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Chapter I 

INTRODUCTION & BACKGROUND 

 

Introduction 

The inpatient care two seemingly identical patients receive for the same initial condition can vary 

significantly within and across hospitals 1–4. Such variation affects patient outcomes and often increases 

the cost of care5–7. The authors define care variability as the deviation of clinical practice from the best 

evidenced-based targeted local approaches. Care variability is a nuanced concept, because the present 

state of the clinical literature may be unclear; and many factors outside of disease alone affect care 

decisions8–11. For example, disease severity, comorbid conditions, safety records and quality of the 

available providers, social factors, treatment accessibility, and patient values all play a role in 

determining the course of care12–16. Healthcare administrators assess care variability through the 

laborious process of chart reviews by expert panels of physicians and/or specialists17. In a landscape of 

evolving evidence bases and differing patient preferences, identifying care variability at any scale 

becomes challenging, especially given the current complexities of diagnosis and treatment. 

The ultimate goal of identifying variable care is to improve patient outcomes, while concurrently 

reducing or maintaining costs. Measuring care variability can help identify and prioritize services for 

interventions18. The intervention of choice for care variability is care standardization5,14. Because 

healthcare systems are complex, different administrators implement care standardization in varying 

forms and at different scales4,19. Local institutions attempt to standardize care practices through clinical 

pathways, policies, decision support tools, and easily invoked prescriptive sets of physician orders9,20–22. 

Determining what the intervention will be, on which service to intervene, and how to implement the 

intervention pose formidable challenges to reducing care variability8,23,24. 

Having observed that physicians’ orders comprise the primary driver of inpatient care, the 



 

 

 

authors hypothesized that analyzing those orders could provide unique insights into variability in patient 

outcomes25. The authors tested this hypothesis through a robust (Huber-White variance corrected) 

regression analysis using features derived from inpatient physician orders. The authors evaluated the 

performance of their order-based measure against the current standard for measuring care variability (i.e. 

variation in costs). The following chapters detail the authors’ methods and results. The second chapter 

describes a novel implementation of multiple imputation methods for completing datasets with missing 

confounders. In the third chapter, the authors explain how they transformed order data into a surrogate 

measure for care variability. The fourth chapter brings the aforementioned methods together to create a 

potential new approach for prioritizing hospital services regarding care standardization and/or guideline 

implementation. Such a prioritization method could allow hospital administrators to monitor all service 

lines at a health system scale, using order features as an effective surrogate for deviation from expected 

outcomes26.  

 

Description and History of Care Variability 

The Institute of Medicine (IOM) identified unequal knowledge dissemination as a primary cause 

of care variability14. To this end, the IOM champions the development of order sets, clinical guidelines, 

and care pathways to ensure that care does “not vary illogically from clinician to clinician or from place 

to place14.” Clinical guidelines represent collaborative efforts by groups of expert clinical specialists, 

economists, and healthcare administrators to establish standards for the diagnosis, prevention, and 

management of disease27,28. Since guidelines can be incomplete, logically contradictory, or nonspecific, 

the interpretation and implementation of clinical guidelines carry their own set of challenges17,29. For 

example, the Choosing Wisely Initiative attempts to reduce the utilization of unnecessary or ineffective 

diagnostic tests and therapies30. This initiative is encompasses hundreds of nuanced guidelines spanning 

many different conditions and diseases. The myriad of guidelines, each with an openness to 



 

 

 

interpretation, make the initiative’s implementation and evaluation onerous31.  

Administrators, researchers, and guideline developers require simplified strategies for targeting 

similar patients, such as grouping by primary diagnosis8,32. Such simplified models are imperfect and, 

paradoxically, often involve complexities. One tool useful for standardization has been the International 

Classification of Diseases, version nine (ICD-9); it has a hierarchy comprised of approximately 13,000 

diagnoses. The current ICD version, ICD-10, has over 68,000 diagnosis codes33. Diagnoses in the ICD 

are unequally defined in terms of specificity34. ICD diagnoses may overlap in definition. For example, 

the diagnostic criteria of Bipolar Disorder and Schizophrenia each have significant overlap. Thus, 

clinical interpretation can play a big role distinguishing one from the other. The primary diagnosis is 

also subject to economic considerations. Billing processes and local workflows may prioritize certain 

diagnoses over others35–37. The presence of multiple (comorbid) diagnoses in a patient can further 

complicate patient grouping. For example, the patient with hypertension and type-1 diabetes will be 

treated differently than the patient with hypertension alone38–40. Thus, differences among patients 

grouped by diagnosis can significantly confound the assessment of deviation from the optimal spectrum 

of treatment. The variety of ICD codes often is difficult to work with, motivating larger patient 

groupings.  

Administrators for the Center for Medicare and Medicaid Services (CMS) and other insurers 

implemented a higher-level schema for grouping patients’ disorders—Diagnosis Related Groups (DRG). 

Each DRG includes a collection of diagnosis codes and procedures that compress tens of thousands of 

ICD-10 codes into approximately 750 DRGs. Yale’s health policy department began developing DRGs 

as early as 196741. The DRGs formed the backbone of the Prospective Payment System (PPS) enacted in 

1983. The PPS paid hospitals a set per patient rate for each DRG regardless of the hospitals actual 

expenditures caring for the patient. Implementation of the PPS helped control the explosion of 

healthcare costs that immediately followed the establishment of Medicare in 196541,42. The PPS 



 

 

 

incentivized hospitals to deliver efficient services that minimized costs43. The significant role DRGs 

play in reimbursement made them a popular method for grouping patients when analyzing variability in 

care12,44,45. DRGs also became the industry standard for measuring patient case-mix41.  

 The literature on care variability documents two prevailing surrogate measures of care 

variability: nursing intensity variability and cost variability44–48. Nursing intensity variability metrics 

capture quality, quantity, and intensity of nursing care rendered to patients billed for the same DRG47. 

Assessing nursing intensity typically requires trained observers, making it difficult to measure through 

automatic means49. That requirement led to the creation of Nursing Intensity Weights (NIW). The NIW 

are ordinal scores created by an expert panel of nurses that symbolize the relative nursing intensity of 

the average patient billed under a given DRG50. Administrators use NIW for staffing and reporting 

purposes. The NIW are ill-suited for measuring care variability because they are not unique for different 

patients billed under the same DRG. Nursing intensity is highly influenced by severity of illness, which 

may not be captured by NIW48. Regular quantitative measurement of nursing intensity on a patient by 

patient basis is not feasible for busy care providers51. Nursing intensity remains impractical to employ as 

a care variability surrogate.  

 An alternative for care variability compares the costs of patient admissions coded with the same 

DRG. Patients with differences in treatments will presumably have differing costs52. Similar to nursing 

intensity, costs are sensitive to severity of illness44,45. This means that it may be difficult to know how 

much variation in cost to expect across a particular set of patients. Because individual line items are not 

directly billed in the inpatient DRG-based payment setting, costs are currently difficult to measure on a 

per-patient basis. Many hospitals proficiently track which supplies, medications, and services individual 

patients receive during their stay. However, nearly all hospitals struggle to attribute employee time costs 

(clinician or otherwise) to individual patients51. The ambiguity surrounding personnel costs reduces the 

fidelity of cost figures. For hospitals that do not attempt to model costs at the patient level, the amount 



 

 

 

billed (charges) can provide a reasonable substitute53. Almost all hospitals capture charges at the patient 

level for reimbursement and/or accounting purposes. The authors believe that the ubiquity of charge 

and/or cost data make cost/charge variability the most practical surrogate for measuring care variability.  

The ultimate goal of identifying variable care is to improve patient outcomes, while potentially 

reducing costs54. Therefore, quality metrics should play a role when comparing care variability 

measures. Variable care is not necessarily care that varies from the average, but care that deviates from 

the best choices for the individual patient. Length of stay is a common, albeit flawed, measure of 

healthcare quality that is also related to cost43. Medicare defines the length of stay as the number of 

midnights a patient spends in the hospital. One DRG may naturally take longer to address than others. 

Therefore, administrators scale (normalize) patients’ lengths of stay by dividing them by the average 

expected lengths of stay related to the patients’ primary DRGs55. This ratio puts all admissions on the 

same scale, facilitating comparisons among DRGs. However, length of stay is a noisy metric56. Severity 

of illness and co-morbidities have strong effects on the length of stay57,58. External factors, such as 

staffing and teaching hospital status, can also affect the length of stay at a hospital59,60. Different 

hospitals are subject to different cost and capacity pressures that add variability to the average length of 

stay between hospitals43. Workflow and the utilization of evidence-based care pathways affect the length 

of stay. Those practices vary between institutions61. The variability of lengths of stay both within and 

between institutions make it an imperfect outcome measure, but it is an outcome that is easily and 

objectively measurable across all DRGs.  

 

Types of Missing Data and Multiple Imputation 

 Since length of stay has some highly influential confounders, models predicting length of stay 

require full datasets (i.e., without missing observations) regarding confounding variables. A confounder 

with missing observations can bias results and lead to false conclusions in explanatory models62. The 



 

 

 

authors used an explanatory model to evaluate an order-based care variability surrogate. The key 

severity of illness covariate had observations with missing data that required some form of imputation.  

The distribution of missing data within a variable can have several forms. When all values within 

a covariate are equally likely to be missing, statisticians describe the data as Missing Completely At 

Random (MCAR). MCAR usually occurs due to unrelated and random processes, such as lost laboratory 

samples or equipment malfunctions. Another form of missing data is described as Missing At Random 

(MAR). MAR data can be corrected for using the other observations that are recorded. MAR data points 

have no association with the outcome of interest. For example, people without health insurance 

generally do not get their blood pressure taken, but this fact has nothing to do with what their true blood 

pressure is. Data that is Not Missing At Random (NMAR) cannot be reliably addressed with observed 

covariates. NMAR data occurs when the value of an observation determines whether the observation is 

recorded or missing. For example, blood pressure would be NMAR if most individuals with high blood 

pressure purposefully avoided seeking medical care in order to avoid costly therapy.  

A widely accepted means of dealing with missing data uses multiple imputation. Multiple 

imputation builds regression models from predictors that do not have data missing to predict values for 

variables with the missing data63. Multiple models are built for each variable with missing data by 

resampling observations with replacement from predictors that are complete. Multiple imputation can 

generally fill in missing data when it is MCAR or MAR63. Multiple imputation can produce biased 

results with NMAR data63. Under those circumstances, it is less useful. Statisticians improved upon 

early multiple imputation methods with a technique known as predictive mean matching64. Traditionally, 

multiple imputation uses the fitted models to directly predict what the missing value should be. With 

predictive mean matching, one uses the fitted models to predict all observations for the dataset, whether 

the observation has that variable missing or not65. Then, one compares the predicted value of each 

missing data point to the predicted values of all known data points. The matching process determines 



 

 

 

which known observation is most like the missing one, based upon the predictions. One then imputes the 

known value for the missing value. The open source statistical programming language R contains 

several sophisticated packages for multiple imputation with predictive mean matching66,67.  

 

Inpatient Orders: Definition and Previous Uses 

 No effective surrogate exists for quantitating care variability23. Labor-intensive chart 

review cannot provide a solution for determining where to focus improvement efforts on a health 

system-wide scale. Surrogate measures such as nursing intensity variability and cost variability either do 

not scale well or do not accurately capture deviations from optimal courses of care. Ideally, one should 

create a better surrogate for care variability based on metrics derived from the care provided. A likely 

candidate in this regard is physicians’ orders.  

Inpatient physician orders convert clinicians’ plans into actions. They comprise the primary 

means of delegating and communicating work in the hospital68. Physician orders convey work plans 

asynchronously to other clinicians on a patient’s care team, such as nurses. Within the hospital, 

expensive resources (e.g. a Computerized Tomography (CT) scanner) are often centralized for shared 

use. A physician-generated order for a CT scan initiates a request for use of the scanner. That request 

can then be prioritized and queued with other requests to efficiently allocate usage of the CT scanner. 

Physician orders are used to communicate work to specialized and/or centralized departments, such as 

the pharmacy or the laboratory. A medication order, for example, communicates to the pharmacy the 

need to review the patient’s care from an allergy and toxicology standpoint, pull the medication from the 

pharmacy inventory, and produce the correct dosage for a nurse to administer69. The wide variety of 

services provided during the course of hospital care necessitates a large catalog of orders. Electronic 

ordering systems require flexibility to cover the entire range of potential tasks70.  

 Most hospitals in the United States have adopted electronic order entry as part of broader 



 

 

 

electronic health record systems71. Before computerized systems, orders were written by hand or on 

forms72. The order data generated by electronic systems are challenging to work with due to their 

volume, structure, and variety73. The care of a single inpatient can generate hundreds of orders over one 

encounter. At a health system level, the annual number of orders generated can grow into the tens of 

millions. The structure of order data varies by order entry system vendor. Free text elements within 

some of the order data fields exhibit the typical difficulties of working with natural language. Structured 

elements can also be challenging, as orders cover a large variety of care services, and there may be 

redundancies74. Clinicians do not order each orderable item with equal frequency. Chen et. al. found that 

structured order catalogs follow a power law distribution for frequency of use75. To manage that variety, 

Chen’s research analyses excluded all nursing orders and all other orders with fewer than 256 instances 

per year76. Other researchers who have developed order recommendation systems also constrained order 

variety by focusing on the most common orders77,78. An additional problem in working with order data 

occurs when two different orders may express the same action. For example, an order for “clean the 

wound” and an order for “wash surgical site” may describe the same care, but are implemented as two 

different orders. Conceptually redundant orders can also occur with medications when brand names and 

generic drug names both comprise permissible orders (e.g. Advil and ibuprofen).  Similar problems 

occur when systems fail to reconcile orders for identical dosages that were described differently (e.g., 

two 5-mg tablets every 6 hours vs one 10-mg tablet every 6 hours). Duplicative separate orders can 

occur in clinical specialty departments other than the pharmacy. One approach to reducing duplicative 

orders with separate names involves mapping orders to higher level concepts; this is not new in 

informatics. Cimino’s “The Med” ontology from the 1980’s was one of the first comprehensive attempts 

applying a conceptual poly-hierarchy to understand and reconcile physician orders79. However, few 

institutions have applied state-of-the-art representation methods for management of physician orders80,81. 

Standardized and widely accepted terminologies, such as the Unified Medical Language System 



 

 

 

(UMLS), play a role in disambiguating redundant orders, but have yet to see application past a few 

academic medical centers79. 



 

 

 

Chapter II 

A NOVEL IMPLEMENTATION OF MULTIPLE IMPUTATION IN PYTHON 

 

Overview 

 The authors conducted a retrospective cohort study examining multiple imputation methods for 

missing data at a single academic institution—Vanderbilt University Medical Center (VUMC). VUMC 

is located in Nashville, TN. VUMC’s Institutional Review Board approved this study under IRB 151156 

Modeling and predicting preventable deviations in healthcare access patterns. VUMC is a level-1 trauma 

center with a dedicated burn unit, and has 758 licensed beds. VUMC has recently had more than 70,000 

emergency room visits per year. Adult (age 18-64) VUMC patients, admitted from July 1st of 2013 

through December 31st of 2016, who survived their encounter, and were discharged with a primary 

service of internal medicine made up the cohort. The date cutoffs were selected due to data availability 

and to avoid confounding effects from major changes at VUMC. VUMC Finance began computing 

patient-level inpatient encounter costs at the start of the new fiscal year in 2013. On November of 2017, 

VUMC switched to a new order entry system.   

Python is a programming language popular for client-server and commercial applications. It 

lacks a widely accepted package for multiple imputation with predictive mean matching. While software 

tools allow R and Python to interact, that approach complicates application design. As a programming 

language R does not manage memory well and is primarily intended for single-user data analysis and 

visualization82. The authors developed an imputation package that was designed to work with the data 

frames format from the Pandas package in Python83. The Pandas package interfaces well with the widely 

used Scikit-Learn machine-learning library84. Scikit-Learn has been cited in over 10,000 published 

applications. While software tools allow R and Python to interact, that approach complicates application 

design. An imputation pipeline in Python would allow for a more seamless interface between user 



 

 

 

applications and data modeling programs run on the back-end. 

As severity of illness is a key confounder for variability of care measurements, the authors’ 

research project required an imputation tool to fill in missing Emergency-room Patient Severity of 

Illness (EPSI) scores for its patient cohort. Those patients who were not admitted through the emergency 

room lack EPSI scores. The study thus needed a real or imputed EPSI score to be present for all 

observations despite the potential for bias85. The authors believe the missing EPSI data was NMAR 

because those patients electively admitted directly to a hospital bed are generally healthier than those 

patients admitted via the emergency room. For this reason, the authors examined different imputation 

strategies to test the sensitivity of potential study results to the imputation method. This led to the 

authors’ development of a multiple imputation package using a modular Python architecture. The 

package attempted to minimize data processing times, set best practices as defaults, and impute high-

quality predictions.  

 

Materials 

 To develop and evaluate a multiple imputation package, author MCL used a 2015 MacBook Pro 

with four 2.9 GHz Intel processors and eight GB of RAM and a Linux server with twenty-four Xeon 

2.00 GHz cores and 132 GB of RAM. Encounter Data came from VUMC’s Research Derivative (RD).  

The project used Python version 2.7.11. to develop the imputation package, and tested prototypes using 

the abalone dataset hosted on the University of California Irvine’s machine learning data repository86. 

The project also used data from a published suicide-risk model for evaluation87. The authors used the 

Hmisc package in version 3.4.3 of R for comparative purposes.  

 

Methods  

 The Python imputation package determines which columns have missing data and which do not. 



 

 

 

Next, it centers all of the continuous variables’ data at zero by subtracting their means. Then it scales the 

data by dividing by the standard deviation. Penalized regression (used for the imputation) is sensitive to 

the scale of the data. The Python imputation package splits non-continuous categorical features into 

binary features, with one category acting as a reference for the others. Next, the Python implementation 

takes samples with replacement from the data using a feature with missing data as the outcome, and the 

features with no missing data as its predictors. It fits a LASSO penalized regression for each sample 

with replacement. The coefficients of the predictors for each model are stored for use later. After fitting 

all the models, a final model is assembled by randomly sampling the previously saved (posterior 

distribution of) coefficients for the predictors. This process is illustrated in Figure 1. 

 
Figure 1: Multiple Imputation Modeling Process 

Predictive mean matching determines the value to be imputed for the missing data. The 

predictive mean matching algorithm is demonstrated in Figure 2. The entire multiple imputation 

modeling process with predictive mean matching is repeated for each feature with missing data. The 

authors’ package checks to ensure that there are at least 10 observations per predictor to properly fit the 



 

 

 

regressions.  

 

Figure 2: Predictive Mean Matching Process 

 The authors compared their package to an existing “gold standard” multiple imputation 

method—renowned Professor Frank Harrell’s aregImpute function in the Hmisc R package66. Using 

only default settings for each package, the study compared each package’s imputation results using two 

datasets. First, the authors used the abalone dataset, which has both continuous and categorical 

predictors and no missing values86. The authors randomly inserted missing values into two of the seven 

predictors of the dataset. The study repeated this process 100 times to create 100 different test datasets 

with varying patterns of missing data. Next, the authors’ and gold standard packages imputed values into 

the 100 test datasets. The authors compared the imputed values to the known values in the full dataset. 

For the continuous variable the study reported the 95% confidence intervals of the Mean Squared Error 

(MSE) on the standard deviation scale. The study scaled the MSE, because not all of the continuous 

variables were on the same scale. For the categorical variables the study reported the 95% confidence 

intervals for each package’s accuracy.  

 The second evaluation of the packages used real data from VUMC inpatients with depression. In 

the depressed patients data set, both functions imputed values for the patients’ Body Mass Index (BMI) 

based on demographic data, medications, utilization history, and diagnosis codes. The true values of the 



 

 

 

missing data in that dataset are unknown87. The authors examined the distribution of the imputed values 

in the dataset and compared that distribution to the distribution of non-imputed values. The authors 

repeated this comparison over different time points (30, 14, 7, and 0 days). 

 Lastly, the authors further contrasted the two imputation methods by imputing the EPSI scores 

for the patient cohort of the study. The authors sought to identify differences in the distribution of EPSI 

scores before and after imputation. This comparison was informal and more of a consistency check with 

the assumption that directly admitted patients have generally less acute problems than patients admitted 

through the emergency room. 

 

Results 

For the Abalone dataset Harrell’s aregImpute recorded accuracy between [46.5%, 47.6%] when 

imputing for categorical variables. The authors’ package imputed the correct category between [29.6%, 

31.3%] of the time. The scaled MSE of aregImpute was within [0.0058, 0.0061], while the Python 

imputer had an MSE between [0.0826, 0.0859]. The aregImpute function consistently bested the 

authors’ package imputing values for the abalone dataset.  

In the suicide-risk model patient data set, both functions imputed values for the patients’ Body 

Mass Index (BMI) based on demographic data, medications, utilization history, and diagnosis codes. 

Figure 3 shows the median and interquartile range of the imputed data points and the un-imputed data. 



 

 

 

 

Figure 3: Comparison of Imputed BMI Values 

Figure 4 visualizes how each factor of the selection criteria limited the cohort of patient 

encounters in Vanderbilt’s RD. The final cohort was 13,597 inpatient admissions. Of the total 

cohort 5,303 (39%) encounters did not have an EPSI score.  

 

Figure 4: Relationship of Sample Size to Selection Criteria 



 

 

 

 Both methods imputed EPSI scores for later analysis. Table 1 displays how each imputation 

method changed the distribution of EPSI scores from the original state.  

Imputation 
Method 

Missing 1-Least 
Severe 

2 3 4-Most 
Severe 

aregImpute 0% 13.6% 32.4% 38.4% 15.6% 

Python Imputer 0% 7.4% 23.8% 40.3% 28.5% 

Neither 39% 7.4% 19.6% 24.7% 9.3% 

Table 1: EPSI Distribution of Scores Across Imputation Methods 

 

Discussion & Limitations  

The authors’ Python Imputer successfully imputed values for two very different datasets without 

any modification to the programming. This suggests that the Python Imputer should be able to handle 

the intended use case of EPSI index imputation. The Python Imputer is also one of the first flexible 

multiple imputation packages for that programming language that the authors are aware of.  

The aregImpute package consistently outperformed the Python Imputer for the abalone dataset. 

The aregImpute package fits cubic splines to the data with a default of three knots. Cubic spline 

regression provides substantial advantages for relatively simple non-linear relationships that are poorly 

captured with a linear model. There is no spline regression package in Python, so the authors could not 

have utilized a similar strategy for their imputer to achieve parity in performance. Building a flexible 

spline regression function was out of scope for this project due to complexity.  

The large number of predictors (over 1,500) in the depression data set posed challenges for 

imputation. These predictors included counts of prescribed medications by drug class and healthcare 

utilization, indicators for comorbidities, and demographic information. The aregImpute package would 

regularly impute BMI values outside the interquartile range of patients with a recorded BMI. The 



 

 

 

median BMI of the Python Imputer remained within this inter-quartile range over all four-time points. 

The inter-quartile Python Imputer also had greater overlap with the rest of the data’s interquartile range. 

It is impossible to draw definite conclusions, because the true BMIs are not known. However, the MAR 

nature of BMI suggested that it should follow patterns similar to that of the rest of the data.  

In the original patient cohort dataset, EPSI scores were centered at 3. The Python imputer 

generated values most often for severity category 4, with the remaining imputations predominantly in 

severity category 3. The aregImpute package placed the majority of missing observations in the severity 

categories 2 and severity 3. This more closely matched the expectations of the authors: voluntarily 

admitted patients more likely would have less severe disease than patients admitted through the 

emergency room.  

The evaluation was limited to three data sets and two imputation packages. Of the three datasets, 

only one had known values for missing results. The authors used existing datasets instead of creating 

their own data generation process. The Python Imputer may be inferior to the more complex aregImpute 

algorithm, as Python lacks a good spline regression package. This evaluation also did not evaluate the 

usability of either package for comparison. Usability could play a large role in influencing end-user 

preferences and in determining realized utility.  



 

 

 

Chapter III 

ENGINEERING FEATURES FROM ORDERS 

 

Overview 

The authors constructed a programmatic pipeline (the Vantage system) to process data from 

VUMC’s former (1995-2017) order entry system, WizOrder. Faculty members in the Vanderbilt 

Department of Biomedical Informatics developed WizOrder as a computerized inpatient order entry 

system with integrated decision support in 1994-1995 for use at Vanderbilt University Hospital. 

WizorOrder was rolled out incrementally ward-by-ward with most units adopting the system by 199888–

91. After later customization and evolution of the system, Vanderbilt licensed WizOrder to McKesson 

Corporation for commercial release as Horizon Expert Orders in 2001. The commercial version of the 

system was “back-installed” at VUMC in 2005-06. At VUMC, clinicians entered patient orders into 

WizOrder/Horizon Expert Orders (henceforth abbreviated as “WizOrder”) until November 1, 2017, 

when the system was replaced by a different order entry platform. The WizOrder system had 98 

structured data elements (numeric, Boolean, dates, or categorical) that comprised each individual order. 

Structured data elements included fields such as the ordering physician identifier, the service department 

of the order, and the encounter number. The service department field in WizOrder orders could have 

sixteen different values: pharmacy, nursing, laboratory, radiology, nutrition, neurology, cardiology, 

endocrinology, respiratory, pulmonology, vascular, rheumatology, social work, audiology, 

rehabilitation, and miscellaneous. Users of the WizOrder system could modify, delete, and regenerate 

orders. Those modifying actions generated additional ancillary orders that referred to the active order 

that they modified, as shown in Figure 5.  



 

 

 

 

Figure 4: Example of Order Modification, Deletion, and Regeneration 

 

Materials 

 To extract WizOrer order features, author MCL used a 2015 MacBook Pro with four 2.9 GHz 

Intel processors and eight gigabytes (GB) of random access memory (RAM) and a Linux server with 

twenty-four Xeon 2.00 GHz cores and 132 GB of RAM. All data access scripts were written in either 

Oracle’s PL/SQL or IBM’s Netezza SQL. All processing scripts were written in Python version 2.7.11. 

The authors referenced the UMLS Metathesaurus Browser Release 2017AB. Data from WizOrder came 

from VUMC’s Operational Electronic Data Warehouse (EDW). Encounter Data came from VUMC’s 

Research Derivative (RD). Authors obtained Vanderbilt IRB permission to conduct the analyses of 

orders. 

 

Order Concept Mapping Methods  

The authors downloaded all orders for every patient in the previously defined cohort (adult 

patients, admitted from 7/1/2016-12/31/2016, who survived their encounter, and were discharged with a 

primary service of internal medicine) from the VUMC EDW. The authors saved the data into a number 

of large Comma Separated Value files (CSV), due to restrictions in withdrawing large datasets from the 

data warehouse. WizOrder was occasionally used for data entry for patient parameters (e.g., related to 

risk of falling, pressure ulcers, etc.) that were not actionable orders per se. The Vantage system 



 

 

 

eliminated any such nurse-entered patient-specific data items. “Panel orders” packaged a group of 

individual orders so that they could be generated with a “single” order  - e.g., Basic Metabolic Panel, 

(BMP) included serum sodium, potassium, creatinine, and other items. The comprehensive metabolic 

panel bundled orders for 13 individual laboratory tests. 

The next phase in data processing focused on collapsing functionally similar orders into 

groupings related to an over-arching UMLS terminology concept. This facilitated the handling of 

logically redundant orders in a uniform manner. For example, the order to “Elevate HoB” and the order 

to “Adjust Head of the Bed to 45 degrees” both fall under the UMLS concept “Elevation of head of bed 

^C1827414” (The text before the “^” contains the UMLS concept name and the text afterward is the 

UMLS Concept Unique Identifier, or CUI). The authors used the free-text order comment field for 

concept mapping to the UMLS (e.g., most nursing orders were of the form “Nursing: [free text 

comment]”), but broke the problem down by the service department (destination) of the order. This type 

of breakdown separated the orders by clinical domain area. The authors then applied one of three 

strategies to map the order descriptions to a terminology concept. The first strategy directly mapped the 

order description to a terminology concept manually. The second strategy involved parsing the order 

description for a relevant concept. The third strategy used regular expressions on the order description to 

find the appropriate concept from a curated list of concepts. Author MCL explored using automated 

approaches such as MetaMap, but found that its output did not compress order concepts enough92. To 

reach the same results as manual mapping, the authors would have to traverse the UMLS concept 

hierarchy and explore synonyms for every order description mapped. This iterative process of mapping 

and tree traversal would have added considerable complexity to the project. 

 The authors directly mapped order descriptions in clinical domains with a relatively small 

number of unique order descriptions that were unstructured. For the direct mapping strategy author 

MCL attempted to compress order descriptions into higher level concepts by manually mapping order 



 

 

 

descriptions using the UMLS MetaThesaurus Browser to find the best concept. Author MCL first 

reviewed a list of previously used UMLS concepts before adding any new concepts. In a spreadsheet, 

author MCL labeled each unique order description (1 per row) with a UMLS concept. This spreadsheet 

formed the basis for a dictionary that would perform the labeling systematically. The authors attempted 

to constrain the number of UMLS terminologies used to the minimum needed for coverage. Two board-

certified internal medicine physicians (authors CGW and RAM) reviewed random samples of mapped 

concepts to validate their accuracy. Both reviewers had to approve each mapping for it to be counted as 

correct. The authors recorded the jointly reviewed accuracy scores (number correct/number reviewed) 

for the samples reviewed.  

The string parsing mapping strategy used string substitution and pattern matching to take highly 

structured order descriptions and standardize them. The authors used pattern matching to remove 

unnecessarily specific words in descriptions, such as removing “Bilateral” in an order description of 

“Computerized Tomography Lung Bilateral” to form “Computerized Tomography Lung.” Radiology 

orders were reduced to a modality term and a location term. The authors used string substitution to 

standardize synonyms. For example some laboratory orders had a specimen type of serum, and some a 

specimen type of blood. These terms are not synonymous but were felt to be sufficiently similar 

clinically for the purposes of this project, so the authors replaced “blood” with “serum.” Laboratory 

orders were modified until an analyte and specimen type remained or the name of the laboratory panel 

remained. The authors used a Python script to parse the structured order descriptions. Again the 

physician authors reviewed random samples of the concept mappings for accuracy. The study reported 

the accuracy scores, where both reviewers had to agree.  

Domains with large numbers of unique free-text order descriptions necessitated the use of 

regular expressions for concept mapping. The authors first formed a list of UMLS noun concepts to 

cover the majority of descriptions. Next, the authors developed a list of UMLS verb/adjective concepts. 



 

 

 

The verb concepts modify the noun concepts. The authors then developed a list of regular expressions 

for each UMLS noun and verb concept listed. The regular expressions mapped to a concept would serve 

as the linking mechanism from the concept to an order description. The regular expressions were applied 

in two phases. The first phase searched for matches in an order description to regular expressions tied to 

a noun UMLS concept. The second phase matched a verb/adjective concept to an order description, if 

and only if the noun concept had applicable verb concepts. For example, the Vantage system would map 

an order of “Flush Feeding Tube” to the “Feeding tube^C2945625” concept in phase 1, and then have 

the “Irrigate or flush system^C0512622” concept appended, resulting in “Feeding 

tube^C2945625|Irrigate or flush system^C0512622.” The authors sampled order descriptions by 

concept, to validate the accuracy of all order descriptions matched by the regular expressions. Two 

physician reviewers evaluated all the order descriptions mapped to the concepts in the random sample. 

Again both reviewers had to agree on each order description mapping. Concepts with no errors in any of 

the order descriptions mapped to that concept were labeled accurate. The study reported the concept 

level and order description level accuracies for each sample. The list of UMLS noun concepts may not 

cover all order descriptions. The list of regular expressions per concept may not include all relevant 

order descriptions. Therefore, any order description that was unmatched to a concept had its description 

used at its terminology concept.  

  After iteratively correcting and evaluating all of the concept mappings, the authors applied the 

mappings to all of the order data. The direct mapping and string parsing strategies used dictionaries for 

mapping. The order description of an order was used as the key in the dictionary, which then returned 

the mapped UMLS concept. The regular expression method was run over each order description. Next, 

the authors indexed modifying-action orders (revise, discontinue, regenerate) to their original order. 

Using the index, action orders inherited the UMLS concepts from the original order. As an example, a 

“Telemetry” order was eventually followed by a “Discontinue Telemetry” order before discharge. The 



 

 

 

“Discontinue Telemetry” order would inherit the “Cardiac monitoring^C0150496” concept from the 

original “Telemetry” order and have the action modifier “Discontinued^C1444662” appended, resulting 

in “Cardiac monitoring^C0150496|Discontinued^C1444662.”  

 

Order Feature Methods  

 With most of the orders mapped to terminology concepts, the authors attempted to derive order-

based features suitable for statistical modeling. The authors analyzed care variability using statistical 

models, which is detailed in the next chapter. Most statistical models require data to be numerically 

formatted in matrix representation. This representation can support predictors that are numeric 

(continuous or not), categorical, and ordinal. Thus, the authors needed their order-derived features to be 

numeric and reflective of some aspect of care variability. For example order features can express the 

number of unique orders, the intensity of care, or the set of orders that make up common practice.  

The authors sought to utilize the number of intended executions of an order as a numeric feature. 

Every order has a categorical frequency and a numeric duration. The authors algorithmically mapped 

categorical frequencies into standardized rates of: completions/day, completions/week, and 

completions/month. The authors assumed that “as needed” also known as “prn” orders were always 

executed at the specified duration and frequency; no clear way existed to know how many times each 

order was actually carried out since the study dataset lacked nursing medication administration records. 

Determining actual order durations also required some processing, because users could queue orders for 

long periods of time into the future, and intervening events could subtly affect actual order duration. 

Estimation of the true duration required comparison of the order start date to the discharge date, as well 

as to any modifying (child) orders. Figure 6 illustrates several different scenarios that could arise when 

calculating an order’s duration.  



 

 

 

 

Figure 5: Select Examples of Order Duration Calculation 

 

Order Grouping Methods 

The last aspect to deriving potentially predictive features from orders involved grouping. 

Aggregating order features into higher-level groups is important for analysis of orders across various 

criteria. The most granular grouping is at the individual order level. Order data can be grouped by 

terminology concept, service department, or ordering provider ID. Next, order level groupings can be 

averaged over different time scales. One can either average order groupings by day from admission or 

by encounter. Grouping by day averaged order features for each day of the admission. Grouping by 

encounter provides an encounter average for each order feature, which is then scaled by the length of 

stay. The encounter grouping scaled order features by the length of stay to control for differences in the 

length of stay between encounters. Patient characteristic groupings occur after time-scale groupings. For 

example, users can group by patient age at admission, discharge diagnosis, or admitting service. Figure 

7 demonstrates different groupings and how those groupings can decrease or increase unique values in 

the data. 



 

 

 

 

Figure 6: Effect of Multiple Order Groupings on Category Variety 

 

Concept Mapping Results 

The authors initially downloaded 21,198,137 orders (11.6 GB) from all the patients included in 

the cohort. This initial download included orders and nurse-entered data for the individual patients that 

made up the cohort but it also included their encounters from outside the cohort time window. The 

Vantage system filtered, processed, extracted, and created features; then, grouped the order data in less 

than nine hours using ten processors on a Linux server with twenty-four Xeon 2.00 GHz cores. Applying 

the regular expressions for concept mapping was the rate-limiting step in the pipeline. Each processing 

step was lossless after the initial filter by encounter number and the elimination of nurse-entered data. 

After processing, 3,455,292 orders (1.1 GB) remained for the encounters in the cohort. Of the 

17,742,845 orders excluded, 17,293,657 orders came from encounters outside of the cohort time window 

for patients who had at least one encounter inside the cohort time window. Finally, the system excluded 

449,188 entries comprised of nurse-entered patient-specific data.  

The authors applied a variety of concept mapping strategies, based on each order’s clinical 

domain and other characteristics of the orders. Most of the Pharmacy orders already (before 

downloading the EDW dataset) had been mapped to the RxNorm terminology by Vanderbilt’s Research 



 

 

 

Derivative Team using the Medex system93. The authors manually mapped 87,408 order descriptions to 

UMLS concepts. Of the total 87,174 manually mapped order descriptions, only 10,234 were pharmacy 

orders. The remaining manually mapped orders included all of the unique order descriptions from 

twelve different service departments. Laboratory and Radiology orders were well structured. This made 

them the ideal candidates for concept mapping by string parsing. Nursing orders had the greatest variety, 

making them the best candidate for regular expression-based mapping. Table 2 presents the number of 

unique order descriptions by service department and the terminologies and strategies applied.  

Service 
Department 

Number of 
Unique Orders 

Terminology Applied Mapping 
Strategy 

Pharmacy 678,820 RxNorm 94 Direct Mapping 

Laboratory 56,663 Custom (Analyte and Specimen Type)  String Parsing 

Radiology 8,677 Custom (Location and Modality) String Parsing 

Nursing 485,858 SNOMED-CT 95, MEDCIN96, HCPCS97 Regular 
Expressions 

All Others 77,174 SNOMED-CT 95, MEDCIN96, HCPCS97 Direct Mapping 

Table 2: Terminologies and Strategies Applied to Order Service Departments 

For the nursing orders, the authors identified 305 unique noun UMLS concepts and 52 unique 

verb/adjective UMLS concepts. The authors coded 695 regular expressions for the 305 noun concepts 

and 171 regular expressions for the 52 action concepts. The sampling and evaluation statistics for the 

order concept mapping done by direct mapping and string parsing are presented in Tables 3.  

Service Department Mapping 
Strategy 

Number of Orders 
Mapped 

Sample 
Size 

Accuracy 

Pharmacy Direct Mapping 10,234 200 (2%) 99% 

All Others 
(Excludes Nursing) 

Direct Mapping 77,174 200 (0.3%) 99% 

Laboratory String Parsing 56,663 500 (1%) 84% 

Radiology String Parsing 8,677 500 (6%) 90% 

Table 3: Expert Validation of Directly Mapped and String Parsed Orders 
 

The authors sampled the nursing orders by concept. All the order descriptions within the same 



 

 

 

concept needed to be approved by the physician reviewers for that concept to be labeled as accurate. The 

validation and sampling statistics for concept mapping done by regular expressions is shown in Table 4.  

Sample # Number of 
Concepts Sampled 

Accurately 
Mapped 
Concepts 

Number of Orders 
in Sample 

Order Mapping 
Accuracy 

1 36/276 (13%) 23/36 (64%) 2,945/485,858 (1%) 93% 
2 42/313 (13%) 28/42 (67%) 3,319/485,858 (1%) 97% 
3 20/305 (7%) 11/20 (55%) 481/485,858 (0.1%) 85% 

Table 4: Expert Validation of Nursing Orders Mapped by Regular Expressions 

 
Order Feature Results 

From the grouped order data the authors derived different potential features to make up an order 

variability metric. Table 5 enumerates the different order features derived for each DRG-service 

department group. The authors used different central moments of the distribution (variance (2nd) and 

kurtosis (4th)) of the intended completions/day to quantify differences between encounters within a 

DRG/service-department group. The unique order count describes the variety of orders used across all 

encounters in a DRG/service-department group. The common order count and common order ratio both 

quantify how many orders are held in common across encounters within a group. To derive the common 

order count, the authors create a set of unique orders for each encounter. Next, the authors determine 

which orders are present in more than half of all the encounters coded for the same DRG.  

Feature Name Description 

Kurtosis of Completions/Day Average of the Average Number of Order Completions per Day 

Variance of Completions/Day Variance of the Average Number of Order Completions per Day 

Unique Order Count Count of Unique Terminology Concepts Across All Encounters 

Common Order Count Count of Terminology Concepts Present in > 50% of 
Encounters for the Group 

Common Order Ratio Common Order Count 
Unique Order Count 

Table 5: Order Variability Features and Descriptions 



 

 

 

 

Order Grouping Results 

The authors grouped orders by terminology concept, encounter, service department, and DRG 

code. Grouping by terminology concept ensures that synonymous orders are counted together. The 

encounter level grouping is averaged over the length of stay. Grouping by encounter eliminates the 

dimensionality of time, which is generally difficult to model. Even with redundant clinical concepts 

grouped together, there were tens of thousands of unique UMLS concepts. The authors further reduced 

the dimensionality of orders by grouping by the service department of the order. This grouping resulted 

in lab tests such as blood amylase, basic metabolic panels, and tests for genetic markers all to be 

grouped together under the descriptor of “LAB.” Similarly procedures such as continuously pressurized 

ventilator support and pulmonary function exams were grouped under the descriptor of “Respiratory.” 

The authors performed this grouping to cope with a limited sample size of observations, and the large 

number of different orders. Mathematical models tend to break down if the number of predictors 

approaches or exceeds the number of observations. Lastly, patients with different diseases have different 

needs; grouping by DRG increases the comparability of patients within the same DRG. Grouping by 

DRG also scales the unit of analysis to a level familiar to hospital administrators. Figure 8 visualizes 

how the unit of analysis changed with each grouping criterion.  

 

Figure 8: From Orders to Service Department Variance By DRG 



 

 

 

 

Discussion & Limitations 

 The authors demonstrated the feasibility of processing orders from their raw form to a refined 

feature set at scale. The Vantage system accomplishes two high value tasks. The first being that it maps 

orders to a higher-level terminology. For the majority of orders the applied terminologies are part of the 

UMLS. The authors were able to achieve fairly accurate mappings without machine learning based 

methods. The results speak to the tractability of the problem, especially given the limited resources and 

generalizable methods used by the authors.  

The second high value task accomplished by the Vantage System is that it estimates the number 

of nursing order completions over time. Author MCL is not aware of other research systems that have 

attempted this. Most other research systems treat nursing orders as singular entities or discard them76–

78,98.  

Based on the total admissions between 7/1/2013 and 12/31/2016 Figure 3, VUMC experiences 

206,908 encounters/30 months= 6,897 encounters/month. That figure is a little over half of the size of 

the project cohort. The demonstrated runtime of the system means that the system could incrementally 

process all orders monthly at a scale as large as VUMC and complete in less than a day. The Vantage 

system is executable with a single terminal command. The Vantage system was designed to dynamically 

update date parameters, enabling unsupervised incremental processing over time. If given an active 

connection to the data repository for orders and encounters, the Vantage system could run incrementally 

based on scheduled Cron job99.  

The authors’ approach has several limitations. The Vantage system was built specifically for the 

WizOrder data model and it is not readily generalizable to other data models. That said, the EDW 

representation of the WizOrder data model is highly unstructured. While the system does not directly 

generalize, the method of construction might. The greatest limitation is that the authors’ direct mapping 



 

 

 

strategy is not readily applicable to additional WizOrder data outside of the cohort. The specificity of the 

description mapping to the WizOrder system is an area for future work. The authors believe that nearest-

neighbor clustering could provide a generalizable solution. The orders from the current cohort should be 

ample training data to fit such a model. Furthermore, the author only explored features they believed 

would be explanatory for order variability. The variables they created were not exhaustive of the 

possibilities and they focused on one particular task. The last major limitation is that the authors did not 

differentiate the intended number of times an order should be completed from the actual number of 

times an order was completed. In future work, the authors hope to incorporate data sources such as the 

medical administration record (MAR) along with lab and imaging systems to bridge this gap. 

The Vantage system produced six different features for each of the sixteen different service 

departments in an attempt to quantify the variability care. The resulting 96 variables incorporate 

intended completions as well as conceptual groupings. The authors later selected and aggregated the 

features, and then evaluated the correlation of those features to the LOS ratio. The following chapter 

details how the authors used the derived order-based features to assess care variability.



 

 

 

Chapter IV 

MODELING CARE VARIABILITY  

 

Overview 

In this segment of the study, the authors use the LOS ratio—the ratio of a patient’s actual length 

of stay divided by the CMS calculated geometric average length of stay (of the same DRG) as the 

outcome of interest. The CMS average length of stay for a DRG is known as the expected length of 

stay100.  

 

Materials 

The authors’ care variability analysis used a 2015 MacBook Pro with four 2.9 GHz Intel 

processors and eight GB of RAM and a Linux server with twenty-four Xeon 2.00 GHz cores and 132 

GB of RAM. The VUMC Finance office provided encounter-level cost data. Author MCL performed all 

statistical analysis with STATA version 29 Jan 2018.  

 

Methods 

 Using a list of medical record numbers and encounter identifiers from the Chapter II cohort 

dataset, the authors requested cohort-related cost data from the VUMC Finance Department. The 

VUMC Finance office’s methods for deriving cost are proprietary and are unknown to the authors. The 

Finance Department uses cost data operationally; this suggests that they were carefully derived. 

The authors used a regression framework for their evaluation of order variability as a measure 

for care variability. The variance of the LOS ratio was the outcome of interest and each observation 

signified a DRG. DRGs were eliminated from consideration if they did not have at least ten encounters 

to average. The authors varied the minimum encounter threshold to twenty encounters and thirty 



 

 

 

encounters to evaluate the sensitivity of the results to this parameter. The authors compared a robust 

regression model with an order variability metric (built from the features extracted in Chapter III) to a 

robust regression model with cost variability. Each model used the same covariates, where only the 

variance term differs. The authors compared the fit of the models based on the Akaike information 

criterion (AIC) of both models. This criterion describes the information loss of a model based on the 

data. The model with the smallest AIC is relatively better than the other models. A difference in AIC of 

six or more suggests there is less than a 5% chance that the greater AIC model minimizes information 

loss better than the lesser AIC model. The study also reported the Student’s T-Test of significance on the 

variable coefficients. The analysis was done at the DRG scale to develop a unified framework for 

evaluating care variability that could be used at the health system level by healthcare administrators or 

quality officers. In this framework, one DRG was compared to another. Comparing the LOS ratio 

between DRGs requires some form of case-mix adjustment, because the length of stay is sensitive to 

patient specific factors.  

The authors chose covariates for their care variability analysis based upon a review of the 

literature of factors that affect the length of stay, and the availability of those factors in the data. Each 

model was adjusted for the intra-DRG variance of: age, sex, race, admission season, weekday admission 

indicator, Charlson Comorbidity Index101, admission service, intensive care utilization indicator, and 

EPSI index. Any missing data was imputed using the aregImpute function from the Hmisc package.  

To select which order features comprised the order variability measure, the authors used a scatter 

plot analysis. The scatter plot analysis involved plotting a single order feature on the X-axis and the 

outcome on the Y-axis. The authors combined the order features into one order variability measure using 

an average to permit a fairer comparison to cost variability. In statistical models, multiple predictors 

have a natural advantage over one predictor in terms of model fit. The regression methodology 

minimizes prediction error, which means that adding predictors cannot decrease the fit of a model. 



 

 

 

Additional predictors do not decrease model fit because uncorrelated predictors can always be weighted 

to have zero effect. The three different order metrics were on different numeric scales. To weight each 

order-based feature equally, the authors centered and standardized each order-based feature before 

averaging them into a singular measure of order variability.  

The authors performed two sub-analyses. The first eliminated encounters involving 

intensive/critical care to determine if the Vantage system could predict variability in more homogenous 

encounter groupings. The other sub-analysis examined if order variability could significantly predict 

unplanned readmissions (as defined by the 4th version of the CMS definition of unplanned 

readmissions). The variance of the length of stay was used as a covariate in the readmissions modeling 

sub-analysis.  

 Lastly, the authors purposefully and non-randomly chose a DRG with both a large number of 

encounters and a high amount of order variability. This analysis excluded patients that received 

intensive care during their admission.  Next, the authors sampled 25 encounters from 25 unique patients 

coded with the chosen DRG for review. Author MCL examined the orders issued during each patient 

encounter and attempted to identify potential variations in care factoring in the patient’s clinical 

condition. These findings were discussed with internist author CGW. This effort attempted to assess 

how the order variability metric might be used to prioritize DRGs for interventions such as standardizing 

approaches to care. The authors loosely explored if the order variability metric could directly inform 

potential sources of care variability within the sample. 

 

Results 

 Figure 9 illustrates the total cohort size and the sub-analysis sample size. The sub-analysis 

excluding ICU patients further reduced the cohort by nearly a quarter.  



 

 

 

 

Figure 9: Cohort Sample Size with and without Sub-Analysis 

 The characteristics of the full study cohort and all covariates can be seen in Table 6. The cohort 

consists of encounters and not patients, meaning there may be multiple encounters for the same patient.  

Variable  

Unique encounters (count) 13,597 
Unique patients (count) 10,081 
Age at admission 44.9 ± 13.1 years 
Charlson Comorbidity Index 4.1 ± 1.5 
Female sex  50.6% 
Received intensive care  23.2% 
Weekday Admission  75.5% 
Race  
     White 73.3% 
     Black 22.6% 
     Asian 1.1% 
     Unknown or other 3.0% 
Season of Admission  
      Spring (Mar-May) 21.9% 
      Summer (June-Aug) 26.8% 
      Fall (Sep-Nov) 27.9% 
      Winter (Dec-Feb) 23.4% 
Admission Service   
     Internal Medicine 74.6% 
     Emergency Room 3.3% 
     Infectious Disease 1.0% 
     General Surgery 1.0% 
     Others Not Listed 20.1% 

Table 6: Care Variability Cohort Characteristics 

The scatter plot analysis suggested that the number of commonly executed lab procedures and 

the total number of unique rehab orders were the most correlated order features. The authors scaled and 



 

 

 

centered the order features so that they could be averaged to form order variability. Table 7 shows that 

ranking DRGs by order variability produced different priorities compared to ranking by cost variability.  

Variability Ranked DRG’s Number of 
Encounters 

Variance of 
LOS Ratio 

Order Variability   
     1. Trach w/ ventilator support > 96hr  18 1.53 
     2. Septicemia or severe sepsis w/ ventilator support > 96hr 41 1.47 
     3. Septicemia or severe sepsis w/ complications 802 1.51 
     4. Pulmonary embolism w/ complications 44 1.74 
     5. Respiratory infections & inflammations w/ complications 97 1.50 
     6. Infectious/parasitic disease w/ operation & complications 136 1.44 
     7. Respiratory system diagnosis w/ ventilator support > 96hr 20 1.49 
     8. Respiratory system diagnosis w/ ventilator support < 96hr 28 1.01 
     9. Other kidney & urinary tract diagnoses w/ complications  112 1.75 
     10. Wound debridement and skin graft w/ complications 182 2.03 
Cost Variability   
     1. Osteomyelitis with complications  30 1.45 
     2. Alcohol/drug abuse or dependence w/o rehabilitation 295 0.90 
     3. Fever 40 1.12 
     4. Other respiratory system operation w/ complications 37 1.85 
     5. Intracranial hemorrhage or cerebral infarction w/  
         Complications 

23 1.28 

     6. Gastrointestinal obstruction w/ complications 35 1.16 
     7. Other skin/subcutaneous tissue/breast procedures w/  
         Complications 

26 1.59 

     8. Inflammatory bowel disease w/ complications 76 0.95 
     9. Inflammatory bowel disease  32 1.09 
     10. Cardiac arrhythmia and conduction disorders w/  
           complications 

19 1.43 

Table 7: Top 10 DRG’s When Sorted by Variability 

Table 8 presents the AIC, adjusted R2 values, coefficient sign, and P–value for both order 

variability metric (order var) as well as cost variability (cost var) across different encounter thresholds. 

Order variability consistently produced better-fit models than cost variability across all thresholds for 

the minimum number of encounters. This result held in the sub-group without ICU patients. 



 

 

 

 DRGs with 10+ 
Encounters 

DRGs with 20+ 
Encounters 

DRGs with 30+ 
Encounters 

Full Cohort    
     # of Encounters  12,598 11,391 10,574 
     # of DRGs 226 138 104 
     Adjusted-R2     
          Order Var 0.270 0.233 0.381 
          Cost Var 0.230 0.206 0.338 
AIC    
          Order Var 181.02* 73.23 0.40* 
          Cost Var 192.84 77.92 7.48 
     Coefficient Sign    
          Order Var + + + 
          Cost Var + + - 
    Coefficient P-Value    
          Order Var 0.001* 0.070 0.043* 
          Cost Var 0.224 0.245 0.605 
Non-ICU Cohort     
     # of Encounters  8,893 7,913 7,048 
     # of DRGs 188 114 79 
     Adjusted-R2    
          Order Var 0.180 0.225 0.244 
          Cost Var 0.139 0.204 0.176 
AIC    
          Order Var 136.20* 46.76 4.16* 
          Cost Var 145.54 49.87 12.63 
     Coefficient Sign    
          Order Var + + + 
          Cost Var + + - 
     Coefficient P-Value    
          Order Var 0.002* 0.018* 0.111 
          Cost Var 0.346 0.010* 0.823 

Table 8: Care Variability Analysis Results with LOS Ratio as the Outcome 
  * signifies statistical significance  
  + signifies that the LOS ratio variance is positively associated with that variable 
  - signifies that the LOS ratio variance is negatively associated with that variable 
 



 

 

 

 After running the regression, the authors used diagnostic methods to validate the assumptions of 

their analysis. A sample diagnostic (Residuals Versus Fitted values (RVF)) plot used by the authors can 

be seen in Figure 10. The RVF plot can visually indicate the presence of bias in the model fit and/or 

non-constant variance. The authors expected a roughly ellipse-shaped zero-centered pattern in the 

residual values, as demonstrated by the pattern below.  

 

Figure 10: RVF Plot from LOS Ratio Analysis 

The authors’ order variability metric did not add significant value when modeling the variance of 

the unplanned readmission rate for a DRG compared to cost variability. This analysis included an 

additional covariate of the variance of the length of stay. The results are shown in Table 9. 
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 DRGs with 10+ 
Encounters 

DRGs with 20+ 
Encounters 

DRGs with 30+ 
Encounters 

Full Cohort    
     # of Encounters  12,598 11,391 10,574 
     # of DRGs 226 138 104 
     Adjusted-R2     
         Order Var 0.203 0.270 0.282 
          Cost Var 0.200 0.252 0.258 

Table 9: Care Variability Analysis Results with Readmission Rate as Outcome 

The authors explored if their care variability metric could inform quality improvement efforts in 

one DRG. The authors selected DRG 871 (Septicemia or severe sepsis w/ Complications) for review. 

DRG 871 had both a high order variability rank and prevalence in VUMC’s case mix. This DRG was 

primarily composed of patients admitted with infectious disease diagnoses. The authors looked for 

patterns of care by chronologically looking at the orders of each patient in the sample. Generally the first 

1-3 days were the most intensive for the patients in the sample. This meant that, the longer a patient 

stayed in the hospital, the fewer orders/day and nursing interactions per day they received. Table 10 

demonstrates a comparative analysis using order features of Sepsis patients with a longer than expected 

length of stay and Sepsis patients with a shorter than expected length of stay. The table demonstrates 

that patients with longer lengths of stay have lower average order intensities, because the days toward 

the end of the encounter skew the average downward. One can see signs of greater variability of care in 

the high LOS patients. The total number of unique orders is always greater in the high LOS group, 

despite the greater number of encounter in the low LOS group. Author MCL also observed that the high 

LOS patients tended to have a higher number of commonly ordered laboratory tests. Patients that 

required in house rehabilitation services also generally had longer lengths of stays than those that did not 

use those services. The outcomes of the high LOS group were more variable than the low LOS group.  

 

 



 

 

 

Feature High LoS Low LoS 

Total Encounters 143 239 

Median # of Labs/Day  3.1 8.9 

Variance of Labs/Day 5.7 38.0 

Total Unique Labs 328 311 

Median # of Nursing Actions/Day  19.4 28.3 

Variance of Nursing Actions /Day 90.2 152.5 

Total Unique Nursing Orders 737 595 

Median # of Medications/Day  7.6 21.6 

Variance of Meds/Day 247.6 303.3 

Total Unique Meds 1258 971 

Table 10: Sample Analysis Using Order Features for Sepsis Patients 

 

Discussion and Limitations 

 The authors tested their order variability metric across all eligible DRGs in VUMC’s case mix. 

They found that order variability outperformed cost variability’s ability to explain the LOS ratio. This 

result held throughout the sensitivity analysis of sample size, and in the sub-analysis excluding ICU 

patients. There were differences between the disorders prioritized by cost variability and order 

variability, as the two metrics only overlapped two DRG’s out of the first ten listed. The coefficient of 

order variability remained consistently positive throughout all these analyses. The coefficient for cost 

variability did not consistently keep the same sign. It switched signs from positive to negative when the 

minimum number of encounters was increased to thirty. This inconsistency suggests that cost variability 

may have an inconsistent correlation with variability in patient outcomes. The interpretation of the order 

variability coefficient was that greater order variability contributed to greater deviations from the 

expected LOS ratio after accounting for the selected confounders. Order variability is useful as a 

surrogate to the LOS ratio, because order variability can be derived during the admission, while the LOS 

ratio cannot.  



 

 

 

 The order level interpretation is that a group of patients who more regularly ordered laboratory 

tests in common and who use a variety of rehabilitation services tend to have greater variability in 

outcomes, after adjusting for factors such as the number and severity of comorbidities and severity of 

illness. This finding also played out in the case of Sepsis patients. This finding in Sepsis patients may 

speak more to sepsis as a complex disease process, than the utility of the order variability metric. 

The analysis was done at the level of an entire health system and across a wide variety of DRGs. 

This scale is a strength of the work. The authors have proposed and validated an order variability metric 

that is applicable to all DRG’s. The authors used novel feature sets to attempt to identify variability in 

care. When modeling care variability, the authors corrected for many covariates (such as severity of 

illness, admission service, and an indicator for weekday admissions) that are often left out of analyses.  

In future work the authors hope to incorporate admission shift (day versus night) and additional 

social factors. The admission shift data may become available for research with VUMC’s new EMR e-

Star. The authors plan to tap into the Behavioral Risk Factor Surveillance Survey using census tracts 

from the Center for Disease Control and Prevention’s 500 Cities initiative102. A few select laboratory 

results from admission could have provided a more robust severity of illness measure. The authors hope 

that their approach can eventually inform services or care pathways to prioritize for standardization or 

improvement with an order-based measure of variability.  

The primary limitation of this work is that the order variability metric is not prescriptive. The 

metric does not easily inform solutions for improving the case-mix adjusted LOS ratio. The order 

variability metric might identify potential opportunities for improvement. Further exploration is needed 

to determine the utility of this metric. In any case, chart review and observational studies would still 

play a role in devising implementable solutions. Next, this study used data from a single site, and further 

studies are needed to evaluate the generalizability of the authors’ findings. The authors grouped patients 

by DRG because CMS calculates the expected length of stay for DRGs. There are other means of 



 

 

 

grouping patients and it is a future direction of this work to examine if the results change based on how 

patients are grouped. The authors used the EPSI index as a crude surrogate for severity of illness. They 

could have calculated one of the APACHE scoring systems, but were concerned about the degrees of 

freedom of their statistical model103. The fit of the models suggest that there are missing covariates. 

Because the model is under-fit, it is possible that the statistical importance of order variability is 

overstated. However, the model diagnostics do not suggest bias or violations of key regression 

assumptions. 



 

 

 

Chapter V 

CONCLUSIONS 

 

 This project examined the variability of care among patients with different DRGs through a 

novel point of view—orders. Previous research focused on cost, case-mix, and utilization differences 

between DRG’s12,45,104. Orders can elucidate care that current cost capture mechanisms do not handle 

well, such as nursing utilization. To this end, the authors demonstrated the feasibility of a high 

throughput pipeline for order categorization based on terminologies from the UMLS. The study 

achieved reasonable accuracy with their concept mapping using open source software and terminologies, 

a single conceptual coder, and two reviewers. The authors could further augment their pipeline by 

including additional nursing concepts. The authors were able to map approximately 60% of all nursing 

orders to a UMLS concept. The extensive mapping efforts of the authors are not presently generalizable.  

 The authors further developed their methodological library with an imputation package. This 

package proved inferior to the Hmisc package for relatively simple datasets. The authors found that 

neither package had a statistically significant effect on the results of the care variability analysis. 

The authors have explored the notion of care variability and its challenges. The authors developed 

unique order features that are potentially generally useful for length of stay predictive models. The 

features were systematically pared down to form a generalizable order variability measure. In a small 

pilot analysis, the authors’ Vantage system bested the current standard metric (cost variability) for 

quality improvement when modeling patient outcomes. While additional, larger studies must 

independently validate this result, the authors preformed their analysis with a robust statistical method 

and assessed model dependencies. The authors’ metric does not truly address the core issue of care 

variability. Much additional work must occur to capture the full context of decisions. Without that 

context, comparing care choices to guidelines, policies, and best practices is difficult. 
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