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 CHAPTER I 

 

INTRODUCTION 
 
 
 

Overview of the eukaryotic cell cycle 

 Cells, the fundamental units of life, are not static entities.  Indeed, in as little as a 

few days, a single cell can give rise to millions of other cells.  For such propagation to 

occur, cells must undergo periods of growth and division.  The cell cycle organizes these 

events into a coherent process.  In a canonical cell cycle (Fig. 1-1), most cell growth 

occurs during two gap phases, G1 and G2.  These gap phases flank S phase, during which 

the genome is replicated.  Altogether, G1, S, and G2 phases comprise interphase, which 

precedes and sets the stage for mitosis.  During mitosis, replicated genomes segregate to 

opposite poles of dividing cells.  Once mitosis completes, the production of bona fide 

daughter cells demands physical separation of these two cell halves. 

In a variety of organisms and cell types, cytokinesis follows nuclear division and 

directs the cleavage of the cellular cytoplasm (Fig. 1-1).  Because failure to complete 

cytokinesis can result in cell death or aneuploidy, which has been linked to cancer 

(Gordon et al., 2012), relevant cytokinetic events (Fig. 1-2) must be fine-tuned both 

temporally and spatially.  Cytokinesis initially requires selection of an appropriate 

division site.  Following this, a contractile apparatus, termed the cytokinetic ring (CR) 

due to its shape, assembles at the division site and undergoes constriction.  Daughter cells 

fully separate as cleavage completes during abscission, and each daughter cell then 

initiates its division cycle anew.  Actin filaments combined with non-muscle myosin II 
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Figure 1-1
Schematic of the canonical cell cycle.
Interphase, which is comprised of G1, S, and G2 phases, occupies most of the cell cycle.  Cell 
growth occurs in G1 and G2 phases, and the genome (red) is replicated during S phase.  During 
mitosis, the replicated genome segregates to the two halves of the dividing cell.  Then, the two 
daughter cells are physically separated from each other during cytokinesis, thereby completing 
the cell cycle.  In animal cells (pictured), cell polarity and the nuclear envelope are lost during 
mitosis but re-established after cytokinesis.
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Figure 1-2
Stages of eukaryotic cytokinesis.
Schematics of the process of cytokinesis in budding yeast Saccharomyces cerevisiae, fission 
yeast Schizosaccharomyces pombe, and animal cells.  Examples of cells at individual stages 
of cytokinesis are presented, with progression through the cell cycle oriented downward.  In 
budding yeast and animal cells, the cytokinetic apparatus is positioned and assembled from an 
active Rho region.  In wild-type fission yeast, CR assembly initates following spindle pole 
body (SPB) separation from node-like structures containing formin and myosin II, although 
initial ring assembly can also occur via node-independent mechanisms.  Following            
constriction of the CR in budding and fission yeasts, new cell wall is deposited at the division 
site to form a septum, which is subsequently cleaved to allow for cell separation.  In animal 
cells, vesicular transport to the midbody, the microtubule-based remnant of the anaphase 
spindle midzone, likewise promotes abscission via its effects on membrane composition at the 
division site as well as its delivery of important cleavage furrow factors.
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provide the actomyosin core of the cytokinetic machinery in many organisms.  

Additionally, dozens of accessory proteins localize to the division site and dynamically 

impact cytokinesis.  Given the conservation of many of these factors among eukaryotes 

(Fig. 1-3), regulatory mechanisms that mediate this process in one organism likely mirror 

those used by others [for review, see (Pollard, 2010)]. 

 

A primer on phosphoregulatory cues directing cytokinesis 

 The post-translational modification of proteins serves as one means by which 

protein activity, localization, and interactions acquire temporal and spatial specificity. 

Although roles for modifications in general cell cycle control have been known for some 

time [for reviews, see (Hunter, 1987; King et al., 1996)], their varied contributions to 

cytokinesis have only recently gained appreciation on a broader spectrum, most notably 

because of improved techniques in targeted and genome-wide proteomics.  For one, the 

covalent attachment of phosphate groups to proteins by kinases is a widespread post-

translational modification.  This modification can exert positive, negative, and even 

cooperative effects depending on the context.  The reversal of phosphorylation by 

phosphatases contributes an added level of control to this modification.  In a variety of 

organisms, phosphorylation impacts multiple events during cytokinesis, as outlined 

below. 

 

Positioning and assembly of the cytokinetic apparatus 

In the fission yeast Schizosaccharomyces pombe, two separate but integrated 

mechanisms, both of which possess ties to upstream kinase regulation, are involved in 
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Figure 1-3
Conservation of eukaryotic cytokinesis proteins.
Homologs of interest are noted.  The only protein not described in mammalian cells is the C2 
domain protein (budding yeast Inn1/ fission yeast Fic1).
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CR assembly (Roberts-Galbraith and Gould, 2008).  The first mechanism, known as the 

search-capture-pull-release model (Fig. 1-4A), is based on the observation that formin 

Cdc12 and type II myosin Myo2 localize to a broad series of medial nodes at the onset of 

mitosis, where they respectively mediate F-actin nucleation and actin filament 

condensation into a ring structure (Coffman et al., 2009; Vavylonis et al., 2008).  

Recruitment of both Cdc12 and Myo2 into nodes depends on anillin-related Mid1.  

Nuclear export via phosphorylation by the polo-like kinase concentrates Mid1 medially 

in early mitosis, thereby coupling the nucleus to division plane positioning in this 

organism (Almonacid et al., 2009; Bahler et al., 1998).  Cues from distal cell tips, 

including inhibitory phosphorylation of Mid1-binding protein kinase Cdr2 by DYRK-

family kinase Pom1, meanwhile reinforce medial node distribution to promote assembly 

of the CR in the middle of the cell (Huang et al., 2007; Martin and Berthelot-Grosjean, 

2009; Moseley et al., 2009).  De novo ring assembly from node-like bands of myosin II 

has also been reported in animals cells (Werner et al., 2007; Zhou and Wang, 2008).  

Whether this represents a conserved assembly mechanism and whether phosphorylation 

plays a role in this process in animal cells have yet to be fully addressed. 

 Nonetheless, in the absence of detectable nodes and Mid1, formation of a CR still 

occurs in S. pombe, albeit with reduced speed and efficiency (Huang et al., 2008).  The 

spot/leading cable mechanism of CR assembly (Fig. 1-4B) might account for this fact, as 

electron microscopy suggests that actin filaments arise from a single aster and spread 

around the circumference of the cell to form the CR (Kamasaki et al., 2007).  A 

conserved signaling network, known as the septation initiation network (SIN) in fission 

yeast, has been implicated in Mid1-independent ring assembly (Hachet and Simanis, 
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Figure 1-4
Two models for S. pombe CR assembly.
(A) In wild-type cells, nodes develop at cell middles upon polo-dependent Mid1 export.  Mid1 
then recruits multiple CR factors, including formin and myosin, to nodes.  At these sites, formin 
nucleates and polymerizes F-actin.  Then, myosin in distinct nodes “captures” F-actin, pulling it 
into a ring structure.  Release of these interactions stabilizes mature CRs for the time being. (B)  
Upon loss of Mid1 and/or nodes, CRs still develop.  Instead of forming from nodes, CRs form 
from asters.  Presumably, formin activation at asters promotes extension of a leading actin cable, 
which subsequently encircles the cell to form a ring.  SIN activation functions prominently in this 
Mid1-independent CR assembly.  Currently, both models are thought to operate in S. pombe 
(Roberts-Galbraith and Gould, 2008).
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2008).  The SIN, which is orthologous to the mitotic exit network of budding yeast, 

consists of a GTPase-regulated kinase cascade that is initially triggered through polo-like 

kinase.  The most downstream kinase, known as Dbf2 in budding yeast Saccharomyces 

cerevisiae and Sid2 in S. pombe, phosphorylates Cdc14-family phosphatases to control 

their cytoplasmic accumulation (Chen et al., 2008; Mohl et al., 2009), which is significant 

given the role of Cdc14 phosphatases in reversing phosphorylations catalyzed by M 

phase cyclin-dependent kinases (CDKs).  While signaling through some kinases, 

including polo, advances cytokinesis, other kinases, such as M phase CDKs, instead 

inhibit cytokinesis.  Indeed, global reduction of CDK activity in mitotically-arrested 

mammalian cells induces cytokinesis (Wolf et al., 2007).  Just as SIN-activated 

dephosphorylation of F-BAR Cdc15 promotes CR assembly in S. pombe (Hachet and 

Simanis, 2008; Roberts-Galbraith et al., 2010), reversal of CDK phosphorylations on the 

Candida albicans cytokinetic IQGAP likewise promotes CR formation (Li et al., 2008).  

Still, it is unclear whether these events can be triggered via related signaling pathways.   

 In both models of S. pombe CR assembly, signaling begins through polo-like 

kinase.  In budding yeast and animal cells, polo also influences small Rho GTPases, 

Rho1 and RhoA, respectively, to control early stages of cytokinesis and CR assembly.  

Rho proteins become activated through loading of GTP by guanine nucleotide exchange 

factors (GEFs) and inactivated following GTP hydrolysis mediated by GTPase-activating 

proteins (GAPs).  In budding yeast, polo-like kinase phosphorylates Rho1 GEFs to target 

them to the bud neck (Yoshida et al., 2006).  Rho1 GEFs subsequently bind and activate 

Rho1 at this site (Yoshida et al., 2009; Yoshida et al., 2006).  In animal cells, polo 

signaling likewise controls RhoA function, with polo-like kinase phosphorylating a 
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RhoGAP, Cyk4/MgcRacGAP (Burkard et al., 2009; Wolfe et al., 2009).  Cyk4 associates 

with kinesin MKLP1 to form centralspindlin, a microtubule-bundling complex that stably 

accumulates at the spindle midzone once CDK phosphosites on MKLP1 are reversed and 

Aurora B kinase phosphorylation of MKLP1 locally impedes 14-3-3 inhibition of 

centralspindlin in this region (Douglas et al., 2010; Mishima et al., 2004).  Plk1-mediated 

phosphorylation of Cyk4 then primes centralspindlin for recruitment of RhoGEF Ect2 to 

the midzone and subsequent medial activation of RhoA (Burkard et al., 2009; Wolfe et 

al., 2009).  Rho GTPase flux achieved through active RhoGAP meanwhile limits lateral 

spread of active Rho zones such that they are maintained medially (Miller and Bement, 

2009).  Rho GEF and GAP activities are themselves modulated through phosphorylation 

by diverse kinases such as Aurora B, CDKs, and polo-like kinases (Asiedu et al., 2008; 

Birkenfeld et al., 2007; Minoshima et al., 2003; Rosario et al., 2010; Toure et al., 2008).  

Protein phosphatase PP2A can reverse such phosphorylation (Toure et al., 2008), 

consistent with protein kinases and phosphatases operating in concert to dictate the 

timing of cytokinesis in various organisms. 

 

Constriction of the cytokinetic apparatus 

 Though the exact mechanism guiding constriction of the CR has not been fully 

defined, the general assumption is that ring constriction proceeds similarly to constriction 

of muscle sarcomeres, with antiparallel F-actin sliding on myosin II (Pollard, 2010).  

Therefore, regulatory inputs impacting myosin II profoundly shape this step of 

cytokinesis.  Like other type II myosins, those involved in cytokinesis possess both heavy 

and light chains.  In animal cells, regulatory light chain phosphorylation at two sites, 
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threonine 18 and serine 19, enhances myosin II ATPase activity as well as myosin II 

filament formation in many organisms (Matsumura, 2005).  Consistent with a role for 

light chain phosphorylation in cytokinesis, di-phosphorylated myosin II promotes total 

cellular contractility (Mizutani et al., 2006; Mizutani et al., 2009), and cancer cells that 

fail cytokinesis exhibit reduced myosin light chain phosphorylation (Wu et al., 2010).  

Though light chain phosphorylation was also previously thought to act as the 

predominant determinant of cortical localization of myosin II during cytokinesis 

(Matsumura, 2005), more recent research has suggested that factors independent of 

phosphorylation can control this targeting and thus impact initial ring assembly (Beach 

and Egelhoff, 2009; Uehara et al., 2010).  

 A variety of kinases, including two Rho-effector kinases, ROCK and citron 

kinase, as well as a calmodulin-effector kinase, myosin light chain kinase, contribute to 

myosin II di-phosphorylation (Matsumura, 2005).  Scaffolding through septin SEPT2 is 

reported to enable many of these kinases to assemble together with myosin II for robust 

phosphorylation (Joo et al., 2007).  Dissociation of ROCK and citron kinases from 

myosin II has been associated with cleavage furrow regression in Chinese hamster cells 

(Joo et al., 2007).  Correspondingly, silencing of ROCK signaling has been posited to 

cause the late cytokinesis failure observed during polyploidization of human 

megakaryocytes (Lordier et al., 2008), and knockdown of citron kinase in HeLa cells 

blocks cytokinesis (Gruneberg et al., 2006).  The effect of ROCK on myosin II function 

during cytokinesis is complicated by its phosphorylation of myosin light chain 

phosphatase.  Such phosphorylation indirectly heightens myosin light chain 

phosphorylation by opposing the binding of myosin light chain phosphatase to myosin II 
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and by also inhibiting the phosphatase’s activity (Matsumura, 2005).  Unlike Rho-

effector kinases, myosin light chain kinase becomes activated by calcium-calmodulin 

binding.  In sea urchin eggs, forced release of calcium in early metaphase triggers 

premature cortical contraction, suggesting a prominent role for myosin light chain kinase 

in CR contractility in this organism (Lucero et al., 2006).  Consistent with transient 

calcium-calmodulin-myosin light chain kinase interactions inducing localized cellular 

contraction, maximal equatorial binding of calcium-calmodulin to myosin light chain 

kinase occurs just prior to CR constriction during cytokinesis in rat kidney cells (Chew et 

al., 2002).  Though all of these kinases can thus shape myosin activation during 

cytokinesis, more research is required to detail their relative timing and contribution in 

different organisms and cell types. 

 In addition to activating roles for myosin phosphorylation, some identified 

phosphorylation events instead confer inhibitory cues for cytokinesis.  For example, an S. 

pombe PAK-related kinase, Pak1/Orb2, phosphorylates myosin II light chain Rlc1 to 

inhibit constriction of the CR (Loo and Balasubramanian, 2008), and phosphorylation of 

the myosin II heavy chain in the slime mold, Dictyostelium, actually prevents formation 

of myosin II filaments that are responsible for myosin II function in this organism 

(Bosgraaf and van Haastert, 2006).  The involvement of heavy chain phosphorylation in 

myosin II regulation during cytokinesis has furthermore been documented in fission 

yeast, where such phosphorylation contrarily stimulates constriction through an unknown 

mechanism (Sladewski et al., 2009).  Clearly, myosin II function in various organisms is 

controlled through a complicated array of phosphorylation events, though the exact 

locations and effects of these phosphosites may differ among species.   
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Separation of daughter cells 

 Just as initiation of CR assembly requires concentrated, medial RhoA activation 

in animal cells, completion of cytokinesis only occurs as active RhoA declines at the 

cleavage furrow.  Protein kinase C ε (PKCε) promotes this local decrease in active RhoA 

following PKCε’s priming phosphorylation, 14-3-3 binding, and full activation (Saurin et 

al., 2008).  However, the relevant PKCε substrate mediating this effect has yet to be 

identified.   

 Concomitant with such Rho inhibition, the local lipid composition at the furrow 

must be dynamically refashioned for cytokinesis to complete (Echard, 2008).  Lipid 

kinases perform crucial roles in this task and thus deserve recognition as key players in 

molecular modifications during cytokinesis.  Despite being broadly distributed on the 

plasma membrane earlier in mitosis, the phosphoinositide phosphatidyl-4,5-bisphosphate 

[PtdIns(4,5)P2] concentrates in the cytokinetic furrows of fission yeast and mammalian 

cells (Echard, 2008; Emoto et al., 2005; Field et al., 2005; Kouranti et al., 2006).  The 

recruitment of relevant phosphoinositide kinases to the furrow is thought to be largely 

responsible for such accumulation (Echard, 2008; Emoto et al., 2005).  Significantly, loss 

of PtdIns(4,5)P2 from mammalian furrows results in late cytokinesis failure, most likely 

due to an inability to recruit post-furrowing factors such as septins and 

ezrin/radixin/moesin proteins and related defects in linking the cytokinetic apparatus to 

the plasma membrane (Echard, 2008; Emoto et al., 2005; Field et al., 2005).  Unlike 

PtdIns(4,5)P2, another phosphoinositide, phosphatidylinositol-3,4,5-trisphosphate 

[PtdIns(3,4,)P3], is undetectable at the cleavage furrow but instead localizes to the poles 
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of dividing Dictyostelium cells.  Experimental disruption of kinases controlling 

PtdIns(3,4,)P3 destroys this localization pattern and prevents completion of cytokinesis 

following ingression (Janetopoulos et al., 2005), likewise underscoring the significance 

of spatial control in lipid kinase function.   

 During abscission, additional regulatory factors tied to phosphoinositide signaling 

are shuttled to the furrow.  Indeed, disruption of cellular trafficking, especially of two 

Rab GTPases, Rab11 and Rab35, affects the final steps of cytokinesis in higher 

eukaryotes (Echard, 2008; Fielding et al., 2005; Kouranti et al., 2006; Wilson et al., 

2005).  In Drosophila melanogaster, the kinase Four wheel drive catalyzes formation of 

phosphatidylinositol-4-phosphate [PtdIns(4)P].  Subsequent incorporation of PtdIns(4)P 

into Golgi-derived vesicles promotes trafficking of Rab11 to the midbody, the 

microtubule remnant of the anaphase spindle midzone that links the two daughter cells 

(Polevoy et al., 2009).  In the future, it will be interesting to examine whether lipid kinase 

function also directs Rab11 trafficking in mammals given Rab11’s role in mammalian 

abscission (Fielding et al., 2005; Wilson et al., 2005).  Disruption of Rab35-based cycling 

meanwhile perturbs the cellular distribution of PtdIns(4,5)P2, most likely by affecting 

transport of relevant kinases to the furrow (Echard, 2008; Kouranti et al., 2006).  

Therefore, lipid kinases act both upstream and downstream of Rab GTPase-mediated 

endocytosis at the cleavage furrow.  Moreover, phosphoinositides at the midbody can 

also directly bind factors needed for abscission.  For example, phosphatidylinositol-3-

phosphate [PtdIns(3)P] recruits a centrosomal protein, FYVE-CENT, to the midbody.  

Here, FYVE-CENT binds CHMP4B (Sagona et al., 2010), which is an ESCRT 

(‘endosomal sorting complex required for transport’)-III component, and this interaction 
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is significant given the proposed function of ESCRT-III in membrane bending and 

scission (Hanson et al., 2008).  As lipid kinase activity directs secretory machinery and 

transport in yeasts as well (Yakir-Tamang and Gerst, 2009), these enzymes could 

potentially affect cell separation in multiple organisms through similar pathways. 

 In addition to cues that trigger abscission, chromatin persisting in the plane of 

division has been reported to delay completion of cytokinesis.  In both budding yeast 

(Mendoza et al., 2009b; Norden et al., 2006) and human cells (Steigemann et al., 2009), 

Aurora B kinase activity safeguards cells from dividing through unsegregated 

chromosomes.  In these organisms, Aurora B transfers with the rest of the chromosomal 

passenger complex (CPC) to the spindle midzone in anaphase following reversal of 

CDK-mediated phosphorylation of INCENP, another CPC subunit (Hummer and Mayer, 

2009; Pereira and Schiebel, 2003).  Thus, Aurora B is nicely positioned at this stage of 

the cell cycle to detect chromatin in the cleavage plane.  Indeed, acetylated chromatin 

stalled in vicinity of the central spindle activates Aurora B in budding yeast (Mendoza et 

al., 2009b).  Active Aurora B then initiates a NoCut checkpoint by targeting two 

abscission inhibitors, Boi1 and Boi2, to the bud neck, where they prevent chromosome 

cutting by the cytokinetic apparatus (Norden et al., 2006).  In human cells, chromosome 

bridges likewise prolong Aurora B activity at the midbody, and this stabilizes ingressed 

furrows and protects against tetraplodization caused by furrow regression (Steigemann et 

al., 2009). Though the mechanism by which such stabilization occurs is currently unclear, 

it has been suggested that Aurora B phosphorylation of centralspindlin could be involved 

(Steigemann et al., 2009).  Nonetheless, the generality of these mechanisms awaits 

further examples. 
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 Detailed introductions to key signaling molecules and networks 

 Broadly, my dissertation research has aimed to improve our understanding of how 

cytokinesis accomplishes the faithful production of two daughter cells, both of which are 

viable and behave appropriately.  Given the diverse roles that phosphorylation serves at 

the division site, much of this research has addressed molecular mechanisms and 

consequences of kinase and phosphatase signaling during cytokinesis, using fission yeast 

S. pombe as a model.  Below, I introduce in more detail the pathways and proteins on 

which my dissertation research has been primarily focused. 

 

Coordination of mitosis and cytokinesis by the CPC and Cdc14-family phosphatases 

To ensure successful cell division, sister chromatids must segregate to opposite 

poles of dividing cells in mitosis and be partitioned into two new daughter cells during 

cytokinesis (Pines and Rieder, 2001).  Highly intricate mechanisms control these 

processes, with various macromolecular complexes coordinating their activities such that 

the integrity of cell division is maintained.  The CPC, which is composed of a catalytic 

subunit, Aurora B kinase, and three non-enzymatic subunits, INCENP, Survivin, and 

Borealin, functions as one of these critical regulatory complexes.  As its name implies, 

this complex travels on chromosomes to various sites during cell division such that it can 

execute specific tasks at distinct locations and times (Fig. 1-5) (Earnshaw and Bernat, 

1991).  These functions include, but are not limited to, chromosome condensation, 

stabilization of the mitotic spindle, correction of improper kinetochore-microtubule 
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Figure 1-5
The CPC exhibits dynamic localization during the cell cycle.
During mitosis, the CPC (green) localizes to different cellular sites, where it aids in diverse 
events.  In animal cells, as the nuclear envelope breaks down in prophase, the CPC localizes 
diffusely on chromosome arms (gray), where it aids in chromosome condensation.  At this stage, 
the CPC begins to accumulate at inner centromeres between kinetochores (red), and remains at 
these sites through metaphase.  Here, it mediates regulation of microtubule (blue) attachments to 
kinetochores.  Once chromosomes segregate in anaphase, the CPC relocates to the spindle, where 
it ultimately accumulates at the spindle midzone.  At this site, the CPC stabilizes the spindle and 
coordinates signaling relevant to cytokinesis in mutliple organisms. [schematics adapted from 
(Ruchaud et al., 2007)]
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attachments, and regulation of cytokinesis [for reviews, see (Ruchaud et al., 2007; Vader 

et al., 2006; Vagnarelli and Earnshaw, 2004)].   

The four CPC subunits are highly interdependent for proper localization, activity, 

and stability (Ruchaud et al., 2007).  Consistent with such interdependency, these 

subunits are widely conserved among eukaryotes (Ruchaud et al., 2007).  However, it has 

proven difficult to identify Borealin homologs in yeasts.  Though some have speculated 

that yeast Borealin homologs might not exist due to fusion of the Borealin and Survivin 

subunits into a single yeast Survivin homolog (Vader et al., 2006), recent evidence 

suggests that there are in fact yeast Borealin homologs (Nakajima et al., 2009).  

Nonetheless, a Borealin homolog in fission yeast S. pombe had not been characterized. 

 Similar to the CPC, Cdc14-family phosphatases are also significant regulators of 

cell division.  Named for Cdc14, the founding member identified in budding yeast, these 

phosphatases reverse CDK-mediated phosphorylation events to promote mitotic exit and 

cytokinesis (Queralt and Uhlmann, 2008).  Like other Cdc14 family members, Clp1/Flp1, 

the S. pombe Cdc14 homolog, also functions in these processes.  Specifically, Clp1 

reverses CDK-mediated phosphorylation of the mitotic inducer Cdc25, allowing 

degradation of Cdc25 by the anaphase-promoting complex/cyclosome at the end of 

mitosis and ending the CDK auto-amplification loop (Esteban et al., 2004; Wolfe and 

Gould, 2004).  Furthermore, Clp1 associates with the CR scaffold protein Mid1, and, 

through this interaction, Clp1 enhances CR stability and the precision of cytokinesis 

(Clifford et al., 2008). 

In addition to these crucial functions during the concluding stages of the cell 

cycle, Cdc14-family phosphatases regulate chromosome segregation and CPC function 
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during mitosis.  In S. pombe, Clp1 associates with S. pombe Aurora B kinase Ark1 and 

deletion of clp1 results in increased co-segregation of sister chromatids (Trautmann et al., 

2004).  In S. cerevisiae, Cdc14 regulates localization of the CPC to the spindle during 

anaphase (Pereira and Schiebel, 2003; Stoepel et al., 2005).  This Cdc14-mediated 

targeting of the CPC is crucial to its subsequent recruitment of the separase Esp1 and the 

chromosomal passenger Slk19 (Khmelinskii et al., 2007; Pereira and Schiebel, 2003), 

which influence the formation and stabilization of the mitotic spindle and the spindle 

midzone (Jensen et al., 2001; Zeng et al., 1999).  Yet, while it is clear that Cdc14-family 

phosphatases regulate CPC localization and function, a reciprocal relationship has not 

been described.   

Though effects of the CPC on Cdc14-family phosphatases are unclear, the CPC is 

known to play a critical role in cytokinesis in many organisms (Carmena, 2008).  For 

example, in S. cerevisiae, CPC subunits regulate septin dynamics (Gillis et al., 2005; 

Thomas and Kaplan, 2007), and, as mentioned previously, S. cerevisiae and human 

Aurora B kinases mediate a NoCut checkpoint that delays cytokinesis when chromatin is 

stalled in the cleavage plane (Mendoza et al., 2009a; Norden et al., 2006; Steigemann et 

al., 2009).  However, in S. pombe, the contribution of the CPC to cytokinesis was thought 

to be negligible.  Overexpression of kinase-dead Ark1 does not affect cytokinesis but 

instead results in cut phenotypes in which septa form through unsegregated DNA 

(Petersen and Hagan, 2003), and ark1 temperature-sensitive mutants similarly exhibit cut 

phenotypes.  Because the division machinery appears intact in cut cells, these data 

suggest that Ark1 does not play a critical role in S. pombe cytokinesis (Petersen and 
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Hagan, 2003).  As a result, connections between the CPC and the S. pombe cytokinetic 

apparatus had not been further explored. 

 
SIN-mediated regulation of the actin cytoskeleton during cytokinesis 

 As noted previously, two distinct but synergistic pathways control fission yeast 

cytokinesis.  The first originates at medial precursor nodes, where anillin-like Mid1 

recruits multiple early CR proteins (Laporte et al., 2011), which guide F-actin 

coalescence into a ring structure (Vavylonis et al., 2008).  Despite this early cytokinesis 

function, Mid1 is non-essential, and cells defective in Mid1 function undergo cytokinesis 

(Huang et al., 2008; Sohrmann et al., 1996), due to partial redundancy with the SIN 

(Hachet and Simanis, 2008; Huang et al., 2008).  SIN proteins assemble at spindle pole 

bodies (SPBs), though the terminal SIN kinase Sid2 translocates to the CR during 

cytokinesis (Fig 1-6) (Johnson et al., 2012).  The Sid2 homolog in human cells also 

localizes to the CR (Bothos et al., 2005), suggesting signaling outputs may be conserved 

in other species.  Consistent with the SIN conferring sufficient cues for CR organization 

in S. pombe, precocious SIN activation drives multiple rounds of septation in interphase 

and permits orthogonal CR formation in mid1∆ cells (Huang et al., 2008; Krapp and 

Simanis, 2008; Minet et al., 1979).  Importantly, the SIN also governs CR maintenance 

following node-initiated cytokinesis in S. pombe, and CRs collapse between segregated 

daughter nuclei when SIN signaling is selectively abolished (Hachet and Simanis, 2008; 

Le Goff et al., 1999; Liu et al., 1999; Mishra et al., 2004).    

As SIN signaling culminates with the activation of three protein kinases, one of 

which translocates to the CR (Krapp and Simanis, 2008), protein phosphorylation likely 

directs the major functional outputs of this network (Fig 1-6).  Though accumulation of 
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Figure 1-6
The SIN is an SPB-associated kinase cascade, whose essential cytokinetic substrates were 
unknown.
SIN signaling is anchored at SPBs through multiple scaffold proteins.  Typically, an inhibitory 
GAP keeps the SIN off during interphase.  Once this inhibition is relieved during mitosis, the 
activating GTPase initiates a kinase cascade, which terminates with kinase Sid2.  Sid2           
phosphorylates proteins involved in a variety of processes, including mitosis, cell morphology, 
SIN feedback regulation, and cytokinesis.  Though SIN activity is required for cytokinesis in S. 
pombe, the only identified Sid2 substrate involved in cytokinesis was non-essential phosphatase 
Clp1.  The identities of core, essential CR proteins targeted by Sid2 had been unknown.
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F-BAR Cdc15 within a ring structure ultimately requires SIN activation (Hachet and 

Simanis, 2008), there is no evidence that Cdc15 is a direct SIN target.  While some SIN 

substrates, including Cdc14-family phosphatase Clp1, have been identified (Feoktistova 

et al., 2012; Grallert et al., 2012; Gupta et al., 2013; Mana-Capelli et al., 2012), essential 

CR proteins directly targeted by Sid2 were unknown (Fig. 1-6).   

Because cytokinesis in fission yeast, as in most eukaryotes, is actomyosin-based, 

the formin Cdc12, which localizes to the CR (Chang et al., 1997) and nucleates and 

polymerizes F-actin through its formin homology (FH) 1 and 2 domains (Fig. 1-7) (Kovar 

et al., 2003), is an essential component of the S. pombe cytokinetic machinery (Chang et 

al., 1997).  Given that mechanisms regulating cytokinetic formin function were relatively 

unknown in any organism, it was unclear what cues sculpt the actin cytoskeleton during 

cell division.  As hyperactivity of S. pombe Cdc12 is lethal (Kovar et al., 2003), it seemed 

likely that Cdc12 function is tightly regulated.  Yet, Cdc12 domains homologous to 

autoinhibitory DID and DAD motifs (Fig. 1-7) have been reported to be inactive 

(Yonetani et al., 2008), and post-translational control of Cdc12 had not been 

demonstrated.  Since SIN hyperactivation can induce formation of actin-based CRs even 

in interphase cells, it seemed reasonable that activation of this kinase cascade could 

influence Cdc12 formin activity.  Nonetheless, it was uncertain whether this would be a 

direct or indirect mechanism.   

 

Cytokinetic guidance of cellular morphogenesis  

Many cells polarize in response to intrinsic and extrinsic signals.  As cell 

polarization is generally multifaceted, cells must integrate both negative and positive cues 

21



DID DID
DAD DAD

FH2 FH2

FH2 FH2

Actin
monomer

FH1FH1

Actin
filament

Resting state                             Active state

Figure 1-7
Diverse formin domains contribute to canonical autoregulation and F-actin assembly.
Formins catalyze nucleation and polymerization of unbranched actin filaments.  Canonically, 
formins achieve autoregulation via inhibitory interactions between N-terminal DID and 
C-terminal DAD motifs.  This binding inhibits F-actin assembly.  When autoinhibition is relieved, 
dimeric, doughnut-shaped FH2 domains, which bind F-actin, ride growing barbed ends.       
Meanwhile, the neighboring FH1 domain binds profilin, which recruits monomeric actin to 
support processive actin elongation.  S. pombe Cdc12 possesses functional FH1 and FH2 
domains, as well as DID and DAD motifs of unknown functionality.  Thus, it had been uncertain 
how formin activity is regulated during cytokinesis. 
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for successful cellular morphogenesis.  In various organisms, the cell cycle provides a 

platform on which these cues are organized [for reviews, see (Clark and Paluch, 2011; 

Howell and Lew, 2012)], thereby ensuring distinct polarization events occur at the 

appropriate location, time, and context. 

S. pombe represents a genetically tractable organism for studying cell cycle 

regulation of growth polarity [for reviews, see (Huisman and Brunner, 2011; Martin and 

Chang, 2005)].  Wild-type S. pombe extend solely at their two cell tips, lengthening their 

rod-shaped bodies while retaining fairly constant widths.  After cell division, S. pombe 

grow only at old ends, so-called because they served as ends of the dividing mother cell 

(Fig. 1-8A).  Then, at a point in G2 known as new end take off (NETO), new ends, which 

arise from cell division, also initiate growth (Fig. 1-8A) (Mitchison and Nurse, 1985).  

NETO is not required for cell viability, and myriad mutants defective in this process have 

been identified (Huisman and Brunner, 2011; Martin and Chang, 2005).  Intriguingly, 

protein kinases represent the broadest category of proteins affecting S. pombe NETO 

(Martin and Chang, 2005).  This implies that several phosphorylation events participate 

in fission yeast morphogenesis.  To date, all analyses of phosphorylation events involved 

in S. pombe morphogenesis have been limited to factors important at cell ends 

(Castagnetti et al., 2005; Kim et al., 2003; Martin and Chang, 2005).  Whether polarity-

relevant phosphorylations occur on proteins that localize to other cellular sites had not 

been previously demonstrated.  Moreover, beyond requirements for S-phase completion 

and a minimal interphase cell size (Mitchison and Nurse, 1985), additional cell cycle 

controls on NETO had not been identified.   
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Figure 1-8
Upon NETO, S. pombe cells transition into bipolar growth.
(A) Schematic of the S. pombe cell cycle, with zones of cell growth indicated by arrows. (B) 
Microtubule plus-end associated factors (+TIPs) Tea1 and Tea4 constitutively associate with both 
cell ends.  Before NETO, formin For3 only localizes to one end, the old end, where it                
polymerizes actin cables.  Once NETO is activated, For3 is also recruited by +TIPs to the new 
end, establishing bipolar actin cables and activating bipolar growth.
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 As in other cell polarization events, cytoskeletal rearrangements accompany 

growth transitions in S. pombe.  Prior to NETO, microtubule plus end-associated proteins 

Tea1 and Tea4 ride growing microtubule ends to both cell tip cortices (Fig. 1-8B) 

(Behrens and Nurse, 2002; Feierbach et al., 2004; Martin et al., 2005; Mata and Nurse, 

1997), where they anchor based on their association with membrane proteins (Bicho et 

al., 2010; Snaith and Sawin, 2003).  Upon NETO, Tea4 recruits formin For3, which had 

before only been tethered to old ends, into a complex with itself and Tea1 at new ends 

(Fig. 1-8B) (Martin et al., 2005).  As over-expression of a Tea1-For3 fusion can drive 

NETO prematurely (Martin et al., 2005), this association likely brings For3 into the 

proximity of formin activators at new ends, stimulating For3 catalysis of F-actin cables 

that will deliver growth cargo to this tip.  Not surprisingly, loss of Tea1, Tea4, and/or 

For3 impairs fission yeast polarization and elongation (Feierbach and Chang, 2001; 

Martin et al., 2005; Mata and Nurse, 1997; Nakano et al., 2002).  Actin patches, which 

guide endocytic vesicle internalization and constitute a second F-actin structure, also re-

polarize to both cell tips upon NETO (Gachet and Hyams, 2005).  Disruption of proteins 

comprising these structures similarly jeopardizes growth polarity establishment (Cabrera 

et al., 2011; Castagnetti et al., 2005; Iwaki et al., 2004).  Thus, alteration in protein 

composition at cell tips is coupled tightly to cytoskeletal rearrangements. 

 As mentioned previously, several tip-localized cell polarity factors, including 

Tea1 and Tea4, direct the cell division plane away from cell ends and towards the cell 

middle for cytokinesis (Huang et al., 2007), the process by which daughter cells undergo 

physical separation following nuclear division.  However, whether the process of 

cytokinesis reciprocally modulates cell polarity is unclear.  Some observations hint that 
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the cell division machinery may play a role in directing cell polarity.  As was previously 

noted, new ends formed by cell division initiate growth well after old ends.  In mutants in 

which cells remain physically connected at division sites for multiple cell divisions, 

internal cells can grow, though this occurs sub-apically adjacent to septa (Sipiczki et al., 

1993; Sipiczki et al., 1998).  Moreover, many polarity factors localize to the cell division 

site (Garcia et al., 2006; Glynn et al., 2001; Huisman and Brunner, 2011; Tatebe et al., 

2005); nonetheless, only cell tip-localized populations of these polarity proteins have 

been demonstrated to contribute to growth polarity in S. pombe. 

 During S. pombe cytokinesis, several accessory proteins regulate the dynamics 

and organization of the CR.  For one, Cdc15, which contains an N-terminal F-BAR 

domain and a C-terminal SH3 domain characteristic of the pombe Cdc15 homology 

protein family (Lippincott and Li, 2000), has been posited to link CR proteins to the 

cortical membrane at the division site (Roberts-Galbraith et al., 2010).  Cdc15-binding 

proteins at the CR include formin, myosin, and the C2 domain protein Fic1 (Carnahan 

and Gould, 2003; Roberts-Galbraith et al., 2009).  Fic1 localizes to both interphase cell 

tips and the cell division site (Roberts-Galbraith et al., 2009), though its specific 

functions at these sites had not been described.  Fic1’s budding yeast ortholog, Inn1, 

contributes to cytokinesis by linking the CR to the ingressing membrane and by 

participating in septum formation (Nishihama et al., 2009; Sanchez-Diaz et al., 2008). 

Together with the CR, septa provide mechanical force for membrane closure at the cell 

division site (Johnson et al., 2005), and subsequent septum degradation allows for 

abscission (Dekker et al., 2004; Martin-Cuadrado et al., 2003).  Clearly, various 

remodeling events must occur at the cell division site for cytokinesis to complete 
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efficiently.  Whether such remodeling events also influence daughter cell behavior has 

never been examined. 

 While wild-type S. pombe classically grow in a single-celled form, multiple 

fission yeasts, including S. pombe, possess the ability to assume an invasive, hyphal-like 

state (Amoah-Buahin et al., 2005; Sipiczki et al., 1998).  The ability of pathogenic fungi 

to undergo such a morphogenetic switch contributes significantly to fungal infections 

(Brand, 2012).  Though non-pathogenic, S. pombe, similar to the budding yeast (Gagiano 

et al., 2002), can transition into invasive growth as a foraging response to low nutrients 

(Amoah-Buahin et al., 2005).  Invasive S. pombe form structures that technically qualify 

as pseudohyphae, for, unlike as in hyphal growth, cytokinetic constriction occurs 

(Dodgson et al., 2010; Pohlmann and Fleig, 2010).  Pseudohyphae likely maintain their 

hyphal-like structure due to cellular adherence and preferential growth at old ends 

(Dodgson et al., 2010; Pohlmann and Fleig, 2010).  Intriguingly, it has been postulated 

that single-celled fission yeast evolved from multicellular, filamentous fungi, with 

transcriptional networks that ensure efficient cell separation playing predominant roles in 

the evolution of a single-celled state (Bahler, 2005).  Though S. pombe pseudohyphae do 

not commonly exhibit aborted cytokineses or multicellularity, it is an attractive 

hypothesis that inefficient, but not entirely defective, cytokinesis might somehow mark 

new ends to impair their growth and promote the dimorphic switch in S. pombe. 

 

Summary 

In this work, I have analyzed mechanisms by which different cytokinesis factors, 

many of which are involved in phosphosignaling, orchestrate the final stage of the cell 
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cycle, cytokinesis.  In chapter I, I will describe the identification of a novel CPC 

component, which, along with Aurora kinase and the other CPC subunits, controls 

Cdc14/Clp1 localization to the CR.  In chapter II, I will present evidence that the SIN 

directly targets formin Cdc12, and that this phosphorylation reverses a novel formin 

oligomerization event during late cytokinesis to prevent CR collapse.  In chapter III, I 

will discuss how robust cytokinesis ensures proper polarized cell growth, and how 

cytokinesis-based growth defects facilitate an invasive morphological transition.  In 

chapter IV, I will show that cytokinesis-based polarity controls, as well as the associated 

morphogenetic switch, are likewise subject to phosphoregulation, including by CDK.  

Collectively, these findings highlight new roles for well-studied kinases and phosphatases 

in cytokinesis regulation, and illustrate how such signaling allows for proper integration 

of multiple cell cycle events. 
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 CHAPTER II 

 

A LINK BETWEEN AURORA KINASE AND CLP1/CDC14 REGULATION 
UNCOVERED BY THE IDENTIFICATION OF A FISSION  

YEAST BOREALIN-LIKE PROTEIN 
 
 
 

Introduction 

 The CPC regulates various events in cell division.   This complex is composed of 

a catalytic subunit, Aurora B kinase, and three non-enzymatic subunits, INCENP, 

Survivin, and Borealin.  Together, these four subunits interdependently regulate CPC 

function, and they are highly conserved among eukaryotes.  However, a Borealin 

homolog had never been characterized in fission yeast S. pombe.  Here, we isolate a 

previously uncharacterized S. pombe protein through association with Cdc14-family 

phosphatase Clp1/Flp1 and identify it as a Borealin-like member of the CPC.  Nbl1 

(novel Borealin-like 1) physically associates with known CPC components, affects the 

kinase activity and stability of S. pombe Aurora B, co-localizes with known CPC subunits 

during mitosis, and shows sequence similarity to human Borealin.  Further analysis of the 

Clp1-Nbl1 interaction indicates that Clp1 requires CPC activity for its proper 

accumulation at the CR.  Consistent with this, we describe negative genetic interactions 

between mutant alleles of CPC and CR components.  Altogether, this work characterizes 

a fission yeast Borealin homolog and reveals a previously unrecognized connection 

between the CPC and the process of cytokinesis in S. pombe. 

 

Results 
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Nbl1 is an essential protein that associates with and regulates the activity of the CPC 

 To identify Clp1-associated proteins in fission yeast S. pombe, we performed 

tandem affinity purification (TAP) of the phosphatase-dead Clp1-C286S mutant followed 

by mass spectrometry.  One of the proteins identified through this approach was a 

sequence orphan, SPBC725.12 (Fig. 2-1A).  SPBC725.12 had not been previously 

characterized except for its identification as an essential “meiotically upregulated gene” 

(mug) (Mata et al., 2002).  For simplicity, we will subsequently refer to SPBC725.12 as 

Nbl1 (novel Borealin-like 1) based on the studies described in this work.   

We confirmed that nbl1 is an essential gene by analyzing tetrads from a diploid 

strain having one copy of nbl1 disrupted with ura4+.  Tetrads showed a 2:2 ratio of ura4- 

viable to inviable spores or only one ura4- viable spore (Fig. 2-1B), indicating that Nbl1 

is an essential protein.  To examine the cause of inviability when nbl1 is disrupted, we 

sporulated diploids heterozygous for the nbl1 disruption and allowed only ura4+ spores, 

containing the nbl1 disruption, to germinate.  DAPI staining indicated that 74% (148/200) 

of septated nbl1-disrupted cells exhibited a cut phenotype, with the septum slicing 

through the DNA (Fig. 2-1C).  Cut phenotypes arise from defects in sister chromatid 

separation (Yanagida, 1998) and were not observed in wild-type cells (Fig. 2-1C).  Thus, 

Nbl1 appears to affect chromosome segregation.   

To verify that the observed cut phenotypes were in fact due to nbl1 malfunction, 

we rescued the null mutation with a genomic clone containing nbl1+ cDNA and also 

developed a nbl1-shutoff strain.  The original open reading frame predicted for Nbl1 in 

the Pombe Genome Database was a truncated version, comprising only the first 95 amino 
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Figure 2-1
Clp1-associated Nbl1 is essential for chromosome segregation.
(A) Analysis of mass spectrometry data following TAP of clp1-C286S-TAP, with percent         
coverage, total peptide number, and unique peptide number for proteins of interest presented.  (B) 
A diploid heterozygous for the nbl1 disruption was sporulated, and tetrads were dissected.  All 
viable colonies were ura4-.  (C) DAPI-stained wild-type or ura4+ cells germinated following 
sporulation of a diploid heterozygous for the nbl1 disruption.  Cells are outlined in white, septa 
are represented by dashed white lines, and cut phenotypes are indicated by white arrows.  (D) 
Alignment of sequences for S. pombe Nbl1 and homologs in S. japonicus and S. octosporus.  
Identical residues are in red, and the site of the Nbl1(1-95) truncation is indicated by an             
arrowhead. (E) DAPI-stained nbl1-shutoff cells.  Cells are outlined in white, and septa are 
indicated by dashed white lines. (F) Wild-type cells were transformed with either empty pREP1 
or pREP1-nbl1+ and incubated on plates with (+) or without (-) thiamine. (G) DAPI- and methyl 
blue-stained ark1-GFP cells over-expressing nbl1+.  (Bars = 5 μm)
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acids of Nbl1’s 141 amino acids (Fig. 2-1D).  Thus, we initially placed nbl1(1-95) cDNA 

under control of the thiamine repressible nmt41 promoter (Basi et al., 1993) and 

integrated this fragment at the leu1+ locus in a nbl1-disrupted strain.  This truncated 

cDNA was sufficient to rescue the nbl1 disruption, indicating that the C-terminus of Nbl1 

is dispensable for proper Nbl1 function.  Consistent with this, most sequence 

conservation between S. pombe Nbl1 and homologs in S. octosporus and S. japonicus lies 

in the N-terminus (Fig. 2-1D).  Since Nbl1(1-95) was fully functional, we used this 

truncation interchangeably with full-length Nbl1 in our studies.  Shutoff of nbl1(1-95) 

expression produced cut phenotypes (Fig. 2-1E) similar to those which were seen in nbl1-

disrupted cells (Fig. 2-1C).  Therefore, the previously described defects in chromosome 

segregation are due to disruption of nbl1.   

To examine whether nbl1 over-expression is tolerated by cells, nbl1+ cDNA was 

placed under control of the nmt1 promoter in pREP1 (Maundrell, 1990; Maundrell, 1993) 

and transformed into wild-type cells.  Upon removal of thiamine, cells over-expressing 

nbl1 failed to form colonies (Fig. 2-1F) and often showed unequal segregation of DNA 

(Fig. 2-1G).  Thus, not only is nbl1 an essential gene, but its protein levels must be 

regulated properly to ensure appropriate chromosome segregation. 

To identify proteins with which Nbl1 interacts and functions, we performed a 

TAP of Nbl1(1-95) followed by mass spectrometry.  Interestingly, Bir1/Cut17, the S. 

pombe Survivin homolog, and Pic1, the S. pombe INCENP homolog, which both had 

been previously identified along with Nbl1 in the Clp1-C286S-TAP (Fig. 2-1A), were 

identified along with Clp1 in a Nbl1(1-95)-TAP (Fig. 2-2A).  We confirmed the 

association between Nbl1(1-95) and Bir1 by traditional co-immunoprecipitation (Fig. 2-
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Figure 2-2
Nbl1 associates with the CPC and affects Aurora kinase stability and activity.
(A) Analysis of mass spectrometry data following TAP of nbl1(1-95)-TAP, with percent coverage, 
total peptide number, and unique peptide number for proteins of interest presented.  (B) Anti-GFP 
immunoprecipitates from the indicated strains were blotted with anti-FLAG and anti-GFP 
antibodies.  (C) Ark1-GFP was immunoprecipitated from the indicated strains and incubated with 
histone H3 in the presence of 32P-ATP.  Where appropriate, shutoff of nbl1-shutoff ark1-GFP was 
achieved prior to cell lysis via addition of thiamine (T).  Kinase reactions using Ark1-GFP 
immunoprecipitated from ark1-GFP cells were carried out in either the presence or absence of an 
Aurora B inhibitor, ZM447439.  (D) Ark1-GFP was immunoprecipitated from nda3-KM311 
ark1-GFP during a prometaphase arrest and incubated with histone H3 in the presence of 32P-ATP.  
Kinase reactions using immunoprecipitated Ark1-GFP were carried out in either the absence of an 
Aurora B inhibitor, ZM447439, or in the presence of this inhibitor in varying concentrations. (E) 
Anti-GFP immunoprecipitates were blotted with an anti-GFP antibody.  Shutoff was achieved 
where appropriate by addition of thiamine.  Ark1-GFP levels were normalized to CDK.
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2B).  In addition to Bir1 and Pic1, Ark1, which is the S. pombe Aurora B homolog, is a 

known member of the fission yeast CPC (Ruchaud et al., 2007).  We did not detect Ark1 

in the Nbl1(1-95)-TAP.  However, TAPs of the Survivin homolog in S. cerevisiae also 

failed to recover the Aurora B homolog (Sandall et al., 2006; Widlund et al., 2006), 

suggesting that the kinase does not remain bound to its non-enzymatic subunits during a 

standard TAP procedure.   

Given the association of Nbl1 with known CPC subunits, we tested the ability of 

Ark1, immunoprecipitated from wild-type and nbl1-shutoff strains, to phosphorylate 

histone H3 in vitro.  Ark1-mediated phosphorylation of histone H3 is critical to 

establishment of condensed chromatin (Petersen and Hagan, 2003; Petersen et al., 2001), 

and thus histone H3 phosphorylation can be used as a readout of CPC activity.  Not 

surprisingly, histone H3 was phosphorylated by Ark1-GFP from wild-type cells (Fig. 2-

2C, lane 3), and such phosphorylation was decreased in the presence of an Aurora B 

kinase inhibitor, ZM447439 (Fig. 2-2C, lane 2).  The specificity of this kinase assay for 

Ark1 was confirmed using higher concentrations of the Aurora B inhibitor (Fig. 2-2D).  

Interestingly, phosphorylation of histone H3 was nearly abolished when Ark1 was 

immunoprecipitated from cells in which nbl1 expression had been repressed (Fig. 2-2C, 

lane 4).  Although Nbl1 was required for the stability of Ark1 (Fig. 2-2E), we performed 

the kinase assay after Ark1 levels had been adjusted for equivalence (Fig. 2-2C, bottom 

panel).  Thus, these results indicate that Nbl1 not only associates with CPC components 

but is required for proper activity and stability of the CPC. 

 

Nbl1 and the CPC are interdependent for proper localization 
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 Because Nbl1 and known CPC subunits exhibit physical and functional 

associations, we next examined whether Nbl1 localizes similarly to chromosomal 

passenger proteins.  As shown by time-lapse microscopy of Nbl1(1-95)-GFP and Sid4-

RFP, a marker for the S. pombe SPB (Chang and Gould, 2000), Nbl1(1-95)-GFP 

localized to dots consistent with centromeres in metaphase and relocated to the mitotic 

spindle and the spindle midzone during anaphase (Fig. 2-3A).  This behavior was similar 

to that of Ark1, Pic1, and Bir1 (Fig. 2-3B) (Huang et al., 2005; Morishita et al., 2001; 

Petersen et al., 2001; Rajagopalan and Balasubramanian, 2002).  In addition, Nbl1-GFP 

localized identically to the Nbl1(1-95)-GFP truncation (Fig. 2-3C), again demonstrating 

that Nbl1(1-95) is sufficient for proper localization and function of Nbl1.   

During interphase and upon septation, Nbl1-GFP (Fig. 2-3C) and Nbl1(1-95)-

GFP (Fig. 2-3A) accumulated within a distinct compartment of the nucleus.  Previous 

studies have shown that the S. pombe CPC is nucleolar in interphase (Vanoosthuyse et 

al., 2007).  Co-localization of Nbl1(1-95)-GFP and Nog1-RFP, a nucleolus marker 

(Matsuyama et al., 2006), confirmed that Nbl1 is also nucleolar in interphase (Fig. 2-4A).  

Additionally, imaging of Nbl1-GFP with Nuf2-RFP, a kinetochore marker (Nabetani et 

al., 2001), verified that the Nbl1-GFP dots seen during metaphase were consistent with 

Nbl1 localization to centromeres in metaphase (Fig. 2-4B).  Though Nbl1-GFP and Nuf2-

RFP did not completely overlap, their side-by-side orientation is similar to that which has 

previously been observed for other centromeric CPC proteins and kinetochore markers in 

metaphase (Vanoosthuyse et al., 2007).  To furthermore validate that Nbl1 co-localizes 

with the CPC during mitosis, we imaged Nbl1(1-95)-GFP along with Pic1-mCherry.  

Nbl1(1-95)-GFP and Pic1-mCherry co-localized to centromeres in metaphase and to the 
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Figure 2-3
Like the CPC, Nbl1 localizes to kinetochores, the mitotic spindle, and the spindle midzone.
I=interphase, M=metaphase, A=anaphase, and S=septation. (A) Live-cell GFP, RFP, and 
GFP/RFP merged images of nbl1(1-95)-GFP sid4-RFP cells at various stages of the cell cycle.  
The septum is indicated by a dashed white line. (B) Live-cell GFP, RFP, and GFP/RFP merged 
images of bir1-GFP sid4-RFP, pic1-GFP sid4-RFP, and ark1-GFP sid4-RFP cells in metaphase 
and anaphase. (C) Live-cell GFP, RFP, and GFP/RFP merged images of nbl1-GFP sid4-RFP cells 
at various stages of the cell cycle.  The dashed white line indicates the location of the septum.  
(Bars = 5 μm)  
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Figure 2-4
Nbl1 travels with the CPC during mitosis.
(A) Live-cell bright field (BF), GFP, RFP, and GFP/RFP merged images of a nbl1(1-95)-GFP 
nog1-RFP interphase cell. (B) Live-cell BF, GFP, RFP, and GFP/RFP merged images of a nbl1-
GFP nuf2-RFP metaphase cell. (C) Live-cell BF, GFP, mCherry, and GFP/mCherry merged 
images of nbl1(1-95)-GFP pic1-mCherry cells in metaphase or anaphase.  M=metaphase, and 
A=anaphase. (Bars = 5 μm)  
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mitotic spindle and the spindle midzone in anaphase (Figure 2-4C).  Therefore, taken 

together with our evidence for a physical association between Nbl1 and the CPC, it seems 

evident that Nbl1 travels as a part of the CPC. 

 We next examined whether Nbl1 requires Bir1, Pic1, and/or Ark1 for proper 

mitotic localization.  Nbl1-GFP localized normally in wild-type cells at 36°C (Fig. 2-5A).  

At this restrictive temperature in cut17-275 and pic1-T269 temperature-sensitive cells, 

Nbl1-GFP accumulated at centromeres as usual (16 out of 16 cells, 100%; and 38 out of 

38 cells, 100%, respectively) but commonly failed to localize to the mitotic spindle or the 

spindle midzone correctly.  Instead, Nbl1-GFP often localized diffusely in the 

nucleoplasm in cut17-275 and pic1-T269 cells (57 out of 72 cells, 79%; and 58 out of 88 

cells, 66%, respectively) (Figs. 2-5B and 2-5C), indicating that Bir1 and Pic1 are 

necessary for its proper spindle localization.  Additionally, Nbl1-GFP segregated 

unevenly at the completion of anaphase (Figs. 2-5B and 2-5C), consistent with unequal 

segregation of DNA in CPC mutants (Leverson et al., 2002; Samejima et al., 1993).  At 

the restrictive temperature in ark1-T7 temperature-sensitive cells, however, Nbl1-GFP 

localized normally to both centromeres (53 out of 53 cells, 100%) and the mitotic spindle 

(71 out of 74 cells, 96%) (Fig. 2-5D).  Yet, similar to Nbl1-GFP in cut17-275 and pic1-

T269 septated cells, Nbl1-GFP segregated unevenly (Fig. 2-5D).  In sum, although Nbl1-

GFP localized independently of other CPC components to centromeres, it required the 

function of Bir1 and Pic1 for proper spindle localization. 

 Next, we investigated whether localization of known S. pombe CPC subunits 

requires Nbl1.  As previously demonstrated (Huang et al., 2005; Morishita et al., 2001; 

Petersen et al., 2001; Rajagopalan and Balasubramanian, 2002), Bir1-GFP, Pic1-GFP, 
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Figure 2-5
Nbl1 and the CPC are interdependent for mitotic localizations.
M=metaphase, A=anaphase, and S=septation. (A-D) Live-cell GFP/RFP or GFP/mApple merged 
images of nbl1-GFP sid4-RFP, cut17-275 nbl1-GFP sid4-RFP, pic1-T269 nbl1-GFP sid4-RFP, 
and ark1-T7 nbl1-GFP sid4-mApple cells progressing through mitosis after G2 synchronization 
and shift to 36°C. Septa are indicated by dashed white lines.  (E-J) Live-cell GFP/RFP merged 
images of nbl1-shutoff bir1-GFP sid4-RFP , nbl1-shutoff pic1-GFP sid4-RFP, and nbl1-shutoff 
ark1-GFP sid4-RFP cells in the absence of thiamine (-T) or following 10 h of nbl1 repression 
with thiamine (+T).  Septa are indicated by dashed white lines. (Bars = 5 μm)  
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and Ark1-GFP localized to centromeres in metaphase and to the mitotic spindle and the 

spindle midzone in anaphase of wild-type cells (Fig. 2-3B).  This localization was 

maintained in nbl1-shutoff cells in the absence of thiamine (Figs. 2-5E, 2-5F, and 2-5G).  

However, following repression with thiamine, Bir1-GFP, Pic1-GFP, and Ark1-GFP for 

the most part did not accumulate at centromeres in metaphase cells (Figs. 2-5H, 2-5I, and 

2-5J), with 11 out of 12 (92%), 15 out of 20 (75%), and 19 out of 21 (90%) cells lacking 

clear Bir1-GFP, Pic1-GFP, and Ark1-GFP signals, respectively, at the centromeres.  

Additionally, during anaphase in nbl1-repressed cells, Bir1-GFP localized diffusely 

within the nucleoplasm instead of tightly on the spindle in 31 of 35 (89%) cells (Fig. 2-

5H).  In contrast, Pic1-GFP localized normally on the mitotic spindle and on the spindle 

midzone in 32 of 36 (89%) cells (Fig. 2-5I).   We nonetheless observed unequal 

segregation following anaphase of both Bir1-GFP and Pic1-GFP (Figs. 2-5H and 2-5I).  

Due to the high background signal for Ark1-GFP, it was more difficult to ascertain the 

localization of Ark1-GFP in anaphase upon repression of nbl1 expression.  However, we 

observed separated SPBs in 52 out of 72 (72%) anaphase cells in the absence of any 

detectable Ark1-GFP signal on the spindle (Fig. 2-5J).  This observation suggests that 

Ark1-GFP localization to the spindle and the midzone, similar to that of Bir1-GFP, was 

impaired by nbl1 disruption.  

 

Nbl1 sequence analysis reveals similarities to human Borealin 

Given that Nbl1 associates with known CPC components and co-localizes with 

them in a dependent fashion, it seemed reasonable that Nbl1 might be a fourth subunit of 

the S. pombe CPC, related to Borealin.  To pursue this possibility, we analyzed the 
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predicted secondary structure of Nbl1 using the Jpred3 server (Cole et al., 2008).  The N-

terminal region of Nbl1, from residues 14-85, is predicted to be highly α-helical (Fig. 2-

6A).  Additionally, Nbl1 exhibits coiled-coil oligomer potential from residues 22-56 of 

this helical region.  Using BLAST to search for related proteins, we identified the helical 

region of Borealin as a sequence homolog.  The central helical region of Nbl1, spanning 

residues 32-79, is 20% identical and 52% homologous to residues 25-72 of the Borealin 

N-terminus (Fig. 2-6B).  We independently analyzed Nbl1 using the Phyre protein 

threading server to search for homologs with known structure (Bennett-Lovsey et al., 

2008).  The first match was the N-terminus of human Borealin, with an E-value of 0.35 

and estimated precision of 85% [PDB=2RAX, (Bourhis et al., 2007)].  All other matches 

were unrelated helical proteins with significantly lower similarity (E-value >2.7, 

precision <55%). 

The N-terminal region of Borealin encodes an extended helix, which interacts 

with both Survivin and INCENP to form a three-helix bundle (Fig. 2-6C) (Jeyaprakash et 

al., 2007).  The Phyre-based model of Nbl1 (N29-H83) is consistent with core features of 

Borealin important for this interaction, containing both an extended coiled-coil followed 

by a helical region similar to the region of Borealin that binds to the dimerization arm of 

Survivin (Fig. 2-6C).  Additionally, the specific residues conserved between Borealin and 

Nbl1 strongly cluster to those residues at the protein-protein interaction surface.  22 of 

the 25 conserved residues are predicted to be localized to the protein-protein interaction 

face of Nbl1 (Fig. 2-6D).  The three residues positioned on the opposite helical face (E33, 

R44, R70) are charged residues.  One of the strictly conserved residues is proline 69 

(Figs. 2-6B and 2-6D).  This proline serves to break the long helix of Borealin and 
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Figure 2-6
Nbl1 is similar to human Borealin.
(A) Secondary structure and coiled-coil predictions of Nbl1.  H indicates α-helix, E indicates a 
β-strand, and C indicates a coiled-coil region.  (B) Sequence alignment of the core region of Nbl1 
and human Borealin.  The conserved proline is indicated by an asterisk.  (C) Comparison of the 
structure of Borealin in the trimeric complex of Survivin (blue), Borealin (red and yellow), and 
INCENP (green) (upper) with the model of Nbl1 (lower).  (D) An alternate rotation of the     
structures viewing along the edge of the Borealin trimer interface.  Conserved residues are 
mapped on the Nbl1 model in green sticks.  The conserved proline in the dimerization arm of 
Borealin is represented in both Borealin and Nbl1 as blue sticks.  (E) Diploids heterozygous for 
the nbl1(1-69) truncation were sporulated on glutamate plates, and tetrads were picked and 
allowed to germinate.  Colony pictures (on the left) were taken after one day.  A picture of the 
tetrad plate after three days is given on the right.
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positions the helical segments which bind to the dimerization arm of Survivin (Fig. 2-

6C).  This interaction leads to the observed dimer to monomer transition of Survivin, 

which is important for Survivin function (Bourhis et al., 2007).  Interestingly, although 

cells were viable when we truncated Nbl1 to its first 95 amino acids, truncation of Nbl1 

after the conserved proline at residue 69 rendered cells inviable (Fig. 2-6E).  Specifically, 

nbl1(1-69) cells cut in their first division (Fig. 2-6E).  Thus, the additional short helical 

stretch following the conserved proline in Nbl1 appears to be likewise relevant for CPC 

function in S. pombe.  Accordingly, Nbl1 and Borealin share a conserved N-terminal half 

that is both physically and functionally important.  Together with the physical and 

functional associations of Nbl1 with the CPC, these similarities further support the 

identification of Nbl1 as the S. pombe Borealin homolog.   

 

Clp1 and the CPC are also interdependent for proper localization 

 We next analyzed in more detail the association between CPC components and 

the Clp1/Cdc14 phosphatase, given that they had purified in our Clp1-TAP.  

Phosphatase-dead Clp1-C286S-GFP co-immunoprecipitated Nbl1(1-95)-FLAG during 

and following release from an nda3-KM311 prometaphase arrest (Fig. 2-7A), suggesting 

that Clp1 and Nbl1 associate in both metaphase and anaphase.  Consistent with this, 

Clp1-GFP and Nbl1(1-95)-mTomato co-localized to centromeres in metaphase and to the 

mitotic spindle and the spindle midzone in anaphase (Fig. 2-7B). 

 Because Clp1 reverses CDK-mediated phosphorylation events, we examined 

whether Nbl1 might be a CDK target that is regulated by its phosphorylation state.  CDK 

can in fact phosphorylate Nbl1(1-95) in vitro (Fig. 2-8A), and T91 is the only S/T site 
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Figure 2-7
Nbl1 associates with Clp1.
(A) Indicated strains were lysed either during an nda3-KM311 prometaphase block or 30 min 
following release from this block.  Anti-GFP and anti-FLAG immunoprecipitates were blotted 
with anti-GFP and anti-FLAG antibodies.  (B) Live-cell GFP, mTomato, and GFP/mTomato 
merged images of clp1-GFP nbl1(1-95)-mTomato cells.  M=metaphase, and A=anaphase. (Bar = 
5 μm)    
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Figure 2-8
S. pombe CPC subunits are phosphoproteins.
(A) Bacterially produced His6-Nbl1(1-95) was incubated with kinase-active (KA) or kinase-dead 
(KD) CDK.  Autoradiography and Coomassie blue (CB) staining of the reactions were 
performed. (B) Live-cell GFP, RFP, and GFP/RFP merged images of nbl1-T91A-GFP sid4-RFP 
cells.  The dashed white line indicates the location of the septum.  I=interphase, M=metaphase, 
A=anaphase, and S=septation. (C) Schematic of Bir1 and Pic1 phosphosites detected by mass 
spectrometry.  Consensus CDK sites are in red.  (Bar = 5 μm)    
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matching a CDK consensus within the protein.  Replacing T91 with an alanine at the nbl1 

locus revealed that Nbl1 localization was unaffected by this mutation (Fig. 2-8B).  

Analysis of mass spectrometry data for Bir1 and Pic1 in the Clp1-TAPs indicated that 

these proteins are phosphorylated on many sites, and many of their phosphorylation sites 

match the CDK consensus (Fig. 2-8C).  More recent data have demonstrated that CDK-

mediated Bir1 phosphorylation is functionally most important in CPC-dependent 

chromosome biorientation (Tsukahara et al., 2010). 

A previous report suggested that Clp1 is required for proper centromere targeting 

of Ark1 and Bir1 (Trautmann et al., 2004).  We thus examined whether localization of 

Nbl1 is perturbed in clp1∆ cells.  Centromere localization of Nbl1-GFP was intact in all 

21 clp1∆ cells examined (Fig. 2-9A).  Also, in contrast to the earlier report, we detected 

all other CPC proteins at centromeres in clp1Δ cells (n>=20) (Fig. 2-9A).  Thus, we 

concluded that Clp1 does not affect CPC localization to centromeres.  However, though 

Nbl1-GFP, like the rest of the CPC, initially localized to the mitotic spindle appropriately 

in clp1Δ cells (n>=20) (Fig. 2-9B), Nbl1-GFP did not localize to the midzone correctly in 

clp1Δ cells (Fig. 2-9C).  Instead, it tailed off to one pole during anaphase (Fig. 2-9C).  

We noted that Nbl1-GFP mislocalized similarly in a strain with the phosphatase-dead 

clp1-C286S mutation (Fig. 2-9C), supporting the conclusion that Clp1 phosphatase 

activity is relevant to the midzone localization of the CPC.  

Midzone localization of Ark1 in S. pombe has been linked previously to a 

requirement for Ase1, a microtubule-bundling protein that is necessary for midzone 

stability (Yamashita et al., 2005).  In clp1Δ and clp1-C286S cells, Ase1-GFP also tailed 

off to one pole during anaphase (Fig. 2-9D).   This suggests that the midzone itself was 
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Figure 2-9
Clp1 only controls midzone targeting of the CPC.
(A) Live-cell GFP images of nbl1-GFP clp1Δ, bir1-GFP clp1Δ, pic1-GFP clp1Δ, and ark1-GFP 
clp1Δ cells in metaphase. (B) Live-cell GFP images of nbl1-GFP clp1Δ, bir1-GFP clp1Δ, 
pic1-GFP clp1Δ, and ark1-GFP clp1Δ cells in anaphase. (C) Live-cell GFP/RFP merged images 
of nbl1-GFP sid4-RFP, nbl1-GFP sid4-RFP clp1Δ, and nbl1-GFP sid4-RFP clp1-C286S cells. (D) 
Live-cell GFP/RFP merged images of ase1-GFP sid4-RFP, ase1-GFP sid4-RFP clp1Δ, and 
ase1-GFP sid4-RFP clp1-C286S cells.  Ase1 localizes to SPBs in addition to the spindle midzone, 
and thus the two most outlying dots in each image are indicative of SPB localization. (Bars =      
5 μm)   
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improperly formed in clp1Δ and clp1-C286S strains.  Thus, mis-localization of Nbl1 and 

other CPC components in clp1Δ and clp1-C286S strains appears to be due to faulty 

midzone formation in the absence of Clp1 phosphatase activity, an idea that has since 

been validated by others (Fu et al., 2009). 

 We next tested whether disruption of nbl1 affects Clp1 localization by monitoring 

Clp1-GFP and Sid4-RFP after repression of nbl1 expression.  In anaphase of wild-type 

cells, Clp1-GFP localizes to both the spindle and the CR (Cueille et al., 2001).  However, 

in nbl1-shutoff cells, Clp1-GFP localized to the spindle but not the CR during anaphase 

in 23 out of 33 (70%) cells (Fig. 2-10A).  In addition, Clp1-GFP often accumulated 

between separated SPBs in an unsegregated mass (Fig. 2-10A), consistent with the 

chromosome segregation defects seen in nbl1-disrupted cells.  We then examined Clp1-

GFP and Sid4-RFP in the CPC temperature strains cut17-275, pic1-T269, and ark1-T7.  

Though some cut17-275, pic1-T269, and ark1-T7 cells showed localization of Clp1-GFP 

to the CR in early anaphase at the restrictive temperature (panel I of Figs. 2-10B, 2-10C, 

and 2-10D), most anaphase cut17-275 (27 of 35, 77%), pic1-T269 (24 of 31, 67%), and 

ark1-T7 (36 of 42, 86%) cells lacked any detectable Clp1-GFP signal at the CR (panels 

II-IV of Figs. 2-10B, 2-10C, and 2-10D).  Instead, Clp1-GFP solely localized to the 

mitotic spindle and to an unsegregated mass between SPBs in these cells (panels II-IV of 

Figs. 2-10B, 2-10C, and 2-10D).  Thus, Clp1-GFP accumulation at the CR was abnormal 

in all CPC mutations tested. 

 To study the defects of Clp1 localization in more detail, Clp1-GFP and Sid4-RFP 

were imaged by time-lapse microscopy in the ark1-T7 strain.  As suggested by the still 

images, Clp1-GFP never accumulated properly on the CR during anaphase.  In some 
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Figure 2-10
The CPC regulates accumulation of Clp1 at the CR.
(A) Live-cell bright field (BF) and GFP/RFP merged images of nbl1-shutoff clp1-GFP sid4-RFP 
cells after 10 h of nbl1 repression with thiamine (+T). (B-D) Live-cell BF and GFP/RFP merged 
images of cut17-275 clp1-GFP sid4-RFP, pic1-T269 clp1-GFP sid4-RFP, and ark1-T7 clp1-GFP 
sid4-RFP cells progressing through mitosis after G2 synchronization and shift to 36°C. Clp1 
localization at the CR is indicated by white arrows.  (E) Time-lapse GFP/RFP merged images of 
ark1-T7 clp1-GFP sid4-RFP  and clp1-GFP sid4-RFP cells progressing through mitosis after G2 
synchronization and shift to 36°C.  Initial images were taken at the metaphase-to-anaphase 
transition, and subsequent images were taken every two minutes. (Bars = 5 μm)  

A

IV

III

II

IV

III

I

IV

III

II

           nbl1-shutoff 
clp1-GFP sid4-RFP (+T)

             cut17-275
clp1-GFP sid4-RFP (36°C)

              pic1-T269
clp1-GFP sid4-RFP (36°C)

              ark1-T7
clp1-GFP sid4-RFP (36°C)

II

I I

              ark1-T7
clp1-GFP sid4-RFP (36°C)

              clp1-GFP
        sid4-RFP (36°C)

t=0

t=2

t=4

t=6

t=8

t=10

B

C D

E

49



cases, Clp1 failed to localize to any degree on the CR (middle column of Fig. 2-10E).  In 

other cases, we detected faint CR localization of Clp1-GFP, but this signal dissipated 

prematurely and never reached its normal intensity (right column of Fig. 2-10E).  These 

observations are in striking contrast to what was seen in wild-type clp1-GFP sid4-RFP 

cells, in which Clp1-GFP localized strongly to the CR initially in metaphase and 

continued on the CR through anaphase (left column of Fig. 2-10E).  Accordingly, 

disruption of CPC function severely affected Clp1 accumulation at the CR. 

 

The CPC genetically interacts with the S. pombe cytokinetic apparatus 

 Clp1 accumulation at the CR is required for the fidelity of cytokinesis (Chen et 

al., 2008; Clifford et al., 2008; Trautmann and McCollum, 2005).  Furthermore, 

temperature-sensitive alleles of CR components exhibit a strong genetic interaction with 

mid1Δ431-481, which encodes a Mid1 mutant that lacks the region necessary to recruit 

Clp1 to the CR (Clifford et al., 2008).  Therefore, given the relevance of the CPC to Clp1 

accumulation at the CR, we used a genetic approach to examine whether previously 

unrecognized connections between the S. pombe CPC and the cytokinetic apparatus exist.  

Interestingly, we observed negative genetic interactions (Fig. 2-11A) between ark1-T7 

and temperature-sensitive alleles of the following genes: cdc12, which encodes a critical 

cytokinetic formin (Kovar et al., 2003; Pelham and Chang, 2002); rng2, which encodes 

an IQGAP-related protein required for CR formation (Eng et al., 1998); and sid2, which 

encodes a kinase that functions in septation initiation (Balasubramanian et al., 1998).  

The observed negative genetic interactions between ark1-T7 and CR mutant alleles 

specifically correlated with an exacerbation of cytokinesis and septation defects, because 
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Figure 2-11
ark1-T7 exhibits negative genetic interactions with mutant CR alleles.
(A) Serial 10-fold dilutions of cells of the indicated genotypes. (B) Fixed-cell images of DAPI- 
and methyl blue-stained cells. (C) Quantification of (B), with n>300 per genotype. (Bar = 5 μm)    
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double mutants showed a greater proportion of defective cells than either of the relevant 

single mutants (Figs. 2-11B and 2-11C).  In addition, we noted that two temperature-

sensitive alleles of bir1, cut17-275 and bir1-T1, also showed a negative genetic 

interaction with cdc12-112 (Figs. 2-12A and 2-12B) and that the relevant double mutants 

likewise exhibited an increased instance of cytokinesis and septation defects (Figs. 2-12C 

and 2-12D).  We did not, however, detect genetic interactions between CPC temperature-

sensitive alleles and the mid1Δ431-481 mutant allele (Fig. 2-13), consistent with primary 

role of the CPC in cytokinesis being to mediate Clp1 accumulation at the CR.  

We next examined whether ark1-T7 cells are sensitive to latrunculin A (Lat A), a 

drug which inhibits actin polymerization (Ayscough et al., 1997).  Though high-dose Lat 

A treatment (>10µM) results in a complete loss of F-actin structures in wild-type cells 

(Pelham and Chang, 2001), low-dose Lat A treatment (0.2 µM) is not lethal (Mishra et 

al., 2004).  However, low-dose Lat A treatment mildly perturbs the cytokinetic 

machinery, and cells defective in cytokinesis, such as those lacking clp1, are sensitive to 

these low-doses (Figs. 2-14A, 2-14B, and 2-14C) (Mishra et al., 2004).  Though growth 

of ark1-T7 on control and low-dose Lat A-containing plates was similar at 25ºC, growth 

of ark1-T7 was slightly impaired at 27ºC and considerably impaired at 29ºC on low-dose 

Lat A-containing plates (Fig. 2-14A).  Consistent with this observation, ark1-T7 cells 

showed significant cytokinesis and septation defects in the presence of low-dose Lat A in 

liquid culture (Figs. 2-14B and 2-14C).  Therefore, ark1-T7 cells are sensitive to mild 

inhibition of actin polymerization at semi-permissive temperature.  These data support 

the notion that the fission yeast CPC promotes the process of cytokinesis. 
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Figure 2-12
Additional negative genetic interactions between CPC and CR mutant alleles.
(A and B) Serial 10-fold dilutions of cells of the indicated genotypes. (C) Fixed-cell images of 
DAPI- and methyl blue-stained cells. (D) Quantification of (C), with n>300 per genotype. (Bar = 
5 μm)    
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Figure 2-13
Mutant CPC alleles do not interact genetically with mid1∆431-481.
Serial 10-fold dilutions of cells of the indicated genotypes.
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Figure 2-14
ark1-T7 cells are sensitive to low-dose Lat A.
(A) Serial 10-fold dilutions of cells of the indicated genotypes.  Cells were spotted on YE plates 
containing DMSO alone (control) or DMSO plus low-dose Lat A.  (B) Fixed-cell images of 
DAPI- and methyl blue-stained cells, which had been treated with DMSO alone (control) or with 
DMSO plus low-dose Lat A. (C) Quantification of (B), with n>300 per genotype.  (Bar = 5 μm)    
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Discussion 

Similar to their orthologs in other organisms (Ruchaud et al., 2007; Vader et al., 

2006; Vagnarelli and Earnshaw, 2004), the S. pombe proteins Ark1, Pic1, and Bir1 

function within a chromosomal passenger complex that regulates critical mitotic events 

such as chromosome segregation and spindle elongation (Huang et al., 2005; Leverson et 

al., 2002; Morishita et al., 2001; Petersen et al., 2001; Rajagopalan and Balasubramanian, 

2002; Widlund et al., 2006).  However, whether these three proteins operate alone in this 

complex had been unclear, for a Borealin homolog had not been previously described in 

S. pombe.  Here, we characterize Nbl1 as an S. pombe Borealin-like protein based on its 

association with known CPC components, its co-localization with other CPC subunits 

during mitosis, and its sequence and proposed structural similarity to human Borealin.  

Consistent with previous data directly linking Borealin to Aurora B activation (Jelluma et 

al., 2008), we additionally demonstrate that Nbl1 is required for Ark1 activity.  

Furthermore, we show that the S. pombe CPC influences the process of cytokinesis, at 

least partially by controlling the localization of S. pombe Cdc14-family phosphatase 

Clp1. 

 

Conservation and structure-function relationship of Borealin 

 Identification of Borealin homologs in yeasts has previously been hampered by 

the fact that they do not possess open reading frames with significant primary sequence 

identity to human Borealin.  Even the Nbl1(1-95) sequence, which was sufficient to 

rescue disruption of nbl1 and to support proper localization and associations of the CPC 

during mitosis, possesses only a few residues which are identical to residues at the same 
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positions in Borealin.  As we finished this study, another manuscript was published 

describing a budding yeast Borealin homolog (Nakajima et al., 2009).  In this paper, the 

authors also identified putative Borealin homologs in almost 200 species through Hidden 

Markov Model-based searches.  One of the putative homologs which they noted in this 

analysis (Nakajima et al., 2009) is the S. pombe protein described in our study.  Thus, our 

work supports their findings and confirms that Nbl1 is in fact an S. pombe Borealin 

homolog. 

We fortuitously discovered that a truncation of Nbl1 lacking the last 46 amino 

acids localizes correctly, interacts with other CPC components, and does not exhibit 

genetic interactions consistent with a loss of function.  Though a recent study suggested 

that full-length Borealin is required for the formation of a competent Borealin-Survivin 

complex which can bind INCENP (Zhou et al., 2009), it has been posited that Borealin-

like proteins in lower eukaryotes retain only structures involved in formation of the 

critical three-helix bundle of Borealin-Survivin-INCENP homologs (Nakajima et al., 

2009).  Proper function of Nbl1(1-95) supports this hypothesis since it maintains the core 

three-helix bundle region.  Nbl1(1-95) also retains a second helical stretch that follows a 

conserved proline.  Given that this helical stretch is additionally necessary for viability, 

this region represents another critical structural domain.  It will be interesting to analyze 

whether this region, similar to the helical stretch following the conserved kink in human 

Borealin (Bourhis et al., 2007), blocks homodimerization of the Survivin homolog. 

 

Interdependencies of Borealin-CPC localizations 
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A significant question in the CPC field concerns how CPC localization is 

regulated by its different subunits.  In human cells, CPC proteins are strikingly 

interdependent, with knockdown or disruption of any of the CPC subunits impeding 

proper localization of the others (Gassmann et al., 2004; Honda et al., 2003).  While 

mutation of Bir1 has been found to impede localization of Ark1 and Pic1 (Huang et al., 

2005; Morishita et al., 2001; Rajagopalan and Balasubramanian, 2002), a comprehensive 

dissection of CPC interdependency in localization has been lacking in S. pombe.  Here, 

we undertook a thorough analysis of Nbl1-CPC interdependency and noted additional 

associations relevant to CPC localization.  An intriguing possibility suggested by our data 

is that Nbl1 contributes to centromeric targeting of the CPC.  We found that Nbl1 

localization to centromeres is independent of Bir1, Pic1, and Ark1, whereas centromere 

localization of Bir1, Pic1, and Ark1 requires Nbl1.  Intriguingly, human Borealin binds 

DNA (Klein et al., 2006), and its interactions with the centromeric adaptor Shugoshin 

enhance CPC centromere targeting (Tsukahara et al., 2010).  It will thus be intriguing to 

address a possible conserved function for Borealin homologs in CPC targeting to the 

centromere. 

  

CPC phosphoregulation by CDK and Cdc14-family phosphatases 

Our data furthermore highlight that Clp1, similar to Cdc14 in S. cerevisiae 

(Pereira and Schiebel, 2003; Stoepel et al., 2005), is a bona fide CPC-interacting protein.  

Ark1 has previously been shown to associate with Clp1 during mitosis (Trautmann et al., 

2004), and we additionally identified Bir1, Pic1, and Nbl1 in our Clp1-C286S-TAP 

complexes.  The fact that Clp1 and the CPC co-localize during mitosis furthermore 
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confirms their close association.  An obvious question stemming from these observations 

is whether S. pombe CPC proteins are directly regulated by their phosphorylation state.  

While an in-depth analysis of CPC phosphoregulation in S. pombe was beyond the scope 

of this study, others have since found that CDK-mediated Survivin phosphorylation 

impacts CPC-Shugoshin interactions in multiple species, thereby affecting CPC 

centromere targeting and chromosome biorientation (Tsukahara et al., 2010). 

On a related note, it is currently unclear whether dephosphorylation of S. pombe 

CPC proteins by Clp1 occurs and, if so, whether this is important for CPC function.  The 

fact that Nbl1, Bir1, and Pic1 co-purified with the substrate-trapping Clp1-C286S mutant 

suggests, however, that at least one of the three is a direct target of Clp1.  This possibility 

is supported by a previous report indicating that Clp1 phosphatase activity is required for 

Clp1 to affect chromosome segregation through the CPC (Trautmann et al., 2004).  While 

this issue is unresolved, a few points regarding CPC localization in clp1Δ cells deserve 

noting.  Though it was suggested that deletion of clp1 affects localization of CPC 

subunits to centromeres (Trautmann et al., 2004), our data indicate that the CPC localizes 

normally to centromeres in the absence of Clp1.  Also, unlike Cdc14 (Pereira and 

Schiebel, 2003), Clp1 is not required for the initial spindle recruitment of any CPC 

component in S. pombe.  Therefore, it is most likely that if Clp1 affects the CPC directly, 

it would influence its localization dynamics or its specific activity.  Although Nbl1 

localization to the midzone is disrupted in both clp1Δ and clp1-C286S cells, we have 

found that the midzone itself is disrupted in the absence of Clp1 activity.  In S. cerevisiae, 

Cdc14 controls midzone formation via de-phosphorylation of Ase1 (Khmelinskii et al., 
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2007).  Our data support a more recent study (Fu et al., 2009) indicating that Clp1-Ase1 

interactions similarly control midzone assembly in S. pombe.   

 

CPC-mediated control of Cdc14-family phosphatases and cytokinesis 

 It had not been examined previously whether the CPC in any organism affects 

Cdc14 family function.  We found, unexpectedly, that Clp1 accumulation at the CR was 

defective in all tested CPC mutations.  Clp1 contributes to CR stability and the fidelity of 

cytokinesis (Chen et al., 2008; Clifford et al., 2008; Trautmann and McCollum, 2005).  

Yet, because Clp1 is non-essential in S. pombe, its loss at the CR perturbs, but does not 

normally prevent, cytokinesis.  Consistent with the CPC affecting this aspect of 

cytokinesis integrity, ark1-T7 cells are sensitive to low-dose Lat A treatment and 

temperature-sensitive alleles of genes encoding CPC and CR components display 

negative genetic interactions.  Therefore, although Ark1 is not essential for S. pombe 

cytokinesis (Petersen and Hagan, 2003), our data indicate that Ark1 does play a role in 

this process.   

The CPC has similarly been implicated in S. cerevisiae cytokinesis.  In S. 

cerevisiae, distinct passenger complexes control septin organization in anaphase (Gillis et 

al., 2005; Thomas and Kaplan, 2007), and the Aurora B homolog mediates a NoCut 

cytokinesis checkpoint by recruiting abscission inhibitors when DNA fails to segregate 

out of the cleavage plane (Mendoza et al., 2009; Norden et al., 2006).  Though the extent 

of the S. pombe CPC’s contribution to cytokinesis is currently unclear, it is unlikely to 

monitor DNA remaining in the division plane.  Cut mutations resulting from inhibition of 

a variety of mitotic factors are readily obtained in S. pombe (Yanagida, 1998), indicating 
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that there is no robust mechanism in this organism to delay or prevent cytokinesis when 

chromosomes remain in the division plane.  Furthermore, the genetic interactions we 

have uncovered indicate that the CPC promotes, rather than inhibits, cytokinesis in S. 

pombe.  In future studies, it will be important to determine whether the sole function of 

the CPC in S. pombe cytokinesis involves regulating Clp1 localization. 
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 CHAPTER III 

 

SIN-DEPENDENT PHOSPHOINHIBITION OF FORMIN MULTIMERIZATION 
CONTROLS FISSION YEAST CYTOKINESIS 

 
 
 

Introduction 

 Many eukaryotes accomplish cell division by building and constricting a medial 

actomyosin-based CR.  In S. pombe, a Hippo-related signaling pathway known as the SIN 

controls CR formation, maintenance, and constriction.  However, how the SIN regulates 

integral CR components was unknown.  Here, we identify the essential cytokinetic 

formin Cdc12 as the primary CR substrate of SIN kinase Sid2.  Eliminating Sid2-

mediated Cdc12 phosphorylation leads to persistent Cdc12 clustering, which prevents CR 

assembly in the absence of anillin-like Mid1 and causes CRs to collapse when 

cytokinesis is delayed.  Molecularly, Sid2 phosphorylation of Cdc12 abrogates 

multimerization of a previously unrecognized Cdc12 domain that confers F-actin 

bundling activity.  Taken together, our findings identify a SIN-triggered oligomeric 

switch that modulates cytokinetic formin function, revealing a novel mechanism of actin 

cytoskeleton regulation during cell division. 

 

Results 

 

The SIN kinase Sid2 phosphorylates cytokinetic formin Cdc12  

To assess potential cell cycle regulation of formin Cdc12, we analyzed the SDS-

PAGE mobility of Cdc12-HA3 through the cell cycle.  Intriguingly, Cdc12-HA3 migrated 
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more slowly during nuclear division just prior to septation (Fig. 3-1A).  Lambda 

phosphatase treatment of Cdc12-HA3 immunoprecipitates from selected samples 

indicated that gel mobility shifts were due to phosphorylation, and that Cdc12-HA3 was 

hyperphosphorylated immediately before septation (Fig. 3-1B).  Similar gel mobility 

patterns were observed for Cdc12 tagged with a different epitope (V53) and released from 

an S phase arrest (Fig. 3-1C).  Lambda phosphatase treatment of Cdc12-V53 

immunoprecipitates from cytokinesis-arrested cells, which block after CR formation due 

to impaired septum deposition (Le Goff et al., 1999; Liu et al., 2000), or from G1-

arrested cells confirmed that Cdc12 phosphorylation peaks during cell division (Fig. 3-

1D). 

 Given this phosphorylation pattern, we asked whether the SIN, whose activity 

increases during mitosis and is maintained during a cytokinesis arrest (Liu et al., 1999; 

Sparks et al., 1999), directly targets Cdc12.  We found that SIN induction, achieved via 

inactivation of the inhibitory GAP Cdc16 (Krapp and Simanis, 2008; Minet et al., 1979), 

resulted in Cdc12-V53 hyperphosphorylation (Fig. 3-2A).  Moreover, the SIN kinase 

Sid2, which localizes to SPBs and the CR during a cps1-191 cytokinesis arrest (Fig. 3-

2B), directly phosphorylated MBP-tagged Cdc12 fragments in vitro (Figs. 3-2C and 3-

2D).  In accord with Sid2 family kinases targeting RxxS motifs (Mah et al., 2005), Sid2 

phosphorylated exclusively serines on Cdc12 fragments (Fig. 3-2E).  Alanine mutation of 

Sid2-consensus serines identified residues S824, S1523, S1543, and S1811 as the major 

Sid2-targeted residues (Figs. 3-3A, 3-3B, and 3-3C).  All four of these sites reside outside 

of well-characterized formin domains (Fig. 3-3A).  Cells were viable when wild-type 

cdc12+ was replaced with cdc12-4A, in which the four Sid2-targeted serines are mutated 

63



Figure 3-1
Formin Cdc12 is hyperphosphorylated during cytokinesis.
(A) Block-and-release of cdc25-22 cdc12-HA3 cells.  At the indicated time points, cell cycle 
progression was monitored by binucleate and septation percentages.  Denatured cell lysates from 
the different time points were probed with an anti-HA antibody, and immunoprecipitates were 
resolved by SDS-PAGE and immunoblotted.  CDK is a loading control. (B) For the cdc25-22 
cdc12-HA3 block-and-release experiment, denatured cell lysates were prepared for samples of the 
indicated time points and probed with an anti-HA antibody. Immunoprecipitates were subjected to 
either phosphatase treatment or a buffer control before being resolved by SDS-PAGE and         
immunoblotted.  CDK is a loading control. (C) Block-and-release of cdc12-V53 cells from a 
hydroxyurea-induced S phase arrest.  At the indicated time points, cell cycle progression was 
monitored by binucleate and septation percentages.  Denatured cell lysates from the different time 
points were probed with an anti-V5 antibody, and immunoprecipitates were resolved by SDS-
PAGE and immunoblotted.  CDK is a loading control. (D) Denatured cell lysates of cdc10-V50 
cdc12-V53 or cps1-191 cdc12-V53 cells arrested at the indicated stages were probed with an 
anti-V5 antibody.  Immunoprecipitates were subjected to either phosphatase treatment or a buffer 
control before being resolved by SDS-PAGE and immunoblotted.  CDK is a loading control.  
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Figure 3-2
The SIN kinase Sid2 phosphorylates formin Cdc12.
(A) Denatured cell lysates of asynchronous cdc12-V53 or SIN-activated cdc16-116 cdc12-V53 
cells were probed with an anti-V5 antibody.  Immunoprecipitates were subjected to either      
phosphatase treatment or a buffer control before being resolved by SDS-PAGE and                   
immunoblotted.  CDK is a loading control. (B) Live-cell bright field (BF) and GFP images of 
cps1-191 sid2-GFP cells arrested in cytokinesis. (C) Schematic of Cdc12, with recombinant 
fragments used in in vitro kinase assays illustrated. (D) In vitro kinase assay using Sid2-Myc13 
immunoprecipitated from cdc16-116 sid2-Myc13 cells and various recombinant MBP-Cdc12 
fragments illustrated in (C).  Proteins labeled by γ–32P were detected by autoradiography, and the 
protein gel was stained with Coomassie blue (CB). (E) Phosphoamino acid analysis of MBP-
Cdc12 fragments phosphorylated by Sid2-Myc13.  The positions of phospho-serine,           
phospho-threonine, and phospho-tyrosine standards are indicated in the key. (Bar = 5 µM)
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Figure 3-3
Sid2 phosphorylates Cdc12 on four RxxS consensus serines.
(A) Schematic of Cdc12, with Sid2-targeted residues labeled in red, additional Sid2 consensus 
motifs marked by black ticks, and recombinant protein fragments used in in vitro kinase assays 
illustrated. (B) In vitro kinase assays using Sid2-Myc13 immunoprecipitated from cdc16-116 
sid2-Myc13 cells and various recombinant MBP-Cdc12 wild-type and mutant fragments.  Proteins 
labeled by γ–32P were detected by autoradiography, and the protein gel was stained with 
Coomassie blue (CB). (C) Phospho-tryptic peptide analysis of MBP-Cdc12 wild-type and mutant 
fragments phosphorylated by Sid2 kinase.  The position of the origin is indicated by a red “x”, 
and major spots are numbered. The anode is on the left.  Loss of phosphorylated peptides for the 
S1523A and S1543A mutants of the MBP-Cdc12(1293-1700) fragment are indicated by green 
and red circles. (D) Denatured cell lysates of cps1-191 cdc12-FLAG3 and cps1-191 cdc12-4A-
FLAG3 cells arrested in cytokinesis were probed with an anti-FLAG antibody.                           
Immunoprecipitates were treated with phosphatase or a buffer control before being resolved by 
SDS-PAGE and immunoblotted.  10 μM Phos-tag was included in the protein gel. Brackets span 
phosphorylated smears, and asterisks denote a non-collapsible species.  CDK is a loading control.
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to alanines.  However, Cdc12-4A-FLAG3 was not hyperphosphorylated to the same 

extent as wild-type Cdc12-FLAG3 during a cps1-191 cytokinesis arrest (Fig. 3-3D), 

signifying that Cdc12-4A cannot be fully phosphorylated in vivo.  Therefore, we 

concluded that Sid2 phosphorylates formin Cdc12 during cytokinesis. 

 

Cdc12-4A localizes to the CR but compromises actomyosin function 

 Mutant Cdc12-4A-GFP3 localized normally to the CR (Fig. 3-4A).  However, 

unlike wild-type Cdc12-GFP3 (Coffman et al., 2009), Cdc12-4A-GFP3 also localized to 

SPBs during CR constriction as detected by still and time-lapse imaging (Figs. 3-4A and 

3-4B). This abnormal localization suggested that Cdc12-4A was deregulated.  Consistent 

with this interpretation, combining the cdc12-4A allele with various loss-of-function 

alleles in the cytokinetic actomyosin machinery revealed severe negative genetic 

interactions (Figs. 3-5A and 3-5B).  These alleles included mutations or deletions of 

genes encoding myosin Myo2, myosin regulatory light chain Rlc1, or actin Act1.  cdc12-

4A cells treated with low-dose (0.2 μM) Lat A, which impedes actin polymerization 

(Ayscough et al., 1997), also exhibited grossly amplified cytokinetic errors (Figs. 3-5C 

and 3-5D), similar to Lat A-treated cells lacking the SIN target Clp1 (Mishra et al., 

2004).  These data indicate that loss of Sid2-mediated Cdc12 phosphorylation impairs the 

cytokinetic actomyosin machinery without preventing Cdc12 localization to the CR. 

 

Cdc12-4A is defective in SIN-dependent cytokinesis 

 We next tested whether SIN-dependent events during cytokinesis were impaired 

in the cdc12-4A mutant.  Because the SIN is critical for Mid1/node-independent 
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Figure 3-4
Cdc12-4A-GFP3 localizes to the CR and SPBs during cytokinesis.
(A) Live-cell bright field (BF), GFP, RFP, and merged GFP/RFP images of cdc12-4A-GFP3 
sid4-RFP cells.  Green arrows denote SPB localization. (B) Live-cell GFP/RFP movie of a 
cdc12-4A-GFP3 sid4-RFP cell undergoing cytokinesis.  Green arrows denote SPB localization 
during CR constriction. (Bars = 5 μm)
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Figure 3-5
Cdc12-4A cannot support proper actomyosin function at the CR.
(A and B) Serial 10-fold dilutions of the indicated strains at various temperatures. (C) Fixed-cell 
images of DAPI- and methyl blue-stained wild-type and cdc12-4A cells treated with low-dose Lat 
A. (D) Quantification of cytokinesis defects of cells imaged in (C).  DMSO treatments were 
administered as a control.  n>200 for each. (Bar = 5 μm)
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cytokinesis (Hachet and Simanis, 2008; Huang et al., 2008), we combined mid1∆ and 

cdc12-4A alleles.  Importantly, cdc12-4A mid1∆ cells were significantly more defective 

in cytokinesis than either individual mutant (Figs. 3-6A and 3-6B) and died at elevated 

temperatures (Fig. 3-6C).  F-BAR protein Cdc15 is also vital for Mid1-independent 

cytokinesis (Hachet and Simanis, 2008).  Accordingly, cdc12-4A was synthetically sick 

with a cdc15 temperature-sensitive allele (Fig. 3-6D).  These results are consistent with 

Sid2-mediated Cdc12 phosphorylation representing an important facet of SIN-based CR 

regulation. 

 To further explore the contribution of Cdc12 phosphorylation to SIN signaling, 

we tested whether Cdc12-4A was capable of driving interphase CR assembly and 

septation upon SIN hyperactivation.  We utilized a temperature-sensitive allele of the 

inhibitory GAP Cdc16, which when inactivated leads to multiple rounds of CR formation 

and septation (Fig. 3-7A) (Krapp and Simanis, 2008; Minet et al., 1979).  Cells were 

synchronized in G2 phase (Fig. 3-7B) by centrifugal elutriation and then shifted to the 

restrictive temperature.  Mononucleate cdc12-V53 cells septated almost immediately, and 

nearly all mononucleates developed multiple septa within four hours (Figs. 3-7A and 3-

7B).  However, a majority of cdc12-4A-V53 mononucleates failed to septate within this 

timeframe (Figs. 3-7A and 3-7B).  Instead, these cells accumulated abnormal cell wall 

deposits near their cell middles (Fig. 3-7A).  cdc12-4A-V53 mutants also contained 

medial spots, but not rings, of actin and CR proteins IQGAP YFP-Rng2 and Cdc15-GFP 

(Figs. 3-8A and 3-8B), which arose from earlier filament-like structures that fragmented 

and subsequently clustered into distinct foci (Fig. 3-8C).  Like cdc16-116 cdc12-V53 

cells, cdc16-116 cdc12-4A-V53 cells that slipped into mitosis completed medial septation 
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Figure 3-6
cdc12-4A impedes node/Mid1-independent cytokinesis.
(A) Fixed-cell images of DAPI- and methyl blue-stained wild-type, cdc12-4A, mid1∆, and 
cdc12-4A mid1∆ cells grown at 32°C. (B) Quantification of cytokinesis defects of cells imaged in 
(A).  n>200 for each. (C and D) Serial 10-fold dilutions of the indicated strains at various 
temperatures. 
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Figure 3-7
cdc12-4A impedes septation upon SIN hyperactivation.
(A) Fixed-cell images of DAPI- and methyl blue-stained cdc16-116 cdc12-V53 and cdc16-116 
cdc12-4A-V53 cells after 4 h at the restrictive temperature. (B) Quantification of septation upon 
SIN induction in cdc16-116 cdc12-V53 and cdc16-116 cdc12-4A-V53 cells.  Cells were initially 
synchronized by centrifugal elutriation, and then shifted to the restrictive temperature for 4 h.  
n>300 for each time point. Data are separated for mononucleates and binucleates. (Bar = 5 μm)
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Figure 3-8
cdc12-4A impedes CR assembly upon SIN hyperactivation.
(A) Fixed-cell images of phalloidin (green)- and DAPI (magenta)-stained cdc16-116 cdc12-V53 
and cdc16-116 cdc12-4A-V53 cells after 4 h at the restrictive temperature. (B) Live-cell bright 
field (BF) and fluorescence images of cdc16-116 cdc12-V53 cdc15-GFP, cdc16-116 cdc12-4A-
V53 cdc15-GFP, cdc16-116 cdc12-V53 YFP-rng2, and cdc16-116 cdc12-4A-V53 YFP-rng2 cells 
after 4 h at the restrictive temperature. (C) Live-cell GFP/RFP movie of a cdc16-116 cdc12-4A-
V53 cdc15-GFP rpn11-RFP interphase cell just after being shifted to the restrictive temperature.  
Images were acquired every 2.5 min.  (Bars = 5 μm)
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(Figs. 3-7A and 3-7B), illustrating that the cdc12-4A allele does not block node-based 

cytokinesis.  Yet, additional non-medial septa never formed in cdc16-116 cdc12-4A-V53 

binucleates (Figs. 3-7A and 3-7B), consistent with the cdc12-4A allele eliminating a key 

SIN signal.  

 

Prolonged CR maintenance requires Sid2-mediated Cdc12 phosphorylation 

 Even when Mid1/node-based modules contribute to CR assembly at mitotic onset, 

sustained CR integrity demands SIN signaling.  This is most evident in a cps1-191 β-

glucan synthase mutant, which conditionally activates a cytokinetic checkpoint due to 

impaired septum deposition (Le Goff et al., 1999; Liu et al., 2000).  Though cps1-191 

cells form CRs, these mutants require SIN activity for CR maintenance during the arrest 

(Hachet and Simanis, 2008; Liu et al., 1999; Mishra et al., 2004).  Consistent with Sid2-

mediated Cdc12 phosphorylation constituting a critical SIN signal, intact F-actin rings 

were not observed in cps1-191 cdc12-4A arrested cells as they were in cps1-191 arrested 

cells (Fig. 3-9A).  Similar to cps1-191 sid2-250 double mutants (Hachet and Simanis, 

2008), cps1-191 cdc12-4A cells often contained medial F-actin clumps flanking ‘kissing 

nuclei’ that had returned to cell middles following failed cytokinesis (Fig. 3-9A).  We 

found that these F-actin defects were associated with Cdc12 mislocalization.   Whereas 

Cdc12-GFP3 persisted in rings during a cps1-191 arrest (Fig. 3-9B), it accumulated in 

medial spots in cps1-191 sid2-250 arrested cells (Fig. 3-9B).  Cdc12-4A-GFP3 formed 

similar spot-like structures in a cps1-191 arrest (Fig. 3-9B), validating that Sid2 cannot 

target Cdc12-4A. 
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Figure 3-9
cdc12-4A cells fail at SIN-dependent CR maintenance.
(A) Fixed-cell images of phalloidin (green)- and DAPI (magenta)-stained cps1-191 and cps1-191 
cdc12-4A cells arrested in cytokinesis.  Arrows indicate actin CRs, whereas an arrowhead points 
to a medial actin mass. (B) Live-cell bright field (BF) and GFP images of cps1-191 cdc12-GFP3, 
cps1-191 cdc12-4A-GFP3, and cps1-191 sid2-250 cdc12-GFP3 cells arrested in cytokinesis. (C) 
Live-cell GFP/mCherry (mCh) movie of a cps1-191 cdc12-4A-GFP3 rlc1-mCherry3 cell just after 
being shifted to the restrictive temperature.  Images were acquired every 5 min. (Bars = 5 μm)
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 We predicted these spot-like structures originated from collapsing CRs.  Time-

lapse imaging of Cdc12-4A-GFP3 with the CR marker Rlc1-mCherry3 confirmed that 

CRs formed as cells were shifted into the cytokinesis arrest but then collapsed (Fig. 3-

9C).  Ultimately, Cdc12-4A-GFP3 clustered with Rlc1-mCherry3 into a medial mass (Fig. 

3-9C).  Thus, Sid2-mediated Cdc12 phosphorylation is required for SIN-dependent CR 

maintenance. 

 

Sid2-mediated phosphorylation inhibits Cdc12 C-terminal multimerization 

 Sid2 phosphorylates Cdc12 on residues located outside of characterized formin 

domains (Fig. 3-10A).  Thus, we assessed whether Sid2-mediated phosphorylation 

disrupts the function of an uncharacterized Cdc12 domain.  To identify such a domain, 

we introduced C-terminal tags at the endogenous cdc12+ locus to produce serial 100-

residue truncations (Fig. 3-10A).  Though over-expression of similar C-terminal 

truncations is lethal (Yonetani and Chang, 2010), we found that endogenous cdc12 

truncations lacking residues C-terminal to Cdc12’s FH2 domain were viable (Fig. 3-

10B).  Despite comparable viability, these mutants differed in CR phenotypes.  Whereas 

Cdc12(1-1600)-GFP3 formed complete ring structures, Cdc12(1-1400)-GFP3 formed 

discontinuous CRs (Fig. 3-10C).  Thus, we predicted that residues 1400-1600 contain a 

domain critical to Cdc12 regulation.  In complementary experiments, we found that over-

expressing the Cdc12 C-terminus strongly inhibited cytokinesis (Figs. 3-11A and 3-11B), 

and we defined a minimal C-terminal fragment (residues 1451-1538) that was sufficient 

for this activity (Figs. 3-11A, 3-11B, and 3-11C).  Importantly, this fragment overlaps 
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Figure 3-10
The Cdc12 C-terminus is important for CR formation.
(A) Schematic of Cdc12, with Sid2-targeted phosphosites indicated by red ticks and endogenous 
truncations illustrated. (B) Serial 10-fold dilutions of the indicated strains. (C)  Live-cell DIC and 
merged GFP/RFP images of cdc12(1-1400)-GFP3 sid4-RFP and cdc12(1-1600)-GFP3 sid4-RFP 
cells. (Bar = 5 μm)
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Figure 3-11
Over-expression of a minimal Cdc12 C-terminal fragment is lethal.
(A) Schematic representation of Cdc12, with over-expressed C-terminal fragments illustrated.  
Fragments were over-expressed from the pSGP527a plasmid.  “+” indicates that the fragment 
caused cytokinesis defects upon over-expression, while “-“ indicates that it did not.  A fixed-cell 
image of a DAPI- and methyl blue-stained wild-type cell over-expressing cdc12(1401-1841) is 
given to show an example of cytokinesis defects caused by such over-expression. (B)            
Quantification of cells defective in cytokinesis upon over-expression of fragments illustrated in 
(A).  Starred bars denote fragments that impaired cytokinesis.  Over-expression of C-termini of 
other S. pombe formins, For3 and Fus1, served as controls.  Two trials were performed per 
fragment, with n>100 for each trial. (C) Live-cell bright field (BF), GFP, mCherry (mCh)/RFP, 
and merged fluorescence images of cdc15-mCherry sid4-RFP cells, some of which over-express 
GFP-cdc12(1451-1538).  This fragment was over-expressed from the pSGP572a plasmid. (Bars = 
5 μm)
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with the region contributing to CR formation (Fig. 3-10C), suggesting that residues 1451-

1538 comprise a functional domain. 

 Sequence analysis revealed a high percentage of basic and serine residues within 

this region (Fig. 3-12A), reminiscent of RS domains involved in oligomerization 

(Boucher et al., 2001).  Accordingly, when resolved under native conditions, His6-

Cdc12(1451-1538) was detected in various multimeric forms (Fig. 3-12B), suggesting it 

oligomerized.  Consistent with self-association, MBP-Cdc12(1451-1538) and His6-

Cdc12(1451-1538) interacted in vitro (Fig. 3-12C).  Further, cdc12(1451-1538) over-

expression in cells drove endogenous Cdc12-GFP3 into spot-like structures (Fig. 3-12D), 

which resembled those observed upon loss of SIN function (Fig. 3-9B). We also found 

that Cdc12∆1451-1538-GFP3, unlike wild-type Cdc12-GFP3 (Coffman et al., 2009), 

never formed interphase spots (Figs. 3-12E and 3-12F).  Thus, residues 1451-1538 

function as an oligomerization domain, which influences Cdc12 clustering.  

RS domain-mediated oligomerizations can be reversed via phosphorylation 

(Nikolakaki et al., 2008; Peng et al., 2008).  As two Sid2-directed phosphosites were 

within or near the Cdc12 oligomerization domain (Fig. 3-13A) and Cdc12 clustered 

during cytokinesis upon loss of this phosphorylation (Fig. 3-9B), we asked whether Sid2-

mediated Cdc12 phosphorylation regulates this self-interaction.  First, we 

immunoprecipitated wild-type Cdc12-FLAG3 or phosphomutant Cdc12-4A-FLAG3 from 

a cps1-191 arrest, in which wild-type Cdc12 is phosphorylated by Sid2 (Fig. 3-3D), and 

tested whether immunoprecipitates bound His6-Cdc12(1451-1538).  Only Cdc12-4A-

FLAG3 bound His6-Cdc12(1451-1538) (Fig. 3-13B).  Next, we repeated the in vitro 

binding experiments with recombinant proteins, but phosphorylated bead-bound MBP-
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Figure 3-12
The Cdc12 C-terminus contains an oligomerization domain, which impacts clustering.
(A) The C-terminal Cdc12 oligomerization domain, amino acids 1451-1538, is nearly half basic 
(blue) or serine (red). (B) Recombinant His6-Cdc12(1451-1538) was resolved under native or 
denaturing conditions, and protein gels were Coomassie blue (CB)-stained. (C) In vitro binding of 
bead-bound recombinant MBP or MBP-Cdc12(1451-1538) with recombinant His6-Cdc12(1451-
1538).  Samples were washed, resolved by SDS-PAGE, and CB-stained.  The His6-Cdc12(1451-
1538) input is given as a control (D) Fixed-cell bright field (BF), GFP, and DAPI images of 
cdc12-GFP3 cells defective in cytokinesis due to over-expression of cdc12(1451-1538).  This 
fragment was over-expressed from the pREP1 plasmid. (E) Live-cell BF/GFP overlay images of 
cdc12-GFP3 and cdc12∆1451-1538-GFP3 cells.  Arrowheads indicate interphase Cdc12 spots.  (F)                   
Quantification of interphase Cdc12 spots imaged in (E).  Two trials were performed per genotype, 
with n>100 for each trial. (Bars = 5 μm)  
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Figure 3-13
Cdc12 multimerization is inhibited by Sid2-mediated phosphorylation.
(A) Schematic of Cdc12, with phosphosites marked by red ticks and the 1451-1538 fragment 
illustrated. (B) In vitro binding of recombinant His6-Cdc12(1451-1538) with bead-bound Cdc12-
FLAG3 or Cdc12-4A-FLAG3 immunoprecipitated from a cytokinesis arrest.  Samples were 
washed, resolved by SDS-PAGE, and gel halves were either immunoblotted with an anti-FLAG 
antibody or Coomassie blue (CB)-stained. (C) In vitro binding of bead-bound recombinant MBP 
or MBP-Cdc12(1451-1538), which had been phosphorylated by Sid2-Myc13, with recombinant 
His6-Cdc12(1451-1538). Sid2-Myc13 was immunoprecipitated from cdc16-116 sid2-Myc13 cells 
and incubated with ATP and bead-bound recombinant proteins.  Following binding to His6- 
Cdc12(1451-1538), samples were washed, resolved by SDS-PAGE, and CB-stained.  
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Cdc12(1451-1538) using Sid2-Myc13 prior to incubation.  We found that phosphorylation 

by Sid2-Myc13 significantly abrogated the self-interaction (Fig. 3-13C).  Collectively, 

these data indicate that Sid2-mediated Cdc12 phosphorylation counteracts C-terminal 

multimerization, and that abnormal Cdc12 clustering occurs when this self-interaction 

persists.   

 

Cdc12 C-terminal multimerization directs linear F-actin bundling 

 Deletion of the Cdc12 C-terminus could preclude clustering even when CRs 

deteriorated during a cps1-191 arrest (Fig. 3-14A). However, loss of the Cdc12 C-

terminus compromised CR formation (Fig. 3-10C), indicating that oligomerization must 

be important earlier during cytokinesis.  Because the endogenous cdc12∆1451-1538 

allele was synthetically sick with fim1∆ and rng2-D5 (Figs. 3-14B and 3-14C), mutant 

alleles of two demonstrated F-actin bundlers at the CR (Skau et al., 2011; Takaine et al., 

2009), we investigated the possibility that Cdc12 multimerization contributes to F-actin 

bundling, an activity which Cdc12’s FH1 and FH2 domains alone cannot perform (Scott 

et al., 2011).   

We found that a C-terminal fragment (‘Cdc12C’, residues 1293-end), which 

contains the oligomerization domain but lacks the FH1FH2 region (Fig. 3-15A), co-

pelleted with F-actin in high-speed (100,000g) sedimentation assays (Fig. 3-15B).  

Titration of this binding event revealed a KD of 0.67 µM (Fig. 3-15C), which is similar to 

those described for other F-actin bundlers at the CR (Takaine et al., 2009).  Notably, 

MBP-Cdc12C also co-pelleted with F-actin in low-speed (15,000g) sedimentation assays 

(Fig. 3-15D) and organized rhodamine-phalloidin-stained F-actin into long, linear 
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Figure 3-14
Additional characterization of C-terminal mutants.
(A) Live-cell bright field (BF) and GFP images of cps1-191 cdc12(1-1400)-GFP3 cells arrested in 
cytokinesis. (B and C) Serial 10-fold dilutions of the indicated strains at various temperatures. 
(Bar = 5 μm)  

A Cytokinesis arrest (cps1-191)
cdc12(1-1400)-GFP3

GFPBF

Wild-type
cdc12∆1451-1538

fim1∆
cdc12∆1451-1538 fim1∆

32°C              36°C

Wild-type
cdc12∆1451-1538

rng2-D5
cdc12∆1451-1538 rng2-D5

25°C              33°C

B

C

83



Figure 3-15
Cdc12’s C-terminus binds and crosslinks F-actin.
(A) Schematic of Cdc12, with relevant recombinant fragments illustrated and Sid2-
phosphorylated residues marked by red ticks. (B) High-speed (100,000g) sedimentation assay of 
MBP-Cdc12C (C) or MBP (M) with F-actin (A).  Equal portions of supernatants (s) and pellets 
(p) were resolved by SDS-PAGE and then Coomassie blue-stained. (C) Titration of MBP-Cdc12C 
binding to F-actin.  High-speed (100,000g) sedimentations were performed with varying F-actin 
concentrations, and the amount of co-pelleted MBP-Cdc12C was measured.  The KD was          
determined by fitting a quadratic equation to these data. (D) Low-speed (15,000g) sedimentation 
assay of MBP-Cdc12C (C) or MBP (M) with F-actin (A). Equal portions of supernatants (s) and 
pellets (p) were resolved by SDS-PAGE and then Coomassie blue-stained.  Asterisks indicate 
degradation products.
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bundles (Fig. 3-16A).  Accordingly, the Cdc12 C-terminus can both bind and bundle F-

actin.  In contrast, a Cdc12C∆1451-1538 mutant fragment, which lacks the 

oligomerization domain (Fig. 3-15A), did not bundle F-actin but instead formed 

disordered crosslinks (Fig. 3-16A).  Thus, the Cdc12 oligomerization domain supports 

linear F-actin bundling in vitro, though this domain itself cannot efficiently bind F-actin 

(Fig. 3-16B). 

If Cdc12 multimerization guides F-actin bundling in vivo, we expected that a 

cdc12∆1451-1538 mutant would be defective in CR assembly.  Indeed, imaging actin 

marker LifeAct-GFP in a cdc25-22 mutant at permissive temperature, in which the longer 

cell length clarifies medial actin structures (Huang et al., 2012), gave the impression that 

deleting the multimerization domain compromised actin condensation into a discrete CR 

(Fig. 3-17A).  To score this defect, we quantified condensed and non-condensed CRs in 

mitotic cdc25-22 cells at permissive temperature.  We found that roughly a quarter of 

cdc12∆1451-1538 binucleates possessed medial actin that had yet to condense into a ring 

(Figs. 3-17B and 3-17C).  In contrast, nearly all cdc12+ binucleates showed a condensed 

CR (Figs. 3-17B and 3-17C). These data suggest that Cdc12 multimerization initially 

facilitates ordered F-actin bundling to promote early stages of CR formation, and that 

Sid2-based reversal of multimerization subsequently limits this activity. 

 

Discussion 

 Though the SIN is a well-documented cytokinesis regulator, essential CR targets 

of this network had not been described.  Here, we establish the essential cytokinetic 

formin Cdc12 as a direct Sid2 target that is key to SIN-driven cytokinesis.  
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Figure 3-16
The Cdc12 C-terminus bundles F-actin partly through its oligomerization domain.
(A) Representative fluorescence images of rhodamine-phalloidin-stained actin filaments in the 
absence or presence of MBP, MBP-Cdc12C, or MBP-Cdc12C∆1451-1538. (B) High-speed 
(100,000g) sedimentation assay of MBP-Cdc12(1451-1538) (marked as 1451-1538) or MBP (M) 
with F-actin (A).  Equal portions of supernatants (s) and pellets (p) were resolved by SDS-PAGE 
and then Coomassie blue-stained. (Bar = 5 μm)
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Figure 3-17
Deletion of the multimerization domain compromises CR condensation in vivo.
(A) Live-cell GFP movies of cdc25-22 LifeAct-GFP or cdc25-22 cdc12∆1451-1538 LifeAct-GFP 
cells assembling a CR.  Cells were grown at 25°C.  Frames show cell middles and start as actin 
accumulates medially.  Brackets span the breadth of medial actin. (B) Fixed-cell GFP and DAPI 
images of cdc25-22 LifeAct-GFP or cdc25-22 cdc12∆1451-1538 LifeAct-GFP cells grown at 
25°C. (C) Quantification of condensed and non-condensed CRs in binucleate cdc25-22 LifeAct-
GFP or binucleate cdc25-22 cdc12∆1451-1538 LifeAct-GFP cells grown at 25°C.  [Bars = 1 μm
in (A) and 5 μm in (B)]
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Phosphoregulation of Cdc12 during cytokinesis appears to function as an oligomeric 

switch, promoting Cdc12 multimer disassembly necessary for CR maintenance (Figs. 3-

18A and 3-18B). When left unchecked during late cytokinesis, persistent Cdc12 

multimerization results in abnormal formin clustering, which leads to CR disintegration 

and failure of cell cleavage (Fig. 3-18B). 

 

Regulation of Cdc12 clustering and multimerization through the cell cycle 

The intrinsic ability of Cdc12 to multimerize and cluster explains the origin of 

Cdc12-containing spots that have been detected in interphase cells (Fig. 3-18A) (Coffman 

et al., 2009; Yonetani et al., 2008), in cells over-expressing Cdc12 (Carnahan and Gould, 

2003; Chang, 1999; Chang et al., 1997), and in mutants with impaired SIN function (Fig. 

3-9B).  Why spots form and how they relate to formin activity and CR formation have 

been topics of debate (Roberts-Galbraith and Gould, 2008).  Though a previous study 

implicated Cdc12’s N-terminal FH3 domain in spot formation, this same study 

demonstrated more dramatic clustering upon over-expression of Cdc12’s C-terminus 

(Yonetani et al., 2008).  Indeed, we have found that C-terminal multimerization facilitates 

spot formation during interphase or when the self-association domain is hyper-abundant 

(Figs. 3-9A and 3-9B).  In both contexts, Cdc12 cannot induce cytokinesis, supporting 

the ideas that (1) spots serve as reservoirs that restrict formin function (Coffman et al., 

2009; Yonetani et al., 2008); and (2) the Cdc12 C-terminus possesses a domain that 

inhibits formin function (Yonetani and Chang, 2010).  When interphase is prolonged and 

CR proteins prematurely localize to the division site, even more pronounced Cdc12 spots 
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Figure 3-18
Model for Sid2-mediated Cdc12 phosphorylation during S. pombe cytokinesis. 
(A) During interphase, Cdc12 exists in a spot-like structure, which serves as a reservoir.  At 
mitotic onset, anillin-like Mid1 assembles medial nodes, to which Cdc12 and other CR factors are 
recruited.  Nodes spatially restrict Cdc12 spot formation and aid in initial de-clustering.  As CRs 
form from nodes, multimeric Cdc12 bundles F-actin, aiding in CR condensation.  Upon full 
activation of the SIN, Sid2 phosphorylates Cdc12 to inhibit multimerization of Cdc12’s 
C-terminal oligomerization domain.  This oligomeric switch facilitates mature CR assembly and 
maintenance by blocking Cdc12 spot formation once Mid1 has exited the CR in late cytokinesis. 
(B) Typically, cdc12+ cells maintain a CR during a cytokinesis arrest and undergo septation in 
interphase when the SIN is prematurely activated.  In these contexts, CRs do not collapse, 
because Cdc12 clustering is inhibited by the SIN.  But, when the SIN kinase Sid2 cannot       
phosphorylate Cdc12, Cdc12 and other CR proteins cluster abnormally, similar to when Cdc12’s 
oligomerization domain is over-expressed.  Persistent multimerization leads to the formation of 
spot-like structures during a cytokinesis arrest or in SIN-activated interphase cells.  Thus, Sid2-
mediated Cdc12 phosphorylation constitutes a critical SIN signal, which reverses Cdc12        
multimerization at the appropriate time to enable proper CR performance.   
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develop (Roberts-Galbraith et al., 2010).  Thus, Cdc12 clusters can expand with time if 

relevant disassembly cues are not triggered.  

How is the Cdc12 clustering/de-clustering cycle regulated?  For the CR to form, 

Cdc12 spots must disassemble and re-mobilize into a ring-like structure.  During early 

mitosis, Mid1/node-dependent pathways may initially antagonize Cdc12 clustering (Fig. 

3-18A), for in their absence CRs assemble from spot-like asters (Huang et al., 2008).  

Two separate Mid1-dependent modules, based on either myosin and IQGAP Rng2 or 

Cdc15, recruit Cdc12 medially (Laporte et al., 2011), where Cdc12 likely binds multiple 

node proteins capable of serving as cortical anchors (Guzman-Vendrell et al., 2013; Saha 

and Pollard, 2012).  Presumably, these anchors spatially restrict Cdc12 clustering, but 

permit some degree of Cdc12 multimerization that facilitates F-actin bundling (Fig. 3-

18A).  In support of Mid1/node-dependent pathways contributing de-clustering signals 

during CR formation, cdc12-4A cells undergo cytokinesis when the cell cycle is 

otherwise unperturbed.  Despite Mid1-based compensation at the CR, Cdc12-4A still 

accumulates at SPBs during CR constriction, consistent with a multimer disassembly 

defect and other data suggesting an SPB-Cdc12 binding interface (Petersen et al., 1998).  

Mid1 remains at the CR through its assembly (Sohrmann et al., 1996), though 

Mid1 exits during a cps1-191 arrest (Pardo and Nurse, 2003).  In Mid1’s absence, other 

mechanisms must counteract formin clustering to prevent premature spot formation and 

CR collapse.  Our data show that Sid2-mediated phosphoinhibition of Cdc12 

multimerization provides a mechanism to inhibit formin clustering in late cytokinesis 

(Figs. 3-18A and 3-18B).  Previous studies have demonstrated that phosphorylation can 

disrupt autoinhibitory formin interactions (Takeya et al., 2008; Wang et al., 2009).  Our 
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results provide a striking parallel, revealing that formin trans interactions, which mediate 

oligomerization, can also be phosphoregulated.  While our model (Fig. 3-18A) proposes 

that tandem Mid1/node- and SIN-dependent de-clustering signals ensure efficient CR 

assembly and maintenance, other mechanisms likely contribute to activation of formin 

nucleation and elongation activities, because rudimentary filament-like structures still 

form in the absence of Mid1 and Sid2-mediated Cdc12 phosphorylation (Fig. 3-8C).  

 

Formin-mediated F-actin bundling during cytokinesis 

Although it is well established that formin dimerization via FH2 domains allows 

efficient bard end binding and elongation (Otomo et al., 2005; Xu et al., 2004), it has 

been unclear whether formins can formed higher-ordered oligomers and, if so, what 

function these oligomerization events would serve.  In this study, we have shown that C-

terminal multimerization guides Cdc12-mediated F-actin bundling.  It seems reasonable 

that Cdc12 would possess an F-actin bundling domain, because (1) node condensation 

and mature CR formation require F-actin bundling (Laporte et al., 2012); and (2) node-

localized Cdc12 is ideally positioned for this task (Coffman et al., 2009).  Our data 

indicate that Cdc12 may cooperate with myosin in pulling F-actin into a ring structure 

(Fig. 3-18A) (Vavylonis et al., 2008), and this activity may be particularly useful for 

incorporating non-medial F-actin cables into the CR (Huang et al., 2012).  Because 

Cdc12 F-actin bundling activity correlates with its C-terminal oligomeric state, the Sid2-

based phosphoregulatory switch must be precisely timed; whereas delayed reversal of 

multimerization during late cytokinesis precipitates CR collapse, premature loss of 

multimerization during early mitosis jeopardizes F-actin bundling and CR formation.  
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Consistent with formin-mediated F-actin bundling shaping the cytokinetic 

cytoskeleton in diverse species, the mammalian cytokinetic formin mDia2 (Watanabe et 

al., 2008) also bundles F-actin (Esue et al., 2008; Harris et al., 2006; Machaidze et al., 

2010).  Though F-actin bundling formins have been identified in yeasts (Moseley and 

Goode, 2005; Scott et al., 2011), plants (Michelot et al., 2005; Xue et al., 2011; Yang et 

al., 2011; Zhang et al., 2011), flies (Barko et al., 2010), mammals (Esue et al., 2008; 

Harris et al., 2006; Machaidze et al., 2010; Vaillant et al., 2008), and parasites (Skillman 

et al., 2012), of these only mammalian FRL3 requires its C-terminus for F-actin bundling 

(Vaillant et al., 2008).  Still, the C-termini of other formins have been shown to confer 

additional activities, including actin nucleation and severing (Chhabra and Higgs, 2006; 

Gould et al., 2011; Heimsath and Higgs, 2012).  Thus, our identification of a C-terminal 

bundling domain builds on the notion that regions downstream of FH1FH2 domains can 

directly contribute to formin-mediated actin assembly.  The separation of Cdc12’s F-actin 

bundling and FH1FH2 domains likely facilitates exquisite temporal control of nucleating 

and bundling activities, and precludes competition between them.  In the future, it should 

prove fruitful to determine the relationship between the Cdc12 C-terminus and Cdc12’s 

FH1 and/or FH2 activities.  
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 CHAPTER IV 

 

CYTOKINESIS-BASED CONSTRAINTS ON POLARIZED CELL GROWTH IN 
FISSION YEAST 

 
 
 

Introduction 

 Rod-shaped S. pombe, which undergoes cycles of monopolar-to-bipolar tip 

growth, is an attractive organism for studying cell cycle regulation of polarity 

establishment.  Previous research had described factors mediating this process from 

interphase cell tips.  Here, we demonstrate that division site signaling also impacts the re-

establishment of bipolar cell growth in the ensuing cell cycle.  Complete loss or targeted 

disruption of the non-essential cytokinesis protein Fic1 at the division site, but not at 

interphase cell tips, resulted in many cells failing to grow at new ends created by cell 

division.  This appeared due to faulty disassembly and abnormal persistence of the cell 

division machinery at new ends of fic1∆ cells.  Moreover, additional mutants defective in 

the final stages of cytokinesis exhibited analogous growth polarity defects, supporting 

that robust completion of cell division contributes to new end growth competency.  To 

test this model, we genetically manipulated S. pombe cells to undergo NETO 

immediately after cell division.  Intriguingly, such cells elongated constitutively at new 

ends unless cytokinesis was perturbed.  Thus, cell division imposes constraints that 

partially override positive controls on growth.  We posit that such constraints facilitate 

invasive fungal growth, as cytokinesis mutants displaying bipolar growth defects formed 

numerous pseudohyphae.  Collectively, these data highlight a role for previous cell cycles 

in defining a cell’s capacity to polarize at specific sites, and they additionally provide 

93



insight into how a unicellular yeast can transition into a quasi-multicellular state. 

 

Results 

 

The S. pombe cytokinesis factor Fic1 promotes the establishment of bipolar cell growth  

 Recently, our laboratory identified Fic1, which was implicated in cytokinesis 

based on its protein and genetic interactions and its localization to the CR (Roberts-

Galbraith et al., 2009).  In addition to defects in cytokinesis, deletion of S. pombe fic1+, 

which is a non-essential gene, resulted in an abnormally high percentage of cells that 

grew only from one end (i.e., monopolar cells) (Figs. 4-1A, 4-1B, and 4-1C).  Tip growth 

was judged using calcofluor staining, as birth scars formed at previous division sites do 

not stain well with calcofluor and growth can be assessed using the position of these scars 

relative to cell tips (Fig. 4-1D) (Mitchison and Nurse, 1985).  The growth defects 

observed upon fic1+ disruption suggested that Fic1 not only participates in cytokinesis but 

also in the establishment of bipolar cell growth. 

 Although the upstream NETO factors Tea1 and Tea4 localized normally to both 

cell tips in fic1∆ cells (Figs. 4-2A and 4-2B), other cell tip proteins implicated in growth 

polarity regulation exhibited unusual localization patterns in this mutant.  Unlike wild-

type cells with mostly bipolar actin patch distribution (Figs. 4-2C and 4-2D), a variety of 

mutants defective in bipolar cell growth exhibit monopolar actin patches (Garcia et al., 

2006; Glynn et al., 2001; Martin et al., 2005; Tatebe et al., 2005).  As in such mutants, 

the actin patch marker Crn1-GFP (Pelham and Chang, 2001) accumulated preferentially 

at one cell end in a high percentage of fic1∆ cells (Figs. 4-2C and 4-2D).  Signaling 
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Figure 4-1
General growth polarity defects of fic1∆ cells.
(A) Live-cell images of calcofluor-stained wild-type and fic1∆ cells.  Birth scars remain 
unstained and appear as dark bands across cells.  Arrowheads indicate monopolar cells, i.e. 
cells that have only grown at one end, with birth scars abutting cell ends. (B) Quantification 
of (A), with three trials per genotype and n>300 for each trial.  Data are presented as mean ± 
SEM for each category. (C) Quantification of septated cells in (A) and (B), with three trials 
per genotype and n>200 for each trial.  Data are presented as mean ± SEM for each category. 
(D) Schematic of phenotypes scored by calcofluor staining.  Black bands represent birth 
scars. (Bar = 5 μm)
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Figure 4-2
fic1∆ cells lack bipolarity of some cytoskeletal factors.
(A)  Live-cell bright field (BF) and GFP images of tea1-GFP, tea4-GFP, fic1∆ tea1-GFP, and 
fic1∆ tea4-GFP cells. (B) Quantification of (A), with three trials per genotype and n>200 for 
each trial.  Data are presented as mean ± SEM for each category. (C) Live-cell GFP images of 
crn1-GFP and fic1∆ crn1-GFP cells. (D) Quantification of (C), with three trials per genotype 
and n>200 for each trial.  Data are presented as mean ± SEM for each category. (E) Live-cell 
GFP (in green) and RFP (in magenta) merged images of rgf1-GFP sid4-RFP and fic1∆ 
rgf1-GFP sid4-RFP cells. (F) Quantification of (E), with three trials per genotype and n>200 
for each trial.  Data are presented as mean ± SEM for each category. (Bars = 5 μm)
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through Rho GTPases controls actin patch organization in S. pombe (Arellano et al., 

1997; Nakano et al., 2002), and the Rho1 activator Rgf1 (Garcia et al., 2006), which was 

GFP-tagged and imaged with the SPB marker Sid4-RFP (Chang and Gould, 2000), 

likewise predominated on one end of many fic1∆ cells (Figs. 4-2E and 4-2F).  Not 

surprisingly, in both wild-type and fic1∆ cells, Rgf1-GFP and Crn1-RFP concentrated at 

the same ends (Fig. 4-3A), which were confirmed by calcofluor staining to be the 

growing ends of fic1∆ cells (Fig. 4-3B).  Consistent with Fic1 affecting both actin and 

Rho networks, deletion of fic1+ was synthetically sick with deletion of genes encoding 

factors involved in F-actin nucleation (WASp Wsp1) and Rho GTPase regulation 

(RhoGEF Rgf1 and RhoGAP Rga1) (Fig. 4-3C).  Thus, we concluded that the absence of 

Fic1 upsets patterning of some but not all polarity factors. 

 To discern whether new and/or old ends were defective in resuming growth 

following cell division in fic1∆ cells, we performed time-lapse DIC imaging to trace birth 

scars in live cells.  As expected, nearly all wild-type cells underwent NETO prior to 

subsequent septation (Figs. 4-4A and 4-4B).  However, following roughly two-thirds of 

fic1∆ cell divisions, either one or both daughter cells failed to initiate new end growth 

prior to the next septation (Figs. 4-4A and 4-4C).  The most predominant growth pattern 

in fic1∆ cells was that in which one daughter cell underwent NETO while the other did 

not (Figs. 4-4A and 4-4C), with nearly 70% of those daughter cells that did not exhibit 

NETO being the younger daughter cell.  Unlike tea1∆ and tea4∆ cells, in which one 

daughter cell commonly fails at its new end and the other daughter cell fails at its old end 

(Fig. 4-4D) (Glynn et al., 2001; Martin et al., 2005; Tatebe et al., 2005), fic1∆ cells were 

specifically defective in the re-establishment of growth at new ends following cell 
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Figure 4-3
Actin and Rho signaling networks are simultaneously disrupted in fic1∆ cells.
(A) Live-cell bright field (BF), GFP (green), RFP (magenta), and GFP/RFP merged images of 
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(C) Serial 10-fold dilutions of cells of the indicated genotypes. (Bars = 5 μm)
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Figure 4-4
Growth polarity defects of fic1∆ cells are specific to new ends created by cytokinesis.
(A) Quantification of growth patterns for wild-type and fic1∆ cells, with sample size (n) 
provided. (B-C) Live-cell DIC movies of wild-type or fic1∆ cells quantified in (A).  Solid 
arrows denote old end growth, whereas dashed arrows indicate new end growth.  Birth scars 
are marked by asterisks.  Time points are noted. (D) Quantification of growth patterns for 
tea1∆ and tea1∆ fic1∆ cells, with sample size (n) provided.  (E) Live-cell DIC movie of a 
tea1∆ fic1∆ cell that gives rise to a T-shaped daughter cell.  The solid arrow denotes old end 
growth, whereas the dashed arrow indicates non-tip growth.  Birth scars are marked by 
asterisks.  Time points are noted. (F) Quantification of T-shaped cells in tea1∆ and tea1∆   
fic1∆ strains grown at 25°C, with three trials per genotype and n>300 for each trial.  Data are 
presented as mean ± SEM for each genotype. (G) Live-cell images of calcofluor-stained    
tea1∆ and tea1∆ fic1∆ cells grown at 25°C.  Arrows indicate T-shaped cells.  (H)             
Quantification of times from septum splitting to initiation of new end growth in cells that 
undergo NETO prior to the next septation in (A-C). Data are presented in box-and-whisker 
plots showing the median (line in the box), 25th-75th percentiles (box), and 5th-95th percen-
tiles (whiskers) for each genotype. (Bars = 5 μm)
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division (Figs. 4-4A and 4-4C).  Intriguingly, tea1∆ fic1∆ double mutants grew mainly in 

a tea1∆ pattern, though nearly one-fifth of cell divisions produced a T-shaped daughter 

cell (Figs. 4-4D and 4-4E).  Consistent with this, roughly 10% of tea1∆ fic1∆ cells were 

T-shaped at 25°C, while T-shaped tea1∆ cells were almost never observed at this 

temperature (Fig. 4-4F).  T-shapes always arose in cells that the tea1∆ growth pattern 

dictated should grow at their new ends (Figs. 4-4D and 4-4E) but that actually grew at 

neither (Figs. 4-4E and 4-4G), suggesting these cells polarize at sites other than their tips 

because growth is inhibited at both ends.  These data confirmed that the polarity defect 

caused by loss of Fic1 stochastically impacts new end growth in a variety of genetic 

backgrounds.  Importantly, fic1∆ new ends that failed to extend in one cell cycle initiated 

growth as an old end in the next cell cycle, suggesting the defect in growth polarity 

caused by loss of Fic1 was not permanent.  Consistent with a delay but not a block in 

growth, new ends that initiated growth prior to the next septation did so much later on 

average in fic1∆ cells than in wild-type cells (120 min vs 75 min) (Fig. 4-4H). 

 To test whether fic1∆’s polarity defect was independent of S phase completion, 

we arrested fic1∆ cells in late G2 using cdc25-22, a temperature-sensitive allele of the 

phosphatase that activates cyclin-dependent kinase at the G2-M transition.  As was 

previously observed (Mitchison and Nurse, 1985), otherwise wild-type cells blocked in 

G2 almost always underwent NETO (Figs. 4-5A and 4-5B).  However, roughly half of 

fic1∆ cells remained monopolar (Figs. 4-5A and 4-5B), indicating that the fic1∆ polarity 

defect occurs irrespective of S phase completion.  To test whether fic1∆ cells were too 

small to initiate NETO, we measured cell lengths at division.  Though slightly shorter on 

average than wild-type cells (13.3 µm vs 15.3 µm), all fic1∆ cells were longer at division 

100



A

cdc25-22

^

^ ^

^
^

cdc25-22 fic1∆ 

^

       G2 arrest

B C

cdc25-22

cdc25-22 fic
1∆

Monopolar
Bipolar
Septated

       G2 arrest

Wild-typ
e
fic1

∆Le
ng

th
 a

t d
iv

is
io

n 
(μ

m
)

0

5

15

20

10

0
20
40
60
80

100

P
er

ce
nt

Figure 4-5
Growth polarity defects of fic1∆ cells occur irrespective of other NETO controls.
(A) Live-cell images of calcofluor-stained cdc25-22 and fic1∆ cdc25-22 cells that had been 
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represents the minimum length required for NETO. (Bar = 5 μm)
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than the minimum length required for NETO (~9 µm) (Fig. 4-5C) (Mitchison and Nurse, 

1985).  Therefore, it is unlikely that the fic1∆ growth polarity defect is caused by reduced 

cell length.  These data underscore that loss of Fic1 disrupts the establishment and timing 

of NETO independently of previously described cell cycle controls. 

 

Fic1 protein-protein interactions at the CR support subsequent polarized cell growth at 
new ends 
 
 Though many cell polarity factors localize to the cell division site in addition to 

interphase cell tips, only the actions of these proteins at interphase cell tips have been 

demonstrated to be relevant to polarity regulation.  As was observed previously (Roberts-

Galbraith et al., 2009), cytoplasmic Fic1-GFP localizes to cell tips during interphase and 

later to the CR during cell division (Fig. 4-6A).  We also detected another pool of Fic1-

GFP lining the division site as the CR constricted (Fig. 4-6A).  Given this localization 

pattern and the specific new end growth defect of fic1∆ cells, we asked whether Fic1 

affected the timing of NETO via its functions at the cell division site. 

 Like S. cerevisiae Inn1 (Sanchez-Diaz et al., 2008), Fic1 is comprised of an N-

terminal C2 domain and a C-terminal stretch of PxxP motifs (Fig. 4-6B).  As was found 

for Inn1 (Nishihama et al., 2009; Sanchez-Diaz et al., 2008), the C-terminus of Fic1 

(“Fic1C”, amino acids 127-272), expressed from its endogenous locus and GFP-tagged, 

was sufficient for CR localization, as judged by co-localization with the CR protein 

Cdc15-mCherry (Fig. 4-6C).  In contrast, a GFP-tagged N-terminal C2 domain fragment 

(“Fic1N”, amino acids 1-126) was never observed at the CR (Fig. 4-6C) though it was 

produced in vivo (Fig. 4-6D).  Importantly, medial-localizing Fic1C, unlike Fic1N, 

supported proper growth polarity establishment (Figs. 4-6E, 4-6F, and 4-6G), and, in 

102



Figure 4-6
Fic1’s C-terminus is necessary and sufficient for Fic1’s polarity function at the division 
site.
(A) Live-cell bright field (BF) and GFP images of fic1-GFP cells.  Localization to cell tips 
(*), the cytokinetic ring (>), and the division site (#) are marked. (B) Schematic of Fic1 
protein domain organization.  Residues and fragments of interest are marked. (C) Live-cell 
BF, GFP (green), mCherry (mCh) (magenta), and GFP/mCh merged images of fic1-GFP 
sid4-GFP cdc15-mCherry, fic1N-GFP sid4-GFP cdc15-mCherry, and fic1C-GFP sid4-GFP 
cdc15-mCherry cells. (D) Lysates from cells of the indicated genotypes were blotted with an 
anti-GFP antibody, as well as with anti-CDK as a loading control. (E) Live-cell images of 
calcofluor-stained fic1N and fic1C cells.  Arrowheads indicate monopolar cells. (F)         
Quantification of (E), with three trials per genotype and n>300 for each trial.  Data are 
presented as mean ± SEM for each category. (G) Quantification of septated cells in (E) and 
(F), with three trials per genotype and n>200 for each trial.  Data are presented as mean ± 
SEM for each category. (H) Live-cell BF and GFP images of interphase cell tips of fic1-GFP 
and fic1C-GFP cells. [Bars = 5 μm, except for (H) where Bar = 1 μm]
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contrast to full-length Fic1-GFP, Fic1C-GFP was not detected at tips of interphase cells 

(Fig. 4-6H).  We thus concluded that Fic1, unlike other characterized growth polarity 

factors, does not exert its polarity function at cell tips during interphase, but instead does 

so at the cell division site during cytokinesis. 

Because Fic1’s C-terminus was necessary and sufficient for proper growth 

polarity, we examined whether protein-protein interactions at the CR mediated by Fic1’s 

C-terminal PxxP motifs, which bind SH3 domains, govern Fic1’s polarity function.  Fic1 

was originally identified based on its interaction with Cdc15’s SH3 domain (Roberts-

Galbraith et al., 2009).  As would be expected if association of Cdc15 with Fic1’s C-

terminus is important in establishing the timing of NETO, calcofluor-stained cdc15∆SH3 

cells, which are viable but lack Fic1-Cdc15 interaction (Roberts-Galbraith et al., 2009), 

exhibited growth polarity defects (Figs. 4-7A, 4-7B, and 4-7C).   

To address the consequence of specifically disrupting Fic1-Cdc15 interaction, we 

determined which of Fic1’s C-terminal PxxP motifs interact(s) with Cdc15’s SH3 

domain.  Previous yeast-two hybrid data indicated Fic1 amino acids 190-269 mediate 

direct association with Cdc15’s SH3 domain (Roberts-Galbraith et al., 2009).  This 

region contains four of the eleven PxxP motifs within Fic1’s C-terminus (Fig. 4-7D).  To 

identify which are relevant for Cdc15 interaction, yeast two-hybrid assays using single 

and combinations of proline to alanine mutations were performed (Fig. 4-7E).  Mutation 

of PxxPs 10 and 11 in combination, or P257 of PxxP 11 alone, abolished the two-hybrid 

interaction (Fig. 4-7E), and the P257A mutation eliminated co-immunoprecipitation of 

Fic1-FLAG3 with Cdc15 in vivo (Fig. 4-7F).  Supporting the idea that the Fic1-Cdc15 

interaction is most relevant during cell division, co-immunoprecipitation of Fic1-FLAG3 
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Figure 4-7
Fic1 protein-protein interactions at the CR guide growth polarity.
(A) Live-cell images of calcofluor-stained cdc15∆SH3, fic1-P257A, imp2∆, and cyk3∆ cells.  
Arrowheads indicate monopolar cells. (B) Quantification of (A), with three trials per genotype 
and n>300 for each trial.  Data are presented as mean ± SEM for each category. (C) Quantifica-
tion of septated cells in (A) and (B), with three trials per genotype and n>300 for each trial. Data 
are presented as mean ± SEM for each category. (D) Schematic of Fic1, with residues of interest 
marked, PxxP motifs (*) numbered, the Cdc15-binding region indicated, and the sequence 
spanning the terminal two PxxPs given. (E) Yeast two-hybrid identification of the Cdc15 binding 
site on Fic1.  P253A and P257A mutations were used to distinguish between PxxPs 10 and 11 as 
the motif responsible for Cdc15 binding.  (F) Anti-Cdc15 and anti-FLAG immunoprecipitates 
from cells of the indicated genotypes were blotted with anti-Cdc15 and/or anti-FLAG antibodies.  
cdc25-22 cells and nda3-KM311 cells were arrested in G2 and prometaphase, respectively, prior 
to pelleting and lysis. (G) Anti-FLAG and anti-V5 immunoprecipitates from prometaphase-
arrested cells of the indicated genotypes were blotted with anti-FLAG and/or anti-V5 antibodies. 
(H) Yeast two-hybrid identification of the Fic1 binding to Cyk3’s SH3 domain. (Bar = 5 μm)
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with Cdc15 was considerably stronger in mitosis than in interphase (Fig. 4-7F).  This is 

similar to other Cdc15 protein-protein interactions, which become enriched upon Cdc15 

dephosphorylation at mitosis (Roberts-Galbraith et al., 2010).  fic1-P257A cells exhibited 

monopolar growth defects similar to fic1∆ and cdc15∆SH3 cells (Figs. 4-7A, 4-7B, and 

4-7C), confirming that binding of Fic1’s C-terminus to Cdc15 is critical for Fic1’s 

polarity function.   

To corroborate that PxxP-mediated protein-protein interactions at the CR play a 

predominant role in Fic1’s polarity function, we tested whether other interactors 

participate in S. pombe polarity regulation.  The SH3 protein Imp2 has previously been 

shown to function redundantly with Cdc15 and bind Fic1 during cytokinesis (Roberts-

Galbraith et al., 2009).  Consistent with additional Fic1 interactions guiding growth 

polarity, loss of Imp2 also severely compromised bipolar cell growth (Figs. 4-7A, 4-7B, 

and 4-7C).  In S. cerevisiae, the Fic1 ortholog Inn1 binds to another SH3 protein, Cyk3 

(Jendretzki et al., 2009; Nishihama et al., 2009), and complexing of these two proteins 

with the Cdc15 homolog Hof1 has been suggested to direct septum formation and cell 

separation (Nishihama et al., 2009).  We found that S. pombe Cyk3 co-

immunoprecipitated with Fic1 in mitosis (Fig. 4-7G), and we also detected direct 

interaction between S. pombe Cyk3’s SH3 domain and Fic1 via yeast two-hybrid (Fig. 4-

7H).  Accordingly, these interactions appear to be conserved.  Consistent with these 

proteins performing a common function, loss of Cyk3 resulted in growth polarity defects 

similar to those seen upon loss of Fic1 or its interaction with Cdc15 or Imp2 (Figs. 4-7A, 

4-7B, and 4-7C).  Thus, Fic1 collaborates with associated proteins at the CR to execute 
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its growth polarity function, and we postulate that its C-terminus acts as an adaptor 

molecule for SH3 proteins to ensure integration of distinct processes during cytokinesis.  

 

Loss of Fic1 impedes CR disassembly and leads to persistence of factors at the division 
site 
 
 To discern how loss of Fic1 scaffold function during cytokinesis impacts 

subsequent new end growth, we next defined what aspects of cytokinesis are perturbed in 

fic1∆ cells.  Previous data demonstrated that fic1∆ was synthetically lethal with sid2-250 

(Roberts-Galbraith et al., 2009), a temperature-sensitive allele of the SIN kinase Sid2.   

Consistent with Fic1 and associated factors working in parallel to the SIN, we found that 

fic1∆ and cyk3∆ suppressed the hyperactive SIN allele cdc16-116 (Fig. 4-8A), and that 

fic1∆ and cyk3∆ were synthetically sick or lethal with a variety of SIN alleles conferring 

loss of SIN function (Figs. 4-8A and 4-8B).  These genetic data implied that Fic1 most 

likely functions during late stages of cytokinesis.  In line with this idea, the percentage of 

fic1∆ cells that had undergone ingression but were still joined at their division sites was 

more than four times that of wild-type cells (Figs. 4-8C and 4-8D).  When cells were 

arrested in G2 using the cdc25-22 allele, this difference increased, with the percentage of 

joined cells roughly 15 times greater in the absence of Fic1 (Figs. 4-8C and 4-8D).  

Similar to S. cerevisiae inn1∆ cells (Nishihama et al., 2009) and S. pombe cdc15∆SH3 

cells (Roberts-Galbraith et al., 2009), many G2-arrested fic1∆ daughter cells that were 

still joined at division sites exhibited membranous bridges (Fig. 4-8E).  These findings 

verified that the completion of cell division is perturbed in the absence of Fic1. 

 Consistent with early cytokinesis events proceeding appropriately without Fic1, 

time-lapse imaging of myosin regulatory light chain Rlc1-GFP (Le Goff et al., 2000; 
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Figure 4-8
The completion of cell division is perturbed in fic1∆ cells.
(A) Serial 10-fold dilutions of cells of the indicated genotypes. Mutation of cdc16 causes SIN 
hyperactivation, whereas mutants of spg1, cdc7, or sid2 exhibit loss of SIN function.  (B)  
fic1∆ and spg1-106 were mated, and tetrads were pulled on YE agar at 25°C.  Genotypes 
were assessed by replica plating to YE agar at 36°C and to minimal medium lacking uracil.  
Images of colonies from a tetratype are also given. (C) Fixed-cell DIC and DAPI/methyl blue 
images of asynchronous and G2-arrested cells of the indicated genotypes.  Arrowheads 
indicate cells that are still joined following ingression. (D) Quantification of (C), with four 
trials per genotype and n>300 for each trial.  Percentages are presented as mean ± SEM. (E) 
Fixed-cell GFP images of G2-arrested cdc25-22 fic1∆ cells expressing acyl-GFP.  Enlarged 
images of cells’ division planes are also given. [Bars = 5 μm, except for enlarged regions in 
(E) where Bar = 2 μm]
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Naqvi et al., 2000) with Sid4-GFP revealed that the CR formed and constricted normally 

in fic1∆ cells (Figs. 4-9A and 4-9B).  However, at the termination of CR constriction, 

parts of the CR persisted at the division plane (Figs. 4-9C, 4-9D, and 4-9E).  During 

cytokinesis, the septum closes behind the constricting CR, and septum closure can be 

visualized using the β-glucan synthase GFP-Cps1 (Cortes et al., 2002; Liu et al., 2002).  

As cytokinesis progresses, two GFP-Cps1 dots marking the leading edge of the septum 

can be seen getting progressively closer in the division plane, and these dots eventually 

join into one just as the CR completes constriction (Fig. 4-9D).  We found that Rlc1-

mCherry3 remained at the division site following septum closure on average longer in 

fic1∆ cells compared to wild-type cells (22 min vs 8 min) (Figs. 4-9C and 4-9D).  

Consistent with these remnants representing the CR as a whole and not just Rlc1, 

phalloidin staining revealed atypical actin-rich masses, in addition to normal actin 

patches, flanking septa in fic1∆ cells (Fig. 4-9E).  Thus, we concluded that the CR does 

not disassemble properly at the conclusion of cell division in fic1∆ cells.   

In addition to CR-associated factors, glucanase Eng1-GFP (Martin-Cuadrado et 

al., 2003) persisted at ingressed division sites significantly longer in fic1∆ cells compared 

to wild-type cells (on average, 51 min vs 21 min) (Figs. 4-10A and 4-10B).  Because 

glucanases execute septum degradation (Dekker et al., 2004; Martin-Cuadrado et al., 

2003), these data suggest that cell wall turnover is inefficient at fic1∆ septa.  We thus 

concluded that loss of Fic1 jeopardized the completion of cell division, stalling 

remodeling of new ends in the next cell cycle. 

 

Mutants with late cytokinesis defects likewise exhibit new end growth polarity errors 
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Figure 4-9
The CR does not disassemble properly following CR constriction in fic1∆ cells.
(A) Live-cell GFP movies of rlc1-GFP sid4-GFP and fic1∆ rlc1-GFP sid4-GFP cells. (B)      
Quantification of times from spindle pole body (SPB) separation to the completion of CR 
constriction in (A).  n>20 for each genotype.  Data are presented in box-and-whisker plots 
showing the median (line in the box), 25th-75th percentiles (box), and 5th-95th percentiles 
(whiskers) for each genotype. (C) Quantification of times from septum closure to disappearance 
of the CR at the division site for GFP-cps1 rlc1-mCherry3 and fic1∆ GFP-cps1 rlc1-mCherry3 
cells.  n>30 for each genotype.  Data are presented in box-and-whisker plots showing the median 
(line in the box), 25th-75th percentiles (box), and 5th-95th percentiles (whiskers) for each geno-
type. (D) Live-cell GFP (green) and mCherry (mCh) (magenta) movies of GFP-cps1 rlc1-
mCherry3 and fic1∆ GFP-cps1 rlc1-mCherry3 cells, with time intervals indicated and GFP/mCh 
images merged.  White arrows in GFP images mark the septa’s leading edges.  The time point 
with only one arrow drawn marks septum closure.  In the mCh images, “C” marks the point of 
CR closure, and arrowheads denote CR remnants persisting after this point. (E) Fixed-cell images 
of actin stained with Alexa Fluor 488 Phalloidin.  Single z planes and maximum projections of 
multiple z planes are given.  Red arrows indicate division planes, whereas yellow arrows indicate 
unusual actin masses lining the division plane. (Bars = 5 μm)
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Figure 4-10
Cell wall remodeling is also delayed at the division site of fic1∆ cells. 
(A) Live-cell bright field (BF) and GFP movies of eng1-GFP and fic1∆ eng1-GFP cells.  
Yellow arrows denote Eng1-GFP at the division site. (B) Quantification of times from    
ingression to Eng1-GFP disappearance from the division plane in movies scored in (A), with 
n>15 for each genotype.  Data are presented in box-and-whisker plots showing the median 
(line in the box), 25th-75th percentiles (box), and 5th-95th percentiles (whiskers) for each 
genotype. (Bar = 5 μm)
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 Because faulty cytokinesis led to persistence of parts of the cell division 

machinery at fic1∆ division planes, we speculated that these remnants might deter 

subsequent polarized growth at new ends.  If this were the case, one would expect other 

mutants with late cytokinesis defects to also show erroneous new end growth.  Previous 

data had indicated that Fic1-associated Imp2 contributes to CR disassembly, with imp2∆ 

cells exhibiting abnormal actin structures flanking previous division sites (Demeter and 

Sazer, 1998).  Though we had shown that imp2∆ cells are defective in bipolar cell growth 

(Figs. 4-7A, 4-7B, and 4-7C), we wanted to confirm that their growth defect was specific 

to new ends.  Using time-lapse DIC imaging, we found that roughly 75% of imp2∆ cell 

divisions produced at least one daughter cell that failed at new end growth (Fig. 4-11A).  

Interestingly, both imp2∆ daughter cells failed at new end growth in the majority of cases 

(Figs. 4-11A and 4-11B).  Therefore, proper disassembly of CR components correlates 

with new end competency for polarized growth. 

 In addition to showing CR disassembly defects, fic1∆ cells also exhibited delays 

in septum remodeling at the division site.  We therefore tested if disruption of septum 

degradation could likewise impact polarized growth.  Loss of Eng1 or its cooperating 

glucanase, Agn1 (Dekker et al., 2004), resulted in high percentages of monopolar growth 

(Figs. 4-11C and 4-11D).  Moreover, the growth defect of eng1∆ daughter cells was 

specific to new ends (Figs. 4-11A and 4-11B).  Anillin-like Mid2 and the septin ring, of 

which Spn1 and Spn4 form the core (An et al., 2004), target these glucanases into a ring 

structure around septa (Martin-Cuadrado et al., 2005).  Loss of any of these proteins 

likewise impaired bipolar cell growth (Figs. 4-11C and 4-11D).  In addition, the majority 

of spn1∆ daughter cells failed at new end growth (Figs. 4-11A and 4-11B).  We therefore 
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Figure 4-11
Late cytokinesis mutants phenocopy fic1∆’s new end growth defect.
(A) Quantification of growth patterns for cells of the indicated genotypes. Sample size (n) is 
provided for each genotype. (B) Live-cell DIC movies of cells of the indicated genotypes 
scored in (A).  The most prevalent faulty growth pattern for each genotype is pictured.  Solid 
arrows denote old end growth, whereas dashed arrows indicate new end growth.  Birth scars 
are marked by asterisks.  Time points are noted. (C) Quantification of polarity phenotypes of 
calcofluor-stained cells of the indicated genotypes, with three trials per genotype and n>300 
for each trial.  Data are presented as mean ± SEM for each category.  All cells were grown at 
25°C unless otherwise noted. (D) Quantification of septated cells in (C), with three trials per 
genotype and n>200 for each trial.  Data are presented as mean ± SEM for each category.  A 
dashed gray line marks 20% on the y-axis. (E) Table of negative genetic interactions between 
deletion of genes encoding ESCRT-related proteins (ESCRT-III components Vps2 and Vps24, 
and ESCRT-III-associated deubiquitinase Sst2) and deletion/loss-of-function alleles of genes 
encoding cytokinesis factors (Imp2, myosin Myo2, β-glucan synthase Cps1, SIN GTPase 
Spg1, SIN kinase Sid2, and formin Cdc12). (Bar = 5 μm)
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concluded that defective completion of cell wall remodeling at the division site, in 

addition to improper disassembly of CR components, compromises NETO efficiency.  

 The SIN coordinates many aspects of CR and septum regulation during late 

cytokinesis.  Not only does SIN signaling oversee maintenance of a mature, homogenous 

CR (Hachet and Simanis, 2008), it mediates Cps1 targeting and accumulation at the 

division site (Cortes et al., 2002; Liu et al., 2002).  Loss of SIN signaling during 

cytokinesis can thus lead to CR fragmentation (Hachet and Simanis, 2008) and abortive 

septation (Cortes et al., 2002).  Given these phenotypes and the synthetic genetic 

interactions between fic1∆ and SIN mutants (Figs. 4-9A and 4-9B), we examined the 

relevance of the SIN to new end growth control.  Temperature-sensitive alleles of genes 

encoding the SIN kinases Cdc7 and Sid2 caused mild but statistically significant growth 

polarity defects at semi-restrictive temperature (Figs. 4-11C and 4-11D).   A temperature-

sensitive allele of the gene encoding Cps1, which functions downstream of the SIN, 

caused dramatic defects in establishing bipolar cell growth even at permissive 

temperature (Figs. 4-11C and 4-11D).  Additionally, a high proportion of cps1-191 cells 

failed specifically at new end growth (Figs. 4-11A and 4-11B). 

 Currently, the mechanism of membrane remodeling and scission at the S. pombe 

division site is unclear.  In a variety of other organisms, ESCRT-III factors contribute to 

this process (Peel et al., 2011).  ESCRT-III components have not been implicated in S. 

pombe cytokinesis regulation, though ESCRT-III-associated AMSH (S. pombe Sst2) 

localizes to the division site (Kouranti et al., 2010).  We found that deletions of genes 

encoding ESCRT-III components Vps2 and Vps24 or ESCRT-III-associated Sst2 were 

synthetically sick with a variety of loss-of-function cytokinesis alleles, including imp2∆ 
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and cps1-191 (Fig. 4-11E).  Interestingly, loss of Vps2, Vps24, or Sst2 resulted in 

monopolar percentages significantly greater than observed for wild-type cells (Figs. 4-

11C and 4-11D), and nearly half of vps24∆ cell divisions resulted in one or both daughter 

cells that failed at new end growth prior to the next septation (Figs. 4-11A and 4-11B).  

Though these phenotypes were less penetrant than in other mutants, we speculate that 

ESCRT-III function guides membrane remodeling at the conclusion of S. pombe cell 

division to impact new end polarized growth. 

 Of note, deletion of rlc1+ or paxillin pxl1+, which function primarily in early 

actomyosin function at the CR (Ge and Balasubramanian, 2008; Le Goff et al., 2000; 

Naqvi et al., 2000; Pinar et al., 2008), did not alter growth polarity percentages as 

significantly as other mutations or deletions (Figs. 4-11C and 4-11D).  Indeed, less than 

half of non-septated rlc1∆ and pxl1∆ cells were monopolar (Fig. 4-11C), and the 

monopolar septated percentages of these genotypes were more similar to wild-type 

percentages than were those of the other mutants examined (Fig 4-11D). We therefore 

concluded that early steps in cytokinesis do not impact subsequent polarized cell growth 

as much as the terminal steps in cell division.  

 

Ineffective cytokinesis partially impedes new end tip growth even upon constitutive 
NETO signaling 
 
 If faithful remodeling of the division site is important for growth competency of 

new ends, then one would expect that prematurely triggering NETO signaling just after 

cell division should not fully rescue the growth polarity defects of late cytokinesis 

mutants.  To test this, we constructed a mutant that would undergo constitutive NETO.  

As over-expression of a fusion protein linking cell tip-associated Tea1 with formin For3 
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induces NETO in G1 (Martin et al., 2005), we integrated a Tea1-For3 fusion (Fig. 4-12A) 

into the endogenous tea1+ locus and deleted the single copy of the for3+ gene.  We 

confirmed that the Tea1-For3 fusion protein was produced in vivo (Fig. 4-12B) and 

verified that this fusion was sufficient to induce NETO in a cdc10-V50 G1 arrest (Figs. 4-

12C and 4-12D).  As previously reported (Feierbach et al., 2004), double deletion of 

tea1+ and for3+ resulted in general cell rounding (Fig. 4-12E).  However, expression of 

the Tea1-For3 fusion protein in the absence of Tea1 and For3 individually caused cells to 

regain their rod-shaped appearance (Fig. 4-12E).  Intriguingly, a high percentage of tea1-

for3 cells were either septated or exhibited cytokinesis defects (Figs. 4-12E and 4-12F), 

and tea1-for3 cells were significantly longer at division than wild-type cells (on average, 

18.3 µm vs 15.3 µm) (Figs. 4-12E and 4-12G).  Thus, though the endogenous Tea1-For3 

fusion protein functioned in prematurely triggering NETO, it also affected cell division. 

 To analyze tea1-for3 cells in real-time, we performed time-lapse DIC imaging.  

As expected, most tea1-for3 cells underwent NETO before the next cell division (Fig. 4-

13A), with nearly 75% of new ends initiating growth within 50 minutes of septum 

splitting (Fig. 4-13B). Nonetheless, some tea1-for3 outliers took much longer to extend at 

tips created by cell division (Fig. 4-13B).  After grouping the times needed for tip growth 

to occur at previous division sites relative to the amount of time needed for the mother 

cell to complete cytokinesis, we found that newly-formed tips that took longer to initiate 

growth had been formed by more inefficient cytokinesis (Figs. 4-13C and 4-13D).  As 

distal tip growth continued in cells undergoing division (Fig. 4-13D) and appeared 

unimpeded by additional factors, these findings suggested that faulty cytokinesis imposes 

constraints at previous division sites that counteract positive polarizing cues.  We 
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Figure 4-12
An endogenous Tea1-For3 fusion protein induces premature NETO but also impinges on 
cell division.
(A) Schematic of Tea1, For3, and Tea1-For3 proteins. (B) Anti-V5 immunoprecipitates from 
asynchronous tea1-V53, for3-V53, and tea1-for3-V53 cells were blotted with anti-V5           
antibodies.  Arrows indicate full-length proteins.  Lysates were blotted with anti-CDK as a 
loading control. (C) Live-cell images of calcofluor-stained cdc10-V50 and cdc10-V50 tea1-
for3 cells arrested in G1.  Arrowheads indicate monopolar cells. (D) Quantification of (C), 
with three trials per genotype and n>300 for each trial.  Data are presented as mean ± SEM 
for each category. (E) Fixed-cell DAPI/methyl blue images of stained wild-type, tea1∆, for3
∆, tea1∆ for3∆, and tea1-for3 cells. (F) Quantification of phenotypes of cells in (D), with 
three trials per genotype and n>300 for each trial.  Data are presented as mean ± SEM for 
each category. (G) Quantification of cell lengths at cell division, with n>200 for each       
genotype.  Data are presented as box-and-whisker plots showing the median (line in the box), 
25th-75th percentiles (box), and 5th-95th percentiles (whiskers) for each genotype.(Bars = 5 
μm)
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Figure 4-13
Constitutive NETO signaling does not fully rescue cytokinesis-based growth defects.
(A) Quantification of growth patterns for wild-type and tea1-for3 cells.  Sample size (n) is 
provided for each genotype. (B) Quantification of times from septum splitting to initiation of 
tip growth at previous division sites for tea1-for3 cells.  Data are presented in box-and-
whisker plots showing the median (line in the box), 25th-75th percentiles (box), and 5th-95th 
percentiles (whiskers).  n>200. (C) Data for tea1-for3 cells in (B) grouped according to the 
amount of time needed for the mother cell to complete septation.  Data are presented in 
box-and-whisker plots showing the median (line in the box), 25th-75th percentiles (box), and 
5th-95th percentiles (whiskers) for each category. (D) Live-cell DIC movies of tea1-for3 cells 
with different times needed to complete septation.  The time of septum splitting of the mother 
cell is marked as point zero. The initiation of tip growth at previous division sites is denoted 
by yellow arrows.  (E) Live-cell images of calcofluor-stained tea1-for3 and tea1-for3 fic1∆ 
cells.  Arrowheads indicate monopolar cells. (F) Quantification of (E), with three trials per 
genotype and n>300 for each trial.  Data are presented as mean ± SEM for each category. (G) 
Quantification of septated cells in (E) and (F), with three trials per genotype and n>200 for 
each trial.  Data are presented as mean ± SEM for each category. (Bars = 5 μm)
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corroborated this model by expressing the Tea1-For3 fusion in fic1∆ cells.  Although 

tea1-for3 cells were mostly bipolar, tea1-for3 fic1∆ cells showed a high percentage of 

monopolar growth (Figs. 4-13E, 4-13F, and 4-13G).  These findings confirmed that 

efficient completion of cytokinesis is critical for new end growth, even when signaling 

networks responsible for NETO are prematurely activated. 

 

Errors in growth polarity caused by faulty cytokinesis translate into heightened fungal 
invasiveness 
 
 S. pombe undergoing a dimorphic switch from single-celled to invasive form 

grow primarily in a monopolar fashion at old ends (Dodgson et al., 2010; Pohlmann and 

Fleig, 2010).  Moreover, it has been postulated that cytokinesis errors might contribute to 

a hyphal-like transition in S. pombe (Bahler, 2005).  We therefore considered that 

cytokinesis-based constraints on S. pombe growth polarity might facilitate invasive 

growth transitions.  Using techniques similar to those described previously (Pohlmann 

and Fleig, 2010; Prevorovsky et al., 2009), we tested whether various cytokinesis mutants 

displaying defective bipolar growth could form pseudohyphae into 2% agar.  Cells 

lacking Fic1 or its interacting partners Cyk3 or Imp2 were significantly more invasive 

than wild-type cells (Figs. 4-14A and 4-14B), and, like other invasive S. pombe mutants 

(Dodgson et al., 2010; Pohlmann and Fleig, 2010), fic1∆ pseudohyphae were composed 

of single cells oriented in filament-like projections (Fig. 4-14C).  In addition to these 

strains, we found other cytokinesis mutants exhibiting high degrees of monopolar growth 

(spn1∆, cdc7-24, and vps24∆) to also be highly invasive (Figs. 4-14A and 4-14B).  Of 

note, the vps24∆ strain showed drastically more invasive growth than the others, though 

the reasons for this are currently unclear.  rlc1∆ and pxl1∆, which possess cytokinesis 
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Figure 4-14
Cytokinesis-based growth defects facilitate the dimorphic switch into an invasive form.
(A) Invasive growth assays for strains of the indicated genotypes on 2% agar. Cells were 
spotted on rich medium and incubated for 20 days at 29°C (top panel). Colonies were then 
rinsed under a stream of water and rubbed off (bottom panel). (B) Quantification of         
pseudohyphae in (A), with n≥3 for each genotype. Data are presented as mean ± SEM for 
each genotype. (C) Image of fic1Δ pseudohyphae in 2% agar, with enlarged images on the 
right. (Bars = 5 μm)
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defects that do not considerably impact polarized cell growth (Figs. 4-11C and 4-11D), 

invaded less efficiently on 2% agar than cytokinesis mutants exhibiting NETO defects 

(Figs. 4-14A and 4-14B).  This supports the notion that defective cytokinesis promotes 

the dimorphic switch most robustly when it results in faulty NETO.   

 Consistent with bipolar growth defects accompanying pseudohyphal growth, 

tea1-for3 cells, which experience constitutive NETO induction, almost never extended 

pseudohyphae into 2% agar (Figs. 4-15A and 4-15B).  Because cytokinesis-based 

constraints on growth polarity partially override tip-based NETO signaling, we reasoned 

that tea1-for3 cells should become more invasive upon loss of Fic1.  Indeed, on 2% agar 

tea1-for3 fic1∆ cells formed pseudohyphae (Fig. 4-15C), which were more numerous 

than those observed for wild-type and tea1-for3 strains (Figs. 4-15A and 4-15B).  Thus, 

perturbations in cytokinesis cause growth polarity errors that facilitate pseudohyphal 

growth even upon constant NETO signaling. 

 Lastly, we asked whether loss of polarity-relevant cytokinesis factors could 

partially rescue invasiveness of an asp1∆ strain, which is unable to undergo the 

dimorphic switch due to an inability to sense external cues (Pohlmann and Fleig, 2010).  

Previously, it was demonstrated that asp1∆ cells form a biofilm-like colony on 0.3% agar 

(Fig. 4-15D) (Pohlmann and Fleig, 2010).  Growth on 0.3% agar is more sensitive for 

assaying invasiveness of strains that invade less efficiently, as wild-type colonies form 

protrusions on 0.3% agar but extend relatively few pseudohyphal projections into 2% 

agar (Figs. 4-14A, 4-14B, and 4-15D) (Pohlmann and Fleig, 2010).  We therefore 

assessed the effect of cytokinesis defects on asp1∆ invasiveness by testing whether asp1∆ 

strains that also lacked relevant cytokinesis factors still formed biofilms on 0.3% agar.  
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Figure 4-15
Cytokinesis-based growth defects facilitate the dimorphic switch even upon consitutive 
NETO induction or the loss of nutritional cues.
(A) Invasive growth assays for tea1-for3 and tea1-for3 fic1Δ strains on 2% agar. Cells were 
spotted on rich medium and incubated for 20 days at 29°C (top panel). Colonies were then 
rinsed under a stream of water and rubbed off (bottom panel). (B) Quantification of         
pseudohyphae in (A), with n≥3 for each genotype. Data are presented as mean ± SEM for 
each genotype. (C) Image of tea1-for3 fic1Δ pseudohyphae in 2% agar. (D) Colony growth of 
strains of the indicated genotypes on rich medium containing 2% (top panel) or 0.3% agar 
(middle panel). Cells were spotted and incubated for 12 days at 29°C. Schematics of colony 
growth on 0.3% agar are also given (bottom panel), with white areas representing growth on 
the agar surface and black areas representing growth into the agar. (Bar = 5 μm)
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Intriguingly, double deletion strains of asp1∆ with fic1∆, spn1∆, or vps24∆ did not form 

biofilms on 0.3% agar but instead made projections into and on the surface of the agar 

(Fig. 4-15D).  In contrast, double deletion strains of asp1∆ with either rlc1∆ or pxl1∆ still 

formed biofilms on 0.3% agar (Fig. 4-15D).  We thus concluded that cytokinesis-based 

constraints on polarized cell growth in S. pombe can foster invasiveness even in the 

absence of typical nutritional signals. 

 

Discussion 

 In this study, we have shown how cytokinesis and cell polarity crosstalk to 

regulate fission yeast morphogenesis.  Our data support a model (Fig. 4-16) in which Fic1 

acts as an adaptor at the CR, where it guides proper completion of cytokinesis and 

thereby affects division site remodeling.  Loss of Fic1, its interactions, or parallel 

pathways results in delayed growth at new ends, even upon constitutive activation of 

NETO signaling.  Impaired bipolar cell growth resulting from defective cytokinesis in 

turn enhances S. pombe invasiveness. 

 

Cytokinesis-based regulation of cell polarity 

 The majority of S. pombe monopolar mutants previously analyzed fail at old end 

growth (Huisman and Brunner, 2011).  However, the cytokinesis mutants studied here 

were predominantly new end growth defective.  As in other organisms (St Johnston and 

Ahringer, 2010), numerous S. pombe proteins known to affect growth polarity localize to 

the division site; this has fostered speculation that signaling at both cell tips and the 

division site might impact growth zones (Glynn et al., 2001).  However, whether or not 
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Figure 4-16
Model of Fic1’s involvement in cytokinesis and the establishment of bipolar cell growth 
in S. pombe.
During cytokinesis, Fic1 serves as a scaffold for SH3 proteins, including Cdc15, at the 
cytokinetic ring.  In the absence of Fic1, its interactions, or a parallel pathway, the completion 
of cell division is perturbed, and the cell division machinery persists at the previous division 
site.  Failure to robustly complete cytokinesis impedes new end growth, even if NETO 
signaling is prematurely activated.  Cytokinesis-based constraints on new end growth polarity 
aid in the transition into invasive fungal growth.
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the cytokinesis functions of these proteins can specifically impact cell polarity has 

received little attention, especially in S. pombe.  Our data provide evidence directly 

linking division site organization to S. pombe growth polarity.  Because many factors 

involved in completing cell division likely also impact subsequent polarized growth, we 

believe our data could explain the involvement of diverse proteins in this process. 

 In other organisms, cytokinesis proteins appoint local regions of the cell cortex 

for growth following cell division (Flescher et al., 1993; Pollarolo et al., 2011; Snyder et 

al., 1991).  For example, several budding yeast proteins, which remain at the cell cortex 

following cell division, have been reported to convey a cortical “tag” that marks the 

position of the next bud site (Flescher et al., 1993; Snyder et al., 1991).  Similarly, during 

Drosophila melanogaster neurogenesis, cytokinetic furrow components mark the site 

from which the first dendrite will sprout (Pollarolo et al., 2011).  In these cases, 

cytokinesis factors confer a positive polarizing cue adjacent to previous division sites, 

which contrasts with our findings in S. pombe where the cell division machinery impedes 

polarization and growth at new ends created by cell division.   

The fact that S. pombe grow at old but not new ends after cell division is 

somewhat counterintuitive (Huisman and Brunner, 2011), especially because the cell 

growth machinery concentrates at the division site.  Upon the completion of cytokinesis, 

the S. pombe growth machinery mysteriously shuttles to old ends rather than remaining at 

new ends.  Why does the growth machinery relocate from the division site to old ends?  

One explanation is that new end cortices must be re-structured to become competent for 

tip growth.  Indeed, specific lipid and cell wall variants contribute to S. pombe 

cytokinesis (Luo et al., 2009; Streiblova et al., 1966), and local rearrangements of these 
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may be required for growth activation.  Moreover, the persistence of CR factors at new 

ends might create physical barriers to cytoskeletal elements, such as actin cables, required 

for tip growth.  An inhibitory role for cell division in polarization is supported by studies 

of mutants that undergo multiple rounds of cytokinesis without physically separating, 

because internal cells in these structures do not grow into septa but branch adjacently.  In 

a single-celled context, we speculate that when late cytokinetic events are perturbed, 

inherent delays in cortical re-structuring are exacerbated, causing growth polarity defects 

at new ends.  In cases in which one daughter cell fails at NETO while the other is 

successful, we suspect these arise due to unequal partitioning of cytokinesis remnants 

and/or differences in cell cycle stages or life histories of daughter cells. 

 Consistent with furrow remodeling affecting polarization in other organisms, 

initial cellular protrusions of dividing mammalian cells orient away from the midbody 

linking daughter cells during abscission (Mullins and Biesele, 1973).  Only after the 

completion of cell division does polarization also occur near the latent division site 

(Mullins and Biesele, 1973).  Moreover, forced entry of HeLa cells with monopolar 

spindles into cytokinesis results in anucleate daughter cells that, similar to their nucleated 

counterparts, exhibit membrane protrusions only distal to cleavage furrows (Hu et al., 

2008).  Thus, similar to our model in S. pombe, some factor at the division site cortex, 

and not a cell’s cytosolic constituents, requires remodeling for post-cytokinetic 

polarization.  Recent evidence indicates that mechanosensory pathways can direct cell 

polarization away from points of tension (Weber et al., 2012).  As modeling predicts that 

cortical tension peaks at the division plane during cytokinesis (White and Borisy, 1983), 
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it will likewise be important to assess the relevance of mechanical cues to cytokinesis-

based polarization events. 

 

Interplay within NETO and relevance of new end growth control 

 Previous work has implied that association of microtubule-associated protein 

Tea1 with formin For3 at new ends is sufficient for NETO (Martin et al., 2005).  In our 

study, we expressed an endogenous Tea1-For3 fusion that could induce premature 

NETO.  However, when cytokinesis was perturbed in tea1-for3 mutants, NETO was 

delayed.  We posit that local cortical abnormalities in cell wall, membrane, or associated 

factors can partially override typical growth cues in S. pombe, as has been observed in 

some plants (Panteris and Galatis, 2005).  Upon defective cytokinesis, such abnormalities 

at the division site may physically inhibit cell growth at new ends.  These defects can 

lead to the formation of T-shaped cells when old end growth is also blocked, as in tea1∆ 

fic1∆ mutants.  Our data underscore robust completion of cytokinesis as a major 

determinant of S. pombe NETO. 

 Is it beneficial for a cell to halt new end growth until well after cytokinesis 

completion?  As mentioned previously, human cells undergoing division initially move 

away from each other, creating a pulling force that could contribute to abscission 

(Mullins and Biesele, 1973).  Highly adherent mammalian cells can actually complete 

cytokinesis, with some defects, in the absence of cortical myosin from the cleavage 

furrow (O'Connell et al., 1999).  Constriction-independent cytokinesis was first observed 

in the amoeba Dictyostelium discoideum (Neujahr et al., 1997), which accomplishes this 

task by likewise polarizing and growing distally to the division site (King et al., 2010).  
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One could imagine that in cases where S. pombe cell separation is delayed, tip growth at 

old ends might contribute similar forces to aid in abscission.  Premature new end growth 

signaling might unbalance these forces, leading to exacerbated cytokinesis delays as in 

some tea1-for3 cells.  Premature new end growth might also interfere with remodeling 

during cytokinesis and thereby result in cell division defects.  These findings highlight 

interdependence between the cell polarization and division machineries in S. pombe. 

 

Fic1 scaffold function during cytokinesis 

 Our data indicate that Fic1’s C-terminus, and not its C2 domain, represents its 

major cytokinetic functional domain, contrasting with data reported for S. cerevisiae Inn1 

(Nishihama et al., 2009; Sanchez-Diaz et al., 2008).  Why is Fic1’s C2 domain 

dispensable for Fic1’s cytokinesis, and thus polarity, functions?  Sequence alignment 

indicates that there is in fact very low sequence identity between Fic1 and Inn1 C2 

domains (Sanchez-Diaz et al., 2008).  If Fic1’s C2 domain is unable to perform functions 

or mediate interactions that Inn1’s C2 domain can, it seems reasonable that Fic1-

interacting proteins may be able to compensate.  Consistent with this idea, over-

expression of S. cerevisiae Cyk3 suppresses cytokinesis defects of inn1∆ mutants, 

suggesting Cyk3 function overlaps with Inn1 (Nishihama et al., 2009).  These data 

support that Fic1’s C-terminus is an efficient signaling platform, which scaffolds SH3 

domain proteins through its PxxP motifs to ensure coherent integration of late cytokinesis 

signals. 

 What is the specific function of the Fic1 scaffold during cytokinesis?  Our data 

indicate that loss of Fic1 leads to faulty CR disassembly and prolonged persistence of 
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factors at the division site.  CR disassembly defects were also observed in inn1∆ S. 

cerevisiae mutants, leading to speculation that Inn1 might stabilize the constricting CR 

by physically linking it to the ingressing membrane (Sanchez-Diaz et al., 2008).  

Subsequent findings countered that Inn1’s C2 domain cannot bind phospholipids, and it 

was postulated instead that Inn1 cooperates with Cyk3 to coordinate cell wall deposition 

(Nishihama et al., 2009).  As in fic1∆ cells, septation and CR disassembly defects 

commonly accompany one another (Demeter and Sazer, 1998; Tully et al., 2009).  

Because these processes are inextricably linked, it is currently difficult to tease apart 

which defect precedes the other in fic1∆ cells.  Moreover, completion of cytokinesis also 

requires lipid rearrangements in both animal cells and S. pombe (Emoto and Umeda, 

2000; Luo et al., 2009), and membrane bridges were observed in fic1∆ cells.  We thus 

envision that Fic1’s C-terminus links signaling pathways that guide completion of 

multiple tasks during late cytokinesis and thereby affect new end remodeling.  Of note, 

we believe that defects in early cytokinesis do not significantly alter bipolar growth 

establishment, as later defects more directly impinge on division site remodeling and 

have less time to be remedied before the next cell division.  Our data furthermore support 

the notion that CR constriction and disassembly occur independently (Tully et al., 2009), 

as CR constriction but not disassembly proceeded appropriately in fic1∆ cells.   

 

Defective cytokinesis in invasive fungal growth 

 As fungal hyphae consist of long chains of cells, the transition into hyphal growth 

requires strict inhibition of cytokinesis.  In some yeasts, Cdc14 phosphatase activates the 

Ace2 transcriptional program (Brace et al., 2011), which triggers expression of cell 
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separation enzymes (Colman-Lerner et al., 2001). Upon the hyphal transition in Candida 

albicans, this signaling cascade is disrupted (Gonzalez-Novo et al., 2008), and other 

transcription factors suppress expression of Ace2 targets (Wang et al., 2009).  Therefore, 

cytokinetic inhibition in hyphae is believed to operate largely on a transcriptional level, 

and reactivation of the Ace2 transcriptional program is thought to be responsible for the 

evolution of single-celled yeast growth (Bahler, 2005).   

 In this study, we showed that fission yeast cells that undergo defective, yet not 

wholly abortive, cytokinesis exhibit enhanced invasive capacity.  We believe cytokinesis-

based constraints on growth polarity assist the transition into pseudohyphal growth 

because they force S. pombe to orient outwards and grow predominantly from old ends, a 

pattern commonly observed in S. pombe pseudohyphal growth (Dodgson et al., 2010; 

Pohlmann and Fleig, 2010).  However, as demonstrated by tea1∆ cells, other changes in 

polarity can also enhance S. pombe invasiveness.  Though not specifically defective at 

new end growth, tea1∆ cells grow predominantly in the direction of the mother cell, and 

these alterations in polarity might likewise favor growth orientations that are more 

conducive than bipolar growth to the invasive process.   

We believe our data suggest that manipulation of cytokinesis proteins, and not 

necessarily signaling cascades that feed into downstream transcriptional pathways, can 

directly modulate the dimorphic switch.  We thus speculate that the cytokinetic 

machinery might represent a direct target of the pseudohyphal developmental program.  

Intriguingly, loss of cytokinesis proteins that affect NETO rescued invasiveness of an 

asp1∆ mutant, which lacks the ability to detect nutritional cues (Pohlmann and Fleig, 

2010) deemed important for the S. pombe dimorphic switch (Amoah-Buahin et al., 2005).  
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Because various environmental cues also regulate hyphal morphogenesis in pathogenic 

fungi (Ernst, 2000), it will be important to assess the relative significance of cytokinesis-

based controls on polarized growth for invasiveness in these species. 
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 CHAPTER V 

 

PHOSPHOREGULATION OF CYTOKINETIC PROTEIN FIC1 CONTRIBUTES TO 
FISSION YEAST GROWTH POLARITY ESTABLISHMENT 

 
 
 

Introduction 

 Cellular polarization underlies many facets of cell behavior, including cell 

growth.  The rod-shaped fission yeast S. pombe represents a genetically tractable system 

for studying growth polarity regulation.  Wild-type S. pombe cells elongate at their two 

cells tips in a cell cycle-controlled manner, transitioning from monopolar to bipolar 

growth in interphase when new ends established by cell division begin to extend.  

Previously, we identified the process of cytokinesis as a critical regulator of new end 

growth.  Here, we demonstrate that Fic1, a cytokinetic factor required for typical 

polarized growth at new ends, is a phosphoprotein.  Phosphorylation of Fic1 occurs on 

two C-terminal residues, which flank PxxP motifs important for protein-protein 

interactions at the division site.  Importantly, endogenously-expressed Fic1 

phosphomutants cannot support proper bipolar growth, and the resultant growth defects 

facilitate the switch into an invasive pseudohyphal state.  Additionally, we find that CDK 

and casein kinase II (CK2) participate in phosphorylation of relevant Fic1 residues in 

vitro.  These findings broaden the scope of signaling events that contribute to S. pombe 

growth polarity regulation, underscoring that cytokinetic factors constitute relevant 

targets of kinases affecting new end growth.    

 

Results 
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Multiple pools of Fic1 exist in a phosphorylated state during the cell cycle 

 As was observed in previous studies (Bohnert and Gould, 2012; Roberts-

Galbraith et al., 2009), Western blotting of Fic1-FLAG3 from asynchronous wild-type 

cells revealed multiple bands with different gel mobilities (Fig. 5-1A).  We therefore 

considered that Fic1 is targeted by post-translational modifications, though genome-wide 

screens have previously not detected such modifications on Fic1.  When 

immunoprecipitated from asynchronous wild-type cells and treated with lambda 

phosphatase to eliminate all phosphorylations, Fic1-FLAG3 was detected via Western 

blotting as only a single band (Fig. 5-1A).  Thus, we concluded that Fic1 is a 

phosphoprotein, and, given the multiple slower migrating Fic1-FLAG3 species, that Fic1 

can be phosphorylated at more than one residue.   

 To assess whether Fic1 phosphostatus changes during the cell cycle, we first 

analyzed Fic1-FLAG3 gel mobility in different cell cycle arrests.  These arrests were 

achieved either through inactivation of temperature-sensitive alleles (cdc10-V50 G1 

arrest, cdc25-22 G2 arrest, nda3-KM311 prometaphase arrest, or cps1-191 cytokinesis 

arrest) or by addition of a drug (hydroxyurea-induced S phase arrest).  In all tested cell 

cycle arrests, Fic1-FLAG3 gel mobility shifts were identical (Fig. 5-1A), indicating that 

various pools of phosphorylated Fic1 are present at all stages of the cell cycle.  We 

corroborated this using a G2 block-and-release experiment, in which samples were taken 

at various time points following release from this arrest.  As expected, all Fic1-FLAG3 

phosphorylated species were detected at each of the time points (Fig. 5-1B), verifying 

that multiple pools of phosphorylated Fic1 exist throughout cell division. 
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Figure 5-1
Cytokinetic protein Fic1 is phosphorylated in vivo.
(A) Anti-FLAG immunoprecipitates from asynchronous or cell cycle-arrested cells were either 
treated with lambda phosphatase or left untreated and subsequently blotted with an anti-FLAG 
antibody.  CDK is a loading control. (B) Block-and-release of G2-arrested cdc25-22 fic1-FLAG3 
cells.  Anti-FLAG immunoprecipitates were blotted with an anti-FLAG antibody.  Time points 
and septation indices are noted.  CDK is a loading control.
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Phosphorylation correlates with domains and subpopulations of Fic1 sufficient for bipolar 
cell growth 
 
 We recently demonstrated that Fic1 affects the establishment of bipolar cell 

growth in S. pombe by influencing the robustness of late cytokinesis (Bohnert and Gould, 

2012).  Since kinases represent the broadest category of proteins affecting fission yeast 

morphogenesis (Martin and Chang, 2005), we wondered whether phosphorylation of Fic1 

might contribute to bipolar cell growth in S. pombe.  As an initial assessment, we 

investigated phosphorylation of endogenous truncations of Fic1 that differentially affect 

bipolar cell growth.  Fic1’s C-terminus [amino acids 127-end, “Fic1C” (Fig. 5-2A)], 

which is comprised of several PxxP motifs, localizes to the cell division site but not to 

cell tips, and is necessary and sufficient for bipolar cell growth.  Its N-terminal C2 

domain [amino acids 1-126, “Fic1N” (Fig. 5-2A)], on the other hand, neither localizes to 

the cell division site nor contributes to bipolar growth establishment (Bohnert and Gould, 

2012).  Notably, whereas Fic1N-GFP was not phosphorylated in vivo (Fig. 5-2B), Fic1C-

FLAG3 was (Figure Fig. 5-2C).  Thus, we suspected that phosphorylation could 

potentially influence Fic1 function in cellular morphogenesis. 

 If this were the case, we expected that full-length Fic1 should retain the capacity 

to be fully phosphorylated even if it lost the ability to anchor at cell tips.  We reasoned 

this because Fic1, unlike other characterized growth polarity factors, performs its polarity 

function at the cell division site and not at interphase cell tips (Bohnert and Gould, 2012).  

Intriguingly, when two C2 domain lysines (K22 and K27) (Fig. 5-3A), which are 

predicted based on homology to S. cerevisiae Inn1 to mediate membrane binding 

(Sanchez-Diaz et al., 2008), were mutated to alanine, mutant Fic1-K22,27A-GFP, unlike 
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Figure 5-2
Fic1’s C-terminus, which is sufficient for its polarity function, is phosphorylated in vivo.
(A) Schematic of Fic1 domain organization, with residues of interest, fragments, and PxxP motifs 
(*) indicated. (B) Anti-GFP immunoprecipitates from fic1N-GFP cells were either treated with 
lambda phosphatase or left untreated and subsequently blotted with an anti-GFP antibody.  CDK 
is a loading control. (C) Anti-FLAG immunoprecipitates from fic1C-FLAG3 cells were either 
treated with lambda phosphatase or left untreated and subsequently blotted with an anti-FLAG 
antibody.  CDK is a loading control. 
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Figure 5-3
Fic1 phosphorylation does not require cell tip anchoring.
(A) Schematic of Fic1 domain organization, with residues of interest and PxxP motifs (*) 
indicated. (B and C) Live-cell bright field (BF), GFP, mCherry (mCh), and merged GFP/mCh 
images of fic1-GFP cdc15-mCherry and fic1-K22,27A-GFP cdc15-mCherry cells.  A region of 
interest is enlarged on the right. (D) Live-cell image of calcofluor-stained fic1-K22,27A cells.  
Arrowheads indicate monopolar cells. (E) Quantification of growth polarity phenotypes for cells 
of the indicated genotypes.  Data from three trials are presented as mean ± SEM for each 
category. (F) Quantification of growth polarity phenotypes for septated cells of the indicated 
genotypes.  Data from three trials are presented as mean ± SEM for each category. (G) Live-cell 
BF, GFP, mCh, and merged GFP/mCh images of a fic1-K22,27A-GFP sid4-GFP cdc15-mCherry 
cell during cytokinesis. (H) Anti-FLAG immunoprecipitates from fic1-FLAG3 or fic1-K22,27A-
FLAG3 cells were either treated with lambda phosphatase or left untreated and subsequently 
blotted with an anti-FLAG antibody.  CDK is a loading control. [Bars = 5 μm, except for enlarged 
regions in (B) and (C) where Bars = 2 μm]
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wild-type Fic1-GFP (Fig. 5-3B), did not properly anchor at interphase cell tips (Fig. 5-

3C). Despite not localizing to cell tips, Fic1-K22,27A promoted proper bipolar growth 

(Figs. 5-3D, 5-3E, and 5-3F), and Fic1-K22,27A-GFP still targeted to the CR (Fig. 5-

3G).  Importantly, Fic1-K22,27A-FLAG3 could be fully phosphorylated even though it 

did not accumulate at cell tips (Fig. 5-3H), consistent with phosphorylation targeting 

subpopulations of Fic1 involved in growth polarity establishment. 

 

Fic1 is phosphorylated at two major sites, T178 and S241 

 To further explore the possibility that phosphorylation influences Fic1 function in 

bipolar growth establishment, we next sought to identify specific phosphorylated residues 

on Fic1.  Mass spectrometric analyses of tandem affinity-purified Fic1-TAP samples 

identified only two residues, threonine 178 and serine 241, having >95% probability for 

phosphorylation (Figs. 5-4A, 5-4B, and 5-4C).  Both phosphorylated residues were 

located on Fic1’s C-terminus (Fig. 5-4A), consistent with phosphorylation also occurring 

on a Fic1C-FLAG3 fragment (Fig. 5-2C). 

 We then integrated mutants at the endogenous fic1 locus to test whether alteration 

of these sites would influence Fic1-FLAG3 gel mobility shifts.  Alanine mutations of 

T178 or S241 individually led to the elimination of the slowest migrating band, and only 

one phosphorylated Fic1 species remained for each mutant (Fig. 5-4D).  Importantly, 

alanine mutations of T178 and S241 in combination resulted in a complete elimination of 

gel mobility shifts (Fig. 5-4D), confirming that these two residues represent major 

phosphosites on Fic1.  When these sites were mutated to aspartate to mimic 

phosphorylation, similar gel mobility patterns were observed, except that all bands were 
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Figure 5-4
Fic1 residues T178 and S241 are phosphorylated in vivo.
(A) Schematic of Fic1 domain organization, with residues of interest, PxxP motifs (*), and 
phosphosites (labeled underneath) indicated. (B and C) Representative MS2 spectra of peptides 
with phosphorylated T178 or S241, respectively, identified from fic1-TAP samples.  The peptide 
sequence ladder depicts Y (colored blue) and B (colored red) ions of the peptide.  Green peaks 
indicate mass to charge (m/z) ratios of parent ions before fragmentation.  Black peaks represent 
unidentified ions. (D) Anti-FLAG immunoprecipitates from cells of the indicated genotypes were 
either treated with lambda phosphatase or left untreated and subsequently blotted with an anti-
FLAG antibody.  CDK is a loading control.
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slightly retarded in gel mobility due to constitutive charge at these positions (Fig. 5-4D).  

We therefore concluded that phosphorylation occurs at T178 and S241 in vivo, and that 

these sites can be phosphorylated individually or in combination. 

 

Disruption of Fic1 phosphorylation jeopardizes bipolar cell growth and promotes the 
dimorphic switch 
 
 To assess the relevance of Fic1 phosphorylations to NETO, we analyzed growth 

polarity of phosphomutants by calcofluor staining.  Individual phosphosite mutants (fic1-

T178A, fic1-T178D, fic1-S241A, fic1-S241D), like wild-type cells, grew in a mostly 

bipolar fashion (Figs. 5-5A, 5-5B, and 5-5C).  But, similar to fic1∆ cells, asynchronous 

fic1-T178A,S241A and fic1-T178D,S241D cells were predominantly monopolar (Figs. 5-

6A, 5-6B, and 5-6C).  Focusing on these mutants, we examined the relation of their 

growth polarity defects to cell cycle progression.  As expected given that wild-type cells 

commonly initiate NETO by late interphase (Mitchison and Nurse, 1985), nearly all fic1+ 

cells arrested in late G2 using the temperature-sensitive cdc25-22 allele initiated bipolar 

growth (Figs. 5-7A and 5-7B).  In contrast, cdc25-22 fic1-T178A,S241A and cdc25-22 

fic1-T178D,S241D cells arrested in late G2 were still largely monopolar (Figs. 5-7A an 5-

7B).  Such growth polarity defects mirrored those observed for cdc25-22 fic1∆ cells 

(Figs. 5-7A and 5-7B) (Bohnert and Gould, 2012), confirming that deregulation of Fic1 

phosphorylations delays the establishment of bipolar cell growth during the cell cycle.  In 

fic1∆ cells, these polarized growth defects are specific to new ends (Figs. 5-8A and 5-8B) 

(Bohnert and Gould, 2012).  Using time-lapse DIC imaging, we confirmed that polarized 

growth in fic1-T178A,S241A and fic1-T178D,S241D cells was likewise faulty at new 

ends (Figs. 5-8A and 5-8B).  Collectively, these data underscore that disruption of Fic1 
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Figure 5-5
Mutation of individual Fic1 phosphosites does not affect NETO.
(A) Live-cell images of calcofluor-stained cells of the indicated genotypes.  Arrowheads indicate 
monopolar cells. (B) Quantification of growth polarity phenotypes for cells of the indicated 
genotypes.  Data from three trials are presented as mean ± SEM for each category. (C)          
Quantification of growth polarity phenotypes for septated cells of the indicated genotypes.  Data 
from three trials are presented as mean ± SEM for each category. (Bar = 5 μm)  
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Figure 5-6
Mutation of both Fic1 phosphosites jeopardizes bipolar cell growth.
(A) Live-cell images of calcofluor-stained cells of the indicated genotypes.  Arrowheads indicate 
monopolar cells. (B) Quantification of growth polarity phenotypes for cells of the indicated 
genotypes.  Data from three trials are presented as mean ± SEM for each category. (C)          
Quantification of growth polarity phenotypes for septated cells of the indicated genotypes.  Data 
from three trials are presented as mean ± SEM for each category. (Bar = 5 μm)  
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Figure 5-7
Deregulation of Fic1 phosphorylation delays bipolar growth irrespective of S phase    
completion.
(A) Live-cell images of G2-arrested, calcofluor-stained cells of the indicated genotypes.           
Arrowheads indicate monopolar cells.  (B) Quantification of growth polarity phenotypes for 
G2-arrested cells of the indicated genotypes.  Data from three trials are presented as mean ± SEM 
for each category. (Bar = 5 μm)  
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Figure 5-8
Fic1 phosphomutants fail specifically at new ends.
(A) Quantification of growth patterns for cells of the indicated genotypes.  Sample size (n) is 
provided. (B) Live-cell DIC movies of cells of the indicated genotypes.  Solid arrows denote old 
end growth, whereas dashed arrows indicate new end growth.  Birth scars are marked by           
asterisks.  Time points are noted.  (Bar = 5 μm)  
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phosphorylation results in loss-of-function fic1 alleles that are unable to facilitate proper 

NETO. 

 Cytokinesis-based constraints on S. pombe growth polarity support the transition 

into an invasive fungal form (Bohnert and Gould, 2012).  Indeed, fic1∆ cells extend more 

pseudohyphae into 2% agar than do wild-type cells (Figs. 5-9A and 5-9B) (Bohnert and 

Gould, 2012).  Consistent with fic1 phosphomutants possessing growth polarity defects 

akin to fic1∆ cells, fic1-T178A,S241A and fic1-T178D,S241D cells similarly formed 

pseudohyphal structures (Figs. 5-9A and 5-9C), which were nearly as numerous as those 

observed for a fic1∆ strain (Figs. 5-9A and 5-9B).  Accordingly, we concluded that the 

dimorphic switch from single-celled to pseudohyphal forms may be a phosphoregulated 

process.  

 

CDK and CK2 participate in polarity-relevant Fic1 phosphorylation 

 Because kinases constitute the largest subgroup of polarity factors (Martin and 

Chang, 2005), we aimed to identify which catalyze Fic1 phosphorylations at T178 and 

S241.  Unfortunately, screening of Fic1-FLAG3 gel mobility shifts in a genome-wide 

kinase deletion library as well as in available temperature-sensitive mutants did not reveal 

any loss of phosphorylation.  We thus imagine that redundant kinases likely target Fic1 in 

vivo. 

 Given this complication, we undertook a targeted in vitro approach to identify 

potential kinases involved in Fic1 phosphorylation.  As CDK targets a minimal consensus 

of S/T-P (Ubersax and Ferrell, 2007), we considered that CDK phosphorylates T178, 

which fits this consensus (Fig. 5-10A).  In vitro, CDK phosphorylated serine and 
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Figure 5-9
Deregulation of Fic1 phosphorylation facilitates an invasive growth transition.
(A) Invasive growth assays for strains of the indicated genotypes on 2% agar.  Cells were spotted 
on rich medium and incubated for 20 days at 29°C (top panel).  Colonies were then rinsed under a 
stream of water and rubbed off (bottom panel). (B) Quantification of pseudohyphae for cells of 
the indicated genotypes, with n≥3 for each genotype.  Data are presented as mean ± SEM for each 
genotype. (C) Images of pseudohyphae for cells of the indicated genotypes in 2% agar. (Bar = 5  
μm)
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Figure 5-10
CDK and CK2 target relevant Fic1 residues in vitro.
(A) Schematic of residues flanking Fic1 phosphosites.  The phosphorylated residues are central 
and are marked by an arrow. (B) Phosphoamino acid analysis of His6-Fic1 phosphorylated by 
CDK.  The positions of phospho-serine, phospho-threonine, and phospho-tyrosine standards are 
indicated. (C) CDK in vitro kinase assay using His6-Fic1 or His6-Fic1-T178A.  Protein labeled by 
γ-32P was detected by exposure to film, and the gel was stained with Coomassie Blue (CB) as a 
loading control. (D) Phospho-tryptic peptide analysis of His6-Fic1 or His6-Fic1-T178A          
phosphorylated by CDK.  The position of the origin is indicated by an “x”. The anode is on the 
left. (E) CK2 and Orb5-myc13 in vitro kinase assays using His6-Fic1 or His6-Fic1-S241A.  Protein 
labeled by γ-32P was detected by exposure to film, and the gel was stained with CB as a loading 
control.  (F) Phosphoamino acid analysis of His6-Fic1 phosphorylated by CK2.  The positions of 
phospho-serine, phospho-threonine, and phospho-tyrosine standards are indicated.
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threonine residues on wild-type His6-Fic1 (Fig. 5-10B).  CDK also phosphorylated His6-

Fic1-T178A in vitro, though phosphorylated wild-type His6-Fic1 exhibited an additional 

slower migrating species (Fig. 5-10C).  This suggested that His6-Fic1-T178A cannot be 

fully phosphorylated by CDK in vitro.  Tryptic peptide mapping confirmed this idea, as 

His6-Fic1-T178A lacked a phosphorylated peptide observed for wild-type His6-Fic1 (Fig. 

5-10D).  We therefore concluded that CDK can phosphorylate Fic1 at T178.   

 Although S241 does not match a CDK consensus, it fits a consensus for CK2 (S-

x-x-E/D) (Fig. 5-10A) (Meggio and Pinna, 2003).  We accordingly tested whether CK2 

can phosphorylate S241 in vitro.  We found that CK2 indeed phosphorylates His6-Fic1 in 

vitro (Fig. 5-10E), and that such phosphorylation, as expected, was limited to serines 

(Fig. 5-10F).  Of note, alanine mutation of S241 abrogated CK2-mediated 

phosphorylation of Fic1 (Fig. 5-10E).  We also performed kinase reactions using 

immunoprecipitated Orb5-myc13, the S. pombe CK2 homolog (Snell and Nurse, 1994).  

Importantly, Orb5-myc13 also phosphorylated recombinant His6-Fic1, and alanine 

mutation of S241 eliminated this phosphorylation (Fig. 5-10E).  Thus, we concluded that 

S241 is a bona fide CK2-targeted site. 

 

Discussion 

 Though phosphorylation serves diverse roles during eukaryotic cytokinesis 

(Bohnert and Gould, 2011), it has been unclear whether CR protein phosphorylation 

impacts cellular processes other than cell separation.  In this study, we demonstrate that 

CDK- and CK2-mediated phosphoregulation of Fic1, a scaffold for SH3 domain proteins 

at the CR, modulates single-celled polarized growth and the developmental transition into 
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an invasive, pseudohyphal state.  These findings reveal a previously unanticipated role 

for cytokinetic phosphosignaling in cellular morphogenesis, highlighting new facets of 

kinase-based growth control. 

 

Relation of Fic1 phosphorylation to domains and localization patterns 

 We envision that C-terminal Fic1 phosphorylation influences interactions with 

SH3 domain proteins, because (1) phosphosites flank PxxP motifs mediating these 

interactions; and (2) deregulation of phosphorylation, similar to loss of PxxP-based 

protein-protein interactions (Bohnert and Gould, 2011), compromises bipolar cell growth.  

Intriguingly, differently phosphorylated pools of Fic1 exist throughout the cell cycle.  

This is somewhat confounding, as Fic1 localizes to one cellular site at each cell cycle 

stage (Bohnert and Gould, 2012; Roberts-Galbraith et al., 2009).  This implies that 

multiple Fic1 subpopulations exist at the same location.  How can this be explained?  

Perhaps some Fic1-based protein-protein interactions require dynamic regulation, which 

involves a rapid phosphorylation/dephosphorylation cycle.  In support of dynamic 

phosphoregulation impacting Fic1’s polarity function, phospho-abolishing and phospho-

mimicking mutations both jeopardize NETO.  Identification of phosphoregulated 

interactions, as well as detailed analysis of the mechanisms underlying such control, 

should clarify this dynamical complexity. 

 Interestingly, mutation of either phosphosite alone did not compromise growth 

polarity; only upon mutation of both phosphosites was a phenotype observed. Because 

the structure of Fic1’s C-terminus is unknown, it is impossible to say whether T178 and 

S241 are close three-dimensionally.  If so, perhaps phosphorylation at both sites is 
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required to modulate a specific protein-protein interaction.  If not, maybe these 

phosphorylation events regulate binding of distinct proteins, which cumulatively affect 

Fic1-based CR signaling.  Regardless, some coordination must be achieved at the kinase 

level, for the two phosphosites fit dissimilar consensuses and are phosphorylated by 

different kinases. 

Given the previous finding that Fic1’s C-terminus functions as this protein’s 

major functional domain (Bohnert and Gould, 2012), it makes sense that polarity-relevant 

phosphorylation would occur in this region.  In contrast, mutation or loss of Fic1’s N-

terminal C2 domain affects neither phosphorylation nor polarity.  Apparently, Fic1’s N-

terminus solely mediates cell tip anchoring.  Though we currently lack evidence 

suggesting Fic1-K22,27A fails at cell tip anchoring due to impaired lipid binding, this 

seems the most likely explanation, given that charged interactions facilitate C2 domain-

lipid associations (Cho and Stahelin, 2006).  Whether Fic1’s C2 domain influences CR-

membrane binding during cytokinesis is also unknown, though other membrane binders, 

including F-BAR proteins Cdc15 and Imp2, would likely compenate for loss of this 

interaction.  Why does Fic1 localize to cell tips if it does not perform a polarity function 

at this site?  One possibility is that Fic1 piggybacks with another CR protein to cell tips 

following cell division.  Consistent with Fic1 simply relocating with its binding partners 

during the cell cycle, Fic1 acts as a ‘molecular glue,’ and its protein levels do no fluctuate 

during the cell cycle.  Thus, Fic1’s scaffolding function likely dictates its localization 

pattern, though these associations appear functionally most relevant during cytokinesis.      

 

Kinases involved in Fic1-based polarity regulation 
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 CDKs are well-documented regulators of polarized cell growth in fungi.  Much of 

this phosphoregulation centers on Cdc42, a Rho-family GTPase key in fungal cell 

polarity (Adams et al., 1990).  Cdc42 GEFs positively regulate Cdc42 function, and, in S. 

cerevisiae, CDK-mediated phosphorylation of GEF-binding proteins facilitates this 

activation (McCusker et al., 2007; Shimada et al., 2000).  GEFs of other polarity-relevant 

GTPases are directly phosphorylated and activated by CDK (Kono et al., 2008), 

suggesting similar mechanisms may also control Cdc42 GEFs.  Cdc42 activation is 

enhanced via CDK-mediated inhibitory phosphorylation of Cdc42 GAPs (Knaus et al., 

2007; Sopko et al., 2007), which otherwise negatively regulate Cdc42.  Our findings 

indicate that CDK-based control of polarized cell growth extends beyond 

phosphoregulation of the Rho-family GTPase cycle, and that CDK-mediated 

phosphoregulation of the CR can impact growth zones.  It will be important to determine 

whether CDK-mediated phosphorylation of other CR proteins, including Cdc15 (Roberts-

Galbraith et al., 2010), likewise influences morphogenesis. 

Though a hyphal-specific cyclin-CDK complex can restrict Cdc42 GAP function 

to promote C. albicans invasiveness (Zheng et al., 2007), other findings suggest some 

forms of CDK activity negatively regulate the dimorphic switch.  Indeed, loss of 

canonical cell cycle cyclins enhances filament-like growth (Bachewich and Whiteway, 

2005; Bensen et al., 2005; Chapa y Lazo et al., 2005), whereas loss of C. albicans Cdc14-

family phosphatase, which reverses CDK-mediated phosphorylation, has the opposite 

effect (Clemente-Blanco et al., 2006).  Thus, it will be important to further dissect 

mechanisms of CDK-mediated Fic1 phosphorylation to assess how this event modulates 

the S. pombe dimorphic switch.   
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We note that MAP kinases, which are proline-directed kinases similar to CDK 

(Lu et al., 2002), represent likely candidates for redundant kinases targeting Fic1 T178.  

MAP kinases in S. cerevisiae have been postulated to work in parallel to Cdc42 in 

directing cell polarization (Mazzoni et al., 1993), and deregulation of MAP kinase 

signaling can enhance invasive growth (Cook et al., 1996).  Accordingly, it seems likely 

that MAP kinases perform a conserved polarity function in S. pombe, though this 

presumably occurs in part through phosphoregulation at the CR. 

 Similar to CDK, CK2 governs cellular polarization in both budding and fission 

yeasts (Rethinaswamy et al., 1998; Snell and Nurse, 1994). In a striking parallel to fic1 

phosphomutants, loss of CK2 function in S. pombe impedes the re-initiation of bipolar 

cell growth after cell division (Snell and Nurse, 1994).  Because CK2 deregulation causes 

errors in both cell growth and cytokinesis (Roussou and Draetta, 1994), it is possible that 

CK2 influences growth polarity partly via its cytokinetic functions, which include 

phosphoregulation of Fic1.  Not surprisingly, CK2 also impacts fungal virulence (Chiang 

et al., 2007), although individual CK2-mediated phosphorylation events impacting 

invasiveness were relatively unknown.  Our identification of CK2-mediated Fic1 

phosphorylation thus presents a novel facet of this signaling. 

 

Phosphoregulation of the dimorphic switch 

 In S. pombe, Sep1 and Ace2 induce mitotic transcriptional waves (Rustici et al., 

2004), which are important for expression of genes required for daughter cell separation 

(Martin-Cuadrado et al., 2003; Sipiczki et al., 1993).  Though it has been postulated that 

inhibition of these transcriptional waves could trigger the dimorphic switch (Bahler, 
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2005), we previously noted that cytokinesis-based constraints on polarized growth in S. 

pombe may provide a more direct signaling route for this developmental program 

(Bohnert and Gould, 2012).  In this study, we have shown that Fic1 phosphorylation 

regulates this protein’s polarity function, and that deregulation of Fic1 phosphorylation 

induces hyphal-like growth.  Thus, we believe our findings support the ideas that (1) 

phosphoregulation of the CR can directly activate the dimorphic switch; and (2) 

modulation of kinase and/or phosphatase signaling may be sufficient for this switch.  As 

extensive phosphosignaling occurs during hyphal growth (Sudbery, 2011), integration of 

multiple cues likely guarantees the robustness of this transition. 
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 CHAPTER VI 

 

CONCLUSIONS 

 

 Though an extensive ‘parts list’ of cytokinesis factors has been defined in 

multiple organisms [for reviews, see (Balasubramanian et al., 2012; Pollard and Wu, 

2010)], our understanding of how these proteins interact and signal during cell division is 

still in its infancy.  In this work, I have examined mechanisms by which kinase pathways 

influence CR composition and function, and I have also investigated the consequences 

that inefficient cytokinesis exert on cellular growth. 

 In chapter II, I characterized a new member of the S. pombe CPC, contradicting 

previous reports (Vader et al., 2006) that Borealin does not exist in yeasts.  S. pombe 

Borealin controls the activity and localization of other CPC components, including 

Aurora B kinase.  I found that S. pombe Borealin, together with the rest of the CPC, 

influences targeting of Cdc14-family phosphatase to the CR, and thereby affects S. 

pombe cytokinesis. 

 In chapter III, I identified the first core CR protein targeted by the fission yeast 

SIN.  I demonstrated that Sid2-mediated phosphorylation of formin Cdc12 is required for 

SIN-dependent cytokinesis.  Such phosphorylation reverses multimerization of a novel 

formin domain, which also participates in F-actin bundling at the CR.  This oligomeric 

switch enables CR maintenance during cytokinesis, because CRs collapse into spot-like 

structures upon loss of Sid2-mediated Cdc12 phosphorylation. 
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 In chapter IV, I investigated the possibility that inefficient cytokinesis impacts 

subsequent polarized growth.  Through structure-function analysis of Fic1, I found that 

CR signaling, based on Fic1 scaffolding of SH3 domain proteins, is required for NETO.  

Disruption of CR, cell wall, or membrane remodeling at the division site specifically 

impedes NETO and triggers an invasive growth transition favoring a pseudohyphal form.  

CR-based constraints on polarized growth partially override other growth controls, 

suggesting these cues are primary determinants of S. pombe growth polarity. 

 In chapter V, I analyzed the contribution of phosphosignaling to cytokinesis-

based growth controls.  Focusing on Fic1, I found that Fic1 is phosphorylated on two C-

terminal sites, which flank SH3-binding PxxP motifs, and that deregulation of this 

phosphorylation jeopardizes NETO.  Using a candidate approach, I identified CDK and 

CK2 as two kinases involved in such phosphoregulation.  

 Altogether, these studies reveal unexpected functions for well known cell cycle 

regulators, broaden our knowledge of complex phosphosignaling during cytokinesis, and 

describe novel links between cytokinesis and other cell cycle events.  These findings thus 

address many facets of cell cycle control and pose many exciting questions for future 

research. 

 

Aurora B-mediated regulation of S. pombe cytokinesis 

 In contrast to previous reports (Petersen and Hagan, 2003), my findings suggest 

that S. pombe Aurora B kinase, similar to Aurora B in other organisms (Ruchaud et al., 

2007), controls cytokinesis.  This is intriguing, because the S. pombe CPC is never 

exported out of the nucleus during the cell cycle, and S. pombe undergoes a closed 
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mitosis, in which the nuclear nevelope does not break down.  How does Aurora B thus 

affect the CR, which lines the cell cortex?  One possibility is that Aurora B 

phosphorylates nuclear proteins that subsequently re-localize to the division site.  Cdc14-

family phosphatase Clp1, for one, behaves in this manner (Trautmann et al., 2001).  I 

have demonstrated that the S. pombe CPC is required for Clp1 accumulation at the CR 

during cytokinesis, and a research specialist in the laboratory, Jun-Song Chen, has shown 

that S. pombe Aurora B phosphorylates Clp1 in vitro.  As Clp1 possesses multiple Aurora 

B consensus sites, it seems possible that Aurora B-mediated phosphorylation of Clp1 

participates in such regulation.  Consistent with this interpretation, some Aurora B 

consensus sites on Clp1 are also phosphorylated by Sid2, and these phosphorylations 

facilitate Clp1 cytoplasmic retention during cytokinesis (Chen et al., 2008).  If Aurora B 

phosphorylation of Clp1 functions similarly, it will be interesting to explore how Aurora 

B, which is activated in early mitosis, cooperates with Sid2, which is activated later, to 

ensure proper targeting of Clp1 during cytokinesis.  In addition, recent genome-wide 

analysis of Aurora B substrates in S. pombe uncovered other putative cytokinesis targets 

(Koch et al., 2011), and future validation of these substrates should clarify the extent of 

CPC-mediated phosphoregulation during cytokinesis.  

 

Phosphoregulation of formin Cdc12 

 My data have established that Cdc12 is a phosphoprotein, and that the SIN kinase 

Sid2 participates in Cdc12 phosphorylation.  Nonetheless, additional kinases besides Sid2 

likely contribute to Cdc12 phosphoregulation, because (1) Cdc12 is phosphorylated in 

both late interphase and early mitosis, when the SIN is largely inactive; and (2) the 
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Cdc12-4A phosphomutant is still phosphorylated, though to a lesser extent than wild-type 

Cdc12, during cytokinesis.  Unfortunately, the low abundance of Cdc12 (Wu and Pollard, 

2005) has prevented large-scale purification of Cdc12 and mass spectrometric analysis of 

Cdc12 phosphosites.  Using in vitro strategies similar to those used in identifying Sid2-

mediated Cdc12 phosphorylation, I have also shown that S. pombe CDK phosphorylates 

Cdc12.  Intriguingly, this phosphorylation is limited to N-terminal and C-terminal 

patches.  Though canonical autoinhibition has not been demonstrated for Cdc12 

(Yonetani et al., 2008), it is an attractive model that CDK-mediated phosphorylation at 

the formin ends may control Cdc12 activation at mitotic onset.  Whether or not this 

involves relief of autoinhibition, similar to that observed for other formin 

phosphorylation events (Takeya et al., 2008; Wang et al., 2009), will be important to 

address in the future. 

 Of note, two of the N-terminal CDK phosphosites occur within a region that is 

conserved throughout the Schizosaccharomyces genus.  When this region is deleted from 

an N-terminal fragment, CR localization no longer occurs (Yonetani et al., 2008), 

suggesting this stretch provides a key protein-protein binding interface.  As F-BAR 

Cdc15 binds the Cdc12 N-terminus (Carnahan and Gould, 2003), it will be important to 

address whether the Cdc12-Cdc15 interaction occurs through this conserved N-terminal 

Cdc12 stretch, and whether CDK-mediated phosphorylation in this region also 

contributes to regulation of this binding. 

 

Contribution of the Cdc12 C-terminus to formin activities 
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 The identification of a novel C-terminal domain, which multimerizes, could 

potentially be paradigm-shifting in terms of how we view formin oligomerization.  

Though dimeric FH2 associations enhance formin-mediated actin polymerization 

(Chesarone et al., 2010), higher-ordered oligomers relevant in vivo have not been 

previously described.  To understand in more detail the oligomerization domain identified 

in this work, it will be necessary to crystallize the recombinant fragment and to obtain 

structural information about revelant folds and/or residues.  Structural data could inform 

future mutagenesis of this domain in vivo and provide insight into the conservation of 

such a domain among formins and other cytoskeletal factors. 

 My analysis indicated that Cdc12’s C-terminal oligomerization domain functions 

in linear F-actin bundling.  Accordingly, structural analyses may hint at the spatial 

parameters set by this oligomerization event, which guide the linearity of bundling.  Still, 

I have shown that the oligomerization domain on its own cannot bundle F-actin; thus, 

outside F-actin binding sites in the C-terminus also contribute to this activity.  It will 

therefore be important truncate the C-terminus into smaller C-terminal fragments and to 

test which are sufficient for F-actin binding and/or bundling in vitro.  Importantly, the 

Cdc12 C-terminus appears to enhance other activities in addition to F-actin bundling.  In 

collaboration with Dr. David Kovar’s laboratory at the University of Chicago, I have 

shown by TIRF microscopy that the Cdc12 C-terminus stimulates FH1FH2-based actin 

assembly in vitro.  In the future, it will be crucial to describe participating domains and to 

determine the kinetics by which the Cdc12 C-terminus also accelerates F-actin nucleation 

and/or polymerization. 
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 Are the activities of the Cdc12 C-terminus regulated by mechanisms other than 

phosphorylation?  Though canonical DID and DAD interactions are thought not to 

operate for Cdc12 (Yonetani et al., 2008), I have found that the Cdc12 N-terminus 

inhibits F-actin bundling by the Cdc12 C-terminus.  Perhaps, N- and C-terminal cis 

interactions may occlude the F-actin bundling domain.  Whether such interactions exist 

and how they contribute to autoregulation of formin activities in vivo should be of 

significant future interest. 

 

Coordinating cell growth and division cycles 

 What is the advantage of S. pombe growing in a single-celled state?  Some have 

postulated that single-celled growth is metabolically more efficient in nutrient-rich 

conditions (Bahler, 2005; Madhani and Fink, 1998); however, during starvation, 

invasiveness would facilitate nutrient foraging.  If this is true, one would expect that in 

appropriate contexts nutritional cues might induce cytokinetic errors, thereby inhibiting 

new end growth and inducing the dimorphic switch.  My studies suggest that one 

mechanism by which this could occur is through tweaking of Fic1 phosphoregulation.  

Presumably, other CR phosphoproteins that impact cell polarity could likewise be 

regulated upon activation of this morphogenetic program.  Expression profiling of 

relevant kinases and phosphatases during this transition will likely provide insight into 

whether such alterations in signaling indeed occur.  Moreover, it will be interesting to 

further explore whether intrinsically invasive fungal species lack phosphosignaling 

important for single-celled polarization and growth.  It is an intriguing possibility that 
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new phosphosignaling events, which drove efficient cell separation, contributed to the 

evolution of the single-celled fungal state (Bahler, 2005). 

 Additionally mysterious is why polarized tip growth ceases during S. pombe 

mitosis.  In an intriguing parallel, cellular polarization is also lost during animal cell 

mitosis, as cells round up.  Clearly, these changes must involve alterations in the cellular 

cytoskeleton.  Upon mitotic onset in S. pombe, interphase microtubules depolymerize as 

the mitotic spindle forms, and actin disappears from cell tips and concentrates at the 

medial CR (Chang and Martin, 2009).  Currently, it is unclear how alterations in the 

cytoskeleton accommodate this growth switch.  For example, do depolymerizing 

interphase microtubules provide a tubulin pool for the developing mitotic spindle, or can 

a cell still efficiently form a mitotic spindle if interphase microtubules persist?  Whatever 

the nature of the signal stalling S. pombe mitotic tip growth, the tea1-for3 strain created 

in my studies bypasses this signal and continues to grow at cell tips throughout mitosis.  

Thus, this strain provides a powerful tool for investigating growth regulation during 

mitosis.  Time-lapse imaging of actin and microtubules in tea1-for3 cells should clarify 

which is/are most relevant to this switch and could provide insight into the mechanisms 

and consequences of this coordination. 

 

SH3 domain-based protein-protein interactions at the CR 

 Structure-function analysis of S. pombe Fic1 indicated that its C-terminus, which 

is composed of little other than PxxP motifs, serves as its major functional domain at the 

CR.  Thus, we concluded that Fic1 acts as a ‘molecular glue,’ bridging SH3 domain 

proteins to expedite and direct signaling.  To our knowledge, our studies define the first 
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specific SH3 ligand for S. pombe PCH proteins.  Specifically, we showed that Fic1’s 

terminal PxxP motif is responsible for binding the PCH protein Cdc15.  The amino acids 

flanking this PxxP motif indicate it fits the binding consensus for class II SH3 domains 

[φPXφPX+, where φ and + indicate hydrophobic and basic residues respectively (Mayer, 

2001)].  Our laboratory has recently found that other Cdc15-binding partners, including 

Spa2, a GTPase involved in cytokinesis, interact with Cdc15’s SH3 domain through PxxP 

motifs with similar residues.  Thus, my identification of the Cdc15 SH3 as a class II 

domain could potentially be helpful in predicting other Cdc15-interacting sites.  Similar 

analyses could also be used to characterize SH3 domains of other cytokinesis proteins, 

including Imp2 and Cyk3.  As the Cdc15 and Imp2 SH3 domains are functionally 

redundant (Roberts-Galbraith et al., 2009), one might assume they bind a similar 

sequence.  However, proteins like Fic1, which contain numerous PxxP motifs of varying 

consensuses, can likely accommodate interactors of differing classes.  Addressing 

similarities and/or differences among relevant SH3 domains may therefore elucidate how 

they collaborate during cytokinesis. 

Evidently, Fic1 binds additional SH3 proteins besides Cdc15, Imp2, and Cyk3 at 

the CR, because Fic1 still localizes to this site when interactions with all of these proteins 

are lost.  In total, 21 S. pombe proteins possess SH3 domains, and multiple of these 

localize to the division site.  Identification of additional Fic1-binding SH3 proteins will 

provide a more complete understanding of protein-protein interaction networks at the CR 

and will likely uncover novel cytokinetic factors impacting growth polarity. 

 

Conclusion 
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 As a whole, my thesis highlights the complexity of cytokinesis; indeed, multiple 

molecular cues govern the robustness of this final cell cycle stage and consequently 

influence other cell cycle events.  Using fission yeast, I have uncovered novel proteins, 

interactions, and signaling events, which I expect will inform cytokinesis studies in other 

organisms.  As this inventory grows with future experiments, including those proposed in 

this chapter, I am confident our understanding of the molecular mechanisms and 

consequences of CR regulation will continue to improve, providing new, useful insight 

into the cellular life cycle. 
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APPENDIX A 

 

MATERIALS AND METHODS 

 

Strains and general yeast methods 

The S. pombe strains used in these studies were grown in either yeast extract (YE) 

media or Edinburgh minimal media (EMM) with relevant supplements.  Proteins of 

interest were tagged endogenously at the 3’ end with kanR-, hygR-, or natR-based cassettes 

as previously described (Bahler et al., 1998).  A lithium acetate method was used in S. 

pombe tagging transformations (Keeney and Boeke, 1994), and integration of tags was 

verified using whole-cell PCR and/or fluorescence microscopy.  Introduction of tagged 

loci into other strains was accomplished using standard S. pombe mating, sporulation, and 

tetrad dissection techniques. 

Cell cycle arrests were achieved as follows: (1) cdc10-V50 cells were arrested in 

G1 by shifting cultures grown at 25°C to 36°C for 4 h; (2) cdc25-22 cells were arrested in 

G2 by shifting cultures grown at 25°C to 36°C for 3 h; (3) nda3-KM311 cells were 

arrested in prometaphase by shifting cultures grown at 32°C to 18°C for 6.5 h; (4) cps1-

191 cells were arrested in cytokinesis by shifting cultures grown at 25°C to 36°C for 3 h; 

(5) cells were arrested in S phase by growth in 12 mM hydroxyurea (Sigma) for 3.5 h at 

32°C.  For release from the cdc25-22 G2 arrest, cultures were cooled immediately to 

25°C on ice and then grown at 25°C.  For release from the hydroxyurea-induced S phase 

arrest, yeast were filtered, washed in yeast extract medium, and then grown at 32°C.  For 
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release from the nda3-KM311 arrest, cells were shifted to 32°C for synchronous 

progression into anaphase. 

 SIN hyperactivation in cdc16-116 strains was induced by shifting cultures grown 

at 25°C to 36°C for 3-4 h.  When necessary, cells were first synchronized in interphase 

by centrifugal elutriation using an Avanti J-26 XPI centrifuge (Beckman Coulter).   

For Lat A treatment, either DMSO or DMSO containing Lat A was added to log 

phase cultures.  The final Lat A concentration was 0.2 μM.  Cultures were kept at 32°C 

for 8 h before fixation and staining.  

 For spot assays, cells were grown to log phase at 25°C, 10 million cells were 

resuspended in 1 mL water, and 1 mL serial dilutions were made.  2.5 µL of each dilution 

were plated on agar.  Plates were incubated at various temperatures. 

Over-expression of nbl1(1-95), acyl-GFP, LifeAct-GFP, cdc12+, and cdc12 

truncations was controlled by thiamine-repressible nmt promoters.  Expression was kept 

off by addition of 5 µg/mL thiamine to the medium, and expression was induced by 

washing and culturing in medium lacking thiamine. 

For spore germination experiments, sporulating diploids were digested with 

glusalase at 32°C, allowed to recover in YE at 32°C for 1 hr, and then grown in EMM 

plus supplements overnight at 25°C. 

 

Construction of mutants 

Disruption of nbl1+ was achieved by PCR-based one-step homologous 

recombination (Bahler et al., 1998).  Specifically, the nbl1(1-95) fragment was targeted 

for deletion using ura4+ as the selectable marker.  Following transformation of an ade6-
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M210/ade6-M216 ura4-D18/ura4-D18 leu1-32/leu1-32 h-/h+ diploid with the relevant 

amplified fragment, stable integrants were selected and the nbl1(1-95) deletion was 

confirmed by PCR.  

To create the nbl1-shutoff strain, a pZERO-2 vector with nbl1(1-95) cDNA was 

also generated by Integrated DNA Technologies.  nbl1(1-95) cDNA was excised from 

this vector and cloned into pREP41, placing nbl1(1-95) expression under control of 

pREP41’s thiamine-repressible nmt41 promoter (Basi et al., 1993).  The nmt41-nbl1(1-

95) fragment was subcloned into a pJK148 vector, linearized within the leu1 gene with 

NruI, transformed into a wild-type strain, and an integrant at the leu1 locus was 

identified.  In addition, a pSK vector with nbl1(1-95) cDNA and flanking sequences was 

constructed, and nbl1(1-95) cDNA and flanking sequences were excised from this vector 

and inserted into a pIRT2 vector.  A diploid heterozygous for nbl1 disruption was then 

transformed with this plasmid, and transformed diploids were sporulated in nitrogen-

lacking EMM.  Spores were subsequently isolated using glusalase, and nbl1-disrupted 

cells covered by the plasmid were selected on EMM plus adenine.  These cells were then 

crossed to those cells having nmt41-nbl1(1-95) integrated, and a nbl1-shutoff strain, 

which can grow on EMM plus adenine but not on EMM plus adenine and thiamine, was 

selected.  

 The nbl1-T91A mutation was introduced by site-directed mutagenesis into the 

pIRT2 vector containing nbl1(1-95) cDNA and flanking sequences.  A diploid 

heterozygous for the nbl1 disruption was then transformed with this plasmid, and haploid 

nbl1-disrupted cells covered by the plasmid were selected.  This strain was then grown to 
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midlog phase in YE, and 10 million cells were plated on YE plus 5-FOA to select for the 

appropriate replacement strain, which was confirmed by PCR and sequence analysis. 

 The nbl1(1-69) truncation was established in a wildtype diploid strain through the 

introduction of a stop codon and kanR cassette after proline 69 via tagging.   

 Mutants and truncations of fic1 were expressed from the endogenous fic1+ locus.  

To make these strains, a pIRT2 vector was originally constructed in which fic1+ gDNA 

with 5’ and 3’ flanks was inserted between BamHI and PstI sites of pIRT2.  Mutations 

were then introduced via site-directed mutagenesis.  The fic1N construct was made by 

inserting a stop codon after residue 126.  The fic1C construct was created by inserting 

XhoI sites before both the start codon and residue 127, digesting with XhoI to release the 

internal fragment, re-ligating the plasmid, and adding a start codon after the remaining 

XhoI site.  fic1∆ was then covered by these pIRT2-fic1 constructs, and stable integrants 

resistant to 5-FOA were isolated and confirmed by whole-cell PCR and Western blotting. 

 To make the tea1-for3 fusion, a pIRT2 vector was originally constructed in which 

tea1+ gDNA with 5’ and 3’ flanks was inserted between SacI and SphI sites of pIRT2.  

Site-directed mutagenesis was performed to replace the tea1+ stop codon with a 

SmaI/SalI/PstI multiple cloning site.  for3+ gDNA was amplified with a small N-terminal 

linker sequence and inserted between SmaI and PstI in this multiple cloning site (linker 

residues are Pro-Gly-Ade-Gly-Ade-Gly-Ade accounting for restriction site and added 

residues).  tea1∆ was then covered by this pIRT2-tea1-for3 construct, and stable 

integrants resistant to 5-FOA were isolated and confirmed by whole-cell PCR and 

Western blotting.  An integrant was subsequently mated with for3∆, such that we could 

isolate tea1-for3 strains in which tea1+ and for3+ were lacking. 
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 To create the endogenous cdc12-4A and cdc12∆1451-1538 alleles, a pSK vector 

was constructed that contained the following in order: 5’ cdc12 flank, full-length cdc12+, 

kanR cassette, and 3’ cdc12 flank.  Phosphorylation site mutations were created using a 

QuikChange Multi-site Site-directed Mutagenesis kit (Agilent Technologies) and 

confirmed by sequencing. For the internal deletion, Not1 restriction sites were inserted 

before and after residues 1451 and 1538, respectively.  After removal of residues 1451-

1538 and re-ligation, the Not1 site was eliminated via mutagenesis, and the construct was 

re-sequenced.  cdc12-4A and cdc12∆1451-1538 constructs were then cut from the vectors 

and transformed into wild-type S. pombe cells using a lithium acetate method.  Kan-

resistant cells were selected and sequenced to identify transformants containing 

appropriate mutations. 

In vivo truncations of cdc12 were generated by PCR-mediated insertions of V53 or 

GFP3 after relevant amino acids. 

 

General protein methods 

 Cell pellets were snap frozen in dry ice-ethanol baths.  Lysates were prepared by 

bead disruption, using a touch vortexer or a Fastprep cell homogenizer (MP 

Biomedicals).  Immunoprecipitations were performed in either NP40 buffer for native 

lysates, or in NP40 buffer containing SDS for denatured lysates as previously described 

(Gould et al., 1991).  Protein samples were resolved by SDS-PAGE and transferred to 

PVDF membrane (Immobilon P; EMD Millipore).  Anti-HA (12CA5), anti-Myc (9E10), 

anti-V5 (Invitrogen), anti-FLAG (M2; Sigma), anti-GFP (Roche), anti-Cdc15 (Roberts-

Galbraith et al., 2009), or anti-Cdc2 (Sigma) were used in immunoprecipitations and/or 
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as primary antibodies in immunoblotting.  Secondary antibodies were conjugated to 

Alexa Fluor 680 (Invitrogen), IRDye680LT (LI-COR Biosciences), or IRDye800 (LI-

COR Biosciences).  Blotted proteins were detected via an Odyssey machine (LI-COR 

Biosciences).  For gel shifts, denatured lysates were treated with lambda phosphatase 

(New England Biolabs) in 25 mM HEPES-NaOH (pH 7.4), 150 mM NaCl, and 1 mM 

MnCl2 and incubated at 30°C for 30 min with shaking.  Where indicated, samples were 

resolved by SDS-PAGE in the presence of 10 μM Phos-tag acrylamide per the 

manufacturer’s protocol (Wako Chemical USA). 

Purification of TAP samples and identification of interacting proteins and/or 

phosphorylation sites were performed as previously described (Gould et al., 2004; Lu et 

al., 2012; Roberts-Galbraith et al., 2009). 

 Recombinant proteins were produced in competent BL21 cells and purified on 

amylose beads (New England Biolabs, Inc.) or His-Bind resin (EMD Millipore) 

according to the manufacturers' protocols.  When necessary, recombinant proteins were 

concentrated using Amicon Ultra centrifugal filter units (EMD Millipore).  PD-10 

columns (GE Healthcare) were used for buffer exchange of eluted recombinant proteins 

used in F-actin assays; the final buffer for these proteins was 50 mM HEPES (pH 7.5).  

Native gel analysis of recombinant proteins was performed in the absence of SDS. 

For in vitro binding assays, recombinant proteins were incubated together or with 

cellular immunoprecipitates for 1 h at 4°C.  Following washing, samples were resolved 

by SDS-PAGE for Coomassie-blue staining or Western blot analysis. 

 

In vitro kinase assays 

168



 The Ark1 kinase assay was performed as previously described (Ohi et al., 2004; 

Petersen et al., 2001) with minor modifications.  Briefly, anti-GFP immunoprecipitates 

were washed three times in 1 mL NP40 buffer and three times in 1 mL 1X kinase buffer 

(20 mM K-HEPES, pH7.8, 5 mM MgCl2, 1 mM EGTA, and 1 mM DTT).  After washes, 

liquid was aspirated and 4 µL 5X kinase buffer was added to resuspend the beads.  5 µg 

purified Histone H3.2 (New England Biolabs), 50 µM cold ATP, and 5 µCi of [γ-32P] 

ATP (Amersham Biosciences) were added.  After incubation with shaking at 30°C for 30 

min, reactions were terminated by addition of 5 µl of 5X SDS-PAGE loading buffer, and 

proteins were resolved on a 4-12% Bis-Tris gel (Invitrogen).  The gel was cut in half and 

the upper portion (30-90 kDa) was transferred to a PVDF membrane and blotted with 

anti-GFP antibodies to detect Ark1-GFP.  The lower part (10-30 kDa) of the same gel 

was stained by Coomassie blue dye to visualize Histone H3.2, and, following drying of 

the gel, autoradiography was used to check incorporation of 32P. 

 For CDK kinase assays, approximately 50 ng of recombinant Cdc2 kinase 

complex, purified from baculovirus-infected insect cells as previously described (Yoon et 

al., 2002), was incubated with recombinant protein in a reaction buffer containing 50 mM 

Tris pH 7.4, 10 mM MgCl2, 2 µM DTT, 10 µM unlabeled ATP, and 5 µCi of [γ-32P] 

ATP.  After incubation with shaking at 30°C for 30 min, reactions were terminated with 

5X sample buffer, and samples were boiled and separated by SDS-PAGE. Where 

appropriate, phosphoamino acid analysis was performed as described in (McCollum et 

al., 1999). 

 For Sid2 kinase assays, the Sid2-Mob1 kinase complex was immunoprecipitated 

from SIN-activated sid2-Myc13 cdc16-116 cells.  [γ32P]ATP kinase assays, phosphoamino 
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acid analysis, and tryptic peptide mapping were performed as described in (Feoktistova et 

al., 2012; McCollum et al., 1999; Sparks et al., 1999) and references therein.  In vitro 

phosphorylation of recombinant proteins used in in vitro binding assays was performed 

via identical kinase assays, except that radioactive [γ32P]ATP was eliminated and the 

final concentration of unlabeled ATP in reactions was increased to 2 mM. 

 For CK2 kinase assays, CK2 (New England Biolabs) or Orb5-Myc13, 

immunoprecipitated from orb5-Myc13 cells and washed in CK2 buffer (20 mM Tris-HCl, 

50 mM KCl, 10 mM MgCl2, pH 7.5; New England Biolabs), was incubated with 

recombinant protein and 5 µCi of [γ-32P] ATP in CK2 buffer.  After incubation with 

shaking at 30°C for 30 min, reactions were terminated with 5X sample buffer, and 

samples were boiled and separated by SDS-PAGE.  Where appropriate, phosphoamino 

acid analysis and tryptic peptide mapping were performed as described in (McCollum et 

al., 1999). 

 

F-actin binding and bundling assays 

To analyze F-actin binding and bundling, rabbit skeletal muscle actin 

(Cytoskeleton Inc.) was resuspended in General Actin Buffer (5 mM Tris HCl (pH8), 0.2 

mM CaCl2, 0.2 mM ATP, 0.5 mM DTT) to a concentration of 24 μM.  This was kept on 

ice for 1 h.   10X polymerization buffer (500 mM KCl, 20 mM MgCl2, 10mM ATP) was 

then added to a final concentration of 1X, and tubes were nutated at room temperature for 

1 h.  3 μM F-actin was subsequently incubated with recombinant proteins at room 

temperature for 30 min, and samples were either centrifuged or diluted 1:100 in 70 nM 

rhodamine-phalloidin (Cytoskeleton Inc.) for imaging.  High-speed centrifugation at 
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100,000g and low-speed centrifugation at 15,000g were performed at room temperature 

for 30 min using a TLA-100 rotor (Beckman Coulter).  Following centrifugation, pellets 

and supernatants were separated, and equal portions of pellets and supernatants were 

resolved by SDS-PAGE for Coomassie blue staining.  The affinity (KD) of MBP-Cdc12C 

for F-actin was calculated by fitting a quadratic equation to the high-speed binding data. 

 

Yeast two-hybrid analysis 

 Yeast two-hybrid analysis was performed as previously described (Rosenberg et 

al., 2006), except that the bait and prey plasmids were either empty or encoded Cdc15 

SH3 (aa843-927) (Roberts-Galbraith et al., 2009), Cyk3 SH3 (aa1-59), wild-type 

(Roberts-Galbraith et al., 2009) or mutant Fic1(aa190-269) fragments, or full-length Fic1.   

 

Invasive growth assays 

 To assay pseudohyphal invasion into 2% agar, 5 μl containing a total of 105 cells 

were spotted on 2% YE agar and incubated at 29°C for 20 days.  Colonies were 

subsequently placed under a steady stream of water and surface growth was wiped off 

using a paper towel.  These methods were established in previous studies (Pohlmann and 

Fleig, 2010; Prevorovsky et al., 2009). 

To assay whether specific mutants rescued invasiveness of an asp1∆ strain on 

0.3% agar (Pohlmann and Fleig, 2010), 1 μl containing 106 cells was spotted on 0.3% YE 

agar as well as onto 2% agar as a control.  Plates were incubated at 29°C for 12 days, at 

which point colony growth and/or biofilm formation were visualized. 
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Microscopy 

Fixed- and live-cell images of S. pombe cells were acquired using one of the 

following: (1) a microscope (Axioskop II; Carl Zeiss, Inc.) equipped with a 100X NA 

1.40 PlanApo oil immersion objective, a halogen lamp, and OpenLab 4.0.3 software 

(PerkinElmer); (2) a spinning disc confocal microscope (Ultraview LCI; PerkinElmer), 

which is equipped with a 100X NA 1.40 PlanApo oil immersion objective, a 488-nm 

argon ion laser (GFP), a 594-nm helium neon laser (RFP, mCherry), a charge-coupled 

device camera (Orca-ER; Hamamatsu Phototonics), and Metamorph 7.1 software (MDS 

Analytical Technologies; Molecular Devices); or (3) a personal DeltaVision microscope 

system (Applied Precision), which includes an Olympus IX71 microscope, 60X NA 1.42 

PlanApo and 100X NA 1.40 UPlanSApo objectives, fixed- and live-cell filter wheels, a 

Photometrics CoolSnap HQ2 camera, and softWoRx imaging software.   

 All cells were grown to and/or arrested in log phase before fixation or live-cell 

imaging.  Bright field images were used in determining cell lengths at division.   

For nuclei and cell wall imaging, cells were fixed in 70% ethanol for at least 30 

min before DAPI and methyl blue staining.  For counting of cells joined at their division 

sites, cells were also sonicated at 3.5 W following fixation to break weak associations. 

For phalloidin staining, cells were fixed in formaldehyde (Polysciences Inc.) for 5 

min, and fixation was stopped by addition of PBS.  Cells were washed three times in PBS 

and incubated with 0.1% NP40 for 1 min to permeablize cells.  Cells were pelleted and 

washed three more times in PBS.  Then, Alexa-Fluor 488 phalloidin (Molecular Probes) 

was added.  Samples were placed on a nutator for 1 h, and then stained with DAPI if 

necessary. 
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 For calcofluor staining, cells were washed in PBS and then resuspended in PBS 

containing 5 µg/mL calcofluor.  After incubation on ice for 30 min, cells were washed 

three times in PBS and images were acquired using the personal DeltaVision system.  

Using the proximity of birth scars to cell ends, growth/morphology was scored as one of 

the following: monopolar (i.e., growth on one end), bipolar (i.e., growth on both ends), 

monopolar and septated, bipolar and septated, or multiseptated.  For cells just completing 

division, daughter cells were scored as monopolar as long as ingression of the mother cell 

had progressed to such a degree that birth scars could be easily identified at new ends.   

 Images of yeast colonies and pseudohyphae were acquired by focusing a camera 

(PowerShot SD750; Canon) through a microscope (Universal; Carl Zeiss, Inc.) equipped 

with a 20X NA 0.32 objective. 

 Time-lapse imaging was performed by one of the following methods: (1) cells 

were secured on YE agar pads sealed with Valap (a Vaseline, lanolin, and paraffin 

mixture); or (2) cells were loaded into Y04C plates for 5 s at 8 psi using the ONIX 

microfluidics perfusion system (CellASIC), and YE liquid media flowed into the 

chamber at 5 psi throughout imaging.  Either an objective heater system (Bioptech) or a 

heated chamber (Applied Precision) maintained the relevant temperature during imaging. 

 For time-lapse imaging of chromosomal passenger complex mutants, cells were 

first synchronized in G2 phase using a 7-30% lactose gradient, and then were shifted to 

36°C for 2-3 h before live-cell microscopy. 

 For live-cell DIC movies, growth patterns were scored according to the tip growth 

that had occurred prior to the next septation.  Relative cell ages were scored where 

applicable based on the number of birth scars seen on each daughter cell.  Times until 
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NETO were only determined for cells that initiated NETO prior to the next septation, 

except for tea1-for3 cells, for which tip growth at new ends was monitored until growth 

at these sites occurred even if this carried into the next cell cycle.  During time-lapse DIC 

imaging, daughter cells were judged as monopolar after septum splitting when birth scars 

could be identified, and timing for NETO was started at this point.  The point of new end 

growth was noted when evident elongation occurred relative to birth scars formed by 

cytokinesis.   

 Rhodamine-phalloidin-stained actin filaments and/or bundles were imaged using 

the DeltaVision system. 
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