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ORGANIZATION OF THIS THESIS

This thesis is divided into two parts. Part One deals with the experimental de-

velopment of novel micro/nanofluidic sensors. Chapter I gives an introduction to

micro/nanofluidic sensors by providing relevant background about the fundamentals

of electrokinetics, the historical development of resistive pulse sensors and the funda-

mentals of MOSFET operation. Chapter II discusses the experimental development

and characterization of a novel MOSFET-based microfluidic resistive pulse sensor,

and Chapter III presents experimental efforts to extend the sensing capability of this

new MOSFET-based sensing scheme to the nanoscale.

Part Two deals with molecular dynamics simulations of thermal bubble formation

in nanochannels. The motivation for performing these simulations is discussed first

in Chapter IV, followed by an overview of the molecular dynamics technique. Next,

a review of the literature published in this field is presented. We then discuss our

simulation models, and our verification of the code and then, report and discuss our

simulation results.
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CHAPTER I

INTRODUCTION TO MICRO/NANOFLUIDIC SENSORS

The era of micro/nanofabrication has created a technical revolution in electron-

ics and led to entirely new technologies based on sophisticated materials processing.

One area that has seen an explosion of interest is the control of fluid flow on the

nanoscale. Applications are abundant, ranging from fluidic transistors analogous

to their electronic counterparts to drug delivery and extraordinary molecular sen-

sors. In this Chapter, we first present the motivation behind the development of

micro/nanofluidic sensors. Then, we introduce the basic concepts of electrokinetics,

which is the most common mechanism used to drive fluid through micro/nanofluidic

devices. A historical overview of the resistive-pulse sensing technique, most com-

monly used in micro/nanofluidic sensors is then presented. Finally, we briefly discuss

our novel sensing scheme which integrates a metal-oxide-semiconductor field-effect

transistor (MOSFET) with the traditional resistive-pulse sensing scheme.

1.1 Motivation

What is micro/nanofluidics, and why should we be interested? These are the

fundamental questions addressed in this section. Micro/nanofluidics can be defined

as the study of fluid flow within micro/nanoscale structures. Interest in this field

has grown tremendously since the 1990s due to the rapid growth in technology that

enables researchers to fabricate and study devices with micro/nanoscale structures.
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In particular, the development of advanced lithographic techniques such as electron

beam lithography have enabled the fabrication of solid-state structures down to just

a few nanometers in dimension. This ability to fabricate structures anywhere from

several hundreds of microns (conventional photolithography) down to a few nanome-

ters (electron beam lithography) allows us to precisely manipulate and interrogate

individual biomolecules and nanoparticles. The grand vision for micro/nanofluidics

is to develop fully-integrated micro/nanoscale devices with the ability to conduct tra-

ditional, laboratory-style experiments, such as separations and chemical reactions,

on individual molecules on microchips. Such devices are called Lab-on-a-Chip (LOC)

devices or Micro-Total Analysis Systems (µ-TAS). The main advantages of such fully-

integrated devices include:

• Portability of devices

• High throughput analysis

• Low volume of reagents required

• Automation

Prototype µ-TAS devices have already been demonstrated in the laboratory, and

a comprehensive review can be found elsewhere (van den Berg & Lammerink, 1998;

Reyes et al., 2002; Auroux et al., 2002; Knight, 2002; Erickson & Li, 2004). In recent

years, much attention has been devoted to the development of nanofluidic devices

with very specific capabilities that may eventually be integrated into a LOC device.

For instance, nanofluidic transistors and diodes which have the ability to control the
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flow of fluid analogous to the way its electronic counterparts controls the flow of

electrons and holes have been developed recently (Daiguji et al., 2004; Karnik et al.,

2005; Karnik et al., 2006; Vlassiouk & Siwy, 2007). Also, nanofluidic sensors which

are able to sense and discriminate individual biomolecules such as DNA and other

proteins have also been reported (Kasianowicz et al., 1996; Bayley & Martin, 2000;

Bayley & Cremer, 2001; Meller & Branton, 2002; Peterman et al., 2002; Saleh &

Sohn, 2003; Nakane et al., 2003; Li et al., 2003; Chang et al., 2004; Chen et al.,

2004a; Heng et al., 2004; Henriquez et al., 2004; Fan et al., 2005; Fologea et al., 2005;

Storm et al., 2005; Smeets et al., 2006a). Given that the field of micro/nanofluidics

is still in its infancy, we can expect rapid advances in technology and applications in

the near future.

In this thesis, we will focus on micro/nanofluidic sensors. The common theme

among all the micro/nanofluidic sensing works in general is the use of an applied

electric field to drive fluid flow through the micro/nanofluidic channel network. The

fluid flow resulting from the application of an applied electric field is known as elec-

trokinetics. An overview of the fundamentals of electrokinetics is presented in the

following section.

1.2 Fundamentals of Electrokinetics

As mentioned in the previous section, most modern micro/nanofluidic sensors

use an external electric field to drive the electrolyte and analytes through the mi-

cro/nanofluidic circuits. In our experimental work reported in Chapters II and III, we

also utilize electrokinetics as the primary means of transport in our micro/nanofluidic
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devices, and so a brief overview of electrokinetic phenomena is presented to provide

a basis for the fluid transport mechanism in our devices.

Any fundamental discussion of electrokinetics must begin with a discussion of the

electric double layer (Li, 2004; Masliyah & Bhattacharjee, 2006). Solid surfaces often

acquire a surface charge when they are brought in contact with a liquid medium.

There are several mechanisms by which these surfaces acquire charge such as, for

example, ionization of surface groups and specific ion adsorption. The details of these

mechanisms are not central to our discussion and are discussed elsewhere (Hunter,

1981; Lyklema, 1995; Masliyah & Bhattacharjee, 2006). As a result of this acquired

surface charge, when electrolytes are present in the liquid medium, the ion distribution

close to the solid surface is affected. Ions with the opposite charge as that of the

surface, known as counterions, are attracted to the surface, while ions with the same

charge as that of the surface, known as coions, are repelled from the surface. Such

a redistribution of the ions in the electrolyte solution results in the formation of an

electric double layer (EDL) as shown in Fig. 1.1. The layer of counterions right next

to the solid surface is known as the Stern layer, which is typically 1 - 2 atomic radii

thick. These ions are essentially immobile due to their strong electrostatic attraction

with the surface charge at the solid surface. We will neglect the Stern layer in our

discussion of electrokinetic phenomena for the sake of simplicity because it plays a

minor role in electrokinetic phenomena compared to the diffuse layer. The net charge

density decreases gradually to zero from the edge of the Stern layer to the bulk of the

electrolyte where the liquid is electrically neutral. This region is known as the diffuse

layer. The thickness of this layer is often characterized by a parameter known as the
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Figure 1.1: Schematic of an electric double layer (EDL) formed adjacent to a neg-
atively charged solid surface like glass. δ is the Stern layer thickness, λ is the char-
acteristic EDL thickness, ψ0 is the electric potential at the solid surface, and ζ is the
potential at the shear plane and is also known as the zeta potential.

5



EDL thickness, λ, which is a function of the electrolyte concentration in the liquid

and the electrical properties of the liquid. In reality, the diffuse layer may be as much

as 3 - 5 times thicker than the EDL thickness. The potential close to the interface of

the Stern layer and the diffuse layer is known as the zeta potential, ζ. Theoretically,

it is defined as the potential at the shear plane, where the no-slip fluid flow boundary

condition is assumed to apply (i.e. where fluid velocity, u = 0). However, in practice,

the zeta potential, ζ, is often used as an approximation to the surface potential, ψ0,

because it is the quantity that can be measured experimentally.

We will now use the Gouy-Chapman model (Li, 2004; Masliyah & Bhattacharjee,

2006) of the electric double layer to derive an expression for the characteristic EDL

thickness, λ. It must be noted that the Gouy-Chapman model makes two key assump-

tions: (a) ions in the electrolyte are treated as point charges, and (b) the existence of

the Stern layer is neglected. As such, the validity of this theory is questionable when

the characteristic EDL thickness is comparable to the nanochannel size. However,

in our experiments, we are far from this regime and so this simple model is valid.

Consider a symmetrical electrolyte, such as KCl, where both the cation and anion

have equal valence, zi, in a nanochannel. We can write the spatial distribution of the

anions and cations using the Boltzmann distribution as

n+(z) = n−(z) = n0 exp

(
−ziqψ(z)

kT

)
(1.1)

where n+(z) and n−(z) are the number density of cations and anions at a distance, z,

away from the solid surface respectively, n0 is the number density of ions in the bulk
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of the electrolyte (i.e. far away from the solid surface), ψ(z) refers to the potential at

a distance, z, away from the solid surface, q is the electronic charge, k is Boltzmann’s

constant and T refers to the temperature of the system. Thus, we can write the total

charge density of the electrolyte, ρ, as

ρ(z) = ziq(n+ − n−) = −2ziqn0 sinh

(
ziqψ(z)

kT

)
(1.2)

From Poisson’s equation, we have ∇2ψ = −ρq/ε where ε is the dielectric constant of

the fluid. So in 1-dimension, we can write

d2ψ

dz2
=

2ziqn0

ε
sinh

(
ziqψ(z)

kT

)
(1.3)

Eq. 1.3 can be linearized if we assume that ziqψ/kT << 1 such that sinh(ziqψ/kT ) ∼

ziqψ/kT (Debye-Hückel approximation). Thus, Eq. 1.3 becomes

d2ψ

dz2
=

1

λ2
· ψ(z) (1.4)

where we can define the characteristic EDL thickness, λ as

λ =

(
εkT

2z2
i q

2n0

)1/2

(1.5)

As can be seen from Eq. 1.5, the characteristic EDL thickness is purely a function

of the concentration of the electrolyte solution and is independent of the properties

of the solid surface. The variation of the EDL thickness as a function of electrolyte
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Figure 1.2: Plot of EDL thickness, λ, as a function of bulk electrolyte concentration
for a symmetric electrolyte such as KCl (zi = 1).

concentration for a symmetric monovalent electrolyte such as KCl is shown in Fig.

1.2. Typically the EDL thickness is ∼ 10 nm when n0 = 1 mM and ∼ 1 nm when

n0 = 100 mM.

In general, there are four common types of electrokinetic phenomena: electro-

osmosis, electrophoresis, streaming potential and sedimentation potential (Li, 2004;

Masliyah & Bhattacharjee, 2006). Only electro-osmosis and electrophoresis will be

discussed since they are the most relevant phenomena for this thesis. Electro-osmosis

is defined as the movement of fluid, due to an applied electric field with respect

to a stationary charged surface while electrophoresis is defined as the movement of

a charged particle relative to a stationary liquid when an external electric field is

applied. Consider a simple nanochannel system where an external electric field is

applied as shown in Fig. 1.3. The mobile counterions in the EDL move in the

direction of the electric field. As they move from the anode to the cathode, they
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Figure 1.3: Schematic of electro-osmotic flow (EOF) in a nanochannel with nega-
tively charged channel walls. The arrows indicate the direction of EOF.

drag the rest of the fluid along with them, and this flow is called electro-osmotic flow

(EOF). Electrophoretic flow (EPF) refers to the flow of particles in an applied electric

field due to their inherent surface charge. The direction of EPF will depend on the

sign of the net charge on the particle. The derivation of the fluid flow equations for

electro-osmotic flow and electrophoretic flow are presented in Appendix A, and only

the final results are presented here. When the EDL thickness is much smaller than

the dimensions of the channel through which the fluid is flowing, the average EOF

velocity under an tangential applied electric field, E, is independent of the channel

dimensions and is given by

uEOF = −εζwE
η

(1.6)

where ζw represents the zeta potential of the channel walls and η represents the

viscosity of the fluid. The overall sign of uEOF indicates the direction of EOF with

respect to the applied electric field. The EOF will be in the same direction as the
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applied electric field when the zeta potential of the channel walls is negative (as shown

in Fig. 1.3, and conversely, the EOF will be in the opposite direction to the applied

electric field when the zeta potential of the channel walls is positive.

The electrophoretic flow (EPF) velocity, uEPF , is given by

uEPF =
εζpE

η
(1.7)

where ζp is the zeta potential of the charged particle, which is basically determined by

the amount of surface charge on the particle and the size of the particle. Consider a

negatively charged biomolecule such as DNA flowing through a channel in an external

electric field as shown in Fig. 1.4. The EOF velocity will drive the biomolecule from

Figure 1.4: Schematic of EOF and EPF for a nanochannel system with negatively
charged channel walls. A negatively charged biomolecule is present in the nanochan-
nel, and the EPF and EOF are in opposite directions as indicated. (Figure courtesy
of D. Xu).
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the anode to the cathode due to the flow of the mobile counterions, whereas the

EPF velocity, due to the inherent negative surface charge of the biomolecule, will

drive the particle in the opposite direction from the cathode to the anode. Thus,

under certain conditions, when ζw = ζp, it is possible that uEOF = uEPF . In such

cases, the biomolecule will move with negligible speed through the channel, assuming

there are no other forces present in the system. Such a scenario is detrimental for

nanofluidic sensor applications since we want the biomolecules to flow through the

fluidic channels with significant speed so that they can be detected. This issue will be

discussed further in Chapter III where we report our experimental work on nanofluidic

sensors.

1.3 Introduction to Resistive-Pulse Sensing

1.3.1 Basic Principle of Resistive-Pulse Sensing

As mentioned in Sect. 1.1, one of the important trends of micro/nanofluidics

research is the development biomolecular and nanoparticle sensors. One commonly

used technique for sensing biomolecules such as DNA is known as resistive-pulse

sensing. This technique was invented and patented by W. H. Coulter (1953) and

consequently, a sensing device based on this technique is often referred to as a Coulter

counter. The sensing scheme, which is illustrated in Fig. 1.5, is based on the principle

that the electrical resistance of a small, electrolyte-filled channel increases as particles

flow through the channel.

When a non-conducting particle flows through a small channel, it displaces a
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Figure 1.5: (a) Schematic of a Coulter counter-type device, where particles are
sensed as they flow through a narrow sensing channel under an applied electric field.
(b) Schematic of the ionic current measured as a particle passes through the narrow
sensing channel (Xu, 2008).

volume of electrolyte equivalent to its own volume, and hence increases the ohmic

resistance of the channel. This resistance modulation will lead to a corresponding

decrease of ionic current or an increase of the voltage drop across the sensing channel,

which can be measured experimentally and used to detect particles in the channel.

The magnitude of the current drop measured depends on the fraction of the volume

of the sensing channel that is occluded by the particle being sensed.

DeBlois and Bean (1970) derived an expression for the change in the resistance

of a cylindrical sensing channel when a spherical, insulating particle is present in the

sensing channel as shown in Fig. 1.6. By solving Laplace’s equation with spheri-

cal boundary conditions, they showed that the increase in resistance of the sensing

channel, ∆R, due to the presence of the spherical particle can be written as

∆R ≈ 4ρfluidd
3

πD4
(1.8)

where ρfluid represents the resistivity of the conducting electrolyte. Eq. 1.8 is valid

12



Figure 1.6: Schematic of a cylindrical sensing channel of diameter D and length
L that is filled with electrolyte and contains a non-conducting sphere of diameter d
(Xu, 2008).

when the ratio d/D << 1 and D/L < 1. For a cylindrical sensing channel as shown

in Fig. 1.6, the resistance of the sensing channel itself (without the spherical particle)

is R = 4ρfluidL/πD
2. So, the relative resistance modulation is given by

∆R

R
=

d3

D2L
=

3

2
· Vp
Vc

(1.9)

where Vp and Vc are the volumes of the spherical particle and sensing channel re-

spectively. We can see that the relative resistance modulation is roughly equal to the

volume ratio of the particle to the sensing channel. When a constant voltage is applied

across the sensing channel, from Ohm’s law, the relative ionic current modulation can

be written as

∆I

I
=

V
R
− V

R+∆R
V
R

=
∆R

R
·
(

1 +
∆R

R

)−1

(1.10)

When ∆R/R << 1 (i.e. particle is much smaller than channel), Eq. 1.10 may be
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simplified to

∆I

I
≈ ∆R

R
(1.11)

So, the relative ionic current modulation, ∆I/I, will also be roughly equal to the

volume ratio of the particle with respect to the channel, Vp/Vc, when the particle

diameter is much smaller than the channel diameter. When the particle size becomes

comparable to that of the channel, higher order correction terms will become im-

portant and the relationship between the volume ratio of the particle to the channel

and the relative resistance modulation will take on a more complex form. However,

since we are concerned with trying to sense the smallest possible particles through a

channel of a particular size, we will only focus on the scenario presented where the

particle diameter is much smaller than the channel diameter.

1.3.2 Development of Resistive-Pulse Sensing

Coulter (1956) first demonstrated that a device based on resistive-pulse sensing

could be used to count micron-scale particles like red blood cells at a high count rate

of ∼ 6000 particles/s. DeBlois and Bean (1970) showed that they were able to detect

a minimum volume ratio of 0.06% using a tapered pore with end diameters of 490

nm and 450 nm as polystyrene beads of 91 nm in diameter flowed through the pore.

DeBlois and Wesley (1977) then showed that the resistive-pulse sensing could be used

to detect the size and concentration of viruses using sub-micron pores. As further

optimization of the Coulter counter device continued, Sikdar and Webster (1980)

showed that they were able to count particles at a high rate and measure the mean
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and variation of particle size distribution accurately. Berge and co-workers (Berge et

al., 1989) developed a technique to reverse the flow of particles through the sensing

channel to study the dissolution of air bubbles and radial migration of particles as a

function of time.

The development of Coulter counters since the 1990s has focused on using nanoscale

pores for single molecule/nanoparticle sensing and making on-chip Coulter counters

(Henriquez et al., 2004). Bezrukov and colleagues (Bezrukov et al., 1994) demon-

strated the counting of polymer molecules as they passed through a single alamethicin

pore ∼ 5 nm long and ∼ 2 nm in diameter. Kasianowicz and co-workers (Kasianow-

icz et al., 1996) showed that they were able to sense individual strands of DNA and

RNA as they translocated through a protein nanopore, α-hemolysin. These promis-

ing results sparked many studies of DNA translocation and dynamics in biological

nanopores (Bayley & Martin, 2000; Bayley & Cremer, 2001; Meller & Branton, 2002;

Peterman et al., 2002; Nakane et al., 2003). However, the biological nanopores are not

very robust or size-tunable. Therefore, efforts have been made to fabricate artificial,

solid-state nanopores to overcome the above-mentioned limitations.

Kobayashi and Martin (1997) fabricated gold nanotubules of diameter < 2 nm

and used them to measure the concentration of divalent cations, Ru(bpy)2+
3 and

methylviologen(MV2+). Sun and Crooks (2000) used a multi-wall carbon nanotube

(150 nm in diameter)-based device to sense 60-100 nm in diameter polystyrene par-

ticles. This method was then improved by members of the same group to detect size

and surface charge of polystyrene particles simultaneously (Ito et al., 2003; 2004). In

2005, Fan and co-workers (Fan et al., 2005) reported an on-chip device based on silicon
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dioxide nanotubes and the detection of DNA translocation through the nanotube.

Li and co-workers (Li et al., 2001; 2003) were the first to fabricate solid-state

nanopores using ion and electron beam technologies and used these devices to study

DNA translocation and dynamics. Similar devices based on SiNx or SiO2 nanopores

were then developed by them and other groups (Chang et al., 2004; Chen et al., 2004a;

2004b; Heng et al., 2004; Fologea et al. 2005; Storm et al., 2005; Smeets et al., 2006a)

to detect DNA translocation. Chang and colleagues (Chang et al., 2004) studied

DNA translocation through SiO2 nanopores 50-60 nm long, 4-5 nm in diameter and

demonstrated that the ionic current in the nanopore could increase due to the mobile

counter ions adsorbed on the DNA itself. Chen and co-workers (Chen et al., 2004a;

2004b) fabricated ∼ 15 nm in diameter SiNx nanopores, and showed that coating the

nanopore surface with alumina could reduce the electrical noise. Heng and colleagues

(Heng et al., 2004) made ∼ 1 nm in diameter SiNx nanopores and reported that they

were able to distinguish single-stranded DNA from double-stranded DNA and resolve

the length of the molecule. Fologea and co-workers (Fologea et al., 2005) reported

the possibility of slowing down DNA translocation by a factor of ten by fine-tuning

the experimental conditions. Storm and colleagues (Storm et al., 2005) observed

the translocation time and the length of the DNA segments and found a power-law

relation between them. Smeets et al. (2006a) studied DNA translocation through

∼ 10 nm in diameter SiO2 nanopores for various concentrations of electrolyte. Both

this group and Fan et al. (2005) found that the ionic current could either decrease

or increase, depending on the concentration of the electrolyte used. The decrease in

ionic current is expected from the Coulter principle. The increase in ionic current

16



observed at low salt concentrations was attributed to the contribution to channel

conductance from the mobile counter ions adsorbed on the DNA molecule.

Another salient trend of the Coulter counter development since the 1990s is the

development of on-chip devices. Larsen and colleagues (Larsen et al., 1997), and Koch

and co-workers (Koch et al., 1999) were the first to report the design and fabrication of

microchannel-based Coulter counters using silicon micromachining techniques. Saleh

and Sohn (2001) fabricated a microchip Coulter counter on a quartz substrate and

showed that they were able to sense individual nanoparticles of 87 nm in diameter

with a sensing channel of 8.3 µm long and a cross-sectional area of 0.16 µm2. Later,

they developed a poly-dimethyl-siloxane (PDMS)-based device with a sensing channel

of 200 nm in diameter and 3 µm long and showed that they were able to detect 16

µm long λ-DNA segments (Saleh & Sohn, 2003). Carbonaro and Sohn (2005) then

fabricated a PDMS-based device to detect the size change of 490 nm-diameter latex

colloids upon antigen-antibody binding on the antibody-coated colloid surface. More

recently, novel designs (Zhang et al., 2005; Jagtiani et al., 2006a; 2006b; Rodriguez-

Trujillo et al., 2007; Zhe et al., 2007) of on-chip Coulter counters were also developed

by other researchers to realize high throughput counting and sizing, hydrodynamic

focusing, etc.

1.3.3 MOSFET-based Resistive-Pulse Sensing

Despite all the success in the fabrication of nanoscale features leading to a dramatic

reduction in the volume of the sensing channel, the lowest detectable volume ratio

using the resistive-pulse sensing technique, has been 0.06%, as reported by DeBlois
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and Bean (1970), which is approximately the same as the relative modulation of the

ionic current. Improving this lowest detectable volume ratio will enable us to sense

smaller particles with larger sensing channels, thereby reducing the pressure on the

fabrication process to create structures of dimensions comparable to those of the

analyte particle. The fundamental limitation that has prevented the improvement of

this minimum detectable volume ratio is noise in the current/voltage measurements.

Noise in solid-state nanopore-based resistive-pulse sensors has only been studied and

characterized recently (Siwy & Fulinski, 2002; Tabard-Cossa et al., 2007; Smeets et

al., 2008; Uram et al., 2008). The main sources of noise have been identified to be

the thermal and shot noise generated by the current preamplifier, and the nanopore

device itself, dielectric noise due to the substrate material, and flicker noise, the origins

of which are still not well understood. Consequently, we can expect researchers to

improve experimental methods to reduce the noise observed in traditional resistive-

pulse sensors, and thereby improve the minimum detectable volume ratio in the near

future.

However, we have chosen to improve device sensitivity by amplifying the signal

observed when a particle translocates through the sensing channel. We have recently

reported a design of fluidic sensors based on the resistive-pulse sensing principle,

which integrates the fluidic circuit with a metal-oxide-semiconductor field effect tran-

sistor (MOSFET) and detects the MOSFET drain current to sense the resistance

modulation of the fluidic sensing channel as particles flow through it (Xu et al., 2007;

M. Sridhar et al., 2008b). Due to the non-linear dependence of the MOSFET drain

current on the MOSFET gate voltage, we are able to achieve amplification of the
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resistance modulation of the fluidic-sensing channel. As such, a good understand-

ing of the performance of a MOSFET as a function of the MOSFET gate voltage is

necessary to understand the amplification obtained by our sensing scheme.

1.4 MOSFET Fundamentals

MOSFETs have been studied extensively for several years and a comprehensive

review of MOSFET fundamentals maybe found elsewhere (Sze, 1981; Casey, 1999;

Kang & Leblebici, 1999). In this section, we present a basic overview of the structure

of a n-channel MOSFET and the variation of the MOSFET drain current as a function

of the MOSFET gate voltage.

Fig. 1.7 shows a schematic of a typical n-channel MOSFET. The substrate is

p-type and the source and drain regions are n+-doped. When there is no bias applied

to the gate, the source-drain electrodes correspond to two back-to-back p-n junctions,

and there is only a very small, reverse leakage current which we will ignore for sim-

plicity. When a small positive gate voltage is applied, there is weak inversion at the

semiconductor surface as holes are repelled away from the surface into the substrate

and electrons are attracted to the surface due to the positive gate voltage applied.

As a result, in the presence of a positive drain-source bias, a small current will flow

from source to drain. Such a current is known as sub-threshold current, ID,sub, which

can be written as follows

ID,sub = ksub

(
qψS
kT

)1/2 [
1− exp

(
qVDS
kT

)]
exp

(
qψS
kT

)
(1.12)
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Figure 1.7: Schematic of a typical n-channel MOSFET. The substrate is p-type and
the source and drain regions are n+-doped.

where ksub is a constant and k and T are Boltzmann’s constant and temperature,

respectively. ψS is the surface potential of the MOSFET electronic channel and is

given by

ψS = VG − VFB −
a2kT

2q

{[
1 +

4

a2

(
qVG
kT
− qVFB

kT
− 1

)]1/2

− 1

}
(1.13)

where a = 2(εs/εox)(dox/LD). εs and εox are the permittivity of the semiconductor

and the oxide, respectively. dox is the thickness of the MOSFET gate oxide, LD is

the extrinsic Debye length, and VFB is the flat-band voltage. The drain current in

the sub-threshold region varies exponentially with gate voltage, VG as can be inferred

from Eqs. 1.12 and 1.13.
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When a sufficiently large positive voltage is applied to the gate, the density of

mobile electrons at the surface becomes equal to the density of holes in the bulk of

the p-type substrate. A surface inversion layer or channel is said to have formed

between the source and the drain. The minimum gate voltage required for channel

formation is known as the threshold voltage, VT , and is given by

VT = VFB + 2ψB +

√
2εsqNA(2ψB + VSB)

Ci
(1.14)

where ψB is the potential difference between the Fermi level and the intrinsic Fermi

level, NA is the substrate doping, VSB is the substrate bias, and Ci is the capacitance

per unit area of the oxide layer. In practice, the threshold voltage of a MOSFET is

determined experimentally from x-intercept of the I
1/2
D − VG curve of the MOSFET,

as shown schematically in Fig. 1.8.

V
G

V
T

I D
1
/2

Figure 1.8: Schematic of a typical I
1/2
D − VG curve for a MOSFET. The threshold

voltage, VT is determined by the x-intercept of the curve as shown.
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For VG > VT , when a small drain-source bias, VDS is applied, current flows through

the channel from source to drain and the MOSFET is said to be in the ON state.

The channel acts simply as a resistor and the drain current is proportional to VDS.

This regime of operation is known as the linear region and the drain current in this

region is given by

ID,lin = klin(VG − VT )VDS (1.15)

As the drain-source bias is increased further, the channel depth at the drain end of

the channel decreases to zero and eventually the channel is said to have “pinched

off”. The pinch-off occurs at the drain end of the channel when VDS = VG − VT .

Substituting this relation into Eq. 1.15 gives

ID,sat = ksat(VG − VT )2 (1.16)

Increasing the drain-source bias further (holding the gate voltage constant) does

not affect the drain current anymore, and hence this region of operation is known as

the saturation region. In the saturation region, the MOSFET drain current is solely

dependent on the gate voltage applied. The variation of the MOSFET drain current

as a function of VDS when VG > VT , is shown in Fig. 1.9. The linear and saturation

regions are marked, and the different behavior of the MOSFET in these two regions

can be clearly observed.

As can be seen from Eqs. 1.12, 1.15 and 1.16, the drain current of the MOS-

FET varies differently with gate voltage, VG, depending on the region in which the
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Figure 1.9: Schematic of a typical ID − VDS curve for a MOSFET. The dotted line
indicates where the channel is pinched off i.e. VDS = VG − VT = 5 V.

MOSFET is operating. We can use a parameter called the transconductance of a

MOSFET, which is essentially the rate of change of MOSFET drain current with

respect to gate voltage, to characterize the sensitivity of the drain current on gate

voltage in the three different regions of operation. The transconductance, g, is usually

defined as

g =
∂ID
∂VG

∣∣∣
VDS=const

(1.17)

Using Eqs. 1.12, 1.15 and 1.16, we can derive expressions for the transconductance

of a MOSFET in the three different regions of operation. For clarity, the dependence

of the MOSFET transconductance on the gate voltage, which is important for deter-

mining the sensitivity of the MOSFET drain current to the gate voltage, is tabulated

in Table 1.1.

From Table 1.1, we observe that the transconductance varies exponentially with

gate voltage in the sub-threshold region, while it is linearly dependent on gate voltage
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Table 1.1: MOSFET transconductance, g, in the sub-threshold, linear and satura-
tion regions.

Operation Region Expression for transconductance

Sub-threshold gsub ∝ exp(qVG/kT )

Linear glin = klinVDS

Saturation gsat = 2ksat(VG − VT )

in the saturation region, and independent of gate voltage in the linear region. Thus,

the MOSFET drain current is most sensitive to the gate voltage, VG, in the sub-

threshold region followed by the saturation region, and least sensitive in the linear

region. We will take advantage of the high sensitivity of the MOSFET drain current

to the gate voltage in the saturation and sub-threshold regions in our novel sensing

scheme. The details of this sensing scheme are discussed in Chapter II.

1.5 Summary

In conclusion, we have given a brief overview of micro/nanofluidics and motivated

the interest in developing micro/nanofluidic sensors, especially for biomolecular sens-

ing applications. Since the invention of resistive-pulse sensing in 1953, there have

been numerous devices built using this sensing scheme to detect nanoparticles. The

smallest volume ratio detected was reported by DeBlois and Bean in 1970 (0.06%).

Since that time, there has been no significant improvement in this critical parameter.
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We present a sensing scheme which integrates the fluidic circuit with a MOSFET,

in order to enhance the sensitivity of traditional resistive-pulse sensors. This novel

sensing scheme enables us to detect smaller particles flowing through a larger sensing

channel, thereby reducing the pressure on the fabrication process to create structures

of comparable dimensions as the particles being sensed. In the next chapter, we

present this microfluidic MOSFET-based resistive-pulse sensor that was able to detect

a minimum volume ratio of 0.006%, 10 times smaller than the smallest volume ratio

reported previously. In Chapter III, we present the development of a nanofluidic

resistive-pulse sensor prototype and show that the MOSFET-based resistive-pulse

sensing scheme can be successfully extended to the nanoscale.
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CHAPTER II

ULTRA-SENSITIVE MOSFET-BASED MICROFLUIDIC
RESISTIVE-PULSE SENSOR

2.1 Introduction

In this Chapter, we report the detailed characterization of an ultra-sensitive

MOSFET-based microfluidic resistive-pulse sensor used to detect the translocation

of small particles through a sensing microchannel. The device connects a fluidic cir-

cuit to the gate of a MOSFET and detects particles by monitoring the MOSFET

drain current modulation, instead of the modulation of the ionic current through the

sensing channel. The minimum volume ratio of the particle to the sensing channel

detected is 0.006%, about ten times smaller than the lowest detected volume ratio

previously reported in the literature. This volume ratio is detected at a noise level

of about 0.6% of the baseline MOSFET drain current, clearly showing the amplifica-

tion effects from the fluidic circuits and the MOSFETs. We characterize the device

sensitivity as a function of MOSFET gate potential and show that its sensitivity is

higher when the MOSFET is operating below its threshold gate voltage than when

it is operating above the threshold voltage. In addition, we demonstrate that the

device sensitivity increases linearly with the applied electrical bias across the fluidic

circuit. Finally, we show that polystyrene beads and glass beads of similar sizes can

be distinguished from each other based on their different translocation times, and the

size distribution of microbeads can be obtained with accuracy comparable to direct
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SEM measurements. Part of the work reported in this Chapter has been published

in Applied Physics Letters (Xu et al., 2007) and the rest in the Journal of Applied

Physics (Sridhar et al., 2008b).

2.2 Device Design & Measurement Setup

The performance of the MOSFET-based resistive-pulse sensor was demonstrated

with a microfluidic device fabricated with PDMS microchannels bonded to a glass sub-

strate in conjunction with a commercial MOSFET (2N7000 N-Channel FET, Fairchild

Semiconductor Co.), as shown in Fig. 2.1.

Figure 2.1: The schematic of the experimental setup (not to scale) (Xu et al., 2007).
The fluidic and MOSFET circuits are commonly grounded. The resistances of three
segments of the horizontal microchannel are denoted as R2, R, and R1, respectively.

The microfluidic chip consists of four microchannels, which are all 30 µm deep

and fabricated by soft lithography using photolithographically patterned SU-8 as a
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master. PDMS is poured onto the patterned SU-8 master mold, cured, peeled off

after several hours of baking in a convection oven and irreversibly bonded to a clean

glass slide using plasma bonding. The left channel (denoted by its resistance R2)

is 7.5 mm long and 800 µm wide, the sensing channel (denoted by its resistance R)

is 150 µm long and 16 µm wide, and the right channel (denoted by its resistance

R1) is 15 mm long and 160 µm wide. The vertical microchannel connecting the

downstream end of the sensing channel to the gate of the MOSFET is 6 mm long

and 300 µm wide. Three reservoirs, each of 3 mm in diameter, were punched through

the PDMS to facilitate fluid injection and removal. Platinum wires were used as

the source, drain and gate electrodes to connect the fluidic and electronic circuits.

An electrokinetic bias (V+ − V−) was applied using two DC power supplies (Agilent

E3612A and Agilent E3617A) to drive microbeads through the microchannels and to

facilitate the adjustment of the MOSFET gate voltage.

The performance of the MOSFET was calibrated separately independent of the

fluidic circuit before it was used in the experiments. The MOSFET gate voltage

was controlled by an accurate voltage source (Keithley 6487). A source-measure unit

(Keithley 236) was used to apply a constant drain-source bias, VDS, of either 0.15 V

or 0.5 V and to measure the MOSFET drain current. The MOSFET source terminal

was commonly grounded with the voltage source and the source-measure unit. Fig.

2.2 shows the measured I
1/2
D − VG curves for the MOSFET when VDS = 0.15 V and

0.5 V, respectively. The threshold voltage, VT , of the MOSFET was determined from

the x-intercepts of the I
1/2
D − VG curves in Fig. 2.2 to be ∼ 2.1 V when VDS = 0.15

V, and ∼ 2.2 V when VDS = 0.5 V. The slight shift of the threshold voltage observed

28



for different drain-source biases can be attributed to the substrate bias effect (Casey,

1999). The typical commercial MOSFET used has only three terminals for the source,

drain and gate electrode and no terminal to control the substrate bias. Therefore,

the substrate bias was floating and caused the threshold voltage to shift when the

drain-source bias was changed. However, this does not affect our measurements as

long as we keep the drain-source bias fixed for each experiment.

Figure 2.2:
√
ID as a function of VG for a typical MOSFET we used when VDS =

0.15 V and 0.5 V, respectively. The threshold voltage for each case is determined by
the value of the x-intercept.

In the experiment, 7.5 mM sodium borate buffered solution (pH value of 9.45)

was first filled into the microfluidic circuits and the liquid level in each reservoir was

allowed to equilibrate. Then the same borate buffer with dilute suspended polystyrene

microbeads was added to the reservoir that would be positively biased. After a

short period of time for the liquid level to reach equilibrium again, the electrokinetic
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bias (V+ − V−) was applied to induce electroosmotic flow through the horizontal

fluidic channel. When a microbead translocates through the sensing microchannel, the

conductance of the sensing channel decreases because the sensing channel is partially

blocked by the microbead, causing a drop in the ionic current through the channel,

which is the most common sensing mechanism of modern resistive-pulse sensors, as

explained in detail in Sect. 1.3.1.

However, in the MOSFET-based resistive-pulse sensor, the downstream end of the

sensing channel is connected to the gate of a MOSFET and the electrical potential

modulation at the end of the sensing channel is monitored by measuring the MOSFET

drain current. In our experimental setup, the MOSFET drain current was measured

by a current preamplifier (DL Instruments 1211) and the signal passed through a

low-pass filter (Stanford Research Systems SR560) before it was fed into the digital

data acquisition system. This sensing scheme presents an amplified percentage of

modulation to the baseline MOSFET drain current as compared to the percentage of

modulation to the baseline ionic current, which is discussed in the next section.

2.3 Theoretical Analysis of the Amplification Effects

In this Section, we present a detailed analysis of the amplification effect. Since

the microbeads are in diluted suspension, their effects on the electrical resistance of

the large fluidic channels on each side of the sensing channel are negligible. Denoting

the increase in resistance of the sensing channel as ∆R when a bead is in the sens-

ing channel, and referring to the resistance of the three segments of the horizontal

channels in Fig. 1, the ionic current without (I) and with (I∗) a bead in the sensing
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channel can be written as

I =
V+ − V−

R2 +R +R1

I∗ =
V+ − V−

R2 +R + ∆R +R1

(2.1)

The gate potentials (VG) of the MOSFET are then

VG = V− + IR1

V ∗G = V− + I∗R1

(2.2)

The modulation of the gate potential can be derived as

∆VG
VG

=
∆IR1

VG
=

(
IR1

VG
.
R

Rt

)
.
∆R

R
(2.3)

where ∆I = I−I∗ and Rt = R1 +R2 +∆R+R. Eq. 2.3 indicates that the percentage

modulation of the gate potential to the baseline gate potential is amplified by a factor

of Afluidic = (IR1/VG)(R/Rt) compared to the percentage modulation of the channel

resistance. This factor is defined as the amplification factor from the fluidic circuit.

A MOSFET can be operated in different regimes, in which the drain current

behaves differently as a function of the gate potential. Amplification effects can be

achieved when the MOSFET is working in either the saturation region under the

conditions of VG > VT and VDS > VG − VT , or in the sub-threshold region under the

condition of VG < VT because a small change in gate voltage under these conditions

leads to a large change in MOSFET drain current as discussed in Sect. 1.4.
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When the MOSFET works in the saturation region, the MOSFET drain current

modulation as a function of the gate voltage (Casey, 1999; Sze, 1981) can be written

as ID = ksat(VG − VT )2 , where ksat is a constant. For a small modulation, ∆VG , the

drain current modulation is then

∆ID
ID

=
2VG

VG − VT
· ∆VG
VG

(2.4)

Combining Eq. 2.3 and Eq. 2.4, we have

∆ID
ID

=

(
2VG

VG − VT

)
·
(
IR1

VG

)
·
(
R

Rt

)
· ∆R

R
(2.5)

So the amplification factor from the MOSFET can be expressed as AFET,sat =

2VG/(VG − VT ). To achieve a large total amplification factor, we designed the fluidic

circuit as R1 = 10R and Rt = 12R, so as long as the voltage drop across the sensing

channel, IR, is larger than 1.2VG, Afluidic is larger than 1. For the MOSFET, a large

amplification factor can be achieved if VG − VT << VG so the gate voltage selected

should be only slightly higher than the threshold voltage.

When VG < VT , the MOSFET works in the sub-threshold region and the drain

current changes exponentially with gate voltage as (Sze et al., 1981)

ID = ksub

(
qψS
kT

)1/2 [
1− exp

(
−qVDS
kT

)]
exp

(
qψS
kT

)
(2.6)

where ksub is a constant and q, k and T are the electronic charge, the Boltzmann’s

constant and temperature, respectively. ψS is the surface potential of the MOSFET
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electronic channel and is given by

ψS = VG − VFB −
a2kT

2q

{[
1 +

4

a2

(
qVG
kT
− qVFB

kT
− 1

)]1/2

− 1

}
(2.7)

where a = 2(εs/εox)(dox/LD). εs and εox are the permittivity of the semiconductor

and the oxide, respectively. dox is the thickness of the MOSFET gate oxide, LD is

the extrinsic Debye length, and VFB is the flat-band voltage.

Based on Eqs. 2.3, 2.6, and 2.7, we can derive the theoretical drain current

modulation when the MOSFET is working in the sub-threshold region as

∆ID
ID

=

(
qVG
kT
− VG

2ψS

)
·
(
dψS
dVG

)
·
(
IR1

VG

)
·
(
R

Rt

)
· ∆R

R
(2.8)

This equation is cumbersome to use as we do not have the necessary information

such as the dopant concentration, oxide thickness and flat-band voltage to evaluate

the variables a and VFB, and hence ψS.

In ideal situations, i.e., if we assume there is no fixed oxide charge, interface traps

or difference in work function between the semiconductor and the gate metal, and if

the diffusion current can be neglected, then ψS is approximately equal to VG. Eq. 2.8

can then be simplified as

∆ID
ID
≈
(
qVG
kT
− 1

2

)
·
(
R

Rt

)
· ∆R

R
(2.9)

Therefore, an amplification factor for MOSFET working in the sub-threshold regime

can be written as AFET,sub = qVG/kT − 1/2 . The typical value of q/kT is around 40
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at room temperature and for a threshold voltage of 2.1 V, a FET amplification factor

of around 80 can be achieved.

2.4 Results and Discussion

2.4.1 Experimental Demonstration of Amplification

The demonstration of the amplification effect was performed with 7.5 mM sodium

borate buffer containing polystyrene beads. We first characterized the amplification

effect for the MOSFET working in the saturation region by setting V− = −29 V,

V+ = 11.98 V, and VDS = 0.5 V. The MOSFET gate voltage was inferred from the

I
1/2
D −VG curve in Fig. 2 to be ∼ 2.31 V so the MOSFET was working in the saturation

region. Under these conditions, the calculated amplification factors are Afluidic =

(IR1/VG)(R/Rt) = 1.13 , and AFET,sat = 2VG/(VG − VT ) = 42, yielding a total

theoretical amplification factor of 47.46 for the MOSFET drain current modulation

compared to the resistance modulation of the sensing channel.

The measured MOSFET drain current as a function of time is shown in Fig. 2.3a

when a solution with polystyrene beads of 4.1, 5.9, 7.26, and 9.86 µm-diameter was

added. The different-size polystyrene beads can be easily distinguished by the dif-

ferent amplitude of the drain current modulation observed as each microbead was

translocated through the sensing channel, which was verified by concurrent observa-

tion using an optical microscope (Nikon Eclipse TE-2000U). As pointed by DeBlois

& Bean (1970) and Saleh & Sohn (2001), if the diameter of the microbeads is much

smaller than the diameter of the sensing channel, the ratio ∆R/R can be approx-
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Figure 2.3: (a) The MOSFET drain current modulation as a function of time for a
mixture of 4.1, 5.9, 7.26, and 9.86 µm-diameter polystyrene beads when the MOSFET
works in the saturation region. (b) The amplitude of the drain current modulation
as a function of microbead volume. The points represent experimental values derived
from Fig. 2.3a and the solid line represents the theoretical prediction derived from
Eq. 2.5.
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imated by the ratio of the volume of the microbead to the volume of the sensing

channel. Therefore, in Fig. 2.3b we plotted the amplitude of the observed drain

current modulation as a function of microbead volume together with the theoretical

drain current modulation calculated from Eq. 2.5 using the theoretical amplification

factor of 47.46 as derived above. The resistance modulation in the calculation is taken

as the volume ratio of the microbead to the sensing channel.

From Fig. 2.3b, it can be seen that the agreement between the theoretical pre-

diction and experimental results is excellent for microbeads of diameter 4.1 and 5.9

µm, and quite good for microbeads of diameter 7.26 µm. However, for the 9.86 µm-

diameter beads, there is a difference of about 17.8 % between the theory and the

experiment. We believe this is related to the fact the MOSFET is working close

to the threshold voltage, and its I-V relation is highly non-linear. Therefore, Eq.

2.4 may not be very accurate for the relatively large modulation from the 9.86 µm-

diameter beads. The volume ratio of the 9.86 µm beads to the sensing channel is

only 0.7 %, so one might think that the voltage modulation is still small. However,

with the 47.46 times amplification, Eq. 2.5 will lead to a hundred percent MOSFET

drain current modulation for a 2.1 % resistance modulation (or volume ratio if the

resistance modulation is regarded to be equal to the volume modulation).

In addition to characterizing the device for the MOSFET working in the saturation

regime, we also characterized the device performance for the MOSFET working in

the sub-threshold regime by setting V− = −58 V, V+ = 19.56 V, and VDS = 0.15

V. In this case, the gate voltage is derived to be ∼1.7 V in the same manner as

above, smaller than the threshold voltage for VDS = 0.15 V. Thus, the MOSFET was
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working in the sub-threshold regime. The amplification factors from the fluidic circuit

and the MOSFET are Afluidic = 1.5 and AFET,sub = 67.5 respectively, giving a total

theoretical amplification factor of 101.25 with respect to the resistance modulation

of the sensing channel. The total amplification factor is more than twice of the total

amplification factor for the MOSFET working in the saturation regime (47.46).

To demonstrate the enhanced amplification effect, we added the sodium borate

buffer with a mixture of 2 µm and 9.86 µm-diameter polystyrene beads to the fluidic

circuits and the measured MOSFET drain current as a function of time is shown in

Fig. 2.4. Fig. 2.4 shows that with the higher amplification factor in the sub-threshold

Figure 2.4: The MOSFET drain current modulation as a function of time for a
mixture of 2 and 9.86 µm-diameter microbeads when the MOSFET works in the sub-
threshold region. “Twins” in the figure indicates a group of two beads that translocate
together through the sensing channel.

regime, we were able to detect particles as small as 2 µm in diameter, which has a

volume ratio to the sensing channel of about 0.006 %, or ten times smaller than the
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smallest volume ratio previously reported in the literature, 0.06 %, (DeBlois & Bean,

1970).

The modulations shown in Figs. 2.3a and 2.4 are triangular in shape because

the rise time of the current preamplifier was set to 100 ms, which was comparable

to the time taken for the beads to translocate through the sensing channel (∼ 300

ms). Hence, due to signal integration, we do not observe an ideal rectangular-shaped

signal. However, the long rise time was required only because we tried to do concur-

rent electrical and optical measurements of particle translocation through the sensing

channel and did not have a Faraday cage large enough to contain the whole set up. In

real applications where only the electrical signal is desired, the set-up can be shielded

with a Faraday cage and a much shorter rise time can be used. This has been verified

and Fig. 2.5 shows the MOSFET drain current as a function of time when we added

the sodium borate buffer with microbeads of 5.9 µm in diameter to our fluidic circuits

shielded in a Faraday cage.

For this experiment, VDS = 0.15 V, V+ = 9.03 V, V− = −26.3 V, and the rise time

of the current preamplifier is 0.3 ms with a cut-off frequency of the low-pass filter

set as 100 Hz. As can be seen from Fig. 2.5, the microbead translocation signals

observed have a shape close to the ideal rectangular shape, where the flat region at

the bottom corresponds to the microbead traversing the sensing channel. In addition,

in Fig. 2.5 we also observed overshooting of the MOSFET drain current signal when

the microbead enters the sensing channel, which may be due to sudden resistance and

capacitance changes caused by the microbead.

It is worth noting that direct measurement of the ionic current through the fluidic
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Figure 2.5: The MOSFET drain current modulation as a function of time for 5.9
µm-diameter microbeads when the rise time of the current preamplifier is set to 0.3
ms. The experimental setup was shielded in a Faraday cage, and VDS = 0.15 V,
V+ = 9.03 V, V− = −26.3 V.

circuit with the same instrument shows no discernible dips when microbeads pass

through the channel, as evidenced by concurrent optical observation. Fig. 2.6 shows

the measured ionic current through the fluidic circuit when the solution with 9.86 µm-

diameter polystyrene beads was driven through the sensing channel. No discernible

Figure 2.6: Measured ionic current in the fluidic circuit for the microbeads suspen-
sion containing 9.86 µm polystyrene beads.
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dips can be observed from the ionic current measurement.

2.4.2 Noise Analysis

The sensitivity and limitation of any experimental measurement is ultimately

dominated by noise and a more sensitive sensing scheme has to provide a higher

signal to noise ratio. The MOSFET-based resistive-pulse sensor provides a higher

percentage modulation compared to the percentage modulation to the baseline ionic

current for traditional resistive-pulse sensors. However, the concept is useful only

if the noise level does not increase to the same extent. If we define the noise level

as the ratio of the peak to peak value of the noise to the average baseline value of

the signal, then in our measurement, the noise level of the ionic current through the

fluidic circuit was about 0.3 %, and the noise level of the MOSFET drain current

was between 0.5 - 0.9 %, which varied from one experiment to another. Note that

the noise level of the ionic current in the literature ranges from ∼ 0.02 % (DeBlois &

Bean, 1970) to more than 10 % (Heng et al., 2004) so the noise level we observed is

comparable to those reported in the literature.

As discussed in the Sect. 2.4.1, the percentage of modulation can be magnified

from 47.46 to 101.25 times depending on the working regime of the MOSFET and ap-

plied electrokinetic bias. In comparison, the noise level of the MOSFET drain current

is only 2 to 3 times higher than that of the ionic current through the fluidic channel.

So compared to the traditional resistive-pulse sensors, the reported MOSFET-based

resistive-pulse sensor demonstrates an enhanced sensitivity of up to 50 times. (The

sensitivity here is defined as the ratio of the percentage modulation from the particles
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to the noise level). The true advantage of the MOSFET-based resistive-pulse sensor

is that the design amplifies the percentage of the resistance modulation locally.

Recently, there have been several discussions about the noise of nanopore-based

resistive-pulse sensors (Ziwy & Fulinsky, 2002; Chen et al., 2004b; Smeets et al.,

2006; Tabard-Cossa et al., 2007; Smeets et al., 2008; Uram et al., 2008). All of

these reports indicate that the main sources of noise in resistive-pulse sensors are: (a)

thermal and shot noise generated by the current preamplifier, (b) thermal noise due

to the nanopore device itself, (c) dielectric noise due to the substrate material, and

(d) low-frequency flicker (1/f) noise. Recently, the flicker noise has been shown to be

inversely proportional to the number of charge carriers inside the nanopore (Smeets

et al., 2008). This suggests that the flicker noise could be due to fluctuations in

the mobility of the ions in the electrolyte (Tabard-Cossa et al., 2007). However, the

origin of the flicker noise has yet to be fully understood. In addition to fluctuations in

mobility, surface effects like the inhomogeneity of the surface charge on the pore wall

(Chen et al., 2004b), nanobubble formation (Smeets et al., 2006) and the underlying

motions of biological membrane channels (Ziwy & Fulinski, 2002) have been proposed

as possible sources of the flicker noise. To better understand the noise source in our

measurement system, we performed spectral analysis of our data.

Fig. 2.7 shows the power spectra of measured baseline MOSFET drain current for

two cases: no Faraday cage with 100 ms rise time setting for the current preamplifier,

and with Faraday cage with 0.3 ms rise time setting for the current preamplifier.

The power spectra are expressed in units of db with a reference of 1 A2Ω. The solid

line shows the power spectrum density (PSD) of the baseline MOSFET drain current
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Figure 2.7: Power density spectrum (PSD) of the baseline MOSFET drain current
for the cases of with and without Faraday cages.

shown in Fig. 2.5 when the experimental setup was shielded with a Faraday cage,

and the dotted line shows the PSD of the baseline MOSFET drain current shown in

Fig. 2.4 when a Faraday cage was not used. Fig. 2.7 indicates that in addition to

the 1/f flicker noise at very low frequency (<10 Hz), noise at 60 Hz and its harmonic

frequencies are present in our measurement. Fig. 2.7 indicates that the 60 Hz noise

can be reduced to an acceptable level by using a short rise time for the current

preamplifier and shielding the experimental setup with a Faraday cage.

It is worth noting that we did not shield our experimental setup using a Faraday

cage because at the experimental characterization stage, we wanted to perform con-

current optical observations to validate the electrical signals. The noise suppression

in the above reported results is mainly achieved by a relatively large rise time of the

current preamplifier (100 ms) and a low cut-off frequency (30 Hz) of the low-pass

filter, which may not be desirable for some applications. However, this is because
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the measurements were performed in open space without a Faraday cage, which is

used in nearly all other resistive-pulse sensors. Further noise characterization showed

that if shorter rise time was used, the observed noise was mainly 60 Hz, which can

be eliminated by using a Faraday cage, as shown in Fig. 2.5. Using a Faraday cage

to shield the measurement set-up can help to achieve a noise level of 0.4 % (ratio of

the peak to peak value of the noise to the average baseline value of the signal) with a

much shorter rise time of the current preamplifier (0.3 ms), and a much higher cut-off

frequency of the low-pass filter (1 kHz).

2.4.3 Device Sensitivity as a function of VG

As demonstrated above, the amplification of the sensing channel resistance mod-

ulation is a function of the MOSFET gate voltage and depends on the MOSFET

operating region, as shown in Fig. 2.8. The characterization was performed with

7.5 mM sodium borate buffered solution with 9.86 µm in diameter polystyrene mi-

crobeads and the settings of the power supplies were VDS = 0.15 V and V− = −29 V.

In the experiment, the MOSFET gate voltage was varied by adjusting V+. It can be

clearly seen from Fig. 2.8 that the amplification factor varies continuously as the gate

voltage changes and the amplification effect is more significant when the MOSFET

works in the sub-threshold region. In the sub-threshold region, the MOSFET drain

current modulation only changes marginally with the MOSFET gate voltage, while in

the region above threshold, the drain current modulation decreases as the MOSFET

gate voltage increases.

The calculated values of the MOSFET drain current modulation as a function of
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Figure 2.8: Drain current modulation for polystyrene microbeads of diameter 9.86
µm as a function of gate voltage with V− = −29 V, VDS = 0.15 V. V+ was adjusted
to obtain different gate voltages on the MOSFET. The points represent experimental
data and the solid curves represent theoretical prediction based on Eqs. 2.5 and 2.8.
The dashed line represents the approximate theoretical prediction in the sub-threshold
region based on Eq. 2.9.

the gate voltage are also shown in Fig. 2.8. In the saturation region, the theoretical

prediction based on Eq. 2.5 fits the experimental results very well except in the

transition region close to the threshold voltage. However, a significant difference

was observed between the experimental results and the theoretical prediction (Eq.

2.9) in the sub-threshold region. This discrepancy indicates that the assumption

that ψS ∼ VG is not a good approximation in this case. Therefore, we fitted the

experimental data in the sub-threshold region to Eq. 2.8, which reflects the more

realistic performance of the MOSFET. A set of fit parameters of a = 6.6 and VFB =

−0.3 V yielded an acceptable theoretical curve that fit the experimental data. These

values are reasonable as the typical value of a ranges from 0.3 - 30, and VFB depends

on the material used for the gate metal and typically ranges from -0.5 to 0.5 V, as
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stated by Sze (1981).

Note that the vertical spread in the data can be attributed to the intrinsic size

dispersion of the 9.86 µm microbeads used and this vertical spread is greater in

the sub-threshold region compared to that in the above-threshold region. This is

because the device is more sensitive to the resistance change caused by bead size

dispersion when the MOSFET is operating in the sub-threshold region since the total

amplification factor is larger in this region as shown in the previous section.

2.4.4 Device Sensitivity as a function of Applied Electrokinetic Bias

As mentioned above, the amplification factor is also a function of current through

the fluidic circuit, and hence a function of the applied electrokinetic bias. The device

sensitivity is expected to vary linearly with V− because ideally, the IR1 term in Eqs.

2.3, 2.8 and 2.9 is equal to VG − V−. When the MOSFET is operating in the sub-

threshold region the drain current modulation given by Eq. 2.9 is:

∆ID
ID
≈
(
q

kT
− 1

2VG

)
· (VG − V−) ·

(
R

Rt

)
· ∆R

R
(2.10)

The dependence of the drain current modulation on V− is similar in the saturation

region with the same IR1 substitution made in Eq. 2.5.

The drain current modulation of 9.86 µm-diameter polystyrene microbeads was

measured as a function of V−, while holding the MOSFET gate voltage constant at

about 1.81 V. The MOSFET was operating in the sub-threshold region. This was

achieved by adjusting V+ accordingly to keep the measured MOSFET drain current
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constant. Fig. 2.9 shows the performance of our device as a function of V− and a

linear relationship between the drain current modulation and V− is clearly observed

as expected.

Figure 2.9: Drain current modulation for 9.86 µm polystyrene microbeads as a
function of V−, for constant gate voltage of ∼ 1.81 V and VDS = 0.15 V. The points
represent experimental data and the solid line represents the theoretical prediction
based on Eq. 2.8 and the dashed line represents the theoretical prediction based on
Eq. 2.10.

The theoretical prediction based on Eq. 2.10 is also presented in Fig. 2.9 as the

dashed line and again, some discrepancy is observed between the experimental results

and the theoretical prediction, which confirms the observation in the previous section

that the approximation that ψS ∼ VG is not a very good one. However, using Eq. 2.8

with the same fitting parameters (a = 6.6, VFB = −0.3 V) as in the previous section

(Fig. 2.9, solid line), results in a much better match between the calculation and

experiment. We were not able to measure drain current modulations for |V−| < 29

46



V because the electroosmotic flow was very slow and most of the beads stick to the

channel walls after a short time of experiment.

2.4.5 Detection of Particles with Similar Sizes but Different Surface

Charges

We tested the ability of our device to distinguish two similarly-sized microbeads

with different surface charges. Nominally 4.84 µm-diameter polystyrene and 4.8 µm-

diameter glass microbeads were used to test this capability of the device. Glass mi-

crobeads are known to have relatively large negative surface charge density (Behrens

& Grier, 2001) in aqueous electrolyte solutions and will experience an electrophoretic

force that opposes the electroosmotic flow of the microbeads (Li, 2004). Therefore,

the net speed of the glass beads through the small microchannel will be reduced

and the translocation time of the glass beads through the sensing channel should be

longer than that of the polystyrene beads of much lower surface charges. Fig. 2.10

shows the MOSFET drain current as a function of time when we added a mixture

of the above-mentioned polystyrene and glass beads. The power supply settings are

V− = −29.1 V, V+ = 11.52 V, VDS = 0.15 V. The MOSFET gate voltage was ∼ 1.84

V so the MOSFET was operating in the sub-threshold region.

As expected, the magnitude of drain current modulation observed for both types

of microbeads is very similar because of their similar size. The glass microbeads took

a longer time to translocate through the sensing channel compared to the polystyrene

microbeads as evidenced by the width of the drain current modulations. This has been

confirmed by concurrent optical observations with the optical microscope. In fact,
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Figure 2.10: MOSFET drain current as a function of time for a mixture of 4.8
µm-diameter glass and 4.84 µm-diameter polystyrene microbeads with V− = −29.1
V, V+ = 11.52 V, and VDS = 0.15 V. The gate voltage of the MOSFET is determined
to be about 1.84 V so the MOSFET is operating in the sub-threshold region.

the time taken for the glass microbeads to translocate through the sensing channel

was ∼ 600 ms, in comparison with ∼ 400 ms for the polystyrene microbeads. This

shows the ability of our device to distinguish particles of similar size but different

surface charges.

2.4.6 Characterization of microbead size distribution

A useful function of a standard resistive-pulse sensor is to detect the size of par-

ticles. To characterize the devices ability of detecting the size distribution of mi-

crobeads, we measured the size distribution of the nominally monodisperse 9.86 µm-

diameter polystyrene beads with the MOSFET-based resistive-pulse sensor. We also

measured the diameter distribution of the polystyrene beads with a scanning electron

microscope (Raith eLiNE SEM). The manufacturer (Bangs Laboratories, Inc) quoted
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nominal mean sphere diameter of the beads is 9.86 µm with a standard deviation of

0.65 µm, as measured with a Coulter Principle-based particle sizer. The measurement

with the MOSFET-based resistive-pulse sensor was performed with the following pa-

rameters: V− = −29 V, V+ = 11 V, and VDS = 0.15 V, leading to VG ∼ 1.79 V. Thus,

the MOSFET was working in the sub-threshold region.

Figure 2.11: (a) Size distribution of 9.86 µm-diameter polystyrene microbeads ob-
tained from SEM measurements, (b) Distribution of drain current modulation ob-
served for 9.86 µm-diameter microbeads. Vertical bars represent a histogram of ex-
perimental data and the lines represent a Gaussian fit to the data.
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Fig. 2.11a shows the size distribution of the 9.86 µm-diameter microbeads ob-

tained with the SEM, in which the vertical bars represent a histogram of experimental

data and the curve represents a Gaussian fit to the data. The diameters of a total

of 199 microbeads were directly measured using the SEM, and a mean microbead

diameter of 9.82 µm with a standard deviation of σ = 0.29 µm was obtained from

the Gaussian fit to the data. Thus, the direct SEM measurements showed that the

size distribution of the 9.86 µm beads was about half of the quoted value from the

bead manufacturer. Fig. 2.11b shows the distribution of drain current modulations

observed using the MOSFET-based resistive-pulse sensor when 9.86 µm in diameter

polystyrene beads were translocated through the sensing channel. The total num-

ber of samples was kept the same as that for the SEM measurement, and from the

Gaussian fit to the data, a mean drain current modulation of 54.4 %, with a standard

deviation of σ = 1.95 %, was obtained.

To enable a direct comparison between the size distribution obtained between the

two measurements, the data were normalized by the mean of the respective Gaussian

distributions: 9.82 µm for the SEM data and 54.4 % for the MOSFET-based resistive-

pulse sensor. Fig. 2.12a shows the normalized data from the SEM measurement and

Fig. 2.12b shows the normalized data from the MOSFET-based resistive-pulse sensor

measurement. Because of the normalization, the mean in both Figs. 2.12a and 2.12b

was 1.0. The standard deviation for the normalized SEM data shown in Fig. 2.12a

was 0.028 and the corresponding value for the normalized MOSFET-based resistive-

pulse sensor data shown in Fig. 2.12b was 0.035. Therefore, the size distribution of

9.86 µm in diameter beads measured with the two techniques matches rather well.
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Figure 2.12: (a) Normalized size distribution of 9.86 µm-diameter microbeads ob-
tained by direct SEM measurement. The normalized mean was 1.0 and the standard
deviation was 0.028, (b) Normalized size distribution of 9.86 µm-diameter microbeads
obtained using the MOSFET-based resistive-pulse sensor. The normalized mean and
standard deviation were 1.0 and 0.035 respectively.
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It is worth noting that for the normalized distribution of spherical particles, we

expected the standard deviation from the MOSFET-based resistive-pulse sensor to

be 3 times of the standard deviation from the diameter measurement of the SEM, as

the signal from the resistive-pulse sensor is proportional to the volume of the beads.

However, the observed standard deviation from the counter is only slightly higher

than that from the SEM measurement. A full analysis of this difference will depend

on understanding the intrinsic resolution of each probe and the manner in which the

resolution function couples to the actual data.

2.5 Summary

In summary, we report the detailed experimental characterization of a design

of the microfluidic resistive-pulse sensor and demonstrate that this MOSFET-based

resistive-pulse sensor can increase the sensitivity by amplifying the percentage of

the modulation caused by the translocation of particles through the sensing channel.

The detected minimum volume ratio between the particle and the sensing channel is

about 0.006 %, ∼10 times smaller than the lowest volume ratio previously reported in

the literature. The sensitivity of the MOSFET-based resistive-pulse sensor has been

characterized as a function of MOSFET gate voltage showing that the device is more

sensitive when operated in the sub-threshold region as compared to the saturation

region. In addition, the sensitivity with respect to the applied electrokinetic bias,

V−, has been investigated and it is shown that the drain current modulation varies

linearly with V−. The MOSFET-based resistive-pulse sensor can distinguish particles

of both different sizes and of similar size but different surface charges, based on the

52



observed amplitude of the MOSFET drain current modulation and the translocation

time. It is shown that the size dispersion of 9.86 µm in diameter polystyrene beads

measured with the MOSFET-based resistive-pulse sensor is comparable to that from

direct SEM observation.
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CHAPTER III

MOSFET-BASED NANOFLUIDIC SENSOR

3.1 Introduction

In Chapter II, we discussed a new MOSFET-based sensing scheme which has re-

duced the minimum volume ratio detectable by resistive-pulse sensing by a factor of

10 from 0.06% to 0.006%. In this Chapter, we present the extension of this sensing

scheme to the nanoscale. By reducing the dimensions of the sensing channel to the

nanoscale, we extend the detection capabilities to sensing nanoparticles. The fabrica-

tion of a nanofluidic sensor in PDMS and glass, and the experimental setup used for

our experiments are presented first. Next, we analyze the theoretical performance of

our nanofluidic sensor, and then demonstrate the capability of our nanofluidic sensor

to detect 210 nm-diameter polystyrene nanobeads. Finally, we discuss the valuable

insights that we have learned during our experimental process which will enable us

to further improve the performance and capability of the nanofluidic sensor in the

future.

3.2 Nanofluidic Sensor Fabrication & Measurement Setup

3.2.1 Nanofluidic Sensor Fabrication

The nanofluidic sensor fabrication process consists of a sequence of electron lithog-

raphy, silicon micromachining techniques, UV photolithography and soft lithography.
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Figure 3.1: Brief outline of the steps involved in the fabrication of the nanofluidic
sensor master mold. The substrate was a 4” silicon (100) wafer.

A silicon master mold, which was later used for making PDMS device copies using

soft lithography, was first fabricated. A brief outline of this fabrication process is

shown in Fig. 3.1. We began with a Si (100) wafer, 4” in diameter, first cleaned using

a piranha etch to remove any organic contaminants on the surface of the wafer. The

piranha etch consisted of two steps. First, the wafer was immersed in a 1:4 mixture

by volume of hydrogen peroxide and sulfuric acid at 120 ◦C for 10 mins, and then

rinsed thoroughly with deionized (D.I.) water. Then, the wafer was immersed in a

1:10 mixture by volume of hydrofluoric acid and D.I. water for 10-20 seconds, and

then rinsed thoroughly with D.I. water. 495 PMMA A6 resist (MicroChem Corp.)
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was then spun onto the entire surface of the 4” wafer using a two-step spin program

with a 5 s slow spin at 500 rpm with acceleration of 1260 rpm/s followed by a fast

spin for 50 s at 4000 rpm also with an acceleration of 1260 rpm/s. The wafer was

then removed from the spinner and placed on a hotplate set at 180 ◦C for 60 s. This

step is usually referred to as a pre-bake or soft-bake and evaporates the solvents in

the resist and helps to densify the resist. Based on ellipsometry measurements, the

thickness of the PMMA film after the soft-bake step was estimated to be ∼ 325 nm.

Next, the nanochannel portions of the nanofluidic device were patterned using

electron beam lithography. We used a Raith eLINE electron beam lithography tool,

with an accelerating voltage of 30 kV and an aperture size of 10 µm for our exposures.

At this setting, the beam current, measured at the Faraday cup on the sample holder,

was typically around 0.04 nA. Area mode exposures with a step size of 10 nm were used

to write the patterns, and the optimal exposure dose was determined experimentally

to be 350 µC/cm2. A typical pattern written using the electron beam lithography

tool is shown in Fig. 3.2. PMMA is a positive resist, so the regions that are colored

in Fig. 3.2 were exposed to the electron beam, and the polymer was broken into

fragments in these regions. The average patterning time for a 4” wafer containing 8

such patterns and 2 large alignment crosses (5 µm× 1000 µm) was approximately 45

mins.

After the patterning was done, the wafer was immersed in MIBK:IPA (1:3 by

volume) developer solution for 30 s, rinsed thoroughly in IPA for ∼ 1 min and blown

dry using compressed dry air. The developer dissolved away the portions of the resist

that were fragmented due to the electron beam exposure. The wafer was then placed

56



Figure 3.2: Schematic of an individual nanochannel pattern written using electron
beam lithography. Eight such patterns, along with two alignment crosses, were writ-
ten on a single 4” wafer. The length, L, of the nanochannel is varied between 2 and
5 µm, and the width, W, is varied between ∼ 300 and 500 nm for the eight patterns.

on a hotplate set at 100 ◦C for 60 s. This step is called post-exposure bake or hard-

bake and serves to stabilize and harden the developed photoresist prior to further

processing.

Next, a 60 nm thick Cr film was deposited on top of the wafer using electron

beam evaporation. 5 keV electrons were used to evaporate Cr off a pure target onto

the substrate. Typically, a deposition rate of ∼ 2 Å/s was used to deposit a uniform

film of Cr on top of the patterned PMMA film. The wafer was then immersed into a

beaker of hot acetone, which was placed on a hotplate set at 110 ◦C, for about 2 mins

to lift off the unpatterned PMMA and the Cr on top of it. The beaker containing

the wafer was then removed from the hotplate, and the wafer was transferred into a

separate beaker containing fresh acetone at room temperature for ∼ 2 mins. Once

the Cr film appeared to be cleanly removed from most of the wafer surface, the wafer

was rinsed thoroughly in IPA for ∼ 2 mins and blown dry using compressed dry air.

At this stage, the alignment markers were quite clearly visible to the naked eye, and

served as visual confirmation that the processing was successful so far.
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The actual thickness of the deposited Cr film was then measured to be ∼ 62 ±

5 nm using a surface profilometer (Veeco Dektak 150). The nanochannel pattern

was then transferred to the silicon wafer by reactive ion etching using the Cr film as

an etch mask. A fluorine-based reactive ion etcher (Trion Phantom II) with a SF6-

based etch recipe was used with the following parameters: Power = 75 W, Pressure

= 25 mTorr, SF6 flow = 30 sccm, O2 flow = 5 sccm, Process time ∼ 100 s. With

this etch recipe, the effective etch rate of silicon in the presence of a Cr etch mask

was experimentally determined to be ∼ 5 nm/s. The remaining Cr film was then

removed from the silicon wafer by immersing the wafer in a HCl:D.I. water (3:1 by

volume) mixture for ∼ 2 mins, followed by a thorough rinsing in deionized water for 2

mins. The wafer was then blown dry using compressed dry air. Surface profilometry

measurements were done to measure the final height of the nanochannel structures

and the measured heights were typically ∼ 520 ± 50 nm as expected.

The wafer was then piranha cleaned, in the same manner as described earlier, to

remove any contaminants from the wafer surface before the next photolithography

step. SU-8 2005 photoresist (MicroChem Corp.) was then spun onto the wafer in

a two-step spin process - 10 s at 500 rpm with acceleration of 100 rpm/s, and 30

s at 2500 rpm with acceleration of 300 rpm/s. The wafer was then soft-baked on

a hotplate set at 95 ◦C for 2 mins. Photolithography was done using a Karl Suss

MA-6 mask aligner to pattern microfluidic channels and reservoirs connecting the

nanochannel portions fabricated using electron beam lithography. Fig. 3.3 shows a

schematic of the photomask used for this process.

The photomask was first aligned to the substrate using the alignment crosses
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Figure 3.3: Schematic of the bright-field chrome photomask used for photolithogra-
phy process. The patterns shown in this figure were the only regions transparent to
the UV light used for photoexposure. 8 nanofluidic sensors were fabricated on a single
4” silicon wafer, and there were two alignment markers labeled “AL” that enable the
alignment of the photomask to the silicon wafer substrate. The photomask was made
for us by the Microfabrication Laboratory at University of California at Berkeley.

that were made during the electron beam lithography step. Typically the error in

alignment between the substrate and the photomask was less than three microns. The

optimum SU-8 exposure dose was experimentally determined to be ∼ 90 mJ/cm2, and

soft contact exposure mode was used. A post-exposure bake was then done before

developing the resist by placing the wafer on a hotplate set at 95 ◦C for 4 mins.

This step selectively cross-links the exposed portions of the SU-8 photoresist so that

they will be resistant to the developer in the following step. The wafer was then

allowed to cool down to room temperature and immersed in SU-8 developer solution

(MicroChem Corp.) for 60 s. Only the patterns that were exposed to the UV light and

hence selectively cross-linked, remained on the wafer. The rest of the photoresist was
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dissolved away by the developer. The wafer was then rinsed thoroughly in IPA and

blown dry using compressed dry air. Next, the wafer was hard-baked on a hotplate set

at 200 ◦C for ∼ 10 mins to improve the mechanical stability of the SU-8 features by

further cross-linking of the material. This step enhances the durability of the master

mold, and enables us to re-use the same mold to fabricate several batches of PDMS

devices using soft lithography.

Next, the master mold was treated with 1H,1H,2H,2H -Perfluorooctyl-trichloro-

silane (Sigma Aldrich) in a vacuum desiccator for ∼ 4 hours to make the SU-8 surface

hydrophobic. This step reduces adhesion between the SU-8 master mold and the

PDMS that is cast onto it during soft lithography, thus enabling us to cleanly and

easily peel off PDMS device copies from the master mold after it has cured. The wafer

was then rinsed thoroughly with D.I. water to remove any residuals from the wafer

surface. The master mold was then used to repeatedly fabricate devices in PDMS

using soft lithography.

PDMS (10:1, polymer:curing agent by mass) was then poured onto the master

mold and the wafer was degassed for ∼ 4 hours to remove any bubbles present in the

PDMS. The mold was then baked in a convection oven set at 65 ◦C for ∼ 4 hours. In-

dividual devices were then cut and peeled off from the mold. Reservoirs were punched

through using a 3 mm-diameter blunt, and the devices were irreversibly bonded to

clean glass coverslips using plasma bonding. The silane treatment of the master mold,

and PDMS soft lithography steps were performed in the Vanderbilt Institute for Inte-

grative Biosystem Research and Education (VIIBRE) microfabrication laboratories.

One such PDMS-based device is shown in Fig. 3.4. Each device was used only for
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Figure 3.4: Picture of an actual nanofluidic device fabricated in PDMS and bonded
to a glass coverslip. A quarter coin is shown above the device for scale.

experiments on a single day, after which it was discarded.

3.2.2 Measurement Setup

Fig. 3.5 shows a schematic of the nanofluidic sensor and the electronic circuit

used in all of our experiments. The dimensions of all the channels in the nanofluidic

circuit are listed in Table 3.1. Fig. 3.6 shows a SEM micrograph of the nanochannel

portion connecting channels A and D, as it appears on the master mold. All channel

dimensions were measured on the master mold because it was difficult to make these

measurements in the actual PDMS devices themselves. So we assumed that the actual

dimensions of the channels in PDMS were approximately the same as the channel

dimensions on the master mold.

As is evident from Fig. 3.5, we have used designed the nanofluidic circuit has
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Figure 3.5: Schematic of experimental setup (not to scale). The power supplies and
current preamplifier are commonly grounded.

Table 3.1: Dimensions of the channels of the nanofluidic sensor used in our experi-
ments

Channel Label Length (µm) Width (µm) Height (µm)

A 6000 50 5
B 3000 100 5
C 11000 10 5
D 3000 100 5

Nanochannel 5 0.35 0.5
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Figure 3.6: SEM micrograph showing the dimension of the sensing nanochannel
portion of the nanofluidic device used in our experiments. The nanochannel is ∼ 350
nm wide, 5 µm long and 500 nm deep. This image was taken on the master mold.

four microchannels as opposed to three for the microfluidic circuit discussed in Chap-

ter II. We originally added an extra vertical microchannel to our design to aid the

electro-osmotic delivery of nanoparticles to the sensing nanochannel. However, dur-

ing the course of our experiments, we found electro-osmosis to be an ineffective way

of delivering nanoparticles to the sensing nanochannel, because the nanoparticles had

a high tendency to stick to the bottom of the microchannels. Instead, we chose

to use negatively charged nanoparticles and drove them to the sensing nanochannel

electrophoretically. The four channel design proved useful in this respect because it

helped us adjust the position of the gate electrode and enable convenient tuning of

the MOSFET gate voltage.

A buffer solution containing 100 mM KCl, 10 mM Tris-EDTA with 1 mM EDTA

(pH value of 8.0) was typically used as the electrolyte in our device. Platinum elec-
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trodes were used to apply the electrokinetic bias and to connect the fluidic circuit to

the gate of the MOSFET. The reservoir labeled 1 was held at positive voltage, Vek, the

reservoir labeled 4 was held at ground, and reservoir 2 was used to connect the fluidic

circuit to the gate of the MOSFET (2N7000 N-Channel FET, Fairchild Semiconduc-

tor Co.). The MOSFETs used in these experiments were identical to those used in

the microfluidic sensor experiments, described in Chapter II, Sect. 2.2. The elec-

trokinetic bias and MOSFET drain-source bias were applied using two separate DC

power supplies (Agilent E3612A and Agilent E3617A). The MOSFET drain-source

bias, VDS was fixed at 0.15 V for all experiments.

The MOSFET drain current was measured by a current preamplifier (DL Instru-

ments 1211), with rise time set at 1 ms. The current signal was then passed through a

low-pass filter (Stanford Research Systems SR560) set at a cutoff frequency of 1 kHz,

and then a Hum Bug noise eliminator, which removed most of the 50/60 Hz line cycle

noise and associated harmonics, before it is fed into the digital data acquisition sys-

tem. The power supplies used for applying the electrokinetic bias, drain-source bias,

reservoir 4, and the current preamplifier were commonly grounded. Concurrent with

the electrical measurements, the nanofluidic device was observed under an inverted

fluorescence microscope (Zeiss Axiovert 135) using a 100x oil immersion objective.

3.3 Theoretical Analysis

Typically, in our experiments, a KCl-based buffer solution containing 100 mM

KCl, 10 mM Tris-EDTA with 1 mM EDTA was filled into the microchannels and the

liquid level in each reservoir was allowed to equilibrate. Then, a suspension containing
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nanobeads and this same buffer solution was added to reservoir 4. An electrokinetic

bias (Vek) was applied across reservoirs 1 and 4 to drive the nanobeads through the cir-

cuit electrophoretically through microchannels A and D and the sensing nanochannel.

Vek was adjusted such that the MOSFET was always working in the sub-threshold

region (VG < VT ) since the total amplification has been shown to be largest when

the MOSFET is working in the sub-threshold region as discussed in Chapter II. As

described in Chapter II, when a nanobead passes through the sensing nanochannel,

the resistance of the sensing nanochannel increases and the corresponding drop in the

ionic current results in a modulation of the gate voltage of the MOSFET. This gate

voltage modulation results in a modulation of the MOSFET drain current. For our

nanofluidic circuit, the ionic current flowing through the circuit when there are no

nanobeads in the sensing nanochannel, I, is given by

I =
Vek

RA +R +RD

(3.1)

where RA, R and RD are the resistances of microchannel A, the sensing nanochan-

nel and microchannel D respectively. Hence, the gate voltage that is fed into the

MOSFET in this case (i.e. no nanobeads), VG, is given by

VG = Vek − IRA (3.2)

When a nanobead passes through the sensing nanochannel, the ionic current flow-
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ing through the circuit is now given by

I∗ =
Vek

RA +R + ∆R +RD

(3.3)

where ∆R represents the increase in the resistance of the sensing nanochannel when

a nanobead passes through it. Correspondingly, the gate voltage of the MOSFET

can be written as

V ∗G = Vek − I∗RA (3.4)

Since I∗ < I, V ∗G > VG. Thus, nanobead translocation across the sensing nanochan-

nel results in an increase in the MOSFET gate voltage. So, we expect to see an upward

spike in the MOSFET drain current signal when a nanobead passes through the sens-

ing nanochannel. This is in contrast to the downward spikes seen in Chapter II when

microbeads passed through the sensing channel of our microfluidic sensor, because of

the arrangement of reservoirs 1, 2 and 4. If reservoir 3 was used instead of reservoir

2 to connect the fluidic circuit to the gate of the MOSFET, then downward spikes,

just like those observed in Chapter II, would be observed. However, reservoir 2 was

used for convenience of adjusting the gate voltage on the MOSFET.

The relative gate voltage modulation when a nanobead passes through the sensing

nanochannel is given by

∆VG
VG

=
(I − I∗)RA

VG
=
Vek
VG
· RA∆R

(RA +R +RD)(RA +R + ∆R +RD)
(3.5)
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Since, ∆R << (RA +R +RD), Eq. 3.5 can be simplified to give

∆VG
VG

=
Vek
VG
· RAR

(RA +R +RD)2
· ∆R

R
(3.6)

In all our experiments, we used the MOSFET working in the sub-threshold region,

so we can write the relative drain current modulation expected as

∆ID
ID

= AFET,sub
Vek
VG
· RAR

(RA +R +RD)2
· ∆R

R
(3.7)

where AFET,sub is given by

AFET,sub =

(
qVG
kT
− VG

2ψS

)(
dψS
dVG

)
(3.8)

from Chapter II, Eq. 2.8. Since we use the same MOSFETs as in Chapter II, we will

use fit parameters a=6.6 and VFB=-0.3 reported in Chapter II, Sect. 2.4.3 and 2.4.4.

We can now define the nanofluidic amplification factor, Ananofluidic as

Ananofluidic =
Vek
VG
· RAR

(RA +R +RD)2
(3.9)

3.4 Results

3.4.1 Detection of nanoparticles

A suspension of 210 nm-diameter fluorescent polystyrene (PS) nanobeads (Bangs

Labs, Inc., FC02F/4779) in 100 mM KCl buffered with 10 mM Tris-EDTA was added

to reservoir 4 of the nanofluidic sensor. An electrokinetic bias, Vek ∼ 3.5 V was applied
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across reservoirs 1 and 4. The MOSFET drain current observed as a function of time

is shown in Fig. 3.7. From the baseline MOSFET drain current, the MOSFET

Figure 3.7: MOSFET drain current as a function of time for a suspension of 210
nm-diameter PS nanobeads. The MOSFET gate voltage is ∼ 1.64 V so the MOSFET
is working in the sub-threshold region. The inset shows a zoomed in view of a single
bead translocation event.

gate voltage can be inferred to be ∼ 1.64 V. Three 210 nm-diameter fluorescent PS

nanobead translocation events are clearly observed in Fig. 3.7, and were verified by

concurrent optical observation. It is worth noting here that no discernible dips were

observed when the ionic current through the fluidic circuit was directly measured

without the use of the MOSFET. Fig. 3.8 shows an image taken with the inverted

fluorescence microscope used for concurrent optical observations.
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10 μm

sensing nanochannel

Figure 3.8: Overlay image of transmission image of sensing nanochannel region
of nanofluidic sensor and fluorescence image of 210 nm-diameter fluorescent PS
nanobeads taken with the inverted fluorescence microscope.

The relative drain current modulations for the three spikes shown in Fig. 3.7

are 4.6 %, 6.1 % and 4.2 % respectively. The variation in the relative drain current

modulation observed may be attributed to the size distribution of the nanobeads. The

ratio of the volume of the 210 nm-diameter PS nanobeads to the sensing nanochannel

(length 5 µm and cross-section 0.35 µm × 0.5 µm ) is ∼ 0.55 %. Thus, for the

examples shown in Fig. 3.7, the total amplification factor observed by using our

nanofluidic sensor is between 7.6 - 11.1. The theoretical total amplification factor

based on Eqs. 3.7 and 3.8 is ∼ 9.2, in good agreement with our experimental results.

The total amplification factors observed during this preliminary experiments with

the nanofluidic sensor (7.6 - 11.1) are much smaller compared to the total amplifi-

cation factors observed for the microfluidic sensor reported in Chapter II (40 - 80).

Ways to improve the total amplification factor for the nanofluidic sensor are outlined
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in Sect. 3.5.

The noise level in the measured drain current shown in Fig. 3.7 is ∼ 1.4 % of the

baseline. Typically, the noise level in our experiments varied between 1 - 2 % of the

baseline. This is relatively high because only the MOSFET part of the circuit was

kept inside a Faraday cage due to the need for concurrent optical observations of the

nanofluidic device. Fig. 3.9 shows an example of the typical noise level observed in the

MOSFET drain current when both the MOSFET and nanofluidic device were kept in

the Faraday cage without the use of the inverted fluorescence microscope. In this case,
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Figure 3.9: Typical noise level observed (∼ 0.7 % with respect to the baseline) when
both the nanofluidic device and MOSFET were kept in a Faraday cage without the
use of the inverted fluorescence microscope.

the noise level observed was ∼ 0.7 % of the baseline, smaller than typically observed

when not using the Faraday cage and with concurrent optical observation (1 - 2 %),

and within the range of noise levels observed in Chapter II for the microfluidic sensor
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(∼ 0.5 - 0.9 %). Thus, preliminary investigations indicate that it might be possible

to reduce the noise levels measured in the nanofluidic sensor to the same range as

reported in Chapter II if both the MOSFET and the nanofluidic device were kept

inside a Faraday cage. However, due to the difficulty in delivering the nanoparticles

to the sensing nanochannel at the moment, we conducted all our experiments under

the inverted fluorescent microscope to enable concurrent optical observations. Once

we gain more experimental experience in nanoparticle delivery, we can shield both

the MOSFET and nanofluidic device using a Faraday cage to minimize noise so that

better device sensitivity can be obtained. We believe that it will be possible to

achieve the same sensitivity (i.e. minimum detectable volume ratio of 0.006%) with

the nanofluidic sensor in the future.

Assuming that we are able to achieve this level of sensitivity, we will be able to

detect ∼ 46 nm-diameter nanobeads using a sensing nanochannel similar to that used

in our experiments (length 5 µm, width 0.35 µm and height 0.5 µm). Thus, it will

be possible to detect very small nanoparticles with relatively large sensing channels,

which are easy to fabricate.

3.4.2 Size distribution of 210 nm-diameter fluorescent PS nanobeads

Next, we measured the distribution of the drain current modulations observed

for the 210 nm-diameter fluorescent PS nanobeads using our nanofluidic device and

compared it to the size distribution of the nanobeads as measured using dynamic

light scattering instrument (Malvern Zetasizer Nano ZS), in order to check if the dis-

tribution of drain current modulations measured using our nanofluidic sensor can be
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attributed to the inherent size distribution of the nanobeads. A brief overview of the

dynamic light scattering technique is given in Appendix B. To measure the distribu-

tion of the drain current modulations, a suspension of 210 nm-diameter fluorescent PS

nanobeads in 100 mM KCl with 10 mM Tris, 1 mM EDTA buffer solution was added

to reservoir 4 of the nanofluidic device. The electrokinetic bias, Vek, was kept be-

tween 3 - 4 V such that the baseline MOSFET drain current remained approximately

constant throughout the duration of the measurement.

The distribution of drain current modulations was measured over three differ-

ent days with four similar nanofluidic devices because of the need for satisfactory

statistics. With just a single nanofluidic device, we were not able to measure more

than ∼ 50 nanobead translocation events because of random blockages of the sensing

nanochannel due to large nanobeads or groups of nanobeads. Fig. 3.10a shows the

distribution of the MOSFET drain current modulation for 158 nanobeads measured.

The filled histogram shows experimental data and the line shows a Gaussian fit to

the data. From the Gaussian fit to the data, the mean drain current modulation was

6.1 % and the standard deviation was 1.5%.

Fig. 3.10b shows the size distribution of the 210 nm-diameter fluorescent PS

nanobeads in 100 mM KCl with 10 mM Tris-EDTA buffer as measured using dynamic

light scattering. The filled histogram shows experimental data and the line shows a

Gaussian fit to the data. From the Gaussian fit to the data, the mean bead diameter

was determined to be 200 nm and the standard deviation was 39 nm. In Chapter

II, we directly measured the size distribution of the microbeads using a SEM. The

main advantage of using dynamic light scattering over electron microscopy to directly
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Figure 3.10: (a) Distribution of MOSFET drain current modulation measured for
210 nm-diameter fluorescent PS nanobeads using our nanofluidic devices. A total
of 158 nanobead translocation events were measured. (b) Bead size distribution for
210 nm-diameter fluorescent PS nanobeads obtained from dynamic light scattering
measurements. The filled histograms show experimental data and the line shows a
Gaussian fit to the data.
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characterize the size distribution of nanobeads is that light scattering measurements

are based on an average of several hundred thousand nanobeads, whereas it is very

difficult to image such a large number of nanobeads in a SEM. Thus, the statistical

error in the nanobead size distribution obtained from light scattering measurements

will be much lower than the corresponding measurements in a SEM. We were unable

to use this more accurate instrument to characterize the size distribution of the 9.86

µm-diameter microbeads reported in Chapter II because those microbeads were too

large to be detected using our light scattering instrument, which could only detect

microbeads up to a maximum of ∼ 6 µm in diameter. Thus, we have chosen to directly

measure the nanobead size distribution using dynamic light scattering instead of SEM

imaging.

To compare the two different distributions shown in Fig. 3.10 directly, the data

were normalized by the mean of the respective Gaussian distributions: 200 nm for

the Zetasizer data and 6.1 % for the data obtained from the nanofluidic sensor. Fig.

3.11a shows the normalized data from the nanofluidic device and Fig. 3.11b shows

the normalized data from the Zetasizer measurements. By definition, the normalized

mean of both distributions was 1.0. From Fig. 3.11a, the standard deviation of the

normalized drain current modulation obtained from the nanofluidic device data was

0.25. In comparison, from Fig. 3.11b, the standard deviation of the normalized bead

diameter obtained from the Zetasizer measurements was 0.20.

Since the drain current modulations from the nanofluidic sensor are proportional

to nanobead volume in contrast to light scattering which is proportional to nanobead

diameter, we expect the standard deviation from the nanofluidic sensor measurements
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Figure 3.11: (a) Normalized distribution of drain current modulation for 210 nm-
diameter fluorescent PS nanobeads obtained from nanofluidic sensor measurements.
The normalized mean was 1.0 and the standard deviation was 0.25. (b) Normalized
size distribution for 210 nm-diameter fluorescent PS nanobeads obtained from light
scattering measurements. The normalized mean was 1.0 and the standard deviation
was 0.20.
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to be three times the standard deviation from the light scattering measurements.

However, the observed standard deviation from the sensor is only slightly higher than

that from the light scattering measurement. One possible reason could be that since

we have used four different devices to measure the size distribution of the nanobeads

as mentioned above, the volume of the sensing nanochannel could vary slightly from

one device to another. This would affect the drain current modulations observed and

skew the resultant size distribution observed. A full analysis of this difference would

depend on understanding the intrinsic resolution of both techniques and how it affects

the actual size distribution data.

3.5 Discussion

During the course of our experiments, we experienced difficulty in delivering the

nanobeads reliably to the sensing nanochannel. In general, when we used plain fluores-

cent polystyrene nanobeads without any surface groups, we found that the nanobeads

often got stuck to the microchannel walls of our device. Consequently, the probabil-

ity of delivering the nanobeads successfully to the sensing nanochannel was very low.

As a result of all our attempts, successful or otherwise, we have learned that there

are two considerations that must be taken into account when designing a nanofluidic

sensor. We have to be able to (a) reliably deliver the nanoparticles to the sensing

nanochannel, and (b) sense the nanoparticle translocation with maximum total am-

plification. These two issues will be addressed in this order, based upon the insights

we have gleaned from our experimental efforts.

The two main factors that determine whether or not we are able to deliver nanopar-
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ticles successfully are the surface charge of the nanoparticles and the concentration

of electrolyte in which the nanoparticles are suspended. In general, when nanopar-

ticles are suspended in an electrolyte and driven by an applied electric field, there

are two forces acting on the nanoparticle - the electro-osmotic force that drives the

nanobeads along with the bulk fluid from the positive to negative terminal, and the

electrophoretic force due to the surface charge of the nanobeads themselves, which

is normally negative, that drives them from the negative to the positive terminal.

The electro-osmotic force is inversely proportional to the concentration of the elec-

trolyte, and the electrophoretic force is directly proportional to the surface charge

of the nanoparticle. Under certain conditions, the two opposing forces may cancel

each other resulting in negligible flow of the nanoparticles inside the device. Thus,

based on the surface charge of the nanoparticle that needs to be sensed, the con-

centration of electrolyte used must be optimized to enable successful and reliable

delivery of the nanoparticles to the sensing nanochannel. For nanoparticles with low

negative surface charge, the electrolyte concentration must to be low such that the

electro-osmotic force dominates over the electrophoretic force, and for nanoparticles

with high negative surface charge, the electrolyte concentration must be high such

that the electrophoretic force dominates over the electro-osmotic force. In our exper-

iments reported in Sects. 3.4.1 and 3.4.2, we have chosen a rather high concentration

of electrolyte (100 mM KCl buffered with 10 mM Tris and 1 mM EDTA) because

the nanobeads we used have high negative surface charge due to the presence of car-

boxylic acid groups (-COOH) on the surface of the nanobeads. It must be noted that

due to their high negative surface charge, carboxyl-terminated nanobeads (Saleh &
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Sohn, 2001; 2003; Sun & Crooks, 2000; Ito et al., 2003) have been successfully used

by other researchers working with traditional resistive-pulse sensors. Alternatively,

some research groups chose to focus on DNA molecules (Saleh & Sohn 2003; Chang

et al. 2004; Heng et al, 2004; Chen et al., 2004a; 2004b; Fan et al., 2005; Fologea et

al., 2005; Storm et al., 2005; Tabard-Cossa et al., 2007) which also have high nega-

tive surface charge. However, although the usage of highly charged nanoparticles in

nanoscale sensors is common, a comprehensive investigation of the effect of electrolyte

concentration and nanoparticle surface charge on the transport of nanoparticles has

not yet been done.

To maximize the amplification factor for sensing nanoparticles, we have to maxi-

mize the right-hand side of Eq. 3.7. The MOSFET amplification factor is maximum

when the MOSFET is working in the sub-threshold region, and we have already im-

plemented this in our experiments reported earlier. The nanofluidic amplification

factor, Ananofluidic, can be maximized by better designing our nanofluidic device.

From Eq. 3.9, there are two independenet parameters that we can adjust to im-

prove the nanolfuidic amplification factor - the ratio of Vek/VG and the resistance

ratio RAR/(RA + R + RD)2. The ratio Vek/VG can be improved by increasing the

electrokinetic bias, Vek used to drive the nanoparticles through the device. How-

ever, increasing Vek will result in the nanoparticles flowing faster, and care must be

taken to ensure that the nanoparticles do not move so quickly through the sensing

nanochannel that the data acquisition rate becomes insufficient. Assuming that the

resistance of the sensing nanochannel is determined by the size of the nanoparticle

being sensed and hence constant for the purpose of this analysis, the resistance ratio
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RAR/(RA + R + RD)2 can be maximized by designing the nanofluidic device such

that

RA = R +RD (3.10)

Thus, through our nanofluidic experimental efforts, we have gained some valu-

able insight into how we can better design a nanofluidic sensor. First, based on our

choice of nanoparticles, the concentration of the electrolyte must be optimized such

that the nanoparticles are successfully delivered to the sensing nanochannel. Next,

the nanofluidic amplification factor, Ananofluidic must be maximized. The electroki-

netic bias applied to drive the nanoparticles through the device must be maximized,

while ensuring that the speed at which the nanoparticles pass through the sensing

nanochannel is less than the data acquisition rate. In addition, the microchannels A

and D in the nanofluidic device can be designed such that their resistances obey Eq.

3.10 to maximize the nanofluidic amplification factor. Finally, as mentioned in Sect.

3.4.1, the nanofluidic device was not shielded in a Faraday cage due to the need for

concurrent optical observations. We believe that better device sensitivity and per-

formance can be achieved if we shield both the nanofluidic device and the MOSFET

in a Faraday cage. This will lower our noise levels with respect to the baseline and

enable us to sense smaller relative drain current modulations.

3.6 Summary

We have developed a prototype nanofluidic sensor based on the new MOSFET-

based sensing scheme. We have shown that we can successfully detect 210 nm-

79



diameter nanobeads using a sensing nanochannel that was 350 nm wide, 500 nm

deep and 5 µm long. With further experimental optimization, we believe that we can

sense nanobeads as small as 46 nm in diameter using such a sensing nanochannel.

Hence, our new sensing scheme will reduce the stress on fabrication technology to

make sensing nanochannels of the same size as the nanoparticles being detected, as

currently required for traditional resistive-pulse sensors. As a result of our experi-

ments, we have gained new insights into how a better nanofluidic sensor based on our

new sensing scheme can be designed. As such, we have outlined four major guidelines

that will enable us to further improve the performance of the nanofluidic sensor in

future works.
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CHAPTER IV

MOLECULAR DYNAMICS SIMULATIONS OF THERMAL BUBBLE
FORMATION IN NANOCHANNELS

4.1 Motivation

In a recent report on nanopore-based resistive pulse sensors, Smeets et al. (2006)

have used a simple model to show that the conductance expected with a nanobub-

ble present inside a nanopore is similar to the conductance measured experimentally.

They suggest that nanobubbles could cause a strong increase in low-frequency cur-

rent noise observed in ionic current measurements through nanofluidic devices due to

nucleation, movement along the nanopore surface and/or dissolution. However, we

ask the question whether bubbles can form inside nanoscale channels, and hence be a

plausible source of electrical noise in nanofluidic experiments? Nanoscale bubbles of

interest are difficult to observe experimentally. Our MOSFET-based nanofluidic sen-

sor might eventually prove to be a technique sensitive enough to detect the presence

of bubbles inside nanochannels. Until that time, we can investigate bubble nucleation

in nanochannels using molecular dynamics (MD) simulations. The rapid growth of

computer power has allowed and stimulated a significant amount of research using

molecular dynamics to study the bubble nucleation process, with model systems com-

posed of simple Lennard-Jones liquids like argon. Thus, we adapted these approaches

and pursued the theoretical investigation of bubble nucleation in nanochannels using
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the MD method.

In this Chapter, we will first present a brief introduction to the MD method.

Then, we will review the MD simulations of bubble nucleation in nanochannels that

have already been reported by several other groups. We will then present our MD

simulation model and verify that our MD models are working properly by reproducing

previously published results. Next we will present our MD simulation results for two

different fluids - argon and water. Finally, we discuss our simulation results and offer

a possible explanation for the results observed. Most of the work presented in this

Chapter has been submitted for publication in Microfluidics Nanofluidics (Sridhar et

al., 2008a).

4.2 Introduction to Molecular Dynamics

Molecular dynamics simulation is a technique for computing the equilibrium and

transport properties of a classical many-body system (Frenkel & Smit, 2002). We

typically select a model system of N atoms or molecules, solve Newton’s equations of

motion for this system until the system reaches satisfactory equilibrium (i.e. critical

properties of system do not change significantly with time), and finally extract out the

necessary measurements usually with the aid of the methods of statistical mechanics.

A simple molecular dynamics program typically involves four steps (Allen & Tildesley,

1987):

1) Initialize the positions and velocities of all N atoms involved in the simulation.

2) Calculate the force on each atom in the system based on the intermolecular

82



potentials chosen.

3) Update the position and velocity of each atom in the system after a short time

interval δt.

4) Calculate measured variables in the system, and repeat from 2) until system

reaches satisfactory equilibrium.

The three most important computational steps are steps 1-3 shown listed above.

We will now consider these three steps individually.

4.2.1 Intermolecular potentials

In order to accurately calculate the force on each atom in the system, it is crucial

to have an accurate description of the interaction potential between every atom in the

system. For a simple system containing N atoms, we can approximate the potential

energy of the system, U , as

U(r1, r2, ...rN) ≈
∑
i

u1(ri) +
∑
i

∑
j>i

u2(ri, rj) (4.1)

where the index i runs from 1 to N (i.e. the summation is over all N atoms in the

system), u1(ri) is the potential due to an external force field, and u2(ri, rj) represents

the pairwise interaction of the N atoms in the system, which is normally the most

important interaction and is often referred to as the pair potential. In this approxi-

mation, we have neglected higher order terms that correspond to interactions between

three or more atoms. This is a common approximation in molecular dynamics simula-
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tions because it becomes very complicated and computationally expensive to calculate

many-body interactions. As such, many-body interactions are often accounted for by

the use of an ‘effective’ pair potential.

In general, we can categorize pairwise interactions into two kinds - short-range

interactions and long-range interactions.

Short-range Interactions

Short-range interactions refer to interactions where the interaction potential de-

cays rapidly with interatomic distance. The most commonly used short-range inter-

action potential is called the 6-12 Lennard-Jones (L-J) potential. The general form

of the L-J potential can be written as

uLJ(ri, rj) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(4.2)

where εij represents the depth of the potential well between atoms i and j, σij is a

length parameter that represents the finite distance at which uLJ = 0, and rij is the

distance between atoms i and j. Fig. 4.1 shows a plot of the pair potential, uLJ , as

a function of interatomic distance, rij, for the case of liquid argon. The parameters ε

and σ are taken to be 1.67× 10−21 J and 3.405 Å respectively (Verlet, 1967).

As can be seen from Fig. 4.1, the L-J potential is highly repulsive at short dis-

tances, approximately less than 3.5 Å, weakly attractive at longer distances, and

decays close to zero when the interatomic distance is greater than ∼ 6 Å. The re-

pulsive component is due to the r−12 term in the L-J potential, which represents the
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Figure 4.1: Plot of the interaction potential, uLJ , as a function of interatomic
distance, rij for the case of liquid argon. The depth of the potential well, ε, is 1.67
zJ and σ is 3.405 Å.

steric hindrance of an atom, and the attractive part is due to the r−6 term, which

represents the effect of induced dipole interactions due to fluctuations in the charge

distribution of the atoms. The values for the parameters ε and σ are often available

for interactions of like elements, and combining rules such as the Lorentz-Berthelot

mixing rule (Allen & Tildesley, 1987) shown in Eq. 4.3 can be used to generate

appropriate parameters for interactions involving unlike elements or molecules. The

subscripts 1 and 2 in Eq. 4.3 represent atoms of two different elements.

σ12 = 1
2
(σ11 + σ22)

ε12 =
√

(ε11ε22)

(4.3)

For a system of N particles, the time needed to calculate the total potential

energy or force for pairwise-additive interactions such as the L-J interaction will

be proportional to N2. Thus, the computations become very time-consuming and
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computationally expensive when simulating systems with a large number of particles.

When the interatomic distance, rij = 2.5σ, the L-J potential drops to just 1.6% of

the well depth. Hence, it is common to restrict the evaluation of the potential to

atoms within a sphere of radius rc, where rc ∼ 2.5σ, since interactions between atoms

that are further than this limit do not significantly affect the total potential energy of

the system. This approach significantly reduces the computation time, because the

number of interactions computed explicitly is now reduced.

However, this approach still requires us to compute the interatomic separations of

every distinct pair of atoms in the system at each time step so that we can evaluate

whether the atoms are within the cutoff sphere or not. Verlet (1967) introduced a

technique known as the Verlet list or neighbor list, in which a second cutoff radius, rv,

is introduced where rv > rc. Before calculating the interactions, a list of all particles

within a radius, rv, of a particular particle i is made. Then, only those particles

in this neighbor list are tested at each timestep to see if the interatomic separation

rij < rc. Using this technique, the time taken to compute the total potential energy

of a N-body system will vary as Nα, where 1 ≤ α ≤ 2, depending on how frequently

the neighbor list is updated and the choice of rv. The neighbor list must also be

reconstructed frequently (of order 10 timesteps) to ensure that atoms not present in

the neightbor list for a particular particle do not come into the interaction region

during the course of the simulation.
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Long-range Interactions

Long-range interactions refer to interactions where the interaction potential de-

creases gradually with interatomic distance. A common long-range interaction po-

tential is the Coulomb potential which varies as 1/rij. For a system containing ions

or polar molecules such as water, the Coulomb potential can be written as

ucoul =
1

2

∑
i

∑
j,j 6=i

qiqj
|rij|

(4.4)

where qi and qj are the charges on atoms i and j respectively. There are two main

difficulties with calculating long-range interaction potentials:

(a) The calculation must be done over all possible atom pairs in the simulation

system since the potential does not decay rapidly like the L-J potential.

(b) Since we often use periodic boundary conditions, i.e. the simulation box is

replicated throughout space to form an infinite lattice, interactions between

particles in the main simulation box and all periodic images of the atoms must

be evaluated.

Formally, the Coulomb potential for a N -body system can be evaluated using a

lattice sum as shown in Eq. 4.5.

ucoul =
1

2

N∑
i,j=1

∑′

n

qiqj
|rij − nL|

(4.5)
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where n is a lattice vector and
∑′

n
means that for n = 0, i 6= j. This lattice is

sum is only conditionally convergent, and Ewald (1921) invented a method called

the Ewald summation method which overcomes this limitation. It is worth noting

that there are other techniques to evaluate long-range interactions such as fast mul-

tipole methods and particle-mesh techniques (Frenkel & Smit, 2002), but the Ewald

summation method is the most widely used method and is the method used in this

work.

The basic idea of the Ewald sum involves introducing a Gaussian screening charge

density of opposite charge for each point charge in the system such that the electro-

static potential due to each point charge decays to zero within a short distance. This

part of the potential then becomes short-ranged and is evaluated easily in real space.

The effect of this artificially introduced Gaussian screening charge density is then

handled by a sum in reciprocal space. The detailed derivation of the Ewald sum can

be found elsewhere (de Leeuw et al. 1980a; 1980b) and the final form can be written

as

ucoul =
1

2

[∑′

n

N∑
i,j=1

qiqjerfc(α|rij − nL|)
|rij − nL|

− 2α√
π

N∑
i=1

q2
i

+
4π

L3

∑
k 6=0

N∑
i,j=1

qiqj
|k|2

e−k
2/4α2

eik·rij

] (4.6)

where k = 2πn/L.

The first summation term is the real space evaluation of the potential of a set

of point charges which are screened by a Gaussian distribution of opposite charge,

centered at ri with width α, such that the real space potential decays rapidly to zero
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at a short distance. The potential due to this artificially introduced screening charge

is then accounted for by a sum in reciprocal space, as shown in the third term in Eq.

4.6. The second term represents the correction for including the self-interaction of

the Gaussian screening charge cloud and a point charge qi located at the center of

the Gaussian cloud. Typically, a cutoff sphere of radius Rc is used to simplify the

evaluation of the real space sum of the Ewald sum, and a cut-off wave-vector, kmax,

is used to truncate the reciprocal space sum. Thus, typically the three parameters,

α, Rc and kmax are chosen such that the truncation error in each term is minimized

and the speed of the computation is maximized.

4.2.2 Integration algorithm

Once the initial configurations of the atoms in the MD system are specified and

the potentials are evaluated to calculate the force on each atom, the equations of

motion, shown in Eq. 4.7 and 4.8, can be integrated using finite-difference methods.

fi = −∂U
∂ri

(4.7)

mir̈i = fi (4.8)

where U is the potential energy function, fi is the force on atom i due to all other

atoms in the system, and mi and ri are the mass and co-ordinates of atom i.

The algorithm used to integrate the equations of motion is usually referred to as

the integrator. The accuracy of the integrator increases as the time interval between

successful calculations is reduced, i.e. δt→ 0. However, this increases the number of
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computations of potential, position etc. required and hence reduces computational

speed. Hence, there is an intrinsic trade-off between accuracy and speed and the

integration time step is chosen carefully to balance these two considerations.

The most commonly used integration algorithm is the Verlet algorithm (Verlet,

1967) and in this work we use a variation of this algorithm known as the leap-frog

scheme (Allen & Tildesley, 1987). The algorithm can be written as

r(t+ δt) = r(t) + δt v(t+ δt/2) (4.9)

v(r + δt/2) = v(t− δt/2) + δt a(t) (4.10)

where r, v and a are vectors of position, velocity and acceleration respectively and

δt is the time step of the integration algorithm. In the leap-frog scheme, the current

positions r(t), accelerations a(t) and mid-step velocities v(t− δt/2) are stored. The

velocity equation, Eq. 4.10, is solved first to give v(t + δt/2), and then the new

positions can be calculated using this updated velocity. The current velocity can be

calculated by

v(t) =
1

2
[v(t+ δt/2) + v(t− δt/2)] (4.11)

4.2.3 Statistical Ensemble

The most common ensembles used in MD simulations are the microcanonical

(NVE) ensemble, where the number of atoms in the system, the volume of the sys-

tem and the total energy of the system are held constant, and the canonical (NVT)

ensemble, where the number of atoms in the system, volume of the system and tem-
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perature of the system are held constant. However, it is possible to also simulate other

ensembles such as the isobaric-isothermal (NPT) ensemble by controlling the appro-

priate thermodynamic quantities in MD simulations. There are four different types

of control mechanisms used in the literature to control the relevant thermodynamic

quantities: (a) differential control, (b) proportional control, (c) integral control and

(d) stochastic control. In this work, we use the NVT ensemble and the NPT ensemble,

and a proportional control algorithm is used to control the system temperature. The

proportional thermostat was proposed by Berendsen et al. (1984), and weakly couples

the system to an external heat bath. At each time step, the deviation of the system

temperature, T , from the prescribed temperature, T0, is corrected by multiplying the

velocities of the atoms by a factor, λT , which is given by

λT =

[
1 +

δt

τ

(
T0

T
− 1

)]1/2

(4.12)

where τ is the coupling time constant and represents the time scale in which the

system reaches the desired temperature, T0, and δt represents the time step of the

MD simulation. It is worth noting that the Berendsen thermostat allows the system

temperature, T , to fluctuate around the desired temperature, T0, and corrects it to a

value closer to T0 at every time step.

4.3 A Brief History of MD Simulations of Bubble Nucleation

Thermal bubble nucleation in nano-confined spaces has attracted considerable

attention recently (Kinjo et al., 1999; 2000; Maruyama & Kimura, 2000; Park et
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al., 2000; Wu & Pan, 2003; Nagayama et al., 2006), partly due to fundamental

interest in novel phase change phenomena in nano-confined systems and partly due

to the potential applications of bubbles as valves and pumps in micro- and nano-

fluidic devices. Lugli and Zerbetto (2007) discussed a number of other interesting

applications of bubbles, such as using collapsing bubbles as micro-reactors to enhance

chemical reactions and as vectors to direct drug delivery. In addition, as mentioned

in Sect. 4.1, bubbles in nanopores have been suggested as a major source for the noise

in the measured ionic current through nanopores in nanoscale resistive-pulse sensors

(Smeets et al., 2006). Such nanoscale bubbles of interest are difficult to observe

experimentally.

Due to the rapid growth of computer power, there has been a significant amount of

research done using molecular dynamics to study the bubble nucleation process, with

model systems composed of simple Lennard-Jones liquids like argon. In most simula-

tions, either an NVE system (a system with constant number of molecules, constant

volume, and constant energy) or an NVT system (a system with constant number of

molecules, constant volume, and constant temperature) is implemented. Due to the

constant volume assumption, generation of a bubble will squeeze the rest of the liq-

uid, leading to an ultrahigh pressure in the liquid because of the low compressibility

of liquid. Therefore, no stable bubble can be generated in the simulation system of

constant volume with saturation liquid density by simply setting the temperature to

be higher than the saturation temperature under a certain pressure. To overcome this

difficulty, various techniques have been used to create a model system with a den-

sity lower than the density of saturated liquid under certain temperature, and stable
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bubbles were observed in the simulations. However, such simulations can be regarded

more appropriately as bubble cavitation rather than thermal bubble nucleation.

A brief summary of recent work follows. Kinjo et al. (1998; 1999) used a micro-

canonical (NVE) ensemble to study bubble formation in Lennard-Jones liquids and

showed that bubbles formed instantaneously when the average density of the liquid

was less than 83% of the saturated liquid density at atmospheric pressure. They

predicted rapid growth of bubbles up to a diameter of ∼ 2 nm when the density was

lower than this limit.

Park et al. (2000) and Wu and Pan (2003) studied bubble formation using NVT

ensembles in Lennard-Jones liquids. Park et al. (2000) reported that stable bubbles

were formed at T = 99 K when the average density of the liquid was less than

80% of the saturated liquid density at atmospheric pressure in a cubic box 5.1 nm

long in each dimension. They also showed that this critical average density scaled

proportionally with the size of the simulation box. Larger simulation boxes had a

higher critical average density because the liquid was in a bigger domain and more

liable to break up and induce a bubble than when the liquid was in a smaller box.

They also reported that the minimum stable bubble diameter observed was 2 nm.

They claimed that no bubble was observed in a cubic simulation box of an edge

length less than 3.7 nm. Wu and Pan (2003) calculated the critical average liquid

density for various negative pressures in a cubic box with an edge length of 5.75 nm

and found that the value was consistently less than 78% of the bulk saturated liquid

density. They also calculated the homogeneous nucleation rate of argon to be on the

order of 1029 cm−3s−1 for various negative pressures, and showed that the generated
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bubbles did not grow more than 3 - 3.5 nm in diameter. This asymptotic value for

bubble diameter was attributed to the fact that these bubbles occupy 50 - 70% of the

simulation box volume, which was close to the maximum packing of bubbles (74%)

without coalescence, considering bubbles as rigid particles. In all simulations, periodic

boundary conditions in all three dimensions were adopted with negative pressures of -

10 to -20 MPa, and critical average liquid densities of about 80% of the bulk saturated

liquid density were reported.

Maruyama & Kimura (2000), and Nagayama et al. (2006) studied bubble for-

mation in Lennard-Jones liquids in the presence of solid platinum walls. Maruyama

& Kimura (2000) expanded the volume of their simulation system adiabatically and

instantaneously to generate negative pressures on the order of -20 MPa to induce

bubble generation in an NVE simulation domain and reported the formation of sta-

ble bubbles of 4 - 6 nm in diameter. They also reported that the equilibrium shape

of the bubble was characterized by the wettability of the solid surface, where low

wettability resulted in bubbles of flattened shape and high wettability resulted in

bubbles of more spherical shape. Nagayama et al. (2006) used a combination of NVT

ensemble and non-equilibrium molecular dynamics method where an external force

is applied to each molecule at the inlet of the nanochannel. They investigated the

bubble formation process in terms of the hydrophobicity/hydrophilicity of the solid

walls. Their results indicated that bubbles were formed in the bulk of the liquid when

the walls were hydrophilic and close to the surface of the walls when the walls were

hydrophobic. They observed stable bubbles of 2 - 4 nm in diameter and suggested

that the Young-Laplace equation may be inadequate for nano-bubbles because there
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were not enough vapor molecules in the bubbles to generate a sufficiently high vapor

pressure to maintain force balance with the surrounding liquid.

The generation of bubbles due to rupturing of fluid caused by a decrease in pressure

is referred to as cavitation (Brennen, 1995). It can be seen that all the aforementioned

reports on modeling bubble generation represent simulations more of a cavitation

process rather than thermal bubble formation because of the use of negative external

pressures which are likely to exert enough tensile stress to rupture the fluid. In

reality, thermal bubble generation usually happens under constant temperature and

pressure while the system volume can vary. NPT simulations of bubble nucleation

are rarely reported in the literature. In fact, to our knowledge the only NPT study

of bubble nucleation was recently reported by Novak et al. (2007). They primarily

investigated the effect of the strength of solid-liquid interactions on bubble nucleation

rate. They simulated several cases corresponding to strong, neutral and weak solid-

liquid interactions and found that the nucleation rate was highest when the solid-

liquid interaction was weak.

In this work, we report on simulations of thermal bubble nucleation in NPT sys-

tems of both argon and water using a parallel molecular dynamics code, with a

different mathematical formalism as compared to Novak et al. (we will discuss the

different computational approaches used by Novak et al. and this work, which give

rise to our different results, in the following section). Our results indicated that for

the NPT system, no bubble generation was observed at an external pressure of 0.1

MPa even though the system temperature was well above the boiling temperature

of the respective liquids. In fact, no bubble generation could be observed even when
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the external pressure was reduced to as low as 0.01 MPa. To explain our observa-

tions, we hypothesize that bubble nucleation in nano-confined liquids is suppressed

by a pressure wave generated inside the nanochannel during bubble nucleation. This

pressure wave travels toward the channel walls, reflects off the solid walls back toward

the bubble nucleation site and suppresses bubble nucleation.

4.4 MD Simulation Methods

We simulated both NVT and NPT systems for two kinds of liquids: argon and

water with molecular dynamics.

4.4.1 NVT Systems

The interaction between argon atoms was modeled using the L-J potential as

described by Eq. 4.13:

uLJ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(4.13)

where the length parameter, σAr−Ar, the energy parameter, εAr−Ar, are listed in Table

4.1.

The water molecules were modeled by the SPC/E model (Berendsen et al., 1987)

with a SETTLE algorithm (Miyamoto & Kollman, 1992) to maintain the rigid geom-

etry of each molecule. The intermolecular interactions are described by the Lennard-

Jones potential with parameters for different atom pairs given in Table 4.1 (Qiao &

Aluru, 2003). In addition, the electrostatic interactions between the O and H atoms
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Table 4.1: Lennard-Jones parameters used for interactions involving argon, silicon
and water molecules (Qiao & Aluru, 2003).

Atom pair ε (10−21 J) σ (Å)

Ar-Ar 1.67 3.41
Ar-Si 5.2 3.36
O-O 4.3 3.17
O-Si 8.4 3.27

in water molecules were calculated using an Ewald summation algorithm (Frenkel &

Smit, 2002). Periodic boundary conditions were adopted in all three dimensions for

both the water and argon systems. A Berendsen thermostat (Berendsen et al., 1984)

with a time constant of 0.1 ps was used to control the system temperature at a given

value. The equations of motion were integrated using a leap-frog algorithm with a

time step of 2.0 fs. In all simulations, a cutoff radius of 11 Å was used to calculate

the L-J potential and the real space part of electrostatic interaction potential.

4.4.2 NPT Systems

For NPT systems, the argon or water molecules, modeled using the same inter-

molecular potentials as in the NVT systems, are sandwiched between two parallel

silicon plates. For the argon NPT systems, the Ar-Si interaction was also modeled

using the L-J potential with the parameters calculated using the Lorentz-Berthelot

combination rule shown in Eq. 4.3. The L-J parameters used for the Ar-Si are shown
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in Table 4.1. It is worth noting that the primary difference between our simulation

scheme and that of Novak et al. (2007) is the way we have handled the solid-liquid

interactions. Novak et al. used a L-J potential, similar in form to what we have used,

to model the solid-liquid interaction at the bottom channel wall. However, they used

a 9-3 mean field potential to model the interactions of the fluid atoms with the top

channel wall. The 9-3 potential results from a series of approximations in which the

original L-J potential is averaged over space, to form a continuum description. The

L-J potential that forms the basis of the 9-3 potential, is precisely of the same form as

that used in this paper in a non-averaged approach. In particular, we have used the

same L-J potential to model fluid interactions with both the top and bottom channel

walls, as opposed to the approach used by Novak et al.

For the water NPT systems, the interaction between water molecules and silicon

walls was described by the L-J interaction between oxygen and silicon atoms with

interaction parameters also listed in Table 4.1. The electrostatic interactions between

the O and H atoms in the water molecules were calculated using an Ewald summation

algorithm with slab correction (Yeh & Berkowitz, 1999). Periodic boundary condi-

tions were applied in the two dimensions that were not bound by the silicon walls.

The top silicon wall was allowed to move in the z-direction, up to a maximum of

10 - 15 nm from the bottom wall, to maintain constant pressure enforced upon the

simulation systems. A Berendsen thermostat, as described for the NVT systems, was

used to control system temperature, and the leap-frog algorithm was used to integrate

the equations of motion with a time step of 2.0 fs. The same cutoff radius as used

in NVT systems was used to calculate the L-J potential and real space part of the
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electrostatic interaction potential.

4.5 Verification of Code and Results of NVT Systems

To verify that our code produces results similar to those reported in the literature,

we first modeled argon NVT systems, which have been reported in several publica-

tions. We also modeled water NVT systems, which have not been reported in the

literature to our knowledge. The NVT simulations of both argon and water systems

allow the comparison with their respective NPT systems.

4.5.1 Verification of MD Code using Argon NVT Case

The canonical (NVT) ensemble of argon included 2606 argon atoms in a simulation

box as shown in Fig. 4.2. The system temperature was kept at 100 K and the

Figure 4.2: Schematic of the simulation box (not to scale) used for bulk argon case.
Periodic boundary conditions were applied in all three directions. The green spheres
represent argon atoms.
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average density of the system was varied from 70% to 100% of the saturated liquid

argon density at atmospheric pressure (0.1 MPa) by adjusting the height of the box

between 4.2 and 6 nm. The coordinates of every atom in the system was recorded

every 20 ps. We identify a stable bubble visually as a region with density less than

20% of the density of the surrounding fluid with a size larger than 1 nm that can be

observed over 400 ps.

Fig. 4.3a shows a typical argon atom configuration when the density of the liquid

was 0.84ρ0,argon, where ρ0,argon is the density of saturated liquid argon under atmo-

spheric pressure (1397 kg/m3). No bubble was observed in this case over the whole

simulation period of 3 ns. Fig. 4.3b shows a typical argon atom configuration when

the density of argon was 0.70ρ0,argon and a stable bubble was observed in this case.

In general, we found that large, stable bubbles were formed at T = 100 K when

ρ < 0.8ρ0,argon, which is in agreement with the molecular dynamics results published

by several others (Kinjo & Matsumoto 1998; Park et al. 2000; Wu & Pan 2003).

The bubble shown in Fig. 4.3b has a cylindrical shape with a diameter of approx-

imately 2.5 nm and a length of 5 nm, which took approximately 1 ns to form. Once

formed, the bubble is observed to be stable for the rest of the simulation period of

approximately 2 ns. The nucleation rate was estimated as the inverse of the product

of the bubble volume and the time taken for the bubble to form. At T = 100 K, the

nucleation rate calculated for argon in the NVT system was 4× 1028 cm−3s−1, which

is close to the values reported in the literature (Kinjo & Matsumoto 1998; Kinjo et

al. 1999). In conclusion, we believe that our molecular dynamics code and model

parameters reproduce previously published results.
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Figure 4.3: (a) No bubbles observed for the argon NVT case at T = 100 K, ρ =
0.84ρ0,argon, as expected. b) Stable bubble formed for the argon NVT system with
T = 100 K and ρ = 0.70ρ0,argon. The green spheres represent argon atoms. For scale,
the diameter of the bubble shown in (b) is ∼ 2.5 nm.
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4.5.2 Water NVT Case

The canonical (NVT) ensemble of water contains 2008 water molecules in a simu-

lation box similar to Fig. 4.2 with dimensions of x = y = 4.34 nm and z ∼ 3− 5 nm.

The height of the simulation box was varied to adjust the average density of water in

the system to be 60% to 100% of the saturated liquid water density at 0.1 MPa and

450 K (ρ0,water = 958 kg/m3). The total simulation time was 2 ns.

For the water NVT systems, we observed stable bubbles when ρ < 0.74ρ0,water.

The critical relative average density (0.74ρ0,water) for observing bubble formation is

smaller than that for the argon case (0.8ρ0,argon from Sect. 4.5.1), possibly associated

with the different intermolecular potentials of argon and water. Fig. 4.4a shows

a typical water molecule configuration when the average density is higher than the

critical average density, and Fig. 4.4b shows one when the average density is lower

than the critical average density.

The bubble in Fig. 4.4b has a cylindrical shape with a diameter of approximately

2 nm and a length of 4 nm. The bubble formation time in this case is approximately

200 ps, which is shorter than the formation time reported earlier for the Ar bubble.

The calculated nucleation rate in this case was 4×1029 cm−3s−1, which is in consistent

with the fact that the homogeneous nucleation rate of water is generally higher than

that of argon (Carey, 1992).
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Figure 4.4: (a) No bubbles observed for the water NVT case at T = 450 K, ρ =
0.95ρ0,water. b) Stable bubble formed in the water NVT system at T = 450 K,
ρ = 0.66ρ0,water. The red spheres represent oxygen atoms and the white spheres
represent hydrogen atoms. For scale, the diameter of the bubble shown in (b) is ∼ 2
nm.
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4.6 Thermal Bubble Formation in NPT Systems

Having confirmed that our code can generate results similar to those reported

in the literature, and using results of NVT systems as a comparison base, we then

performed simulation of thermal bubble nucleation in the more realistic isothermal-

isobaric (NPT) ensemble for both argon and water.

4.6.1 Argon NPT Case

A typical snapshot of the argon NPT system is shown in Fig. 4.5, where the

argon atoms were sandwiched by two silicon plates in the z-direction. There were four

layers of Si atoms in each wall, consisting of 800 neutral Si atoms rigidly arranged in

a diamond lattice with its (100) surface in contact with argon.

First, the NPT system was modeled under a constant pressure of 0.1 MPa. In all

simulations, we equilibrated our system until the top silicon wall oscillated within a

distance of less than 1Å. This ensured that the overall pressure in our system was

indeed kept constant. Under a constant pressure of 0.1 MPa, we did not observe any

stable bubbles generated at T = 100 K for a simulation period of 3 ns. Furthermore,

no stable bubble was observed even when the system temperature was raised up to

T = 120 K, the superheat limit for argon. The snapshots of argon atoms in the

confined silicon nanoslits at T = 100 K and T = 120 K are shown in Figs. 4.6a and

4.6b, respectively.

To study whether thermal bubble formation would occur under lower pressure,

we modeled argon NPT systems at T = 100 K and 120 K with external pressures
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Figure 4.5: Schematic of the simulation box used for argon NPT case. The x and
y dimensions of the simulation box are 5.43 nm and the z dimension of the box was
controlled by the net pressure of the system. The yellow spheres represent silicon
atoms and the green spheres represent argon atoms.

varying from 0.01 MPa to 0.1 MPa. No bubble formation was observed in any of these

cases. Fig. 4.7 shows the variation of the relative average density of the nano-confined

argon (ρ/ρ0,argon) as a function of the external pressure of the system. The relative

average density of nano-confined argon was calculated by dividing the total number

of argon atoms in the system by the volume of the nanochannel box at equilibrium

and normalizing by the average density of saturated liquid argon at atmospheric

pressure (ρ0,argon). We found that the average density of nano-confined argon changed

negligibly as the external pressure of the system was reduced. This indicates that

nano-confined argon behaves like a liquid with low compressibility even when the

system temperature was close to the superheat limit of argon.
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Figure 4.6: (a) No bubbles observed for argon NPT case at T = 100 K, and (b)
T = 120 K. The average density of the argon in the nanochannel was 0.96ρ0,argon

at T = 100 K and 0.86ρ0,argon at T = 120 K. The pressure of the system was kept
constant at 0.1 MPa. The yellow spheres represent channel wall atoms and green
spheres represent argon atoms.
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Figure 4.7: Average relative density (ρ/ρ0,argon) of argon in the nanochannel as a
function of external pressure for argon NPT systems at two different temperatures,
T = 100 K and T = 120 K.

4.6.2 Water NPT Case

Similar to the argon NPT case, the bubble nucleation process was modeled for

water using a NPT system with dimensions x = y = 4.34 nm. The distance between

the silicon plates in the z-direction was controlled by the net pressure of the system

similar to that for the NPT argon system.

The water NPT system was first modeled under a constant pressure of 0.1 MPa

for different temperature from 450 K to 540 K. No stable bubble was observed for any

cases for a simulation time of 2 ns, which is true even when the system temperature

was raised to approximately T = 540 K, the superheat limit of water. Figs. 4.8a

and 4.8b show the snapshots of water molecules at T = 450 K and T = 523 K,

respectively. The average density of water molecules shown in Figs. 4.8a and 4.8b

was 0.81ρ0,water at T = 450 K and 0.70ρ0,water at T = 523 K respectively.

The water NPT system was also simulated under a reduced external pressure of
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Figure 4.8: No bubbles observed for the water NPT case at (a) T = 450 K, and
(b) T = 523 K. The average density of the water in the nanochannel was 0.81ρ0,water

for T = 450 K and 0.70ρ0,water for T = 523 K. The pressure of the system was kept
constant at 0.1 MPa. The yellow spheres represent Si channel wall atoms, red spheres
represent oxygen atoms and white spheres represent hydrogen atoms.
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Figure 4.9: No bubble formation in water was observed up to a simulation time
of 2 ns when external pressure was reduced to 0.01 MPa at (a) T = 450 K, and (b)
T = 540 K. The average density of the water in the nanochannel was 0.80ρ0,water

for T = 450 K and 0.65ρ0,water for T = 540 K. The pressure of the system was kept
constant at 0.01 MPa.
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0.01 MPa at T = 450 K and T = 540 K to observe whether bubble formation would

occur when the system pressure was reduced. Figs. 4.9a and 4.9b show snapshots

of the water molecules at T = 450 K and T = 540 K under a pressure of 0.01 MPa,

respectively. The average density of water molecules was 0.80ρ0,water at T = 450 K,

and 0.65ρ0,water at T = 540 K. Figs. 4.9a and 4.9b indicate that no bubble forms

even under reduced pressure and elevated temperature. The average water density in

the nanochannel when the external pressure is 0.01 MPa (ρ = 0.80ρ0,water at T = 450

K) is very close to the average density when the external pressure was 0.1 MPa

(ρ = 0.81ρ0,water at T = 450 K), which indicates that nano-confined water, just like

nano-confined argon, behaves like a liquid with low compressibility even when the

system temperature is close to the superheat limit of water.

4.7 Discussion

4.7.1 Effect of Pressure Waves in Bubble Nucleation in NPT Systems

Our results indicate that thermal bubble nucleation is suppressed in nano-confined

NPT systems, compared to the bulk, NVT systems. To understand our simulation re-

sults, we consider the physical process for thermal bubble nucleation. During thermal

bubble nucleation, the bubble compresses the liquid around it and generates a pres-

sure disturbance to adjust the arrangement of the liquid. The pressure disturbance

propagates in the liquid as a pressure wave. We believe that in nano-confined spaces,

the pressure disturbance will travel to the channel wall, where it will be reflected back

to the bubble nucleation site and suppress bubble formation. The effects of pressure
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waves on bubble nucleation were first discussed by Zhang et al. (2000) in a theoretical

effort to understand why very high superheat temperatures were required to observe

bubbles in microchannels. Using iterative, numerical computations, they estimated

the nucleation rate and maximum superheat temperature required for successful bub-

ble nucleation in methanol in microchannels by assuming that the nucleation time is

equal to the time taken for the pressure wave to reflect off the channel wall back to

the nucleation region. They obtained qualitative agreement between their theoretical

prediction for the superheat limit for bubble nucleation in methanol as a function of

microchannel diameter and the experimental results.

Here, we extend this pressure wave concept to explain why bubble nucleation

is not observed in nano-confined NPT simulations. The pressure wave explanation

requires that the time for the pressure wave to travel to the channel wall and back

must be much less that the time for bubble nucleation. Only then can we attribute

the suppression of bubble nucleation to the effect of the pressure wave. Therefore,

we define and compare two characteristic times: tnuc, which is the time taken for a

bubble to form, grow and stabilize in size, and tpress, which is the time required for

the pressure wave to travel to and from the nanochannel walls back to the bubble

nucleation site. tnuc was estimated from the corresponding NVT systems at the same

temperature and reduced density by visually estimating how many timesteps were

required for a stable bubble to form from a atomic configuration where no bubbles

were observed.

A time-sequence of frames illustrating the growth and stabilization of a bubble

formed in the argon NVT system is shown in Fig. 4.10. In practice, we start from a
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(a)

(b)

(c)

(d)

Figure 4.10: Sequence of frames showing argon atom configuration in the NVT
system with T = 100 K and ρ = 0.70ρ0,argon. (a) Argon atom configuration just
before bubble nucleation process begins. We will define this as t = 0 ps. (b) Small
density fluctuation begins to form near the side of the simulation box, t = 140 ps. (c)
Clear, stable bubble observed at t = 840 ps, just as the bubble stabilizes, and again
at (d) t = 2 ns.
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timestep where a clear, stable bubble is observed, as shown in Fig. 4.10d and track the

argon atom configuration backwards in time until we find the earliest timestep where

we still recognize the stable bubble. This corresponds to Fig. 4.10c, and this frame

marks the completion of the bubble formation process. Now, we continue tracking

the argon atom configuration backwards in time until we observe a relatively uniform

distribution of argon atoms with no sign of bubble formation, as illustrated by Fig.

4.10a. Fig. 4.10b shows a snapshot of the intermediate argon atom configuration as

the bubble is forming in the simulation system. Thus, we estimate tnuc to be the

difference in time between the atomic configurations shown in Figs. 4.10c and 4.10a.

In the example shown, tnuc ∼ 840 ps. Eq. 4.14 was used to estimate tpress.

tpress =
L

vsound
(4.14)

where L is the distance traveled by the pressure wave, which is taken as twice the

height of the nanochannel system, and vsound is the speed of pressure waves in the

liquid. In the calculation of tpress, we have assumed the vsound to be ∼ 820 ms−1 for

argon and ∼ 1500 ms−1 for water (Lide, 2002).

The values of tnuc and tpress for argon and water NPT systems are tabulated in

Table 4.2. Table 4.2 clearly indicates that for both argon and water, the characteristic

times for the pressure waves are about one order of magnitude less than bubble

nucleation times.

To further test the above argument, we constructed a model of virtual argon

with modified intermolecular interaction strength. The purpose was to investigate
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Table 4.2: Calculated values of tnuc and tpress for three different simulations cases.
The virtual argon case refers to the NPT case where the strength of the liquid-liquid
interaction was reduced by 20%, i.e. β = 0.8.

Parameter\Fluid type Real argon (β = 1) Virtual argon (β = 0.8) Water

T (K) 100 100 450

tnuc (ps) 840 10 180

tpress (ps) 12 12 6

Bubbles? No Yes No

whether thermal bubbles could be generated in a liquid with different intermolecular

interactions, and how the characteristic times for the pressure waves and bubble

nucleation compared with each other. For the virtual argon fluid, we applied a scale

factor β to vary the strength of the liquid-liquid energy parameter with β varying

from 0.1 to 2.0. β < 1 corresponds to cases where the liquid-liquid interaction is

weaker than the typical Ar-Ar interaction, and β > 1 corresponds to cases where the

liquid-liquid interaction is stronger than the typical Ar-Ar interaction. We call these

liquids virtual argon as their intermolecular potentials are scaled from real argon.

Simulations were performed at T = 100 K with an external pressure of 0.1 MPa. All

other simulation conditions were kept the same as the argon NPT case reported in

section 4.6.1.

Fig. 4.11 shows the relative average density of the liquid confined in the nanochan-
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Figure 4.11: Plot of relative average density of fluid in the nanochannel as a function
of the strength of liquid-liquid interaction at T = 100 K. β = εliq−liq/1.67 × 10−21

J. The relative average density of the fluid in the nanochannel was calculated by
normalizing the average density of the fluid in the nanochannel for each simulation
case by the average density of argon in the nanochannel (β = 1).

nel as a function of β. The relative average density of the liquid was calculated by

dividing the calculated average liquid density in the simulation domain by the average

density of argon in the nanochannel (i.e. β = 1 case). We observed a reduced average

density of the liquid as the strength of the liquid-liquid interaction is weakened. At

100 K, the saturation pressure for argon is approximately 0.3 MPa, which is higher

than 0.1 MPa. This means that the intermolecular potential holds the molecules

together and a reduced strength of the intermolecular potential would allow greater

separation of the molecules.

For the virtual argon, we found that no bubble would form for a simulation time

of 3 ns when β ≥ 0.82 corresponding to εliq−liq ≥ 1.37 × 10−21 J. For β < 0.82, an

unstable bubble would form and expand rapidly such that its size would exceed the

size of our simulation domain. Fig. 4.12a shows a snapshot of the configuration of
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the liquid atoms when T = 100 K, β = 0.9. No bubble can be observed in the system.

Fig. 4.12b shows a snapshot of an unstable bubble forms when T = 100 K, β = 0.8

after 80 ps. The bubble shown in Fig. 4.12b has a diameter of ∼ 4 nm and length 5

nm and expands so rapidly that the top Si channel wall exceeds our simulation box

size after 134 ps.

To extract the bubble nucleation time, tnuc, we also performed a simulation of

an NVT system with reduced intermolecular interaction of 1.34 × 10−21 J (β = 0.8)

at T = 100 K in a manner similar to that reported in Sect. 4.5.1 for consistency.

The NVT simulation box height was varied from 6 - 9 nm and we observed a stable

bubble for the β = 0.8 case when the average density of the fluid was less than or

equal to 0.53ρ0. From the NVT simulations, tnuc was estimated to be 10 ps in the

same manner as for the argon and water cases. To calculate tpress for the virtual

argon, we took L as twice the height of the nanochannel box just before the bubble

was observed. The speed of the pressure waves was taken as that for real argon

(820 ms−1), which should be larger than the acoustic speed in the virtual argon of

lower density. Therefore, the calculated tpress should be a conservative value smaller

than the actual value. For the virtual argon case, the calculated tpress (12 ps) was

larger than tnuc (10 ps). Correspondingly, a thermal bubble was observed in the

simulation. This further supports the hypothesis that thermal bubble formation in

an NPT system depends on the competition between the rate of bubble nucleation

and suppression by the reflected pressure waves.
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Figure 4.12: (a) Configuration of fluid molecules at T = 100 K, β = 0.9. No bubbles
observed up to a simulation time of 3 ns. (b) Snapshot of unstable bubble shown at
T = 100 K, β = 0.8 at t = 80 ps. Bubble shown has diameter ∼ 4 nm and length 5
nm.
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4.7.2 Effect of Solid-Liquid Interactions

Due to the presence of solid channel walls in close proximity to the fluid atoms,

the strength of the solid-liquid interactions is expected to be an important parameter

influencing bubble nucleation in nanochannels. As discussed in Sect. 4.4.2, Novak et

al. (2007) recently reported a molecular dynamics study of bubble nucleation rate in

a Lennard-Jones liquid when confined between two plates of arbitrary material using

an isobaric-isothermal (NPT) system. In their simulations, they allowed the fluid

atoms to interact with the top channel wall through a mean field 9-3 potential, and

with the bottom channel wall through a 6-12 L-J potential. They investigated three

distinct cases (strong, neutral & weak) where the strength of solid-liquid interaction

with the bottom wall only was varied. They observed bubble nucleation in all three

cases and found that the nucleation rate was fastest when the solid-liquid interaction

was weak. Their strong, neutral and weak solid-liquid interaction cases corresponded

to values of 1.67 × 10−21 J, 8.35 × 10−22 J and 2.64 × 10−21 J for the 6-12 L-J (i.e.

bottom wall interaction) solid-liquid energy parameter, εsol−liq.

Instead of using the 9-3 potential, which essentially can be derived from the 6-12

L-J potential through a series of integrations in space, we allow the fluid atoms to

interact with both the top and bottom wall using a 6-12 L-J potential, starting with

εsol−liq = εAr−Si = 5.2 × 10−21 J, as reported in Table 4.1. We vary the solid-liquid

interaction strength by introducing a multiplicative scale factor, α, for the solid-liquid

energy parameter such that 0.01 ≤ α ≤ 2. Thus, our range of solid-liquid interaction

strengths correspond to 5.2 × 10−23 J ≤ εsol−liq ≤ 1.0 × 10−20 J, which covers and
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extends the range of solid-liquid interaction strengths studied by Novak et al. α < 1

represents cases where the solid-liquid interactions are weaker than the original Ar-Si

interaction (i.e., more hydrophobic), whereas α > 1 represents cases where the solid-

liquid interactions are stronger than the Ar-Si interaction (i.e., more hydrophilic).

Simulations were carried out at two different temperatures (T = 100 K and T = 120

K) with the external pressure fixed at 0.1 MPa. All other simulation conditions were

kept the same as the argon NPT case reported in Sec. 4.6.1.
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Figure 4.13: Plot of relative average density of fluid in the nanochannel as a function
of the strength of solid-liquid interaction at T = 100 K and 120 K. α = εsol−liq/5.22×
10−21 J. The relative average density of the fluid in the nanochannel was calculated
by normalizing the average density of the fluid in the nanochannel for each simulation
case by the average density of argon in the nanochannel (α = 1) at the corresponding
temperature.

Fig. 4.13 shows a plot of the relative average densities of the liquid in the

nanochannel as a function of α at T = 100 K and 120 K. The relative average density

of the liquid in the nanochannel for each simulation case was obtained by dividing the
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calculated average density by the average density of argon in the nanochannel (α = 1)

at the corresponding temperature. Similar to the case of the liquid-liquid intermolec-

ular interaction, the average density of the liquid in the nanochannel increased with

a stronger solid-liquid interaction and vice-versa.

No bubbles were found in simulations at T = 100 K when α ≥ 0.05 (εsol−liq ≥

2.6× 10−22 J). When α < 0.05, a bubble formed and grew rapidly such that the size

of the bubble quickly exceeded our simulation box size, causing the simulations to

terminate. Fig.4.14a shows a snapshot of an unstable bubble seen at T = 100 K,

α = 0.04 (εsol−liq = 2.1 × 10−22 J) after 140 ps, just before the top Si channel wall

of our system expanded beyond our simulation box because of rapid bubble growth.

At T = 120 K, we found no bubbles when α ≥ 0.2 (εsol−liq > 1.0 × 10−21 J). Below

this threshold value, similar to the T = 100 K cases, we found that a bubble formed

and grew to exceed the simulation box. Fig. 4.14b shows a snapshot of an unstable

bubble seen at T = 120 K, α = 0.1 after 100 ps. The bubble shown in Fig. 4.14b

expanded so rapidly that the top channel wall expanded beyond our simulation box

within 190 ps.

In summary, we could only observe bubble nucleation when the strength of the

solid-liquid interaction is below a certain threshold value at both T = 100 K and

T = 120 K. This observation can be understood qualitatively. When the solid-liquid

interaction is strong, the liquid atoms are strongly bound to the solid walls. As

such, they are rendered almost immobile and are not available to participate in the

bubble formation process. Thus, bubble formation is not observed for strong solid-

liquid interactions. When the solid-liquid interaction is sufficiently weak, the liquid
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Figure 4.14: (a) Bubble observed to be forming at the top Si plate for argon NPT
case at T = 100 K with α = 0.04 (εsol−liq = 2.1× 10−22 J). This snapshot was taken
at t = 140 ps, just before the simulation terminated because of rapid bubble growth.
The bubble shown has a cuboid shape with length ∼ 5 nm and height ∼ 3 nm. (b)
Bubble observed to be forming at bottom Si plate for argon NPT case at T = 120 K
with α = 0.1 (εsol−liq = 5.2 × 10−22 J). This snapshot was taken at t = 100 ps, and
the bubble is cylindrical in shape with length ∼ 5 nm and diameter 4 nm.
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atoms are weakly bound to the solid walls and so, more likely to participate in the

bubble formation process. It must be noted that direct comparison of our results with

Novak’s work (Novak et al., 2007) is not possible because they use different simulation

conditions (temperature and pressure) and different mathematical formalism (i.e. the

use of the 9-3 potential to model interaction with top wall) to model bubble nucleation

in nanochannels.

4.8 Summary

Molecular dynamics studies of bubble nucleation process were carried out using

both NVT and NPT systems for both argon and water. Results using NVT systems

show that we are able to reproduce previously published results, which indicate that

our molecular dynamics code works properly. The modeling of bubble nucleation

process using (NPT) systems indicates that no bubble formation for either argon or

water under an external pressure of 0.01 - 0.1 MPa even when the temperature ap-

proaches the limit of superheat. This observation is consistent with the hypothesis

that bubble nucleation in nano-confined liquids can be suppressed by a pressure wave

generated inside the nanochannel during bubble nucleation. The generated pressure

wave travels toward the channel walls, reflects off the solid walls back toward the bub-

ble nucleation site and suppresses bubble nucleation. Comparison of the calculated

characteristic times for the pressure wave and bubble nucleation indicates that bub-

ble nucleation in the NPT system is suppressed when the characteristic time for the

pressure wave is much shorter than the bubble nucleation time. To further examine

this hypothesis, the liquid-liquid interactions are varied to alter the two characteris-
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tic times, and results show that when the characteristic time for the pressure wave is

larger than the bubble nucleation time, bubble nucleation does occur in NPT systems.

We also investigate the effect of the strength and representation of solid-liquid inter-

actions on bubble nucleation in nano-confined argon NPT systems. Results indicates

that bubbles will not form until the energy parameter of the solid-liquid interaction

potential was less than 5% of its original value at T = 100 K and less than 20% of its

original value at T = 120 K. Below these threshold values, bubbles will form almost

spontaneously and grow rapidly. This result can be understood qualitiatively because

when the solid-liquid interaction is strong, the liquid atoms are strongly bound to the

solid walls and are almost immobile. Hence, these atoms are unavailable to partici-

pate in the bubble formation process. Bubble formation is thus less likely because few

atoms are available to participate in the bubble formation process. However, when

the solid-liquid interaction is sufficiently weak, the liquid atoms are no longer bound

strongly to the solid walls, and are available to participate in the bubble formation

process, making the process more likely.
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CHAPTER V

CONCLUSIONS

Part One: Experimental Work

Experimentally, we have developed a new sensing scheme integrating a MOSFET

with a fluidic device. Particles are detected by monitoring the MOSFET drain cur-

rent instead of the ionic current through the fluidic circuit as in traditional resistive

pulse sensors. The sensing scheme was first tested and characterized in detail using

a microfluidic device fabricated in PDMS (Chapter II). We demonstrated that this

MOSFET-based resistive pulse sensor can increase sensitivity by amplifying the per-

centage of the modulation caused by the translocation of particles through the sensing

channel. Several different micron-scale polystyrene microbeads were detected using

the MOSFET-based microfluidic resistive pulse sensor, and the detected minimum

volume ratio between the particle and the sensing channel was found to be 0.006 %,

∼10 times smaller than the lowest volume ratio previously reported in the literature.

The sensitivity of the MOSFET-based resistive pulse sensor was characterized as a

function of MOSFET gate voltage. It was shown that the device was more sensitive

when operated in the sub-threshold region as compared to the saturation region. In

addition, the sensitivity with respect to the applied electrokinetic bias, V−, was also

investigated and it was shown that the relative drain current modulation varied lin-

early with V−. We also showed that the MOSFET-based microfluidic resistive pulse
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sensor can distinguish particles of both different sizes and of similar size but differ-

ent surface charges, based on the observed amplitude of the MOSFET drain current

modulation and the translocation time. It was shown that the size dispersion of 9.86

µm in diameter polystyrene beads measured with the MOSFET-based resisitve pulse

sensor was comparable to that from direct SEM observation.

Next, we extended this sensing scheme to the nanoscale by fabricating a nanoflu-

idic device, also in PDMS (Chapter III). Using a sensing nanochannel that was ∼

350 nm wide, 500 nm deep and 5 µm long, we successfully detected 210 nm-diameter

nanobeads, corresponding to a volume ratio of 0.48 %. Based on the experimental in-

sights we have gained from these preliminary investigations and further experimental

optimization, we believe that we can achieve the same sensitivity with the nanoflu-

idic sensor as with the microfluidic sensor reported in Chapter II. In principle, this

will allow us to sense nanoparticles as small as 46 nm in diameter with the same

sensing nanochannel reported above. Thus, our new sensing scheme will reduce the

stress on fabrication technology to make sensing nanochannels of the same size as

the nanoparticles being detected, as currently required for traditional resistive pulse

sensors.

Part Two: Computational Work

In recent experimental studies of nanopore-based resistive pulse sensors, nanobub-

bles have been cited as a possible source of noise in the ionic current measurements.

Due to the rapid growth and availability of computing power and the challenges of

studying nanobubble formation experimentally, we carried out molecular dynamics
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simulations of thermal bubble nucleation in nanochannels (Chapter IV) to investigate

whether nanobubbles can indeed form in nanochannels and thus, be a valid source of

noise in nanofluidic experiments.

Molecular dynamics studies of bubble nucleation process were carried out using

both NVT and NPT systems for both argon and water. Using NVT systems, we

showed that we are able to reproduce previously published results, which indicate

that our molecular dynamics code works properly. The modeling of bubble nucle-

ation process using (NPT) systems indicated no bubble formation for either argon

or water under an external pressure of 0.01 - 0.1 MPa even when the temperature is

approaching the limit of superheat. This observation is consistent with the hypothesis

that bubble nucleation in nano-confined liquids can be suppressed by a pressure wave

generated inside the nanochannel during bubble nucleation. The generated pressure

wave travels toward the channel walls, reflects off the solid walls back toward the bub-

ble nucleation site and suppresses bubble nucleation. Comparison of the calculated

characteristic times for the pressure wave and bubble nucleation indicates that bub-

ble nucleation in the NPT system is suppressed when the characteristic time for the

pressure wave is much shorter than the bubble nucleation time. To further examine

this hypothesis, the liquid-liquid interactions are varied to alter the two characteris-

tic times, and results show that when the characteristic time for the pressure wave is

larger than the bubble nucleation time, bubble nucleation does occur in NPT systems.

To compare with a published molecular dynamics simulation of Lennard-Jones liq-

uid, we also investigate the effect of the strength of solid-liquid interactions. Results

indicates that bubbles will not form until the energy parameter of the solid-liquid
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interaction potential was less than 5% of its original value at T = 100 K and less

than 20% of its original value at T = 120 K. Below these threshold values, bubbles

will form almost spontaneously and grow rapidly. This result can be understood

qualitiatively because when the solid-liquid interaction is strong, the liquid atoms are

strongly bound to the solid walls and are almost immobile. Hence, these atoms are

unavailable to participate in the bubble formation process. Bubble formation is thus

less likely because few atoms are available to participate in the bubble formation pro-

cess. However, when the solid-liquid interaction is sufficiently weak, the liquid atoms

are no longer bound strongly to the solid walls, and are available to participate in the

bubble formation process, making the process more likely.

In conclusion, our initial investigations have revealed that it might be difficult

to form thermal bubbles in nano-confined systems. This casts doubt on whether

nanobubbles can be cited as a source of noise in nanofluidic experiments. We hope

our initial findings spur further interest in this field, since much more computational

and experimental work is required to fully understand bubble nucleation in nano-

confined systems.
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APPENDIX A

DERIVATION OF ELECTRO-OSMOTIC & ELECTROPHORETIC
FLOW VELOCITIES

When a tangential external electric field is applied to a fluid, the general Navier-

Stokes equation for a Newtonian fluid (White, 2006) can be written as

ρf
∂u

∂t
= −∇p+ η∇2u + ρfg + ρfE (A-1)

where ρf is the density of the fluid, u is the velocity of the fluid, p is the fluid

pressure, η is the viscosity of the fluid, g is the gravitational acceleration, and E is

the tangential applied electric field. The left-hand side represents the rate of change

of momentum of the fluid at a given location within the flow field. The first term on

the right-hand side is the contribution of pressure, the second term is due to viscous

forces in the liquid, the third term represents the body force on the liquid due to

gravity, and the last term is the body force on the liquid due to an applied electric

field. In our derivation, we will assume that:

• the fluid flow is a steady-state flow, i.e. flow velocity is constant with respect

to time,

• there is negligible pressure difference within the system,

• the body force due to gravity can be neglected, since the force is perpendicular

to the flow direction.
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Under these simplifying assumptions, we can rewrite Eq. A-1 in 1-dimension as

η
d2u

dz2
+ ρfE = 0 (A-2)

Using the 1-D version of Poisson’s equation, i.e. d2ψ/dz2 = −ρf/ε, we can rewrite

the second term in Eq. A-2 such that

η
d2u

dz2
− εEd

2ψ

dz2
= 0 (A-3)

It must be noted that for EOF, ψ represents the potential at a particular distance

away from a charged solid surface, whereas in EPF, ψ represents the potential at a

particular distance away from a charged particle. We will use the subscripts w and p

to distinguish between variables due to the charged channel wall (EOF) and variables

due to the charged particle (EPF).

First, consider EOF in a nanochannel system as shown in Fig. A-1. The 1-D

Poisson’s equation that needs to be solved from Eq. 1.3 in this case is

d2ψw
dz2

=
2ziqn0

ε
sinh(

ziqψw
kT

) (A-4)

The exact solution to the differential equation shown in Eq. A-4 was calculated

by Burgreen & Nakache (1964). However, this solution is cumbersome, and we will

consider the simplified analysis of Eq. A-4 based on the Debye-Hückel approximation,

ziqψw/kT << 1 (Li, 2004). Under this assumption, we can linearize Eq. A-4 such
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Figure A-1: Schematic of EOF in a slit nanochannel of width 2a. A positive bias
is applied on the left electrode while the right electrode is grounded. The resultant
EOF drives fluid from left to right as shown by the arrows.

that

d2ψw
dz2

=
ψw
λ2

(A-5)

where λ is the characteristic EDL thickness. Applying boundary conditions where

the potential at the top and bottom channel surfaces is equal to the zeta potential

(ψw(z = a) = ψw(z = −a) = ζw), we get

ψw(z) = ζw ·
| sinh(zi/λ)|
sinh(a/λ)

(A-6)

Substituting the solution for ψw shown in Eq. A-6 back into Eq. A-3, and applying

the boundary conditions uEOF (z = a) and uEOF (z = −a) = 0, we obtain

uEOF (z) = −εζwE
η

(1− | sinh(zi/λ)|
sinh(a/λ)

) (A-7)
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Figure A-2: Plot of normalized EOF velocity, uEOF as a function of normalized
distance from the channel wall. Three cases are plotted for varying ratios of channel
width:EDL thickness.

The variation of the normalized EOF velocity, ηuEOF/εζwE, as a function of

normalized distance from the channel walls, z/a, for three different values of the ratio

a/λ is shown in Fig. A-2. As can be seen from Fig. A-2, for large values of a/λ, i.e.

when the EDL thickness is small compared to the channel width, the EOF velocity is

almost constant (uEOF = −εζwE/η) throughout the width of the channel. Significant

spatial variation of the EOF velocity only begins to occur when the EDL thickness is

comparable to the channel width.

Now, for the case of EPF, consider a spherical charged particle with diameter, d,

in a nanochannel system similar to that shown in Fig. A-1. EPF is analogous to

EOF except that the charged surface of the spherical particle is considered instead of

the charged surface of the channel wall. Hence, using a form similar to Eq. A-7, we

can write the EPF velocity, under the assumptions that the zeta potential is small

(i.e. ziqζp/kT << 1), and that the EDL thickness is small compared to the particle
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diameter, d, as

uEPF =
εζpE

η
(A-8)

where ζp is zeta potential of the charged particle. This equation is commonly referred

to as the Helmholtz-Smoluchowski equation. A more general formulation for uEPF ,

valid for arbitrary EDL thickness but still for small zeta potentials, was derived by

Henry (1931) and can be written as

uEPF =
2εζpE

3η
· f(

d

λ
) (A-9)

where f( d
λ
) is known as Henry’s function and can be given analytically by

f(
d

λ
) = 1 +

1

16
(
d

λ
)2 − 5

48
(
d

λ
)3 − 1

96
(
d

λ
)4 +

1

96
(
d

λ
)5

+
1

8
(
d

λ
)4ed/λ

(
1− (d/λ)2

12

)∫ ∞
d/λ

(
e−t

t
)dt

(A-10)

Fig. A-3 shows the variation of Henry’s function, f( d
λ
), as a function of d/λ. As can

be seen from Fig. A-3, Henry’s function tends to 1.5 when d/λ >> 1. Hence, Eq. A-9

simplifies to Eq. A-8 when , i.e. EDL thickness small compared to particle diameter.

When d/λ << 1, i.e. EDL thickness much larger than particle diameter, Henry’s

function tends to 1, and so the EPF velocity becomes uEPF = 2εζpE/3η in this

case. The EPF velocity when d/λ << 1 is a factor of 2/3 less than the Helmholtz-

Smoluchowski equation (Eq. A-8). This is attributed to the electrophoretic drag

exerted by counterions in the EDL of the charged particle which move in the opposite

direction to the particle itself (Li, 2004).
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Figure A-3: Plot of Henry’s function, f(d/λ), as a function of d/λ. f(d/λ) tends
to 1 when d/λ is small and to 1.5 when d/λ is large.
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APPENDIX B

OBTAINING NANOPARTICLE SIZE DISTRIBUTION USING
DYNAMIC LIGHT SCATTERING

Dynamic light scattering (DLS), sometimes also known as Photon Correlation

Spectroscopy or Quasi-Elastic Light Scattering, is a technique for measuring the size of

particles typically in the sub-micron region (Pecora, 1985). DLS essentially measures

the translational diffusion coefficient, D, of particles suspended in a liquid medium

and relates this measured quantity to the diameter of the particles, d by using the

Stokes-Einstein equation shown in Eq. B-1, where k is Boltzmann’s constant, T is

the temperature, and η is the viscosity of the liquid medium.

d =
kT

3πηD
(B-1)

Fig. B-1 shows a schematic of the optical configuration used by a typical DLS

instrument such as the Malvern Zetasizer Nano ZS, which we have used for our

experiments in Chapter III, Section 3.4.2. A sample cell, containing the nanoparticles

being analyzed in a suitable liquid medium, is illuminated with attenuated laser

light (typically of wavelength ∼ 600 nm). The incident light is scattered by the

nanoparticles present in the sample cell. The scattering intensity is a function of

particle diameter, and can be accurately described by Mie theory (van de Hulst,

1957). Consequently, the Brownian motion of the nanoparticles is also affected by the

scattering. Small particles will move more rapidly after a scattering event compared
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Figure B-1: Schematic of optical configuration in Malvern Zetasizer Nano ZS in-
strument used for DLS-based nanoparticle size distribution measurements.

to larger particles. The scattered light is then collected by a detector placed at 173◦

for the case of the Malvern Zetasizer Nano ZS. This detection arrangement is called

backscatter detection and has two main advantages over detection at 0◦ or 90◦. First,

the laser does not have to travel through the entire sample so the effect of multiple

scattering, where light from one particle is scattered by other particles. Second,

contaminants such as dust particles within the liquid medium, which are typically

large compared to the nanoparticles being analyzed, mainly scatter in the forward

direction. So, the effect of dust particles is reduced by using backscatter detection.

Typically, large particles cause large fluctuations in scattering intensity that per-

sist for a longer time, while small particles cause small fluctuations in scattering
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intensity that decay faster. The scattering intensity signal recorded by the detector

is then fed into a digital processing unit called a correlator which compares the scat-

tering intensity at successive time intervals to determine the rate at which the light

intensity is varying. The correlator constructs a correlation function, G(τ), of the

scattered intensity which can be written as

G(τ) =< I(t) · I(t+ τ) > (B-2)

where τ is the time interval at which the intensity is compared by the correlator. It

must be noted here that the correlation function may be defined differently depending

upon the algorithm used by the software to derive the size distribution of the particles.

Eq. B-2 shows the correlation function used by the Malvern Zetasizer Nano ZS

instrument we used for our experiments in Chapter III, Section 3.4.2. The positions

of the nanoparticles in the liquid medium will be approximately the same at time t

and t+ τ , when τ is small (typically up to a few µs). Thus, the correlation between

the scattering intensities at time t and t+ τ will be large and the correlation function

will be ∼ 1. At longer time intervals, the positions of the nanoparticles will change

significantly due to Brownian motion and so the correlation between the scattering

intensities will decay, and the correlation function will gradually reduce to zero. Fig.

B-2a shows a typical correlogram for a sample containing small nanoparticles where

the correlation function decays faster while Fig. B-2b shows a typical correlogram for

a sample containing larger nanoparticles where the correlation function takes a long

time to decay. The time at which the correlation function starts to decay is indicative
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of the mean diameter of the nanoparticle sample as illustrated in Fig. B-2, and the

gradient of the decay is indicative of the polydispersity of the sample.

(a)

(b)

Figure B-2: Typical correlation function decays expected for a sample of (a) small
nanoparticles, and (b) large nanoparticles. Smaller particles have higher Brownian
velocities so the correlation starts to decay at an earlier time compared to larger
particles that have lower Brownian velocities.

This information is then sent to a computer where the software typically fits the

correlation function with a multiple exponential function, using methods such as non-
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negative least squares (NNLS) or CONTIN (Provencher, 1982; Stock & Ray, 1985)

to obtain a distribution of diffusion coefficients and hence a particle size distribution.

For a simple, monodisperse sample of nanoparticles, the correlation function, G(τ),

can be fitted by a single exponential function as shown in Eq. B-3,

G(τ) = A
[
1 +B exp(−2Dq2τ)

]
(B-3)

where A = baseline of the correlation function, B = intercept of the correlation

function, q = (4πn/λ0) sin(θ/2), n = refractive index of the liquid medium, λ0 =

wavelength of laser, and θ = scattering angle = 173◦. The diffusion coefficient(s) ob-

tained are then transformed into particle diameters using the Stokes-Einstein relation

shown in Eq. B-1.
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