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ABSTRACT 

 

 

High-speed rail (HSR) planning models have not considered the response of airline operations to 

introducing high-speed rail to their commercial transportation networks.  While considering the 

decision processes of travelers in predicting transportation system demand, HSR planning 

models have assumed airline response to be static; therefore, the overall objective of this 

research is to model and analyze travel demand in an intercity transportation system consisting of 

highway, conventional rail, air, and (possibly) high speed rail, for the purposes of anticipating 

system-wide shifts in travel demand resulting from the introduction of high-speed rail projects.  

In this dissertation, the approach to formulate, decompose, and solve this problem consists of the 

following tasks: (1) development of a computationally inexpensive model to estimate the 

interregional travel demand, performing model verification, uncertainty propagation, and 

sensitivity analysis.  (2) Integration of the simplified surface transportation systems planning 

models with airline fleet optimization models to capture the optimal cooperative response of the 

aviation sector.  (3) Apply the simplified models from objective 1 and the optimization methods 

from objective 2 to determine equilibrium resourcing and pricing conditions for competitive 

airlines given levels of service for HSR and airlines to determine the validity of pricing 

assumptions.  These tasks are performed using the Cambridge Systematics travel demand model 

of the California Corridor. 
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CHAPTER I 

INTRODUCTION 

 

“Nothing in this world can take the place of persistence. Talent will not; nothing 

is more common than unsuccessful people with talent. Genius will not; 

unrewarded genius is almost a proverb. Education will not; the world is full of 

educated failures. Persistence and determination alone are omnipotent.”  

– Calvin Coolidge. 

 

1.1 Overview 

Our nation’s commercial air and highway transportation networks are overly congested.   The 

year 2000 produced record delays with more than one quarter of flights arriving at least 15 

minutes behind schedule (Mayer and Sinai 2003).  With some 75 million licensed drivers in 

heavily populated areas, each averaging roughly 16,000 kilometers per year within those areas, 

there are approximately 1,200 billion kilometers driven annually in metropolitan areas, bringing 

the total delay to 6 billion vehicle-hours each year (Arnott and Small 1994).  Both statistics are 

indications of the transportation congestion facing U.S. regions.  In response to both highway 

and air congestion, all states have established State Transportation Improvement Programs for 

the purposes of addressing and solving their highway, and air transportation issues.  These 

decision makers and transportation planners need models to support decisions involving the 

numerous solution strategies which include expanding the capacity of existing networks, creating 

new networks, and determining optimal methods to manage existing resources (Daganzo 1976).  

Of the new network possibilities, some regions are considering the introduction of high-speed 

rail to their commercial transportation network. 
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 The California Corridor is one example of an overly congested, large-scale, intercity 

multi-modal commercial network in which transportation planners are faced with decisions 

involving resource acquisition, and resource allocation.  As a result, California is currently 

planning to introduce high-speed rail (HSR) network to the California Corridor.  The planned 

network would connect the San Francisco Bay area, Sacramento, Fresno, Bakersfield, Los 

Angeles, San Diego, and Las Vegas via high speed rail as shown in Figure 1.1.   

 High-speed rail is a common form of interregional transportation in Europe and Asia 

(Potter 1989).  In the past few years, transportation planners have been conducting the analysis to 

establish high-speed rail in various sectors of the United States.  Other projects include the 

Midwest Corridor HSR project which plans to link Chicago, Detroit, and St. Louis (Mathur and 

Srinivasan 2009), and the Northeast Corridor HSR project which plans to link Washington D.C., 

New York, and Boston (Chen 2010).  In recent years, high-speed rail has been considered as a 

potential competitor to commercial air.  For this body of work, it is assumed that high-speed rail 

is a strong competitor with regards to commercial air and that price is a critical factor for user 

mode choice decisions between high-speed rail and commercial air.   

 The addition of HSR in the California Corridor will have obvious impacts on the total 

transportation system (Cambridge Systematics 2008).  The Cambridge Systematics HSR 

planning models have considered the decision processes of travelers in predicting network 

demand; however, the model does not consider competitor responses such as airline operations to 

the introduction of high-speed rail and have assumed them to be static.  In addition, one iteration 

of the Cambridge Systematics model takes approximately four days to run.  The computational 

expense of this model along with the static response assumption are examples of common 

critiques of systems analysis techniques.   
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Figure 1.1: California High-Speed Train Map 

 

 To address the issues of computational expense, the proposed research seeks to develop a 

smaller model that looks at the problem from a higher level of resolution.   To address the issue 
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of assuming a static competitor response, the proposed research seeks to define a cause and 

effect relationship between the CS main mode choice modeling and the resource allocation and 

pricing decisions of commercial air.  The CS main mode choice decision model utilizes several 

input factors.  Among these input factors are pricing and resourcing.  As a result, any subsequent 

changes to the resource capacity and/or pricing by commercial air in response to the introduction 

of high-speed rail would affect the main mode choice decision modeling results used by 

Cambridge Systematic.  Using the California high-speed rail problem as a case study, the overall 

objective of this research is to provide a framework to model and analyze a system and its effects 

on other systems.  This type of analysis is considered system-of-systems analysis.  Solving the 

overall problem of decision support for the total transportation system in Southern California 

requires modeling the total system as a system of systems. 

 This research provides a framework to conduct system-of-systems analysis.  While 

several definitions exist for a system-of-systems, in this research, a system-of-systems is defined 

as a network of systems.  This collective view of systems analysis seeks to provide a method for 

quantifying the effects that systems have on each other.  System-of systems analysis is often 

utilized where decisions directly affecting one system also affect the conditions in another 

system.  Two examples of systems often included in system-of-systems analysis are 

transportation and business systems which are directly affected by customer or user decision 

choice. 

 Systems analysis models are often used to estimate and predict system conditions and 

response.  Due to the large amount of data required to model a system, systems analysis models 

can become very large and complex.  As a result, systems analysis models are often criticized for 

their computational expense and failure to consider the impacts of conditions related to, but 
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outside the immediate scope of their model.  This research seeks to provide a framework to 

account for the computational expense and narrow scope of systems analysis by decomposing 

systems analysis into manageable steps.  To solve the problem of computational expense, 

decomposition is necessary (Papatheodorou, Magirou, and Kiountouzis 1993)(Ostertag et al. 

2009).   The decomposition steps suggested by this research are to develop a feasible model, 

integrate that model in a systems network, conduct a short run pricing analysis, and determine 

both system optimal and user equilibrium points.  

 The first step accounts for the model computational expense.  The remaining steps 

consider both the response from and the effects on other systems.  Parsimonious modeling will 

be used for feasible model development.  A short run analysis will be conducted by observing 

model output across the likely range of critical input parameters.  Multidisciplinary optimization 

will be used for the system optimal model integration.  Game theoretic optimization will be used 

for determining a competitive network user equilibrium.  This analysis is designed to show how 

the network of systems operates under certain specific conditions.  To illustrate the proposed 

method, this research will consider a transportation system-of-systems consisting of multiple 

commercial service providers competing within a specified region.  The inherent difficulties of 

system-of-systems analysis and transportation systems analysis in particular are in accurately 

capturing the interdependencies of related systems given multiple decision makers utilizing 

various operational strategies. 

 The primary challenge of this type of work is in dealing with the large amount of 

variables and data.  This research proposes that utilizing a reduced or parsimonious modeling 

approach will mitigate the data requirement and provide a framework for developing a model 

feasible for repetitive analysis.  The challenge with using a reduced or parsimonious model is its 
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accuracy as compared to the original or parent model.  This research will utilize model 

calibration to ensure model accuracy.  The second challenge centers around the concept of 

induced demand which simply implies that the total network demand increases as capacity 

increases (Cervero 2002).  Induced demand typically refers to an increase in the total user 

demand in a given network; however, in this analysis induced demand is defined in terms of 

demand shifts from one mode of transportation to another based on changes in the model inputs. 

1.2 Research Questions & Objectives 

 The overall objective of this dissertation is to apply a multidisciplinary optimization 

method to model and analyze the travel demand of an intercity transportation system consisting 

of highway, conventional rail, air, and (possibly) high speed rail, for the purposes of anticipating 

system-wide shifts in travel demand resulting from the introduction of high-speed rail to an 

existing commercial transportation network.  In particular, the proposed dissertation research 

will focus on the California Corridor.  Utilizing the Cambridge Systematics model as a case 

study and accounting for the anticipated research challenges, listed below are the primary 

questions that this research seeks to answer. 

1. Since the CS model is proprietary (only underlying equations available in CAHSRA 

reports), and computationally expensive (4+ days to evaluate once), can a useful 

simplified model, suitable for sensitivity analysis, uncertainty quantification, and 

optimization studies be specified, estimated, and validated? 

2. To which model parameters is the CS model most sensitive? 

3. What is the contribution of the uncertainty in key parameters to the uncertainty in model 

predictions? 
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4. Can the response of the total air transportation system to the presence of HSR be 

predicted? If so, how? 

5. Can competition between airlines be modeled in a system-of-systems context? 

6. Will the presence of HSR shift this balance? If so, how? 

7. Given that pricing decisions are made on a shorter time scale than airline resource 

acquisition and schedule design, can pricing strategies be identified using the simplified 

planning model? 

8. What can be said about the ridership and revenue projections for air and HSR as a result 

of equilibria and pricing games? 

9. What are the implications for the viability of HSR in California? 

 This research will develop and analyze a feasible travel demand model for the purpose of 

performing repetitive analysis to demonstrate the effects of and on outside systems.  This 

research will also address the issue of induced demand by accounting for changes in user 

demand through network equilibrium analysis and short run pricing analysis.  Based on these 

overall questions, the research objectives of this research are listed below. 

 Objective 1 is the development, verification, and exploitation of a computationally 

inexpensive model to estimate the interregional travel demand in California.  This task consists 

of simplifying the Cambridge Systematics model and performing model verification, uncertainty 

propagation, and sensitivity analysis.  This task will address the problem that the Cambridge 

Systematics model is too computationally expensive for use in analysis requiring repetitive 

model evaluations.  Utilizing parsimonious travel demand modeling, the proposed research will 

contribute to the field of demand modeling by providing a methodology to simplify, verify, and 

conduct uncertainty quantification and sensitivity analysis of a travel demand model in the 
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California Corridor.  This will be accomplished by changing the model from a small town level 

analysis to a county level analysis.  The proposed research will contribute to the analysis of 

system-of-systems by developing a model computationally feasible for optimization and detailed 

analysis. 

 Objective 2 is the integration of transportation systems planning model with a fleet 

assignment model using multidisciplinary optimization to determine the system optimal resource 

acquisition and resource allocation aircraft requirements.  Using game theory, a short run 

analysis will be conducted to identify the optimal price input parameters for the model 

integration.  The short run analysis compares variations in critical input parameters to illustrate 

the potential effects of competition on travel demand and profit.  This objective will address the 

unrealistic assumption that commercial air resourcing will remain static upon the introduction of 

high-speed rail to the California commercial transportation network.  The contribution of this 

objective will be the development of a framework to integrate demand modeling and fleet 

assignment modeling by defining the inputs and outputs of both models are how they interact 

assuming cooperative decision making.   

 Objective 3 is the formulation and solution of a game theoretic optimization problem to 

determine the user equilibrium airline level-of-service conditions for a multi-modal intercity 

transportation network.  The major accomplishment of this objective will be the utilization of 

game theory to determine the optimal resourcing and pricing for a commercial transportation 

network.  This will be accomplished by applying the simplified models from objective 1 and the 

optimization methods from objective 2 to determine equilibrium conditions for competitive 

airlines. 
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 Completing these tasks will provide decision makers with a methodology to solve a 

complex large scale multi-modal intercity commercial transportation network analysis and 

design problem by fulfilling the requirement for a feasible model for use in repetitive analysis, 

integrating that model with an outside but related system to illustrate the cause and effects on and 

from outside systems, establishing system and user equilibrium conditions for a long run 

analysis, and conducting a short run pricing analysis. 
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CHAPTER II 

LITERATURE REVIEW 

 

“There is nothing impossible to him who will try.” – Alexander the Great 

 

A summary of the concepts and literature relevant to this research include the Cambridge 

Systematics Integrated Transportation Management System (ITMS) model final report, system-

of-systems, transportation systems planning, airline schedule planning, Mean Value First Order 

Second Moment (MVFOSM) methods, multidisciplinary optimization, and game theory.  

 

2.1 Transportation Systems Planning 

The Cambridge Systematics parent model used in this research is a traditional transportation 

systems planning model.  Classical urban transportation planning model consists of four stages: 

trip generation, trip distribution, mode choice, and route assignment similar to the transportation 

study conducted for the Chicago area (Chicago Area Transportation Study 1959).  Trip 

generation determines the frequency or number of trips for an origin pair based on 

socioeconomic data.  Trip distribution efficiently matches origin-destination (OD) pairs and 

provides the basis for trip paths made up of three or more OD pairs.  Mode choice allocates the 

proportion of OD trips that will utilize one mode of transportation over another.  Route 

assignment assigns trips to each OD pair via a particular mode of transportation (Meyer and 

Miller 2001).  Assignment can be based on user equilibrium, travel demand, and travel time.  

Link Performance must be assessed in the form of delays, and passenger queues. 
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 Researchers such as Nagurney, Dafermos, Scheffi, and McFadden (Machovec 

1995)(Machovec 1995) have all contributed to the study of transportation research.  Nagurney’s 

work defines supernetworks as various combinations of systems which can include 

transportation (A. Nagurney 2006).  Her work helped to provide the framework for a synthesized 

study of systems which were traditionally only considered as separate entities.  The multiple 

modes of transportation in the CS model qualify as supernetwork.  Sheffi’s research of urban 

transportation networks considered systems analysis which used optimization to solve for 

deterministic user equilibrium and system optimal conditions (Sheffi 1984).  Dafermos and 

Sparrow contributed to the field of transportation analysis through their work on traffic 

assignment and traffic equilibrium studies(Dafermos 1980).   McFadden conducted work in the 

field of econometrics on travel demand models and behavior (Domencich 1975). 

 Like other systems analysis, transportation systems planning analysis is often conducted 

in isolation of systems which impact it and vice versa.  This research explores transportation 

systems planning and shows its integration with another transportation system analysis, namely 

airline schedule planning.  The models which comprise transportation systems planning follow. 

 

2.1.1 Trip generation 

Trip generation modeling uses socioeconomic measures to estimate and predict aggregate 

numbers of travelers.  This type of model typically uses logit regression to approximate the 

probability of 0, 1, and 2+ trips (Sheffi 1984).  The output of the trip generation model is an 

origin matrix which quantifies the initiation of expected movements from a given region.  This 

matrix becomes a critical input to the destination choice model. 
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2.1.2 Destination Choice 

Destination choice modeling is a means of approximating the attraction between two entities.  In 

this work, the attraction is measured in travel demand.  Destination choice modeling is 

conducting using the traditional gravity model shown below (de Grange, Fernández, and de Cea 

2010).  The use of a gravity model allows for a reasonable estimate of the travel demand. 

 

 

where 

Tij = number of trips produced in zone i and attracted to zone j 

Pi  = total number of trips produced in zone i 

F( ) = the decay function; the rate at which a zone’s attraction declines with increasing 

travel time: (1/distanceij)
2
 

tij = the minimum zone-to-zone travel time. 

Aj = number of trips attracted to zone j based of the number of households in zone j. 

z = the total number of zones. 

The results of the gravity model take the form of an origin-destination matrix and become the 

primary input to the main choice model.   

 

2.1.3 Mode choice 

Mode choice modeling, like trip generation modeling, uses socioeconomic measures to estimate 

and predict user decisions regarding mode of travel given a set of transportation mode choices.  
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This type of model also uses logit regression to approximate the probability of individual or 

group travel.  The output of the mode choice model is a probability matrix which provides the 

likelihood that a particular mode of transportation will be utilized for a given origin-destination 

pair.  The output of the mode choice model becomes the input demand for the route assignment 

model. 

 

2.1.4 Route assignment   

Route assignment modeling seeks to establish equilibrium conditions based on one of two 

primary strategies.  The two strategies are system optimality (Koike 1970) and user equilibrium 

(Konishi 2004).  Transportation providers most benefit from a network operating under system 

optimal conditions where the system is at its most efficient.  User equilibrium conditions most 

benefit the transportation user such that no benefit is achieved from unilaterally making a 

transportation route choice change.  The aggregate analysis of user-level route choices in 

transportation systems planning model is the study of network equilibrium. 

 

2.1.5. Network Equilibrium 

This research explores network equilibrium conditions from the point of system optimality in the 

model integration chapter as well as user equilibrium in the game theoretic optimization chapter 

to explain the cause and effect relationships that related systems have with each other.  System 

optimality is often the goal of transportation service providers.  When operating at system 

optimal conditions, a network is at its most efficient and cost effective state.  User equilibrium 

implies that a network or system is balanced such that an individual user gains no advantage by 
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making an alternative transportation decision.  User equilibrium can be described in many 

practical terms to include traffic flow, and user decision choice.  Network equilibrium can be 

described in terms of Wardrop principles of route choice (Wardrop 1953).  The first deals with 

user equilibrium and states that “the journey times in all routes actually used are equal and less 

than those which would be experienced by a single vehicle on any unused route”.  The second 

principle deals with system optimality and states that “at equilibrium the average journey time is 

minimum”.  Both principles address the conditions surrounding users traveling to and from the 

same origin and destination given multiple travel routes.  Using the first principle, users seeks to 

minimize their own cost of travel where cost is judged in travel time.  Equilibrium is reached 

when a single user cannot further minimize their individual cost by choosing an alternative route.  

Using the second principle, users behave cooperatively for the benefit of minimizing the overall 

system cost without regard for their individual cost.   

 

2.2 Cambridge Systematics Travel Study 

The Cambridge Systematic Travel Study is used as the parent model for the model simplification 

analysis.  A study of travel behaviors in the California Corridor was performed by Cambridge 

Systematics (CS) under commission from the California High Speed Rail Authority in 2008 

(Cambridge Systematics 2008).  The Cambridge Systematics Study was conducted to assess the 

interregional commercial traffic in the state of California and assess the ridership and revenue of 

the California High-Speed Rail project to justify the building of high-speed rail as a means of 

alleviating the commercial air demand and congestion in California.   

 The overall model design included urban travel, interregional travel, external travel and 

trip assignment.  Urban travel included areas beginning and ending in the San Francisco Bay 
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area, Greater Los Angeles, or San Diego regions.  Interregional trips included those with both 

ends in California but in different regions.  External trips consisted of trips with one end in 

California and the other end outside of California.  The study consisted of the development of 

numerous demand models to estimate the trip frequency, destination choice, access/egress, and 

main mode choice of California travelers.  The access/egress models were nested by main mode 

choice into drive/park, drop off, rental car, and those that didn’t drive.  Those that didn’t drive 

were further segmented by those who traveled by taxi, transit, and walkers/bikers.  The main 

mode choice modes were segmented by auto and non-auto.  The non-drivers were further 

segmented by air, conventional rail, and high-speed rail travelers. 

 Model analysis was conducted using traffic analysis zones focusing on the small town 

and city level.  The interregional travel models included travel survey data sources, highway and 

transit networks, and socioeconomic data.  The survey data consisted of revealed preference and 

stated-preference mode choice data from air, rail, and auto passengers.  A total of 3,172 surveys 

were conducted: 1,234 airline, 430 rail, and 1,508 auto.  The socioeconomic data consisted of 

household, and employment data.  The household data consisted of household size, income 

group, number of workers and car ownership.  The employment data consisted of retail, service, 

and other.   

 The Cambridge Systematic study was conducted based on traffic analysis zones across 14 

regions of California for a total of 4,667 zones.  The California Corridor problem contains four 

modes of transportation: commercial air, high-speed rail, conventional rail, and privately owned 

vehicle.  The travel market was segmented by purpose: business, commute, recreation and other, 

and by trip length: long trips (>100 miles) and short trips (<100 miles).  The travel market was 

also segmented by those who traveled alone and those who traveled in a group. 
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 The Institute of Transportation Studies (ITS) at Berkeley conducted a review of the 

California High-Speed Rail Ridership and Revenue Forecasting Study (Brownstone, Hansen, and 

Madanat 2010).  Below are excerpts from the Berkeley ITS Review.  

The review found the demand forecasting models unreliable for policy analysis…The mode 

choices of the individuals surveyed were not representative of California interregional 

travelers…The mode shares actually used by the travelers were not representative of traveler 

population…Since it is likely that travelers on different modes attach different degrees of 

importance to different service attributes (e.g. air travelers care more about travel time than auto 

travelers), it is likely that the resulting model gives a distorted view of the tastes of the average 

California traveler…Unfortunately, the methodology employed by CS for adjusting the model 

parameters has been shown to be incorrect for the type of model they employed.  The parameters 

are therefore invalid and the forecasts based on them, in particular of high speed rail mode 

shares, are unreliable. (It should be noted that at the time CS performed the study the 

incorrectness of their adjustment method was not known.)…CS changed key parameter values 

after the model development phase because the resulting estimates did not accord with the 

modelers’ a priori expectations…Specifically, the modelers increased the parameter for headway 

(the time between successive aircraft or train departures) and set it to a value typically found in 

intra-regional travel demand models.  This adjustment made the predicted shares of the travel 

modes very sensitive to changes in frequency…The CS model employed a model structure that 

does not allow for travelers to choose between high speed rail stations…In the model validation 

phase, several parameters of the mathematical model were adjusted…As a result of this process, 

many of the model parameters were assigned values that were considerably different from those 

obtained in the model development phase. In some instances changes to the model parameters 

were informed by professional judgments of the consulting team as well as the goal of replicating 

observed behavior.  The resulting “validated” model, which is used to generate subsequent high 

speed rail ridership forecasts, provides reasonably accurate “backcasts” for the year 2000, 

reflects certain patterns of behavior observed in the traveler surveys, and accords with 

professional judgments of the consultant.  However, the combination of problems in the 

development phase and subsequent changes made to model parameters in the validation phase 

implies that the forecasts of high speed rail demand—and hence of the profitability of the 

proposed high speed rail system—have very large error bounds. These bounds, which were not 
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quantified by CS, may be large enough to include the possibility that the California HSR may 

achieve healthy profits and the possibility that it may incur significant revenue shortfalls.  

 

 This research addresses two critiques of the Cambridge Systematics model: its 

computational expense and its assumption of no response from other transportation service 

providers such as commercial airlines.  The model simplification of the first research objective is 

designed to address the computational expense critique.  The multidisciplinary optimization 

model integration and game theoretic competitive equilibrium analysis of objectives two and 

three are designed to address the assumption of not considering the competitive response from 

other transportation service providers.  Objective two utilizes two system-of-systems practical 

applications: transportation systems planning and airline schedule planning.  These systems 

consist of individual models with interdependent inputs and outputs.  Using the interactions of 

these inputs and outputs, this research seeks to address the modeling, resourcing, pricing, and 

viability issues surrounding the California high-speed rail project. 

 

2.3 Mean Value First Order Second Moment 

The mean value first order second moment (MVFOSM) method is used to determine the percent 

contribution to variance of the input parameter coefficients for the model simplification.  Other 

analytical reliability techniques include Monte Carlo Simulation (MCS)(Mooney 1997), First-

Order Reliability Method (FORM) (Chiralaksanakul and Mahadevan 2005) and Second-Order 

Reliability Method (SORM) (Hohenbichler et al. 1987).  MCS is the most accurate and 

computationally expensive of the four methods.  Both FORM and SORM are less accurate and 

computationally expensive than MCS, but more accurate and computationally expensive than 
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MVFOSM.  Given the low level accuracy of the parent model, the MVFOSM is the best choice 

taking both accuracy and computational expense into account.  MVFOSM is based on a first –

order Taylor series approximation linearized at the mean values of the random variables.  The 

probability of failure is based on a safety index defined as the ratio of the mean to the standard 

deviation where Z is the performance function, R is the resistance, and S is the load. 
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The probability of failure in terms of the safety index follows. 
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The generalization of the performance function for multiple random variables is shown below. 
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Next is a Taylor series expansion of the performance function about the means values followed 
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Where    (     ) is the covariance of Xi and Xj.  Assuming uncorrelated variables, the 

variance is shown below.  This is the basis for determining the percent contribution to variance 

of the input parameters utilized for the model simplification. 
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2.4 System-of-Systems  

Each mode of the commercial transportation network in this analysis can be categorized as its 

own system, so the combined multimodal network by definition is a system-of-systems.  A 

system-of-systems, in this research, is defined as a network of systems.  Figure 2.1 displays a 

general systems interaction using optimization in system-of-systems modeling (Smith 2007).   

 Systems-of-systems have also been described as supernetworks (Anna Nagurney and 

Toyasaki 2003).  A multi-modal transportation network such as the California high-speed rail 

problem is one example of a supernetwork.  According to Nagurney, “Supernetworks may be 

comprised of such networks as transportation, telecommunication, logistical and financial 

networks, among others.”  Nagurney’s studies link human choice and network performance 

within a complex network (A. Nagurney 2006).  This is applicable as the proposed research will 

link human choice to the performance of a complex network of multiple modes.  Keating and his 

co-authors describe systems of systems as meta-systems that “are themselves comprised of 

multiple autonomous embedded complex systems that can be diverse in technology, context, 
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operation, geography and conceptual frame (Keating et al. 2009).”  The modes of transportation 

in this research are typically analyzed as separate entities.  This research treats the California 

network as a system of systems.  System-of-systems analysis requires the analysis of multiple 

stakeholders.  In this research, stakeholders include the airport, airline, high-speed rail, and 

highway transportation mangers.  The last stakeholder, and potentially the most difficult to 

predict, is the interregional passenger of this multi-modal network.  Accurate modeling of 

interregional passenger requires the use of multidisciplinary optimization, while accurate 

modeling of the competitive airline requires the use the game theory.  Formulating this problem 

includes aspects of mode choice, link performance, and user equilibrium.  While previous works 

considered the modes as separate entities, the proposed research considers them under one 

analysis.   

 

 

Figure 2.1:  Generic System-of-Systems Framework 

 

 Systems analysis is typically application and problem domain specific.  As a result, 

domain and application specific systems analysis model output does not lend well to 

collaboration with other systems.  The models lack the cohesive structure required to synthesize 

analysis across multiple domains and applications.   The system-of-systems problem domains 
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and applications used in this research include transportation systems planning, airline schedule 

planning, and network equilibrium through multidisciplinary optimization and game theory. 

 

2.5 Multidisciplinary Optimization 

Multidisciplinary optimization problems solve problems spanning multiple disciplines while 

conventional methods solve problems with a single discipline (Arora 2007).  Multidisciplinary 

optimization is used to perform the model integration of transportation systems planning and 

airline schedule planning.  The general form of the multidisciplinary optimization problem is 

shown in Figure 2.2.  Two particular MDO methods are utilized during this analysis, 

multidisciplinary feasible (MDF) and simultaneous analysis and design (SAND).  MDF requires 

convergence of the analysis codes at every iteration of the optimizer (and at every finite 

difference point if numerical approximation of the gradients is to be used).  SAND does NOT 

require interdisciplinary compatibility (convergence of analysis codes) until the end of the 

analysis.  The model integration utilizes the multidisciplinary feasible method as the fleet 

acquisition and resourcing design variables are utilized to maximize profit subject to the price 

condition state variables.  The game theoretic optimization utilizes the simultaneous analysis and 

design method are the both the resource acquisition and allocation variables along with the 

pricing states variables are utilized to maximize profit. 
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Figure 2.2: Multidisciplinary Optimization AnalysisFigure 3 

 

2.5.1 Multidisciplinary Feasible  

The multidisciplinary feasible (MDF) formulation is an ‘all-in-one’ method where the interaction 

of two systems or analysis methods is the basis of a single optimization (Arora 2007).  The MDF 

formulation follows. 

 

                (       )    

               (       )    

      ( ) 

Subject to: 

   (       )                         

   (       )                                 

  (       )     
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In this method, the cost associated with the design variable, d, is minimized subject to the 

interaction of two analyses or systems with interdependent states variables such as boundary 

constraints and capacities, ui.   

 

2.5.2 Simultaneous Analysis and Design (SAND) 

In Simultaneous Analysis and Design (SAND) problems, both the design variables and state 

variables are included as optimization variables (Arora 2007).  The SAND formulation follows. 

              ( ) 

Subject to: 
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In the SAND formulation, the cost of supporting the design variable, d, along with the state 

variables, ui, are minimized.   

 

2.6 Airline Systems Planning 

Airline schedule planning and transportation systems planning are related systems with inputs 

and outputs that affect each other.  Unfortunately, these two systems are commonly studied in 

isolation.  This research bridges the gap of research conducted in isolation by showing the 

integration of these two transportation systems through the use of multidisciplinary optimization. 
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 Airline schedule planning consists of four airline planning problems which include 

schedule design, fleet assignment, crew scheduling, and aircraft maintenance scheduling 

(Barnhart and Cohn 2004).  This work focuses primarily on the fleet assignment and schedule 

design aspects of airline schedule planning.  Airline schedule planning problems are traditionally 

formulated as optimization problems designed to minimize some cost, or maximize some benefit 

given the requirement to provide transportation service to a transportation demand distributed 

across multiple origin-destination pairs. 

Airline schedule planning and its four components have been developed by the work of 

researchers such as Barnhart and Cohn (Barnhart and Cohn 2004).  The schedule design problem 

identifies the origins and destination pairs serviced by an airline and at what frequency (Jiang 

and Barnhart).  Fleet assignment models assign aircraft to support customer demand.  The goal 

of the fleet assignment problem is to minimize the cost of providing aircraft to meet demand 

(Dumas, Aithnard, and Soumis 2009).  The aircraft maintenance routing problem determines 

how best to allocate aircraft to support passenger demand while adhering to maintenance 

requirements (Gopalan and Talluri 1998).  The crew scheduling problem assigns flight crew to 

serviced flights with the goal of minimizing cost (Cohn and Barnhart Jun2003).  This work 

focuses on the schedule design problem and the fleet assignment problem.  A more detailed 

review of schedule design and fleet assignment follow. 

 

2.6.1 Schedule Design 

The schedule design problem determines the frequency that flights are scheduled in support of 

customer demand (Barnhart and Cohn 2004)  The goal of the schedule design problem is to 

minimize the operational cost of supporting customer demand by assigning aircraft flights across 
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multiple origin-destination pairs.  The schedule design problem can have various objectives to 

include minimize cost, maximize profit, maximize revenue, or maximizing expected market 

share.  The schedule design formulation is shown below 

         (   
 
) 

 where 

∑∑   
 
                  

  

 

(Resource Constraint) 

The decision variables become    
 

 

  (   
 
)                                    

C = Cost 

Fleets: f ϵ F 

Origins: o ϵ O 

Destinations: d ϵ D  

Nf = Number of aircraft of fleet f 

MOPDf  = Max Ops per day for an aircraft of fleet f 

 

2.6.2 Fleet Assignment 

The resource allocation optimization portion of this problem can best be described as a fleet 

assignment problem.  Abara defines “the goal of the fleet assignment problem is to assign as 

many flight segments as possible in a schedule pattern to one or more aircraft types while 

optimizing some objective and meeting various operational constraints.” (Abara 1989)  These 

constraint equations ensure that each flight is flown by only one fleet and maintain the 

conservation of flow of aircraft (Subramanian et al. 1994)(Cordeau et al. 2001)(Ioachim et al. 

1999).  Current fleet assignment models for passenger transportation are primarily unimodal 
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(Shan Lan, Clarke, and Barnhart 2006).  Davendralingam and Crossley formulate a dynamic 

programming formulation for aircraft design using passenger demand models (Davendralingam 

and Crossley 2010).  This problem contains many complexities.  Resource acquisition and 

resource allocation decisions are made over time.  The problem can be multi-objective.  The 

goals of maximizing profit and minimizing total travel time or travel delay will most likely have 

differing optimal solution sets.  Conflicting optimal solution sets means that no single solution is 

likely to solve all problems.  The multi-modal aspect of this problem requires the analysis of 

multiple vehicle types.  Without some method to evaluate the total network as a whole, 

alternatives are hard to evaluate on their own.  Lastly, this problem must model user mode choice 

given network conditions at various stages in time.  Based on these complexities, this problem is 

too big to manage without a disciplined approach.  

 The fleet assignment problem, in this chapter, assigns aircraft to support passenger 

demand while minimizing the cost of operating expenses.  The objective of the fleet assignment 

problem is to minimize operating costs.  The decision variables are the number of aircraft from a 

given list of fleets which are assigned to each origin-destination pair based on the travel demand.  

Typically, a fleet assignment problem has several different constraint types: fleet size, flight 

coverage, flow balance, continuity and schedule balance (Barnhart, Belobaba, and Odoni 2003).  

Fleet size restricts the analysis to the number of available vehicles.  Flight coverage (cover rows) 

ensures only one fleet covers a leg.  Flow balance requires the number of aircraft departing from 

and arriving at a given airport is equal.  Continuity ensures low volume leg operation in a multi-

city route.  Schedule balance ensures same fleet services a multi-city route.  The fleet assignment 

formulation is shown below. 

            (   
 
) 
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(Resource Constraint) 
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(Aircraft Conservation/Flow Balance)  

The decision variables become    
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C = Cost) 

Fleets: f ϵ F 

Origins: o ϵ O 

Destinations: d ϵ D  

Nf = Number of aircraft of fleet f 

MOPDf  = Max Ops per day for an aircraft of fleet f 

 

  where 

   {       } 

   
 
            

 

2.7 Game Theory  

Game theory is a theoretical framework for analyzing decision scenarios encountered by multiple 

decision-makers in a common scenario.  In this research, game theory is used to determine the 
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equilibrium pricing conditions for the model integration problem and to determine the optimal 

resourcing and pricing for the multiple airline optimization analysis. Game theory is used in this 

research to address the following potential situation:  

“Suppose HSR creates a dominating presence in a given travel market and forces 

an airline out of heavily servicing that market; therefore, it has these planes 

available. What will the airline do with those planes?” 

 In this research, optimization is combined with game theory to determine equilibrium 

conditions of a system with a non-linear relationship between player decisions and their payoffs.  

This equilibrium relationship is defined as Nash Equilibrium.  A Nash equilibrium exists when 

no player benefits from unilaterally changing their strategy (Giocoli 2004).  A Nash Equilibrium 

is a solution of a two or more player game where the equilibrium strategies of all players are 

commonly known by each player (Osborne 1994).  The Nash equilibrium can be found by 

determining simultaneous best responses using best response functions.  The best response 

function derives the most beneficial reaction to the conditions presented by the remaining players 

in a non-cooperative game (Rey-Biel 2009).   

 There are two categories of games to include cooperative or non-cooperative games.  In 

cooperative games, the players operate under agreed upon conditions often defined by a contract 

(Driessen 1988).  In non-cooperative games, the players operate to satisfy self-serving goals 

(Nash 1951).  This work involves non-cooperative games where the players compete by 

choosing the optimal resourcing and pricing with the goal of maximizing profit or ridership.  A 

competitive game consists of several components to include players, strategies, and payoffs 

(Rasmusen 1989).  The players are the decision-makers whose decisions are based on strategies 

which dictate their actions and result in payoffs and penalties.  Strategies are actions that define 
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player decisions such as cost minimization, and revenue, profit, or market share maximization 

(Stahl 1988).  Payoffs are the benefits gained by making a particular decision given other stated 

actions.  Payoffs are often defined in terms of functions based on player decisions.  In this 

research, the competing airlines and high-speed rail decision-makers are the players.  Optimizing 

resourcing decisions and prices to maximize profit and ridership becomes the player strategies.  

The resulting profit and ridership are the payoffs.  This research contains several modeling 

assumptions. (1) Multiple players produce a homogenous product.  (2) Players do not cooperate. 

(3) The number of players is held constant. (4) Players choose product or service quantities 

simultaneously. (5) Players are assumed to know each other’s potential decision options and 

payoffs. (6) Players are also expected to choose the option that is the most beneficial to them. 
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CHAPTER III 

PARSIMONIOUS TRAVEL DEMAND MODELING FOR MULTIMODAL 

TRANSPORTATION SYSTEM OF SYSTEMS 

 

“Two roads diverged in a wood and I, I took the one less traveled by and that 

has made all the difference.” – Robert Frost 

 

3.1 Introduction 

Transportation system planning requires the use of demand models for decision support.  

Transportation demand models are widely used to forecast interregional travel demand for the 

purpose of providing decision support in choosing potential transportation projects such as high-

speed rail (HSR) projects in various corridors in the United States, to include the Midwest 

Corridor HSR project which plans to link Chicago, Detroit, and St. Louis, and the Northeast 

Corridor HSR project which plans to link Washington D.C., New York, and Boston.   

Transportation demand models are often large and computationally expensive to evaluate 

due to the amount of required data and calculations performed with these large data sets.  

Furthermore, due to the sparseness of the data, model input parameters are uncertain.  It is 

important to account for the uncertainty in model predictions when using these models for 

decision support to assume the reliability of predictions of future system wide conditions.  Using 

these models for iterative model analyses is required for decision support activities such as 

sensitivity analysis, uncertainty quantification, and optimization.  In this chapter, the required 

computational efficiency will be achieved by developing simplified models for demand 
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estimation.  Also the simplified travel demand model will be exploited using computationally 

efficient methods for sensitivity analysis and uncertainty quantification.   

To address the issue of computational expense in travel demand modeling, one solution is 

proposed: a parsimonious travel demand model (PTDM) to estimate multimodal travel demand.  

A parsimonious model refers to a model which utilizes a reduced number of data parameters or 

input variables (Ho and Chong 2003).  The PTDM proposed in this chapter is derived from a 

proprietary parent model; in this case, the Cambridge Systematics (CS) Interregional Travel 

Model System (ITMS) trip frequency and main-mode choice models for the California HSR 

Ridership and Revenue Study (Cambridge Systematics 2008).  This research develops the 

PTDM, a derived and simplified model of travel demand in the California corridor, and uses it to 

perform uncertainty quantification and sensitivity analysis for parameters listed in the Cambridge 

Systematics ITMS trip frequency and main-mode choice models for the California High-Speed 

Rail (HSR) Ridership and Revenue Study (Cambridge Systematics 2008).   

Neither this chapter, nor the PTDM with uncertainty quantification, addresses the 

accuracy or reliability of the CS model forecasts.  The PTDM simplifies a complex travel 

demand model for the purpose of reducing computational expense, while the uncertainty 

quantification illustrates a method to identify the key input parameters for use in repetitive 

optimization and sensitivity analysis.  This chapter does not attempt to assess the reliability of 

the parent model forecasts, and the results in this chapter should not be used to infer the level of 

uncertainty in the California High-Speed Rail Authority’s Ridership & Revenue forecasts.  The 

analysis of the planned California High-Speed Rail system is only used in this chapter to 

illustrate how the proposed methodology can be applied. 
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3.2 Parent Model Description  

The California Corridor is an example of a large-scale multimodal interregional transportation 

network.  It consists of automobile, commercial air, and conventional rail networks.  To address 

its interregional transportation congestion, California is planning to add HSR to its commercial 

passenger transportation network.  The planned HSR network shown in Figure 3.1 will connect 

the cities of the San Francisco Bay Area, Sacramento, Fresno, Bakersfield, Los Angeles, and San 

Diego.   

 

(AMBAG – Association of Monterey Bay Area Governments, MTC - Metropolitan Transportation Commission, SACOG – Sacramento Area 

Council of Governments, SANDAG – San Diego Association of Governments, SCAG – Southern California Association of Governments) 

Figure 3.1: California Regions & Proposed HSR Station Locations4  

 

 Cambridge Systematics (CS) was tasked to perform an interregional travel demand 

forecasting study in California for the California High-Speed Rail Authority in 2008 (Cambridge 

Systematics 2008).  The CS study consisted of numerous logit demand models to estimate the 
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trip frequency, destination choice, access/egress mode choice, and main-mode choice of 

California travelers utilizing four modes of transportation: car, commercial air, conventional rail, 

and HSR.  The trip frequency model segments the model output into zero, one, or two trips per 

household per day.  The destination choice model contains variables reflecting the influence of 

different area types and destination districts, as well as other factors listed in Table 3.1, where 

the destination districts are shown in Figure 3.1.  The main-mode choice model alternative set 

consists of car, air, conventional rail, and high-speed rail.  All model components were estimated 

using data from stated preference surveys and revealed preference surveys collected at the 

household level for intraregional trips and intercept surveys at airports and other locations.  

Based on these surveys, models of California interregional travel were developed that were 

segmented by travel purpose, and distance traveled, with variables reflecting household size, 

year 2000 household income range, household automobile ownership, number of workers in a 

household, and travel party size.  The access/egress mode choice model alternative set consists of 

drive/park, drop off, rental car, and those that didn’t drive.  Those that didn’t drive are further 

categorized into taxi, transit, and walk/bike.  The access and egress mode choice models are 

based on reported mode use from survey data and include variables for trip cost, in-vehicle travel 

time, out-of-vehicle travel time, and household demographics. 

The CS ITMS follows the traditional four-step travel demand modeling approach and 

consists of sequential logit demand models to estimate the trip frequency, destination choice, 

access/egress mode choice, and main-mode choice of California travelers utilizing the four 

modes of transportation noted above (Cambridge Systematics 2008).  The purpose of the CS 

model system study was to forecast future ridership on the proposed California HSR system and 

to provide decision support for planning the HSR system as a means of reducing the demand on 
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existing modes of transportation in order to alleviate future transportation system congestion in 

California.   

The CS model is complex and computationally expensive to run when conducting repetitive 

applications to explore the sensitivity of the outcomes.  For example, one execution of the CS 

model can take several days due to the large number of travel analysis zones used in the model.  

The CS model adopted a travel analysis zone system based on a statewide model developed by 

the California Department of Transportation, with greater resolution in selected urban areas 

using the travel analysis zone system developed for those regions by the respective metropolitan 

planning organizations for their regional travel demand models, and in consequence contains 

4,667 zones (Cambridge Systematics 2008).  Adjusting the travel analysis zone resolution is a 

primary feature of the PTDM implementation. 
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Table 3.1: Cambridge Systematics Model Variables1 
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3.3 PTDM Implementation 

The PTDM, unlike the proprietary parent CS model system, contains only three primary model 

types: trip frequency, destination choice, and main-mode choice.  The PTDM was constructed 

using input parameters and their coefficients from the parent CS model; however, the data used 

to populate the input parameters was derived from publically available sources as the CS model 

data was not available.  PTDM data sources include census 2000 data, California Department of 

Motor Vehicles and Bureau of Transportation Statics.  The PTDM uses data and models that are 

similar to the CS models to illustrate how issues of travel demand uncertainty quantification can 

be answered.  The PTDM described in this chapter adjusts the model resolution by redefining the 

travel analysis zones to the counties of California, thereby reducing the number of analysis zones 

from the 4,667 zones used in the ITMS to 58 (Cambridge Systematics 2008).  For each travel 

analysis zone, distances to and from other counties, airports, conventional rail, and HSR stations 

are based on the most populated city in each county.  Interregional travelers originate from a 

county in one California region and have a destination in another region as shown in Figure 3.1.  

The model assumes that the county-level household characteristic attributes are uniform 

throughout each county.  The access and egress mode choice models were eliminated from the 

PTDM since access and egress models would require multiple county-level distance metrics.  

Based on this elimination, this PTDM assumes little to no impact on the trip frequency and main-

mode choice output from the access and egress models. 
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Table 3.2: Trip Frequency Model CoefficientsFigure 2 

 

Cambridge Systematic model coefficients given in the Cambridge Systematics model 

documentation were used in the PTDM trip frequency models as shown in Table 3.2.  These 

coefficients were applied to socioeconomic data derived at the county level from publically 

available sources.  The PTDM trip frequency models and the Cambridge Systematic trip 

frequency models utilize a similar structure.  These models segment trip frequency into short and 

long trips by trip purpose to include business, commute, recreation, and other, for a total of eight 

models.  The trip frequency models for both long and short trips, and trips greater than or less 

than 100 miles, contain continuous and categorical variables.  The level-of-service variables are 

continuous, while the location and number-of-trip variables are categorical.  The household 

characteristic variables are continuous, but in some cases were treated as dummy variables or 
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categorical variables.  Two variables from the CS model were not used in the PTDM model: 

interregional accessibility, and mode/destination choice logsum.  The logsum measures, used in 

the CS model, are a means to estimate a weighted average of travel time and cost that can be fed 

from one model to another (Cambridge Systematics 2008).  For the initial CS model estimation, 

a synthesized network zone accessibility measure was used, the details of which are not available 

from the model documentation.  The destination/main-mode choice logsum was also not 

computed as the estimation of the CS destination choice model used a mode choice logsum 

calculation from a Caltrans statewide model (Cambridge Systematics 2008) the details of which 

are also not available from the model documentation; instead, an equivalent logsum value for 

each county was inferred via optimization as shown below to calibrate the PTDM to the CS 

model.  The optimization minimized the sum of squares error between the CS model and PTDM 

regional trip frequency output results.  The CS model coefficients were not re-estimated for use 

in the PTDM main-mode choice models. 

 

    ∑(      )
  

with respect to the equivalent logsums 

where 

CSi = CS Model trip frequency of region i 

Pi  = PTDM trip frequency of region i 

The intraregion accessibility variable was not utilized due to the change in model resolution.  

This variable distinguished between locations with destinations within their home region, outside 

their home region but within 100 miles, and those outside their region and over 100 miles from 
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their origin.  Changing the model resolution to the county level made the intraregion accessibility 

variable impractical to use since the county distances are based on the most populated city in 

each county.  The impact of not using this variable was not significant to the PTDM results, 

since the PTDM was not independently estimated, but calibrated to the CS model. 

The trip frequency models contained thirty-six segments per model.  One example of a 

household population segment is the high income, three-person household with two workers and 

fewer vehicles than workers.  Each county household population was segmented in accordance 

with the location and household characteristic variables.  While census data provided county 

household population data in various income brackets, available household size data only 

provided household averages.  Household size segmentation probabilities were derived using 

Poisson distribution parameters.  The Poisson distribution is used to estimate the probability of a 

single event or a specific number of events given the average occurrence of the event ‘v’ (Haldar 

2000) where ‘v’ is the average household demographic as shown below. 

 

 (                                        )   
(  ) 

  
     

 

As an example, the average household size per county was used to estimate the percentage of 

households with 1, 2, and 3+ members in a household.  These probabilities were then applied to 

estimate the number households in each county with 1, 2, and 3+ household members.  A similar 

approach was taken to estimate the number of workers in a household, the number of households 

with specific numbers of vehicles, and those with fewer vehicles than workers.  Upon household 

population segmentation, the model variable coefficients were applied to logit formulas to 
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establish model segment dis-utilities and probabilities for 0, 1, and 2+ trips by household for 

each segment.  These probabilities were then applied to the segmented populations by county to 

determine the trip frequency for each county.   

 To reduce the model expense due to complexity, the PTDM destination choice model was 

conducted utilizing a traditional gravity model utilizing county populations and distances based 

the highest populated cities in each county.  As the PTDM does not quantify the impacts of 

uncertainty in the destination choice model, the use of a gravity model allows for a reasonable 

estimate of the travel demand.  The gravity model estimation was conducted for each county 

origin-destination pair from PTDM results calibrated to the CS model results.   

The gravity model based destination choice model results shown in Table 3.3, as 

expected, indicated that a large concentration of interregional travel stems from the San Joaquin 

Valley, Los Angeles, and San Francisco regions.  Due to the county level model resolution, there 

is a loss between the trip frequency and destination totals for the short trips output.  This occurs 

since several counties do not have destination pairs outside of their region where their most 

populated cities are within 100 miles of each other.  These counties include San Bernardino, 

Imperial, Del Norte, Humboldt, Lassen, Modoc, Shasta, Siskiyou, and Trinity. 

The PTDM main-mode choice models and the Cambridge Systematic main-mode choice 

models utilize a similar structure.  This series of models segments main-mode choice into short 

and long trips by trip purpose.  These purposes include business and other for long trips, and 

business, commute, and other for short trips for a total of five models.  The CS model 

coefficients, as shown in Table 3.4, were not re-estimated, but used to populate the PTDM main-

mode choice models.  The main-mode choice models for both long and short trips contain 

categorical, continuous, and dummy variables.  The main-mode choice constant, nesting, and trip 
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characteristic coefficients as shown in Table 3.4, are categorical, while the level-of-service 

variables are continuous.  Similar to the trip frequency models, the household characteristic 

variables in the main-mode choice models are continuous; but in some cases were treated as 

dummy variables or categorical variables.  Two variables from the CS main-mode choice models 

were not used in the PTDM: the ‘access mode choice logsum’, and ‘egress mode choice logsum’ 

variables.  This PTDM assumes little to no impact on the trip frequency and main-mode choice 

output from the access and egress models. 

 

 

Table 3.3: Calibrated Destination Choice Model Output Comparison 3 
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Table 3.4: Main-Mode Choice Variable Coefficients 

 

The trip segments developed for the trip frequency models are utilized in the main-mode 

choice models.  The primary effort for the main-mode choice models consists of establishing 

level-of-service parameters for HSR and assigning conventional rail, commercial air, and HSR 

stations to county origin-destination pairs containing multiple rail stations, and airports.  Using 

the trip frequency household population segmentation, the model variable coefficients were also 
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applied to logit models to establish model segment dis-utilities and probabilities for car, air, 

conventional rail, and HSR travel by segment.  These probabilities were then applied to the 

segmented populations by county to determine main-mode choice distributions for each county.  

Utilizing year 2000 trip frequency estimates, Table 3.5 shows the main-mode choice splits from 

regional origins. 

 

 

Table 3.5: PTDM Main-Mode Choice Prediction Results using year 2000 data. 

 

 This implementation of the PTDM has a primary limitation as compared to the 

proprietary parent CS Model.  The PTDM modeling resolution is at the county level or 

aggregation of counties.  Larger geographic areas are limited to combinations of multiple 

counties.  Model results that include sections of a county are not possible.  This research was 

conducted without the actual CS model and without the input data used in the CS model.  Due to 

the lack of data availability, this analysis was conducted with public record sources, including 
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the Bureau of Transportation Statistics, California Department of Motor Vehicles, the Bureau of 

Labor & Statistics, and Census data for the year 2000. 

 

3.4 Uncertainty Quantification 

After reducing the model, decision makers will need a means of quantifying the uncertainty in 

the PTDM output data arising from uncertainty in model parameters and input data.  Parameter 

and input uncertainty is quantified using an analytical uncertainty propagation method to provide 

a mean and standard deviation for the travel demand model output.  The model uncertainty 

quantification is computed using the Mean Value First Order Second Moment (MVFOSM) 

method which is based on a first-order Taylor series approximation of the output function 

(Haldar 2000).  The MVFOSM method, with evaluations approximately equal to the number of 

inputs parameters (N+1), has a significant computational advantage over the numerous iterations 

required for Monte Carlo simulation.  The partial derivatives shown below are approximated 

using finite difference. 

    [ ( )]  ∑(
  ( )

   
)

 

 

   [  ] 

where 

g(x) = travel demand model output function 

xi  = model coefficient 

Var[xi] = the variance in xi derived from the t-statistics given in the CS report. 
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 The CS report provided a mean and t-statistic for each model input parameter which was 

used as the basis for the assigned probability distributions.  This data is reproduced in Table 3.6.  

Based on the input parameter coefficient analysis, the mean HSR ridership using year 2000 data 

is 133,701 riders per day with a standard deviation of 6,888, assuming HSR prices at 77% of 

their comparable commercial air prices for a coefficient of variation of about 5%.  This mean and 

standard deviation provide a notional HSR ridership for the year 2000 if the network existed at 

that time.  Obviously, HSR did not exist in 2000; however, the year 2000 model can be used as a 

basis to determine HSR ridership in 2030 assuming an identical relationship in demand model 

input parameters and assuming a ridership annual growth factor from the year 2000 to 2030 to 

which the PTDM results would be dependent.  If the PTDM were to assume a 1.4% annual 

increase in ridership, the PTDM would estimate 2030 daily HSR ridership to be 202,896, while 

the CS model estimates 2030 daily ridership to be 202,740 (Brinckerhoff).   

 

3.5 Sensitivity Analysis in Uncertainty Quantification 

The objective of sensitivity analysis in uncertainty quantification is to determine the relative 

magnitudes of contribution to the output uncertainty arising from input uncertainty.  This is a 

different concept from parameter ‘elasticity’ where sensitivity is defined as the percent change in 

the output divided by the percent change in the input.  The sensitivity analysis for the demand 

input variable parameters is based on each input parameter’s contribution to the variance of the 

total demand model follows. 

 The PTDM sensitivity analysis uses techniques from the field of structural reliability, 

which has been developed over the last fifty years by researchers such as (Der Kiureghian 2008), 

(Ditlevsen 1996), (Rackwitz 2001), and Mahadevan (McDonald and Mahadevan 2008), to name 
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a few.  Particularly, the PTDM utilizes the Mean Value First Order Second Moment (MVFOSM) 

method (David 1996)(Haldar 2000) to identify the input uncertainties in the parameter 

coefficients that most strongly contribute to the model output uncertainty.  These outcomes are 

then used to rank order the variables based on their influence on the demand model. 

 The percent contribution to HSR Ridership Variance is shown below.  For an input 

parameter to be a dominant contributor to the model output variance, the input parameter must 

contribute greatly to the value of the model output and must have a large variance.  When both of 

these conditions are present, it is possible to have one or two parameters completely dominate 

the total model variance.  

 

                                           
(
  ( )
   

)
 

    [ ( )]
     [  ] 

 

 Of the many uncertain parameters in the models, the PTDM sensitivity analysis results 

indicate that the uncertainty in the output may be predominantly caused by very few uncertain 

inputs.  Table 3.8 indicates the contributors to the PTDM variance.  The variables considered for 

their contribution to the variance in the PTDM are listed in the trip frequency and main-mode 

choice model variable coefficients tables, Figure 3.2 and Figure 3.3, Table 3.6, and Table 3.7.  

Both the trip frequency models and main-mode choice models contain model coefficients which 

contribute to the total model variance, using the CS model parameters and t-statistics to 

determine the coefficient means and standard deviations assuming a normal distribution.   
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 Categorical variable model coefficients based on the number of trips generated per 

household dominate the variance in the trip frequency models, while the in-vehicle travel time 

coefficients dominate the variance in the main-mode choice models.  The trip frequency model 

coefficients used to determine the number of trips generated per household contribute about 98% 

of the total model variance as shown in Table 3.8.  For example, Table 3.6 shows that the 

average number of household workers variable in the short-commute trip frequency model has a 

large partial difference (-158,584) and a small variance (.0146), while the no household workers 

variable in the long-commute trip frequency model has a small partial difference (-5036) and a 

large variance (0.52).  Both variables have a low percent contribution to variance, 0.32% and 

.0116%.  In contrast, the coefficient of 1-Trip constant in the long-recreation trip frequency 

model has a relatively high contribution to variance of 13.92% resulting from both a large partial 

difference (-114070) and a large variance (1.2143).   

 It is not surprising that the dominant input uncertainties are one-trip and two-trips or 

more trip constants in the trip frequency models.  Intercity travel is much less common that 

intracity travel, and these trips originate with relatively small probabilities.  In order to accurately 

estimate these probabilities, a large amount of data is required.  Because these models use 

revealed preference data based on a limited number of individual travel logs, the uncertainty in 

the probability that an individual would choose to travel on any given day is quite large.  Further, 

these constants have a large impact on ridership forecasts because the projected HSR ridership 

will vary in proportion to the total travel demand, on which the constants have a large impact.  

Figures 3.2 and 3.3 indicate that the predictive capability of the PTDM is primarily based on 

subjective inputs, in this case, the coefficients assigned to the total number of travelers and 

number of passengers using a particular mode of travel. 
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Figure 3.2: PTDM Trip Frequency Coefficient % Contribution to Variance5 

 

 

Figure 3.3:  PTDM Main-Mode Choice Coefficient % Contribution to Variance6 
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Table 3.6: Contribution to PTDM Trip Frequency Model Variance in Projected Daily Ridership 
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Table 3.7: Contribution to PTDM Main-Mode Choice Model Variance in Projected Daily Ridership 

 

 

Table 3.8: Contribution to PTDM Variance in Projected Daily Ridership 
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3.6 PTDM Computational Expense 

The PTDM model analysis was conducted on a Dell Studio 1747 Intel(R) Core i7 1.60 GHz, 64-

bit operating system with 8.0 GB RAM.  The computation time for the PTDM sensitivity 

analysis described in this chapter is approximately 14 hours.  Each of the five main-mode choice 

models utilized in the PTDM methodology has a run time of approximately 2.5 hours.  The eight 

trip frequency models utilized in the PTDM methodology have a run time of approximately 10 

minutes each for a total of 80 minutes.  The parent CS model has a computational expense of 

several days.  The difference in computational expense is attributed the complexity of the model 

output.  While the main-mode choice output differentiated between four possible travel 

possibilities: HSR, commercial air, conventional rail and car, the trip frequency models only 

produced one output, travel demand. 

 

3.7 Conclusion 

In order to overcome the hurdles of computational expense in travel demand models, a PTDM 

was proposed which utilized a model resolution different from that of its proprietary parent 

model.  This parent model was used to calibrate and verify the results of the PTDM.  The PTDM 

reduced computational expense so that repetitive model simulations, optimization analysis, and 

sensitivity analysis are more feasible.  

To identify key model parameters, MVFOSM methods were used for uncertainty 

propagation and sensitivity analysis based on percent contributions to the model output variance.  

These key model parameters were found to be the constant terms in the trip frequency submodel.  

Knowing the percent contribution of the different parameters to the overall PTDM variance is 
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critical when conducting repetitive analysis.  Only the input parameter coefficients determined to 

be significant, based on their model coefficient contributions to variance, need to be considered 

during repetitive decision analysis.  All other parameters can be satisfactorily left at their means 

as the uncertainty in some parameter values contributes little to the uncertainty in the model 

output.   

 The PTDM prediction of HSR ridership, which has a coefficient of variation of 5%, 

assumes no bias, a valid model form, and the coefficient variances given in the documentation of 

the CS model.  If these assumptions are valid, the PTDM results imply that the CS trip frequency 

and main-mode choice models provide reasonably reliable estimates for ridership and revenue, 

for any given set of input assumptions.  However, these results do not determine the reliability of 

the parent model forecasts, since this analysis does not consider variance in the input values of 

the model variables, while the PTDM uses a different level of spatial resolution and does not 

include several of the model components in the parent model.  Therefore, the results in this 

chapter should not be used to evaluate the reliability of the California High-Speed Rail 

Authority’s Ridership & Revenue forecasts.  

.   
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CHAPTER IV 

 

MULTIDISCIPLINARY OPTIMIZATION FOR SYSTEM 

OPTIMAL MODEL INTEGRATION 

 

“There are no secrets to success. It is the result of preparation, hard work, and 

learning from failure.” – Colin Powell 

 

4.1 Introduction 

A system-of-systems consists of a network of systems whose inputs and outputs affect the 

decision parameters of the other systems within the network.  These inputs and outputs can act as 

boundary constraints for the affected network system.  System-of-systems decision analysis, as 

shown in Figure 4.1 is based on the interaction of multiple systems using an optimization 

approach.  The study of system performance or systems analysis spans many educational 

disciplines and practical applications.  The total effects of these systems and applications can 

rarely be appreciated when analyzed in isolation.  When systems interact with each other due to 

performing similar functions or impacting either the inputs or operational conditions of other 

systems, a more holistic approach may be warranted.  The study of interrelated systems, known 

as system-of-systems analysis is the overall focus of this objective.  In this chapter, system-of-

systems analysis will be discussed from a transportation engineering perspective. 

 The study of transportation engineering is one example of system-of-systems analysis.  

Transportation systems perform similar functions and are impacted by network conditions, 
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operational conditions such as weather, as well as each other.  The California high-speed rail 

study is one example of a system-of-systems as it involves the analysis of multiple modes of 

transportation.  Using the California high-speed rail program as a case study, this research will 

approach systems analysis from network conditions and related systems and will not consider the 

impacts of weather or other operational conditions.  This type of network systems analysis, due 

to its complexity, requires analytical methods for decision analysis support.  Decision support for 

system-of-systems engineering involves a synthesis of systems modeling, and optimization 

which consists of describing the network as a series of models, and optimizing across the 

network (McInvale, McDonald, and Mahadevan 2011).   

 Utilizing a multidisciplinary optimization methodology as shown in Figure 4.2, this 

research defines the interactions between airline fleet acquisition, assignment and travel demand 

forecasting using the PTDM by showing how aircraft allocation affects user demand and how 

user demand affects allocation. 

 

 

Figure 4.1:  Case Study Multidisciplinary Optimization System-of-Systems Analysis7 
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 Two examples of transportation system-of-systems problems that can be analyzed 

through the use of multidisciplinary optimization are transportation systems planning and airline 

scheduling planning.  Both of these model constructs contain individual models designed for 

specific purposes which both affect and are affected by other systems both within and outside of 

their respective systems families.  The analysis of these two transportation systems typically 

involves the study of a single mode of transportation.  Like most system-of-systems models, 

transportation system planning and airline schedule planning are traditionally conducted in 

isolation.  Studying the interactions between these two systems-of-systems requires multimodal 

analysis.  Multimodal interaction analysis such as this greatly increases the modeling complexity 

required for decision analysis.  As problem complexity increases, feasible solution methods for 

system-of-systems analysis become more critical. 

 Current solution methods to solve multi-modal intercity commercial transportation SoS 

decision problems are too computationally expensive..  As the problem becomes more complex, 

the number of required simulations also increases which adds to the computational expense.  

Depending on the level of complexity and computational expense, systems problems such as 

these require decomposition into smaller more manageable elements.  While some research 

exists that combine particular elements of transportation systems planning and airline schedule 

planning (Sherali, Bae, and Haouari 2010), currently no work exists that synthesizes 

transportation system planning and airline schedule planning given multimodal transportation 

providers.  Unfortunately, current mathematical models which focus solely on one system often 

lack the synthesis required to interact with other complex mathematical models.   

 A key complexity to system-of-systems analysis is integrating network models especially 

when these networks span multiple disciplines of study.  Methods for multidisciplinary 
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synthesized decision support for system-of-systems analysis are critical to systems planners.  

Due to the growing complexity of essential intricate systems such as commercial transportation 

systems, methods for synthesized decision support are expected to increase in importance.  As a 

result of their complexity and computational expense, mathematical models have become a 

common way to conduct decision support analysis methods for systems of systems.  The purpose 

of these models is typically to estimate the results of a specific system.  To address these issues, 

this research utilizes a method of multidisciplinary optimization for solving the integrated 

transportation system-of-systems problem consisting of the main-mode choice problem of 

transportation systems planning and the fleet assignment problem of airline schedule planning.  

When integrating the main-mode choice and fleet assignment optimal decisions, the resource 

allocation problem becomes the decision which drives the user main-mode decision while the 

resource allocation problem is a fleet assignment problem where a known capacity is used to 

support a user demand.   

 Utilizing current decision support methods which include transportation systems planning 

modeling, parsimonious travel demand modeling, airline scheduling planning modeling, 

schedule design modeling, and fleet assignment modeling, this chapter implements a decision 

support method for multimodal transportation system planning models and airline schedule 

planning models from the perspective of a market leader or dominant market player.  It is 

assumed that the market leader establishes the initial market conditions to which all other players 

in the market respond.  The research in this chapter provides a methodology for decision makers 

to establish those initial market conditions.  In the following chapter, this research provides a 

synthesized methodology for determining the competitive response to changes in an established 

network due to changes in market conditions.   
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 This decision support method combines the user-level multimodal decision choice of 

transportation system planning with the airline schedule design and fleet assignment decisions of 

airline schedule planning using multidisciplinary optimization.  The contribution of this work is 

the synthesized decision support method for multimodal transportation system planning models 

and airline schedule planning models by combining the user-level multimodal decision choice of 

transportation system planning with the airline schedule design and fleet assignment decisions of 

airline schedule planning using multidisciplinary optimization and game theory. 

 The overall scope of the California high-speed rail project to include the connected cities, 

cost estimates, and project passenger revenue reported early in California’s planning process is 

still in question.  Media reports indicate that much planning still remains concerning the scope of 

the California high-speed rail program (Mckinley 2011).  Reports such as these give credence to 

the fact that decision-makers require measures to effectively model and predict network usage.  

In this case, decision makers require a means of gauging the viability of high-speed rail as a 

commercial transportation service provider.  Assessing the viability of high-speed rail has 

centered on two primary questions: 

 What average price for commercial air and high-speed rail results in maximum profit?   

 At what price is high-speed rail viable? 

Both of these questions assume a relatively certain cost estimate for high-speed rail which was 

recently called into question.  Another issue worth researching is the effect of high-speed rail on 

commercial air demand.  It has been wondered whether the existence of high-speed rail could 

alleviate current commercial air congestion.  To address these questions, a short-run economic 
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analysis is provided comparing commercial air and high-speed rail average prices using game 

theory. 

 This chapter is organized into five main sections.  The first section discusses the 

parameters of the models integrated in this research followed by the proposed methods and 

formulations.  Next, a case study is provided to illustrate the synthesized decision support 

method followed by results and discussion, and a conclusion which explain how the 

multidisciplinary optimization method provides a synthesized method for multimodal 

transportation system planning models and airline schedule planning models as illustrated by the 

case study. 

 

4.2. Single Airline Optimization Methodology 

This analysis assumes a feasible pricing range for the average price of both commercial air and 

high-speed rail.  This analysis considers only these two factors and holds the model conditions 

for conventional rail and transportation via private-owned vehicle constant.  Using the PTDM, 

this analysis estimates the high-speed rail demand and commercial air profit for the feasible 

ranges of commercial air and high-speed rail.  The simultaneous analysis and design (SAND) 

and multidisciplinary feasible (MDF) methods follow for the system optimal fleet assignment. 

 

SAND Formulation 

                  (   
    ) 

Subject to: 
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Where 

Y(unstarred) = optimal fleet assignment at fixed d
*
. 

D(unstarred) = demand given fixed fleet assignment y
*
. 

 

MDF Formulation 

            ( ) 

Subject to: 

  ( )       (  ( ))    

 

Fleet assignment and user mode choice models directly impact each other through the interaction 

of their respective input and output elements.  The main input to the fleet assignment problem is 

the customer demand.  The customer demand by mode of transportation is the output of the user 

mode choice model.  A main input to the user mode choice model is the resource allocation or 

capacity which is the output of the fleet assignment model.  The other primary input to the user 

mode choice model is ticket price.   
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Figure 4.2:  User Mode Choice & Fleet Assignment Variable Interactions8 

 

 Figure 4.2 illustrates the interaction between transportation systems planning and airline 

schedule planning through fleet assignment and user mode choice decision modeling.  The user 

mode split determines the user travel demand for both high-speed rail and commercial air from 

ticket price & service headway.  The user mode choice input elements consist of the origin-

destination ticket prices and the service headways, while the output element is the travel demand 

by mode.  Commercial air demand determines resource allocation (capacity) & the ticket prices 

required for a profit.  One primary assumption in this integration is that capacity is set to meet 

passenger travel demand for both commercial air and high-speed rail.  

 

4.3 Case Study  

Transportation demand models have been used to estimate high-speed rail travel demand for the 

purpose of providing transportation planning decision support for potential high-speed rail 

projects.  As stated in chapter three, the proposed California Corridor High-Speed Rail project 

(Cambridge Systematics 2008) plans to link Sacramento, San Francisco, Los Angeles, and San 

Diego.  As California and other U.S. regions are considering the addition of high-speed rail as a 

new mode of transportation to their commercial transportation networks, transportation providers 
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are now faced with new decision support questions regarding both the acquisition and allocation 

of transportation resources.  These decision support questions require a synthesized approach for 

conducting multidisciplinary multimodal decision support over time.   

 

 

Figure 4.3:  Air Transportation Network Diagram9 

 

 To illustrate the integration of multimodal user decision choice and airline resource 

acquisition and resource allocation, this case study problem utilizes travel demand results from 

the parsimonious travel demand model from chapter three and the air transportation network 

diagram displayed in Figure 4.3 to develop airline schedule and allocation results assuming a 

single or dominant air service provider.  This synthesized decision support method for 

multimodal transportation system planning models and airline schedule planning models will be 

conducted by providing and discussing the cause and effect relationships between the input and 

output parameters of the respective models.  The prices for both high-speed rail and commercial 

air are based on PTDM pricing used to initially estimate California interregional travel demand. 
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As current pricing for high-speed rail in the United States does not exist, high-speed rail pricing, 

without any government subsidizing, is set at 77% of comparable commercial air pricing as in 

the parent ITMS model (Cambridge Systematics 2008). 

 

4.3.1 Problem Description  

The problem of resource acquisition and resource allocation occurs over time.  The first stage of 

the problem is to determine the optimal number of vehicles by type to purchase or acquire in 

order to support the estimated future air travel demand.  Upon receiving or acquiring the desired 

number of vehicles by type, the second stage of the problem determines the optimal resource 

allocation to maximize profit.   

 Utilizing the daily interregional travel demand estimates from the PTDM, this chapter 

describes the effects of transportation policy on commercial air and high-speed rail demand and 

on commercial air resource allocation.  Although a relatively new mode of public transportation, 

high-speed rail policy analysis has been developed through researchers such as Gunn who 

studied the methods for scenario based high-speed rail forecast generation (Gunn, Bradley, and 

Hensher 1992).   

 

4.3.2 Case Study Formulation 

This analysis assumes a feasible pricing range for the average price of both commercial air and 

high-speed rail.  This analysis considers only these two factors and holds the model conditions 

for conventional rail and transportation via private-owned vehicle constant.  Using the PTDM to 

estimate the transportation demand splits based on changes in the average ticket prices for 
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commercial air and high-speed rail, the case study considers the average commercial air prices 

ranging from $200 to $350 and for average high-speed rail prices ranging from $175 to $250 and 

reports the corresponding ridership and revenue.  These model outputs are derived over 

combinations of commercial air and high-speed rail prices over the listed ranges.  An analysis of 

these model outputs over the specified ranges makes up the short run pricing analysis of 

commercial air and high-speed rail.  The pricing analysis is used to determine the viability of 

high-speed rail in the California by utilizing the main-mode choice decision models of the 

PTDM to determine how revenue and ridership responds to changes in the average prices 

commercial air and high-speed rail in California.  The short run analysis reported in this chapter 

reflects the initial scope of California high-speed rail project. 

 This short run analysis assumes constant conditions for the main mode choice model 

parameters with the exception of the commercial air and high-speed rail prices.  In this analysis 

the commercial air and high-speed rail prices are averaged across the entire California Corridor 

commercial transportation network.  Other model parameters such as the cost of traveling by car 

resourcing parameters which define the level of transportation service provided, demographic 

parameters, and socioeconomic parameters are not adjusted in this analysis.  The ridership results 

from the short run analysis are used as inputs in the fleet assignment optimization. 

 The fleet assignment formulation optimizes the number of aircraft to purchase maximizes 

the profit associated with purchasing the aircraft required to support the quantity demand given 

an available fleet.  This analysis assumes aircraft are dedicated to specific origin-destination 

links.  The resource acquisition optimization involves a schedule design optimization to 

determine the optimal number of flights per day to support the customer demand for each origin-

destination pair.  The resource allocation optimization assigns aircraft to specific origin 
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destination pairs in support of customer demand for each origin-destination pair.  The aircraft 

acquisition and allocation master problem follows.   

              

                   ( )    ( ) 

∑∑       (    )      
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   ( )            

           

    

    

Where  

REV = revenue 

CC = capital cost 

OC = operational cost 

PAX = passengers 

MOPD = maximum number of operations per aircraft 

x = aircraft acquisitions 

y = aircraft allocations 

L = lower bound 
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U = upper bound 

O = origin 

D = destination 

Q = demand 

The amount of available aircraft is dependent on the first stage resource acquisition decision.  

The available fleets for this case study are listed in Table 4.1.  The listing of available aircraft is 

based on the current aircraft fleets of the primary commercial airlines serving California.  These 

airlines include United, American Airlines, and Southwest Airlines.  The aircraft fleet listed in 

Table 4.1 is derived from the websites of the six primary airlines serving California.  This 

problem assumes a mixed aircraft fleet and that the mixed fleet capacity can support traveler 

demand.  Each flight leg is flown by only one fleet.  The fleet assignment allocation optimization 

formulation minimizes the operational costs using an airline cost model.  The cost model used to 

estimate aircraft operating cost was based on an aircraft costing model by Harris in 2005.  The 

basic operating cost equation is shown in Figure 4.4.   

 

 

Table 4.1: Case Study Available Aircraft 
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 Flight crew expenses are based on the airline’s business approach, whether the flight is 

regional, domestic or international, the assigned aircraft maximum take-off gross weight 

(MTOGW) and the number of block hours assigned to the flight.  A block hour is defined as the 

amount of time from push-off from the departure gate to arriving at the arrival gate.  Fuel & Oil 

expenses are obviously based primarily on the cost of fuel per gallon, the number of cruise and 

non-cruise gallons per departure based on the flight distance, and the number of departures.  The 

number of gallons required for each departure is based on the engine-specific fuel consumption, 

and the engine take-off thrust for a jet or the brake horsepower for a piston or turbroprop.  

Insurance expenses are based on the number of aircraft owned by an airline, while the rental 

expense is based on the number of aircraft leased by an airline.  Although a significant aspect of 

airline costs, the aircraft cost model in this chapter does not consider the age of the aircraft fleet, 

maintenance expenses, or specific airport related expenses. 

 

 

Figure 4.4: Airline Total Operating Cost Framework10 
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 A fractional allocation of aircraft to 10-link system is assumed; therefore, flow 

conservation is not required.  The number of aircraft available to the 10-link system is limited by 

a maximum operations per aircraft per day (MOPD).  In this research the MOPD is 5. 

 

    
                                              

    
 

 

Supply provided on a link must be greater than PTDM-predicted demand. 

∑              ( )

 

 

where 

                          

Capital Cost is amortized into daily cost over a 5 year period.  The operational cost model is 

based on “An Economic Model of U.S. Airline Operating Expenses” by Harris in 2005.  Lastly, 

aircraft are dedicated to specific links. 

 

4.4 Results 

4.4.1 Profit and Ridership Results 

The following tables show the commercial air and high-speed rail ridership from the PTDM and 

the commercial air profit over the specified average price ranges for commercial air and high-

speed rail given the presence of high-speed rail.   These results are the basis of the normal-form 

game which ultimately compares commercial air to high-speed rail. 
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Table 4.9: Daily High-Speed Rail Ridership 

 

 High-speed rail ridership is highest when high-speed rail prices are at their lowest and 

commercial air prices are at their lowest as listed in Table 4.9.  These counterintuitive results are 

based on the nested structure of the PTDM where air and high-speed rail ridership are nested 

entities so their combined ridership (air & HSR) increases when their prices are lowest as shown 

later in Table 4.12.  The range of high-speed rail ridership spans from approximately 43K to 

82K.   
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Table 4.10: Daily Commercial Air Ridership 

 

 Commercial air ridership is highest when high-speed rail prices are at their highest and 

commercial air prices are at their lowest as listed in Table 4.10.  The range of commercial air 

ridership spans from approximately 97K to 135K.   

 

Table 4.11: Car Ridership 
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 Car ridership is highest when both high-speed rail prices and commercial prices are at 

their highest as listed in Table 4.11.  The range of car ridership spans from approximately 1.22M 

to 1.29M. 

 

Table 4.12: Combined Expect Daily Ridership 

 

 

Table 4.13: Combined Car, Air, High-Speed Rail Ridership 
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 Combined commercial air ridership and high-speed rail ridership is highest when both 

high-speed rail prices and commercial air prices are at their lowest as listed in Table 4.12.  The 

range of combined commercial air ridership and high-speed rail ridership spans from 

approximately 142K to 211K.  This combined ridership indicates that commercial air and high-

speed rail are nested modes of transportation. 

 Combined car, commercial air ridership, and high-speed rail ridership is highest when 

both high-speed rail prices and commercial air prices are at their lowest as listed in Table 4.13.  

The range of all three modes of transportation varies little from 1.435M to 1.436M.  It is 

expected that as both high-speed rail and commercial air prices increase, overall travel decreases.  

The model seems to account for one of the primary influencers of transportation prices, fuel cost.  

So if conditions exist that result in high air and rail prices, a similar reduction effect is 

experienced in car travel as well. 

 Commercial air profit is highest when commercial air prices are highest as shown in 

Table 4.14.  Even though commercial air ridership is lowest at their highest price range, the 

revenue gained by higher ticket prices offsets the decreased ridership.  

 

Table 4.14: Commercial Air Profit 
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4.4.2 Model Integration Results 

The fleet assignment results from this chapter demonstrate the expected cause and effect 

relationships regarding the introduction of high-speed rail to an existing commercial network.  

Table 4.15 shows the cooperative fleet assignment and profit without high-speed rail for the six 

aircraft used in the case study.  This base scenario assumes commercial air fares based on year 

2000 figures where HSR prices are set at  77% of air fares.  Table 4.16 shows the aggregate fleet 

assignment and profit by the six aircraft used in the case study network upon the introduction of 

high-speed rail.  This aggregate fleet assignment is the average of aircraft fleet assignments by 

origin-destination pair and the associated profit by aircraft across the given ranges of high-speed 

rail and commercial air prices.   

 

Table 4.15: Base Scenario: Cooperative Fleet Assignment Without High-Speed Rail 
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Table 4.16: Aggregate Model Integration Fleet Assignment With High-Speed Rail 

 

 

 One preconceived notion of HSR is that it would reduce air demand because it is 

perceived as a similar, cheaper, and possibly superior mode of travel to air.  Based on the 

findings of this research, a reduction in air demand will not necessarily reduce the number of 

aircraft operations servicing Southern California.  Instead, the introduction high-speed rail 

resulted in a greater use of smaller aircraft.  This increase of aircraft provided an increased level-

of-service resulting in increased schedule flexibility for commercial air.  The most notable result 

is the ~$9M reduction in profit for commercial air upon the introduction of high-speed rail to the 

commercial transportation network.  In order to reduce airline operations, additional external 

incentives may need to be provided to the airlines.  Air level-of-service will probably stay 

relatively close to what it is now, and congestion at California airports will probably be as severe 

as it was before the addition of HSR.  Many environmental impacts (e.g., noise, carbon 

emissions) are related to the number of operations more strongly than the size of aircraft. It is 

likely that many of the environmental benefits of HSR are significantly overstated.  Demands on 
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air traffic control will likely remain unchanged or could increase if more flights of smaller 

aircraft are scheduled as an airline response to reduced demand arising from the presence of 

HSR.  Tables 4.17 to Table 4.23 show the fleet assignment allocations and profits for all the 

price comparisons in the normal-form game. 
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Table 4.17: Model Integration Fleet Assignment (Air $350) 
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Table 4.18: Model Integration Fleet Assignment (Air $325) 
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Table 4.19: Model Integration Fleet Assignment (Air $300) 
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Table 4.20: Model Integration Fleet Assignment (Air $275) 
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Table 4.21: Model Integration Fleet Assignment (Air $250) 
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Table 4.22: Model Integration Fleet Assignment (Air $225) 
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Table 4.23: Model Integration Fleet Assignment (Air $200) 
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4.5 Conclusion 

 The benefits of transportation policy analysis, more specifically the study of 

transportation systems planning and airline schedule planning, has far reaching benefits.  

Demonstrating the links between transportation policy, travel demand modeling, and resource 

allocation modeling such as fleet assignment, provides transportation planners with a means to 

view the cost and travel demand implications of their resource allocation and pricing decisions.  

The study of transportation systems planning models and airline schedule planning 

models can take several forms.  Integrating both planning models through user-mode choice and 

fleet assignment is one method of bridging the gap between sectors of transportation theory 

commonly studied in isolation.  Other methods of integration can involve the other transportation 

forecasting models and airline schedule planning models which include trip generation, trip 

distribution, route assignment, schedule design, aircraft maintenance routing, and crew 

scheduling.  Integrated analysis can be used to show how policy decisions, especially those 

which directly impact transportation policy, can affect multimodal public transportation. 

 The integration of transportation systems planning and fleet assignment resulted in 

feedback relationship between the main mode choice determinations of transportation systems 

planning and the resource allocation of the fleet assignment problem.  Given high-speed rail & 

commercial air ridership and profit forecasts, transportation planners need a model to estimate 

the resources required to support multimodal interregional travel demand.  More specifically, 

planners need to know how many planes are required to support California travel.  The 

synthesized decision support method for multimodal transportation system planning models and 

airline schedule planning models can provide decision makers with the required synthesized 

decision making tool.   
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 Without high-speed rail, reducing the price of commercial air resulted in an increase in 

commercial air ridership and a reduction in the number of car users.  Since the majority of the 

high-speed rail ridership stems from a reduction in the number of car users, one can assume that 

the addition of high-speed rail to a multimodal transportation network should alleviate highway 

congestion, but not a have a great impact on commercial air congestion.  Conventional rail 

ridership was not greatly impacted by other model changes.  There was little change to the 

conventional rail ridership as a result of having or not having high-speed rail.  Similar to the 

ridership results without high-speed rail, there was minimal change to the conventional rail 

ridership results based on changes to both commercial air and high-speed rail.  

 As stated previously, a Nash Equilibrium is defined where no player in a competitive 

game benefits from unilaterally changing their strategy.  In this case of commercial air and high-

speed rail pricing for the purpose of maximizing commercial air profit and high-speed rail 

ridership, a Nash equilibrium exists where commercial air sets its average price at $350 and 

high-speed rail sets its average price at $175.  Commercial air loses profit and high-speed rail 

loses ridership if either decides to change their average price. 

 A possible scenario regarding the introduction of high-speed rail is the idea of 

subsidizing commercial air in order to allow a reduction high-speed rail pricing for the purpose 

of stimulating high-speed rail ridership and revenue.  Reducing commercial air prices an average 

of ~$25 results in a $1M profit loss resulting in a high-speed rail revenue increase of ~$300K.  

As a result, subsidizing commercial air for the benefit of high-speed rail is not cost effective. 

 The pricing strategy most beneficial to the future of commercial air and high-speed rail as 

alternate modes of transportation to car results in the worst short-term revenue benefit.  Decision 
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makers will have to decide whether to set costs based on short-term or long-term benefit.  Listed 

below are the conclusions which motivated the short-run analysis: 

 What average prices for commercial air and high-speed rail maximize air profit and high-

speed rail ridership?  The maximum profit for commercial air and ridership for high-

speed rail are achieved at the Nash equilibrium price of $350 for commercial air and 

$175 for high-speed rail. 

 At what price is high-speed rail viable?  The viability of high-speed rail depends on the 

cost of building and operating it.  Without network cost information for high-speed the 

question of viability cannot be answered. 

This chapter demonstrated how policy decisions through pricing subsidies can affect user mode 

choice decisions which in turn affect fleet assignment.  

 

  



85 

CHAPTER V 

 

 

GAME THEORETIC MULTIDISCIPLINARY OPTIMIZATION FOR MULTIPLE 

MARKET NETWORK USER EQUILIBRIUM DECISION ANALYSIS 

 

“In competitive behavior, someone always loses.” 

- John Forbes Nash -“A Beautiful Mind” 

 

5.1 Introduction 

Developing and anticipating system responses in a competitive transportation network is a key 

task for decision makers managing multiple competitive markets.  In the competitive airline 

industry, multiple airlines can assign multiple fleets to optimize for various objectives to include 

minimizing cost, maximizing market share, and maximizing profit.  Current analysis of the 

commercial airline industry to conduct such optimization studies typically focuses internally on 

competing airlines and specific markets.  As decision makers are considering and planning for 

the introduction of high-speed rail to their competitive commercial transportation markets, this 

work outlines a multidisciplinary methodological approach for analyzing a network of 

competitive markets which include commercial air and high-speed rail.  This work seeks to 

establish the optimal resourcing conditions amongst competitors in a transportation network 

comprised of multiple origin-destination pairs such that any unilateral shifts result in either 

increased operational costs or a loss of market share.  Transportation service provider resourcing 

affects the level-of-service provided to the transportation customer. 
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 The term of level-of-service is used by transportation officials to measure the 

effectiveness of transportation systems (Papacostas 2001).  Level-of-service is typical used to 

describe vehicle transit flow conditions where the various levels describe traffic flow conditions 

from free-flow operations to a breakdown in vehicle flow.  While levels of service can be 

quantified in terms of vehicle headway or car length spaces between vehicles, the term level-of-

service is often subjective.  For the purpose of this synthesized research, airline levels-of-service 

will be considered in terms of service headway or the amount of distance, measured in time, 

between transportation service vehicles (Wardman 2004).  Assuming a constant operating day, 

level-of-service will be described by the number of flights conducted per day between an origin-

destination pair.  Level-of-service conditions become a key constraint when conducting systems 

analysis, since level-of-service conditions define network capacity. 

 This chapter is the next step in the multidisciplinary transportation systems analysis 

framework provided by this research.  This research began with the construction of a 

parsimonious travel demand modeling for California high-speed rail followed by the integration 

of transportation systems planning and airline schedule planning through the use of 

multidisciplinary optimization.  This chapter expands the concept of determining equilibrium 

conditions from a network perspective consisting of multiple individual markets using a game 

theoretic and multidisciplinary optimization method for multidisciplinary analysis. 

 This remainder of this chapter is organized into five main sections.  The first section 

presents the methodology and formulations.  Next, a case study is provided to illustrate the 

synthesized decision support method followed by results and discussion, and a conclusion which 

explain how the proposed method provides a synthesized method for user equilibrium decision 

analysis. 
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5.2 Game Theoretic Multidisciplinary Optimization Methodology 

In this chapter, game theoretic multidisciplinary optimization is used to solve a network user 

equilibrium decision analysis problem.   Game theoretic optimization combines the principles of 

optimization to solve game theoretic problems.  A coupling of game theory and optimization was 

proposed by Palomar et al which explored the theoretic principles and techniques of game theory 

convex optimization and variational inequality theory and discussed their relationships to Nash 

Equilibrium problems (Scutari et al. 2010).  A study of game theory and transportation system 

modeling was conducted by Fisk analyzed the problem of operator competition and uses game 

theory to formulate a solution (Fisk 1984).  A game theoretic approach to urban public transport 

integration policy was proposed by Roumboutos and Kapros to predict the outcomes of various 

fare and location dependent strategies for public and private transportation operators 

(Roumboutsos and Kapros 2008).  The game theoretic optimization methodology follows. 

 

Master Problem for airline a:  Given           for all airlines except airline a. 

 

             

         (  )     (  ) 

∑∑         (    )          

      

 

∑∑      (    )        (  )          
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The objective function is formulated for each player.  The objective function constraints for each 

player are dependent on decisions made by the other players as these decisions affect the user 

demand supported by each player.  For this optimization formulation, the solution is derived by 

iterating through the objective functions of each player while holding constant the decisions for 

the other competitors.  In this research, consecutively optimizing the objective functions of each 

player will be considered one optimization iteration. 

 Another approach to the optimization iteration approach is to optimize the decisions of all 

players simultaneously.  Based on the number of players and subsequent degrees of freedom, this 

simultaneous formulation approach can quickly become intractable due to computational 

expense.  After each optimization iteration, re-evaluate user demand.  User demand can be re-

evaluated through the use of a travel demand model such as the PTDM or by using a demand 

redistribution decision rule.  The process of re-evaluating user demand and conducting an 

optimization iteration continues until either the demand distribution or its optimal resourcing 

converges.  For this analysis, user demand re-evaluation will be is based on a decision rule.  The 

decision rule assumes equal service provider utilization based on the capacity provided by each 

service provider.  
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5.3 Case Study 

Optimization and game theory models have been used to estimate responses to changes in 

network conditions.  Changes in resourcing and pricing are amongst the primary potential 

network responses to a market entrant.  Given the potential entrance of high-speed rail to US 

commercial, transportation providers require decision support to be prepared for competitor 

responses.  These decision support questions require a synthesized approach for conducting 

multidisciplinary multimodal decision support over time.  To illustrate the method of anticipating 

network responses to changes in network conditions, the following case study problem utilizes 

travel demand results from the parsimonious travel demand model from chapter three to develop 

a competitive response model which outlines the relationship between three competitive airlines 

responding to the entrance of high-speed rail and to each other.  This analysis assumes aircraft 

are dedicated to specific origin-destination links.   

 

5.3.1 Problem Description 

This case study problem involves three competitive airlines allocating aircraft to support travel 

demand for ten origin-destination pairs assuming four possible demand distribution scenarios.  

The four scenarios are based on the four HSR price values as shown in Table 5.25.  The three 

airlines in this case study problem are United Airlines, Southwest Airlines, and American 

Airlines.  The data used in this game is generally based on Bureau of Transportation Statistics 

data from 2007 to 2009.  The problem description, constraints, and solutions provided are meant 

to be used for illustrative purposes only and not directly indicative of previous or anticipated 

airline behavior.  In this problem, each airline has two fleets to choose from as shown in Table. 

5.24. 
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Table 5.24: Airline Allocation Aircraft 

 

 This airline allocation game involves three competitive commercial airlines seeking to 

minimize the cost of allocating resources to support customer demand.  The airline available 

aircraft, seating capacities, and allocation initial conditions are illustrated in Tables 5.24 to Table 

5.26.  The objective function for each player is to maximize the profit of allocating aircraft in 

support of customer demand.  The demand allocation is assumed to be dependent on resource 

capacity provided by each player.  The cost is based on the NASA cost model used in previous 

chapters (Harris 2005).  

 In this case study, there are six input parameters corresponding to the six fleet choices of 

the three competing airlines.  The ranges of the six parameters are based on the feasible ranges of 

the input parameters given the customer demand initial conditions.  The problem of resourcing 

and its relationship to user main-mode choice is assumed to be an instantaneous process although 

network conditions often take time to reach equilibrium conditions. 

 



91 

 

Table 5.25: Aircraft Demand By Scenario 

 

 The pricing used for this case study is an average of the ticket prices across the 10 origin-

destination pairs.  As expected, the resulting demands for each scenario vary based on pricing 

conditions. 

 

 

Table 5.26: Airline Allocation Initial Conditions 
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 The resource allocation problem is non-linear and as a result is subject to the network 

initial allocation conditions.  These aircraft distribution initial conditions are generally based on 

aircraft allocations in the California Corridor from 2007 to 2009.  Based on the aircraft resource 

allocation initial conditions, Table 5.27 shows the initial competitive airline demands. 

 

 

Table 5.27: Commercial Aircraft Demand By Airline 

 

5.4 Results 

Similar to the previous, this chapter models resource allocation associated with four price-related 

customer demands.  Unlike the previous chapter, this chapter provides a method for conducting 

analysis for a network made up of multiple markets.  As expected, the customer demands with 

the higher demand values have slightly increased resource allocations.  This relatively constant 

allocation is due to varying aircraft percent utilizations.  The airlines wish to maximize 

profitability and are forced to increase their level of service and possibly reconsider pricing 

strategy.  Airlines maximize profitability by flying more small aircraft. 

 Tables 5.28 and 5.29 list the competitive airline fleet allocations with and without high-

speed rail.  As expected, there was a significant decrease in air profit (~$7M) upon the 
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introduction of high-speed rail.  In addition, the resource allocations vary slightly amongst the 

four customer demand values.   

 Tables 5.30 to 5.36 list the competitive prices for the three airlines given the four demand 

values.  Surprisingly the optimal prices in general were outside the feasible range of the pricing 

model.   

 

Table 5.28: Base Scenario: Cooperative Fleet Assignment Without High-Speed Rail 

 

 

 

Table 5.29: GTO Fleet Assignment With High-Speed Rail – Demand 97,701 
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Table 5.30: GTO Fleet Assignment With High-Speed Rail – Demand 98,437 

 

 

 

Table 5.31: GTO Fleet Assignment With High-Speed Rail – Demand 98,831 
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Table 5.32: GTO Fleet Assignment With High-Speed Rail – Demand 99,177 

 

 

 

Table 5.33: GTO Optimal Prices With High-Speed Rail – Demand 97,701 
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Table 5.34: GTO Optimal Prices With High-Speed Rail – Demand 98,831 

 

 

 

Table 5.35: GTO Optimal Prices With High-Speed Rail – Demand 98,437 
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Table 5.36: GTO Optimal Prices With High-Speed Rail – Demand 99,177 

 

5.5 Conclusions 

Game theoretic optimization can serve as an effective means for conducting transportation 

systems analysis.  This work demonstrated how optimization can be utilized within the context 

of game theory to determine  equilibrium points in terms of pricing scenarios for the analysis of 

multimodal systems to conclude commercial and high-speed rail.  This work demonstrated how 

optimal pricing condition amongst competitors such that any unilateral shifts result in a loss of 

either profit or market share.  Lastly, this work showed how pricing strategies can affect the 

identification of equilibrium points that determine profit, revenue, and market share.  As the 

Game Theoretic Optimization best response results are not sensitive to initial conditions, it is 

assumed that each unique combination of best response functions either have a unique 

equilibrium point or none at all.   

  



98 

CHAPTER VI 

 

CONCLUSIONS 

 

 “Let me tell you the secret that has led me to my goal.  My strength lies solely 

in my tenacity.” – Louis Pasteur 

 

 

This research provided a framework to conduct system-of-systems analysis using two specific 

system-of-systems analysis applications directly affected by customer or user decision choice 

namely transportation systems planning and airline schedule planning.  This framework was 

designed to aid system-of-systems decision makers in conducting resourcing and pricing 

analysis.  While this research focused on two transportation system-of-systems, the 

methodologies provided in this research are generalizable to other system-of-systems domains.  

This research addressed two of primary criticisms of system-of-systems analysis, complexity and 

computational expense along with not considering the effects of outside systems by successfully 

developing a feasible transportation demand model for repetitive analysis, the parsimonious 

travel demand model using the California high-speed rail study conducting by Cambridge 

Systematics as a parent model for model reduction and calibration.  This research considered 

both the effects of and on outside system-of-systems models by integrating the fleet assignment 

model from airline schedule planning and showing how both models impact each other through 

highlighting the input and output variables of both models in the context of multidisciplinary 

optimization.  This research further demonstrated the cause and effect relationships between the 
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user mode choice models of transportation systems planning and fleet assignment models of 

airline schedule planning.  Using game theoretic optimization, this research demonstrated a 

methodology to model and estimate system-of-systems resource requirements.   

 This research provided a normal-form game methodology to conduct near-term pricing 

analysis for a transportation system-of-systems network.  This analysis methodology provided a 

means to quantitatively identify network conditions and interactions critical for network analysis.  

In the case of the California high-speed rail study, this research identified the nested relationship 

between commercial air and high-speed rail passengers as compared to car travelers.  This type 

of analysis in meant to address large-scale transportation network concerns such as the goal of 

U.S. transportation decision-makers to address their highway, and air transportation congestion 

issues.  In response to this specific concern in the California Corridor, this research concludes 

that congestion will not be considerably mitigated by the introduction of high-speed rail in 

California regardless of the scope of the California high-speed rail project.  Due to the effect of 

induced demand, it is concluded that aggregate travel demand will increase as more 

transportation capacity is created. 

 Given that pricing decisions are made on a shorter time scale than airline resource 

acquisition and schedule design, pricing strategies can be identified using the simplified planning 

model as shown by the formulation of HSR/Air pricing as a normal form game, the prediction of 

HSR/Air ridership and profit as a function of ticket pricing, and the identification of equilibrium 

pricing strategies.  Based on the PTDM model, the ridership and profit equilibrium pricing is 

$350 for air & $175 for HSR.  The assessment of the viability of HSR in California is dependent 

on highly subjective modeling constants and accurate cost assumptions. 
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 Based on the results of the model simplification chapter, this research concludes that a 

useful simplified model, suitable for sensitivity analysis, uncertainty quantification, and 

optimization studies can be specified, estimated, and validated.  The PTDM is most sensitive to 

the trip constant and mode constant model parameters followed by travel cost and income 

parameters.  Other parameters are insignificant in the model prediction uncertainty.  The 

contribution of the key parameters to the uncertainty in model predictions is 96.7% for the trip 

constants and 49.5% for the mode constants.  The response of the total air transportation system 

to the presence of HSR can be predicted provided that outside influencers are considered in the 

model analysis.  The competition between multiple airlines can be modeled in a system-of-

systems context.  The presence of HSR will shift the balance of competitive airlines but not a 

great deal. As airlines need to become more competitive, smaller aircraft will become more 

heavily utilized to allow airlines to remain competitive. 

 As shown by the analysis the Cambridge Systematics travel demand model, 

transportation systems do not operate in a vacuum and as a result cannot be analyzed without 

taking into consideration its effects on and from outside sources such as other transportation 

models and environmental conditions.  Future travel demand analysis should consider the 

resourcing, pricing, and infrastructure effects on a transportation network.  The demand 

modeling, uncertainty quantification, and sensitivity analysis methodologies utilized applied here 

to mitigate computational expense can be used in other transportation modeling applications.  I 

recommend conducting similar travel demand, resourcing, and pricing analysis for other regions 

considering the introduction of high-speed rail to their commercial transportation network such 

as the Northeast, and Midwest Corridors.  As high-speed rail does not currently exist in the U.S., 

cost models do not exist for U.S. based high-speed rail, I recommend further analysis be 



101 

conducted to develop high-speed rail cost models.  Lastly, the parsimonious travel demand 

model developed in this research was conducted at the county-level, as a result, I recommend 

exploring different degrees of model resolution to find the best balance between model accuracy 

and computational expense and complexity. 

 

  



102 

APPENDIX: U.S. AIRLINE COST MODEL 

(Harris 2005) 
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