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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Post-translational modifications in biological systems 

 

Post-translational modifications (PTMs) on proteins are known to play a 

substantial role in the complexity and diversity of biological systems. This chapter 

discusses two key PTMs- protein phosphorylation and glycosylation – including 

their biological roles, associated diseases, significance in relation to each other, 

and how they are currently characterized. A number of challenges exist in 

characterizing each type of PTM, such as lability of the modification during MS 

fragmentation, substoichiometry, and difficulty in separation of the modified 

protein or peptide from complex mixtures. New methodologies that circumvent 

many of these challenges using lanthanide-based labeling and two mass 

spectrometry (MS) platforms - MALDI-TOFMS and ion mobility-mass 

spectrometry (IM-MS) - are proposed.  An outline of objectives and research 

goals is highlighted.  

 

1.1.1 The relevance of protein phosphorylation and glycosylation 

 

The majority of cellular processes, particularly cell to cell interaction, cell 

differentiation, proliferation, mobility, division, and apoptosis, are governed by 

protein expression and post-translational modifications (PTMs) on proteins, 

which commonly take the form of phosphorylation, glycosylation, acetylation, 

methylation, etc. O-linked protein phosphorylation and glycosylation are 
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considered two of the most common PTMs and often compete for the same 

positions during a number of cellular functions. It has been shown that regulation 

of phosphorylation vs. glycosylation stoichiometries govern many cellular 

processes, outlined below. For this reason, phosphoproteomics and glycomics 

have moved to evaluate the direct role of these PTMs in regulating proteins 

responsible for the progression of Alzheimer’s disease,1-4 cancer proliferation,5, 6 

inflammatory diseases,7, 8 and the onset of developmental neurological 

diseases.9 

 

1.1.1.2 Protein phosphorylation 

Phosphorylation of serine (Ser), threonine (Thr), and tyrosine (Tyr) 

residues (O-phosphorylation) occur with the assistance of kinases, which 

account for approximately 2% of the human genome.10 It has been estimated that 

50% of all proteins in a typical eukaryotic cell are phosphorylated.11, 12  Protein 

phosphorylation is reported to play a critical role in the regulation of cell 

proliferation,11 differentiation,13 migration,14-18 signalling,11 survival,11, 19 and 

apoptosis20  Moreover, varying the stoichiometry of protein phosphorylation has 

been shown to regulate signaling cascades and rates of turnover of cell migration 

proteins, which are known to play a significant role in neurological disorders, pro-

inflammatory disorders (e.g., psoriasis and rheumatoid arthritis) and cellular 

behaviors associated with cancer cell proliferation.10, 21, 22 

Protein phosphorylation is challenging to characterize due to the dynamic 

nature of the modification. There exist significant differences in the occurrence of 

pSer, pThr, and pTyr residues, in that these residues are typically observed in a 

ratio of 1800:200:1, respectively.23 Adding to the complexity, the degree of 

phosphorylation changes according to the temporal cellular response. Moreover, 



 3 

phosphorylated serine and threonine residues are labile in basic conditions 

encountered in common buffers and also during tandem MS fragmentation. 

Phosphates have been reported to rearrange in collision cells of MS instruments, 

resulting in increased noise, false positives, and reduction of signal 

corresponding to the original site of modification.24, 25 These factors often result in 

substoichiometric levels of phosphorylated proteins available for analysis, which 

compound the challenges in phosphoproteomic characterization.  

 

1.1.1.3 Protein glycosylation 

 Protein glycosylation is a common and complex form of post-translational 

modification which regulates the structure, stability, and function of proteins 

within the cell. Glycosylation is ubiquitous among all eukaryotes, and it is 

estimated that glycosylation occurs on 50% of all eukaryotic proteins.26 It is 

reported to play a key role in functions on the cell membrane such as hormone 

uptake,27 recognition of toxins or pathogens,28, 29 and signaling to other cells.30 It 

also plays a further role in cellular processes such as organization31 and 

division.6 Furthermore, glycosylation is required for the biological function of 

certain proteins, such as the Fc-effector function of immunoglobulin G (IgG).7, 32-35 

Moreover, glycosylation has been linked to reproduction,36 embryonic stem cell 

development,37 and the development of Alzheimer’s disease,3 arthritis,8 and 

diabetes.38 O-linked glycosylation exists on serine, threonine, and tyrosine 

residues, and occurs most frequently on serine. Proteins bearing O-linked N-

Acetyl Glucoseamine (O-GlcNAc) have been implicated in AIDS-related 

lymphomas and viral and parasitic proteins.31 
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Characterization of protein glycosylation is challenging for a number of 

reasons, including substoichiometry and difficulty in determining the glycan 

structure. For example, O-GlcNAc (O-linked N-acetylglucosamine) is highly 

dynamic and deglycosylation is a rapid step for regulatory functions, resulting in 

substoichiometric amounts. Glycan branching is often complex and positional 

isomers are difficult to separate using traditional online separation methods for 

MS. Building blocks for the glycan comprise a large number of carbohydrates, 

and the functionality of the glycan is dependent upon its branching structure and 

terminal saccharides. Furthermore, glycosylation may be interchangeable with 

phosphorylation in some regulatory systems. Moreover, glycans are difficult to 

separate from complex biological mixtures, and often require a number of 

laborious chromatography steps to generate a pure mixture for analysis. 

 

1.2 Current characterization strategies for PTMs 

 

1.2.1 Characterization of phosphorylated proteins 

Characterization of a phosphoprotein involves determination of the site of 

phosphorylation and determination of stoichiometry between different states. 

Traditionally, these two analyses are performed in separate experiments, as a 

priori knowledge of the sites of phosphorylation greatly facilitate targeted 

quantitative approaches. Moreover, site identification typically requires 

enrichment, as sequence coverage detected may be suppressed by more 

abundant concomitant species.  
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Classical phosphoproteomic enrichment includes separation and 

purification by 2-D gels, immunoprecipitation, immobilized metal affinity columns 

(IMAC), reversed-phase liquid chromatography (RPLC), or the use of selective 

enrichment via phospho-specific antibodies and 2-D gel separation. Each method 

offers advantages and disadvantages. A brief overview of separation 

methodologies and quantitative methodologies discussed below is provided in 

Table 1.  

Classical phosphoproteomic quantitative and site elucidation 

methodologies include the use of 32P radiolabels.39 In this method, protein 

mixtures are typically separated by 2-D gel electrophoresis and subsequently 

imaged. Varying samples may quantitated by the relative amounts of radiation 

emitted, and site elucidation is performed by Edman degradation. This method is 

still in common use because of demonstrated dynamic range, but is restricted by 

three important limitations. First, this method requires the use of 2-D gels, which 

limit applicability to soluble and relatively abundant proteins. In many cases, 

protein phosphorylation occurs rapidly and is frequently observed in low 

abundance. Second, phosphoaminoacid analysis suffers from poor site 

specificity, and a significant amount of a priori knowledge is required about the 

sequence and potential sites of phosphorylation. Third, this method is labor-

intensive, time consuming, and requires the use of radioactive labeling. Typical 

labeling experiments take between 3-7 days and  
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Table 1. Purification and Quantitation Methods for Phosphoproteomics 

 

Method Principle Pros Cons 

Purification method 

2-D gel 
electrophoresis 
(2DIGE)

11, 40
 

 
 
 

Separation of 
proteins by 
isoelectric point 
and size.  

 

 

Can be done in vivo 
or in vitro, large 
dynamic range. 

 

 
Limited to soluble 
proteins, spot 
overlap requires 
additional 
purification 

 

Antibody enrichment Generalized 
enrichment of 
phosphoproteins by 
binding to 
phosphorylation-
specific antibodies. 

Selective for 
phosphorylated 
tyrosine antibodies. 

 
Not selective for 
phosphoserine and 
phosphotyrosine. 

Immobilized metal-
affinity 
chromatography 
(IMAC)

41, 42
 

Enrichment of 
phosphoproteins 
and phospho-
peptides via affinity 

toward positively 
charged metal ions 
(Fe

3+
, Al

3+
, Ga

3+
, or 

Co
2+

) chelated to a 
solid support. 

Generalized 
phosphorylation 
enrichment without 
need for antibodies 
or radioactive 
materials. 

Non-specific 
interactions require 
additional cleanup 
for phospho-
proteomic 
characterization 

Reversed-phase 
liquid 
chromatography 
(RPLC)

43
 

Separation of 
phosphoproteins 
and phospho-
peptides non-
selectively by 
elution based on 
polarity and 
interaction with C-4 
or C-18 column.  

Standardized 
protocol, readily 
reproducible and 
commonly reported. 
High abundance 
phosphorylation 
sites are readily 
identified. 

Does not enrich for 
phosphorylated 
peptides and 
proteins, all peaks 
from chromatogram 
must be 
fragmented for 
identification.  

Immunoprecipitation 
11, 44, 45

 
Enrich specific 
phosphorylated 
proteins of interest 
via selective 
antibodies for the 
target protein (does 
not necessarily 
target 
phosphorylation 
domain). 

Selective for 
targeted 
phosphorylated 
peptide or protein.  

Significant a priori 

knowledge of the 
phosphorylation 
site required, not 
for phosphopeptide 
discovery. Custom 
antibody generation 
is costly. 

 
 

 
 



 7 

Table 1 (cont’d). Purification and Quantitation Methods for Phosphoproteomics. 

 

Quantitation 
method 

32
P radiolabels

39
  

 

 
 
 

 
Labeling of 
phosphoproteins or 
phosphopeptides in 
vivo or in vitro with 
32

P or 
33

P. 
Detection using 
Edman degradation 
and 
autoradiography. 

 

 

 
May be done in vivo, 
established method in 
the biological sciences. 

 
 
 
 
Radioactive 
phosphorus 
requires special 
handling and 
special disposal. 

Enzymatic stable 
isotope labeling

9, 46-48
 

Stable isotope 
introduction to 
phosphoproteins or 
phosphopeptides in 
vitro via enzymatic 
digestion in H2

18
O. 

Each peptide may be 
labeled via 

18
O/

16
O 

incorporation by trypsin. 
Trypsin reaction is 
highly versatile and may 
be performed in a 
number of conditions 
and varying pH. Method 
is relatively cheap. 

Variable 
incorporation of 
1 or 2 

18
O due 

to pH 
dependence. 
Missed 
cleavages must 
be accounted 
for and may 
confound 
quantitation. 

Metabolic stable 
isotope labeling

9, 49
 

Stable isotope 
introduction to 
phosphoproteins or 
phospho-peptides 
via incorporation of 
isotopically “heavy” 
or “light” amino 
acids containing 
14

N or 
15

N,
 12

C or 
13

C, etc. 

Reduces error due to 
sample handling, nearly 
all peptides may be 
labeled. 

Requires in-vivo 
labeling and 
subsequent 
purification prior 
to analysis. May 
not be done on 
in-vitro samples 
that are isolated 
from separate, 
non-quantitative 
experiments, 
labeling time 
dependent on 
cell culture time, 
limitation of 
available amino 
acids 

Chemical 
modification stable 
isotope labeling

50-58
 

Stable isotope 
introduction to 
phosphoproteins or 
phospho-peptides 
via chemical 
modification of 
isotopically “light” 
and “heavy” labels. 

Selective for intended 
functionalities, available 
with additional built-in 
advantages such as 
reporter ion tags, biotin 
affinity, or ICP 
ionization. 

Limited mass 
shifts (2-8 Da)  
limit analysis to 
small (<2500 
Da) peptides or 
use of high 
resolution (FT-
ICR-MS) 
instrumentation. 
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require extensive prior purification using affinity purification and treatment before 

analysis. 

Many of these challenges can be addressed using mass spectrometry 

(MS) techniques. To circumvent the time intensive requirements of affinity 

chromatography methods, data-dependent scanning (tandem MS/MS 

experiments, typically on triple quadrupole instruments) followed by bioinformatic 

analysis is often used for PTM site localization. Although these methods are 

sufficiently sensitive to the substoichiometric amounts of phosphorylated 

sequences, they make inefficient use of chromatography time and require 

tandem spectra acquisition for each peak in the chromatogram regardless of 

whether the peak corresponds to the modifications of interest. Moreover, a 

substantial amount of manual validation is required, as phosphorylation site 

rearrangement has been noted.24  

Quantitation is routinely performed using mass spectrometry. Current 

methods for MS-based quantitation include stable isotope and metal labeling 

techniques that take advantage of nearly identical labeled structures, differing 

only by the incorporation of a limited number of heavy isotopes. Contemporary 

stable isotope labeling was first introduced by three independent labs in the late 

1990’s and is now implemented enzymatically (e.g. O18 labeling), 46-48 

metabolically (e.g. SILAC),49, 56 or by chemical modification.53, 59-61 Typically, 

these labeling strategies provide relative quantitation through incorporation of 

different stable isotopes for comparing relative protein expression profiles. 

Relative quantitation information can be expected, because the labeled peptides 

are isotopologues and hence their ionization efficiencies are assumed to be 
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identical. Protein expression is then elucidated by comparing the relative peak 

areas of each differentially labeled peptide (Figure 1).  

The most prevalent method for enzymatic introduction of stable isotope 

labels is proteolytic 18O-labeling first reported by Desiderio et al.46 in 1983 and 

later improved by Mirgorodskaya et al. in 2000.47 In this experiment, proteolytic 

enzymes are reacted with the protein of interest in H2
18O, resulting in 

incorporation of an 18O atom at the carboxyl terminus of each enzymatically 

cleaved peptide. This method suffers from variable incorporation of the isotope 

(one or two atoms can be incorporated, depending on pH and time scale of 

digestion), resulting in reduced signal intensity and moderate convolution of peak 

intensity comparisons.9 

The most prevalent method for metabolic introduction of stable isotope 

labels is the stable isotope labeling by amino acids in cell culture (SILAC) method 

reported by Ong et al.49 In this method, differentially expressed cells are grown in 

separate medium containing either native arginine and lysine or isotope labeled 

13C6-arginine and 13C6-lysine that is taken into the cell and incorporated into the 

proteome. This ensures that all tryptic peptides carry at least one labeled residue 

corresponding to its unlabeled counterpart. An advantage of this method is that 

differentially labeled peptides may be combined at the culture level, eliminating 

errors typical of late-stage combination quantification techniques. It suffers, 

however, from high cost, insufficient selectivity, and relatively high time 

requirements for total isotope incorporation and preparation. Additionally, in  
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Figure 1. In a typical relative quantitation experiment, differentially expressed 
samples are encoded with isotopically “light” or “heavy” labels enzymatically, 
metabolically, or by chemical modification that generates mass shifts of 2-8 Da. 
Relative peak areas provide relative quantitation information. Adapted from 
reference.9 
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order for the method to be useful in phosphoproteomic determination, additional 

purification steps are also required to improve detection. 

Chemical modification of phosphorylation sites has been achieved using 

several different methods. Aebersold and colleagues reported a tagging method 

in which a cysteamine linker is covalently bound to the phosphate group via an 

N,N’-dimethylaminopropyl ethyl carbodiimide (EDC) coupling reaction.62 Smith 

and colleagues reported a method for relative quantitation of phosphorylated 

peptides and proteins (i.e. Phosphoprotein Isotope-Coded Affinity Tags, or 

PhIAT)52 analogous to a protein quantitation method previously described by 

Gygi and colleagues termed isotope-coded affinity tags, or ICAT, which labels at 

cysteine residues. In the PhIAT method, phosphorylation at serine and threonine 

is converted to a cysteine-like moiety containing a free thiol via beta-elimination 

to yield dehydrobetaalanine or dehydroaminobutyric acid, respectively. 

Subsequent thiol Michael addition of an isotopically labeled dithiol linker provides 

the isotopologues and chemical reactivity for a covalent attachment to biotin. The 

labeled phosphorylated peptides are then digested, purified by affinity 

chromatography, and analyzed by LC-MS/MS. Relative quantitation information 

is gained by comparing relative peak areas for the isotopically “light” and “heavy” 

labeled peptides.52, 57 

PhIAT provides versatile, selective relative quantitation information for 

phosphorylated peptides. However, all of these strategies limit the peptide mass 

that can be quantitated by a limited range of isotopic mass differences. For 

example, peptide mass is limited by the 2-8 Dalton mass shift afforded by the 

isotopically enriched linker portion of the label.  At higher masses, (greater than 
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ca. 2500 Da), the natural isotopic envelopes of the isotopologues begin to 

overlap resulting in poorer relative quantitation accuracy.9 

 

1.2.2 Characterization of glycosylated proteins 

Characterization of a glycoprotein is occasionally required to fully explore 

the biological significance of protein phosphorylation. In this context, the 

sequence position and stoichiometry of the modification are desirable to probe 

any dynamic phosphorylation/glycosylation switching. Further glycomic 

characterization includes determination of the glycan structure. Glycan site 

determination is frequently accomplished using a combination of proteases, 

glycosidases, affinity chromatography, and LC-tandem mass spectrometry 

(Figure 2).63, 64 Identifying the site of modification is challenging due to the 

temporal nature of glycosylation and the lability of the modification in basic pH 

and tandem MS. This characterization of the glycan is also complicated by noise 

from branch fragmentation, labile terminal saccharides, and fragments that are 

isobaric with concomitant species.63, 64 These challenges in characterization 

compound when a protein has multiple glycosylation sites. Thus, classic glycomic 

methodologies require extensive separation and purification strategies to simplify 

analysis. Identification of the site of modification is accomplished with the use of 

endoproteases to cleave the protein into peptides and isolate each modification 

site onto individual peptides. High-performance liquid chromatography is then 

required to separate each peptide and tandem MS analysis is performed to 

determine the site of modification.  
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Figure 2. Traditional protocol for full glycoprotein characterization by MS. 

Stoichiometric information is typically not obtained. 
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Structural characterization of the attached glycan is then accomplished 

through the use of glycosidases, which cleave the attached glycan from the 

protein. Lectin chromatography is used to separate glycans from peptides, and 

high-performance liquid chromatography is used prior to tandem MS analysis. 

Although these separation methods can resolve glycans and facilitate 

characterization, similar polarities and size of the carbohydrate limits complete 

separation. Furthermore, offline chromatographic and affinity separations are 

known to be laborious and time consuming, requiring hours to days to complete. 

 

1.3 Mobility shift labeling using ion mobility-mass spectrometry 

 

Typical time intensive separation strategies for PTM analysis are 

circumvented using mobility shift labels and ion mobility-mass spectrometry. Ion 

mobility spectrometry is a well-developed gas-phase separation technique 

whereby ions are rapidly (µs to ms) separated based on their apparent surface 

area or collision cross section (CCS). Ions undergo elastic collisions with an inert 

buffer gas at pressures of 0.5-10 Torr as they move through the drift cell under 

the influence of either a traveling wave or a weak electrostatic field (Figure 3a). In 

traveling wave ion mobility, ions traverse the mobility cell under the influences of 

a transient DC voltage and an alternating RF voltage that acts as a potential 

barrier. Ions with larger apparent surface area will have slower drift times due to 

more ion-neutral collisions than ions with smaller surface areas. An illustration of 

this concept is provided in Figure 3b.  

When coupled with mass spectrometry (Figure 3c), IM-MS can 

differentiate ions of interest from analyte ions having the same mass but different  
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Figure 3. a) Ion mobility separates on the basis of collisions with a neutral buffer 
gas under the influence of a weak electrostatic field, resulting in differing arrival 
time distributions for conformers of a peptide. b) An example of two 
conformations of example peptide [Ac-Y(AEAAKA)5F-NH2+Na]+. The folded 
version (blue, also indicated above in blue), exhibits a faster arrival time than the 
extended version (red, also indicated above in red) due to a reduction in 
apparent surface area for collisions in the mobility cell. Structures shown are two 
representative conformers obtained through molecular dynamics calculations and 
represent local maxima. c) Ion mobility may be coupled to mass spectrometry 
using a number of platforms, but the general arrangement is presented in this 
schematic. 
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structures (i.e., isobaric species). An instrument schematic of this combination is 

provided in Figure 4. IM separations are slow relative to mass analysis (ms vs 

ns), and many mass spectra are acquired over the elution profile of the ions from 

the drift cell. The resultant IM-MS data is 3-dimensional, typically shown with 

arrival time distribution (IM drift time) on the y-axis, m/z on the x-axis, and relative 

abundance on the z-axis. Such 3D data is typically projected in two dimensions 

with false coloring for relative abundance as illustrated in Figure 5.   

For a particular molecular class of given density, ion mobility scales as 

length squared, while mass scales as length cubed. Because mobility 

separations are not completely orthogonal to mass detection, molecular classes 

exhibit correlation lines in IM-MS 2-D conformation space. For example, a 

sample of approximately 600 singly-charged peptide signals occupied a narrow 

band of arrival time distribution vs. m/z with greater than 99% of the peptides 

having less than a 7% deviation from the mean.65 Lipids, carbohydrates, and 

nucleotides were also reported to reside in their own correlation lines in the 2D 

conformation space.66 Differences in the relative gas-phase packing efficiencies 

of each type of biomolecule (nucleotides> carbohydrates> peptides> lipids) can 

be exploited to separate each biomolecular class, illustrated in Figure 6.  

Structural separation of all four types of biomolecules was demonstrated in our 

group using IM-MS.66  

This is an advantage to a number of “omics” strategies,66 including 

lipidomics,67 proteomics,68 phosphoproteomics,69 and glycomics.70 IM-MS has 

also been demonstrated on complex samples such as whole-cell lysates,71 non- 

covalent complexes,72 and thin tissue sections73 as a more rapid separation and 

detection method than traditional LC-MS analysis. 
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Figure 4. Schematic diagram of the MALDI-TWIM-TOFMS Instrument (Synapt 
HDMS G2, Waters Corp., Manchester, UK). 
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Figure 5. Data projection from three-dimensional (arrival time distribution vs. m/z 
vs. relative abundance) to two dimensional (arrival time distribution vs. m/z), with 
false coloring representing relative abundance. 
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Figure 6. Differences in the relative gas-phase packing efficiencies of each type 
of biomolecule (nucleotides> carbohydrates> peptides> lipids) are shown. a) Ion 
surface areas vs. m/z from a pool of 53 lipids, 610 peptides, 191 carbohydrates, 
and 110 oligonucleotides. b) Mean correlation lines ion surface area vs. m/z for 
each biomolecular class. c) Separation of biomolecular class in real time (as 
acquired from the Synapt HDMS IM-MS instrument). Adapted from reference 66.  
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It should be noted, however, that minor modifications (e.g., 

phosphorylation sites) within each biomolecular class were not significantly 

resolved (0-6% deviation) from unmodified molecules.69 

 

1.3.1 Mobility shift strategies 

One of the central aims of this project is to resolve post-translationally 

modified peptides and proteins from their unmodified counterparts in IM-MS 

using mobility shift strategies for further characterization. Mobility shift strategies 

have been previously described.72, 74 In these strategies, labeled functionalities 

are shifted to an area outside of the IM-MS correlation band where signals are 

not predicted to occur in the absence of labeling. Due to the curvature of the 

correlation band, two mobility shift strategies are possible – shift reagents of 

either low or high density (Figure 7) whereby labeled signals are shifted to an 

area above or below the peptide correlation band, respectively. Lanthanide-

based chelating label are selected as covalent high density IM-MS shift reagents 

since the lanthanide metal imparts a larger increase in mass to the labeled 

peptide than apparent surface area.  

 

1.3.1.1 Lanthanide-based labeling strategies 

Most commonly, lanthanide-based (Ln-based) labeling strategies utilize a 

trivalent lanthanide metal (Ln(III)) specific tag (Figure 8) that contains a linker 

portion and a functionally reactive portion. Because the ionic radii of all Ln(III) are 

nearly invariant, the chelating moiety is insensitive to which lanthanide is 

incorporated. Thus, any lanthanide metal may be  
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Figure 7. Conceptually, an ion mobility shift reagent either increases surface 
area with a small increase in mass, or increases mass with a small increase in 
surface area, respectively. These two possibilities are indicated by filled-circles 
(●) coupled to parachutes and anchors. Note that owing to the curvature of the 
peptide correlation, increasing surface area provides greater deviations from the 
fit at higher mass, while increasing mass (or density) provides greater deviations 
from the fit at lower mass.  
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Figure 8. An illustration of the structure of lanthanide-based relative quantitation 
reagents. The tag consists of a (i) metal chelation region, (ii) a linker region, and 
a (iii) region chemically selective for cysteine. 
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selected to encode a particular quantitative sample for up to 15 multiplexed 

analyses. The subsequent mass shift between differentially labeled samples can 

then be tuned by selection of the Ln(III), (e.g. La/Lu result in a mass difference of 

36 Da), which are sufficiently large to circumvent limitations for quantitation of 

larger peptides using isotopologue quantitation strategies. Ionization efficiency of 

different lanthanide metals can be expected to be nearly identical. Another 

advantage to using DOTA-Ln complexes is that it may be bound to a natural 

antibody (i.e., antibody 2d12.5) with no known analogues for selective purification 

of Ln-labeled peptides.75 

 Two common strategies using lanthanide-based labeling are termed 

element-coded affinity tagging (ECAT)58 and metal-coded affinity tagging 

(MeCAT).50 Note that in principle both strategies are specific to labeling at the 

sulfhydryl group of cysteine. Labeling for primary amines has been reported,55 

however Ln-labeling strategies have been reported for PTMs have not been 

reported to date. 

 Here, the potential for lanthanide-based labeling strategies as mobility 

shift reagents for ion mobility-mass spectrometry is explored. It is hypothesized 

that addition of Ln-chelated labels will shift labeled peptides out of IM-MS regions 

where signals are predicted to occur and that this approach will provide a rapid 

means for identifying a separated modified peptide for subsequent analysis. This 

approach will reduce extensive online separations prior to analysis and will 

circumvent processing of hundreds of thousands of spectra as is typical in LC-

MS analysis. Furthermore, incorporation of different metals provides both a shift 

in IM and the potential for relative quantitation information. This is significant, 

because in contrast with MS-only measurements, shifting signals away from 
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endogenous chemical noise improves the accuracy in peak area analysis for 

relative quantitation of protein expression profiles. 

In this work, I explore the potential for lanthanide-based labeling as an an 

alternative to isotopologue-based quantitation labels and as IM-MS mobility shift 

reagents for protein phosphorylation and glycosylation. Phosphorylated and 

glycosylated peptides and proteins may be modified by beta-elimination/Michael 

addition (BEMA) chemistry that converts the labile phosphorylation site to a 

functionality that is readily labeled.76-81 In the proposed strategy, phosphorylated 

and glycosylated peptides are converted into free thiols using BEMA chemistry 

and subsequently lanthanide-encoded via maleimide chemistry (Figure 9). 

Samples are then identified and quantitated. The potential use of this method to 

quantitate between glycosylation and phosphorylation is discussed in Chapter 6. 

 

1.4 Summary and Objectives 

 

For my dissertation research, I aimed to simplify phosphoproteomic 

characterization by achieving simultaneous site identification and quantitation 

using lanthanide-based tagging.  Characterization of this modification is often 

accomplished in separate experiments and involves determination of the site of 

modification, the stoichiometry, and in some cases, the elucidation of glycan 

stoichiometry when it temporally replaces phosphorylation. I explored the 

potential for lanthanide-based labeling to overcome challenges associated with 

quantitative labeling, and the potential for these labels to serve as mobility shift 

labels to facilitate the characterization for post-translationally modified peptides in 

ion mobility-mass spectrometry biomolecular conformation space. It was  
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Figure 9. Beta-elimination/Michael addition strategy for labeling phosphorylated 
and glycosylated peptides and proteins. i) The site of modification is beta-
eliminated in basic conditions, resulting in dehydroalanine or dehydroamino-
butyric acid for modified serine and threonine residues, respectively. ii) A dithiol 
linker is added by Michael addition chemistry. iii) A bifunctional ligand containing 
a lanthanide-chelating moiety and a thiol-selective moiety is added via maleimide 
chemistry. iv) Finally, the samples are encoded with lanthanide metals via 
chelation to the Ln-chelation region. 
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hypothesized that, when used as mobility shift reagents, lanthanide-based labels 

would provide enhanced separation of selected PTMs from the peptide 

correlation line in IM-MS, facilitating additional analysis such as quantitation and 

site identification. Furthermore, I also evaluated the utility of these labels in 

profiling glycan stoichiometry. The objectives, which are addressed in the 

following chapters, are outlined below: 

 

1. What are the advantages and challenges in performing traditional data-

dependent analysis for phosphorylation characterization when analyzing a 

previously uncharacterized, non-model phosphorylated protein? What areas of 

these routine analyses can be improved? Evaluation of this question is 

addressed in the work detailing phosphorylation site analysis on the cell 

migration signaling protein APPL1 in Chapter 2: Identification of phosphorylation 

sites within the signaling adaptor APPL1 by mass spectrometry.  

 

2. Can lanthanide-based labeling strategies be used to circumvent 

challenges associated with the quantitation and site identification of 

phosphorylated peptides and proteins?  These questions are explored in Chapter 

3: Simultaneous relative quantitation and site identification of phosphorylated 

peptides and proteins using lanthanide-based labeling for MALDI-TOFMS 

analysis.  

 

3. Can lanthanide-based labels effectively be used as mobility shift labels 

to separate phosphorylated peptides and proteins from their unphosphorylated 

counterparts in IM-MS conformation space? What advantages does this 

separation method provide over traditional phosphoproteomic characterization by 
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data-dependent MS analysis?  This is discussed in Chapter 4: Rapid separation, 

identification, and quantitation of phosphorylated peptides and proteins using 

lanthanide-based labels as ion mobility-mass spectrometry mobility shift labels. 

 

4. Can lanthanide-based mobility shift labeling be applied to probe the 

stoichiometry of phosphorylation vs. glycosylation? This is addressed in Chapter 

5: Enhanced separation and characterization of glycosylated peptides using 

lanthanide-based labeling and ion mobility-mass spectrometry. 

 

Completion of these experiments revealed that lanthanide-based labels 

have great utility in circumventing challenges associated with phoshoproteomic 

and glycomic characterization by reducing separation steps and reducing 

analysis time while provided the added advantages of more versatile 

quantitation. Overall, the strategies described in the following chapters present 

simplify phosphoproteomic and glycoproteomic analysis by providing 

simultaneous modification site identification and stoichiometric information while 

facilitating rapid separation when used as a mobility shift label in IM-MS 

conformation space. 
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CHAPTER 2 
 
 
 

IDENTIFICATION OF PHOSPHORYLATION SITES WITHIN THE SIGNALLING 
ADAPTOR APPL1 BY MASS SPECTROMETRY 

 

2.1 Introduction 

 

In this chapter, phosphopeptide site identification, one segment of full 

phosphoproteomic characterization, is performed using established data-

dependent tandem MS methods to evaluate the robustness and to identify the 

challenges associated with phosphoproteomics using data-dependent 

methodologies and the subsequent bioinformatics processing. Site identification 

is accomplished for the uncharacterized protein Adaptor protein containing a PH 

domain, PTB domain and Leucine zipper motif (APPL1), speculated to play a role 

in the signaling cascade that governs cell migration. APPL1 is a 709 amino acid 

membrane associated protein that has been reported to play a key role in the 

regulation of apoptosis, cell proliferation, cell survival, and vesicular trafficking.82, 

83 APPL1 is widely expressed and found in high levels in the heart, brain, ovary, 

pancreas, and skeletal muscle.82 Although a significant amount of interest has 

been generated in the interactions and function of APPL1, the complete 

phosphorylation profile of this protein has not been described. To date, 

phosphorylation of three residues, threonine 399, and serines 401 and 691, 

which were identified from global profiling studies,19, 84-87 are reported in protein 

databases, including Phosphosite, Proteinpedia/Human Protein Reference 

Database, and Expasy-SwissProt. 

APPL1 mediates its function through a series of domains, including an N-

terminal Bin-Amphiphysin-Rvs (BAR), a central Pleckstrin homology (PH), and a 



 29 

C-terminal phospho-tyrosine binding domain (PTB).82, 88 Both the BAR and PH 

domains are involved in binding to cell membranes. The BAR domain is a 

dimerization motif associated with the sensing and/or induction of membrane 

curvature, while the PH domain binds to phosphoinositol lipids.89, 90 The BAR 

domain has also been shown to be critical in the ability of APPL1 to localize to 

endosomal structures.91 In APPL1, the BAR and PH domains are thought to act 

together as a functional unit forming an integrated, crescent-shaped, symmetrical 

dimer that mediates membrane interactions.92, 93 Moreover, the BAR and PH 

domains function together to create the binding sites for Rab5, which is a small 

GTPase involved in endosomal trafficking.93, 94 The C-terminal PTB domain of 

APPL1 has been shown to be critical in the ability of APPL1 to bind to several 

signaling molecules, including the serine/threonine kinase Akt, the neurotrophin 

receptor TrkA, the adiponectin receptors AdipoR1 and AdipoR2, Human Follicle-

Stimulating Hormone (FSHR), and the tumor suppressor DCC (deleted in 

colorectal cancer).82, 95-98  

In this study, phosphorylation sites were identified on APPL1 using both 

contemporary mass spectrometry (MS)-based methods, namely, by liquid 

chromatography (LC)-coupled to data-dependent tandem MS on both an LTQMS 

and LTQ-Orbitrap-MS. The bioinformatic algorithm SEQUEST was used to 

process the MS/MS data obtained in these phosphorylation mapping 

experiments. However, spectral assignments required manual validation of all 

identified phosphorylation site spectra. To obtain near-complete coverage of 

APPL1, multiple proteases were used in parallel phosphorylation site mapping 

experiments in the contemporary approaches. Proteolytic digestion with Glu C, 

trypsin, and chymotrypsin yielded sequence coverages of 44.6%, 88.3%, and 

81.1%, respectively, with a combined sequence coverage of APPL1 of greater 
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than 99%. A total of 13 phosphorylation sites were detected and four of these 

sites were found within APPL1 interacting domains, suggesting a potential 

regulatory role in APPL1 function. 

 
 

2.2 Experimental 
 

 
2.2.1 Reagents and plasmids  

FLAG M2-agarose affinity gel, FLAG peptide (DYKDDDDK), and mouse 

IgG agarose were purchased from Sigma (St. Louis, MO). Calyculin A was 

purchased from Calbiochem (San Diego, CA). Sodium vanadate was obtained 

from Fischer Scientific (Fairlawn, NJ). Peroxovanadate was prepared as 

previously described.99 FLAG-GFP plasmid was prepared by inserting the FLAG 

epitope sequence into pcDNA3 (Invitrogen, Carlsbad, CA) and cloning EGFP C1 

(Clonetech) into the vector at KpnI and BamHI sites. Human APPL1 (accession 

number GI: 124494248) was then cloned into the FLAG-GFP plasmid at EcoRI 

and the insertion, as well as orientation, of APPL1 was confirmed by sequencing. 

Proteases were purchased from Promega Corp. (Madison, WI), and all additional 

buffers were purchased in solid form from Sigma and prepared as stated. 

 

2.2.2 Protein expression  

Protein expression was performed in collaboration with Donna J. Webb 

and colleagues. Human embryonic kidney 293 (HEK-293) cells were maintained 

in Dulbecco’s Modified Eagle’s Medium (DMEM) (Invitrogen) supplemented with 

10% fetal bovine serum (FBS) (Hyclone) and penicillin/streptomycin (Invitrogen). 

HEK-293 cells were transfected with FLAG-GFP-APPL1 (12 μg per 150 mm dish) 

using Lipofectamine 2000 (Invitrogen). After 36 h, cells were incubated with 1 
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mM peroxovanadate and 50 nM calyculin A in DMEM with 10% FBS for 30 min 

and extracted with 25 mM Tris, 100 mM NaCl, and 0.1% NP-40 (pH 7.4). The 

lysates were precleared twice with mouse IgG-agarose for 1 h at 4 °C, and 

immunoprecipitated with FLAG-agarose (Sigma, St. Louis, MO) for 2 h at 4 °C. 

Samples were washed three times with 25 mM Tris and 100 mM NaCl, pH 7.4, 

and FLAG tagged APPL1 was eluted by incubation of the beads with 0.2 mg/mL 

FLAG peptide in 25 mM Tris, pH 7.4, for 1 h at 4 °C. Purified APPL1 protein was 

subjected to sodium dodecyl sulfate−polyacrylamide gel electrophoresis (SDS-

PAGE) followed by Coomassie blue staining. The concentration of APPL1 was 

quantified with a LI-COR Biosciences ODYSSEY Infrared Imaging System using 

bovine serum albumin (BSA) as a standard. 

 

2.2.3 Proteolytic digestion 

For MS analyses, APPL1 was separated into three equal aliquots and 

proteolytically digested by trypsin, chymotrypsin, and Glu C proteases, 

respectively. Briefly, proteolysis was performed by taking 2.6 μg of APPL1 (20 

μL) and diluting to 25 μL with 25 mM ammonium bicarbonate. Cysteine sulfhydryl 

groups were reduced by the addition of 1.5 μL of 45 mM dithiothreitol (DTT) for 

30 min at 55 °C followed by alkylation with 2.5 μL of 100 mM iodoacetamide for 

30 min at room temperature in the dark. Digestion was performed using 100 ng 

(1:40 enzyme/substrate, w/w) of trypsin gold (Promega, Madison, WI), 

chymotrypsin (Princeton Separations, Freehold, NJ), or endoproteinase Glu C 

(Calbiochem EMD Biosciences, Gibbstown, NJ) at 37 °C for 16, 4, or 6 h, 

respectively. Proteolysis was quenched by adding 1 μL of 88% formic acid. 

Subsequently, the digest was lyophilized and then reconstituted in 25 μL of 0.1% 

formic acid. 
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2.2.4 Western blot analysis  

Western blot analysis was performed in collaboration with Donna J. Webb 

and colleagues. Briefly, purified APPL1 protein was subjected to SDS-PAGE, 

and then transferred to a nitrocellulose membrane. The membrane was 

incubated with primary antibody against GFP (Invitrogen) or 4G10 (a kind gift 

from Steve Hanks, Vanderbilt University) at a dilution of 1 μg/mL. The membrane 

was then incubated with IR Dye 800 Conjugated Affinity Purified anti-Rabbit IgG 

or anti-Mouse IgG (Rockland) at a dilution of 0.1 μg/mL, and visualized using a 

LI-COR Biosciences ODYSSEY Infrared Imaging System. 

 

2.2.5 Linear ion trap and LTQ-Orbitrap MS  

LC-MS/MS analyses of APPL1 digests were performed using a linear ion 

trap mass spectrometer (LTQ, Thermo Electron, San Jose, CA) equipped with an 

autosampler (MicroAS, Thermo) and an HPLC pump (Surveyor, Thermo), and 

Xcalibur 2.0 SR2 instrument control. Ionization was performed by using 

nanospray in the positive ion mode. Spectra were obtained using data-dependent 

scanning tandem mass spectrometry in which one full MS scan, using a mass 

range of 400−2000 amu, was followed by up to 5 MS/MS scans of the most 

intense peaks at each time point in the HPLC separation. Incorporated into the 

method was data-dependent scanning for the neutral loss of phosphoric acid or 

phosphate (−98 m/z, −80 m/z), for which MS3 was performed. Dynamic exclusion 

was enabled to minimize redundant spectral acquisitions. High resolution data 

was collected using a similar strategy on a LTQ-Orbitrap mass spectrometer with 

the exception that the full MS scan was performed in the Orbitrap at 30,000 m/z 



 33 

resolution, rather than at unit mass resolution on the LTQMS. Further 

instrumental details are available in the supplementary information. 

 

2.2.6 Bioinformatic analysis  

Tandem MS/MS spectra acquired in LTQMS and LTQ-Orbitrap-MS 

experiments were identified using SEQUEST (University of Washington). MS/MS 

spectra were extracted from the raw data files into .dta format with spectra 

containing fewer than 25 peaks being excluded. Files labeled as singly charged 

were created if 90% of the total ion current occurred below the precursor ion, and 

all other spectra were processed as both doubly- and triply charged ions. 

Proteins were identified using the TurboSEQUEST version 27 (rev. 12) algorithm 

(Thermo Electron) and the IPI Human database version 3.33 (67837) sequences. 

Search parameters are outlined in the supplementary information. Manual 

verification was performed on all phosphorylation assignments having an Xcorr 

value above 1, 2, and 2.5 for charges +1, +2, and +3, respectively. Validation 

was performed as previously described.100 All spectra are hosted online at the 

address listed in the Appendices according to MIAPE standards.101 

 

 

2.3 Results and Discussion 

 

2.3.1 Comprehensive phosphorylation map of human APPL1 by LTQ- and 
Orbitrap-MS  
 

In this study, a comprehensive phosphorylation profile of APPL1 is 

described for the first time. To accomplish this, FLAG-GFP-APPL1 was 

expressed in HEK-293 cells by the Webb group and subsequently 
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immunoprecipitated for MS analysis according to the purification scheme outlined 

in Figure 10 a. A major band corresponding to the molecular mass of APPL1 was 

observed when the immunoprecipitate was subjected to SDS-PAGE and stained 

with Coomassie blue (Figure 10 b). The band was confirmed to be APPL1 by 

Western blot analysis (Figure 10 c). A total of 15 μg was expressed for this 

characterization and divided between multiple protease digests and instrumental 

platforms. Before subjecting APPL1 to MS analysis, we examined the 

phosphorylation state of this protein using 4G10 phosphotyrosine antibody. 

APPL1 was phosphorylated on tyrosine residues as determined by Western blot 

analysis with 4G10 (Figure 10 c). Several other minor bands were detected in the 

immunoprecipated samples, which could correspond to endogenous APPL1 or 

APPL1 binding proteins. However, insufficient peptide signal from MS analyses 

precluded positive protein identification of these additional minor bands. 

At least 13 (as discussed below) phosphorylation sites with 99.6% total 

amino acid sequence coverage were identified using multiple proteases, 

including trypsin, chymotrypsin, and Glu C, followed by LC-MS analyses using 

both an LTQMS instrument and an LTQ-Orbitrap instrument. Of these reported 

phosphorylation sites, three could not be located to a single amino acid (i.e., 

phosphorylation was determined to exist within a range of potential sites within a 

peptide). Table 2 shows each confirmed phosphorylation site assignment by 

sequence position using the LTQMS instrument. In total, 10 phosphorylation sites 

were identified by combining the data obtained for trypsin, chymotrypsin, and Glu 

C digests to obtain a sequence coverage of 95.3%. Of these 10 sites, only two 
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Figure 10. a) Schematic showing the generalized protocol used for purifying 
FLAG-tagged proteins. b) SDS-PAGE gel of immunoprecipiated FLAG-GFP-
APPL1 stained with Coomassie blue. Arrow points to purified FLAG-GFP-APPL1. 
c) Western blot with GFP-specific antibody (left panel) or phospho-tyrosine 
antibody (right panel). Left panel shows the purified protein is FLAG-GFP-APPL1 
(IB: GFP) and right panel shows that APPL1 is phosphorylated on tyrosine 
residues (IB: 4G10). 
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Table 2. Phosphorylation Sites within APPL1 Identified by LTQMS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. The “p” denotes pa. “pX” and/or boldface denotes phosphorylation; asterisk, “*” 
denotes carboxyamidomethylation. 
b. The symbol “‡” denotes sequence regions where single residue is known to be 
phosphorylated between the residues underlined. Phosphorylation on a specific 
residue on those regions cannot be confirmed. 
c. Represents digestion by multiple proteases. Trp, Chymo and Glu C 
correspond to the proteases, trypsin, chymotrypsin, and Glu C, respectively. 

 

peptides position Protease [M + H]
+
 (m/z) 

 

92
VIDELSSCHAVLSTQLADAMMFPITQFK

119 

 

 
‡ 

 
Trp 

 
3175.53 

 

376
QIpYLSENPEETAAR

389 

 

 
378Y 

 
Trp 

 
1700.75 

 

390
VNQSALEAVTPSPSFQQR

407 

 

 
‡ 

 
Trp 

 
2038.99 

 

456
DIIpSPVC*EDQPGQAKAF

472 

 

 
459S 

 
Chymo 

 
1954.93 

 

479
TNPFGESGGSTKpSETEDSILHQLFIVR

505 

 

 
491S 

 
Trp 

 
3029.46 

 

595
SESNLSSVCpYIFESNNEGEK

614 

 

 
604Y 

 
Trp 

 
2315.94 

 

669
LIAASSRPNQASSEGQFVVLpSSSQSEE 

SDLGEGGK
703 

 

 
689S 

 
Trp 

 
3631.71 

 

683
GQFVVLSSpSQSEESDLGEGGKKRE

706 

 

 
691S 

 
Glu C 

 
2633.24 

 

683
GQFVVLSSSQpSEEpSDLGEGGKKRE

706 

 

 
693S, 
696S 

 
Glu C 

 
2713.24 
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could not be located to a specific residue, that is, phosphorylation was confirmed 

to exist between amino acids 97−98 (SS) and 401−403 (SPS). Table 3 shows the 

confirmed phosphorylation sites using the LTQ-Orbitrap instrument. By 

combining the data obtained for Glu C, trypsin, and chymotrypsin digests, nine 

phosphorylation sites were identified with sequence coverage of 99.6%. Several 

of these phosphorylation sites were detected in multiple peptides derived from 

proteolytic miscleavages corresponding to the same site of phosphorylation. Of 

these nine sites, two could not be located to a specific residue, but were 

confirmed to exist between amino acids 401−403 (SPS) and 689−691 (SSS). 

Moreover, a number of potential phosphorylation sites were eliminated from 

consideration, as phosphorylation site rearrangement prevented a confident 

assignment. A comparison of the phosphorylation sites identified using the 

LTQMS and LTQ-Orbitrap yielded four unique sites by the former and three 

unique sites by the latter. We detected five phosphorylation sites, including 

serines 401/403, 459, 691, 693, and 696 by both methods. Interestingly, most of 

the phosphorylation sites we detected in human APPL1 are conserved in rat and 

mouse APPL1 (Table 4), raising the possibility that these sites serve a functional 

role.  

Two of the previously identified phosphorylation sites in APPL1, 401S and 

691S, were detected in our analysis while one additional site, 399T, was not 

definitively assigned. Phosphorylation of 401S was initially identified in epithelial 

carcinoma (HeLa) cells as part of a large-scale characterization of nuclear 
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Table 3. Phosphorylation Sites Identified within APPL1 by LTQ-Orbitrap-MS 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. The “p” denotes phosphorylation; asterisk, “*” denotes 
carboxyamidomethylation. 
b. The symbol “‡” denotes sequence regions where single residue is known to be 
phosphorylated between the residues underlined. Phosphorylation on specific 
residue cannot be confirmed. 
c. Represents digestion by multiple proteases. Trp, Chymo and Glu C 
correspond to the proteases, trypsin, chymotrypsin, and Glu C, respectively. 

 
Peptide 

 
position 

 
protease 

 
[M+ H]

+ 

(m/z) 

 
Mass error 
 (ppm) 

 

367
IC*TINNIpSKQIYLSENPEETAARVNQSAL

395
 
 
374S 

 
Chymo 

 
3356.66 

 
3.30 

 

390
VNQSALEAVTPSPSFQQR

407 
 

‡ 
 

Trp 
 

2038.96 
 

−2.45 
 

415
AGQSRPPTARTSpSSGSLGSESTNL

438
 

 
427S 

 
Chymo 

 
2428.11 

 
−0.62 

 

418
SRPPTARTSpSSGpSLGSESTNL

438
 

 
427S, 430S 

 
Chymo 

 
2251.96 

 
0.93 

 

418
SRPPTARTSpSSGSLGSESTNL

438 
 

427S 
 

Chymo 
 

2171.99 
 

1.10 
 

451
TPIQFDIIpSPVC*EDQPGQAKAF

472 
 

459S 
 

Chymo 
 

2541.17 
 

0.08 
 

456
DIIpSPVC*EDQPGQAKAF

472 
 

459S 
 

Chymo 
 

1954.91 
 

−1.64 
 

457
IIpSPVC*EDQPGQAKAF

472 
 

459S 
 

Chymo 
 

1839.86 
 

0.33 
 

669
LIAASSRPNQASSEGQFVVLSSSQSEES 

DLGEGGK
703 

 
‡ 

 
Trp 

 
3631.68 

 
−3.71 

 

683
GQFVVLSSpSQSEESDLGEGGKKRE

706 
 

691S 
 

Glu C 
 

2633.21 
 

−0.46 
 

683
GQFVVLSSSQpSEESDLGEGGKKRESE

708 
 

693S 
 

Glu C 
 

2849.28 
 

5.58 
 

683
GQFVVLSSSQpSEESDLGEGGKKRE

706 
 

693S 
 

Glu C 
 

2633.21 
 

−0.57 
 

686
VVLSSpSQSEESDLGEGGKKRE

706 
 

691S 
 

Glu C 
 

2301.06 
 

0.13 
 

686
VVLSSSQpSEEpSDLGEGGKKRE

706 
 

693S, 696S 
 

Glu C 
 

2381.03 
 

−1.89 
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Table 4. Comparison of Peptide Sequence Surrounding Identified 
Phosphorylation Sites in APPL1 
 

 
 
 
a. The symbol “‡” denotes sequence regions where single residue is known to be 
phosphorylated between the residues underlined. Phosphorylation on specific 
residue on those regions cannot be confirmed. 
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phosphoproteins and in an analysis of protein phosphorylation in developing 

mice brains.86, 87 This site was subsequently shown to be phosphorylated in HeLa 

cells in two additional studies.84, 85 Phosphorylation of 691S was detected in 

HEK-293 cells in response to DNA damage using ionizing radiation.19 We also 

identified phosphorylation of this site in HEK 293 cells under physiological 

conditions. Phosphorylation at 399T was identified in a global profiling study,84 

but a positive identification could not be definitively made in our experiments. Our 

spectra potentially suggested phosphorylation at 399T, but in these spectra, this 

site was not the highest confidence assignment. Furthermore, the previous study 

examined protein phosphorylation during mitosis using HeLa cells arrested in the 

mitotic phase of the cell cycle while our analysis was performed in HEK-293 cells 

under conditions in which they were progressing through the cell cycle. Thus, it is 

possible that phosphorylation of this site is transient if it is regulated by cell cycle 

progression and difficult to detect. 

 

2.3.2 Phosphorylation sites within APPL1 functional domains  

The confirmed phosphorylation sites obtained on both instruments are 

shown in Figure 11a. Of the confirmed sites, four were found in APPL1 

interacting domains. Namely, serines 97/98 were located in the BAR domain, 

raising the possibility that phosphorylation at these sites could disrupt APPL1 

dimerization as well as endosomal localization. Interestingly, as shown in the 

crystal structure of the BAR and PH domains, serines 97/98 are located on the 

concave surface of the BAR domain, which is thought to interact with 
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Figure 11. a) Phosphorylation sites identified in APPL1, using LTQMS and LTQ-
Orbitrap MS. Underlined sites indicate that one phosphorylation is known to exist 
within the region. b) A schematic of APPL1 is shown with identified 
phosphorylation sites relative to the position of APPL1 domains. Interacting 
regions within APPL1 for several proteins and receptors are also indicated. 
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 membranes (Figure 11b).92, 102 

Therefore, phosphorylation at this site could potentially regulate 

membrane interactions. Serine 374 and tyrosine 378 are clustered near the edge 

of the PH domain (Figure 11b), suggesting a potential link to APPL1 localization. 

Collectively, these sites in the BAR and PH domains may contribute to altered 

APPL1 binding to Rab5, since together these domains are important for this 

interaction. Finally, tyrosine 604 was found in the PTB domain, which is typically 

involved in protein−protein interactions, and phosphorylation in this domain may 

regulate the ability of APPL1 to bind to its interacting protein partners. 

Interestingly, a significant number of identified phosphorylation sites are found 

outside of known domains. Even though these sites are outside described 

domains, it does not imply a lack of functional significance. These sites may have 

importance in regulating the structure and molecular interactions of APPL1. 

 

2.3.3 Advantages and challenges to contemporary phosphoproteomic 
methodologies  
 

Figures 12 and 13 demonstrate the necessity of manual verification and 

challenges associated with site identification using bioinformatics analyses. For 

example, the peptide in Figure 12, GQFVVLSSSQpSEESDLGEGGKKRE, was 

identified correctly, but because the incorrect peak was used as the monoisotopic 

peak, the mass error of the precursor ion (−381 ppm) was outside of the 

acceptable range (−5 to 5 ppm). Conversely, an example of an erroneous 

SEQUEST assignment is shown in Figure 13. Although b and y ion coverage 

bracketing the phosphorylation site is sufficient for a high X-corr value and high 
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Figure 12. Tandem MS/MS spectrum acquired using an LTQ-Orbitrap illustrates 
peak validation for accurate SEQUEST assignments. Inset illustrates a situation 
whereby the instrument selected the peak at 878.7426 as the monoisotopic peak 
resulting in erroneous mass accuracy (−381 ppm). Manual validation of the data 
correctly assigns the accurate monoisotopic peak at 878.4084 resulting in a 
mass accuracy for the parent species of 0.56 ppm. 
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Figure 13. Tandem MS/MS spectrum of a phosphorylation site incorrectly 
assigned by SEQUEST having the highest Xcorr value of 2.19. SEQUEST 
assignments report 15% b-ion sequence coverage and 55% y-ion coverage from 
the y5 ion to the y16 ion. Of the eight most abundant peaks in the spectrum, six 
ions, indicated by an asterisk, correspond to neither b nor y ions, or to 
characteristic neutral losses. Manual verification was performed to detect such 
errors in the bioinformatic assignments. Additionally, the b and y ion coverage 
fails to bracket the suggested sites of phosphorylation, namely, tyrosine 378 and 
serine 380.  
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sequence coverage confidence, high abundance peaks do not correspond to b 

and y ions or their respective neutral losses. Collectively, these examples and 

ambiguity arising from gas-phase rearrangement illustrate the continuing need to 

validate sequencing data in phosphorylation site mapping experiments.24, 25  

Phosphorylation site validation is challenging for a number of reasons, 

including low stoichiometries and co-elution of these low abundant peptides with 

more abundant and easily ionized peptides. Furthermore, though the objective of 

phosphorylation site discovery was met for characterization of APPL1, significant 

laborious manual interpretation, validation, and confirmation were needed. 

Moreover, due to the challenges associated with site discovery, quantitative 

information is typically not gained in the same experiment, requiring additional 

time and resources to complete a full characterization. Thus the need for a more 

selective and rapid strategy for online separation of phosphorylated peptides to 

facilitate protein phosphorylation characterization is evident.  

 

 
 

2.4 Conclusion 
 
 

Emerging data indicate an important role for APPL1 in regulating various 

cellular processes, such as cell proliferation, apoptosis, and survival, which 

points to a need to gain insight in to the regulation of this protein.  Since 

phosphorylation is an important regulatory mechanism, we generated a 

comprehensive map of phosphorylation sites within APPL1. We 



 46 

detected 13 phosphorylation sites within APPL1, with four of these being 

identified in functional domains. These sites have potential implications in 

regulating APPL1 function and interactions, which represents an important 

avenue for future study. A number of challenges exist in determining the sites of 

modification for an uncharacterized protein, such as coelution, reversible 

phosphorylation, phosphorylation site rearrangement, and the impracticality of 

performing quantitation in the same experiment. Lanthanide-based 

phosphorylation-specific labeling is introduced in the following chapters, which 

circumvents many of the challenges encountered in traditional data-dependent 

protein phosphorylation characterization. 
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CHAPTER 3 

 

SIMULTANEOUS RELATIVE QUANTITATION AND SITE IDENTIFICATION OF 
PHOSPHORYLATED PEPTIDES AND PROTEINS USING LANTHANIDE-

BASED LABELING FOR MALDI-TOFMS ANALYSIS 
 

3.1 Introduction 

 

As outlined in Chapter 2, there is a demonstrated need for a 

comprehensive protein phosphorylation characterization strategy whereby 

phosphorylated peptides are selectively separated from their unphosphorylated 

counterparts and sites of phosphorylation are identified and quantitated in the 

same experiment. In this chapter, challenges associated with phosphopeptide 

quantitation and site identification are addressed. 

Current mass spectrometry based strategies for quantifying sites of 

protein phosphorylation include stable isotope techniques that take advantage of 

mass shifts provided by isotopologues. Challenges associated with isotopologue 

quantitative labeling include isotopic overlap of modified peptides of higher mass. 

Lanthanide-based labeling strategies allow for greater mass separation than 

current isotope-based strategies due to incorporation of lanthanide metals of 

greater mass differences (2-36 Da), but have not been previously demonstrated 

for selective phosphopeptide quantitation. In this chapter, we demonstrate a 

strategy for site identification and relative quantitation of phosphorylated peptides 

and proteins using a phosphorylation-specific lanthanide-based labeling strategy. 

Because the chemistry is specific for phosphorylation, we term this labeling 

strategy Phosphopeptide-Element Coded Affinity Tagging, or PhECAT. In this 

benchmarking report, phosphorylated peptides are selectively modified at the 
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phosphorylation site via beta-elimination/anionic thiol Michael addition chemistry. 

In this manner, phosphorylated peptides are converted to cysteine-like residues, 

which then readily react with cysteine-specific labels. This lanthanide-chelating 

label is added via maleimide chemistry and selected lanthanide metals are 

subsequently chelated to a macrocycle moiety. Because these labels replace a 

labile phosphate with a covalent moiety, phosphorylation site rearrangement can 

be avoided and phosphorylation site identification is less challenging. To 

demonstrate this technique, model phosphorylated peptides and those derived 

through proteolytic digestion of a model phosphorylated protein are quantitated in 

1:5, 1:1, and 5:1 molar ratios with comparable sensitivity and relative error 

(~10%) to current isotopologue-based relative quantitation strategies. Moreover, 

the site of phosphorylation for bovine beta-casein fragment 48-63 was identified 

without any site rearrangement of the label evident. 

 

3.2 Experimental 

 

3.2.1 Materials and preparation 

Model phosphorylated peptides and proteins were investigated for proof-

of-concept experiments. Phosphorylated peptide samples having the sequence 

WAGGDApSGE (m/z 928.8) were purchased from American Peptide Company 

(Sunnyvale, CA) and used without further purification. Phosphorylated peptide 

samples having the sequence KKKKKRFpSFKKpSFKLSGFpSFKKNKK was 

purchased from Anaspec (Freemont, CA). Phosphorylated protein bovine β-

casein was purchased from Sigma-Aldrich (St. Louis, MO). Trypsin was 

purchased from Promega Corp. (Madison, WI). C-18 spin columns were 

purchased from Pierce (Rockford, IL). 1,4,7,10-Tetraazacyclododecane- 1,4,7- 
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tris- acetic acid-1-maleimidoethylacetamide, or Maleimido-mono-amide-DOTA 

was purchased from Macrocyclics (Dallas, TX) and dissolved in DMSO. 1,2-

ethanedithiol (EDT) was purchased from Fluka (St. Gallen, Switzerland). 2,5-

dihydroxybenzoic acid (DHB) was purchased from Sigma and dissolved in 50% 

methanol to a final concentration of 30 mg/mL. Lanthanide metals were 

purchased from Strem Chemicals (Newburyport, MA) and dissolved in distilled 

deionized water (18 MΩ cm-1) to a final concentration of 25 mg/mL. 

Dimethylsulfoxide, acetonitrile, and ethanol were purchased from Sigma. 

 

3.2.2 Digestion of phosphorylated proteins 

Proteins were dissolved in ammonium bicarbonate buffer (pH 8.0) and 

thermally denatured at 90˚C for 20 minutes and quenched at -20˚C.34 Cysteine-

cysteine bonds and free cysteines were reduced with dithiothreitol (final molarity 

of 4 mM) and alkylated with iodoacetamide (final molarity of 20 mM). Proteins 

were subsequently digested with trypsin in a 1:40 weight to weight ratio for 16-20 

hours at room temperature and purified by C-18 spin columns (Pierce, Rockford, 

IL) prior to derivatization. 

 

3.2.3 Selective derivatization of phosphorylated peptides and proteins 

Model and tryptic peptides were subjected to a beta-elimination (Figure 14(i)) 

and anionic thiol Michael addition reaction (Figure 14(ii)) resulting in the selective 

elimination of phosphoric acid followed by addition of ethanedithiol. In this 

reaction, each sample was derivatized in a reaction mixture containing 2.5 mM 

EDTA, 0.2 M ethanedithiol, 0.5 M NaOH, 1.5 M acetonitrile, 1.5 M ethanol, 5 M 

DMSO, and water for 1-2 hrs under nitrogen at 55ºC in a manner similar to  
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Figure 14. Reaction scheme for PhECAT (i) Phosphoric acid is removed via 
Beta-elimination in basic conditions (ii) Ethanedithiol is subsequently added to 
the conjugated diene via anionic thiol Michael addition (iii) The remaining free 
thiol is attached to the macrocylic via maleimide chemistry (iv)Finally, lanthanides 
are chelated to the macrocyclic portion of the tag. 
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reaction conditions described previously.79, 103, 104 This resulted in conversion of 

phosphorylated serine and threonine into dehydroalanine or dehydroaminobutyric 

acid, respectively. The samples were then neutralized and purified by gel 

filtration (Sephadex G-10, Sigma) and reaction completion was confirmed by 

MALDI-TOFMS. Subsequently, the thiolated peptides were labeled with a 10-fold 

excess of maleimido-DOTA (Figure 14(iii)) in a mixture containing acetate buffer 

(pH 5.5) and DMSO in 1:1 ratio (v/v), resulting in a covalent bond between the 

free sulfhydryl group and the maleimide portion of the lanthanide-based tag. 

Finally, selected lanthanide metals were chelated to the maleimide portion of the 

tag by adding a 100-fold molar excess of metal to peptide and heating to 80ºC for 

45 minutes (Figure 14(iv)). Differentially labeled samples were then combined 

and purified by C-18 spin columns and analyzed using MALDI-TOFMS.  

 

3.2.4 Instrumentation and data analysis 

Spectra were obtained using a Voyager-DE STR (Applied Biosystems, 

Inc.) MALDI-TOFMS instrument in the delayed extraction (DE), positive, reflector 

mode. MALDI matrix preparation consisted of 2,5-dihydroxybenzoic acid (DHB) 

in 50% methanol. The samples were spotted using the dried-droplet method. 

Data analysis was performed using Data Explorer software version 4.3 (Applied 

Biosystems, Foster City, CA). At least 3 trials were analyzed for each relative 

quantitation experiment. Spectra were acquired by rastering the MALDI laser at 

random over the entire matrix spot. Relative molar amounts were calculated by 

dividing the relative peak area of the derivatized state 1 by the relative peak area 

of derivatized state 2. 

Fragmentation of the labeled phosphorylated peptides and proteins were 

performed on a Waters Synapt© HDMS (Waters, Inc. Milford, MA) instrument 
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with MALDI as the ionization source. Data analysis was performed using 

MassLynx© software (Waters). Six Dalton doublets (the anticipated mass shift 

afforded by the Tb and Ho metals selected for labeling) were manually selected 

for fragmentation and analyzed for potential phosphorylation sites in order to 

assess the stability of the lanthanide label. 

 

3.3 Results and Discussion 

 

While methods for MS-based relative quantitation of peptides and 

proteins using chemical modification methodologies have been described in 

detail, there are few reports of label-based relative quantitation strategies that are 

selective for phosphorylation that provide sufficient mass shift for large peptides. 

The available methods have enormous utility in quantitation of phosphorylated 

peptides and proteins, but suffer from three important limitations – (i) they are 

limited to low mass peptides due to spectral congestion caused by an overlap of 

increasingly larger isotopic envelopes, (ii) they are limited in affinity purification to 

avidin/streptavidin, which can pull down non-specific peptides as well as labeled 

peptides, and (iii) the number of simultaneously analyzed peptides is limited 

(simultaneous quantitation of 2-8 samples are commonly reported).  

Here, we report a multiplexed relative quantitation strategy that addresses 

these limitations with the added utility of site assignment using PhECAT. 

Subsequent to the reduction and alkylation of free thiol groups of cysteine, 

phosphoryl groups on serine and threonine are selectively removed in the form of 

phosphoric acid via beta-elimination chemistry perfomed under basic conditions, 

followed by an addition of ethanedithiol via anionic thiol Michael addition 

chemistry, resulting in a conversion of a phosphate moiety to a free thiol. Thiol-
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selective chemistry is performed on the remaining free thiol to attach the 

PhECAT label to the modified phosphorylated peptide. When the relative 

phosphorylation concentrations of different cell states are compared, these labels 

can be chelated to any lanthanide metal, which provides the necessary mass 

shift for quantitative comparisons. Furthermore, the number of samples that may 

be quantitated is only limited by the number of available isotopically enriched 

lanthanide metals (simultaneous quantitation of 2-15 samples is possible). A 

schematic diagram of this strategy is illustrated in Figure 15.  Moreover, 

antibodies selective for lanthanide-DOTA complexes with no natural analogs 

have been reported as an alternative to biotin/streptavidin purification.75 

 

3.3.1 Relative quantitation of phosphorylated peptides and Proteins using 
PhECAT 
 

Varying molar amounts of phosphorylated peptides and proteins were 

derivatized in this manner and quantitated in proof-of-concept experiments. An 

example of a typical relative quantitation experiment is illustrated in Figure 16. In 

this example, the peptide WAGGDApSGE was differentially tagged with Tb and 

Ho labels in a 1 to 5 molar mixture, respectively. The calculated peak area ratio 

was 0.199, exhibiting a 0.5% experimental error from the known relative molar 

amounts. Molar ratios of 1:5, 1:1, and 5:1 were demonstrated with Tb and Ho-

chelated tags, purified, and spotted with matrix before being analyzed by MALDI-

MS. Table 5 depicts the results from varying the molar ratios of the 

phosphorylated peptides. 
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Figure 15. Labeling of multiple sample states with DOTA tags coordinated to 
different lanthanide metals. In this illustrative figure, a 5:1:2.5 may be 
differentially coded with different lanthanide metals. Thus, the number of 
simultaneous samples that can be combined for relative quantitation is limited 
only be the number of different metals (or metal isotopes) that are used. 
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Figure 16. The phosphorylated peptide having the sequence WAGGDApSGE 
was derivatized in the manner previously described. The full scan m/z is shown. 
Although there are several minor peaks associated with excess labeling reagent, 
the labeled peptide is the dominant peak in this spectrum. (Inset) Relative 
quantitation between Tb and Ho labeled peptides having a molar ratio of 1:5, 
respectively. The measured peak areas were 1898.93 and 9529.45 for Tb and 
Ho, respectively, resulting in a calculated molar ratio of 0.199.  
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Table 5. Relative Quantitation of phosphorylated peptides and proteins using 
lanthanide-chelating tags in MALDI-TOFMS. 
 

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

_

___________________________________________________________________ 

a. "p" denotes phosphorylation, sequence positions bracket the sequence for tryptic peptides 

b. Phosphorylated peptides purchased and used without additional purification. 

c. Monoisotopic masses for unlabeled phosphorylated peptides. 

d. Calculated monoisotopic peaks for labeled phosphorylated peptides. “*”denotes PhECAT 

labeling, “‡“ denotes relative quantitation calculations where the peak having the highest relative 

abundance was selected for peak area quantitation rather than the monoisotopic peaks. This is 

primarily due to the fact that, here, the monoisotopic peak has the lowest intensity. In this case, the 

peaks of highest intensity (2741.1, 2747.1) were selected. 

e. Percent errors are reported according to the following formula: 

(Average Peak Area Ratio – Anticipated Peak Area Ratio) / Anticipated Peak Area Ratio 

Peptide Sequence
a,b 

 

 

 

[M+H]
+ c 

 
 

 

 

[M*+H]
+
 

Tb, Ho
d
 

 

 

 
 

Molar ratio of 

derivatized 
peptides 

 

 

 

Measured 
molar ratio of 

peptides 

derivatized with 
Ho-tag and Tb-

tag (average # 

of trials) 

 

 
Relative 

Percent 

Error
e
 

 

 

WAGGDApSGE from delta 
sleep-inducing peptide 

 

 

928.8 

 

 

1607.2, 
1613.2 

 

 

 

5.0: 1.0 
(Tb:Ho) 

 

 

 

 

5.408 (3) 
 

 

 

 

+8.2 

WAGGDApSGE from delta 

sleep-inducing peptide 

 

 

928.8 

 
 

1607.2, 

1613.2 
 

1.0: 1.0 

(Tb:Ho) 
 

 

1.029 (4) 

 

+2.9 

WAGGDApSGE from delta 

sleep-inducing peptide 

 

 

928.8 
 

 

1607.2, 
1613.2 

 

 

1.0: 5.0 
(Tb:Ho) 

 

 

0.207 (5) 

 

+3.5 

48 FQpSEEQQQTEDELQDK 63 
from bovine B-casein 

 

2060.7 
 

 

 

2739.1
‡
, 

2745.1
‡
 

 

1.0: 5.0 
(Ho:Tb) 

 

 
 

0.217 (3) 

 
 

+8.4 

48 FQpSEEQQQTEDELQDK 63 
from bovine B-casein 

 

2060.7 
 

 

 

2739.1
‡
,
 
 

2745.1
‡
 

 

1.0: 1.0 
(Tb:Ho) 

 

 
 

1.089 (3) 

 
 

+8.9 

48 FQpSEEQQQTEDELQDK 63 
from bovine B-casein 

 

2060.7 
 

 

 

2739.1
‡
, 

2745.1
‡
 

 

1.0: 5.0 
(Tb:Ho) 

 

 
 

0.226 (3) 

 
 

+12.8 
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For the peptide WAGGDApSGE, the average error associated with three 

separate quantitation experiments (i.e., the average of errors associated with 

three experiments profiling three separate molar ratios) was calculated to be 

8.5%. For the protein bovine beta-casein the tryptic peptide 

FQpSEEQQQTEDELQDK was quantitated using the same range of molar ratios. 

A typical quantitation experiment is shown in Figure 17. In this example, beta-

casein was derivatized in a 1 to 5 molar ratio with Tb- and Ho-chelated labels, 

respectively. The measured molar ratio of Tb-labeled sample to Ho-labeled 

sample was 0.203, which has a relative error of 1.67%. The average error 

associated with three separate quantitation experiments was calculated as 6.4%. 

These errors are comparable to current isotope coded affinity labels, with the 

added advantages larger shifts in mass doublets afford, i.e. 2-36 Da for single 

phosphorylation sites, allowing for quantitation of high- mass peptides without 

peak convolution from adjacent isotopes. For multiple phosphorylation sites, the 

mass difference scales with the number of the labels, providing even greater 

separation. These results also indicate that this method has error competitive to 

current quantitative phosphoproteomic methods and should have utility in relative 

quantitative studies of complex biological samples. The utility of lanthanide ions 

as luminescent chromophores in LC separations have been well described, and 

may increase confidence in phosphorylation site labeling at an additional stage of 

analysis.41 Moreover, the addition of a macrocycle may shift LC elution times for 

phosphorylated peptides, which may assist in separation of closely spaced 

phosphorylated and non-phosphorylated species.  
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Figure 17. Bovine beta-casein was derivatized in the manner previously 
described. The full m/z is shown. In addition to standard digest peaks (tryptic 
beta-casein peptides), the labeled phosphorylated peptide having the sequence 
FQpSEEQQQTEDELQDK is observed, and is one of the dominant peaks in this 
spectrum. (Inset) Relative quantitation between a 1:5 molar mixture of Tb and Ho 
labeled beta-casein. The measured peak areas are 455.77 and 2241.51 for Tb 
and Ho, respectively, resulting in a calculated molar ratio of 0.2039.  
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3.3.2 Fragmentation and phosphorylation site identification 

 
PhECAT labeled peptides were examined by tandem MS to evaluate the 

utility of these tags for phosphorylation site-identification. An example of a typical 

tandem spectrum is shown in Figure 18. The expected b/y series ions were 

observed, including full b ion coverage from the b3 to the b15 ion, all labeled and 

several unlabeled y ions including y9, y11, and y13-15, and several labeled water 

loss ions with little evidence for fragmentation of the label. It should be noted that 

all fragment ions covalently bound to the PhECAT label exhibit higher intensities 

than unlabeled fragment ions. The stability of this label enables predictable mass 

shifts of anticipated b and y ions which gives an indication of the site of 

modification previously phosphorylated. Furthermore, because this tag is not 

labile and does not show phosphorylation site rearrangement (as is the case with 

phosphoric acid and phosphate plus water loss), it has an added advantage of 

more confident phosphorylation site assignment. 

 

3.3.3 Challenges in quantitation of phosphorylated threonine. 

 Beta-elimination/Michael addition of phosphorylated threonine has been 

reported to be more challenging due to steric hinderance caused by the 

methylated alpha carbon.51 The PhECAT labeling strategy was applied toward 

two peptides containing phosphorylated threonine. The peptide containing the 

sequence KKALRRQEpTVDAL was incubated for 4 and 6 hours using the 

reaction conditions described above. Although beta-elimination reacted to 

completion, Michael addition was not achieved to completion. Figure 19 

illustrates the minimal impact of increased incubation  
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Figure 18. i) Structure of a terbium-labeled tryptic beta-casein phosphorylated 
peptide having the sequence FQpSEEQQQTEDELQDK. An asterisk indicates 
that the ion is covalently modified with the PhECAT. Observed fragmentation 
peaks are indicated on the peptide structure. Fragmentation coverage of 86.7% 
and 33.3% of the labeled peptide was observed for b and y ions, respectively. 
Five additional y ions were located, but were not reported due to inadequate S/N. 
Fragmentation coverage of b and y water loss ions is provided in the appendices. 
Importantly, all of the anticipated ions corresponding to labeled positions are 
observed, demonstrating the utility of this label for phosphopeptide site 
identification as well as relative quantitation. ii) Fragmentation spectrum of 
labeled FQpSEEQQQTEDELQDK. Fragment ions are labeled. It should also be 
noted that labeled fragment ion species exhibit greater intensity than non-labeled 
fragment ion species. Spectral peaks from 500 m/z to 2600 m/z were intensified 
10x to increase visibility of b and y spectral assignments. 
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Figure 19. a) Completion of the beta-elimination/Michael addition reaction for 
KKALRRQEpTVDAL with a 4-hour incubation time at 50°C. b) Completion of the 
beta-elimination/Michael addition reaction for KKALRRQEpTVDAL after a 6-hour 
incubation time at 50°C. Incubation time does not increase the Michael addition 
product.  
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time on the Michael addition product. The peptide containing the sequence 

LKRApTLG was incubated for 24 hours, resulting in a marginal increase of 

Michael addition product (Figure 20). These results are consistent with a report 

from Gross and colleagues,51 which describes minimal Michael addition product 

increase with respect to increased incubation time (in the Supplementary 

Material of Gross, et al).  To circumvent this, Gross and colleagues included an 

additional separation step between beta-elimination and Michael addition, 

transforming the chemistry from a one-pot to a two-pot process.  It can be 

reasoned that even though phosphorylated threonine generates a low yield of 

labeled product, the relative quantitation of phosphorylated threonine is still 

possible to within acceptable error (<10%), and percent yields are expected to 

remain consistent between samples with consistent labeling technique.  

 

3.3.4 The role of arginine in phosphorylation site stabilization 
 

Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) peptide 

fragment 151-175 (KKKKKRFpSFKKpSFKLSGFpSFKKNKK) was derivatized in 

the manner above and beta-elimination/Michael addition was checked for 

completeness. Although this peptide contains three phosphorylated serine 

residues, beta-elimination/Michael addition was only observed for one 

phosphorylated residue (Figure 21). This is consistent with observations made by 

Woods and colleagues,105-107 where observations of non-covalent complexes of 

phosphorylated residues and quarternary amines (i.e., arginines) were reported. 

It is speculated that the two unlabeled phosphorylation sites form a strong 

complex with the excess of quarternary amines in the peptide. Woods, et al. 

suggests the addition of aromatic compounds (e.g., hexachlorobenzene) to  
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Figure 20.  Completion of the beta-elimination/Michael addition reaction for 
LKRApTLG with a 24-hour incubation time at 50°C. Significant increases in 
incubation time do not affect the yield of the Michael addition product. 
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Figure 21. Spectra profiling the completion of the beta-elimination/Michael 
addition reaction for the triply phosphorylated MARCKS peptide. One 
phosphorylated residue is labeled, indicating a near-covalent cation pi-interaction 
of the phosphorylated residues and the guanidinium group of the arginine 
residues in the peptide sequence.105, 106 Moreover, the Michael addition reaction 
is not quantitative, as indicated by the relative low abundance with respect to the 
beta-eliminated peptide. Additional fragmentation peaks corresponding to b and y 
ions from in-source fragmentation are indicated. 
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solution to compete with electrostatic interactions between arginines and 

phosphorylation sites. To circumvent unanticipated arginine-phosphorylation 

interactions of peptides, peptides that contain arginine should be treated with 

aromatic compounds prior to derivatization to ensure that the phosphorylation 

site is available for modification. 

The solvent-accessible phosphorylated residue on MARCKS was 

quantitated using Tb- and Ho-chelated lanthanide labels. A typical quantitation 

experiment is shown in Figure 22. In this experiment, a 1 to 3 (Tb to Ho, 

respectively) molar mixture was quantitated. For peptides above 3000 Da, a 6-Da 

shift was not adequate to resolve the differentially labeled peaks, illustrating the 

need for labels to provide larger mass shifts and the utility of lanthanide- based 

labels to design quantitative strategies using mass shifts that support the mass of 

the peptides of interest. 

 

3.4 Conclusions 

 

Current methods of MS-based protein quantitation primarily focus on 

quantifying relative expression profiles through labeling non-post-translationally 

modified peptides. This offers a limited view of the biological activity of cells, 

because many biological functions are dependent on temporal protein 

modifications, specifically, protein phosphorylation. The available methods for 

phosphoprotein quantitation provide good specificity for the site of 

phosphorylation, however, they have limited applicability for peptides of 

increasing mass. In this work, we have demonstrated the utility of PhECAT for 

relative quantitation of phosphorylated peptides using  
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Figure 22. Spectra illustrating the lanthanide-based labeling (PhECAT strategy) 
of the uncomplexed phosphorylated residue in the MARCKS peptide. Note that 
the % intensity of the labeled species is significantly greater than the intensity of 
the Michael addition product in Figure 19, indicating that the lanthanide-based 
label improves ionization and detection, which is an added advantage in 
phosphoproteomic characterization. (inset) Relative quantitation between Tb-and 
Ho-labeled species aquired on a DE-Voyager MALDI-TOFMS. Here, a 6-Da 
mass shift was not sufficient to resolve labeled peptides of masses greater than 
3000 m/z on a typical MALDI-TOFMS, illustrating the need for larger mass shifts 
provided by lanthanide encoded labeling.  
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MALDI-MS. We propose that this method may circumvent challenges 

encountered by label-free quantitation, such as gas-phase phosphorylation site 

rearrangement, and has potential utility in quantitating the relative expression of 

protein phosphorylation with the additional utility of providing a confident 

phosphorylation site assignment.   
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CHAPTER 4 

 
 
 

RAPID SEPARATION, IDENTIFICATION, AND QUANTITATION OF 
PHOSPHORYLATED PEPTIDES AND PROTEINS USING LANTHANIDE-
BASED LABELS AS ION MOBILITY-MASS SPECTROMETRY MOBILITY 

SHIFT LABELS 
 
 

4.1 Introduction 

 

The stoichiometry of protein phosphorylation regulates numerous 

biological processes. As addressed in the previous chapter, current mass 

spectrometry-based strategies for quantifying sites of protein phosphorylation 

include isotopologue strategies that limit the size of the peptide quantitated and 

require high resolution MS instruments, which are less common and costly to 

operate. Lanthanide-based labeling strategies allow for greater mass separation 

than current isotope-based strategies due to incorporation of lanthanide metals of 

greater mass differences (2-36 Da), and may be used as mobility shift “anchors” 

for rapid visualization in ion mobility-mass spectrometry (IM-MS) analysis. 

Moreover, lanthanide-based labels may provide mobility shift and selective 

separation of the labeled phosphorylated peptides. This facilitates rapid 

identification and selection of labeled ions for further characterization. 

In this chapter, we demonstrate lanthanide-based labeling for 

phosphorylated peptides, or Phosphopeptide Element-Coded Affinity Tagging 

(PhECAT), for rapid identification, relative quantitation, and phosphorylation site 

identification of phosphorylated peptides and proteins in complex mixtures using 

IM-MS as a separation platform. Briefly, in the PhECAT method, phosphorylated 

peptides are selectively modified at the phosphorylation site via beta-
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elimination/anionic thiol Michael addition chemistry. In this manner, 

phosphorylated peptides are converted to cysteine-like residues, which then 

readily react with cysteine-specific labels. A lanthanide-chelating label is added 

via maleimide chemistry and selected lanthanide metals are subsequently 

chelated to a macrocycle moiety. Labeled phosphorylated peptides are then 

visually identified by a mobility shift from the anticipated peptide correlation line 

generated in IM-MS, quantitated, and fragmented in the transfer portion of the 

instrument to provide comprehensive phosphopeptide analysis. To demonstrate 

this technique, phosphorylated peptides and protein mixtures from proteolytic 

digestion are identified and quantitated in various molar ratios with comparable 

sensitivity and relative error to current isotopologue-based relative quantitation 

strategies. Moreover, site identification of the modified phosphorylation site is 

achieved, demonstrating that the label is covalent on the site of modification and 

more stable than b and y ions generated by cleaving peptide bonds. This 

strategy provides more confident site identification than that obtained in data-

dependent LC-MS/MS strategies because this method circumvents 

phosphorylation-site rearrangement in the collision cell. 

 

4.2 Experimental 

 

4.2.1 Materials 

Model phosphorylated peptides and proteins were investigated for proof-

of-concept experiments. Phosphorylated protein bovine β-casein was purchased 

from Sigma-Aldrich (St. Louis, MO). Trypsin was purchased from Promega Corp. 

(Madison, WI). C-18 spin columns were purchased from Pierce (Rockford, IL). 

Maleimido-mono-amide-DOTA was purchased from Macrocyclics (Dallas, TX) 
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and dissolved in DMSO. 1,2-ethanedithiol (EDT) was purchased from Fluka (St. 

Gallen, Switzerland). 2,5-dihydroxybenzoic acid (DHB) was purchased from 

Sigma and dissolved in 50% methanol to a final concentration of 30 mg/mL. 

Lanthanide metals were purchased from Strem Chemicals (Newburyport, MA) in 

chloride salt form and dissolved in distilled deionized water (18 MΩ cm-1) to a 

final concentration of 25 mg/mL. Dimethylsulfoxide, acetonitrile, and ethanol were 

purchased from Sigma. 

 

4.2.2 Digestion of phosphorylated proteins 

Proteins were dissolved in ammonium bicarbonate buffer (pH 8.0) and 

thermally denatured at 90˚C for 20 minutes and quenched at -20˚C.34 Cysteine-

cysteine bonds and free cysteines were reduced with dithiothreitol (final molarity 

of 4 mM) and alkylated with iodoacetamide (final molarity of 20 mM). Proteins 

were subsequently digested with trypsin in a 1:40 weight to weight ratio for 16-20 

hours at room temperature and purified by C-18 spin columns (Pierce, Rockford, 

IL) prior to derivatization. Digestion was confirmed by MALDI-TOFMS (data not 

shown). 

 

4.2.3 Selective derivatization of phosphorylated peptides and proteins  

Tryptic peptides were subjected to a beta-elimination (Figure 23(i)) and 

anionic thiol Michael addition reaction (Figure 23(ii)) resulting in the selective 

elimination of phosphoric acid followed by addition of ethanedithiol. In the beta-

elimination/Michael addition reaction, each sample was derivatized in a 
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Figure 23. Reaction scheme for PhECAT (i) Phosphoric acid is selectively 
removed (ii) Ethanedithiol is subsequently added to the conjugated diene via 
anionic thiol Michael addition (iii) The remaining free thiol is attached to the 
macrocylic via maleimide chemistry (iv) Finally, lanthanides are chelated to the 
macrocyclic portion of the tag. 
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reaction mixture containing 2.5 mM EDTA, 0.2 M ethanedithiol, 0.5 M NaOH, 1.5 

M acetonitrile, 1.5 M ethanol, 5 M DMSO, and water for 1-2 hrs under nitrogen at 

55ºC. This resulted in conversion of phosphorylated serine or threonine into 

dehydroalanine or dehydroaminobutyric acid, respectively. The samples were 

then neutralized and purified by polyacrylamide gel (size range >1800 Da, 

Thermo) and reaction completion was confirmed by MALDI-TOFMS. 

Subsequently, the thiolated peptides were labeled with a 10- to 50-fold excess of 

maleimido-DOTA (Figure 23(iii)) in a mixture containing acetate buffer (pH 5.5) 

and DMSO in 1:1 ratio (v/v), resulting in a covalent bond between the free 

sulfhydryl group and the maleimide portion of the lanthanide-based tag. Finally, 

samples were encoded with lanthanide metals by chelation to the DOTA portion 

of the tag by adding a 100- to 500-fold molar excess of metal to peptide and 

heating to 80ºC to speed up chelation for 45 minutes (Figure 23(iv)). Differentially 

labeled samples were then combined and purified by C-18 spin columns and 

analyzed MALDI-IM-TOFMS.  

 

4.2.4 Instrumentation and data analysis 

Spectra were obtained using a Synapt HDMS (Waters Corp., Manchester, 

UK) MALDI-IM-TOFMS in positive, reflector mode. MALDI matrix preparation 

consisted of 2,5-dihydroxybenzoic acid (DHB) in 50% methanol. The samples 

were spotted using the dried-droplet method. Data analysis was performed using 

MassLynx (Waters Corp., for Synapt data) and DriftScope (Waters Corp., for 

Synapt data). At least 3 trials were analyzed for each relative quantitation 

experiment. Spectra were acquired by rastering the MALDI laser at random over 

the entire matrix spot.  
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Labeled peaks were identified by mobility shift (<3%) in MALDI-IM-

TOFMS data and quantitated. Relative molar amounts were calculated by 

dividing the relative peak area of the derivatized state 1 by the relative peak area 

of derivatized state 2. Fragmentation of the labeled phosphorylated peptides and 

proteins were performed on a Waters Synapt HDMS (Figure 24a) in the transfer 

portion of the instrument, which was chosen because of the added advantage of 

having fragmentation spectra organized by mobility (Figure 24b).  

Peaks shifted out of peptide correlation space were manually selected for 

fragmentation and analyzed for potential phosphorylation sites in order to assess 

the stability of the lanthanide label and confirm the site of phosphorylation. 

Fragmentation spectra were processed using MassLynx software using the 

Subtract, Smooth, and Center processing tools and subsequently sequenced de 

novo using an anticipated peak list generated from the ExPASy Peptide Mass © 

program.  

 

4.3 Results and Discussion 

 

While methods for MS-based relative quantitation of peptides and 

proteins using chemical modification methodologies have been described in 

detail, there are few reports of label-based relative quantitation strategies that are 

selective for phosphorylation. The available methods have great utility in 

quantitation of phosphorylated peptides and proteins, but three important 

challenges exist – (i) they are limited to low mass peptides due to spectral 

congestion caused by an overlap of increasingly larger isotopic envelopes, (ii) 

identification of labeled species is challenging in complex mixtures, and 
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Figure 24. a) A schematic of the mobility cell portion of the Synapt HDMS G2. In 
these experiments, ions were separated in the mobility portion and subsequently 
fragmented in the transfer portion of the instrument. b) An advantage of this 
fragmentation strategy is that fragment ions are organized by mobility. 
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 (iii) the number of simultaneously analyzed peptides is limited (simultaneous 

quantitation of 2-8 samples are commonly reported). 

Here, we report a multiplexed relative quantitation strategy that addresses 

these limitations using lanthanide-based labels with MALDI-IM-MS in addition to 

the MALDI-TOFMS platform described in Chapter 3. A schematic diagram of this 

comprehensive phosphoproteomic strategy is illustrated in Figure 25. In this 

strategy, phosphorylated peptides and proteins are selectively labeled with a 

lanthanide-chelated tag. Quantitative information is obtained in both platforms by 

encoding each sample with a different lanthanide, which provides the necessary 

mass shift for quantitative comparisons (Figure 25, top and middle, right). The 

number of samples that may be quantitated is only limited by the number of 

available isotopically enriched lanthanide metals (simultaneous quantitation of 2-

14 samples is possible, excluding radioactive Promethium). Used in the MALDI-

TOFMS platform, these labels provide larger mass differences to avoid isotopic 

overlap while quantitating phosphorylated peptides of higher mass. Used in the 

MALDI-IM-TOFMS platform, these labels have added utility in converting the 

phosphorylation site into a high-density “anchor” (Figure 25, bottom left).  This 

anchor shifts the labeled peptide below the peptide correlation line in IM-MS 

space. Shifting labeled peaks away from unlabeled peaks facilitates selection 

and identification in complex mixtures for further site localization. Site 

identification is achieved by fragmenting peptides with an observed shift in IM-

MS conformation space and identifying b and y ions exhibiting the additional 

mass of the covalent label (Figure 25, bottom right).  
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Figure 25. Labeling of multiple sample states with DOTA tags coordinated to 
different lanthanide metals. In this illustrative figure, a 5:1:2.5 may be encoded 
with different lanthanide metals and quantitated using either MALDI-IM-TOFMS 
or MALDI-TOFMS platforms. Thus, the number of simultaneous samples that can 
be combined for relative quantitation is limited only be the number of different 
metals (or metal isotopes) that are used. An added advantage to using this 
strategy and the MALDI-IM-TOFMS platform is rapid visual identification of 
labeled species for subsequent tandem MS analysis of the phosphorylation site. 
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4.3.1 Relative quantitation of phosphorylated peptides and proteins using 
PhECAT.  
 

Varying molar amounts of phosphorylated peptides and proteins were 

derivatized and quantitated in proof-of-concept experiments. The results of these 

quantitation experiments are provided in Table 6. An example of a typical relative 

quantitation experiment using the MALDI-IM-MS platform is illustrated in Figure 

26. In this experiment, labeled phosphorylated peptides are visually identified by 

their shift away from the peptide correlation line. A mass spectrum is extracted 

from the 2D plot using MassLynx Chromatogram software and relative peak area 

information is obtained (Figure 26, inset). In this example, a 1:5 molar ratio of Tb- 

and Ho-labeled FQpSEEQQQTEDELQDK is shown. In conjunction with 

fragmentation data, PhECAT strategies in IM-MS provide rapid identification and 

relative quantitation of the labeled peptide for characterization of phosphorylated 

peptides. Relative quantitation data and spectra for PhECAT strategies using 

MALDI-IM-TOFMS is provided in the Appendices of this work. 

The reported error for this strategy is comparable to current isotope 

coded affinity labels, with the added advantages of larger shifts in mass doublets 

(i.e. 2-36 Da for single phosphorylation sites), allowing for quantitation of high-

mass peptides without peak convolution from adjacent isotopes. For multiple 

phosphorylation sites, the mass difference scales with the number of the labels, 

which provides even greater separation. These results also indicate that this 

method has error competitive to current quantitative phosphoproteomic methods 

and should have utility in relative quantitative studies of complex biological 

samples. The utility of lanthanide ions as luminescent chromophores in 
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Table 6. Relative Quantitation of phosphorylated peptides and proteins using 
lanthanide-chelating tags in MALDI-IM-TOFMS. 
 

Peptide Sequence
a,b 

 

 

 

[M+H]
+ c 

 
 

 

 

[M*+H]
+
 

Tb, Ho
d
 

 

 

 

 

Molar ratio 
of 

derivatized 

peptides 
 

 

 

Measured 

molar ratio of 
peptides 

derivatized with 

Ho-tag and Tb-
tag 

(average # of 

trials)
 e

 

 

 

Relative 
Percent 

Error
f
 

48 FQpSEEQQQTEDELQDK 63 

from bovine B-casein 

 

2060.7 
 

 

 

 

2739.1
‡
, 

2745.1
‡
 

 

 

 

1.0: 5.0 
(Ho:Tb) 

 

 
 

 

0.172 (3) 
 

 

 
 

 

+14.0 

48 FQpSEEQQQTEDELQDK 63 

from bovine B-casein 
 

2060.7 

 
 

 

2739.1
‡
,
 
 

2745.1
‡
 

 

1.0: 1.0 

(Tb:Ho) 
 

 
 

1.159 (3) 

 
 

 
 

+15.9 

48 FQpSEEQQQTEDELQDK 63 

from bovine B-casein 

 

2060.7 

 

 

 

2739.1
‡
, 

2745.1
‡
 

 

1.0: 5.0 

(Tb:Ho) 

 

 

 
0.293 (3) 

 

 

 

 
+46.6 

48 FQpSEEQQQTEDELQDK 63 

from bovine B-casein 

 

2060.7 

 

 

 

2739.1
‡
, 

2745.1
‡
 

 

3.0: 1.0 

(Ho:Tb) 

 

 

 

2.341 (3) 
 

 

 

-17.1 

48 FQpSEEQQQTEDELQDK 63 

from bovine B-casein 

 

2060.7 

 
 

 

2721.1
‡
, 

2739.1
‡
, 

2745.1
‡
 

 

1.0: 1.0: 5.0 

(Pr:Tb:Ho) 
 

 

 

 
0.140, 0.130 (3) 

 

 

 
-30.0,-35.0 

 

__________________________________________________________________________ 

a. "p" denotes phosphorylation, sequence positions bracket the sequence for tryptic 

peptides 

b. Phosphorylated proteins purchased and used without additional purification. 

c. Monoisotopic masses for unlabeled phosphorylated peptides. 

d. Calculated monoisotopic peaks for labeled phosphorylated peptides. “*”denotes 

PhECAT labeling, “‡“ denotes relative quantitation calculations where the peak having 

the highest relative abundance was selected for peak area quantitation rather than the 

monoisotopic peaks. This is primarily due to the fact that, here, the monoisotopic peak 

has the lowest intensity. In this case, the peaks of highest intensity (2741.1, 2747.1) were 

selected. [M*+H]
+
 of Pr, Tb, Ho

 
where applicable. 

e. 1.0: 1.0: 5.0 (Pr:Tb:Ho) relative ratios expressed as Pr:Ho and Tb:Ho, respectively. 

f. 1.0: 1.0: 5.0 (Pr:Tb:Ho) relative ratios expressed as Pr:Ho and Tb:Ho, respectively. 

Percent errors are reported according to the following formula: 

(Average Peak Area Ratio – Anticipated Peak Area Ratio) / Anticipated Peak Area Ratio  
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Figure 26. 2D IM-MS plot of derivatized tryptic beta-casein. The peptide mixture 
was first proteolytically digested with trypsin followed by selective labeling 
according to scheme 1. Unlabeled tryptic peaks establish the peptide correlation 
line, indicated by the dashed line. The phosphorylated peptide having the 
sequence FQpSEEQQQTEDELQDK was derivatized with Tb- and Ho-chelated 
labels in a 1:5 mixture and exhibit a structural shift below the peptide correlation 
line. (inset) Upon identification of labeled species, extraction of the relative peak 
areas of the labeled species provides quantitative information.  
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LC separations have been well described, and may increase confidence in 

phosphorylation site labeling at an additional stage of analysis. Moreover, the 

addition of a macrocycle may shift LC elution times for phosphorylated peptides, 

which may assist in separation of closely spaced phosphorylated and non-

phosphorylated species.  

 

4.3.2 Selection, fragmentation, and identification of the site of 
phosphorylation 
 

PhECAT experiments performed using only MALDI-TOFMS as the 

analysis platform utilize anticipated mass shifts (i.e., labeling with known 

lanthanides generates predictable mass multiplets which can be identified with 

quantitation software) to identify labeled quantitated species (data not shown). 

PhECAT experiments performed using MALDI-IM-TOFMS as the analytical 

platform take advantage of the high density of the PhECAT labels which result in 

a shift of labeled phosphorylated peptides away from the anticipated peptide 

correlation line, facilitating selection of phosphopeptides for fragmentation. 

PhECAT selection and fragmentation using MALDI-IM-TOFMS is demonstrated 

in Figure 27. Labeled peptides were first visually identified by their shift from 

peptide correlation space (Figure 27(i)) and selected for fragmentation in the 

transfer portion of the Synapt instrument. An example of a typical tandem 

spectrum is shown in Figure 27(ii). The expected b/y series ions were observed, 

including full b ion coverage from the b3 to the b15 ion, all labeled and several 

unlabeled y ions including y8-12, several labeled water loss ions, and the intact 

label with little evidence for fragmentation of the label. It should be noted that all 

fragment ions  
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Figure 27. i) 2D IM-MS plot of derivatized tryptic beta-casein. Underivatized 
tryptic peaks establish the peptide correlation line, indicated by the dashed line. 
The signal corresponding to derivatized FQpSEEQQQTEDELQDK exhibits a 
negative deviation from the peptide correlation line, facilitating rapid identification 
prior to fragmentation. ii) Structure and fragmentation spectrum of a terbium-
labeled tryptic beta-casein phosphorylated peptide having the sequence 
FQpSEEQQQTEDELQDK. An asterisk indicates that the ion is covalently 
modified with the PhECAT label. Fragmentation coverage of 86.7% and 46.7% of 
the labeled peptide was observed for b and y ions, respectively. Fragmentation 
coverage of 66.7% and 26.7% for the labeled peptide was observed for b and y 
water loss ions, respectively (an anticipated peak list and additional spectra from 
replicate experiments are provided in the supplementary material). Importantly, 
all of the anticipated ions corresponding to labeled positions are observed, 
demonstrating the utility of this label for phosphopeptide site identification as well 
as relative quantitation. It should also be noted that labeled fragment ion species 
exhibit greater intensity than non-labeled fragment ion species. Spectral peaks 
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from 500 m/z to 2600 m/z were intensified 2x to increase visibility of b and y 
spectral assignments. 
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covalently bound to the PhECAT label exhibit higher intensities than unlabeled 

fragment ions. The stability of this label enables predictable mass shifts of 

anticipated b and y ions which gives an indication of the site of modification 

previously phosphorylated.44 Furthermore, because this tag is not labile and does 

not show phosphorylation site rearrangement (as is the case with phosphoric 

acid and phosphate plus water loss), it has an added advantage of more 

confident phosphorylation site assignment. Thus, complete phosphoproteomic 

characterization is accomplished using a single strategy. 

 

4.4 Conclusions 

 

Current methods of MS-based protein quantitation primarily focus on 

quantifying relative expression profiles through labeling non-post-translationally 

modified peptides. This offers a limited view of the biological activity of cells, 

because many biological functions are dependent on protein modifications, 

specifically, protein phosphorylation. The available methods for phosphoprotein 

quantitation provide good specificity for the site of phosphorylation, however, 

they have limited applicability for peptides of increasing mass and are seldom 

used for phosphorylation site identification. In this work, we have demonstrated 

the utility of lanthanide-based labels for phosphopeptides and proteins (PhECAT) 

for relative quantitation of phosphorylated peptides using MALDI-MS and as 

mobility shift labels using MALDI-IM-MS for rapid visual identification and 

subsequent quantitative and site analysis. We propose that this method may 

circumvent challenges encountered by quantitation and site localization, such as 

gas-phase phosphorylation site rearrangement, with the added utilities described 

above. 
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CHAPTER 5 
 
 
 

ENHANCED SEPARATION AND CHARACTERIZATION OF GLYCOSYLATED 
PROTEINS USING LANTHANIDE-BASED LABELING AND ION MOBILITY-

MASS SPECTROMETRY 
 
 
 

5.1 Introduction 
 
 

Much like protein phosphorylation, protein glycosylation regulates 

numerous biological processes such as cell signaling, recognition, differentiation, 

and proliferation and is often observed to dynamically occupy the same 

sequence position that harbors phosphorylation as part of an ON/OFF switch in 

biological systems.28 Thus, the stoichiometry between phosphorylation and 

glycosylation is significant for a complete understanding of a phosphorylated 

protein’s role in a system.  As with any PTM characterization, elucidation of the 

site of modification is critical to better understand the nature of modification-

dependent protein function and to design and optimize protocol to quantify and 

structurally characterize the site of modification. Elucidation of the site of 

glycosylation is challenging for similar reasons as phosphorylation localization, 

namely – i) glycans are labile, and either beta-eliminate readily or fragment easily 

in MS ion sources and collision cells, ii) these labile modifications predominate in 

MS/MS spectra, as the bulk of fragmentation occurs at the site of modification 

confounding MS sequencing attempts, and iii) due to the temporal nature of the 

modification, only substoichiometric amounts are available and create difficulties 

in detection of the modification.  

Application of the previously described lanthanide-based labeling 

strategies may provide relative quantitation information for glycosylated peptides 
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as well as phosphorylation occupation versus glycosylation occupation. 

Furthermore, by modifying the site of glycosylation prior to analysis, the labile 

glycosylation site is converted to a stable covalently bound label, which may 

circumvent challenges associated with glycosylation site identification. Moreover, 

removal of glycans through beta-elimination is routinely performed in glycan 

structural analysis, and this chemistry is compatible with structural analysis of 

glycans. 

In this chapter, PhECAT strategies are applied toward the challenge of 

glycan site quantitation. In this benchmarking report, labeling of a glycosylated 

peptide from erythropoietin is demonstrated. In a manner similar to previously 

discussed, glycosylated tryptic peptides are selectively modified at the 

glycosylation site via beta-elimination/anionic thiol Michael addition chemistry. 

Thus, glycosylated peptides are converted to cysteine-like residues, which then 

readily react with cysteine-specific labels. This lanthanide-chelating label is 

added via maleimide chemistry and selected lanthanide metals are subsequently 

chelated to a macrocycle moiety.  

 

5.2 Experimental 

 

5.2.1 Materials 

Model glycosylated peptides were investigated for proof-of-concept 

experiments. Glycosylated erythropoietin was purchased from Anaspec 

(Freemont, CA). Adrenocorticotropic hormone (ACTH) peptide clips 18-39, 1-17, 

and 7-38 were purchased from American Peptide (Sunnyvale, CA) and used 

without further purification. Polyacrylamide gel columns were purchased from 

Thermo (San Jose, CA). C-18 spin columns were purchased from Pierce 
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(Rockford, IL). Maleimido-mono-amide-DOTA was purchased from Macrocyclics 

(Dallas, TX) and dissolved in DMSO. 1,2-ethanedithiol (EDT) was purchased 

from Fluka (St. Gallen, Switzerland). 2,5-dihydroxybenzoic acid (DHB) was 

purchased from Sigma and dissolved in 50% methanol to a final concentration of 

30 mg/mL. Lanthanide (in LnCl3 form) metals were purchased from Strem 

Chemicals (Newburyport, MA) in chloride salt form and dissolved in distilled 

deionized water (18 MΩ cm-1) to a final concentration of 25 mg/mL. 

Dimethylsulfoxide, acetonitrile, and ethanol were purchased from Sigma. 

 

5.2.2 Selective derivatization of glycosylated peptides and proteins using 
lanthanide-based labeling strategies 

 
Glycosylated erythropoietin peptide (sequence EAISPPDAAS*AAPLR, 

where * denotes glycosylation of serine) was subjected to a beta-elimination 

(Figure 28(i)) and anionic thiol Michael addition35 reaction (Figure 28(ii)) resulting 

in the selective elimination of phosphoric acid followed by addition of 

ethanedithiol. In this reaction, each sample was derivatized in a reaction mixture 

containing 2.5 mM EDTA, 0.2 M ethanedithiol, 0.5 M NaOH, 1.5 M acetonitrile, 

1.5 M ethanol, 5 M DMSO, and water for 2-3 hrs under nitrogen at 55ºC in a 

manner similar to reaction conditions described previously.36-38 This resulted in 

conversion of O-GlnAc-modified serine and threonine into dehydroalanine or 

dehydroaminobutyric acid, respectively. The samples were then neutralized and 

purified by polyacrylamide 1800 desalting gel (Thermo) and reaction completion 

was confirmed by MALDI-TOFMS. Subsequently, the thiolated peptides were 

labeled with a 10-fold excess of maleimido-DOTA (Figure 28 (iii)) in a mixture 

containing acetate buffer (pH 5.5) and DMSO in 1:1 ratio (v/v), resulting in a 



 88 

covalent bond between the free sulfhydryl group and the maleimide portion of the 

lanthanide-based tag. Finally, selected lanthanide  
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Figure 28. Reaction scheme for using PhECAT for O-linked glycans (i) O-linked 
glycans are removed via beta-elimination in basic conditions, generating a 
conjugated diene (ii) Ethanedithiol is subsequently added to the conjugated diene 
via anionic thiol Michael addition (iii) The remaining free thiol is attached to the 
macrocylic via maleimide chemistry (iv) Finally, samples are encoded by 
chelating lanthanides to the macrocyclic portion of the tag. 
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metals were chelated to the maleimide portion of the tag by adding a 100-fold 

molar excess of metal to peptide and heating to 80ºC to speed up chelation for 

45 minutes (Figure 28(iv)).39 Differentially labeled samples were then combined 

and purified by C-18 spin columns and analyzed using MALDI-IM-TOFMS.  

 

5.2.3 Instrumentation and data analysis 

Spectra were obtained using a Voyager MALDI-TOFMS in positive, 

reflector mode. MALDI matrix preparation consisted of 2,5-dihydroxybenzoic acid 

(DHB) in 50% methanol. The samples were spotted using the dried-droplet 

method.40 Data analysis was performed using Data Explorer software version 4.3 

(Applied Biosystems, Foster City, CA). At least 3 trials were analyzed for each 

relative quantitation experiment. Spectra were acquired by rastering the MALDI 

laser at random over the entire matrix spot.  

Peaks were identified manually and quantitation spectra were processed 

using the baseline correction, noise filter/smooth, and centroiding processing 

tools of Data Explorer.  

 

5.3 Results and Discussion 

 

Here, we report successful labeling of a glycosylated peptide with 

lanthanide-based labels, termed “PhECAT” when used to characterize 

phosphorylated peptides. Lanthanide-based labeling of glycosylation sites 

circumvents challenges associated with the lability of the modification and 

provides quantitative information and selective separation of glycosylated 

peptides from concomitants. The stoichiometry of glycosylation vs. 

phosphorylation occupation may be elucidated with a selective purification 
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strategy outlined in Figure 29 prior to lanthanide encoding.  In this proposed 

strategy, a glycosylated and phosphorylated protein mixture is digested before 

being subjected to antibody purification and divided out into two samples of 

phosphopeptides and glycopeptides. Each sample is then derivatized and 

encoded with a specific lanthanide and characterized by MS. If structural 

information is desired, the beta-elimination step of the labeling may be used to 

release the glycans for subsequent structural analysis. Simultaneous glycomics 

and proteomics has been reported in our group and can be applied toward 

comprehensive glycoproteomics as well.70 

Preliminary data demonstrating the labeling of glycosylated peptides is 

presented in Figure 30. The GlcNAc-modified peptide was derivatized using 

beta-elimination/Michael addition chemistry followed by maleimide and 

lanthanide chelation chemistry as used previously for the derivatization of 

phosphorylated peptides. Erythropoietin (EAISPPDAAS*AAPLR, where * 

denotes glycosylation of serine) was derivatized in a 1:1 mixture of Tb to Ho-

labeled peptides. A peptide mixture containing ACTH peptides was spiked into 

the sample to establish the underivatized peptide correlation line in IM-MS 2D 

conformation space (Figure 30, top). One sample was quantitated so that 

application of this strategy resembled characterization of an unknown biological 

sample, which is frequently limited in concentration. Labeled erythropoietin signal 

was identified by its negative deviation from the established peptide correlation 

line and mass spectra were subsequently extracted for quantitative information 

(Figure 30, bottom). Table 7 presents the results from this single quantitation 

experiment. Extracted mass spectra and quantitation raw data are provided in 

the Appendices. The relative percent error associated with this experiment was  
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Figure 29. Proposed strategy for the selective separation, site identification, and 
relative quantitation of glycosylated and phosphorylated peptides and proteins. 
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Figure 30. (top) O-GlcNAc-modified peptides are labeled by lanthanide-based 
labels and separated from a complex peptide mixture. The labeled peptide is 
indicated in a dashed circle. Underivatized ACTH clips 1-17, 7-38, and 18-39 are 
spiked in to the sample to establish the peptide correlation line and guide the eye 
for visual identification of labeled species. Peptide correlation line is indicated by 
a dashed line. (bottom) Extracted and zoomed mass spectra of Tb- and Ho-
encoded erythropoietin. Here, a 1:1 mixture was quantitated. Normalized 
observed peak areas for this acquisition were 1.0 to 0.89.  
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Table 7. Relative Quantitation of O-GlcNAc modified peptide erythropoietin using 
lanthanide-chelating tags in MALDI-IM-TOFMS. 
 

Peptide Sequence
a 

 

 

 

[M+H]
+ b 

 
 

 

 

[M*+H]
+
 

Tb, Ho
c
 

 

 

 

 

Molar ratio 
of 

derivatized 

peptides 
 

 

 

Measured 

molar ratio of 
peptides 

derivatized with 

Ho-tag and Tb-
tag 

(average # of 

trials)
 d

 

 

 

Relative 
Percent 

Error
e
 

117 EAISPPDAASAAPLR 131 

human 

 

1670.7 
 

 

 

 

2223.7
‡
, 

2229.7
‡
 

 

 

 

1.0: 1.0 
(Tb:Ho) 

 

 
 

 

0.833 (1) 
 

 

 
 

 

-17.0 

 

__________________________________________________________________________ 

a. Bold denotes site of O-GlcNAc modification, sequence position indicated 

b. Monoisotopic masses for unlabeled peptide. 

c. Calculated monoisotopic peaks for labeled peptide. “*”denotes PhECAT labeling, “‡“ 

denotes relative quantitation calculations where the peak having the highest relative 

abundance was selected for peak area quantitation rather than the monoisotopic peaks. 

This is primarily due to the fact that, here, the monoisotopic peak has the lowest intensity.  

d. One sample was rastered 10 times and the result was averaged. 

d. Percent errors are reported according to the following formula: 

(Average Peak Area Ratio – Anticipated Peak Area Ratio) / Anticipated Peak Area Ratio
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found to be 17%, which is comparable to current isotopologue quantitation 

strategies. It should also be noted that these isotopologue quantitation strategies 

are generally not demonstrated for PTMs and particularly not demonstrated as 

quantitative strategies between two PTMs occupying the same site of 

modification.  

 

5.4 Conclusions 

 

Glycosylation and phosphorylation have been shown to occupy the same 

site of modification in a number of cases, and switching modifications has been 

shown to be a critical regulatory mechanism for a number of cellular functions. 

Characterization of glycopeptides provides a more complete picture of a picture 

of the resident modification, and quantitation of phosphorylated vs. glycosylated 

species may provide a better understanding of the mechanisms controlled by 

modification switching. A 1:1 molar mixture of O-GlcNAc-modified peptide 

erythropoietin was quantitated using Tb- and Ho-chelated labels. In this initial 

experiment, performed with a single sample in the manner expected for unknown 

samples, the relative percent error was calculated to be 17%, which is 

comparable to current quantitative experiments that do not profile glycosylation 

stoichiometry. Moreover, labeled glycosylated species were visually identified by 

their negative deviation from the peptide correlation in 2D IM-MS conformation 

space, illustrating the additional advantage of lanthanide-based labeling for IM 

separations. 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

6.1 Summary and conclusions 

 

The primary aim of this dissertation research was to simplify 

characterization of phosphorylated and glycosylated peptides and proteins. 

These post-translational modifications have profound significance in molecular 

biology and understanding the mechanisms of disease.  

Complete phosphoproteomic characterization is accomplished through 

elucidating the site of phosphorylation and its stoichiometry. These are typically 

performed in separate experiments, and each determination has demonstrated 

challenges. Site identification by data-dependent tandem MS is often confounded 

by phosphorylation site rearrangement, HPLC co-elution, and heterogeneous 

phosphorylation. Quantitation between two states is typically accomplished using 

isotopologue labeling and subsequent MS analysis, which provides limited mass 

shift and requires high resolution instrumentation. These challenges are 

described in detail in Chapters 1 and 2. Chapters 3 and 4 address these 

challenges using lanthanide-based labeling. Chapter 4 introduces the utility of ion 

mobility-mass spectrometry separations and the use of these labels as mobility 

shift reagents for rapid visual identification of labeled ions. Lanthanide-based 

tagging provides increased mass separation to quantitate peptides of increasing 

mass and also provides separation from concomitant species in IM-MS 

conformation space so that site identification is more easily achieved. Together, 
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these strategies provide comprehensive phosphoproteomic characterization. This 

was demonstrated in a benchmarking experiment using the model 

phosphorylated protein, bovine beta-casein. In Chapter 3, the quantitative 

advantages of lanthanide-based labeling were first explored. Error comparable to 

current isotopologue strategies (including those that do not label 

phosphopeptides) was achieved. Moreover, fragmentation of labeled species 

indicated that derivatization of the phosphorylation site produced a more stable 

modification in which to identify the site of phosphorylation. In Chapter 4, the 

additional utility of lanthanide-based labeling as mobility shift tags for separation 

from unphosphorylated peptides in IM-MS conformation space was explored. 

Lanthanide tags provided sufficient mobility and mass shift to successfully 

separate phosphorylated peptides away from the anticipated peptide 

conformation space, facilitating further characterization without concomitant 

contamination.   

A number of reports have described a dynamic “ON/OFF” switching of 

phosphorylation sites with glycosylation. Thus, contemporary phosphoproteomics 

must incorporate glycoproteomic identification and quantitation. Contemporary 

glycoproteomic characterization includes identification of the site of modification 

and determination of the glycan’s stoichiometry. Glycoproteomic characterization 

entails the same challenges as phosphoproteomic characterization. Lanthanide-

based labeling and IM-MS separations for selective separation may circumvent 

these challenges and moreover provide quantitative information. This is 

discussed in detail in Chapter 5. In this experiment, a O-GlcNAc-modified 

peptide, human erythropoietin, was labeled and visually identified by its negative 

deviation form the peptide correlation line in 2D conformation space. 
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Furthermore, a 1:1 molar ratio of Tb- to Ho-labeled sample was quantitated with 

comparable error to current isotopologue-based quantitation strategies.   

 

 

6.2 Future directions 

 

6.2.1 Custom labels for labeling and ionization efficiency 

Through these studies, significant progress was made in developing a 

simplified, comprehensive strategy for multiplexed characterization of 

phosphorylated and glycosylated peptides and proteins, but there are many 

opportunities for further research. Our laboratory is presently pursuing a number 

of custom labels that further enhance the ionization efficiency of the label and 

that accommodate single reaction, or “one-pot,” phosphoproteomic labeling.  

One label that was conceptualized in our laboratory, illustrated in Figure 

30a, contains an arginine residue, which through labeling substitutes the 

negatively charged phosphorylation or glycosylation residue for a positively 

charged residue. This is especially advantageous to improve ionization efficiency 

and to enhance detection of phosphopeptides or glycopeptides for relative 

quantitation strategies. Another label envisioned, illustrated in Figure 30b, 

contains a DOTA macrocycle and a reactive thiol replacing the maleimide. Using 

this label, phosphopeptides may be labeled without a dithiol linker, reducing 

reaction time and desalting steps required when converting the phosphorylation 

site to a thiol-terminated residue. Reducing desalting and chromatographic steps 

in phosphoproteomic labeling reduces losses associated with each process, and 

can potentially improve the overall limit of detection of the method. 
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Figure 31. Custom labels that may provided added utility to the overall labeling 
strategy. i) Thiol-terminated labels circumvent sample losses associated with 
chromatography cleanup of the intermediate labeling steps. ii) Lanthanide-based 
labels that contain an arginine or other positive charges may enhance signal from 
substoichiometric modifications and enhance phosphoproteomic 
characterization. 
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6.2.2 Mobility shift labeling for selective separation and structural analysis 
of glycosylated peptides 
 

Another avenue envisioned for future research is the use of mobility shift 

“balloon” labels for structural analysis of glycans, illustrated in detail in Chapter 1. 

Although lanthanide-based labeling provides quantitative and site identification 

information of the glycan, structural information is lost. A number of biological 

processes are highly dependent on glycan structure and the composition of 

terminal saccharides on the glycan.3, 4, 8, 33-35, 37, 108-110 Thus, this information is of 

critical importance to comprehensive glycoproteomics.  

The potential for balloon mobility shift labeling of post-translationally 

modified peptides in IM-MS has not been explored. Due to the curvature of each 

biomolecular class, mobility shift separation experiments must be tuned to the 

target biomolecule class to achieve maximum separation. For underivatized 

glycosylated peptides and proteins, mobility shift strategies that place labeled 

glycopeptides signals above the carbohydrate/protein correlation line may 

provide the optimal separation for rapid visual identification and further 

characterization. Characteristics of “balloon” shift reagents include labels with 

high surface area and low mass such that surface area scales disproportionately 

with mass.  

Addition of a balloon mobility shift reagent may provide enhanced 

separation of a glycosylated peptide having a labeled terminal group from its 

isobaric counterparts. This separation also provides added utility by reducing 

concomitant species fragmented in structural elucidation. Moreover, O-GlcNAc-

modified peptides separated by labeling strategies may be selected for 

fragmentation to obtain structural information on the glycan.  
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6.2.3 Relative quantitation of dynamic interchange between protein 
phosphorylation and protein glycosylation 
 

Lanthanide-based quantitative mobility-shift labeling may also be applied 

toward characterization between PTM states such as glycosylation vs. 

phosphorylation states. As mentioned previously, glycosylation and 

phosphorylation are known to occupy the same sequence position, and dynamic 

regulation between the modifications are known to control signaling functions of 

the cell. A strategy for glyco/phospho quantitation is illustrated in figure 29 in 

Chapter 5.  
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APPENDIX A 
 

Supplementary Information for Mass Spectrometry Data Acquisition according to 
MIAPE-MS format. 

  
 
General Features 

Global Descriptors 
Dates obtained can be found in the file names behind 
“sh_RG_1270_” or “sh_RG_1368_.” 

These samples were processed and analyzed by the Vanderbilt 
Proteomics Core. 

     Contact info: Hayes McDonald – Assistant Director  
  Email: hayes.mcdonald@Vanderbilt.Edu 
    Contact info: Salisha Hill – Laboratory Technician 

Email: salisha.sobratee@vanderbilt.edu  
Phone: (615) 343-7334 

 
Instrument Manufacturer and Model : 

LTQMS : ThermoFinnigan LTQ LC-MS-MS  
LTQ-Orbitrap : Thermo Scientific LTQ XL™ 
Customizations : none 

Control and Analysis Software : 
Software Name and Version: Thermo Xcalibur 1.3 and Bioworks 3.1 
software 

Switching criteria: available in supplementary raw MS files 
Isolation Width: 2.00 
Ion Sources: Electrospray Ionisation (ESI):  Instrumental, source, 

and tune parameter settings are available in the raw data files 
provided at the following url:  
http://www.mc.vanderbilt.edu/msrc/bioinformatics/data.php or at 

the following link: https://proteomecommons.org/tranche/data-
downloader.jsp?fileName=ZEb8WJQd75%2Fi4%2FPOlusCyfWI7czMK%
2BUT3kcIGy8P6caR3iYgUJdGR958BvUpwYS8v6Q56Pe1eiGKjK5H2Y8L
%2FYG%2FA3kAAAAAAAAEDg%3D%3D 

 
Post-Source Component: 

Ion Trap Final MS Stage Achieved: MS3 

 

 

 

http://www.mc.vanderbilt.edu/msrc/bioinformatics/data.php
https://proteomecommons.org/tranche/data-downloader.jsp?fileName=ZEb8WJQd75%2Fi4%2FPOlusCyfWI7czMK%2BUT3kcIGy8P6caR3iYgUJdGR958BvUpwYS8v6Q56Pe1eiGKjK5H2Y8L%2FYG%2FA3kAAAAAAAAEDg%3D%3D
https://proteomecommons.org/tranche/data-downloader.jsp?fileName=ZEb8WJQd75%2Fi4%2FPOlusCyfWI7czMK%2BUT3kcIGy8P6caR3iYgUJdGR958BvUpwYS8v6Q56Pe1eiGKjK5H2Y8L%2FYG%2FA3kAAAAAAAAEDg%3D%3D
https://proteomecommons.org/tranche/data-downloader.jsp?fileName=ZEb8WJQd75%2Fi4%2FPOlusCyfWI7czMK%2BUT3kcIGy8P6caR3iYgUJdGR958BvUpwYS8v6Q56Pe1eiGKjK5H2Y8L%2FYG%2FA3kAAAAAAAAEDg%3D%3D
https://proteomecommons.org/tranche/data-downloader.jsp?fileName=ZEb8WJQd75%2Fi4%2FPOlusCyfWI7czMK%2BUT3kcIGy8P6caR3iYgUJdGR958BvUpwYS8v6Q56Pe1eiGKjK5H2Y8L%2FYG%2FA3kAAAAAAAAEDg%3D%3D
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APPENDIX B 
 

Table of initial APPL1 phosphorylation site identifications by LTQ-MS and 
reasons for acceptance or rejection. 

 
LTQ-MS/MS 
DATA             

Sequence position X-corr z mh MS3 comments 

F.SKVIDELSS@CHA
VL.S 90-103 2.49 2 1580.77 NO 

Top 3 ions don't match 
prospector output, 
losses 

Y.IFESNNEGEKICDS
@VGLAKQIAL.H 605-627 4.10 3 2558.25 NO 

Top 4 out of 10 ions 
don't match prospector 
output 

F.DIIS@PVC*EDQPG
QAKAF.G 456-472 3.76 2 1954.93 YES 

Triggered MS3, top ions 
match prospector output 

F.DIIS@PVC*EDQPG
QAKAF.G 456-472 3.85 2 1954.93 YES 

Top ions match 
prospector output 

              

E.GQFVVLSSS@QS
EESDLGEGGKKRE.S 683-706 4.62 3 2633.24 YES 

Triggered MS3, top ions 
match prospector output 

E.GQFVVLSSS@QS
EESDLGEGGKKRE.S 683-706 5.53 3 2633.24 ---- 

Replicate of previously 
confirmed assignment. 

E.GQFVVLSSSQS@
EES@DLGEGGKKR
E.S 683-706 4.40 3 2713.24 YES 

Top ions match 
prospector output.  
Some ambiguity of site 
assignment.  
Reasonably confident. 

E.GQFVVLSSS@QS
EESDLGEGGKKRE.S 683-706 5.38 3 2633.24 ---- 

Replicate of previously 
confirmed assignment. 

E.GQFVVLSSS@QS
EESDLGEGGKKRE.S 683-706 5.03 3 2633.24 ---- 

Replicate of previously 
confirmed assignment. 

E.GQFVVLSSSQS@
EESDLGEGGKKRE.S 683-706 3.23 3 2633.24 NO 

No neutral loss, some 
mismatched 
assignments, sites of 
phosphorylation not 
bracketed. 

Q.IY@LS@ENPEETA
ARVNQSALE.A 377-396 2.19 2 2394.09 YES 

Top 6 of 10 ions don't 
correspond to b ions, y 
ions or any losses of b 
and y ions. 

E.GQFVVLSSSQS@
EESDLGEGGKKRE.S 683-706 4.52 3 2633.24 YES 

Ions bracketing sites not 
confident. 

A.AS@S@RPNQASS
EGQFVVLSSSQSEE
SDLGEGGKKRE.S 672-706 3.27 3 3827.74 NO 

Proposed 
phosphorylation sites 
not bracketed 

             

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 6.32 3 3631.71 YES 

Top ions match 
prospector output.  
Some ambiguity of site 
assignment.  
Reasonably confident. 

R.VIDELSS@CHAVL
STQLADAMMFPITQF
K.E 92-119 5.56 3 3175.53 NO 

Top ions match 
prospector output.  
Some ambiguity of site 
assignment.  
Reasonably confident. 

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 5.86 3 3631.71 ---- 

Replicate of previously 
confirmed assignment. 

K.MGS@ENLNEQLE
EFLANIGTSVQNVR.
R 213-237 3.46 3 2872.35 NO 

Top ions don't match 
prospector output. 

R.LIAASSRPNQASS
EGQFVVLS@SSQSE 669-703 5.94 3 3631.71 --- 

Replicate of previously 
confirmed assignment. 

http://msrc-chips-p.mc.vanderbilt.edu:8080/chips/?mode=edit&where=id%3D6847758&db_path=edit:id%3D%271737%27:groups/edit:id%3D%2713100%27:runs/edit:id%3D%2733282%27:proteins&depth=1
http://msrc-chips-p.mc.vanderbilt.edu:8080/chips/?mode=edit&where=id%3D6847758&db_path=edit:id%3D%271737%27:groups/edit:id%3D%2713100%27:runs/edit:id%3D%2733282%27:proteins&depth=1
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ESDLGEGGK.K 

R.TNPFGESGGSTKS
@ETEDSILHQLFIVR.
F 479-505 3.85 3 3029.46 YES 

Top ions above 1000m/z 
match 

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 4.88 3 3631.71 ---- 

Replicate of previously 
confirmed assignment. 

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 6.11 3 3631.71 ---- 

Replicate of previously 
confirmed assignment. 

R.SESNLSSVCY@IF
ESNNEGEK.I 595-614 4.14 3 2315.97 NO 

Top ions match 
prospector output.  
Some ambiguity of site 
assignment.  
Reasonably confident. 

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 5.99 3 3631.71 ---- 

Replicate of previously 
confirmed assignment. 

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 5.46 3 3631.71 ---- 

Replicate of previously 
confirmed assignment. 

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 5.99 3 3631.71 ---- 

Replicate of previously 
confirmed assignment. 

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 5.52 3 3631.71 ---- 

Replicate of previously 
confirmed assignment. 

R.SESNLSS@VCYIF
ESNNEGEK.I 595-614 3.00 3 2315.97   

Ions do not bracket site 
of phosphorylation.  
Numerous mismatches. 

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 4.37 3 3631.71 ---- 

Replicate of previously 
confirmed assignment. 

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 6.12 3 3631.71 ---- 

Replicate of previously 
confirmed assignment. 

R.SESNLSSVCY@IF
ESNNEGEK.I 595-614 3.15 2 2315.97 NO 

Top ions match 
prospector output.  
Some ambiguity of site 
assignment.  
Reasonably confident. 

R.VNQSALEAVTPS
@PSFQQR.H 390-407 4.95 2 2038.99 NO 

Top ions match 
prospector output.  
Some ambiguity of site 
assignment.  
Reasonably confident. 

R.SESNLSSVCY@IF
ESNNEGEK.I 595-614 4.75 2 2315.97 NO 

Numerous low intensity 
peaks do not match. 

K.QIY@LSENPEETA
AR.V 376-389 3.65 2 1700.79 NO 

Top ions match 
prospector output.   

R.LIAASSRPNQASS
EGQFVVLS@SSQSE
ESDLGEGGK.K 669-703 4.05 3 3631.71  ---- 

Replicate of previously 
confirmed assignment. 
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APPENDIX C 
 

Table of initial APPL1 phosphorylation site identifications by LTQ-Orbitrap-MS 
and reasons for acceptance or rejection. 

 

LTQ-ORBITRAP-MS/MS  
DATA 

Pos-
ition 

X 
corr ppm 

MS3 
triggered Conf-irmed comments 

           

Q.SRPPTARTSS@SGS@LGS 
ESTNL.A 

418-
438 2.52 0.93 YES YES 

Ions bracket site of 
phosphorylation, 
reasonably 
confident but some 
ambiguity of exact 
site. 

A.AGQSRPPTARTSS@SGSL 
GSESTNL.A 

415-
438 2.68 -0.62 NO YES 

Bracket site of 
phosphorylation 
and appear to 
support site 
assignment. 

L.SLDSLVAPDTPIQFDIIS@P 
VC*EDQPGQAKAF.G 

442-
472 4.43 0.87 NO NO 

Numerous 
unassigned peaks. 

D.TPIQFDIIS@PVC*EDQPGQ 
AKAF.G 

451-
472 4.36 -0.08 YES YES 

Confident 
assignments, site 
bracketed, neutral 
loss observed. 

W.IC*TINNIS@KQIYLSENPEE 
TAARVNQSAL.E 

367-
395 4.77 3.30 NO YES 

Ions bracket site of 
phosphorylation, 
reasonably 
confident but some 
ambiguity of exact 
site. 

Q.SRPPTARTSSSGS@LGSES 
TNL.A 

418-
438 2.97 1.10 YES YES 

Confident 
assignments, site 
bracketed, neutral 
loss observed. 

D.SLVAPDTPIQFDIIS@PVC*E 
DQPGQAKAF.G 

445-
472 4.65 -0.77 NO NO 

Some mismatched 
peaks, no neutral 
loss observed, site 
uncertain. 

F.DIIS@PVC*EDQPGQAKAF.G 
456-
472 3.55 0.82 YES NO 

Can't confirm 
charge state by 
precursor peaks. 

D.IIS@PVC*EDQPGQAKAF.G 
457-
472 3.2 0.33 YES YES 

Confident 
assignments, site 
bracketed, neutral 
loss observed. 

             

E.GQFVVLSSSQS@EESDLG 
EGGKKRE.S 

683-
706 4.92 383.76 YES NO 

Parts per million 
error too large. 

E.GQFVVLSSSQS@EESDLG 
EGGKKRE.S 

683-
706 4.04 11.61 NO YES 

Ions bracket site of 
phosphorylation, 
reasonably 
confident but some 
ambiguity of exact 
site. 

A.AS@S@RPNQASSEGQFV 
VLSSSQSEESDLGEGGKKRE.S 

672-
706 3.8 435.00 NO NO 

Parts per million 
error too large. 

E.GQFVVLSSSQS@EESDLG 
EGGKKRE.S 

683-
706 5.16 0.91 YES YES 

Confident 
assignments, site 
bracketed, neutral 
loss observed. 

I.AASSRPNQASS@EGQFVVL 
SSSQSEESDLGEGGKKRE.S 

671-
706 3.44 292.72 NO NO 

Parts per million 
error too large. 

E.GQFVVLSSS@QSEESDLG 683- 5.93 -0.23 NO YES Ions bracket site of 
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EGGKKRE.S 706 phosphorylation, 
reasonably 
confident but some 
ambiguity of exact 
site. 

E.GQFVVLSSS@QSEESDLG 
EGGKKRE.S 

683-
706 4.08 2.28 YES YES 

Replicate of 
previously 
confirmed 
assignment. 

E.GQFVVLSSSQS@EESDLG 
EGGKKRESE.A 

683-
708 4.45 5.58 YES YES 

Replicate of 
previously 
confirmed 
assignment. 

F.VVLSSSQS@EES@DLGEG 
GKKRE.S 

686-
706 2.83 -4.53 YES YES 

Confident 
assignments, site 
bracketed, neutral 
loss observed. 

G.QFVVLS@S@S@QSEESDLG 
EGGKKRE.S 

684-
706 3.41 

-
858.54 NO NO 

Parts per million 
error too large. 

E.GEKICDS@VGLAKQIALHAE.L 
612-
630 3.65   YES NO 

Isotopic overlap of 
potential precursor 
peaks confounds 
precursor 
assignment. 

E.GQFVVLSSSQS@EESDLGEG 
GKKRE.S 

683-
706 4.75 378.98 NO NO 

Parts per million 
error too large. 

A.AS@S@RPNQASSEGQFVVL 
SSSQSEESDL 
GEGGKKRE.S 

672-
706 3.96 445.65 NO NO 

Parts per million 
error too large. 

E.GQFVVLSSSQS@EESDLGEG 
GKKRE.S 

683-
706 5.66 0.23 YES ---- 

Replicate of 
previously 
confirmed 
assignment. 

F.VVLSSS@QSEESDLGEGGKK 
RE.S 

686-
706 2.9 -2.34 YES YES 

Ions bracket site of 
phosphorylation, 
reasonably 
confident but some 
ambiguity of exact 
site. 

P.NQAS@S@EGQFVVLSSSQS 
EESDLGEGGKKRE.S 

677-
706 3.73 516.98 NO NO 

Parts per million 
error too large. 

              

R.LIAASSRPNQASSEGQFVVL 
S@SSQSEESDLGEGGK.K 

669-
703 6.99 -7.93 YES YES 

Ions bracket site of 
phosphorylation, 
reasonably 
confident but some 
ambiguity of exact 
site. 

R.SESNLSSVCY@IFESNNEG 
EK.I 

595-
614 4.08 

-
415.58 NO NO 

Parts per million 
error too large. 

R.TSSSGS@LGSESTNLAAL 
SLDSLVAPDTPIQFDIISPVC* 
EDQPGQAK.A 

425-
470 4.68 210.77 NO NO 

Parts per million 
error too large. 

R.TNPFGESGGSTKS@ETE 
DSILHQLFIVR.F 

479-
505 4.67   YES NO 

Isotopic overlap of 
potential precursor 
peaks confounds 
precursor 
assignment. 

R.SESNLSSVCY@IFESNNE 
GEK.I 

595-
614 4.49 

-
836.53 NO NO 

Precursor peak not 
readily evident, 
error too large. 

R.LIAASSRPNQASSEGQFV 
VLS@SSQSEESDLGEGGK.K 

669-
703 5.17   NO NO 

Isotopic overlap of 
potential precursor 
peaks confounds 
precursor 
assignment. 

R.LIAASSRPNQASSEGQFV 
VLS@SSQSEESDLGEGGK.K 

669-
703 7.16 277.49 NO NO 

Parts per million 
error too large. 
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K.DHEEWICT@INNISK.Q 
362-
375 3.02 

-
533.48 NO NO 

Parts per million 
error too large. 

R.LIAASSRPNQASSEGQF 
VVLS@SSQSEESDLGEGGK.K 

669-
703 6.88 3.96 YES Yes 

Replicate, good 
parts per million 
error. 

R.LIAASSRPNQASSEGQFV 
VLS@SSQSEESDLGEGGK.K 

669-
703 7.54 5.28 NO ---------------- 

Replicate of 
previously 
confirmed 
assignment. 

R.LIAASSRPNQASSEGQFV 
VLS@SSQSEESDLGEGGK.K 

669-
703 5.13   NO NO 

Isotopic overlap of 
potential precursor 
peaks confounds 
precursor 
assignment. 

K.MGS@ENLNEQLEEFLANI 
GTSVQNVR.R 

213-
237 4.6   YES NO 

Isotopic overlap of 
potential precursor 
peaks confounds 
precursor 
assignment. 

R.VNQSALEAVTPS@PSFQ 
QR.H 

390-
407 3.92 -2.45 NO YES 

Some bracketing of 
assignments, error 
within confident 
range, ambiguity of 
exact 
phosphorylation 
sites. 

R.LIAASSRPNQASSEGQFV 
VLS@SSQSEESDLGEGGK.K 

669-
703 5.15 0.50 NO ---------------- 

Replicate of 
previously 
confirmed 
assignment. 
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APPENDIX D 
 

Supplementary data for confirmation of BEMA in labeling on beta-casein.  
 

The confirmation of beta-casein fragment 48-63 (FQpSEEQQQTEDELQDK) is 
shown. For this peptide, the BEMA reaction is near quantitative. 

 

 

 



 110 

APPENDIX E 
 

Normalized peak area ratios for varying molar concentrations of Tb and Ho 
labeled phosphorylated peptides in MALDI-TOFMS. 

 
 
5 (Tb-labeled):1 (Ho-labeled) molar ratio WAGGDApSGE analyzed by MALDI-TOFMS 
 

        

 
1 (Tb):1 (Ho) 

 

sample # 
Selected Tb-
labeled m/z 

Tb-labeled 
peak area 

Selected Ho-
labeled m/z 

Ho-
labeled 
peak area 

Relative Peak 
Area Ratio 

           

1 1607.43 1423.22 1613.43 172.99 8.23 

1 1607.28 9851.83 1613.27 2517.59 3.91 

1 1607.24 3715.28 1613.16 526.79 7.05 

1 1607.24 2506.79 1613.21 837.87 2.99 

1 1607.25 1420.09 1613.21 191.52 7.41 

2 1607.59 2622.48 1613.62 587.23 4.47 

2 1607.58 2603.36 1613.60 660.74 3.94 

2 

peak 
intensity too 

low        

2 1607.66 2429.36 1613.59 390.70 6.22 

2 

peak 
intensity too 

low        

3 1607.56 441.06 1613.66 104.41 4.22 

3 1607.67 1087.55 1613.66 309.52 3.51 

3 

peak 
intensity too 

low        

3 1607.63 1413.01 1613.62 198.66 7.11 

3 1607.41 3781.71 1613.28 477.87 7.91 

    average 5.4075 
relative 

error 0.08 

 
 
 
1 (Tb-labeled):5 (Ho-labeled) molar ratio WAGGDApSGE analyzed by MALDI-TOFMS  

 

        

Sample # 
Selected Tb-
labeled m/z 

Tb-labeled 
peak area 

Selected Ho-
labeled m/z 

Ho-
labeled 
peak area 

Relative Peak 
Area Ratio 

          

1 1607.14 774.93 1613.20 3816.00 0.20 

1 1607.23 1490.58 1613.21 5142.25 0.29 

1 1607.28 1107.85 1613.27 4087.57 0.27 

1 1607.14 722.26 1613.20 2357.26 0.31 

1 1607.18 705.90 1613.16 3710.51 0.19 
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2 1607.98 1726.10 1613.00 10414.48 0.17 

2 1607.11 714.03 1613.14 6500.69 0.11 

2 1606.89 217.05 1613.04 1965.50 0.11 

2 1606.99 352.08 1613.99 1974.91 0.18 

2 1607.10 1047.98 1613.12 5465.97 0.19 

3 1607.23 1904.65 1613.20 11115.08 0.17 

3 1607.14 714.90 1613.11 2986.33 0.24 

3 1607.99 852.08 1613.00 5932.84 0.14 

3 1607.04 729.15 1613.07 3967.66 0.18 

3 1607.27 2295.76 1613.27 12673.50 0.18 

4 1607.13 3004.65 1613.12 14170.80 0.21 

4 1607.12 5066.96 1613.12 24952.40 0.20 

4 1606.99 1427.47 1612.98 5494.21 0.26 

4 1607.04 1898.93 1613.03 9520.45 0.20 

4 1607.17 3071.98 1613.18 13470.76 0.23 

5 1607.20 615.82 1613.25 4392.40 0.14 

5 1607.23 1596.99 1613.22 7732.68 0.21 

5 1607.21 2735.46 1613.19 9531.61 0.29 

5 1606.91 744.02 1612.91 2987.99 0.25 

5 1607.09 2055.87 1613.09 8062.50 0.25 

  average 0.2070 
relative 
error 0.04 

 
 
 
1 (Tb-labeled):1 (Ho-labeled) molar ratio WAGGDApSGE analyzed by MALDI-TOFMS  

 

        

sample # 
Selected Tb-
labeled m/z 

Tb-labeled 
peak area 

Selected Ho-
labeled m/z 

Ho-
labeled 
peak area 

Relative Peak 
Area Ratio 

            

1 1607.72 3228.61 1613.69 4625.82 1.43 

1 1607.70 7004.42 1613.70 7856.04 1.12 

1 1607.72 12904.85 1613.74 14640.67 1.13 

1 1607.70 7874.79 1613.69 8990.98 1.14 

1 1607.70 7619.63 1613.30 8047.21 1.06 

2 1607.66 8426.09 1613.66 6004.65 0.71 

2 1607.56 8586.85 1613.53 6870.04 0.80 

2 1607.60 15273.02 1613.57 12639.61 0.83 

2 1607.57 5338.15 1613.57 1892.91 0.35 

2 1607.58 5206.04 1613.55 4319.97 0.83 

3 1607.46 12767.89 1613.44 9846.99 0.77 

3 1607.38 5605.78 1613.40 6690.62 1.19 

3 1607.35 6125.84 1613.36 5709.91 0.93 

3 1607.36 1025.96 1613.33 1681.95 1.64 

3 1607.54 14342.52 1613.46 10558.51 0.74 

4 1607.43 4255.02 1613.39 2219.92 0.52 
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4 1607.41 14361.34 1613.38 17776.02 1.24 

4 1607.58 4985.82 1613.59 4702.94 0.94 

4 1607.63 4988.10 1613.57 11084.98 2.22 

4 1607.58 3721.85 1613.52 3615.98 0.97 

    average 1.0290 
relative 
error 0.03 

 

 
1 (Tb-labeled):1 (Ho-labeled) molar ratio FQpSEEQQQTEDELQDK analyzed by MALDI-TOFMS  

 

        1 (Tb):1 (Ho) 

sample # 
Selected Tb-
labeled m/z 

Tb-labeled 
peak area 

Selected Ho-
labeled m/z 

Ho-
labeled 
peak area 

Relative Peak 
Area Ratio 

           

1 2741.60 1705.80 2747.57 1793.72 0.95 

1 2741.49 1420.79 2747.52 1391.32 1.02 

1 2741.46 1705.03 2747.47 1666.97 1.02 

2 2741.22 1107.12 2747.18 1069.85 1.03 

2 2741.25 1239.22 2747.22 1230.74 1.01 

2 2741.84 457.16 2747.78 587.11 0.78 

3 2741.18 987.30 2747.18 989.74 1.00 

3 2741.25 1251.91 2747.26 1194.11 1.05 

3 2741.53 801.12 2747.58 598.75 1.34 

    average 1.0330 
relative 
error 0.03 

 
 
 
1 (Tb-labeled):5 (Ho-labeled) molar ratio FQpSEEQQQTEDELQDK analyzed by MALDI-TOFMS 

 

       1 (Tb):5 (Ho) 

sample # 
Selected Tb-
labeled m/z 

Tb-labeled 
peak area 

Selected Ho-
labeled m/z 

Ho-
labeled 
peak area 

Relative Peak 
Area Ratio 

           

1 2741.34 82.97 2747.35 481.98 0.17 

1 2741.22 226.92 2747.22 725.12 0.31 

1 2741.49 804.28 2747.45 3436.81 0.23 

2 2741.52 305.00 2747.49 1535.90 0.20 

2 2741.51 400.34 2747.49 1867.19 0.21 

2 2741.77 455.77 2747.76 2241.51 0.20 

3 2741.31 665.05 2747.26 2688.99 0.25 

3 2741.07 241.02 2747.01 963.76 0.25 

3 2741.83 223.55 2747.90 1130.44 0.20 

   average 0.2256 
relative 
error 0.13 
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5 (Tb-labeled):1 (Ho-labeled) molar ratio FQpSEEQQQTEDELQDK analyzed by MALDI-TOFMS  
 

 

        1 (Ho):5 (Tb) 

sample # 
Selected Tb-
labeled m/z 

Tb-labeled 
peak area 

Selected Ho-
labeled m/z 

Ho-
labeled 
peak area 

Relative Peak 
Area Ratio 

            

1 2740.60 2961.21 2746.63 581.79 0.20 

1 2741.54 2665.33 2747.46 410.48 0.15 

1 2741.38 2370.88 2747.41 522.00 0.22 

2 2740.59 1465.75 2746.55 406.55 0.28 

2 2741.39 2898.14 2747.40 546.68 0.19 

2 2741.30 2287.42 2747.32 509.73 0.22 

3 2741.55 1309.88 2747.56 297.34 0.23 

3 2741.56 2985.48 2747.55 566.89 0.19 

3 2741.54 1275.04 2747.59 245.97 0.19 

    average 0.2077 
relative 
error 0.04 
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APPENDIX F 
 

Spectra of relative quantitation of phosphorylated peptides by PhECAT in 
MALDI-TOFMS. 
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APPENDIX G 
 

G. Predicted and observed ions for Tb-labeled FQSEEQQQTEDELQDK as 
represented in Figure 18. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*s,y,t = phosphorylated S,Y,T 

Predicted b ion m/z       
Predicted b-H2O ion 
m/z   

  # 
Predicted 
b ion m/z Tb-labeled Observed   

Predicted 
b-H2O ion 
m/z Tb-labeled Observed 

F 1 --- --- ---   --- --- --- 

Q 2 276.13 --- ---   --- --- --- 

s* 3 443.13 1121.58 1121.33   ---   --- 

E 4 572.18 1250.62 1250.62   554.16 1232.61 1232.53 

E 5 701.22 1379.66 1379.47   683.21 1361.65 1361.73 

Q 6 829.28 1507.72 1507.50   811.27 1489.71 --- 

Q 7 957.34 1635.78 1635.51   939.32 1617.77 1618.54 

Q 8 1085.39 1763.84 1763.60   1067.38 1745.83 1745.51 

T 9 1186.44 1864.89 1865.58   1168.43 1846.87 1846.73 

E 10 1315.48 1993.93 1993.68   1297.47 1975.92 1975.82 

D 11 1430.51 2108.95 2108.74   1412.50 2090.94 2090.29 

E 12 1559.55 2238.00 2237.80   1541.54 2219.99 --- 

L 13 1672.64 2351.08 2350.86   1654.63 2333.07 2332.80 

Q 14 1800.70 2479.14 2479.96   1782.69 2461.13 2461.77 

D 15 1915.72 2594.17 2594.97   1897.71 2576.16 2576.87 

K 16 ---  ---   --- --- --- 

                 

Predicted 
y ion m/z       

Predicted y-H2O ion 
m/z   

 
ion 
# 

Predicted 
y ion m/z 

Tb-
Labeled Observed   

Predicted 
y-H2O 
ion m/z Tb-labeled Observed 

F 16 --- --- ---   --- --- --- 

Q 15 1914.76 2593.20 2593.55   1896.75 2575.19 --- 

s* 14 1786.70 2465.15 2465.85   1768.69 2447.13 2447.90 

E 13 1619.70 --- ---   1601.69 --- --- 

E 12 1490.66 --- ---   1472.65 --- --- 

Q 11 1361.62 --- ---   1343.61 --- --- 

Q 10 1233.56 --- ---   1215.55 --- --- 

Q 9 1105.50 --- ---   1087.49 --- --- 

T 8 977.44 --- ---   959.43 --- --- 

E 7 876.39 --- ---   858.38 --- --- 

D 6 747.35 --- ---   729.34 --- --- 

E 5 632.33 --- ---   614.31 --- --- 

L 4 503.28 --- ---   485.27 --- --- 

Q 3 390.20 --- ---   372.19 --- --- 

D 2 262.14 --- ---   244.13 --- --- 

K 1 147.11 --- ---   --- --- --- 
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APPENDIX H 
 

Normalized peak area ratios for varying molar concentrations of Tb and Ho 
labeled phosphorylated peptides in MALDI-IM-TOFMS. 

 

 

1(Pr-labeled):1(Tb-
labeled):5(Ho-labeled)  
FQpSEEQQQTEDELQDK 
analyzed by MALDI-IM-
TOFMS      

1(Pr):5(Ho), 
1(Tb):5(Ho) 

 

sam-
ple # 

Pr, Tb, and Ho-labeled 
m/z 

Pr-
labeled 
peak 
area 

Tb-
labeled 
peak 
area 

Ho-
labeled 
peak 
area 

Relative Peak 
Area Ratio 

          

1 
2723.30, 2741.77, 
2747.20 36.31 31.14 375.00 0.10, 0.08 

1 
2723.17, 2741.23, 
2747.21 27.81 30.19 451.00 0.06, 0.07 

1 
2723.25, 2741.09, 
2747.19 55.64 42.56 551.70 0.10, 0.08 

2 
2723.30, 2741.50, 
2747.23 79.97 74.28 380.40 0.21, 0.20 

2 
2723.37, 2741.42, 
2747.24 101.00 81.28 458.40 0.22, 0.18 

2 
2723.27, 2741.43, 
2747.24 65.38 66.75 448.60 0.15, 0.15 

3 
2723.37, 2741.43, 
2747.23 85.00 179.00 507.00 0.17, 0.35 

3 
2723.22, 2741.68, 
2747.23 43.25 52.57 364.40 0.12, 0.14 

3 
2723.30, 2741.72, 
2747.23 55.58 39.42 413.80 0.13, 0.10 

    average 
0.1400, 
0.1300 

relative 
error -0.30, -0.35 

 

3 (Tb-labeled):1 (Ho-
labeled) molar ratio 
FQpSEEQQQTEDELQDK 
analyzed by MALDI-IM-
TOFMS        

3 (Tb):1 (Ho) 
 
 

sam-
ple # 

Selected Tb-labeled m/z 
 

Tb-
labeled 
peak 
area 

Selected 
Ho-
labeled 
m/z 

Ho-
labeled 
peak 
area 

Relative Peak 
Area Ratio 

            

1 2741.99 168.40 2747.01 64.19 2.62 

2 2741.00 142.40 2747.01 58.98 2.41 

3 2740.98 377.10 2747.01 132.00 2.86 

4 2740.99 61.52 2747.00 36.29 1.70 

5 2740.98 559.70 2747.00 241.50 2.32 

6 2740.99 485.00 2747.01 226.40 2.14 

    average 2.3416 
relative 
error -0.22 

 

1 (Tb-labeled):1 (Ho-
labeled) molar ratio 
FQpSEEQQQTEDELQDK       

1 (Tb):1 (Ho) 
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analyzed by MALDI-IM-
TOFMS  

acq 
# 
 

Selected Tb-labeled m/z 
 

Tb-
labeled 
peak 
area 

Selected 
Ho-
labeled 
m/z 

Ho-
labeled 
peak 
area 

Relative Peak 
Area Ratio 

            

1 2741.03 2767.00 2747.04 2512.00 1.10 

2 2741.02 3449.00 2747.03 2877.00 1.20 

3 2741.01 5924.00 2747.02 4981.00 1.19 

4 2741.03 2697.00 2747.03 2315.00 1.17 

5 2741.02 3312.00 2747.03 2910.00 1.14 

    average 1.1586 
relative 
error 0.16 

 

1 (Tb-labeled):5 (Ho-
labeled) molar ratio 
FQpSEEQQQTEDELQDK 
analyzed by MALDI-IM-
TOFMS        

1 (Tb):5 (Ho) 
 
 

acq 
# 
 

Selected Tb-labeled m/z 
 

Tb-
labeled 
peak 
area 

Selected 
Ho-
labeled 
m/z 

Ho-
labeled 
peak 
area 

Relative Peak 
Area Ratio 

          

1 2741.04 1275.00 2747.01 4451.00 0.29 

2 2741.04 1599.00 2747.01 5222.00 0.31 

3 2741.04 1102.00 2747.01 3907.00 0.28 

4 2741.04 1234.00 2747.01 4274.00 0.29 

5 2741.03 1198.00 2747.01 3964.00 0.30 

    average 0.2931 
relative 
error 0.47 

 

5 (Tb-labeled):1 (Ho-
labeled) molar ratio 
FQpSEEQQQTEDELQDK 
analyzed by MALDI-IM-
TOFMS        

1 (Ho):5 (Tb) 
 
 

acq 
# 

 
Selected Tb-labeled m/z 

 

Tb-
labeled 
peak 
area 
 

Selected 
Ho-
labeled 
m/z 

Ho-
labeled 
peak 
area 

Relative Peak 
Area Ratio 

            

1 2741.99 12050.00 2748.04 2105.00 0.17 

2 2741.99 6300.00 2748.03 1075.00 0.17 

3 2742.00 3153.00 2748.04 575.20 0.18 

4 2741.98 8306.00 2747.04 1371.00 0.17 

5 2741.98 6976.00 2747.04 1170.00 0.17 

    average 0.1721 
relative 
error -0.14 
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APPENDIX I 
 

Sample spectra and data from relative quantitation of phosphorylated peptides by 
PhECAT in MALDI-IM-TOFMS. 

 
 

I. 1.  1 to 1 Tb to Ho-labeled beta-casein.  
 

m/z
2640 2650 2660 2670 2680 2690 2700 2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830

%

0

100

m/z
2640 2650 2660 2670 2680 2690 2700 2710 2720 2730 2740 2750 2760 2770 2780 2790 2800 2810 2820 2830

%

0

100

090423_RANDI_TAG1TO1TBHO_001_dt_01 75 (9.491) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (48:165) TOF MS LD+ 
3.28e32742.0249

2741.0273

2740.0508

2730.03082724.0300

2698.0305

2638.1816 2697.0999
2679.08792653.0435 2660.9856 2671.0884

2703.0437
2722.0435

2707.0347
2718.0449

2731.0366

2748.0313

2749.0322

2750.0427

2751.0488

2752.0457
2770.0552

2760.1865 2787.02122772.0652 2830.00442808.0137
2792.9810 2825.0464

090423_RANDI_TAG1TO1TBHO_001_dt_01  75 (9.491) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (48:165) TOF MS LD+ 
2452742.0090

2741.0222

2739.9973

2724.0068

2723.0234
2704.0659

2697.9985

2638.1697
2683.98782681.0410

2722.02102707.0449

2730.0073

2732.0156

2748.0095

2749.0168

2750.0242

2751.0515

2752.0398
2770.0754

2753.0867 2780.0017
2786.0244 2792.9712

2824.08472808.0068

 
 
Sample 01 – 1 

mass  peak area 
Tb 2741.0273 2.767e3 
Ho  2747.0354 2.512e3 
 

m/z
2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790

%

0

100

m/z
2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790

%

0

100

090423_RANDI_TAG1TO1TBHO_002_dt_01 75 (9.491) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (43:172) TOF MS LD+ 
4.05e32742.0166

2741.0242

2740.0447

2730.04222724.0447

2697.0205 2705.0291
2699.5562

2722.0696
2707.0344

2711.0520
2714.0552 2718.0605

2732.0530

2733.0264
2738.4492

2748.02592743.0137

2747.0327
2749.0239

2750.0327

2751.0435

2752.0549

2764.03912753.0803 2762.0698 2770.0588 2772.0476
2787.0137

2784.9956
2779.9976 2789.0200

090423_RANDI_TAG1TO1TBHO_002_dt_01  75 (9.491) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (43:172) TOF MS LD+ 
2892742.0090

2741.0032

2740.0359

2730.02692724.0068

2723.0430
2698.0176

2696.0605 2704.0278 2706.0068 2722.0791

2712.9497

2732.0347

2733.0391

2748.0095

2742.9958

2747.0222 2749.0168

2750.0242

2751.0515

2752.0203

2769.02562765.06082763.0017
2753.0671

2771.0281
2786.9995

2784.9912

 
 
Sample 01-2 

mass  peak area 
Tb 2741.0242 3.449e3 
Ho  2747.0327 2.877e3 
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m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG1TO1TBHO_003_dt_01 71 (8.978) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (42:175) TOF MS LD+ 
6.83e32742.0007

2741.0115

2740.0400

2724.0371
2723.0413

2722.0510

2720.0183
2716.0100

2730.03982725.0352

2726.0293
2731.0269

2733.0327

2736.0488

2748.01422743.0024

2747.0217

2744.0134

2746.0374

2749.0176

2750.0278

2751.0332

2752.0508
2765.06352764.0581

2753.1060 2760.05762754.0173 2759.1257
2770.03252769.0461 2771.00932773.0425 2776.0530

090423_RANDI_TAG1TO1TBHO_003_dt_01  71 (8.978) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (42:175) TOF MS LD+ 
5252741.9895

2740.9836

2740.0164

2724.0454
2723.0430

2722.0210

2730.02692725.0293
2726.0127

2731.0112

2733.0195

2748.0095

2742.9958

2744.0022

2748.9978

2750.0242

2751.0125

2752.0784

2764.03102763.0212 2770.05592765.0413

 
 
Sample 01-3 
 mass  peak area 
Tb 2741.0115 5.924e3 
Ho  2747.0217 4.981e3 
 

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG1TO1TBHO_004_dt_01 74 (9.363) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (44:179) TOF MS LD+ 
3.12e32742.0110

2741.0254

2740.0432

2730.03222724.0493

2723.0344

2722.0959
2716.03642720.0662

2725.0457

2726.0320
2731.0378

2733.0422

2739.0002
2737.9072

2748.02762743.0139

2747.0332

2744.0273

2746.0437

2749.0271

2750.0320

2751.0408

2752.0540
2770.03762763.0459

2752.9905 2762.04372757.0566

2769.0303 2771.0410 2774.0706
2778.3013

090423_RANDI_TAG1TO1TBHO_004_dt_01  74 (9.363) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (44:179) TOF MS LD+ 
2282741.9895

2741.0222

2740.0359

2730.02692724.02642723.0234

2722.0981

2725.0483
2731.0112

2732.0542

2734.0435

2748.0095
2743.0149

2747.0222

2744.0022

2749.0168

2750.0242

2751.0320

2752.0203
2770.01682765.0217

2763.0403

2753.9978
2769.0256

2771.0476

 
 
Sample 01-4 
 mass  peak area 
Tb 2741.0254 2.697e3 
Ho  2747.0332 2.315e3 
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m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG1TO1TBHO_005_dt_01 74 (9.363) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (46:177) TOF MS LD+ 
3.92e32742.0110

2741.0166

2740.0447

2724.0300
2723.0500

2722.0635

2720.16632718.0459

2730.03782725.0259 2731.0403
2732.0344

2734.0100
2739.1648

2748.0176
2743.0078

2747.0295

2744.0154

2746.0342

2749.0247

2750.0361

2751.0352

2752.0447
2764.0134

2763.03172753.0713
2758.1350

2754.1707

2770.02982769.0325 2771.0378

2773.0222 2777.9946

090423_RANDI_TAG1TO1TBHO_005_dt_01  74 (9.363) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (46:177) TOF MS LD+ 
2802742.0090

2741.0032

2740.0359

2725.02932724.0264

2723.0234

2722.0596

2730.00732729.0420
2731.0498

2733.0581

2734.0244

2748.0095

2742.9958

2747.0027

2744.0022

2748.9978

2750.0242

2751.0125

2752.0398
2763.9924

2763.02122753.1057 2770.03642769.0256 2771.0476 2774.1023

 
 
Sample 01-5 
 mass  peak area 
Tb 2741.0166 3.312e3 
Ho  2747.0295 2.910e3 
 

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG1TO5TBHO_001_dt_01 74 (9.363) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (37:180) TOF MS LD+ 
5.11e32747.9946

2747.0068

2746.0352

2742.0217
2741.0381

2730.0222
2729.0391

2728.0549

2724.03832723.05402719.9260

2731.0200

2732.0271
2740.0576

2733.0334

2734.99492737.0630

2743.0281

2748.9998

2750.0120

2751.0325

2752.0281

2770.03492753.0215 2769.0251
2765.03222764.02812760.12162756.4512

2771.0459 2774.0129
2777.1250

090423_RANDI_TAG1TO5TBHO_001_dt_01  74 (9.363) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (37:180) TOF MS LD+ 
3832747.9709

2747.0027

2746.0154

2742.0281

2741.0417

2731.01122730.0269

2728.0581
2724.02642723.0234

2732.0156 2740.0554

2733.0195

2743.0149

2748.9783

2750.0051

2751.0320

2752.0203

2769.99782769.06422753.0090 2771.0476

 
 
Sample 02-1 
 mass  peak area 
Tb 2741.0381 1.279e3 
Ho  2747.0068 4.451e3 
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m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG1TO5TBHO_002_dt_01 75 (9.491) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (45:174) TOF MS LD+ 
5.95e32747.9968

2747.0085

2746.0337

2742.0344
2741.0381

2730.0264
2729.0405

2728.0471

2724.02862723.05182715.95852717.9878

2731.0347
2740.0430

2732.0322

2734.0286

2738.0227

2743.0278

2749.0012

2750.0134

2751.0254

2752.0369

2770.04662769.0354
2753.0283

2765.0671
2764.0500

2760.0613
2758.0471 2771.0283

2778.0327
2774.0154

090423_RANDI_TAG1TO5TBHO_002_dt_01  75 (9.491) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (45:174) TOF MS LD+ 
4512747.9905

2747.0027

2746.0344

2742.0281

2741.0222

2730.04592729.0229

2728.0581

2724.06492723.0430

2731.0308
2740.0554

2732.0156

2734.0244

2743.0344

2748.9783

2750.0051

2751.0125

2752.0398

2770.07542752.9700 2768.9866 2772.0007

 
 
Sample 02-2 
 mass  peak area 
Tb 2741.0381 1.599e3 
Ho  2747.0085 5.222e3 
 

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG1TO5TBHO_003_dt_01 74 (9.363) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (33:171) TOF MS LD+ 
4.59e32748.0051

2747.0149

2746.0393

2742.0330

2741.0422

2730.0359
2729.0383

2728.0569
2724.04352723.0513

2718.9968 2727.0386

2731.0266 2740.0544
2733.0188

2735.03522737.0637

2743.0281

2749.0112

2750.0149

2751.0278

2752.0325

2770.04392769.03912753.0212
2763.07932758.2593

2755.0435 2760.0430 2771.0479
2776.0425

2778.0190

090423_RANDI_TAG1TO5TBHO_003_dt_01  74 (9.363) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (33:171) TOF MS LD+ 
3462747.9905

2747.0027

2746.0344

2742.0281
2741.0417

2730.02692729.0034

2728.0386
2724.99072724.0264

2730.9922 2740.0745

2733.0005

2734.0435

2743.0344

2748.9978

2749.9856

2751.0125

2752.0203

2769.04472753.0286 2770.0168

 
 
Sample 02-3 
 mass  peak area 
Tb 2741.0422 1.102e3 
Ho  2747.0149 3.907e3 



 145 

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG1TO5TBHO_004_dt_01 74 (9.363) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (40:186) TOF MS LD+ 
4.94e32748.0000

2747.0093

2746.0330

2742.0330

2741.0354

2730.0273
2729.0320

2728.0276
2724.0330

2723.03712716.0479 2718.5881

2731.0310
2740.0498

2732.0198

2733.0146

2736.0337

2743.0259

2749.0029

2750.0149

2751.0234

2752.0313

2770.00812769.0537
2753.0364

2765.1245
2764.07372761.9961

2758.1738
2771.0173

2773.0576 2778.0527

090423_RANDI_TAG1TO5TBHO_004_dt_01  74 (9.363) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (40:186) TOF MS LD+ 
3732747.9905

2746.9832

2746.0154

2742.0090

2741.0222

2730.0269
2729.0229

2728.0195
2724.02642723.0044

2731.0308 2740.0554

2733.0005

2743.0344

2748.9783

2750.0051

2751.0125

2752.0203

2769.99782769.0837
2753.0286 2771.0090

 
 
Sample 02-4 
 mass  peak area 
Tb 2741.0354 1.234e3 
Ho  2747.0093 4.274e3 
 

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG1TO5TBHO_005_dt_01 74 (9.363) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (42:170) TOF MS LD+ 
4.67e32748.0015

2747.0107

2746.0356

2742.0278

2741.0337

2730.0371
2729.0371

2728.0520

2724.02932723.0488
2716.9519 2719.1270

2731.0276 2740.0417

2733.0278

2735.0313 2738.0037

2743.0256

2749.0056

2750.0159

2751.0293

2752.0393
2770.02812769.05032753.0378

2765.00492762.0691
2761.0488

2756.1326

2771.0107

2773.0168 2777.0566

090423_RANDI_TAG1TO5TBHO_005_dt_01  74 (9.363) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (42:170) TOF MS LD+ 
3672747.9905

2747.0027

2746.0344

2742.0476
2741.0222

2730.0073
2729.0420

2728.0386
2724.04542723.0234

2731.0498
2740.0359

2733.0195

2743.0344

2748.9978

2750.0051

2751.0125

2752.0398

2770.01682769.08372753.0476 2771.0090

 
 
Sample 02-5 
 mass  peak area 
Tb 2741.0337 1.198e3 
Ho  2747.0107 3.964e3 
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m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG5TO1TBHO_001_dt_01 75 (9.491) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (41:175) TOF MS LD+ 
1.21e42741.9856

2740.9980

2740.0244

2724.0259
2723.0264

2722.0457

2718.0759 2721.4893

2725.0186

2726.0251

2727.0193 2730.0388
2732.0337 2738.06182735.9636

2742.9878

2744.0012

2745.0134

2748.0371
2749.0349

2750.0403 2764.0303
2763.03712751.0420

2759.0308
2753.9221

2765.0247
2769.0288 2770.0320 2773.0398 2775.9971

090423_RANDI_TAG5TO1TBHO_001_dt_01  75 (9.491) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (41:175) TOF MS LD+ 
8962741.9700

2740.9836

2740.0164

2724.0264
2723.0234

2722.0596

2725.0098

2726.0127

2729.0420 2730.0459

2742.9763

2743.9827

2745.0085

2748.0291
2749.0364

2750.0242
2764.03102763.02122751.0320 2765.0022

 
 
Sample 03-1 
 mass  peak area 
Tb 2741.9856 1.205e4 
Ho  2748.0371 2.105e3 
 

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG5TO1TBHO_002_dt_01 71 (8.978) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (43:180) TOF MS LD+ 
6.30e32741.9883

2740.9990

2740.0308

2724.0266
2723.0308

2722.0518

2721.04862718.1470

2725.0247

2727.0181

2730.0518 2731.0332
2738.0242

2736.9653

2742.9939

2744.0061

2745.0200

2747.0354 2748.0310

2750.0505

2764.01442751.0466 2763.0229
2758.0955

2757.0342 2765.0176 2768.0374
2770.03562772.0576 2778.0122

090423_RANDI_TAG5TO1TBHO_002_dt_01  71 (8.978) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (43:180) TOF MS LD+ 
4722741.9700

2740.9836

2740.0164

2724.02642723.0044

2722.0405
2725.0293

2727.01612729.0420

2742.9763

2743.9827

2745.0281

2748.0291
2749.0559

2750.0437

2763.99242751.0706 2763.0212 2764.9832

 
 
Sample 03-2 
 mass  peak area 
Tb 2741.9883 6.300e3 
Ho  2748.0310 1.075e3 
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m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG5TO1TBHO_003_dt_01 72 (9.106) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (39:178) TOF MS LD+ 
3.17e32742.0007

2741.0103

2740.0295

2724.0291
2723.0286

2722.0461

2716.8298 2719.0002

2725.0259
2727.0330

2729.0454 2732.0142
2737.0881

2743.0017

2744.0105

2745.0195

2747.0422 2748.0437

2764.02862750.0474 2763.0166

2751.0161 2762.03442754.0156
2755.9751

2765.0090

2767.0134 2770.0337 2773.0342
2777.1672

090423_RANDI_TAG5TO1TBHO_003_dt_01  72 (9.106) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (39:178) TOF MS LD+ 
2372741.9895

2740.9836

2740.0164

2724.04542723.0044

2722.0596

2724.9907

2727.0352 2730.0073
2731.9961

2742.9958

2744.0022

2744.9890

2747.0413 2748.0486

2764.05052763.00172750.0632

2751.0125 2762.0891

2764.9832

2767.0427

 
 
Sample 03-3 
 mass  peak area 
Tb 2741.0103 2.729e3 
Ho  2742.0007 3.168e3 
 

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778
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090423_RANDI_TAG5TO1TBHO_004_dt_01 73 (9.234) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (41:186) TOF MS LD+ 
8.31e32741.9800

2740.9917

2740.0249

2724.0237
2723.0283

2722.0435

2721.16142719.0515

2725.0198

2726.0159

2727.0168 2730.0193

2738.0325
2732.0701

2734.0291

2742.9856

2744.0027

2745.0129

2748.0410
2749.0398

2750.0464
2751.0559 2763.0369

2762.0483
2759.1060

2754.0671
2764.0479 2769.0332 2771.9773 2774.1047 2777.9893

090423_RANDI_TAG5TO1TBHO_004_dt_01  73 (9.234) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (41:186) TOF MS LD+ 
6382741.9700

2740.9836

2740.0164

2724.0068

2723.0234

2722.0791

2725.0098

2726.0322

2726.9966 2730.0073

2742.9568

2743.9827

2745.0085

2748.0486
2749.0364

2750.0437

2763.0403
2765.0217

 
 
Sample 03-4 
 mass  peak area 
Tb 2741.9800 8.306e3 
Ho  2747.0408 1.371e3 
 



 148 

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

m/z
2716 2718 2720 2722 2724 2726 2728 2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768 2770 2772 2774 2776 2778

%

0

100

090423_RANDI_TAG5TO1TBHO_005_dt_01 73 (9.234) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (43:179) TOF MS LD+ 
6.98e32741.9846

2740.9966

2740.0225

2724.0198
2723.0361

2722.0469

2721.05422719.0303

2725.0168

2726.0190

2727.0115 2730.0332
2732.0271 2739.0769

2734.0544

2742.9871

2744.0037

2745.0181

2748.0388
2749.0442

2750.0498

2751.0305 2763.0391
2762.06792756.0757

2765.0095

2770.0457 2771.01712773.0513 2777.9917

090423_RANDI_TAG5TO1TBHO_005_dt_01  73 (9.234) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (43:179) TOF MS LD+ 
5232741.9700

2740.9836

2740.0164

2724.0068
2723.0044

2722.0210

2725.0098
2726.0127

2728.00002730.0459

2742.9763

2744.0022

2745.0085

2748.0291

2749.0364

2750.0437
2764.03102751.0125 2763.0403 2764.9832

 
 
Sample 03-5 
 mass  peak area 
Tb 2741.9846 6.976e3 
Ho  2747.0439 1.170e3 
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APPENDIX I. PART 2. 
 

1 to 3 Tb to Ho-labeled beta-casein. 
 

20090326_RANDI_BCAS_1to3TbHo_1_001.raw  : 1

 
 

m/z
700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400

%

0

100

20090326_Relative quantitation extract 1_dt_02 77 (9.747) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (48:163) TOF MS LD+ 
1.60e3742.4800

1383.8320
743.4853

764.4696

821.4299

891.0459

1137.6088
897.0669

935.0217
1067.0660

1300.7452

1197.5980

1252.7710

1384.8287

1385.8462

2187.1833

2186.1963

1406.8318
1760.9860

1529.8711

1407.8274

1483.9487

1728.9465

1531.8839

1533.9419

1761.9683
1925.1013

1823.0430 1926.1049
2180.1624

1957.1166

2188.1868

2225.1843

2226.1865

2741.9934
2227.1792

2265.2000
2739.9863

2341.9995

2742.9673

2744.0085 2981.4915
2840.9324

3034.1038
3155.0349

3088.9519 3330.6777

 
 
Sample 01 – 1 
 mass  peak area 
Tb 2741.9939 1.684e2 
Ho  2747.0100 6.419e1 
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20090326_RANDI_BCAS_1to3TbHo_2_001.raw  : 1

 
 
 

m/z
2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768

%

0

100

m/z
2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768

%

0

100

20090326_Relative quantitation extract 2_dt_01 77 (9.747) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (50:172) TOF MS LD+ 
1652741.9949

2740.9956

2739.9863

2734.9717

2733.9346
2733.0911

2728.9487
2730.9229

2739.4324

2737.81982735.9631

2742.9690

2744.0066

2747.0051

2745.0012

2746.0129

2747.9832

2763.99342748.9526
2750.9685

2749.9524 2763.03252762.0518

2759.2310
2756.9412

2756.0002

2752.9631
2755.2488

2760.2305

2765.9636

2764.9482

2767.0920
2768.5085

20090326_Relative quantitation extract 2_dt_01  77 (9.747) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (50:172) TOF MS LD+ 
12.92741.9895

2740.9836

2739.9973

2728.9648
2739.4363

2731.0112

2729.9106
2733.9277 2734.9707

2737.0386 2737.9277

2742.9568

2744.0022

2747.0027

2745.0471

2746.0154

2747.9709

2748.9783

2749.0750

2764.94412750.0437 2764.0115
2756.9265

2752.9509 2756.0144

2757.9353
2763.0793

2765.8376
2767.9172

 
 
Sample 01-2 
 mass  peak area 
Tb 2740.9956 1.424e2 
Ho  2747.0051 5.898e1 
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20090326_RANDI_BCAS_1to3TbHo_3_001.raw  : 1

 
 
 
 

m/z
2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768
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m/z
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20090326_Relative quantitation extract 3_dt_01 78 (9.876) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (49:156) TOF MS LD+ 
4102741.9778

2740.9807

2740.0046

2737.92212728.9731 2735.01592734.0728
2732.0046

2729.8730 2735.8762

2742.9895

2748.0120
2744.0132 2746.9922

2744.9907

2763.93122748.9543 2749.9551

2762.9797
2752.0027 2755.99442754.9436 2760.98852758.95462758.1211

2764.9827

2765.9246
2767.0471

2767.9583

20090326_Relative quantitation extract 3_dt_01  78 (9.876) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (49:156) TOF MS LD+ 
30.12741.97002740.9836

2740.0359

2728.9844
2735.87892731.97662730.8955 2734.1206 2737.8506

2742.9958

2744.0212

2748.0291

2747.02222746.0154

2745.0281
2763.9338

2748.9397
2749.9856 2762.9626

2750.9353 2761.9529

2752.0203 2754.9480
2754.0754

2758.98322756.0144 2761.3513

2764.9832

2765.8962

2767.0427

 
 
Sample 01-3 
 mass  peak area 
Tb 2740.9812 3.771e2 
Ho  2747.0063 1.320e2 
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20090326_RANDI_BCAS_1to3TbHo_4_001.raw  : 1
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20090326_Relative quantitation extract 4_dt_01 75 (9.491) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (47:153) TOF MS LD+ 
61.52740.9885

2740.0398

2728.9216

2732.0879

2730.9243

2737.99632734.8730
2732.5120

2736.6472
2738.7144

2741.9836

2742.9702

2747.00052743.9614

2744.9993

2745.9373

2747.9795
2763.9946

2761.9614

2748.9866
2753.9546

2749.9829 2750.9690

2752.8674

2751.9651

2755.0188 2759.0784
2756.7053

2759.9272

2761.2373

2763.0474

2764.9424

2765.8752

2766.1050

2768.0330

20090326_Relative quantitation extract 4_dt_01  75 (9.491) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (47:153) TOF MS LD+ 
5.632741.9895

2740.9836

2740.0554

2739.9006

2734.87452728.8491
2730.9146

2730.0845

2732.9810 2736.6328 2739.4558

2742.9763

2744.9890

2743.9441

2747.0413

2745.8992

2764.0115
2748.0291 2749.0168

2750.0051 2761.93382750.9543

2756.09202754.73462753.8621

2752.8347

2761.8367
2758.7502

2760.2634

2764.9441

2766.9260

 
 
Sample 4 
 mass  peak area 
Tb 2740.9885 6.152e1 
Ho  2747.0005 3.629e1 
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20090326_RANDI_BCAS_1to3TbHo_5_001.raw  : 1
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20090326_Relative quantitation extract 5_dt_01 78 (9.876) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (40:178) TOF MS LD+ 
5962741.9880

2740.9841

2739.9951

2728.0361

2739.24342730.0461 2736.12672732.0479 2734.5923
2738.1384

2742.9741

2743.9663

2747.0002

2744.9749

2745.9973

2748.9907

2749.9895 2762.9912

2761.99342751.0264
2752.0039

2757.99562753.9761 2756.0515 2758.9961

2763.9468

2767.96852766.9883

2768.6421

20090326_Relative quantitation extract 5_dt_01  78 (9.876) Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (40:178) TOF MS LD+ 
44.62740.9641

2739.9973

2728.9844 2733.0391
2730.0654 2739.20432733.9277

2738.0825

2741.9509

2742.9568

2743.9246

2746.9832
2744.9504

2745.9958

2747.9514 2748.9783

2750.0051

2763.0212
2751.0125

2761.91432752.9509 2756.98462756.0339 2758.0320 2760.9241

2763.9534

2766.9841 2767.9563

 
 
Sample 5 
 mass  peak area 
Tb 2740.9841 5.597e2 
Ho  2747.0002 2.415e2 
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20090326_RANDI_BCAS_1to3TbHo_6_001.raw  : 1
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2730 2732 2734 2736 2738 2740 2742 2744 2746 2748 2750 2752 2754 2756 2758 2760 2762 2764 2766 2768

%

0

100

20090326_Relative quantitation extract 6_dt_01 79 (10.004) AM (Cen,4, 80.00, Ar,10000.0,0.00,0.70); Sm (SG, 1x5.00); Sb (15,10.00 ); Cm (45:168) TOF MS LD+ 
5602741.9795

2740.9868

2739.9966

2729.9541 2734.04392731.0684 2736.1477

2735.1975 2738.79712737.9365

2742.9822

2743.9702

2747.0068

2745.0056

2746.0129

2747.9658

2763.95292748.9973 2762.9460

2749.9849

2761.9155
2756.0334

2751.0681
2752.9404 2754.0476

2759.13482758.0872
2761.0706

2764.9404

2765.9456

2768.0024

 
 
Sample 6 
 mass  peak area 
Tb 2740.9868 4.850e2 
Ho  2747.0068 2.264e2 
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APPENDIX J 
 

Predicted and observed ions for Tb-labeled FQSEEQQQTEDELQDK as 
represented in Figure 27. 

 

 

Predicted b ion m/z       Predicted b-H2O ion m/z   

  
ion 
# 

unlabeled 
** Tb-labeled Observed   

unlabeled 
** Tb-labeled Observed 

F 1 --- --- ---   --- --- --- 

Q 2 276.13 --- ---   --- --- --- 

s* 3 443.13 1121.5766 1121.3558   ---   --- 

E 4 572.18 1250.6192 1250.4181   554.1647 1232.6087 1232.3909 

E 5 701.22 1379.6618 1379.4369   683.2072 1361.6512 1362.4300 

Q 6 829.28 1507.7204 1507.5013   811.2658 1489.7098 1490.47 

Q 7 957.34 1635.7790 1635.6525   939.3244 1617.7684 1617.6461 

Q 8 1085.39 1763.8375 1763.7114   1067.383 1745.827 1745.6090 

T 9 1186.44 1864.8852 1864.681   1168.4307 1846.8747 1846.7239 

E 10 1315.48 1993.9278 1993.8141   1297.4733 1975.9173 1975.7067 

D 11 1430.51 2108.9548 2109.7825   1412.5002 2090.9442 --- 

E 12 1559.55 2237.9974 2237.8542   1541.5428 2219.9868 --- 

L 13 1672.64 2351.0814 2351.8511   1654.6269 2333.0709 2333.9512 

Q 14 1800.70 2479.1400 2478.9624   1782.6854 2461.1294 2461.7742 

D 15 1915.72 2594.1669 2594.0896   1897.7124 2576.1564 2576.0229 

K 16 ---   ---   --- --- --- 

            

Predicted y ion m/z       Predicted y-H2O ion m/z   

  ion # 
unlabeled 
** 

Tb-
Labeled Observed   unlabeled ** Tb-labeled Observed 

F 16 --- --- ---   --- --- --- 

Q 15 1914.7601 2593.2041 2593.052   1896.7495 2575.1935 2575.0928 

s* 14 1786.7015 2465.1455 2466.0413   1768.6909 2447.1349 2446.9009 

E 13 1619.7031 --- ---   1601.6926 --- --- 

E 12 1490.6605 --- ---   1472.65 --- --- 

Q 11 1361.6179 --- ---   1343.6074 --- --- 

Q 10 1233.5594 --- ---   1215.5488 --- --- 

Q 9 1105.5008 --- ---   1087.4902 --- --- 

T 8 977.4422 --- ---   959.4316 --- --- 

E 7 876.3945 --- ---   858.384 --- --- 

D 6 747.3519 --- ---   729.3414 --- --- 

E 5 632.325 --- ---   614.3114 --- --- 

L 4 503.2824 --- ---   485.2718 --- --- 

Q 3 390.1983 --- ---   372.1878 --- --- 

D 2 262.1397 --- ---   244.1292 --- --- 

K 1 147.1128 --- ---   --- --- --- 

 
 

*s,y,t = phosphorylated S,Y,T 
** identified unlabeled ions indicated in bold 
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APPENDIX K 
 

Beta-elimination/Michael addition typical spectra for labeled Erythropoietin as 
discussed in Chapter 5. 

 

 

 

 
 

 
For the model O-linked GlcNAc glycopeptide Erythropoietin, beta-elimination was 

observed to go to completion. Michael addition was observed to be limited, and 

further work will show optimization of BEMA conditions to maximize the Michael 

addition product. Nonetheless, relative quantitation data may be achieved as the 

percent product yield is consistent between varying stoichiometries of samples.   
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APPENDIX L 
 

Preliminary relative quantitation data for 1:1 molar ratios of Tb- and Ho-labeled 
erythropoietin. 

 

 
 

 

m/z  peak area 
Tb-label 2223.6550 1.829e5 
Ho-labeled 2229.6577 1.527e5 
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m/z  peak area 

Tb-labeled  2223.6504 4.267e5 
Ho-labeled 2229.6521 3.480e5 
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m/z  peak area 
Tb-labeled 2223.6504 4.265e5 
Ho-labeled 2229.6521 3.479e5 
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m/z  peak area 

Tb-labeled 2223.6482 2.309e5 
Ho-labeled 2229.6519 1.925e5 
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m/z  peak area 

Tb-labled 2223.6504 1.397e5 
Ho-labeled 2229.6516 1.191e5 
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m/z  peak area 

Tb-labeled 2223.6538 1.129e5 
Ho-labeled 2229.6550 9.525e4 
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m/z  peak area 

Tb-labeled 2223.6521 1.303e5 
Ho-labeled 2229.6550 1.124e5 
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m/z  peak area 

Tb-labeled 2223.6521 2.984e5 
Ho-labeled 2229.6555 2.435e5 
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m/z  peak area 
Tb-labeled 2223.6536 2.017e5 
Ho-labeled 2229.6558 1.654e5 
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m/z  peak area 
Tb-labeled 2223.6555 2.483e5 
Ho-labeled  2229.6580 2.075e5 
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m/z  peak area 
Tb-labeled 2223.6541 2.210e5 
Ho-labeled 2229.6565 1.796e5 
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References for the adaptation of chapters 
 

 
Chapter 1:  
Sections adapted from Randi L. Gant-Branum, Thomas J. Kerr, and John A. 
McLean, "Labeling Strategies in Mass Spectrometry-Based Protein Quantitation", 
Analyst, 2009, 134, 1525 – 1530. 
 
Chapter 2:  
Sections adapted from Randi L. Gant-Branum, Joshua A. Broussard, and John 
A. McLean, "Identification of Phosphorylation Sites within the Signaling Adaptor 
APPL1 by Mass Spectrometry." J. Proteome Res., 2010, 9 (3), 1541–1548. 
 
Chapter 3:  
Sections adapted from Relative Quantitation of Phosphorylated Peptides and 
Proteins using Phosphopeptide Element-Coded Affinity Tagging (PhECAT). In 
preparation for submission to Bioconjugate Chemistry. 
 
Chapter 4:  
Sections adapted from Relative Quantitation of Phosphorylated Peptides and 
Proteins using Phosphopeptide Element-Coded Affinity Tagging (PhECAT). In 
preparation for submission to Bioconjugate Chemistry. 
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