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ABSTRACT

High-speed rail (HSR) planning models have not considered the response of airline operations to
introducing high-speed rail to their commercial transportation networks. While considering the
decision processes of travelers in predicting transportation system demand, HSR planning
models have assumed airline response to be static; therefore, the overall objective of this
research is to model and analyze travel demand in an intercity transportation system consisting of
highway, conventional rail, air, and (possibly) high speed rail, for the purposes of anticipating
system-wide shifts in travel demand resulting from the introduction of high-speed rail projects.
In this dissertation, the approach to formulate, decompose, and solve this problem consists of the
following tasks: (1) development of a computationally inexpensive model to estimate the
interregional travel demand, performing model verification, uncertainty propagation, and
sensitivity analysis. (2) Integration of the simplified surface transportation systems planning
models with airline fleet optimization models to capture the optimal cooperative response of the
aviation sector. (3) Apply the simplified models from objective 1 and the optimization methods
from objective 2 to determine equilibrium resourcing and pricing conditions for competitive
airlines given levels of service for HSR and airlines to determine the validity of pricing
assumptions. These tasks are performed using the Cambridge Systematics travel demand model

of the California Corridor.
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CHAPTER |

INTRODUCTION

“Nothing in this world can take the place of persistence. Talent will not; nothing
is more common than unsuccessful people with talent. Genius will not;
unrewarded genius is almost a proverb. Education will not; the world is full of

educated failures. Persistence and determination alone are omnipotent.”

— Calvin Coolidge.

1.1 Overview

Our nation’s commercial air and highway transportation networks are overly congested. The
year 2000 produced record delays with more than one quarter of flights arriving at least 15
minutes behind schedule (Mayer and Sinai 2003). With some 75 million licensed drivers in
heavily populated areas, each averaging roughly 16,000 kilometers per year within those areas,
there are approximately 1,200 billion kilometers driven annually in metropolitan areas, bringing
the total delay to 6 billion vehicle-hours each year (Arnott and Small 1994). Both statistics are
indications of the transportation congestion facing U.S. regions. In response to both highway
and air congestion, all states have established State Transportation Improvement Programs for
the purposes of addressing and solving their highway, and air transportation issues. These
decision makers and transportation planners need models to support decisions involving the
numerous solution strategies which include expanding the capacity of existing networks, creating
new networks, and determining optimal methods to manage existing resources (Daganzo 1976).
Of the new network possibilities, some regions are considering the introduction of high-speed

rail to their commercial transportation network.



The California Corridor is one example of an overly congested, large-scale, intercity
multi-modal commercial network in which transportation planners are faced with decisions
involving resource acquisition, and resource allocation. As a result, California is currently
planning to introduce high-speed rail (HSR) network to the California Corridor. The planned
network would connect the San Francisco Bay area, Sacramento, Fresno, Bakersfield, Los

Angeles, San Diego, and Las Vegas via high speed rail as shown in Figure 1.1.

High-speed rail is a common form of interregional transportation in Europe and Asia
(Potter 1989). In the past few years, transportation planners have been conducting the analysis to
establish high-speed rail in various sectors of the United States. Other projects include the
Midwest Corridor HSR project which plans to link Chicago, Detroit, and St. Louis (Mathur and
Srinivasan 2009), and the Northeast Corridor HSR project which plans to link Washington D.C.,
New York, and Boston (Chen 2010). In recent years, high-speed rail has been considered as a
potential competitor to commercial air. For this body of work, it is assumed that high-speed rail
IS a strong competitor with regards to commercial air and that price is a critical factor for user

mode choice decisions between high-speed rail and commercial air.

The addition of HSR in the California Corridor will have obvious impacts on the total
transportation system (Cambridge Systematics 2008). The Cambridge Systematics HSR
planning models have considered the decision processes of travelers in predicting network
demand; however, the model does not consider competitor responses such as airline operations to
the introduction of high-speed rail and have assumed them to be static. In addition, one iteration
of the Cambridge Systematics model takes approximately four days to run. The computational
expense of this model along with the static response assumption are examples of common

critiques of systems analysis techniques.



California High-Speed Train Map, Statewide Overview
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Figure 1.1: California High-Speed Train Map

To address the issues of computational expense, the proposed research seeks to develop a

smaller model that looks at the problem from a higher level of resolution. To address the issue



of assuming a static competitor response, the proposed research seeks to define a cause and
effect relationship between the CS main mode choice modeling and the resource allocation and
pricing decisions of commercial air. The CS main mode choice decision model utilizes several
input factors. Among these input factors are pricing and resourcing. As a result, any subsequent
changes to the resource capacity and/or pricing by commercial air in response to the introduction
of high-speed rail would affect the main mode choice decision modeling results used by
Cambridge Systematic. Using the California high-speed rail problem as a case study, the overall
objective of this research is to provide a framework to model and analyze a system and its effects
on other systems. This type of analysis is considered system-of-systems analysis. Solving the
overall problem of decision support for the total transportation system in Southern California

requires modeling the total system as a system of systems.

This research provides a framework to conduct system-of-systems analysis. While
several definitions exist for a system-of-systems, in this research, a system-of-systems is defined
as a network of systems. This collective view of systems analysis seeks to provide a method for
quantifying the effects that systems have on each other. System-of systems analysis is often
utilized where decisions directly affecting one system also affect the conditions in another
system. Two examples of systems often included in system-of-systems analysis are
transportation and business systems which are directly affected by customer or user decision

choice.

Systems analysis models are often used to estimate and predict system conditions and
response. Due to the large amount of data required to model a system, systems analysis models
can become very large and complex. As a result, systems analysis models are often criticized for

their computational expense and failure to consider the impacts of conditions related to, but



outside the immediate scope of their model. This research seeks to provide a framework to
account for the computational expense and narrow scope of systems analysis by decomposing
systems analysis into manageable steps. To solve the problem of computational expense,
decomposition is necessary (Papatheodorou, Magirou, and Kiountouzis 1993)(Ostertag et al.
2009). The decomposition steps suggested by this research are to develop a feasible model,
integrate that model in a systems network, conduct a short run pricing analysis, and determine

both system optimal and user equilibrium points.

The first step accounts for the model computational expense. The remaining steps
consider both the response from and the effects on other systems. Parsimonious modeling will
be used for feasible model development. A short run analysis will be conducted by observing
model output across the likely range of critical input parameters. Multidisciplinary optimization
will be used for the system optimal model integration. Game theoretic optimization will be used
for determining a competitive network user equilibrium. This analysis is designed to show how
the network of systems operates under certain specific conditions. To illustrate the proposed
method, this research will consider a transportation system-of-systems consisting of multiple
commercial service providers competing within a specified region. The inherent difficulties of
system-of-systems analysis and transportation systems analysis in particular are in accurately
capturing the interdependencies of related systems given multiple decision makers utilizing

various operational strategies.

The primary challenge of this type of work is in dealing with the large amount of
variables and data. This research proposes that utilizing a reduced or parsimonious modeling
approach will mitigate the data requirement and provide a framework for developing a model

feasible for repetitive analysis. The challenge with using a reduced or parsimonious model is its



accuracy as compared to the original or parent model. This research will utilize model
calibration to ensure model accuracy. The second challenge centers around the concept of
induced demand which simply implies that the total network demand increases as capacity
increases (Cervero 2002). Induced demand typically refers to an increase in the total user
demand in a given network; however, in this analysis induced demand is defined in terms of

demand shifts from one mode of transportation to another based on changes in the model inputs.

1.2 Research Questions & Objectives

The overall objective of this dissertation is to apply a multidisciplinary optimization
method to model and analyze the travel demand of an intercity transportation system consisting
of highway, conventional rail, air, and (possibly) high speed rail, for the purposes of anticipating
system-wide shifts in travel demand resulting from the introduction of high-speed rail to an
existing commercial transportation network. In particular, the proposed dissertation research
will focus on the California Corridor. Utilizing the Cambridge Systematics model as a case
study and accounting for the anticipated research challenges, listed below are the primary

questions that this research seeks to answer.

1. Since the CS model is proprietary (only underlying equations available in CAHSRA
reports), and computationally expensive (4+ days to evaluate once), can a useful
simplified model, suitable for sensitivity analysis, uncertainty quantification, and
optimization studies be specified, estimated, and validated?

2. Towhich model parameters is the CS model most sensitive?

3. What is the contribution of the uncertainty in key parameters to the uncertainty in model

predictions?



4. Can the response of the total air transportation system to the presence of HSR be
predicted? If so, how?

5. Can competition between airlines be modeled in a system-of-systems context?

6. Will the presence of HSR shift this balance? If so, how?

7. Given that pricing decisions are made on a shorter time scale than airline resource
acquisition and schedule design, can pricing strategies be identified using the simplified
planning model?

8. What can be said about the ridership and revenue projections for air and HSR as a result
of equilibria and pricing games?

9. What are the implications for the viability of HSR in California?

This research will develop and analyze a feasible travel demand model for the purpose of
performing repetitive analysis to demonstrate the effects of and on outside systems. This
research will also address the issue of induced demand by accounting for changes in user
demand through network equilibrium analysis and short run pricing analysis. Based on these

overall questions, the research objectives of this research are listed below.

Objective 1 is the development, verification, and exploitation of a computationally
inexpensive model to estimate the interregional travel demand in California. This task consists
of simplifying the Cambridge Systematics model and performing model verification, uncertainty
propagation, and sensitivity analysis. This task will address the problem that the Cambridge
Systematics model is too computationally expensive for use in analysis requiring repetitive
model evaluations. Utilizing parsimonious travel demand modeling, the proposed research will
contribute to the field of demand modeling by providing a methodology to simplify, verify, and

conduct uncertainty quantification and sensitivity analysis of a travel demand model in the



California Corridor. This will be accomplished by changing the model from a small town level
analysis to a county level analysis. The proposed research will contribute to the analysis of
system-of-systems by developing a model computationally feasible for optimization and detailed

analysis.

Objective 2 is the integration of transportation systems planning model with a fleet
assignment model using multidisciplinary optimization to determine the system optimal resource
acquisition and resource allocation aircraft requirements. Using game theory, a short run
analysis will be conducted to identify the optimal price input parameters for the model
integration. The short run analysis compares variations in critical input parameters to illustrate
the potential effects of competition on travel demand and profit. This objective will address the
unrealistic assumption that commercial air resourcing will remain static upon the introduction of
high-speed rail to the California commercial transportation network. The contribution of this
objective will be the development of a framework to integrate demand modeling and fleet
assignment modeling by defining the inputs and outputs of both models are how they interact

assuming cooperative decision making.

Objective 3 is the formulation and solution of a game theoretic optimization problem to
determine the user equilibrium airline level-of-service conditions for a multi-modal intercity
transportation network. The major accomplishment of this objective will be the utilization of
game theory to determine the optimal resourcing and pricing for a commercial transportation
network. This will be accomplished by applying the simplified models from objective 1 and the
optimization methods from objective 2 to determine equilibrium conditions for competitive

airlines.



Completing these tasks will provide decision makers with a methodology to solve a
complex large scale multi-modal intercity commercial transportation network analysis and
design problem by fulfilling the requirement for a feasible model for use in repetitive analysis,
integrating that model with an outside but related system to illustrate the cause and effects on and
from outside systems, establishing system and user equilibrium conditions for a long run

analysis, and conducting a short run pricing analysis.



CHAPTER II

LITERATURE REVIEW

“There is nothing impossible to him who will try.” — Alexander the Great

A summary of the concepts and literature relevant to this research include the Cambridge
Systematics Integrated Transportation Management System (ITMS) model final report, system-
of-systems, transportation systems planning, airline schedule planning, Mean Value First Order

Second Moment (MVFOSM) methods, multidisciplinary optimization, and game theory.

2.1  Transportation Systems Planning

The Cambridge Systematics parent model used in this research is a traditional transportation
systems planning model. Classical urban transportation planning model consists of four stages:
trip generation, trip distribution, mode choice, and route assignment similar to the transportation
study conducted for the Chicago area (Chicago Area Transportation Study 1959). Trip
generation determines the frequency or number of trips for an origin pair based on
socioeconomic data. Trip distribution efficiently matches origin-destination (OD) pairs and
provides the basis for trip paths made up of three or more OD pairs. Mode choice allocates the
proportion of OD trips that will utilize one mode of transportation over another. Route
assignment assigns trips to each OD pair via a particular mode of transportation (Meyer and
Miller 2001). Assignment can be based on user equilibrium, travel demand, and travel time.

Link Performance must be assessed in the form of delays, and passenger queues.
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Researchers such as Nagurney, Dafermos, Scheffi, and McFadden (Machovec
1995)(Machovec 1995) have all contributed to the study of transportation research. Nagurney’s
work defines supernetworks as various combinations of systems which can include
transportation (A. Nagurney 2006). Her work helped to provide the framework for a synthesized
study of systems which were traditionally only considered as separate entities. The multiple
modes of transportation in the CS model qualify as supernetwork. Sheffi’s research of urban
transportation networks considered systems analysis which used optimization to solve for
deterministic user equilibrium and system optimal conditions (Sheffi 1984). Dafermos and
Sparrow contributed to the field of transportation analysis through their work on traffic
assignment and traffic equilibrium studies(Dafermos 1980). McFadden conducted work in the

field of econometrics on travel demand models and behavior (Domencich 1975).

Like other systems analysis, transportation systems planning analysis is often conducted
in isolation of systems which impact it and vice versa. This research explores transportation
systems planning and shows its integration with another transportation system analysis, namely

airline schedule planning. The models which comprise transportation systems planning follow.

2.1.1 Trip generation

Trip generation modeling uses socioeconomic measures to estimate and predict aggregate
numbers of travelers. This type of model typically uses logit regression to approximate the
probability of 0, 1, and 2+ trips (Sheffi 1984). The output of the trip generation model is an
origin matrix which quantifies the initiation of expected movements from a given region. This

matrix becomes a critical input to the destination choice model.

11



2.1.2 Destination Choice

Destination choice modeling is a means of approximating the attraction between two entities. In
this work, the attraction is measured in travel demand. Destination choice modeling is
conducting using the traditional gravity model shown below (de Grange, Ferndndez, and de Cea

2010). The use of a gravity model allows for a reasonable estimate of the travel demand.

b F(ty)A,
v EzF(tif)Aj

where
Tij = number of trips produced in zone i and attracted to zone j
P; = total number of trips produced in zone i

F() = the decay function, the rate at which a zone’s attraction declines with increasing
travel time: (1/distance;;)*

tjj = the minimum zone-to-zone travel time.
A;j = number of trips attracted to zone j based of the number of households in zone j.
z = the total number of zones.

The results of the gravity model take the form of an origin-destination matrix and become the

primary input to the main choice model.

2.1.3 Mode choice
Mode choice modeling, like trip generation modeling, uses socioeconomic measures to estimate

and predict user decisions regarding mode of travel given a set of transportation mode choices.

12



This type of model also uses logit regression to approximate the probability of individual or
group travel. The output of the mode choice model is a probability matrix which provides the
likelihood that a particular mode of transportation will be utilized for a given origin-destination
pair. The output of the mode choice model becomes the input demand for the route assignment

model.

2.1.4 Route assignment

Route assignment modeling seeks to establish equilibrium conditions based on one of two
primary strategies. The two strategies are system optimality (Koike 1970) and user equilibrium
(Konishi 2004). Transportation providers most benefit from a network operating under system
optimal conditions where the system is at its most efficient. User equilibrium conditions most
benefit the transportation user such that no benefit is achieved from unilaterally making a
transportation route choice change. The aggregate analysis of user-level route choices in

transportation systems planning model is the study of network equilibrium.

2.1.5. Network Equilibrium

This research explores network equilibrium conditions from the point of system optimality in the
model integration chapter as well as user equilibrium in the game theoretic optimization chapter
to explain the cause and effect relationships that related systems have with each other. System
optimality is often the goal of transportation service providers. When operating at system
optimal conditions, a network is at its most efficient and cost effective state. User equilibrium

implies that a network or system is balanced such that an individual user gains no advantage by

13



making an alternative transportation decision. User equilibrium can be described in many
practical terms to include traffic flow, and user decision choice. Network equilibrium can be
described in terms of Wardrop principles of route choice (Wardrop 1953). The first deals with
user equilibrium and states that “the journey times in all routes actually used are equal and less
than those which would be experienced by a single vehicle on any unused route”. The second
principle deals with system optimality and states that “at equilibrium the average journey time is
minimum”. Both principles address the conditions surrounding users traveling to and from the
same origin and destination given multiple travel routes. Using the first principle, users seeks to
minimize their own cost of travel where cost is judged in travel time. Equilibrium is reached
when a single user cannot further minimize their individual cost by choosing an alternative route.
Using the second principle, users behave cooperatively for the benefit of minimizing the overall

system cost without regard for their individual cost.

2.2  Cambridge Systematics Travel Study

The Cambridge Systematic Travel Study is used as the parent model for the model simplification
analysis. A study of travel behaviors in the California Corridor was performed by Cambridge
Systematics (CS) under commission from the California High Speed Rail Authority in 2008
(Cambridge Systematics 2008). The Cambridge Systematics Study was conducted to assess the
interregional commercial traffic in the state of California and assess the ridership and revenue of
the California High-Speed Rail project to justify the building of high-speed rail as a means of

alleviating the commercial air demand and congestion in California.

The overall model design included urban travel, interregional travel, external travel and

trip assignment. Urban travel included areas beginning and ending in the San Francisco Bay
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area, Greater Los Angeles, or San Diego regions. Interregional trips included those with both
ends in California but in different regions. External trips consisted of trips with one end in
California and the other end outside of California. The study consisted of the development of
numerous demand models to estimate the trip frequency, destination choice, access/egress, and
main mode choice of California travelers. The access/egress models were nested by main mode
choice into drive/park, drop off, rental car, and those that didn’t drive. Those that didn’t drive
were further segmented by those who traveled by taxi, transit, and walkers/bikers. The main
mode choice modes were segmented by auto and non-auto. The non-drivers were further

segmented by air, conventional rail, and high-speed rail travelers.

Model analysis was conducted using traffic analysis zones focusing on the small town
and city level. The interregional travel models included travel survey data sources, highway and
transit networks, and socioeconomic data. The survey data consisted of revealed preference and
stated-preference mode choice data from air, rail, and auto passengers. A total of 3,172 surveys
were conducted: 1,234 airline, 430 rail, and 1,508 auto. The socioeconomic data consisted of
household, and employment data. The household data consisted of household size, income
group, number of workers and car ownership. The employment data consisted of retail, service,

and other.

The Cambridge Systematic study was conducted based on traffic analysis zones across 14
regions of California for a total of 4,667 zones. The California Corridor problem contains four
modes of transportation: commercial air, high-speed rail, conventional rail, and privately owned
vehicle. The travel market was segmented by purpose: business, commute, recreation and other,
and by trip length: long trips (>100 miles) and short trips (<100 miles). The travel market was

also segmented by those who traveled alone and those who traveled in a group.
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The Institute of Transportation Studies (ITS) at Berkeley conducted a review of the
California High-Speed Rail Ridership and Revenue Forecasting Study (Brownstone, Hansen, and

Madanat 2010). Below are excerpts from the Berkeley ITS Review.

The review found the demand forecasting models unreliable for policy analysis...The mode
choices of the individuals surveyed were not representative of California interregional
travelers...The mode shares actually used by the travelers were not representative of traveler
population...Since it is likely that travelers on different modes attach different degrees of
importance to different service attributes (e.g. air travelers care more about travel time than auto
travelers), it is likely that the resulting model gives a distorted view of the tastes of the average
California traveler...Unfortunately, the methodology employed by CS for adjusting the model
parameters has been shown to be incorrect for the type of model they employed. The parameters
are therefore invalid and the forecasts based on them, in particular of high speed rail mode
shares, are unreliable. (It should be noted that at the time CS performed the study the
incorrectness of their adjustment method was not known.)...CS changed key parameter values
after the model development phase because the resulting estimates did not accord with the
modelers’ a priori expectations...Specifically, the modelers increased the parameter for headway
(the time between successive aircraft or train departures) and set it to a value typically found in
intra-regional travel demand models. This adjustment made the predicted shares of the travel
modes very sensitive to changes in frequency...The CS model employed a model structure that
does not allow for travelers to choose between high speed rail stations...In the model validation
phase, several parameters of the mathematical model were adjusted...As a result of this process,
many of the model parameters were assigned values that were considerably different from those
obtained in the model development phase. In some instances changes to the model parameters
were informed by professional judgments of the consulting team as well as the goal of replicating
observed behavior. The resulting “validated” model, which is used to generate subsequent high
speed rail ridership forecasts, provides reasonably accurate “backcasts” for the year 2000,
reflects certain patterns of behavior observed in the traveler surveys, and accords with
professional judgments of the consultant. However, the combination of problems in the
development phase and subsequent changes made to model parameters in the validation phase
implies that the forecasts of high speed rail demand—and hence of the profitability of the

proposed high speed rail system—have very large error bounds. These bounds, which were not
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guantified by CS, may be large enough to include the possibility that the California HSR may

achieve healthy profits and the possibility that it may incur significant revenue shortfalls.

This research addresses two critiques of the Cambridge Systematics model: its
computational expense and its assumption of no response from other transportation service
providers such as commercial airlines. The model simplification of the first research objective is
designed to address the computational expense critique. The multidisciplinary optimization
model integration and game theoretic competitive equilibrium analysis of objectives two and
three are designed to address the assumption of not considering the competitive response from
other transportation service providers. Objective two utilizes two system-of-systems practical
applications: transportation systems planning and airline schedule planning. These systems
consist of individual models with interdependent inputs and outputs. Using the interactions of
these inputs and outputs, this research seeks to address the modeling, resourcing, pricing, and

viability issues surrounding the California high-speed rail project.

2.3 Mean Value First Order Second Moment

The mean value first order second moment (MVFOSM) method is used to determine the percent
contribution to variance of the input parameter coefficients for the model simplification. Other
analytical reliability techniques include Monte Carlo Simulation (MCS)(Mooney 1997), First-
Order Reliability Method (FORM) (Chiralaksanakul and Mahadevan 2005) and Second-Order
Reliability Method (SORM) (Hohenbichler et al. 1987). MCS is the most accurate and
computationally expensive of the four methods. Both FORM and SORM are less accurate and

computationally expensive than MCS, but more accurate and computationally expensive than
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MVFOSM. Given the low level accuracy of the parent model, the MVVFOSM is the best choice
taking both accuracy and computational expense into account. MVVFOSM is based on a first —
order Taylor series approximation linearized at the mean values of the random variables. The
probability of failure is based on a safety index defined as the ratio of the mean to the standard

deviation where Z is the performance function, R is the resistance, and S is the load.
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The probability of failure in terms of the safety index follows.

pr=0(p=1- (@)

The generalization of the performance function for multiple random variables is shown below.

Z = g(X) = g(XLXZ' "'lXTl)

Next is a Taylor series expansion of the performance function about the means values followed

by the first-order approximate mean and variance of Z.
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Where Cov(X; X;) is the covariance of X; and Xj. Assuming uncorrelated variables, the
variance is shown below. This is the basis for determining the percent contribution to variance

of the input parameters utilized for the model simplification.

ot = (5 varce

i=1

2.4 System-of-Systems

Each mode of the commercial transportation network in this analysis can be categorized as its
own system, so the combined multimodal network by definition is a system-of-systems. A
system-of-systems, in this research, is defined as a network of systems. Figure 2.1 displays a

general systems interaction using optimization in system-of-systems modeling (Smith 2007).

Systems-of-systems have also been described as supernetworks (Anna Nagurney and
Toyasaki 2003). A multi-modal transportation network such as the California high-speed rail
problem is one example of a supernetwork. According to Nagurney, “Supernetworks may be
comprised of such networks as transportation, telecommunication, logistical and financial
networks, among others.” Nagurney’s studies link human choice and network performance
within a complex network (A. Nagurney 2006). This is applicable as the proposed research will
link human choice to the performance of a complex network of multiple modes. Keating and his
co-authors describe systems of systems as meta-systems that “are themselves comprised of

multiple autonomous embedded complex systems that can be diverse in technology, context,
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operation, geography and conceptual frame (Keating et al. 2009).” The modes of transportation
in this research are typically analyzed as separate entities. This research treats the California
network as a system of systems. System-of-systems analysis requires the analysis of multiple
stakeholders. In this research, stakeholders include the airport, airline, high-speed rail, and
highway transportation mangers. The last stakeholder, and potentially the most difficult to
predict, is the interregional passenger of this multi-modal network. Accurate modeling of
interregional passenger requires the use of multidisciplinary optimization, while accurate
modeling of the competitive airline requires the use the game theory. Formulating this problem
includes aspects of mode choice, link performance, and user equilibrium. While previous works
considered the modes as separate entities, the proposed research considers them under one

analysis.

Decision Analysis / Optimization

System > System
A < B

System of Systems Analysis

Figure 2.1: Generic System-of-Systems Framework

Systems analysis is typically application and problem domain specific. As a result,
domain and application specific systems analysis model output does not lend well to
collaboration with other systems. The models lack the cohesive structure required to synthesize

analysis across multiple domains and applications. The system-of-systems problem domains
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and applications used in this research include transportation systems planning, airline schedule

planning, and network equilibrium through multidisciplinary optimization and game theory.

2.5  Multidisciplinary Optimization

Multidisciplinary optimization problems solve problems spanning multiple disciplines while
conventional methods solve problems with a single discipline (Arora 2007). Multidisciplinary
optimization is used to perform the model integration of transportation systems planning and
airline schedule planning. The general form of the multidisciplinary optimization problem is
shown in Figure 2.2. Two particular MDO methods are utilized during this analysis,
multidisciplinary feasible (MDF) and simultaneous analysis and design (SAND). MDF requires
convergence of the analysis codes at every iteration of the optimizer (and at every finite
difference point if numerical approximation of the gradients is to be used). SAND does NOT
require interdisciplinary compatibility (convergence of analysis codes) until the end of the
analysis. The model integration utilizes the multidisciplinary feasible method as the fleet
acquisition and resourcing design variables are utilized to maximize profit subject to the price
condition state variables. The game theoretic optimization utilizes the simultaneous analysis and
design method are the both the resource acquisition and allocation variables along with the

pricing states variables are utilized to maximize profit.
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Multidisciplinary Optimization Analysis

Figure 2.2: Multidisciplinary Optimization Analysis

2.5.1 Multidisciplinary Feasible
The multidisciplinary feasible (MDF) formulation is an ‘all-in-one’ method where the interaction
of two systems or analysis methods is the basis of a single optimization (Arora 2007). The MDF

formulation follows.

Analysis 1: A; (d,uy,u,) =0
Analysis 2: A, (d,uq,u;) =0
Ming c(d)
Subject to:
A, (d,uy,u;) =0 — e.g.Fluid Dynamics
A, (d,uq,uy) =0 — e.g.Structural Engineering

g (dl ul) uZ) 2 0
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In this method, the cost associated with the design variable, d, is minimized subject to the
interaction of two analyses or systems with interdependent states variables such as boundary

constraints and capacities, u;.

2.5.2 Simultaneous Analysis and Design (SAND)
In Simultaneous Analysis and Design (SAND) problems, both the design variables and state

variables are included as optimization variables (Arora 2007). The SAND formulation follows.
Ming; u; ¢(d)
Subject to:
u, (du3)—ui =0
u; (d,u) —u; =0
g (d,uj,u3) =0

In the SAND formulation, the cost of supporting the design variable, d, along with the state

variables, u;, are minimized.

2.6 Airline Systems Planning

Airline schedule planning and transportation systems planning are related systems with inputs
and outputs that affect each other. Unfortunately, these two systems are commonly studied in
isolation. This research bridges the gap of research conducted in isolation by showing the

integration of these two transportation systems through the use of multidisciplinary optimization.

23



Airline schedule planning consists of four airline planning problems which include
schedule design, fleet assignment, crew scheduling, and aircraft maintenance scheduling
(Barnhart and Cohn 2004). This work focuses primarily on the fleet assignment and schedule
design aspects of airline schedule planning. Airline schedule planning problems are traditionally
formulated as optimization problems designed to minimize some cost, or maximize some benefit
given the requirement to provide transportation service to a transportation demand distributed

across multiple origin-destination pairs.

Airline schedule planning and its four components have been developed by the work of
researchers such as Barnhart and Cohn (Barnhart and Cohn 2004). The schedule design problem
identifies the origins and destination pairs serviced by an airline and at what frequency (Jiang
and Barnhart). Fleet assignment models assign aircraft to support customer demand. The goal
of the fleet assignment problem is to minimize the cost of providing aircraft to meet demand
(Dumas, Aithnard, and Soumis 2009). The aircraft maintenance routing problem determines
how best to allocate aircraft to support passenger demand while adhering to maintenance
requirements (Gopalan and Talluri 1998). The crew scheduling problem assigns flight crew to
serviced flights with the goal of minimizing cost (Cohn and Barnhart Jun2003). This work
focuses on the schedule design problem and the fleet assignment problem. A more detailed

review of schedule design and fleet assignment follow.

2.6.1 Schedule Design
The schedule design problem determines the frequency that flights are scheduled in support of
customer demand (Barnhart and Cohn 2004) The goal of the schedule design problem is to

minimize the operational cost of supporting customer demand by assigning aircraft flights across
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multiple origin-destination pairs. The schedule design problem can have various objectives to
include minimize cost, maximize profit, maximize revenue, or maximizing expected market

share. The schedule design formulation is shown below

MinxodiC (x({d)
where
sz{jd < MOPD;* N;Vf €F
o d

(Resource Constraint)

f

The decision variables become x,,

C (x!,) = Total Aircraft Operating Expenses
C = Cost
Fleets: fe F
Origins: 0O
Destinations: d e D
Nt = Number of aircraft of fleet f

MOPD; = Max Ops per day for an aircraft of fleet f

2.6.2 Fleet Assignment

The resource allocation optimization portion of this problem can best be described as a fleet
assignment problem. Abara defines “the goal of the fleet assignment problem is to assign as
many flight segments as possible in a schedule pattern to one or more aircraft types while
optimizing some objective and meeting various operational constraints.” (Abara 1989) These
constraint equations ensure that each flight is flown by only one fleet and maintain the
conservation of flow of aircraft (Subramanian et al. 1994)(Cordeau et al. 2001)(loachim et al.

1999). Current fleet assignment models for passenger transportation are primarily unimodal
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(Shan Lan, Clarke, and Barnhart 2006). Davendralingam and Crossley formulate a dynamic
programming formulation for aircraft design using passenger demand models (Davendralingam
and Crossley 2010). This problem contains many complexities. Resource acquisition and
resource allocation decisions are made over time. The problem can be multi-objective. The
goals of maximizing profit and minimizing total travel time or travel delay will most likely have
differing optimal solution sets. Conflicting optimal solution sets means that no single solution is
likely to solve all problems. The multi-modal aspect of this problem requires the analysis of
multiple vehicle types. Without some method to evaluate the total network as a whole,
alternatives are hard to evaluate on their own. Lastly, this problem must model user mode choice
given network conditions at various stages in time. Based on these complexities, this problem is

too big to manage without a disciplined approach.

The fleet assignment problem, in this chapter, assigns aircraft to support passenger
demand while minimizing the cost of operating expenses. The objective of the fleet assignment
problem is to minimize operating costs. The decision variables are the number of aircraft from a
given list of fleets which are assigned to each origin-destination pair based on the travel demand.
Typically, a fleet assignment problem has several different constraint types: fleet size, flight
coverage, flow balance, continuity and schedule balance (Barnhart, Belobaba, and Odoni 2003).
Fleet size restricts the analysis to the number of available vehicles. Flight coverage (cover rows)
ensures only one fleet covers a leg. Flow balance requires the number of aircraft departing from
and arriving at a given airport is equal. Continuity ensures low volume leg operation in a multi-
city route. Schedule balance ensures same fleet services a multi-city route. The fleet assignment

formulation is shown below.

Minxod'pod c (x(];d)
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where

ZZx({d < MOPD; * N;Vf €F
o d

(Resource Constraint)

Zoe00¢jx£j(a) = ZdEDdijxj];(a)vj €/,a€A

(Aircraft Conservation/Flow Balance)

f

The decision variables become x,

C (x!,) = Total Aircraft Operating Expenses

C = Cost)

Fleets: fe F

Origins: 0 ¢ O

Destinations: d ¢ D

Nt = Number of aircraft of fleet f

MOPD; = Max Ops per day for an aircraft of fleet f

where
f=1{1,2,3,4}

f ,
Xoq = 0,integer

2.7 Game Theory
Game theory is a theoretical framework for analyzing decision scenarios encountered by multiple

decision-makers in a common scenario. In this research, game theory is used to determine the
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equilibrium pricing conditions for the model integration problem and to determine the optimal
resourcing and pricing for the multiple airline optimization analysis. Game theory is used in this

research to address the following potential situation:

“Suppose HSR creates a dominating presence in a given travel market and forces
an airline out of heavily servicing that market; therefore, it has these planes

available. What will the airline do with those planes?”

In this research, optimization is combined with game theory to determine equilibrium
conditions of a system with a non-linear relationship between player decisions and their payoffs.
This equilibrium relationship is defined as Nash Equilibrium. A Nash equilibrium exists when
no player benefits from unilaterally changing their strategy (Giocoli 2004). A Nash Equilibrium
is a solution of a two or more player game where the equilibrium strategies of all players are
commonly known by each player (Osborne 1994). The Nash equilibrium can be found by
determining simultaneous best responses using best response functions. The best response
function derives the most beneficial reaction to the conditions presented by the remaining players

in a non-cooperative game (Rey-Biel 2009).

There are two categories of games to include cooperative or non-cooperative games. In
cooperative games, the players operate under agreed upon conditions often defined by a contract
(Driessen 1988). In non-cooperative games, the players operate to satisfy self-serving goals
(Nash 1951). This work involves non-cooperative games where the players compete by
choosing the optimal resourcing and pricing with the goal of maximizing profit or ridership. A
competitive game consists of several components to include players, strategies, and payoffs
(Rasmusen 1989). The players are the decision-makers whose decisions are based on strategies

which dictate their actions and result in payoffs and penalties. Strategies are actions that define
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player decisions such as cost minimization, and revenue, profit, or market share maximization
(Stahl 1988). Payoffs are the benefits gained by making a particular decision given other stated
actions. Payoffs are often defined in terms of functions based on player decisions. In this
research, the competing airlines and high-speed rail decision-makers are the players. Optimizing
resourcing decisions and prices to maximize profit and ridership becomes the player strategies.
The resulting profit and ridership are the payoffs. This research contains several modeling
assumptions. (1) Multiple players produce a homogenous product. (2) Players do not cooperate.
(3) The number of players is held constant. (4) Players choose product or service quantities
simultaneously. (5) Players are assumed to know each other’s potential decision options and

payoffs. (6) Players are also expected to choose the option that is the most beneficial to them.
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CHAPTER 111

PARSIMONIOUS TRAVEL DEMAND MODELING FOR MULTIMODAL
TRANSPORTATION SYSTEM OF SYSTEMS

“Two roads diverged in a wood and I, | took the one less traveled by and that

has made all the difference.” — Robert Frost

3.1 Introduction

Transportation system planning requires the use of demand models for decision support.
Transportation demand models are widely used to forecast interregional travel demand for the
purpose of providing decision support in choosing potential transportation projects such as high-
speed rail (HSR) projects in various corridors in the United States, to include the Midwest
Corridor HSR project which plans to link Chicago, Detroit, and St. Louis, and the Northeast

Corridor HSR project which plans to link Washington D.C., New York, and Boston.

Transportation demand models are often large and computationally expensive to evaluate
due to the amount of required data and calculations performed with these large data sets.
Furthermore, due to the sparseness of the data, model input parameters are uncertain. It is
important to account for the uncertainty in model predictions when using these models for
decision support to assume the reliability of predictions of future system wide conditions. Using
these models for iterative model analyses is required for decision support activities such as
sensitivity analysis, uncertainty quantification, and optimization. In this chapter, the required

computational efficiency will be achieved by developing simplified models for demand
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estimation. Also the simplified travel demand model will be exploited using computationally
efficient methods for sensitivity analysis and uncertainty quantification.

To address the issue of computational expense in travel demand modeling, one solution is
proposed: a parsimonious travel demand model (PTDM) to estimate multimodal travel demand.
A parsimonious model refers to a model which utilizes a reduced number of data parameters or
input variables (Ho and Chong 2003). The PTDM proposed in this chapter is derived from a
proprietary parent model; in this case, the Cambridge Systematics (CS) Interregional Travel
Model System (ITMS) trip frequency and main-mode choice models for the California HSR
Ridership and Revenue Study (Cambridge Systematics 2008). This research develops the
PTDM, a derived and simplified model of travel demand in the California corridor, and uses it to
perform uncertainty quantification and sensitivity analysis for parameters listed in the Cambridge
Systematics ITMS trip frequency and main-mode choice models for the California High-Speed
Rail (HSR) Ridership and Revenue Study (Cambridge Systematics 2008).

Neither this chapter, nor the PTDM with uncertainty quantification, addresses the
accuracy or reliability of the CS model forecasts. The PTDM simplifies a complex travel
demand model for the purpose of reducing computational expense, while the uncertainty
quantification illustrates a method to identify the key input parameters for use in repetitive
optimization and sensitivity analysis. This chapter does not attempt to assess the reliability of
the parent model forecasts, and the results in this chapter should not be used to infer the level of
uncertainty in the California High-Speed Rail Authority’s Ridership & Revenue forecasts. The
analysis of the planned California High-Speed Rail system is only used in this chapter to

illustrate how the proposed methodology can be applied.
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3.2  Parent Model Description

The California Corridor is an example of a large-scale multimodal interregional transportation
network. It consists of automobile, commercial air, and conventional rail networks. To address
its interregional transportation congestion, California is planning to add HSR to its commercial
passenger transportation network. The planned HSR network shown in Figure 3.1 will connect
the cities of the San Francisco Bay Area, Sacramento, Fresno, Bakersfield, Los Angeles, and San

Diego.

A Lo Far North
'{:\\fﬁ!
. R
Wge!
» BSR- sicoc
Napa/ e .
Sonomal g = | >
4 'Solane \ b
Contra Costa—Marin s
O LN
San Francisco-%- lamecs ;’ SN ' %%
. 1 Sy T O g D
San Mateo o:::,’ e n %
S Fresno/Madera |
6—’ AMBAG b 9
; \ i
Qe @ - South SJ Valley |
5o \ o
Nt . Kern
1 Yo,
s San Bemardino
] Los
g Ventura' Angeles
M Orar;ga Riverside
O | = 3
¥ " San Diego | Imperial -
- — e i e oy
0 % 5 100 150 s

(AMBAG — Association of Monterey Bay Area Governments, MTC - Metropolitan Transportation Commission, SACOG — Sacramento Area

Council of Governments, SANDAG - San Diego Association of Governments, SCAG — Southern California Association of Governments)

Figure 3.1: California Regions & Proposed HSR Station Locations

Cambridge Systematics (CS) was tasked to perform an interregional travel demand
forecasting study in California for the California High-Speed Rail Authority in 2008 (Cambridge

Systematics 2008). The CS study consisted of numerous logit demand models to estimate the
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trip frequency, destination choice, access/egress mode choice, and main-mode choice of
California travelers utilizing four modes of transportation: car, commercial air, conventional rail,
and HSR. The trip frequency model segments the model output into zero, one, or two trips per
household per day. The destination choice model contains variables reflecting the influence of
different area types and destination districts, as well as other factors listed in Table 3.1, where
the destination districts are shown in Figure 3.1. The main-mode choice model alternative set
consists of car, air, conventional rail, and high-speed rail. All model components were estimated
using data from stated preference surveys and revealed preference surveys collected at the
household level for intraregional trips and intercept surveys at airports and other locations.
Based on these surveys, models of California interregional travel were developed that were
segmented by travel purpose, and distance traveled, with variables reflecting household size,
year 2000 household income range, household automobile ownership, number of workers in a
household, and travel party size. The access/egress mode choice model alternative set consists of
drive/park, drop off, rental car, and those that didn’t drive. Those that didn’t drive are further
categorized into taxi, transit, and walk/bike. The access and egress mode choice models are
based on reported mode use from survey data and include variables for trip cost, in-vehicle travel

time, out-of-vehicle travel time, and household demographics.

The CS ITMS follows the traditional four-step travel demand modeling approach and
consists of sequential logit demand models to estimate the trip frequency, destination choice,
access/egress mode choice, and main-mode choice of California travelers utilizing the four
modes of transportation noted above (Cambridge Systematics 2008). The purpose of the CS
model system study was to forecast future ridership on the proposed California HSR system and

to provide decision support for planning the HSR system as a means of reducing the demand on
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existing modes of transportation in order to alleviate future transportation system congestion in

California.

The CS model is complex and computationally expensive to run when conducting repetitive
applications to explore the sensitivity of the outcomes. For example, one execution of the CS
model can take several days due to the large number of travel analysis zones used in the model.
The CS model adopted a travel analysis zone system based on a statewide model developed by
the California Department of Transportation, with greater resolution in selected urban areas
using the travel analysis zone system developed for those regions by the respective metropolitan
planning organizations for their regional travel demand models, and in consequence contains
4,667 zones (Cambridge Systematics 2008). Adjusting the travel analysis zone resolution is a

primary feature of the PTDM implementation.
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Cambridge Systematics Model Variables for Trip Frequency, Destination Choice, & Main-mode Choice

Trip Frequency

Level of Service

Destination Choice

Level of Service

Main-Mode Choice

Main-Mode Characteristics

Intraregion accessibility
Mode/destination choice logsum

Household Characteristics

Medium Income

High Income

Fewer cars than workers in Household
No cars in Household

Fraction of household who are workers
No workers in household

Household Size

1 person household

3+ person household

Location Variables

Mode choice logsum
Distance (miles)
Distance squared/100
Distance cubed/10,000

Area Type

Urban destination
Rural destination
Urban to Urban
Suburban to Suburban
Rural to Rural

Destination District

SACOG resident
SANDAG resident
SCAG resident
MTC resident

Constants

1 trip
2+ trips

Alameda
AMBAG
Central Coast
Contra Costa
Far North
Fresno

Kern

Los Angeles
Marin/Sonoma/Napa
Merced
Orange
Riverside

S. San Joaquin
San Bernardino
San Francisco
San Joaquin
San Mateo
SANDAG
Santa Clara
Solano
Stanislaus
Ventura

W. Sierra Nevada

Regional Interactions

Constants
Car (base)

Air
Conventional Rail
High-Speed Rail

Level of Service

Cost ($)

In-vehicle time (min)
Service Headway (min)
Reliability (% on time)

Trip Characteristics

Travel in a Group
Car
Air

Household Characteristics

Household Size
Car

Income

High - car

High - air

High - conventional rail
High - high-speed rail

Fewer Cars than Workers
Car

Nesting & Scaling

MTC to SCAG

MTC to SANDAG
SACOG to SANDAG
SCAG to MTC
SCAG to SACOG
SANDAG to MTC
SANDAG to SACOG

Size Variables

Other Employment

Households

Retail Employment - Low Income
Retail Employment - Medium Income
Retail Employment - High Income
Service Employment - Low Income

Service Employment - Medium Income

Service Employment - High Income

SACOG - Sacramento Area Council of Governments

SANDAG - San Diego Association of Governments

SCAG - Southern California Association of Governments

MTC - Metropolitan Transportation Commission (San Francisce)
AMBAG - Association of Monterey Bay Area Governments

Nest - air, rail, high-speed rail
Access mode choice logsum
Egress mode choice logsum

Table 3.1: Cambridge Systematics Model Variables
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3.3 PTDM Implementation

The PTDM, unlike the proprietary parent CS model system, contains only three primary model
types: trip frequency, destination choice, and main-mode choice. The PTDM was constructed
using input parameters and their coefficients from the parent CS model; however, the data used
to populate the input parameters was derived from publically available sources as the CS model
data was not available. PTDM data sources include census 2000 data, California Department of
Motor Vehicles and Bureau of Transportation Statics. The PTDM uses data and models that are
similar to the CS models to illustrate how issues of travel demand uncertainty quantification can
be answered. The PTDM described in this chapter adjusts the model resolution by redefining the
travel analysis zones to the counties of California, thereby reducing the number of analysis zones
from the 4,667 zones used in the ITMS to 58 (Cambridge Systematics 2008). For each travel
analysis zone, distances to and from other counties, airports, conventional rail, and HSR stations
are based on the most populated city in each county. Interregional travelers originate from a
county in one California region and have a destination in another region as shown in Figure 3.1.
The model assumes that the county-level household characteristic attributes are uniform
throughout each county. The access and egress mode choice models were eliminated from the
PTDM since access and egress models would require multiple county-level distance metrics.
Based on this elimination, this PTDM assumes little to no impact on the trip frequency and main-

mode choice output from the access and egress models.
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Trip Frequency Model Variable Coefficients
Long Trips Short Trips CS Model PTDM

Business Commute Recreation Other Business Commute Recreation Other * = used in model
Level of Service
Intraregion accessibility -0.128 -0.217 -0.4 -0.532 -0.329 -0.176 -0.438 -0.536 * Omitted
Mode/destination choice logsum 0.466 0.123 0.656 0.159 0.205 0.262 0.262 0.22 * Optimized
Household Characteristics
Medium Income 0.527 0.188 - - 0.331 1.045 0.355 * *
High Income 1.139 0.291 -0.246 0.393 0.835 1.523 0.432 * *
Fewer cars than workers in Household -0.412 -0.457 -0.922 -0.915 -0.947 -0.225 * *
No cars in Household - - - - - - -1.27 -0.736 * *
Fraction of Household who are workers  0.537 1.274 - - 1.153 1.57 * *
No workers in Household -2.098 -2.668 - 0.372 -0.863 -2.163 0.493 * *
Household Size - - - - - - -0.136
1 person household - - - -0.424 - - -0.401 - # *
3+ person household - - -0.482  -0.379 - - - - * *
Location Variables
SACOG resident 0.976 0.918 1.084 2.527 -977 -2.736 -1.241 -1.177 # *
SANDAG resident -0.704 -0.419 1.344 0.92 -0.88 -1.446 -1.802 -0.66 # *
SCAG resident -1.176 -1.644 -0.031 0.259 -1.969 -1.524 -1.16 -1.265 * *
MTC resident -1.372 -0.729 1.011 1.134 -1.275 -1.982 -0.25 -0.524 * *
Constants
1 trip -15.67 -6.48 -3.416 -0.493 -4.946 -8.242 -2.881 -0.845 # *
2+ trips -16.3 -7.914 -5.083 -2.823 -5.513 -9.07 -3.787 -1.624 * *
SACOG - Sacramento Area Council of Governments
SANDAG - San Diego Association of Governments
SCAG - Southern California Association of Governments
MTC - Metropolitan Transportation Commission (San Francisco)

Table 3.2: Trip Frequency Model Coefficients

Cambridge Systematic model coefficients given in the Cambridge Systematics model
documentation were used in the PTDM trip frequency models as shown in Table 3.2. These
coefficients were applied to socioeconomic data derived at the county level from publically
available sources. The PTDM trip frequency models and the Cambridge Systematic trip
frequency models utilize a similar structure. These models segment trip frequency into short and
long trips by trip purpose to include business, commute, recreation, and other, for a total of eight
models. The trip frequency models for both long and short trips, and trips greater than or less
than 100 miles, contain continuous and categorical variables. The level-of-service variables are
continuous, while the location and number-of-trip variables are categorical. The household

characteristic variables are continuous, but in some cases were treated as dummy variables or
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categorical variables. Two variables from the CS model were not used in the PTDM model:
interregional accessibility, and mode/destination choice logsum. The logsum measures, used in
the CS model, are a means to estimate a weighted average of travel time and cost that can be fed
from one model to another (Cambridge Systematics 2008). For the initial CS model estimation,
a synthesized network zone accessibility measure was used, the details of which are not available
from the model documentation. The destination/main-mode choice logsum was also not
computed as the estimation of the CS destination choice model used a mode choice logsum
calculation from a Caltrans statewide model (Cambridge Systematics 2008) the details of which
are also not available from the model documentation; instead, an equivalent logsum value for
each county was inferred via optimization as shown below to calibrate the PTDM to the CS
model. The optimization minimized the sum of squares error between the CS model and PTDM
regional trip frequency output results. The CS model coefficients were not re-estimated for use

in the PTDM main-mode choice models.

Min Z(CSl - Pi)z
with respect to the equivalent logsums

where

CS; = CS Model trip frequency of region i

P; = PTDM trip frequency of region i
The intraregion accessibility variable was not utilized due to the change in model resolution.
This variable distinguished between locations with destinations within their home region, outside

their home region but within 100 miles, and those outside their region and over 100 miles from
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their origin. Changing the model resolution to the county level made the intraregion accessibility
variable impractical to use since the county distances are based on the most populated city in
each county. The impact of not using this variable was not significant to the PTDM results,
since the PTDM was not independently estimated, but calibrated to the CS model.

The trip frequency models contained thirty-six segments per model. One example of a
household population segment is the high income, three-person household with two workers and
fewer vehicles than workers. Each county household population was segmented in accordance
with the location and household characteristic variables. While census data provided county
household population data in various income brackets, available household size data only
provided household averages. Household size segmentation probabilities were derived using
Poisson distribution parameters. The Poisson distribution is used to estimate the probability of a
single event or a specific number of events given the average occurrence of the event ‘v’ (Haldar

2000) where ‘v’ is the average household demographic as shown below.

x
(‘Ut) e—vt

x!

P(Specific Number of People in a Household) =

As an example, the average household size per county was used to estimate the percentage of
households with 1, 2, and 3+ members in a household. These probabilities were then applied to
estimate the number households in each county with 1, 2, and 3+ household members. A similar
approach was taken to estimate the number of workers in a household, the number of households
with specific numbers of vehicles, and those with fewer vehicles than workers. Upon household

population segmentation, the model variable coefficients were applied to logit formulas to
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establish model segment dis-utilities and probabilities for 0, 1, and 2+ trips by household for
each segment. These probabilities were then applied to the segmented populations by county to
determine the trip frequency for each county.

To reduce the model expense due to complexity, the PTDM destination choice model was
conducted utilizing a traditional gravity model utilizing county populations and distances based
the highest populated cities in each county. As the PTDM does not quantify the impacts of
uncertainty in the destination choice model, the use of a gravity model allows for a reasonable
estimate of the travel demand. The gravity model estimation was conducted for each county
origin-destination pair from PTDM results calibrated to the CS model results.

The gravity model based destination choice model results shown in Table 3.3, as
expected, indicated that a large concentration of interregional travel stems from the San Joaquin
Valley, Los Angeles, and San Francisco regions. Due to the county level model resolution, there
is a loss between the trip frequency and destination totals for the short trips output. This occurs
since several counties do not have destination pairs outside of their region where their most
populated cities are within 100 miles of each other. These counties include San Bernardino,

Imperial, Del Norte, Humboldt, Lassen, Modoc, Shasta, Siskiyou, and Trinity.

The PTDM main-mode choice models and the Cambridge Systematic main-mode choice
models utilize a similar structure. This series of models segments main-mode choice into short
and long trips by trip purpose. These purposes include business and other for long trips, and
business, commute, and other for short trips for a total of five models. The CS model
coefficients, as shown in Table 3.4, were not re-estimated, but used to populate the PTDM main-
mode choice models. The main-mode choice models for both long and short trips contain

categorical, continuous, and dummy variables. The main-mode choice constant, nesting, and trip
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characteristic coefficients as shown in Table 3.4, are categorical, while the level-of-service
variables are continuous. Similar to the trip frequency models, the household characteristic
variables in the main-mode choice models are continuous; but in some cases were treated as
dummy variables or categorical variables. Two variables from the CS main-mode choice models
were not used in the PTDM: the ‘access mode choice logsum’, and ‘egress mode choice logsum’
variables. This PTDM assumes little to no impact on the trip frequency and main-mode choice

output from the access and egress models.

Short Trips Long Trips
PTDM
Proposed Model Adjusted . . . . Destination cs M"qe' Absolute
Destination Choice Results Commute Business Recreation Other Commute Business Recreation Other Choice Des'tmallon Difference
Choice Input
Total
LA to Sacramento 4,081 555 1,437 1,684 1,521 1,609 3,824 1,158 15,869 12,414 3,455
LA to San Diego 63,874 7,953 37,228 22,595 29,010 10,660 66,528 15,489 253,336 262,936 9,600
LA to SF 10 3,190 7,362 11,031 16,681 7,989 27,393 4,874 78,531 54,898 23,633
Sacramento to SF 14 6,376 3,783 8.280 10,558 3,651 13,380 2,667 48,708 139,580 90,872
Sacramento to San Diego 646 120 144 128 138 37 245 64 1,521 3,033 1,512
San Diego to SF 0 85 30 42 136 40 197 40 569 14,939 14,370
LA/SF to SJV 28,926 9,935 15,550 23,847 6,345 4,719 23,979 3,343 116,645 209,536 92,891
Other to SJV 101,623 21,273 29,274 69,303 12,868 5,041 9,344 1,767 250,493 282,337 31,844
To/From CC 125,810 16,228 38,818 45,565 35,188 10,755 27,956 5,434 305,753 280,431 25,322
To/From Far North 66,590 17,464 33,171 56,020 30,090 7,094 9,311 1,482 221,222 187,527 33,695
To/From W. Sierra Nevada 30,467 6,264 12,771 22,586 6,514 2,176 2,749 351 83,878 59,871 24,007
Total 422,041 89,442 179,567 261,080 149,050 53,771 184,906 36,669 1,376,526 1.507,502 130,976

Table 3.3: Calibrated Destination Choice Model Output Comparison
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Main Mode Choice Model Variable Coefficients
Long Short CS Model PTDM
Business  Other Business Commute Other * = used in model

Main Mode Characteristics
Constants
Air -0.1645 0.6898 - - - ® *
Conventional Rail -0.387 0.6149 -0.268 4.232 -0.3847 * *
High-speed rail -0.3503  1.434 -1.557 4.048 0.5041 ® *
Level of Service
Cost ($) -0.01626 -0.035 -0.109 -0.148 -0.109 ® *
In-vehicle time (min) -0.016 -0.011 -0.5 -0.025 -0.014 * *
Service Headway (min) -0.003 -0.003 -0.006 -0.0023  -0.009 * *
Reliability (% on time) 0.001 0.005 -0.023 0.006 0.004 * *
Trip Characteristics
Travel in a Group
Car 0.8492 1.417 - - - * *
Air -0.3375 -0.5061 - - - * *
Household Characteristics
Household Size
Car 0.0704 0.225 - 0.655 - = =
Income
High - car - - -1.211 -1.247 - = =
High - air 1.018 - - - - ® *
High - conventional rail 0.5237 - - - - * *
High - high-speed rail 0.9807 - - - - * *
Fewer cars than Workers
Car -0.7696 -0.4354 -0.7873 -2 - ® *
Nesting and scaling
Nest - air, rail, high-speed rail 0.8514 0.74206 0.5159 0.5892  0.6855 * *
Access mode choice logsum 0.115 0.2134 0.4628 0.33 0.3148 * Omitted
Eress mode choice logsum 0.1561 0.3974 0.4628 0.33 0.3148 * Omitted

Table 3.4: Main-Mode Choice Variable Coefficients

The trip segments developed for the trip frequency models are utilized in the main-mode
choice models. The primary effort for the main-mode choice models consists of establishing
level-of-service parameters for HSR and assigning conventional rail, commercial air, and HSR
stations to county origin-destination pairs containing multiple rail stations, and airports. Using

the trip frequency household population segmentation, the model variable coefficients were also
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applied to logit models to establish model segment dis-utilities and probabilities for car, air,
conventional rail, and HSR travel by segment. These probabilities were then applied to the
segmented populations by county to determine main-mode choice distributions for each county.
Utilizing year 2000 trip frequency estimates, Table 3.5 shows the main-mode choice splits from

regional origins.

Region Car Air CR HSR Total
LA 261,830 20.3% 2,974 19.4% 1,299 13.5% 2,296 1.7% 268,399
SAC 112,220 8.7% 661 4.3% 175 1.8% 15,719 11.8% 128,775
SD 85,795 0.7% 4,220 27.5% 5973 62.2% 20,611 15.4% 116,599
SF 197,045 15.3% 2,394 15.6% 617 6.4% 36,225 27.1% 236,281
SJIV 344,103 26.7% 2,562 16.7% 533 5.6% 33,290 24.9% 380,488
CccC 179,539 14.0% 2,339 15.2% 917 9.6% 16,499 12.3% 199,294
FN 82,020 6.4% 161 1.0% 63 0.7% 6,887 5.2% 89,130
WSN 24,339 1.9% 56 0.4% 23 0.2% 2,177 1.6% 26,594
Total 1,286,892 15,367 9,600 133,701 1,445,560
LA =Los Angeles SJV = San Joaquin Valley
SAC = Sacramento CC = Central Coast
SD = San Diego FN =Far North
SF = San Francisco WSN = West Sierra Nevada
CR = Conventional Rail

Table 3.5: PTDM Main-Mode Choice Prediction Results using year 2000 data.

This implementation of the PTDM has a primary limitation as compared to the
proprietary parent CS Model. The PTDM modeling resolution is at the county level or
aggregation of counties. Larger geographic areas are limited to combinations of multiple
counties. Model results that include sections of a county are not possible. This research was
conducted without the actual CS model and without the input data used in the CS model. Due to

the lack of data availability, this analysis was conducted with public record sources, including
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the Bureau of Transportation Statistics, California Department of Motor Vehicles, the Bureau of

Labor & Statistics, and Census data for the year 2000.

3.4  Uncertainty Quantification

After reducing the model, decision makers will need a means of quantifying the uncertainty in
the PTDM output data arising from uncertainty in model parameters and input data. Parameter
and input uncertainty is quantified using an analytical uncertainty propagation method to provide
a mean and standard deviation for the travel demand model output. The model uncertainty
quantification is computed using the Mean Value First Order Second Moment (MVFOSM)
method which is based on a first-order Taylor series approximation of the output function
(Haldar 2000). The MVFOSM method, with evaluations approximately equal to the number of
inputs parameters (N+1), has a significant computational advantage over the numerous iterations
required for Monte Carlo simulation. The partial derivatives shown below are approximated
using finite difference.

varlgGl ~ Y. (ag—(")) Var{x,

(')xl-

i
where
g(x) = travel demand model output function
Xi = model coefficient

Var[x;] = the variance in x; derived from the t-statistics given in the CS report.
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The CS report provided a mean and t-statistic for each model input parameter which was
used as the basis for the assigned probability distributions. This data is reproduced in Table 3.6.
Based on the input parameter coefficient analysis, the mean HSR ridership using year 2000 data
is 133,701 riders per day with a standard deviation of 6,888, assuming HSR prices at 77% of
their comparable commercial air prices for a coefficient of variation of about 5%. This mean and
standard deviation provide a notional HSR ridership for the year 2000 if the network existed at
that time. Obviously, HSR did not exist in 2000; however, the year 2000 model can be used as a
basis to determine HSR ridership in 2030 assuming an identical relationship in demand model
input parameters and assuming a ridership annual growth factor from the year 2000 to 2030 to
which the PTDM results would be dependent. If the PTDM were to assume a 1.4% annual
increase in ridership, the PTDM would estimate 2030 daily HSR ridership to be 202,896, while

the CS model estimates 2030 daily ridership to be 202,740 (Brinckerhoff).

3.5  Sensitivity Analysis in Uncertainty Quantification

The objective of sensitivity analysis in uncertainty quantification is to determine the relative
magnitudes of contribution to the output uncertainty arising from input uncertainty. This is a
different concept from parameter ‘elasticity’ where sensitivity is defined as the percent change in
the output divided by the percent change in the input. The sensitivity analysis for the demand
input variable parameters is based on each input parameter’s contribution to the variance of the

total demand model follows.

The PTDM sensitivity analysis uses techniques from the field of structural reliability,
which has been developed over the last fifty years by researchers such as (Der Kiureghian 2008),

(Ditlevsen 1996), (Rackwitz 2001), and Mahadevan (McDonald and Mahadevan 2008), to name
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a few. Particularly, the PTDM utilizes the Mean Value First Order Second Moment (MVFOSM)
method (David 1996)(Haldar 2000) to identify the input uncertainties in the parameter
coefficients that most strongly contribute to the model output uncertainty. These outcomes are

then used to rank order the variables based on their influence on the demand model.

The percent contribution to HSR Ridership Variance is shown below. For an input
parameter to be a dominant contributor to the model output variance, the input parameter must
contribute greatly to the value of the model output and must have a large variance. When both of
these conditions are present, it is possible to have one or two parameters completely dominate

the total model variance.

(%5

Var [gco] "

% Contribution to HSR Ridership Variance =

Of the many uncertain parameters in the models, the PTDM sensitivity analysis results
indicate that the uncertainty in the output may be predominantly caused by very few uncertain
inputs. Table 3.8 indicates the contributors to the PTDM variance. The variables considered for
their contribution to the variance in the PTDM are listed in the trip frequency and main-mode
choice model variable coefficients tables, Figure 3.2 and Figure 3.3, Table 3.6, and Table 3.7.
Both the trip frequency models and main-mode choice models contain model coefficients which
contribute to the total model variance, using the CS model parameters and t-statistics to

determine the coefficient means and standard deviations assuming a normal distribution.
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Categorical variable model coefficients based on the number of trips generated per
household dominate the variance in the trip frequency models, while the in-vehicle travel time
coefficients dominate the variance in the main-mode choice models. The trip frequency model
coefficients used to determine the number of trips generated per household contribute about 98%
of the total model variance as shown in Table 3.8. For example, Table 3.6 shows that the
average number of household workers variable in the short-commute trip frequency model has a
large partial difference (-158,584) and a small variance (.0146), while the no household workers
variable in the long-commute trip frequency model has a small partial difference (-5036) and a
large variance (0.52). Both variables have a low percent contribution to variance, 0.32% and
.0116%. In contrast, the coefficient of 1-Trip constant in the long-recreation trip frequency
model has a relatively high contribution to variance of 13.92% resulting from both a large partial

difference (-114070) and a large variance (1.2143).

It is not surprising that the dominant input uncertainties are one-trip and two-trips or
more trip constants in the trip frequency models. Intercity travel is much less common that
intracity travel, and these trips originate with relatively small probabilities. In order to accurately
estimate these probabilities, a large amount of data is required. Because these models use
revealed preference data based on a limited number of individual travel logs, the uncertainty in
the probability that an individual would choose to travel on any given day is quite large. Further,
these constants have a large impact on ridership forecasts because the projected HSR ridership
will vary in proportion to the total travel demand, on which the constants have a large impact.
Figures 3.2 and 3.3 indicate that the predictive capability of the PTDM is primarily based on
subjective inputs, in this case, the coefficients assigned to the total number of travelers and

number of passengers using a particular mode of travel.
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Figure 3.2: PTDM Trip Frequency Coefficient % Contribution to Variance

Main-Mode Choice : Model Coefficients
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Figure 3.3: PTDM Main-Mode Choice Coefficient % Contribution to Variance
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Trip Frequency Coefficient % Contribution to Variance

2 %
Trip Purpose Variable dRicx  E[x] Var(x) (f-‘]v{féx} * Contribution to
Var(x) o
Variance
Long Business 2 Trips -25612  -16.3 46.1267 30,257.964,687  26.6510%
Long Business 1 Trip -23042  -15.67 46.4176 26,607.445,045 23.4357%
Long Recreation 1 Trip -114070 -3.416 1.2143 15,799,932,059 13.9165%
Short Recreation 2 Trips -160462 -3.787 0.4414 11,365.415,065 10.0106%
Short Commute 1 Trip -166050 -8.242 0.2940 8,106,918.450 7.1405%
Short Commute 2 Trips -157660 -9.07 0.2950 7,332,037.479 06.4580%
Short Recreation 1 Trip -85680 -2.581 0.4489 3,295,864.409 2.9030%
Short Other 2 Trips -87220 -1.624 0.3901 2,967.956.412 2.6142%
Long Recreation 2 Trips -43392 -5.083 1.2210 2,299,026.047 2.0250%
Short Business 2 Trips -42038 -5.513 0.5403 996,178,310 0.8774%
Short Business 1 Trip -37518 -4.946 0.5450 767,075,261 0.6756%
Short Commute Medium Income -136906 1.045 0.0303 568,558,352 0.5008%
Short Commute High Income -129468 1.523 0.0314 525,687,660 0.4630%
Long Recreation MTIC -74118 1.011 0.0884  485.726,570 0.4278%
Short Commute HH Workers -158584 1.57 0.0146 366,801,697 0.3231%
Long Recreation HHS 3+ -146810 -0.482 0.0153 320,212,366 0.2000%
Long Commute HH Workers -70080 1.274 0.0482 243,083,152 0.2141%
Short Business Logsum 228010 0.205 0.0022 113,744,891 0.1002%
Long Commute SCAG -38096 -1.644 0.0681 98,828.201 0.0870%
Short Business HH Workers -40550 1.153 0.0532 87,438,022 0.0770%
Short Recreation Medium Income -64344 0.355 0.0202 83,481,991 0.0735%
Long Business High Income -22380 1139 0.1441 72,197,989 0.0636%
Short Other SCAG -31636 -1.265 0.0695 69,512,308 0.0612%
Short Commute No HHW -22712 -2.163  0.1344 69,329,772 0.0611%
Short Business High Income -20622 0.835 0.0726 63,601,713 0.0561%
Short Commute SACAG -32556 -2.736 0.0487 51,600,142 0.0454%
Short Recreation No HHW -67390 0.493 0.0105 47,007,364 0.0422%
Short Recreation High Income -43348 0.432 0.0238 44,729,038 0.0394%
Long Recreation SANDAG -16754 1.344 0.1475 41,390,385 0.0365%
Short Recreation SCAG -28774 -1.16 0.0479 39,661,097 0.0349%
Short Commute SCAG -42866 -1.524 0.0195 35,920,540 0.0316%
Long Business SCAG -18052 -1.176 0.1067 34,774,452 0.0306%
Short Commute SANDAG 222278 -1.446 0.0691 34,305,488 0.0302%
Short Business No HHW -14296 -0.863 0.1192 24,354,020 0.0215%
Short Business SANDAG -10750 -0.88 0.1600 18,400,000 0.0163%
Long Other MTIC -12766 1.134 0.1112 18,120,171 0.0160%
Short Business MTIC -16172  -1.275  0.0579 15,135,476 0.0133%
Short Recreation HHS=1 -24282  -0.401 0.0238 14,025,261 0.0124%
Short Other SACAG -13902 -1.177 0.0716 13,829,362 0.0122%
Long Commute No HHW -5036 -2.668 0.5200 13,186,807 0.0116%
Short Commute MTIC -20684 -1.982 0.0134 11,837,498 0.0104%
Long Commute MTIC -12380 -0.729 0.0632 9,685,016 0.0085%
Long Other HHS 3+ -22628 -0.379 0.0183 9,381,120 0.0083%
Long Recreation SACAG -12278 1.084 0.0607 9,149,734 0.0081%
Long Other 2 Trips -25230 -0.2823 0.0138 8,807,117 0.0078%
Short Recreation SANDAG -6386 -1.802 0.2135 8,706,391 0.0077%
Short Other MIC -12256 -0.524 0.0519 7,796,585 0.0069%
Long Commute SACAG -14058 0.918 0.0381 7.539,399 0.0066%
Short Business SACAG -8668 -0.997 0.0913 6,858,044 0.0060%
Long Other High Income -13962  0.393  0.0350 6,827,187 0.0060%
Long Business MIC -6562 -1.372  0.1452 6,254,256 0.0055%
Long Other No HHW -13036 0.372  0.0240 4,665,946 0.0041%
Short Recreation SACAG -8686 -1.241 0.0491 3,705,162 0.0033%
Long Business No HHW -2758  -2.098 0.3808 2,896,287 0.0026%
Short Business SCAG -7406 -1.969 0.0524 2,875,160 0.0025%
Long Recreation HHV<-HHW -3940  -0.922 0.1476 2,201,035 0.0020%
Long Business SACAG -4852 0.976 0.0696 1,638,090 0.0014%
Long Other SACAG -3962 2.527  0.0602 944,855 0.0008%
Short Business HHV<-HHW -2382  -0.947 0.1557 883.407 0.0008%
Long Other HHS=1 -3576  -0.424 0.0449 574,734 0.0005%
Long Other HHV=-HHW -774  -0.915  0.1730 103.628 0.0001%
HHY = Household Vehicles 113,533,937,315 1

HHW = Household Workers
HHS = Household Size

MTC = San Francisco Region
SCAG =Los Angeles Region

SANDAG = San Diego Region
SACAG = Sacramento Region
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Main-Mode Choice Coefficient % Contribution to Variance

Trip Purpose Variable éR/éx  E[x]  Var(x) (éR/ex)’ = % Contribution

Var(x) to Variance
Long Other HSR - constant -21.488 1.434 0.041966 19,377,342 46.68062%
Short Business Cost -131,160 -0.109 0.000407 7.009,197 16.88537%
Long Other HHS - Car 45,086 0.225 0.002108 4,286,041 10.32521%
Long Other Group Car 11.604 1.417 0.024247 3,264,919 7.86529%
Short Commute Time 585,180 -0.025 0.000007 2,496,356 6.01380%
Short Other Time 560,114 -0.014 0.000007 2,274,062 5.47829%
Short Commute CR - constant 582 4.232 2.649382 897,409 2.16189%
Long Business Group Car 4,304 0.549 0.040881 789,200 1.90145%
Long Business FCW - CAR 1,198 -0.770 0.102827 147,578 0.35552%
Short Commute HHS - Car 1.120 0.665 0.110556 138,682 0.33400%
Long Other Time 471,608 -0.011 0.000001 133,466 0.32152%
Short Business HI - Car 658 -1.211  0.277225 120,029 0.28915%
Long Business HI - HSR -1,644  0.981 0.041744 112,822 0.27179%
Long Other FCW - CAR 1.966 -0.435 0.024180 03.460 0.22515%
Long Other Air - constant 1,058 0.690 0.060692 67.936 0.16366%
Long Other CR - constant 1,010 0.615 0.055932 57,056 0.13745%
Long Business Air - constant 0658 -1.645  0.122500 53,038 0.12777%
Short Business HSR - constant 384 -1.557 0.309215 45,506 0.10984%
Long Other Group Air 1.472 -0.506 0.018710 40,540 0.09766%
Long Business HI - Air 880 1.018 0.051176 39,631 0.09547%
Short Commute HSR - constant 108 4.048 2.621809 30,581 0.07367%
Long Business Group - Air 802 -0.338 0.015625 10,050 0.02421%
Short Business Time 31.362 -0.500 0.000007 7.170 0.01727%
Short Business Headway -35,156 -0.006 0.000006 7.119 0.01715%
Long Other Headway -98,324 -0.003 0.000001 7,103 0.01711%
Long Business Time 37,956 -0.016 0.000002 2,003 0.00721%
Long Business Cost -15,428 -0.016 0.000002 384 0.00093%
Long Business Headway -23,230 -0.003 0.000001 3155 0.00085%
Short Commute Headway -8,866 -0.002 0.000001 72 0.00017%
Short Other Cost 582 -0.109 0.000177 60 0.00014%
Short Commute Cost 582 -0.148 0.000172 58 0.00014%
Long Other Cost -3,630 -0.035 0.000004 47 0.00011%
Short Other Headway -2,128  -0.009 0.000003 12 0.00003%

HSR = High-Speed Rail 41.510.464 1

CR = Conventional Rail
HI = High-Income

Table 3.7: Contribution to PTDM Main-Mode Choice Model Variance in Projected Daily Ridership

PTDM % Contribution to Variance

Contributors to Variance Variance %o
Trip Frequency Coefficients  368,644,254254 98.0%
Main-Mode Choice Coefficients 7,563,326,730 2.0%
Total 376,207,580,993

Table 3.8: Contribution to PTDM Variance in Projected Daily Ridership
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3.6  PTDM Computational Expense

The PTDM model analysis was conducted on a Dell Studio 1747 Intel(R) Core i7 1.60 GHz, 64-
bit operating system with 8.0 GB RAM. The computation time for the PTDM sensitivity
analysis described in this chapter is approximately 14 hours. Each of the five main-mode choice
models utilized in the PTDM methodology has a run time of approximately 2.5 hours. The eight
trip frequency models utilized in the PTDM methodology have a run time of approximately 10
minutes each for a total of 80 minutes. The parent CS model has a computational expense of
several days. The difference in computational expense is attributed the complexity of the model
output. While the main-mode choice output differentiated between four possible travel
possibilities: HSR, commercial air, conventional rail and car, the trip frequency models only

produced one output, travel demand.

3.7  Conclusion

In order to overcome the hurdles of computational expense in travel demand models, a PTDM
was proposed which utilized a model resolution different from that of its proprietary parent
model. This parent model was used to calibrate and verify the results of the PTDM. The PTDM
reduced computational expense so that repetitive model simulations, optimization analysis, and

sensitivity analysis are more feasible.

To identify key model parameters, MVFOSM methods were used for uncertainty
propagation and sensitivity analysis based on percent contributions to the model output variance.
These key model parameters were found to be the constant terms in the trip frequency submodel.

Knowing the percent contribution of the different parameters to the overall PTDM variance is
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critical when conducting repetitive analysis. Only the input parameter coefficients determined to
be significant, based on their model coefficient contributions to variance, need to be considered
during repetitive decision analysis. All other parameters can be satisfactorily left at their means
as the uncertainty in some parameter values contributes little to the uncertainty in the model

output.

The PTDM prediction of HSR ridership, which has a coefficient of variation of 5%,
assumes no bias, a valid model form, and the coefficient variances given in the documentation of
the CS model. If these assumptions are valid, the PTDM results imply that the CS trip frequency
and main-mode choice models provide reasonably reliable estimates for ridership and revenue,
for any given set of input assumptions. However, these results do not determine the reliability of
the parent model forecasts, since this analysis does not consider variance in the input values of
the model variables, while the PTDM uses a different level of spatial resolution and does not
include several of the model components in the parent model. Therefore, the results in this
chapter should not be used to evaluate the reliability of the California High-Speed Rail

Authority’s Ridership & Revenue forecasts.
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CHAPTER IV

MULTIDISCIPLINARY OPTIMIZATION FOR SYSTEM

OPTIMAL MODEL INTEGRATION

“There are no secrets to success. It is the result of preparation, hard work, and

learning from failure.” — Colin Powell

4.1 Introduction

A system-of-systems consists of a network of systems whose inputs and outputs affect the
decision parameters of the other systems within the network. These inputs and outputs can act as
boundary constraints for the affected network system. System-of-systems decision analysis, as
shown in Figure 4.1 is based on the interaction of multiple systems using an optimization
approach. The study of system performance or systems analysis spans many educational
disciplines and practical applications. The total effects of these systems and applications can
rarely be appreciated when analyzed in isolation. When systems interact with each other due to
performing similar functions or impacting either the inputs or operational conditions of other
systems, a more holistic approach may be warranted. The study of interrelated systems, known
as system-of-systems analysis is the overall focus of this objective. In this chapter, system-of-

systems analysis will be discussed from a transportation engineering perspective.

The study of transportation engineering is one example of system-of-systems analysis.

Transportation systems perform similar functions and are impacted by network conditions,
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operational conditions such as weather, as well as each other. The California high-speed rail
study is one example of a system-of-systems as it involves the analysis of multiple modes of
transportation. Using the California high-speed rail program as a case study, this research will
approach systems analysis from network conditions and related systems and will not consider the
impacts of weather or other operational conditions. This type of network systems analysis, due
to its complexity, requires analytical methods for decision analysis support. Decision support for
system-of-systems engineering involves a synthesis of systems modeling, and optimization
which consists of describing the network as a series of models, and optimizing across the

network (Mclnvale, McDonald, and Mahadevan 2011).

Utilizing a multidisciplinary optimization methodology as shown in Figure 4.2, this
research defines the interactions between airline fleet acquisition, assignment and travel demand
forecasting using the PTDM by showing how aircraft allocation affects user demand and how

user demand affects allocation.

Aircraft Resourcing

Allocation
Fleet > PTDM
Assignment | (Transportation
(Airline System) |~ System)
Demand

System of Systems Analysis

Figure 4.1: Case Study Multidisciplinary Optimization System-of-Systems Analysis
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Two examples of transportation system-of-systems problems that can be analyzed
through the use of multidisciplinary optimization are transportation systems planning and airline
scheduling planning. Both of these model constructs contain individual models designed for
specific purposes which both affect and are affected by other systems both within and outside of
their respective systems families. The analysis of these two transportation systems typically
involves the study of a single mode of transportation. Like most system-of-systems models,
transportation system planning and airline schedule planning are traditionally conducted in
isolation. Studying the interactions between these two systems-of-systems requires multimodal
analysis. Multimodal interaction analysis such as this greatly increases the modeling complexity
required for decision analysis. As problem complexity increases, feasible solution methods for

system-of-systems analysis become more critical.

Current solution methods to solve multi-modal intercity commercial transportation SoS
decision problems are too computationally expensive.. As the problem becomes more complex,
the number of required simulations also increases which adds to the computational expense.
Depending on the level of complexity and computational expense, systems problems such as
these require decomposition into smaller more manageable elements. While some research
exists that combine particular elements of transportation systems planning and airline schedule
planning (Sherali, Bae, and Haouari 2010), currently no work exists that synthesizes
transportation system planning and airline schedule planning given multimodal transportation
providers. Unfortunately, current mathematical models which focus solely on one system often

lack the synthesis required to interact with other complex mathematical models.

A key complexity to system-of-systems analysis is integrating network models especially

when these networks span multiple disciplines of study. Methods for multidisciplinary
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synthesized decision support for system-of-systems analysis are critical to systems planners.
Due to the growing complexity of essential intricate systems such as commercial transportation
systems, methods for synthesized decision support are expected to increase in importance. As a
result of their complexity and computational expense, mathematical models have become a
common way to conduct decision support analysis methods for systems of systems. The purpose
of these models is typically to estimate the results of a specific system. To address these issues,
this research utilizes a method of multidisciplinary optimization for solving the integrated
transportation system-of-systems problem consisting of the main-mode choice problem of
transportation systems planning and the fleet assignment problem of airline schedule planning.
When integrating the main-mode choice and fleet assignment optimal decisions, the resource
allocation problem becomes the decision which drives the user main-mode decision while the
resource allocation problem is a fleet assignment problem where a known capacity is used to

support a user demand.

Utilizing current decision support methods which include transportation systems planning
modeling, parsimonious travel demand modeling, airline scheduling planning modeling,
schedule design modeling, and fleet assignment modeling, this chapter implements a decision
support method for multimodal transportation system planning models and airline schedule
planning models from the perspective of a market leader or dominant market player. It is
assumed that the market leader establishes the initial market conditions to which all other players
in the market respond. The research in this chapter provides a methodology for decision makers
to establish those initial market conditions. In the following chapter, this research provides a
synthesized methodology for determining the competitive response to changes in an established

network due to changes in market conditions.
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This decision support method combines the user-level multimodal decision choice of
transportation system planning with the airline schedule design and fleet assignment decisions of
airline schedule planning using multidisciplinary optimization. The contribution of this work is
the synthesized decision support method for multimodal transportation system planning models
and airline schedule planning models by combining the user-level multimodal decision choice of
transportation system planning with the airline schedule design and fleet assignment decisions of

airline schedule planning using multidisciplinary optimization and game theory.

The overall scope of the California high-speed rail project to include the connected cities,
cost estimates, and project passenger revenue reported early in California’s planning process is
still in question. Media reports indicate that much planning still remains concerning the scope of
the California high-speed rail program (Mckinley 2011). Reports such as these give credence to
the fact that decision-makers require measures to effectively model and predict network usage.
In this case, decision makers require a means of gauging the viability of high-speed rail as a
commercial transportation service provider. Assessing the viability of high-speed rail has

centered on two primary questions:

e What average price for commercial air and high-speed rail results in maximum profit?

e At what price is high-speed rail viable?

Both of these questions assume a relatively certain cost estimate for high-speed rail which was
recently called into question. Another issue worth researching is the effect of high-speed rail on
commercial air demand. It has been wondered whether the existence of high-speed rail could

alleviate current commercial air congestion. To address these questions, a short-run economic
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analysis is provided comparing commercial air and high-speed rail average prices using game

theory.

This chapter is organized into five main sections. The first section discusses the
parameters of the models integrated in this research followed by the proposed methods and
formulations. Next, a case study is provided to illustrate the synthesized decision support
method followed by results and discussion, and a conclusion which explain how the
multidisciplinary optimization method provides a synthesized method for multimodal
transportation system planning models and airline schedule planning models as illustrated by the

case study.

4.2.  Single Airline Optimization Methodology

This analysis assumes a feasible pricing range for the average price of both commercial air and
high-speed rail. This analysis considers only these two factors and holds the model conditions
for conventional rail and transportation via private-owned vehicle constant. Using the PTDM,
this analysis estimates the high-speed rail demand and commercial air profit for the feasible
ranges of commercial air and high-speed rail. The simultaneous analysis and design (SAND)

and multidisciplinary feasible (MDF) methods follow for the system optimal fleet assignment.

SAND Formulation
Maximizey - 4+ w(x,y*,d")

Subject to:
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y(dix) —y* =0
dy ) —y*=0
S(y’)—d* =0
Zy* = Xfoq MOPD
Where

Y (unstarred) = optimal fleet assignment at fixed d .

D(unstarred) = demand given fixed fleet assignment y”.

MDF Formulation
Maximize, m(x)
Subject to:

S*(x) = D* (5*(x))

Fleet assignment and user mode choice models directly impact each other through the interaction
of their respective input and output elements. The main input to the fleet assignment problem is
the customer demand. The customer demand by mode of transportation is the output of the user
mode choice model. A main input to the user mode choice model is the resource allocation or
capacity which is the output of the fleet assignment model. The other primary input to the user

mode choice model is ticket price.
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Demand

Main Mode Fleet
Choice Assignment

Service
Headway

Figure 4.2: User Mode Choice & Fleet Assignment Variable Interactions

Figure 4.2 illustrates the interaction between transportation systems planning and airline
schedule planning through fleet assignment and user mode choice decision modeling. The user
mode split determines the user travel demand for both high-speed rail and commercial air from
ticket price & service headway. The user mode choice input elements consist of the origin-
destination ticket prices and the service headways, while the output element is the travel demand
by mode. Commercial air demand determines resource allocation (capacity) & the ticket prices
required for a profit. One primary assumption in this integration is that capacity is set to meet

passenger travel demand for both commercial air and high-speed rail.

4.3  Case Study

Transportation demand models have been used to estimate high-speed rail travel demand for the
purpose of providing transportation planning decision support for potential high-speed rail
projects. As stated in chapter three, the proposed California Corridor High-Speed Rail project
(Cambridge Systematics 2008) plans to link Sacramento, San Francisco, Los Angeles, and San
Diego. As California and other U.S. regions are considering the addition of high-speed rail as a

new mode of transportation to their commercial transportation networks, transportation providers
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are now faced with new decision support questions regarding both the acquisition and allocation
of transportation resources. These decision support questions require a synthesized approach for

conducting multidisciplinary multimodal decision support over time.

Figure 4.3: Air Transportation Network Diagram

To illustrate the integration of multimodal user decision choice and airline resource
acquisition and resource allocation, this case study problem utilizes travel demand results from
the parsimonious travel demand model from chapter three and the air transportation network
diagram displayed in Figure 4.3 to develop airline schedule and allocation results assuming a
single or dominant air service provider. This synthesized decision support method for
multimodal transportation system planning models and airline schedule planning models will be
conducted by providing and discussing the cause and effect relationships between the input and
output parameters of the respective models. The prices for both high-speed rail and commercial

air are based on PTDM pricing used to initially estimate California interregional travel demand.
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As current pricing for high-speed rail in the United States does not exist, high-speed rail pricing,
without any government subsidizing, is set at 77% of comparable commercial air pricing as in

the parent ITMS model (Cambridge Systematics 2008).

4.3.1 Problem Description

The problem of resource acquisition and resource allocation occurs over time. The first stage of
the problem is to determine the optimal number of vehicles by type to purchase or acquire in
order to support the estimated future air travel demand. Upon receiving or acquiring the desired
number of vehicles by type, the second stage of the problem determines the optimal resource

allocation to maximize profit.

Utilizing the daily interregional travel demand estimates from the PTDM, this chapter
describes the effects of transportation policy on commercial air and high-speed rail demand and
on commercial air resource allocation. Although a relatively new mode of public transportation,
high-speed rail policy analysis has been developed through researchers such as Gunn who
studied the methods for scenario based high-speed rail forecast generation (Gunn, Bradley, and

Hensher 1992).

4.3.2 Case Study Formulation

This analysis assumes a feasible pricing range for the average price of both commercial air and
high-speed rail. This analysis considers only these two factors and holds the model conditions
for conventional rail and transportation via private-owned vehicle constant. Using the PTDM to

estimate the transportation demand splits based on changes in the average ticket prices for
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commercial air and high-speed rail, the case study considers the average commercial air prices
ranging from $200 to $350 and for average high-speed rail prices ranging from $175 to $250 and
reports the corresponding ridership and revenue. These model outputs are derived over
combinations of commercial air and high-speed rail prices over the listed ranges. An analysis of
these model outputs over the specified ranges makes up the short run pricing analysis of
commercial air and high-speed rail. The pricing analysis is used to determine the viability of
high-speed rail in the California by utilizing the main-mode choice decision models of the
PTDM to determine how revenue and ridership responds to changes in the average prices
commercial air and high-speed rail in California. The short run analysis reported in this chapter

reflects the initial scope of California high-speed rail project.

This short run analysis assumes constant conditions for the main mode choice model
parameters with the exception of the commercial air and high-speed rail prices. In this analysis
the commercial air and high-speed rail prices are averaged across the entire California Corridor
commercial transportation network. Other model parameters such as the cost of traveling by car
resourcing parameters which define the level of transportation service provided, demographic
parameters, and socioeconomic parameters are not adjusted in this analysis. The ridership results

from the short run analysis are used as inputs in the fleet assignment optimization.

The fleet assignment formulation optimizes the number of aircraft to purchase maximizes
the profit associated with purchasing the aircraft required to support the quantity demand given
an available fleet. This analysis assumes aircraft are dedicated to specific origin-destination
links. The resource acquisition optimization involves a schedule design optimization to
determine the optimal number of flights per day to support the customer demand for each origin-

destination pair. The resource allocation optimization assigns aircraft to specific origin
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destination pairs in support of customer demand for each origin-destination pair. The aircraft

acquisition and allocation master problem follows.

Max Profit,,

Profit,,, = REV, — CC(x) + 0C(y)

> Vyoa < % (MOPD) V f € F

0€0 deD

nyod(PAXf) >Q,,y) YVoe0O,deD
fEF

Where

REV = revenue

CC = capital cost

OC = operational cost

PAX = passengers

MOPD = maximum number of operations per aircraft
X = aircraft acquisitions

y = aircraft allocations

L = lower bound
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U = upper bound
O = origin

D = destination
Q = demand

The amount of available aircraft is dependent on the first stage resource acquisition decision.
The available fleets for this case study are listed in Table 4.1. The listing of available aircraft is
based on the current aircraft fleets of the primary commercial airlines serving California. These
airlines include United, American Airlines, and Southwest Airlines. The aircraft fleet listed in
Table 4.1 is derived from the websites of the six primary airlines serving California. This
problem assumes a mixed aircraft fleet and that the mixed fleet capacity can support traveler
demand. Each flight leg is flown by only one fleet. The fleet assignment allocation optimization
formulation minimizes the operational costs using an airline cost model. The cost model used to
estimate aircraft operating cost was based on an aircraft costing model by Harris in 2005. The

basic operating cost equation is shown in Figure 4.4.

Fleet Assignment Problem Aircraft

Aircraft Model ~ Engine Model (35::;::5 f[':;;;“s
ATR 72 PW120 64 $22.7
CRI-100ER  Allied Signal LF507 50 $31.0
B737-3/7 CFMS56-7B24 137 $70.8
A320 CFMS56-5B4/P 138 $88.3

B 767 -3 PW 4060 225 $175.0
B737-5 CFMS56-3CT 122 $65.0

Table 4.1: Case Study Available Aircraft
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Flight crew expenses are based on the airline’s business approach, whether the flight is
regional, domestic or international, the assigned aircraft maximum take-off gross weight
(MTOGW) and the number of block hours assigned to the flight. A block hour is defined as the
amount of time from push-off from the departure gate to arriving at the arrival gate. Fuel & Oil
expenses are obviously based primarily on the cost of fuel per gallon, the number of cruise and
non-cruise gallons per departure based on the flight distance, and the number of departures. The
number of gallons required for each departure is based on the engine-specific fuel consumption,
and the engine take-off thrust for a jet or the brake horsepower for a piston or turbroprop.
Insurance expenses are based on the number of aircraft owned by an airline, while the rental
expense is based on the number of aircraft leased by an airline. Although a significant aspect of
airline costs, the aircraft cost model in this chapter does not consider the age of the aircraft fleet,

maintenance expenses, or specific airport related expenses.

C (x(’;d) = Total Aircraft Operating Expenses + All Other Expenses

Total Aircraft Operating Expenses =
Flying Operation + Flight Equip Maint + Flight Equip. Depr. and Amort.

All Other Operating Expenses =
Passenger Service + Landing Fees + Rest of All Other + Transport Related

Figure 4.4: Airline Total Operating Cost Framework
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A fractional allocation of aircraft to 10-link system is assumed; therefore, flow
conservation is not required. The number of aircraft available to the 10-link system is limited by

a maximum operations per aircraft per day (MOPD). In this research the MOPD is 5.

_ Number of Aircraft Available to 10 — link system
MOPD

Supply provided on a link must be greater than PTDM-predicted demand.

> Yroa X PAX; 2 QW)
f

where
Yroa = aircraft allocation

Capital Cost is amortized into daily cost over a 5 year period. The operational cost model is
based on “An Economic Model of U.S. Airline Operating Expenses” by Harris in 2005. Lastly,

aircraft are dedicated to specific links.

44  Results

4.4.1 Profit and Ridership Results

The following tables show the commercial air and high-speed rail ridership from the PTDM and
the commercial air profit over the specified average price ranges for commercial air and high-
speed rail given the presence of high-speed rail. These results are the basis of the normal-form

game which ultimately compares commercial air to high-speed rail.
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High-Speed Rail Ridership

5350

Prices

(51711 )47.594 44723 43,545
54060 |49.966 46.189 44296
57376 |52.171 48788 45541
62.049 |55.164 51253 48,132
67428 |59.832 54216 50921
73742 |65.729 59.066 54,135
82589 |72.619 65.618 59,639

$175 | $200  $225 5250

Hﬂgh—Speed Rail Prices

Table 4.9: Daily High-Speed Rail Ridership

High-speed rail ridership is highest when high-speed rail prices are at their lowest and
commercial air prices are at their lowest as listed in Table 4.9. These counterintuitive results are
based on the nested structure of the PTDM where air and high-speed rail ridership are nested
entities so their combined ridership (air & HSR) increases when their prices are lowest as shown

later in Table 4.12. The range of high-speed rail ridership spans from approximately 43K to

82K.
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Commercial Air Ridership
5350 97,701 98437 98831 99177
5325 110,574 113370 113997 114,502
5300 118,019 119675 120460 121,167
5275 120447 121,627 122627 123582
5250 122,639 123936 125212 126457
5225 125466 127064 128675 130,254
5200 129397 131414 133448 135448
5175 5200 $225 5250
High-Speed Rail Prices

Prices

Table 4.10: Daily Commercial Air Ridership

Commercial air ridership is highest when high-speed rail prices are at their highest and
commercial air prices are at their lowest as listed in Table 4.10. The range of commercial air

ridership spans from approximately 97K to 135K.

Car Ridership
5350 1,286,589 1,289,938 1292399 1.293221
$325 | 1.271393 1272650 1275776 1277152
5300 1.260.667 1.264,162 1.266,730 1.269.251
Air Prices 5175 1,253,612 1259250 1.262.120 1.264.260

$250 | 1.246.103 1,252,320 1.256.605 1,258.620
5225 | 1.237.044 1243360 1248342 1251646
5200 | 1.224375 1232210 1.237.090 1.241.005
S175 5200 5225 5250

High-Speed Rail Prices

Table 4.11: Car Ridership
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Car ridership is highest when both high-speed rail prices and commercial prices are at
their highest as listed in Table 4.11. The range of car ridership spans from approximately 1.22M

to 1.29M.

Combined Ridership: Air & High-Speed Rail
3350 1495113? 146,031 143554 1427122
5325 164,634 | 163,335 160,186 158798
5300 175395 | 171,846 169,247 166,709
3275 182496 | 176,792 173880 171714
3250 190,067 | 183,768 179428 177378
$225 199 208 | 192,793 187742 184389
$200 211986 | 204032 199066 195088
5175 5200 $225 5230
———High-Speed Rail Prices

Prices

Table 4.12: Combined Expect Daily Ridership

Combined Ridership: Car, Air & High-Speed Rail

5350 [ 1.436,001 1435969 1435953 1435943

5325 [ 1436027 1435985 1435962 1435950

5300 [ 1.436.062 1436.008 1435977 1435959

Air Prices 5275 | 1.436,108 1.436.041 1436000 1435974
5250 [ 1436171 1436088 1436033 1435998

5225 [ 1436252 1436153 1436.083 1,436,035
200 § 1436361 | 1,436,242 1436156 1,436,093

5175 $200 $225 $250
High-Speed Rail Prices

Table 4.13: Combined Car, Air, High-Speed Rail Ridership
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Combined commercial air ridership and high-speed rail ridership is highest when both
high-speed rail prices and commercial air prices are at their lowest as listed in Table 4.12. The
range of combined commercial air ridership and high-speed rail ridership spans from
approximately 142K to 211K. This combined ridership indicates that commercial air and high-

speed rail are nested modes of transportation.

Combined car, commercial air ridership, and high-speed rail ridership is highest when
both high-speed rail prices and commercial air prices are at their lowest as listed in Table 4.13.
The range of all three modes of transportation varies little from 1.435M to 1.436M. 1t is
expected that as both high-speed rail and commercial air prices increase, overall travel decreases.
The model seems to account for one of the primary influencers of transportation prices, fuel cost.

So if conditions exist that result in high air and rail prices, a similar reduction effect is

experienced in car travel as well.

Commercial air profit is highest when commercial air prices are highest as shown in
Table 4.14. Even though commercial air ridership is lowest at their highest price range, the

revenue gained by higher ticket prices offsets the decreased ridership.

Commercial Air Profit
$350 $30,021,850 | $30,869,292 | $30,801,864 | $30,547,364
$325 §29.516,331 | $28,926.436 | $28,101,140 | $27,979.998
$300 §25,185,524 | $25,360,378 | $25,054,836 | 524,650,800
Air Prices $275 $20,087,341 | $20,066,472 | $18,942.861 | 518,546,525
$250 $13,512,354 | $15,120,791 | $15,985,885 | $16,615,839
$225 $14,898.949 | $14,521,663 | $14,779,876 | $15,153,489
$200 $11,651,751 | $11,596,315 | $11,640,930 | $11,228,014
8175 8200 8225 8250
High-Speed Rail Prices
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4.4.2 Model Integration Results

The fleet assignment results from this chapter demonstrate the expected cause and effect

relationships regarding the introduction of high-speed rail to an existing commercial network.

Table 4.15 shows the cooperative fleet assignment and profit without high-speed rail for the six

aircraft used in the case study. This base scenario assumes commercial air fares based on year

2000 figures where HSR prices are set at 77% of air fares. Table 4.16 shows the aggregate fleet

assignment and profit by the six aircraft used in the case study network upon the introduction of

high-speed rail. This aggregate fleet assignment is the average of aircraft fleet assignments by

origin-destination pair and the associated profit by aircraft across the given ranges of high-speed

rail and commercial air prices.

Base Scenario: Cooperative Fleet Assignment without High-Speed Rail

Airports Available Aircraft
Origin Destination | Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5| ATR 72 Boeing 767-3 Total
LAX OAK 20 17 20 18 19 12 107
LAX SAN 29 24 28 27 25 26 158
LAX SFO 11 14 11 11 15 6 68
LAX 8JC 20 19 20 19 21 14 114
OAK LAX 19 19 20 18 21 12 109
SAN LAX 28 25 28 26 26 26 160
SAN 5JC 14 16 15 13 18 5 81
SFO LAX 13 16 13 12 18 2 74
8JC LAX 20 19 20 19 21 13 113
SJC SAN 12 15 13 11 17 9 77
Profit §7.719.243 52,687,751 $8.049.321 $6,544.682 | S4,096,417 §557,129 $29.654,543

Table 4.15: Base Scenario: Cooperative Fleet Assignment Without High-Speed Rail
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Aggregate Model Integration Fleet Assignment with High-Speed Rail

Airports
Origin = Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX 0AK 14 9 28 31 8 8 98
LAX SAN 28 50 18 19 75 15 205
LAX SFO 12 22 9 7 17 5 73
LAX 8JC 1o 21 23 25 27 8 120
OAK LAX 30 34 15 16 17 6 118
SAN LAX 37 27 19 21 43 22 169
SAN 8JC 6 7 10 11 17 15 66
SFO LAX 13 17 10 8 12 7 66
SJC LAX 14 28 24 25 27 7 124
SJC SAN 10 7 15 16 18 6 73
Profit $5.687.766  S2.465230 | $5332.741 S$4.895609 | $4375,067 -51993.381 | $20,763,031

Table 4.16: Aggregate Model Integration Fleet Assignment With High-Speed Rail

One preconceived notion of HSR is that it would reduce air demand because it is
perceived as a similar, cheaper, and possibly superior mode of travel to air. Based on the
findings of this research, a reduction in air demand will not necessarily reduce the number of
aircraft operations servicing Southern California. Instead, the introduction high-speed rail
resulted in a greater use of smaller aircraft. This increase of aircraft provided an increased level-
of-service resulting in increased schedule flexibility for commercial air. The most notable result
is the ~$9M reduction in profit for commercial air upon the introduction of high-speed rail to the
commercial transportation network. In order to reduce airline operations, additional external
incentives may need to be provided to the airlines. Air level-of-service will probably stay
relatively close to what it is now, and congestion at California airports will probably be as severe
as it was before the addition of HSR. Many environmental impacts (e.g., noise, carbon
emissions) are related to the number of operations more strongly than the size of aircraft. It is

likely that many of the environmental benefits of HSR are significantly overstated. Demands on
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air traffic control will likely remain unchanged or could increase if more flights of smaller
aircraft are scheduled as an airline response to reduced demand arising from the presence of
HSR. Tables 4.17 to Table 4.23 show the fleet assignment allocations and profits for all the

price comparisons in the normal-form game.
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Model Integration Fleet Assignment (Air $350/ HSR §175)

Airports Air Price= 5350 HSR Price= 3173 Demand= 97,701
Origin  Destination| Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5| ATR 72 Boeing 767-3 Total
LAX 0AK 1 20 31 35 6 0 93
LAX SAN 32 48 3 5 123 0 211
LAX SFO 11 35 0 0 38 0 84
LAX SJC 4 23 21 24 47 0 119
0AK LAX 42 47 7 6 0 105
SAN LAX 47 50 5 7 82 0 191
SAN SJC 1 13 11 14 44 0 83
SFO LAX 11 35 1] 1 38 0 85
SJC LAX 2 22 22 26 45 0 117
SJC SAN 1 13 11 14 45 0 84
Profit 56,498,327 54569134 | S4.471983 S4.901.212 | $9963,099 -S381.905 | $30,021,850
Model Integration Fleet Assignment (Air $350/ HSR $200)
Airports Air Price= 5350 HSR Price= 3200 Demand= 98.437
Origin  Destination| Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5| ATR 72 Boeing 767-3 Total
LAX 0AK 2 19 31 35 5 1 93
LAX SAN 32 47 4 6 123 1 213
LAX SFO 11 34 1 1 38 0 85
LAX SJC 5 22 22 25 46 1 121
0AK LAX 43 47 4 7 6 1 108
SAN LAX 47 50 6 8 81 1 193
SAN SJC 1 12 12 15 44 0 84
SFO LAX 11 34 1 1 38 0 85
SJC LAX 2 21 23 26 45 1 118
SJC SAN 1 13 11 14 45 0 84
Profit $6,675.941 54496702 | $4.759.461 85028757 | $9.897,713 $10,708 $30,869,292
Model Integration Fleet Assignment (Air S350/ HSR $225)
Airports Air Price= S350 HSR Price= 8225 Demand= 98.831
Origin  Destination| Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5| ATR 72 Boeing 767-3 Total
LAX 0OAK 3 15 34 36 0 0 88
LAX SAN 34 44 7 8 114 0 207
LAX SFO 13 30 4 2 29 0 78
LAX SJC 6 18 25 26 38 1 114
0AK LAX 44 42 7 9 0 0 102
SAN LAX 49 46 9 9 73 0 186
SAN SJC 3 8 14 16 35 1 77
SFO LAX 13 30 4 2 29 0 78
SJC LAX 4 17 26 28 36 0 111
SJC SAN 3 8 14 16 36 1 78
Profit $7.388,080 53818304 | 85033941 85548317 | $8219822 5106600 | $30.801 864
Model Integration Fleet Assignment (Air S350/ HSR $250)
Airports Air Price= S350 HSR Price= 5250 Demand= 99,177
Origin  Destination| Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5| ATR 72 Boeing 767-3 Total
LAX 0OAK 4 8 15 36 0 1 84
LAX SAN 36 30 9 8 107 0 199
LAX SFO 15 23 6 3 21 1 69
LAX SJC 8 12 26 27 30 1 104
0AK LAX ] 36 8 9 0 0 98
SAN LAX 5 42 11 10 66 0 181
SAN SJC 5 1 16 17 27 2 68
SFO LAX 15 24 6 3 21 1 70
SJC LAX 6 11 18 28 29 1 103
SJC SAN 4 1 15 16 31 2 69
Profit $8,120317 52947217 | $6,644.762 85777684 | §7.057,087 §208 §30,547 364

Table 4.17: Model Integration Fleet Assignment (Air $350)
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Model Integration Fleet Assignment (Air $325/HSR §175)

Airports Air Price= $325 HSR Price= 8175 Demand= 110,574
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 6 5 38 38 0 3 90
LAX SAN 40 38 13 11 103 4 209
LAX SFO 17 20 8 4 15 3 67
LAX SJC 11 9 30 29 25 4 108
0OAK LAX 47 33 11 11 0 2 104
SAN LAX 35 41 15 13 62 4 190
SAN SJC 6 0 19 18 21 4 68
SFO LAX 17 21 8 5 15 3 69
SJC LAX 8 9 31 30 24 4 106
SJC SAN 6 0 18 18 25 4 71
Profit §8,311293  §2.421,555 | §7.280,551 §5928788 | $5698263 -$124120 | 529516331
Model Integration Fleet Assignment (Air $325/HSR $200)
Airports Air Price= $325 HSR Price= 5200 Demand= 113,370
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 6 5 38 38 0 3 90
LAX SAN 40 38 14 12 101 5 110
LAX SFO 17 20 9 4 13 4 67
LAX SJC 11 9 30 29 23 5 107
0OAK LAX 47 33 11 11 0 3 105
SAN LAX 56 41 15 14 60 4 190
SAN SJC 7 0 19 19 19 4 68
SFO LAX 17 21 9 5 13 4 69
SJC LAX 9 9 31 31 22 5 107
SJC SAN 6 0 18 18 23 4 69
Profit §8,356,220 §2.316,109 | $7205.664 55802762 | §5382915 -§$137236 | 528926436
Model Integration Fleet Assignment (Air $325 / HSR §225)
Airports Air Price= $325 HSR Price= 5225 Demand= 113,997
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 4 6 37 37 0 5 89
LAX SAN 39 39 13 12 99 7 209
LAX SFO 15 21 8 4 11 6 65
LAX SJC 10 10 29 29 20 8 106
0OAK LAX 45 34 10 10 0 5 104
SAN LAX 54 42 14 13 57 7 187
SAN SJC 5 1 18 18 17 6 65
SFO LAX 16 21 8 4 11 6 66
SJC LAX 7 10 30 30 20 7 104
SJC SAN 5 1 17 17 21 7 68
Profit §7.833177 §2,578.466 | $7.052118 85921544 | §5074931 -$359,097 | §28.101.140
Model Integration Fleet Assignment (Air $325 / HSR $250)
Airports Air Price= $325 HSR Price= 5250 Demand= 114,502
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 5 6 38 38 0 5 92
LAX SAN 39 40 13 12 98 7 209
LAX SFO 15 21 8 4 10 6 64
LAX SJC 10 10 30 29 20 8 107
0OAK LAX 46 34 10 11 0 5 106
SAN LAX 54 42 15 14 57 7 189
SAN SJC 5 1 19 18 16 7 66
SFO LAX 16 21 8 5 11 6 67
SJC LAX 8 10 31 31 19 7 106
SJC SAN 5 1 18 18 20 7 69
Profit §7,755,009  §2 489675 | 87114307 §5838286 | $5007.899 -$225179 | §27.979.998

Table 4.18: Model Integration Fleet Assignment (Air $325)
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Model Integration Fleet Assignment (Air $300 / HSR §175)

Airports Air Price= 5300 HSR Price= 8175 Demand= 118,019
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 5 6 38 38 0 6 93
LAX SAN 40 40 14 12 98 8 112
LAX SFO 16 21 9 5 10 7 68
LAX SJC 10 10 30 29 20 8 107
0OAK LAX 46 34 11 11 0 5 107
SAN LAX 35 42 16 14 57 8 192
SAN SJC 6 1 19 19 16 7 68
SFO LAX 16 21 9 5 10 7 68
SJC LAX 8 10 32 31 19 8 108
SJC SAN 5 1 18 18 20 7 69
Profit §7.145530  §2230,624 | 856,571,946 55366799 | $4503649 -$633,025 | §25185524
Model Integration Fleet Assignment (Air $300 / HSR $200)
Airports Air Price= 5300 HSR Price= 5200 Demand= 119,675
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 6 1 39 38 0 7 91
LAX SAN 41 38 15 13 94 10 111
LAX SFO 16 16 10 5 4 9 60
LAX SJC 11 6 31 30 14 11 103
0OAK LAX 46 29 12 11 0 7 105
SAN LAX 56 40 17 15 52 10 190
SAN SJC 6 0 20 19 9 9 63
SFO LAX 17 16 10 5 4 9 61
SJC LAX 9 5 33 31 13 10 101
SJC SAN 6 0 19 18 14 9 66
Profit §7.638319 §1905,037 | §7.169.842 55693742 | $3.774,073 -$820,635 | §25360378
Model Integration Fleet Assignment (Air $300 / HSR $225)
Airports Air Price= 5300 HSR Price= 5225 Demand= 120,460
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 6 1 39 38 6 7 97
LAX SAN 41 38 16 13 93 10 111
LAX SFO 17 16 10 5 4 9 61
LAX SJC 11 6 32 30 14 11 104
0OAK LAX 47 29 12 11 0 7 106
SAN LAX 56 40 17 15 52 10 190
SAN SJC 6 0 20 19 9 9 63
SFO LAX 17 16 10 5 4 9 61
SJC LAX 9 5 33 32 13 10 102
SJC SAN 6 0 20 18 13 9 66
Profit §7.605230 81775041 | $7141279 85568311 | $3786354 -$821379 | §250543836
Model Integration Fleet Assignment (Air $300 / HSR $250)
Airports Air Price= 5300 HSR Price= 5250 Demand= 121,167
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 5 3 35 36 7 8 94
LAX SAN 35 40 17 16 90 12 110
LAX SFO 17 16 7 0 0 13 53
LAX SJC 14 10 26 27 16 12 105
0OAK LAX 42 31 12 12 1 8 106
SAN LAX 50 42 18 17 52 12 191
SAN SJC 17 10 12 15 16 5 75
SFO LAX 15 18 9 4 61
SJC LAX 9 7 32 31 13 11 103
SJC SAN 6 3 18 18 14 9 68
Profit §7.337992 §2277486 | $6,531249 85535753 | $3912555 -$944236 | §24.650.800

Table 4.19: Model Integration Fleet Assignment (Air $300)
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Model Integration Fleet Assignment (Air $275/HSR §175)

Airports Air Price= $275 HSR Price= 8175 Demand= 120,447
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 19 13 20 23 16 11 102
LAX SAN 29 63 25 30 52 8 207
LAX SFO 8 24 8 9 20 6 75
LAX SJC 20 25 20 22 25 8 120
0OAK LAX 14 38 14 17 34 10 127
SAN LAX 25 13 23 29 29 30 149
SAN SJC 1 9 0 3 12 30 55
SFO LAX 13 14 13 17 14 0 71
SJC LAX 16 43 16 19 33 9 136
SJC SAN 14 9 15 17 13 5 73
Profit §5,002.876 $2.802393 | 54994190 85260754 | $3914038 -51,886.910 | 520,087 341
Model Integration Fleet Assignment (Air $275/HSR $200)
Airports Air Price= 5275 HSR Price= 5200 Demand= 121,667
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 19 17 19 22 20 10 107
LAX SAN 29 61 26 30 51 10 207
LAX SFO 9 23 8 9 18 6 73
LAX SJC 20 24 21 22 24 9 120
0OAK LAX 15 37 15 17 33 10 127
SAN LAX 26 13 25 30 28 19 151
SAN SJC 1 7 0 2 10 31 51
SFO LAX 13 13 13 16 13 2 70
SJC LAX 16 42 16 18 33 9 134
SJC SAN 14 9 14 16 13 6 72
Profit §5,082,141 §2.760,333 | §5115094 55203949 | $3834934 -51929978 | §20,066.472
Model Integration Fleet Assignment (Air $275/HSR $225)
Airports Air Price= 5275 HSR Price= 5225 Demand= 122,627
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 19 19 20 22 21 10 111
LAX SAN 26 62 25 29 50 13 205
LAX SFO 10 23 10 10 18 5 76
LAX SJC 21 24 21 22 24 9 121
0OAK LAX 16 37 16 18 32 9 128
SAN LAX 19 16 23 17 49 126
SAN SJC 1 8 0 3 10 32 54
SFO LAX 13 12 13 15 12 2 67
SJC LAX 17 42 17 19 32 9 136
SJC SAN 14 9 15 16 12 6 72
Profit §4.834807 $2,616,105 | 54944152 54982827 | $3617,058 -82,052,089 | 518942 861
Model Integration Fleet Assignment (Air $275/ HSR $250)
Airports Air Price= 5275 HSR Price= 5250 Demand= 123,582
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 20 18 20 22 21 9 110
LAX SAN 12 63 15 21 51 32 194
LAX SFO 10 22 10 10 17 5 74
LAX SJC 19 24 20 22 24 11 120
0OAK LAX 17 36 17 18 31 9 128
SAN LAX 21 1 19 25 17 45 128
SAN SJC 3 7 3 4 10 18 55
SFO LAX 14 11 14 16 12 2 69
SJC LAX 18 41 18 19 31 9 136
SJC SAN 13 20 13 15 22 4 87
Profit 84543531 §2,717,082 | $4,733537 54884340 | $3.727.099 -82,059.064 | §18.546.525

Table 4.20: Model Integration Fleet Assignment (Air $275)
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Model Integration Fleet Assignment (Air $250 / HSR §175)

Airports Air Price= 5250 HSR Price= 8175 Demand= 122,639
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 20 21 20 22 24 7 114
LAX SAN 7 61 11 18 48 40 185
LAX SFO 10 21 10 11 17 4 73
LAX SJC 15 35 15 20 35 12 132
0OAK LAX 18 35 18 19 30 7 127
SAN LAX 19 0 16 22 16 50 123
SAN SJC 5 7 5 6 10 15 58
SFO LAX 1 15 4 15 22 58
SJC LAX 19 40 19 20 30 7 135
SJC SAN 14 19 14 15 21 2 85
Profit §3,500,610 52482311 | 53660840 53991860 | $3.449304 -83,572571 | §13512354
Model Integration Fleet Assignment (Air $250 / HSR $200)
Airports Air Price= 5250 HSR Price= 5200 Demand= 123,936
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 21 20 22 23 23 7 116
LAX SAN 9 60 13 19 48 33 187
LAX SFO 12 20 12 12 16 2 74
LAX SJC 16 34 16 21 34 11 132
0OAK LAX 19 34 19 19 29 6 126
SAN LAX 19 1 16 21 17 51 125
SAN SJC 13 8 12 12 9 12 66
SFO LAX 0 16 2 4 16 21 59
SJC LAX 20 40 22 20 31 4 137
SJC SAN 16 15 14 15 15 4 79
Profit §3,937973 §2.439.796 | 854177104 54159243 | $3350286 -52943611 | §15120.791
Model Integration Fleet Assignment (Air $250 / HSR §225)
Airports Air Price= 5250 HSR Price= 5225 Demand= 125,212
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 27 18 27 26 21 0 119
LAX SAN 10 60 14 20 47 33 189
LAX SFO 12 20 12 12 16 2 74
LAX SJC 17 31 15 22 32 13 130
0OAK LAX 20 33 20 20 28 7 128
SAN LAX 21 1 18 22 17 49 128
SAN SJC 14 13 13 9 11 67
SFO LAX 2 15 4 5 16 19 61
SJC LAX 21 40 23 21 30 4 139
SJC SAN 17 15 15 16 14 4 81
Profit §4.316,589 §2.334981 | S4.540,069 54406612 | $3231738 -52844103 | §15 985885
Model Integration Fleet Assignment (Air $250 / HSR $250)
Airports Air Price= 5250 HSR Price= 5250 Demand= 126,457
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 27 17 27 26 20 0 117
LAX SAN 11 59 15 20 47 33 190
LAX SFO 13 19 13 13 15 2 75
LAX SJC 17 30 16 22 31 13 129
0OAK LAX 20 33 20 20 28 6 127
SAN LAX 22 1 19 22 16 49 129
SAN SJC 15 7 14 13 8 11 68
SFO LAX 3 15 5 5 16 19 63
SJC LAX 22 39 23 21 30 3 138
SJC SAN 17 14 16 16 14 4 81
Profit §4.496903 §2295634 | 54718194 54,500,018 | $3]182977 -82,577.887 | §16.615839

Table 4.21: Model Integration Fleet Assignment (Air $250)
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Model Integration Fleet Assignment (Air $225/HSR §175)

Airports Air Price= $225 HSR Price= 8175 Demand= 125,466
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 16 0 25 27 6 16 90
LAX SAN 25 40 25 26 60 19 195
LAX SFO 17 8 9 13 10 66
LAX SJC 26 27 25 26 31 0 135
0OAK LAX 22 35 22 24 28 2 133
SAN LAX 31 40 26 27 41 0 185
SAN SJC 9 20 7 10 22 13 81
SFO LAX 13 10 12 12 3 8 58
SJC LAX 18 44 24 24 23 5 138
SJC SAN 8 2 8 6 0 25 49
Profit §4278991 §2,026,806 | 54610737 54208899 | $2.895197 -83,121.681 | §14.898.949
Model Integration Fleet Assignment (Air $225/HSR $200)
Airports Air Price= $225 HSR Price= 5200 Demand= 127,064
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 16 0 25 27 5 16 89
LAX SAN 25 39 26 26 59 0 195
LAX SFO 10 17 8 9 13 10 67
LAX SJC 27 26 25 26 30 1 135
0OAK LAX 21 35 21 23 28 3 131
SAN LAX 31 40 26 27 41 11 186
SAN SJC 9 19 8 10 21 14 81
SFO LAX 13 10 12 12 2 9 58
SJC LAX 18 43 23 24 23 6 137
SJC SAN 9 1 9 6 0 25 50
Profit §4.360.049 51986813 | 54641429 54224281 | $2.854427 -83,554337 | §14,521 663
Model Integration Fleet Assignment (Air $225/HSR $225)
Airports Air Price= $225 HSR Price= 5225 Demand= 128,675
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 19 4 25 26 9 14 97
LAX SAN 27 41 27 28 59 18 200
LAX SFO 11 17 10 10 14 8 70
LAX SJC 26 26 25 25 30 3 135
0OAK LAX 19 34 19 22 27 8 129
SAN LAX 32 40 27 28 41 11 189
SAN SJC 11 19 10 12 21 10 83
SFO LAX 13 9 12 12 2 10 58
SJC LAX 18 42 21 22 23 9 135
SJC SAN 10 1 9 6 0 15 51
Profit §4.458.743 §2016.400 | 54685394 54265965 | $2.891476 -53,538.101 | §14.779.876
Model Integration Fleet Assignment (Air $225/ HSR $250)
Airports Air Price= $225 HSR Price= 5250 Demand= 130,254
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 23 3 23 25 11 14 99
LAX SAN 28 35 28 27 56 11 195
LAX SFO 10 18 6 8 16 12 70
LAX SJC 19 31 19 21 32 12 134
0OAK LAX 19 24 19 20 20 14 116
SAN LAX 31 41 33 35 44 13 197
SAN SJC 7 9 5 6 13 24 64
SFO LAX 12 21 12 12 19 4 80
SJC LAX 19 40 21 22 25 10 137
SJC SAN 16 14 16 18 18 3 85
Profit §4.437545 §2,037,538 | $4,598257 54353638 | $3223540 -53,497.028 | §15]153 489

Table 4.22: Model Integration Fleet Assignment (Air $225)
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Model Integration Fleet Assignment (Air $200 /HSR $175)

Airports Air Price= 5200 HSR Price= 8175 Demand= 129,397
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 24 1 23 31 2 12 93
LAX SAN 26 64 26 30 58 14 118
LAX SFO 0 27 10 13 25 8 83
LAX SJC 20 24 20 23 25 13 125
0OAK LAX 20 31 20 23 32 5 131
SAN LAX 28 15 26 34 32 19 164
SAN SJC 5 3 3 12 19 59
SFO LAX 17 6 18 13 1 5 60
SJC LAX 19 38 18 20 23 13 131
SJC SAN 19 8 19 21 13 ] 80
Profit §3,677.758 §1,630,176 | $3980,017 54,030,949 | $2.467.468 -54,134617 | §11,651.751
Model Integration Fleet Assignment (Air $200 / HSR $200)
Airports Air Price= 5200 HSR Price= 5200 Demand= 131,414
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 24 0 23 31 1 13 92
LAX SAN 26 65 26 29 58 16 120
LAX SFO 14 28 11 12 25 0 90
LAX SJC 20 25 21 23 26 13 128
0OAK LAX 20 32 21 22 32 6 133
SAN LAX 27 13 24 32 29 34 159
SAN SJC 3 6 0 0 10 34 53
SFO LAX 16 6 18 12 1 6 59
SJC LAX 20 40 20 22 26 10 138
SJC SAN 19 7 20 21 13 0 80
Profit §3.864278 51,646,090 | 53978442 53937343 | $2.451998 -54.281836 | §11596315
Model Integration Fleet Assignment (Air $200 / HSR $225)
Airports Air Price= 5200 HSR Price= 5225 Demand= 133,448
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 23 6 22 29 7 14 101
LAX SAN 26 65 27 29 57 17 121
LAX SFO 14 27 11 11 24 1 88
LAX SJC 20 22 22 23 23 14 124
0OAK LAX 21 31 21 22 32 7 134
SAN LAX 28 14 26 33 30 33 164
SAN SJC 3 6 0 0 10 35 54
SFO LAX 17 6 19 12 1 61
SJC LAX 18 43 18 21 32 11 143
SJC SAN 18 9 19 20 15 2 83
Profit §3.,891.345 51687675 | 54035258 53880374 | $2550722 -54.413445 | §11,640930
Model Integration Fleet Assignment (Air $200 / HSR $250)
Airports Air Price= 5200 HSR Price= 5250 Demand= 135,448
Origin  Destination| Airbus 320 CRJ-100 ER |Boeing 737-3 Boeing 737-5| ATR 72  Boeing 767-3 Total
LAX OAK 23 5 22 29 6 15 100
LAX SAN 26 63 27 29 56 19 120
LAX SFO 14 27 11 11 23 2 88
LAX SJC 22 28 22 24 28 11 135
0OAK LAX 20 31 20 22 31 9 133
SAN LAX 29 14 27 34 30 33 167
SAN SJC 3 1 1 11 35 58
SFO LAX 17 5 19 12 0 59
SJC LAX 19 44 19 21 33 11 147
SJC SAN 16 10 17 18 15 5 81
Profit §3,898.865 §1,720952 | 54,026,919 53865031 | $2581252 -54,865005 | §11228014

Table 4.23: Model Integration Fleet Assignment (Air $200)
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45  Conclusion

The benefits of transportation policy analysis, more specifically the study of
transportation systems planning and airline schedule planning, has far reaching benefits.
Demonstrating the links between transportation policy, travel demand modeling, and resource
allocation modeling such as fleet assignment, provides transportation planners with a means to

view the cost and travel demand implications of their resource allocation and pricing decisions.

The study of transportation systems planning models and airline schedule planning
models can take several forms. Integrating both planning models through user-mode choice and
fleet assignment is one method of bridging the gap between sectors of transportation theory
commonly studied in isolation. Other methods of integration can involve the other transportation
forecasting models and airline schedule planning models which include trip generation, trip
distribution, route assignment, schedule design, aircraft maintenance routing, and crew
scheduling. Integrated analysis can be used to show how policy decisions, especially those

which directly impact transportation policy, can affect multimodal public transportation.

The integration of transportation systems planning and fleet assignment resulted in
feedback relationship between the main mode choice determinations of transportation systems
planning and the resource allocation of the fleet assignment problem. Given high-speed rail &
commercial air ridership and profit forecasts, transportation planners need a model to estimate
the resources required to support multimodal interregional travel demand. More specifically,
planners need to know how many planes are required to support California travel. The
synthesized decision support method for multimodal transportation system planning models and
airline schedule planning models can provide decision makers with the required synthesized

decision making tool.
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Without high-speed rail, reducing the price of commercial air resulted in an increase in
commercial air ridership and a reduction in the number of car users. Since the majority of the
high-speed rail ridership stems from a reduction in the number of car users, one can assume that
the addition of high-speed rail to a multimodal transportation network should alleviate highway
congestion, but not a have a great impact on commercial air congestion. Conventional rail
ridership was not greatly impacted by other model changes. There was little change to the
conventional rail ridership as a result of having or not having high-speed rail. Similar to the
ridership results without high-speed rail, there was minimal change to the conventional rail

ridership results based on changes to both commercial air and high-speed rail.

As stated previously, a Nash Equilibrium is defined where no player in a competitive
game benefits from unilaterally changing their strategy. In this case of commercial air and high-
speed rail pricing for the purpose of maximizing commercial air profit and high-speed rail
ridership, a Nash equilibrium exists where commercial air sets its average price at $350 and
high-speed rail sets its average price at $175. Commercial air loses profit and high-speed rail

loses ridership if either decides to change their average price.

A possible scenario regarding the introduction of high-speed rail is the idea of
subsidizing commercial air in order to allow a reduction high-speed rail pricing for the purpose
of stimulating high-speed rail ridership and revenue. Reducing commercial air prices an average
of ~$25 results in a $1M profit loss resulting in a high-speed rail revenue increase of ~$300K.

As a result, subsidizing commercial air for the benefit of high-speed rail is not cost effective.

The pricing strategy most beneficial to the future of commercial air and high-speed rail as

alternate modes of transportation to car results in the worst short-term revenue benefit. Decision
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makers will have to decide whether to set costs based on short-term or long-term benefit. Listed

below are the conclusions which motivated the short-run analysis:

e What average prices for commercial air and high-speed rail maximize air profit and high-
speed rail ridership? The maximum profit for commercial air and ridership for high-
speed rail are achieved at the Nash equilibrium price of $350 for commercial air and
$175 for high-speed rail.

e At what price is high-speed rail viable? The viability of high-speed rail depends on the
cost of building and operating it. Without network cost information for high-speed the

question of viability cannot be answered.

This chapter demonstrated how policy decisions through pricing subsidies can affect user mode

choice decisions which in turn affect fleet assignment.
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CHAPTER V

GAME THEORETIC MULTIDISCIPLINARY OPTIMIZATION FOR MULTIPLE

MARKET NETWORK USER EQUILIBRIUM DECISION ANALYSIS

)

“In competitive behavior, someone always loses.’

- John Forbes Nash - “4 Beautiful Mind”

51 Introduction

Developing and anticipating system responses in a competitive transportation network is a key
task for decision makers managing multiple competitive markets. In the competitive airline
industry, multiple airlines can assign multiple fleets to optimize for various objectives to include
minimizing cost, maximizing market share, and maximizing profit. Current analysis of the
commercial airline industry to conduct such optimization studies typically focuses internally on
competing airlines and specific markets. As decision makers are considering and planning for
the introduction of high-speed rail to their competitive commercial transportation markets, this
work outlines a multidisciplinary methodological approach for analyzing a network of
competitive markets which include commercial air and high-speed rail. This work seeks to
establish the optimal resourcing conditions amongst competitors in a transportation network
comprised of multiple origin-destination pairs such that any unilateral shifts result in either
increased operational costs or a loss of market share. Transportation service provider resourcing

affects the level-of-service provided to the transportation customer.

85



The term of level-of-service is used by transportation officials to measure the
effectiveness of transportation systems (Papacostas 2001). Level-of-service is typical used to
describe vehicle transit flow conditions where the various levels describe traffic flow conditions
from free-flow operations to a breakdown in vehicle flow. While levels of service can be
quantified in terms of vehicle headway or car length spaces between vehicles, the term level-of-
service is often subjective. For the purpose of this synthesized research, airline levels-of-service
will be considered in terms of service headway or the amount of distance, measured in time,
between transportation service vehicles (Wardman 2004). Assuming a constant operating day,
level-of-service will be described by the number of flights conducted per day between an origin-
destination pair. Level-of-service conditions become a key constraint when conducting systems

analysis, since level-of-service conditions define network capacity.

This chapter is the next step in the multidisciplinary transportation systems analysis
framework provided by this research. This research began with the construction of a
parsimonious travel demand modeling for California high-speed rail followed by the integration
of transportation systems planning and airline schedule planning through the use of
multidisciplinary optimization. This chapter expands the concept of determining equilibrium
conditions from a network perspective consisting of multiple individual markets using a game

theoretic and multidisciplinary optimization method for multidisciplinary analysis.

This remainder of this chapter is organized into five main sections. The first section
presents the methodology and formulations. Next, a case study is provided to illustrate the
synthesized decision support method followed by results and discussion, and a conclusion which
explain how the proposed method provides a synthesized method for user equilibrium decision

analysis.
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5.2  Game Theoretic Multidisciplinary Optimization Methodology

In this chapter, game theoretic multidisciplinary optimization is used to solve a network user
equilibrium decision analysis problem. Game theoretic optimization combines the principles of
optimization to solve game theoretic problems. A coupling of game theory and optimization was
proposed by Palomar et al which explored the theoretic principles and techniques of game theory
convex optimization and variational inequality theory and discussed their relationships to Nash
Equilibrium problems (Scutari et al. 2010). A study of game theory and transportation system
modeling was conducted by Fisk analyzed the problem of operator competition and uses game
theory to formulate a solution (Fisk 1984). A game theoretic approach to urban public transport
integration policy was proposed by Roumboutos and Kapros to predict the outcomes of various
fare and location dependent strategies for public and private transportation operators

(Roumboutsos and Kapros 2008). The game theoretic optimization methodology follows.

Master Problem for airline a: Given x¢, +yx« for all airlines except airline a.

M Xy, yopaT

T = Ra_ CCa(xa) - OCa(ya)

Zzyfodka < x;(MOPD)VfE€F, k€K

0€0 deD

Z Z yfodka(PAXf) = Qoda(yk) YVo€eEOkeK

0€0 deD
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The objective function is formulated for each player. The objective function constraints for each
player are dependent on decisions made by the other players as these decisions affect the user
demand supported by each player. For this optimization formulation, the solution is derived by
iterating through the objective functions of each player while holding constant the decisions for
the other competitors. In this research, consecutively optimizing the objective functions of each

player will be considered one optimization iteration.

Another approach to the optimization iteration approach is to optimize the decisions of all
players simultaneously. Based on the number of players and subsequent degrees of freedom, this
simultaneous formulation approach can quickly become intractable due to computational
expense. After each optimization iteration, re-evaluate user demand. User demand can be re-
evaluated through the use of a travel demand model such as the PTDM or by using a demand
redistribution decision rule. The process of re-evaluating user demand and conducting an
optimization iteration continues until either the demand distribution or its optimal resourcing
converges. For this analysis, user demand re-evaluation will be is based on a decision rule. The
decision rule assumes equal service provider utilization based on the capacity provided by each

service provider.
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5.3  Case Study

Optimization and game theory models have been used to estimate responses to changes in
network conditions. Changes in resourcing and pricing are amongst the primary potential
network responses to a market entrant. Given the potential entrance of high-speed rail to US
commercial, transportation providers require decision support to be prepared for competitor
responses. These decision support questions require a synthesized approach for conducting
multidisciplinary multimodal decision support over time. To illustrate the method of anticipating
network responses to changes in network conditions, the following case study problem utilizes
travel demand results from the parsimonious travel demand model from chapter three to develop
a competitive response model which outlines the relationship between three competitive airlines
responding to the entrance of high-speed rail and to each other. This analysis assumes aircraft

are dedicated to specific origin-destination links.

5.3.1 Problem Description

This case study problem involves three competitive airlines allocating aircraft to support travel
demand for ten origin-destination pairs assuming four possible demand distribution scenarios.
The four scenarios are based on the four HSR price values as shown in Table 5.25. The three
airlines in this case study problem are United Airlines, Southwest Airlines, and American
Airlines. The data used in this game is generally based on Bureau of Transportation Statistics
data from 2007 to 2009. The problem description, constraints, and solutions provided are meant
to be used for illustrative purposes only and not directly indicative of previous or anticipated
airline behavior. In this problem, each airline has two fleets to choose from as shown in Table.

5.24.
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Airline Allocation Aircraft

Airine  Aircraft Model CS:;:E

United CRJ-100 ER 50

United A 320 138
Southwest B737-5 122
Southwest B 737-3/7 137
American ATR 72 64
American B767-3 225

Table 5.24: Airline Allocation Aircraft

This airline allocation game involves three competitive commercial airlines seeking to
minimize the cost of allocating resources to support customer demand. The airline available
aircraft, seating capacities, and allocation initial conditions are illustrated in Tables 5.24 to Table
5.26. The objective function for each player is to maximize the profit of allocating aircraft in
support of customer demand. The demand allocation is assumed to be dependent on resource
capacity provided by each player. The cost is based on the NASA cost model used in previous

chapters (Harris 2005).

In this case study, there are six input parameters corresponding to the six fleet choices of
the three competing airlines. The ranges of the six parameters are based on the feasible ranges of
the input parameters given the customer demand initial conditions. The problem of resourcing
and its relationship to user main-mode choice is assumed to be an instantaneous process although

network conditions often take time to reach equilibrium conditions.
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Aircraft Demand (Air Price: $350)

Origin Destination Disfance HSR Prices

(miles) | §175 S200 $225  $250
LAX 0AK 369.5 | 9,966 10,041 10,081 10,116
LAX SAN 1253 [ 15,730 15848 15912 15967
LAX SFO 388.1 | 5,764 5808 5831 5851
LAX SIC 347.7 | 10,552 10,631 10,674 10,711
OAK LAX 369.5 | 9,966 10,041 10,081 10,116
SAN LAX 1253 [ 15,730 15,848 15912 15967
SAN SIC 4637 | 6,839 6891 6,918 6,942
SFO LAX 388.1 | 5,862 5906 5930 5951
SJC LAX 347.7 | 10454 10,533 10,575 10,612
SJIC SAN 4637 | 6,839 6801 6,918 6,942

Total Demand

97,701 98,437

98,831 99,177

Table 5.25: Aircraft Demand By Scenario

The pricing used for this case study is an average of the ticket prices across the 10 origin-

destination pairs. As expected, the resulting demands for each scenario vary based on pricing

conditions.
Airline Aircraft Initial Conditions

Airline United Southwest American

OD Pair A 320 CRJ- 100 ER| B 737 -3/7 B737-5 ATR 72 B767-3
1 10 10 44 44 0 0
2 45 37 1] 0 125 20
3 25 25 0 0 40 5
4 10 10 26 26 45 10
5 57 37 13 13 0 (1]
6 55 37 0 0 80 25
7 0 0 20 20 5 10
8 25 25 1] 0 40 5
9 10 10 30 30 45 10
10 0 0 18 18 45 10

Table 5.26: Airline Allocation Initial Conditions
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The resource allocation problem is non-linear and as a result is subject to the network
initial allocation conditions. These aircraft distribution initial conditions are generally based on
aircraft allocations in the California Corridor from 2007 to 2009. Based on the aircraft resource

allocation initial conditions, Table 5.27 shows the initial competitive airline demands.

Commercial Airline Initial Demand Split

Oriet Dectinad 97,701 98,831 98,437 99177
rigim  Destmation | . ited SWA  AA | United SWA  AA | United SWA  AA | United SWA  AA

LAX 0AK 1411 8554 0 1422 8619 0 1428 8,653 0 1433 8684 0
LAX SAN 6,166 0 9563 | 6213 0 9635 | 6238 0 9674 | 6,260 0 9,708
LAX SFO 3231 0 2513 | 3255 0 255 | 3268 0 2563 | 3280 0 257
LAX SIC 1,443 5170 3938 | 1,454 5209 3968 | 1460 5230 13984 | 1465 5248 3,998

0AK LAX 7,401 2,565 0 7,457 2,584 0 7,486 2,594 0 7,513 2,603 0
SAN LAX 7,356 0 8373 | 7,412 0 8,436 | 7,442 0 8,470 | 7,468 0 8,500
SAN SIC 0 3436 3403 0 3462 3429 0 3476 3442 0 3488 3454
SFO LAX 3286 0 257 | 3311 0 259 | 37324 0 2606 | 3335 0 2615
SIC LAX 1,330 5496 3628 | 1,340 5537 3,656 | 1345 5559 3670 | 1350 5579 3,683
SIC SAN 0 325 3,583 0 3281 3,610 0 3294 3624 0 3305 3,637
Total 31,625 28477 37,599 | 31863 28,691 37.882 | 31991 28806 38,034 | 32,103 28907 38,167

Table 5.27: Commercial Aircraft Demand By Airline

54  Results

Similar to the previous, this chapter models resource allocation associated with four price-related
customer demands. Unlike the previous chapter, this chapter provides a method for conducting
analysis for a network made up of multiple markets. As expected, the customer demands with
the higher demand values have slightly increased resource allocations. This relatively constant
allocation is due to varying aircraft percent utilizations. The airlines wish to maximize
profitability and are forced to increase their level of service and possibly reconsider pricing

strategy. Airlines maximize profitability by flying more small aircraft.

Tables 5.28 and 5.29 list the competitive airline fleet allocations with and without high-

speed rail. As expected, there was a significant decrease in air profit (~$7M) upon the
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introduction of high-speed rail. In addition, the resource allocations vary slightly amongst the

four customer demand values.

Tables 5.30 to 5.36 list the competitive prices for the three airlines given the four demand

values. Surprisingly the optimal prices in general were outside the feasible range of the pricing

model.
Base Scenario: Multiple Airline Fleet Assignment - Air Demand: 121,180
Airports United Southwest American
Origin = Destination| Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5| ATR 72 Boeing 767-3 Total
LAX OAK 23 9 25 0 26 9 92
LAX SAN 31 31 25 20 59 10 174
LAX SFO 0 319 3 11 4 7 64
LAX SJC 20 16 25 1 54 1 118
OAK LAX 7 47 15 10 27 7 114
SAN LAX 30 35 24 22 59 9 178
SAN SJC 13 5 0 18 9 7 53
SFO LAX 0 319 14 0 5 7 65
8JC LAX 22 10 23 3 30 7 %6
SJC SAN 13 5 16 0 11 7 52
Profit §10,740,015 $5,616,357 | $11,399.286 54,977,415 | $8,963,441 $5,733,717 |S47.430,230
Table 5.28: Base Scenario: Cooperative Fleet Assignment Without High-Speed Rail
Multiple Airline Fleet Assignment - Air Demand: 97,701
Airports United Southwest American
Origin  Destination| Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5| ATR 72 Boeing 767-3 Total
LAX 0OAK 21 10 23 1 29 6 91
LAX SAN 27 30 24 17 59 6 163
LAX SFO 0 38 6 9 7 6 67
LAX SJC 22 10 25 1 32 6 97
0OAK LAX 8 43 15 11 29 6 113
SAN LAX 26 35 22 18 59 6 166
SAN SJC 14 7 3 15 13 6 59
SFO LAX 0 i 12 2 8 6 68
SJC LAX 22 10 22 4 32 6 9%
SJC SAN 14 7 14 3 13 6 58
Profit §10,109,854 $4,743,074 | 510,911,683 53,733,637 | 58,899,047 53,950,743 | 542,348,038

Table 5.29: GTO Fleet Assignment With High-Speed Rail — Demand 97,701
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Multiple Airline Fleet Assignment - Air Demand: 98,437

Airports United Southwest American
Origin  Destination| Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5| ATR 72 Boeing 767-3 Total
LAX 0AK 21 8 24 0 25 8 87
LAX SAN 28 30 23 17 58 7 162
LAX SFO 0 39 3 12 4 8 65
LAX SJC 20 16 25 1 54 0 116
0OAK LAX 8 46 15 10 27 7 113
SAN LAX 26 33 22 19 59 7 166
SAN SJC 15 5 0 19 9 8 55
SFO LAX 39 14 0 5 7 66
SJC LAX 22 9 23 3 30 7 94
SJIC SAN 15 5 16 1 11 7 55
Profit $10,360,203 55,499,649 | $11,167.958 54,769,249 | 58,887,221 $5.247.150 | 545,931,429

Table 5.30: GTO Fleet Assignment With High-Speed Rail — Demand 98,437

Multiple Airline Fleet Assignment - Air Demand: 98,831

Airports United Southwest American
Origin  Destination | Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5| ATR 72 Boeing 767-3 Total
LAX OAK 21 10 23 1 29 7 91
LAX SAN 28 30 24 17 59 7 164
LAX SFO 0 38 6 9 7 7 67
LAX SJC 22 10 25 1 32 7 98
OAK LAX 9 44 15 11 29 7 114
SAN LAX 26 35 23 18 59 7 167
SAN SJC 14 8 3 15 13 7 60
SFO LAX 0 39 12 3 8 7 68
SJC LAX 22 10 22 4 32 7 97
SJC SAN 14 8 14 3 13 7 58
Profit $10,506,212 85,648,774 | §11,269.798 54,943,130 | 58,881,362 -51,068,763 | $40.,180,512

Table 5.31: GTO Fleet Assignment With High-Speed Rail — Demand 98,831

94



Multiple Airline Fleet Assignment - Air Demand: 99,177

Airports United Southwest American
Origin  Destination| Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5| ATR 72 Boeing 767-3 Total
LAX 0AK 21 10 23 1 26 7 89
LAX SAN 28 29 24 17 57 8 162
LAX SFO 0 38 6 9 5 7 66
LAX SJC 20 16 25 2 56 0 118
0OAK LAX 9 44 15 11 27 7 112
SAN LAX 26 34 23 18 57 7 166
SAN SJC 15 6 3 15 10 7 57
SFO LAX 1 38 12 3 5 7 66
SJC LAX 22 10 22 4 29 7 95
SJIC SAN 14 7 14 3 10 7 56
Profit $10.432,086 55,506,637 | 511,136,247 54,731,000 | 58,911,512 $5,335,594 | 546,053,077

Table 5.32: GTO Fleet Assignment With High-Speed Rail — Demand 99,177

Multiple Airline Optimal Prices - Air Demand: 97,701

Airports United Southwest American OD Pair
Origin Destination | Airbus 320 CRJ-100 ER. | Boeing 737-3 Boeing 737-5 ATR 72 Boeing 767-3 Average Price
LAX 0OAK $500 $313 $500 $313 $500 $313 S407
LAX SAN $500 8357 S500 8357 $500 5357 5429
LAX SFO $313 $500 §313 $500 $500 §313 S406
LAX SJC $500 $319 S500 $319 $500 $319 $409
0AK LAX $313 $500 $300 $313 $500 $313 $407
SAN LAX $300 $357 $300 $357 $500 $357 $429
SAN SJC $500 $300 $300 $500 5500 5300 5400
SFO LAX $313 $500 $500 $313 $500 $313 $406
SJC LAX $500 $319 $500 $319 $500 $319 $409
SJC SAN S500 $313 S500 $313 S500 5313 5407

Aircraft Average Price S444 $378 S461 S360 S500 $322 S411

Table 5.33: GTO Optimal Prices With High-Speed Rail — Demand 97,701
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Multiple Airline Optimal Prices - Air Demand: 98,831

Airports United Southwest American OD Pair
Origin Destination | Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5 ATR 72 Boeing 767-3 Average Price
LAX 0AK $300 $500 $300 $300 $300 - $300
LAX SAN $500 s500 $500 $500 5500 - 5500
LAY SFO $500 s500 $500 $500 $500 - $500
LAY SJC $500 s500 $500 $500 $500 - $500
0AK LAX S500 S500 S500 S500 S500 - S500
SAN LAX S500 $500 S500 S500 5500 - $500
SAN SJC $500 $500 $500 $500 5500 - $500
SFO LAX $500 $500 $500 $500 $500 - $500
SIC LAX $500 $500 $500 $500 $500 - $500
SJC SAN $500 $500 $500 $500 5500 - 5500

Aircraft Average Price S$500 $500 $500 $500 $500 - S$500

Table 5.34: GTO Optimal Prices With High-Speed Rail — Demand 98,831

Multiple Airline Optimal Prices - Air Demand: 98,437

Airports United Southwest American OD Pair
Origin Destination | Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5 ATR 72 Boeing 767-3 Average Price
LAX 0AK $500 $430 $500 5430 $500 5430 5465
LAY SAN $500 s500 $500 $500 $500 $500 $500
LAY SFO $380 s500 $380 $500 $500 $380 S440
LAY SJC S500 $477 S500 S477 S500 S477 $488
0AK LAX S430 $500 S500 5430 S500 5430 5465
SAN LAX $500 $499 $500 5499 5500 5499 5499
SAN SIC $500 §303 $303 $500 $500 $303 S446
SFO LAX $3581 $500 $500 $381 $500 $381 S440
SJC LAX $500 $436 $500 5436 $500 5436 5468
SJC SAN $500 $393 $500 $393 $500 5393 5446

Aircraft Average Price $469 $463 S477 S454 $500 §432 $466

Table 5.35: GTO Optimal Prices With High-Speed Rail — Demand 98,437
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Multiple Airline Optimal Prices - Air Demand: 99,177

Airports United Southwest American OD Pair
Origin Destination | Airbus 320 CRJ-100 ER | Boeing 737-3 Boeing 737-5 ATR 72 Boeing 767-3 Average Price
LAX 0AK $300 $430 $300 $430 $300 $430 5465
LAX SAN $500 s500 $500 $500 $500 5500 5500
LAY SFO $380 s500 $380 $500 $500 $380 S440
LAY SJC $500 $477 $500 $477 $500 $477 5488
0AK LAX S430 S500 S500 S430 S500 $430 $465
SAN LAX S500 $499 S500 5499 5500 5499 5499
SAN SJC $500 $393 5393 $500 5500 5393 S446
SFO LAX $3581 $500 $500 $381 $500 $381 S440
SIC LAX $500 $436 $500 $43¢6 $500 $436 5468
SJC SAN $500 $393 $500 $393 $500 5393 5446

Aircraft Average Price $469 $463 $477 $454 $500 §432 5466

Table 5.36: GTO Optimal Prices With High-Speed Rail — Demand 99,177

55  Conclusions

Game theoretic optimization can serve as an effective means for conducting transportation
systems analysis. This work demonstrated how optimization can be utilized within the context
of game theory to determine equilibrium points in terms of pricing scenarios for the analysis of
multimodal systems to conclude commercial and high-speed rail. This work demonstrated how
optimal pricing condition amongst competitors such that any unilateral shifts result in a loss of
either profit or market share. Lastly, this work showed how pricing strategies can affect the
identification of equilibrium points that determine profit, revenue, and market share. As the
Game Theoretic Optimization best response results are not sensitive to initial conditions, it is
assumed that each unique combination of best response functions either have a unique

equilibrium point or none at all.
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CHAPTER VI

CONCLUSIONS

“Let me tell you the secret that has led me to my goal. My strength lies solely

in my tenacity.” — Louis Pasteur

This research provided a framework to conduct system-of-systems analysis using two specific
system-of-systems analysis applications directly affected by customer or user decision choice
namely transportation systems planning and airline schedule planning. This framework was
designed to aid system-of-systems decision makers in conducting resourcing and pricing
analysis.  While this research focused on two transportation system-of-systems, the
methodologies provided in this research are generalizable to other system-of-systems domains.
This research addressed two of primary criticisms of system-of-systems analysis, complexity and
computational expense along with not considering the effects of outside systems by successfully
developing a feasible transportation demand model for repetitive analysis, the parsimonious
travel demand model using the California high-speed rail study conducting by Cambridge
Systematics as a parent model for model reduction and calibration. This research considered
both the effects of and on outside system-of-systems models by integrating the fleet assignment
model from airline schedule planning and showing how both models impact each other through
highlighting the input and output variables of both models in the context of multidisciplinary

optimization. This research further demonstrated the cause and effect relationships between the
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user mode choice models of transportation systems planning and fleet assignment models of
airline schedule planning. Using game theoretic optimization, this research demonstrated a

methodology to model and estimate system-of-systems resource requirements.

This research provided a normal-form game methodology to conduct near-term pricing
analysis for a transportation system-of-systems network. This analysis methodology provided a
means to quantitatively identify network conditions and interactions critical for network analysis.
In the case of the California high-speed rail study, this research identified the nested relationship
between commercial air and high-speed rail passengers as compared to car travelers. This type
of analysis in meant to address large-scale transportation network concerns such as the goal of
U.S. transportation decision-makers to address their highway, and air transportation congestion
issues. In response to this specific concern in the California Corridor, this research concludes
that congestion will not be considerably mitigated by the introduction of high-speed rail in
California regardless of the scope of the California high-speed rail project. Due to the effect of
induced demand, it is concluded that aggregate travel demand will increase as more

transportation capacity is created.

Given that pricing decisions are made on a shorter time scale than airline resource
acquisition and schedule design, pricing strategies can be identified using the simplified planning
model as shown by the formulation of HSR/AIr pricing as a normal form game, the prediction of
HSR/AIr ridership and profit as a function of ticket pricing, and the identification of equilibrium
pricing strategies. Based on the PTDM model, the ridership and profit equilibrium pricing is
$350 for air & $175 for HSR. The assessment of the viability of HSR in California is dependent

on highly subjective modeling constants and accurate cost assumptions.
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Based on the results of the model simplification chapter, this research concludes that a
useful simplified model, suitable for sensitivity analysis, uncertainty quantification, and
optimization studies can be specified, estimated, and validated. The PTDM is most sensitive to
the trip constant and mode constant model parameters followed by travel cost and income
parameters. Other parameters are insignificant in the model prediction uncertainty. The
contribution of the key parameters to the uncertainty in model predictions is 96.7% for the trip
constants and 49.5% for the mode constants. The response of the total air transportation system
to the presence of HSR can be predicted provided that outside influencers are considered in the
model analysis. The competition between multiple airlines can be modeled in a system-of-
systems context. The presence of HSR will shift the balance of competitive airlines but not a
great deal. As airlines need to become more competitive, smaller aircraft will become more

heavily utilized to allow airlines to remain competitive.

As shown by the analysis the Cambridge Systematics travel demand model,
transportation systems do not operate in a vacuum and as a result cannot be analyzed without
taking into consideration its effects on and from outside sources such as other transportation
models and environmental conditions. Future travel demand analysis should consider the
resourcing, pricing, and infrastructure effects on a transportation network. The demand
modeling, uncertainty quantification, and sensitivity analysis methodologies utilized applied here
to mitigate computational expense can be used in other transportation modeling applications. |
recommend conducting similar travel demand, resourcing, and pricing analysis for other regions
considering the introduction of high-speed rail to their commercial transportation network such
as the Northeast, and Midwest Corridors. As high-speed rail does not currently exist in the U.S.,

cost models do not exist for U.S. based high-speed rail, 1 recommend further analysis be
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conducted to develop high-speed rail cost models. Lastly, the parsimonious travel demand
model developed in this research was conducted at the county-level, as a result, I recommend
exploring different degrees of model resolution to find the best balance between model accuracy

and computational expense and complexity.
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APPENDIX: U.S. AIRLINE COST MODEL

(Harris 2005)

SUMMARY OF EXPENSE ESTIMATING EQUATIONS

This appendix provides a concise summary of the several expense-estimating equations associated
with this economic model. Explanatory notes are provided as appropriate or required. Each equation
vields the yearly expenses of one aircraft at the flight equipment level, not expenses per block hour
Of per trip of per airborne hour. The expenses are in 1999 dollars. Mo estimate of inflation or other
major changes within the industry is considered.’

Several equations require an assessment of the airline’s approach to business, quantified by an
girline factor. The airline factor attempts to account for such things as a start-up situation, a charter
girline appreach, a “lean and mean™ philosophy, the average airline, a mature but low-fare airline, or
a mature major airline. In some equations, the range of this airline factor is large. However, this
reflects the industry as it existed in 1990,

Appendix 3 tabulates representative values for all aircraft parameters required by this economic
model.

Any number of comparisons driven by the variables—not by the airline factor—can be made using
this economic model. One nead only sat any piven airline factor to average and then proceed.

Flight Crew Expenses (page 17y

Flt Crew Expenses = AF{E.(MTUGW_]“}{BM Hours)
E=275 for Regionals
K =525 for Domestic and 2 Crew
E =650 for 3 Crew and'or Intermational
Low = 0.63, Very Low = 044, Very, Vary Low =034
Average =080
High = 1.00, Very High =1.30, Very, Very High=1.60

AF = Awhne Factor

bt

Fuel & Ol Expenses (page 21)
Fuel e FuelCost [ Non—<ruisezallons Cruise ga]lm]s.‘DEP
Gallen | Dieparture Departure |

*This model does not, for example, attempt to reflect the disruption of September 11, 2001. The model’s basis is
industry data of 1999 and the model was developed dering the period Janwary 2000 through July 2002, The first draft
of this repon was completed in early September of 2002,
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Takeoff gross weight (TOGW) for passenger aircraft assumes one passenger equals 225 pounds.
Fuel weight is 6.5 Ibsfeal. Fuel load is increased by 50 percent o provide a reserve.

6.5 bz | Fuel in Ths |
gal ,Ik Departure |

TOGW = Operating WE + 225( Available Seats ) { Load Factor ) +1.5 |

Cargo aircraft TOGW assumes one ton of cargo equals 2000 pounds. Fuel weight is 6.5 |ba/zal. Fuel
load is increazed by 30 percent to provide a reserve,

. . . : . 6.5 Ibs|( Fuel in Ibs |
TOGW = Operating WE + 2000 ( Available Tons |{ Load Factor |+ 1.5 | ]

gal [l Dleparture |

Nomcmice Gal_OODITIS(SFC, xThrut) 0 ensspie)

Departure {ThIlEt‘TGG’“r:]:M
. 0.01113(SFC. _xBHP'
Mon-cruise G*al.= ) e .]Tu.n.il' { turboprop — driven airplane |
Departure (Thrust TOGW . '

Start Cruse at W, =Takeoff Gross Weight—6.51b/zal( Non-cruise Gallons)
Cruise Gallons _ W (1-¢7™)
Departure 6.5 Ibszal
where K = R{;u:tge::t SFC, .. and K, _= RangexSFC, __
(V=LD), __ T (375xn,x L"Djm-....

MNomenclature:

. Thrust refers to the sum of thrusts from all engines or propellers. Units are pounds.
. BHP is the sum of brake horsepower from all engines driving propellers. Units are hp.
. SFC is specific fuel consumption in fuel pounds/hour per pounds of thrust for jets or fuel
pounds/hour per BHP for engines driving propellers.
. W is average cruise spead in statute miles per hour. (See T-2, z410.0W2650.0)
Range is statute miles per departure (See T-2, 24 10.0V2510.0)
The lift to drag ratio (L/1) has no units.
. Propeller efficiency (), has no units.
. Diperating Weizght Empty. Unils are pounds.
Fuel cost per gallon in 1999 was 50.51.

©oor R

SEm oM oA

Calculation Nofes:

The fuel calculations require iteration because the TOGW depends on the pounds of fuel required by
the departure {i.e., trip); but the fuel required depends on the TOGW. [nitiate the iteration with the
takeoff gross weight at maximum. Then run through the equations and recalculate the TOGW, IF the
second TOGW is higher than the maximum TOGW, stop the calculation at one iteration and use the
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calculated fuel. (This result means the 50 percent fuel reserve is too high.) If the second TOGW is
lower than the maximum TOOGW, procesd to iterate until the calculation converges.

Insurance Expenses (page 25)

Insurance Expense = 0.0036 ( Capital Int'ezted:l

This insurance covers what is called “hull” insurance for aircraft owned by the airline. Lacking a
more appropriate insurance company policy contract, use the aircraft purchase price in the year the
aircraft was bought by the airline. The constant, 0.0056, is associated with the industry in 19090,

Rental Expenses (page 26)

Fental Expensze = 0.0835 {Capiﬁl Invested By Leazimz Cnmpan}-':l

A leasing company buys an aircraft and then leases or rents the aircraft to an aifdine. Use the aircraft
purchase price in the vear the aircraft was bought by the leasing company. The constant, (L0833, is
associated with the industry im 1999, This rental expenses assumes a “dry” lease where the airline
pays for the fuel and oil.

Dther Flying Operation Expenses (page 27)

(Other FO Expensas = (.04 | Fhght Crew + Fuel & (1l + Insurance + Fental |
Flying Operation Expenses (page 27)

Flying Operation Expenses = Fhight Crew
+ Fuel & 01l
+ Insurancs
+ Eental
+ Other FO

Flight Equipment Maintenance Expenses (page 30

Flight Equpment hMamtenance Expenzes = Anframe Maint. + Engine Maint.

. I 51211 A58 BT ] ne | I]lhﬂUE-E'A.P\-I 11!2‘2‘]
Airframe = E { (Ref. W )" (FE""™ (DP)""™ (WACY "™ |1 ———=— .
rame - K {(Ret W) (PP (02)1 0 (vacy (1 BRmeAE |
. ] - 1 R as Dutside Eng_ "
E]l e - K | T]J.:I'I.:IST LE LIS -_.\ LEEEE T FH CEEREE] 1DP CEEEEE] '.‘\FLC"'"'" |+ =
E | (Thoust)™ (N, ) (H) A R ey

The constant K depends on 4 considerations as

K =ST[1.73(CF){MF)(ET)]
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where

5T = Service Type (Passenger = 1.0, Cargo = [.3252)
ET = Engine Type ( Turbofan = 1.0, Turboprop = 1.2644)

MF = Aircraft Model Factor (Earliest = 1.0, Early = 0.7104. Recent = 0,514,
Latest = 0.4260, Very Latest = (.35}

CF = Airline Cost Factor {Very Low = 0.4470, Low = 0.8339, Average = 1.0, High = 1.3019)

The constant K introduces an aircraft Model Factor to reflect the aircraft generation and quantify
gircraft ape. The logic here is that the airlines operated, in 1999, a wide range of aircrafi modeals.
However, in the jet engine propelling group, for example, all the aircraft have swept wings. The
fundamental type begins with the earliest Boging 707 class, passes through smaller and larger
variations, and ends with the very latest Boeing 777 class. While the takeoff pross weight varies a
creat deal between classes, the fundamental technology remains. Improvements over the 4 decades
have occurred, however, which lowered maintenance expenses. In this light, the earliest swept-wing,
jet-propelled model in a given class has been assigned a Model Factor of one. More recent versions
have a reduced u‘a!ue Model Factor. The table at the end of this appendix should help in conveying
the author's logic.

The table at the end of this appendix lists. qualitatively, the classification of all aircrafi in the
industry’s fleet in terms like earliest, recent, latest, etc. The numerical values assigned to the
qualitative classifications were found by iterations 5o that the predicted flight equipment expenses
correlated with DOT, Form 41, reported data.

Finally, the definitions of variables used in the airframe and engine maintenance equations are

Thrust = Propulsion Unit's Thmst at Sea Level Standard Day, m pounds
M, = Mumberof Propulsion TUnits per Awrcraft
Fef W = Eeference Weight of Awrcraft
= Mimimum Operational Weight Empty LESS Engine Diry Weight, in pounds
FH = Fhght Howrs Flown by the Fleetin One Year, in hours
DP = Departures Performed by the Fleet in One Tear
MNAC = Number of Awcrafiin Fleet for the Year

*In fodloveving this bogic, the awthor would assizgn the SST. the first in its technology and class, with a Model Factor = 1.
Similarly, should a commercial aidiper evodve from the military tiltrotor program, it would be “the first”™ and receive
MF = 1. Should models evolve {ie.. introducing a 35T-200 after the now flying S5T-1000 from either of these two
unique technologies, that aircraft would advance from MF = 1.0 to early and MF = 0.7104. The assumption is, of
course, that improvements, which redece maintenance expenses. are moorporated in an ongoing process. Thus,
maintenance expenences from all preceding aircraft will be addressed in the next aircraft to be produced.

105




It should be moted that the equations were developed from entities having many more than 1 aircraft
in the fleet. The author believes, however, that the two agquations are valid for NAC = 1. The reason
for this statement is that there is only the slightest evidence of economy of scale. For example, the
girframe maintenance could be rewritten as

Inhouse AF ||
Total AF | ]'

r ; A A
Airframe - K |1Ref.‘i§’}“”"'| \_ch | |%

Ml F
I:-.";AC }i-hlil? 1+

and the engine maintenance as

. s - BBdRad i  BATRES R PET]
(7, oo | FH [ DP |

| warne | Dutside Eng. |
| WAC | WAC

{NAC 1 ]
) i * TotalEng. | ]

RE L]

Epgine = K -[{T]l:m-it J

Written in this form shows that the exponent of MAC in both equations is, for practical purposes, 1.0.
This result savs that flight equipment mainienance expenses are directly proportional (o number of
gircraft.

Flight Equipment Depreciation & Amortization Expenses (pape 34

(1-RW
Depr. & Amort. Expense = APPT
APP = Awcraft Purchase Price

RV =Residual Value
DF = Depreciation Perod

This expense applies to the aircraft owned by the aifline. The purchase price is in then year dollars.
Jotal Ajreraft Operating Expenses {page 38)

Total Aweraft Operating Expenszes = Flying Operation
+ Flit. Equip. Mamt.
+ Flt. Equip. Depr. & Amort.

Passenger Service Expenses (page 42)

Pazzenger Service Expenses = 1-5{55.50’0 Ill.r_'Nl.m:lber of Fhght Attendants |

where
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-l'-Aj:m'a.ﬂ Block Hours per Year ||
Attendant Howrs per Year

"FAA Feq. J'-"LttEﬂ.dED.‘S-l-]

5 Mo. of Seats

" Mo. of Seats )

. Aarcraft |

| x ( Number of Aireraft)

x

Block Hours )
eparture

MNo. of Flt. Attendants = |1.3+547+.nz351

x

The factors 1.6 and 355,300 per attendant are representative of the industry in 19949,
Landing Fees {page 46}

Landing Fees=0.00147(5T){EF)(MLW }{ Departures |
5T = Servnce Type Factor (Paszenger =10, Cargo=0.89)
EF = Route Factor (Domestic =1.0, Atlantic = 2.36, Latin Amenca =1.64, Pacific =4 28)
MLW = Maximuwm Landmg Weight, m pounds

Rest of All Oiher Operating Expenses (pape 47

) il 1. 604 (Mo of Overhead Employeas) ]
Fest of AQDE m 1999 = AF - i S
[ +7L,186( Passengers | +161, ?EE(_Cargu.]J
Low =08, VervLow =0.6"
AF = Awlne Factor | Average=1.0
| High=12, VeryHigh =15 |

H (* Available Seats o, k
Pazsengerz = —————— | Passzenger Load Factor || Ho.of AC)
g' Avreraft o ft"

N AvalableTons | .
Ca =§ —|C3rg Load Factor || Mo.of AC
= e | Aweraft o LoadFacter }{ Ne.o ) '|:
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Transport Related Expenses ipage 51)
Transport Belated Expenses =1.035 I:R.ES‘I.' of All Other Operating Expenses)

The factor 1.035 15 a reasonable allocation for passenger airlines m 1999 For cargo anlines, such as
FedEx and some others, a more representative vahie would be 1.5 to 2.0, as Figure 45 suzgests.

All Other Operating Expenses (page 53

All Other Operating Expenses = Passenger Service
+Landmg Fees
+ Rest of All Other
+ Transport Related

Total Operating Expenses (page S6)

Total Operatmg Expenses = Total Awrcraft Operating Expenses
+ All Other Oparating Expenses
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