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 CHAPTER I  

 

INTRODUCTION 

 

Blood Coagulation and Fibrinolysis  

 The process of hemostasis involves a delicate balance between 

procoagulant and anticoagulant states. This balance is regulated by the 

coagulation and fibrinolytic systems that maintain normal blood fluidity, if 

thrombotic or bleeding disorders are not present. In the absence of vascular 

injury, the endothelial cells that line the lumen of vessel walls inhibit undesired 

coagulation and platelet adhesion by blocking the interaction of blood 

components with the extracellular matrix and tissue factor. Upon vessel injury, 

collagen and von Willebrand factor, proteins normally found in the subendothelial 

matrix, are exposed to the blood, and platelets quickly adhere to these proteins 

through membrane glycoprotein receptors. Primary hemostasis includes events 

such as platelet activation, secretion, and aggregation. During platelet activation, 

cytoskeleton-dependent shape changes occur and phosphatidylserine, a 

negatively charged phospholipid found in the inner leaflet of resting platelets, is 

exposed on the outer surface. This negatively charged phospholipid provides the 

appropriate trigger needed for the blood coagulation components to localize for 

activation (1-3).  

The process of secondary hemostasis culminates in the formation of fibrin 

by the coagulation cascade. Activation of a series of serine protease zymogens, 

 1



the coagulation factors, and their cofactors occurs through step-wise proteolytic 

cleavage, resulting in a “cascade.” With the exception of tissue factor (TF), the 

enzymes and cofactors responsible for coagulation circulate in their inactive 

forms. The end result of the coagulation cascade is formation of thrombin, which 

in turn cleaves fibrinogen (Fbg) into fibrin. Once fibrin is produced, the 

transglutaminase factor XIIIa cross-links the fibrin polymers, and an insoluble 

fibrin mesh is formed that stabilizes the platelet plug formed during primary 

hemostasis. It is exposure of TF to the circulation after vascular injury that 

triggers activation of the coagulation cascade through the extrinsic pathway (4,5). 

 The extrinsic pathway of coagulation begins with the formation of a TF-

factor VIIa complex. This complex activates factor IX and factor X, which together 

with its cofactor factor VIIIa, sustains factor X activation (6). The intrinsic pathway 

of coagulation is an alternate pathway that converges with the extrinsic pathway 

at the level of factor X activation. The intrinsic system is triggered when factor XII 

is activated on a charged surface, such as glass or collagen, through a process 

known as contact activation. After contact activation occurs, factor XIIa activates 

factor XI, and factor XIa goes on to activate factor IX. Subsequently, factor IXa in 

association with factor VIIIa converts factor X to factor Xa. Factor Xa and its non-

enzymatic cofactor, factor Va, assemble on a negatively charged phospholipid 

surface, such as that of activated platelets, in the presence of Ca2+ to form the 

prothrombinase complex. The prothrombinase complex proteolytically converts 

prothrombin (ProT) to thrombin. It remains unclear as to the importance of the 

contact activation pathway in normal coagulation, but it is possible that it may be 
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necessary for the amplification phase of coagulation and may regulate fibrin 

formation during certain pathologic processes (7-9).  

 Once the platelet and fibrin-rich clot has been formed, the process of 

wound healing and eventual clot lysis begins. The key enzyme in fibrinolysis is 

plasmin (Pm), the active serine protease produced after activation of its zymogen 

precursor, plasminogen (Pg).  Pm proteolytically cleaves insoluble fibrin, 

producing soluble degradation products that are easily cleared. The two major 

physiological Pg activators are tissue-type plasminogen activator (tPA) and 

urokinase-type plasminogen activator (uPA), which use fibrin-dependent and 

fibrin-independent activation mechanisms, respectively (10) (Fig. 1).  

 

Figure 1.  Schematic of blood coagulation and fibrinolysis pathways. After 
vascular injury, the factor VII-TF complex initiates the extrinsic pathway, resulting 
in thrombin production and fibrin formation. Contact activation triggers the 
intrinsic pathway with factor XIIa, also leading to factor X activation and thrombin 
formation. Once a clot is formed, Pg is converted to Pm by uPA and tPA, and Pm 
cleaves insoluble fibrin to soluble fibrin degradation products.   
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The intimate relationship between coagulation and fibrinolysis, and the ordered 

interactions and feedback mechanisms involved is what allows the hemostatic 

balance to maintain normal blood fluidity and integrity of the vasculature.     

 

Prothrombin Activation and Staphylocoagulase 

 The enzymes involved in human blood coagulation and fibrinolysis belong 

to the serine proteases. All serine proteases exist in an inactive zymogen 

precursor form, and under physiological conditions they must be activated by 

proteolytic cleavage. Formation of a new NH2-terminus through cleavage of the 

Arg15-Ile16 (chymotrypsinogen numbering) peptide bond occurs; subsequently, 

Ile16 is inserted into the NH2-terminal binding pocket where its α-ammino group 

forms a vital salt bridge with the carboxylate side chain of Asp194,  folding  the 

activation domain of the zymogen and forming the substrate binding site and 

oxyanion hole necessary for proteolytic cleavage (11).     

 ProT, the zymogen precursor of thrombin, is composed of a fragment 1 

domain spanning from its NH2-terminus to residue 155, a fragment 2 domain 

composed of residues 156-271, and the catalytic domain from residues 272-581. 

Physiological ProT activation occurs through proteolytic cleavage by the serine 

protease of the prothrombinase complex, factor Xa, at the Arg320-Ile321 and 

Arg271-Thr272 peptide bonds. Cleavage at Arg320 alone produces meizothrombin, 

a proteolytically active intermediate, and subsequent cleavage at Arg271 releases 

fragments 1 and 2 of ProT. This process liberates a new Ile321 NH2-terminus that 

can insert into the Ile binding pocket and form active thrombin (Fig. 2A). After 
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cleavage at Arg320, thrombin contains an A chain and B chain that are linked by 

disulfide bonds.  

 

 

Figure 2. Physiological vs. staphylocoagulase-induced ProT activation.  (A) 
The physiological mechanism of activation of ProT to thrombin. Thrombin is 
produced by cleavage of the Arg15-Ile16 peptide bond in ProT and insertion of the 
newly liberated NH2-terminus into the NH2-terminal binding pocket. The active 
site and oxyanion hole are formed after folding of the activation domain occurs. 
ProT consists of the prethrombin 2 (Pre 2) catalytic domain, fragment 1 (F1), and 
fragment 2 (F2), and thrombin is liberated from F1 and F2 during activation. (B) 
The molecular sexuality mechanism of ProT activation by SC(1-325). SC forms a 
stoichiometric complex with ProT and inserts its own NH2-terminus into the NH2-
terminal binding pocket of ProT, forming a critical salt bridge with Asp194 and 
triggering conformational activation. (16)  
 

ProT peptide bond cleavage can occur in the reverse order when factor Va is 

absent from the prothrombinase complex. If Arg271 is cleaved prior to Arg320, 

fragment 1.2 forms a non-covalently bound complex with prethrombin 2 (Pre 2) 

that is inactive (13,14) (Fig. 3).   
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Figure 3. Activation of ProT by the prothrombinase complex.  Initial cleavage 
at Arg320 by factor Xa generates the active intermediate meizothrombin (MzT). 
Alternate cleavage at Arg271 produces inactive prethrombin 2 (Pre 2) and 
fragment 1.2 (F1.2). (18) 
 

There are also two thrombin-sensitive cleavage sites within ProT at Arg155 and 

Arg284. Cleavage at these peptide bonds gives rise to prethrombin 1 that lacks 

fragment 1, and prethrombin 2’, which is prethrombin 2 missing residues 272-284 

(Fig. 4) (15).  Anion-binding exosites I and II exist on the active thrombin 

molecule and are important for allosteric regulation of thrombin activity through 

substrate, effector, and inhibitor binding. Fibrin formation by thrombin is mediated 

by binding of Fbg through exosite I of thrombin (12).  

 

 6



 

Figure 4. Cleavage sites in ProT. Initial ProT cleavage at Arg320 by factor Xa 
gives rise to meizothrombin. Subsequent cleavage at Arg271 releases fragment 
1.2. Initial cleavage at Arg271 by factor Xa gives rise to fragment 1.2 and 
prethrombin 2. Two thrombin-sensitive cleavage sites exist at Arg155 and Arg284. 
Cleavage at Arg155 produces prethrombin 1 that lacks F1 and thrombin cleavage 
at Arg284 gives rise to prethrombin 2’. (17)   
  

Staphylocoagulase (SC), a 74-kDa, 660-residue protein secreted by 

Staphylococcus aureus, is also able to activate ProT and induce blood clot 

formation. SC contains NH2-terminal D1-D2 domains that are responsible for 

binding and conformationally activating ProT, as well as a COOH-terminal region 

that contains seven 27-amino acid repeats with a 32-residue pseudorepeat that 

are able to adhere to Fbg (19). In contrast to prothrombinase, SC activates ProT 

through a non-proteolytic activation pathway known as the “molecular sexuality” 

mechanism. The NH2-terminal dipeptide of SC, Ile-Val, mimics the NH2-terminal 

Ile-Val-Gly/Asn residues conserved among most vertebrate serine proteases. SC 

exploits the physiological mechanism of serine protease activation by forming a 

stoichiometric complex with ProT (20), and then it inserts its own NH2-terminus 

into the ProT NH2-terminal binding pocket and forms a critical salt bridge with 

Asp194, triggering conformational activation (Fig. 2B). Early fragmentation studies 

with full-length SC(1-660) determined that SC(1-325) (38-kDa) had the same 

activity as the full-length protein (21). Mutagenesis studies with NH2-terminal 

SC(1-325) mutants reported that addition of an NH2-terminal Met or deletion of 
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the first (Ile) and/or second (Val) residue(s) significantly reduced the ability of SC 

to bind and activate ProT, showing that the NH2-terminal dipeptide of SC is 

imperative for conformational activation of ProT (16). The mechanism of 

conformational ProT activation by SC and the role that the NH2-terminal SC 

residues play in ProT activation are not well understood.  

SC•ProT is hypothesized to bind Fbg through a novel substrate 

recognition exosite expressed by the complex, and it directly cleaves Fbg into 

fibrin, inducing the formation of fibrin clots (16,22,23). The SC•ProT complex is 

not inhibited by physiological ProT inhibitors, including hirudin, antithrombin III, 

and heparin, even in the presence of 5-fold molar excess. Exosite I is blocked by 

the D2 domain of SC in the SC•ProT complex, yet Fbg is still cleaved with high 

specificity, further supporting the hypothesis that a new Fbg substrate recognition 

exosite is expressed on the SC•ProT complex (23). SC is the prototype for a 

group of proteins called Zymogen Activator and Adhesion Proteins (ZAAPs), 

which bind plasma or extracellular matrix proteins and possess homologous D1-

D2 domains of similar structure and fold to SC(1-325). Other proteins that belong 

to this family include SfbX from Streptococcus  pyogenes, vWbp from 

Staphylococcus aureus, and the novel protein NP_687847 from Streptococcus 

agalactiae. The protein FbsB, or fibrinogen-binding surface protein B, that 

corresponds to the CAD46494 gene of the NEM316 strain of Streptococcus 

agalactiae was also initially hypothesized to be a member of the ZAAP family 

(Fig. 5) (16).  
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Figure 5. Domain organization of ZAAPs. All members of the ZAAP family 
contain homologous NH2-terminal D1-D2 domains and COOH-terminal adhesion 
protein-binding domains. (Adapted from (16)) 
 
 
 
Staphylococcus aureus Pathogenesis and Acute Bacterial Endocarditis 

 Staphylococcus aureus is a commensal gram-positive organism that can 

colonize the nose and skin of healthy individuals. It is when the barriers of the 

skin and mucosa are breached that S. aureus can invade and enter the tissue 

and bloodstream and potentially cause illness. Pathologies caused by 

colonization of S. aureus range from meningitis, sepsis, and pneumonia to 

endocarditis and septic arthritis in high risk populations, such as infants, 

immunocompromised adults, and intravenous drug users. The presence of 

foreign materials in the body, including intravenous catheters, greatly increases 

the risk of developing S. aureus-induced endocarditis because the catheters 

become coated with Fbg and fibronectin, to which the bacterium can easily 

adhere (24). Methicillin-resistant S. aureus (MRSA) strains have evolved to 
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produce β-lactamases that break down penicillin and methicillin, and it is 

estimated that only 5% of S. aureus isolates are susceptible to penicillin 

treatment (25). Another common antibiotic used to treat these infections is 

vancomycin; however, S. aureus has also developed resistance to this antibiotic 

through a currently unknown mechanism. In light of the overwhelming number of 

antibiotic resistant strains of S. aureus, the need for new treatments for 

staphylococcal infections is integral to the survival of infected individuals.  

 Acute bacterial endocarditis (ABE), one of the illnesses caused by S. 

aureus, is a life-threatening disease characterized by inflammation of the inner 

lining of the heart and heart valves. Vegetations can form at sites of endothelial 

injury caused by turbulent blood flow, the presence of intravascular catheters, 

intravenous drug use, or physiological stress from hypersensitivity states, 

hormonal changes, or exposure to high altitudes. After the injury occurs, 

coagulation is initiated and a sterile thrombus composed primarily of fibrin and 

platelets forms. Bacteria can then enter the bloodstream and adhere to the sterile 

thrombus through binding Fbg and fibronectin. The vegetation undergoes a 

“maturation” process where it is layered with more fibrin, bacteria, and platelets. 

As it matures and grows in size, the vegetation is at risk of embolization, which 

can lead to abscesses, heart failure, myocardial infarction, and stroke (Fig. 6). 

The interaction of SC with Fbg may contribute to the virulence of acute bacterial 

endocarditis by allowing the pathogen to elude the host immune system by 

forming protective fibrin-platelet-bacteria vegetations (11,26-28).       
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Figure 6. Schematic of the pathogenesis of acute bacterial endocarditis. 
(Adapted from (29)) 
 

Plasminogen and Plasmin 

 Pg is a 791-residue, 92-kDa zymogen form of Pm comprised of an NH2-

terminal PAN (Pg/apple/nematode) module, five kringle domains, and a COOH-

terminal serine protease catalytic domain. Pg is present in two major forms, Glu-

plasminogen ([Glu]Pg) and Lys-plasminogen ([Lys]Pg), which differ according to 

their NH2-terminal residues, and both forms have two isoelectric variants, Pg I 

and Pg II, that vary by the number of glycosylation sites. Pg I has N-linked 

(Asn278) and O-linked (Thr345) polysaccharides whereas Pg II only contains the 

O-linked polysaccharide at Thr345 (30-32). Native Pg, [Glu]Pg, circulates in the 

bloodstream and its two carbohydrate variants are referred to as Glu-

plasminogen I ([Glu]Pg I) and Glu-plasminogen II ([Glu]Pg II). After proteolytic 

cleavage by Pm releases the NH2-terminal 77-residue PAN module from [Glu]Pg, 

the second major form of Pg, [Lys]Pg, is formed (33). The carbohydrate variants 

of [Lys]Pg are referred to as [Lys]Pg I and [Lys]Pg II. [Glu]Pg and Pm contain 

important binding sites for L-lysine and 6-aminohexanoic acid (6-AHA) (34), 
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which allow the proteins to bind fibrin and Fbg (35) and Pm to interact with its 

major inhibitor α2-antiplasmin (36).  [Glu]Pg contains lysine-binding sites (LBS) in 

kringles 1, 4, and 5 (31), and in its native form exists in a compact α-

conformation that is slowly activated by physiological Pg activators and stabilized 

by the interaction between its NH2-terminal PAN module LBS in kringles 4 and 5 

(37-39). Once [Glu]Pg is cleaved by Pm, [Lys]Pg is generated, exhibiting an 

extended β-conformation that allows for the rate of Pg activation by uPA and tPA 

to increase. [Glu]Pg also converts to an extended β/γ conformation when 

effectors are bound to its LBS (34,40-46).  

Pg is physiologically activated by uPA and tPA through proteolytic 

cleavage of the Arg561-Val562 peptide bond in the catalytic domain. uPA is a 411-

amino acid, 54-kDa protein that contains an NH2-terminal epidermal growth 

factor-like domain, a finger-like domain, a single kringle domain, and a COOH-

terminal serine protease catalytic domain. It activates Pg through a fibrin-

independent mechanism, because it lacks a LBS and, therefore, lacks the ability 

to bind fibrin (31). Conversely, tPA activates Pg through a fibrin-dependent 

mechanism. The structure of tPA differs from uPA, because it contains a second 

kringle domain with a LBS that has high affinity for not only fibrin, but also lysine-

sepharose, and the lysine analog, 6-aminohexanoic acid (6-AHA) (Fig. 7). There 

are two forms of tPA: the 70-kDa low-activity, zymogen-like form called single-

chain tPA (sctPA), and the more active form generated by Pm cleavage of the 

Arg275-Ile276 peptide bond called two-chain tPA (tctPA) (44).  

 12



 
Figure 7. Domain structure of native Pg, tPA, and uPA. Serine protease (SP), 
kringles (1-5), epidermal growth factor (EGF), and finger-like (F) domains with 
LBS marked by white circles and PAN (Pg/apple/nematode) module in red 
(31,47).  
 

Pm, uPA, and tPA are targets of the major inhibitors of the fibrinolytic 

system. Serine protease inhibitors (serpins) comprise a class of inhibitors that 

are responsible for regulating most plasma proteases. Serpins act through a 

mechanism that involves formation of a stoichiometric complex with the plasma 

protease. After a complex is formed, the reactive center loop of the serpin is 

cleaved by the protease, resulting in a terminal covalent complex which traps the 

acyl-enzyme intermediate in its inactive form (48). Free, unbound Pm is inhibited 

by α2-antiplasmin, and binding of fibrin protects Pm from the action of α2-

antiplasmin and allows appropriate fibrin proteolysis. The main physiological 

inhibitor of Pg activation by the activators tPA and uPA is plasminogen activator 

inhibitor-1 (PAI-1). When tPA is bound to fibrin, it is protected from inhibition by 

PAI-1. Thrombin-activatable fibrinolysis inhibitor (TAFI) is unique in that it does 

not belong to the serpin family. TAFI can cleave COOH-terminal Lys residues 

from fibrin, thus inhibiting fibrin proteolysis by preventing Pg/Pm binding (49,50). 
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These fibrinolytic inhibitors are necessary to restrict clot lysis only until an insult 

to the vessels has been repaired by the coagulation cascade.    

 

Bacterial Plasminogen Activators  

 One of the most highly studied bacterial Pg activators is streptokinase 

(SK), a 47-kDa protein produced by Group A, C, and G streptococci. SK binds 

and conformationally activates Pg through the “molecular sexuality” mechanism, 

forming a reversible SK•Pg* active complex that can proteolytically cleave a 

second Pg  molecule to Pm. SK can also bind to Pm and alter its substrate 

specificity, so that it becomes a potent Pg activator (Fig. 8) (27,51,52).  

 

Figure 8. Mechanism of Pg activation by SK•Pg* complex. SK binds Pg and 
forms a reversible SK•Pg* active complex. This complex then forms a ternary 
Pg*•SK•Pg complex from which Pg is cleaved into Pm. Free Pm can bind SK and 
form an SK•Pm complex that then binds Pg, forming Pm•SK•Pg, which generates 
free Pm (60).  
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The molecular sexuality mechanism of Pg activation involves insertion of the 

NH2-terminal Ile1 residue of SK into the NH2-terminal binding cleft of Pg. Ile1 

forms a salt bridge with Asp194 (chymotrypsinogen numbering), inducing a 

conformational change that forms the oxyanion hole and substrate binding site of 

Pg (53-56). SK binding to Pg is regulated by interactions of kringle 5 of Pg with 

Arg253, Lys256, and Lys257 of the SK 250-loop (57). The COOH-terminal Lys414 of 

SK is also important for enhancing Pg and Pm binding affinity and subsequent 

Pg formation (58). The activity of SK-bound Pm is protected from inhibition by α2-

antiplasmin, like the protection seen with fibrin-bound Pm (59). A recently 

characterized bacterial cofactor for Pg activation, skizzle (SkzL), binds both 

[Lys]Pg and [Glu]Pg in a LBS-dependent manner, and enhances [Glu]Pg 

activation by uPA, as well as [Glu]Pg and [Lys]Pg activation by tPA (Fig. 9). 

Binding of Pg by SkzL is facilitated by the COOH-terminal Lys415 residue of SkzL, 

and it is hypothesized that this binding may convert [Glu]Pg from its compact α-

conformation to its extended γ-conformation, rendering Pg more susceptible to 

the action of uPA. To date, SkzL is the only known protein secreted by 

Streptococcus agalactiae that contributes to human fibrinolytic activity. 
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Figure 9. Mechanism of SkzL-mediated [Glu]Pg activation by uPA, and 
hypothesized LBS-dependent complexes formed with [Lys]Pg and Pm 
mediated by SkzL. The proposed mechanism of SkzL-dependent [Glu]Pg 
activation by uPA is shown in Reactions 1, 2, and 3. SkzL binds to the compact 
β-conformation of [Glu]Pg, mediated by binding of Lys415 of SkzL to the LBS of 
kringle 4 of Pg. This converts the SkzL•[Glu]Pg complex to the extended γ-
conformation, thus accelerating the rate of [Glu]Pg activation by uPA. The 
proposed mechanism for SkzL and [Lys]Pg or Pm complex formation is shown in 
Reactions 4, 5, and 6. Reaction 4 shows formation of a ternary SkzL•[Lys]Pg2 
complex in which one Pg molecule is bound through the Lys415-kringle 4 
interaction in the γ-conformation and binding of the second Pg molecule is 
mediated by the SkzL internal motif-kringle 5 interaction, with Pg in the β-
conformation; Reaction 5 illustrates formation of an SkzL•[Lys]Pg complex in the 
γ-conformation with the internal motif and Lys415 bound to their respective kringle 
domains; Reaction 6 displays complex formation between SkzL∆K415 and 
[Lys]Pg or Pm mediated by the internal motif in SkzL (61). 
 
 
Streptococcus agalactiae Pathogenesis 

 Streptococcus agalactiae (Group B streptococci, GBS) can cause 

meningitis, sepsis, pneumonia, and endocarditis in neonates and 

immunocompromised patients. Several streptococcal surface proteins, including 

α-enolase and glyceraldehyde-3-phosphate-dehydrogenase, can interact with the 

human fibrinolytic system by binding Pg (40,62). S. agalactiae does not express 
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SK, and SkzL is currently the only protein secreted by GBS that has been 

characterized to influence fibrinolytic activity (61). Fibrinogen-binding surface 

protein A (FbsA) is a protein from S. agalactiae that binds to human Fbg through 

multiple (3-30 total) NH2-terminal 16-amino acid (GNVLERRQRDAENRSQ) 

repeat sequences (40,63). A second protein thought to bind human Fbg, 

fibrinogen-binding surface protein B (FbsB), was discovered through genomic 

sequencing of the serotype III strain NEM316 of S. agalactiae (64,65). FbsB does 

not share sequence homology with FbsA, but does share minor 22% identity with 

SfbX, a fibronectin-binding protein from Streptococcus pyogenes (66,67). FbsB 

was hypothesized to activate one of the coagulation serine protease zymogens 

and possibly be a member of the SC-like ZAAP family, due to its potential binding 

of Fbg and predicted homologous D1-D2 domains (16). However, initial studies 

presented here suggest that FbsB is not a ZAAP, but rather it interacts with Pg 

and Pm and may be only the second protein from S. agalactiae with the ability to 

enhance tPA-dependent Pg activation, potentially contributing to S. agalactiae 

pathogenesis.    
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CHAPTER II 

 

FIBRINOGEN-BINDING SURFACE PROTEIN B IS A NOVEL PROTEIN FROM 
STREPTOCOCCUS AGALACTIAE THAT INTERACTS WITH PROTEINS 

INVOLVED IN HUMAN FIBRINOLYSIS  
 

Introduction 

 Streptococcus agalactiae, commonly referred to as Group B streptococci 

(GBS), causes human illnesses including meningitis, sepsis, and pneumonia in 

neonates as well as endocarditis, cellulitis, and arthritis in immunocompromised 

and elderly individuals (1,2). Serotype III of GBS initiates most cases of neonatal 

meningitis induced by S. agalactiae (3), and there is a need to elucidate further 

the molecular mechanisms contributing to its virulence to enable prevention and 

therapeutic intervention. S. agalactiae infects its host through several pathways 

that involve evasion of the immune system and infiltration and colonization of 

epithelial and endothelial surfaces (4). Group B streptococci do not express 

streptokinase (SK), a virulence factor expressed by Group A, C, and G 

streptococci (5), but they can usurp the human fibrinolytic system through other 

mechanisms. S. agalactiae can elude host immune defenses and exploit the 

fibrinolytic system by adhering to fibrinogen (Fbg) and either directly or indirectly 

interacting with plasminogen (Pg) and/or plasmin (Pm) (6,7). Fibrinogen-binding 

surface protein A (FbsA) is a recently characterized GBS protein that binds to 

human fibrinogen through its 3 to 30 NH2-terminal 16-amino acid repeat 

sequences (GNVLERRQRDAENRSQ) (8,9). Glyceraldehyde-3-phosphate-

dehydrogenase (GAPDH) and α-enolase are proteins expressed by S. agalactiae 
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that enhance GBS virulence and contribute to the activation and coating of Pg 

and active Pm on the bacterial surface (8,10). To date, the only known protein 

secreted by S. agalactiae that contributes to human fibrinolytic activity is skizzle 

(SkzL). SkzL has been shown to form complexes with both human Pg and Pm in 

a lysine-binding site (LBS)-dependent manner. Binding of SkzL to Pg and Pm 

amplifies activation of native human Glu-plasminogen ([Glu]Pg) by the Pg 

activators, urokinase-type plasminogen activator (uPA) and single-chain tissue-

type plasminogen activator (sctPA) (11).  

 Fibrinogen-binding surface protein B (FbsB) is a novel, 70-kDa protein that 

was discovered upon genomic sequencing of the serotype III strain NEM316 of 

S. agalactiae, isolated from a case of fatal septicemia (3,12). FbsB is  

hypothesized to be an anchorless adhesin (13) and lacks any sequence 

homology with FbsA or its Fbg-binding repeats (14), yet it shares 22% identity 

with Sfbx, a fibronectin-binding protein from Streptococcus pyogenes (15). FbsB 

has a conserved COOH-terminal region of 223 residues that are almost identical 

to the residues responsible for Fbg binding characterized in fgags, a novel family 

of Fbg-binding proteins from a bovine strain of S. agalactiae (16). Other than the 

similarity between FbsB and its bovine homologs the COOH-terminal region of 

FbsB shows no sequence homology with any previously characterized protein 

(14). Several studies reported that the NH2-terminal portion of FbsB binds human 

Fbg and not the COOH-terminal conserved region, which was found to bind only 

bovine Fbg, although the protein is from a human strain (12,16). Circular 

dichroism spectra from a recent study indicate that FbsB is composed primarily 

 24



of alpha helices and random coils with few beta strands, although the structure of 

most Fbg-binding proteins consists of mainly beta sheets. For these reasons, 

further characterizing the structure and function of FbsB, especially the 

conserved COOH-terminal region, may be useful in developing therapeutic 

agents to treat GBS infections (14). 

 Another protein capable of forming a complex with fibrinogen and 

subsequently hijacking the human coagulation cascade is staphylocoagulase 

(SC). SC from Staphylococcus aureus induces coagulation by conformationally 

activating prothrombin, the zymogen form of the active serine protease, thrombin. 

SC is a bifunctional protein with the ability to adhere to Fbg through its COOH-

terminal 7, 27-residue repeat sequences, and to bind and activate prothrombin 

through its NH2-terminal D1-D2 domains. SC is the first member of a group of 

proteins called Zymogen Activator and Adhesion Proteins (ZAAPs). Proteins 

including Sfbx from S. pyogenes, VWbp from S. aureus, and the novel protein 

NP_687847 from S. agalactiae were assigned to the ZAAP family because they 

adhere to plasma or extracellular matrix proteins and possess homologous D1-

D2 domains of similar structure and fold to the active SC fragment, SC(1-325). 

The novel protein, FbsB, was hypothesized to be a member of the ZAAP family 

with the potential to activate prothrombin or one of the other serine protease 

zymogens of the human coagulation cascade (17).  

 Pg, a component of the fibrinolytic system, is present in at least four major 

forms that can be isolated from human plasma and vary according to their NH2-

terminal residues and number of glycosylation sites. The native form of 
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plasminogen, [Glu]Pg, circulates in the bloodstream and has two carbohydrate 

variants referred to as Glu-plasminogen I ([Glu]PgI) and Glu-plasminogen II 

([Glu]PgII). [Glu]Pg is composed of an NH2-terminal PAN (Pg/apple/nematode) 

module and five kringle domains, and a COOH-terminal serine protease 

zymogen catalytic domain.  The second major form of Pg, Lys-plasminogen 

([Lys]Pg), also contains two variants based on their pattern of glycosylation and 

is formed when the catalytic action of Pm releases the NH2-terminal PAN module 

from [Glu]Pg (7,11,18). [Glu]Pg and Pm contain important binding sites for L-

lysine and 6- aminohexanoic acid (6-AHA) (19) that allow the proteins to bind 

fibrin (Fbn) and Fbg (20), and for Pm to interact with its major inhibitor α2-

antiplasmin (21).  [Glu]Pg contains LBS in kringles 1, 4, and 5 (7), and in its 

native form exists in a compact conformation that is stabilized by the interaction 

between its NH2-terminal PAN module LBS in kringles 4 and 5 (22-24) . Once 

[Glu]Pg is cleaved by Pm, [Lys]Pg is generated, which exhibits an extended 

conformation that allows Pg to be proteolytically cleaved and converted to the 

active enzyme Pm at an accelerated rate (8,19,25-30).   

 Physiologically, activation of Pg is achieved by proteolytic cleavage of the 

Arg561-Val562 peptide bond in its catalytic domain, resulting in formation of the 

serine protease, Pm. The conversion of Pg to Pm is catalyzed by the Pg 

activators, uPA and tPA (31,32). There are two forms of tPA, the low-activity 

zymogen-like form, single-chain tPA (sctPA), and the more active two-chain form 

(tctPA) that is formed following cleavage of the Arg275-Ile276 peptide bond by Pm 

(7,28). Though uPA and tPA are both serine proteases proteolytically activated 
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by Pm, they encompass one major structural difference. Urokinase contains a 

single kringle domain that lacks a LBS, whereas tPA also has a second kringle 

domain containing a LBS with affinity for not only L-lysine and 6-AHA, but also 

Fbn (33,34). Pathophysiologically, Pg can be converted to Pm in the presence of 

SK, and Pm generation is greatly enhanced. The active SK•Pg* complex binds a 

substrate Pg molecule through kringle 5 of Pg with Arg253, Lys256, and Lys257 of 

the SK 250-loop and proteolytically converts it into Pm. Pg is conformationally 

activated by insertion of its NH2-terminal Ile-Ala-Gly into the Pg NH2-terminal 

activation pocket, inducing conformational activation of the zymogen catalytic site 

(35). The COOH-terminal Lys414 of SK also plays a critical role in enhancing Pg 

and Pm binding affinity and subsequent Pg formation (36).  SkzL enhances Pg 

activation by binding [Glu]Pg, likely through kringle 4, in a LBS-dependent 

manner and shifting Pg to its extended conformation, making it more susceptible 

to activation by uPA. [Glu]Pg activation by single-chain tPA (sctPA) is also 

enhanced by SkzL through a currently unknown mechanism (11).  

 With FbsB hypothesized to bind human Fbg and to contain a D1-D2 

domain homologous to SC, it was thought that FbsB may be a member of the 

bifunctional ZAAP family with the ability to conformationally activate a serine 

protease zymogen. Based on studies performed in this chapter, FbsB neither 

bound Fbg nor activated any of the zymogens of the human coagulation cascade 

tested. However, it was discovered that FbsB is able to bind Pm in a LBS-

dependent manner and significantly inhibit the rate of Pm substrate hydrolysis. In 

preliminary experiments, FbsB appeared to enhance Pg activation in the 
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presence of tPA, similar to the action of SkzL. It is possible that FbsB may be 

only the second characterized protein secreted from S. agalactiae capable of 

contributing to the spread of GBS infections through its human fibrinolytic activity.  

 

Materials and Methods 
 
 

Cloning, expression, and purification of FbsB constructs 

 The FbsB gene was PCR-amplified from S. agalactiae NEM316 strain 

(ATCC) genomic DNA and cloned into a modified pET30b(+) vector (Novagen) 

(37) using NcoI and XhoI restriction sites. FbsB was expressed with an NH2-

terminal His6-tag and tobacco etch virus (TEV) proteinase cleavage site in 

Rosetta 2 (DE3) pLysS E. coli (Novagen) with lactose induction. Recombinant 

FbsB protein was purified from the soluble fraction by Ni2+-iminodiacetic acid 

chromatography. The His6-tag was removed by overnight incubation with a 1:10 

molar ratio of TEV proteinase to fusion protein (36). Protein expression with the 

native FbsB construct was minimal and unproductive, therefore an optimized 

gene construct was made by OptimumGeneTM Codon Optimization Analysis 

(GenScript), using the following parameters to increase the efficiency of gene 

expression: codon usage bias, GC content, CpG dinucleotides content, mRNA 

secondary structure, cryptic splicing sites, premature PolyA sites, internal chi 

sites and ribosomal binding sites, negative CpG islands, RNA instability motif, 

inhibition sites, and repeat sequences. Post-optimization subcloning of the 

altered FbsB gene was performed as above. Optimized FbsB was expressed in 
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BL21 (DE3) pLysS E. coli (Novagen) and purified as described. The 

FbsBΔK607ΔE608 mutant was generated by QuikChange site-directed 

mutagenesis (Stratagene). FbsB concentration was determined using the 

following calculated absorption coefficient ((mg/ml)-1 cm-1) at 280 nm (38) and 

molecular weight: 1.28, 70,224.  

 
 
Kinetic screening of FbsB with coagulation proteins 

 Kinetic assays were performed with 100 nM of the following coagulation 

zymogens: factor X, [Lys]Pg, [Glu]Pg, prothrombin, protein C, factor IX, factor XI, 

factor XII, and prekallikrein. Assays were performed in the absence of FbsB and 

as a function of FbsB concentration. The proteases respective chromogenic 

substrate (200 µM) was added after 10 min incubation of FbsB and the 

coagulation proteins at 25 ºC.  

 Kinetic assays were also performed in the presence and absence of FbsB 

and the following active serine proteases: factor Xa, Pm, thrombin, activated 

protein C (APC), factor IXa, factor XIa, factor XIIa, and kallikrein. As before, 200 

µM of the respective chromogenic substrate was added after a 10 minute 

incubation at 25ºC with FbsB and the active enzyme. The initial rate of 

chromogenic substrate hydrolysis measured at 405 nm was compared with and 

without FbsB for each assay.  
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Factor V clotting activity assays 
 
 Clotting activity assays were done with a fibrometer. Equal volumes (100 

µl) of factor V-deficient plasma, diluted normal plasma (1:10 to 1:1000), and 20 

mM Hepes, 0.15 M NaCl, 1 mg/ml PEG 8000, pH 7.4 were incubated at 37 ºC. 

Increasing concentrations of FbsB were added (1-5 µM), with thromboplastin and 

5 mM CaCl2 added to initiate clotting. Clotting times with FbsB were compared to 

a standard curve of log clotting time versus log dilutions of normal plasma in the 

absence of FbsB.   

 
 
Pm-Sulfolink affinity chromatography 
 
 FbsB was applied onto a Pm-Sulfolink affinity column (5 mL) equilibrated 

in 0.1 M Hepes, 10 mM NaCl, 1 mM EDTA, pH 7.4. The column was washed with 

equilibration buffer and eluted with 50 mM 6-AHA step-elution in the same buffer. 

  

Fbg and fibronectin affinity chromatography 

 FbsB in 100 mM Hepes, 10 mM NaCl, 1 mM EDTA, pH 7.4 was loaded 

onto a 25 ml human Fbg-agarose affinity column containing 6 mg/ml Fbg coupled 

to the matrix, or a 14 ml bovine Fbg-agarose affinity column containing 8.2 mg/ml 

Fbg coupled to the matrix, or an 8 ml human fibronectin-agarose column 

containing 3.8 mg/ml fibronectin coupled to the matrix. The loaded column was 

washed with the equilibration buffer.  
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Superdex 200 size-exclusion chromatography 

 Identical concentrations (17 µM) of FbsB and Fbg in 50 mM Hepes, 125 

mM NaCl, pH 7.4 were first chromatographed alone on a Superdex 200 gel 

filtration column. To detect any interaction, a reaction containing 17 µM FbsB and 

17 µM Fbg in the same buffer was incubated at 25ºC for 30 min and the mixture 

was chromatographed under the same buffer conditions.   

 

FbsB kinetic titrations of Pm 

 Pm (10 nM) was titrated with FbsB and Pm inhibition was measured by 

the decrease in the initial rate of hydrolysis of 200 µM H-D-Val-Leu-Lys-pNA at 

405 nm and 25 ºC. FbsB was incubated with Pm for 5 min in 50 mM Hepes, 125 

mM NaCl, 1 mM EDTA, 1 mg/ml polyethylene glycol (PEG) 8000, pH 7.4, before 

initiating the assay by substrate addition. Assays with 6-AHA were performed 

with 5 min incubation of Pm in 50 mM Hepes, 125 mM NaCl, 10 mM 6-AHA, 1 

mM EDTA, 1 mg/ml PEG 8000, pH 7.4, followed by 5 min incubation with FbsB 

before substrate addition. The titrations were analyzed by nonlinear least-

squares fitting of a hyperbola.  

 

Pm chromogenic substrate hydrolysis 

 The initial rate of hydrolysis by Pm of varying concentrations of different 

chromogenic substrates (Table 1) was measured at 405 nm and 25 ºC, in the 

presence and absence of 1 µM FbsB. FbsB was incubated with Pm for 5 min in 

50 mM Hepes, 125 mM NaCl, 1 mM EDTA, 1 mg/ml PEG 8000, pH 7.4, before 
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substrate addition. kcat and KM were determined by fitting of the substrate 

dependence by the Michaelis-Menten equation in the absence and presence of 

FbsB.  

 

Pg kinetic titrations with FbsB and Pm 

 Titrations of [Lys]Pg and [Glu]Pg in the presence of 10 nM Pm and 500 

nM FbsB were performed, and the rate of Pm formation was measured by an 

increase in the rate of hydrolysis of 200 µM H-D-Val-Leu-Lys-pNA. Pg was 

incubated with Pm and FbsB for 5 min in 50 mM Hepes, 125 mM NaCl, 1 mM 

EDTA, 1 mg/ml PEG 8000, pH 7.4 before chromogenic substrate addition. 

Assays with 6-AHA were performed with 5 min incubation of plasmin in 50 mM 

Hepes, 125 mM NaCl, 10 mM 6-AHA, 1 mM EDTA, 1 mg/ml polyethylene glycol 

(PEG) 8000, pH 7.4, followed by 5 min incubation with FbsB and Pg before 

substrate addition. The maximum velocity was determined by nonlinear least-

squares analysis of the hyperbolic titrations.  

 

[Lys]Pg activation kinetics 

 The kinetics of activation of 100 nM [Lys]Pg by 2 nM tctPA, as a function 

of FbsB concentration, were performed by discontinuous measurements of the  

linear initial rates of hydrolysis of 200 µM H-D-Val-Leu-Lys-pNA at 405 nm and 

25 ºC. Assays were performed in 100 mM Hepes, 100 mM NaCl, 1 mM EDTA, 1 

mg/ml PEG 8000, pH 7.4. In assays with FbsB, FbsB and tctPA were incubated 

for 10 min; [Lys]Pg was then added and incubated with FbsB and tctPA for 10 
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min prior to chromogenic substrate addition. The results were analyzed by 

nonlinear least-squares fitting of the hyperbolic titrations.  

 

Western blots with Fbg  

 Samples of 0.05 µg staphylocoagulase and 25 µg FbsB were 

electrophoresed on 4-15% Tris-glycine gradient gels, and transferred onto 

Immobilin-FL polyvinyldiene difluoride (PVDF) membranes in Tris/glycine 

western transfer buffer containing 10% methanol. Membranes were blocked for 

1, 2, or 5 hours in 50 mM Tris, 150 mM NaCl, pH, 7.5, 0.1% Tween-20 (TBS-T) + 

3% bovine serum albumin (BSA), TBS-T containing 5% dry milk, TBS-T 

containing 5% casein, or Odyssey blocking buffer (LI-COR).  Fbg (2 µg/ml) was 

added to the respective blocking buffer and incubated with the membrane for 1 h 

for the experiments in the presence of Fbg. An overnight incubation was 

performed with a primary goat anti-human Fbg antibody (Abcam, ab6666). The 

membranes were washed with TBS-T and incubated for 2 h with a donkey anti-

goat secondary LI-COR IR 800 antibody.  Bands were visualized using a LI-COR 

Odyssey Imaging System.  

 

FbsB and Pm solubility reactions 

 Native or FFR-CH2Cl active-site blocked Pm (4.5 µM) and FbsB (10 µM) 

were incubated for up to 60 min. At each time point tested, 40 µl of the reaction 

was removed and quenched with 2 µl FFR-CH2Cl and 10 µl of hot sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) treatment 
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buffer, boiled for 2 min, and electrophoresed on 4-15% Tris-glycine gradient gels. 

Protein bands were Coomassie-stained.  

 

FbsB turbidity assays 

 Precipitation of FbsB by 5 nM Pm was monitored from the increase in 

turbidity at 350 nm at 25 ºC under various buffer conditions. The buffer used for 

kinetic assays (50 mM Hepes, 125 mM NaCl, 1 mM EDTA, 1 mg/ml PEG 8000, 

pH 7.4) was altered in the following ways: Hepes concentration (50-500 mM), 

replacing Hepes with 100 mM Na2HPO4, Tris, or Bis-Tris propane, NaCl 

concentration (125-500 mM), replacing NaCl with 500 mM KCl, addition of 10 

mM CaCl2, or addition of 2-10% glycerol.     

 

NH2-terminal sequencing of FbsB degradation products 

 FbsB (10 µM) and Pm (25 nM) were incubated for 20 min in 50 mM 

Hepes, 125 mM NaCl, 1 mM EDTA, 1 mg/ml PEG 8000, pH 7.4. A 40 µl sample 

was quenched with 10 µl hot SDS-PAGE treatment buffer (non-reducing), 

electrophoresed on 4-15% Tris-glycine gradient gel, and transferred onto an 

Immobilin-FL PVDF membrane in 0.2 M 3-[cyclohexylamine]-1-propane sulfonic 

acid (CAPS), pH 11 containing 10% methanol. The membrane was stained with 

Ponceau S, and major degradation bands were excised. NH2-terminal 

sequencing by Edman degradation was performed by the Molecular Structure 
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Results 

Facility at the University of California, Davis.   



Effect of FbsB on proteins of the human coagulation cascade  

 To determine whether FbsB was able to interact with proteins involved in 

human blood coagulation, chromogenic substrate kinetic assays with the 

following serine protease zymogens and active proteases were completed: factor 

X, factor Xa, [Lys]Pg, [Glu]Pg, Pm, prothrombin, thrombin, protein C, activated 

protein C, factor IX, factor IXa, factor XI, factor XIa, factor XII, factor XIIa, 

prekallikrein, and kallikrein. Assays were carried out in the presence and 

absence of FbsB to observe any change in the rate of substrate hydrolysis 

resulting from FbsB addition. FV-dependent plasma clotting assays were 

performed in the presence and absence of FbsB. A substantial decrease in the 

rate of chromogenic substrate hydrolysis by Pm was measured in the presence 

of FbsB. The rate of hydrolysis of 200 µM H-D-Val-Leu-Lys-pNA by Pm (10 nM) 

was 0.11 µM pNA/s, compared to a rate of 0.03 µM pNA/s in the presence of  

FbsB (1 µM). This indicated that FbsB may inhibit Pm activity. No change in the 

rate of substrate hydrolysis was measured for the serine protease zymogens and 

their corresponding proteases in the presence of FbsB (data not shown). 

 

Binding and inhibition of Pm by FbsB 

Because the zymogen and enzyme screen demonstrated that FbsB 

inhibits the rate of Pm substrate hydrolysis, chromogenic substrate kinetic assays 

were carried out with varying concentrations of FbsB and Pm (10 nM) to 

determine the degree of inhibition of Pm substrate hydrolysis in the presence of 

FbsB. In the absence of FbsB, the initial velocity (vo) of substrate hydrolysis was 
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0.11 ± 0.005 µM pNA/s, compared to a limiting velocity (vlim) of 0.022 ± 0.003 µM 

pNA/s with saturating concentrations of FbsB, representing 80% inhibition. To 

examine whether the interaction between FbsB and Pm was LBS-dependent and 

whether the COOH-terminal lysine residue of FbsB was largely responsible for 

the interaction between FbsB and Pm, a titration with an FbsBΔK607ΔE608 

mutant, lacking two COOH-terminal residues, and the effect of the lysine analog, 

6-AHA, was examined (Fig. 1). There was a ~4-fold decrease in the affinity (KD) 

with the FbsBΔK607ΔE608 mutant (182 ± 47 nM) compared to wild-type, (62 ± 

14 nM), but the vlim  for the mutant was similar to that of wild-type (0.018 ± 0.005 

µM pNA/s).  Addition of 6-AHA (10 mM) to saturating concentrations of either 

wild-type or mutant FbsB (1 µM) caused the rate of Pm substrate hydrolysis to 

increase to 0.091 µM pNA/s and 0.095 µM pNA/s respectively, approximating the 

rate in the absence of FbsB, and suggesting that the interaction between FbsB 

and Pm was largely LBS-dependent. 
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Figure 1. Kinetic titrations of Pm with FbsB. Initial velocities of hydrolysis of 
200 µM H-D-Val-Leu-Lys-pNA are shown for mixtures of 10 nM Pm as a function 
of wild-type FbsB (●) or FbsBΔK607ΔE608 (○) concentration. The lines represent 
the least-squares fits by the quadratic binding equation.  
 
 

To establish whether FbsB binds Pm, purified FbsB was chromatographed 

on a human Pm-Sulfolink affinity column. There was no protein absorbance 

measured during the load and wash steps of the procedure, indicating that FbsB 

bound the column.  FbsB was subsequently eluted from the Pm column with 50 

mM 6-AHA elution buffer (Fig. 2), but elution with 20 mM 6-AHA was 

unsuccessful. These results confirm that FbsB binds human Pm and suggests 

that the interaction is likely LBS-dependent because 6-AHA eluted the bound 

FbsB.                           
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Figure 2.  Pm-Sulfolink affinity chromatography of FbsB. The chromatogram 
shows the absorbance at 280 nm of fractions (1.5 ml) for chromatography of 
FbsB (12 µM) on a Pm-Sulfolink column (5 mL). FbsB was eluted from the affinity 
column with a 50 mM 6-AHA step-elution.  
 
 

Effect of FbsB on Pm chromogenic substrate hydrolysis     

 Because FbsB significantly inhibits the rate at which Pm hydrolyzes H-D-

Val-Leu-Lys-pNA (D-VLK-pNA), other chromogenic substrates were tested to 

determine the effect of FbsB on the turnover rates (kcat) and Michaelis-Menten 

constant (KM) for Pm (Table 1). The results in Table 1 indicate that FbsB affects 

the bimolecular specificity constant (kcat/KM) of Pm for all substrates tested, 

indicating a change in enzyme specificity. The kcat  was increased by 47%, 44%, 

and 24% for D-VLK-pNA, D-VLR-pNA, and D-IPR-pNA, and decreased by 42% 

and 46% for pyro-EPK-pNA and pyro-EPR-pNA respectively. FbsB affected the 
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KM  for the five tripeptide-pNA substrates screened by ~5 to ~20-fold increases. 

FbsB had the most significant effect on D-VLK-pNA as it drastically increases the 

KM and decreases kcat/KM by ~20-fold and ~12-fold, respectively (Table 1, Fig. 3).  

 
Table 1. Kinetic parameters for Pm substrate cleavage in the presence of 
FbsB. Catalytic rate constant (kcat) and Michaelis-Menten constant (KM) for Pm 
with various chromogenic substrates in the absence and presence of FbsB were 
calculated from titrations of the initial rate of substrate hydrolysis as a function of 
substrate concentration, fit by the Michaelis-Menten equation. Experimental error 
represents 2 x SD.  
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Figure 3. Effect of FbsB on H-D-Val-Leu-Lys-pNA hydrolysis by Pm. Initial 
velocity (µM pNA/s) of 5 nM Pm as a function of total VLK-pNA concentration in 
the absence (●) and presence (○) of 1 µM FbsB. The lines represent the fit by the 
Michaelis-Menten equation. KM and kcat  in the absence and presence of FbsB 
were 85 ± 14 µM, 15 ± 0.7 s-1 and 1750 ± 465 µM, 22 ± 3 s-1 respectively.   

[VLK-pNA] (µM) 

 

 
Interaction of FbsB with Pg 

 
Chromogenic substrate kinetic assays of mixtures of FbsB (500 nM) and 

Pm (10 nM), titrated with [Lys]Pg and [Glu]Pg, were performed. The purpose was 

to determine whether the addition of Pg can alter the affinity of FbsB for Pm, as 

indicated by a change in the affinity (KD) of the interaction between FbsB and Pm 

alone. The titration with [Lys]Pg weakened the KD  ~6-fold to 384 ± 126 nM, 

compared to 65 ± 14 nM for FbsB and Pm in the absence of Pg (Fig. 4). 

Preliminary results with [Glu]Pg (data not shown) also indicate a ~2-fold increase 

in the KD. When 6-AHA (10 mM ) was added to an assay containing 10 nM Pm, 
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500 nM FbsB, and 1 µM [Lys]Pg, the rate of substrate hydrolysis increased to 

0.098 µM pNA/s, close to the control rate of Pm alone. These results suggest 

that FbsB interacts with Pm and Pg and the interaction is inhibited by Pg, 

suggesting that Pm and Pg bind to the same site on FbsB. The results also 

suggest that both Pm and Pg binding to FbsB is LBS-dependent. 
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Figure 4. Kinetic titration of a mixture of FbsB and Pm with [Lys]Pg. Initial 
velocities of hydrolysis of 200 µM H-D-Val-Leu-Lys-pNA for mixtures of 10 nM 
Pm and 500 nM FbsB as a function of [Lys]Pg concentration. The line represents 
the least-squares fit by the quadratic binding equation. KD is 384 ± 126 nM. 
 
 
 Kinetic assays of Pm formation were performed to examine the effect of 

FbsB on activation of 100 nM [Lys]Pg by 2 nM two-chain tPA (tctPA) (Fig. 5). The 

rate of Pm generation from [Lys]Pg by tctPA was enhanced ~6-fold from 0.018 

µM pNA/s (vo) to 0.10 ± 0.01µM pNA/s (vlim) in the presence of FbsB, indicating 
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that FbsB may act as a cofactor for tPA-catalyzed Pg activation.                     
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Figure 5. The rate of [Lys]Pg activation by tctPA enhanced by FbsB. Initial 
rates of Pm hydrolysis of 200 µM D-VLK-pNA for activation of 100 nM [Lys]Pg by 
2 nM tctPA as a function of total FbsB concentration. The line represents the 
least-squares fit of the data by the quadratic binding equation. KD is 59 ± 50 nM.   
 
 
FbsB and Fbg binding experiments 

 Because FbsB was reported to bind to human Fbg (12,16), purified FbsB 

was subjected to chromatography on bovine or human Fbg-agarose columns. 

Even under low ionic strength conditions (10 mM NaCl), FbsB did not bind to the 

human or bovine Fbg columns. The same procedure was used to test FbsB 

binding to a human fibronectin-agarose column, again with no binding.   

 Another attempt was made to show FbsB-Fbg binding by subjecting the 

proteins to size-exclusion chromatography on Superdex 200 after a 30 min 

incubation period. If complex formation occurred, a shift in the elution peaks 
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measured from chromatograms of FbsB and Fbg alone would be anticipated. 

However, two separate peaks were measured that mimic the sum of the elution 

profiles of the respective proteins alone, indicating that a FbsB•Fbg complex was 

not formed (Fig. 6).  

 

Figure 6. Evaluation of complex formation between FbsB and Fbg. The 
chromatograms of FbsB (A), Fbg (B), and an equimolar mixture of FbsB and Fbg 
incubated for 30 min (C) on Superdex 200 equilibrated with 50 mM Hepes, 125 
mM NaCl, pH 7.4.  
 

 Western blot experiments were designed to replicate the binding of FbsB 

to Fbg reported in previously published studies  (12,14). Each blot contained full-

length SC(1-660) (0.05 µg), a known Fbg-binding protein, as a positive control 

and FbsB (25 µg). Membranes were blocked for various times with 5% dry milk 
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(Fig. 7,  A-F), Odyssey (LI-COR) blocking buffer (Fig. 7, G and H), 3% bovine 

serum albumin (BSA) (Fig. 7, I and J), or 5% casein (Fig. 7, K and L), with one 

membrane from each blocking condition incubated with Fbg (2 µg/ml) in the 

respective blocking buffer. When FbsB was blocked with 5% dry milk for 2 or 5 h, 

FbsB tests positive for Fbg binding, even in the absence of Fbg (Fig. 7, C and E). 

The SC control also tests positive for Fbg binding after 5 h of blocking in the 

absence of Fbg (Fig. 7, E). The Odyssey blocking buffer and 3% BSA blots also 

show false positives for FbsB•Fbg complex formation. However, when the blots 

were blocked with a 5% casein solution, Fbg-binding was only reported with SC, 

not FbsB, on the blot that was incubated with Fbg (Fig. 7, K and L). The blots, as 

well as the Fbg chromatography experiments, suggest that FbsB may not bind 

Fbg and experiments performed by other researchers where FbsB•Fbg binding is 

reported may be a result of false positive results from blocking buffer conditions.  
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Figure 7. Western blot analysis of FbsB and SC for Fbg binding. Molecular 
mass markers (lane 1), 0.05 µg SC (lane 2), and 25 µg FbsB (lane 3) were 
separated by SDS-PAGE, transferred onto a PVDF membrane, and tested for 
fibrinogen binding. Bound Fbg was detected with a goat anti-human fibrinogen 
primary antibody followed by a donkey anti-goat secondary that was visualized 
with a LiCor near-infrared imaging system. 1 h block in 5% dry milk without (A) 
and with 2 µg/ml Fbg (B). 2 h block in 5% dry milk without (C) and with 2 µg/ml 
Fbg (D). 5 h block in 5% dry milk without (E) and with 2 µg/ml Fbg (F). 1 h block 
in Odyssey buffer (LI-COR) without (G) and with 2 µg/ml Fbg (H). 5 h block in 3% 
BSA without (I) and with 2 µg/ml Fbg (J). 5 h block in 5% casein without (K) and 
with 2 µg/ml Fbg (L).     
 
 

FbsB stability and solubility assays in the presence of  Pm, and NH2-terminal 

sequencing of Pm cleavage products 

 To investigate the stability of FbsB in the presence of Pm, time-course 

reactions of FbsB (4.5 µM) incubated with either native Pm or D-Phe-Phe-Arg-

CH2-Cl (FFR-CH2Cl) active site-blocked Pm (10 nM) were analyzed by SDS-
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PAGE (Fig. 8). FbsB shows degradation starting at 2 min incubation with Pm 

(Fig. 8, A); however, at times up to 60 min with FFR-Pm (Fig. 8, B), FbsB is not 

degraded.  

                         

 
Figure 8. Proteolysis of FbsB by Pm. Coomassie-stained SDS-PAGE of non-
reduced samples of FbsB and native Pm (A) and FbsB and FFR-Pm (B) 
incubations at 0, 2, 4, 6, 8,10,12,15, 25, 35, 45, or 60 min.  
 
 
 Turbidity assays with 5 nM Pm and different FbsB concentrations were 

carried out under various buffer conditions to confirm whether degradation and 

subsequent precipitation caused by Pm could be avoided. FbsB (1 µM) did not 

precipitate after a 30 min incubation with Pm (5 nM) in the following buffer: 500 

mM Hepes, 300 mM NaCl, 1 mg/ml PEG 8000, 1 mM EDTA, 5% glycerol, pH 

7.4. Kinetic assays were subsequently performed with FbsB (1 µM) and Pm (5 

nM ) in this buffer.  Pm cleaved 400 µM D-VLK-pNA with a rate of 0.036 µM 

pNA/s in the presence of FbsB, compared to 0.031 µM pNA/s in the absence of 

FbsB. Taking these results and the rate of hydrolysis of 200 µM D-VLK-pNA by 5 

nM Pm in the absence of FbsB (0.11 µM pNA/s) into consideration, it appears 

that precipitation does not occur because FbsB may not interact with Pm in the 
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glycerol and high salt buffer conditions. It is also probable that Pm may not 

cleave its chromogenic substrate well under these buffer conditions, since the 

rate of substrate hydrolysis in the absence of FbsB is ~4-fold lower than 

expected.   

 To determine where Pm cleaves FbsB, NH2-terminal sequencing of the 

major degradation products of FbsB formed by incubation with Pm was 

completed. The results of Edman degradation propose two 5-residue peptides, 

LKNEV and IRLNG, indicating that FbsB is cleaved after the Lys residues 337 

and 378 (Fig. 9).  

 

 
 
Figure 9. Amino acid sequence of FbsB. Lysine residues within the FbsB 
sequence are highlighted in yellow, and the peptides reported by NH2-terminal 
sequencing of FbsB major degradation products are outlined in red.   
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Discussion  

FbsB from Streptococcus agalactiae is a novel protein with weak, 22% 

sequence identity to the fibronectin-binding protein from S. pyogenes, Sfbx, and 

a conserved COOH-terminal 223-residue region almost identical to that found in 

the fgag family of bovine Fbg-binding proteins in S. agalactiae. FbsB was initially 

hypothesized to be a zymogen activation and adhesion protein (ZAAP) because 

it contains a D1-D2 domain that is homologous to that of SC, and it was reported 

to bind Fbg and hypothesized to activate one of the serine protease zymogens of 

the human coagulation cascade. However, the data presented herein indicates 

that FbsB neither activates any of the coagulation zymogens, nor binds 

fibronectin or Fbg. FbsB does, however, appear to bind Pm and likely Pg in a 

LBS-dependent manner. It also enhances tctPA catalyzed [Lys]Pg activation. 

Therefore, FbsB may be the second characterized protein secreted by S. 

agalactiae that is able to enhance Pg activation by one of the endogenous Pg 

activators.  

Kinetic assays and affinity chromatography experiments indicate that 

FbsB binds Pm and inhibits its ability to hydrolyze one of its tripeptide-pNA 

substrates by 80%. This interaction is eliminated in the presence of 6-AHA, 

indicating that the interaction between FbsB and Pm is LBS-dependent. Because 

the COOH-terminal Lys414 residue of SK is important for Pg and Pm binding and 

subsequent Pg activation, it was possible that FbsB may interact with Pm 

through a similar mechanism. Therefore, assays with the FbsBΔK607ΔE608 

mutant were performed and confirm that the COOH-terminal lysine residue of 
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FbsB is not primarily responsible for the interaction with Pm, unlike what is seen 

with SK and Pg (36), because deleting this residue only weakens the dissociation 

constant ~4-fold. Kinetic assays that evaluate the specificity of Pm for various 

chromogenic substrates in the presence and absence of FbsB verify that FbsB 

greatly reduces catalytic efficiency of Pm for all five substrates tested. 

Experiments with [Glu]Pg and [Lys]Pg suggest that FbsB may bind Pg at the 

same site that binds Pm. The affinity of FbsB for Pm is weakened ~6-fold in the 

presence of [Lys]Pg and ~2-fold with [Glu]Pg. The interaction between [Lys]Pg, 

Pm, and FbsB was eliminated in the presence of 6-AHA, indicating that LBS are 

involved in both interactions. In Pg activation experiments, FbsB may act as a 

cofactor of tPA activation of [Lys]Pg, enhancing the rate of Pm generation ~6-

fold. Although the experiments are preliminary, it is possible that FbsB alters Pg 

conformation, making it more accessible for the action of tctPA, or that both tPA 

and [Lys]Pg bind to FbsB to form a ternary complex (11).   

Even though there is 22% homology between FbsB and the fibronectin-

binding protein Sfbx, FbsB does not bind to fibronectin. This is likely because the 

region of Sfbx that FbsB shares is not a fibronectin-binding region. Experiments 

with FbsB and Fbg failed to corroborate reports that FbsB is a Fbg-binding 

protein. FbsB did not bind to bovine or human Fbg affinity columns, nor did it 

form a complex with Fbg, as shown in size-exclusion chromatography 

experiments. Western blots were performed using 5% dry milk, 3% BSA, 

Odyssey (LI-COR), and 5% casein blocking buffers with varying blocking times. It 

was concluded that FbsB tests positive for Fbg-binding, even in the absence of 
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Fbg, except with the 5% casein blocking buffer which shows Fbg-binding only for 

the SC positive control. Researchers who reported Fbg-binding of FbsB, as 

shown by western and/or dot blots, used a proprietary blocking reagent (Roche) 

with unknown components (12), or a 3% BSA blocking buffer (14) that is shown 

in  the present experiments to produce false positive results. Therefore, FbsB is 

likely not a Fbg-binding protein, and reports of Fbg-binding activity may be a 

result of poorly controlled western/dot blot experiments.  

Solubility experiments with FbsB in the presence of Pm indicate that Pm 

degrades FbsB and induces precipitation, thus complicating kinetic experiments. 

The fact that there are over 60 lysine residues in the FbsB construct may render 

FbsB to be easily degraded by the Pm. Active-site-blocked Pm (FFR-Pm) does 

not degrade FbsB and may be used to perform more in-depth binding studies in 

the future. NH2-terminal sequencing of the major FbsB degradation products was 

performed, identifying the major cleavage sites, and mutant FbsB constructs that 

are terminated prior to these Pm cleavage sites could be generated. Studies with 

truncated FbsB may eliminate precipitation issues seen with full-length FbsB, if 

the mutant exhibits binding and activity similar to that measured with wild-type.  

The data presented show that FbsB is a novel Pm and Pg-binding protein 

that significantly inhibits the activity of Pm, and that it may act as a cofactor for 

tctPA in the enhancement of [Lys]Pg activation. FbsB may have a synergistic 

effect with SkzL, GAPDH, α-enolase, and other GBS proteins that contribute to 

the virulence of S. agalactiae infections by binding and/or activating Pg and Pm, 

and thereby exploiting the human fibrinolytic system. FbsB has a high affinity for 
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Pm, as-yet- undetermined affinity for Pg, and both interactions are LBS-

dependent. Preliminary data suggests that FbsB is a novel effector of tPA-

mediated [Lys]Pg activation, and this interaction is also LBS-dependent. FbsB, 

along with the recently characterized SkzL, may contribute to the virulence of 

GBS infections that are responsible for illness and death in elderly, 

immunocompromised, and neonatal patients.  
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CHAPTER III 

 

ROLE OF THE NH2-TERMINAL DIPEPTIDE OF STAPHYLOCOAGULASE IN 
CONFORMATIONAL PROTHROMBIN ACTIVATION 

 

 

Introduction 

 Staphylococcus aureus is a highly virulent human pathogen responsible 

for pathologies ranging from minor skin infections and abscesses to life-

threatening cases of meningitis, toxic shock syndrome, bacteremia, sepsis, and 

acute bacterial endocarditis. With the increasing incidence of methicillin and 

vancomycin-resistant strains of S. aureus, development of new treatment 

methods is vital for the survival of infected patients (1). Staphylocoagulase (SC), 

an extracellular protein produced by S. aureus, contributes to the severity of 

acute bacterial endocarditis by hijacking the human coagulation cascade and 

producing unwanted thrombi and vegetations, primarily on heart valves (2).  

 Thrombin is a serine protease that is responsible for cleaving fibrinogen 

(Fbg) to fibrin, and it is generated after activation of its zymogen precursor, 

prothrombin (ProT), by proteolytic cleavage of the Arg320-Ile321 and Arg271-Thr272 

peptide bonds by the prothrombinase complex. The prothrombinase complex is 

composed of factor Xa, factor Va, and a phospholipid membrane surface, such 

as that of platelets, and is responsible for physiological ProT cleavage and 

activation (3). The prothrombinase complex initiates ProT peptide bond cleavage 

first at Arg320 and second at Arg271. Initial cleavage at Arg320 of ProT by 
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prothrombinase gives rise to an active intermediate, meizothrombin (MzT), and 

subsequent cleavage at Arg271 produces active thrombin and fragment 1.2 (4,5). 

Conversely, ProT peptide bond cleavage occurs in the reverse order in the 

absence of factor Va. In this alternative pathway, initial cleavage at Arg271 gives 

rise to inactive prethrombin 2 (Pre 2), which is non-covalently bound to fragment 

1.2, and thrombin is then formed after cleavage at Arg320 (6-9).  

Under physiological conditions, ProT is activated by cleavage of its Arg320-

Ile321 peptide bond (Arg15-Ile16 chymotrypsinogen numbering) following the 

classical proteolytic activation mechanism. Cleavage of this peptide bond 

releases a new Ile-Val NH2-terminus that inserts into the NH2-terminal binding 

pocket and forms a critical salt bridge with Asp194. Consequently, folding of the 

activation domain of the zymogen occurs and the substrate binding site and 

oxyanion hole are formed (10-12). In comparison, SC is able to activate ProT 

through a non-proteolytic, bacterial cofactor-induced activation pathway known 

as the “molecular sexuality” mechanism. The NH2-terminal dipeptide of SC, Ile-

Val, imitates the conserved Ile-Val-Gly/Asn trypsin-like catalytic domain 

sequence found in almost all vertebrate serine proteases (13). SC usurps the 

coagulation cascade by forming a tight stoichiometric complex with ProT and 

inserting its NH2-terminus into the NH2-terminal binding pocket, thus forming the 

required salt bridge with Asp194 and initiating conformational activation. The 

SC•ProT complex is hypothesized to bind Fbg through a novel substrate 

recognition exosite because SC binding blocks proexosite I of ProT and thrombin 

and inhibits recognition of various substrates and effectors, including Fbg. 
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Interactions of SC with proexosite I are also important for protection of the 

SC•ProT complex from inhibition by serine protease inhibitors (serpins) 

(2,10,14,15). SC contains a series of seven, 27-amino acid repeats and a 32-

residue pseudorepeat at its COOH-terminus that are able to bind Fbg in a 

different way, and the SC•ProT  complex directly cleaves Fbg into fibrin, inducing 

the formation of fibrin clots (16). The interaction of SC with Fbg contributes to the 

virulence of acute bacterial endocarditis by allowing the pathogen to elude the 

host immune system by forming protective fibrin-platelet-bacteria vegetations 

(17).  

 Despite extensive studies on the structure and function of SC, there 

remains a significant gap in knowledge about the mechanistic importance of its 

NH2-terminal dipeptide in conformational ProT activation. The impact of the 

conserved Ile-Val NH2-terminal dipeptide in physiological serine protease 

activation is also not well understood. Early studies with the NH2-terminal 

dipeptide of trypsinogen reported that although Ile16 has high affinity for the NH2-

terminal binding cleft and greatly contributes to binding affinity, the second 

residue also has a strong influence due to its placement at the entrance of the 

binding pocket during insertion. The Val17 side-chain makes van der Waals’ 

contacts with neighboring amino acids, thus providing conformational stability 

(13,18). The importance of the Ile-Val NH2-terminus of SC in zymogen activation 

is made clear by the fact that Met-SC(1-325), SC(2-325), and SC(3-325) mutants 

have 60 fold-lower activity, 6-fold lower affinity, and <2% activity respectively as 

compared to the fully active SC(1-325) fragment (2). The present study defines 
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the significance of the promiscuity of the NH2-terminal dipeptide in conformational 

ProT activation by SC.  

 

Materials and Methods 

 

Cloning, expression, and purification of SC(1-246) contructs 
 
 SC(1-246) was cloned by PCR from the full-length SC(1-660) construct, 

previously cloned from genomic DNA of S. aureus Newman D2, strain Tager 104 

(19), and inserted into a modified pET30b(+) vector (Novagen) (20). SC(1-246) 

was expressed with an NH2-terminal His6-tag and tobacco etch virus (TEV) 

proteinase cleavage site in Rosetta 2 (DE3) pLysS E. coli (Novagen) with 50 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG) induction. Recombinant SC(1-246) 

protein was isolated from inclusion bodies and purified by Ni2+-iminodiacetic acid 

chromatography. The His6-tag was removed by overnight incubation with a 1:10 

molar ratio of TEV proteinase to fusion protein (21) to give the native NH2-

terminus of the protein. The NH2-terminal dipeptide SC(1-246) mutants were 

generated by QuikChange site-directed mutagenesis (Stratagene) using 

degenerate primers in the first and second amino acid positions. SC(1-246) 

concentration was determined using the following calculated absorption 

coefficient ((mg/ml)-1 cm-1) at 280 nm (22) and molecular weight: 1.18; 29,145.  
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ProTQQQ expression and purification  

A recombinant human prothrombin construct, ProTQQQ, with the Arg at 

two thrombin-sensitive and one factor Xa-sensitive cleavage sites mutated to Gln 

(R155Q, R284Q, R271Q) was obtained from the laboratory of Dr. Sriram 

Krishnaswamy at the Children’s Hospital of Philadelphia. ProTQQQ expression 

and purification were performed essentially as previously described (9) with 

minor modifications. The cDNA for ProTQQQ was transfected into HEK 293 cells 

and stable cell lines were expanded into cell factories. Protein production was 

conducted in DMEM/F12 without phenol red, 10% FBS, L-Glutamine, G-418 and 

Pen-Strep at 5% CO2, 37 °C, 85% relative humidity. After a 5 day incubation 

period, conditioned media was harvested daily and stored at -20 °C.  

Conditioned media were thawed, pooled, and run at room temperature on 

a Q-Sepharose column (GE Healthcare) equilibrated with 20 mM HEPES, pH 

7.4. The column was washed with the same buffer and bound ProTQQQ eluted 

with 20 mM HEPES, 1.0 M NaCl, pH 7.4. Eluted protein was treated with 11 mM 

sodium citrate, then 1 M BaCl2 was added over 15 min to a final concentration of 

74.1 mM. The precipitate was collected by centrifugation, dissolved in 0.5 M 

EDTA, 5 mM benzamidine, pH 8.0. The protein was run on a Resource Q column 

(GE Healthcare) equilibrated in 20 mM HEPES, pH 7.4.  Bound ProTQQQ was 

eluted with a 1.0 M NaCl gradient in the same buffer. Fractions containing 

ProTQQQ were pooled and dialyzed against 1 mM sodium phosphate, pH 6.8, 

applied to a ceramic hydroxyapatite matrix, CHT5-1 (Bio-Rad), equilibrated in the 

same buffer, and eluted with a gradient of 500 mM sodium phosphate, pH 6.8. 

 59



Fully carboxylated ProTQQQ was dialyzed against 5 mM MES, 150 mM NaCl, 

pH 6.0 and stored at -80 °C.   

 

Western blot time course 

 Reactions containing SC(1-246) (10 nM) and ProTQQQ (1 nM) were 

incubated for 2 hr. At each time point, 40 µl was quenched with 10 µl of hot 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

treatment buffer, boiled for 2 min, and electrophoresed on 4-15% Tris-glycine 

gradient gels. Samples were transferred onto Immobilin-FL polyvinyldiene 

diflouride (PVDF) membranes (Millipore) in Tris/glycine transfer buffer containing 

10% methanol. Membranes were blocked for 2 h with 50 mM Tris, 150 mM NaCl, 

pH, 7.5, 0.1% Tween-20 (TBS-T) containing 5% dry milk, then incubated 

overnight with a primary rabbit anti-human ProT antibody (ab48627). The 

membranes were washed with TBS-T and incubated for 2 h with a goat anti-

rabbit secondary LI-COR IR 680 antibody.  Bands were visualized using a near-

infrared LI-COR Odyssey Imaging System.  

 

ProT activation kinetics  

 The rates of hydrolysis of 100 µM or 600 µM H-D-Phe-Pip-Arg-pNA at 405 

nm by ProTQQQ (1 nM) activated by SC(1-246) mutants were measured as a 

function of SC(1-246) concentration. Assays were performed at 25 °C in 50 mM 

Hepes, 110 mM NaCl, 5 mM CaCl2, 1 mg/ml PEG 8000, pH 7.4. ProTQQQ and 

SC(1-246) were pre-incubated for 2 min prior to chromogenic substrate addition. 
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The maximum velocity (vLIM) and affinity (KD) were determined by nonlinear least-

squares analysis of the hyperbolic titrations with the quadratic binding equation 

with stoichiometry fixed at 1. The Gibbs free energy (ΔG) for each SC mutant 

was calculated, using the equation ΔG = RTln(KD), where R = 1.98 cal•mol-

1•degree-1 and T = 298.15 K (25 ºC). 

 

Results 

 

SC(1-246)•ProT time courses  

The affinity of the active SC(1-325) fragment for ProT is extremely tight 

(17-72 pM) (23); consequently, any change in affinity (KD) between SC and ProT 

from mutants on this background may not be measurable. For this reason, the 

SC(1-246) fragment, which displays a ~10-fold weaker KD, was used. When 

bound to SC(1-246), native ProT is autocatalytically cleaved to prethrombin 1 

(Pre 1), prethrombin 2’ (Pre 2’), fragment 1 (F1), and fragment 2 (F2) (Fig. 1) due 

to cleavage of the Arg155 and Arg284 thrombin-sensitive peptide bonds. To 

evaluate unwanted autocatalysis of the SC(1-246)•ProT complex, SC(1-246) was 

incubated with ProT for 0 to 240 min, and samples from each time point were 

analyzed by SDS-PAGE (Fig. 1).  
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Figure 1. Autocatalysis of SC(1-246)•ProT. (Maddur, A., unpublished data, 
2009). SDS-PAGE time-course of varying the preincubation times of ProT and 
SC(1-246). Lanes A and D are molecular weight markers, lane B is a control 
sample containing ProT, Pre 1, and Pre 2, and lane C is SC only.  

 

To inhibit the production of ProT intermediates in the SC(1-246)•ProT* 

experiments, a recombinant human ProT construct (ProTQQQ) was used that 

was mutated at the two thrombin-sensitive and one factor Xa (FXa)-sensitive 

cleavage sites (R155Q, R284Q, R271Q), leaving only the remaining Arg320 FXa 

cleavage site. A western blot time-course was performed with SC(1-246) (10 nM) 

and ProTQQQ (1 nM) to mimic the concentrations used in kinetic experiments 

(Fig. 2).  

After 0 to 120 min incubation, samples from each time point were 

subjected to SDS-PAGE and incubated with a polyclonal anti-ProT antibody that 

can detect native ProT and its intermediates. It was determined that SC(1-

246)•ProTQQQ showed no autocatalysis; therefore, ProTQQQ was used in 

subsequent experiments.              
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Figure 2. Western blot analysis of SC(1-246) and ProTQQQ time course.  
Molecular mass markers (lane A), a control sample containing 1 nM ProTQQQ, 
Pre 1, and Pre 2 (lane B), and samples at various time points (0, 5, 15, 30, 60, 
90, and 120 min) of a 10 nM SC(1-246) and 1 nM ProTQQQ reaction were size 
separated by SDS-PAGE, transferred onto a PVDF membrane, and tested for 
the presence of ProT and its intermediates. ProT was detected with a polyclonal 
rabbit anti-human ProT primary antibody followed by a goat anti-rabbit secondary 
that was visualized with a near-infrared LI-COR Odyssey Imaging System.   
 

ProT activation by NH2-terminal dipeptide SC(1-246) mutants  

 To examine the specificity of the NH2-terminal residues of SC in ProT 

activation, titrations were performed with 29 SC(1-246) mutants and wild-type 

SC(1-246) in the presence of ProTQQQ (1 nM). ProT activity was measured by 

an increase in the initial rate of hydrolysis of 100 µM H-D-Phe-Pip-Arg-pNA 

measured at 405 nM and 25 ºC. Although wild-type SC(1-246) has the highest 

affinity (KD) for ProT (0.33 ± 0.06 nM), there are 7 mutants with activity equal to 

or greater than that of SC(1-246) (MK, ML, AS, LQ, LT, LK, and VG). NH2-

terminal dipeptide mutant activity ranged from <1% up to 153% activity (Table 1 

and Fig. 3). Gibbs free energy changes (ΔG) only modestly vary between the 
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mutants (-8.9 to -12.0 kcal/mol), and wild-type SC(1-246) has the largest ∆G (-

12.9 kcal/mol), in spite of not having the highest ProT activation activity (Fig. 4).  

 

Table 1. Kinetic parameters of  ProTQQQ in complex with NH2-terminal 
dipeptide SC(1-246) mutants. Dissociation constants (KD) and limiting velocities 
(vLIM) (± 2 SD) were determined by the least-squares fits by the quadratic binding 
equation. The Gibbs free energy change (∆G) was calculated from the KD for 
each mutant as described in “Material and Methods.”  
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Figure 3. Kinetic titrations of selected NH2-terminal dipeptide SC(1-246) 
mutants and ProTQQQ. Initial velocities of hydrolysis of 100 µM H-D-Phe-Pip-
Arg-pNA are shown for mixtures of 1 nM ProTQQQ as a function of VG (●), LQ 
(○), wild-type IV (▲), AS (Δ), ND (■), RR (□), SK (♦), and QL (◊) SC(1-246) 
concentration. The lines represent the least-squares fits by the quadratic binding 
equation.  
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igure 4. Limiting velocities (vLIM) and changes in Gibbs free energy (∆G) of F
ProTQQQ with SC mutants. Limiting velocities (A) and calculated ∆G (kcal/mol) 
(B) for NH2-terminal SC(1-246) mutants. Wild-type IV SC(1-246) is in orange, 
dipeptide mutants are in green. Error bars represent KD ± 2 SD (listed in Table 1), 
calculated by least-squares fitting of the quadratic binding equation (A).  
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 As a control, additional titrations with 15 NH2-terminal mutants and wild-

type SC(1-246) were completed to determine whether the assays were 

performed under saturating substrate conditions. When 600 µM H-D-Phe-Pip-

Arg-pNA was present, the affinity of SC(1-246) for ProTQQQ (1 nM) was tighter 

for more than half of the mutants, but overall the activity of the mutants remained 

within the experimental error (Table 2). In the future, the remaining 14 mutants 

will also be re-screened at higher chromogenic substrate concentration.  

 

Table 2. Kinetic parameters of ProTQQQ with selected NH2-terminal 
dipeptide SC(1-246) mutants. Dissociation constants (KD) and limiting velocities 
(vLIM) (± 2 SD) were determined by the least-squares fits by the quadratic binding 
equation. The ∆G was calculated as before. 
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Discussion 

  Staphylococcus aureus is a human pathogen that usurps the human 

coagulation cascade by SC-dependent conformational activation of ProT through 

the “molecular sexuality” mechanism. The NH2-terminal dipeptide of SC inserts  

into the NH2-terminal binding pocket, activating ProT. Little is known about the 

specificity of the NH2-terminal SC residues and the role they play in 

conformational ProT activation. Because the native NH2-terminal residues are 

conserved among all serine proteases, mutagenesis studies of SC may also 

provide insight into the mechanism of serine protease zymogen activation, as 

well as that of ProT.  

 Kinetic assays revealed that MK, ML, AS, LQ, LT, LK, and VG NH2-

terminal SC(1-246) mutants can activate ProT to rates equal to or even higher 

than wild-type SC. Relative activity between the mutants varied from 0.3% to 

160%, likely due to improper insertion and/or orientation of the NH2-terminal 

residues in the NH2-terminal binding pocket of ProT. When comparing the activity 

of the mutants, the highest rates are measured when the first amino acid is a 

non-polar, hydrophobic residue. It is difficult to make assumptions about the 

preference for the second residue; however, the mutants that contain a large, 

bulky residue or an aromatic residue in the second position have significantly 

lower activity. This may be because insertion and orientation of the first residue 

in the NH2-terminal binding pocket of ProT is vital for activation, and a bulky 

residue in the second amino acid position may hinder proper insertion of the first 

residue.  
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 Although wild-type SC(1-246) has the highest affinity for ProT, four 

mutants displayed 36-60% higher activity than wild-type. It is unclear why IV-

SC(1-246) would be evolutionarily selected for over residues with higher activity, 

or why these residues are conserved among the serine protease family. One 

possible explanation is that these specific residues allow for protection from 

aminopeptidases. Leucine aminopeptidase studies have reported that the first 

and second NH2-terminal residues of the substrate influence the specificity and 

rate of hydrolysis, although the first residue is of the most importance (24). 

Compared to other amino acids, reactions involving Val and Ile are greatly 

impeded, and this is likely due to the branching at the β-carbon atom. Peptides 

that contain Ile or Val in the D-configuration are completely resistant to leucine 

aminopeptidase activity, and these amino acids are also highly resistant in the L-

configuration (25). This evidence suggests that because Ile and Val are highly 

resistant to aminopeptidase activity individually, as a dipeptide NH2-terminus they 

may protect SC and serine proteases from detrimental hydrolysis. 

 The data presented demonstrate that the NH2-terminal dipeptide of SC is 

promiscuous, and other branched, hydrophobic amino acids in the first position 

can activate ProT with activity up to 60% greater than that of wild-type SC(1-

246).  SC and the family of serine proteases may have separately evolved to 

contain Ile-Val at their NH2-terminus as a mechanism for protection against 

hydrolysis by aminopeptidases. This hypothesis needs to be explored further to 

provide new insight into the mechanism of ProT (and serine protease zymogen) 

activation.  
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CHAPTER IV 

 

SIGNIFICANCE AND FUTURE DIRECTIONS 

 

Identification of Fibrinogen-Binding Surface Protein B as a Plasminogen- and 
Plasmin-Binding Protein and Plasmin Inhibitor  
 
 The research within this thesis identifies fibrinogen-binding surface protein 

B (FbsB) as a Steptococcus agalactiae protein that binds human plasminogen 

(Pg) and plasmin (Pm), and it also may enhance [Lys]Pg activation by the 

physiological Pg activator, tissue-type plasminogen activator (tPA). It was further 

determined that FbsB significantly inhibits the rate at which Pm hydrolyzes a 

synthetic substrate. S. agalactiae is the only species of streptococci that does not 

express the Pg activator streptokinase (SK), but it does express two Pg-binding 

proteins, glyceraldehyde-3-phosphate dehydrogenase and α-enolase, which 

interact with the human fibrinolytic system (1,2). Skizzle (SkzL) is a recently 

characterized Pg-binding bacterial cofactor of urokinase-type plasminogen 

activator (uPA) and tPA-catalyzed Pm formation. SkzL is credited as the first 

characterized S. agalactiae-secreted protein known to target the human 

fibrinolytic system (3), and the data in this study suggests that FbsB may be the 

second.  

 Like SkzL, FbsB binds Pg and Pm in a lysine-binding-site-(LBS) 

dependent manner. Kinetic assays with an FbsB∆K607∆E608 truncation mutant, 

lacking two COOH-terminal residues, demonstrated that the COOH-terminal 

most lysine is not primarily responsible for the interaction of FbsB with Pg and 
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Pm, contrary to the Lys415 residue of SkzL and the Lys414 residue of SK (4). It is 

known that FbsB binds Pm with high affinity, but further studies are needed to 

elucidate the mechanism responsible for Pm inhibition. Future equilibrium binding 

studies are needed to determine the affinity of FbsB for [Lys]Pg, and site-directed 

mutagenesis studies can determine which Lys residue(s) are responsible for 

[Lys]Pg and Pm binding. The interaction of FbsB with [Glu]Pg will also be 

explored.  

 

Significance of FbsB Enhancement of tPA-catalyzed [Lys]Pg Activation  

 This thesis provides preliminary evidence that FbsB enhances tPA-

catalyzed [Lys]Pg activation. However, the mechanism thorough which this 

occurs is currently unknown. tPA, unlike uPA, contains a LBS, and based on 

evidence of a LBS-dependent interaction between FbsB and Pg, it is possible 

that FbsB also binds tPA in a LBS-dependent manner (5). Therefore, the 

hypothesized mechanism of enhancement of Pm formation by SkzL may also 

explain the enhancement of tPA-dependent [Lys]Pg activation by FbsB. In this 

mechanism, a ternary [Lys]Pg•FbsB•tPA complex may be formed in which FbsB 

acts as a bacterial cofactor for Pg activation. If FbsB does not bind tPA, it may 

bind and form a complex with [Lys]Pg and alter its conformation such that 

[Lys]Pg is more readily activated by tPA (3). FbsB binding of tPA and the effect of 

FbsB on uPA-catalyzed [Lys]Pg activation and both tPA and uPA-dependent 

[Glu]Pg activation have not been studied. The experiments will be necessary to 

determine the exact mechanism of enhancement of Pm formation by FbsB.  
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Influence of FbsB in Evasion of Host Immune Defenses and Streptococcus 
agalactiae Pathogenesis 
 

Streptococcus agalactiae can cause meningitis, sepsis, pneumonia, 

endocarditis, cellulitis, and arthritis in neonates, the elderly, and 

immunocompromised patients. The ability of S. agalactiae to usurp the human 

fibrinolytic system is important in pathogenesis, and the existence of cell-surface 

Pm and Pg-binding proteins is common among different species of 

Streptococcus. Streptococci can enhance Pm generation by several different 

cell-surface bound proteins, including glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) and α-enolase. Once activated, Pm can degrade 

extracellular matrix proteins such as fibrin, collagen, and fibronectin, and 

enhance the spread of bacteria throughout the tissues and bloodstream (1,5,12-

16). Inhibition of Pm and tPA by the serine protease inhibitors (serpins) α2-

antiplasmin and plasminogen activator inhibitor-1 (PAI-1) respectively are vital for 

controlling the fibrinolytic system when the processes involving wound healing 

and vascular repair are inactive. Under normal conditions, tPA activates Pg 

through a fibrin-dependent solid-phase mechanism, and uPA activates Pg 

through a fibrin-independent fluid-phase mechanism. Binding of fibrin protects 

tPA and Pm from the action of their respective serpins (5-7). Physiologically, 

fibrin protection of tPA and Pm allows for successful clot lysis when a thrombus 

is formed. It was hypothesized that binding of Pm by SK or SkzL also protects 

Pm from inactivation by α2-antiplasmin in the absence of fibrin, and that SkzL-

binding protects tPA from inactivation by PAI-1 (3,8,9). If FbsB binds tPA, it may 

also inhibit inactivation of tPA by PAI-1.  
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Unlike SkzL, FbsB significantly inhibits the rate of hydrolysis of a synthetic 

substrate by Pm. If this occurs with natural substrates, it could inhibit degradation 

of tissues that are colonized by S. agalactiae. FbsB could contribute to the 

invasiveness of S. agalactiae infections through enhancing [Lys]Pg activation by 

tPA, creating a burst of Pm formation and local degradation of extracellular 

matrix proteins. However, FbsB could alternately inhibit the action of Pm as a 

means to evade host immune defenses once the bacteria has taken up 

residence in specific tissues. Pm not only dissolves fibrin clots and extracellular 

matrix proteins, but it also activates some mediators of the complement system, 

potentially playing a role in innate immunity. For this reason, it is possible that 

after S. agalactiae enters the tissues or bloodstream, FbsB may down-regulate 

Pm activity to protect the bacteria from clearance by the complement system. 

This breach in the regulation of fibrinolysis by S. agalactiae could render an 

infected patient susceptible to various life-threatening illnesses (10,11). 

 These studies characterize FbsB as a potential Pm inhibitor and bacterial 

cofactor for tPA-dependent [Lys]Pg activation. FbsB may contribute to S. 

agalactiae virulence through a bifunctional mechanism. To enhance the spread 

of infection, FbsB may assist in Pm generation and local degradation of 

extracellular matrix proteins. It may also help degrade thrombi vital for the repair 

of vascular injury, allowing bacteria to enter the bloodstream. Once the bacteria 

have entered the tissue or bloodstream, FbsB may inhibit the activity of Pm, 

potentially down-regulating complement activation and allowing evasion of host 

immune defenses. More extensive studies on the interactions of FbsB with Pm 
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and Pg are needed to determine the exact role of FbsB in fibrinolysis and the 

relevance of Pm inhibition in S. agalactiae pathogenesis.  

 

Prothrombin Activation by NH2-terminal Dipeptide Staphylocoagulase Mutants 
 
 The goal of the staphylocoagulase (SC) research within this thesis was to 

characterize NH2-terminal dipeptide SC(1-246) mutants based on their ability to 

conformationally activate prothrombin (ProT). The mutant constructs generated 

in this study can be used as a tool to investigate the molecular sexuality 

mechanism of activation of ProT triggered by the insertion of Ile1-Ile2 of SC into 

the NH2-terminal binding pocket of ProT (17). The structure and function of SC 

has been extensively studied, but little is known about the specificity of its NH2-

terminus and how this relates to the mechanism of ProT activation. Because the 

NH2-terminal dipeptide (Ile-Val) is conserved among most vertebrate serine 

proteases, this project may also provide insight into the classical mechanism of 

serine protease zymogen activation.  

 Site-directed mutagenesis generated 29 mutants that were kinetically 

screened for ProT activation. This study revealed that 7 of the 29 mutants tested 

were able to activate ProT with 100-160% of the activity of wild-type SC(1-246). It 

was concluded that mutants with a non-polar, hydrophobic residue in the first 

amino acid position showed the highest ProT activity, and mutants with a bulky 

residue in the second position displayed significantly lower activity, likely due to 

inhibition of proper insertion of the first residue into the NH2-termnial binding 

pocket. It was also hypothesized that Ile-Val may have been evolutionarily 
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selected for as the NH2-terminus of SC due to the high resistance of these 

residues to hydrolysis by aminopeptidases (18,19). This study provides 

preliminary information about how various NH2-terminal residues influence ProT 

activity; however, specific binding studies need to be performed. A more inclusive 

group of mutants needs to be tested to provide conclusive evidence of the 

residues preferred in the first and second amino acid positions of SC and how 

they affect conformational ProT activation and SC•ProT* function.  

 

Significance of the NH2-terminus of SC in Serine Protease Activation 

 The serine proteases involved in human blood coagulation and fibrinolysis 

exist in an inactive zymogen precursor form, and under physiological conditions, 

are activated by proteolytic cleavage. Cleavage of the Arg15-Ile16 

(chymotrypsinogen numbering) peptide bond gives and a newly liberated Ile16 

that inserts into the NH2-terminal binding pocket, where the α-ammino group of 

Ile16 forms a salt bridge with the carboxylate side chain of Asp194. This induces 

folding of the zymogen activation domain and formation of the substrate binding 

site and oxyanion hole (20).  Under pathologic conditions, SC activates ProT 

through a non-proteolytic, conformational mechanism. The NH2-terminal 

dipeptide of SC, Ile-Val, imitates the conserved sequence found in almost all 

vertebrate serine proteases. Trypsinogen was used as an early tool to investigate 

the importance of the NH2-terminus in serine protease activation; these studies 

concluded that both the first and second residues play a critical role (17,21). The 

importance of the NH2-terminus of SC in ProT activation was initially evaluated 
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through mutagenesis studies in which Met-SC(1-325), SC(2-325), and SC(3-325) 

were screened for ProT activation, revealing that they had significantly lower 

activity compared to wild-type SC(1-325) (22). Characterization of the role of the 

NH2-terminus of SC in conformational ProT activation may help to further 

elucidate the classical mechanism of serine protease zymogen activation.  

 Proteases play key roles in physiological and pathophysiological 

processes in the human body, including regulation of growth factors, cytokines, 

and chemokines, blood coagulation, fibrinolysis, and complement. For this 

reason, interest in the field of protease engineering, in which exploitation of the 

properties of enzymes can be used for therapeutic purposes, is on the rise. 

Further elucidation of the mechanism of ProT activation by SC and its 

relationship with serine protease activation may aid in the production of serine 

protease therapeutics (23). This may contribute to the treatment of a plethora of 

disease processes that involve S. aureus pathogenesis, including acute bacterial 

endocarditis, and pathologies that are characterized by unregulated serine 

protease activity. 

 

 SC in Staphylococcus aureus Pathogenesis  

 Pathologies caused by Staphylococcus aureus range from minor skin 

infections to deadly cases of meningitis, toxic-shock syndrome, sepsis, and acute 

bacterial endocarditis. Various S. aureus proteins, including SC, can bind and 

interact with proteins of the human coagulation and fibrinolytic pathways and 

contribute to the invasiveness of Staphylococcus infections. Areas of damaged 
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vasculature and artificial surfaces, including intravenous catheters, stents, and 

prosthetic devices, are easy targets for adhesion of proteins such as fibrinogen 

and fibronectin. When Fbg adheres to damaged areas within the heart or on 

damaged heart valves, patients are at greater risk of thrombus formation and 

subsequent acute bacterial endocarditis if S. aureus enters the bloodstream 

(22,24).   

 Acute bacterial endocarditis (ABE) is a disease characterized by 

inflammation of the inner lining of the heart and heart valves. In ABE, sterile 

fibrin-platelet vegetations form at sites of endocardial injury, initiating coagulation. 

If bacteria enter the bloodstream, they can bind Fbg and fibronectin within the 

sterile thrombus and form a fibrin-platelet-bacteria vegetation. Mature 

vegetations are at risk of embolization, which can lead to complications, including 

abscesses, heart failure, myocardial infarction, and stroke (20,25-27). SC 

influences the progression and invasiveness of ABE by conformationally 

activating ProT through the molecular sexuality mechanism. The SC•ProT 

complex readily cleaves Fbg to fibrin, thereby contributing to formation of 

characteristic ABE vegetations. S. aureus-induced ABE is almost always fatal 

without immediate treatment, and the mortality rate of treated patients is still 25-

40% (28). If more were known about the mechanism of non-proteolytic ProT 

activation by SC and the role that the NH2-terminus of SC plays, drugs could be 

developed that target pathological ProT activation, providing new treatments for 

acute bacterial endocarditis. 
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