
MULTIPLE-HOLE DEFECTS: OPTIMIZING LIGHT-MATTER INTERACTION IN

PHOTONIC CRYSTAL CAVITIES

By

Christopher Kang

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Interdisciplinary Materials Science

August, 2011

Nashville, TN

Approved:

Professor Sharon M. Weiss

Professor Richard F. Haglund, Jr.

Professor Deyu Li

Professor Ronald D. Schrimpf

Dr. Solomon Assefa



Copyright © 2011 by Christopher Kang
All Rights Reserved



To Umma, Jennifer, and Sunny,

who always keep me grounded.

ii



ACKNOWLEDGMENTS

I arrived at Vanderbilt in June 2006, fresh from getting my undergraduate degree and

probably thinking much too highly of myself. That said, I’m grateful for the many ways

I’ve been humbled these last five years, especially by the opportunity to study with the great

minds I can proudly call my colleagues and friends in the Weiss Lab.

For her guidance and mentoring, I have had the best advisor a grad student could ask

for in Sharon Weiss. She has taught me what it means to be a proper scientist, has always

been open to and supportive of my ideas, and has helped me to press on when the going

got tough. Although she might have had her qualms about taking me on at first (“So, about

your intro physics grades...”), I know that I definitely chose the right advisor, and I hope

I’ve justified her confidence in me.

Solomon Assefa has been a great mentor to me, and I’m thankful for him taking the

time to advise me during my internship at IBM and afterwards. This thesis would not

have been possible without my time at Watson, which is an amazing place for a scientist to

experience. I hope to see his vision of using technology to help the needs of others become

a reality very soon. I would like to acknowledge the funding of the NSF IGERT fellowship

program, which enabled my IBM internship experience.

I owe a lot of my device fabrication and process knowledge to the staff at the ORNL

CNMS: Scott Retterer, Darrell Thomas, Dayrl Briggs, Ivan Kravchenko, Dale Hensley,

and Laura Edwards, as well as those at VINSE: Bo Choi, Bob Geil, and Tony Hmelo. They

have no doubt made many discoveries possible through their work and support, and I’m

positive Tony’s emphasis on safety has kept many bright futures intact. John in the Physics

Machine Shop has enabled us to put together a lot of great measurement setups with his

ideas and machining skills. Judson Ryckman and Yang Jiao have been my comrades on

those many trips to Oak Ridge, and I’m grateful for the great conversations and fun times.

Also, I’m thankful for Jeremy Mares and Petr Markov, the new guys in the group who

have helped bring us out of our shells a bit. I always look forward to our weekly SATCO

meals. Chris Phare’s (C2) work on perturbation theory has contributed to making some of

iii



the simulations outlined here more efficient.

The staff in Featheringill have been invaluable in their support: Lewis Saettel, Hampton

Albert, Andy Richter, Sandy Winters, and Flo Wahidi. Flo was our mother away from

home, always caring for us grad students and brightening up our days. I know her spirit

will always be watching over the grad students in Featheringill from up above. I will never

forget her.

Finally, this work would not have been possible without the support of my family. Since

as far as I can remember (on the preschool playground!), my uncle Jan and aunt Jiyoung

have supported me, and for their help I’m grateful. My sister Jennifer and I have gotten

closer as we’ve gotten older, and I’m proud of the way she is passionate about loving what

she does. My mom has always been there for me in every way, and at the risk of bragging,

has done a perfect job of raising my sister and I. With an uncanny sense of right and wrong,

her tough and never-give-up attitude has definitely rubbed off on me, and has helped me to

become the person I am today. And last but certainly never anywhere close to least, I’m

thankful for the support and love of Sunny, whose prayers and encouragement have helped

the little miracles written here to happen.

iv



TABLE OF CONTENTS

Page

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter

1. PHOTONIC CRYSTALS AND LIGHT-MATTER INTERACTION . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to Photonic Crystals. . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 The Photonic Bandgap . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Formulation of the Master Equation . . . . . . . . . . . . . . . . . 4
1.2.3 Photonic Crystal Modes in Multiple Dimensions . . . . . . . . . . 7
1.2.4 Two-Dimensional Slab Photonic Crystals . . . . . . . . . . . . . . 10

1.3 Photonic Crystal Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.1 Line Defects: Waveguides . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Point Defects: Resonators . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Advances in Photonic Crystal Sensors . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 Waveguide-based Sensors . . . . . . . . . . . . . . . . . . . . . . 18
1.4.2 Cavity-based Sensors . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2. THEORY AND DESIGN OF MULTIPLE-HOLE DEFECTS . . . . . . . . . . . 27

2.1 Overview: Multiple-Hole Defects . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Plane Wave Expansion . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Finite-Difference Time-Domain . . . . . . . . . . . . . . . . . . . 33
2.2.3 Harmonic Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.4 Lattice Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Multiple-Hole Defects: H1 Cavities . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Simulation Methods . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Surface Area Enhancement . . . . . . . . . . . . . . . . . . . . . . 37

v



2.3.3 MHD Effective Radius Modulation . . . . . . . . . . . . . . . . . 38
2.3.4 Constant Effective Index . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.5 Cavity Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Multiple-Hole Defects: L3 Cavities . . . . . . . . . . . . . . . . . . . . . . 48
2.4.1 Baseline L3 Cavity and Methods . . . . . . . . . . . . . . . . . . . 49
2.4.2 Stationary Defect Hole Position . . . . . . . . . . . . . . . . . . . 51
2.4.3 Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 53

3. MULTIPLE-HOLE DEFECT FABRICATION AND MEASUREMENT. . . . . 57

3.1 Design Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1.1 Substrate and Waveguide Design . . . . . . . . . . . . . . . . . . . 57
3.1.2 Photonic Crystal Design Parameters . . . . . . . . . . . . . . . . . 58

3.2 Device Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.1 EBL Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2.2 Fabrication Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Passive Device Characterization . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.1 Photonic Crystal Waveguides . . . . . . . . . . . . . . . . . . . . 68
3.4.2 Effect of Defect Hole Size . . . . . . . . . . . . . . . . . . . . . . 71
3.4.3 Optimized Designs . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4. BULK INDEX SENSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Sensitivity Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Solvent Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Index-Matching Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5. SURFACE INDEX CHANGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 3-APTES Detection with Native Oxide . . . . . . . . . . . . . . . . . . . . 98
5.3 Sulfo-SMCC Detection with ALD Oxide . . . . . . . . . . . . . . . . . . . 100
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6. CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Device Improvements . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.2 Specific Label-Free Detection . . . . . . . . . . . . . . . . . . . . 114

vi



6.2.3 MHD in Other Photonic Devices . . . . . . . . . . . . . . . . . . . 115
6.2.4 Microfluidics Integration . . . . . . . . . . . . . . . . . . . . . . . 116

Appendix

A. SIMULATION CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.1 gen phc rect.py. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.2 mpb pcs bands.ctl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.3 mpb pcs w1 bands.ctl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.4 meep cavity varepsilon mhd.ctl . . . . . . . . . . . . . . . . . . . . . . . . 121

BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

vii



LIST OF TABLES

4.1 List of materials used for bulk index sensing. . . . . . . . . . . . . . . . . 80
4.2 Resonance data for SHD and MHD cavities before and after wetting with

silicone oil. (All units in nm) . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Comparison of bulk index sensitivities for PhC slab-based sensors. . . . . . 91

5.1 Cumulative shift of resonance wavelength for L3 cavity baseline and 60 nm
MHD cavity and the percent increase in resonance shift for the MHD cavity
compared to the L3 cavity at each step. . . . . . . . . . . . . . . . . . . . . 105

viii



LIST OF FIGURES

1.1 A one-dimensional photonic crystal (distributed Bragg reflector). . . . . . . 7
1.2 The dispersion plots for (a) DBR with quarter-wave thickness alternating

layers of n = 3.518 (silicon) and n = 1.0 (air), and (b) an infinite slab of
silicon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The electric field and energy density for the dielectric-band (a,c) and air-
band (b,d) modes, respectively. (adapted from Joannopoulos et al.) . . . . . 9

1.4 The band diagrams for (a) square lattices and (b) hexagonal lattices, with
insets showing reciprocal lattice directions (adapted from Joannopoulos et
al.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Angle-view of silicon photonic crystal slab waveguide with air holes (adapted
from McNab et al.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Fabricated photonic crystal W1 waveguide and input/output strip waveg-
uides, formed by a single line defect. . . . . . . . . . . . . . . . . . . . . . 15

1.7 Band diagram of a W1 waveguide structure in a silicon photonic crystal
slab. In the shaded region, low-loss single-mode guiding occurs. (Blue:
“even”, Red: “odd” symmetry modes) . . . . . . . . . . . . . . . . . . . . 15

1.8 Different types of PhC cavities: (a) H1, (b) L3, (c) T3, (d) L4 type. . . . . . 16
1.9 Full-Width at Half Maximum for a cavity resonance. . . . . . . . . . . . . 17
1.10 Red-shifting cutoff wavelength of W1 PCS waveguide due to oil infiltration

representing a bulk index change (adapted from Skivesen et al.) . . . . . . . 18
1.11 W1 PCS waveguide in silicon (left) and the cutoff wavelength redshift due

to surface-bound biotin and streptavidin molecules (adapted from Buswell
et al.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.12 W1 PCS waveguide with direct volume enhancement (left) and the im-
proved cutoff wavelength redshift due to bulk infiltration of DI water (adapted
from Buswell et al.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.13 Single-hole defect H1 cavity (left), and transmission spectra when entire
PhC is immersed in fluids of different refractive index (right) (adapted from
Chow et al.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.14 (a) Fabricated H1-type acceptor and L3 donor cavities, (b) resonance shifts
of both H1 and L3 cavities due to immersion in different fluid backgrounds
(adapted from Dorfner et al.) . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.15 (a) Fabricated single-hole defect cavity with input/output waveguides, and
(b) shift of cavity resonance due to attachment of glutaraldehyde and BSA
molecules (adapted from Lee et al.) . . . . . . . . . . . . . . . . . . . . . 23

1.16 (a) Fabricated H1-type acceptor defect in hole PCS with (b) microscale
latex sphere for detection, (c) resulting resonance shift (adapted from Lee
et al.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

ix



2.1 Demonstration of effective medium theory: sub-wavelength features in a
high-index material result in an overall intermediate, effective index value. . 29

2.2 (a) Plot of the photonic crystal dielectric function, highlighting the unit
cell of interest in the hexagonal basis, and (b) 3D supercell used for bands
calculations, showing vertical separation between slabs. . . . . . . . . . . . 32

2.3 Demonstration of harminv, which decouples harmonically oscillating waves
into their discrete Fourier components. . . . . . . . . . . . . . . . . . . . . 34

2.4 (a) Dielectric constant plot of MHD simulation space, where black indi-
cates ε = 12 (silicon), white indicates ε = 1 (air). Detailed MHD regions
with effective radius (b) 0.2 a, (c) 0.3 a, and (d) 0.4 a are also shown. The
defect hole radius in all cases is 0.04 a, with defect hole spacing 0.12 a. . . 36

2.5 (a) Photonic bands for the photonic crystal with lattice hole radii of 0.4a.
A photonic bandgap exists for only for the TE polarization between 0.2462
and 0.4052. (b) Field distribution for a MHD with effective radius 0.2a,
with defect hole radius and dielectric constant 0.04a and 1.05, respectively. 37

2.6 Surface area in units of a2 assuming device slab thickness of 0.7a, for (a)
defect radius held constant at 0.02a and variable defect hole spacing, and
(b) relative spacing kept constant at ade f ecthole = 3 ∗ rde f ecthole with vari-
able defect hole radius. A plot of the SHD surface area is also shown for
comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 View of defect regions for generated MHDs corresponding to some of the
configurations analyzed in Fig. 2.6: defect holes with (a) radius 0.02a, spac-
ing 0.06a, (b) radius 0.02a, spacing 0.08a, (c) radius 0.04a, spacing 0.12a,
and (d) radius 0.06a, spacing 0.18a. All defects have a specified effective
MHD radius of 0.3a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Resonance frequency for varied defect hole dielectric constant and MHD
effective radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Change in cavity quality factor for varied defect hole dielectric constant
and effective MHD radius. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.10 Resonance wavelength of the H1 MHD for varied dielectric constant and
defect hole radius/spacing: (a) radius 0.02a, spacing 0.06a, (b) radius 0.04a,
spacing 0.12a, (c) radius 0.06a, spacing 0.18a. . . . . . . . . . . . . . . . . 44

2.11 Quality factor of the H1 MHD for varied dielectric constant and defect hole
radius/spacing: (a) radius 0.02a, spacing 0.06a, (b) radius 0.04a, spacing
0.12a, (c) radius 0.06a, spacing 0.18a. . . . . . . . . . . . . . . . . . . . . 45

2.12 Plot of resonance shift as a function of monolayer optical thickness. The
monolayer optical thickness is specified as a fraction of the photonic crystal
lattice constant, a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.13 z = 0 cut of Ey field distribution overlaid onto dielectric function (yellow)
for L3 cavity with lattice hole radius 0.256a. Inset: detailed dielectric func-
tion in the cavity area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.14 Cavity mode TE field profiles from FDTD analysis overlaid onto the in-
plane dielectric structure for (a) L3 and (b) 3-hole MHD cavities, with their
respective vertical cuts and overlaid field amplitude data shown in (c,d). . . 52

x



2.15 Simulated resonance wavelength (black, filled circles) and quality factor
(blue, open circles) for various lateral spacings of defect holes in the 3-
hole MHD cavity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Pattern errors in photonic crystal waveguide patterned using electron-beam
lithography without proximity error correction or dose biasing. . . . . . . . 62

3.2 Fabrication steps for the multiple-hole defect photonic crystal structures. . . 64
3.3 SEM micrographs of fabricated MHD PhC devices, showing (a) overall

device region showing strip waveguide input/outputs and W1 waveguide
coupling to PhC L3 cavity, (b) close-up inspection of (top to bottom): L3
cavity, SHD cavity, 3-hole MHD cavity, (c) strip waveguide tapering to
match W1 PhC waveguide width, (d) SU-8 polymer coupler and (e) coupler
cross-section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Illustration of PhC measurement system. . . . . . . . . . . . . . . . . . . . 67
3.5 Measurement showing device under test (DUT) and input/output fibers. A

microscope objective optimized for near-infrared transmission is used for
observation above the DUT. . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Transmission of W1 PhC waveguide for varying EBL lithography dose. . . 69
3.7 Comparison of W1 measured waveguide transmission to dispersion calcu-

lated by mpb. The gray region is the light cone, where modes are radiated
and not guided. Special points (a-d) correspond to: (a) onset of extended
modes, (b) mode gap cutoff frequency, (c) onset of multi-mode guiding,
and (d) light line cutoff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.8 Comparison of cavity resonances for same as-designed sizes of defect holes
for SHD (top) and MHD (bottom). . . . . . . . . . . . . . . . . . . . . . . 72

3.9 (a) Transmission spectra comparing the resonance of an L3 cavity (solid) to
those of SHD (dotted) and MHD (dashed) cavities with similar defect hole
diameter, (b) Resonance shift relative to L3 cavity for SHD and MHD cav-
ities as a function of defect hole diameter. Measured results are shown as
solid squares/circles (SHD/MHD), data from FDTD simulations are shown
in open squares/circles, and a linear fit (dashed line) is provided as a guide
to the eye. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.10 SEM images of fabricated defect hole lateral spacings (left), and their re-
spective transmission spectra showing the trend of resonance shift (right). . 76

3.11 Resonance wavelengths (black, closed) and quality factors (blue, open) for
fabricated MHD PhCs with varying lateral spacing. . . . . . . . . . . . . . 76

4.1 Residue at strip/W1 waveguide interface due to T05 silicone oil application
and subsequent removal. Inset shows close-up of deposited polymer. . . . . 81

4.2 (a) Dispersion of a slab PhC with lattice hole radius 105 nm and slab thick-
ness 220 nm in air (blue) and silicone oil (red) backgrounds, showing the
downward frequency shift of the bands. (b) Comparison of PhC W1 waveg-
uide dispersion in air (black, left) and silicone oil (blue, right) backgrounds,
where the light blue regions indicate the light line. The waveguide cutoff
occurs at a lower frequency for the device in oil background. . . . . . . . . 84

xi



4.3 Simulated resonance wavelengths for 3-hole MHDs with 28 nm (blue) and
36 nm (red) radii and 470 nm lateral spacing in varying background refrac-
tive indices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Resonance shift for a 3-hole MHD L3 cavity with as-designed defect hole
diameter of 85 nm, in mixtures of IPA/methanol solvent solutions. . . . . . 87

4.5 Bar graphs of (a) large index change sensitivity from air to silicone oil (red)
and IPA (blue), and (b) small index change sensitivity from IPA to silicone
oil, for L3, SHD, and MHD cavities. . . . . . . . . . . . . . . . . . . . . . 90

5.1 Structure and chemical formula of molecules used in functionalization: a)
3-APTES, and b) sulfo-SMCC. . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Photo of in-hood ALD set-up, with test tubes filled with TMOS and NH3H2O. 97
5.3 Transmission spectra for resonances of L3 cavity, 56 nm diameter MHD

cavity and 67 nm diameter MHD cavity before (solid curve) and after (blue,
red, and green, respectively) application of ∼1 nm monolayer of 3-APTES. 99

5.4 Bar graphs showing the cumulative resonance redshift for two groups of
MHD devices with 55 nm (left) and 60 nm diameters (right). The redshifts
due to ALD deposition (black), 3-APTES binding (red) and sulfo-SMCC
binding (blue) are shown for each lateral defect hole spacing, and a L3
cavity is shown for reference. . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Resonances of MHD cavities with 380 nm defect hole spacing before (black)
and after (red) 6 nm of in-hood ALD growth. Defect hole diameters of
55 nm (top) and 60 nm (bottom) are shown for comparison, showing sensi-
tivity increase for higher surface areas. . . . . . . . . . . . . . . . . . . . . 103

5.6 Transmission spectra for resonances of optimized MHD cavity with 60 nm
defect hole diameter and a lateral spacing of 380 nm: before (black) and af-
ter (red) ALD oxide growth, 3-APTES silanization (blue) and sulfo-SMCC
attachment (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



LIST OF ABBREVIATIONS

ALD Atomic Layer Deposition
DBR Distributed Bragg Reflector
EBL Electron Beam Lithography
FDTD Finite Difference Time Domain
LMI Light Matter Interaction
MHD Multiple Hole Defect
Q Quality Factor
PBG Photonic Band Gap
PCS Photonic Crystal Slab
PEC Proximity Error Correction
PhC Photonic Crystal
PML Perfectly Matched Layer
PSi Porous Silicon
PWE Plane Wave Expansion
RIU Refractive Index Units
SHD Single Hole Defect
SOI Silicon On Insulator
TE Transverse Electric (polarization)
TM Transverse Magnetic (polarization)

xiii



CHAPTER 1

PHOTONIC CRYSTALS AND LIGHT-MATTER INTERACTION

1.1 Motivation

The study of light-matter interaction (LMI) very broadly describes the investigation of op-

tical phenomena such as light scattering, reflection, refraction, diffraction, dispersion, and

absorption. Some of the first discoveries of these phenomena date back thousands of years

to the discovery of the first lenses used in ancient Greece, Egypt and Babylon. Mankind has

since learned to shape, focus, filter, and bend light at will, by better understanding the na-

ture of photons and their propagation in different kinds of materials. Among many others,

the fiber optical waveguide is a good example of an application which has resulted from

studying these basic principles of LMI. Indeed, the explosion of the telecommunications

industry and the internet has been made possible by advancements of modern fiber optical

links, which are a result of studying the total internal reflection of light in materials with

low absorption.

Advances in nanotechnology and fabrication processes have resulted in the growth of

silicon photonics, which combines the wide availability and low-cost of silicon with the

high bit rates that can be achieved in fiber optic communications. This research has resulted

in the development of silicon photonic building blocks for on-chip electro-optic modula-

tion and signal routing, which use LMI fundamentals to study the guiding and trapping

of light at the nanoscale. Active control of these nanophotonics devices is often achieved
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through methods which modify the local refractive index of the waveguide material. This is

done electronically by utilizing p-i-n junctions to sweep mobile carriers into the guiding re-

gion, and optically by using a high-energy pulse to excite carriers inside the guiding region

through two-photon absorption, which is commonly used in pump-probe experiments [1–

5]. In both cases, the LMI is actively modulated by changing the free-electron density that

can directly interact with the transmitted lightwave signals at the core of the waveguides,

modifying the refractive index. Thus, due to their demonstrated sensitivity to changes in the

material refractive index, silicon-based photonic devices also have the potential to serve as

a sensing platform for refractive index perturbations. Indeed, ring resonators [6–10], slot

waveguides [11, 12], and interferometers [13–15] have demonstrated sensitivity to small

perturbations such as surface-bound biomolecules. Any perturbation of the surface refrac-

tive index causes a change in the effective index of the guided waveguide mode, changing

the properties of the device.

Overall, the degree of LMI in silicon photonic devices is a function of the temporal

and spatial overlap of the guided light and the surface-bound material to be detected (often

called the analyte). Resonant ring cavities created from silicon waveguide building blocks

inherently improve the temporal overlap compared to a straight waveguide alone, due to the

photon lifetime associated with light that is trapped inside the cavity at resonance. Any per-

turbation on the ring surface interacts multiple times with a trapped photon as it resonates

in the cavity. Spatially, the interaction is limited to the dimensions of the top and sides of

the waveguide, where the field is evanescently decaying. Increasing the photon lifetime and

the interaction length is desirable for improving LMI in ring resonator cavities. This can

be achieved by increasing the radius of the ring, which both increases the photon lifetime
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and the total interaction length. However, increasing the ring diameter is undesirable for

a compact device. Thus, a device platform must be utilized which maintains a long tem-

poral overlap in the LMI while maintaining high spatial confinement. In order to improve

the effectiveness of LMI in silicon photonic devices, methods for more effectively creating

spatial and temporal light matter interaction must be investigated. Photonic crystals, as

discussed in the next section, are one platform for exploring improved spatial and temporal

LMI in silicon.

1.2 Introduction to Photonic Crystals

1.2.1 The Photonic Bandgap

Although so-called one-dimensional photonic bandgap structures have been known com-

monly as Bragg mirrors for centuries, the proposition of the existence of a photonic bandgap

(PBG) for multidimensional, periodic dielectric lattices by Yablonovitch and John in 1987

[16, 17] paved the way for a new category of optical materials which control the propa-

gation of electromagnetic waves by creating bands of forbidden states in specified regions

of dielectric. The photonic bandgap can be seen as an optical analogue to the electronic

bandgaps present in crystalline semiconductors and insulators, where certain ranges of

energies are not accessible to propagating electrons or holes. The electronic band dia-

grams, which plot the energy eigenvalues of the electron wavefunction, are found by solv-

ing Schrodinger’s equation in a Bloch wave basis. Bloch waves are used due to the periodic

potential of the atoms in the crystalline lattice, and the atomic size scale necessitates the

application of quantum mechanics.
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Conversely, in a photonic bandgap material, the bands arise from the crystal-like period-

icity of the dielectric material. Hence, materials that possess a photonic bandgap are often

referred to as Photonic Crystals (PhC). The bandgap consists of a range of photon energies

where light propagation is forbidden. Photons with energies falling within the bandgap

decay exponentially into the PhC and are nearly totally reflected. The energy eigenvalues

which are plotted in the photonic band structure correspond to the electromagnetic modes

of the photonic crystal. The following section formulates the master equation of photonic

crystals, which is akin to the wave equation for crystalline solids.

1.2.2 Formulation of the Master Equation

The size scale of the periodicity in PhCs is usually determined by the wavelength range of

interest. For example, a photonic bandgap in the near-infrared range requires periodicity of

the dielectric function on the order of a few hundred nanometers while a photonic bandgap

in the terahertz region requires millimeter-scale periodicity. Maxwell’s equations include

built-in scalability, which allows for the formation of photonic bandgaps in wavelengths

ranging from the visible to microwave, and they are the basis for formulating the “master

equation” for solving modes of the crystal. As discussed in Joannopoulos et al. [18], it

is assumed that: (1) the mixed dielectric medium in question is void of free charges and

currents, so ρ = 0 and J = 0; (2) field strengths are small enough that high order terms in

the electric susceptibility χ can be ignored; that is, no non-linear effects are considered; (3)

the material is macroscopic and isotropic; (4) the frequency dependence of the dielectric

constant (material dispersion) can be neglected; and (5) the material is assumed to have

purely real and positive ε(r) for all positions in space r. With these assumptions in place,
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the time and spatially varying Maxwell equations are as follows:

∇ · [ε(r)E(r, t)] = 0 ∇×E(r, t)+µ0
∂H(r, t)

∂ t
= 0

∇ ·H(r, t) = 0 ∇×H(r, t)− ε0ε(r)
∂E(r, t)

∂ t
= 0,

(1.1)

where ε(r) represents the dielectric function in space. Note that ε0 is divided out of the di-

vergence terms due to the right side of the equation being 0. Next, the solutions are assumed

to vary sinusoidally in time (harmonically), resulting in complex exponential solutions of

the form:

H(r, t) = H(r)e− jωt

E(r, t) = E(r)e− jωt ,

(1.2)

where H(r) and E(r) are the spatial distributions of field contained in a mode of the crystal.

These solutions can be plugged into each of the equations in 1.1, resulting in:

∇ · [ε(r)E(r)] = 0 ∇×E(r)− jωµ0H(r) = 0

∇ ·H(r) = 0 ∇×H(r)+ jωε0ε(r)E(r) = 0.

(1.3)

The divergence equations on the left side of 1.3 show that the solutions are modes that are

transverse electromagnetic waves. That is, for plane wave solutions with wavevector k and

field component a, a · k = 0. For example, if propagation occurs in the x-direction, the

EM components are aligned with a = ŷ or ẑ. The two transverse polarizations primarily

considered in this thesis are the transverse-electric (TE, E orthogonal to k) and transverse-

magnetic (TM, H orthogonal to k). Finally, by decoupling the curl equations on the right

side of 1.3, substituting for E(r) and remembering that 1/c =
√

ε0µ0, we arrive at the
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master equation:

∇×
(

1
ε(r)

∇×H(r)
)
=
(

ω

c

)2
H(r). (1.4)

Eqn. 1.4 allows us to directly solve for the states H(r) of a PhC and their eigenvalues

in a plane-wave basis, which allows for the plotting of dispersion diagrams for finding

bandgaps and resonant modes. The equation is a function of the angular frequency of light

ω and the dielectric function in space ε(r). Software methods, which will be described in

section 2.2, can be used to solve for all of the modes in a particular PhC lattice.

With the master equation in hand, it is important to consider the scalability of Maxwell’s

equations. The band diagrams which are plotted in this thesis are all normalized to a scale

factor usually referred to as “a”. In PhCs, “a” is usually set as the lattice constant of the

crystal, and all other dimensions are defined relative to the lattice constant. Because of

this normalization scheme, all eigenvalue solutions to the master equation are relative to

the periodicity of the structure. For example, consider a periodic lattice of holes with hole

radius defined as 0.2a; each hole has a relative radius of 1/5 of the lattice spacing. Any

solution to the master equation for this lattice thus holds for all PhCs with identical relative

lattice dimensions, such as [a = 500 nm, r = 100 nm], [a = 25 µm, r = 5 µm], etc. The free-

space wavelength of any eigenvalue solution can then be found by taking the the normalized

frequency and dividing the real lattice spacing dimension by this value. Thus, a calculated

normalized mode frequency of ω = 0.25a has a wavelength of λ = 500/0.25 = 2000 nm

for a = 500 nm, and λ = 100 µm for a = 25 µm. By first finding solutions to the relative

lattice, spectral features can be “set” to be equal to a particular wavelength by changing the

dimensions of the actual fabricated device.
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1.2.3 Photonic Crystal Modes in Multiple Dimensions

Photonic crystals can exhibit one-, two-, or three-dimensions of periodicity in their dielec-

tric function and are correspondingly referred to as 1D, 2D, and 3D PhCs. The simplest

photonic crystals with one-dimensional periodicity are commonly known as Distributed

Bragg Reflectors (DBR), as shown in Fig. 1.1. The DBR structure consists of alternating

layers of two differing dielectrics as shown in Fig. 1.1. Here the lattice constant “a” is

the distance between alternating layers of ε1. Light impinging on the DBR at any angle

is subject to multiple reflections and refractions as it passes through each layer. When the

ε1 ε1 ε1 ε1 ε2 ε2 ε2 ε2 

Incident 

Reflected 

Transmitted 

Figure 1.1: A one-dimensional photonic crystal (distributed Bragg reflector).

optical thickness of the layers correspond to quarter-wavelength thickness, bandgaps occur

in the dispersion relations calculated in Fig. 1.2a. The bandgap position depends on the

angle of incidence, since the optical path length changes as the slab is rotated. The dis-

persion diagram in Fig. 1.2b shows the folded bands of an infinite slab of dielectric, in this
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case silicon, for comparison to the multilayer structure. Band folding occurs at the edges

of the Brillouin zone, which is the unit cell of the reciprocal lattice. In the case of a DBR,

the bands at the Brillouin zone edge (k = π/a) appear to be separated by a gap. Note that
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Figure 1.2: The dispersion plots for (a) DBR with quarter-wave thickness alternating layers
of n = 3.518 (silicon) and n = 1.0 (air), and (b) an infinite slab of silicon.

since the wave vector k is also defined as k = 2π/λ , the wavelength λ = 2a equals twice

the period of the DBR, which exactly corresponds to the aforementioned criterion that the

layer thicknesses are set to quarter-wave optical thickness. Thus the field concentration

associated with the band-edge modes form a sinusoidal standing wave having a period of

2a. Two mode concentrations can be considered for a wave with this period, with the lo-

cal energy density located either mostly in ε1, or in ε2, as shown in Fig 1.3. Despite their

equivalent periods, the two states have slightly different frequencies due to having their

energies concentrated mostly in either material, so a split of modes is created at the band

edge. This split is clearly shown at the Brillouin zone edge of Fig. 1.2a when compared to
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the dispersion of a slab without periodicity in Fig. 1.2b. The frequency gap which is created

between the two states is called a photonic band gap. The different field distributions of

Figure 1.3: The electric field and energy density for the dielectric-band (a,c) and air-band
(b,d) modes, respectively. (adapted from Joannopoulos et al. [18])

the split modes can further be explained by the electromagnetic variational theorem shown

in Eqn. 1.5. From the equation, it can be shown that lower frequency modes are usually

concentrated in high-ε regions in order to minimize the energy functional U f , whereas

higher frequency modes have a larger fraction of energy in low-ε regions. Because of this

tendency for energy to concentrate in high/low-ε regions on either side of a bandgap, the

higher frequency mode is commonly called the “air-band,” and the lower frequency mode

the “dielectric-band.” Additionally, the orthogonality condition required by solutions to the

master equation force the split mode into concentrating their energies in one dielectric or

the other.

U f (H) =

∫
d3r |∇×E(r)|2∫
d3rε(r) |E(r)|2

(1.5)
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While one-dimensional PhCs perform well as mirrors and are useful in demonstrating the

concepts of the PBG, the mirror structure alone cannot guide light in the plane. Two and

three-dimensional configurations of PhCs present more flexibility in guiding using photonic

bandgaps. 2D PhCs, which typically require only standard silicon lithography and etching

techniques for fabrication, have their bandgap limited to the plane. 3D PhCs can con-

trol light propagation for all incident angles and all directions, but they are often difficult

to fabricate, and often require non-standard lithography, wet chemistry, and wafer bond-

ing techniques. Examples of 3D PhCs include opal and inverse-opal structures [19, 20],

woodpiles [21–23], and layer-by-layer construction [24]. Since 3D PhCs cannot be easily

integrated with current silicon photonic technology, 2D PhC geometries such as photonic

crystal slabs are more suited to silicon integrated applications, and will be discussed in the

next section.

1.2.4 Two-Dimensional Slab Photonic Crystals

Two-dimensional slab PhCs have been found to be most compatible with existing semicon-

ductor fabrication technology. Photonic crystals slabs (PCS) can be thought of as a mix of

a 2D PhC in the plane and confinement by total internal reflection (TIR) perpendicular to

the plane. The most common configurations of PCS consist of air holes in a slab (“hole

slab”), or an isolated lattice of dielectric rods (“rod slab”). TIR requires that the refractive

index of the substrate (below) and cladding (above) are lower than that of the guiding layer.

A large index contrast between the guiding layer and the cladding is desirable for increased

field confinement. The largest field confinement is achieved by surrounding the slab by

air, which requires additional fabrication steps to form an air bridge in a hole slab. In the
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case of rod slabs, each rod consists of a high index guiding region on top, and a lower

cladding material on the bottom. Although the index above and below the guiding layer

is not symmetric because the rod requires a solid support, a gap is still formed for guiding

[25, 26].

PCS devices can be fabricated a number of ways to meet the requirements of TIR and

in-plane periodicity. Both the rod and hole varieties of PCS shown in Fig. 1.4 meet these

criteria. The band diagrams shown in Fig. 1.4 plot the energies of the eigenmodes as a

function of propagation direction in the two-dimensional reciprocal lattice, shown in the

inset. It is found that the bandgaps commonly occur with transverse-electric (TE) polar-

ization for the hole PCS and transverse-magnetic (TM) polarization for the rod PCS [18].

Furthermore, lattice symmetry in the plane of the PCS can be defined in a number of ways;

however, it has been shown previously that in a rod PCS, a square lattice can produce a

photonic bandgap for incident TM-polarized light, and a hexagonal lattice can produce a

gap for both TE and TM polarized light (a “complete gap”) for the hole PCS [18]. For

sensor applications, a large surface area is desired for increased LMI, and both hole and

rod slabs provide area for molecular attachment. As will be discussed in section 1.3, the

field intensity of defect modes is concentrated in regions where the symmetry of the PhC

lattice is broken. Because the hole slab has the top and bottom surfaces of the defect re-

gion available for molecule attachment in addition to the inner hole surface, all the PhC

structures considered in this thesis are hole slabs of air in silicon, as shown in Fig. 1.5.
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                         (a)                                            (b) 

Figure 1.4: The band diagrams for (a) square lattices and (b) hexagonal lattices, with insets
showing reciprocal lattice directions. (Adapted from Joannopoulos et al. [18]).

Figure 1.5: Angle-view of silicon photonic crystal slab waveguide with air holes (adapted
from McNab et al. [27]).
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1.3 Photonic Crystal Defects

While control over the reflectance spectrum of PhCs via the bandgap is useful for applica-

tions beyond mirrors (such as in the use of MEMS-based optical scanners [28]), the most

interesting applications and devices arise when defects are introduced into the crystal lat-

tice. Again, following an analogy to semiconductor crystals that can possess donor and

acceptor defect states in the electronic bandgap, the inclusion of PhC defects create states

inside the photonic bandgap, which can be utilized to selectively guide light or allow it to

resonate in small volumes. The next sections will introduce these characteristics, enabled

by creating line defects and point defects, respectively.

1.3.1 Line Defects: Waveguides

Controlling light propagation using PhC line defects differs from classical methods of in-

dex guiding, which use total internal reflection to confine light. Index guiding is used in

applications of fiber optics and semiconductor planar waveguides when long signal propa-

gation lengths and/or microelectronics process integration are necessary, respectively. The

bandwidth of these types of waveguides is determined by the physical dimensions of the

waveguide, and discrete modes are supported over a finite range of wavelengths, as gov-

erned by the wave equation [29]. Light of wavelengths that are not guided in the structures

evanescently decay out of the waveguide. In a photonic crystal waveguide, light is con-

strained within the linear defect region primarily because it is not supported elsewhere; it

is essentially trapped in the waveguide region. This is most evident in the rod PCS, where

line defect waveguides can even guide light in regions of air. This is possible even though
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as discussed in section 1.2.4, guiding using TIR requires the light-guiding region to have a

higher refractive index than the surrounding cladding.

In hole PCS structures, waveguides are formed by filling in one row of holes in the

Γ-K direction as shown in Fig. 1.6. The line defects introduce a small band of guiding

states inside the bandgap, shown by the blue and red mid-gap states in the band diagram

of Fig. 1.7. Light with the same momentum (frequency) as that of the defect state can

propagate in the linear defect, and when only a single mode exists (such as the light-blue

shaded region of Fig. 1.7) propagation occurs with very low-loss. The lowest energy state in

the low-loss guiding region is referred to as “cutoff”. The existence of the low-loss guiding

region enables the guiding of light in sharp PhC bends with small footprints [30]. Tight

bends are not possible in conventional waveguides, as the field must be modified gradually

to minimize loss, which requires higher radius bends that take up valuable real estate on a

fabricated chip.

The nomenclature of different waveguide types follows the number of rows removed

in the defect: a “W1” waveguide has one row removed, while a “W2” has two rows miss-

ing. Adding more rows to a waveguide adds more guiding bands within the gap, whereas

shrinking the waveguide width creates wider bandwidth guiding bands [31]. In addition to

small-area bends, PhC waveguides can be used to couple light to point defects, which will

be described in the next section.

1.3.2 Point Defects: Resonators

Resonator structures in silicon photonic devices, such as rings or disks, have been previ-

ously researched for their uses in optical filters, switches, and modulators [3, 32–36]. Many
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Figure 1.6: Fabricated photonic crystal W1 waveguide and input/output strip waveguides,
formed by a single line defect.

Figure 1.7: Band diagram of a W1 waveguide structure in a silicon photonic crystal slab.
In the light-blue shaded region, low-loss single-mode guiding occurs. (Blue: “even”, Red:
“odd” symmetry modes)
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of these devices require large radius bends, which can potentially increase the size of a de-

vice to several hundred square microns. Alternatively, more compact resonant cavities can

be formed by creating point defects in PhCs. When the properties of one or more lattice

points are modified, an isolated region of broken symmetry is created, surrounded by the

periodic PhC lattice. For example, the radius of one lattice hole can be modified, making it

smaller or larger relative to the surrounding lattice holes (a “single-hole defect”, SHD), or

by filling in the hole altogether. Point defects are commonly named according to their sym-

metry and dimensions: single filled-in holes are named “H1” defects due to their hexagonal

symmetry, and filling in more holes results in a “L2,” “L3,” etc (due to their linear fashion)

[37]. Examples of these defects are illustrated in Fig. 1.8. The broken symmetry creates a

 

Figure 1.8: Different types of PhC cavities: (a) H1, (b) L3, (c) T3, (d) L4 type.

resonant state within the bandgap, the frequency of which is the characteristic resonance

frequency of light associated with the cavity geometry. The simulation methods which are

used to calculate the resonance frequency in the bandgap will be introduced in Chapter 2.
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At resonance, photons are trapped inside the cavity until they are eventually lost by leak-

age, absorption, or scattering. The time constant τ associated with the photon energy decay

in the cavity is directly related to a measurable quantity called “quality factor,” commonly

referred to as Q. As shown in Eqn. 1.6 below, Q relates the decay time constant to the mea-

surable quantities of resonance wavelength/frequency, and the full-width half maximum

(FWHM) of the resonance peak in the transmission. Thus, the longer light resonates inside

the cavity, the higher the quality factor [29]. A small FWHM (Fig. 1.9) gives a narrower

resonance and a higher Q.

Q = ω0τ =
ω0

∆ω1/2
=

λ0

∆λ1/2
. (1.6)

 

Figure 1.9: Full-Width at Half Maximum for a cavity resonance.

1.4 Advances in Photonic Crystal Sensors

Recent advances in the field of PhC-based sensing have utilized their high field confine-

ment and long photon lifetime advantages of PhCs to demonstrate increased sensitivity to

LMI. In these devices, line and point defects in PhC slabs are used to detect the refractive
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index change due to fluid infiltration (bulk index sensing), as well as detect the binding of

small molecules and monolayers (surface sensing). Here, the recent progress of techniques

developed for PhC waveguide and cavity sensors is reviewed, as well as opportunities for

improvements.

1.4.1 Waveguide-based Sensors

In a PhC waveguide, the cutoff wavelength (as discussed in 1.3.1) is the spectral feature

most commonly used to track index perturbations. Waveguide-based sensors are particu-

larly sensitive to bulk index changes, as the lattice surrounding the guiding region is easily

penetrated by fluids [38]. By infiltrating the air regions with oil of a known refractive in-

dex, as performed in the work by Skivesen et al. [39], for example, the cutoff redshifts, or

moves to higher wavelengths, as shown in Fig. 1.10. The bulk index change is a large sig-

Figure 1.10: Red-shifting cutoff wavelength of W1 PCS waveguide due to oil infiltration
representing a bulk index change (adapted from [39]).

nal change, which is evident in the wavelength shift of nearly 20 nm. Small signal changes

have been demonstrated by Buswell et al. [40] in similar W1 waveguide devices, in which
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biotin and streptavidin molecules are bound to the surface of a PCS and guiding layer as

shown in Fig. 1.11. In this case, the redshift is much smaller, less than 1 nm, due to the

smaller amount of analyte involved in the interaction. The field overlap with the molecules

is mainly limited to the surface of the linear defect. The two sensors shown in Figs. 1.10

and 1.11 demonstrate that waveguide-based structure is ideal for large signal, volume in-

dex changes, and not for small signal surface sensing. Buswell et al. have shown that the

waveguide can be further optimized for volume index change by adding holes to the guid-

ing region that are smaller than the lattice holes, as shown in Fig. 1.12. By adding volume

Figure 1.11: W1 PCS waveguide in silicon (left) and the cutoff wavelength redshift due to
surface-bound biotin and streptavidin molecules (adapted from [40]).

directly to the waveguide region, the overlap with field is increased, and the sensitivity is

improved. As will be discussed in the next chapter, the surface area enhancement can be

improved by design optimizations.

1.4.2 Cavity-based Sensors

Compared to line defect waveguides, PhC point defect cavities have the advantage of addi-

tional field confinement, which increases the localized intensity of light available for LMI.
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Figure 1.12: W1 PCS waveguide with direct volume enhancement (left) and the improved
cutoff wavelength redshift due to bulk infiltration of DI water (adapted from [40]).

The high quality factors afforded by PhC cavities also enhance the temporal interaction with

surface perturbations at the cavity due to the long photon lifetimes. Over the past several

years, research to optimize defect location, size, and shape has led to PhC cavity structures

in silicon and III-V materials with quality factors exceeding 106 [41]. Heterostructure-type

cavities, which create high-Q modes by gently altering the band edge mode confinement,

have achieved cavity lifetimes of up to 2 ns [42]. However, the applications of these high-

Q cavities have been somewhat limited by the very tight fabrication tolerances necessary.

Additionally, the implementation of these cavities for sensing applications is challenging,

because resonances with extremely narrow resonances are increasingly sensitive to envi-

ronmental changes such as fluctuations in temperature. As will be discussed in chapter 3,

any imperfections in the lattice detract from the cavity Q by causing losses. Such losses

usually arise from errors in fabrication, which can require extensive process optimization

to address.
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Bulk Index Change

Photonic crystals with Single-Hole Defects (SHD) having lower Q values are often suitable

for demonstrations of cavity sensitivity for sensing applications [43]. Like the aforemen-

tioned waveguide sensors, photonic crystal slabs have been used in SHD configurations for

bulk index sensing such as the work by Chow et al. [44] shown in Fig. 1.13. In PhC cavities

constructed out of light-emitting III-V materials, SHD introduction can enable tuning of the

lasing wavelength due to the infiltration of fluids that cause a bulk index change [45–47].

L3 cavities, which have larger sensing area compared to H1 cavities due to the filling of

two additional holes offer higher Q compared to SHD. In the work by Dorfner et al. [48],

both H1 and L3 cavities in air bridge configurations are used to detect fluids, utilizing the

improved overlap with the modal field enabled by having the underlying oxide cladding re-

moved. It is worth noting that the SHD cavity in [48] is an H1 defect with an enlarged hole

(an “acceptor”-type defect [49]), which is ideal for large volume changes, but is less ad-

vantageous from a surface area standpoint, as shown in Fig. 1.14. Indeed, the large volume

displaced by the defect contributes more to the spatial LMI when a bulk change occurs: the

acceptor H1 cavity gives a sensitivity of ∆λ/∆n = 155± 6 nm/RIU, while the sensitivity

of the L3 cavity is ∆λ/∆n = 63±9 nm/RIU [48]. A similar trend in sensitivity would not

be expected for surface sensing applications.

Surface Index Change

In order to study the effect of small index perturbations due to surface attachment on PhC

slab devices, molecular binding techniques or methods of depositing ultrathin films must be
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Figure 1.13: Single-hole defect H1 cavity (left), and transmission spectra when entire PhC
is immersed in fluids of different refractive index (right) (adapted from [44]).

(b) (a) 

Figure 1.14: (a) Fabricated H1-type acceptor and L3 donor cavities, (b) resonance shifts
of both H1 and L3 cavities due to immersion in different fluid backgrounds (adapted from
[48]).
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employed. In work by Lee and Fauchet [50], the binding of two different sized molecules,

glutaraldehyde and bovine serum albumin (BSA), causes different magnitude resonance

shifts to be measured in the transmission spectrum of a single hole defect PhC, as shown

in Fig. 1.15. By enlarging the defect further into an acceptor type, larger particles such as

latex macrospheres can be detected [51]. However, the aforementioned methods have not

specifically examined the available surface area of the defect, which is a critical parameter

for increasing the sensitivity of the device. While SHD cavities do introduce additional

surface area into the cavity, the radius of the hole in the defect needs to be small relative to

the slab thickness in order to gain the most surface area. For detection of smaller particles,

the size of the reduced radius hole also needs to be optimized for efficient capture. Finally,

in pursuit of smaller detection limits, resonances with higher values of Q are necessary to

resolve minute resonance shifts, which require cavity design optimizations.

(b) (a) 

Figure 1.15: (a) Fabricated single-hole defect cavity with input/output waveguides, and (b)
shift of cavity resonance due to attachment of glutaraldehyde and BSA molecules (adapted
from [50]).
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(a) 

(b) 

(c) 

Figure 1.16: (a) Fabricated H1-type acceptor defect in hole PCS with (b) microscale latex
sphere for detection, (c) resulting resonance shift (adapted from [51]).
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1.5 Overview of the Dissertation

The objective of this dissertation is to investigate the effects of added surface area inside

photonic crystal slab cavities, in order to increase the efficiency of both spatial and tempo-

ral aspects of light matter interaction. This is achieved by introducing the concept of the

Multiple-Hole Defect (MHD), which consists of small holes directly added to a photonic

crystal cavity. Several issues related to the design, simulation, fabrication, and character-

ization of MHD PhCs will be discussed. Chapter 2 introduces the concept of MHD and

their potential for improving the LMI in sensing applications. Aspects of MHD design are

explored by using simulations to characterize the MHD cavities’ sensitivity to refractive

index perturbations, as well as the quality factor. Both H1 and L3 types are investigated.

Chapter 3 presents results from fabricated MHD cavity devices, and discusses some of the

design parameters involved in the fabrication process. Details are given for the CMOS pro-

cess compatible fabrication steps, as well as the entire measurement setup. Measurement

results and analysis of passive MHD cavities consisting of several different designs are also

presented. Chapter 4 focuses on the sensitivity of fabricated MHD cavities to bulk index

changes, which is the method used for detection of fluids by immersing the device. The

figure of merit and measurement methods are discussed, as well as simulation methods

for initial device characterization. The measurement results of exposing the MHD cavities

to fluids of different refractive indices are presented and discussed, and the sensitivity of

the devices are compared to others found in the literature. The devices are then used to

sense surface perturbations due to small-molecule binding, which is discussed in Chapter

5. The sample preparation methods for molecular attachment are shown, and a comparison
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of sensitivity due to surface condition is presented through measurement results of native

oxide and ALD oxide treated devices. Chapter 6 summarizes the highlights of the disser-

tation and presents possible opportunities for future research related to the MHD cavities.

Appendix A presents simulation code utilized for MHD hole pattern generation and FDTD

simulation.
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CHAPTER 2

THEORY AND DESIGN OF MULTIPLE-HOLE DEFECTS

2.1 Overview: Multiple-Hole Defects

Photonic crystal cavities are an ideal platform for studying small perturbations in light-

matter interaction (LMI) due to their ability to control both the temporal and spatial inter-

action between light and matter. Temporally, as mentioned in section 1.4.2, the high quality

factors of PhC cavities can enable photon lifetimes in the nanosecond range. Unlike the

transmission of light in a waveguide, the fields in the cavity form a harmonically oscillating

mode, and the interaction with the slab material is very long when considering the speed of

light. However, Q is not the only important factor when considering LMI, as other devices

such as whispering gallery mode resonators can easily achieve quality factors of 108 and

higher [52–54]. In order to make the most efficient use of the resonant mode to study the

effect of small refractive index perturbations, the field should be restricted to a very small

volume. A traditional waveguide is not a favorable structure for studying small perturba-

tions to LMI since the field distribution is not localized near the surface where small index

perturbations, for example due to particle attachment, can most easily occur. Spatially, the

formation of a cavity in the PhC lattice has the advantage of restricting the field to the small

defect region (where holes are modified) at the resonance wavelength. This creates a tightly

held cavity mode which has a very small mode volume (Ve f f ). The mode volume is defined

as the effective volume occupied by the total modal field, calculated by integrating the field
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over all space and normalizing by the maximum value. The highly intense, compact mode

of a PhC cavity is very sensitive to perturbations in the LMI throughout the cavity. For

sensing applications, the small mode volume also provides the benefit of requiring only

small analyte volumes for detection since the spatial interaction between light and matter

can be localized to only the defect region.

Optimizing the temporal and spatial overlap in PhC cavities to achieve longer photon

lifetimes and smaller cavity mode volumes improves the sensitivity of the structures to

small perturbations in LMI. The temporal overlap enhancement is difficult to achieve be-

cause the Q is usually limited by device design and accuracy of the fabrication process.

However, the improvement in spatial overlap is related to the cavity shape and resulting

field distribution, which can be modified with “cavity engineering” design. When consider-

ing surface-bound perturbations such as particles, small organic molecules, or monolayers

of material, the available binding area is the limiting factor in determining the degree of

LMI that can occur. In light of this, one drawback of PhC slab cavities with missing lattice

holes is that the high Q and small Ve f f inherently constrain the majority of the modal field

inside the solid slab material, which is inaccessible to surface-bound perturbations. Ideally,

surface perturbations would overlap with the most intense part of the modal field. An opti-

cal material which enables this sort of overlap has been previously demonstrated in porous

silicon (PSi), which is a high surface area to volume ratio material formed by electrochem-

ical etching in HF acid. PSi has a surface area to volume ratio on the order of 100 m2/cm3,

which substantially increases the available area for surface binding and hence sensitivity of

biosensor devices [55]. The high aspect ratio of the pores, which are perpendicular to the

surface, contribute to the high surface area. Several applications have taken advantage of
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the high surface area of PSi, such as waveguide-based sensors for detection of biomolecules

attached to the pore surfaces [56–58], microcavities and mirrors which can be controlled

electrically by infiltrating liquid crystals [59–61], and drug delivery systems using PSi mi-

croparticles [62]. For monolithically integrated silicon devices, however, the usage of PSi

in nanophotonics is limited by the availability of current pathways to the bulk during the

electrochemical etching process. Integration of PSi using a CMOS process becomes diffi-

cult when silicon-on-insulator is used as a substrate, as the buried oxide prevents current

flow to the substrate. Also, although the pores are small relative to the wavelengths of in-

terest, PSi is lossy as an optical guiding material, due to the high scattering losses. Thus,

for integration into PhC devices, another method must be used in order to add additional

surface area.

εhi , εlow εhi > εeffective > εlow 

Figure 2.1: Demonstration of effective medium theory: sub-wavelength features in a high-
index material result in an overall intermediate, effective index value.

By creating multiple-hole defects (MHD), which consist of arrays of small holes placed

directly inside existing PhC defect structures, it is possible to combine the advantages of

both silicon PhC slab cavities and high surface area porous materials. The integration
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of MHD enhances the spatial overlap for LMI by bringing surface perturbations directly

to the cavity mode where the field is strongest. Using modern lithography and etching

techniques, holes as small as a few tens of nanometers wide can potentially be fabricated

monolithically with the PhC lattice structures. The regions where MHD are introduced can

be optically treated as having a uniform, effective index as illustrated in Fig. 2.1. A mixed

dielectric media with features smaller than the wavelength can be considered optically as a

single effective medium [63, 64]. While scattering is minimized due to feature sizes being

smaller than the wavelength of light, mixed dielectric media tend to be lossier than a true,

isotropic material. Assuming that a uniform diameter hole can be fabricated in a slab of

silicon, the increase in area per added hole is directly proportional to the aspect ratio in the

slab t/r, where t is the slab thickness and r is the hole radius.

However, engineering the MHD cavity for optimal surface area and, for sensing appli-

cations, analyte interaction can be challenging for several reasons. Small, sub-wavelength

sized holes with high aspect ratio are needed for high area/volume ratios, and isolated fea-

tures of this size are often difficult to fabricate even with known processes. Due to the

sensitivity of the cavity mode to any refractive index perturbation, the placement of the

holes can be very specific to the field distribution in the cavity. Also, the effect of larger

hole sizes must be taken into account, in order to accommodate larger-sized molecules for

sensing applications. In order to understand these properties, comprehensive simulations

are necessary prior to fabrication, and these methods are discussed in the next section.

2.1.1 Nomenclature

We define the following terms for clarity:
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• Defect region (MHD region) = area in which symmetry of surrounding photonic crys-

tal is broken

• Defect hole = one of many small holes inside the defect region

• Defect hole radius = radius of a defect hole

• Defect (region) effective radius = radius of entire defect region that contains multiple

defect holes

• Photonic crystal holes = periodic holes of photonic crystal with center-to-center spac-

ing “a”

2.2 Simulation Methodology

Finite-difference time-domain and plane wave expansion methods are used to simulate

MHD PhC devices before fabrication takes place. Freely available open-source packages

are used for both simulation and code generation, as discussed in the next sections. All

packages are compiled from source for the available Ubuntu linux systems. Source code

for the programs used to perform simulations, as well as information about the hardware

used, are available in Appendix A.

2.2.1 Plane Wave Expansion

Plane wave expansion (PWE) is a frequency-domain computational method which can be

used to directly solve for eigenstates of the master equation (Eqn. 1.4). The bandgap of

the photonic crystal can then be found by plotting the band diagram, using the calculated

eigenvalues of the modes. The software package ‘mpb’ (MIT Photonic Bands) [65] was

used for the MHD slab photonic crystal simulations, which is a block-iterative method for

solving Eqn. 1.4 in a periodically-bounded supercell, as shown in Fig. 2.2 [66].

The iterative method uses a pseudo-random field to initiate the eigensolver, and the

modes are solved over a spatial grid determined by the resolution parameter, until good
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y z 

Figure 2.2: (a) Plot of the photonic crystal dielectric function, highlighting the unit cell of
interest in the hexagonal basis, and (b) 3D supercell used for bands calculations, showing
vertical separation between slabs.

agreement with a preset convergence factor is reached. The resolution in this case is defined

as the number of points per lattice constant ‘a’. For the 2D photonic crystal slab, which

is periodic only in the plane of propagation, the periodic boundary condition holds for the

x and y-directions of the supercell illustrated in Fig. 2.2. The periodic boundary condition

repeats the supercell in all dimensions according to the specified basis vectors. For the

case of the hexagonal lattice, the basis vectors are specified as (1
2 ,−

√
3

2 ) and (1
2 ,
√

3
2 ). In

the z-direction, no periodicity inherently exists, since there is only the slab surrounded by

air on top and bottom. For the purposes of the mode solver, a periodic boundary is forced

in the z-direction of the supercell as well, but the “virtual” slabs located in the cells above

and below need to be separated by a large enough distance so that the fields emanating

from each do not affect each other. For 3D slab simulations, the vertical dimension of the

supercell is set to 4 lattice constant units in order to provide this separation. Increasing the

vertical dimension beyond 4 units is redundant, and only results in longer simulation times

due to more memory used. In the following discussion, PWE is used primarily to solve for

the band gap of the surrounding lattice in the MHD cavity devices.

32



2.2.2 Finite-Difference Time-Domain

Finite-difference time-domain (FDTD) analysis [67] is a numerical, time-domain method

of examining the propagation of electromagnetic fields by solving Maxwell’s equation in

dielectric structures. The desired dielectric structures and dipole sources are placed inside

a spatially-gridded ‘cell’ and the fields are iterated in time by calculating the electric and

magnetic field over all grid points. In time-domain simulations, Fourier analysis enables the

frequency response of structures to be computed by using a source with a broadband fre-

quency component (a short pulse in time). The software package ‘meep’ [68] was used for

FDTD simulations, which supports subpixel averaging of dielectric interfaces for increased

accuracy [69]. ε-averaging improves the modeling of high contrast dielectric interfaces by

averaging features when they cannot be clearly resolved by the set resolution.

For cavity simulations in FDTD, a periodic boundary condition is not applicable, so

another must be chosen. Fields radiating away from the cavity must be kept from being

reflected back at the edge of the simulation cell. Such reflections could interfere with the

measurable quantities of interest, especially for cavity devices, where the quality factor

depends on the field decay in time. Therefore, for non-periodic boundaries a perfectly-

matched layer (PML) is implemented, which absorbs all fields leaving the simulation cell

[70]. The main drawbacks to the FDTD method are the potentially long simulation times

and computational resources necessary, which are directly proportional to the resolution of

the cell (like mpb, defined in terms of the scaling constant a). The time-iterative nature of

the method requires that the field at all points must be stored in memory, which can become

a limiting factor as dimensions and resolution scale up. Therefore FDTD is generally not

utilized for full nanophotonic circuit simulations, but useful for the analysis of primitive

components.
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2.2.3 Harmonic Inversion

For cavity analysis, the stand-alone cavities are simulated without waveguide coupling in

order to extract the ideal quality factor. When searching for cavity modes, a broadband

frequency source is first used to excite the range of frequencies in the photonic band gap,

which can result in several different modes oscillating together in the cavity, each with its

own time constant. A harmonic inversion code based on the filter diagonalization method

(‘harminv’) [71] is used to decouple each of the sinusoidally oscillating modes and extract

their quality factor and resonance frequency, as shown in Fig. 2.3 [72]. harminv will often

report more than one mode exists. The extraneous values are usually the radiative slab

modes which may still be in the PhC, and the value with the highest Q is usually the actual

cavity mode. In this work, all reported values of Q from simulation are extracted from

harminv.

Figure 2.3: Demonstration of harminv, which decouples harmonically oscillating waves
into their discrete Fourier components.

2.2.4 Lattice Generation

The positions of the photonic crystal lattices and multiple defect holes were generated

using a python script, which can be found in Appendix A. Hole positions are generated

by translating the hexagonal-basis coordinates of each hole into cartesian coordinates, and
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generating code in the meep format to be inserted into the source.

2.3 Multiple-Hole Defects: H1 Cavities

For the first study of the defect hole interaction with the modal field a simple H1 type

PhC cavity is considered, as shown in Fig. 2.4.a. Following the discussion in section 2.1,

the addition of the multiple-hole defect in the cavity modifies the effective index of the

mode, enabling direct light matter interaction inside the cavity. The effect of changing one

or more of the size, spacing, and number of defect holes in the cavity is studied in order

to understand the full characteristics of the MHD layout and design. The analysis was

performed using two different conditions on the dimensions. First, the size and spacing

of the defect holes were held constant and the effective MHD radius was changed. In the

second analysis, the ratio between size and spacing of the defect holes was kept constant,

essentially keeping the effective index of the MHD region constant. Both analyses will be

explained in greater detail in the following sections, and trade-offs between surface area,

sensitivity to small index perturbations, and quality factor are examined for both cases.

Here it is important to note that although the H1 MHD cavities were simulated in two

dimensions only, the concepts apply to a 2D slab configuration due to the bandgap existing

solely in the slab plane.

2.3.1 Simulation Methods

A PhC hole radius of 0.4 a was chosen in order to open a large photonic bandgap. The

bandgap was calculated using mpb, and occurs between the frequencies of 0.2462 (dielectric

band) and 0.4052 (air band) as shown in Fig. 2.5. The positioning of the defect holes

is automatically generated by a script, which outputs cylindrical objects in meep syntax.

The desired spacing and radius of the defect holes are used as inputs to the script, and
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Figure 2.4: (a) Dielectric constant plot of MHD simulation space, where black indicates
ε = 12 (silicon), white indicates ε = 1 (air). Detailed MHD regions with effective radius
(b) 0.2 a, (c) 0.3 a, and (d) 0.4 a are also shown. The defect hole radius in all cases is 0.04 a,
with defect hole spacing 0.12 a.

all possible positions which fall within a specified circular region are outputted. Partial

holes were not considered. In order to fill in the area most efficiently, a hexagonal lattice

is used for the positional layout, starting with a hole at position (0,0). Different effective

defect radii were evaluated, as illustrated in Fig. 2.4.b-d. The small holes constituting the

MHD are more than an order of magnitude smaller than wavelengths falling within the

photonic band gap of the surrounding photonic crystal. The resolution of the simulation

was increased to 150 grid lines per unit a in order to resolve the relatively small size of

the defect holes. All simulations of the H1 MHD cavities were carried out at this higher

resolution in order to obtain consistent comparison results.

In order to excite cavity resonances, a Gaussian source with center frequency and width

matching that of the photonic band gap was positioned in the middle of the MHD region

and run for several periods before turning off. The source is placed in the center in order to

maximize the coupling to the single resonance mode. The resulting cavity mode is shown in
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Figure 2.5: (a) Photonic bands for the photonic crystal with lattice hole radii of 0.4a. A
photonic bandgap exists for only for the TE polarization between 0.2462 and 0.4052. (b)
Field distribution for a MHD with effective radius 0.2a, with defect hole radius and dielec-
tric constant 0.04a and 1.05, respectively.

Fig. 2.5b, where 7 defect holes are included to show the maintained field uniformity. The

remaining resonating fields were then analyzed with harminv. The simulation area was

bordered by a 1-spatial unit thick PML, which ensures no reflections occur at the cavity

boundaries. The simulation grid covered approximately 10 periods of the photonic crystal

lattice, which increased the maximum achievable cavity quality factor for the device to that

of comparable devices [45].

2.3.2 Surface Area Enhancement

The primary advantage of the MHD PhC is the increased surface area that results from the

multiple holes utilized in the defect region. For example, biosensing applications require

biomolecules to be immobilized on a surface. Hence, available surface area is the limiting

factor for the number of molecules that can be attached. Larger numbers of immobilized

biomolecules, often referred to as probe molecules, increase the likelihood of capturing

and detecting the complementary biomolecules of interest, often called target molecules.
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Optical switching applications that rely on the attachment of an electro-optic polymer may

also benefit from the increased surface area of MHD photonic crystals.

In order to quantitatively demonstrate the surface area enhancement achieved by MHD

photonic crystals compared to traditional SHD PhCs, the surface area for various MHD

structures and SHD structures was calculated. The defect holes were generated as de-

scribed in section 2.2.4 and a PhC slab thickness of 0.7 a was assumed in the calculations.

Fig. 2.6 summarizes the results of the surface area calculations, where (a) shows the ef-

fect of spacing out constant radius defect holes, and (b) shows the surface area increase

when defect hole radii are reduced. In Fig. 2.6a, the available surface area increases as ex-

pected when the defect hole spacing is reduced, since more holes can fit into the effective

MHD region. Similarly, Fig. 2.6b shows that smaller radius defect holes are more effective

for creating more surface area within the MHD region, due to the aspect ratio increase in

smaller holes. For large defect effective radii, the available surface area for a MHD ap-

proaches nearly 25 times that of the single hole. Fig. 2.7 provides schematics for many of

the MHD configurations considered in Fig. 2.6.

2.3.3 MHD Effective Radius Modulation

Resonance Frequency

When considering the application of sensing surface perturbations, the design of the MHD

cavity would need to be tailored to the size of the perturbation in question. For example,

large size particles require larger defect holes. Since fewer large diameter defect holes can

fit within a given MHD effective radius, in order to maintain a large surface area for light-

matter interaction, the effective radius of the MHD can be increased. In order to evaluate

how the sensitivity towards index perturbations in the PhC cavity scale with the effective

defect radius, FDTD simulations were carried out in which the dielectric constant of the
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Figure 2.6: Surface area in units of a2 assuming device slab thickness of 0.7a, for (a) defect
radius held constant at 0.02a and variable defect hole spacing, and (b) relative spacing kept
constant at ade f ecthole = 3 ∗ rde f ecthole with variable defect hole radius. A plot of the SHD
surface area is also shown for comparison.

!

!

Figure 2.7: View of defect regions for generated MHDs corresponding to some of the
configurations analyzed in Fig. 2.6: defect holes with (a) radius 0.02a, spacing 0.06a, (b)
radius 0.02a, spacing 0.08a, (c) radius 0.04a, spacing 0.12a, and (d) radius 0.06a, spacing
0.18a. All defects have a specified effective MHD radius of 0.3a.
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individual defect holes was varied between 1 and 12 (silicon) for three different MHD

effective radii. The defect hole radius and spacing were held constant at 0.04a and 0.12a,

respectively. Fig. 2.8 shows the relationship between the MHD photonic crystal resonance

frequency and dielectric constant of the defect holes.

!

Figure 2.8: Resonance frequency for varied defect hole dielectric constant and MHD ef-
fective radius.

The slope of each curve shown in Fig. 2.8 represents the sensitivity of the specified

MHD photonic crystal. For sensing applications, it is desirable to design a device that

has a large resonance frequency change for small dielectric constant changes (i.e., steep

slope). In general, the largest slope and maximum sensitivity occurs for larger effective

MHD radii. Because larger effective radii provide more surface area, the amount of spatial

light-matter interaction is increased. However, below a defect hole dielectric constant of

approximately 5, the mode corresponding to a MHD with effective radius 0.4a is no longer

supported due to the state being pushed into the air band. Upon close inspection of Fig. 2.8,

the slopes of the MHD resonance plots are not linear, but change with increasing slope for

lower defect hole dielectric constant. The maximum achievable sensitivity thus increases

for defect hole dielectric constants near that of air, or ε = 1. Physically, this condition is
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favorable for small molecule sensing because the index contrast between the air/silicon is

large, and for most materials involved in sensing (such as fluid backgrounds) the value of

ε is on the lower end of the simulated range.

Quality Factor

Increasing the surface area by making the effective MHD radius larger also affects the qual-

ity factor due to a lowered effective index. The more defect holes added to the cavity, the

larger the fraction of air in the cavity, which reduces the effective index of the cavity based

on the effective medium approximation. Fig. 2.9 shows the cavity quality factor for MHD

photonic crystals with different defect hole dielectric constants and different effective radii.

The defect hole radius and spacing are held constant at 0.04 a and 0.12 a, respectively. The

quality factor increases with decreasing effective MHD radius. The field distribution for a

0.2 a effective radius MHD confirms the mode is monopole in Fig. 2.5b. Larger effective

radii contribute a greater perturbation to the field and dielectric constant within the defect

region, causing the quality factor to drop by nearly a factor of 5. Alternatively, the lower-

ing of the effective modal index can be seen as pushing the resonant frequency towards the

air band edge, which results in more leakage to radiative slab modes, creating more loss.

For all MHDs, the quality factor reaches the same maximum value when the defect area

is completely filled with high-index material (silicon); in this case, the MHD is essentially

replaced with a solid defect (i.e., missing lattice hole).

Based on the results shown in Figs. 2.8 and 2.9, there is a clear trade-off that occurs

between sensitivity and cavity quality factor in the H1 MHD cavities, which affects the

design of the MHD photonic crystal for specific applications. For example, at low defect

hole dielectric constants, sensitivity is high for effective radii of 0.3 a; however, in this

regime of dielectric constant, the cavity quality factor is the lowest. For silicon-based
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Figure 2.9: Change in cavity quality factor for varied defect hole dielectric constant and
effective MHD radius.

photonic crystal sensors, depending on the refractive index of the material to be detected

and the accuracy of available measurement equipment, a MHD pattern can be generated to

appropriately balance quality factor and sensitivity by changing the MHD effective radius.

It is also possible to change the defect hole radius and spacing to modify the sensitivity

and quality factor: smaller defect holes spaced closer together offer larger surface area and

greater sensitivity, but also lower quality factor.

2.3.4 Constant Effective Index

In section 2.3.3, it was shown that adding more surface area to the cavity by increasing

the effective MHD radius increases the sensitivity, but reduces the cavity Q significantly.

Therefore to preserve Q it is desirable to use a small effective MHD radius, and then utilize

many small holes in order to maximize the surface area. The design considerations for

the defect hole layouts are thus restricted to the defect hole size and spacing. Comparison

of different designs can be simplified by fixing the ratio between the defect hole radius

and spacing, which holds the effective index of the region constant. This can be shown
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by considering an area of fixed size inside the MHD effective radius boundary. Because

the effective index approximation takes into account the fraction of high and low index

materials within the area of interest, scaling the dimensions (defect hole size and defect hole

spacing) by the same factor retains the same relative fractions, and the effective refractive

index is kept constant. As a result, a cavity of constant effective MHD radius with two

different designs can have the same effective index, but widely varying surface area. An

example of this is illustrated in the previous section’s Fig. 2.7a,c,d, which share a constant

ratio of 3 between radius and spacing. In this section, the effect of changing the available

surface area contained within similar effective MHD radii are examined by simulation, in

the interest of enhancing the spatial LMI.

Simulations were performed for H1 MHD cavities with a range of defect hole dielectric

constants, representing additional material added inside the defect holes for active photonic

crystal applications. The defect hole radius was varied as 0.02 a, 0.04 a, and 0.06 a, with

respective defect hole spacings of 0.06 a, 0.12 a, and 0.18 a. The ratio between radius/s-

pacing is set as 3. For these three defect hole sizes, the defect effective radius was varied

as 0.2 a and 0.3 a. In the case of defect hole spacing 0.18 a, only the 0.3 a effective radius

MHD was simulated, as a smaller defect effective radius resulted in only one defect hole

by the hole generation algorithm.

Resonance Shift

Similar to the simulations in section 2.3.3, the resonance wavelengths of each simulated

MHD PhC are plotted in Fig. 2.10 as a function of the defect hole dielectric constant. The

slope of the curves shown in Fig. 2.10, which can be taken as the sensitivity of the MHD to

changes in defect hole refractive index, is again found to be higher for larger defects.

Because the effective index is assumed to be equivalent for similar effective MHD radii,
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Figure 2.10: Resonance wavelength of the H1 MHD for varied dielectric constant and
defect hole radius/spacing: (a) radius 0.02a, spacing 0.06a, (b) radius 0.04a, spacing 0.12a,
(c) radius 0.06a, spacing 0.18a.

comparisons can be made between the red curves of Fig. 2.10a-b and the green curve in

Fig. 2.10a-c. It is found that for MHDs with the same effective defect radius but differing

defect hole size and spacing, the resonance wavelength trend differs slightly. Since the

ratio of defect hole size and spacing is equivalent, and thus the effective index within the

defect regions are equal, the anticipated behavior of the MHD photonic crystals should be

the same. However, Fig. 2.10 shows that the wavelength of the resonance state increases as

the defect hole spacing is increased. For example, for the effective MHD radius of r = 0.2a

(red points), the resonance wavelength at ε = 1 is 1315 nm for ade f = 0.06a, and 1328 nm

for ade f = 0.12a. Similarly, for the MHD effective radius of 0.3a (green points), the reso-

nant state increases as 1253 nm, 1265 nm, and 1282 nm for 0.02a, 0.04a, and 0.06a defect

hole radii, respectively. The unexpected, slight change in defect resonance wavelength can

be accounted for by the method in which the defect hole positions are generated. Since

defect hole positions are found only for complete holes within a specified defect effective

radius, the number of holes generated within the MHD region depends on the defect hole

spacing and size. Although the ratio of defect hole size/spacing is constant, smaller holes

and radii result in more defect holes being generated within the effective MHD radius, “fill-

ing out” the circle more efficiently. This explains the increased wavelength blueshift for in
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Fig. 2.10a compared to Fig. 2.10b, since more holes are included at the edge of the effective

MHD circle. This additional air contribution decreases the modal effective index slightly.

Therefore, the defect hole generation method is only guaranteed to create equivalent effec-

tive index regions in the middle of the MHD region.

Quality Factor

Following the trend found in section 2.3.3, it is found that the quality factor is much higher

for a smaller effective MHD radius photonic crystal, as shown in Fig. 2.11. While the

change in quality factor due to defect hole index change is more linear in the 0.2a radius

case, for an effective radius of 0.3a, the quality factor increases far more rapidly at higher

dielectric constants. This is due to the overall faster change in effective defect dielectric

constant. Conversely, there are fewer holes for the effective radius of 0.2a, which results

in the linear trend. As explained at the end of the previous section, the differences in the

quality factor of MHD photonic crystals with different defect hole sizes and spacing but

the same defect effective radius and effective refractive index can be accounted for by the

method of generating the defect hole positions within the defect effective radius.

 

Figure 2.11: Quality factor of the H1 MHD for varied dielectric constant and defect hole
radius/spacing: (a) radius 0.02a, spacing 0.06a, (b) radius 0.04a, spacing 0.12a, (c) radius
0.06a, spacing 0.18a.

The sensitivity or quality factor of the MHD PhCs, or a combination of the two param-
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eters, can be chosen as the desired figure of merit depending on the intended application.

The defect hole radius and spacing, along with the defect region effective radius, can be

adjusted to tune the desired characteristics of the PhC. While high sensitivity may be ad-

vantageous for applications such as sensing, for other applications such as low threshold

light emission, it may be more useful to have a cavity with higher quality factor.

2.3.5 Cavity Sensitivity

The enhanced surface area afforded by MHD photonic crystals, which allows strong in-

teraction between the resonant photonic crystal mode and biomolecules attached inside

the MHD holes, is extremely favorable for small molecule detection. To quantitatively

demonstrate the advantage of MHD compared to SHD biosensors, the effect of adding a

variable thickness monolayer of biomolecules on the defect hole walls of MHD and SHD

photonic crystals is simulated. For sensing applications, chemical linkers are used to attach

biomolecules to inorganic surfaces [56]. Thus, simulations can accurately model the addi-

tion of a uniform monolayer of a chemical linker, or approximate the addition of discrete

molecules, such as DNA and proteins.

The simulated MHD cavity has an effective radius of 0.2 a, defect hole radius of 0.04 a,

and defect hole spacing of 0.12 a. The SHD is specified with a radius of 0.2 a, such that the

defect region of the SHD has the same footprint as the MHD. Fig. 2.12 shows the resonance

frequency shift as a function of monolayer optical thickness of material added in the MHD

and SHD. The Maxwell-Garnett approximation is used to calculate the effective refractive

index for each defect hole containing the added monolayer of biomaterial [63]. Both defect

configurations were assumed to be initially filled with air (n = 1), and all resonance shifts

were measured relative to the calculated resonance of an empty structure of only silicon

and air.

46



 

Figure 2.12: Plot of resonance shift as a function of monolayer optical thickness. The
monolayer optical thickness is specified as a fraction of the photonic crystal lattice constant,
a.

For monolayers thinner than the defect hole radius, the resonance frequency shift of

MHD photonic crystals is approximately 3 times larger than that of SHD photonic crys-

tals. Hence, the sensitivity of detection is clearly superior for the MHD structures. While

the resonance shift is approximately linear with increasing monolayer thickness for thinner

monolayers, the resonance shift of the MHD sensor tapers off as it approaches the condi-

tion of completely filling the defect holes. As the defect holes in the MHD become nearly

filled with the monolayer, the change in effective index becomes smaller since there is in-

creasingly less available surface area. The SHD sensor experiences a similar phenomenon

near its complete filling condition when the monolayer optical thickness approaches 0.2 a.

Also notable is the difference in quality factor of the MHD and SHD sensors. The

quality factor of the SHD sensor is 2.8×103, whereas the MHD sensor has a quality factor

of 6.3×103 when the defect holes are filled with air. Higher quality factors correspond to

sharper resonances in measured transmission spectra. Since narrower resonances facilitate

the detection of small resonance frequency shifts, the larger cavity quality factor of the

MHD sensors further enhances the detection capabilities of the MHD sensor compared to
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the SHD sensor. The higher quality factor of the MHD can be explained in part due to the

larger effective refractive index of the MHD, which results in stronger field confinement.

For the same radius defect region, the MHD has index contributions from both air and

silicon, while the SHD has an index contribution only from air. Additionally, the more

abrupt index change at the boundary of the SHD contributes to scattering and loss, which

reduce the quality factor.

2.4 Multiple-Hole Defects: L3 Cavities

The L3-type cavities, which are formed by filling in three air holes in a line, are well

known for their high-Q and small mode volumes, which make them an ideal candidate

for a LMI platform based on PhC. In an H1-type cavity, the amount of area available for

defect hole placement is limited, and realistic fabrication tolerances make it difficult to fit

more than a single hole. Conversely, the L3 has inherently more surface area for binding,

which allows for more flexibility in the placement of defect holes. In the previous section,

2D FDTD simulations confirmed that H1 cavities with MHDs exhibit larger resonance

shifts and, consequently, improved LMI and sensitivity for detecting analyte compared to

PhCs with single hole defects (SHD). For practical applications, the dimensions of the

defect holes in the H1 MHD cavity analysis are difficult to fabricate at high aspect ratios

in silicon. Thus, compromises in the design must be made in terms of feasibility from a

fabrication standpoint. When considering designs for L3 MHD cavities, a few issues must

be addressed. First, 3D simulations are required to accurately model a device intended

for fabrication. Since 3D simulations are resource and time-consuming, the overall design

process must be well-planned. Second, the number of defect holes, their size, and their

positioning are limited by the pattern writer resolution. Test patterns and dose arrays need

to be run before the device simulations, in order to get an idea of realistically achievable
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dimensions. Finally, the coupling mechanism to the cavity must be considered as part of the

design, since light needs a pathway to the resonator. The next section describes simulations

of L3 type cavities with defect holes and their design considerations.

2.4.1 Baseline L3 Cavity and Methods

Three-dimensional FDTD simulations were carried out in order to examine the effect of

adding MHDs to an L3 cavity. All dimensions are normalized to the PhC lattice constant of

a = 410 nm for cavity resonances in the range of 1550-1600 nm. The silicon slab forming

the PhC is surrounded entirely by air, with a slab thickness of 0.536a (220 nm) and lattice

hole diameter 0.512a (210 nm). The dielectric constant of the slab was set to εSi = 11.56,

which can vary slightly in experimental settings. The L3 cavity itself consists of three filled

in lattice holes, as shown in the inset of Fig. 2.13. The two lattice holes laterally adjacent

to the cavity are moved outwards by 0.15a (62 nm) to increase the quality factor by relax-

ing the boundary conditions on the cavity mode Fourier transform [73]. The cavities are

surrounded by 7 lattice rows in the Γ-M direction, and 10 rows in the M-K direction. The

simulation resolution is set to 24 (grid points every a/24, or 17 nm) with subpixel averag-

ing enabled to increase accuracy. The entire simulation space is surrounded by a perfectly

matched layer (PML) of thickness 2.0a, absorbing at the boundaries any fields emitted by

the cavity. The resonance wavelength and quality factor of the cavities are calculated by

placing a Ey-polarized dipole electric field point source with a Gaussian frequency distri-

bution within the cavity, offset by 0.1a (41 nm) in the X and Y directions in order to avoid

direct excitation of field maxima/minima. Assuming propagation in the plane of the cav-

ity, with the wavevector k in the x-direction indicated in Fig. 2.13, the polarization can be

considered quasi-TE. Overlapping the source and points of modal symmetry is avoided in

order to excite all possible modes, if the symmetry of the cavity field distribution is not
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Figure 2.13: z = 0 cut of Ey field distribution overlaid onto dielectric function (yellow) for
L3 cavity with lattice hole radius 0.256a. Inset: detailed dielectric function in the cavity
area.

already known. If the source dimension and placement closely matches the cavity mode,

the number of modes excited is limited.

At time t = 0, the broadband pulse excites the cavity, and 1000 further time steps are

computed after the source is turned off. The number of time steps is large to ensure that

radiative slab modes and other non-resonant cavity modes have dissipated. The resonance

wavelengths and quality factors of the remaining resonating modes are then computed by

harminv, which decouples the fields into individual sinusoids and calculates their decay

rates. For the baseline L3 cavity with no MHD, harminv gives an intrinsic cavity quality

factor Q = 25,300 and ω = 0.266317 c/a. The normalized frequency of the cavity mode

is equivalent to a wavelength of a/ω = 1539.5 nm, and using Eqn. 1.6, the cavity lifetime

τ = 20.66 ps.

For optimizing refractive index perturbation using MHD, the regions of interest are

the spatial locations within the modal field distribution with the highest intensity. These
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locations can then be targeted for the addition of defect holes, in order to increase the

spatial LMI. From the simulation results in Fig. 2.13, the L3 cavity has the highest field

intensity in the middle of the L3 cavity, followed by two lateral intensities to either side of

the center in the ±x-directions.

2.4.2 Stationary Defect Hole Position

The baseline L3 cavity FDTD simulations showed that three main intensities exist within

the modal field distribution. In parallel with cavity simulations, several test designs were

fabricated using previously known parameters for L3 cavities and adding defect holes to

the designs. The test design which became the basis for all future designs consisted of

three defect holes located within the cavity with diameters ranging from 50-80 nm, spaced

laterally by 470 nm from center. The spacing of 470 nm was initially chosen because of

the lattice constant of 410 nm plus the added 60 nm of shift in the laterally adjacent lattice

holes for increased Q. Simulations confirmed after fabrication had already begun, that

the mode is actually compressed more towards the center. It was found with other test

structures that the inclusion of more than three defect holes increased the scattering in the

cavity significantly, making the resonance undetectable in the transmission. Therefore the

number of defect holes in all designs was restricted to three. The characteristics of the

fabricated MHD L3 test design were examined by simulation using the dimensions from

the completed device.

The resulting cavity modes are shown in Fig. 2.14. The calculated resonance frequen-

cies for the L3 cavity and MHD were 0.2626 c/a and 0.265 c/a respectively, corresponding

to 1561 nm and 1547 nm for a lattice constant of 410 nm. The addition of defect holes filled

with air lowers the modal index and blue-shifts the resonance. Examination of Fig. 2.14(a-

b) shows similar in-plane mode profiles for both cavities, with three main lobes inside the
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cavity region. Fig. 2.14(c-d) shows the plotted field amplitude for each cavity using a ver-

tical cut through the slab center, with the matching field profile plot overlaid for reference.

It is important to note that the field amplitude is continuous in the MHD, with the highest

positive field directly overlapping with the central defect hole, lowest negative field at the

lateral defect holes, and no loss of intensity at the defect holes. The sharp field increase

inside the defect holes results in a perceived offset in field intensity between the MHD and

L3 cavities after normalization to the color map scale. However, the field amplitude in the

MHD cavity is in fact comparable to that in the L3 cavity. The calculated intrinsic cavity Q

Figure 2.14: Cavity mode TE field profiles from FDTD analysis overlaid onto the in-plane
dielectric structure for (a) L3 and (b) 3-hole MHD cavities, with their respective vertical
cuts and overlaid field amplitude data shown in (c,d).

values are ∼27,000 for the L3 cavity, and ∼24,000 for the MHD cavity. We note that these

Q values are in good agreement with those reported for similarly designed L3 cavities [73].

The values of Q are slightly different from those of section 2.4.1 due to a corrected dielec-

tric constant of εSi = 11.9, from fitting to experimental results, as will be shown in Chapter

3. While higher intrinsic Q can be achieved through further optimization of the lattice hole
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positioning around the cavity [74], ultra-high Q factors can introduce increased sensitivity

to environmental changes, which can be problematic for sensor applications. The slight

degradation of Q after insertion of the three MHD holes is likely caused by scattering oc-

curring at the silicon/defect hole interfaces. Since the field is most strongly concentrated

in the regions of additional surface area, inside the defect holes, analyte that binds to the

silicon surface can be detected directly inside the volume where the modal field intensity is

highest.

2.4.3 Design Optimization

The first MHD L3 test design was not optimized for the cavity mode, because test struc-

tures were fabricated in parallel with simulation. Once the mode distribution is known,

the spatial aspect of the LMI can be tuned further by changing the placement of the holes.

The goal is to optimize the cavity to a design where the cavity Q is not severely degraded,

and the largest perturbation of the resonance position is achieved. By simulating L3 MHD

cavities with differing lateral defect hole spacings, the effect of fractional overlap between

the modal field and the defect holes can be investigated. The magnitude of the measured

transmission resonance shift for L3 MHD cavities with different lateral defect hole loca-

tions is a relative indication of the sensitivity of the LMI to perturbations for each design.

Several cavities are simulated, with the lateral spacing (here referred to as ‘d’) of the 60 nm

diameter defect holes increased in 40 nm increments, starting from 100 nm and ending at

500 nm. The defect holes are always arranged in a straight line which bisects the cavity

lengthwise, and d is measured as the lateral distance going away from cavity center. The

dielectric constant was set at ε = 11.56 for these simulations.

First, the resonance shift due to defect hole placement is examined, which is plotted in

the black points shown in Fig. 2.15. The resonance wavelength of the L3 cavity without
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Figure 2.15: Simulated resonance wavelength (black, filled circles) and quality factor (blue,
open circles) for various lateral spacings of side defect holes in the 3-hole MHD cavity.

any defect holes is 1539.5 nm, above the y-axis of the plot. The resonances of the L3 MHD

cavities are all shifted to shorter wavelengths compared to the L3 cavity resonance, and the

degree of shift from the baseline L3 cavity corresponds to a larger degree of LMI. Recall

that the spatial overlap of the defect hole and modal field intensity comprises the amount

of perturbation to the L3 cavity, and thus the sensitivity of the resonance wavelength to

perturbation increases when LMI increases. Starting from the lateral spacing of 180 nm,

with increasing lateral hole spacing the defect holes cross over the zero field points in the

modal field, and begin to overlap with the secondary intensities. As the spacing approaches

380 nm, the resonance increasingly blue-shifts away from the L3 baseline resonance wave-

length, and LMI is maximized for the lateral hole spacing of 380 nm. Beyond 380 nm, the

holes pass the location with maximum intensity and the degree of LMI is reduced, caus-

ing the resonance to shift back towards the L3 cavity baseline value. For completeness,

lateral spacings of 100 and 140 nm were also simulated. At these spacings, the resonance
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blue-shift again increases relative to the L3 baseline resonance wavelength, this time due

to the overlap with the central intensity lobe of the mode. It is found that the smallest

lateral defect hole spacing (100 nm) and an intermediate spacing of 380 nm produce the

largest shifts. This shows that the degree of the LMI due to defect hole overlap with modal

regions of high intensity does indeed correlate to an increased sensitivity. Furthermore, as

the holes cross over the zero-intensity points at 180 nm and 500 nm, the sensitivity is found

to be minimized. The ideal MHD cavity design, therefore, should have defect holes placed

at d = 100 nm or d = 380 nm, which causes the largest resonance shifts.

However, the cavity Q should be considered as well for a fully optimized design. The

blue, open circled points in Fig. 2.15 show the Q values for the respective lateral spacings

of the defect holes in the L3 MHD cavities. For reference, the Q of the baseline L3 cavity

is 27,000. While two lateral spacings were found to maximize the resonance shift, the

maximum value of Q exists only at the d = 380 nm design. The other hole location which

leads to largest resonance shift, d = 100 nm, has a value of Q which is drastically reduced

to around 3,000, nearly an order of magnitude lower than the baseline L3 cavity Q. There

are two important observations to make here. First, the value of the maximized Q for the

L3 MHD cavity with lateral defect hole spacing of 380 nm is over 43,000, which is higher

than the Q of the L3 cavity without any MHD defect holes (27,000). This can be explained

by the so-called “slot waveguide effect,” which is the concentration of field in narrow,

low index regions due to the discontinuity of the electric field at high contrast dielectric

interfaces [75]. Positioning the defect holes precisely at the field maxima can potentially

intensify the field inside of the defect holes, creating higher Q resonances.

Second, the drastic reduction in Q for the d = 100 nm spacing can be associated with

the formation of singular regions of lower effective index when the spacing between de-

fect holes becomes too small. Consider the case where the defect holes are spaced apart
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by an amount larger than the diameter of the holes themselves. In this case, the holes are

surrounded by enough high-index material that the sum of the individual low-index contri-

butions is minimized. The result is a slight overall lowering of the effective index in the

entire cavity, with minimal scattering. When the spacing between the holes approaches

the order of the hole diameter (in this case ∼60 nm), the small region containing 3 holes

contributes a more significant lowering of the effective index. This can be likened to the 3

holes combining into an oblong-shaped low index region in the cavity. Hence, the intention

of minimizing low-index contributions is destroyed, and the effective-index approximation

cannot be applied, creating a significant source of scattering losses in the cavity. A similar

trend is seen in the 2D FDTD simulations of the H1 PhC cavities in section 2.3.3, where

the Q is reduced as the effective MHD region is enlarged. The limitation of the simulation

resolution can also be a factor when the defect hole spacing becomes too small. If only a

small amount of material is left separating the holes, it is possible that the index contrast

cannot be resolved with the FDTD grid spacing. However, for the case of 100 nm lateral

spacing and higher, sufficient grid points are available to resolve the separation.

In summary, the spatial aspect of the light matter interaction can be improved by the

integration of defect holes within a L3 cavity. The amount of overlap between the de-

fect holes and the cavity field dictates the amount of shift in the resonance, and indicates

the presence of a location where maximum perturbation occurs. The reduction of Q with

crowding of defect holes is verified in experiment results and will be addressed in Chapter

3.
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CHAPTER 3

MULTIPLE-HOLE DEFECT FABRICATION AND MEASUREMENT

3.1 Design Rules

The design rules used to set the various dimensions of the PhCs are restricted by the mea-

surable range of wavelengths by the available sources/detectors, material absorption/trans-

parency, and polarization considerations. In the sections below, we outline the acceptable

ranges of device dimensions and their impact on device performance.

3.1.1 Substrate and Waveguide Design

For fabrication of nanophotonic devices on a silicon platform, silicon-on-insulator (SOI)

wafers, which consist of a thin silicon device layer on top of a buried silicon dioxide layer,

are an optimal choice of substrate. The buried oxide (BOX) serves to optically isolate the

guided modes from the bulk wafer below, and must be at least 1 µm thick. SOI wafers from

SOITEC with a 220 nm-thick device layer and a BOX thickness of 2 µm are used for all of

the measured devices. The chosen device layer thickness helps to suppress TM mode prop-

agation in the 500 nm-wide single mode access waveguides at longer wavelengths. Device

operation above the cutoff (the wavelength above which a mode is no longer supported) of

the first TM mode is desirable; the cutoff wavelength is a function of the waveguide width

and thickness [76].

The overall layout of the devices on chip is as follows. PhC device regions and W1

waveguides are placed in the middle of the chip in a linear fashion, to ease observation of

scattered surface light. Devices are grouped according to similar types of designs. Baseline

L3 cavity devices are offset from other devices in order to differentiate them easily in the
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microscope view. Strip waveguides extend out from the W1 coupling waveguide for each

device and bring the signal to the edges of the ∼1 cm long chip for measurement. Two

tapered sections are employed in the strip waveguides in order to reduce coupling losses.

First, at the edge of the chip the waveguides inversely taper down to a width of 200 nm over

a length of 300 µm to facilitate mode-matching to fibers during measurement. Coupling us-

ing only the nanotapers, however, requires polishing down the excess length of substrate

in order to bring the tapers closer to the chip edge [77]. Because the polishing process can

potentially damage and/or contaminate devices, polymer spot size converters are employed

on the PhC MHD chips to increase coupling efficiency to the devices [27]. These consist

of straight polymer waveguides with a cross section of approximately 3x2 µm which are

deposited directly over the 200 nm silicon waveguide nanotapers. The increased size of the

polymer waveguides allows for a better match with the tapered lensed fibers, which have

a spot size of approximately 2.5 µm. Light is then gradually coupled into the silicon strip

waveguides along the overlapped portion. The 2.3 mm long polymer couplers accommo-

date a large amount of error for device cleaving. Second, as the strip waveguide approaches

the PhC region, the width is tapered out to 710 nm, which matches the distance between

the two lattice holes on either side of the W1 coupling waveguides. The termination plane

of the PhC lattice at the interface is also important, and has an effect on the insertion losses

due to reflection [78]. Therefore the strip waveguide meets the PhC W1 waveguide at a

distance of 0.75a into the lattice in order to minimize losses, which corresponds to one

quarter of the lattice constant beyond the last lattice hole plane.

3.1.2 Photonic Crystal Design Parameters

The lattice constant in the photonic crystal is the most critical design parameter. The choice

of lattice constant determines the frequency range of the bandgap, and subsequently, the
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low-loss guiding region of the W1 PhC waveguides. The infrared C-band (1.53-1.57 µm),

which is commonly used in fiber-optic communications links, is a good choice for silicon

photonics applications as well, due to silicon’s transparency in this range and readily avail-

able sources and detectors [41, 73]. In order for the bandgap to fall within the C-band, the

lattice constant must be in the range of 400-420 nm.

For the PhC designs in this thesis, a lattice constant of 410 nm is chosen. Choosing a

larger lattice hole size relative to the spacing (r/a ratio) results in increasing and shifting the

spectral width of the bandgap, translating to a wavelength blueshift in all spectral features.

W1 waveguides with this lattice constant have a cutoff occurring around 1600 nm. In the

case of PhC waveguides, cutoff occurs due to the forbidden bandgap, whereas in strip

waveguides the cutoff is due to the dimensions of the waveguide no longer able to support

a mode. With the lattice constant fixed, the relative sizes of the defect holes are restricted

on the lower limit due to fabrication limitations. At the larger limit, the defect hole must

be smaller/larger than the lattice hole, but unequal to the lattice hole size. When creating

a defect hole of size larger than the lattice holes, modification of the surrounding lattice

holes may be necessary to prevent hole overlap. For sensor applications, the number of

defect holes and layout of the MHD should be chosen by taking into consideration the

type of analyte to sense. Detection of small molecules may require pushing the boundaries

of lithography critical dimension (CD), while larger molecules may have more relaxed

tolerances for fabrication. This is due to the size-specific filtering inherent in fabricating

holes of a certain size, as well as the necessity to fill as much of the hole surface as possible

for efficient light matter interaction. Fabricating defect holes which are too large for the

molecules or particles of interest reduces the efficiency of filling due to an excess fraction

of air inside the holes.

In this thesis, several designs of MHD cavities are fabricated on-chip, with variations

59



in defect hole position, radius, and spacing. These parameters are modulated in order to

explore the relationships between different designs and the resulting cavity sensitivity and

quality factor. Strip waveguides and PhC W1 waveguides are also fabricated for transmis-

sion normalization and lattice characterization purposes, respectively. Normalized trans-

mission measurements report the relative transmission with respect to the strip waveguide,

by dividing all traces by the strip waveguide data. The W1 waveguide serves as a guide

towards PhC characterization due to the cutoff wavelength being affected by the lattice hole

size. Measuring the cutoff and the quality of the low-loss propagation spectrum in the W1

waveguides gives an indication of the lattice hole uniformity and size.

3.2 Device Fabrication

Although an advantage of MHD PhC devices is the compatibility with well-known CMOS

silicon processing techniques, several challenges exist for creating uniform, sub-wavelength

sized features within a lattice that requires uniform hole radii and spacing. In this section,

several fabrication challenges and their solutions are presented, as well as details outlining

each step of the fabrication process.

3.2.1 EBL Challenges

In order to create small features with high resolution in the MHD PhC devices, electron-

beam lithography (EBL) must be utilized in the patterning step. Typically, modern EBL

tools are capable of producing features less than 10 nm in diameter with process optimiza-

tion. One of the main challenges to achieving closely spaced small features using EBL

is the so-called “proximity effect,” which has been previously reported in the literature

[79, 80]. Proximity effect is especially severe at high acceleration voltages, which are re-

quired to achieve high resolution features due to the directionality of the focused beam.
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Electron backscatter from underneath the resist can over-dose the surrounding patterns in

the MHD structures, resulting in non-uniform lattices. This effect can be seen in Fig. 3.1,

which shows the result of a photonic crystal waveguide pattern written with EBL at a single

dose. The lattice holes are generally under-dosed, resulting in patches of holes that are not

properly exposed. The improperly exposed holes occur in a seemingly random fashion,

due to the nature of electron backscattering from the substrate. The holes near the strip

waveguide interfaces at the input/outputs tend to be well-resolved due to an added indi-

rect exposure from the adjacent large area features. Conversely, holes towards the bottom

and top edges of the pattern are nearly non-existent due to less proximity effect at these

locations. In order to overcome these patterning errors, compensation is performed in all

subsequently fabricated devices by self-biasing the dose of individual shapes during pattern

editing or by using automated Proximity Error Correction (PEC) to modulate the exposure

dose depending on the feature positioning throughout the pattern layer. When using dose

biasing, the defect holes within the MHD region generally require a dose that is 200-300%

increased with respect to the base dose. This is due to the EBL pattern generation process,

which translates the design from a GDS-II layout type to a EBL tool-specific format by

filling the patterns with equally-spaced “shots.” Each shot represents one location at which

the electron beam will be held stationary, and the dwell time at each spot is dependent on

the dose. Because the 40-60 nm defect holes only contain a few shots, the beam must be

held there for much longer in order to fully expose the resist.

3.2.2 Fabrication Steps

The fabrication process steps for the PhC MHD sensor devices are outlined in Fig. 3.2. De-

vices were fabricated at the Center for Nanophase Material Sciences at Oak Ridge National

Laboratory, Oak Ridge, TN for exploratory and design purposes, and at the Microelectron-
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Figure 3.1: Pattern errors in photonic crystal waveguide patterned using electron-beam
lithography without proximity error correction or dose biasing.

ics Research Laboratory (MRL) at IBM T. J. Watson Research Center in Yorktown Heights,

NY for experiments. The devices fabricated at IBM were processed on a standard 200 mm

CMOS fab line. Two differences exist in the processes used at each facility, which are the

e-beam resist used (CNMS: ZEP-520A, MRL: PMMA) and the use of an oxide hard mask

layer only at MRL. The oxide hard mask is required when using PMMA due to its poor etch

selectivity. All patterns were laid out by hand in the GDS-II format using Tanner L-Edit or

IBM’s proprietary layout software.

The following description is for the devices fabricated at MRL. First, a 50 nm-thick

oxide hard mask layer is deposited by LPCVD on a silicon-on-insulator (SOI) substrate

with 220 nm silicon device layer thickness and 2 µm buried oxide (BOX) layer. PMMA

resist is spin-coated onto the hard mask surface, and a Leica VB6-HR 100 kV electron

beam lithography system is used to expose the PhC regions and access waveguides in a

single step. The oxide mask and silicon device layers are then etched using a two-step

RIE, with CF4/CHF3/Ar and HBr chemistries, respectively. After the resist is stripped,

polymer mode couplers were fabricated using spun on negative resist (SU-8) and aligned
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lithography on top of the tapered bus waveguides.

Once the devices and polymer couplers are defined at IBM, the final processing steps

are required to create the air bridge structures necessary for symmetric air/silicon/air slabs

are performed at the Vanderbilt Institute of Nanoscale Science and Engineering (VINSE)

cleanroom. The symmetric vertical structure in the photonic crystal slab is important for

opening the photonic bandgap in the plane, as discussed in Section 1.2.4. The removal

process of the oxide underneath the PhC slabs is referred to as the “undercut” process.

For the undercut step, Shipley 1813 photoresist is first spin-coated at 3000 rpm onto the

samples and then windows in the photoresist are opened over the PhC device regions only

via optical lithography. The lithography step is carried out as follows. An iron oxide

optical mask, which is semi-transparent in the visible wavelengths for ease of alignment,

was designed in-house and sent out for fabrication. The masked sample is exposed to a

dual-source (g and i-line) UV light for 8 seconds in hard-contact mode on a Karl Suss

MA6 mask aligner. After exposure, the sample is developed in a TMAH-based solution

(AZ-300 MIF) for 30 seconds, rinsed with DI water, and dried with nitrogen gas. The

underlying BOX was then etched away using a 9:1 buffered oxide etch (BOE). The BOE

solution is drop-casted onto the chips for 3 steps of 10 minutes each and 1 additional step

of 5 minutes, rinsing with DI water and drying with nitrogen in between each step, forming

air-bridge PhCs with air cladding above and below the devices.

After the BOX undercut, the samples are cleaved through the polymer couplers. The

undercut resist mask that remains in the region outside the PhC is retained in this step

to protect the waveguide surfaces from any contamination during the cleaving process.

Cleaving through the waveguides provides a clean edge to minimize reflections and facili-

tate efficient coupling of light to and from the PhC chip. Finally, the resist layer is removed

by a 10 minute soak in acetone, rinsed with acetone and isopropyl alcohol, and dried with
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E-Beam Expose!Hard Mask RIE!Device Layer RIE!

EB Resist Removal! Resist Spin/Develop! Buffered Oxide Etch!

Resist Strip!
(Acetone)!

Completed Air-Bridge Structure!

Figure 3.2: Fabrication steps for the multiple-hole defect photonic crystal structures.
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a!

b! c!

d! e!H = 1.615 μm"

W = 2.79 μm"

Figure 3.3: SEM micrographs of fabricated MHD PhC devices, showing (a) overall device
region showing strip waveguide input/outputs and W1 waveguide coupling to PhC L3 cav-
ity, (b) close-up inspection of (top to bottom): L3 cavity, SHD cavity, 3-hole MHD cavity,
(c) strip waveguide tapering to match W1 PhC waveguide width, (d) SU-8 polymer coupler
and (e) coupler cross-section.
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nitrogen. SEM images of the completed devices are shown in Fig. 3.3. Variation of the base

dose in the EBL write step produce PhC lattice holes between 200-220 nm in diameter, and

MHD with defect holes between 50-90 nm in diameter.

3.3 Measurement Setup

The optical measurement setup used to characterize the PhCs is shown schematically in

Fig. 3.4, and a photo of the setup is shown in Fig. 3.5. The photonic chips are mounted

on a brass sample carrier fabricated in-house, which sits on a Y-Z stage for positioning.

Tapered, polarization-maintaining fibers with 2.5±0.5 µm spot size and 14±2 µm working

distance couple light in/out of the device. The fibers are aligned on either side of the chip

and mounted on XYZ stages with piezo controlled actuators for accurate positioning. A

broadband LED source (Agilent 83437A) with FC/PC fiber output provides an input spec-

trum ranging from 1200-1700 nm, suitable for the designed wavelength ranges of interest.

A polarization stage before the input tapered fiber selects the TE or TM polarization, and

all fibers are polarization-maintaining. The transmission spectrum of the PhCs is measured

by an optical spectrum analyzer (OSA, Agilent 86140B); resonances of the MHD devices

within the excitation bandwidth can be observed. All transmission spectra are normalized

to a single-mode strip waveguide that is measured separately using the same optical mea-

surement setup. For measurements which require higher spectral resolution, a germanium

detector and optical power meter are used with tunable diode lasers (NewFocus Velocity) to

scan from 1470-1570 nm with 0.01 nm resolution. As shown in Fig. 3.5, a NIR-transparent

20x microscope objective with long working distance (Mitutoyo) is positioned directly

above the sample to assist with coupling and alignment. An IR-sensitive InGaAs sensor

camera (Sensors Unlimited SU320M) is used to collect the image, which can be viewed on

a monitor via a BNC cable connection.
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Figure 3.4: Illustration of PhC measurement system.

Figure 3.5: Measurement showing device under test (DUT) and input/output fibers. A mi-
croscope objective optimized for near-infrared transmission is used for observation above
the DUT.
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3.4 Passive Device Characterization

Before the effect of surface perturbations is explored in Chapter 4, passive device measure-

ments are conducted and presented here to confirm the simulated device properties such as

waveguide cutoff, quality factor, and sensitivity to defect hole placement. The transmission

spectrum of the fabricated cavities is measured in air ambient.

3.4.1 Photonic Crystal Waveguides

As discussed in Chapter 1, PhC W1 waveguides possess a low-loss guiding region which

can be calculated using PWE simulations (mpb). For the purposes of coupling to PhC de-

fects, the bandwidth of the low-loss guiding region must overlap with the cavity mode

resonance frequency to ensure that light is guided in and out of the structure. The spectral

overlap can be verified by first simulating with mpb using the fabricated dimensions mea-

sured by SEM, to find the low-loss region. By then simulating an L3 cavity with the same

lattice parameters, it is found that the resonance frequency of the L3 cavity is located close

to the cutoff of the W1 waveguides. Therefore, the cutoff wavelength of the W1 waveg-

uides alone can be measured first to ensure that the cavity resonances are located within the

measurable range of the available sources and detectors. Also, measuring W1 waveguides

without adjacent cavities helps to characterize the quality of the fabricated lattice holes and

their size, which directly affects the cutoff wavelength. Because the fabrication process can

result in a narrow spread in the lattice hole size/spacing, the effective lattice size is reflected

in the location of the W1 cutoff. The location of the W1 cutoff is confirmed by PWE sim-

ulations in mpb, where the measured parameters from the fabricated devices are inputted

as normalized dimensions. Fig. 3.6 shows normalized transmission spectra of 3 different

lattice hole sizes, achieved by simply modulating the EBL exposure dose. As expected,
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the waveguide cutoff blue-shifts with increasing dose, as the bandgap is pushed to higher

frequencies for larger hole radius relative to a. Increasing the size of the lattice holes can

be considered as effectively removing a thin layer of material from the inside of the holes,

which reduces the effective index of the hole and shifts the bands to higher energies (lower

wavelengths). Adding material, or effectively shrinking the lattice radii, results a shift to

lower energy (higher wavelengths). Note that although the band edge shifts demonstrated

here are due to permanent changes to the lattice hole dimensions, the same concept applies

for active sensing applications when chemical or biological material is added to the lattice

holes, which will shift the waveguide cutoff by an amount proportional to the effective

refractive index change induced by the presence of the target material.

Increasing!
dose!

Figure 3.6: Transmission of W1 PhC waveguide for varying EBL lithography dose.

The comparison of measured transmission and calculated bands is shown in Fig. 3.7. In

order to align the spectral features, the x-axis for the measured transmission wavelength is

reversed, and the bands are plotted with the x and y-axes inverted (wave vector as the y-axis,

mode frequency as the x-axis). Several important points are circled in red and labeled (a-d)

in the figure. The region between points (a) and (b) is the cutoff due to the mode gap which
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occurs between the guiding states above (b) and the extended states at (a). This causes the

sharp cutoff in transmission above 1580 nm. Points (b) and (c) in Fig. 3.7 are the cutoff and

multi-mode frequencies, respectively. Between these points is the low-loss guiding region,

which corresponds to the highest measured transmission in Fig. 3.7, occurring in the region

from approximately 1500-1580 nm. Between (c) and (d), where the extended modes meet

the light line, transmission is reduced due to the increased density of states both in the gap

and above the light line (gray region). Point (d) represents another cutoff due to the light

(a)!

(b)! (c)!

(d)!

Figure 3.7: Comparison of W1 measured waveguide transmission to dispersion calculated
by mpb. The gray region is the light cone, where modes are radiated and not guided. Special
points (a-d) correspond to: (a) onset of extended modes, (b) mode gap cutoff frequency, (c)
onset of multi-mode guiding, and (d) light line cutoff.

line, which is represented by a drop off in transmission at 1350 nm. Because the L3 cavity

modes are close to the W1 cutoff wavelength, the W1 transmission measurements confirm

that the cavities will be in the range of the high-resolution tunable laser source, which is

limited to 1470-1570 nm.
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3.4.2 Effect of Defect Hole Size

As discussed in the previous section, modulating the radius of the PhC lattice holes has

the effect of changing the sensitivity of the slab to surface perturbations. A similar effect

occurs for the small MHD holes fabricated within an L3 cavity: changing the radius of

the defect hole will shift the defect resonance frequency within the band gap. Note that at

the resonance wavelength, the modal field is mostly confined to the defect region, so the

spatial overlap is increased for the defect holes compared to the lattice holes. In order to

experimentally verify the resonance shift for modulated defect hole radius, several different

L3 PhC cavities with defect hole diameters were designed and fabricated. All cavities were

fabricated on the same chip. The as-designed dimensions are slightly different from the

defect hole radii measured by SEM, likely due to dose biasing, PEC effects, and variability

in reactive ion etching. For example, designs with defect hole diameters of 30, 50, 70 nm

in the pattern are fabricated as 57.1, 57.4, and 69.1 nm diameter holes, respectively, in the

SHD, and as 53.5, 54.6, 71.1 nm respectively, for the MHD cavities. The defect hole diam-

eters measured by SEM metrology, and are assumed to be accurate within 5 nm. Note that

the MHD designs consisted of three holes, with the side defect holes placed at a constant

lateral spacing of 470 nm from the center defect hole that was located in the middle of the

L3 cavity. The measured resonances in the transmission spectrum are shown in Fig. 3.8 for

SHD and MHD designs with nominal defect hole diameters of 30, 50, and 70 nm, as well

as two baseline L3 cavities with no defect holes.

The magnitude of the relative resonance shifts for L3 cavities with the same lattice

hole diameter and different defect hole diameters is directly proportional to the defect hole

diameter. When the defect hole diameter is increased, the effective index of the cavity mode

accordingly decreases, which leads to the resonance wavelength blue-shift. The magnitude
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Figure 3.8: Comparison of cavity resonances for same as-designed sizes of defect holes for
SHD (top) and MHD (bottom).
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of the blue-shift of the MHD resonances is greater compared to the SHD cavities with the

same as-designed defect hole sizes because more of the overall cavity index changes as

material is removed from the inner surface of the defect hole. Conversely, when material

is added to the inner surface of each defect hole, the MHD should have a larger red-shift

when compared to a SHD or L3 cavity. Thus, the passive measurements for hole radius

modulation are an indication of the potential sensitivity of the PhC to surface perturbations.

Fig. 3.9a shows measured resonances for a solid L3 cavity, as well as for SHD and MHD

cavities with defect hole diameters of 57 nm and 54 nm, respectively. It should be noted

that the trend of resonance shift due to defect hole size modulation follows that of FDTD

simulations which utilize the dimensions of the fabricated devices. The addition of a single

defect hole (SHD) blue-shifts the L3 resonance by 6.46 nm; the MHD cavity resonance is

blue-shifted by 11.94 nm compared to the L3 resonance. Based on multiple measurements

and Lorentzian curve fitting, we estimate the precision of the cavity resonance wavelength

measurements to be 0.003 nm. Lorentzian curve fits were also used to extract the “loaded”

Q (Qload) of each resonance by calculating λ0/∆λ . Qload is a measurable quantity, which

is degraded from the intrinsic Q found in simulation due to waveguide leakage. We found

a similar Qload of 6500±200 for the different cavity configurations. We note that the blue-

shift of the resonance after addition of defect holes and the similarity of the Qload among

all three cavity configurations is expected from our simulation results in 2.4.2.

Here it is emphasized that the measurable quantity Qload is lower than the intrinsic, sim-

ulated Q (Qintr) as a result of two loss factors: (1) losses associated with fabrication errors,

and (2) the bus waveguide coupling loss. Both of these are related by an “experimental” Q

(Qexp), which can be calculated from Qload by the minimum transmittance at resonance T0

as described by Eqn. 3.1. The losses due to fabrication (Qloss) in Eqn. 3.2 result from inac-

curacies in lattice hole radius and uniformity, as well as any surface roughness that results
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from etching processes. Qloss can be reduced by rigorous process engineering, but this is

costly from a time and monetary standpoint [42]. The loss due to coupling is a function

of the separation between cavity and waveguide. As shown in Fig. 3.3, all of the designed

cavities are separated from the access PhC waveguides by 3 rows of lattice holes. A trade-

off must be taken into consideration when designing the cavity-waveguide system. Placing

the cavity too close will reduce the Qload due to light leakage to the waveguide, and placing

the cavity too far away will reduce the dropped signal in the transmission, making it hard to

resolve the resonance even though Qload is high. The measured Qload for the PhC reported

in this chapter is suitable for sensing small molecules, as will be discussed in Chapter 5.

Qexp = Qload/
√

T0 (3.1)

1
Qexp

=
1

Qintr
+

1
Qloss

(3.2)

Figure 3.9: (a) Transmission spectra comparing the resonance of an L3 cavity (solid) to
those of SHD (dotted) and MHD (dashed) cavities with similar defect hole diameter, (b)
Resonance shift relative to L3 cavity for SHD and MHD cavities as a function of defect
hole diameter. Measured results are shown as solid squares/circles (SHD/MHD), data from
FDTD simulations are shown in open squares/circles, and a linear fit (dashed line) is pro-
vided as a guide to the eye.
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A summary of the resonance shifts for SHD and MHD cavities with different defect

hole diameters is shown in Fig. 3.9b. FDTD simulations were performed on cavities with

similar defect hole diameters, and these data are also shown in Fig. 3.9b. The experimental

and calculated data have good agreement overall. The error between experiment and calcu-

lation for the smallest MHD cavity is probably due to the difficulty in etching high aspect

ratio holes of this size with vertical sidewalls as well as a likelihood of increased sidewall

roughness.

Hence, these measurements and simulations have verified that high quality factor can

be maintained after the addition of small holes within the defect region of PhCs, which

opens the door to improved molecular detection using the increased surface area available

for analyte interaction.

3.4.3 Optimized Designs

After experimenting with different defect hole sizes and a fixed MHD defect hole spacing

of 470 nm, MHD PhCs with a fixed defect hole size and variable defect hole spacings were

fabricated. Following the discussion in Section 2.4.3, it is expected that the placement of

the defect holes within the L3 cavity will have a large effect on both the resonance wave-

length and the cavity Q. The fabricated MHD PhCs have the same defect hole spacings as

the simulated cavities in Section 2.4.3, over the range of 180-500 nm in steps of 40 nm. Al-

though defect hole spacings of 100 and 140 nm were simulated, they were not fabricated as

the predicted Q is highly degraded for these designs, as shown in Fig. 2.15. The diameters

of the defect holes in all the fabricated devices were measured to be 58.5±3.5 nm using

SEM metrology. The measured transmission spectra for the range of defect hole spacings

are shown in Fig. 3.10, alongside the SEM images of their respective cavities.

Fig. 3.11 summarizes the experimental results, showing the resonance wavelength and
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380 nm!

340 nm!
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Figure 3.10: SEM images of fabricated defect hole lateral spacings (left), and their respec-
tive transmission spectra showing the trend of resonance shift (right).

Figure 3.11: Resonance wavelengths (black, closed) and quality factors (blue, open) for
fabricated MHD PhCs with varying lateral spacing.

76



Qload for each of the measured cavities. From the simulated results in Section 2.4.3, recall

that the intrinsic Q is maximized for a defect hole spacing of 380 nm. The experimental

results show good agreement with the maximum measured value of Qload = ∼9,000 occur-

ring for a lateral spacing of about 300-380 nm lateral spacing. Note that slight deviation

in the predicted trend of Qload with different defect hole spacings may be due to slight im-

perfections and roughness that arise during the fabrication process. The largest resonance

blue-shift compared to the L3 cavity with no defect holes (λ = 1569 nm) is nearly 20 nm

and occurs at 380 nm spacing. The shift is about 2.5 times greater than the unoptimized

design with 500 nm lateral spacing, and is a significant blue-shift. The measurement results

confirm the simulated findings that for a lattice constant of 410 nm and lattice hole diameter

of 210 nm, 380 nm is the ideal defect hole spacing for the MHD designs. This defect hole

spacing corresponds to the maximized spatial overlap between the cavity mode intensity

and the defect hole location. It is important to also note here that the quality factor trend

in Fig. 3.11 shows the predicted result of enhanced Q for the ideal defect hole spacing. For

reference, the Qload of the L3 cavity is only ∼1,000. Therefore, the spatial and temporary

overlap of the LMI is simultaneously enhanced for the ideal spacing. It is important to

note that the ideal spacing of defect holes depends on the PhC lattice hole radius, due to

the changing spatial confinement of the cavity mode. For a simulated PhC slab cavity with

lattice hole radius of 137 nm, for example, the ideal spacing shifts to 340 nm instead of 380.
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CHAPTER 4

BULK INDEX SENSING

Quantifying the improvement of light matter interaction in PhC MHD sensor devices

involves perturbing the refractive index of the matter inside the defect holes, and measuring

the resonance shift compared to a baseline L3 cavity with no defect holes. The simplest

manner of refractive index perturbation is a large-signal “bulk” change, which is induced

by infiltrating all low-index (air) regions in the slab PhC with another material, usually a

fluid or gas which can be considered isotropic. The applications of bulk sensing are limited

from a specific detection standpoint, because the refractive index does not necessarily have

a one-to-one correlation with the composition of the analyte. Bulk index change is a com-

mon metric used to benchmark the sensitivity of sensor devices and is especially useful for

evanescent-wave sensors such as the well-known surface plasmon resonance (SPR) based

sensors [81]. SPR sensors are well-suited towards bulk sensing due to the long evanescent

tail which extends into the cladding. In PhC slab point and line defects, the majority of the

field is localized within the slab, which creates a disadvantage for bulk sensing. At reso-

nance, field penetration into the low-index region is limited to the evanescent field leaking

into the cladding above and below the slab, and in the leaky regions of the cavity mode

in the surrounding lattice. When defect holes are incorporated, an increased volume is

available for direct overlap with the cavity mode, which should increase the relative sensi-

tivity compared to a device without MHD. It should be noted, however, that this additional

increase in sensitivity is small given the small relative volume of the MHD compared to

the surrounding volume in the lattice holes and the regions above and below the slab. In

this section, the sensitivity figure of merit for bulk changes is considered, and sensitivity
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results for MHD cavities are shown in simulation and experiment. The devices are exposed

to several different analytes, each with different refractive index, in order to determine the

sensitivity.

4.1 Sensitivity Figure of Merit

The sensitivity of sensor devices is often characterized as a change in the wavelength of a

given spectral feature due to a perturbation in the refractive index:

∆λ = λshi f t−λ0, (4.1)

where λshi f t is the wavelength of the given spectral feature after refractive index perturba-

tion, λ0 is the initial wavelength of the spectral feature, and a redshift in Eqn. 4.1 suggests

material addition. The wavelength shift is normalized to the change in bulk refractive index

for the bulk index figure of merit Sbulk:

Sbulk =
∆λ

∆n
=

∆λ

nhigh−nlow
. (4.2)

Because refractive index is inherently unitless, Sbulk is given in terms of nanometers of

resonance shift per refractive index units (nm/RIU). For all of the simulations and experi-

ments in this chapter, it is assumed that nlow = nair = 1.0. Experimentally, the cavities are

measured before and after fluid infiltration in order to quantify the wavelength shift.
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4.2 Methods

For all of the bulk sensing measurements performed in this work, direct drop-casting on

to the sample is used. Using a digital pipette (FisherBrand Finnpippette), a consistent

volume of liquid is measured out, and then deposited onto the PhC chip surface after initial

fiber alignment of the optical measurement system with the PhC in place. A sufficient

volume of liquid is used to fully cover the chip, approximately 100 µL per sample. Pre-

alignment of the chip to the input/output fibers is necessary due to the scattered light from

the surface of the chip due to the presence of the liquid, which makes alignment more

difficult when monitoring with the overhead camera. Insertion loss of the device under

test is also increased due to signal absorption and scattering. Care must be taken so that

the on-chip fluids do not contact the fiber tapers, which can cause additional losses due to

liquid bridging between the taper and the chip edge.

Material Index
Air 1.0

Methanol 1.32
Water 1.33

Isopropyl Alcohol 1.377
Silicone Oil (DMS-T05) 1.97

Table 4.1: List of materials used for bulk index sensing.

The range of liquids used for bulk sensing is listed in Table 4.1. Each of the materials

requires some special consideration to facilitate accurate measurements. For the organic

solvents (methanol/IPA), the time length of the optical transmission measurement becomes

a factor due to the quick evaporation from the surface. For OSA scans with resolution band-

width 0.1 nm and sensitivity -90 dB, for example, a scan of several nanometers in width can

take more than 100 seconds to complete. When sensing these materials, the surface fluid

must be continuously replenished in order to create reliable results. Additionally, when
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methanol and IPA are mixed to create intermediate refractive index fluids, it is possible that

some error is introduced due to the different vapor pressures of each of the individual fluids

in the mixture. That is, the refractive index of the initial fluid mixture may be different than

the index after preferential evaporation of one of the fluids occurs. DI water can also be

utilized when a relatively large index shift is desired. In this case, a lack of surface wetting

due to the hydrophobic nature of the silicon slab may become a concern, which can prevent

fluid penetration into the very small defect holes. Wetting can be promoted by partial oxi-

dation of the PhC slab by thermal growth or vapor deposition of silicon dioxide, creating a

more hydrophilic surface condition. A fluidic substitution method can also be used, where

a small amount of solvent miscible with water (methanol or ethanol) is first deposited onto

the device regions, and water is dropped onto the surface before solvent evaporation.

Figure 4.1: Residue at strip/W1 waveguide interface due to T05 silicone oil application and
subsequent removal. Inset shows close-up of deposited polymer.

Finally, a commercially available silicone oil (Gelest Inc., DMS-T05) can be used for
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reliable infiltration of the defect holes due to the easily wetting nature of the PDMS-based

oil. Additionally, due to the slow rate of evaporation of the oil, long measurements can be

performed accurately. Unfortunately, the use of silicone oil has the disadvantage of pre-

venting device reusability by permanently modifying the slab surface, as shown in Fig. 4.1.

Silicone oil usually leaves behind a polymer residue which is difficult to remove, even

when the recommended treatment of hexane is used, which dissolves the PDMS polymer.

All of these factors must be taken into consideration when performing a bulk index change

experiment.

Designs consisting of single-hole defects and multiple-hole defects were tested on the

same chip, along with L3 cavity baseline devices. The L3 cavity is used as the baseline

for comparison due to the sensitivity to the index changes incurred primarily from analyte

infiltrating the lattice holes. When the lattice holes are filled with analyte, the photonic

bands shift due to reduced index contrast (i.e. silicon/air to silicon/analyte). An additional

contribution occurs due to the field/analyte overlap at the evanescent field near the cavity.

The large bandgap shift can also be seen by measuring the W1 cutoff wavelength shift after

analyte infiltration. The total shift of the bulk index change for L3 PhCs can be attributed

to both the shift of the band structure and the additional shift of the resonant state within

the band gap. The additional volume contribution to the LMI due to MHD integration can

be quantified by comparing the resonance shift after infiltration of fluid to the baseline L3

shift in fluid. By subtracting out the baseline L3 resonance shift from the devices with

MHD, the remaining shift is the sole contribution of the defect holes, as the effect of the

lattice has been normalized out.
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4.3 Simulation

First, the effect of the fluid infiltration can be easily seen by modeling the bands of the PhC

slab before/after fluid infiltration. mpb is used to model the band structure with a resolution

of 16 grid points per a, which is the lattice constant normalized to 1. Fig. 4.2a shows the cal-

culated band structure of the PhC slab with no defects, containing lattice holes with radius

105 nm and slab thickness 220 nm, in both air (blue) and silicone oil (red) backgrounds.

The bands shift downward to lower frequencies in the silicone oil background, correspond-

ing to a wavelength redshift in the dielectric band-edge. From the plot, it can be easily seen

that the air-band (higher frequency) has a larger shift than that of the dielectric band, which

is expected due to the large reduction of index contrast upon replacement of air with fluid.

From an experimental standpoint, the W1 waveguide cutoff is more easily measured than

the bandgap. The W1 bands were also simulated as shown in Fig. 4.2b, which shows the

mid-gap guided modes for both air (left) and silicone oil (right) backgrounds. The x-axis is

reversed on the silicone oil band plot, and the y-axis scale is equal on both plots, to more

easily compare the shift in cutoff frequency. It should be noted that due to the addition of

silicone oil in the cladding, the light line (light blue region) is lowered compared to that

of air. Guided modes in the W1 waveguide must be below the light line, which has the

dispersion equation ω = kxc/nclad . Again, it is observed that the single-moded guiding

region shifts to a lower frequency, which corresponds to a cutoff wavelength redshift of

43 nm after infiltration of silicone oil. Dividing this shift by the index change of 0.397 RIU

results in a sensitivity of 108.3 nm/RIU for the W1 waveguide simulated by mpb.

For cavities, a bulk change must be simulated using the FDTD method due to the broken

symmetry in the lattice. Simulation parameters are set by changing the default dielectric

constant of the cell, as well as the dielectric constant of the individual lattice holes and
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(a)!

(b)!

Figure 4.2: (a) Dispersion of a slab PhC with lattice hole radius 105 nm and slab thickness
220 nm in air (blue) and silicone oil (red) backgrounds, showing the downward frequency
shift of the bands. (b) Comparison of PhC W1 waveguide dispersion in air (black, left) and
silicone oil (blue, right) backgrounds, where the light blue regions indicate the light line.
The waveguide cutoff occurs at a lower frequency for the device in oil background.
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defect holes. In anticipation of experimental results, the sensitivity to any bulk change

can be calculated by simulating a range of dielectric constants. The refractive index of the

materials listed in Table 4.1, as well as intermediate index values below that of water, are

used in the simulations.

Figure 4.3: Simulated resonance wavelengths for 3-hole MHDs with 28 nm (blue) and
36 nm (red) radii and 470 nm lateral spacing in varying background refractive indices.

The resulting plots of the resonances of MHD PhCs are shown in Fig. 4.3, plotted as

a function of simulated bulk refractive indices. The slope of the curve is the sensitivity

in units of nm/RIU. The plot shows that the trend is not linear, but rather quadratic. Fitted

polynomials for each of the two plots have R2 values of nearly 1, showing a good agreement

with a quadratic trend. From this result it should be noted that sensitivity values calculated

from large bulk index changes may be underrating the device performance because the

resonance trend is not linear. For example, at lower ranges of bulk index, such as the shift

due to going from nclad = 1 to nclad = 1.11, the calculated sensitivity is 84.5 nm/RIU for the

28 nm MHD, and 86.2 nm/RIU for the 36 nm MHD. At a higher index range, the shift from

IPA to silicone oil (1.377 to 1.397) results in sensitivities of 127 nm/RIU and 131 nm/RIU
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for the 28 nm and 36 nm MHD cavities, respectively. Alternatively, when a larger shift of

nclad = 1 to nclad = 1.377, is used to calculate sensitivity, this results in values of 101 and

104 nm/RIU, for 28 and 36 nm respectively. For reference, the L3 cavity with no defect

holes gives a sensitivity of 94.6 nm/RIU for this shift. Therefore, previous studies such

as that of Buswell et al. [40], which use an air to DI water cladding shift to quantify bulk

sensitivity in a W1 waveguide, only characterize the initial large signal change. Finally, the

larger holes in the MHD cavities show a larger sensitivity at both low and high values of

bulk index, which is expected due to the larger volume available for analyte infiltration. It is

important to note that the increase in the spatial LMI is shown by the increase in sensitivity

upon adding defect holes to the cavity, even though the additional volume of the MHD

is small relative to the overall volume of the PhC lattice holes. This is due to the defect

holes being positioned in the region with the highest field localization, so that the degree

of spatial overlap is increased inside the defect holes.

4.4 Solvent Mixtures

The limited availability of materials shown in Table 4.1 presents challenges for measuring

small changes in bulk index on the same device. As shown in the previous simulation re-

sults, inducing small shifts in bulk index can potentially provide a more accurate picture

of device sensitivity. Testing of more refractive index points can be achieved by using sol-

vent mixtures, which results in a solution with an effective index in between the individual

low and high index components. The bulk index change experiments were carried out us-

ing the fabricated 3-hole MHD cavity with 85 nm hole diameter by drop-casting various

solvent solutions of IPA in methanol directly onto the chip before measuring. The 5 solu-

tions of IPA in methanol had concentrations of 10/30/50/70/90% by weight, resulting in an

approximately 0.0115 RIU change between each solution (after taking the weight percent
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average of nIPA = 1.377, nMethanol = 1.32). The resonant modes in the transmission spec-

tra after drop-casting each solution are shown in Fig. 4.4. The sensitivity of the fabricated

MHD devices was found to be approximately 65 nm/RIU by linear regression, compared

to the simulated sensitivity of 115 nm/RIU. Linear regression is used instead of a quadratic

fit in this case, due to the relatively small changes in refractive index being considered.

The difference between measured and simulated sensitivity can be explained by possible

errors introduced by the fast evaporation of the solvent mixture, which requires constant

replenishing of the surface fluid, and the difference in evaporation rates in the two solvents.

Compared to an L3 cavity without any defect holes, the simulated sensitivity of the MHD

device to the IPA/methanol mixtures represents a 10% increase.

Figure 4.4: Resonance shift for a 3-hole MHD L3 cavity with as-designed defect hole
diameter of 85 nm, in mixtures of IPA/methanol solvent solutions.

4.5 Index-Matching Oil

In order to overcome the difficulty of measuring fast-evaporating solvents, another set of

MHD PhC devices was exposed to a silicone oil of known refractive index, which does not
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evaporate over a long period of time. A pipette was again used to wet the entire surface of

the chips and the refractive index of the medium surrounding the PhC slab was therefore

increased by 0.397. Transmission data were acquired before and after silicone oil treatment,

in both cases normalizing to the transmission spectra of strip waveguides. The L3 device is

again used as a baseline for comparison in this experiment to help distinguish the relative

contributions of the lattice holes and defect holes of the MHD in the overall wavelength

shift measured in transmission.

From the data shown in Table 4.2, it is found that the baseline resonance redshift of

two different L3 cavities is 32.75±0.15 nm. With the addition of SHDs and MHDs, the

increased volume contribution provides up to an additional 18% increase in the resonance

shift for the 80 nm MHD, compared to an 11% increase for the 84 nm SHD. The detection

sensitivity of these MHD and SHD cavities is calculated to be 98±2 nm/RIU and 91±2

nm/RIU, respectively, compared to the L3 cavities that have detection sensitivity of 82

nm/RIU. These sensitivities are comparable to previously published work on bulk index

sensing of L3 and single point defect PhC cavities [48]. Again, as the accessible volume

for sensing is increased, especially in regions of high field concentration, the detection

sensitivity of the PhCs improves. Hence, for volume sensing, a single large hole could

potentially hold the same or improved bulk index detection sensitivity compared to multiple

holes of smaller size.

Single Hole Defect (SHD) Multiple Hole Defect (MHD)
Diameter Air Oil Shift Diameter Air Oil Shift

(L3) 1549.8 1582.4 32.6 (L3) 1551.3 1584.2 32.9
69 1540.3 1574.6 34.3 61.2 1539.5 1574.7 35.2
73 1537.7 1573.0 35.3 73.6 1532.0 1568.9 36.9
84 1535.2 1571.5 36.3 80 1523.8 1562.82 39.0

Table 4.2: Resonance data for SHD and MHD cavities before and after wetting with sili-
cone oil. (All units in nm)
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4.6 Performance Comparison

The previous sections in this chapter presented both simulated and experimental results

characterizing the performance of MHD, SHD, L3, and W1 PhCs for bulk index sensing

using various fluids. For some solutions, residue left on the chip surfaces requires the use of

several different chips for each bulk sensing experiment, which introduces sources of error

due to the solution evaporation and chip-to-chip variation in device quality. However, the

best measured sensitivities can be compared to previously reported PhC sensors fabricated

by other groups to gain understanding into the sensor performance of the MHD compared

to other designs. As a reference, the sensitivities to large bulk refractive index shifts (from

air to IPA and air to silicone oil) are shown in Fig. 4.5a below for all types of devices

(L3, SHD, MHD) investigated in this thesis. The data were gathered from two chips with

identical patterned features, and the defect hole sizes were confirmed to be similar on both

chips using SEM. As mentioned previously, the sensitivity calculated using the large-index

shift from air to solution is usually lower than the small-index shift sensitivity due to the

quadratic nature of the resonance change. Fig. 4.5b plots the sensitivity for each device

using the intermediate resonance shift from IPA to silicone oil (∆n = 0.02). The effect

of device variation can be seen in the two L3 cavities shown in Fig 4.5a, where the L3

in the SHD group underperforms in the silicone oil experiment, resulting in a low small-

index change sensitivity of 77.3 nm/RIU in Fig 4.5b. Also, the 50 nm MHD design has

a lower measured small-index change sensitivity than that of the 30 nm design, which is

likely due to fabrication imperfections and possible error in volume filling. Other than

these devices, the general expected trend is seen, where larger hole diameter designs have

higher sensitivity, and MHD devices have higher sensitivity than the similarly sized SHD

devices.
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a)! b)!

Figure 4.5: Bar graphs of (a) large index change sensitivity from air to silicone oil (red) and
IPA (blue), and (b) small index change sensitivity from IPA to silicone oil, for L3, SHD,
and MHD cavities.

Table 4.3 contains bulk index sensitivity data of several different PhC sensors, with the

sensitivity values for MHD PhC devices included for comparison. While nm/RIU sensitiv-

ity is often taken to be the raw sensitivity merit, the quality factor of the cavity must also be

considered when calculating the detection limit, or the minimum resolvable index change.

For this reason, a trade-off must be considered for the desired application when choosing

an appropriate sensor platform. Although H1 type cavities have a larger resonance position

sensitivity, the quality factors are generally lower for the shown references. Lower quality

factors indicate leaky cavity modes, which can be an advantage for bulk sensing, where a

larger overlap of the field with analyte is desired per unit volume. The opposite is true for

high quality factor L3-type cavities, which have lower bulk sensitivity compared to the H1

cavities. Nevertheless, improvement in sensitivity is demonstrated for the SHD and MHD

devices over solid L3 cavities with no defect holes, due to the increase in field overlap with

analyte. While performance is generally improved over regular L3 cavities, PhC MHD cav-

ities are generally not optimized for volume sensing, unless large defect hole diameters are

implemented. Thus, MHD PhCs with small defect holes are better suited to surface sensing
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applications, where a high quality factor is maintained while simultaneously increasing the

spatial overlap of the field and surface-bound analyte. The next chapter will discuss exper-

imental surface sensing results, which demonstrate the increased sensitivity of MHD PhCs

to surface perturbations compared to a bulk change.

Device Type Notes Sensitivity Cavity Q Reference
H1 Cavity Undercut SHD, donor type 155±6 nm/RIU 400 [48]
H1 Cavity No undercut SHD, acceptor type <200 nm/RIU 400 [44]
H1 Laser III-V QW SHD laser 266 nm/RIU 1000 [45]
H0 Laser III-V QW laser 350 nm/RIU >4000 [46]

W1 Waveguide Cutoff shift, not undercut 88 nm/RIU - [40]
L3 Cavity Undercut etched 63±9 nm/RIU 3000 [48]
L3 SHD (This work, large index change) 91 nm/RIU 6000 -
L3 MHD (This work, large index change) 98 nm/RIU 6000 -

Table 4.3: Comparison of bulk index sensitivities for PhC slab-based sensors.

4.7 Summary

In this chapter, the LMI enhancement of MHD PhCs was analyzed by simulation and ex-

periment of bulk refractive index changes. The lattice and defect holes of MHD PhCs

were infiltrated with fluids having various refractive indices, by wetting the surfaces using

drop-casting. The reduction in the index-contrast between the slab and cladding results in a

photonic bandgap shift to lower frequencies, correspondingly red-shifting spectral features

to higher wavelengths. MHD PhCs simulated with FDTD were found to have a quadratic

dependency for resonance shift versus bulk refractive index, resulting in higher sensitivi-

ties at larger refractive indices. Because of the quadratic trend, the simulated sensitivity

of the MHD to a bulk change was found to vary from 84.5 nm/RIU to 131 nm/RIU de-

pending on the refractive index change. MHD PhCs were then subjected to solutions of

methanol/IPA and silicone oil, in order to explore small and large index changes, respec-

tively. The methanol/IPA mixtures indicated an average sensitivity of 66 nm/RIU for an 85

nm diameter MHD PhC, representing a 10% increase over the sensitivity of the L3 cavity
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with no defect holes. The reduction in sensitivity compared to simulation is potentially due

to the differing rates of evaporation in the methanol/IPA mixture, resulting in measurement

errors. When PhCs were infiltrated with slowly evaporating silicone oil with refractive in-

dex n = 1.397, the sensitivity of SHD and MHD cavities was found to be 91±2 nm/RIU

and 98±2 nm/RIU, respectively. The MHD PhC was found to have an 18% increase in

resonance shift compared an L3 cavity infiltrated with silicone oil. Both the SHD and

MHD PhCs have increased sensitivity compared to previously published L3 PhC cavity

devices with 63±9 nm/RIU sensitivity. The results indicate increased spatial light matter

interaction, due to the defect holes contributing direct modal field overlap with the analyte

contained within the holes.
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CHAPTER 5

SURFACE INDEX CHANGE

Several drawbacks are associated with the bulk index change methods described in the

previous chapter for exploring the light-matter interaction enhancement in MHD PhCs.

First, the index contrast reduction at the slab surface due to the introduction of a liquid

cladding results in increased field leakage into the cladding, which lowers the effective

index of the mode and results in lower values of cavity Q. Lower Q not only reduces

temporal LMI, but is undesirable from the standpoint of lower detection limits for sensor

applications, because a sharper resonance can resolve smaller changes in the cavity mode.

Increased scattering and absorption at the fluid/slab interfaces also generally reduces device

performance by increasing losses, which affects the Q as well as the signal-to-noise ratio

measured at the detector. Second, the most intense field is contained within the slab at the

cavity, and although the results in the previous chapter demonstrate increased sensitivity

due to integration of Multiple-Hole Defects, ideally larger defect holes are necessary to

increase the volume of fluid that can directly interact with the cavity mode. Unfortunately,

increasing the size of the defect holes results in more scattering in the cavity and thus lower

Q, as shown in Chapter 2. It is important to again emphasize that the advantage of the PhC

cavity over other photonic structures is the high Q/Vmode ratio; hence PhC cavities are not

best-suited to applications which utilize evanescent waves and radiative modes.

Surface-based sensing methods, on the other hand, cause less scattering losses due to

the relatively small dimensions of the perturbations, with respect to the wavelength of in-

terest. As a result, high Q is maintained and less field leaks from the cavity, enhancing

the intensity of light inside the cavity for LMI. Also, unlike the bulk sensing measure-
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ments, the amount of analyte involved in the LMI is a small amount affixed to the surface.

For a monolayer coating on the slab surface, the quantity of analyte interacting with the

mode is a function of the percent coverage, as well as the size/thickness of the monolayer.

Therefore, surface sensing measurements can contribute information about the degree of

surface attachment efficiency, and also determine the relative thickness between two dif-

ferent monolayers attached in succession. In this chapter, the degree of LMI improvement

in MHD PhC cavities compared to L3 cavities is quantified by measuring the sensitivity to

monolayers applied to the slab surface with several different thicknesses. The resonance

of MHD PhCs is first measured after 5-6 nm-thick silicon dioxide deposition. Afterwards,

two molecules of ∼1 nm thickness, which functionalize the surface for thiol-terminated

biomolecules, are used to simultaneously prepare the surface for label-free sensing appli-

cations and demonstrate sensitivity to small surface perturbations. The combined thickness

of the added films is small enough that the length scale of the evanescently decaying tail

does not play a large role, and that the total size of the added material is much smaller than

the fabricated range of defect hole sizes (40-60 nm).

5.1 Sample Preparation

For surface monolayer attachment, additional sample preparation is necessary beyond the

fabrication steps mentioned in Chapter 3. After the PhC regions are exposed to BOE to

remove the underlying oxide, the polymer couplers are cleaved through and the protective

photoresist is removed. At this point, the surface condition must be optimized for the

binding characteristics of the specific small molecules that will be exposed to the PhC

slab surface. Two molecules in particular are needed to ultimately form linkers to a thiol-

terminated probe molecule on the surface, and they are shown in Fig. 5.1a-b below. The

first step involves forming a monolayer of 3-aminopropyltriethoxysilane (3-APTES) on
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the surface, which is 0.8 nm thick [82]. Following the functionalization steps outlined in

Rong and Weiss [57], an oxidized surface is necessary for 3-APTES binding. Due to the

presence of the heat-sensitive polymer couplers, even low-temperature thermal oxidation

at 500-800 ◦C is undesirable as an oxide growth method, as cross-linked SU-8 films have a

glass transition temperature of Tg = 200◦C and a degradation temperature of Td = 380◦C

[83]. Ideally, the individual chips would be oxidized in-between the BOE and polymer

coupler lithography steps. However, this was not possible as the SU-8 on the as-received

chips was applied on a wafer-level. Therefore, for the first experiments, native oxide on

the silicon surface was utilized instead of growing a more typical thermal oxide. Samples

were stored at room temperature for about one week after BOE was performed, allowing

an oxide layer approximately 8 Å thick to be formed on the PhC surfaces [84].

C16H17N2O9SNa!H2N(CH2)3Si(OC2H5)3!

a) (3-aminopropyl)triethoxysilane! b) Sulfosuccinimidyl-4-(N-
maleimidomethyl)cyclohexane-1-
carboxylate!

Figure 5.1: Structure and chemical formula of molecules used in functionalization: a) 3-
APTES, and b) sulfo-SMCC.

For more uniform oxide coverage, a room temperature atomic layer deposition (ALD)

method developed by Hatton et al. [85] was utilized. In traditional ALD tools, deposition

occurs on a cycled basis, where the sample is held in a vacuum chamber and precursor

gases are pumped into the chamber in succession, with nitrogen purges in between. The

process is self-limiting due to the nature of the surface reactions, so the film thickness is

controlled by the number of cycle repetitions. ALD is an ideal method of oxide deposition
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in the case of MHD devices for two reasons in particular. First, the ability to control depo-

sition thickness on an atomic level enables the characterization of the device’s sensitivity

to extremely small surface perturbations. Second, the conformality of ALD deposited films

ensures that the inner surface of the defect holes as well as the underside of the PhC slab

are coated with oxide. The tuning of PhC cavity resonances has been demonstrated by

conformal deposition of oxides such as HfO2 using atomic-layer deposition (ALD) [86].

Unfortunately, the tools and precursors for depositing ALD films is often costly, and need

to be kept in a cleanroom environment. As an alternative, the ALD process from [85] is a

room-temperature process that can be carried out in a fume-hood commonly found in labo-

ratories, as shown in Fig. 5.2. Each “cycle,” for what will be referred to here as the test tube

ALD method, consists of exposing the sample to tetramethoxysilane (TMOS, Si(OCH3)4),

and then ammonium hydroxide (NH3·H2O) vapors, for 10 minutes each. 5 mL of each so-

lution is placed into two test tubes, and the photonic chip is suspended approximately 2 cm

over the surface of the liquid by a wound copper wire during deposition. The distance to

the surface of the solutions dictates the deposition rate, so the length of the wire should be

kept consistent. Additionally, care must be taken when inserting the sample into the test

tube so that the edges of the chip, where optical coupling occurs, are not harmed. Inside

the test tube, the NH3 vapor catalyzes the hydrolysis of the methoxysilane groups, which

react with surface-bound hydroxyl groups [85]. A cycle deposits approximately 2 nm of

silicon dioxide, as measured by ellipsometry.

After test tube ALD oxide deposition, the sample is silanized using a 4% solution of 3-

APTES, consisting of 40 µL 99% 3-APTES (Sigma-Aldrich), 500 µL DI water and 460 µL

methanol, for 20 minutes. 3-APTES molecules are physiosorbed onto the silicon surface as

the ethoxy groups are hydrogen bonded to the oxidized surface. A free oxygen molecule on

the surface then creates a chemical bond with the Si atom, releasing a molecule of ethanol.
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TMOS!

NH3⋅H2O!

Figure 5.2: Photo of in-hood ALD set-up, with test tubes filled with TMOS and NH3H2O.

During the 20 minute 3-APTES soak, a humid environment is used (covered petri dish

with DI water) in order to prevent evaporation of the 3-APTES solution from the sample

surface. The sample is then rinsed with DI water, dried with nitrogen, and baked at 100 ◦C

for 10 minutes to crosslink the silane monolayer and evaporate any remaining solvent.

The 3-APTES monolayer provides an amine group for the linker molecule sulfo-SMCC

(sulfosuccinimidyl 4-[N-maleimidomethyl]cyclohexane-1-carboxylate) to bind to, which

is the intermediate step before thiol-terminated probe molecule attachment. The silanized

sample is then exposed to a 2.5 mg/mL solution of sulfo-SMCC (Pierce) in HEPES buffer

(20 mM HEPES, 150 mM NaCl, 5 mM EDTA, pH 7.4) for 2 hours, and then soaked in

HEPES buffer for 1 hour before rinsing with DI water and drying with nitrogen. The sulfo-

SMCC films form a 1.2 nm-thick monolayer on top of the 3-APTES film. The thicknesses

for both films are measured by ellipsometry after attachment on a bare silicon wafer. The

maleimide groups on the functionalized surface are then available for binding to thiol-

terminated biomolecules such as DNA or benzenethiol.
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5.2 3-APTES Detection with Native Oxide

First, the effectiveness of the native oxide for molecule attachment is explored. Although

surface area available for binding is increased by MHD, the binding efficiency of each

molecule attachment step is usually less than 100%, which reduces the number of available

sites as more molecules are added. Thus, the surface oxide condition, and the initial 3-

APTES coverage efficiency is important for maintaining high sensitivity for future analyte

capture. The transmission spectra of samples with native oxide were measured before and

after 3-APTES attachment, and the resonance shifts were evaluated to determine surface-

based detection sensitivity, as shown in Fig. 5.3. The samples used in this experiment were

unoptimized, with a lateral defect hole spacing of 470 nm. In the figure, the resonances

in air are centered on the x-axis, which has the same scale for all three devices, in order

to simplify comparison. The measured spectra were fit with Lorentzian curves to extract

the resonance wavelength and the Qload . The resonances for the solid L3 cavity, which

once again reveal the baseline contribution of the PhC lattice, and two sizes of MHD are

included for comparison. The maximum surface-based sensitivity improvement compared

to the L3 is 44% for the 67 nm diameter MHD. The MHD cavity with the smaller defect

hole diameter (56 nm) gives a 27% sensitivity increase. Both MHD cavities have a Qload

value of ∼6000. It is important to note that Qload is not severely degraded after 3-APTES

attachment, even though the surface condition is perturbed. The presence of the molecule

within the defect holes is enough to change the resonance position, but not cause excessive

scattering losses.

From the results shown in Fig. 5.3, it is clear that the additional surface area provided

by the MHD enables improved surface-based sensing sensitivity without degrading the cav-

ity Qload . The relative sensitivity improvement gained by adding MHD to an L3 cavity is
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Figure 5.3: Transmission spectra for resonances of L3 cavity, 56 nm diameter MHD cav-
ity and 67 nm diameter MHD cavity before (solid curve) and after (blue, red, and green,
respectively) application of ∼1 nm monolayer of 3-APTES.

greater for surface-based sensing than for bulk index sensing (27% for 3-APTES compared

to 18% in bulk sensing). This result is expected because the additional internal surface area

provided by the MHD represents a larger fractional increase in the overall available surface

area for molecular binding in the PhC compared to the small increase in volume provided

by the MHD for bulk index sensing. It is important to note that due to the imperfect cover-

age of the native oxide, it is likely that the 3-APTES binding in the cavities does not form a

uniform monolayer. Any non-uniformity in coverage would also contribute some sample-

to-sample variation in sensitivity. Also, the unoptimized lateral positioning of the defect

holes has the effect of limiting the total sensitivity of the device, due to reduced overlap with

the highest intensity field, as discussed in Chapter 3. The largest sensitivity can thus be ex-

tracted using the optimal hole positioning in order to increase the cavity mode perturbation,

and by creating a more uniform oxide to increase the number of small-molecule binding
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sites per unit area. Here it should be noted that no simulations are provided for matching

to experimental monolayer attachment due to the relatively small size of the monolayer

thickness relative to the defect hole size. In order to resolve features on the order of sev-

eral nanometers thick, the required grid in the FDTD simulation, for example, would be

extremely memory and simulation time intensive. Simulation tools based on perturbation

theory are currently being researched in order to achieve these results through techniques

other than FDTD.

5.3 Sulfo-SMCC Detection with ALD Oxide

To overcome the reduced coverage of the native oxide on the MHD PhC surfaces, and sub-

sequently, increase the available sites for molecular binding, the test tube ALD method is

utilized. ALD oxide films of thickness 5-6 nm were applied to new chips immediately after

undercutting the slabs with the HF-based BOE. The ALD oxide deposition causes a redshift

in the resonance wavelength since material is added to the PhC lattice and defect region.

Because the sulfo-SMCC layer binds on top of the pre-existing 3-APTES monolayer, the

magnitude of the shift in each step is anticipated to be related to the relative thicknesses of

each molecule. Therefore, under the assumption that oxide, 3-APTES, and sulfo-SMCC

have a similar refractive index, the largest redshift should occur after ALD oxide growth

(6 nm thickness), the 3-APTES (0.8 nm) should give the smallest shift, and the sulfo-SMCC

(1.2 nm) shift should be larger than that of the 3-APTES.

Fig. 5.4 presents the resonance shift data for all defect hole lateral spacings of the 3-hole

MHD PhC cavities (as previously shown in Section 3.4.3), for each step of functionaliza-

tion. Two sizes of defect holes are shown: 55 nm (Fig. 5.4a) and 60 nm (Fig. 5.4b) diameter.

The cumulative resonance shift resulting from the addition of each monolayer is shown by

the black (ALD), red (3-APTES) and blue (sulfo-SMCC) bars for each MHD PhC. An L3
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cavity measurement is also shown along side the 55 nm devices for comparison. The mag-

nitude of the resonance shift for each molecule attachment in the 60 nm MHD PhC is more

than the respective shift in the 55 nm MHD PhC device, which confirms that the detection

sensitivity is improved for larger available surface areas. The trend shown in the design

optimization passive measurements in Section 3.4.3 is maintained, as the largest cumula-

tive shift occurs when the defect holes are located near the optimal lateral spacing. This

further confirms that the spacing of 380 nm is ideal for the MHD PhC design consisting

of 3 defect holes within an L3 cavity when the lattice hole radius is 100 nm. Also, as ex-

pected, the resonance shift which occurs after ALD deposition is the largest relative shift,

and the binding of 3-APTES and sulfo-SMCC cause relative shifts which are much smaller

due to their respective molecular sizes. It should be noted that the expected shift is not

exactly proportional to the molecule size since the available surface area shrinks with each

molecule attachment, due to the reduced radius of the defect hole and a surface coverage

which is less than 100%.

As a comparison to the unoptimized device (lateral defect hole spacing of 500 nm)

used to measure the resonances after native oxide growth and 3-APTES attachment in the

previous section, Fig. 5.5 shows the normalized transmission of the two MHD cavities with

55 nm and 60 nm diameter defect holes and 500 nm lateral hole spacing after test tube ALD

oxide growth and 3-APTES attachment. The resonance is plotted after each step of surface

attachment, with the starting passive measurement (i.e., air-filled defect holes) shown in the

black curves. Recall that the sensitivity improvement in the MHD device with native oxide

and unoptimized spacing was measured to be 44% with respect to the L3 baseline cavity

(also with native oxide), as a cumulative percentage increase in magnitude of resonance

wavelength shift after 3-APTES binding. In the devices with ALD oxide deposited on

the surface, it is found that for the unoptimized spacing, the percentage increase in the
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a) 55 nm ! b) 60 nm!

Figure 5.4: Bar graphs showing the cumulative resonance redshift for two groups of MHD
devices with 55 nm (left) and 60 nm diameters (right). The redshifts due to ALD deposition
(black), 3-APTES binding (red) and sulfo-SMCC binding (blue) are shown for each lateral
defect hole spacing, and a L3 cavity is shown for reference.

cumulative resonance shift was 80% for the 55 nm diameter MHD, and 120% for the 60 nm

diameter MHD, both with respect to the L3 cavity with the same oxide coverage. The

addition of the conformal ALD oxide clearly improves the sensing capability of the device

by allowing more analyte to bind to the surface of the chip. This test tube ALD method

can potentially be applied to other photonic devices as well, where thermal oxidation of

silicon cannot be integrated into the fabrication process due to temperature limitations. An

expanded discussion of such future applications is discussed in Chapter 6.

Now using the optimized design with 380 nm lateral spacing, resonances after oxide

growth, 3-APTES binding, and sulfo-SMCC binding steps are shown in Fig. 5.6 for the

defect holes with 60 nm diameter. The corresponding data are shown in Table 5.1, which

shows the percent increase in the cumulative resonance shift compared to the baseline L3

cavity for each functionalization step. Again, the sharpness of the resonances is maintained
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d = 55 nm 

d = 60 nm 

Figure 5.5: Resonances of MHD cavities with 380 nm defect hole spacing before (black)
and after (red) 6 nm of in-hood ALD growth. Defect hole diameters of 55 nm (top) and
60 nm (bottom) are shown for comparison, showing sensitivity increase for higher surface
areas.
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throughout molecule attachment, so the quality factor is not affected adversely. The fully

optimized cavity has a 160% increase in cumulative shift with respect to the L3 cavity for

the 3-APTES attachment. This is more than twice the percent increase previously measured

in the cavity with unoptimized lateral defect hole spacing of 500 nm with ALD oxide, and

more than 4 times the sensitivity increase of the cavity with unoptimized spacing using the

native oxide for molecule attachment. Although a larger defect hole diameter contributes

more surface area, and thus more sensitivity, the advantage of increased binding to the ALD

oxide surface results in increased sensitivity even when the defect hole diameter is smaller

(60 nm for ALD oxide, 67 nm for native oxide). Thus the surface condition is vital to the

ultimate sensitivity of the cavity. It is anticipated that choosing a higher quality thermal

oxide growth step in between the BOE and SU-8 polymer steps will increase the sensitivity

even further due to better surface coverage and film quality.

Figure 5.6: Transmission spectra for resonances of optimized MHD cavity with 60 nm
defect hole diameter and a lateral spacing of 380 nm: before (black) and after (red) ALD
oxide growth, 3-APTES silanization (blue) and sulfo-SMCC attachment (green).

When considering a sensitivity comparison to other published label-free sensor plat-

forms, choosing a proper figure of merit becomes difficult, since the sensitivity of most
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Material L3 (Baseline) 60 nm MHD Percent Increase
ALD Oxide 1.08 nm 3.03 nm 180%
3-APTES 1.33 nm 3.48 nm 162%

sulfo-SMCC 1.85 nm 4.31 nm 133%

Table 5.1: Cumulative shift of resonance wavelength for L3 cavity baseline and 60 nm
MHD cavity and the percent increase in resonance shift for the MHD cavity compared to
the L3 cavity at each step.

optical sensor devices are shown in terms of a bulk refractive index change or the concen-

tration of molecules in a solution exposed to the sensor [87]. Such a comparison would be

possible after specific attachment of molecules of varying concentrations. However, it is

possible to examine the relationship between the resonance shift due to molecule attach-

ment of a particular species and the estimated quantity of this molecular species bound to

the defect hole walls, in order to find the minimum detectable mass of the MHD PhC sen-

sor. The mass of the bound molecules, in this case 3-APTES, can be found by taking the

product of the 3-APTES density (0.946 g/mL) and the total volume of the monolayer of

3-APTES in the region of interest. Here, the regions of interest are limited to the circular

areas where defect holes are introduced. Because all aspects of the L3 cavities and MHD

cavities are similar except for the addition of defect holes, the effect of the surrounding

photonic crystal slab is essentially normalized out when considering the L3 as the base-

line case. Therefore only the additional area/volume afforded by the defect holes need be

considered for this analysis.

Here, the additional surface area due to the addition of the defect hole is considered. At

each position where a defect hole is added to the PhC cavity, the surface area available for

binding consists of the sidewalls of the cylindrically shaped defect holes. Therefore, the

original binding area at these positions, which consists of two circular areas on the upper

and lower sides of the slab, is substituted for the increased area of the cylindrical defect

hole. As a result, the surface area increases from 2πr2
de f to 2πrde f tslab, where tslab is the
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thickness of the silicon slab. Taking the thickness of the monolayer of molecules tm into

account, the volume of bound molecules in both of these areas is:

VL3 = 2πr2
de f · tm

VMHD = π(r2
de f − (rde f − tm)2) · tslab.

(5.1)

Assuming a 60 nm defect hole diameter (rde f = 30 nm), 220 nm slab, and a 0.8 nm mono-

layer thickness, the density is multiplied with the volume to calculate the mass. Using

Eqn. 5.1, the mass contained in the circular areas in the L3 cavity without defect holes was

calculated to be mL3 = 4.5(10−18) g, and the monolayer bound to the defect hole side-

walls was calculated to have a mass of mMHD = 3.3(10−17) g = 0.03 fg. This reflects an

enhancement factor of ∼7 times in the surface-bound mass with respect to the L3 cavity,

which corresponds to the previously mentioned increase in surface area due to defect hole

aspect ratio of tslab/rde f (220 nm / 30 nm = 7.33). Recall from Table 5.1 that the 3-APTES

causes a shift of 0.45 nm for the 0.03 fg of deposited material, under the assumption of

complete monolayer attachment. If the minimum resolvable wavelength shift is assumed

to be 0.25 nm (λ0/Q = 1547/6000), it is potentially possible to detect a particle with a

mass of 0.03/(0.45/0.25) = 0.016 fg. For comparison, the mass of a single HIV-1 particle

is ∼80 attograms [88]. The detection limit in the optimized MHD cavity is smaller than

the limit found by Lee and Fauchet [50] of 0.05 fg, which is for a PhC with a single-hole

defect (H1-type cavity) of diameter 140 nm, without undercut etch.

5.4 Summary

The enhancement of light-matter interaction in MHD PhCs was explored by adding surface

perturbations to the inside of the defect holes by way of several conformal monolayer at-

tachment steps. Two biomolecules, 3-APTES and sulfo-SMCC, were used to demonstrate
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sensitivity to monolayers of ∼1 nm in thickness, as well as prepare the surfaces for label-

free detection of thiol-bound molecules. The devices were first tested using the native oxide

on the silicon slab surface, which resulted in a 44% increase in sensitivity to 3-APTES at-

tachment for the MHD PhC with 67 nm diameter defect holes, with respect to a L3 cavity

without defect holes. In order to increase the surface binding efficiency, a test tube ALD

method was utilized to conformally coat the surfaces of the slab with 5-6 nm of silicon

dioxide. The resulting MHD PhCs with improved oxide coverage and 500 nm defect hole

lateral spacing demonstrated up to 120% improvement in cumulative resonance shift after

3-APTES attachment, with respect to L3 cavities with no defect holes. By further optimiz-

ing the cavity design and placing the defect holes at 380 nm lateral spacing, corresponding

to the optimal position of the holes relative to the cavity mode, the sensitivity to 3-APTES

attachment was increased to 160% with respect to the L3 cavity. The addition of the defect

holes have clearly shown that for surface sensing, small defect holes placed at the optimal

locations can significantly increase the sensitivity of the device to molecule attachment.
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CHAPTER 6

CONCLUSION

6.1 Summary

In this work, photonic crystal (PhC) slabs with multiple-hole defects (MHD) were investi-

gated by carrying out device simulation, design, fabrication, and measurement. The inte-

gration of MHD into PhC cavities is motivated by the desire to increase light-matter inter-

action (LMI) by creating high surface area regions which directly overlap spatially with the

highest intensity regions of the modal field. Photonic crystal slab cavities are chosen due to

their high quality factors and small mode volumes, which increase the time duration of light

matter interaction while keeping a small device footprint. FDTD simulations were first car-

ried out in two dimensions to examine the effect of integrating sub-wavelength sized holes

that are smaller than the lattice holes directly into a PhC cavity. The size, spacing, and

placement of these defect holes were generated by using a python script in order to create

circular MHD regions, in the place of a single removed photonic crystal lattice hole. High-

resolution simulations were used in order to resolve the very small defect holes, and various

defect hole sizes and spacings were simulated in order to understand the trade-offs in de-

vice design. By changing the dielectric constant of the defect holes in the cavity, thereby

changing the effective index of the defect region, the sensitivity of various designs can be

measured by tracking the change of the resonance frequency. It was found increasing the

radius of the effective defect region from of r = 0.2a to r = 0.4a (where a is the lattice

constant), the slope of the resonance frequency shift due to changing dielectric constant

is increased. This is expected, since creating a larger MHD region requires the addition

of more holes, which lowers the overall modal index more efficiently. Although a larger
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frequency shift and accordingly a large device sensitivity are desired, it was found that this

trend comes with a trade-off of decreasing cavity Q. When the effective size of the MHD

region becomes too large, the modal frequency shifts towards the air-band edge, creating

more leakage in the cavity. Therefore it was concluded that although surface area can be

improved by several times compared to a single hole defect, depending on the application,

the proper MHD design should be chosen to most appropriately balance requirements for

high Q or high sensitivity. To further explore the sensitivity of MHD PhCs, the resonance

shift due to surface monolayer attachment, which can represent molecular binding in the

defect holes, was compared for two cavities: a SHD with a defect hole radius of 0.2a, and a

MHD with effective radius 0.2a. A single monolayer of material was modeled inside of the

defect holes by assuming an effective medium in the defect holes, due to the relative thin-

ness of the monolayer with respect to the defect hole radius. As a result, the effective index

of the defect holes increases with the optical thickness of the monolayer. It was found that

for the similar sized cavities addition of a monolayer of material leads to an approximately

3 times larger resonance shift for the MHD compared to the SHD due to the increased sur-

face area in the cavity. The Q trend of the cavities was found to converge to a maximum

value as the dielectric constant of the defect holes reaches ε = 12. Also, the slope of the Q

as a function of defect hole ε was found to vary depending on the effective defect radius of

the MHD. Smaller effective radii (less defect holes) had higher Q values in general due to

less perturbation inside of the cavity, while larger effective radii (and more defect holes) re-

duced the Q significantly. Through this simulated experiment, it was confirmed that MHD

cavities can offer a significant increase in sensitivity to surface perturbations, and that light

matter interaction is improved.

The 2D simulations of H1-type MHD PhC cavities demonstrated increased LMI and

sensitivity to surface perturbations relative to traditional SHD PhC defects. However, the
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dimensions of the features necessary to fabricate these simulated devices are limited from

a design standpoint. Because the ideal measurement wavelength range is in the near-IR,

some of the smallest features in the simulated cavities would require defect holes with

8 nm radius and ∼30:1 aspect ratios, which are extremely difficult to realize in the current

CMOS fabrication process. Therefore, a new design was chosen using L3 cavities in air-

clad silicon PhC slabs, which have a larger sensing area for the placement of defect holes

and are known for their previously well-studied high Q characteristics. To understand

the effect of increasing the number, size, and location of the defect holes within the L3

cavity, 3D FDTD simulations were performed to find the modal field distribution first for

the L3 cavity without defect holes, as well as the resonance wavelength and Qint of the L3

cavity. For a lattice constant of 410 nm, lattice hole radius of 105 nm, and slab thickness

of 220 nm, the L3 cavity had a resonance wavelength of 1539.5 nm and a Qintr value of

25,300. The simulated field showed three main regions of peak field intensity within the

cavity. Accordingly, three defect holes located in these regions were chosen as the main

design for the MHD cavities. The degree of spatial LMI depends on the positioning of

the defect holes and the intensity of the field overlapping with them. Therefore in order

to optimize the defect hole location within the vicinity of the peak field regions inside the

L3 cavity, simulations are run in which the lateral spacing of two defect holes on either

side of a central defect hole is changed from 180-500 nm in steps of 40 nm. It was found

that for the lattice hole radius of 105 nm, the optimal defect hole location in the L3 cavity

is a lateral spacing of 380 nm from center, which causes the largest resonance blueshift

of 22 nm. This also corresponds to the largest device sensitivity, since the shift is a result

of the reduced modal index due to material removal, and the shift due to material addition

follows the same trend. The simulated Qintr of the cavities was also maximized to a value of

43,500 at 380 nm, which is nearly twice the value of the L3 cavity Qintr. The improvement
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in Q is attributed to the discontinuity of the electric field at the air/silicon interface, which

causes a concentrated field intensity in the air region due to the direct overlap of the defect

holes and the highest intensity of the mode. With the proper placement of defect holes, the

field in a PhC cavity can potentially be enhanced. Hence, for the MHD designs of three

properly placed defect holes in an L3 cavity, it is possible to both increase the surface area

of the PhC, which will lead to higher sensitivity detection of molecular binding events, and

increase the Q of the cavity.

Devices were fabricated on SOI substrates using e-beam lithography, with designs con-

sisting of L3 cavities with SHD and MHD, and measured in an air cladding background.

The first designs consisted of 3-hole MHD cavities with an unoptimized spacing of 470 nm.

Different doses were used on the same wafer, in order to produce a variety of lattice

hole sizes and defect hole radii. The fabricated L3 MHD cavities had resonances rang-

ing from 1550-1580 nm depending on the defect hole size, and had Qload values as high as

6,500±200 for the initial designs. The Qload value is diminished compared to the simulated

intrinsic Q due to the coupling loss to the waveguide, as well as scattering from fabrication

imperfections. Several general trends were confirmed by measuring the MHD PhC devices

with various defect hole sizes and spacings. Due to the decreasing cavity effective mode in-

dex, as the defect hole radii is increased the resonance blue-shifts in wavelength. Cavities

fabricated with several different lateral spacings in the MHD confirmed that for a defect

hole lateral spacing of 380 nm, corresponding to the spatial location of the maximum cav-

ity mode intensity, the resonance blueshift as well as the Qload are maximized. The value

of Qload can potentially be increased compared to the L3 cavity without defect holes, as

shown by the measured Qload of 8,000 in the case of the optimized location compared to

the L3 cavity Qload of ∼1,000. Through the passive measurements, it was shown that de-

fect holes, and increased surface area, can be integrated directly into a PhC cavity without
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severe degradation of quality factor.

Next, sensing measurements were carried out to quantify the sensitivity of the light

matter interaction in the cavity region, and the enhancement due to addition of MHD with

the L3 PhC cavity. First, bulk sensing performance was investigated by infiltrating the air

cladding regions, lattice holes, and defect holes in the PhC slab using various solutions of

DI water, isopropyl alcohol, methanol, and index-matching silicone oil. FDTD simulations

of MHD PhCs with different index backgrounds showed a quadratic dependence on the

bulk refractive index for the resonance wavelength of the cavity. Because of the quadratic

trend, analyzing the resonance wavelength shift due to a large index contrast change (e.g.,

air to water) can underestimate the expected small signal sensitivity of the MHD PhC to

small index perturbations such as those due to binding of small molecules. For a large in-

dex change shift (air to silicone oil), sensitivity values were measured to be 91 nm/RIU for

the SHD PhC and 98 nm/RIU for the MHD PhC. Both SHD and MHD PhCs were found

to have greater sensitivity than the L3 cavities without defect holes (83 nm/RIU), showing

that even the addition of a single hole is beneficial for bulk sensing. The expected trend of

increasing sensitivity with larger defect holes was also confirmed through measurements.

In comparison to similar L3 cavity-based sensors, the MHD and SHD cavities outperform

previously published values, and the high-Q of the cavity offers higher detection limits.

However, the small, sub-wavelength sized defect holes in the MHD are not optimized for

bulk sensing, as the volume of direct interaction between the modal field and fluid is limited

in a small hole, and the Q is reduced significantly due to increased scattering and absorp-

tion. Subsequently, surface sensing measurements were carried out next using 3-APTES

(0.8 nm molecule) and sulfo-SMCC (1.2 nm molecule) monolayer attachment to the silicon

slab surface. Initially, the native oxide was used for the 3-APTES attachment step, which

showed a 44% increase in resonance shift in the unoptimized MHD cavity (500 nm spac-
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ing) with 67 nm defect hole diameter, with respect to the L3 cavity baseline. The oxide

coverage on the surface was further improved by using an in-hood room temperature sil-

icon dioxide ALD process, which enabled the deposition of 6 nm of conformal oxide on

the surface. With the ALD oxide coverage, the sensitivity of the unoptimized device to

3-APTES attachment was increased to 80% for a 55 nm defect hole diameter, and 120%

for 60 nm diameter. Finally, for the fully optimized device with 380 nm defect hole spac-

ing, the resonance shift was measured to have a 160% percent increase with respect to the

L3 cavity. This result clearly demonstrates that the sensitivity to surface perturbation is

increased due to the enhanced binding from ALD oxide coverage, the added surface area

afforded by MHD, and the direct overlap with analyte and the cavity mode.

6.2 Future Work

6.2.1 Device Improvements

Although this work represents a significant contribution to the understanding of LMI in

PhC structures and provides guidelines for developing PhC-based sensors with increased

sensitivity to surface perturbations, several opportunities exist for improvements and new

directions. In particular, tuning the parameters of the fabricated photonic lattice can po-

tentially increase the Q of the measured cavities. Initial simulations have shown that for

a lattice constant of 410 nm, a lattice hole radius of 137 nm can increase the Qintr of the

L3 cavity to ∼37,500, compared to 25,000 for the lattice with 105 nm radius holes. This

would blueshift the resonance to 1453 nm, so appropriate sources are necessary to measure

the transmission. Different configurations of the currently used waveguide/cavity coupling

mechanism can also be explored. Currently, the devices are fabricated in a drop-cavity con-

figuration, with the cavity located 4 rows of holes away from the waveguide. Previously

it has been shown that adding another access waveguide to the other side of the cavity can
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allow the dropped resonant mode to couple to a separate output, allowing only the resonant

mode to be measured. Measuring the Qload of the isolated resonance can be easier than

measuring from a dip in the transmission, because the peak of the resonant wavelength is

easily resolved and not corrupted by the noise floor of the detector or OSA. Alternatively,

the vertically emitted modal field can be collected by positioning an objective directly over

the cavity region and measuring the light with a spectrometer, which allows direct analysis

of the cavity Q. For measuring high Q cavities this may be the preferred method, as adding

a separate access waveguide introduces additional Qloss. Methods have also been devel-

oped which use a IR-sensitive camera to measure the scattered light from the surface of

photonic devices and correlate the intensity of the pixels as a function of wavelength to the

cavity resonance spectrum. Finally, fabrication using electron beam lithography is accurate

yet costly, so the development of more conventional processing using optical lithography

and stepper technology can be applied for cheaper device production on a larger scale. In

particular, this may prove difficult to apply to photonic crystals, because the accuracy in

the lattice and defect hole sizes is critical for repeatability and any errors can cause losses

in the device.

6.2.2 Specific Label-Free Detection

Specific detection using MHD PhCs presents several challenges which need to be over-

come. Although the functionalization of the surface for thiol-bound molecules has been

demonstrated here, the chemistries which enable small-molecule attachment in other plat-

forms may not necessarily apply to MHD PhCs. New recipes for binding molecules to the

small defect region may need to be developed, specific to the SOI material platform and the

air-bridge construction of the devices. In particular, the label-free detection of DNA probe/-

target molecules would demonstrate the sensitivity of MHD PhCs. Unfortunately, because
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the surface area of the defect region is limited, fluidics or other methods may be necessary

to specifically target the cavity region of MHD PhCs, in order to ensure effective molecule

binding. Also, the binding steps necessary for surface functionalization reduce the over-

all radius of each defect/lattice hole, and the binding efficiency of successive attachment

steps is reduced. For effective label-free sensing, care must be taken that the amount of

attachment sites is not degraded by the functionalization steps; that is, the functionalization

efficiency should be kept to a high value.

6.2.3 MHD in Other Photonic Devices

Opportunities exist for the application of the MHD concept to other silicon photonics de-

vices such as PhC heterostructure cavities, resonant rings and disks, or interference struc-

tures such as Mach-Zehnder interferometers. In particular, the PhC heterostructure devices

have shown the highest values of Q, which can potentially drive smaller detection limits for

sensing applications. The drawback to using these types of cavities is the precise fabrica-

tion tolerances necessary, as previously mentioned. Integrated photonic waveguides have

potential for MHD integration as well, since the spatial overlap with surface perturbations

is limited because the majority of the mode is localized inside the core of the waveguide.

Adding defect holes would increase the light matter interaction in any device which is fun-

damentally waveguide-based such as ring resonators and would enable delivery of analyte

directly to the waveguide mode for sensing applications. Furthermore, disk and square-

shaped compact resonators can potentially bring even larger initial surface areas for analyte

binding. The location of the defect holes in these cases would require much study, because

unlike PhC cavities they are multi-moded due to being traveling wave cavities, and the ideal

placement of holes is not so obvious. One approach may be to analyze the average field

over several time steps for a finite number of modes using FDTD. The consequences of
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using such devices may be limited bandwidth over which the mode has the highest average

spatial overlap with the defect holes. Finally, functionalization of photonic device surfaces

based on other material systems such as silicon nitride or III-V materials, can potentially be

enabled using the ALD oxidation method used in Chapter 5. Once ALD oxide is deposited,

known methods for oxidized silicon surfaces can be utilized in sensing measurements.

6.2.4 Microfluidics Integration

While sensing experiments in laboratory conditions can be carried out easily in real-time,

tests which occur in a hospital environment or in the field would require quick, easy to

use sensors which simplify measurement procedures. A single-chip system with integrated

microfluidics which can be easily transported would be advantageous over current solu-

tions such as surface plasmon resonance, which currently can only be carried out using

laboratory-size apparatus. Microfluidic reservoirs on-chip also help to prevent the waste

of analyte which needs to be conserved. Work such as that of Erickson et al. [89] and

Smith et al. [90] have previously shown that integration of photonics with microfluidics is

possible, in order to create lab-on-a-chip systems [39, 91–93].

MHD PhC devices with microfluidics are proposed in order to create a highly sensitive

device that can detect biomolecules in real-time. Polydimethylsiloxane (PDMS), which has

been shown to be useful in fast and easy fabrication of flexible elastomer layers which can

bond to silicon, can be used to create layers of microfluidic channels for carrying analyte

in/out of the PhC MHD regions. If PhC devices are laid out in a linear fashion on a photonic

chip, a single channel can be used for several different measurements at once. Alternatively,

separate openings in the PDMS can be used to access each cavity individually. The ability

to probe multiple devices at once could open the door to several individually functionalized

devices which can detect different analyte molecules at the same time. By using a drop
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filter configuration as mentioned in the previous section, multiple resonances from several

devices can also be combined into one signal in the output. This method of multiplexing

multiple resonators has been previously used in devices using ring resonators as the drop

filter [94, 95]. By isolating the resonance mode using a drop cavity, on-chip integrated

detectors can be placed at each device’s output waveguide, enabling fingerprinting of the

analyte solution depending on which molecules are specifically captured by examining the

resonance shift of each device. Advances in silicon processing technology have enabled

on-chip, monolithic fabrication of both silicon photonic and CMOS components together,

which would enable real-time detection using electro-optic signals.
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APPENDIX A

SIMULATION CODE

For all code, an ellipsis (‘...’) denotes a continuing line. All dimensions are normalized

to the lattice constant, so that a = 1 in the resulting code.

A.1 gen phc rect.py

gen phc rect.py generates PhC lattices in a triangular basis for importing to meep.

#! /usr/bin/env python

# output to file, meep geometries for a photonic crystal slab

# in a triangular basis.

# input variables:

# xlen, ylen - number of holes in each direction (odd numbers)

def gen_phc_rect(xlen, ylen):

xrange, yrange = (xlen - 1)/2, ((ylen - 1)/4)*3**0.5

for i in range(-2*xlen, 2*xlen):

for j in range (-2*ylen, 2*ylen):

xcoord = i*(0.5)+j*(0.5)

ycoord = i*(-3**0.5 / 2)+j*(3**0.5 / 2)

if abs(xcoord) <= xrange:

if abs(ycoord) <= yrange:

print ’(list (make cylinder ...

(center %f %f)(material air)(radius r) ...

(height ts)))’ % (xcoord,ycoord)

gen_phc_rect(15,9) # example usage

A.2 mpb pcs bands.ctl

mpb code for generating band structures of slab PhCs. A unit cell consists of a single lattice hole in

the slab.
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(set! num-bands 30)

(set! tolerance 1e-8)

(set! k-points (list (vector3 0 0 0)

(vector3 0 0.5 0)

(vector3 (/ -3) (/ 3) 0)

(vector3 0 0 0) ))

; command line parameters entered in nm for convenience

(define-param r-nm 105) ; hole radius

(define-param a-nm 410) ; lattice constant

(define-param h-nm 220) ; slab thickness

; normalizing to lattice constant for internal use

(define-param h (/ h-nm a-nm))

(define-param r (/ r-nm a-nm))

(define-param epssi 11.9) ; refractive index of the slab

(define-param epsox 1) ; refractive index of surrounding

(set! default-material (make dielectric (epsilon epsox)))

(set! k-points (interpolate 16 k-points))

(set! geometry-lattice (make lattice (size 1 1 4)

(basis1 (/ (sqrt 3) 2) 0.5)

(basis2 (/ (sqrt 3) 2) -0.5)

))

(set! geometry (list

(make block

(center 0 0 0) (size infinity infinity h)

(material (make dielectric (epsilon epssi))))

(make cylinder

(center 0 0 0) (radius r) (height h)

(material (make dielectric (epsilon epsox))))

))

(set! geometry (append

(geometric-objects-lattice-duplicates geometry 1 1 4)

))

(set-param! resolution 16)

; calculate both polarizations

(run-te)

(run-tm)
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A.3 mpb pcs w1 bands.ctl

mpb code for generating band structures of slab PhCs W1 waveguides. Because of the broken

symmetry, the unit cell consists of one row of the PhC, normal to the direction of guiding, with one

hole filled in.

; command line parameters entered in nm for convenience

(define-param r-nm 105) ; hole radius

(define-param a-nm 410) ; lattice constant

(define-param h-nm 220) ; slab thickness

; normalizing to lattice constant for internal use

(define-param h (/ h-nm a-nm))

(define-param r (/ r-nm a-nm))

(define-param epssi 11.9) ; refractive index of the slab

(define-param epsox 1) ; refractive index of surrounding

(set! default-material (make dielectric (epsilon epsox)))

(set! num-bands 30)

(set! tolerance 1e-8)

(set! k-points (list (vector3 0 0 0)

(vector3 0.5 0 0)))

(set! k-points (interpolate 20 k-points))

(set! geometry-lattice (make lattice (size 1 16 4)

(basis1 (/ (sqrt 3) 2) 0.5)

(basis2 (/ (sqrt 3) 2) -0.5)))

(set! geometry (list

(make block

(center 0 0 0) (size infinity infinity h)

(material (make dielectric (epsilon epssi))))

(make cylinder

(center 0 0 0) (radius r) (height h)

(material (make dielectric (epsilon epsox))))

))

(set! geometry

(geometric-objects-lattice-duplicates geometry 1 1 4))

(set! geometry

(append geometry (list (make cylinder (center 0 0 0)

(radius r) (height h)

(material (make dielectric (epsilon epssi)))
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))))

(set-param! resolution (vector3 16 16 16))

; calculate both polarizations

(run-te)

(run-tm)

A.4 meep cavity varepsilon mhd.ctl

meep code for calculating the resonance frequency and quality-factors of L3-type MHD PhCs.

harminv is called after the initial simulation time in order to extract ω0 and Q. The output of

gen phc rect.py must be copied/pasted into the specified lines.

(define-param t-nm 220)

(define-param a-nm 410)

(define-param r-nm 100)

(define-param r-defnm 30.0)

(define-param mhd-nm 503)

(define-param ts (/ t-nm a-nm))

(define-param a 1)

(define-param r (/ r-nm a-nm))

(define-param rdef (/ r-defnm a-nm))

(define-param mhd-x (/ mhd-nm a-nm))

(define-param dpml 2.0)

(define-param fcen 0.26)

(define-param df 0.05)

(define-param eps 11.56)

(define-param epsair 1.0) ;eps of holes

(define-param epsbkgnd 1.0) ;eps of default

(define-param epsdh 1.0) ;eps of defect holes

(define-param size-x 25)

(define-param size-y (* 8 (sqrt 3)))

(define-param size-z (* (+ ts dpml) 2))

(define-param res 16)

(set! default-material (make dielectric (epsilon epsbkgnd)))

(set! geometry-lattice (make lattice (size size-x size-y size-z)) )

(set! geometry (append

(list (make block
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(center 0 0 0)(size infinity infinity ts)

(material (make dielectric (epsilon eps)))

))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;;;;;;;;;;; OUTPUT FROM gen_phc_rect.py HERE ;;;;;;;;;;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

; add SHD

(list (make cylinder (center 0 0)

(material (make dielectric (epsilon epsdh)))

(radius rdef)(height ts)))

; add MHD

(list (make cylinder (center mhd-x 0)

(material (make dielectric (epsilon epsdh)))

(radius rdef)(height ts)))

(list (make cylinder (center (* -1 mhd-x) 0)

(material (make dielectric (epsilon epsdh)))

(radius rdef)(height ts)))

)) ; end set-geometry

(set! sources (list

(make source

(src (make gaussian-src (frequency fcen)(fwidth df) ))

;uncomment for CW source:

;(src (make continuous-src (frequency fcen)))

(component Ey)

(center -0.15 -0.15 0))

))

(set! symmetries (list

(make mirror-sym (direction Z))

))

(set! pml-layers (list (make pml (thickness dpml))))

(set-param! resolution res)

(use-output-directory)

;;;;;;;;;;;;; gaussian pulse, find resonance

(run-sources+ 1000

(at-beginning output-epsilon)

(after-sources (harminv Ey (vector3 0.0 0.0 0.0) fcen df)

(harminv Ey (vector3 0.15 0.15 0.0) fcen df)))
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(run-until (/ 1 fcen)(at-every (/ 1 fcen 40) output-efield-y))

;;;;;;;;;;;;; cw, show fields in cavity

;(run-until (/ 1 fcen) (at-every (/ 1 fcen 40) output-efield-y))

123



BIBLIOGRAPHY

[1] C. A. Barrios, V. R. Almeida, R. Panepucchi, and M. Lipson. Electrooptic modulation of
silicon-on-insulator submicrometer-size waveguide devices. J. Lightwave Tech., 21(10):2332–
2339, 2003.

[2] W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov. Ultra-compact, low rf power, 10
gb/s silicon mach-zehnder modulator. Opt. Express, 15(25):17106–17113, 2007.

[3] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson. Micrometre-scale silicon electro-optic modu-
lator. Nature, 435(7040):325–327, May 2005.

[4] V. R. Almeida, Q. Xu, and M. Lipson. Ultrafast integrated semiconductor optical modulator
based on the plasma-dispersion effect. Opt. Lett., 30(18):2403–2405, 2005.

[5] K. Sokolowski-Tinten and D. von der Linde. Generation of dense electron-hole plasmas in
silicon. Phys. Rev. B, 61(4):2643–2650, 2000.

[6] E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto. Sensor based on an
integrated optical microcavity. Opt. Lett., 27:512–514, 2002.

[7] F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold. Protein detec-
tion by optical shift of a resonant microcavity. Appl. Phys. Lett., 80:4057–4059, 2002.

[8] A. Ksendzov and Y. Lin. Integrated optics ring-resonator sensors for protein detection. Opt.
Lett., 30:3344–3346, 2005.

[9] K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets. Silicon-on-insulator micror-
ing resonator for sensitive and label-free biosensing. Opt. Express, 15:7610–7615, 2007.

[10] A. L. Washburn, L. C. Gunn, and R. C. Bailey. Label-free quantitation of a cancer biomarker
in complex media using silicon photonic microring resonators. Anal. Chem., 81:9499–9506,
2009.
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