mass Spectrometry, 22: 

1022-1031, 2011. 

78. Aerni, H-R, Cornett, DS, Caprioli, RM: Automated Acoustic Matrix Deposition for 

MALDI Sample Preparation. Analytical Chemistry, 78: 827-834, 2005. 

79. Grove, K, Frappier, S, Caprioli, R: Matrix Pre-Coated MALDI MS Targets for Small 

Molecule Imaging in Tissues. Journal of the American Society for Mass 

Spectrometry, 22: 192-195, 2011. 

80. Bouschen, W, Schulz, O, Eikel, D, Spengler, B: Matrix vapor 

deposition/recrystallization and dedicated spray preparation for high-resolution 

scanning microprobe matrix-assisted laser desorption/ionization imaging mass 

spectrometry (SMALDI-MS) of tissue and single cells. Rapid Communications in 

Mass Spectrometry, 24: 355-364. 

81. Yang, J, Caprioli, RM: Matrix Sublimation/Recrystallization for Imaging Proteins by 

Mass Spectrometry at High Spatial Resolution. Analytical Chemistry, 83: 5728-

5734, 2011. 

82. Stoeckli, M, Chaurand, P, Hallahan, DE, Caprioli, RM: Imaging mass spectrometry: 

A new technology for the analysis of protein expression in mammalian tissues. 

Nat Med, 7: 493-496, 2001. 

83. Seeley, EH, Caprioli, RM: Molecular imaging of proteins in tissues by mass 

spectrometry. Proceedings of the National Academy of Sciences, 105: 18126-

18131, 2008. 

84. Herring, KD, Oppenheimer, SR, Caprioli, RM: Direct Tissue Analysis by Matrix-

Assisted Laser Desorption Ionization Mass Spectrometry: Application to Kidney 

Biology. Seminars in Nephrology, 27: 597-608, 2007. 

85. Lalowski, M, Magni, F, Mainini, V, Monogioudi, E, Gotsopoulos, A, Soliymani, R, 

Chinello, C, Baumann, M: Imaging mass spectrometry: a new tool for kidney 

disease investigations. Nephrology Dialysis Transplantation, 2013. 



136 
 

86. Oppenheimer, SR, Mi, D, Sanders, ME, Caprioli, RM: Molecular Analysis of Tumor 

Margins by MALDI Mass Spectrometry in Renal Carcinoma. Journal of 

Proteome Research, 9: 2182-2190, 2010. 

87. Marsching, C, Eckhardt, M, Gröne, H-J, Sandhoff, R, Hopf, C: Imaging of complex 

sulfatides SM3 and SB1a in mouse kidney using MALDI-TOF/TOF mass 

spectrometry. Analytical and Bioanalytical Chemistry, 401: 53-64, 2011. 

88. Kaneko, Y, Obata, Y, Nishino, T, Kakeya, H, Miyazaki, Y, Hayasaka, T, Setou, M, 

Furusu, A, Kohno, S: Imaging mass spectrometry analysis reveals an altered lipid 

distribution pattern in the tubular areas of hyper-IgA murine kidneys. 

Experimental and Molecular Pathology, 91: 614-621, 2011. 

89. Xu, BJ, Shyr, Y, Liang, X, Ma, L-j, Donnert, EM, Roberts, JD, Zhang, X, Kon, V, 

Brown, NJ, Caprioli, RM, Fogo, AB: Proteomic Patterns and Prediction of 

Glomerulosclerosis and Its Mechanisms. J Am Soc Nephrol, 16: 2967-2975, 2005. 

90. Schwartz, SA, Reyzer, ML, Caprioli, RM: Direct tissue analysis using matrix-assisted 

laser desorption/ionization mass spectrometry: practical aspects of sample 

preparation. Journal of Mass Spectrometry, 38: 699-708, 2003. 

91. Lemaire, R, Desmons, A, Tabet, JC, Day, R, Salzet, M, Fournier, I: Direct Analysis 

and MALDI Imaging of Formalin-Fixed, Paraffin-Embedded Tissue Sections. 

Journal of Proteome Research, 6: 1295-1305, 2007. 

92. Thomas, A, Charbonneau, JL, Fournaise, E, Chaurand, P: Sublimation of New Matrix 

Candidates for High Spatial Resolution Imaging Mass Spectrometry of Lipids: 

Enhanced Information in Both Positive and Negative Polarities after 1,5-

Diaminonapthalene Deposition. Analytical Chemistry, 84: 2048-2054, 2012. 

93. Fuchs, B, Bischoff, A, Süß, R, Teuber, K, Schürenberg, M, Suckau, D, Schiller, J: 

Phosphatidylcholines and -ethanolamines can be easily mistaken in phospholipid 

mixtures: a negative ion MALDI-TOF MS study with 9-aminoacridine as matrix 

and egg yolk as selected example. Analytical and Bioanalytical Chemistry, 395: 

2479-2487, 2009. 

94. Dong, W, Shen, Q, Baibado, JT, Liang, Y, Wang, P, Huang, Y, Zhang, Z, Wang, Y, 

Cheung, H-Y: Phospholipid analyses by MALDI-TOF/TOF mass spectrometry 

using 1,5-diaminonaphthalene as matrix. International Journal of Mass 

Spectrometry, 343–344: 15-22, 2013. 



137 
 

95. Chaurand, P, Schwartz, SA, Billheimer, D, Xu, BJ, Crecelius, A, Caprioli, RM: 

Integrating Histology and Imaging Mass Spectrometry. Analytical Chemistry, 76: 

1145-1155, 2004. 

96. Groseclose, MR, Andersson, M, Hardesty, WM, Caprioli, RM: Identification of 

proteins directly from tissue: in situ tryptic digestions coupled with imaging mass 

spectrometry. Journal of Mass Spectrometry, 42: 254-262, 2007. 

97. Norris, JL, Cornett, DS, Mobley, JA, Andersson, M, Seeley, EH, Chaurand, P, 

Caprioli, RM: Processing MALDI mass spectra to improve mass spectral direct 

tissue analysis. International Journal of Mass Spectrometry, 260: 212-221, 2007. 

98. Rutledge, JC, Ng, KF, Aung, HH, Wilson, DW: Role of triglyceride-rich lipoproteins 

in diabetic nephropathy. Nat Rev Nephrol, 6: 361-370, 2010. 

99. Balla, T: Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol 

Rev, 93: 1019-1137, 2013. 

100. Kinnunen, PK, Kaarniranta, K, Mahalka, AK: Protein-oxidized phospholipid 

interactions in cellular signaling for cell death: from biophysics to clinical 

correlations. Biochim Biophys Acta, 1818: 2446-2455, 2012. 

101. Weijers, RN: Lipid composition of cell membranes and its relevance in type 2 

diabetes mellitus. Curr Diabetes Rev, 8: 390-400, 2012. 

102. Galadari, S, Rahman, A, Pallichankandy, S, Galadari, A, Thayyullathil, F: Role of 

ceramide in diabetes mellitus: evidence and mechanisms. Lipids Health Dis, 12: 

98, 2013. 

103. Russo, SB, Ross, JS, Cowart, LA: Sphingolipids in obesity, type 2 diabetes, and 

metabolic disease. Handb Exp Pharmacol: 373-401, 2013. 

104. Ramanadham, S, Hsu, F-F, Zhang, S, Bohrer, A, Ma, Z, Turk, J: Electrospray 

ionization mass spectrometric analyses of phospholipids from INS-1 insulinoma 

cells: comparison to pancreatic islets and effects of fatty acid supplementation on 

phospholipid composition and insulin secretion. Biochimica et Biophysica Acta 

(BBA) - Molecular and Cell Biology of Lipids, 1484: 251-266, 2000. 



138 
 

105. Hsu, FF, Bohrer, A, Wohltmann, M, Ramanadham, S, Ma, ZM, Yarasheski, K, 

Turk, J: Electrospray ionization mass spectrometric analyses of changes in tissue 

phospholipid molecular species during the evolution of hyperlipidemia and 

hyperglycemia in Zucker diabetic fatty rats. Lipids, 35: 839-854, 2000. 

106. Zhao, HJ, Wang, S, Cheng, H, Zhang, MZ, Takahashi, T, Fogo, AB, Breyer, MD, 

Harris, RC: Endothelial nitric oxide synthase deficiency produces accelerated 

nephropathy in diabetic mice. J Am Soc Nephrol, 17: 2664-2669, 2006. 

107. Voziyan, P, Brown, KL, Chetyrkin, S, Hudson, B: Site-specific AGE modifications 

in the extracellular matrix: a role for glyoxal in protein damage in diabetes. Clin 

Chem Lab Med, 52: 39-45, 2014. 

108. Voziyan, PA, Khalifah, RG, Thibaudeau, C, Yildiz, A, Jacob, J, Serianni, AS, 

Hudson, BG: Modification of proteins in vitro by physiological levels of glucose: 

pyridoxamine inhibits conversion of Amadori intermediate to advanced glycation 

end-products through binding of redox metal ions. J Biol Chem, 278: 46616-

46624, 2003. 

109. Voziyan, PA, Metz, TO, Baynes, JW, Hudson, BG: A post-Amadori inhibitor 

pyridoxamine also inhibits chemical modification of proteins by scavenging 

carbonyl intermediates of carbohydrate and lipid degradation. J Biol Chem, 277: 

3397-3403, 2002. 

110. Voziyan, PA, Hudson, BG: Pyridoxamine as a multifunctional pharmaceutical: 

targeting pathogenic glycation and oxidative damage. Cellular and Molecular Life 

Sciences, 62: 1671-1681, 2005. 

111. van Echten, G, Sandhoff, K: Ganglioside metabolism. Enzymology, Topology, and 

regulation. J Biol Chem, 268: 5341-5344, 1993. 

112. Niimura, Y, Ishizuka, I: Isolation and identification of nine sulfated 

glycosphingolipids containing two unique sulfated gangliosides from the African 

green monkey kidney cells, Verots S3, and their possible metabolic pathways. 

Glycobiology, 16: 729-735, 2006. 

113. Varki, NM, Varki, A: Diversity in cell surface sialic acid presentations: implications 

for biology and disease. Lab Invest, 87: 851-857, 2007. 



139 
 

114. Schauer, R: Sialic acids as regulators of molecular and cellular interactions. Curr 

Opin Struct Biol, 19: 507-514, 2009. 

115. Malykh, YN, Schauer, R, Shaw, L: N-Glycolylneuraminic acid in human tumours. 

Biochimie, 83: 623-634, 2001. 

116. Honke, K, Zhang, Y, Cheng, X, Kotani, N, Taniguchi, N: Biological roles of 

sulfoglycolipids and pathophysiology of their deficiency. Glycoconj J, 21: 59-62, 

2004. 

117. Niimura, Y, Moue, T, Takahashi, N, Nagai, K: Medium osmolarity-dependent 

biosynthesis of renal cellular sulfoglycolipids is mediated by the MAPK signaling 

pathway. Biochim Biophys Acta, 1801: 1155-1162, 2010. 

118. Stettner, P, Bourgeois, S, Marsching, C, Traykova-Brauch, M, Porubsky, S, 

Nordstrom, V, Hopf, C, Kosters, R, Sandhoff, R, Wiegandt, H, Wagner, CA, 

Grone, HJ, Jennemann, R: Sulfatides are required for renal adaptation to chronic 

metabolic acidosis. Proc Natl Acad Sci U S A, 110: 9998-10003, 2013. 

119. Rancoule, C, Pradere, JP, Gonzalez, J, Klein, J, Valet, P, Bascands, JL, Schanstra, 

JP, Saulnier-Blache, JS: Lysophosphatidic acid-1-receptor targeting agents for 

fibrosis. Expert Opin Investig Drugs, 20: 657-667, 2011. 

120. Grzelczyk, A, Gendaszewska-Darmach, E: Novel bioactive glycerol-based 

lysophospholipids: new data -- new insight into their function. Biochimie, 95: 

667-679, 2013. 

121. Shoji, N, Nakagawa, K, Asai, A, Fujita, I, Hashiura, A, Nakajima, Y, Oikawa, S, 

Miyazawa, T: LC-MS/MS analysis of carboxymethylated and carboxyethylated 

phosphatidylethanolamines in human erythrocytes and blood plasma. J Lipid Res, 

51: 2445-2453, 2010. 

122. Sookwong, P, Nakagawa, K, Fujita, I, Shoji, N, Miyazawa, T: Amadori-glycated 

phosphatidylethanolamine, a potential marker for hyperglycemia, in 

streptozotocin-induced diabetic rats. Lipids, 46: 943-952, 2011. 

123. Ravandi, A, Kuksis, A, Shaikh, NA: Glucosylated glycerophosphoethanolamines are 

the major LDL glycation products and increase LDL susceptibility to oxidation: 

evidence of their presence in atherosclerotic lesions. Arterioscler Thromb Vasc 

Biol, 20: 467-477, 2000. 



140 
 

124. Gorgas, K, Teigler, A, Komljenovic, D, Just, WW: The ether lipid-deficient mouse: 

tracking down plasmalogen functions. Biochim Biophys Acta, 1763: 1511-1526, 

2006. 

125. Zhang, M-Z, Wang, S, Yang, S, Yang, H, Fan, X, Takahashi, T, Harris, RC: Role of 

blood pressure and the renin-angiotensin system in development of diabetic 

nephropathy (DN) in eNOS−/− db/db mice. American Journal of Physiology - 

Renal Physiology, 302: F433-F438, 2012. 

126. Sugimoto, H, Grahovac, G, Zeisberg, M, Kalluri, R: Renal fibrosis and 

glomerulosclerosis in a new mouse model of diabetic nephropathy and its 

regression by bone morphogenic protein-7 and advanced glycation end product 

inhibitors. Diabetes, 56: 1825-1833, 2007. 

127. Lewis, EJ, Greene, T, Spitalewiz, S, Blumenthal, S, Berl, T, Hunsicker, LG, Pohl, 

MA, Rohde, RD, Raz, I, Yerushalmy, Y, Yagil, Y, Herskovits, T, Atkins, RC, 

Reutens, AT, Packham, DK, Lewis, JB: Pyridorin in type 2 diabetic nephropathy. 

J Am Soc Nephrol, 23: 131-136, 2012. 

128. Masson, E, Troncy, L, Ruggiero, D, Wiernsperger, N, Lagarde, M, El Bawab, S: a-

Series gangliosides mediate the effects of advanced glycation end products on 

pericyte and mesangial cell proliferation: a common mediator for retinal and renal 

microangiopathy? Diabetes, 54: 220-227, 2005. 

129. Zador, IZ, Deshmukh, GD, Kunkel, R, Johnson, K, Radin, NS, Shayman, JA: A role 

for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-

induced diabetes mellitus. J Clin Invest, 91: 797-803, 1993. 

130. Liu, G, Han, F, Yang, Y, Xie, Y, Jiang, H, Mao, Y, Wang, H, Wang, M, Chen, R, 

Yang, J, Chen, J: Evaluation of sphingolipid metabolism in renal cortex of rats 

with streptozotocin-induced diabetes and the effects of rapamycin. Nephrol Dial 

Transplant, 26: 1493-1502, 2011. 

131. Mwangi, DW, Bansal, DD: Evidence of free radical participation in N-

glycolylneuraminic acid generation in liver of chicken treated with gallotannic 

acid. Indian J Biochem Biophys, 41: 20-28, 2004. 

132. Tan, Y, Lim, YB, Altieri, KE, Seitzinger, SP, Turpin, BJ: Mechanisms leading to 

oligomers and SOA through aqueous photooxidation: insights from OH radical 

oxidation of acetic acid and methylglyoxal. Atmos Chem Phys, 12: 801-813, 

2012. 



141 
 

133. Padler-Karavani, V, Yu, H, Cao, H, Chokhawala, H, Karp, F, Varki, N, Chen, X, 

Varki, A: Diversity in specificity, abundance, and composition of anti-Neu5Gc 

antibodies in normal humans: potential implications for disease. Glycobiology, 

18: 818-830, 2008. 

134. Nagai, K, Tadano-Aritomi, K, Niimura, Y, Ishizuka, I: Effect of nutritional substrate 

on sulfolipids metabolic turnover in isolated renal tubules from rat. Proc Jpn 

Acad Ser B Phys Biol Sci, 84: 24-29, 2008. 

135. Ogawa, D, Shikata, K, Honke, K, Sato, S, Matsuda, M, Nagase, R, Tone, A, Okada, 

S, Usui, H, Wada, J, Miyasaka, M, Kawashima, H, Suzuki, Y, Suzuki, T, 

Taniguchi, N, Hirahara, Y, Tadano-Aritomi, K, Ishizuka, I, Tedder, TF, Makino, 

H: Cerebroside sulfotransferase deficiency ameliorates L-selectin-dependent 

monocyte infiltration in the kidney after ureteral obstruction. J Biol Chem, 279: 

2085-2090, 2004. 

136. Lundbaek, JA, Andersen, OS: Lysophospholipids modulate channel function by 

altering the mechanical properties of lipid bilayers. J Gen Physiol, 104: 645-673, 

1994. 

137. Ben-Zeev, G, Telias, M, Nussinovitch, I: Lysophospholipids modulate voltage-gated 

calcium channel currents in pituitary cells; effects of lipid stress. Cell Calcium, 

47: 514-524, 2010. 

138. Pradere, JP, Gonzalez, J, Klein, J, Valet, P, Gres, S, Salant, D, Bascands, JL, 

Saulnier-Blache, JS, Schanstra, JP: Lysophosphatidic acid and renal fibrosis. 

Biochim Biophys Acta, 1781: 582-587, 2008. 

139. Rai, V, Toure, F, Chitayat, S, Pei, R, Song, F, Li, Q, Zhang, J, Rosario, R, 

Ramasamy, R, Chazin, WJ, Schmidt, AM: Lysophosphatidic acid targets vascular 

and oncogenic pathways via RAGE signaling. J Exp Med, 209: 2339-2350, 2012. 

140. Tanji, N, Markowitz, GS, Fu, C, Kislinger, T, Taguchi, A, Pischetsrieder, M, Stern, 

D, Schmidt, AM, D'Agati, VD: Expression of advanced glycation end products 

and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal 

disease. J Am Soc Nephrol, 11: 1656-1666, 2000. 

141. Sasagawa, T, Suzuki, K, Shiota, T, Kondo, T, Okita, M: The significance of plasma 

lysophospholipids in patients with renal failure on hemodialysis. J Nutr Sci 

Vitaminol (Tokyo), 44: 809-818, 1998. 



142 
 

142. Pang, LQ, Liang, QL, Wang, YM, Ping, L, Luo, GA: Simultaneous determination 

and quantification of seven major phospholipid classes in human blood using 

normal-phase liquid chromatography coupled with electrospray mass 

spectrometry and the application in diabetes nephropathy. J Chromatogr B Analyt 

Technol Biomed Life Sci, 869: 118-125, 2008. 

143. Bassa, BV, Noh, JW, Ganji, SH, Shin, MK, Roh, DD, Kamanna, VS: 

Lysophosphatidylcholine stimulates EGF receptor activation and mesangial cell 

proliferation: regulatory role of Src and PKC. Biochim Biophys Acta, 1771: 1364-

1371, 2007. 

144. Zhu, K, Baudhuin, LM, Hong, G, Williams, FS, Cristina, KL, Kabarowski, JH, 

Witte, ON, Xu, Y: Sphingosylphosphorylcholine and lysophosphatidylcholine are 

ligands for the G protein-coupled receptor GPR4. J Biol Chem, 276: 41325-

41335, 2001. 

145. Kabarowski, JH, Zhu, K, Le, LQ, Witte, ON, Xu, Y: Lysophosphatidylcholine as a 

ligand for the immunoregulatory receptor G2A. Science, 293: 702-705, 2001. 

146. Levi, V, Villamil Giraldo, AM, Castello, PR, Rossi, JP, Gonzalez Flecha, FL: 

Effects of phosphatidylethanolamine glycation on lipid-protein interactions and 

membrane protein thermal stability. Biochem J, 416: 145-152, 2008. 

147. Veiga da-Cunha, M, Jacquemin, P, Delpierre, G, Godfraind, C, Theate, I, 

Vertommen, D, Clotman, F, Lemaigre, F, Devuyst, O, Van Schaftingen, E: 

Increased protein glycation in fructosamine 3-kinase-deficient mice. Biochem J, 

399: 257-264, 2006. 

148. Chetyrkin, SV, Kim, D, Belmont, JM, Scheinman, JI, Hudson, BG, Voziyan, PA: 

Pyridoxamine lowers kidney crystals in experimental hyperoxaluria: A potential 

therapy for primary hyperoxaluria. Kidney Int, 67: 53-60, 2005. 

149. Kanetsuna, Y, Takahashi, K, Nagata, M, Gannon, MA, Breyer, MD, Harris, RC, 

Takahashi, T: Deficiency of endothelial nitric-oxide synthase confers 

susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am J 

Pathol, 170: 1473-1484, 2007. 

150. Grove, KJ, Voziyan, PA, Spraggins, JM, Wang, S, Paueksakon, P, Harris, RC, 

Hudson, BG, Caprioli, RM: Diabetic nephropathy induces alterations in the 

glomerular and tubule lipid profiles. Journal of Lipid Research, 55: 1375-1385, 

2014. 



143 
 

151. Sharma, K, Lee, S, Han, S, Lee, S, Francos, B, McCue, P, Wassell, R, Shaw, MA, 

RamachandraRao, SP: Two-dimensional fluorescence difference gel 

electrophoresis analysis of the urine proteome in human diabetic nephropathy. 

PROTEOMICS, 5: 2648-2655, 2005. 

152. Rao, PV, Lu, X, Standley, M, Pattee, P, Neelima, G, Girisesh, G, Dakshinamurthy, 

KV, Roberts, CT, Nagalla, SR: Proteomic Identification of Urinary Biomarkers of 

Diabetic Nephropathy. Diabetes Care, 30: 629-637, 2007. 

153. Overgaard, A, Hansen, H, Lajer, M, Pedersen, L, Tarnow, L, Rossing, P, McGuire, 

J, Pociot, F: Plasma proteome analysis of patients with type 1 diabetes with 

diabetic nephropathy. Proteome Science, 8: 4, 2010. 

154. Kim, H-J, Cho, E-H, Yoo, J-H, Kim, P-K, Shin, J-S, Kim, M-R, Kim, C-W: 

Proteome Analysis of Serum from Type 2 Diabetics with Nephropathy. Journal of 

Proteome Research, 6: 735-743, 2007. 

155. Yoshida, Y, Miyamoto, M, Taguchi, I, Xu, B, Zhang, Y, Yaoita, E, Fujinaka, H, 

Yamamoto, T: Human kidney glomerulus proteome and biomarker discovery of 

kidney diseases. PROTEOMICS – Clinical Applications, 2: 420-427, 2008. 

156. Thongboonkerd, V, Barati, MT, McLeish, KR, Benarafa, C, Remold-O’Donnell, E, 

Zheng, S, Rovin, BH, Pierce, WM, Epstein, PN, Klein, JB: Alterations in the 

Renal Elastin-Elastase System in Type 1 Diabetic Nephropathy Identified by 

Proteomic Analysis. J Am Soc Nephrol, 15: 650-662, 2004. 

157. Liu, H, Sadygov, RG, Yates, JR: A Model for Random Sampling and Estimation of 

Relative Protein Abundance in Shotgun Proteomics. Analytical Chemistry, 76: 

4193-4201, 2004. 

158. Zhu, W, Smith, JW, Huang, C-M: Mass Spectrometry-Based Label-Free 

Quantitative Proteomics. Journal of Biomedicine and Biotechnology, 2010, 2010. 

159. Sanai, T, Sobka, T, Johnson, T, El-Essawy, M, Muchaneta-Kubara, EC, Ben 

Gharbia, O, Oldroyd, S, El Nahas, AM: Expression of cytoskeletal proteins during 

the course of experimental diabetic nephropathy. Diabetologia, 43: 91-100, 2000. 

160. Schena, FP, Gesualdo, L: Pathogenetic mechanisms of diabetic nephropathy. J Am 

Soc Nephrol, 16 Suppl 1: S30-33, 2005. 



144 
 

161. Oh, JH, Ha, H, Yu, MR, Lee, HB: Sequential effects of high glucose on mesangial 

cell transforming growth factor-[bgr]1 and fibronectin synthesis. Kidney Int, 54: 

1872-1878, 1998. 

162. Ayo, SH, Radnik, RA, Glass, WF, 2nd, Garoni, JA, Rampt, ER, Appling, DR, 

Kreisberg, JI: Increased extracellular matrix synthesis and mRNA in mesangial 

cells grown in high-glucose medium. Am J Physiol Renal Physiol, 260: F185-191, 

1991. 

163. Lee, HB, Yu, M-R, Yang, Y, Jiang, Z, Ha, H: Reactive Oxygen Species-Regulated 

Signaling Pathways in Diabetic Nephropathy. J Am Soc Nephrol, 14: S241-S245, 

2003. 

164. Stauber, J, MacAleese, L, Franck, J, Claude, E, Snel, M, Kaletas, BK, Wiel, IMVD, 

Wisztorski, M, Fournier, I, Heeren, RMA: On-Tissue Protein Identification and 

Imaging by MALDI-Ion Mobility Mass Spectrometry. Journal of the American 

Society for Mass Spectrometry, 21: 338-347, 2010. 

165. Grüner, BM, Hahne, H, Mazur, PK, Trajkovic-Arsic, M, Maier, S, Esposito, I, 

Kalideris, E, Michalski, CW, Kleeff, J, Rauser, S, Schmid, RM, Küster, B, Walch, 

A, Siveke, JT: MALDI Imaging Mass Spectrometry for <italic>In Situ</italic> 

Proteomic Analysis of Preneoplastic Lesions in Pancreatic Cancer. PLoS ONE, 7: 

e39424, 2012. 

166. Ye, H, Mandal, R, Catherman, A, Thomas, PM, Kelleher, NL, Ikonomidou, C, Li, L: 

Top-Down Proteomics with Mass Spectrometry Imaging: A Pilot Study towards 

Discovery of Biomarkers for Neurodevelopmental Disorders. PLoS ONE, 9: 

e92831, 2014. 

167. Janciauskiene, S: Conformational properties of serine proteinase inhibitors (serpins) 

confer multiple pathophysiological roles. Biochimica et Biophysica Acta (BBA) - 

Molecular Basis of Disease, 1535: 221-235, 2001. 

168. Whisstock, JC, Skinner, R, Carrell, RW, Lesk, AM: Conformational changes in 

serpins: I. the native and cleaved conformations of α1-antitrypsin. Journal of 

Molecular Biology, 295: 651-665, 2000. 

169. Kwak, N-J, Wang, E-H, Heo, I-Y, Jin, D-C, Cha, J-H, Lee, K-H, Yang, C-W, Kang, 

C-S, Choi, Y-J: Proteomic analysis of alpha-1-antitrypsin in immunoglobulin A 

nephropathy. PROTEOMICS – Clinical Applications, 1: 420-428, 2007. 



145 
 

170. Navarro-Muñoz, M, Ibernon, M, Bonet, J, Pérez, V, Pastor, MC, Bayés, B, Casado-

Vela, J, Navarro, M, Ara, J, Espinal, A, Fluvià, L, Serra, A, López, D, Romero, R: 

Uromodulin and α-1-Antitrypsin Urinary Peptide Analysis to Differentiate 

Glomerular Kidney Diseases. Kidney and Blood Pressure Research, 35: 314-325, 

2012. 

171. Buhimschi, IA, Zhao, G, Funai, EF, Harris, N, Sasson, IE, Bernstein, IM, Saade, 

GR, Buhimschi, CS: Proteomic profiling of urine identifies specific fragments of 

SERPINA1 and albumin as biomarkers of preeclampsia. American Journal of 

Obstetrics and Gynecology, 199: 551.e551-551.e516, 2008. 

172. Aronoff, SL, Schnider, S, Smeltzer, J, Mackay, W, Tchou, P, Rushforth, N, Miller, 

M, Bennett, PH: Urinary Excretion and Renal Clearance of Specific Plasma 

Proteins in Diabetes of Short and Long Duration. Diabetes, 30: 656-663, 1981. 

173. Candiano, G, Musante, L, Bruschi, M, Petretto, A, Santucci, L, Boccio, PD, Pavone, 

B, Perfumo, F, Urbani, A, Scolari, F, Ghiggeri, GM: Repetitive Fragmentation 

Products of Albumin and α1-Antitrypsin in Glomerular Diseases Associated with 

Nephrotic Syndrome. J Am Soc Nephrol, 17: 3139-3148, 2006. 

174. Speeckaert, MM, Speeckaert, R, Van De Voorde, L, Delanghe, JR: 

Immunochemically unreactive albumin in urine: fiction or reality? Critical 

Reviews in Clinical Laboratory Sciences, 48: 87-96, 2011. 

175. Park, CH, Maack, T: Albumin absorption and catabolism by isolated perfused 

proximal convoluted tubules of the rabbit. The Journal of Clinical Investigation, 

73: 767-777, 1984. 

176. Hellin, JL, Bech-Serra, JJ, Moctezuma, EL, Chocron, S, Santin, S, Madrid, A, 

Vilalta, R, Canals, F, Torra, R, Meseguer, A, Nieto, JL: Very Low-Molecular-

Mass Fragments of Albumin in the Plasma of Patients With Focal Segmental 

Glomerulosclerosis. American Journal of Kidney Diseases, 54: 871-880, 2009. 

177. Greive, KA, Balazs, NDH, Comper, WD: Protein Fragments in Urine Have Been 

Considerably Underestimated by Various Protein Assays. Clinical Chemistry, 47: 

1717-1719, 2001. 

178. Comper, WD, Jerums, G, Osicka, TM: Differences in urinary albumin detected by 

four immunoassays and high-performance liquid chromatography. Clinical 

Biochemistry, 37: 105-111, 2004. 



146 
 

179. Kania, K, Byrnes, EA, Beilby, JP, Webb, SAR, Strong, KJ: Urinary proteases 

degrade albumin: implications for measurement of albuminuria in stored samples. 

Annals of Clinical Biochemistry, 47: 151-157, 2010. 

180. Clavant, SP, Greive, KA, Nikolovski, J, Reeve, S, Smith, AI, Comper, WD: 

Albumin fragments in normal rat urine are derived from rapidly degraded filtered 

albumin. Nephrology, 8: 72-79, 2003. 

181. Osicka, TM, Houlihan, CA, Chan, JG, Jerums, G, Comper, WD: Albuminuria in 

patients with type 1 diabetes is directly linked to changes in the lysosome-

mediated degradation of albumin during renal passage. Diabetes, 49: 1579-1584, 

2000. 

182. Gudehithlu, KP, Pegoraro, AA, Dunea, G, Arruda, JAL, Singh, AK: Degradation of 

albumin by the renal proximal tubule cells and the subsequent fate of its 

fragments. Kidney Int, 65: 2113-2122, 2004. 

183. Zeng, F, Miyazawa, T, Kloepfer, LA, Harris, RC: Deletion of ErbB4 accelerates 

polycystic kidney disease progression in cpk mice. Kidney Int, 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 



147 
 

CURRICULUM VITAE  

 

Kerri Grove, Ph.D. 

 

465 21
st
 Avenue South • Nashville, TN 37215  

(763) 218-9622 

kerri.j.grove@vanderbilt.edu 

 

EDUCATION 

 

Ph.D. in Chemistry Nashville, TN 

Vanderbilt University August 2014 

Dissertation: “Imaging Mass Spectrometry for the Elucidation of Lipid and Protein 

Changes in Diabetic Nephropathy and Assessment of Drug Efficacy” 

Advisor:  Dr. Richard Caprioli 

 

B.S. in Chemistry St. Paul, MN 

Bethel University May 2007 

• Cum Laude Honors, Deans List, Chemistry Department Student Award 

 

B.S. in Biochemistry/Molecular Biology St. Paul, MN 

Bethel University May 2007 

 

RESEARCH EXPERIENCE 

 

Graduate Research 2009-2014 

• Developed techniques for high spatial resolution imaging mass spectrometry of 

tissues  with a focus on the kidney microstructures of glomeruli and tubules 

• Discovered unique lipid and protein classifiers in microstructures of the kidney 

that correlated with progression of renal disease by an in situ approach utilizing 

TOF and FTICR MS 

• Elucidated disease related molecular modifications on biomolecules in affected 

organs  that have potential to serve as early markers of disease  

• Evaluated an investigational drug therapy to identify novel metabolomics 

markers and confirm efficacious molecular response to treatment  



148 
 

PROFESSIONAL SOCIETY MEMBERSHIP 

 

• American Society of Mass Spectrometry, 2009-present  

 

AWARDS AND FELLOWSHIPS 

 

• Vanderbilt Institute of Chemical Biology Student Symposium Oral Presentation Award, 

 2013 

• Hercules Fellowship, Vanderbilt University, 2008-2009  

 

TEACHING EXPERIENCE 

 

Workshop Leader, AIMS.2012 and AIMS.2013 (Advanced Imaging Mass Spectrometry  

 Laboratory Course)  

Vanderbilt University, Nashville, TN; March 26-29, 2012 and April 16-19. 2013 

• Led hands-on workshop portions of an imaging mass spectrometry short course 

including tissue cryo-sectioning, MALDI sample preparation, and imaging data 

analysis 

 

Volunteer, Aspirnaut
TM

 Educational Program 

Vanderbilt University, Nashville, TN; 2012-2013 

• Taught science lessons to rural elementary and middle school students through 

videoconferencing 

  

Teaching Assistant, General Chemistry  

Vanderbilt University, Nashville, TN; 2008-2009 

• Assisted in preparation and execution of laboratory section 

 

SCIENTIFIC PRESENTATIONS 

 

• Kerri J. Grove, “High Spatial Resolution Molecular Imaging for Efficacy of Drug 

Treatment in Diabetic Nephropathy” Vanderbilt Institute of Chemical Biology Student 

Symposium, August, 2013, (Oral Presentation) 

 

• Kerri J. Grove, “Special Topics: Diabetic Nephropathy” Advanced Imaging Mass 

Spectrometry Course, Vanderbilt, April 2013, (Oral presentation) 

 

• Kerri J. Grove, Raf Van de Plas, Jeffery M. Spraggins, Paul A. Voziyan, Raymond C. 

Harris, Billy G. Hudson, Richard M. Caprioli, “Discovery and Localization of Modified 

Lipids in Kidneys of Diabetic Mouse Model using Mass Difference Scanning and 

Imaging Mass Spectrometry” 61
st
 ASMS Conference on Mass Spectrometry and Allied 

Topics, June 2013, (Poster presentation) 



149 
 

 

• Kerri J. Grove, Paul A. Voziyan, Jeffery M. Spraggins, Roberto M. Vanacore, 

Raymond C. Harris, Billy G. Hudson, Richard M. Caprioli, “Glomerular Alterations 

Induced by Diabetic Nephropathy Revealed Using High Spatial Resolution MALDI 

Imaging Mass Spectrometry” 60
th

 ASMS Conference on Mass Spectrometry and Allied 

Topics, May 2012, (Poster presentation) 

 

• Kerri J. Grove, Paul A. Voziyan, Roberto M. Vanacore, Billy G. Hudson, Richard M. 

Caprioli, “Analysis of Glomerular Proteins by High Spatial Resolution MALDI Imaging 

Mass Spectrometry” 59
th

 ASMS Conference on Mass Spectrometry and Allied Topics, 

June 2011, (Poster presentation) 

 

• Kerri J. Grove, Paul A. Voziyan, Roberto M. Vanacore, Raymond C. Harris, Billy G. 

Hudson, Richard M. Caprioli, “Analysis of Glomerular Proteins by High Spatial 

Resolution MALDI Imaging Mass Spectrometry” Gordon Research Conference, 

Collagen, July 2011, (Poster presentation)  

 

• Kerri J. Grove, Richard M. Caprioli, “Matrix Pre-Coated Targets for MALDI Imaging 

Mass Spectrometry” 58
th

 ASMS Conference on Mass Spectrometry and Allied Topics, 

May 2010, (Poster presentation) 

 

PUBLICATIONS 

• Grove, K, Voziyan, P, Spraggins, J, Wang, S, Paueksakon, P, Harris, R, Hudson, B, 

Caprioli, R. Diabetic nephropathy induces alterations in the glomerular and tubule lipid 

profiles. Journal of Lipid Research, 55: 1375-1385, 2014. 

• Grove, K, Frappier, S, Caprioli, R: Matrix Pre-Coated MALDI MS Targets for Small 

Molecule Imaging in Tissues. Journal of the American Society for Mass Spectrometry, 

22: 192-195, 2011. 

• Grove, K, King, RA, Burger, U: Photo-rearrangement of N-substituted pyridinium and 

meta-alkoxy pyridinium ions. Journal of Molecular Structure: THEOCHEM, 807: 25-32, 

2007. 

 


