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ABSTRACT 

Our brain network, as a complex integrative system, consists of many different 

regions. Each region has its own task and function and simultaneously shares structural and 

functional information. With the developed imaging techniques such as functional magnetic 

resonance imaging (fMRI) and diffusion tensor imaging (DTI), researchers can investigate 

the underlying brain functions related to human behaviors and some diseases or disorders in 

the nervous system such as major depressive disorder (MDD). 

  In this thesis, we developed a Bayesian hierarchical spatiotemporal model that 

combined fMRI and DTI data jointly to enhance the estimation of resting-state functional 

connectivity. Structural connectivity from DTI data was utilized to construct an informative 

prior for functional connectivity based on resting-state fMRI data through the Cholesky 

decomposition in a mixture model. The analysis took the advantages of probabilistic 

programming package as PyMC3 and next-generation Markov Chain Monte Carlo (MCMC) 

sampling algorithm as No-U-Turn Sampler (NUTS). The simulation study with this 

advanced algorithm, illustrated reduced mean squared errors (MSEs) of estimation. 

Furthermore, through a case study of MDD, we applied our model to examine how the 

estimated functional connectivity was associated with tasks of episodic memory, executive 

function, processing speed and working memory. 
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INTRODUCTION TO BRAIN CONNECTIVITY 

1.1 Brain Imaging 

Our brain consists of many different regions that have each own task and function 

[1]. As a complex integrative system, the brain network is formed when information is 

simultaneously processed and transported between structurally and functionally linked brain 

regions. The studies of brain network apply various techniques to either directly or indirectly 

image the structure and function of the nervous system. It is highly associated with the fields 

of medicine, neuroscience and psychology. Currently there are two main categories: one is 

structural imaging, involving with the structure of the nervous system and the diagnosis of 

intracranial diseases and disorders on a larger scale; the other is functional imaging, related 

with the diagnosis of metabolic diseases on a finer scale such as Alzheimer’s disease. It is 

fundamental for humans to understand how a healthy nervous system can produce activities 

such as thought, emotion and physical behavior, and regulate body functions to investigate 

some diseases and disorders.  

In the recent decades, magnetic resonance imaging (MRI), a highly versatile imaging 

technique, was created by Peter Mansfield and Paul Lauterbur to capture the pictures of 

anatomy and the physiological process of the body in both health and disease. Due to their 

advanced breakthrough, they were awarded the 2003 Nobel Prize in Physiology or Medicine 

for their “discoveries concerning magnetic resonance imaging”. In the 1990s, functional 

magnetic resonance imaging (fMRI) was developed and it has been leading the brain 

mapping field because of its low invasiveness, lack of radiation exposure, relatively wide 

availability [2].  
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With all the developed imaging techniques, the studies of brain are focused on the 

structural and functional connectivity between two or more brain regions. Structural 

connectivity (also called anatomical connectivity) is referred as a structural link or the 

existence of neural connections between two regions while functional connectivity is defined 

as the temporal correlation between spatially remote neurophysiological events [3].  In other 

words, two systems can be assumed to be functionally connected if they illustrate 

synchronized or correlated patterns of activity [4]. The relationship between structural and 

functional connectivity is illustrated in Figure 1.1 in the form of a Venn diagram [4]. It 

highlights that the structural information could offer plausible arguments for the functional 

information. 

 

Figure 1.1 Venn diagram showing the studies combining functional and anatomical data, with focus 

on anatomical and functional connectivity data. Image reprinted with permission from Ref [4]. 

Copyright © 2007, John Wiley and Sons. 
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1.2 Functional Connectivity 

 

Figure 1.2 Resting-state fMRI studies capture the correlation between spontaneous activation patterns 

of brain regions. (a) The blood oxygen level-dependent (BOLD) signal is measured throughout the 

experiment. (b) Conventional task-dependent fMRI can be used to select a seed region of interest. (c) 

To examine the level of functional connectivity, the resting-state time-series of the seed voxel 𝑖 is 

correlated with the resting-state time-series of region 𝑗. (d) Furthermore, to map out all functional 

connections of the selected seed region, the time-series of the seed voxel 𝑖 can be correlated with the 

time-series of all other voxels in the brain, resulting in a functional connectivity map that reflects the 

regions that show a high level of functional connectivity with the selected seed region. Image reprinted 

with permission from Ref [1]. Copyright © 2010, Elsevier Inc. 

 

Functional connectivity is typically measured by analyzing the patterns of concurrent 

activity between various brain areas that share functional properties. It is also defined as the 
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temporal dependency between spatially remote neurophysiological events [5, 6]. With deep 

understanding of fMRI in the recent two decades, more and more studies imply functional 

connectivity between brain areas as the level of co-activation of spontaneous fMRI time-

series recorded at rest [7-9]. In the resting-state experiments, their level of spontaneous brain 

activity was recorded when subjects were required to relax without thinking anything. 

Typically, they are placed into the scanner, asked to close their eyes and to think nothing 

without falling asleep. Experimental evidences demonstrate that the left and right 

hemispheric regions of the primary motor network at rest show a high correlation between 

their fMRI time-series [9, 10], indicating the ongoing information transporting and ongoing 

functional connectivity between these areas at rest [7, 8, 10, 11]. Figure 1.2 illustrates that 

the resting-state timeseries of a voxel in the motor network was correlated with the resting-

state time-series of all other brain voxels, suggesting a high correlation between the 

spontaneous neuronal activation patterns of these areas. Therefore, resting-state fMRI 

research focuses on mapping functional communication channels between different brain 

regions by leveraging the correlated dynamics of fMRI time-series. 

1.3 Structural Connectivity  

 Structural connectivity is typically pointed as the illustration of fiber tracts directly 

connecting different brain regions. Because of the neuronal axons in these fiber tracts, they 

can transmit the neural signals across all the brain areas, allowing for communications 

between brain regions. Previously, it has been applied to study animal with histological 

methods while it could not reveal much information in humans. Thanks to the advanced 

development of in vivo imaging techniques, researchers are now able to visualize the white 

matter. The volumetric estimates of while matter can be used as measures of structural 
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connectivity [12]. For example, it was found that the degree of while matter preservation in 

the groups of older adults is highly associated with their performance on tasks that require 

functional integration involving interhemispheric interactions [4].  

 

Figure 1.3 Schematic of the basic principles underlying DTI: isotropy and anisotropy of water motion 

in tissue. The ellipsoids represent the directionality and the degree of anisotropy. The axes in these 

ellipsoids are oriented along the diffusion tensor eigenvectors, and the lengths of these axes are 

proportional to the amount of diffusivity (corresponding eigenvalues) in the respective dimensions. 

Image reprinted with permission from Ref [4]. Copyright © 2007, John Wiley and Sons. 

 

 In the recent few years, a new imaging technology, diffusion tensor imaging (DTI) 

has been developed as a promising method for describing the structural connectivity in vivo. 

DTI is significant when the neural axons of while matter in the brain has an internal fibrous 

structure. Water will then diffuse more rapidly in the direction aligned with the internal 

structure while it moves more slowly in the perpendicular direction. So, DTI yields images 
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of the anisotropy of water diffusion in the living tissue. Figure 1.3 demonstrates the isotropy 

and anisotropy of water motion in tissue. Due to the increasingly accurate estimation of fiber 

orientation/strength and the widespread potential implications, DTI technology will shed 

light on the development of brain research in the future. 
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SPATIOTEMPORAL HIERARCHICAL MODEL 

2.1 Existing Methods 

 As introduced in CHAPTER 1, functional connectivity is used as a biomarker for 

neurological and psychiatric disorders such as Alzheimer’s diseases [13, 14] and bipolar 

disorders [15, 16]. White matter tracts are the structural pathways of our brain, allowing the 

information to transmit between various brain areas. With the assistance of DIT data to 

reconstruct the white matter pathways, it demonstrates the links between structural 

connectivity and resting-state functional networks [17]. Many existing statistical methods 

have been developed to analyze fMRI data [18-21] and DTI data [22-25] within a Bayesian 

framework, separately. For example, a spatial and temporal independent component analysis 

(ICA) together with Bayesian approximation was applied to process large scale resting-state 

fMRI data from 200 subjects [21]. A multi-tensor Bayesian model with a new 

parameterization method was developed for DTI data from a healthy subject, allowing to be 

suitable for model selection in the post analysis via thresholding the Bayes factor [25]. 

 Some efforts have been made to develop statistical models to combine fMRI data and 

DTI data jointly. A combined analysis of DTI and fMRI data was conducted to explore 

whether there were networks of regions where maturation of white matter and changes in 

brain activity showed similar developmental trends during childhood [26]. In this fMRI data 

analysis, functional anisotropy, as an indicator of myelination and axon thickness, was used 

as a covariate in a multiple regression model to find brain regions where functional 

anisotropy values and blood oxygen level-dependent (BOLD) response were correlated [26]. 
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Another statistical method implementing a hierarchical clustering algorithm, combined 

various sources of data including anatomically weighted functional connectivity (awFC), 

fMRI and DTI data, to determine the functional connectivity [27]. What’s more, DTI data 

was utilized as a supplement of fMRI information, to estimate functional connectivity in a 

multimodal approach. This Bayesian model can determine the hierarchy among functional 

connected pairs of brain regions based on the associated probabilities of elevated activity for 

each node [28]. Other studies also demonstrated the superior advantages of using both fMRI 

and DTI data to investigate the functional connectivity in brain networks [29-33]. 

2.2 Spatiotemporal Hierarchical Model 

 We developed a novel Bayesian hierarchical modeling framework using resting-state 

fMRI and DTI data to improve the precision and accuracy of estimation of functional 

connectivity [34]. To mention, we defined a term called “naïve FC” as the correlation 

between two average time-series across voxels within each region of interest (ROI) without 

considering the temporal correlation. In general, our approach not only applied the intrinsic 

spatial and temporal correlation in resting-state fMRI data, but also considered the weighted 

average of structural connectivity from DTI data and the naïve FC as a source of prior 

information for functional connectivity. Furthermore, two sources of structural connectivity, 

direct information and indirect information, were utilized in a mixture model to estimate the 

functional connectivity. Due to the natural incorporation of functional and structural 

information from resting-state fMRI and DTI data, we can improve the estimation accuracy 

and lead to more reliable inference. 

2.2.1 Spatiotemporal Structure 

In a resting-state fMRI study, we define the time-series data at voxel 𝑣 in ROI 𝑐 as 
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𝑌𝑐𝑣(𝑡), where 𝑡 = 1, … , 𝑇. In the same ROI 𝑐, a spatiotemporal model for the resting-state 

fMRI time-series can be expressed as the following: 

𝑌𝑐𝑣(𝑡) =  𝛽𝑐 + 𝑏𝑐(𝑣) + 𝑑𝑐 + 𝜖𝑐𝑣(𝑡). 

In the formula above, 𝛽𝑐 is the grand mean in the ROI 𝑐.  𝑏𝑐(𝑣) represents a zero-

mean voxel-specific random effect in the ROI 𝑐 and captures the local spatial dependency 

between voxels. A kernel function 𝐾𝑐(∙) is defined as the covariance structure for local 

spatial covariance. It is a function of Euclidean distance: 

𝐶𝑜𝑣(𝑏𝑐(𝑣), 𝑏𝑐(𝑣
′)) =  𝐾𝑐(‖𝑣 − 𝑣′‖). 

Note that the voxel-specific random effect 𝑏 values are uncorrelated when two voxels are in 

different ROIs (𝑐 ≠ 𝑐′), which means the expression below: 

𝐶𝑜𝑣(𝑏𝑐(𝑣), 𝑏𝑐′(𝑣
′)) =  0 if 𝑐 ≠ 𝑐′. 

This kernel function can be any valid spatial covariance function. Table 2.1 lists the common kernel 

functions for the covariance structure [35]. In our model, we apply the exponential function to represent 

the covariance structure between voxels in ROI 𝑐: 

𝐶𝑜𝑣(𝑏𝑐(𝑣), 𝑏𝑐(𝑣
′)) =  𝜎𝑏𝑐

2exp (−‖𝑣 − 𝑣′‖𝜑𝑐), 

where 𝜎𝑏𝑐
2  is defined as the spatial variance at each voxel in the ROI 𝑐  and ‖𝑣 − 𝑣′‖ 

denotes the Euclidean distance between two voxels, 𝑣 and 𝑣′. 𝜑𝑐  represents the inversed 

ROI-specific decaying parameter in the exponential structure. 

𝑑𝑐  is a zero-mean ROI-specific random effect. Its covariance structure is used to 

model functional connectivity and expressed as 𝐶𝑜𝑣(𝑑𝑐(𝑣), 𝑑𝑐′(𝑣
′)). We will explain how 

this effect results from naïve FC and DTI data with a series of prior information. 
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Table 2.1 Various common covariance functions from Ref [35]. 

Constant 𝐾(𝑥, 𝑥′) = 𝑐 

Linear 𝐾(𝑥, 𝑥′) =  𝑥𝑇𝑥′ 

Gaussian noise 𝐾(𝑥, 𝑥′) =  𝜎2𝛿𝑥,𝑥′ 

Squared exponential 
𝐾(𝑥, 𝑥′) = exp (−

‖𝑥 − 𝑥′‖2

2𝑙2
) 

Exponential 
𝐾(𝑥, 𝑥′) = exp (−

|𝑥 − 𝑥′|

𝑙
) 

Matérn 
𝐾(𝑥, 𝑥′) =  

21−𝑣

Γ(𝑣)
(
√2𝑣|𝑥 − 𝑥′|

𝑙
)

𝑣

𝐵𝑣(
√2𝑣|𝑥 − 𝑥′|

𝑙
) 

Periodic 

𝐾(𝑥, 𝑥′) = exp (−
2𝑠𝑖𝑛2(

𝑥 − 𝑥′
2 )

𝑙2
) 

Rational quadratic 𝐾(𝑥, 𝑥′) = (1 + |𝑥 − 𝑥′|2)−𝛼, 𝛼 ≥ 0 

 

Finally, 𝜖𝑐𝑣(𝑡) is the noise part. We assume this voxel-specific noise follows an 

autoregressive (AR) temporal process with order one, that is AR (1). So, the expression of 

the noise follows: 

𝜖𝑐𝑣(𝑡) =  𝛿𝑐 + 𝜙𝑐𝑣 𝜖𝑐𝑣(𝑡 − 1) + 𝑤(𝑡), 

where  𝛿𝑐 is the constant shift, 𝜙𝑐𝑣 is the AR (1) coefficient with a requirement of |𝜙𝑐𝑣| <

1. And 𝑤(𝑡) is Gaussian random noise with a distribution as N(0, 𝜎𝑐𝑣
2) and is independent 

of 𝜖𝑐𝑣(𝑡). It is straightforward to calculate the mean and variance of 𝜖𝑐𝑣(𝑡) as the following: 

E[𝜖𝑐𝑣(𝑡)] =  
 𝛿𝑐

1 − 𝜙𝑐𝑣
 

Var[𝜖𝑐𝑣(𝑡)] =  
𝜎𝑐𝑣

2

1 − 𝜙𝑐𝑣
2 
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2.2.2 Hierarchical Structure 

Our goal is to estimate each functional connectivity through its corresponding 

posterior distribution. To obtain the posterior distribution, each component in the 

spatiotemporal structure from last section can be rewritten as a hierarchical structure in one 

ROI level: 

𝒀𝑐(𝑡) =  𝜷𝑐 + 𝒃𝑐 + 𝒅𝑐 + 𝝐𝑐(𝑡). 

 𝒀𝑐(𝑡)  denotes a vector ( 1 × 𝑉 ) of signals at each voxel as 

[𝑌𝑐1(𝑡), 𝑌𝑐2(𝑡), … , 𝑌𝑐𝑉(𝑡)]
𝑇. We use 𝑱 and 𝑰 to indicate the all-one vector and identity matrix, 

respectively. Therefore, each component can be vectorized as: 

𝜷𝑐 = 𝛽𝑐 𝑱(1×𝑉) 

𝒃𝑐 = [𝑏𝑐1, 𝑏𝑐2, … , 𝑏𝑐𝑉]
𝑇 

𝒅𝑐 = 𝑑𝑐 𝑱(1×𝑉)  

𝝐𝑐(𝑡) = [𝜖𝑐1(𝑡), 𝜖𝑐2(𝑡),… , 𝜖𝑐𝑉(𝑡)]
𝑇. 

And the hierarchical structure follows: 

𝛽𝑐 ~ N(0, 𝜎𝛽𝑐
2) 

𝒃𝑐 ~ N(0, Σ𝑏𝑐) 

𝑑𝑐 ~ N(0, Σ𝑑) 

𝜖𝑐𝑣(𝑡) ~ N(
 𝛿𝑐

1 − 𝜙𝑐𝑣
,
𝜎𝑐𝑣

2

1 − 𝜙𝑐𝑣
2) 

In details, each term 𝛽𝑐 follows a Gaussian distribution with mean zero and variance 𝜎𝛽𝑐
2. 

In addition, for different ROIs (𝑐 ≠ 𝑐′), 𝛽𝑐 is independent of 𝛽𝑐′. For the term 𝒃𝑐, it follows 

a Gaussian distribution with the covariance Σ𝑏𝑐 , which applies the distant-dependent 

exponential function. For the term 𝑑𝑐, we assume it to follow a Gaussian distribution as 
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N(0, Σ𝑑). Here the correlation matrix of 𝑑𝑐 represents the functional connectivity among all 

ROIs, which is considered as the most important parameter estimated in the whole Bayesian 

framework. For the noise part with AR (1) time-series structure, it follows a voxel-specific 

Gaussian distribution as N(
 𝛿𝑐

1−𝜙𝑐𝑣
,
𝜎𝑐𝑣

2

1−𝜙𝑐𝑣
2). 

2.2.3 Double Fusion 

Σ𝑑, as the covariance matrix of 𝑑𝑐, is obtained through a novel method considering 

both structural and functional information. In other words, the prior distribution of the 

correlation matrix can be established from the structural and naïve functional connectivity 

of each pair of ROIs in two steps and we name this method as “a double fusion model”. 

 

Figure 2.1 Schematic of a direct structural connection between 𝑖 and 𝑗 ROIs and a possible indirect 

structural connection via 𝑘 ROI. 

 

We combine the structural connectivity and naïve functional connectivity together 

because the effect of direct structural connectivity is different from that of indirect structural 

connectivity. For example, relatively lower values of structural connectivity imply no direct 

i ROI 

k ROI 

j ROI 
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correlated pathways between two ROIs. However, it is likely that there exist indirect 

structural connections between two ROIs, resulting in high functional coupling (Figure 2.1). 

And the low structural connectivity will indicate very low functional connectivity if no 

structural connection exists. Therefore, we should treat the indirect structural connectivity 

differently from direct structural connectivity in the fusion step.  

 Then the prior distribution of the covariance matrix Σ𝑑 is further considered to be a 

function of structural and naïve functional connectivity matrix. With the Cholesky 

decomposition, we name 𝐿𝑠𝑐, 𝐿𝑛𝑓𝑐 and 𝐿𝑑 as the lower triangular matrix from the structural 

covariance matrix, naïve functional covariance matrix and functional covariance matrix. To 

identify the different effects from direct structural connectivity and indirect structural 

connectivity, we denote 𝐿𝑑(𝑑𝑖𝑟𝑒𝑐𝑡) and  𝐿𝑑(𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) as the lower triangular matrix from 

direct and indirect structural information, separately. To regulate each source of information, 

we assume a weighted combination to represent 𝐿𝑑(𝑑𝑖𝑟𝑒𝑐𝑡), 𝐿𝑑(𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) and 𝐿𝑑: 

𝐿𝑑(𝑑𝑖𝑟𝑒𝑐𝑡) =  λ𝐿𝑠𝑐 + (1 − λ )𝐿𝑛𝑓𝑐 

𝐿𝑑(𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) = 𝑀𝑠𝑐λ𝐿𝑠𝑐 + (1 −𝑀𝑠𝑐λ)𝐿𝑛𝑓𝑐 

𝐿𝑑 =  𝜔𝐿𝑑(𝑑𝑖𝑟𝑒𝑐𝑡) + (1 − 𝜔)𝐿𝑑(𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡) 

where λ and 𝜔 are weight parameters. 𝑀𝑠𝑐 is the measurement of structural connectivity. 

Finally, Σ𝑑 is reconstructed as  𝐿𝑑 × 𝐿𝑑
𝑇 and the corresponding correlation matrix 

ρ𝑑  can be obtained to denote the resting-state functional connectivity through a 

normalization step. It is also important to mention that the estimated Σ𝑑  and ρ𝑑  are 

demonstrated to be positive semidefinite due to the Cholesky decomposition and 

reconstruction. For a correlation matrix within 𝑛 ROIs, it follows: 
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ρ𝑑 = (

1 ρ12
1

… ρ1𝑛
⋱ ⋮

1 ρ(𝑛−1)𝑛

1

)

𝑛×𝑛

. 

The elements in the upper triangular part can be vectorized as: 

[ρ12, … , ρ1𝑛, ρ23, … , ρ2𝑛, … , ρ(𝑛−1)𝑛]𝑛_𝑣𝑒𝑐
. 

The total number of estimation is 𝑛_𝑣𝑒𝑐 =  (𝑛 − 1) + (𝑛 − 2) + ⋯+ 1 = (𝑛 − 1) 𝑛/2. 

2.2.4 Prior Distribution 

Because we have no prior information about the values of each parameter, we decide 

to apply uninformative priors. In the exponential function 𝐶𝑜𝑣(𝑏𝑐(𝑣), 𝑏𝑐(𝑣
′)) =

 𝜎𝑏𝑐
2exp (−‖𝑣 − 𝑣′‖𝜑𝑐), we assume the corresponding parameters follow: 

𝜑𝑐 ~ Unif(0, 20) 

𝜎𝑏𝑐  ~ Unif (0, 100). 

In the temporal correlation 𝜖𝑐𝑣(𝑡) =  𝛿𝑐 + 𝜙𝑐𝑣 𝜖𝑐𝑣(𝑡 − 1) + 𝑤(𝑡) , we assume the prior 

distribution of each parameter as: 

𝜙𝑐𝑣 ~ Unif(0, 1) 

𝜎𝑐𝑣 ~ Unif(0, 100). 

And the grand mean 𝛽𝑐: 

𝛽𝑐 ~ N(0, 100
2). 

Two weight parameters λ and 𝜔 in the double fusion model: 

λ ~ Beta(1, 1) 

𝜔 ~ Beta(1, 1). 

Also, the covariance matrix for functional connectivity and structural connectivity is 

constructed via a prior diagonal matrix. The diagonal element is generated from a function 
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of a 𝜎𝑑𝑐 parameter in a logarithmic scale: 

𝜎𝑑𝑐  ~ Unif(−8, 8). 

Finally, with adding all the separate components, we assume the observed values 𝒀𝑜𝑏𝑠 

follow a Gaussian distribution 𝒀𝑜𝑏𝑠 ~ N(𝒀𝑐𝑣, 𝜎
2) under the Bayesian framework and 𝜎 has 

a prior distribution: 

𝜎 ~ Unif(0, 100). 

2.3 Introduction to PyMC3 and NUTS 

 Probabilistic programming is designed for flexible specification and fitting of 

Bayesian statistical model. PyMC3 is new, open-source framework with a readable but 

powerful syntax close to the natural syntax statisticians will use to describe models [36]. It 

includes the new-generation Markov Chain Monte Carlo (MCMC) sampling algorithms as 

the No-U-Turn Sampler (NUTS) [37], which avoids the random walk behavior and 

sensitivity to correlated parameters by taking a series of steps informed by first-order 

gradient information. In other words, the NUTS method is a self-tuning variant of 

Hamiltonian Monte Carlo (HMC) [38].  

Many simulations have demonstrated that the new-generation sampler is good for 

high dimensional and complex posterior distributions such as the spatiotemporal hierarchical 

model we built. Because HMC and NUTS apply the gradient information from the 

likelihood, they can achieve much faster convergence than traditional sampling methods. 

Taking our spatiotemporal hierarchical model as an example, to ensure the convergence of 

model parameters, we need to set the sampling size as 300000 in the Metropolis-Hastings 

algorithm, which is another MCMC method. The Metropolis-Hastings method also requires 

a long burn-in period, where an initial number of samplers are thrown away. In our model, 
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the burn-in number of samplers is usually set to one third of the sampling size as 100000. 

However, with the adoption of NUTS in the model, we only need to set the sampling size as 

1000 and the burn-in (or tuning) number as 1000. The NUTs also have a few self-tuning 

strategies for adaptively setting the parameters of HMC and it allows many complex models 

to be fit without specialized knowledge about fitting algorithms [36]. Therefore, the work of 

our spatiotemporal model is mainly maintained by PyMC3. 

It is also important to mention that PyMC3 take the advantage of Theano [39, 40] as 

backend to transparently transcode models to C and compile them to machine code. So, it 

can boost the performance of sampling procedure by taking the advantage of graphical 

processing units (GPU) architectures. Theano is a numerical computation library for Python, 

which allows expressions to be like NumPy syntax. Here I illustrate a simple example of 

linear regression in PyMC3. 

The model includes a predicting outcome 𝑌 with normal-distributed observations 

with mean 𝜇 and variance 𝜎2. The expected value 𝜇 is a linear combination of two predictor 

variables, 𝑋1 and 𝑋2: 

𝑌 ~ N(𝜇, 𝜎2) 

𝜇 =  𝛼 + 𝛽1 𝑋1 + 𝛽2 𝑋2. 

Each parameter (𝛼, 𝛽1 , 𝛽2 , 𝜎) corresponds to the following prior distribution: 

𝛼 ~ N(0, 100) 

𝛽1 𝑜𝑟 𝛽2 ~ N(0, 20) 

𝜎 ~ HalfNormal(0, 1). 
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This simple model of linear regression is specified in PyMC3 as the following: 

import pymc3 as pm 1 

with pm.Model() as basic_model: 2 

 3 

    # Priors for unknown model parameters 4 

    alpha = pm.Normal('alpha', mu=0, sd=100) 5 

    beta = pm.Normal('beta', mu=0, sd=20, shape=2) 6 

    sigma = pm.HalfNormal('sigma', sd=1) 7 

 8 

    # Expected value of outcome 9 

    mu = alpha + beta[0]*X1 + beta[1]*X2 10 

 11 

    # Likelihood (sampling distribution) of observations 12 

    Y_obs = pm.Normal('Y_obs', mu=mu, sd=sigma, observed=Y) 13  

  And the tuning step goes through with NUTS algorithm in 1000 draws from the 

posterior: 

with basic_model: 

 

    # instatiate sampler 

    step = pm.NUTS() 

 

    # draw 1000 posterior samples and tune 500 as default 

    trace = pm.sample(1000, step = step)  

When the sampling is complete, the posterior analysis can be inspected through trace 

plot of each parameters and various diagnostics such as Geweke statistics [41] and Gelman 

Rubin statistics [42, 43]. The Geweke score on some series 𝑥 is computed by: 

𝐸[𝑥𝑠] −  𝐸[𝑥𝑒]

√𝑉[𝑥𝑠] +  𝑉[𝑥𝑒]
 

where 𝐸 stands for the mean, 𝑉 the variance, 𝑥𝑠 a section at the start of the series and 𝑥𝑒 a 

section at the end of the series. And the Gelman Rubin diagnostic is computed by: 
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𝑅̂ =  
𝑉̂

𝑊
 

where 𝑊 is the within-chain variance and 𝑉̂ is the posterior variance estimate for the pooled 

traces. This is the potential scale reduction factor, which converges to unity when each of 

the traces is a sample from the target posterior. Values greater than one indicate that one or 

more chains have not yet converged. In practice, we look for values of 𝑅̂ close to one (say, 

less than 1.1) to be confident that a particular estimate has converged. 

 What’s more, the effective sample size is computed to check the model diagnostics: 

𝑛̂𝑒𝑓𝑓 =
𝑚𝑛

1 + 2∑ 𝜌̂𝑡
𝑇
𝑡=1

 

Where 𝑚 is the number of chains, 𝑛 is the sample draws, 𝜌̂𝑡 is the estimated autocorrelation 

at lag 𝑡, and 𝑇 is the first odd positive integer for which the sum 𝜌̂𝑇+1 + 𝜌̂𝑇+2 is negative 

[44]. 

2.4 Optimization and Decomposition 

 To reduce the computation cost in this spatiotemporal hierarchical model using 

PyMC3, we avoid defining the prior distribution of parameters by each ROI. Instead, we 

optimize all the parameters through vectorization. For example, the normal distribution of 

the noise in the voxel-specific AR (1) temporal correlation is defined through a mean vector 

(𝑛 × 1) and a diagonal matrix (𝑛 × 𝑛) as covariance for 𝑛 ROIs. Another advantage is to 

define the module without using the hard coding style. This example can be referred in the 

APPENDIX. 

 In addition, Cholesky decomposition is utilized in our MCMC method to generate 
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correlated random variables. For a positive definite covariance matrix Σ , Cholesky 

decomposition expresses Σ  as 𝑈𝑇𝑈 , where 𝑈  is a unique upper-triangular matrix with 

positive diagonal entries. For example, to generate correlated random variables that follow 

a 𝑛 dimension multivariate normal distribution 𝑋 ~ N(𝜇, Σ) with a mean vector 𝜇 (𝑛 × 1) 

and a covariance matrix Σ  (a 𝑛 × 𝑛  positive definite matrix), we can decompose the 

covariance matrix Σ  into 𝑈𝑇𝑈  and generate a vector as 𝑍  with 𝑛  independent 𝑁(0, 1) 

random variables. Therefore, 𝑋 can be generated as: 

𝑋 = 𝜇 + 𝑈𝑇𝑍 

We illustrate this technique by generating the exponential covariance structure 

between two voxels. What’s more, we can generate a matrix (𝑚 × 𝑛) from the univariate 

random variable 𝑍 ~ N(0, 1) to speed up the sampling procedure. Here 𝑚 is the number of 

voxels in each ROI. This optimization greatly helps reduce the computation cost from ~30 

hours to ~20 hours for modeling each subject. 

2.5 Simulation Study 

2.5.1 Data Generation 

We generated time-series data with a length of 𝑇 = 128 scans using AR (1) at 5 ROIs 

and each ROI contains 100 voxels. The AR (1) temporal correlation coefficient is assume as 

0.6. Then we imposed correlation between each ROI using a multivariate normal distribution 

with zero mean and the correlation matrix as the following: 

ρ𝑑 =

(

 
 

1 0.6
1

0 0.5 0
0.2 0.1 0
1 0 0.1

1 0.2
1 )

 
 

 

or the vector [0.6, 0, 0.5, 0, 0.2, 0.1, 0, 0, 0.1, 0.2]as in the upper triangular part. Moreover, 



 

20 

 

we assume that the structural connectivity is the same as the above correlation matrix, but 

the functional connectivity is sampled from a Wishart distribution with mean covariance 

matrix ρ𝑑 as the above matrix and six degrees of freedom: 

𝑆𝐶 ~ 𝑊𝑝(6, ρ𝑑). 

2.5.2 Estimation 

Table 2.2 Median (standard deviation), credible intervals (2.5% and 97.5% quantiles) of estimated 

functional connectivity, the Gelman Rubin diagnostic and the effect sample size under the condition of 

true structural connectivity and structural independence. 

  Bayesian correct SC Bayesian independence 

FC Correct Median (SD) [2.5% 97.5%] 𝑹̂ 𝒏̂𝒆𝒇𝒇 Median (SD) [2.5% 97.5%] 𝑹̂ 𝒏̂𝒆𝒇𝒇 

ρ1 0.6 0.645 (0.014) [0.617 0.669] 0.999 1675.438 0.531 (0.125) [0.170 0.652] 1.002 979.951 

ρ2 0.0 0.310 (0.080) [0.074 0.378] 0.999 1110.936 0.305 (0.078) [0.091 0.379] 0.999 1303.385 

ρ3 0.5 0.546 (0.017) [0.513 0.576] 0.999 1877.821 0.463 (0.108) [0.151 0.572] 0.999 1033.009 

ρ4 0.0 0.145 (0.042) [0.039 0.204] 0.999 1341.864 0.146 (0.042) [0.040 0.204] 0.999 1034.929 

ρ5 0.2 0.478 (0.053) [0.340 0.547] 0.999 1152.252 0.432 (0.090) [0.197 0.537] 1.001 1285.429 

ρ6 0.1 0.123 (0.020) [0.088 0.165] 1.000 1721.880 0.017 (0.106) [-0.194 0.216] 1.000 1218.262 

ρ7 0.0 0.399 (0.083) [0.180 0.522] 0.999 1102.607 0.419 (0.098) [0.174 0.558] 0.999 1381.804 

ρ8 0.0 0.173 (0.049) [0.047 0.235] 0.999 1293.770 0.158 (0.068) [0.016 0.283] 1.000 1251.840 

ρ9 0.1 0.105 (0.070) [-0.026 0.254] 0.999 1417.283 0.057 (0.063) [-0.066 0.177] 1.000 1458.304 

ρ10 0.2 0.316 (0.077) [0.165 0.484] 1.000 1524.805 0.348 (0.118) [0.054 0.532] 0.999 1095.445 

 

The data were analyzed with two different priors for functional connectivity: one was the 

informative prior based on true correlation matrix ρ𝑑  and the other prior was based on the identity 

matrix 𝑰5×5, which assumed no structural dependence. The posterior of functional connectivity was 

obtained via our Bayesian model using NUTS sampler implemented in PyMC3. We draw 500 

posterior samples with 500 tuning steps. Table 2.2 lists the estimated functional connectivity and some 
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important statistics of the model diagnostics. We define three different strength of functional 

connectivity as zero, low (0.1, 0.2) and strong (0.5 or 0.6). The mean squared errors (MSEs) are very 

close to two conditions. For zero functional connectivity, two MSEs are 0.277 and 0.281; for low 

functional connectivity, two MSEs are 0.151 and 0.145; for high functional connectivity, two MSEs 

are 0.045 and 0.055. This result based on the NUTS algorithm in PyMC3 is quite different from that 

from previous report using Metropolis-Hastings algorithm in PyMC2 [34], implying the superior 

advantage of NUTS algorithm even though the Bayesian independence assumption might be incorrect. 

 To explore more about the estimated functional connectivity, we plot the histograms 

of 10 parameters from their posterior distributions in Figure 2.2. We can clearly observe 

smaller variances in the correct Bayesian structural connectivity than those in the Bayesian 

independence assumption. Furthermore, to ensure the convergence with the right number of 

sample draws using NUTS algorithms, we conduct an experiment of 3000 posterior samples 

under the correct correlation matrix in PyMC3. The histogram of each functional 

connectivity is shown in Figure 2.3. The posterior distributions of each parameter under 

1000, 2000 and 3000 sample draws are almost identical. In practice, the typical sample draw 

using NUTS is 500 or 1000, which is more advantageous than the Metropolis-Hastings 

algorithm (usually more than 100000). 
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Figure 2.2 Histogram plots of 10 parameters from their posterior distribution. 
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Figure 2.3 Histogram plots of 10 parameters with 1000, 2000 and 3000 sample draws. 
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2.6 Case Study 

2.6.1 Background 

Major depressive disorder (MDD), also known as depression, is a mental disorder 

characterized by a period of low mood, low self-esteem, loss of interest, low energy or pain 

[45]. Although MDD is diagnosed based on behaviors, deficient signs in cognitive 

performance are also common. Changes in the connectivity and function of the brain 

networks are likely to affect the emotional processes directly related to depressive symptoms 

but also negatively affect cognitive function. Recent studies have demonstrated that intrinsic 

networks exhibit altered connectivity between brain regions associated with emotional 

processes and cognitive function [46]. In this case study, we are interested to establish the 

relationship between altered resting-state fMRI connectivity and cognitive function in 

depressed individuals, which can facilitate understanding the role of network connectivity in 

MDD.  

Forty-one subjects were enrolled and completed resting-state fMRI. In the current 

analysis, we have 23 subjects that are non-depressed and 18 subjects that are in MDD group. 

From Table 2.3, there were no significant difference between the control and MDD groups 

in the covariates as age, sex or education. The MDD group had significantly higher 

Montgomery–Asberg Depression Rating Scale (MADRS) and Beck Depression Inventory 

(BDI) scores as expected.  
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Table 2.3 Descriptive statistics of 41 subjects including control (n=23) and MDD (n=18) groups. 

 

Control (n=23) 

Mean (SD) 

MDD (n=18) 

Mean (SD) 
Wilcoxon Rank Sum Tests 

Age(years) 31.78 (10.16) 32.06 (8.55) t = -0.512, p = 0.608 

Sex (% female) 65% 50% t = 0.828, p = 0.408 

Education (years) 15.78 (1.73) 16.28 (1.90) t = -0.512, p = 0.608 

Beck Depression Inventory (BDI) 1.90 (2.62) 22.11 (9.38) t = -4.085, p <0.001 

Montgomery–Asberg 

Depression Rating Scale (MADRS) 
0.70 (1.06) 25.29 (3.20) t = -5.438, p < 0.001 

Processing Speed Domain 0.36 (0.67) 0.20 (0.61) t = 0.841, p = 0.401 

Working Memory Domain 0.10 (0.88) 0.02 (0.81) t = 0.158, p = 0.875 

Episodic Memory Domain 0.23 (0.55) 0.07 (0.75) t = 0.578, p = 0.563 

Executive Function Domain 0.20 (0.55) 0.23 (0.59) t = -0.053, p = 0.958 

 

2.6.2 Exploratory Analysis 

  Based on fMRI and DTI data, we estimated the functional connectivity between 14 

ROIs, which are main regions in the default mode network, for each subject through the 

established Bayesian spatiotemporal model using PyMC3 and NUTS. Each ROI contains 

300 voxels and the length of time-series per voxel is 150. Because the large dimension leads 

to more parameters in the MCMC process, the computation costs for each subject range from 

16 hours to 30 hours. The sampling draw is 1000 with 1000 tuning step. We also conducted 

sampling for 3000 draws on three subjects and check the trace plot between 0-1000, 0-2000 

and 0-3000, which is consistent with the convergence illustrated in Figure 2.3. The plots of 

3000 draws on one subject are shown in the APPENDIX. 

 The number of the estimated functional connectivity on each subject is ninety-one 

and each is named with prefix “FC” such as “FC24”. The correlation among age, sex, 

education, depress (control or MDD) and functional connectivity is visualized in Figure 2.4 
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based on the hierarchical clustering order. 

 

Figure 2.4 Correlation plot of covariates and estimated functional connectivity. 

 

 Furthermore, we conducted the correlation tests between the estimated functional 

connectivity and multiple cognitive domains including episodic memory, executive function, 

processing speed and working memory. Here p values from the tests were adjusted to control 

the false discovery rate (FDR), which is the expected proportion of false discoveries amongst 
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the rejected hypotheses. Across all the ninety-one functional connectivity, we did not find 

any adjusted p value below 0.1, implying that there is no significant evidence that each of 

functional connectivity is correlated with any of the cognitive domains at FDR = 0.1. Later, 

similar tests were conducted on the control and MDD groups, separately. In the MDD group, 

there is no adjusted p value below 0.1, indicating that we don’t see correlation between the 

functional connectivity and cognitive domains at FDR = 0.1. However, in the control group, 

we find that “FC80” is correlated with executive function domain after we adjusted the 

correlation tests using the FDR method at 0.1. 

2.6.3 Regression Analysis 

In order to explore the relationship between MDD and multiple cognitive domains, 

we applied the following regression models to check how the interaction between the 

estimated functional connectivity and depression: 

Cognitive domain ~ Age + Sex + Education + FC𝑖 + Depress + FC𝑖 ∗ Depress 

where FC𝑖  is the 𝑖 th estimated functional connectivity of the upper triangular elements in the 

correlation matrix. The regression coefficients can be referred in the APPENDIX. For one cognitive 

domain regressed with each of ninety-one functional connectivity measures, p values obtained from 

the interaction term were adjusted using the FDR method. For processing speed domain, working 

memory domain and episodic memory domain, we observed that no adjusted p value was below 0.1, 

indicating that there was no significant interaction between functional connectivity and depression 

status. However, for executive function domain, we found that the adjusted p value for the interaction 

term between “FC80” and depress was below 0.1. In other words, there exists significant evidence that 

“FC80” were associated with depression.  The coefficient of that interaction is 1.9, meaning higher 

association between executive function domain and “FC80” for subjects who are suffering from MDD 
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than that for subjects in control while all the other conditions hold the same.  

 What’s more, we examined which of the estimated functional connectivity could 

affect each cognitive function through several methods of variable selection. First, we 

employed four different subset selection approaches, which are exhaustive, forward, 

backward and sequential methods. Due to the large number of explanatory variables 

including four covariates (age, sex, education and depress), we decide to force the four 

covariates always in the model setting and then choose six best variables from “FC1” to 

“FC91”. The plots of residual sum of squares and adjusted R2 for each search algorithm are 

illustrated in APPENDIX.  

Another comparable method of variable selection is to apply LASSO (least absolute 

shrinkage and selection operator) method. It utilizes the 𝑙1  penalty for both fitting and 

penalization of the coefficients. The model is also validated through the bootstrapping 

technique with 1000 iterations. We calculated the percentage of each functional connectivity 

that was selected in each bootstrapping sample. The four covariates were also not allowed to 

be dropped out. The results of percentages can be referred in the APPENDIX.  

After we obtained the variable selection results from all the methods, we listed six of 

the selected variables in Table 2.4.  For processing speed domain, “FC10” and “FC29” were 

selected frequently in all the five methods. For working memory domain, “FC26” was 

selected five times, which warrants more research on the network connectivity between the 

corresponding brain regions. “FC69” is the second frequent of all the selected variables. For 

episodic memory domain, “F9” is the most frequent variable with four times. For executive 

function domain, “FC26” are included in five methods, the same frequency for working 

memory domain. All the selected functional connectivity could be of future research interests 
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to explore the relationship between brain connectivity – cognition association and 

depression. 

Table 2.4 Variable selection results from each method. 

 Processing Speed 

Domain 

Working Memory 

Domain 

Episodic Memory 

Domain 

Executive Function 

Domain 

Exhaustive 
FC4, FC27, FC28, 

FC48, FC57, FC69 

FC26, FC29, FC62, 

FC64, FC69, FC71 

FC6, FC9, FC42, 

FC57, FC78, FC79 

FC6, FC7, FC26, 

FC27, FC50. FC79 

Forward 
FC10, FC20, FC29, 

FC44, FC51, FC58 

FC20, FC26, FC33, 

FC62, FC69, FC85 

FC6, FC9, FC11, 

FC26, FC35, FC65 

FC18, FC20, FC26, 

FC43, FC50, FC77 

Backward 
FC2, FC4, FC6, FC12, 

FC20, FC24 

FC7, FC18, FC19, 

FC25, FC26, FC33 

FC7, FC9, FC11, 

FC22, FC29, FC30 

FC3, FC6, FC8, FC11, 

FC13, FC26 

Sequential 
FC10, FC11, FC17, 

FC28, FC29, FC78 

FC26, FC29, FC62, 

FC64, FC69, FC71 

FC1, FC5, FC6, FC9, 

FC11, FC35 

FC18, FC20, FC26, 

FC43, FC50, FC77 

Lasso 
FC10, FC11, FC26, 

FC29, FC70, FC85 

FC20, FC26, FC62, 

FC64, FC69, FC84 

FC6, FC25, FC34, 

FC57, FC77, FC86 

FC11, FC26, FC58, 

FC70, FC77, FC85 
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SUMMARY AND FUTURE WORK 

In this thesis, we developed a Bayesian hierarchical spatiotemporal model that 

combined fMRI and DTI data jointly to enhance the estimation of resting-state functional 

connectivity. Structural connectivity from DTI data was utilized to construct an informative 

prior for functional connectivity based on resting-state fMRI data through the Cholesky 

decomposition in a mixture model. The analysis took the advantages of probabilistic 

programming package as PyMC3 and next-generation Markov Chain Monte Carlo (MCMC) 

sampling algorithm as No-U-Turn Sampler (NUTS). The simulation study with this 

advanced algorithm, illustrated reduced mean squared errors (MSEs) of estimation. 

Furthermore, through a case study of MDD, we applied our model to examine how the 

estimated functional connectivity was associated with tasks of episodic memory, executive 

function, processing speed and working memory. Through five various methods of variable 

selection, certain estimated functional connectivity can be extended to investigate the 

correlated links between ROIs and depression in the future. 

We have made significant progress in the development of estimating functional 

connectivity using PyMC3. However, abundant exciting opportunities are still available to 

further advance the capabilities and applications of our model. For example, we have listed 

a set of covariance function to capture local spatial correlation, which can be extended to 

compare the estimated results. Another explorable work is to combine all the variables 

including the covariates, estimated functional connectivity and multiple cognitive domains, 

and to build a classifier to identify whether this subject is under MDD or not. The case study 

in this thesis only have forty-one subjects, which is likely to be overfitted using the modern 
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machine learning techniques. For 200 ~ 300 subjects, multiple methods such as random 

forest, gradient boosting tree and support vector machine, can be applied to predict the 

classification of subjects or the value of cognitive domains. 

In conclusion, we have proposed a Bayesian model for resting-state brain networks 

using the newly-developed probabilistic programming even though many challenges still 

exist. Hopefully, the work presented in this thesis will bring attention to future development 

of brain imaging. 
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APPENDIX 

A.1 Setting of PyMC3 and Theano 

The latest version of pymc3 package can be installed from PyPI using pip:

pip install pymc3  

Or via conda-forge channel if you have installed Anaconda to manage installations of various 

packages: 

conda install -c conda-forge pymc3 

 To mention, other related packages like numpy, pandas, theano will be installed 

together with pymc3. In addition, to ensure running pymc3 and theano in various OS systems 

such as Unix, Mac and Windows, other packages such as mkl-service and m2w64-toolchain 

need to be installed with the underlined notices during the setup. For Windows users, 

environmental variables need to be added in the system setting to use conda command in the 

terminal and theano package in Python environment. C++ compiler such as Cygwin needs 

to be installed before running pymc3 and theano in Windows if it does not exist. 

To use GPUs for intensive parallel computation purposes in theano on either 

Vanderbilt ACCRE or your own devices, a theanorc file is required and can be added based 

on theano GPU documentation or ACCRE python documentation in the GitHub pages. All 

the setting and examples are also illustrated in my GitHub repository named DoubleFusion 

(https://github.com/wangruinju/Double-Fusion). 
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A.2 Spatiotemporal Hierarchical Model in PyMC3 

import numpy as np 

import pymc3 as pm 

import theano.tensor as tt 

import theano 

import csv 

import os 

from datetime import date 

 

def get_data(name): 

    yreader = csv.reader(open(name + ".csv")) 

    Y = np.array([row for row in yreader]).astype(float) 

    return Y 

 

def get_func(name, n): 

    sreader = csv.reader(open(name + ".csv")) 

    mFunc = np.array([row for row in sreader]).astype(float) 

    func_new = np.array(mFunc[0, 0:n*(n-1)//2]) 

    func_temp = np.triu(np.ones([n, n]),1) 

    func_temp[func_temp==1] = func_new 

    Func_mat = func_temp.T + np.eye(n) + func_temp 

    return Func_mat 

 

def get_struct(name, n): 

    sreader = csv.reader(open(name + ".csv")) 

    S_read = np.array([row for row in sreader]).astype(float) 

    struct_new = np.array(S_read[0:n*(n-1)//2, 0]) 

    Struct_temp = np.triu(np.ones([n, n]), 1) 

    Struct_temp[Struct_temp ==1] = struct_new 

    Struct_mat = Struct_temp.T + np.eye(n) + Struct_temp 

    return Struct_mat 

 

def get_dist(name, n): 

    Dist = [] 

    for i in range(1, n+1): 

        distreader = csv.reader(open(name + "_" + str(i) + ".csv")) 

        Dist.append(np.array([row for row in distreader]).astype(float)) 

    return Dist 

 

def run_model(index, in_dir, out_dir, data_filename, func_filename, struct_file-

name, dist_filename, n, sample_size, tune_size): 

    os.chdir(in_dir + str(index)) 

    Y = get_data(data_filename) 

    mFunc = get_func(func_filename, n) 

    Struct = get_struct(struct_filename, n)  
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    Dist = get_dist(dist_filename, n) 

    m = Dist[0].shape[0] 

    k = Y.shape[1] 

    n_vec= n*(n+1)//2 

    Y_mean = [] 

    for i in range(n): 

        Y_mean.append(np.mean(Y[i*m:(i+1)*m, 0])) 

    Y_mean = np.array(Y_mean) 

 

    with pm.Model() as model_generator: 

        # convariance matrix 

        log_Sig = pm.Uniform("log_Sig", -8, 8, shape=(n, )) 

        SQ = tt.diag(tt.sqrt(tt.exp(log_Sig))) 

        Func_Covm = tt.dot(tt.dot(SQ, mFunc), SQ) 

        Struct_Convm = tt.dot(tt.dot(SQ, Struct), SQ) 

         

        # double fusion of structural and FC 

        L_fc_vec = tt.reshape(tt.slinalg.chole-

sky(tt.squeeze(Func_Covm)).T[np.triu_indices(n)], (n_vec, )) 

        L_st_vec = tt.reshape(tt.slinalg.chole-

sky(tt.squeeze(Struct_Convm)).T[np.triu_indices(n)], (n_vec, )) 

        Struct_vec = tt.reshape(Struct[np.triu_indices(n)], (n_vec, )) 

        lambdaw = pm.Beta("lambdaw", alpha=1, beta=1, shape=(n_vec, )) 

        Kf = pm.Beta("Kf", alpha=1, beta=1, shape=(n_vec, )) 

        rhonn = Kf*( (1-lambdaw)*L_fc_vec + lambdaw*L_st_vec ) + \ 

            (1-Kf)*( (1-Struct_vec*lambdaw)*L_fc_vec + Struct_vec*lamb-

daw*L_st_vec ) 

 

        # correlation 

        Cov_temp = tt.triu(tt.ones((n,n))) 

        Cov_temp = tt.set_subtensor(Cov_temp[np.triu_indices(n)], rhonn) 

        Cov_mat_v = tt.dot(Cov_temp.T, Cov_temp) 

        d = tt.sqrt(tt.diagonal(Cov_mat_v)) 

        rho = (Cov_mat_v.T/d).T/d 

        rhoNew = pm.Deterministic("rhoNew", rho[np.triu_indices(n,1)]) 

 

        # temporal correlation AR(1) 

        phi_T = pm.Uniform("phi_T", 0, 1, shape=(n, )) 

        sigW_T = pm.Uniform("sigW_T", 0, 100, shape=(n, )) 

        B = pm.Normal("B", 0, 100, shape=(n, )) 

        muW1 = Y_mean - B # get the shifted mean 

        mean_overall = muW1/(1.0-phi_T) # AR(1) mean 

        tau_overall = (1.0-tt.sqr(phi_T))/tt.sqr(sigW_T) # AR (1) variance 

        W_T = pm.MvNormal("W_T", mu = mean_overall, tau = tt.diag(tau_overall), 

shape = (k, n))  
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        # add all parts together 

        one_m_vec = tt.ones((m, 1)) 

        one_k_vec = tt.ones((1, k)) 

 

        D = pm.MvNormal("D", mu=tt.zeros(n), cov=Cov_mat_v, shape = (n, )) 

        phi_s = pm.Uniform("phi_s", 0, 20, shape = (n, )) 

        spat_prec = pm.Uniform("spat_prec", 0, 100, shape = (n, )) 

        H_base = pm.Normal("H_base", 0, 1, shape = (m, n)) 

 

        Mu_all_temp = [] 

        for i in range(n): 

            # exponential covariance function 

            H_temp = tt.sqr(spat_prec[i])*tt.exp(-phi_s[i]*Dist[i]) 

            L_H_temp = tt.slinalg.cholesky(H_temp) 

            Mu_all_temp.append(B[i] + D[i] + one_m_vec*W_T[:,i] + 

tt.dot(L_H_temp, tt.reshape(H_base[:,i], (m, 1)))*one_k_vec) 

        MU_all = tt.concatenate(Mu_all_temp, axis = 0) 

 

        sigma_error_prec = pm.Uniform("sigma_error_prec", 0, 100) 

        Y1 = pm.Normal("Y1", mu = MU_all, sd = sigma_error_prec, observed = Y) 

 

    with model_generator: 

        step = pm.NUTS() 

        trace = pm.sample(sample_size, step = step, tune = tune_size, chains = 1) 

 

    # save as pandas format and output the csv file 

    save_trace = pm.trace_to_dataframe(trace) 

    save_trace.to_csv(out_dir + date.today().strftime("%m_%d_%y") + "_sam-

ple_size_" + str(sample_size) + "_index_" + str(index) + ".csv") 
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# initializing parameters 

index_list = [8007, 8012, 8049, 8050, 8068, 8072, 8077, 8080, \ 

              8098, 8107, 8110, 8146, 8216, 8244, 8245, 8246, \ 

              8248, 8250, 8253, 8256, 8257, 8261, 8262, 8263, \ 

              8264, 8265, 8266, 8273, 8276, 8279, 8280, 8282, \ 

              8283, 8284, 8285, 8288, 8290, 8292, 8293, 8295, \ 

              8299] 

in_dir = "/Users/ruiwang/source/doublefusion/simulation/data/" 

out_dir = "/Users/ruiwang/source/doublefusion/simulation/results/" 

data_filename = "ROI_timeseries_data" 

func_filename = "DMN_MeanFunctional_Connectivity" 

struct_filename = "DMN_StructuralConnectivity" 

dist_filename = "distMatrix_ROI" 

n = 14 

sample_size = 1000 

tune_size = 1000 

 

# run the model 

for index in index_list: 

    run_model(index, in_dir, out_dir, data_filename, func_filename, struct_file-

name, dist_filename, n, sample_size, tune_size) 
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A.3 Histogram Plots of Parameters with 1000, 2000 and 3000 Sample Draws 

  



 

38 

 

A.4 Regression Coefficients  

 

 Intercept Age sex Education FC_i Depress FC_i*Depress 

1 1.17 -0.01 -0.00 -0.03 0.26 0.09 -0.53 

2 -0.41 -0.01 -0.13 -0.03 2.80 3.19 -5.91 

3 0.68 -0.02 -0.07 -0.02 1.00 1.05 -2.70 

4 0.86 -0.02 -0.15 -0.01 1.07 -0.37 0.63 

5 1.28 -0.01 -0.10 -0.04 0.75 -0.09 -0.10 

6 1.18 -0.02 0.07 -0.02 0.83 -0.27 0.62 

7 1.38 -0.02 0.05 -0.03 -0.15 -0.28 1.48 

8 1.29 -0.02 0.02 -0.03 0.21 -0.14 0.44 

9 1.12 -0.02 0.06 -0.02 -0.03 -0.08 1.00 

10 0.60 -0.01 -0.08 -0.03 2.03 0.08 -0.47 

11 1.09 -0.02 0.03 -0.01 -1.07 -0.10 0.06 

12 1.05 -0.01 0.04 -0.02 -0.58 -0.08 1.37 

13 1.66 -0.01 -0.08 -0.05 -1.08 -0.13 1.74 

14 0.52 -0.02 0.02 -0.01 1.87 0.71 -3.25 

15 -0.15 -0.02 -0.06 -0.01 2.72 2.23 -5.16 

16 1.27 -0.02 0.03 -0.04 1.28 0.42 -3.23 

17 1.59 -0.02 0.03 -0.04 -0.11 0.27 -1.52 

18 1.25 -0.01 -0.01 -0.03 -0.04 -0.10 1.19 

19 1.18 -0.01 0.04 -0.03 -0.93 -0.17 1.78 

20 1.51 -0.02 -0.02 -0.05 -0.91 -0.09 0.50 

21 1.35 -0.02 -0.01 -0.04 -0.54 -0.06 0.72 

22 1.38 -0.01 -0.04 -0.04 0.14 -0.11 0.45 

23 1.42 -0.02 0.01 -0.03 -0.27 -0.15 -0.02 

24 1.40 -0.02 0.02 -0.03 -1.06 -0.24 1.38 

25 1.50 -0.02 -0.05 -0.05 -1.44 -0.02 0.98 

26 -0.66 -0.01 -0.10 -0.07 4.01 1.89 -3.44 

27 1.05 -0.01 0.00 -0.04 0.74 0.56 -1.60 

28 0.16 -0.00 -0.06 -0.05 3.24 1.10 -3.57 

29 1.16 -0.02 -0.01 -0.02 0.36 -0.65 1.75 

30 1.46 -0.02 0.01 -0.03 -0.66 -0.63 2.47 

31 1.64 -0.02 -0.06 -0.05 0.98 -0.19 0.35 

32 1.09 -0.02 -0.02 -0.02 -0.63 -0.10 2.11 

33 1.05 -0.02 -0.04 -0.02 0.58 -0.62 1.37 

34 1.37 -0.02 -0.00 -0.02 -1.32 -0.47 2.16 

35 0.52 -0.01 -0.06 0.02 -1.39 -0.25 2.86 

36 1.50 -0.02 -0.12 -0.03 -1.97 -0.17 3.12 

37 1.29 -0.01 0.02 -0.04 0.47 0.63 -2.56 

38 1.04 -0.01 -0.02 -0.04 0.84 0.49 -1.61 

39 1.02 -0.02 0.06 0.00 -0.56 -0.63 2.31 

40 1.28 -0.02 0.05 -0.02 -1.07 -0.49 1.89 

41 1.43 -0.02 -0.03 -0.03 0.44 -0.16 0.70 

42 1.49 -0.02 -0.03 -0.04 0.10 -0.12 1.47 

43 1.33 -0.02 -0.00 -0.02 -0.67 -0.63 2.12 

44 1.61 -0.02 -0.02 -0.02 -1.24 -0.23 0.64 

45 0.91 -0.01 -0.01 -0.00 -0.65 -0.38 1.74 

46 1.06 -0.01 -0.05 -0.02 -1.48 -0.02 2.21 

47 -1.14 -0.01 -0.05 -0.06 4.07 3.51 -5.65 

48 0.92 -0.02 -0.03 0.01 0.14 -0.42 2.16 

49 1.12 -0.02 -0.01 -0.01 -0.25 -0.29 1.58 

50 1.57 -0.01 0.03 -0.05 1.08 -0.11 -0.95 

51 1.39 -0.01 -0.03 -0.04 -0.52 -0.12 -0.33 

52 1.29 -0.02 -0.16 -0.03 1.14 -0.18 0.53 

53 1.32 -0.02 -0.02 -0.02 -0.98 -0.22 1.44 

54 1.20 -0.01 -0.00 -0.03 -0.25 -0.15 0.56 

55 1.26 -0.02 -0.03 -0.02 -0.13 -0.06 1.44 

56 0.90 -0.02 0.04 0.00 -0.24 -0.39 2.59 

57 1.20 -0.01 0.02 -0.02 -0.41 -0.22 1.07 

58 1.43 -0.01 0.04 -0.04 1.19 -0.17 -0.74 

59 1.41 -0.01 -0.01 -0.04 0.19 -0.13 -0.05 

60 1.38 -0.02 -0.10 -0.04 0.75 -0.11 0.15 

61 1.68 -0.01 0.02 -0.04 -1.41 -0.26 0.64 

62 1.50 -0.01 -0.06 -0.04 0.45 -0.10 -0.15 

63 1.34 -0.02 -0.00 -0.03 0.67 -0.08 0.53 

64 1.56 -0.01 -0.05 -0.04 -0.07 -2.47 3.56 

65 1.39 -0.02 -0.05 -0.03 0.00 -0.33 1.66 

66 1.41 -0.02 -0.11 -0.03 0.11 -0.29 1.85 

67 1.53 -0.01 0.01 -0.03 -0.80 -0.60 1.22 

68 1.51 -0.01 -0.02 -0.04 -0.45 0.08 -0.93 

69 1.39 -0.01 -0.03 -0.04 0.09 -0.14 0.02 

70 1.22 -0.01 -0.11 -0.02 1.96 -0.22 -0.11 

71 1.44 -0.02 -0.05 -0.04 1.25 -0.07 -0.01 

72 1.30 -0.02 -0.06 -0.02 0.22 -0.30 1.87 

73 1.43 -0.02 0.06 -0.02 -1.46 -0.61 2.49 

74 1.53 -0.02 0.01 -0.03 -0.98 -0.16 0.22 

75 1.35 -0.01 -0.01 -0.03 -0.38 -0.14 0.62 

76 2.08 -0.02 -0.19 -0.06 2.26 -0.21 -1.09 

77 0.76 -0.01 -0.12 -0.04 1.08 -0.43 0.69 

78 1.21 -0.02 -0.02 -0.02 -0.74 -0.19 2.62 

79 1.07 -0.02 0.01 -0.02 -1.12 -0.04 2.58 

80 2.31 -0.01 -0.01 -0.08 -2.82 -0.46 3.30 

81 1.73 -0.02 -0.08 -0.04 -0.84 -0.63 2.30 

82 1.56 -0.02 0.01 -0.04 0.98 -0.21 -0.14 

83 1.53 -0.01 0.00 -0.05 0.54 -0.14 0.01 

84 0.85 -0.01 0.07 -0.02 1.34 0.10 -1.38 

85 1.00 -0.01 -0.00 -0.02 1.06 -0.03 -0.03 

86 2.43 -0.01 0.12 0.00 -3.98 -2.86 6.38 

87 1.58 -0.02 -0.05 -0.04 0.05 0.10 -1.80 

88 0.40 -0.02 -0.01 0.03 0.78 -0.23 1.18 

89 1.68 -0.02 0.06 -0.03 -1.32 -0.12 0.12 

90 0.95 -0.01 -0.02 -0.01 0.20 -0.12 1.66 

91 1.15 -0.02 0.00 -0.02 0.47 -0.06 -1.13 

 1 
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 Intercept Age sex Education FC_i Depress FC_i*Depress 

1 0.57 -0.03 -0.22 0.04 0.01 -0.68 1.31 

2 0.80 -0.03 -0.06 0.06 -0.88 -2.60 4.33 

3 0.97 -0.03 -0.10 0.04 -0.85 -1.81 3.77 

4 0.20 -0.03 -0.12 0.08 -0.77 -0.68 1.78 

5 0.29 -0.03 -0.09 0.07 -0.88 -0.47 1.37 

6 -0.02 -0.04 -0.06 0.08 0.61 -0.37 1.06 

7 0.26 -0.04 -0.08 0.07 0.80 -0.26 0.68 

8 0.25 -0.03 -0.16 0.06 0.01 -0.16 -0.24 

9 0.27 -0.03 -0.18 0.06 -0.15 -0.17 -0.29 

10 -0.15 -0.03 -0.16 0.09 0.15 -0.46 0.99 

11 0.00 -0.03 -0.10 0.08 -0.91 -0.30 1.32 

12 0.00 -0.03 -0.12 0.08 -0.31 -0.13 0.78 

13 0.02 -0.03 -0.10 0.08 0.59 -0.18 -0.25 

14 0.28 -0.03 -0.16 0.06 -0.11 -0.24 0.34 

15 0.38 -0.03 -0.14 0.07 -0.46 -0.03 -0.37 

16 0.08 -0.03 -0.15 0.07 0.73 -0.00 -1.01 

17 0.22 -0.03 -0.15 0.07 -0.07 -0.16 0.02 

18 -0.01 -0.03 -0.16 0.08 0.30 -0.08 1.98 

19 0.25 -0.03 -0.16 0.06 0.61 -0.17 -0.09 

20 0.35 -0.03 -0.13 0.06 0.81 -0.33 -1.55 

21 0.32 -0.03 -0.15 0.06 0.15 -0.23 -0.59 

22 0.09 -0.03 -0.21 0.07 -0.81 -0.17 3.43 

23 0.29 -0.03 -0.11 0.07 -0.62 -0.20 0.07 

24 -0.06 -0.03 -0.16 0.08 0.02 -0.17 0.76 

25 0.08 -0.03 -0.12 0.08 1.29 -0.28 -0.99 

26 0.04 -0.03 -0.24 0.06 0.69 -1.36 2.08 

27 0.13 -0.03 -0.12 0.06 0.28 0.46 -1.43 

28 0.33 -0.03 -0.11 0.07 -0.31 0.04 -0.65 

29 0.05 -0.03 -0.15 0.07 0.55 -0.31 0.47 

30 0.18 -0.03 -0.15 0.07 0.09 -0.20 0.14 

31 0.12 -0.03 -0.13 0.07 0.85 -0.15 -1.25 

32 0.27 -0.03 -0.13 0.06 -0.05 -0.16 -1.00 

33 0.24 -0.04 -0.13 0.10 -1.31 -1.10 2.66 

34 0.35 -0.03 -0.18 0.08 -1.40 -0.32 1.26 

35 -0.20 -0.03 -0.20 0.09 0.38 -0.17 0.60 

36 -0.09 -0.03 -0.10 0.09 0.75 -0.22 0.13 

37 0.26 -0.03 -0.13 0.07 -0.19 -0.08 -0.26 

38 0.60 -0.03 -0.12 0.06 -0.87 -0.10 -0.18 

39 0.18 -0.03 -0.15 0.07 0.06 -0.17 0.05 

40 0.34 -0.03 -0.17 0.06 -0.13 -0.02 -0.62 

41 0.34 -0.03 -0.15 0.06 0.73 -0.17 -1.14 

42 0.37 -0.03 -0.17 0.06 0.41 -0.16 0.03 

43 0.15 -0.04 -0.13 0.09 -0.89 -0.80 2.75 

44 0.37 -0.03 -0.15 0.07 -0.86 -0.23 0.47 

45 0.15 -0.03 -0.16 0.06 0.66 -0.11 -0.30 

46 0.25 -0.03 -0.13 0.07 0.81 -0.21 -0.52 

47 1.34 -0.03 -0.20 0.05 -1.18 -2.53 3.79 

48 0.13 -0.03 -0.18 0.08 0.61 -0.21 0.18 

49 0.16 -0.03 -0.15 0.07 -0.17 -0.19 0.40 

50 0.50 -0.03 -0.11 0.04 1.47 -0.08 -2.74 

51 0.36 -0.03 -0.17 0.06 0.57 -0.14 -0.97 

52 0.08 -0.03 -0.19 0.09 -0.54 -0.48 2.44 

53 0.33 -0.03 -0.12 0.06 0.07 -0.13 -0.57 

54 0.56 -0.03 -0.17 0.05 0.52 -0.13 -1.06 

55 0.20 -0.03 -0.10 0.07 0.65 -0.21 -0.81 

56 0.48 -0.03 -0.18 0.04 0.12 -0.01 -1.50 

57 0.48 -0.03 -0.14 0.04 -0.28 -0.03 -1.38 

58 0.31 -0.03 -0.14 0.06 0.89 -0.17 -1.16 

59 0.23 -0.03 -0.13 0.07 0.44 -0.14 0.35 

60 0.36 -0.03 -0.19 0.06 -0.44 -0.39 2.16 

61 0.22 -0.03 -0.13 0.06 0.14 -0.05 -0.87 

62 0.18 -0.03 -0.21 0.07 0.27 -0.17 0.45 

63 0.21 -0.03 -0.15 0.07 0.05 -0.17 -0.14 

64 0.37 -0.03 -0.18 0.06 -0.10 -1.95 2.72 

65 0.15 -0.03 -0.13 0.08 -1.04 -0.30 0.81 

66 0.12 -0.03 -0.14 0.07 -0.61 -0.23 0.72 

67 0.07 -0.03 -0.09 0.08 0.11 -1.17 2.48 

68 0.26 -0.03 -0.15 0.07 -0.45 -0.16 -0.02 

69 0.24 -0.03 -0.23 0.07 0.37 -0.17 0.26 

70 -0.00 -0.03 -0.18 0.08 0.03 -0.18 1.05 

71 0.19 -0.03 -0.14 0.07 -0.40 -0.20 0.25 

72 0.15 -0.03 -0.13 0.08 -1.02 -0.29 1.11 

73 0.18 -0.03 -0.11 0.08 -0.69 -0.51 1.73 

74 0.32 -0.03 -0.12 0.08 -1.21 -0.31 0.81 

75 0.19 -0.03 -0.15 0.07 -0.30 -0.16 0.47 

76 0.40 -0.03 -0.21 0.06 0.57 -0.19 0.29 

77 0.57 -0.03 -0.34 0.07 -0.61 -1.77 3.38 

78 0.42 -0.03 -0.15 0.06 1.55 -0.15 -2.04 

79 0.28 -0.03 -0.17 0.06 0.35 -0.21 -1.46 

80 0.54 -0.03 -0.19 0.05 -0.48 -0.26 1.65 

81 0.55 -0.03 -0.22 0.07 -0.77 -0.65 2.31 

82 0.46 -0.03 -0.16 0.05 1.00 -0.19 -2.41 

83 0.24 -0.03 -0.18 0.06 -0.04 -0.16 -2.05 

84 0.09 -0.03 -0.13 0.07 0.30 -0.10 -0.32 

85 0.47 -0.03 -0.20 0.07 -0.91 -0.45 2.14 

86 1.20 -0.03 -0.09 0.07 -2.56 -1.08 1.96 

87 0.21 -0.03 -0.17 0.07 0.31 -0.08 -0.70 

88 -0.22 -0.03 -0.14 0.09 0.60 -0.17 0.04 

89 0.54 -0.03 -0.10 0.07 -1.27 -0.33 0.91 

90 -0.19 -0.03 -0.16 0.09 -0.36 -0.12 2.07 

91 0.41 -0.03 -0.16 0.06 -0.37 -0.16 -0.30 
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 Intercept Age sex Education FC_i Depress FC_i*Depress 

1 0.39 -0.00 0.24 -0.01 -0.20 0.05 -0.13 

2 0.50 -0.00 0.19 -0.01 -0.22 0.57 -1.01 

3 1.23 0.00 0.30 -0.03 -1.61 -0.90 1.99 

4 0.15 -0.00 0.19 0.01 -0.41 -0.68 2.28 

5 0.44 -0.00 0.25 -0.01 -0.76 -0.34 1.57 

6 0.31 -0.00 0.25 -0.01 0.48 -0.01 0.04 

7 0.38 0.00 0.22 -0.02 0.01 0.00 0.04 

8 0.49 0.00 0.20 -0.02 0.21 0.00 -0.62 

9 0.68 -0.00 0.18 -0.03 0.65 -0.07 -1.05 

10 -0.04 -0.00 0.20 -0.00 0.61 -0.13 0.50 

11 0.13 -0.00 0.25 0.00 -0.93 0.03 0.10 

12 -0.02 0.00 0.29 0.00 -0.80 0.08 1.77 

13 0.54 -0.00 0.18 -0.03 -0.55 0.02 0.47 

14 0.00 -0.00 0.25 0.00 0.55 0.40 -1.65 

15 0.40 -0.00 0.23 -0.01 -0.23 0.55 -1.29 

16 0.29 0.00 0.21 -0.02 0.36 0.03 -0.20 

17 0.35 0.00 0.21 -0.01 -0.13 -0.14 0.56 

18 0.43 -0.00 0.19 -0.02 0.82 0.03 -0.48 

19 0.49 -0.00 0.19 -0.02 0.60 0.02 -1.01 

20 0.66 -0.00 0.21 -0.04 -0.71 -0.04 -0.35 

21 0.51 0.00 0.21 -0.02 0.41 -0.10 -0.97 

22 0.41 0.00 0.18 -0.02 0.45 0.05 -0.10 

23 0.44 -0.00 0.24 -0.02 -0.18 0.05 -0.34 

24 0.28 0.00 0.24 -0.01 -1.10 -0.11 1.79 

25 0.43 -0.00 0.19 -0.02 -1.07 0.03 0.26 

26 -1.67 0.01 0.10 -0.05 4.16 1.56 -2.64 

27 1.33 -0.00 0.26 -0.02 -1.82 -0.74 1.72 

28 0.10 0.00 0.22 -0.02 0.73 0.38 -1.11 

29 0.21 -0.00 0.21 -0.02 0.86 0.05 -0.27 

30 0.38 -0.00 0.22 -0.02 -0.04 -0.06 0.30 

31 0.43 -0.00 0.21 -0.02 0.79 -0.01 -0.55 

32 0.54 -0.00 0.18 -0.02 0.70 -0.04 -0.30 

33 0.04 -0.00 0.18 -0.02 1.44 0.20 -0.55 

34 0.28 -0.00 0.24 -0.01 0.07 -0.11 0.60 

35 -0.56 0.00 0.14 0.04 -0.38 -0.07 2.29 

36 0.24 -0.00 0.19 0.00 -0.66 -0.07 2.03 

37 0.24 0.00 0.18 -0.02 0.53 0.04 -0.13 

38 0.46 -0.00 0.22 -0.02 -0.19 -0.10 0.26 

39 0.27 -0.00 0.17 -0.02 1.05 0.12 -0.64 

40 0.32 -0.00 0.20 -0.02 0.72 0.09 -0.55 

41 0.56 -0.00 0.21 -0.02 1.06 -0.02 -1.11 

42 1.06 -0.00 0.15 -0.05 1.98 -0.02 -1.55 

43 0.34 -0.00 0.23 0.00 -0.68 -0.49 2.11 

44 0.51 -0.00 0.22 -0.01 -0.66 -0.11 0.63 

45 0.16 0.00 0.21 -0.00 -0.04 -0.08 0.64 

46 0.11 0.00 0.20 -0.00 -0.78 0.08 1.67 

47 -1.69 0.01 0.15 -0.05 3.66 2.62 -4.00 

48 0.14 -0.00 0.19 0.01 0.35 -0.14 1.01 

49 0.18 -0.00 0.21 -0.00 0.08 -0.11 0.94 

50 0.59 0.00 0.27 -0.03 1.22 0.01 -0.53 

51 0.27 -0.00 0.24 -0.01 0.05 -0.02 0.92 

52 0.27 -0.00 0.22 0.00 -0.97 -0.33 2.47 

53 0.08 -0.00 0.15 0.01 0.35 -0.03 0.76 

54 0.32 0.00 0.12 -0.01 0.36 0.06 0.76 

55 0.25 -0.00 0.28 -0.01 0.98 -0.01 -0.06 

56 0.44 -0.00 0.18 -0.01 0.66 -0.00 -0.06 

57 0.38 -0.00 0.20 -0.01 0.39 0.00 -0.12 

58 0.37 -0.00 0.28 -0.01 1.03 -0.04 -0.13 

59 0.39 -0.00 0.25 -0.02 0.49 0.04 0.56 

60 0.43 0.00 0.23 -0.02 -0.32 -0.08 0.65 

61 0.23 -0.00 0.19 -0.01 0.59 -0.00 0.21 

62 0.61 -0.00 0.09 -0.03 1.03 0.07 -0.15 

63 0.38 -0.00 0.21 -0.02 -0.15 0.04 0.34 

64 -1.04 0.00 0.26 -0.02 1.93 1.13 -1.71 

65 0.40 -0.00 0.21 -0.02 0.31 0.01 0.03 

66 0.40 -0.00 0.17 -0.01 0.08 -0.07 0.84 

67 0.26 -0.00 0.21 -0.02 0.57 0.27 -0.72 

68 0.43 -0.00 0.18 -0.04 1.59 0.74 -2.89 

69 0.33 0.00 0.25 -0.01 -0.30 -0.01 0.21 

70 0.19 0.00 0.16 -0.00 0.81 -0.04 0.56 

71 0.40 -0.00 0.20 -0.02 1.03 0.13 -1.02 

72 0.34 -0.00 0.19 -0.01 0.21 -0.07 0.90 

73 0.43 -0.00 0.23 -0.01 -0.45 -0.04 0.34 

74 0.44 0.00 0.19 -0.04 1.01 0.38 -1.75 

75 0.34 -0.00 0.19 -0.01 -0.57 -0.00 1.25 

76 0.66 -0.00 0.15 -0.03 0.91 -0.02 -0.56 

77 -0.40 0.01 0.03 -0.02 1.35 -0.75 1.68 

78 0.27 0.00 0.22 -0.01 -0.89 0.01 0.89 

79 0.06 0.00 0.21 -0.00 -0.99 0.05 0.88 

80 1.62 0.00 0.18 -0.07 -3.22 -0.41 4.85 

81 0.87 -0.00 0.14 -0.01 -1.50 -0.59 2.59 

82 0.59 0.00 0.21 -0.03 0.93 -0.04 -1.65 

83 0.52 0.00 0.20 -0.03 0.36 -0.00 -1.79 

84 0.27 0.00 0.24 -0.02 0.42 0.04 -0.19 

85 0.01 -0.00 0.20 -0.00 0.96 0.02 0.87 

86 1.09 0.00 0.28 -0.01 -2.12 -1.04 2.37 

87 0.64 -0.00 0.19 -0.03 -0.28 0.22 -1.53 

88 -0.02 -0.00 0.19 0.02 -0.54 -0.12 2.07 

89 0.67 -0.00 0.26 -0.02 -1.09 -0.18 0.94 

90 -0.12 0.00 0.22 0.01 -1.05 0.08 3.25 

91 0.44 0.00 0.21 -0.02 -0.16 -0.05 0.84 
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 Intercept Age sex Education FC_i Depress FC_i*Depress 

1 1.78 -0.03 0.33 -0.04 -0.42 -0.15 0.09 

2 0.53 -0.03 0.19 -0.04 1.72 2.90 -5.33 

3 1.25 -0.03 0.26 -0.05 0.81 0.29 -0.85 

4 1.69 -0.03 0.28 -0.07 0.74 0.46 -1.87 

5 1.70 -0.03 0.35 -0.05 -0.19 0.02 -0.61 

6 1.79 -0.03 0.26 -0.07 1.93 0.44 -2.96 

7 1.75 -0.03 0.27 -0.05 1.55 0.10 -2.48 

8 2.08 -0.03 0.23 -0.07 0.82 -0.10 -2.27 

9 2.31 -0.03 0.19 -0.08 0.86 -0.24 -2.34 

10 1.41 -0.03 0.22 -0.09 2.71 1.04 -3.41 

11 1.54 -0.03 0.34 -0.04 -0.63 -0.29 1.71 

12 2.18 -0.03 0.28 -0.08 0.10 -0.16 -1.27 

13 1.71 -0.03 0.29 -0.05 -0.15 -0.09 -0.08 

14 1.33 -0.03 0.33 -0.03 0.48 0.25 -1.44 

15 1.81 -0.03 0.31 -0.05 -0.31 -0.19 0.18 

16 1.49 -0.03 0.32 -0.05 1.17 0.25 -2.10 

17 1.69 -0.03 0.32 -0.05 0.18 0.08 -0.67 

18 1.69 -0.03 0.34 -0.05 -1.01 -0.15 -0.35 

19 1.48 -0.03 0.34 -0.04 -1.21 -0.11 1.39 

20 2.00 -0.03 0.28 -0.08 -1.78 -0.04 0.66 

21 1.77 -0.03 0.30 -0.06 -1.04 -0.01 0.81 

22 1.72 -0.03 0.34 -0.05 0.42 -0.09 -1.95 

23 1.60 -0.03 0.30 -0.05 -0.11 -0.19 0.64 

24 1.62 -0.03 0.30 -0.05 -0.01 -0.10 0.11 

25 1.71 -0.03 0.27 -0.06 -1.06 -0.07 0.24 

26 -0.44 -0.02 0.21 -0.08 4.12 2.02 -3.60 

27 1.74 -0.03 0.37 -0.06 0.10 0.83 -2.11 

28 1.37 -0.03 0.32 -0.05 0.76 0.47 -1.69 

29 1.61 -0.03 0.29 -0.07 1.18 0.65 -2.73 

30 1.63 -0.03 0.30 -0.05 0.29 0.15 -1.22 

31 1.47 -0.03 0.36 -0.04 2.25 -0.07 -3.18 

32 1.76 -0.03 0.31 -0.05 0.24 -0.11 -0.72 

33 1.78 -0.02 0.30 -0.08 0.43 0.59 -1.95 

34 1.60 -0.03 0.33 -0.02 -1.65 -0.59 3.10 

35 2.09 -0.03 0.35 -0.07 -0.12 -0.07 -0.85 

36 2.10 -0.03 0.17 -0.07 -2.18 -0.04 1.80 

37 0.99 -0.02 0.18 -0.06 2.69 0.76 -2.94 

38 0.94 -0.03 0.28 -0.05 1.76 1.04 -2.90 

39 1.98 -0.02 0.23 -0.08 0.76 0.41 -2.37 

40 1.66 -0.03 0.31 -0.05 -0.14 -0.12 0.17 

41 1.72 -0.03 0.31 -0.06 0.22 -0.09 -1.33 

42 1.52 -0.03 0.32 -0.05 -0.27 -0.10 -0.79 

43 1.69 -0.02 0.29 -0.07 0.65 0.35 -1.91 

44 1.89 -0.03 0.33 -0.05 -0.89 -0.69 2.63 

45 2.17 -0.03 0.30 -0.09 1.10 0.21 -2.18 

46 1.59 -0.02 0.26 -0.06 -1.99 0.03 1.11 

47 -0.80 -0.02 0.19 -0.10 4.65 2.67 -4.17 

48 2.07 -0.02 0.29 -0.08 0.49 0.16 -2.13 

49 1.74 -0.03 0.30 -0.06 0.11 -0.04 -0.53 

50 1.83 -0.03 0.33 -0.07 0.89 -0.04 -1.70 

51 1.85 -0.03 0.28 -0.06 0.48 -0.07 -1.31 

52 1.72 -0.03 0.18 -0.07 2.24 0.31 -2.80 

53 1.63 -0.03 0.30 -0.05 0.36 -0.07 -0.32 

54 2.17 -0.03 0.15 -0.08 1.34 0.03 -0.75 

55 1.74 -0.02 0.49 -0.06 2.25 -0.32 -4.01 

56 1.95 -0.03 0.27 -0.07 0.23 0.06 -1.55 

57 1.61 -0.03 0.30 -0.04 0.03 -0.12 0.23 

58 1.82 -0.02 0.32 -0.07 1.31 -0.11 -1.84 

59 1.86 -0.03 0.28 -0.06 0.64 -0.13 -1.29 

60 1.46 -0.03 0.15 -0.05 2.33 0.28 -2.42 

61 1.60 -0.03 0.25 -0.04 -0.14 -0.32 1.73 

62 2.36 -0.03 0.13 -0.09 2.01 0.12 -1.61 

63 1.69 -0.02 0.36 -0.06 1.65 -0.47 -4.08 

64 1.00 -0.03 0.40 -0.03 0.55 4.95 -7.69 

65 1.71 -0.03 0.31 -0.06 1.17 0.20 -2.10 

66 1.65 -0.03 0.33 -0.05 0.01 -0.05 -0.50 

67 1.59 -0.03 0.24 -0.06 0.81 1.18 -3.23 

68 1.75 -0.03 0.32 -0.04 -1.08 -0.21 0.37 

69 1.61 -0.03 0.51 -0.05 -0.79 -0.04 -1.08 

70 2.00 -0.03 0.30 -0.07 1.27 -0.11 -2.33 

71 1.70 -0.03 0.27 -0.07 2.31 0.24 -2.79 

72 1.64 -0.03 0.30 -0.05 -0.04 -0.12 0.31 

73 1.80 -0.02 0.26 -0.07 0.17 0.33 -1.93 

74 1.75 -0.03 0.31 -0.05 -0.44 -0.07 -0.07 

75 1.65 -0.03 0.41 -0.05 -0.28 -0.09 -0.78 

76 2.38 -0.03 0.15 -0.08 2.55 -0.13 -3.94 

77 0.43 -0.02 0.45 -0.06 2.11 1.80 -3.89 

78 1.73 -0.03 0.31 -0.06 0.17 -0.05 -1.59 

79 1.09 -0.03 0.29 -0.02 -1.80 0.00 1.92 

80 2.18 -0.03 0.30 -0.07 -1.51 -0.27 1.90 

81 1.68 -0.03 0.33 -0.04 -0.54 0.02 -0.77 

82 1.89 -0.03 0.29 -0.06 0.92 -0.12 -2.18 

83 1.75 -0.03 0.31 -0.05 0.32 -0.10 -0.13 

84 1.35 -0.03 0.38 -0.05 1.25 -0.01 -0.47 

85 1.35 -0.03 0.36 -0.05 1.05 0.22 -2.24 

86 2.73 -0.02 0.34 -0.06 -2.34 -0.49 0.66 

87 1.92 -0.03 0.18 -0.06 1.77 0.65 -6.20 

88 1.87 -0.03 0.31 -0.06 0.17 -0.04 -0.88 

89 1.65 -0.03 0.32 -0.04 -0.10 0.02 -0.50 

90 1.88 -0.03 0.32 -0.06 -1.32 -0.05 0.40 

91 1.21 -0.03 0.33 -0.02 0.91 0.02 -1.60 
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A.5 Variable Selection with Lasso Method1 

require(boot) 

require(glmnet) 

 

get_lasso_selection <- function(data, fixed_indices, selected_indices, re-

sponse_indice, n_boot) { 

  df <- as.matrix(data) 

  pnlty <- c(rep(0, length(fixed_indices)), rep(1, length(selected_indices))) 

  sim <- function(x,y,z) { 

    cv <- cv.glmnet(x, y, nfold = z, type.measure = "mse", penalty.factor = 

pnlty) 

    return(cv$lambda.1se) 

    } 

  boot_sim <- function(dat, indices){ 

    data <- dat[indices,] 

    result <- sim(x = data[, c(fixed_indices, selected_indices)],  

                  y = data[, response_indice], z = 10) 

    return(result) 

  } 

  boot_result <- boot(df, boot_sim, R = n_boot) 

  lambda <- boot_result$t 

  # create the table for the result 

  mat <- matrix(0, nrow = 1, ncol = length(fixed_indices) + length(selected_indi-

ces)) 

  for(i in 1:length(lambda)){ 

    beta_r <- glmnet(x = df[, c(fixed_indices, selected_indices)],  

                     y = df[, response_indice], lambda = lambda[i], 

                     penalty.factor=pnlty)$beta 

    for(j in 1:ncol(mat)){ 

      if (beta_r[j] != 0){ 

        mat[1,j] <- mat[1,j] + 1 

      } 

    } 

  } 

  # change the count to percentage 

  mat <- mat/(n_boot/100) 

  colnames(mat) <- colnames(df)[c(fixed_indices, selected_indices)] 

  rownames(mat) <- "Percent" 

  return(mat) 

}     

 

 

                                                 

1 Modified codes. Ya-Chen Lisa Lin credits.  
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A.6 Plots of Subset Selection 

Exhaustive method 
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Forward method 
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Backward method 
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Sequential method 
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