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CHAPTER I 

 

LIGAND-BASED COMPUTER AIDED DRUG DESIGN 

 

Introduction 

On October 5, 1981, Fortune magazine published a cover article entitled the “Next 

Industrial Revolution: Designing Drugs by Computer at Merck” [1]. Some have credited this as 

being the start of intense interest in the potential for Computer Aided Drug Design (CADD). 

While progress was being made in CADD, the potential for high-throughput screening (HTS) had 

begun to take precedence as a means for finding novel therapeutics. This brute force approach 

relies on automation to screen high numbers of molecules in search of those which elicit the 

desired biological response. This method requires little compound design or prior knowledge 

and the efficiency of technologies required to screen large libraries continues to increase.  

However, while traditional HTS is often successful in the discovery of multiple lead compounds, 

the hit rate for this method is extremely low. This low hit rate has limited the usage of HTS to 

research programs capable of screening very large compound libraries. In the past decade, 

CADD has reemerged as a way to significantly decrease the number of compounds necessary to 

screen while retaining the same level of lead compound discovery. CADD techniques allow 

compounds predicted as inactive to be skipped and those predicted as active to be prioritized. 

This reduces the cost and workload of a full HTS screen without sacrificing lead discovery. For 

example, researchers at Pharmacia (now part of Pfizer) used CADD tools to screen for inhibitors 

of tyrosine phosphatase-1B, an enzyme implicated in diabetes. Their CADD-based virtual screen 

yielded 365 compounds, 127 of which showed effective inhibition, a hit rate of nearly 35%. 

Simultaneously, this group performed a traditional HTS against the same target. Of the 400,000 
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compounds tested, 81 showed inhibition, producing a hit rate of only .021%. This comparative 

case effectively displays the power of CADD for reducing the number of compounds necessary 

to test for hit discover [2]. CADD has already been used in the discovery of compounds which 

have passed clinical trials and become novel therapeutics in use for the treatment of a variety of 

diseases. Some of the earliest examples of approved drugs that owe their discovery in large part 

to the tools of CADD include the carbonic anhydrase inhibitor dorzolamide, approved in 1995 

[3], the ACE inhibitor captopril, approved in 1981 as an antihypertensive drug [4], three 

therapeutics for the treatment of HIV: saquinavir (approved in 1995), ritonavir and indinavir 

(both approved in 1996) [1] and tirofiban, a fibrinogen antagonist approved in 1998 [5].  

One example that helps validate the use of CADD in lead compound discovery is the 

search for novel TGF-beta-1 receptor kinase inhibitors in 2003. One group at Eli Lilly used a 

traditional high throughput screening to identify a lead compound that was subsequently 

optimized [6], while a group at Biogen Idec used a CADD approach involving virtual HTS based 

on the structural interactions between a weak inhibitor and TGF-beta-1 receptor kinase [7]. 

Upon the virtual screening of compounds, the group at Biogen Idec identified 87 hits, the best 

hit being identical in structure to the lead compound discovered through the traditional HTS 

approach at Eli Lilly [8]. In this situation CADD, a method involving reduced cost and workload, 

was capable of producing the same lead as a full-scale HTS. 

 

Position of CADD in the drug discovery pipeline 

CADD is capable of increasing the hit rate of novel drug compounds as it employs a 

much more targeted search than traditional HTS and combinatorial chemistry. It not only aims 

to explain the molecular basis of therapeutic activity, but also to predict possible derivatives 

that would improve activity. One of the most common uses in CADD is the screening of virtual 
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compound libraries, also known as virtual high-throughput screening (vHTS). This allows 

experimentalists to focus resources on testing compounds likely to have an activity of interest. 

Ripphausen et al. note that the first mention of vHTS was in 1997 [9] and chart an increasing 

rate of publication for the application of vHTS between 1997 and 2010. They also found that the 

largest fraction of hits has been obtained for GPCR’s, followed by kinases [10].  

vHTS comes in many forms including chemical similarity searches by fingerprints or 

topology, selecting compounds by predicted biological activity through Quantitative Structure-

Activity Relationship (QSAR) models or pharmacophore mapping, and structure-based docking 

[11]. These methods allow the ranking of “hits” from the virtual compound library for 

acquisition. The ranking can reflect a property of interest such as percent similarity to a query 

compound, predicted biological activity, or in the case of docking, the lowest energy scoring 

poses for each ligand bound to the target of interest. Often initial hits are rescored and ranked 

using higher level computational techniques that are too time-consuming to be applied to full 

scale vHTS. It is important to note that vHTS does not aim to identify a drug-compound that is 

ready for clinical testing, but rather to find leads with chemotypes that have not previously been 

associated with a target. This is not unlike a traditional HTS. Through iterative rounds of 

chemical synthesis and in vitro testing, a compound is developed into a “lead” with higher 

affinity and some understanding of is structure-activity-relation. This lead can then be tested for 

its DMPK/ADMET properties. Only after further iterative rounds of lead-to-drug optimization 

and in vivo testing does a compound reach a clinically appropriate potency and acceptable 

DMPK/ADMET properties [12]. For example, the literature survey performed by Ripphausen et 

al revealed that a majority of successful vHTS applications identified a small number of hits that 

are active in the micromolar range, and hits with low nanomolar potency are only rarely 

identified [10]. 
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Ligand-Based Computer-Aided Drug Design (LB-CADD) 

The ligand-based computer-aided drug discovery (LB-CADD) approach involves the 

analysis of ligands known to interact with a target of interest. These methods utilize a set of 

reference structures collected from compounds known to interact with the target of interest 

and analyze their 2D or 3D structures. The overall goal is to represent these compounds in such 

a way that the physicochemical properties most important for their desired interactions are 

retained while extraneous information not relevant to their interactions is discarded. LB-CADD is 

based on the Similar Property Principle, published by Johnson and Maggiora, which states that 

molecules that are structurally similar are likely to have similar properties [13]. It is considered 

an indirect approach to drug discovery in that it does not necessitate any prior knowledge of the 

target of interest. LB-CADD approaches are commonly applied when the 3D structure of the 

biological target is unknown. The two fundamental approaches of LB-CADD are a) selection of 

compounds based on chemical similarity to known actives using some similarity measure or b) 

the construction of a Quantitative Structure-Activity Relation (QSAR) model that predicts 

biological activity from chemical structure. The difference between the two approaches is that 

the latter weights features of the chemical structure according to their influence on the 

biological activity of interest, the former does not. The methods are applied for in silico 

screening for novel compounds possessing the biological activity of interest, hit-to-lead and 

lead-to drug optimization, and also for the optimization of DMPK/ADMET properties.  

 

Molecular Fingerprint and Similarity Searching 

Molecular fingerprint-based techniques attempt to represent molecules in such a way 

as to allow rapid structural comparison in an effort to identify structurally similar molecules or 



5 
 

to cluster collections based on structural similarity. These methods are less hypothesis-driven 

and less computationally expensive than pharmacophore mapping or QSAR. They rely entirely 

on chemical structure and do not take compound potency/activity into account, making the 

approach more qualitative in nature than other LB-CADD approaches [14]. Additionally, 

fingerprint-based methods do not attempt to focus only on parts of a molecule that are thought 

to be most important for activity but rather they consider all parts of the molecule equally. This 

is less prone to errors than hypothesis-driven methods but suffers from the influence of 

unnecessary features [14]. Despite this drawback, 2-dimensional fingerprints continue to be the 

representation of choice for similarity-based virtual screening [15]. Not only are these methods 

the computationally least expensive way to compare molecular structures [16], but their 

effectiveness has been demonstrated in many comparative studies [15]. 

Fingerprint Types 

Fingerprints are bit string representations of molecular structure and/or properties [17, 

18]. They encode various molecular features as pre-defined bit settings [14] i.e. representation 

as 1 or 0, where 1 means feature is present or 0 if not. This allows chemical identity to be 

unambiguously assigned by the presence or absence of specific features [16]. The features 

described in a molecular fingerprint can vary in number and complexity (from hundreds of bits 

for structural fragments to thousands for connectivity fingerprints, and millions for the complex 

pharmacophore-like fingerprints) [14], depending on the computational resources available and 

the intended application. Fingerprints which rely solely on interatomic connectivity – i.e. 

molecular constitution – are known as 2-dimensional fingerprints [16]. In the prototypic 2D 

keyed fingerprint design, each bit position is associated with the presence or absence of a 

specific substructure pattern – for example carbonyl group attached to sp3 carbon, hydroxyl 

group attached to sp3 carbon, etc. [19]. 
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Molecular structure itself comprises several levels of organization between the atoms 

within a molecule and therefore fingerprints too may differ in their levels of organization. For 

example, the simplest fingerprint may contain the information that a given compound contains 

six carbon atoms and six hydrogen atoms. However, up to 217 different isomers can contain this 

fingerprint. Adding connectivity increases the specificity of the fingerprints but does not 

necessarily provide discrimination between stereoisomers. These molecules are not identical 

despite have equal constitutions and 2D fingerprints are insufficient to distinguish their 

structures. Therefore, considerable effort is taken to ensure the efficient application of 

fingerprints without sacrificing important molecular characteristics. One extension to 

fingerprints is the use of hash codes. These are bit strings of fixed length that contain 

information about connectivity, stereocenters, isotope labeling, and further properties. This 

information is then compressed to avoid redundancies [20]. Unfortunately, it is not always 

obvious which of these characteristics are important in a given context and which are not [16].  

Commonly used bit strings include the ISIS (Integrated Scientific Information System) 

keys with 166 bits and the MDL (Molecular Design Limited) [21] MACCS (Molecular ACCess 

System) keys [22] with 960 bits. The ISIS keys are small topological substructure fragments while 

the MACCS keys consist of the ISIS keys plus algorithmically generated more abstract atom-pair 

descriptors. MDL keys are commonly used when optimizing diversity [23, 24]. For example, the 

PubChem database uses a fingerprint that is 881 bits long to rank substances against a query 

compound. This fingerprint is comprised of the number and type of elements, ring systems 

(saturated and unsaturated up to a size of 10), pair-wise atom combinations, sequences, and 

substructures [16]. 
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Similarity Measures 

Molecular fingerprints are commonly used in ligand-based drug design to search a large 

database of fingerprints against a query molecule. In order to be effective, the search algorithm 

must employ a means of scoring the similarity between the query fingerprint and those in the 

database. Pairwise comparison of bit string overlap serves as the criterion for similarity and is 

based on the calculation of similarity coefficients [25]. The most commonly used similarity 

coefficient is the Tanimoto coefficient and is defined by the equation: 

 

                       
   

          
 

 

where    is the number of bits set to 1 in fingerprint A,    is the number of bits set  to 1 in 

fingerprint B, and     is the number of common bits [14]. The Tanimoto coefficient, however, 

is not always the best similarity coefficient. For example, it typically yields low similarity values 

when the query fingerprint has just a few bits set to 1 [26].  

While the Tanimoto coefficient is the most popular score equation, there are several 

others that have been proposed and the use of different scoring coefficients has been explored. 

Willett, et al. compares the different coefficients in detail, considering the use of data fusion 

methods for combining the results of database searches that use the same query but different 

similarity coefficients. They were unable to identify a single combination of coefficients that 

yielded the greatest performance in all circumstances. However, they did find that different 

coefficients consistently performed better than others within a given molecular size. For 

example, the Russell-Rao coefficient appeared in many of the best combinations involving 

smaller active molecules and the Tanimoto coefficient tended to retrieve molecules from the 

center of the size distribution[15]. 
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Similarity Searches in LB-CADD 

Fingerprint methods may be employed to search databases for compounds similar in 

structure to a lead query, providing an extended collection of compounds that can be tested for 

improved properties over the lead. In many situations, 2D similarity searches of databases are 

performed using chemotype information from first generation hits, leading to modifications that 

can be evaluated computationally or ordered for in vitro testing [4]. Bologa et al used 2D 

fingerprint and 3D shape-similarity searches to identify novel agonists of the estradiol receptor 

family receptor GPR30. This work yielded a first-in-class selective agonist with a KI of 11 nM [27]. 

SecinH3, a lead compound targeting cytohesins involved in insulin signaling initially identified 

with classical HTS, was used as a query molecule in a 2D-fingerprint search that yielded 26 novel 

cytohesin inhibitors, all of which were more potent than SecinH3 [28]. 2D pharmacophoric 

fingerprints were also used to identify novel T-type calcium channel blockers. Of the 38 

molecules selected for testing, 16 showed more than 50% blockade of CaV3.2 mediated T-type 

current. These compounds proved to be an interesting collection of T-type calcium channel 

blockers. Some showed reversible inhibition while others resulted in irreversible inhibition and 

one of the compounds caused alterations in depolarization/repolarization kinetics [29]. 

In addition to the enrichment of lead compound population, fingerprints are also used 

to increase molecular diversity of test compounds. Fingerprints can be used to cluster large 

libraries of hits in order to allow the sampling of a wide range of compounds without the need 

to sample the entire library. In this case, fingerprints are used to optimize the sampling of 

diversity space. The Jarvis-Patrick method which calculates a list of nearest neighbors for each 

molecule has been shown to perform well for chemical clustering. Two structures cluster 

together if they are in each-others list of nearest neighbors and they have at least K of their J 
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nearest neighbors in common. The MDL keys also provide a way to eliminate compounds which 

are least likely to satisfy the drug-likeness criterion [23]. 

Fingerprint Extensions 

Current research is focused on improving fingerprint-based LB-CADD methods. As 

mentioned, one drawback with fingerprint-based methods is that all features of a query 

molecule are equally important for ranking candidate molecules, regardless of any effect of 

these features on the biological activity at a target. One group, Hessler et al. proposes a method 

that intends to combine the advantages of similarity and pharmacophore searching on the basis 

of 2D structural representations only. In their proposed method, a set of query molecules is 

converted into a topological model (MTree) based on chemically reasonable matching of 

corresponding functional groups. This creates a topological map of the most similar fragments 

from a set of structurally diverse but active molecules and conserved features are characterized 

by high similarity scores of the corresponding nodes in the MTree model [30]. Due to the low 

dependence on chemical substructures, they argue that the MTree model is especially useful for 

identification of alternative novel molecular scaffolds or chemotypes. Methods for forming 

multiple feature tree models and multiple feature tree scoring schemes are also presented. 

 

Pharmacophores – Superimposing Active Compounds 

In 1998, the IUPAC formally defined a pharmacophore as ‘the ensemble of steric and 

electronic features that is necessary to ensure the optimal supramolecular interactions with a 

specific biological target structure and to trigger (or to block) its biological response’ [31]. In 

terms of drug activity, a pharmacophore is the spatial arrangement of functional groups that a 

compound or drug must contain in order to evoke a desired biological response. Therefore, an 

effective pharmacophore will contain information about functional groups that interact with the 
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target, as well as information regarding the type of non-covalent interactions and interatomic 

distances between these functional groups/interactions. This arrangement can be derived either 

in a structure-based manner by mapping the sites of contact between a ligand and binding site, 

or using a ligand-based approach. To generate a ligand-based pharmacophore, multiple active 

compounds are overlaid in such a way that a maximum number of chemical features overlap 

geometrically [32]. This can involve rigid 2D or 3D structural representations or, in more precise 

applications, incorporate molecular flexibility to determine overlapping sites. This 

conformational flexibility can be incorporated by pre-computing the conformational space of 

each ligand and creating a general-purpose conformational model or conformations can be 

explored by changing molecule coordinates as needed by the alignment algorithm [32]. For 

example, one popular pharmacophore-generating software package, Catalyst, uses the Poling 

algorithm [33] to generate approximately 250 conformers that it uses in its pharmacophore 

generation algorithm [34]. In a study targeting HSP90α, Al-Sha’er et al used 83 known reference 

molecules to generate pharmacophore queries and identified  twenty-five diverse inhibitors 

including three with IC50 values below 10 nM [35]. 

Pharmacophore Overlaying 

Molecules are commonly aligned through either a point-based or property-based 

technique. The point-based technique is the most widely used method and involves superposing 

pairs of points (atoms or chemical features) by minimizing Euclidean distances. The alignment of 

pharmacophore features is the most commonly used method when screening libraries against a 

query pharmacophore as well as for generating a pharmacophore. Property-based alignment 

techniques, on the other hand, use molecular field descriptors to generate alignments. They 

define a grid around each ligand and calculate interaction energies at each point between the 
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ligand and specific probe molecules. Overlapping interaction energies are used to guide 

alignments [32].  

Pharmacophore feature extraction 

A pharmacophore feature map is carefully constructed so as to balance generalizability 

with specificity. A general definition might categorize all functional groups having similar 

physiochemical properties (i.e. similar hydrogen-bonding behavior, ionizability) into one group 

whereas specific feature definitions may include such things as specific atom types at specific 

locations. More general feature definitions allow the identification of novel scaffolds and 

increase the population of compounds that match the pharmacophore. However, some degree 

of restriction is necessary for a pharmacophore’s predictive power to avoid high numbers of 

false positives which would result in poor LB-vHTS performance. The level of feature definition 

generalizability is usually determined by the algorithm used to extract feature maps and through 

user-specified parameters. The most common features used to define pharmacophore maps are 

hydrogen bond acceptors and donors (covalently bound, partially positive hydrogen atoms 

interact with a partially negative atom), acidic and basic groups (groups of atoms that are likely 

to be protonated or deprotonated at physiological pH), aromatic rings, aliphatic hydrophobic 

moieties, and aromatic hydrophobic moieties [34]. These are commonly implemented as 

spheres with a certain tolerance radius for pharmacophore matching [32]. 

Pharmacophore Algorithms and Software Packages 

The most common software packages employed for ligand-based pharmacophore 

generation include Phase [36], MOE [37], Catalyst [38, 39], and LigandScout [40]. Catalyst 

contains multiple tools for constructing pharmacophores. One such tool, HipHop, generates 

pharmacophores based on active molecules. Catalyst HypoGen is another pharmacophore 

module of Catalyst that uses a full range of training set compounds including inactive and active 
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compounds. The pharmacophore generated reflects not only features common among active 

compounds but also features missing from inactive compounds. HypoGen first finds all common 

features amongst actives and then removes the features common amongst the inactives. 

Simulated annealing is then employed to optimize the results returning up to ten different 

models [41]. These software packages provide different strengths and weaknesses depending 

on different implementations of certain features. For example, Catalyst only permits a single 

bonding feature per heavy atom while LigandScout allows a hydrogen-bond donor or acceptor 

to be involved in more than one hydrogen-bonding interaction [32]. MOE, on the other hand, 

allows a more customizable approach to hydrogen-bonding features. Lipophilic areas are 

generally represented as spheres located on hydrophobic atom chains, branches, or groups in a 

similar manner across software packages but with slight nuances. While subtle, these 

differences have important consequences on prediction models. For example, software 

packages that do not attach a hydrophobic feature to an aromatic ring are unable to predict that 

an aromatic group may be positioned in a lipophilic binding pocket [32]. Different algorithms 

provide different levels of customizability for user defined features. Catalyst allows the 

specification of one or more chemical groups that satisfy a particular feature while Phase allows 

not only matching chemical groups but also a list of exclusions for a given feature. MOE offers a 

level of customization that allows the user to implement entirely novel pharmacophore schemes 

as well as modification of existing schemes. However, this requires additional levels of expertise 

to program[32]. DISCO is another commonly used pharmacophore tool that determines the 

spatial orientation of common points among all active compounds and incorporates flexibility by 

accepting conformational ensembles for each compound. The features identified with DISCO 

include hydrophobic centers, hydrogen-bonding, and positive and negative charges [41]. GASP 

(Genetic Algorithm Similarity Program) incorporates conformational flexibility while overlaying 
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the compounds. It attempts to optimize the conformation by fitting them to similarity 

constraints and weighing the conformations that fit these constraints more than conformations 

that do not [41]. For a comprehensive analysis of the differences between commercial 

pharmacophore software packages, please see the 2008 review by Wolber et al [32]. 

Pharmacophore Mapping Applications 

Ligand-based pharmacophore methods have been used for the discovery of novel 

compounds across a variety of targets, resulting in the discovery of compounds showing activity 

in the micromolar and nanomolar range as well as compounds that reflect proof of concept with 

in vivo disease models. Al-Sha’er et al used 83 known Hsp90-α inhibitors to generate a 

pharmacophore model which resulted in the identification of several compounds, including one 

with an IC50 of 25 nM [35]. Schuster, et al. used Catalyst to create a pharmacophore model that 

was used to screen for 17β-HSD3 inhibitors. Hydroxysteroid dehydrogenases (HSD3) catalyze the 

reduction of alcohols or carbonyls and are suggested therapeutic targets for control of estrogen 

and androgen-dependent diseases such as breast and prostate cancer, acne, and hair loss [42]. 

Fifteen top scoring hits were tested in vitro at 2 µM and the most potent compound was able to 

inhibit 17β-HSD3 by 67.1% at 2 µM [42]. Noha et al developed 5-point pharmacophore models 

using the HipHop algorithm of Catalyst based on a training set of compounds with IC50 < 100 nM 

against IKK-β as potential anti-inflammatory and chemosensitizing agents. The authors used 128 

active and 44 inactive compounds to develop a pharmacophore model [43]. Their model was 

further refined with exclusion volume spheres and shape constraints to improve the scoring of 

compounds in their virtual high-throughput screen against the National Cancer Institute 

molecular database. Ten compounds were selected and the most potent compound 

(NSC719177) showed inhibitory activity against IKK-β in a cell free in vitro assay with IC50 of 6.95 

µM. Additionally, this compound inhibited NF-kappaB activation induced by TNF-alpha in 
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HEK293 cells with an IC50 of 5.85 µM [43]. Chiang et al used the HypoGen module of Catalyst to 

generate pharmacophore models based on an indole series of 21 compounds that showed anti-

proliferative activity through the inhibition of tubulin polymerization/microtubule 

depolymerization as novel treatments for cancer [44]. 130,000 compounds were screened and 

four novel compounds were discovered with anti-proliferative activity. The most potent 

compound displayed anti-proliferative activity in human cancer KB cells with an IC50 of 187 nM. 

This compound also inhibited the proliferation of other cancer cell types including MCF-7, NCI-

H460, and SF-268 and demonstrated anti-cancer effects in a histoculture system. In vitro assays 

revealed that this compound inhibited tubulin polymerization with an IC50 of 4.4 µM [44]. 

Doddareddy et al generated a pharmacophore model containing 3 hydrophobic regions, one 

positive ionizable center, and 2 hydrogen bond acceptor groups for the identification of novel 

selective T-type calcium channel blockers. The most potent hit showed an IC50 of 100 nM [45, 

46]. T-type calcium channels are involved in rhythmical firing patterns in the CNS and present 

therapeutic targets for the treatment of epilepsy and neuropathetic pain [29]. Manetti et al 

screened the Asinex and Chembridge databases using a pharmacophore designed to bind the 

ATP binding site of Abl. The most potent compound tested in vitro showed an IC50 of 16 nM [47]. 

Lanier et al used 3D pharmacophores containing five feature points and an exclusion sphere 

generated in MOE to filter a set of generated structures for optimal side chain selection for 

gonadotropin releasing hormone receptor [48]. 13 molecules were tested and the most active 

molecule showed a KI of 50 nM. Antagonists of the H3 histamine receptor have been suggested 

as potential therapeutics for the treatment of obesity. Roche et al used known H3 antagonists to 

generate a 3D pharmacophore model with four features including a distal positive charge, an 

electron rich position, a central aromatic ring, and either a second basic amine or another 

aromatic[49]. This model was used in a de novo approach with the Skelgen software [50] to 
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generate novel compounds from fragment libraries that match the pharmacophoric restraints. 

Discovered compounds showed selectivity for H3 versus the other histamine receptors H1, H2, 

and H4. Their most potent compound showed inverse agonist activity with an EC50 of 200 pM in 

a GTPγS functional assay and a binding affinity KI towards H3 of 9.8 nM[49]. 

Chao et al used pharmacophore-based design to take advantage of the therapeutic 

benefits of Indole-3-carbinol (I3C) in the treatment of cancer. I3C is known to suppress 

proliferation and induce apoptosis of various cancer cells through the inhibition of Akt activation 

[51, 52]. I3C, however, has a poor metabolic profile and low potency, likely due to the fact that 

its therapeutic behavior comes from only four of its metabolites. By overlaying these low energy 

conformers of these four metabolites, Chao et al was able to identify similar N-N’ distances and 

overlapping indole rings [53]. This led them to design SR13650 which showed an IC50 of 80 nM. 

Tumor xenograft studies using MCF-7 cells revealed antitumor effects at 10 mg/kg for 30 days. 

Computational analysis was also applied to increase the bioavailability and three compounds 

showed 45-60% tumor growth inhibition in vivo compared to the 26% growth inhibition of 

SR13650. SR13668 was the most potent compound and also displayed antitumor effects in other 

xenograft models. In vitro, SR13668 was shown to inhibit Akt activation by blocking growth-

factor stimulated phosphorylation and showed favorable toxicological profiles [53]. This drug is 

currently in phase 0 trials for the treatment of cancer [54].  

Raveendra et al. used pharmacophore modeling in an effort to identify novel HIV-1 

integrase (IN, enzyme mediator of the integration of viral cDNA into the host genome) 

inhibitors. This model was created with the HipHop algorithm within Catalyst and was based on 

the Quinolone 3-carboxylic acid class of IN inhibitors that show IC50 values ranging from 43.5 to 

7.2 nM and EC50 against HIV-1 replication of 805 to 0.9 nM [55]. The final pharmacophore 

hypothesis consisted of four features including a negatively ionizable feature, hydrogen-bond 
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acceptor, and two hydrophobic aromatic features. 362,260 commercially available compounds 

were screened and 56 selected for in vitro evaluation. 11 of those tested inhibited the IN 

catalytic activity with an IC50 value < 100 µM. Five compounds had an IC50 less than 20 µM and 

the most potent compound inhibited both the 3’ processing (IC50 14 µM) as well as strand 

transfer activities (IC50 5 µM) of IN[56] . Mugnaini et al created a pharmacophore model and 

screened the ASINEX database for inhibitors of IN. One compound selected for in vitro testing 

had a novel scaffold and anti-integrase activity with IC50 of 164 µM. Further improvement of this 

compound yielded an analogue with IC50 of 12 µM [57]. 

Noeske, et al [58] used 2D-pharmacophore-based virtual screening to identify novel 

mGlu1 antagonists. Antagonism of this receptor has been studied in regards to therapeutic 

potential in neurodegenerative diseases, anxiety, pain, and schizophrenia [59, 60]. Six reference 

mGlu1 antagonists were used to construct 2D-pharmacophores with the CATS software package 

[61]. This software assigns all atoms in a compound as either a hydrogen-bond donor, hydrogen-

bond acceptor, positively charged, negatively charged, lipophilic, or non-interest atom type. 

Then, all compounds of a library are compared with the distances between these different atom 

types in the reference molecule and similarity scores are calculated to rank molecules that most 

closely fit this 2D-pharmacophore. Screening the Gold Collection of Asinex Ltd yielded six 

different hit lists (one for each reference molecule). The top hits were collected from all lists as 

well as hits that appeared in three or more different lists and 23 compounds were tested 

experimentally for mGlu1 antagonism. Their most potent compound yielded an IC50 of 360 nM 

and was further optimized to a compound with an IC50 of 123 nM. 
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Quantitative Structure Activity Relationship (QSAR) 

Quantitative structure-activity relationship (QSAR) models describe the mathematical 

relation between structural attributes and target response of a set of chemicals [62]. Classical 

QSAR is known as the Hansch-Fujita approach and involves the correlation of various electronic, 

hydrophobic, and steric features with biological activity. In the 1960s, Cowin Hansch and others 

began to establish QSAR models using various molecular descriptors to physical, chemical, and 

biological properties focused on providing computational estimates for the bioactivity of 

molecules [63]. In 1964, Free-Wilson developed a mathematical model relating the presence of 

various chemical substituents to biological activity (each type of chemical group was assigned an 

activity contribution) and the two methods were later combined to create the Hansch/Free-

Wilson method [64, 65]. The general workflow of a QSAR-based drug discovery project is to first 

collect a group of active and inactive ligands and then create a set of mathematical descriptors 

that describe the physicochemical and structural properties of those compounds. A model is 

then generated to identify the relationship between those descriptors and the ligands’ 

experimental activity maximizing the predictive power. Finally, that model is applied to a library 

of compounds which are defined with the same descriptors. In this way, experimental activities 

of these compounds can be predicted and ranked. Success of QSAR, therefore, depends not only 

on the quality of the initial set of active/inactive compounds, but also on the choice of 

descriptors and the ability to generate the appropriate mathematical relationship. One of the 

most important considerations regarding this method is the fact that all models generated will 

be dependent on the sampling space of the initial set of compounds with known activity and 

their chemical diversity. In other words, divergent scaffolds or functional groups not 

represented within this “training” set of compounds will not be represented in the final model 
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and any potential hits within the library to be screened that contain these groups will likely be 

missed. Therefore, it is most advantageous to cover a wide chemical space within the training 

set. For a comprehensive guide on performing a QSAR-based virtual screen, please see the 

review by Zhang [62]. 

Descriptor Types 

Molecular descriptors can be structural as well as physicochemical and, like molecular 

fingerprints, can be described on multiple levels of increasing complexity. Information described 

can include properties such as molecular weight, geometry, volume, surface areas, ring content, 

rotatable bonds, inter-atomic distances, bond distances, atom types, planar and non-planar 

systems, molecular walk counts, electronegativities, polarizabilities, symmetry, atom 

distribution, topological charge indices, functional group composition, aromaticity indices, 

solvation properties, and many others [24, 66-72]. These descriptors are generated through 

knowledge-based methods, molecular-mechanical, or quantum-mechanical tools [34] and are 

classified according to the dimensionality of the chemical representation from which they are 

computed [73]. One-dimensional descriptors encode properties such as molecular weight, 

refractivity, and solubility [73]. 2D descriptors are commonly computed from topological 

representations of molecules while 3D descriptors are obtained from the 3D structure of the 

molecule [73].  

Many two-dimension molecular descriptors are based on graph theoretic indices and 

represent different aspects of molecular structures. The physicochemical meaning of these 

indices, however, is unclear and incapable of representing some qualities which are inherently 

three-dimensional (stereochemistry). Three-dimensional molecular descriptors were developed 

to address some of these issues [74]. Radial distribution functions (RDFs) are the most popular 

3D descriptors. RDFs map the probability distribution to find an atom in a spherical volume of 
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radius r. In its simplest form, the RDF maps the interatomic distances within the entire molecule. 

Often it is combined with characteristic atom properties in order to fit the requirements of the 

information to be represented [66]. RDFs not only provide information regarding interatomic 

distances between atoms and properties, they reflect other information such as bond distances, 

ring types, and planar versus non-planar molecules. These functions allow estimation of 

molecular flexibility through the use of a “fuzziness” coefficient that extends the width of all 

peaks to allow for small changes in interatomic distances. The equation for a property weighted 

radial distribution function is shown, where   represents the scaling factor,    is the atomic 

weighting property for atom  ,    is the atomic weighting property for atom  ,   is the 

“fuzziness” coefficient,     is the distance between atoms   and  , and   is the number of atoms 

in the molecule: 

 ( )   ∑∑     
  (     )

 

 

    

   

 

 

 

CoMFA [72] is another very popular three-dimension QSAR techniques, established over 

twenty years ago as a standard technique for constructing three-dimensional models in the 

absence of direct structural data of the target. In this method, molecules are aligned based on 

their three-dimensional structures on a grid and the values of steric (VDW interactions) and 

electrostatic potential energies (Coulombic interactions) are calculated at each grid point. Then 

a multivariable linear regression or partial least squares model is used to predict activity from 

these features. Comparative Molecular Similarity Indices (CoMSIA) is an important extension to 

CoMFA. In CoMSIA, the molecular field includes hydrophobic and hydrogen-bonding terms in 

addition to the steric and coulombic contributions. Similarity indices are calculated instead of 

interaction energies by comparing each ligand with a common probe and Gaussian-type 
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functions are used to avoid extreme values [75]. One important limitation to these methods, 

however, is that their applicability is limited to static structures of similar scaffolds while 

neglecting the dynamical nature of the ligands [34]. COMFA and CoMSIA translate the 

pharmacophore hypothesis directly into a QSAR method.  

Hristozov, et al. analyzed the performance of different descriptors across a range of 

benchmarking datasets and found that the performance of a particular descriptor was often 

dependent on the activity class. It was found that topological autocorrelation usually offers the 

best dimensionality/performance ratio. The fusion of the ranked lists obtained with RDF codes 

and 2D descriptor improved results because RDF codes, while giving similar results, covered 

different parts of the activity spaces under investigation [76]. Increasing the size of training set 

beyond 100 compounds did not bring a significant improvement in all scenarios.  

Statistical Models 

Once a set of descriptors has been established for a set of experimentally verified 

compounds (active and inactive), a statistical model fits these descriptors to their observed 

behavior. It is this model that can then be applied to a virtual database of molecules to predict 

which molecules within that library are likely to be as active as or more active than those in the 

known set. The relationship between QSAR descriptor and biological activity can be modeled as 

either a linear or non-linear relationship, depending on the complexity of the system as well as 

the computational resources available. Linear models are most commonly one of three 

methods: multivariable linear regression analysis (MLR), principal component analysis (PCA), or 

partial least square analysis (PLS) [34]. MLR is generally the most time consuming method and 

involves the stepwise addition or removal of descriptors to find the set that can provide the 

most accurate predictions. This method can require a large number of training compounds as 

the general rule of thumb is that 4-5 molecules are required for every descriptor used.  PCA 
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increases the efficiency of MLR by extracting information from multiple variables into a smaller 

number of uncorrelated variables but results are not always straightforward [77, 78]. PCA can be 

used with a much smaller set of compounds than MLR. PLS combines MLR and PCA and extracts 

the dependent variable (biological activity) into new components to optimize correlations [79]. 

PCA or PLS are commonly used for model development with CoMFA [34].  

Machine Learning 

Neural networks are the most popular non-linear regression models applied to QSAR-

based drug discovery [80]. These models are based on a self-learning algorithm where the 

neural network learns the relationship between descriptors and biological activity through 

iterative prediction and improvement cycles [34]. A major drawback of neural networks is the 

fact that they are sensitive to overtraining resulting in excellent performance within the training 

set but reduced ability to assess novel compounds.  

Another machine learning method, the Support Vector Machine (SVM), separates 

compounds into groups of actives and inactives. It does this by projecting the descriptors of the 

training compounds onto a multidimensional feature space where a single “hyperplane” is 

capable of separating the two groups [81]. SVMs have also been applied to separate proteins 

into druggable and non-druggable classes. The descriptors generated for proteins can be 

performed with commercial tools such as PROFEAT and ProtParam and include features such as 

amino acid composition, secondary structure, solvent accessibility and surface properties, as 

well as descriptors seen with compound analysis such as hydrophobicity, polarity, polarizability, 

and charge. 

QSAR Application in LB-CADD 

QSAR has been used to screen for novel therapeutics in the same way both 

pharmacophore models and fingerprint similarity methods have been applied to virtual libraries. 
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Casanola-Martin et al used Dragon software to define descriptors for tyrosinase inhibitors. 

These descriptors include constitutional, topological, BCUT, Galvez, topological charge, 2D 

autocorrelations, empirical properties and descriptors, and created a model using linear 

discriminant analysis. In vitro testing revealed their most potent inhibitor with an IC50 of 1.72 

µM. This presents a more potent inhibition of tyrosinase than the current reference drug L-

mimosine (IC50 = 3.68 μM) [82]. 

Mueller et al used QSAR and artificial neural networks to identify novel positive and 

negative allosteric modulators of mGlu5. This receptor has been implicated in neurological 

disorders including anxiety, Parkinson’s disease, and schizophrenia [83, 84]. For the 

identification of positive allosteric modulators (PAMs), they first performed a traditional high 

throughput screen of approximately 144,000 compounds. This screen yielded a total of 1,356 

hits, a hit rate of 0.94%. The dataset from this HTS was then used to develop a QSAR model that 

could be applied to a virtual screen. To generate the QSAR model, a set of 1,252 different 

descriptors across 35 categories were calculated using the ADRIANA software package. The 

descriptors included scalar, 2-dimensional, and 3-dimensional descriptor categories. A statistical 

model was created with an artificial neural network and the authors iteratively removed the 

least sensitive descriptors through several rounds in order to create the optimal set. This final 

set included 276 different descriptors, including scalar descriptors such as molecular weight up 

to 3D descriptors including the radial distribution function weighted by lone-pair 

electronegativity and pi electronegativity. A virtual screen was performed against approximately 

450,000 commercially available compounds in the ChemBridge database. 824 compounds were 

tested experimentally for the potentiation of mGlu5 signaling. Of these compounds, 232 were 

confirmed as potentiators or partial agonists. This hit rate of 28.2% was approximately thirty 
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times greater than that of the traditional HTS and the virtual screen took approximately one 

hour to complete once the model had been optimized[85]. 

In a separate study, Mueller et al [86] used a similar approach to identify negative 

allosteric modulators for mGlu5. Rodriguez et al had previously performed a traditional HTS 

screen of 160,000 compounds for allosteric modulators of mGlu5 and found 624 antagonists 

[87]. QSAR and artificial neural networks were used to generate predictive models trained on 

the dataset from Rodriguez et al that were then used to virtually screen for novel negative 

allosteric modulators of mGlu5. The software package ADRIANA was used to generate all 

descriptors from 35 different categories and iterative rounds of optimization through input 

sensitivity analysis were performed resulting in a final set of 763 descriptors. The statistical 

model was used to virtually screen over 700,000 commercially available compounds in the 

ChemDiv Discovery database. Hits were filtered for drug-like properties and fingerprint 

techniques were used to remove hits that were highly similar to provide the most variable set of 

compounds. 749 compounds were tested in vitro and 27 compounds were found to modulate 

mGlu5 signaling. This hit rate of 3.6% was a significant increase over the .22% hit rate of the 

traditional HTS screen. The most potent of the compounds showed IC50’s in vitro of 75 and 124 

nM and contained a previously unidentified scaffold.  

In addition to predicting the behavior of novel compounds within a virtual library, QSAR 

has been used as a means to improve the enrichment of compound libraries that will be used in 

traditional high-throughput screening. While many chemical libraries are constructed in a 

combinatorial manner, it has been reported that combinatorially synthesized libraries do not 

cover the chemical space of known drugs and natural products and therefore first-in-class drugs 

with novel scaffolds will be difficult to find using combinatorial synthesis and high-throughput-

screening [88]. Additionally, the number of chemical structures with molecular weight under 
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500 Daltons has been estimated to be 1063, making it necessary to devise strategies in which 

compounds can be selectively generated to cover the widest area of chemical space possible 

[89]. 

QSAR has also been applied to de novo drug design techniques when structural 

information regarding the target is unknown. Descriptor and model generation is performed and 

is used to score the de novo generated molecules in place of other structure-based scoring 

techniques such as docking. Most commonly, these involve evolutionary algorithms where 

evolved structures are repeatedly modified and their biological activities are estimated using 

QSAR models. Modifications are achieved by randomly changing a part of the structure. Ligand-

based de novo drug design, however, is less practiced than structure-based de novo design due 

to the inherent challenges in the absence of receptor structure such as difficulty in extracting 

relevant information from the ligands alone, ensuring that the generated structures are diverse 

given an often limited supply of reference structures, and ensuring that generated structures 

are useful in drug discovery. In addition to QSAR methods for scoring generated molecules, 

simulated receptors and similarity based methods have been applied [90-95]. Feher et al used 5 

selective norepinephrine reuptake inhibitors as a training set to generate 2200 molecules using 

a combination of structural similarity, 2D pharmacophore similarity, and properties to drive the 

evolution[96]. One of the top scoring compounds was found to be highly active and has been 

selected as a lead compound in a project at Neurocrine[96].  

Golla, et al. applied QSAR-based methods to the design of novel chemical penetration 

enhancers (CPEs) to be used in transdermal drug delivery [97]. This group used a genetic 

algorithm to design novel CPE’s. In this paradigm, new molecules are generated based on 

crossover and mutation operations randomly applied to candidates. All generated molecules 

were scored based on the QSAR model and predicted property values and the highest scoring 
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molecules were retained for new rounds of evolution. 272 CPE’s were used both to generate the 

QSAR model as well as provide seed molecules for the genetic algorithm. The QSAR model was 

created using sequential regression analysis and heuristic analysis using CODESSA and contained 

a final set of 40 descriptors that optimally predicted properties including skin penetration 

coefficient, logP, melting point, skin sensitization, and irritation.  

The top scoring molecules were validated experimentally for permeation and toxicity 

using Franz Cell with porcine skin and HPLC analysis as well as toxicity effects on human foreskin 

fibroblasts and porcine abdominal skin. The study resulted in the identification of 18 novel 

CPE’s, 4 of which showed minimal or no toxic effects [97].  

Hoeglund used QSAR modeling combined with synthetic optimization in a follow-up to 

their most potent hit from a 2008 in silico screen for inhibitors of autotaxin. Autotaxin is an 

autocrine motility factor and has been linked to cancer progression, multiple sclerosis, obesity, 

diabetes, Alzheimer’s Disease , and chronic pain through the production of LPA [98-103]. 

Analogues of the lead compound were tested and four of the 30 exhibited IC50 less than or equal 

to the lead. The most potent compound showed 3-fold higher affinity for autotaxin than the 

lead while another compound showed 2-fold higher affinity [104]. 

Over the past several decades, over 18,000 QSAR models have been reported for a 

variety of targets with a variety of descriptors. Hansch et al have carefully collected these into a 

comprehensive database of QSAR models called C-QSAR [105]. This collection has provided not 

only access to models for novel applications, but allows the analysis of QSAR models to find 

areas of problems and improvement demands. Kim et al examined the C-QSAR database for 

outlier patterns (compounds that showed poor prediction when the average prediction for the 

model was good) and found that over the 47 QSAR models examined, the number of 

compounds scoring as outliers ranged from 3% to 36% and 26 of the 47 datasets showed 20% or 
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more compound outliers [106]. They presented several theories as to why QSAR models are so 

sensitive to the generation of outliers. One possibility came from analysis of the RCSB protein 

databank where they discovered examples where related analogs were shown to bind in very 

different poses. Another explanation presented was the confounding variable inherent in many 

QSAR-based methods, that of protein flexibility. Protein flexibility may allow odd-shaped 

compounds to bind and exert an effect by conforming to the structural inconsistencies, 

presenting difficulty in relating the characteristics of an unusual ligand with those of the more 

common ligands in the training set [106]. 

 

Conclusions 

 CADD is a useful and important tool in the discovery of novel therapeutics. It can be 

used to reduce the number of compounds necessary to screen in the search for a novel lead 

thereby reducing the costs and workload associated with a full-scale HTS endeavor.  Virtual HTS 

projects can be performed using computational tools that are capable of screening many more 

compounds than traditional HTS at a reduced cost. These tools use sophisticated algorithms to 

predict activity against a target of interest and prioritize future in vitro and in vivo experiments.  

Over the past twenty years, CADD has proven to be a viable method in the discovery of novel 

leads and therapeutics.  

 Ligand-based CADD describes a branch of CADD that uses sets of known active and 

inactive compounds against a target of interest to predict activities for novel compounds and 

screen virtual compound libraries. These methods are preferable when information of the target 

structure is unknown. Several types of ligand-based CADD, ranging in complexity have been 

applied to drug discovery. The most naïve of these approaches is molecular fingerprints that aim 

to describe the presence or absence of specific functional groups. Pharmacophore overlaying 
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involves the superimposition of known active compounds to map the distribution of chemical 

features that are common amongst all of the actives. vHTS using pharmacophores searches for 

compounds containing the same distribution of features  as those common to the known 

actives. QSAR applies a wide range of descriptors that can be scalar, 2D, or 3D in nature to 

numerically represent the information contained within a molecular structure most important 

for its biochemical behavior. Statistical or machine learning techniques are applied to construct 

models that can quantitatively predict behavior of compounds from their numerical 

representations.  

 These methods have been applied extensively to vHTS projects, resulting in the 

discovery of novel, highly potent compounds. Additionally, they have been used to improve the 

properties of previously identified lead compounds, and aid in hit list prioritization through 

similarity and clustering analysis. However, LB-CADD continues to see improvements by way of 

more sophisticated alignment and scoring algorithms, more informative descriptors, and 

improved model generation. In the following chapter, I present a novel QSAR descriptor that 

addresses some shortcomings regarding enantioselectivity with traditional 3D-QSAR in an effort 

to produce models with increased predictability and improved performance in vHTS. 
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CHAPTER II 

 

BCL::EMAS – Enantioselective Molecular Asymmetry Descriptor for 3D-QSAR 

 

Introduction 

Stereoisomers are defined as different molecular species of equal constitution which are 

separated by energy barriers[107]. For organic molecules, stereochemistry is most frequently 

caused by carbon atoms with four different substituents. However, other stereo-centers exist 

such as positively charged nitrogen atoms with four different substituents, double bonds with 

different substituents on each of the two carbon atoms, stereoisomeric allenes, atropisomeric 

biphenyls, etc. Enantiomers are a subset of stereoisomers that are defined as non-

superimposable mirror images (enantios being Greek for opposite and meros for part). Despite 

their structural similarities, enantiomers can display very different pharmacological profiles. 

Stereoisomers that are not enantiomers are called diastereomers. Stereoselectivity is widely 

prevalent in nature as most proteins are formed from the genetically encoded L-amino acids 

making small molecule binding pockets enantio-selective[108]. In drug discovery, there are 

examples in which different enantiomers show different efficacies, e.g. dexrabeprazole[109] and 

beta blockers[110], and different toxicities, e.g. levobupivacaine[111]. In 1992, the FDA issued a 

statement requiring that the development of any racemate (mixture of a compound’s 

stereoisomers) carries a justification for the inclusion of both isomers[112] and in the year 2000, 

chiral drugs accounted for over $100 billion in sales[113]. Between 1985 and 2004, the number 

of single enantiomer drugs as a percentage of chiral molecules increased from 31.6% to 

89.8%[114]. 
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Given the importance of stereoselectivity in drug design, it is necessary that any 

computational approach to drug discovery distinguishes between stereoisomers. In Structure-

Based Computer-Aided Drug Discovery (SB-CADD) stereochemistry is explicitly accounted for as 

the molecule is docked into a structural model of the protein binding site. The 3D structure of 

the molecule in complex with the protein is evaluated taking its stereochemistry into account. In 

complex with the target protein even enantiomers turn into diastereomers and can be 

distinguished. In Ligand-Based Computer-Aided Drug Discovery (LB-CADD) the chemical 

structure of active compounds is compared to derive common features that determine activity. 

The task of distinguishing stereoisomers and in particular enantiomers becomes more 

challenging as stereochemistry needs to be defined in the absence of the protein. This is 

impossible in 2D molecular descriptors where only the constitution of a molecule is taken into 

account. Therefore, extensions to 2D molecular descriptors have been developed – sometimes 

described as 2.5D descriptors – that describe configuration and can therefore define 

stereochemistry. Lastly, 3D descriptors based on the molecular conformation can define 

stereochemistry, if appropriately designed. 

The IUPAC convention for distinguishing stereoisomers is the Cahn-Ingold-Prelog (CIP) 

convention distinguishing R (rectus) and S (sinister) configuration of stereocenters. It requires a 

priority weighting system for the different substituents that is incapable of dealing with some 

complex scenarios. Extensions to the CIP system have been introduced to handle situations in 

which the chiral center did not rest on an atom but rather a chirality plane or axis and for 

stereoisomers which do not possess centers of chirality at all (stereisomeric allenes, 

atropisomeric biphenyls, and ansa-compounds)[107]. Further complications arise for 

pseudoasymmetric stereogenic units, defined as pairs of enantiomorphic ligands together with 

two ligands which are non-enantiomorphic. In cases such as these, the priorities of two 
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substituents depend on their own chiral centers. One particular disadvantage is that the CIP 

nomenclature does not always follow chemical intuition. For example, take the two molecules 

HC(CH3)(OH)F and HC(CH3)(SH)F. Naively we would align these close derivatives by 

superimposing H with H, CH3 with CH3, OH with SH and F with F. This assigns R-HC(CH3)(OH)F to 

S-HC(CH3)(SH)F and vice versa. In result, closely related derivatives that place similar functional 

groups in the same regions of space and are likely to have similar activity can have opposite CIP 

assignment. Therefore, the CIP convention is not suitable to describe stereochemistry effectively 

for LB-CADD.  

Extensions to 2D-QSAR have been proposed to distinguish enantiomers. Golbraikh and 

co-workers introduced a series of chirality descriptors that use an additional term called the 

chirality correction added to the vertex degrees of asymmetric atoms in a molecular graph 

[115]. This method is similar to one proposed by Yang and Zhong[116] where the chiral index 

was instead appended to the substituents attached to the chiral center. Multiple similar 

algorithms have also been proposed [117-120]. For example, Brown, et al[117] added chirality 

to their graph kernel method. The drawbacks of these methods include their reliance on the 

problematic R/S designations as well as the combination of spatial and atom property 

information such that their indices become a principally mathematical concept with little 

interpretation on physical terms. 

Another approach proposed by Benigni and co-workers [121] describes a chirality 

measure based on the comparison of the 3D structure for a molecule with all others in a data 

set. Zabrodsky[122] proposed a similar continuous symmetry measure which quantifies the 

minimal distance movement for points of an object in order to transform it into a shape of 

desired symmetry. However, these molecular similarity indices are very sensitive to relative 
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orientation and depend on pairwise molecular indices which can complicate QSAR-based high 

throughput screening. 

Aires-de-Sousa, et al [123-125] introduced a 3D-QSAR method for handling 

enantiomers. Classical 3D-QSAR descriptors such as radial distribution functions are incapable of 

distinguishing between enantiomers based on their nature. This method employs an RDF-like 

function that utilizes a ranking system for each chiral center introduced by Zhang and Aires-de-

Sousa that reinterpreted the CIP rules in terms of more meaningful physicochemical properties. 

Additionally, it had the benefit of being a vector rather than single value which was equal and 

opposite for enantiomer pairs. However, this method requires the identification and 

appropriate labeling of all stereogenic units and suffers from the fact that spatial information is 

combined with atom properties where some physical interpretability is lost. It is also worth 

mentioning that it is not clear if it is pharmacologically relevant to specify every stereogenic 

component of a molecule, but rather if different profiles between enantiomers depend on 

specific chiral centers and/or an overall chirality of the molecule as a whole. 

CoMFA[72] is an appealing method for distinguishing between enantiomers as it avoids 

the necessity to identify stereogenic centers. Rather, it intrinsically takes chirality into account 

as the molecular fields of chiral isomers are inherently different. However, the method relies on 

superimposition of all molecules[115] which is difficult to achieve for large or diverse substance 

libraries. 

Here we propose a novel enantio-selective 3D descriptor for QSAR that is similar to the 

RDF-like function proposed by Aires-de-Sousa and co-workers but with important differences to 

address the concerns raised above. We call this new method EMAS (Enantio-selective Molecular 

ASymmetry). Our method does not rely on any priority ranking or distinction of every 

stereogenic unit, thereby eliminating the need to combine spatial and atomic properties and 
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bypassing the difficulties that arise in non-conventional chiral centers. Rather, the enantiomeric 

distinctions “emerge” from the spatial distribution of atoms within the molecule. Additionally, 

EMAS is designed to avoid a rigid distinction between enantiomers but rather to represent the 

overall asymmetry of a molecule as it compares to other similar molecules as well as its own 

enantiomorphs. Therefore, EMAS intends to describe overall molecular asymmetry while 

including a directionality component that can distinguish between enantiomers. 

 

Results and Discussion 

 

Shape and Property Enantiomorphism 

Enantiomorphism in small molecules is impacted by two phenomena. The first factor is 

the shape of the molecule – i.e. the distributions of its atom coordinates in space. If the mirror 

image of this shape cannot be superimposed with the original version, the two molecules are 

enantiomers. Beyond the overall shape the distribution of properties plays a role. We can 

envision molecules that have a (near) perfect symmetric shape. Image and mirror image will be 

identical shape wise. However, distribution of partial charge, polarizability, and electronegativity 

can be enantiomorph. While both contributions are coupled they represent two dimensions of 

one phenomenon. For a specific molecule one of the other factors might be more pronounced. 

For example steroids can have enantiomorph shapes but have relatively uniform property 

distributions as they are dominated by apolar CH groups. On the other hand, the molecule 

CFClBrI is an almost perfect regular tetrahedron with a highly enantiomorph distribution of 

partial charge and polarizability. As both contributions can determine properties and activities 

of small molecules, stereochemical descriptors should capture and ideally distinguish both 

contributions. 
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Radial Distribution Functions separate shape information and property distribution 

Radial Distribution Functions (RDFs) are often applied in 3D-QSAR[66, 126]. As a means 

of comparison, the general form of the atomic radial distribution function is shown: 
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  (     )

 
   

 

 

 

  

In this equation,   is a smoothing parameter, often called the ‘temperature’ while     is 

the distance between atoms   and  ,   is the total number of atoms in the molecule, and   is the 

running variable for the function  ( ). Often, such equations are ‘weighted’ with a property 

coefficient for both atoms     . The function plots shape (i.e. distance between two atoms) on 

the x-axis and the respective property coefficient on the y-axis thereby separating geometry 

from property distribution. With        this function is a representation of the overall shape 

of the molecule based on the frequencies of all atom pair distances within each radial distance 

step. As distances are invariant to mirroring, enantiomers share identical RDF functions. Note 

that diastereomers have distinct RDFs as not all atom pair distances are identical.  

 

Expanding RDFs to ‘signed’ volumes that are sensitive to shape enantiomorphy 

We first look for the simplest geometric form that would be sensitive to mirroring. This 

shape would be a tetrahedron. We choose tetrahedrons consisting of all combinations of three 

atoms       and the center of the molecule. Other approaches use all permutations of four 

atoms. The present approach reduces the computational demand. The geometric property 

plotted for the tetrahedron is volume.   ,   , and     are the coordinates of the three atoms. The 

center of the molecule is defined by point  . Therefore, the signed volume is computed as: 
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While the absolute term always reflects volume it is important to note that the result 

can have a positive or negative sign, depending on the order of points which is initially arbitrary. 

We note that the volume has an arbitrary sign that inverts when the molecule is converted into 

its mirror image. We note further that the volume becomes 0 if the plane defined by   ,   , and 

   includes  . This property is beneficial as a planar arrangement of atoms cannot be 

enantiomorph. 

However, for a tetrahedron to contribute to enantiomorphy, its edges ‖    ⃗⃗ ⃗⃗ ⃗⃗ ‖, ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖, 

and ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ must be of different length. This property is captured by a stereochemistry score: 

                 
(‖    ⃗⃗ ⃗⃗ ⃗⃗ ‖  ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖)  (‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖  ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖)  (‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖  ‖    ⃗⃗ ⃗⃗ ⃗⃗ ‖)

             (‖    ⃗⃗ ⃗⃗ ⃗⃗ ‖ ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖)
 

 ( 

Two things emerge from the numerator. The asymmetry is evaluated based on the 

variation in distances between the three atoms. If any two distances are equal, the triangle 

formed from the three atom coordinates will contain perfect symmetry and the score will be 0. 

Additionally, the directional (enantiomorphic) information emerges based on the order of 

distances. For example, if ‖    ⃗⃗ ⃗⃗ ⃗⃗ ‖ > ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ > ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖, then this product will have a negative sign 

( )  ( )  ( ). However, if, from the vantage point of the molecular center, the order of 

distances has been shuffled (as would be seen in an enantiomer ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖ > ‖    ⃗⃗ ⃗⃗ ⃗⃗ ‖ > ‖    ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖), the 

sign changes as well ( )  ( )  ( ).  Recall that by allowing a signed volume, we ensure that 

the order of distances does not rely on the order of atoms coordinates encountered, but rather 

as the order of distances seen from the molecular center in terms of the cross-product’s 

direction. 

The final directional asymmetry score (DAS) of any given atom triplet becomes: 

    √                                   
 

 ( 
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Figure 1. Calculating DAS (a) Scores reflect opposing enantiomorphs based on cross-product 
direction and geometric center. Enantiomers ((2R,3R)-2-(chloromethyl)-3-propyloxirane and 
(2S,3S)-2-(chloromethyl)-3-propyloxirane) with two stereocenters are shown. (b) Two triangles 
are visualized in both enantiomers. These triangles encompass the same triplets of atoms 
between the two molecules. Four tetramers formed by the atom triplets and molecular center 
are visualized. i, j, k, and i’, j’, k’ reflect the order of these atoms in either molecule. Importance 
of atom ordering is shown based on the direction of cross-product (red arrow) and location of 
geometric center (black circle). (c) Volume and score calculations for four tetrahedrals across 
both enantiomers are shown. Note the opposite signs and scores between the two enantiomers’ 
tetrahedrals. 
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Figure 2. Atom triplets in Diazepam (a) Top 5 scoring atom triplets in diazepam are shown. The 
black spot in all figures represent the geometric center of the molecule. (b) Lowest 5 scoring 
atom triplets in diazepam. All triplets shown here score 0 and do not contribute to the RDF-like 
code. (c) Top 5 positive and top 5 negative scoring triplets in diazepam. Here is visualized the 
different distribution of high scoring positive (yellow) versus high scoring negative (orange) 
triplets in diazepam. 
 

Note that for the final DAS, the product’s cube-root has been taken to achieve a 

dimension of distance resembling a common RDF. This procedure preserves the sign and 

expands the range of frequently occurring low-scoring triplets at the cost of rare triplets with 

high scores. Substituting this directional asymmetry in place of atom distance, the EMAS 

function becomes: 
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Where   is the smoothing parameter,   is the total number of non-hydrogen atoms, 

and   is the running variable of the function     ( ). The alternate sign preceding the 

exponential function transfers the “directionality” of the score to the overall function so that at 

any given score, the intensity reflects the subtraction of negative (one direction) from positive 

(opposite direction). Figure 3 maps the EMAS plot for epothilone B and its mirror image. 

 

Figure 3. EMAS curves for Epothilone B (a) Plotted EMAS curves for Epothilone B (blue) 
compared with its mirror image (red). X-axis represents the Directional Asymmetry Score in 
angstroms while the y-axis indicates the frequency of these scores across the entire molecule. 
(b) Atom triplets with a directional asymmetry score of approximately 0.3 angstroms. Note that 
these triangles generally cover the center of the molecule and are fairly symmetric. (c) Atom 
triplets with a directional asymmetry score of approximately 1.3 angstroms. Note that these 
triangles are further from the center of the molecule and have an asymmetric shape.  (d) Atom 
triplets with a directional asymmetry score of approximately 1.7 angstroms. Note that these 
atom triplets lie furthest from the center of the molecule and are very asymmetric. 
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As with the basic radial distribution function, the absence of any weighting coefficient 

results in a descriptor that encodes only spatial information. While this is important information 

in and of itself, the addition of a property weighting coefficient increases the utility of this 

descriptor. Since we are iterating over all atom triplets, the possibility that one atom property 

can throw off two other atom properties in unintended ways made it problematic in some cases 

to simply multiply the three atom properties together. Adding the properties, on the other 

hand, can circumvent this issue but two atom properties of equal magnitude and opposite signs 

can cancel each other out. Therefore, we retained the functionality for both property coefficient 

methods and suggest that any use of this descriptor in larger datasets test either method since 

one may outperform the other depending on the dataset. 

The single biggest drawback to our method is that it is highly sensitive to molecular 

flexibility. However, this is a common drawback seen with many 3D-QSAR techniques. By 

limiting an algorithm to a single static conformation, compounds that interact with binding sites 

while in a conformation that is different than the one used can be missed. One possible solution 

to this issue is through the use of conformational ensembles. In this case, compounds can be 

represented by a range of conformations rather than a single static conformation. Strategies 

incorporating conformational ensembles are currently being pursued in our laboratory and are 

hypothesized to increase the predictability of this descriptor, especially in molecules with a high 

degree of flexibility.  

 

Evaluation of EMAS as a Novel Descriptor 

Predictability Benchmarking: Cramer’s Steroids 

A commonly used dataset for evaluating the predictive capability of novel 

stereochemistry-based descriptors was introduced by Cramer et al. in 1988 [127] and several 
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structures were corrected in a subsequent publication [128]. These thirty-one steroid structures 

are accompanied with their experimental binding affinities to human corticosteroid-binding 

globulins (CGB) and provide a small dataset containing many stereocenters. Additionally, the 

rigidity of these compounds makes them an ideal benchmark set for 3D-QSAR algorithms 

eliminating the factor of conformational flexibility. Since EMAS can be employed in three forms: 

spatial only, property weighting coefficient via summation, and property weighting coefficient 

via multiplication, we trained three separate artificial neural network (ANN) models using 

descriptors derived in each of these three methods. To predict binding affinities over the entire 

dataset, we used a cross-validated leave-one-out approach. To compare the predictive power of 

our model versus other descriptors that have been tested against the steroid set, we calculated 

the correlation coefficient    of predicted versus actual affinities and the “cross-validated   ” 

  .  

As expected, the ANN model generated using no property weighting (solely spatial 

information) performed the worst of the three, producing a    of 0.78 and a    of 0.60. By 

weighting with a multiplicative property coefficient, the performance increased considerably, 

resulting in a    of 0.86 and a    of 0.74. Weighting with the property summation coefficient, 

yielded the best predictions with a    of 0.89 and a    of 0.78.  

Since we began with an interest in generating a molecular asymmetry descriptor that 

could distinguish between enantiomers, we wanted to ensure that the inclusion of directionality 

increased the information contained in the descriptor. Therefore, we created a version of the 

descriptor that incorporates just the absolute value of all stereochemistry scores, thereby 

eliminating all directional information while retaining all other spatial information. We found 

that by training our model without directional information, the predictive capabilities for the 

steroid affinities decreased to a    of 0.65 and a    of 0.41, reinforcing our original design to 
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capture stereochemistry. We also compared the model employing EMAS with one created with 

a traditional RDF. This model performed worse than any of our three methods giving a    of 

0.75 and a    of 0.56. Weighting the RDF’s with the same properties used to weight EMAS did 

not produce any significant improvement in the model (data not shown). Cross-validated 

predictions for all variations of EMAS as well as the experimental affinities can be found in Table 

1. 
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Table 1. Experimental and predicted binding affinities for the 31 Cramer’s steroids using 
novel stereoselective descriptor to train ANN models. Spatial predictions utilize the novel 
descriptor without any atom property weighting. Multiply properties utilize the novel descriptor 
weighted by the product of atom properties. Sum properties utilize the novel descriptor 
weighted by the sum of atom properties. 
 

 
Molecule 

Observed 
CBG 

affinity 
(pKa) 

Predicted 
[spatial] 

Predicted 
[multiply 

properties] 

Predicted 
[sum 

properties] 

Predicted 
[no stereo-
chemistry] 

aldosterone -6.28 -7.47 -7.31 -7.25 -7.22 

androstanediol -5.00 -5.47 -5.46 -5.33 -5.56 

5-androstenediol -5.00 -5.47 -5.43 -5.36 -5.75 

4-androstenedione -5.76 -5.64 -5.60 -5.79 -6.36 

androsterone -5.61 -5.78 -5.81 -5.55 -5.42 

corticosterone -7.88 -7.30 -7.37 -7.32 -7.34 

cortisol -7.88 -7.63 -7.58 -7.64 -7.33 

cortisone -6.89 -7.22 -6.83 -7.39 -7.07 

dehydroepiandrosterone -5.00 -5.39 -5.13 -5.46 -5.80 

11-deoxycorticosterone -7.65 -7.48 -7.47 -7.50 -6.85 

11-deoxycortisol -7.88 -7.66 -7.53 -7.59 -7.52 

dihydrotestosterone -5.92 -5.38 -5.70 -5.43 -5.96 

estradiol -5.00 -5.40 -5.36 -5.32 -5.21 

Estriol -5.00 -5.25 -5.26 -5.43 -6.10 

estrone -5.00 -5.30 -5.21 -5.54 -5.42 

etiocholanolone -5.23 -6.42 -6.44 -6.22 -6.27 

pregnenolone -5.23 -5.30 -5.25 -5.37 -6.37 

17a-hydroxypregnenolone -5.00 -5.20 -5.28 -5.29 -6.65 

progesterone -7.38 -7.17 -7.27 -7.13 -6.46 

17a-hydroxyprogesterone -7.74 -7.42 -7.39 -6.97 -6.70 

testosterone -6.72 -6.08 -6.36 -6.19 -5.94 

prednisolone -7.51 -7.61 -7.36 -7.65 -7.03 

cortisolacetat -7.55 -6.74 -6.90 -7.63 -6.00 

4-pregnene-3,11,20-trione -6.78 -6.40 -6.83 -6.09 -6.46 

epicorticosterone -7.20 -5.98 -6.00 -7.03 -7.15 

19-nortestosterone -6.14 -5.58 -5.86 -5.54 -5.45 

16a,17a-
dihydroxyprogesterone 

-6.25 -7.25 -7.04 -7.46 -7.36 

16a-methylprogesterone -7.12 -6.69 -6.39 -6.78 -6.60 

19-norprogesterone -6.82 -6.01 -6.30 -7.25 -6.19 

2a-methylcortisol -7.69 -6.62 -7.22 -7.68 -6.57 

2a-methyl-9a-fluoro-
cortisol 

-5.80 -7.56 -6.97 -6.22 -6.74 

    0.78 0.86 0.89 0.65 

    0.60 0.74 0.78 0.42 
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Since this dataset is well-established across similar descriptors in the literature, we 

compared our predictive power to other methods and found that our best    fell at the average 

   of all of these methods (0.63 <    < 0.94). This result is somewhat difficult to interpret for 

several reasons: a) different statistical models are utilized, b) different degrees of cross-

validation were employed, and c) our descriptor solely describes stereochemistry and is meant 

to be complemented by other descriptors (read below). Most of the competing descriptors 

include more information on molecule size, shape, and property distribution. However, it is 

important to note that while EMAS does not require any molecular alignment or pre-annotated 

stereocenters, it is capable of performing well with a dataset that contains a great deal of 

stereochemistry. Additionally, the inclusion of directional information outperforms a similar 

implementation lacking directional information as well as the similar RDF descriptor weighted 

with or without atom properties. For a comparison of our   with other documented tests 

against Cramer’s steroids, see table 2. 
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Table 2. Comparison of novel stereoselective descriptor predictability with other published 
QSAR methods against the Cramer’s steroid set. Calculation of    can be found in the methods 
section. Statistical model generation method is indicated as well as QSAR method employed are 
indicated for each reference. 
 

QSAR Method Model Creation q2 Reference 

Purely Spatial RDF-like 
stereochemistry 

Artificial Neural Network 0.56  

Property weight  RDF-like 
stereochemistry (product) 

Artificial Neural Network 0.74  

Property weight  RDF-like 
stereochemistry (sum) 

Artificial Neural Network 0.78  

Stochastic 3D-chiral linear indices Multiple Linear Regression 0.87 [119] 

Chiral Topological Indices Stepwise Regression Analysis 0.85 [116] 

Chiral Graph Kernels Support Vector Machine 0.78 [117] 

Chirality Correction and Topological 
Descriptors 

K-nearest neighbor 0.83 [115] 

Molecular Quantum Similarity 
Measures 

Multilinear Regression 0.84 [129] 

Shape and Electrostatic Similarity 
Matrixes 

Non-linear Neural Network 0.94 [130] 

Comparative Molecular Moment 
Analysis 

Partial Least Squares (PLS) 0.83 [128] 

Comparative Molecular Similarity 
Indices Analysis 

PLS 0.67 [131] 

Comparative Molecular Field 
Analysis 

PLS 0.65 [127] 

E-state Descriptors PLS 0.62 [132] 

Molecular Electronegativity 
Distance Vector 

Genetic Algorithm PLS 0.78 [133] 

Molecular Quantum Similarity 
Measures 

Multilinear Regression and 
PLS 

0.80 [134] 

 

vHTS Utility and Enrichment Benchmarking: PUBMED AID891 

We provide the above analysis for comparison. However, realistically the steroid dataset 

is too small to provide a good benchmark for EMAS as often the number of features (24) is in 

the same order of magnitude as the number of data points (31). Therefore we tested the 

descriptor in a more virtual high-throughput screening (vHTS) endeavor. For the benchmark 

dataset, we used publicly available results of a conformational screen for inhibitors and 

substrates of cytochrome P450 2D6 (AID 891). This dataset is of moderate size (approximately 
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10,000 molecules) and contains both active (18%) and inactive (82%) compounds. We employed 

a forward-feature selection (FFS) analysis that selects optimal descriptors from RDF’s, 3D 

Autocorrelations (3DA), and 2D Autocorrelations (2DA) labeled with atom properties including 

charge, electronegativity, and effective polarizability (see Experimental Section). For a complete 

list of features tested in forward-feature selections, please see appendix table A1. ANN 3D-QSAR 

models were trained with and without inclusion of the EMAS descriptors in the list of 

descriptors for FFS to choose from. Hence the utility of the EMAS descriptor can be evaluated in 

two ways: a) are the EMAS descriptors selected by the FFS procedure? and b) does the final 

model that includes EMAS descriptors have increased predictive power? The FFS with the 

default set of initial features resulted in a best descriptor set of 9 features distributed evenly 

across RDF’s, 3D Autocorrelations (3DA), and 2D Autocorrelations (2DA). Cross-validated 

predictions from the ANN model constructed with this feature set produced an enrichment of 

3.94 and a receiver operating characteristic (ROC) curve with an area under the curve (AUC) of 

0.826.   

An identical FFS analysis was performed by combining the default set of features with 34 

EMAS features including all three variations of EMAS (spatial, property weighting via sum, and 

property weighting via product) weighted with the same list of properties used to test RDFs, 

3DAs, and 2DAs. The best set of features contained 20 total features distributed across RDF’s, 

3DA’s, 2DA’s, number of hydrogen bond donors, and several EMAS features. There were a total 

of seven EMAS features represented in the best feature set. Therefore, almost one third of the 

total features in the best feature set generated through this analysis were EMAS features. This 

set of seven features contained a spatial EMAS weighted by Van der Waals surface areas, three 

EMAS features weighted via the product method and three EMAS features weighted via the sum 

method. This substantial representation of EMAS in the best feature set suggests that EMAS 
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successfully provides useful information for the model development that may not be 

represented in any other feature in the original set. Cross-validated predictions from the ANN 

model constructed from this EMAS-inclusive feature set produced an enrichment of 4.38 and a 

ROC curve with an area under the curve of 0.837, a clear improvement over the control model. 

Positive predictive value (PPV) is a related measure of a model’s predictive capability which 

tracks predictive precision as more and more positive predictions are made. By comparing the 

average PPV precision over a range of the fraction of total predictions made (fraction positive 

predictions, FPP) of interest, it is possible to compare predictive capabilities for two models. 

Over the FPP range of .005 to .05, we find that our model trained with the EMAS features 

performed significantly better than the model trained without EMAS features (.727 PPV 

precision compared with .651). A paired t-test for the cross-validated models comparing 

precisions in this FPP range showed that this is a statistically significant improvement (p < .005) 

over the analysis completed without EMAS features. For a complete list of the best features 

determined from both forward feature analyses, please see the appendix table A2. Comparative 

ROC and PPV curves from the forward feature analyses for the control set of features and the 

control set combined with EMAS features are shown in figure 4. 
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Figure 4. ROC and PPV results for the feature forward analysis with the control set of features 
compared with the control set combined with EMAS features (a) AID891 prediction ROC curves 
generated from the ANN models trained with the best descriptor set generated from the 
forward feature analysis beginning with the control set of features combined with the novel 
EMAS features (red) show improved performance when compared with ROC curves generated 
from the ANN models trained with the best descriptor set generated from the forward feature 
analysis beginning with the control set of features (blue) (b) PPV curves for models trained with 
the best descriptor set of control features combined with the EMAS features (red) shows 
improved performance over those models trained with the best descriptor set of control 
features only (blue). Dashed lines of corresponding colors show the average PPV values over the 
FPP region from which the models were optimized (.005 to .05 fraction positive predicted 
values). 
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Conclusions 

The goal of this project was to develop a 3D-QSAR descriptor that was capable of not 

only distinguishing between enantiomers but of describing the overall degree of asymmetry for 

a molecule. This was accomplished by developing an RDF-like curve that described the 

distribution of ‘directional asymmetry scores (DAS)’ rather than inter-atomic distances. The DAS 

is designed to incorporate information regarding the degree and direction of asymmetry 

between each atom triplet in the molecule. The degree of asymmetry is calculated as a product 

of how asymmetrically the three atoms are distributed and the distance they lie from the center 

of the molecule. This asymmetry is related to the differences between their interatomic 

distances and the distance from the center of the molecule is related to the volume of the 

tetrahedron created by the three atom coordinates and the geometric center of the molecule. 

The direction of asymmetry is related to the distribution of the interatomic distances between 

these three atom coordinates from the point of view of the center of the molecule. If the sides 

of the triangle created by these three atoms are different, then identical triangles “pointing” in 

opposite directions will have a different ordering of sides depending on which direction they 

“point.” This is the key variable that allows the descriptor to distinguish between enantiomers. 

To exclude any influence that the order in which atoms are listed in the molecule may play on 

this directionality scheme, we offset this by incorporating the cross-product of the two vectors 

created from the three atoms. This cross-product will swap signs were the atoms are ordered 

differently thereby eliminating the influence of the order of atoms. 

We tested the value of this descriptor by training ANN 3D-QSAR models. In order to 

provide a basis of comparison with other documented QSAR methods that address 

stereoselectivity, we used a small dataset of steroids that is commonly used as a benchmark for 

these types of descriptors. We found that the predictability of our descriptor performed 
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comparably with other stereochemistry-based descriptors when evaluated with this set of 31 

steroids (   = 0.89,    = 0.78). Additionally, we assessed the utility of the EMAS descriptor by 

running vHTS experiment on a publically available dataset (PUBCHEM AID 891). A forward-

feature selection analysis that determines the most effective set of descriptors for this dataset 

was employed and the best set of features included several EMAS functions (7 EMAS of 20 total 

features). This set of features improved the performance of our models over those that were 

tested without EMAS functions (enrichment of 4.38 when including EMAS versus enrichment of 

3.94 without EMAS).  

We conclude that the EMAS descriptor encodes stereochemistry thereby providing 

important information that is not captured in other 3D-QSAR descriptors. There are several 

published QSAR methods that performed better than EMAS for the steroid dataset but these 

methods often require some heuristic for describing the stereocenters within each of the 

molecules or aligning the 3D structures of these molecules. By avoiding the necessity to assign a 

directional designation to each stereocenter, EMAS is capable of evaluating molecules without 

the problematic R/S annotation method. Other methods that avoid these annotations present 

their own limitations, as an additional alignment step and framework similarity is required. 

These issues limit the range of descriptor applicability and introduce more degrees of freedom. 

While our descriptor is outperformed by multiple techniques with the steroid dataset, we 

contend that this is not a very accurate comparison. The cross-validation methods used by many 

of the other methods vary and are often more forgiving than ours. Some drawbacks that EMAS 

addresses are not encountered with the steroid dataset as it is composed of very similar 

molecules with relatively simple, fully annotated stereocenters. Additionally, EMAS achieves a 

more global representation of stereochemistry that retains a physical basis and is applicable to 
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any set of molecules. This broad applicability is not found with other stereochemistry-based 

descriptors. 

In summary, EMAS provides a widely applicable stereo-sensitive descriptor that 

intrinsically incorporates physical chirality rather than describing it with abstract annotations. 

 

Methods 

 

Generation of Numerical Descriptors for QSAR Model Creation 

3D models of all small molecules were generated using the CORINA software package 

unless already defined. For feature selection analysis, a set of 2,100 numerical descriptors was 

generated using the BioChemical Library (BCL) software created in our lab. The descriptors can 

be classified into 5 categories, including six scalar descriptors (molecular weight, number of 

hydrogen bond donors, number of hydrogen bond acceptors, logP, total charge, and topological 

surface area), 18 2-dimensional auto-correlation functions, 18 3-dimensional autocorrelation 

functions, 18 radial distribution functions, and 34 novel EMAS descriptors. These 34 descriptors 

included spatially-based asymmetry functions with and without Van der Waals (VDW) surface 

area scaling, 16 property-weighted asymmetry functions based on the multiplicative scheme, 

and 16 property-weighted asymmetry functions based on the additive scheme. These properties 

included sigma charge [135-137], pi charge [138-140], Vcharge [141], total charge [135-140], 

sigma electronegativity [135-137], pi electronegativity [138-140], effective polarizability [142-

144], and lone pair electronegativity [138-140] with and without VDW surface area scaling. The 

control comparison forward feature selection analysis was performed with a feature set that 

included all features listed above except the novel EMAS features. This feature set contains 

1284 features. For steroid binding predictions, descriptor sets were created using only one 
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EMAS method and those including property weighting coefficients used the same properties 

listed. 

 

Training, Monitoring, and Independent Dataset Generation 

Cramer’s Steroids 

The dataset was split for ANN training into three subsets: training, monitoring, and 

independent. The monitoring dataset is necessary to prevent over-training. Because of the small 

size of the dataset, only one molecule was labeled independent. Five molecules were used as 

the monitoring dataset, 25 for training. The set of five molecules was incremented through the 

entire dataset for a total of 6 different monitoring sets. Leave-one-out cross-validation was 

performed where each molecule was used as the independent molecule while the remaining 30 

molecules were used for training and monitoring. The predictions were averaged across the 

different monitoring sets to yield the final activity predictions for the entire set of 31 molecules. 

PUBMED AID891 

AID 891 is a publically available dataset that can be found at 

http://pubchem.ncbi.nlm.nih.gov/. It contains 1623 active compounds and 7756 inactive 

compounds tested for inhibition of cytochrome P450 2D6. This dataset was split into 10 clusters, 

8 of which were used as the training dataset, 1 used for monitoring, and 1 used for 

independent. For cross-validation, the monitoring and independent datasets are iterated and 

then the resulting independent predictions are averaged to give the final list of predicted 

activities that spans the entire dataset. In order to maximize model performance, the dataset 

was balanced through oversampling. In other words, the active compounds were represented 

multiple times so that the number of active compounds roughly equals the number of inactive 

compounds. This method of balancing has been used to maximize QSAR models in other 
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datasets where the number of active compounds is significantly less than the number of inactive 

compounds[86].  

The pIC50 values of each compound within AID891 and the steroid binding data for the 

Cramer dataset were used as output for the ANN models. For the AID891 dataset, inactive 

compounds were set to a pIC50 value of 3. The root-mean-square deviation (RMSD) between 

predicted and experimental activities was used as the objective function for training the ANN. 

 

Artifical Neural Network (ANN) architecture and training 

For the AID891 dataset, the ANN was trained using a sigmoid transfer function with a 

simple weight update of η = 0.1 and α = 0.5. The hidden layer contained eight neurons. For the 

steroid dataset, the ANN was trained using the same protocol as the AID891 dataset but the 

number of hidden neurons was reduced to 4 due to the dataset’s much smaller size of. 

 

Forward-feature selection for optimal descriptor set selection 

Descriptor selection was performed to test the novel descriptor against all other 

implemented descriptors to see if it provided an increase to enrichment over any of the other 

descriptors. The approach begins with a single descriptor, trains a model with only that 

descriptor, and then continuously adds more descriptors one at a time, training a new model 

each round. At the completion of each round, the descriptor set that produced the lowest RMSD 

score was retained for the next round. All descriptors not present in the retained list of 

descriptors are then added individually to that retained list of descriptors and the descriptor set 

producing the best RMSD score is retained for the next round, and so on. At the completion of 

these iterations, the round that produced the best RMSD score overall is recalled as the top 



52 
 

descriptor set. If a descriptor appears in this list of best descriptors, then it suggests that 

significant information had been gleaned from that descriptor during the ANN training. 

 

Model Evaluation 

ANN models using the AID891 datasets were analyzed using receiver operation 

characteristic (ROC) curves to assess their predictive power. These curves plot the rate of true 

positives versus the rate of false positives as a fraction of the total number of positives. 

Therefore, a slope of 1 would reflect random guesses as each true positive would be statistically 

likely to be followed by a false positive. An increase in slope and area under the curve would 

indicate an increase in predictive power. The initial section of the ROC curve is often most 

important because it represents compounds with the highest predicted activity. Therefore, 

enrichment values are determined based on the slope of the ROC curve comprising the first 

subset of molecules. Increases in enrichment is often the most important measure for 

application of virtual screening in drug discovery as it reflects the expected factor at which the 

fraction of actives will be increased over an unbiased dataset. 

Positive predictive value (PPV) is a measure related to enrichment which tracks the 

model’s predictive precision as the fraction of predicted positives (FPP) increases from highest 

predicted activity to lowest. A model is likely to lose precision as the predicted activities 

approach the cutoff point and therefore it is common to specify a range of FPP of interest when 

measuring a PPV. FPP is calculated as the number of true positive predictions plus the number 

of false positive predictions divided by the size of the dataset. PPV is calculated as the number 

of true positive predictions divided by the total number of positive predictions (true and false 

positive). 
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To determine the statistical significance for the average PPV improvement over the FPP 

range of .005 to .05, we compared the average PPV within this FPP range for each combination 

of training and modeling datasets that went into the cross-validated model. By aligning these 

datasets between the two models, we were able to perform a two-tailed paired t-test to show a 

significant improvement for the cross-validated model including EMAS features over the cross-

validated model without EMAS features.  

To evaluate the utility of models trained with the steroid dataset in a way which could 

be comparable with published methods, the conventional correlation coefficient    of the 

predicted activities against actual activities and cross-validated   , also known as    were 

calculated for each descriptor set. All predicted values used in these analyses were the average 

predicted activities from each of the leave-one-out models with the different monitoring 

datasets. The     is calculated from the equation 

   
        

  
 6 

Here,    is the sum of squared deviations of each biological property from their mean 

and       (predictive residual sum of squares) is the sum of the squared differences between 

the actual biological property and the cross-validated predicted property. 

 

Implementation 

The descriptor generation and ANN algorithms were implemented in the 

BioChemistryLibrary (BCL). The training method used is simple propagation, a supervised 

learning approach. The BCL is an in house developed object oriented Library written in the C++ 

programming language. 
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APPENDIX 

 

NORMALIZATION OF STEREOCHEMISTRY SCORE 

 

The stereochemistry score is normalized based on the maximum possible stereochemistry score 

which can be computed assuming         and       
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FORWARD-FEATURE SELECTION DESCRIPTORS 

 

Table A1: Complete list of features used for the forward-feature selection of descriptors. Novel 
EMAS functions were excluded for the control forward-feature selection. 
 

 

 

 Descriptor Name Description 

Scalar descriptors Weight Molecular weight of compound  

 HbondDonor Number of hydrogen bonding acceptors 
derived from the sum of nitrogen and 
oxygen atoms in the molecule 

 HBondAcceptor Number of hydrogen bonding donors 
derived from the sum of N-H and O-H 
groups in the molecule 

 TopologicalPolarSurf
aceArea 

Topological polar surface area in [Å2] of 
the molecule derived from polar 2D 
fragments 

 LogP Octanol/water Partition coefficient 
calculated by atom-additive method[145] 

 TotalCharge Sum of atomic formal charges across 
molecule 

Vector descriptors Identity  weighted by atom identities 

2D Autocorrelation                   
(11 descriptors) 

SigmaCharge weighted by σ atom charges 

PiCharge weighted by π atom charges 

3D Autocorrelation                   
(12 descriptors) 

TotalCharge weighted by sum of σ and π charges 

SigmaEN weighted by σ atom electronegativities 

Radial Distribution 
Function               (48 
descriptors) 

PiEN weighted by π atom electronegativities 

LonePairEN weighted by lone pair electronegativities 

Novel EMAS Function 
weighted by sum of 
properties                (24 
descriptors) 

EffectivePolarizability weighted by effective atom polarizabilities 

Novel EMAS Function 
weighted by product 
of properties           (24 
descriptors)          

Vcharge weighted by partial atomic charges 
accounting for alternate resonance 
forms[141] 

Every Vector descriptor available with and without van der Waals surface area weighting 



56 
 

Table A2: Top feature sets following forward-feature selection for both conditions 

Control feature selection (without EMAS) Novel feature selection (with EMAS) 

Descriptor Type Weight Descriptor Type Weight 

Radial Distribution 
Function 

AtomIdentity  
[surface area scaled] 

Radial Distribution 
Function 

AtomIdentity  
[surface area scaled] 

Radial Distribution 
Function 

Vcharge Radial Distribution 
Function 

Vcharge 

Radial Distribution 
Function 

EffectivePolarizability 
[surface area scaled] 

EMAS  
(product weight) 

AtomIdentity  
[surface area scaled] 

3D Autocorrelation SigmaCharge 2D Autocorrelation SigmaEN  
[surface area scaled] 

Radial Distribution 
Function 

LonePairEN Radial Distribution 
Function 

PiEN  
[surface area scaled] 

2D Autocorrelation SigmaEN Scalar HbondDonor 

3D Autocorrelation SigmaEN EMAS  
(product weight) 

SigmaEN  
[surface area scaled] 

3D Autocorrelation Vcharge 
 [surface area scaled] 

2D Autocorrelation EffectivePolarizability 
[surface area scaled] 

2D Autocorrelation Vcharge  
[surface area scaled] 

3D Autocorrelation Vcharge  
[surface area scaled] 

 Radial Distribution 
Function 

PiEN 

3D Autocorrelation SigmaCharge 

2D Autocorrelation EffectivePolarizability 

EMAS (sum weight) Vcharge  
[surface area scaled] 

EMAS  
(product weight) 

Vcharge 

EMAS  
(sum weight) 

TotalCharge 

Radial Distribution 
Function 

EffectivePolarizability 

EMAS  
(sum weight) 

LonePairEN 

EMAS  
(product weight) 

PiEN  
[surface area scaled] 

3D Autocorrelation PiEN  
[surface area scaled] 

Radial Distribution 
Function 

SigmaCharge 
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