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Chapter 1

Introduction & Review

1.1 Concentric Tube Robots

Concentric tube robots, also known as active cannulas, are one of the smallest members of

the broader family of continuum (i.e. continuously flexible) robots [1, 2, 3]. They are made from

several tubes that are nested within one another concentrically (Figure 1.1). These tubes are pre-

curved and made of elastic material (usually superelastic nitinol). When the tubes are grasped at

their respective bases, and linear insertion/retraction and axial rotation motions are applied, they

interact elastically and make one another bend and twist. The net result is a needle-sized robot that

can elongate and bend in a manner that has been likened to a miniature tentacle.

While it is possible that applications will be developed outside medicine in the future, to date

the motivating applications for concentric tube robots have come exclusively from surgery and in-

terventional medicine, and two distinct methods of use have been identified. The robot can act as

a steerable needle or be used as a miniature teleoperated manipulator. In both contexts, the robot

can be enter the body in a variety of ways, including through the skin, through the vascular system,

through a natural orifice, or through the ports in a rigid or flexible endoscope that is itself inserted

into the body. In the trans-endoscope embodiment, concentric tube robots have been proposed

for use in neurosurgery [4], transoral throat surgery [5], transoral lung biopsy and therapy deliv-

Figure 1.1: A concentric tube robot next to a standard da Vinci laparoscopic tool.
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ery [6, 7], and transgastric surgery [8]. In the transvascular embodiment, concentric tube robots

have been proposed for a variety of intracardiac procedures where they enter the heart through

the vascular system [9, 10, 11, 12]. In the natural orifice embodiment, transurethral prostate [13],

transnasal skull base[14], and transoral throat [5] applications have been proposed, and it is likely

that surgeries through other natural orifices will be pursued in the future. In the percutaneous,

needle-like embodiment, applications that have been suggested include fetal umbilical cord blood

sampling [15], ultrasound guided liver targeting and vein cannulation [16], vascular graft place-

ment for hemodialysis [17], thermal ablation of cancer [18, 19], prostate brachytherapy [20], retinal

vein cannulation [21, 22, 23], epilepsy treatments [24], and general soft tissue targeting procedures

[25, 26, 27].

Of all these applications, the two that have been studied most extensively are the cardiac ap-

plications of Dupont et al. and the endonasal applications of Webster et al. This includes the first

ever use of a concentric tube robot in a live animal by Gosline et al. [28, 11]. It also includes the

first insertion of a concentric tube robot into a human cadaver by Burgner et al. [29, 14]. Many

researchers have also explored the use of concentric tube robots as steerable needles in a variety of

phantom and ex vivo tissues, as discussed in the following subsection.

1.1.1 Use as Steerable Needles

When cast as steerable needles, there are several ways concentric precurved tubes can be used.

The term “steerable needle” typically refers to devices that harness tip-tissue interaction forces to

steer [30, 31, 32]. Consistent with this, Salcudean et al. demonstrated a concentric tube design in

which a small section of a circularly curved wire extends from an outer tube [33]. In this steering

paradigm, as the needle is inserted into tissue with the wire held at a fixed angle and distance

of deployment, tip-tissue interaction forces will cause the shaft of the needle to bend. Changes

in the distance of wire deployment and the axial wire angle control the curvature and direction

of bending. Loser adopted a different approach where needle shaft curvature could be controlled

independently of needle insertion via two fully overlapping precurved tubes which could rotate
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with respect to one another [25]. With such a needle, a mid-insertion curvature change would

cause forces to be applied to tissue along the entire needle shaft, deforming tissue in order to aim

the needle towards the desired target.

In many steerable needle contexts, it is desirable to apply minimal deformation to tissue, and

one wishes to maintain the needle’s shaft exactly along the curved trajectory through which the tip

has traveled. This is referred to as “follow-the-leader” insertion [34]. Early work, which neglected

tube elastic interaction, implicitly assumed that concentric tube robots would automatically deploy

in this manner [35]. However, the accumulation of experimental results and modeling advances

soon showed that tube elastic interaction is typically significant. It also showed, perhaps counter

intuitively, that concentric circularly precurved tubes do not achieve a circular conformation when

axially rotated (see e.g. [36]). Both these factors make follow-the-leader deployment more chal-

lenging than it might at first seem.

However, a useful simple special case that can deploy in an exact follow-the-leader manner

was identified early in the history of concentric tube robots. It consists of a circularly curved inner

tube or wire that extends from a straight outer tube. The earliest recorded use of this concept in a

needle was likely in 1985 when the Mammalok product came to market [37], and the same basic

concept has been employed many times since (e.g. [38, 39, 26, 16, 18, 17, 27, 40], among others).

Chapter 5 is dedicated to a model-based analysis of follow-the-leader behavior.

An advantage of using concentric tube robots as steerable needles is that concentric tube robots

do not rely on tissue forces to steer, so their mechanical properties do not need to be perfectly

matched to the properties of the tissue through which they pass. Moreover, they are one of only

two steerable needle technologies that can follow the leader through both open and liquid filled

cavities in addition to soft tissues (the other is tendon actuation [41]).

1.1.2 Use as Miniature Manipulators

The basic idea of using a curved nitinol tube to deflect the tip of a manual laparoscopic tool was

described in several references from the early 1990s [42, 43, 44, 45]. These apparently led to the
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commercial Roticulator (Medtronic, formerly Covidien, formerly United States Surgical Corpora-

tion), which originally used a precurved nitinol tube [42], and remains on the market today with a

precurved plastic tube as the bending element. The idea of a teleoperated robotic manipulator with

multiple precurved tubes was developed independently and first proposed simultaneously by Sears

and Dupont and by Webster, Okamura, and Cowan in 2006 [8, 26]. In this context, the device acts

as a teleoperated slave robot in a manner conceptually similar to the patient side manipulator of

the da Vinci system by Intuitive Surgical, Inc. These initial papers in 2006 began a period of rapid

advancement in concentric tube modeling. This laid the foundation for much additional research,

which was aimed at making concentric tube robots useful in a master-slave context.

1.1.3 Development History

The commercial Mammalok product mentioned earlier appears to be the earliest device incor-

porating concentric tubes and/or wires made from precurved nitinol [46]. Introduced in 1985, it

was the first commercial nitinol device used in an interventional procedure, if orthodontic arch

wires are excluded. In 1992, Melzer described the use of a curved tube to deflect a manual laparo-

scopic tool [44], and Cuschieri and Buess described a similar idea involving a telescoping curved

dissection blade [45]. In 1995, Melzer and Winkel at Daum GmbH (Schwerin, Germany) devel-

oped the SMARTGuide, which was patented in 1995 and CE marked in 1996 [39]. In 1997, Melzer

described the use of the SMARTGuide in image-guided interventions [38]. In 2005, Loser used

two counterrotated fully overlapping curved nitinol tubes to change the curvature of a needle he

applied in an image-guided surgery setting [25]. Three groups (initially unaware of one another)

then began simultaneous independent development of concentric tube robots, with first publica-

tions in 2005 and 2006 [8, 26, 35]. These publications and subsequent rapid modeling progress

brought concentric tube robots to the general consciousness of the surgical robotics community.
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1.2 Modeling

1.2.1 Model Formulation

Model development began with simple models, which were continually generalized via the

incorporation of additional physical effects. The simplest possible model by Furusho et al. [35, 16]

considered only geometry, assuming that every tube was infinitely stiff compared to all within it.

Bending mechanics was included first by Loser for two fully overlapping tubes [25], and then by

Webster et al. [8, 47] and Dupont et al. [26, 48] for general collections of tubes. Torsion was

included first in straight sections of the device [8, 47], and then in curved sections with circular

or general tube precurvatures [49, 50, 36, 51, 48]. External loading has been incorporated by

considering the robot to be a single curved rod [52, 53], and more generally by describing the

relative tube rotations induced by the external loads [54, 55, 53]. The above models have been

used to enable teleoperation, and form the basis for mechanics-based control, design, and sensing.

While there remains some activity in modeling, researchers appear to have more or less con-

verged on a model which leverages the theory of special Cosserat rods to describe each component

tube as a continuum which undergoes bending and torsion [55, 48]. Though future developments

could potentially prove otherwise, at present it appears that these models have reached a “sweet

spot,” striking a balance between model complexity and accuracy.

All models to date neglect the effects of shear and axial extension of the rods, which are good

assumptions for thin beams like the tubes in a concentric tube robot. The basic modeling approach

is to write down a Cosserat rod equation for each tube, and then enforce concentricity by requiring

all tubes to conform to the same curvature as a function of arc-length, leaving them free to rotate

axially with respect to each other. This results in a system of differential equations with mixed

boundary conditions. The boundary conditions at the base of the robot are the axial angles of

the tubes, and the boundary conditions at the tip are internal moments that vanish because there

is no material beyond the tip to support them. After this mechanics problem is solved in order to

determine the axial tube angles along the robot, one must still integrate along the robot to determine
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the space curve of the robot itself (or this can be done simultaneously). This model has been

derived from both Newtonian equilibrium of forces and moments [48, 55] and energy minimization

[51, 36], and the two approaches have been shown to be equivalent [55, 51]. Experimental testing

of the model has shown that, with calibration, mean error in the prediction of tip position can be

as low as 1% to 3% of overall arc length [55, 36, 48, 53].

External loading has been included in this modeling framework in two ways. One method is

to consider the effects of loads on the model equations directly [55, 53]. A more computationally

efficient, approximate way of handling external loads is to first solve the unloaded model and then

treat the robot as a single curved rod that deforms under external loads [53, 56]. This approach

does not model relative tube axial rotations induced by external loads, and whether or not the loss

in accuracy is significant depends on the robot design and external loading conditions.

The models have also been extended to provide the differential kinematic maps for actuation

(Jacobian matrix) and external loading (compliance matrix) [57, 58]. These maps have enabled

resolved-rates-style algorithms for real-time control of concentric tube robots, as discussed further

in Section 1.3. Additional factors like tube tolerances and friction have been explored, though not

yet integrated into the modeling framework described above. A complicating factor in the use of

concentric tube robots, which is captured in the above modeling framework, is the presence of

multiple solutions. Rapid “snapping” may occur when tube actuation causes the robot to transition

from one solution to another [47, 36, 48]. This effect is the subject of Chapter 4.

1.2.2 Model Solution

In contrast to the model formulation, no consensus has yet emerged as to the best way to eval-

uate concentric tube robot models. The model equations for two tubes with circular precurvature

have been solved analytically using elliptic integrals [36, 48]. However, no analytical solutions

have yet been found for robots consisting of more than two tubes, or for precurvature that varies

with arc length. Hence, model equations are typically solved numerically.

Numerical implementations have most often used a “shooting” method, which iteratively ad-
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justs unknown state values at one end of the robot until the boundary conditions are satisfied at the

other end. This procedure can be performed either base-to-tip, guessing the unknown values at the

proximal end and integrating to the distal end [59], or tip-to-base [53]. It was originally assumed

that group preserving integration methods were required for the geometric integration [48, 36].

However, in practice it has been shown that integration of the rotation matrix via standard explicit

Runge-Kutta methods introduces numerical error that is negligible compared to kinematic error, as

one would expect from the numerical examples in [60].

Simplifications to the model such as piecewise linearization enhance the speed of solution, and

sensing the unknown proximal boundary conditions with torque sensors alleviates the need for

root-finding techniques [61]. This choice does not necessarily find a solution that agrees with the

distal boundary conditions, but the advantages may outweigh this drawback. There remain open

questions in model evaluation. These relate to determination of which numerical methods are most

efficient and numerically stable, the accuracy of various approximations, and the characterization

of the “snapping” behavior (also known as “bifurcation”) mentioned earlier. In Chapter 3, a real-

time model solution method is provided that is fast and accurate, and which does not require either

model linearization or functional approximation.

1.3 Control

1.3.1 Kinematic Control

The main goal of kinematic control to date has been teleoperation. Two general frameworks

have been proposed for kinematic control of concentric tube robots. The first involves precompu-

tation of the model solutions over the entire workspace via one of the methods described in the

previous section. To these solutions, an approximate forward kinematics model can be fit, such

as a multidimensional Fourier series which is computationally efficient to invert via numerical

root finding and can be evaluated at 1000 Hz [48]. The main advantages to this method are the

consistent speed, suitability for real-time inverse kinematics, and the ability to identify numerical
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problems with solution of the model equations offline while the device is not performing a task.

One disadvantage is that this method is unable to account for concentric tube robots which exhibit

multiple solutions in the forward kinematics, which reduces the possible design space. Another is

that the torsional effects of external loading cannot be considered.

A second general approach involves rapid solution of the model equations and computation of

the manipulator Jacobian and compliance matrices [57]. Previous implementations in C++ were

limited to about 200 to 400 Hz [14], but in Chapter 3 it is shown that with careful implementation,

this rate can be substantially increased. The differential forward kinematic mapping is then used to

update the actuator configuration iteratively to solve the inverse kinematics [29]. The advantages

to this method are the ability to control robots which exhibit multiple solution behavior, the ability

to immediately control new designs without precomputation or code changes, and the ability to

control robots under known external loads. The main disadvantages are the increased programming

effort required for fast model solution and Jacobian computation.

1.3.2 Motion Planning

Optimal motion planners can enable obstacle avoidance and generate actuation sequences

needed to deploy along anatomical structures or to targets. Examples of prior work include plan-

ning paths around critical brain structures [62], through tubular anatomy such as the bronchi of the

lung [7], and through the passages of the nasal sinuses [63]. Some of the first planners used sim-

plified kinematic models employing circular arcs and were based on penalty methods that convert

the constrained optimization problem of avoiding obstacles while maintaining a tip location into

an unconstrained optimization problem [62, 7]. A different technique, termed Rapidly-Exploring

Roadmaps, was first applied with the transmissional torsion model to find optimal plans [64], and

later expanded to include the fully torsionally compliant kinematic model [63]. These planning

algorithms typically require many thousands to millions of evaluations of the forward kinematic

mapping, and this is one of the main motivations for the focus on computational efficiency in

Chapter 3.
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1.4 Sensing

Image guidance is a critical part of many surgical procedures. These include teleoperated

procedures where virtual fixtures [65] are used, as well as procedures where the concentric tube

robot is used as a needle. One can use the mechanics-based model described in Section 1.2.1 to

predict where the robot will be, provided that the procedure can tolerate errors of approximately 3%

of the arc length of the robot, and loads applied to the robot (if significant) are known. However,

often this will not be the case, so real-time sensing and closed loop control will be required. An

example of the use of visual feedback in tip position control was the use of a closed form Jacobian

derived from the transmissional torsion model in [66]. In the remainder of this section we discuss

the methods that are being investigated to sense the shape of the robot for such purposes, as well

as methods to estimate applied loads. Force sensing based on deflection models are the subject of

Chapter 6.

1.4.1 Magnetic and Fiber Optic Shape Sensing

Standard, off-the-shelf magnetic tracking systems can be used for tip pose sensing, and also in

principle to provide the pose at discrete points along the robot. These have been used by Mahvash

and Dupont for stiffness modulation [56, 67], by Burgner et al. for image guidance [14], and by

Xu et al. for model validation and evaluation of tracking performance [58, 61]. In principle, such

sensing could be used in conjunction with the robot model to estimate the entire curve of the robot.

There has been recent interest in the surgical robotics community in fiber Bragg grating sensors

in needles [68, 69, 70, 71] and other optical sensing techniques (see e.g. [72]), and these results

have recently been extended to include strain-based sensing of shape and forces in concentric tube

robots [73].
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1.4.2 Force Sensing

Due to the inherent flexibility of the concentric tube robot, it will be useful to know the inter-

action forces between the robot and the environment for both accurate control and user feedback.

A wide variety of force sensors have also been investigated in the context of minimally invasive

surgical tools [72], but the only one that has been specifically designed for and applied to a con-

centric tube robot is a tip force sensor which measures force magnitude and contact angle based

on electrical resistance of fluid-filled channels [74, 75].

1.5 Design

There are three distinct aspects of concentric tube robot design. Perhaps the one that has

received the most attention to date is the selection of tube properties (curvatures, lengths, diameters,

number of tubes) appropriately based on application requirements. However, beyond this, one must

also construct a suitable actuation unit that grasps the tubes at their respective bases and applies

telescopic and axial rotation motions to each. Lastly, one must design the surgical end effectors

necessary to accomplish the surgical objective.

1.5.1 Tube Design

Optimal selection of tube properties has been the focus of substantial research, and was dis-

cussed in the earliest papers on use of concentric tube devices as robotic manipulators [8, 26],

which provided ways to determine maximum curvatures and idealizations intended to facilitate

design intuition. Since then, a number of authors have investigated algorithms for optimal tube de-

sign, using a variety of models and assumptions. Anor et al. planned piecewise constant curvature

paths through the brain ventricles for choroid plexus cauterization [76]. Torres et al. used circular

precurvatures with the torsionally compliant model to develop a rapidly-exploring random tree al-

gorithm to create a design together with an actuator plan for collision-free insertion through a lung

lumen [77]. Burgner et al. also used the torsionally compliant model and introduced volume-based
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coverage objective functions to design robots that are able to optimally cover a desired workspace

with their tips [78, 14].

These results have motivated the development of two results in this dissertation. First, the

efficient and stable computational routine of Chapter 3 is useful for the algorithms that design

optimal robot shapes. Second, the shape setting method described in Chapter 2 was developed in

order to accurately and rapidly prototype the designs which are created by these computational

routines.

1.5.2 Actuation Unit Design

Actuation units have only recently become a topic of interest in the concentric tube robot re-

search community, with early papers simply showing photographs of actuation units with little

discussion on their design [26, 66]. A differential drive is described in [5], although this has the

drawback of requiring long holes to be drilled through screws. Modular bimanual (two arm) [14]

and quadramanual (four arm) [79] robots designed for endonasal surgery have also been presented.

Single-arm MRI-compatible designs using piezoelectric motors [80] and pneumatic cylinders [81]

have been constructed and demonstrated in MRI environments. A highly compact actuation unit

for controlling one curved tube deployed through an endoscope port was described in [4]. Another

compact and inexpensive (potentially disposable) actuation unit using a spline screw for CT-guided

procedures was described in [27]. Consideration has also been given to reusable actuation units.

An autoclavable hand operated actuation unit design was presented in [19]. An autoclavable and

biocompatible motorized actuation unit (with a bagging procedure for the motor pack) was de-

scribed in [40], and applied to evacuation of intracerebral hemorrhages.

1.5.3 End Effector Design

A number of innovative end effectors have been developed for concentric tube robots. Dupont

et al. developed remarkable metal microelectromechanical systems (MEMS) end effectors specifi-

cally for concentric tube robots for cardiac tissue approximation and tissue resection [82, 11, 12].
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Burgner et al. mounted a gripper from a flexible endoscopic tool to the tip of a concentric tube

robot and also developed a curette end effector for endonasal surgery [14].

1.6 Dissertation Contributions

The overarching goal of this thesis is to provide advancements which are necessary for making

concentric tube robots clinically ready surgical devices. The subsections below are four areas in

which this dissertation contributes to the state of the art in concentric tube robots.

1.6.1 Actuation Hardware and Tube Shaping

The actuation hardware presented in this dissertation builds upon previous work in [79] to sat-

isfy the surgical workflow requirements for endonasal surgical procedures. The robot is specifically

designed to deliver multiple concentric tube robots through a single nostril. There are three salient

points which separate this design from prior actuation units. First, this platform is capable of deliv-

ering four tools through a single nostril via the use of a funnel-like tube collector, which provides

surgeons with more dexterous tools at the operating site. Second, the tools are modular and can

be easily attached or removed from the main body of the actuation unit. This feature facilitates

simple pre- and post-surgical workflows and allows the tool to be sterilized separately from the

robot. Third, a sterile barrier separates the tool modules from the bulk of the robot, which prevents

the need for sterilizing the electronics and motors. This paradigm is similar to the commercially

successful da Vinci robot from Intuitive Surgical.

In addition to the actuation unit, a method for shape setting superelastic Nitinol tubes to match

specific design requirements is presented in this dissertation. The method uses pulsed DC current

to heat the tubes under closed-loop control with resistive feedback, which has not been studied

before in the context of shape setting Nitinol parts. Although, in principle, box furnaces can be

used for shape setting Nitinol, previous experience indicated that repeatability and accuracy were

both major problems for prototype quantities. The experiments we present for the electrical method

indicate that it is preferable to the box furnace method in prototyping laboratories.
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1.6.2 Software for Robot Control

The software design presented in this dissertation facilitates real-time control of concentric

tube robots. Although the literature on concentric tube robots contains many suggestions for how

to solve the torsionally compliant model equations, none of the existing literature adequately ad-

dresses real-time solution of the model for teleoperation. The concentric tube kinematic model

possesses orders of magnitude more computational complexity than those of rigid serial or parallel

manipulators, making model computation speed important for online operation in surgical robots

and offline computation in automated designers and planners.

The solution presented in this dissertation avoids iterative methods wherever possible, and is

shown to enable model solution for three tubes at rates greater than 5 kHz, whereas the fastest

of prior implementations, which both used a simpler model and made more approximations, was

reported at approximately 1 kHz [61]. We also study the numerical convergence of the method we

propose, which is an important consideration for safety in a real-time medical robot.

1.6.3 Model Analysis: Elastic Stability

The study of elastic stability is one of the primary theoretical contributions of this dissertation.

Although it has been known since early in the development of concentric tube robots that they may

suddenly “snap” from one configuration to another under particular choices of design and actu-

ation, this behavior had not previously been reconciled with the community-accepted torsionally

compliant model. We provide in this dissertation a study of elastic stability from energetic princi-

ples, culminating in a relative measure of stability that can inform automated planners, designers,

and real-time controllers about the stability of concentric tube robots of any design at arbitrary

configurations. This contribution will be important for advancing the use of high curvature robots

in practice.
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1.6.4 Model Analysis: Follow-the-Leader

In the follow-the-leader deployment paradigm, the shaft of the robot follows the tip as it in-

creases in length, as the body of a snake follows its head. Previously, it was known that concentric

tube robots could accomplish this type of motion in only a few special cases, which included only a

single circularly curved tube, two or more circularly curved tubes in plane with one another, or the

case where outer tubes are so stiff as to render the elastic interaction between the tubes negligible.

In this dissertation the mechanics-based model is analyzed and the potential space of follow-

the-leader designs is expanded to include helical tube designs, which greatly increases the design

space available for either human or computational designers. In addition, approximate follow-

the-leader deployment is studied to show that particular classes of designs can achieve behavior

similar to perfect follow-the-leader behavior with errors that are clinically acceptable for many

needle insertion tasks.

1.6.5 Intrinsic Force Sensing

Intrinsic force sensing has been proposed as an interesting way to leverage the inherent com-

pliance of continuum robots [83] to obtain additional information about the interaction of the robot

and the environment. Moreover, it has already been shown that the behavior of an impedance-

type controller can be recreated for concentric tube robots by using a model of an elastic rod [67].

However, there has not yet been an analysis of predictive accuracy for the intrinsic force sensing

capabilities of concentric tube robots using position feedback. Motivated by the near ubiquity of

magnetic position tracking equipment in neurosurgical suites, Chapter 6 details the design and per-

formance of an optimal state-estimation framework based on magnetic tracking feedback. A stan-

dard fixed interval smoothing algorithm is applied to predict external loads based on the observed

deflection. Force sensing experiments indicate that the full mechanics-based model for concentric

tube robots can provide force estimates that are reasonably accurate in terms of both magnitude

and direction across widely varying system states, including high-torsion configurations.
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1.7 Review of the Concentric Tube Robot Model

This chapter reviews the preliminary mathematical modeling techniques and the derivation of

the state-of-the-art concentric tube robot model which was introduced by Rucker et al. and by

Dupont et al. [55, 48]. Many of the following chapters rely on this modeling framework. This

model has previously been shown to be accurate to approximately 3% of the total arc length of the

robot [55]. By assuming that the deformation of the tubes when they are combined and/or placed

under external loads is entirely in bending, and neglecting the effects of shear and elongation, a

set of first order, nonstiff, nonlinear differential equations models the behavior of the robot under

actuation and external loading. The model is derived in this chapter from first principles using an

energy analysis, and the notation is introduced inline with the concepts.

1.7.1 Framing the Curves

The shape of each of the N tubes is described by the curve in space which lies along the

centerline of the tube. A stationary coordinate frame I is introduced, as shown in Figure 1.2. Prior

to combining the tubes concentrically, the shape is described by the vector-valued function p∗i (si)

for the ith tube. Derivatives of this function with respect to si are assumed to exist as needed. The

curve is parameterized so that si represents the arc length along the curve, i.e. dsi is the differential

arc element, ds2
i = dx2 + dy2 + dz2. Parameterizing the curves by si thus implies that


∂ p∗i
∂si


= 1

The domain of each function p∗i is [0,Li], where Li is the length of the ith tube. Naturally, the

curve describing each tube exists on a separate arc length coordinate si.

In order to represent the finite diameter of each of the component tubes, each of the space

curves is then framed, providing a right-handed coordinate frame

F∗i =
{
x∗i (si), y∗i (si), z∗i (si)

}
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Figure 1.2: The ith tube’s shape before deformation is described by the position p∗i as a function of
arc length si. At each point along the centerline curve a coordinate frame is attached.

at each point along each of the curves. Let the rotation matrix R∗i be the transformation from the

inertial frame to this frame, so that in coordinates of the frame I, the matrix R∗i =
[
x∗i y∗i z∗i

]
.

This matrix is an element of the special orthogonal group SO(3) which consists of all possible

rotation matrices.

Unless otherwise noted, vector quantities with subscript α will be represented by coordinate

vectors in terms of the coordinate frame Fα, for any subscript α. The basis vectors of the moving

frame (e.g. x) can be interpreted either to represent the abstract physical vectors or to be coordinate

vectors written in the inertial coordinate frame I. When the standard basis for R3 is indicated, the

symbols e1, e2, and e3 will be used, defined by

e1 =



1

0

0



e2 =



0

1

0



e3 =



0

0

1



(1.1)

The unit vector z∗i (si) of the frame F∗i is chosen first to be tangent to the curve, so that

(p∗i )′ = z∗i = R∗i e3 (1.2)
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The other two vectors in F∗i are mutually perpendicular and span the cross section of the tube. The

frame is chosen as a Bishop frame, which is locally roll-free about the tangent [84]. Because the

frame remains orthonormal and right handed, there is an “angular velocity” vector u∗i (si), termed

the precurvature vector, which describes the rate of change of the frame vectors with respect to arc

length, as

∂

∂si
R∗i = R∗i



0 −u∗iz u∗iy

u∗iz 0 −u∗ix

−u∗iy u∗ix 0



= R∗i û
∗
i (1.3)

Here, u∗ix , u∗iy, and u∗iz are the coordinates of the curvature vector in the moving frame, and the

“hat” function û takes a vector from R3 converts it to the skew-symmetric cross-product matrix,

an element of the space so(3), which consists of all matrices of the skew-symmetric form in (1.3).

The inverse of the “hat” function, the “vee” function, performs the opposite conversion from so(3)

to R3. The space so(3) is the Lie algebra associated with the group SO(3), and represents the ways

in which “small rotations” vary from the identity matrix. For rotations R which are close to the

identity, R = I + ŵ +O
(
‖w‖2

)
for some ŵ which is an element of so(3).

The Bishop framing convention sets u∗iz = 0, which is permissible since the remaining two

degrees of freedom are enough to completely describe z∗i for an arbitrary curve (this is because the

time rate of change of a unit vector is always orthogonal to the vector itself). Let the symbol x′(si)

denote the partial derivative of x with respect to arc length si (the derivative is taken with respect

to the naturally defined arc length coordinate for each tube). Frequently the arguments to functions

will be dropped for convenience of notation so that x′ = x′(si). From equation (1.3), together with

the fact that (
p∗i

) ′′
=

(
z∗i

) ′
the curvature components are found as

u∗ix = −y
∗
i ·

(
p∗i

) ′′
u∗iy = x∗i ·

(
p∗i

) ′′ (1.4)

17



With a curve p∗i (0) specified, and an initial condition for x∗i (0) and y∗i (0), equations (1.3) and (1.4)

may be solved together as an initial value problem to yield the precurvature components and the

frame simultaneously.

The combination of the position p∗i and rotation matrix R∗i forms an element of the special

Euclidean group SE(3), and will be denoted by g∗i = (p∗i ,R
∗
i ). As a homogeneos transformation

matrix,

g∗i =



R∗i p∗i

01×3 1


(1.5)

The rigid body velocity of the frame g∗i is given by ξ∗i . This vector is composed of the twist

coordinates

ξ∗i =



v∗i

u∗i


(1.6)

where u∗i is the “angular velocity” with respect to the arc-length parameter s and v∗i is the “linear

velocity” with respect to the arc-length parameter. These twist coordinates are in terms of the

body-frame coordinate basis, so that the linear velocity coordinates v∗i correspond to the vector

velocity

p′ = v∗ixx
∗
i + v

∗
iy y
∗
i + v

∗
iz z
∗
i (1.7)

The modeling choice that (p∗i )′ = z∗i yields immediately that v∗i = e3. The twist coordinates

ξ∗i can be used in the compact formula

(g∗i )′ = g∗i ξ̂
∗
i (1.8)

to write all of the geometric differential equations describing the pre-curved shape of the ith tube.
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The mapping (̂·) : R6 → se(3) is given by

ξ̂∗i =



0 −u∗iz u∗iy v∗ix

u∗iz 0 −u∗ix v∗iy

−u∗iy u∗ix 0 v∗iz

0 0 0 0



(1.9)

when g∗i is interpreted as a homogeneous transformation matrix as in (1.5). The Lie algebra se(3)

corresponding to the Lie group SE(3) consists of matrices of the form in 1.9.

1.7.2 The Energy of Bending and Twisting

The stored elastic energy in each tube is given by the Kirchhoff kinetic analogy. Envision that

the framing of each tube described in the previous section has become permanently attached to

the material of each tube, so that infinitesimal units of material along the centerline of the tubes

become uniquely associated with an element g∗i (si). Denote the variables describing the deformed

state with the same characters as the undeformed ones, but with the star removed. It is assumed

that the tubes do not exhibit deformation in either shear or extension. A cross section at s defined

by the plane {x∗i (si), y∗i (si)} remains a cross section after the deformation. This implies that the

tangent vectors to the centerline, which are normal to perpendicular cross sections of the tubes, are

transformed between the deformed and undeformed states by a pure rotation.

After deforming, each tube now has its shape described by a new curvature vector ui, which

describes the evolution of the frame Fi = {xi, yi, zi} after deformation. The frame Fi is the frame

F∗i after the deformation, and this allows one to naturally compare the curvature vectors before and

after deformation. In general, the deformed curvature vector ui can have a non-zero component

along any direction. Let the change in curvature between the reference and deformed shapes be

∆ui = ui − u∗i .
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The stored elastic energy in the ith tube is

Ei[ui] =
∫ Li

0
Wi (∆ui) dsi (1.10)

The function Wi is the strain energy density function which depends only on the change in curva-

ture. To second order and assuming small strains1, Wi (∆ui) = (1/2) ∆ui · Ki∆ui. In this expres-

sion Ki is a linear map and the term Ki∆ui is interpreted as the internal moment carried by the

tube. This is in a similar form as the expression for the kinetic energy of a rotating rigid body,

E = (1/2)ω · Iω, and is termed the Kirchhoff kinetic analogy [36].

Since the tubes have a ring-like cross section, the stiffness map Ki is diagonal when expressed

in the local frame Fi, which is naturally aligned with the principal moments of inertia. The matrix

of Ki is given by

Ki =



Ei Ii,xx 0 0

0 Ei Ii,yy 0

0 0 Gi Ji,z



(1.11)

The constants Ei and Gi are the Young’s modulus and shear modulus of the material of the ith

tube (intrinsic material properties), and Ii,xx and Ii,yy are the second area moment taken about

the principal axes passing through the centroid of the cross section. Ji,z is the polar second area

moment. For an annular shape, Ixx = Iyy = I, and Jz = Ixx + Iyy, and if the material is isotropic,

G = E/(2(1 + ν)) where ν is Poisson’s ratio. For convenience, define kib = Ei Ii,xx as the bending

stiffness and kit = Gi Ji,z as the torsional stiffness, so that Ki = diag(kib, kib, kit ).

The total elastic energy stored in collection of N tubes is the sum of the energy stored in each

tube,

E[u1, ...,un] =
N∑

i=1

∫ Li

0
∆uT

i Ki∆ui dsi (1.12)

1Most concentric tube robots undergo strains of less than a few percent
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1.7.3 Combining the Tubes Concentrically

Because the tubes are placed concentrically with one another, there is only one space curve

pB (s) after deformation, so that pi (s) = pB (s) for all i, and all functions have been reparame-

terized in terms of a single “backbone” arc length coordinate. Figure 1.3 shows the frames of

each tube after the tubes conform to a common centerline. This constraint is holonomic, as it is

an algebraic function of the system states, and can be differentiated to be expressed on the tangent

vectors, zi (s) = zB (s) for all i, j.

The robot arc length s is defined so that s = 0 occurs at the constrained point where the tubes

exit the actuation unit. The tubes are actuated at robot arc lengths βi ≤ 0 so that we have N

functions

si (s) = s − βi (1.13)

which relate the robot arc length to the arc length along each tube. The robot arc length s is then

defined on the interval β ≤ s ≤ L where

β = min
i
{βi}

L = max
i
{βi + Li}

The parameters for each tube are then naturally defined on the tube’s individual arc-length function

si (s), e.g. the torsional stiffness kit (si (s)).

Define a new frame {xB, yB, zB} that describes the final space curve of the combined tubes,

with zB tangent to the curve. This new frame is again chosen to be a Bishop frame, so that the

associated curvature coordinate vector uB satisfies the constraint e3 · uB = 0. At each arc length,

the frames attached to the material of each tube are related to this “backbone” frame by a rotation

about zB, so that for the rotation matrices,

Ri = RBRz (ψi) (1.14)
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Figure 1.3: A depiction of a concentric tube robot which has been straightened for clarity, with
arc lengths βi and βi + Li located at the proximal and distal ends of the tubes, respectively. The
section view A-A depicts the centerline Bishop frame and the material-attached frames of tubes 1
and 2, with angles ψ1 and ψ2 labeled.

where Rz is the standard z-axis rotation matrix,

Rz (ψ) =



cosψ − sinψ 0

sinψ cosψ 0

0 0 1



(1.15)

Equation 1.14 should be understood as a definition of the variable ψi. For ease of notation, let

Rψi = Rz (ψi).

From (1.14), a relation on the curvatures is derived by considering the arc length derivative of

each side of the equation:

ui = RT
ψi
uB + ψ

′
i e3 (1.16)

Because this constraint on the curvatures was derived from the holonomic position constraints, it

can be substituted into the total energy functional, to yield E[uB,ψ1, ...,ψN ], prior to the application

of the Euler-Lagrange equations. This reduces the set of unknowns from 3N quantities to only 2+N

quantities, and provides a set of generalized coordinates.

22



1.7.4 The Free-Space Model Equations

Because the curvature functions ui are expressed in terms of uB and ψ′i , and the arc length

variables si are related to s by 1.13, the total energy can be written as a single integral

E[uB,ψ1, ...,ψN ] =
∫ L

β
F (s,ψ,ψ′,uB) ds (1.17)

Deriving the model equations under free-space conditions (no externally applied forces or torques)

requires only the application of the Euler-Lagrange equations to the energy functional E for each

of the unknown functions uB (s) and ψ1(s) through ψN (s). The details of this procedure are in-

cluded in Appendix A.1. This results in the set of differential equations below which describe the

kinematics of a concentric tube robot.

Concentric Tube Robot Kinematics. The spatial configuration of a concentric tube robot is

determined by the solution to a boundary value problem with first order states ψi, (kitψ
′
i ), pB, and

RB. The solution is governed by the differential equations

ψ′i =




k−1
it (kitψ

′
i ) 0 ≤ si (s) ≤ Li

0 otherwise
(1.18a)

(kitψ
′
i )
′ =




−uT
BKi

∂Rψi

∂ψi
u∗i 0 ≤ si (s) ≤ Li

0 otherwise

(1.18b)

p′B = RBe3 (1.18c)

R′B = RB ûB (1.18d)

with boundary conditions

pB (0) = 0, RB (0) = I (1.19a)

ψi (β) = αi, (kitψ
′
i )(L) = 0 (1.19b)
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It will sometimes be convenient to refer to the torsional moments as miz = (kitψ
′
i ).

The Euler-Lagrange equation for the unknown uB results in an algebraic constraint

∂L
∂uB

= 0 (1.20)

This equation may be explicitly solved for uB to provide the backbone curvature as a function of

the states:

[uB (s)]xy =


K−1

∑
i∈P(s)

KiRψi u
∗
i

 xy

, (1.21)

with

K(s) =
∑

i∈P(s)

Ki (s) ,

and the set P(s) = {i ∈ N : 1 ≤ i ≤ N ∧ 0 ≤ si (s) ≤ Li} is the set of indices of tubes which are

present at the arc length s. Note that by definition, uB · e3 = 0. The operator [·]xy is defined as the

orthogonal projection onto the first two coordinate axes, i.e. [x]xy =
(
I − e3e

T
3

)
x.

The physical interpretation of equation (1.21) is that the curvature of the collection of tubes is

a weighted vector sum of the precurvatures, with the weight given by the tube’s bending stiffness.

The rotation matrix Rψi is present to express the coordinates in a common frame. Because the

precurvature vectors u∗i and the final backbone curvature uB are all chosen in the Bishop conven-

tion with the third coordinate equal to zero, the arc-length derivative of the angles ψi is directly

proportional to the torsional moment carried by that tube.

1.7.5 Incorporating External Loads

When an external force or torque is present on the robot, the model equations change only

slightly. In this case, two extra states must be added and corresponding differential equations

added which govern their behavior These two states represent the total internal moment and total

internal force carried by the entire collection of tubes, as though they were represented by a single

rod.
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The internal force n and internal moment m are governed by the Cosserat equations

m′ = −p′B × n

n′ = − f
(1.22)

Boundary conditions on n and m are determined by the external loading situation. In the case

of a tip load Ftip, the boundary condition is n(L) = Ftip. Typically, the free-moment condition

m(L) holds as the natural boundary condition, unless an applied torque exists at the end-effector,

in which case m(L) = Mtip.

The algebraic relationship on the the final curvature uB and the precurvatures u∗i becomes


*
,

N∑
i=1

kib+
-
uB −

N∑
i=1

kibRψi u
∗
i

 xy

=
[
RT

Bm
]

xy
(1.23)

A variational derivation of this equation is included in Appendix A.2.
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Chapter 2

Endonasal System Hardware

This chapter describes two major contributions to concentric tube robot design and fabrica-

tion. The first is the design of a new system for endonasal surgery, including mechanical design,

electronics, and control software. The second is a new method for rapidly and accurately shape set-

ting the tubes of the concentric tube manipulators themselves. The first contribution is currently in

preparation for publication in an archival journal. The second has been published in IEEE Robotics

and Automation Letters [85].

The robotic system described in this chapter is a second-generation system for endonasal

surgery featuring concentric tube manipulators. It is an evolution of the system originally pre-

sented in [14], that includes many advancements made with the intent of satisfying real-world

surgical workflow requirements. The system consists of two main parts: an actuation unit, which

contains all motors and electronics, and the concentric tube manipulators delivered into the patient.

There are three salient points which separate this robot system from prior concentric tube robot

systems in the literature (including [14]). First, this system is capable of delivering four concentric

tube manipulators through a single nostril via the use of a funnel-like tube collector; prior robots

have delivered fewer manipulators. Second, the manipulators are attached to the robot in a modular

way using a cartridge interface, which has not previously been accomplished. This means that they

can be removed and replaced with new manipulators (e.g. having a different end effector) during

surgery, without removing the entire robot from the patient. This enables the tools to be sterilized

separately from the actuation unit. Third, a sterile barrier separates the tool modules from the

actuation unit, which makes it unnecessary to sterilize the electronics and motors. This overall

paradigm is similar to, and inspired by, the commercially successful da Vinci robot from Intuitive

Surgical.

The other major contribution of this chapter is a method to rapidly and reliably fabricate Niti-
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Figure 2.1: The motivation for the design of a new actuation unit is the unique set of challenges
posed by endonasal surgical access to the pituitary gland and skull base.

nol tubes with desired curvatures. The method uses pulsed DC current to heat the tubes under

closed-loop control with resistive feedback. This technique has not previously been explored for

the purpose of shape setting Nitinol.

2.1 Medical Motivation

Pituitary tumor removal surgery is a significant public health challenge. One in six people will

have a pituitary tumor at some point in their lives, and 1 in 100 of these will require surgery (>1 cm

in diameter tumor) [86] Traditionally, surgery to remove pituitary tumors and other tumors at the

skull base (Fig. 2.1) requires transcranial or transfacial access [87]. In these approaches, large,

traumatic openings must be created in the patient’s forehead (followed by brain retraction) or cheek

(leading to disfigurement). Endonasal skull base surgery reduces invasiveness [88], resulting in

less trauma, fewer complications, and shorter surgical durations [89, 90]. However, despite these

compelling advantages for the patient, only a small percentage of skull base surgeries are done

endonasally. One can infer from [91, 92, 93] that this number is certainly less than 50% and most
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likely below 20%, though exact statistics are not available in the clinical literature.

This endonasal approach is not deployed more frequently despite its demonstrated benefits to

the patient because existing surgical instruments have limited dexterity and approach angles [94,

89], and simultaneously manipulating several of them through a nostril while performing complex

surgical procedures is so technically challenging that only a small number of expert surgeons can

accomplish it [95]. Even for these experts, mortality rates remain non-negligible (0.9% [96]),

and there remain many contraindications for the endonasal approach, including occlusion of the

surgical site by delicate neurovascular structures (e.g. carotid arteries, optic nerves), inability to

fully reconstruct the dura due to lack of tool dexterity, and long surgery duration [97, 89]. All

these contraindications are directly related to limitations in instrument dexterity and visualization,

which motivates the development of the robotic system we describe in this paper. Such a robot

can potentially increase surgical dexterity and reduce the technical complexity of the procedure for

surgeons, thereby increasing the percentage of patients who benefit from the endonasal approach.

2.2 Related Work, Workflow, and How Robots Can Assist the Surgeon

While many robotic systems have been developed for intravascular interventions (e.g. the robot

discussed in [98]), as well as natural orifice surgery through other body orifices (e.g. [99, 100, 101])

or single abdominal ports (e.g. [102, 103, 104]), comparatively few systems have been targeted at

endonasal surgery. This is likely due to the smaller size of the nostril compared to other natural

orifices (e.g. the throat, single abdominal port, etc.). The few endonasal robotic systems that do

exist are best considered in terms of their function within the entire surgical workflow.

The workflow of endonasal surgery is as follows: Surgery begins with widening of the nasal

passage as necessary, to permit access to the anterior wall of the sphenoid sinus. Then, under

endoscopic visualization, the sphenoid sinus is exposed by drilling through the anterior wall, fol-

lowed by drilling of the posterior wall, providing access to the tumor. The surgeon then resects

the tumor using hand-held tools with straight shafts. Though a variety of end-effector designs are

possible on these hand-held tools, curettes (rings of metal for scraping away tumor material), are
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used most often and most extensively. Since pituitary tumors are very soft (similar in consistency

to brain tissue), and these rings are thin, yet not particularly sharp, they are useful for scraping

away tumor tissue while sparing blood vessels or nerves they may inadvertently contact. Image

guidance systems are also usually employed during the surgery. These systems (e.g. BrainLab AG,

Medtronic Inc.) allow registration of intraoperative anatomy and tool positons with preoperative

medical images. Prior robots developed for endonasal surgery have been used to ensure safety

during the initial bone drilling operations needed to expose the surgical site [105, 106]. Robots

have also been used to assist in endoscope manipulation [107, 108], and a 4 mm continuum robot

has been developed to steer a camera in the sinus cavity for visual inspection [109].

For endonasal robots, the limited space available in the nostril opening, combined with the

need to work dexterously within the cavities in the head, implies that instrument shafts must be

small in diameter while enabling dexterous motions of the instrument tips. A recently invented

robot design that matches these characteristics is the concentric tube robot concept, which is also

known by the name active cannula [48, 55]. Mechanics-based models of these robots have been

developed over the past several years (see [48] and [55], and references therein), and the latest

models can describe the shape of the device for the general case of arbitrarily many tubes, with

arbitrary precurvatures, in the presence of arbitrary external loading. These advanced models lay

the foundation for adaptation of concentric tube robots to specific surgical procedures, and progress

has been made in applications including cardiac surgery [9], neurosurgery [76], lung interventions

[7], and endonasal surgery [29], which is the focus of this paper.

As an extension of our earlier systems for the same purpose in [79, 14], our research is unique

among robotic systems previously proposed for endonasal surgery [105, 106, 107, 109] and com-

plements them by providing a novel way to resect tumors and dexterously manipulate tissues after

surgical site exposure. To elaborate upon this, a single endonasal surgery could potentially make

use of our system while also using all previously suggested robotic approaches for other aspects

of the overall surgical procedure. Such a hypothetical surgery would begin with virtual fixture-

assisted drilling [105, 106] followed by use of robot-controlled cameras [107, 109] to provide
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Figure 2.2: A system concept rendering which illustrates the architecture.

visualization of the end-effectors of the system described in this paper, as the surgeon uses them to

resect a skull base tumor.

2.3 System Concept

Our system concept is illustrated in Fig. 2.2. In it, the surgeon sits at a console and remotely

operate the robot. The robot is held on a support arm over the patient, delivering up to three concen-

tric tube manipulators through the nostrils, which can be equipped with a variety of end-effectors.

The surgeon console features two user input devices for teleoperation, an image guidance system,

and monitors for displaying endoscopic views and additional information. Detailed information

on the robotic actuation unit and surgeon console we have constructed are found in the following

sections.
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Figure 2.3: A single interchangeable tube cassette.

2.4 Actuation Unit Design

The major design objectives for the actuation unit were to achieve the force, velocity, and

workspace specifications described in [14], and to introduce interchangable, sterilizable tool mod-

ules and a bagging system for motors and electronics. In addition, it was designed to be more

compact and lightweight than previous versions, facilitating gross positioning of the device during

a procedure.

One of the key features of this robotic system is modularity. Each concentric tube manipula-

tor is attached to an individual ‘module’ (shown in Fig. 2.3) containing mechanical components

which transmit power from the motors to the tubes. These modules are identical in their exterior

dimensions and interface to the motors, but have different tubes and end effectors attached, and

can be docked into any of the four available module carriers based on the desired position of the

tool. Installation of the tool cartridge is quick and easy; a large handle is simply rotated to lock the

module in place. A tapered fit between guide pins and mating holes ensures proper alignment. The

central channel can accept any tube diameter up to a specified value, enabling a variety of tools to

be used with a single standardized module design.

Operating room sterility requirements place stringent constraints on the mechanical design of a

surgical device. To address this, the tool modules were designed to contain only autoclavable and

biocompatible components, such that they can be sterilized and reused between procedures. The

motors, which are not sterilizable, are located outside of the modules, behind a sterile barrier (the
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Figure 2.4: Draping of nonsterilizable components.

Figure 2.5: The prototype actuation unit.

drape shown in Fig. 2.4). They transmit power to the tubes on the sterile side via a spring-loaded

coupling, shown in Fig. 2.3, which is integrated into the drape.

The prototype actuation unit is displayed in Figure 2.5. Each module carrier contains six mo-

tors. Brushless motors (Maxon USA) were selected for their power-to-weight ratio. Each contains

a 2000 counts per rev encoder and a planetary gear head. Two motors are coupled to a leadscrew

responsible for the relative translation of the innermost cannula tubes with respect to the outer tube.

Each of three motors drives a pair of spur gears (3:1 reduction ratio) via a square shaft to individu-

ally rotate one of the three tubes. The sixth motor on the module carrier is available to provide an

additional degree-of-freedom for end effectors. Four additional motors, one located behind each

module carrier, control the translation of the modules relative to the robot base. This enables bulk

insertion or retraction of a tool.
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To reduce the length of Nitinol tubing under torsion, we have a designed a second system of

tubes, which we call “transmission tubes," to transmit torque without torsional energy storage.

This design element was added in response to the lessons learned from the stability analysis shown

later in Chapter 4. The transmission tubes allow the design to maintain sufficient curvature in

the concentric tubes to perform useful tasks, even with the actuated locations positioned many

multiples of the curved tube lengths away from the end effector. This enables the tool modules

to be slightly larger, as the taper angle back to the modules provides more space. As a result,

the modules can be fabricated using conventional machining techniques and with off-the-shelf

commercial parts.

The tool module are attached the base central backbone of the unit with angled brackets, point-

ing the tools towards their common insertion point at the nostril. Four stainless steel tubes posi-

tioned at this convergence gradually transition the tools into a compact and parallel configuration.

The exit point of this tube collector fits within an ellipse with a major diameter of 14 mm, meeting

the constraint that it should fit within a below-average size female nostril [110].

To provide high-definition endoscopic video to the surgeon, a Karl Storz EndoCAMeleon rod

lens adjustable endoscope with adjustable lens direction is used as for viewing the surgical site, and

a high definition digital endoscope camera is used to capture the video and relay it to the surgeon

console. The scope is fastened to the robot with an adjustable arm for easy positioning to the de-

sired viewing angles. For the pituitary tumor removal, this scope provides excellent image quality

and the adjustable viewing angle allows it to be placed out of the workspace of the concentric tube

robots anterior to the surgical site.

In order to ensure the robot is easy to maneuver while over the patient, custom embedded

microcontroller boards and brushless motor amplifiers (Maxon USA) are located physically on the

robot to drive the motors. This prevents having a large tether with hundreds of conductors, which

would hinder gross positioning of the robot. Four ethernet cables, a video cable, and a power

cable connect the robot to a nearby mobile patient-side cart. Video data passes directly through for

minimal latency, and the ethernet is switched by a gigabit ethernet switch, so that a single video
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cable and single data cable connect the patient-side cart to the surgeon console.

2.5 Surgeon Console

During the operation, the surgeon will be seated at a console containing a large-format display,

two Phantom Omni haptic devices, and a networked system of computers which performs the data

processing for the haptic devices and runs the high level controller for the robot. A photograph of

the console is shown in Fig. 2.6. Each Phantom Omni is connected to a dedicated server, and a

third rackmount server runs the user interface software which displays the video and provides the

image guidance views.

Control data is handled over an IP network via either TCP or UDP depending on the type of

data. Data which corresponds to single events, such as a request to change the state of a node in

the system from stopped to running, are handled via TCP. Network traffic corresponding to rapidly

updating quantities such as the current positions of the haptic devices or the current desired motor

positions in the actuation unit are sent via UDP. UDP introduces less jitter and less latency into

the communication in comparison to TCP. The gigabit ethernet network has more than adequate

bandwidth to handle all control traffic. Although ethernet is not traditionally considered a real-time

network, the types of signals carried over the ethernet network are low bandwidth (typically on the

order of a few Hz) in comparison to the data rate for each signal (typically on the order of hundreds

of Hz), and an occasional delayed packet has no ill effects.

2.6 Electrical Tube Shaping

In addition to the hardware that controls the concentric tube robots, we have also developed

a method for prototyping concentric tube robots with desired precurvatured shapes. Nitinol has

long been used in robotics for its shape memory properties [111]. Its superelastic properties are

also valuable and have enabled steerable needles [31], multi-backbone continuum robots [112],

tendon-actuated continuum robots [113], and concentric tube robots [114, 48, 55, 115], among

others. It is sometimes useful in these robots (and more generally in medical devices [116]) to
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Figure 2.6: The mobile surgeon console includes two haptic interfaces, a large-format display,
three rack-mount computers and a Gigabit ethernet switch for communication.

shape set a nonlinear space curve into the material in these robots. Indeed, for concentric tube

robots in particular, this is what enables the robot to work at all.

For concentric tube robots, the latest numerical design algorithms can produce specific tube

precurvatures needed to accomplish surgical tasks such as intracerebral hemorrhage evacuation

[40], transoral lung biopsy [117], intracardiac surgery [9], intraventricular interventions [118],

transurethral prostate removal [119], and transnasal pituitary surgery [14]. Optimal design for

stable robot operation has also been considered [120, 121]. In all of these cases, a set of tubes must

be produced that match the output of the design algorithm.

However, making curved devices out of Nitinol from the straight stock material one can typ-

ically purchase is not straightforward due to the difficulty of selecting the proper shape setting

treatment that will both impart the desired shape accurately and retain the superelastic properties

of the material. Optimization of the material properties of Nitinol is known to be a challenge [122],

and creating optimized parts typically requires specialized equipment and considerable experience

with specific techniques, which are often guarded as trade secrets by Nitinol manufacturers. Since

custom fabrication of very low volume prototypes by Nitinol manufacturers introduces substantial

costs and time delays into the research process, a quick, easy, and accurate shape setting technique
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is highly desirable.

The creation of Nitinol samples with desired curvature and other properties (e.g. retaining

superelasticity) typically requires many heat treatment attempts with different samples, varying

treatment times and temperatures [123]. In general, many heating methods may be used, and the

best have high heat transfer rates to the part and precise temperature control. Salt bath furnaces and

fluidized beds are two of the best methods that have these properties, but the equipment required for

these is expensive and potentially hazardous, making them poorly suited for quick prototyping in

a typical laboratory setting. Hence, researchers are typically forced to resort to small box furnaces

(ovens), despite the fact that shape setting is not highly repeatable or predictable using this method

[124]. For concentric tube robots, shape setting in a box furnace has been described in the literature

[115, 125].

The method described here is quick and easy to set up in a laboratory—particularly in academic

laboratories focused on medical device or robotics prototyping rather than metallurgy. While this

is not the first time electrical resistance heating of Nitinol has been proposed, it is the first time

that a practical, step-by-step method for achieving it in such a setting has been described in the

literature, and the first time it has been considered in the context of concentric tube robots. Smith

and Hodgsen noted that electrical resistance annealing is one of many possible shape setting meth-

ods but did not provide details other than to note that care must be taken to avoid overheating

[124]. Malard et al. presented results of high power electrical heat treatment of Nitinol wires but

did not address re-shaping superelastic Nitinol into a new, superelastic shape, which is required in

concentric tube robots and useful in prototyping other medical devices [126].

Our system uses real-time resistance measurements to regulate temperature, much like the

resistance-based control techniques that have been explored in the area of shape-memory actuator

control. Models for the solid state phase transition in electrically heated shape memory actuators

have been developed to account for the interdependence of temperature, strain, and resistivity, and

closed loop control of these actuators has been studied extensively using both resistance and direct

temperature measurements [127, 128, 129, 130, 131]. However, none of these papers address
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Nitinol that begins and ends in the superelastic condition at room temperature, and moreover none

address closed loop resistance feedback at the high temperature range needed to shape set Nitinol

tubes and wires.

The following sections provide an inexpensive and easy to build electrical shape setting system

with resistive feedback, together with practical insights for shape setting Nitinol accurately in a

typical robotics laboratory. Our approach is to heat superelastic Nitinol samples by pulsed direct

current resistive heating. Through simultaneous power application and measurement, we show that

it is possible to achieve rapid, reliable shape setting.

2.7 The Drawbacks of Box Furnace Shape Setting

Before describing the electrical shape setting approach, we first motivate it by illustrating the

challenges inherent to traditional furnace-based approaches. Furnace-based approaches are typi-

cally recommended by Nitinol manufacturers for low-volume prototyping applications in labora-

tories focused on medical device prototyping or robotics where the focus is not on metallurgical

research.

Shape setting recommendations from Nitinol manufacturers include temperature ranges of

400-550 ◦C, and time ranges from less than one minute to 20 minutes or more [132, 133]. The

quality of results one obtains are highly sensitive to both the time and temperature used. Indeed,

it is known that the specific time, temperature, fixture design and heating method will typically all

need to be adjusted to obtain the desired results [123]. Thus, a large factorial study is typically

required, which is feasible in commercial settings where high volumes are to be produced, but can

be prohibitively time consuming and costly in low volume prototyping applications.

In a large factorial study of this type within the recommended temperature and time ranges,

many samples would emerge no longer superelastic, their transition temperatures having been

accidentally moved above room temperature by the shape setting process. And even “successful

samples” that remain superelastic and take on some curvature will often end up with curvatures

substantially different than the desired curvature (i.e. the curvature of the jig into which they were
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placed).

To illustrate this by example, we followed exactly the time (10 minutes) and temperature

(500 ◦C) recommended to us verbally by one manufacturer. The process recommended by the

manufacturer was:

1. Constrain the Nitinol in a metal fixture in the desired final shape.

2. Heat the part and fixture for 10 minutes in an air furnace at a temperature of 500 ◦C, and

3. Quench the part and fixture in room temperature water to sharply define the heating time and

avoid aging effects.

We shape set a Nitinol tube according to this process in a fixture made from two aluminum plates

with brass pins between them, which initially constrained the Nitinol to the desired curvature (see

Figure 1). The tube had an outer diameter of 1.16 mm and an inner diameter of 0.86 mm, and the

fixture was designed with a radius of curvature of 33.3 mm.

As shown in Figure 1, significant springback occurred after the part was removed from the

fixture after quenching. This effect makes the fabrication of a part with a desired shape difficult,

since accounting for this much springback in the fixture would require additional experimentation,

time and material.

Thus, shape setting Nitinol in a box furnace is challenging for low volume prototyping appli-

cations. To provide a better method of shape setting, we now turn our attention to the electrical

heating method.

2.8 Electrical Shape Setting

We use direct Joule heating to shape set Nitinol prototype parts. This method was inspired

by the work of Wang et al. who showed that short-duration DC electrical heating to a surface

temperature of about 430 ◦C for approximately 10 s did not substantially change the mechanical

properties of superelastic Nitinol as it was received from the manufacturer [134], although they did
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Figure 2.7: A comparison of traditional air furnace-based shape setting and the electrical technique.
(Left) A fixture with metal pins was placed in the oven at manufacturer recommended temperature
and duration. The sample does take on precurvature, but with a much lower curvature than the
desired 33.3 mm radius (i.e. with substantial springback). (Right) The electrical shape setting
approach produces more accurate results with less springback.

not specifically study setting curved shapes into Nitinol. An electrical heating method is attractive,

in particular, when the part to be shape set has one relatively long dimension and the electrical

current can be made to pass through all the material which should be heated.

Electrical heating has several advantages over other heating methods. Probably the most im-

portant of these is the ability to rapidly heat the part to shape setting temperatures, which avoids

aging effects. Furthermore, the equipment required for electrical heating is minimal, consisting of

only a battery and circuitry that controls the heating process. The applied voltage and current can

also be easily monitored, making measurements of both the applied power and the part resistance

readily available. We show in this section how to use the latter of these as a feedback signal to

regulate the heating process and create a repeatable and accurate shape setting system.

2.8.1 Temperature Resistance Model

The temperature of the Nitinol sample can be inferred from measurement of the resistance,

which is available during heating if the applied voltage and current are measured. Novák et al.

reported an experimentally determined value of the linear austenitic temperature coefficient of
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resistivity for Nitinol of ∂ρA/∂T = 5 × 10−2 µΩ-cm-◦C−1 [135], which means that over a 500 ◦C

temperature swing we expect a change in resistivity of 25 µΩ-cm. This represents a 25 % increase

over the nominal resistivity provided by the manufacturer of ρA(Troom) = 100 µΩ-cm, which is a

measurable change in the part resistance that we use to infer the part temperature.

Assuming uniform heat transfer out of the part, we model the relative rise in the resistance of

the part as a linear function of temperature f (T ) = αT , so that

R(T )
R(Troom)

− 1 = αT . (2.1)

After selecting a desired temperature Td , the value f (Td) gives the relative rise in resistance, and

R(T ) can then be controlled to achieve the desired value R(Td). Controlled application of the

electrical power and accurate measurement of R enables the loop to be closed on a proxy for a

temperature measurement.

2.8.2 Shape Setting System

A block diagram of our shape setting system is shown in Figure 2.8, and a photograph of

the physical circuit layout is provided in Figure 2.9. Power is provided from a 12 V lead acid deep

cycle battery (BCI Group Size 27), which is able to supply several kilowatts of instantaneous power

during shape setting. An Arduino microcontroller board (µC), based on the Atmel ATmega328P

processor, is programmed to cycle between an on-state and an off-state to regulate the measured

resistance of the heated part. A MOSFET (International Rectifier, IRFB7430) controls the flow of

current in response to commands from the µC. The MOSFET drain tab is mounted directly to a

block of polished aluminum, which acts as both the conductive path and a heat sink. The MOSFET

source is mounted to a second block of polished aluminum which is separated from the first block

by an air gap. Welding cables carry current from the battery to the MOSFET mounting blocks, and

also carry this current from the mounting blocks to the load, where spring-loaded clamps soldered

to the end of the welding cable can be used to connect to short lengths of smaller gauge wire.
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Figure 2.8: Block diagram of the system structure. The microcontroller controls the part resistance
by measuring it while power is flowing through the part. The capacitor and TVS diode across
the MOSFET, as well as the flyback diode across the part, protect the system from the inductive
voltage spike caused at turn-off.

A gate driver (Texas Instruments, UCC37322P) provides high drive capability for the MOSFET

gate, which allows the transistor to switch rapidly and prevents it from overheating. A 1 µF film ca-

pacitor and transient voltage suppression diode are placed across the MOSFET drain and source, in

close proximity to the transistor, to snub inductive spikes, which result from the large di/dt values

during switching. A flyback diode is also present near the MOSFET mounting blocks to provide a

current path for the small parasitic inductance in the cables carrying current from the switch to the

load. The voltage drop across the heated part is measured by a separate set of sense leads, which

connect to a resistor voltage divider and difference amplifier (Texas Instruments, INA132). The

current is measured by a 0.5 mΩ high-side shunt resistor and current monitor (Texas Instruments,

INA139). The analog signals from the current and voltage monitor circuits are sampled by a 24-bit

analog to digital converter (Texas Instruments, ADS1255), and the data is communicated to the µC

via a serial peripheral interface (SPI) connection at 2 MHz.

2.8.3 Shape Setting Program

The µC program flow is graphically depicted in Figure 2.10. The system is assumed to start

with all parts at room temperature. The µC first closes the circuit and immediately thereafter
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Figure 2.9: Photograph of the circuit layout. The lower aluminum blocks are mounting points for
the MOSFET, and the upper aluminum blocks are mounting locations for the sense resistor.
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Figure 2.10: A flow chart of the µC program which controls the heating of the part. The inner loop
runs at a rate such that the resistance check occurs every 1 ms when the power is turned on. At the
start condition t = 0, and the value tstop = tramp + thold .
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measures the resistance of the part. Within each cycle of the µC code, the voltage and current

measurements are interleaved in rapid succession and the resistance is then calculated with the pair

of measurements. This initial resistance measurement Rinit is assumed to be at room temperature,

and the target resistance Rt is selected as a function of the time t since the start command was

given. The target resistance function Rt (t) ramps linearly between the initial resistance and the

final desired value Rd = (1 + αTd)Rinit = (∆Rd)Rinit , and is given by the equation

Rt (t) =




Rinit +
t

tramp
(Rd − Rinit ) t ≤ tramp

Rd t > tramp

(2.2)

The µC turns off the flow of current when R(t) > Rt (t), and turns it back on 100 ms after it turns

off, to repeat the cycle. While the heating circuit is turned on, resistance measurements are taken

at a rate of 1 kHz. When the time t exceeds a total heating time defined by tramp and a second

programmed interval thold , that is t > tstop = tramp + thold , the system turns off and the part is left

to cool without any additional quenching or forced cooling steps. Since the fixture is an insulator,

the heating time is short, and the part has a low thermal mass, cooling occurs rapidly with natural

convection. Additional information about fixturing is provided in the following section.

2.9 Fixture Design Guidelines

Due to the relatively low thermal mass of most of the parts that will be shape set, special care

must be taken when designing the shape setting fixtures to promote uniform heating of the part.

Both material selection and the jig shape are important in obtaining a successful shape setting. To

minimize heat loss and promote uniform heating, the material for the fixture should have low ther-

mal conductivity. Since the electrical path must not include the fixture, metallic jigs cannot be used.

Ceramic materials are an option, but designing a custom fixture would involve substantial time

spent machining the fixture. We have found that inexpensive medium density fiberboard (MDF)

works well and can be fabricated into fixtures rapidly by laser cutting. It is electrically insulating
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and has a low thermal conductivity of about 0.25 W/m-K (compare to air at about 0.05 W/m-K at

700 K) [136]. This material does have an autoignition temperature (flame point) of about 245 ◦C,

but we have never experienced a case in which the MDF has caught fire, in part due to a thin layer

of charred material that forms at the hot surface of the MDF. Nevertheless, a fire extinguishing

solution should be accessible when this type of jig is used.

One must also carefully design the fixture so that the heat transfer from the heated part to the

fixture is nearly uniform. Ideally, this means that the fixture should be cut by computerized tools,

such as a laser cutter, computer numerical controlled milling machine, or other precise means of

manufacturing so that the slot which is cut to hold the part fully constrains its shape along the

entire length. Non-uniform contact may cause localized overheating alternated with regions which

do not attain a sufficiently high temperature to become shape set. If the fixtures are made from

MDF, they should be replaced after one or two parts have been shape set due to material removal

which occurs at the charred surface of the jig.

Additionally, the electrical connections to the part should be either accommodated within the

length of the fixture or placed immediately where the part exits the ends of the fixture, because

any length of the part which is heated by current and is surrounded only by air may overheat.

Conversely, the wires for power delivery and sensing are heat sinks, and lower temperatures are

attained in close proximity to these connections. In practice this means that parts may be less

precisely shaped near the ends of the fixture. In many cases this discrepancy can be accounted

for in the design of the fixture. For example, to curve only the end of an otherwise straight part,

straight lengths of about a centimeter may be added to either end of the curved portion of the

fixture. The part can be trimmed to length after shape setting to produce a curve at the end of the

tube or wire. Another option is to increase the jig curvature near the ends to compensate for any

loss in curvature.

For planar parts, we recommend a jig which is split along the axial length of the part like

the one in Figure 2.11 and can be clamped onto the part to hold it in place. Clamping pressure

should be high enough to prevent movement of the part, but excessive pressure results in increased
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Figure 2.11: This fixture made of MDF was cut by a CNC laser cutter. The slot for the part is made
to accommodate the diameter of the tube which it was designed for, accounting for the kerf width
of the laser cutter. Wires are tied in an overhand knot and filled with solder to improve electrical
contact.
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charring of the jig and the possibility of crushing tubular parts. In our experience, these types of

jigs result in sufficiently uniform heating, and they have the advantage that they can be fabricated

and set up quickly.

2.10 Shape Setting System Performance

To evaluate the performance of the shape setting system, we have studied both the accuracy of

the temperature regulation and the ability of the system to produce the desired final results. We

will first present measurements of the part temperatures achieved by the system, and then show

several case studies of parts that we have created with this method.

2.10.1 Thermal Regulation

To obtain temperature measurements, a type K thermocouple of 0.01 in diameter was used to

measure the actual temperature of a Nitinol tube suspended in the air as it was heated by the system.

A photograph of the experimental setup is shown in Figure 2.12. The thermocouple wire was

wrapped around the tube with the junction located against the tube. The temperature measurement

was taken with an Amprobe AM-270 multimeter, which was set to record the maximum value, and

for each chosen test point ∆Rd , the maximum temperature measured during the heating process

was recorded.

Tests were performed on a single Nitinol tube with an outer diameter of 2.18 mm and an inner

diameter of 2.02 mm. The length of tubing between the power leads was 7 cm. The manufacturer’s

material data sheet indicated the material is fully superelastic above 7.8 ◦C. The tube was supported

at both ends and 18 Ga wires were tied in an overhand knot around the tube at each end. The knots

were filled with 60/40 Sn/Pb solder to improve contact (note that this kind of solder does not wet

to Nitinol, but the increased surface area improves electrical contact). The two voltage sensing

clips were placed on the tube outside the supports, while the power wires were attached inside the

supports to avoiding heating in the support regions where large contact areas are present.

The test points ∆Rd were chosen as 40 values ranging between 1.15 and 1.23, with the order
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Figure 2.12: The experimental setup for collecting temperature data.
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chosen randomly. The selected target resistance was programmed into the shape setting program

of Section 2.8.3, with the parameters tramp = 3 s and thold = 30 s. At least five minutes were

provided for the system to cool to room temperature in between trials. Room temperature during

the trials ranged between 20-22 ◦C, and was manually recorded immediately prior to the collection

of each data point.

2.10.2 Thermal Regulation Results

Figure 2.13 shows that the increase in part temperature and the chosen value of ∆Rd correlate

strongly (R2 = 0.97). The best linear fit, when constrained to pass through the origin of the graph,

has slope 1/α = 2438 ◦C. Two outliers (not shown in the figure) were removed from the data before

fitting. These outliers were the first two measurements, which were taken before the formation of

a sufficient oxide layer on the surface of the tube to prevent electrical conduction from the tube

to the bare thermocouple wire. The results of the experiment indicate that a relative increase in

resistance may be used as a proxy for temperature measurement. The maximum absolute error

between the temperature data and the best fit line is 29 ◦C, and the mean absolute error is 10 ◦C.

89% of the measurements fall within 20 ◦C of the best fit line.

Over the course of the trials, the initial resistance reading of the part varied between 116.2 mΩ

at the first trial to 112.9 mΩ at the last trial. The average initial resistance reading across all 40

trials was 112.7 mΩ, with standard deviation 0.7 mΩ. This illustrates that the initial part resistance

at room temperature is predictable despite the varying thermal treatment history across the trials.

Although the purpose of this experiment is not to accurately determine the material properties

of Nitinol, it is possible to compare the linear fit to the temperature coefficient of resistivity of

Nitinol provided by Novák et al. [135]. Using that coefficient, we estimate

1
α
=

100 µΩ-cm
5 × 10−2µΩ-cm-◦C−1 = 2000 ◦C , (2.3)

assuming a nominal room temperature resistivity of austenitic Nitinol of 100 µΩ-cm, as quoted by
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Figure 2.13: The correlation between temperature increase and target relative resistance increase.
The coefficient of the best fit line, constrained to pass through origin, is 1/α = 2438 ◦C.

manufacturers [132]. Considering the slight nonuniformity of heating caused by the heat sinking

effect of the power leads, this comparison indicates that the shape setting system is operating

correctly. We also note that if the linear fit is not constrained to pass through the origin, the slope

of the best fit line becomes 1/α = 2089 ◦C.

2.10.3 Planar Tubes

Figure 2.14 shows multiple Nitinol tubes that were successfully shape set using this method.

For each tube, the heating method and parameters of Section 2.8.2 was used without modification.

Each tube was placed into an MDF jig similar to the one of Figure 2.11 and heated twice. The

jigs were designed to impart a constant radius of curvature to the centerline of the tube over an arc

length ranging from 42-52 mm. The radii of curvature ranged from 130 mm to 60 mm. In a first

heating cycle a desired resistance increase ∆Rd = 1.15 was used, and in a second heating cycle,

after the system was allowed to cool to room temperature, the desired resistance increase was set

to ∆Rd = 1.21. Performing multiple, separate heatings with increasing target temperatures can

mitigate the effects of stress relaxation, as any stress relaxation that takes place will be accounted
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Figure 2.14: Multiple Nitinol tubes of varying diameters that have been shape set to different
curvatures. This photograph was taken immediately after shape setting of each tube, before any
additional cleaning or trimming operations. The coloration of the tubes in the heated region is a
result of surface oxidation and fixture charring.
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9 

Figure 2.15: (Top Left) This jig for a helical tube was formed by slicing the fixture into discrete
cross sections. Each cross section is made of a 0.85 mm thick sheet of birch plywood. (Top Right)
Dimensions of the helix that the tube was constrained to. (Bottom) The tube is shown after shape
setting.
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Tube OD ID r jig rtube
Fig. 2.14 (1) 1.16 0.86 59.5 64.5
Fig. 2.14 (2) 1.92 1.57 129.9 144.8
Fig. 2.14 (3) 2.48 2.25 107.5 121.7
Fig. 2.7 (Furnace) 1.16 0.86 33.3 169.9
Fig. 2.7 (Electrical) 1.16 0.86 33.3 36.6

Table 2.1: Tube dimensions and radii of curvature of the jigs and resulting tube shapes. All values
have units of mm.

for in the initial resistance measurement of subsequent heatings. In both heating cycles, the timing

parameters were tramp = 3 s and thold = 7 s.

Table 2.1 shows the results for the three tubes in Figure 2.14 as well as the results for the two

tubes which were compared in Figure 2.7. The value r jig describes the radius of curvature of the

arc as designed into the fixture, and the value rtube describes the radius of curvature of the tube

after shape setting.

2.10.4 Helical Tube

To explore whether we could shape set a non-planar curve we performed another experiment in

which we sought to make a helical specimen. The tube we used has a 1.14 mm outer diameter and

0.97 mm inner diameter. The fixture was prepared by slicing (in a CAD program) the cylindrical

solid model shown in Figure 2.15 into thin axial slices 0.85 mm thick, each of which was then

laser cut from Birch plywood of the same thickness. The square shaft shown in the figure holds

the slices in the correct orientation so that the shape is retained when the slices are assembled into

the fixture and the wire inserted. This helix was created for an MRI compatible robot application

involving thermal treatment for epilepsy in the brain (see [137] for further information).

2.11 Conclusions

This chapter has presented the design of a new system for endonasal surgery, which has been

designed to improve upon existing designs in three major areas. The robot delivers four tools
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through a single nostril, providing minimally invasive access to the skull base. The tools are

designed to be modular, and easily snap on and off the actuation unit for replacement between

surgeries or for tool changes during a surgery. Sterility is maintained through a bagging system,

which protects the patient from non-sterile parts of the robot and prevents contaminants from

entering the actuation unit.

In addition, an algorithm and system for rapid and accurate fabrication of the Nitinol tubes used

in concentric tube robots was presented and experimentally characterized. This system regulates

the power delivery of pulsed direct current to control the temperature of Nitinol parts with Joule

heating. Experiments showed that the system regulates temperature within approximately 20 °C

of the desired temperature when in air, and several examples were shown of successfully shape set

tubes.

Concentric tube robots have the potential to facilitate easier access and more precise control

during minimally invasive surgeries such as endoscopic endonasal surgery. It is our hope that

the results presented in this chapter will pave the way for future development and the eventual

deployment of concentric tube robots in the operating room.
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Chapter 3

Endonasal System Software

In Chapter 1.7 the kinematic model for concentric tube robots was reviewed, and in the follow-

ing chapters this model is analyzed for the purposes of predicting the onset of snapping instabilities

and for the design of concentric tube robots as needles. This chapter presents the techniques that

enable the kinematic equations to be solved in real-time and at rates an order of magnitude greater

than previously reported. The material of this chapter is currently being prepared for submission

to an archival journal for publication.

Real-time behavior is important for safety-critical systems like surgical robots, and the kine-

matic model is a crucial element of standard resolved-rate control techniques. The software de-

scribed in this chapter for evaluation of the kinematic model is a key element of the endonasal

surgical system. The ability to solve the model rapidly is also important for computational de-

signers and motion planners which use statistical sampling methods to achieve optimal outcomes.

Algorithmic approaches to design can generate designs faster with fast forward kinematic routines,

and in-the-loop motion planners can perform better when they are able to compute more samples of

the forward kinematic map. Although it was previously believed that the model for concentric tube

robots is several orders of magnitude more expensive to compute than for other types of robots,

this chapter shows that the number of operations is only about 60 times that required to compute

the kinematics for a 6-dof serial robot, and that a careful implementation can achieve high solution

rates.

3.1 Introduction

This quasistatic kinematic model has been applied to several interesting problems of optimal

design and planning, and has also been used for kinematic model-based control of concentric tube

robots. Computational design and analysis has allowed researchers to produce designs for concen-
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tric tube robots which are optimally suited for surgeries at the skull base [14], in the ventricles of

the brain and in the heart [118], and in the bronchi of the lungs [77]. These algorithms require

many evaluations of the kinematic model. A volumetric, sampling-based workspace analysis, for

example, requires millions of evaluations of the kinematic model to converge [138]. In the case

of model-based control, the model must be evaluated rapidly in order to sustain a high enough

control bandwidth, and moreover the control problem should be considered a hard real-time task

given the safety requirements of surgical manipulators. Several solution techniques for evaluating

the kinematics of concentric tube robots have appeared in the literature, many of which have been

directed toward rapid evaluation.

Functional approximation is one way to speed up the computation of the kinematic model for

use in manipulation tasks. Dupont et al. approximated the solutions to the differential equation

with a more easily computed truncated Fourier series [48]. This functional approximation can

be inverted efficiently to provide inverse kinematics at fast rates. The inversion is performed it-

eratively, so a careful implementation is required to guarantee hard real-time performance. The

approximation must be computed in advance using either experimentally obtained data or model

solutions from another solution method.

Xu et al. presented a different technique for speeding up the model evaluation, a piece-wise

linearization scheme which separates the length of the robot into discrete sections and solves the

model linearization in closed form over each length using the standard solution techniques for

linear systems [61]. This method belongs to the class of geometric Lie-Euler methods, and is

one possible implementation which satisfies the requirements for real-time operation. However,

the convergency order of this method is low when compared to many other explicit integrator

schemes.

Other methods which have appeared in the literature include collocation methods [36] and

Galerkin method [139]. While these implicit methods typically have better stability properties

[140], the differential equation we wish to solve is nonlinear, and these methods require iteration

to converge to a solution.
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When applied loads are known in the body-frame of the distal end of the robot, Hasanzadeh

and Janabi-Sharifi showed that an explicit, algebraic method can solve the statics of rods, including

the nonlinear geometry, without iteration [141]. This resulted in a fast, real-time statics method

that they applied to real-time control of steerable catheters. This method was achieved by moving

one set of boundary conditions to the distal end of the robot, effectively converting the boundary

value problem to an equivalent initial value problem. Nakamura and Hanafusa also showed that by

grouping as many boundary conditions as possible at one end of the problem domain, substantial

computational cost savings could be achieved for an optimal control problem for robot manipula-

tors [142]. The methods introduced in this chapter utilize the technique of solving an initial value

problem rather than a boundary value problem to compute the kinematics quickly and without

iteration.

This chapter describes a method for solving the concentric tube robot model in real-time at high

rates, and analyzes the performance of the method in terms of numerical convergence and evalua-

tion speed. The current implementation has achieved rates of 36 kHz for typical robot designs if

only the shape of the robot is required. Also described is a variation on the efficient techniques first

presented by Rucker et al. for computing the Jacobian matrices that describe differential changes

in the robot state under differential configuration changes and external load changes [57]. Includ-

ing computation of the Jacobian matrices is a significant computational burden, but even with the

inclusion of external loads, rates in excess of 2 kHz are possible.

This chapter also provides the design of an algorithm which generates the integration “way-

points” defined by the overlapping tubes, a study of numerical convergence when using an 8th

order Runge-Kutta method to solve the equations, and timing results for several optimized C++

implementations in both a Windows environment and in the Simulink Real-Time operating system.

Vectorized expressions are provided in appendix A.3 for all of the quantities needed when solving

the kinematic model and computing the Jacobian matrices.
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3.2 The Concentric-Tube Robot Model

3.2.1 Tube Description

In the undeformed state, each of the N component tubes is described by an arc-length parametrized

frame, denoted g∗i (σi), where σi ∈ [0,Li] is the arc length parameter along the ith tube, which is

zero at the proximal end of the tube and Li at the distal end. For numerical computation, the frame

is most efficiently represented by a position vector and unit quaternion, as g = (p, q), with the

rigid transformation law given by g1g2 = (p1+ q1p2q
−1
1 , q1q2). Each quaternion is represented by

its scalar part q0 and vector part qv, and juxtaposition indicates the usual quaternion multiplication

law,

q1q2 = (q10q20 − q1v · q2v , q10q2v + q20q1v + q1v × q2v) (3.1)

and when a quaternion is multiplied against a pure vector such as a position vector, it is embedded

into the quaternion (0, p).

Each precurved frame has an associated curvature given by u∗i (σi) = ω(q∗i (σi), q∗′i (σi)),

where the prime denotes the partial derivative with respect to arc length and ω(q, z) = 2q−1z

is the function which maps the derivative of a quaternion into the body-frame angular velocity.

The precurved frames are chosen so that the tangent vector satisfies p′ = qe3q
−1, where e3 is the

third standard basis vector. We make the assumption that the third component of u∗i is zero, which

does not restrict the allowable precurved tube shapes [84].

Along with this precurvature, the scalar bending stiffness kib(σi) and torsional compliance

cit (σi) functions complete the necessary information for each component tube, as summarized in

Table 3.2. All functions describing the tube are extended to the entire real line, where outside of

[0,Li], each of u∗i , kib, and cit is assumed to be zero. The final shape is given by the arc-length

parameterized frame g(s) = (p(s), q(s)).
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Variable Description Size
σ Material arc parameter of each tube in [0,Li] N × 1
ψ Angular displacement of each material frame N × 1
mz Moment carried by each tube about the tangent N × 1
n Internal shear force in inertial frame 3 × 1
m Internal moment in inertial frame 3 × 1
p Centerline position 3 × 1
q Quaternion describing Bishop frame orientation 4 × 1

Table 3.1: Names and descriptions of the model states for simulation at a given arc length

Variable Description Type
u∗i (σi) Curvature vector of undeformed Bishop frame R→ R2

kib(σi) Bending stiffness (scalar) R→ R

cit (σi) Torsional compliance R→ R

Table 3.2: Functions describing the ith component tube

3.2.2 Differential State Equations

The state space V = R3N+6 × SE(3) is composed of the variables shown in Table 3.1, and is a

manifold of dimension k = 3N+12 which requires at least 3N+13 numbers to specify without any

representational singularities. The system state at a particular arc length is y(s). In Chapter 1.7 it

was shown that under quasistatic conditions, the solutions to the mechanics problem for concentric

tube robots are solutions of an ordinary differential equation,

y′ = f (y) (3.2)
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that evolves on the manifold V . The equations f (y) for the model without external loads are given

by

σ′ = fσ = 1 (3.3)

ψ′ = fψ = Ctmz (3.4)

mz
′ = fmz = T (y) (3.5)

p′ = fp = qe3q
−1 (3.6)

q′ = fq =
1
2
quB (y) . (3.7)

The matrix Ct is a diagonal matrix of the torsional compliances. The functions T and uB are given

in vectorized form in Appendix A.3.

There are two additional equations which describe the internal forces and moments that must

be included if the effects of external loads are considered. These equations have been described in

the literature in both a body frame version and an inertial frame version [55, 48]. Here the inertial

frame version is selected due the simpler form:

n′ = fn = 0 (3.8)

m′ = fm = n × p′ (3.9)

3.2.3 Boundary Conditions

At the arc length s = L, the individual tube arc length σi is given by

σi (L) = L − βi (3.10)

At the proximal end of each tube, actuators impose rotational constraints given by

ψi (β) = 0 (3.11)
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providing N boundary conditions. At the distal end of each tube the torsional moment mzi is

assumed to vanish, which has also been shown to be the “natural” boundary condition which

minimizes the stored elastic energy [36], given by

mzi (L) = 0 (3.12)

and providing another N boundary conditions. If external loads are considered, the distal end is

assumed to be moment free, so that

m(L) = Mtip . (3.13)

If a force Ftip is specified at the tip of the robot, we have

n(L) = Ftip (3.14)

Finally, the position and orientation of the robot p and q must be known for some arc length

in some inertial frame. Surprisingly, it is often easiest to arbitrarily select s = L for this arc length,

that is to choose an inertial frame which happens to coincide with the tip location for the current

configuration of the robot. These choices yield

p(L) = 0 (3.15)

q(L) =
[
1 0 0 0

] T
(3.16)

Usually, the location and orientation of the robot will actually be known somewhere else (e.g. at

s = 0) in another inertial frame defined by a piece of tracking equipment or an experimental setup.

Fig. 3.1 shows the various frames, where g∗(0) as shown in the figure is taken to be known. Then

the end effector location in the true inertial frame is

g∗(L) = g∗(0)g−1(0) (3.17)
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g(s)

g*(L)
Inertial Frame

g*(0)
g(0)

Figure 3.1: Frame assignments for the concentric tube robot mechanics.

where g−1(0) is provided by solution of the model equations.

When Ftip is present, it is specified in coordinates of the end effector frame in order that (3.9)

can be computed. Note that this is not always possible a-priori, and the appropriate solution must

then be found by root finding.

3.2.4 Configuration Coordinates

A configuration coordinate space (C-space) consists of vectors c ∈ Rm, where the coordinate

variables provide enough algebraic conditions on the states so that an initial value problem is

well-defined and has a unique solution. All of the boundary conditions except (3.11) are already

at s = L. For on-line operation, the boundary conditions for ψi can simply be moved to the distal

end, because these rotational variables are controlled by a feedback control system. The control

system can just as well work at the distal end. The vector c = (ψ (L),β,n(L),m(L)) provides

a complete initial condition for general actuation and end-effector wrenches. The location of this

initial condition is in general a function of the configuration coordinates, i.e. L(c) = β1 + L1.

In on-line use for model-based control, the solution of the differential equations provides ψ (β),

which can then be used to drive the actuators.
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3.2.5 Jacobian Matrices

When the coefficients kib, cit and precurvatures u∗i are differentiable functions of arc length1,

the vector field f (y) is differentiable with respect to y at all arc lengths, and there is a matrix J at

each arc length and configuration pair (s, c), such that

ζ = J(s, c) ċ , (3.18)

where ζ = (σ̇, ψ̇, ṁz, ṅ, ṁ, v,ω) describes the time derivative of the state y(s, c) under the C-space

time derivative ċ. The components v andω of ζ are the body-frame linear and angular velocities of

g, and form 6-dimensional twist coordinates. The remaining components are the usual derivatives

in a Euclidean space. The whole element ζ is an element of the Lie algebra of the state space v.

In order to guarantee that a Jacobian matrix exists, additional assumptions are needed about

the parameter functions in Table 3.2. In fact, it is not hard to see that the robot’s end-effector

position may not even be differentiable in some configurations, as shown by example in Fig. 3.2.

The following additional assumptions suffice to guarantee differentiability of all states at all but a

finite number of points along the length of the robot

• No two tubes begin or end at exactly the same arc length

• The precurvature functions u∗i are C1

With these additional assumptions, the matrix J exists everywhere except at arc lengths where kib

has a jump discontinuity (at the ends of tubes). The second of these assumptions also has the

implication that u∗i (0) = u∗i (Li) = 0, so a tube which is curved at its distal end is modeled by

a function that has a steep but smooth transition between full curvature and zero curvature near

s = L. We use a scaled and shifted version of a cubic polynomial function for this purpose.

1If the coefficients in the differential equations have jump discontinuities, such as modeling the tube stiffnesses as
discontinuous steps at the tube endpoints, the Jacobian matrix does not exist at arc lengths where the coefficients have
jumps, and an implicit “passage to the limit” usually allows the differential to be formulated for the remaining arc
lengths [57].
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retraction

extension

precurvature changeactuation

Figure 3.2: Non-differentiable configuration of a concentric tube robot. An inner tube which is
straight and then precurved translates inside of a rigid outer tube. When the tubes are assumed
to exhibit stiffness functions which are discontinuous at their endpoints, and the curvature also
switches discontinuously along the length of a tube, translating the tube may result in different
behaviors in each direction. The tip position is a continuous, but not differentiable, function of the
tube translations.

Partition the state element y = (yo, yg) by the parts of the state on R3N+6 and SE(3) respec-

tively, and partition ζ similarly. For each column vector Ji, the rows are partitioned as Jo
i and J

g
i .

For y, x ∈ V , define

L y (x) = (yo + xo, ygxg) . (3.19)

Then, define the pushforward operator,

(L y∗)(ζ ) =
(
ζ o,

(
qvq−1,

1
2
qω

) )
. (3.20)

Lastly, define the exponential map

exp(ζ ) = (ζ o,exp(ζ g)) (3.21)

where exp(ζ g) is the standard exponential mapping from twists to rigid transformations [143].

Let Ji be the ith column of the Jacobian matrix. Define ξ (y) by re-writing equations (3.3)

through (3.7) as y′ = (L y∗)(ξ (y)). Then the vector fields (L y∗)(ξ ) and (L y∗)(Ji) describe the

flow of y(s, c) along the coordinate s and along the coordinate ci, respectively.
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The two vector fields (L y∗)(ξ (y)) and (L y∗)(Ji) must have flows which commute since the fol-

lowing the flows of the fields in different orders cannot change the solution y(s, c). This condition

is equivalent to

(Ji)′ =
∂

∂ci ξ − adξ Ji , (3.22)

where

adξ Ji =



Jo
i

uB × Jv
i + e3 × Jωi

uB × Jωi



(3.23)

The derivation of (3.22) is shown in more detail in Appendix A.4. The partial derivatives of ξ

with respect to each C-space coordinate ci are computed via the chain rule using the directional

derivatives
∂

∂ci ξ =
∑

k

Ẽr
k (ξ )Jk

i , (3.24)

where

Ẽr
k (ξ ) =

d
dt

(
ξ (L y (exp(tEk )))

) �����t=0
(3.25)

is the directional derivative of ξ along the k th standard basis direction Ek in the vector space con-

taining ζ . The first standard basis vectors are simply the usual ones for a Euclidean space, e1, ...,

e3N+6. The remaining standard basis vectors are the standard body-frame rigid-body velocities,

consisting of unit linear velocities and unit angular velocities along or about each of the body-

frame coordinate axes. This directional derivative operator Ẽr
k is described in greater detail in

[144]. Since the exponential map is defined as the identity map on all states except p and q, this

directional derivative agrees with the partial derivative for the states yo. For p and q, the quan-

tity Ẽr
k (ξ (y)) is the rate of change of ξ (y) along the standard body-frame twist coordinates. The

matrix of directional derivatives Ẽr
k (ξ j ) is denoted by

[
∂ξ

∂y

] j

k
= Ẽr

k (ξ j ) , (3.26)
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with j the row index and k the column index.

The matrix J is then partitioned into blocks Jαβ, where α ∈ {σ, t,g, `} and β ∈ {a, f }. These

letters denote the rectangular partitionings by the state (rows) and configuration (columns), as

described in Table 3.3. The blocks of the matrix [∂ξ/∂y] are similarly denoted using ξα1
α2 . The

differential equations defining each block are as follows:

(Jt
a)′ = ξ t

t Jt
a + ξ

t
`J
`
a + ξ

t
σJσa + ξ

t
gJga (3.27)

(Jga)′ = ξgt Jt
a + ξ

g

`
J`a + ξ

g
σJσa + ξ

g
gJga − adξJ

g
a (3.28)

(J`a)′ = ξ`gJga + ξ``J`a (3.29)

(Jt
f )′ = ξ t

t Jt
f + ξ

t
`J
`
f + ξ

t
gJgf (3.30)

(Jgf )′ = ξgt Jt
f + ξ

g

`
J`f + ξ

g
gJgf − adξJ

g

f (3.31)

(J`f )′ = ξ``J`f + ξ
`
gJgf , (3.32)

where ξg = [e3,uB]T and where zero blocks of of the matrix of partial derivatives of ξ have been

removed from the expressions. The notation adξ has been abused slightly here and corresponds

to the operation in the second and third rows of (3.23). For a given configuration c, the Jacobian

matrix J(s,c) is known at s = L(c), and the differential equations can be solved simultaneously

with the state equations as an initial value problem to yield the Jacobian matrix at all arc lengths.

If one of the Jacobian matrices is needed but not the others, the graph in Fig. 3.3 shows the other

states need to be included in order to complete the computation.

The blocks Jσa and Jσf have constant solutions:

Jσa (s, c) =
[
0 −I

]
(3.33)

Jσf (s, c) = 0 . (3.34)
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The remaining equations must be solved numerically with initial conditions given by

Jt
a (L) =



I 0

0 0


(3.35)

Jga (L) = −



e3

0



∂L(c)
∂c

(3.36)

J`a (L) =



0

e3 × n



∂L(c)
∂c

(3.37)

Jt
f (L) = 0 (3.38)

Jgf (L) = 0 (3.39)

J`f (L) =



I

0


(3.40)

Initial conditions (3.36) and (3.37) arise from the fact that the arc length L(c) of the initial condi-

tion moves under some actuation.

Wherever a tube ends or begins, the stiffness coefficients are discontinuous and the Jacobian

matrices Jt
a and Jga undergo a jump transition. If the stiffness of the ith tube is discontinuous at

s = η, then the jump transitions

J t
a,N+i (η

+) − J t
a,N+i (η

−) = ξ t (η−) − ξ t (η+) (3.41)

J
g
a,N+i (η

+) − J
g
a,N+i (η

−) = ξg (η−) − ξg (η+) (3.42)

apply at this location for the (N + i)th columns of the matrices. Finally, to obtain the Jacobian

matrix which relates changes in c with those in g∗(L), which is most often what is needed, the

Adjoint transformation law is

Jg∗a (L) = −Adg(0)J
g
a (0) . (3.43)
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Table 3.3: Partitions of J matrix

Label Meaning Corresponding Variables
σ Arc lengths σ
t Torsional ψ, mz
g Geometry p, q
` Loads n, m
a Actuation ψL, β
f External Loads Ftip

Jt
a

J`a

SE(3)

LoadsJt
f

J`f

Jgf Jga

Figure 3.3: The dependency graph for the Jacobian blocks. In order to solve for one of these items,
all items that are found by following the arrows must also be computed. The red dashed edges are
active only when loads are included in the model.

3.3 Numerical Solution

In order to numerically evaluate the state equations and Jacobian equations, we use an initial

value problem (IVP) solver. The selection of the initial value problem solver does affect the final

performance of the model solver, and due to the fact that tubes may appear or disappear along the

interval of integration, great care must be taken when solving the equations.

3.3.1 IVP Solver Choice

Since the states evolve on a manifold, it would at first seem that numerical integrators which

preserve the manifold constraints would be preferred. However, the interval of integration is short,

and loss of unit magnitude in the quaternion does not actually change the rotation that it represents.

We use the 8th order method of Prince and Dormand to integrate the differential equations [145],

and results presented in the next section show that a fixed, small number of integration steps leads

to sufficient accuracy for designs that are similar to the prototypes shown in the literature. We

have found experimentally that re-normalizing the quaternion prior to evaluating the differential
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equation f can yield slightly better accuracy.

The choice of IVP solver also informed our earlier choices of representation in the model equa-

tions. Specifically, the inertial frame equations for the internal force and moment are more suitable

for Runge-Kutta integration than the body-frame version of the equations. The body-frame equa-

tions involve a rotation of the coordinates for n and m, counter to the rotating coordinate frame,

since the physics holds in a stationary frame. While a rotation should preserve the magnitude of

the vectors, explicit Runge-Kutta methods do not preserve these magnitudes, which can lead to

noticeable growth of the solution if the step size is too large.

3.3.2 Integrating the Equations

Discontinuities in the bending and torsional stiffness coefficients prevent the use of a stan-

dard numerical IVP solver to solve the equation over the entire domain [57]. Instead, piecewise

integration must be used, which stops and restarts the integrator at waypoints defined by the dis-

continuities.

The parameter functions for the j th tube contribute a list of intervals I j k = ([ak ,bk], χk ), for

k = 1, ...,n j , each of which consists of a left and right endpoint ak and bk and a tag χk indicating

whether the tube is precurved over the material arc lengths between the endpoints of the interval.

There are four useful tag types, which indicate that over the interval the state equations can be

solved “sparsely”, “normally”, “densely”, or “discontinuously.” The sparse tag applies to regions

which are not precurved. The normal tag applies to regions which are precurved, and the dense tag

applies to regions which mark smooth but rapid transitions between non-precurved and precurved

sections. The discontinuous tag applies to locations where a tube begins or ends, which are the

points where the stiffness functions have step discontinuities. When external loads a present, an

extra interval with a normal tag type is added over the length [0,L(c)] to account for a reaction

load at s = 0, which forces the internal force and moment to zero for all s < 0.

In order for the software to integrate over each section only once, the set {Ik } must be resolved

into a set of adjacent non-overlapping intervals. The first step is to shift the intervals by the current
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tube translations β j and collect all I j k into a single set

S =
N⋃

j=1

n j⋃
k=1

([ak + β j ,bk + β j], tk ) . (3.44)

Every point in the final list of intervals should be assigned the highest tag for which it appears in

any of the Sk . Additionally, we impose the requirement that the ends of dense intervals appear in

the output as ends of intervals in the resolved set, ensuring that the integrator can accurately solve

these regions even when they overlap.

The intervals are first converted to a set of endpoints Tk = (sk , tk , χk ) in the following manner.

Define the mapping Ends(Ik ) = (ak , le f t, χk ) ∪ (bk ,right, χk ). Then the endpoints are collected

in the set

T =
⋃
Ik∈S

Ends(Ik ) . (3.45)

Additionally, we define the functions Loc(Tk ) → sk , Tag(Tk ) → χk , and Type(Tk ) → tk .

The endpoint set T is sorted by location as the primary key and type (left before right) as the

secondary key. We use the sort implementation in our C++ compiler’s standard template library.

Then, a sweeping algorithm proceeds in order of increasing arc length to output the resolved in-

tervals, using a heap H to track which tags have been opened by left endpoints but not closed by

right endpoints. Pseudocode is provided in Algorithm 1.

After this procedure, each interval in the output list is numerically integrated according to its

tag. Sparse intervals may be integrated exactly with a first order Euler integrator. Normal intervals

may be evaluated by a single step of the 8th order Runge-Kutta integrator, and dense intervals may

also be integrated by a single Runge-Kutta steps. Discontinuities do not affect the state y, but the

jump transitions in the Jacobian may apply at these locations.
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Algorithm 1 Resolve endpoint set to adjacent intervals
procedure AddTag(H, χ)

if Size(H) = 0 then
H ← Push(H, χ)
return (H, sparse, f alse)

else
χmax ← Peek(H)
H ← Push(H, χ)
if ( χ > χmax) or ( χ = χmax = dense) then

return (H, χmax , true)
else

return (H, χmax , f alse)
end if

end if
end procedure
procedure RemoveTag(H, χ)

χmax ← Peek(H)
H ← Remove(H, χ)
if Size(H) > 0 then

if Peek(H) < χmax or χ = dense then
return (H, χmax , true)

else
return (H, χmax , f alse)

end if
else

return (H, χmax , true)
end if

end procedure
procedure Accept(H,Tk)

if Type(Tk ) = le f t then
return AddTag(H,Tag(Tk ))

else
return RemoveTag(H,Tag(Tk ))

end if
end procedure
procedure Append(R, s1, s2, χ, χmax)

if s2 > s1 or χ = χmax = discontinuity then
return (R ∪ ([s1, s2], χ), s2)

else
return (R, s1)

end if
end procedure
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procedure Resolve(T)
R← ∅
s←Loc(T1)
H ←Push(H ,Tag(T1))
for k ←2, size(T) do

(H, χmax ,b) ← Accept(H,Tk )
if b = true then

(R, s) ← Append(R, s,Loc(Tk ), χmax)
end if

end for
return R

end procedure

3.4 Code Performance Evaluation

We have evaluated the performance of the proposed numerical routine in terms of both con-

vergence and speed for three-tube robots, which are a common design seen in prior literature. For

evaluation of convergence, we compare the solution using a single RK8 step over each integration

interval with a solution on a much denser grid.

All model code is implemented in C++ with templated functions that evaluate only the parts

of the model necessary to compute the desired information. This means, for example, that when

none of the Jacobian matrices are needed, they are not defined as part of the state vector, and the

graph of Fig. 3.3 is implemented in a template metaprogram that evaluates at compile-time. This

functionality is implemented using the Boost Metaprogramming Libraries. The Eigen library is

used for all matrix and vector arithmetic.

Since the code is designed for real-time use, no calls to dynamic memory allocation functions

are used. All matrices are defined with templated sizes based on the number of tubes specified at

compile time.

3.4.1 Convergence

To evaluate the convergence of the proposed method, we sampled designs and configurations

from the feasible range of designs for three tubes which have a planar circular precurvature at
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Parameter Distribution
γi U (0,90) [deg]
Lci U (10,50) [mm]
wi U (0.05,0.15) [mm]
L3 U (Lc3,3Lc3) [mm]
L2 U (max(L3,Lc2),max(L3,4Lc2)) [mm]
L1 U (max(L2,Lc1),max(L2,5Lc1)) [mm]

Table 3.4: Distributions for design samples

their distal ends. Letting U (a,b) represent the uniform distribution between a and b, designs were

sampled from the distributions shown in Table 3.4. We simulated 10 × 106 designs from these

distributions, and for each design a random configuration c was chosen according to the sampling

distributions of Burgner et al. [138]. The error in p∗(L) is shown in Fig. 3.4.

Inner and outer tube diameters were generated by sampling wall thicknesses wi, and starting

from ID1 = 0.86 mm, generated by using ODi = IDi + 2wi and the clearance ODi+1 = IDi +

0.1 mm. Curvatures were generated by sampling the angles γi = Lciκi, and the curved lengths Lci,

and computing κi from these two values.

Interestingly, the distribution of the global 2-norm error in the position p∗(L) is approximately

log normal. The logarithm of the error has a mean of -11.4 and standard deviation of 1.4 when

the argument of the logarithm is expressed in meters, indicating that the solution has on average

about 11 digits of accuracy. This level of numerical error is more than sufficient for purposes of

planning, control, or analysis, since these errors are already many orders of magnitude smaller than

the modeling error [55].

3.4.2 Evaluation Speed

For performance evaluation, we compiled the code in Windows 10 using the Microsoft Visual

Studio 2015 compiler in 64-bit mode, and also implemented the code in a MATLAB Simulink

diagram for Simulink Real-Time (32-bit) using the S-function API. In Windows the processor

used was an Intel i7-4790 at 3.6 GHz, and for Simulink Real-Time the processor was an Intel
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Figure 3.4: Distribution of errors in p∗(L) associated with the single-step RK8 method. The errors
were computed by comparison to a second numerical solution p̂∗(L) computed with a much greater
number of integration steps.

Celeron G530 at 2.4 GHz. In Windows we used the Microsoft Visual Studio 2015 compiler, and

for Simulink Real-Time we used the Visual Studio 2013 compiler. For both cases all compiler

optimizations were enabled, and the SSE2 instruction set was enabled for the 32-bit build. Table

3.5 shows the rates at which the methods in this paper compute solutions to the kinematics problem.

One feature of the code which facilitates high solution rates is the vectorization of the model

equations in Appendix A.3. This leverages the substantial optimizations which are already imple-

mented in the Eigen C++ linear algebra library. Other optimizations were the result of profiling.

For example, we determined it was necessary to explicitly eliminate repeated calls to the function

uB and to the sin and cos functions inside of the differential equation function f , because the

compiler did not eliminate some redundant computations. We also rely heavily on the compiler’s

Return Value Optimization for avoiding temporary copies of variables.

Table 3.5: Rate of computation of model solutions (3 tubes)

Platform
States x86-64 (Windows 10) x86 (Simulink RT)
t,g 36.92 kHz 10.45 kHz
t,g,Jga 9.70 kHz 2.26 kHz
t,g, ` 27.01 kHz 8.05 kHz
t,g, `,Jga,J

g

f 2.69 kHz 593 Hz
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3.4.3 Computational Complexity

The code was instrumented to count the number of floating point operations required in a single

evaluation of the robot kinematics for a three-tube robot, including only the torsional states and the

geometric states. Only the operations associated with solving equations (3.3) through (3.7) were

counted, corresponding to the computation rates in the first row of table 3.5. Table 3.6 shows the

operation counts. The row labeled “Vector Norm” counts three-element and four-element vector

norm computations, which are computed with the Eigen library implementation.

For the sake of comparison, consider that the kinematics of a 6R rigid-link arm can be computed

with 6 matrix multiplies of 4 × 4 matrices (672 multiply/add operations) and 12 trigonometric

function evaluations, plus the few remaining operations needed to construct the transformations.

Based alone on these operations, the kinematics for the three-tube concentric tube robot are about

60 times more computationally expensive using the techniques in this paper.

Table 3.6: Number of operations in a single kinematics computation

Operation Count
Multiply 20,631
Add 19,674
Divide 655
sin/cos 786
Vector Norm 131

3.5 Conclusions

The techniques that are used to efficiently evaluate the kinematics of concentric tube robots

have been described. By casting the kinematics problem as the solution of an initial value problem

and using a high order Runge-Kutta method to solve these equations, solution rates an order of

magnitude faster than those reported in the literature are possible in real-time and to an excellent

level of accuracy. Without the Jacobian computation, the model equations for a six degree-of-

freedom concentric tube robot are approximately 60 times more expensive to compute than a six

degree-of-freedom serial manipulator. Computation of the Jacobian matrices comes at a substan-
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tial expense in run-time, so the ability to exclude them from the computation when not needed is

highly desirable.
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Chapter 4

Model Analysis: Elastic Stability

Concentric tube robots may sometimes exhibit elastic instability, which is manifested by a

rapid, uncontrollable release of stored elastic energy. Before these robots can be safely used in

surgical procedures, this phenomenon needs to be adequately modeled and accurately predicted,

which is the major contribution of this chapter. This work was published in Transactions on

Robotics [146]. In what follows, the model introduced in chapter 1.7 is analyzed to determine

when elastic instability is incipient through energy-based methods. In addition to predicting the

onset of elastic instability, the insights gained from the analysis led to the design element of torque

transmission tubes seen in chapter 2.

The predictions discussed near the end of the chapter indicate that beyond critical values of tube

curvature or overlapped curved length of tubing, the usable robot workspace volume can rapidly

disappear. This underlines the importance of performing a stability analysis on any new design

before attempting to use it in practice.

4.1 Introduction

It was noted early in the development of concentric tube robots that unless gradual tube cur-

vatures are used or minimal overlap of curved tube sections is ensured, tubes can exhibit elastic

instabilities [47] (also previously referred to as “snaps” and “bifurcations”). Elastic instabilities

occur due to torsional elastic energy storage in the tubes that make up a concentric tube robot. An

instability occurs when this energy is rapidly released, and the robot “snaps” to a new configura-

tion. Unforeseen snapping is clearly not desirable and could be dangerous in surgical applications.

The snapping problem has been approached from design, modeling, and planning perspectives.

With the exception of the early work in [47], these studies have used the mechanics based model

of concentric tube robots found in [55, 48]. For example, it has recently been shown that tubes can
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be laser machined to reduce the ratio of bending to torsional stiffness, which improves stability

[125, 147]. However, even using this approach, snaps will still occur if high curvatures are em-

ployed, so methods for design and snap prediction will still be needed. Another approach is to use

non-constant precurvature tubes to enhance the elastic stability, as shown by Ha et al. [120]. In

that work, analytical stability conditions for a planar two-tube robot are presented, and an optimal

control problem is used to design tube precurvatures which result in a completely stable actuation

space. Our work complements theirs by analyzing the stability of robots which possess unstable

configurations in their actuation space. We also consider designs of an arbitrary number of tubes

with more general precurvature.

It is also possible to plan stable paths for robots that do have the potential to snap, as shown by

Bergeles et al. [118], by examining the relative axial angle between the base of a tube and its tip for

all possible rotations for a given set of tubes. While this work provides a method to design and use

high-curvature robots, the stability condition chosen by the authors was stated as a definition. One

of our contributions is to derive a stability criterion from first principles. Another model-based

approach is that of Xu et al. [148], who sought design parameter bounds for constant curvature

robots to ensure a snap-free unloaded robot workspace. Xu et al. provided exact design bounds

for a two-tube robot and non-exact, conservative bounds for robots with more than two tubes. In

addition, the solutions in [148] for more than two tubes only apply to robot configurations where

the precurved portions of tubes are precisely aligned in arc length.

In this chapter, we characterize the elastic stability of unloaded concentric tube robots with any

number of tubes, each of which may be preshaped as a general space curve. We connect concentric

tube robot stability analysis to the analysis of post-buckled Euler beams from the mechanics liter-

ature [149, 150, 151]. Based on this analysis, we also propose a metric for relative stability, which

can be used to inform real-time controllers, planners, and automated designers to safely design and

operate a robot that would otherwise snap.
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Figure 4.1: The analogy between an Euler beam and a two-tube concentric tube robot for λ greater
than its critical value. For the beam, θ(s) denotes the angle of the beam, while for the robot it
denotes the angle between precurvature vectors. (a) There are three solutions when the base has
been rotated to θ(0) = π. The straight solution is unstable and the two buckled solutions are
stable. (b) When the tube precurvatures are anti-aligned at the base there exists one torsionless
unstable solution and two stable buckled solutions. (c) As the base angle approaches some value
θ(0) > π, the beam snaps into a new, stable configuration. (d) As the relative angle between the
tubes approaches some value θ(0) > π the tubes snap into a new, stable configuration. Note that
the value of θ(0) when the snap occurs depends on λ.

4.2 The Beam Buckling Analogy

A two-tube concentric tube robot and a loaded beam are analogous systems, and both systems

exhibit buckling and snapping. To build intuition, we begin by describing these analogous behav-

iors. Concentric tube robots are controlled by prescribing relative translations and rotations at the

proximal ends of the tubes. The tubes twist and bend one another along their arc length s. When

there are two circularly precurved tubes the twist angle between them, θ(s), is governed by the

same differential equation as a beam under a dead load as shown in Figure 4.1. The configuration
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of both systems is determined by the nonlinear boundary value problem

f [λ,θ(s)] = θ′′ − λ sin(θ) = 0

θ(0) = θ0

θ′(1) = 0 ,

(4.1)

where the equations have been normalized to unit length, so that 0 ≤ s ≤ 1. For both the beam and

the concentric tube robot, it is known that increasing values of the parameter λ can lead to buckling

and instability. For the beam, this parameter is controlled by the material properties, the geometry,

and the magnitude of the dead load. Likewise, for the robot, λ involves the material properties and

geometry of the tubes, but the dead load is replaced by the influence of the tube precurvatures.

In the set of solutions to (4.1), two straight beam configurations exist: θ(s) = 0 and θ(s) = π,

which represent the beam in pure tension and compression, respectively. Similarly, for concentric

tubes, two torsionless solutions exist in which the tube precurvatures are aligned and anti-aligned,

respectively. Just as a beam in tension cannot buckle, a robot configuration with aligned precur-

vatures is stable. In contrast, when the beam is compressed (Figure 4.1a) or when the concentric

tube robot has anti-aligned precurvatures (Figure 4.1b), the configurations which are straight for

the beam and torsionless for the robot can buckle if λ exceeds a critical value. Buckling occurs

because the solution to (4.1) becomes non-unique when λ is large enough, and two new, energet-

ically favorable solutions arise in a process known as bifurcation (see Figure 4.1a and 4.1b). The

two new solutions are stable, and the original solution becomes unstable at the point of bifurcation.

For many applications of beam theory, like column buckling, the instability of the trivial,

straight configuration is all that is important, but concentric tube robots typically operate far from

these areas and may exhibit instability at other configurations and snap across their workspace as

shown in Figure 4.1d. The equivalent phenomenon for a beam is shown in Figure 4.1c. Consider an

active counter-clockwise rotation of θ(0) starting from θ(0) = 0. If λ is small enough, we expect

that the beam will pass stably through a straight configuration when θ(0) = π, and the concentric

tube robot will pass stably through the configuration with anti-aligned precurvatures. On the other
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hand, when λ exceeds the critical value, even when θ(0) = π, the beam will never straighten out

and will instead settle into a buckled configuration, and the concentric tube robot will settle into

a high-torsion configuration. Eventually, as θ(0) increases to some value beyond π, the buckled

configuration becomes unstable and some of the stored energy is released as each system snaps to

a new configuration.

In our stability analysis, since we control θ(0) for concentric tube robots, we seek the value of

θ(0) at which a concentric tube robot will snap. In the beam buckling literature, this problem is

referred to as the stability of postbuckled equilibrium states, and important results have emerged

in this area in recent years [149, 150, 151]. There has also been recent interest in robotics in the

stable quasistatic manipulation of rods [152]. In order to apply these results to concentric tube

robots, we first present the mechanics model for concentric tube robots and review the necessary

mathematical background for stability analysis.

4.3 Concentric Tube Robot Kinematics

Equations (1.18a) and (1.18b) are the equations which determine the angle of twist and tor-

sional moment carried by each tube along its arc length. For the elastic stability analysis, we will

focus on the second-order form of (1.18a) and (1.18b) taken together, along with the boundary

conditions of (1.19b). The elastic stability is independent of (1.18c), (1.18d), and (1.19a).

The boundary conditions (1.19a) assume that the tubes are constrained at the location chosen

as s = 0. If, additionally, some physical constraint is present which straightens the tubes when

s < 0, then uB = 0 trivially over that region. We assume that there is an arc length s∗ > βmax such

that

uB (s) = 0,∀s < s∗, (4.2)

which implies that tubes have no curvature between where the tubes are physically held. Where the

ith tube does not physically exist, it is extended by a non-physical entity that has infinite torsional

stiffness (i.e. k−1
it → 0), but zero bending stiffness (i.e. kib = 0). Intuitively, this must contribute no
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energy, since neither an infinite nor zero-stiffness element stores energy, and therefore this modi-

fication will not change the solution to the energy minimization problem. This extension converts

the multi-point boundary value problem uniquely into a two-point boundary value problem at β

and L for the states ψi and (kitψ
′
i ).

Although the most general results will apply to equations (1.18a) and (1.18b), we utilize the

following simplification in the bifurcation analysis for the sake of finding closed form expressions.

In the case that all tubes have planar precurvature, which is a common design, the precurvature

functions can be expressed as u∗i = κi (s)e1, and the torsional evolution equation (1.18b) simplifies

to

(kitψ
′
i )
′ =




kib

kb

n∑
j=1

k jbκiκ j sin(ψi − ψ j ) 0 ≤ si (s) ≤ Li

0 otherwise ,

(4.3)

where kb =
∑N

i=1 kib. Due to the difference of angles in the expression sin(ψi − ψ j ) on the right

hand side, the evolution of torsion is invariant under a constant rotational offset of all angles.

Equation (4.3) may thus be expressed in terms of relative angles θi = ψi − ψ1, which we will use

for the analysis of two tubes and for plotting results for three tubes.

4.4 Local Stability Analysis for Two Tubes

The bifurcation analysis gives information on what parameters give rise to multiple kinematic

solutions and insight into the local behavior of the system near equilibria, but it does not reveal

information about stability away from the equilibria. To obtain this information, we look to the

energy landscape of the system. Specifically, when are solutions to Euler’s equations local minima

of the energy functional? The answer to this question will also provide a measure of relative

stability, which gives an indication of the proximity to loss of stability in the actuation space.

We begin by constructing the energy functional which corresponds to the simplified, non-
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dimensional boundary value problem for two tubes. The functional

E[θ] =
∫ 0

βσ

1
2

(θ′)2 dσ +
∫ 1

0

(
1
2

(θ′)2 − λ cos(θ)
)

dσ

=

∫ 1

βσ

F (σ,θ, θ′) dσ
(4.4)

will give the desired result after application of the Euler-Lagrange equation on each interval [βσ,0]

and [0,1],

θ′′ − λu(σ) sin θ = 0 , (4.5)

where u(σ) is the standard unit step function. The problem has been non-dimensionalized by

the length over which both tubes are present and pre-curved Lc. The dimensionless transmission

length βσ is given by

βeq,σ =
β1,σk2t + β2,σk1t

k1t + k2t
. (4.6)

where βi,σ = βi/Lc. Note that equation 4.6 can be derived by combining the equation of torsional

equilibrium with the equation θ = ψ2−ψ1. The energy functional (4.4) in terms of θ is related to the

functional (1.12) by a scaling and constant offset, and therefore defines an equivalent minimization

problem.

Much like the finite dimensional case where the eigenvalues of the Hessian matrix classify

stationary points of functions into minima, maxima, and saddle points, we use the second order

information about solutions to determine elastic stability. The second variation operator S takes

the place of the Hessian matrix, and in the case where the mixed partial derivatives Fθθ ′ = 0, it is

given by

Sh = −
(
Fθ ′θ ′h′

) ′
+ Fθθh , (4.7)

where h is a variation of θ which satisfies the necessary boundary conditions, i.e. (θ + h)(βσ) =

θ(βσ) and (θ + h)′(1) = 0. The elastic stability is determined by the eigenvalues of the operator S,

which is in this case a Sturm-Liouville operator. Some further details connecting the eigenvalues

of S with the energy functional are provided in Appendix B.
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From the energy functional 4.4, the second variation operator S is defined from (4.7) as

Sh = −h′′ + λu(σ) cos(θ)h , (4.8)

together with its domain, where u(σ) is the unit step function introduced for conciseness. The

domain of S includes the boundary conditions h(βσ) = 0 and h′(1) = 0, which are necessary for

θ + h to satisfy the boundary values of the original problem. The second variation of the energy

δ2E[h] > 0 if and only if all eigenvalues of S are positive. A sufficient condition is given by

solving the following initial value problem.

Result 1 (Stability of Two-Tube Robots). A solution θ to the boundary value problem

θ′′ − λ sin(θ) = 0, θ(0) = θ(βσ) − βσθ′(0), θ′(1) = 0

is stable if the solution to the initial value problem defined by

Sh = 0, h(βσ) = 0, h′(βσ) = 1 (4.9)

satisfies h′(σ) > 0 for βσ ≤ σ ≤ 1.

See Appendix C.1 for a proof of this result.

This result indicates that a sufficient condition for determining the stability of a solution entails

only an integration of an initial value problem, which can be performed numerically. Importantly,

the exact same reasoning which produced Result 1 can be repeated in reverse in arc length, which

produces the following corollary.

Corollary 1. The stability of a solution θ can also be determined by solution of the initial value

problem defined by

Sh = 0, h′(1) = 0, h(1) = 1 . (4.10)

The solution is stable if h(σ) > 0 for βσ ≤ σ < 1.
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Due to the choice of the boundary conditions of the Corollary, and noting that Sh = 0 is

equivalent to what we obtain if (4.5) is differentiated by θ(1), the solution h of Corollary 1 can

be interpreted as the slope h(s) = ∂θ(s)/∂θ(1). The equations and boundary conditions of Corol-

lary 1 were previously derived in [120], but the result was not derived from system energy and

the interpretation in terms of local stability was not explicitly stated. We also have the following

corollary due to the continuity of h′(1) and h(βσ) with respect to changes in λ and α and the

symmetry of the two stability problems.

Corollary 2. The value h′(1) in the result of Result 1, or the value of h(βσ) in the result of

Corollary 1, may be used as a measure of relative stability when the conditions of Result 1 and

Corollary 1 are met, where larger positive values indicate greater stability. Moreover, the the

values h′(1) and h(βσ) in the two tests are the same.

The results of the stability test for a two-tube robot with different values of λ and nonzero trans-

mission length are shown in Figure 4.2 on an S-curve, which plots solutions to (4.5) at the proximal

and distal endpoints. The S-curve was previously used to visualize the stability of two tubes by

Dupont et al. [48]. The test clearly reproduces the known result that the negative slope region of

the S-Curve is unstable and thus these configurations are not physically possible in concentric tube

robots. Note especially that the relative stability metric varies continuously with respect to θ(1).

The stability analysis also reveals why the instability always appears first at equilibrium solu-

tions. Compare a solution hπ to the initial value problem of Result 1, where θ(σ) = π, to a second

solution h2, with θ(σ) , π. Note that θ = π maximizes the coefficient of h in (4.8). If there

is no zero in h′π, then there cannot be a zero in h′2, because everywhere in the domain h′′π ≤ h′′2 .

This proves that if the equilibrium θ(s) = π has not bifurcated for a given λ, all tube rotations are

elastically stable. This fact was formerly given by Ha et al. in [120].

4.5 Local Stability Analysis for N Tubes

The local stability analysis of solutions for n tubes is analogous to the procedure for two tubes.

Just as for two tubes, the condition δ2E > 0 is simplified to requiring all eigenvalues of the second
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Figure 4.2: An S-Curve is shown for two different choices of parameters βσ and λ. The curve is
colored based on the relative stability metric h′(1), with the color axis truncated at 0 and 1.

variation operator S to be positive. Fortunately, the eigenvectors of S still form an orthonormal

basis for the underlying space of allowable variations, but each eigenvector now consists of n

functions rather than a single function. The extension of the scalar Sturm-Liouville problem to a

matrix Sturm-Liouville problem is considered in depth in [153].

It is a standard result in the calculus of variations that the generalization of the conjugate point

test to n unknown functions involves a condition on the determinant of the fundamental solution

matrix of the Jacobi equations, which are the equations Sh = 0 [154]. As before, the result is

usually only derived for Dirichlet boundary conditions. However, the modified test proposed by

Manning [150] can be used for the n-unknowns case. A straightforward generalization of the

argument in the proof of Result 1 for why the eigenvalues are positive on a small interval for the

two-tube problem results in the conclusion that this also holds in the case of n tubes. The following

result provides the stability test for n tubes at an arbitrary solution ψ (s) of Euler’s equations.

Result 2 (Stability of Solutions for n Tubes). A solution ψ (s) to (1.18), with boundary conditions
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(1.19), is stable if the 2N × 2N fundamental solution matrix H for the differential equations

H′ = ΓH ,

H(β) = I ,

where the matrix

Γ(s) =



0 F−1
ψ ′ψ ′

Fψψ 0


,

satisfies the condition det H22(s) > 0, where H22 is the N × N lower-right sub-matrix of H, for all

s ∈ [β,L]. The matrices F−1
ψ ′ψ ′ and Fψψ are defined element-wise, and as functions of arc length,

as

F−1
ψ ′ψ ′ (i, j) =




k−1
it i = j and s ∈ [βi, βi + Li]

0 otherwise

Fψψ (i, j) =




0 s < [βi, βi + Li] ∩ [β j , β j + L j]

Fii i = j ∧ s ∈ [βi, βi + Li] ∩ [β j , β j + L j]

Fi j i , j ∧ s ∈ [βi, βi + Li] ∩ [β j , β j + L j]

where

Fii = −
∂uB

∂ψi

T ∂Rψi

∂ψi
Kiu

∗
i − uT

B
∂2Rψi

∂ψ2
i

Kiu
∗
i

Fi j = −
∂uB

∂ψ j

T ∂Rψi

∂ψi
Kiu

∗
i

See Appendix C.2 for a proof of this result.

Corollary 3. The stability of a solution ψ (s) may also be determined by solution of the differential

system of equations in Theorem 2 with initial condition H(L) = I, with the stability condition now

replaced by det H11(s) > 0.

Corollary 4. The value of det H22(L) in the result of Theorem 2, or the value of det H11(β) in the

result of Corollary 3, may be used as a measure of relative stability when the solution is stable,
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Table 4.1: Data for Snapping and Bifurcation Experiments

Tube 1 Tube 2
Outer Dia. 1.02 mm 1.78 mm
Inner Dia. 0.86 mm 1.27 mm
Precurvature 10.78 m−1 9.96 m−1

Curved Length 100 mm 100 mm

where larger positive values indicate greater stability. Furthermore, the values det H22(L) and

det H11(β) for the two tests are the same.

A proof that the forwards and backwards methods provide the same indicator is included in

Appendix C.3.

4.6 Experimental Validation

To validate the stability analysis, we performed experiments with two circularly precurved

tubes. The tubes were designed so that they would snap or pass stably through the anti-aligned

configuration depending on the choice of base location where the inner tube is grasped.

4.6.1 Materials & Methods

The physical data for the two tubes used are shown in Table 4.1. The experimental setup is

shown in Figure 4.3. The outer tube is grasped and held fixed at the front plate of the actuation

unit, while the inner tube is grasped at a varied distances proximal to this point. For each transmis-

sion length tested, one of four straight, rigid tubes may be added to the front of the robot which

physically straightens the tubes over that length. It can be shown that the model predicts that this

situation is equivalent to the tubes simply not having any precurvature over the length where the

sheath is present, thus allowing us to test model predictions which vary over both dimensionless

parameters λ and βeq,σ with a single set of tubes.

The lengths of the sheaths, denoted by Lsheath, were 0, 10, 20, 30, and 40 mm, and the grasp

locations for tube 1, denoted by β∗, were -23, -30, -40, -50, -60, -70, -80, -90, and -100 mm. Since
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Figure 4.3: The experimental setup for the elastic stability experiments.

the point s = 0 is defined at the most distal point on the sheath, the values of β1 and β2 are given

by

β1 = β∗ − Lsheath β2 = −Lsheath. (4.11)

Let Lc be the overlapped length given by Lc = 100 mm − Lsheath. Then, λ is calculated as

λ = L2
cu∗1xu∗2x (1 + ν). For Poisson’s ratio ν we assume a value of 0.33 as quoted by Nitinol

manufacturers.

For each pair Lsheath and β∗ which were tested, the tubes were first checked for a bifurcation.

Bifurcation was determined by attaching a flag to the end of the inner tube and observing whether

all tip rotations were achievable and stable through rotations of the base. If some tip rotations were

not achievable, then the snap angle was determined by rotating the tubes through four snaps. First,

the snap was approached by rotating the inner tube base counter-clockwise as viewed from behind.

When a snap was visibly or audibly observed, the angle was recorded. Second, the inner tube was

rotated clockwise through a snap at the same speed, and the angle recorded. The third and fourth
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observations were made by repeating the two previous steps. All rotations through the snaps were

performed at a speed of approximately 1 degree/s.

Denote the four recorded angles θccw,1, θcw,1, θccw,2, and θcw,2. Because of the symmetry in

the graph of Figure 4.2, the snap angle (in radians) is given by π plus half of the average distance

between the snaps,

θsnap = π +
�����
θcw,1 − θccw,1 + θcw,2 − θccw,2

4

�����
. (4.12)

For each experimental trial, the conditions of Result 3 were solved via a bisection routine to find

the relative tip angle at which the condition det H11(β) = 0 is met. The modeled relative base angle

corresponding to the tip angle is then used as the modeled snap angle prediction for comparison

against θsnap.

4.6.2 Results & Discussion

The results of the experiment are shown in Figure 4.4, which assesses the accuracy of the model

predictions for stability. The figure shows the error in the modeled snap angle as a function of the

observed snap angle. All errors were less than 20 °, and the general trend is for the error to increase

as the snap angle does.

Sources of error in these predictions include both unmodeled effects such as friction and non-

linear material behavior, and measurement errors in the tube design parameters such as the curved

length and precurvature. In addition, there is a small amount of uncertainty (±1 mm) in the value

of β∗ since these lengths were measured by hand.

The predictions of snap angle can be made significantly more accurate by altering the assumed

ratio of bending stiffness to torsional stiffness. It was previously noted by Lock and Dupont that a

value of ν = 0.6 yielded a good fit for the experimentally measured torsional relationship between

tip and base angles [155]. Although this value of Poisson’s ratio is not physically realistic, the

material behavior of Nitinol under bending and torsion is known to differ from traditional strength

of materials formulas due to tension/compression asymmetry, and thus the simplification kib/kit =
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Figure 4.4: Graph of snap angle prediction error vs. the measured snap angle. Generally, as the
snap angle increases the prediction becomes increasingly conservative. All model data predicts the
snap at a lesser angle than was observed in practice.

1 + ν may not be valid even for small strains [156]. We used a nonlinear least-squares regression

to fit the snap angle data and found a best fit of kib/kit = 1.605, which resulted in a mean absolute

prediction error of 2.06 °. This also corroborates the previous finding that ν ≈ 0.6. Although a

more in-depth analysis of nonlinear material effects is outside the scope of this dissertation, it is

possible that future work will be able to make better model predictions by taking into account the

nonlinear elastic behavior of Nitinol.

4.7 Discussion

The preceding analysis reveals insights about the stability of concentric tube robots and enables

new techniques for preventing snaps in high curvature robots. For example, the addition of a third

tube may allow actuators to steer around instabilities. In addition, path planners and controllers can

take advantage of the smooth relative stability metric to plan stable paths and to avoid instability

during teleoperation.

The following example shows how the stability theory outlined above has ramifications for

motion planners and controllers. Existing approaches for dealing with solution stability in motion

planning methods have relied on the fact that the kinematic solutions are almost everywhere locally

continuous with respect to the set of variables q0 =

[
β1 ... βn α1(β1) ... αn(βn)

]
. How-
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ever, from the standpoint of the topology of the solutions, a much better choice for planning pur-

poses is the distal angles α1(L), ...,αn(L), since this makes all components of the kinematic solu-

tion continuous with respect to the set of configuration variables qL =

[
β1 ... βn α1(L) ... αn(L)

]
.

Then, the motion planning problem can be considered as finding continuous, admissible paths in

both the physical space occupied by the robot and the configuration variable space.

Previously, without a test which could accurately determine the stability of an arbitrarily chosen

configuration qL, sampling based planning methods could not guarantee that the resulting planned

trajectory is everywhere elastically stable. Figure 4.5 shows for a three-tube robot how a contin-

uous path in the distal angle space remains continuous in the proximal angles, but the shape of

the trajectory becomes distorted when the relative stability metric approaches zero. If these distor-

tions are allowed to become too large, then very small changes in the proximal relative angles of

the tubes can result in large but stable angular displacements at the distal end. Near these points

of ill-conditioning, modeling errors or unpredictable external loads may make it possible for the

physical robot to snap.

One important consequence of the step from two tubes to three tubes is that the third tube can

actually provide paths in actuation space for the tubes to make complete rotations with respect to

one another without snapping, which would not be possible with only two tubes. This effect exists

for designs that are beyond the bifurcation of the anti-aligned equilibria, but for which the regions

of instability in the rotational actuation space have not yet connected. For circularly precurved

tubes, we suspect the growth of instability from the bifurcating equilibria is a fundamental prop-

erty regardless of the number of tubes, but we leave proof of this to future work. For complex,

non-planar tube designs, there may not exist any equilibria, so it is less clear where instability will

first arise; however, Result 2 still predicts the instability.

Note that the true rotational actuator space is of each angle modulo 2π, so that the opposite

edges of the graphs in Figure 4.6 are equivalent to one another. In the last plot of Figure 4.6, the

connection between the unstable regions has prevented all paths which traverse complete relative

rotations of any tube with respect to any other tube. In some cases such a full rotation is possible
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Figure 4.5: Here the stability metric det H11 of Corollary 3 is shown on the left for a system of
three tubes of equal stiffness and circular precurvature which subtend a total arc of 78.2 degrees in
the undeformed state. Each tube is assumed to be actuated rotationally at s = 0, and is precurved
over the entire length of the tube. If there were only two tubes, no continuous path would exist for
the tubes to be rotated fully 360 degrees with respect to one another. With three tubes, however, a
continuous path can be found which allows tubes 2 and 3 to be rotated 360 degrees with respect to
tube 1. The green line drawn on the left chart shows a chosen stable path in the distal angle space,
and the right chart shows how that path transforms to the proximal angles which are actuated. The
amount of distortion in the curve is related to the stability measure, with lower stability measures
indicating greater distortion.
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Figure 4.6: In these plots we show the effect of increasing component tube curvature on the relative
stability metric. We simulated three fully overlapping tubes with zero transmission length and an
overlapped length of 50 mm and equal curvature and stiffness. The curvatures, from left to right,
are 21 m−1, 27.5 m−1, 31 m−1, and 36 m−1. As the curvature increases, the regions of instability
grow from the bifurcated equilibria until they disconnect the stable equilibria. In the last figure
it can be seen that very small contours surround the special case equilibria at (2π/3,4π/3) and
(4π/3,2π/3), where the precurvatures are offset by 120◦, which are remarkably still stable despite
the entire area surrounding them being unstable.
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between one pair of tubes but not another pair.

Resolved-rate style control methods can also take advantage of the stability metric for redun-

dancy resolution or for a secondary weighted objective optimization. By computing or precomput-

ing the gradient of the stability metric, ∇q det(H11(β)), resolved-rate methods can locally enforce

a minimum stability measure to ensure that a sufficient distance is maintained from snapping con-

figurations.

In terms of stability over the entire rotational actuation space, increasing transmission lengths

and tube precurvatures tend to continuously destabilize the system. We show this effect by plotting

the relative stability metric for every relative angle ψi − ψ1 at the distal tip L. This space contains

all possible configurations up to a rigid body rotation. Figure 4.6 shows how increases of the

tube precurvature in a three tube robot cause instability to arise at the equilibria with curvatures

anti-aligned, and the regions of instability eventually grow until the space of stable tip rotations

becomes disconnected and traversing the full relative rotation of any tube can only occur through

a snap.

4.8 Conclusions

In this chapter we have provided an analysis of bifurcation and elastic stability of unloaded

concentric tube robots. The energy-based stability computation assigns a measure of stability to

each configuration of the robot, which we believe will be useful for future work in control and

motion planning. We have also connected existing frameworks from the mechanics literature on

Euler beams to concentric tube robots.

One important future advancement to the stability theory will be the inclusion of externally

applied loads, so that motion planning and control can incorporate stability information when

the environmental interaction forces are large. Our result provide an approach to understanding

concentric tube robot stability, and it is our hope that this work will facilitate the use of high

curvature concentric tube robot designs that were previously avoided.
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Chapter 5

Model Analysis: Follow-the-Leader Deployment

In this chapter, the mechanics-based kinematic model for concentric tube robots is used to pre-

dict the circumstances under which follow-the-leader insertion of a concentric tube robot is possi-

ble. With follow-the-leader deployment, where the body of the robot stays along the path traced by

the tip as the robot elongates, concentric tube robots make an ideal needle with a pre-programmed

shape. The contributions of this chapter are the model-based analysis and determination of the

design and actuation conditions which allow perfect follow-the-leader deployment, as well as a

new investigation of approximate follow-the-leader deployment in which the design and actuation

requirements are relaxed. In particular, it is found that when the precurvatures are circular and the

tubes are curved for as long as they are inserted, an appropriate choice of actuation will always

allow the deployment to approximate follow-the-leader behavior. This material of this chapter was

published as a regular paper in IEEE Transactions on Robotics [139].

5.1 Introduction

The desire to avoid critical structures and reach previously unreachable targets during needle

biopsy and needle-delivered therapy has spurred the development of many kinds of steerable nee-

dles. Designs include bevel-tipped needles [30], needles with a pre-bent tip [31], needles that

extend a curved stylet [33], and actively controlled needles [157], among others (for reviews, see

[31, 32]). Early motivations for developing concentric tube continuum robots were (1) to general-

ize the steerability of steerable needles beyond soft tissues, to air or liquid filled cavities, and (2)

to use this dexterity to create needle-diameter tentacle-like robot manipulators [55, 48]. A review

of concentric tube robot history and applications can be found in [114]. While a great deal of the

recent research in concentric tube robots has focused on the latter of these two motivations (see

e.g. [14, 11]), efforts have also been made to address the former through motion planning (choos-
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ing actuator sequences to keep the shaft of the robot within anatomical bounds during deployment

[63]), and in using a special case with one curved tube and two straight tubes to hit targets in soft

tissues (see e.g. [19] and many references in [114] including commercial products dating back to

the 1980s).

This special case is useful because it can be deployed in a perfect follow-the-leader manner,

wherein the shaft of the device exactly follows the path through space traced out by the tip at

all times during insertion. The term “follow the leader” for deployment of a highly articulated

robot was coined by Choset and Henning in 1999 [158], and Ikuta et al. proposed it for endoscope

deployment in 1988 under the name “shift control” [127]. It has also been used advantageously

in other highly articulated robots (see e.g. [159]). The term “follow the leader” was perhaps first

applied to concentric tube robots in 2006 by Sears and Dupont [26], who provided design heuristics

which enable approximate follow-the-leader behavior and showed that under the assumption of

infinite torsional rigidity, general collections of tubes are able to deploy in a follow-the-leader

manner.

It was later observed that torsion is typically significant in these robots in practice and that tor-

sional deformation precludes follow-the-leader deployment, even for constant precurvature tubes.

Models were subsequently developed that include the effects of torsion [47, 55, 36, 48]. These

models were applied to the use of concentric tube robots as manipulators in many contexts. They

have also been used to produce design heuristics [48] and motion planners [63] for approximate

follow-the-leader deployment. But, the analysis of follow-the-leader behavior in concentric tube

robots has not been revisited in light of them.

In soft tissues, a benefit of using concentric tube robots in comparison to other steerable needle

technologies is that concentric tube robots rely on internal forces rather than tip-tissue forces to

bend. This makes them able to steer through open or liquid-filled cavities, and through soft tissue

with minimal deflection of the needle based on needle-tissue interaction forces. In contrast, the

properties of bevel-steered needles (shaft stiffness, tip design, etc.) must be matched exactly to

tissue properties to achieve appreciable curvature, and coping with the sensitivity of the needle’s
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behavior to small changes in tissue properties is one of the major current challenges in needle

steering research (see [31] and references therein). Thus, both deployment through open cavities

and reducing sensitivity to tissue properties during deployment through soft tissues motivate the

question we seek to answer: Can concentric tube robots deploy in a follow-the-leader manner?

In what follows, exact solutions to the follow-the-leader deployment problem are described,

and the model-predicted deviation from follow-the-leader behavior in approximate cases is ana-

lyzed. The primary contributions are the development of necessary and sufficient conditions for

follow-the-leader behavior, the special case precurvatures we describe (including helical shapes

not previously considered), a metric for measuring the similarity of a general deployment to a

follow-the-leader deployment, and our neurosurgical illustration.

5.2 Follow-The-Leader Behavior

Before exploring special cases and approximations of follow-the-leader behavior, it is useful to

have a mathematical description for follow-the-leader deployment of the robot. We proceed in this

section by describing the follow-the-leader constraint on the space curve which describes the robot

shape. The following sections will then connect this constraint to the mechanics model, which

will reveal the resulting restrictions on both robot design and actuation sequences. We describe

the shape of the robot using a time-varying, arc-length parameterized transformation g(s, t) ∈

SE(3), which assigns a position p(s, t) ∈ R3 and orientation R(s, t) ∈ SO(3) to each arc length

s ∈ [0,L(t)] along the centerline of the tubes. The domain of s depends on t, but the parameters

s and t are independent of one another, and wherever mixed partial derivatives with respect to

s and t occur, we assume their symmetry. We assign our frames such that the columns of the

matrix R can be considered to be
[
x(s, t) y(s, t) z(s, t)

]
. The function L(t) represents the

exposed length of the robot, which increases during a deployment, and hence is a function of

time. The differential kinematic equations describing the evolution of the transformation are given

as g′(s, t) = g(s, t)ξ̂ (s, t), where ξ ∈ R6 contains the body frame twist coordinates ξ (s, t) =
[
vT u(s, t)T

] T
and the prime denotes the partial derivative ∂/∂s. The ·̂ operator converts a vector
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in R6 to an element of the Lie algebra se(3). The vector u may be thought of as the curvature or

“angular velocity” (with respect to arc length) of the frame, and v as the “linear velocity” (with

respect to arc length) of the frame g. We assume that the z axis of R is tangent to the curve, and

the transformation propagates with unit velocity along the z-axis, meaning that v =
[
0 0 1

] T
.

Equivalently, the components of the transformation g can be expressed as

R′(s, t) = R(s, t) û(s, t) (5.1)

p′(s, t) = z(s, t) (5.2)

where we also assume initial conditions R(0, t) = Rz (ψ0(t)) (a rotation about the z-axis by angle

ψ0), and p(0, t) = 0. These initial conditions model the physical robot, where a position and tan-

gent vector are prescribed at one point of the robot centerline. The operation ·̂ is the isomorphism

between a vector in R3 and its skew-symmetric cross product matrix.

For follow-the-leader deployment, we require that the position at any arc length does not

change in time, or mathematically that

ṗ(s, t) =
∂ p(s, t)
∂t

= 0 . (5.3)

The overdot will continue to denote the partial derivative with respect to time. Intuitively the above

assumptions result in a constraint on the curvature u(s, t). Since the space curve cannot change

except to telescopically extend, the curvature function u(s, t) must not physically change except to

allow growth in the domain of s. More precisely, we will prove that the follow-the-leader criterion

of (5.3) is equivalent to the following: for the angular displacement function ψ(s, t) which satisfies

ψ′ = uz and ψ(0, t) = ψ0(t), the projections of the curvature vector ux (s, t) = e1 · u(s, t) and

uy (s, t) = e2 · u(s, t), with ei the ith standard basis vector, satisfy

∂

∂t



ux (s, t)

uy (s, t)


=



0 ψ̇(s, t)

−ψ̇(s, t) 0





ux (s, t)

uy (s, t)


. (5.4)
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First, we show that (5.3) =⇒ (5.4). From (5.2) and (5.3), we can use the fundamental theorem

of calculus and the commutativity of the partial derivatives to yield

∂ p

∂t
(s, t) =

∫ s

0

∂

∂s
∂ p

∂t
(σ, t) dσ =

∫ s

0

∂ z

∂t
(σ, t) dσ = 0, (5.5)

which holds for all values of s if and only if

∂ z

∂t
(s, t) = 0 . (5.6)

This equation holds if and only if the time variation of R has the form

∂R
∂t

(s, t) = R (ω(s, t)e3)∧ , (5.7)

where ω(s, t) is the scalar angular velocity function which is unknown except at s = 0, where

ω(0, t) = ψ̇(0, t).

Equating the mixed partial derivatives of R by taking the partial derivative of (5.7) with respect

to s and the partial derivative of (5.1) with respect to t yields

∂R
∂t

û + R
(
∂u

∂t

) ∧
=
∂R
∂s

(ωe3)∧ + R
(
∂ω

∂s
e3

) ∧
. (5.8)

Substituting again from (5.1) and (5.7), premultiplying by RT , applying the identity (a × b)∧ =

â b̂− b̂ â, and taking the inverse of the ·̂ operator on the entire equation yield that (5.8) is equivalent

to the conditions
∂u

∂t
= −ωe3 × u +

∂ω

∂s
e3 (5.9)

The third vector component of this equation is ω′ = u̇z, and from the definition of ψ(s, t) we thus

have ω′ = ψ̇′(s, t). The initial condition for R implies that ω(0, t) = ψ̇(0, t), so that we can identify

ω(s, t) = ψ̇(s, t). Then, the first two vector components of (5.9) are given by (5.4), and the first

part of the proof is complete.
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We now show that (5.4) =⇒ (5.3). We start with only (5.1), (5.2), (5.4), and the existence of

the function ψ′ = uz. We now seek the time variation of R, which is given by

∂R
∂t

(s, t) = R(s, t)ω̂(s, t) (5.10)

for an unknown vector functionω(s, t). By again equating the mixed partial derivatives and making

the necessary substitutions, we find a differential equation

∂ω

∂s
= ω × u +

[
ψ̇uy −ψ̇ux

∂2ψ

∂t∂s

] T

. (5.11)

By the initial condition R(0, t) = Rz (ψ0(t)), we have the initial condition ω(0, t) = ψ̇(0, t)e3.

Therefore,

ω(s, t) =
∂ψ

∂t
(s, t)e3 (5.12)

is the unique solution to this differential equation, which in turn implies that ż(s, t) = 0, which is

equivalent to the follow-the-leader condition of (5.3). Thus, (5.4) is a necessary and sufficient con-

dition for follow-the-leader behavior. In the next section this equation is connected to a mechanics-

based model for concentric tube robots. The curvature vector u from the previous section can be

computed with a mechanics model for the robot. For this analysis a formulation of the model in

terms of Frenet-Serret frames rather than Bishop frames is convenient, so the relevant equations

from the literature are reviewed in this section [55, 48, 59]. Each component tube of the robot is

grasped at its proximal end where translation and rotation are applied. We denote with βi (t) the

positive length between the point where s = 0 and the point where σi = 0 for the ith tube, which

is where an actuator will grasp the tube, and with αi (t) the rotational actuation (see Figure 5.1).

Let the variables ψi (s, t) be the angular rotations of each tube, which may be thought of as the

angular displacement about the local z-axis between the material frame and the zero-torsion or

rotation-minimizing Bishop frame. The curvature ui =

[
uix uiy uiz

] T
of each tube is written in

the material frame of the respective tube. Here i ∈ 1, ...,N denotes the tube number with tube 1

99



replacemen

sσ1 σ2

α1 α2

β1

β2

ℓ2
ℓ1

Figure 5.1: The tubes are grasped at their respective proximal ends, and the actuation variables αi
and βi denote the proximal base rotation and translation, respectively. The length `i is the length
of each tube which is extended, as measured from the point s = 0 to the end of the tube.

p(s), R
(s)

Tube 1

Tube 2

s
ψ1(s)ψ2(s)

x

y

z

Figure 5.2: A diagram of a section of two concentric tubes showing relevant variables. The position
and orientation are those of the innermost tube (tube 1), while each tube has its own angular
displacement ψ. The tubes as illustrated here have a slight positive curvature about the x axis.

being the tube with the smallest diameter. The precurved shape of each tube is expressed in the

Frenet-Serret convention as u∗i (σi) =
[
u∗ix (σi) 0 u∗iz (σi)

] T
, where we will refer to u∗ix as the

curvature and u∗iz as the torsion of the frame. We use σi for arc length here to clarify that this

length is measured with respect to a fixed point on the tube, not with respect to the fixed point in

space where s = 0.

A diagram of the variables of interest is shown in Figure 5.2. From this point forward, as in the

previous section, for notational brevity, the explicit dependence on both s and t will be suppressed

except where not clear from context. The multi-point boundary value problem for a concentric
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tube robot with no applied external loads is given in [59] as:

ψ′i = uiz

u′iz = u′∗iz (s + βi)+

1
EI

Ei Ii

Gi Ji

N∑
k=1

Ek Iku∗ix (s + βi)u∗k x (s + βk ) sin (ψi − ψk )

(5.13)

for i = 1, ...,N , with boundary conditions

ψi (0, t) = ψi0(t) i = 1, ...,N

uiz (`i, t) = u∗iz (`i + βi) i = 1, ...,N.
(5.14)

The functions uiz are related to the torsional moments in equation (1.18b) through miz = kit (u′iz −

u′∗iz ). The precurvature functions u∗ix and u′∗iz are evaluated at an arc length offset by the time-varying

values βi (t), which accounts for possible translations of the tubes. Here ψi0(t) specifies the initial

z-axis rotation of tube i, which is produced by controlling an actuator αi at some proximal location

βi, and the latter boundary conditions on uiz result from the fact that each tube must have zero

torsional internal moment at its endpoint s = `i (i.e. the sum `i + βi is constant). The values of

ψi0(t) are related to the rotational actuation variables αi (t) through ψi0(t) = αi (t) − βi (t)uiz (0, t).

The term EI is the sum over all the stiffnesses, EI =
∑N

k=1 Ek Ik . It is important to recognize that

the sum is performed only over those tubes which exist at the arc length being evaluated, and that

the equations are only valid for tube i over the length that it exists.

The boundary value problem determines the tube torsion, but the local xy-curvature is found

in closed form as a weighted sum of the precurvatures rotated into the frame of tube 1,

uxy (s, t) =
1

EI

N∑
j=1

E j I j



cos(ψ j − ψ1)

sin(ψ j − ψ1)


u∗j x (s + β j ), (5.15)

where again the arguments to the functions ψi (s, t) have been omitted for space. It is this frame

which we define to be the central axis frame (i.e. the “backbone frame”) of the robot. Thus, the
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final robot curve is found by integrating (5.1) and (5.2) for the variables of tube 1.

The model equations also predict phenomena of elastic instability which are seen in concentric

tube robots [48, 36, 148]. Note that the results in this chapter only apply to stable configurations.

This means that, for example, two circularly precurved tubes which have a bifurcation cannot be

rotated so that their curvatures exactly oppose one another. The results of chapter 4 can be used

to determine whether a particular solution during an actuation sequence is stable. It should be

emphasized that presence of multiple solutions does not imply elastic instability, and thus designs

which have a bifurcation may be utilized in some approximate follow-the-leader cases if the user

ensures the actuation does not give rise to elastic instability.

5.3 Special Cases of Follow-The-Leader Deployment

To determine conditions for concentric tube follow-the-leader deployment, first note that the

definition of ψ′1(s, t) in (5.13) allows uxy and ψ̇1 to be substituted into the follow-the-leader con-

dition of (5.4). Performing this substitution and making simplifications, two constraint equations

emerge:
N∑

j=1

E j I j
[
cos (ψ j − ψ1)u∗j xψ̇ j + sin (ψ j − ψ1)u′∗j x β̇ j

]
= 0

N∑
j=1

E j I j
[
sin (ψ j − ψ1)u∗j xψ̇ j − cos (ψ j − ψ1)u′∗j x β̇ j

]
= 0.

(5.16)

These two differential equations, if satisfied, guarantee that an N-tube robot follows the leader.

Note that all of the rotational configuration functions ψi appear in these conditions, as well as their

time derivatives. The precurvature functions also appear, and due to actuation their derivatives with

respect to s also appear. Note that they are evaluated at s + β j . For a follow-the-leader insertion,

the differential equations (5.16) must be consistent with the mechanics of the robot (5.13).
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5.3.1 Two-Tube Case with Planar Constant Precurvatures

One prototype design which is appealingly simple is that of two tubes which have precurvatures

that are constant in arc length and planar (i.e. precurvatures that are circular arcs). Since the tubes

have constant precurvature, u′∗j x = 0. The constraints (5.16) simplify to

E1I1u∗1xψ̇1 + E2I2 cos (ψ2 − ψ1)u∗2xψ̇2 = 0

E2I2 sin (ψ2 − ψ1)u∗2xψ̇2 = 0.
(5.17)

All of the variables which appear in these equations are determined by actuation and the me-

chanics, so we seek the ways in which these equations can be satisfied through choice of precur-

vature and/or actuation. We first show that if both precurvatures are nonzero, then (5.17) implies

that ψ2 − ψ1 = nπ. To see this fact, first assume that ψ2 − ψ1 , nπ. Then the two equations

of (5.17) imply that follow-the-leader deployment requires ψ̇1 = ψ̇2 = 0. However, we will show

that this cannot happen due to the torsional mechanics. The robot is deploying and increasing in

total arc length, so the arc length `i at which the distal boundary condition in (5.14) is evaluated is

an increasing function of time `i (t). The total derivative of the distal boundary condition for each

tube in (5.14) must be equal to zero by definition, and this is expressed mathematically by

∂uiz

∂s
(`i (t), t)

d`i

dt
(t) +

∂uiz

∂t
(`i (t), t) = 0. (5.18)

During a deployment, d`i/dt is positive, and from (5.13) we have that ∂uiz/∂s is nonzero as long

as both precurvatures are nonzero and ψ2 − ψ1 , nπ. Then, the second term in (5.18) must also be

nonzero. This implies by (5.13) that ∂uiz/∂t = ψ̇′i , 0 and therefore ψ̇i cannot be zero everywhere.

Thus, (5.17) is satisfied only if ψ2−ψ1 = nπ. In this case, (5.13) indicates that the tubes experience

no torsional twisting and thus with no applied rotational actuation we have ψ̇1(s, t) = ψ̇2(s, t) = 0,

which trivially satisfies (5.17) and ensures follow-the-leader deployment.

There are also two special cases in which (5.17) can hold. If one of the tubes has zero precur-
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vature, then follow-the-leader behavior is guaranteed by simply ensuring no rotational actuation

of the other, precurved tube. Additionally, if E1I1u∗1x = E2I2u∗2x and the tube rotations are chosen

so that ψ2 − ψ1 = nπ with n odd, then the two fully overlapped tubes can be rotated with equal

angular velocity ψ̇1 = ψ̇2.

5.3.2 Helical Precurvatures

If either of the precurved shapes is a helix, then by the arguments in the previous subsection,

ψ2 − ψ1 will not equal nπ at all arc lengths unless additionally both tubes have the same helical

torsion u∗z . If they did not, ψ′1(L) = u∗1z (L) , u∗2z (L) = ψ′2(L), which implies that ψ2(s, t)−ψ1(s, t)

is not constant with respect to arc length. Equal torsion in the Frenet-Serret sense is therefore a

necessary condition for follow-the-leader deployment of two helical tubes.

5.3.3 Stability of Solutions

The odd and even solutions for n in the previous two subsections represent different solutions.

The odd solutions are only stable in a robot that does not have bifurcations (see Chapter 4, [47, 36],

or [48] for further information on bifurcations) in the boundary value problem of (5.13). As the

system approaches a critical overlapped length during an actuation, the odd solutions become

progressively “less stable” and so any designer wanting to leverage the odd solutions in a device

designed to follow the leader would likely want to maintain some margin of safety below this

critical value, and the inclusion of straight transmission segments in the tubes will require a design

with lower curvature than one without transmission segments.

5.3.4 Required Deployment Sequences

In cases of follow the leader insertion, the deployment procedure for two tubes of constant

curvature proceeds in two stages. The first stage is the insertion of both tubes together (fully

overlapping). The second, optional, stage is the continued insertion of one tube only while holding
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the other fixed. These tubes will be called the “moving” and “fixed” tubes respectively for this

stage of insertion. Since the moving tube has a constant curvature design, the interaction of the

two tubes will remain unchanged as long as the actuation satisfies the requirement that ψi (0, t) is

constant in time. If the moving tube has any precurved torsion, an actuator will have to rotate the

tube base, which is at negative arc length, to maintain a constant angle at s = 0. If the fixed tube is

moved at all after the moving tube has been extended, then the condition u′∗ix = 0 has been violated

at the discontinuity where the fixed tube ends, and the simplifications from (5.16) to (5.17) are

no longer valid. Thus, the follow-the-leader behavior will cease in this case, and the shaft of the

robot will deviate from the path traced previously by its tip. For the same reason, a step change

in the curvature of a tube (e.g. a tube with an initial straight transmission followed by a circularly

precurved tip section) will not be able to deploy in a follow the leader manner if the change in

curvature occurs in the length from s = 0 to s = L.

5.3.5 Summary of Follow-The-Leader Cases

Based on the discussions in preceding sections, we can now describe some potentially useful

cases where follow-the-leader behavior is possible for two tubes:

1. u∗2x = 0 or u∗1x = 0. In this case one but not both of the tubes has zero precurvature, meaning

that the final shape consists of two tangent circular or helical arcs with different curvatures.

This case was identified and elaborated upon previously for circular tubes in [80].

2. u∗1z = u∗2z = 0. Both tubes are circular in precurvature and we ensure that ψ2 − ψ1 = nπ.

The final shape consists of two circular arcs (which may have different radii based on tube

stiffnesses and precurvatures) that lie in the same plane, and are tangent to one another.

For even n, these two arcs will curve in the same direction, while for odd n, they may

curve in opposite directions in the plane, depending on the choice of tube stiffnesses and

precurvatures.

105



3. u∗1z = u∗2z , 0. Both tubes are helical in shape with the same helical torsion, but not neces-

sarily the same curvature. The interaction results in a piecewise helical final shape as long

as ψ2 − ψ1 = nπ, where again the even and odd solutions are different. The even solutions

will always contain two helical segments which curve in the same direction and have equal

torsion. The segments of the odd solutions may curve in the same or opposite directions.

In agreement with previous results mentioned in the introduction, the follow-the-leader solu-

tions are the ones which have no internal material torsion. This fact is evident from (5.13) since

sin(ψi − ψk ) = 0 and therefore uiz = u∗iz along the whole length of each tube. Note that the pre-

curvature must be constant for all s > 0, which means that before insertion this precurved segment

of the tube must lie at an arc length less than zero. This requirement imposes some restrictions on

the actuation mechanism, since it must either be able to accommodate the load of straightening the

tube in between s = 0 and s = −βi, or there must be some straight length of tube at the proximal

end so that the precurved portion can be retracted into a rigid sleeve.

5.3.6 The Space of Curves Enabled by Helical Precurvatures

The case of two helically precurved tubes provides a large family of overall device curves to the

robot designer, even though there are only two tubes. For a visual aid, two final shapes for a single

tube set are shown in Figure 5.3b. Parameters that can be selected include the handedness of the

helices (whether u∗z is positive or negative), the curvature of each tube, the overlapped insertion arc

length, the non-overlapped insertion length of one tube extending beyond the overlapped section,

and a rigid rotation of the entire final shape. In a practical application involving insertion through a

winding lumen or through soft tissue (as discussed in the Introduction), one could envision having

many helical tubes pre-made, and allowing a planning algorithm to select the best pair of tubes,

based on the target location and any relevant obstacles and tissue boundaries. A useful fact is that

the solutions are easy to compute because the torsional mechanics do not need to be solved and the

kinematics can be solved in closed form [47].
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(a) Circular Tubes (b) Helical Tubes

Figure 5.3: (a) Two circular tubes are shown. These tubes have an overall insertion length of 12
cm, with an overlapped tube length of 6 cm. The left solution has the tubes aligned, while the right
solution has the inner tube rotated the opposite direction. (b) The same tube curvatures are used,
but both tubes are given the same pre-curved torsion, resulting in two helical tubes. All of these
configurations can be reached in a perfect follow-the-leader manner.
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5.4 Follow The Leader With General Tube Sets

In the general case where we cannot simplify the constraints further than (5.16), it is less clear

for which special cases of precurvature follow-the-leader deployment will be possible. Certainly,

any set of circularly precurved tubes could follow the leader if the angle between every combination

of two tubes is nπ for any integer n. This assumes that the insertion length is sufficiently short and

the tubes have low enough curvatures that the boundary value problem associated with (5.13) and

(5.14) has not undergone a bifurcation, since this would cause the solutions with odd n to be

unstable and not achievable in the physical system. The solution would be planar and could have

changes in the direction of the curvature. By a similar argument, three helices with equal torsion

could also follow the leader.

It is possible that other special case functions exist for which the constraints in (5.16) can

be consistent with the torsional mechanics in (5.13) for more general solutions of ψ and more

general, non-constant choices of precurvature. Identifying them (if they exist), and determining

whether they are potentially useful in various applications remain open research questions. As

with the special case solutions we have described, any new solutions will involve both specific

precurvatures and specific deployment sequences, because the torsional mechanics are completely

defined (i.e. the time derivatives of all ψi are determined completely by the mechanics model of

the robot). Thus, the two additional constraints from Section 5.3 are unlikely to be satisfied except

in very special cases. Maintaining the constraints, which are infinite-dimensional, with only a

finite number of actuator inputs is a challenging endeavor that will require assistance from special

properties of the precurvature functions selected.

One potential way to solve this problem through design is to ‘key’ the tubes together, which

constrains their rotational motion with respect to one another. Effectively, this causes ψ̇i = 0 for

constant-precurvature tube shapes at any initial angular displacement. One way that has been sug-

gested to achieve this [160], and which has been recently prototyped in [117], is to use non-annular

tube shapes. In this case, any number of constant-precurvature tubes can be made to follow the

leader by using an insertion sequence similar to that described earlier for two tubes, namely one in
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which all tubes advance together initially, with one or more stopping sequentially at specified arc

length points and then remaining stationary after stopping.

5.5 Approximate Follow-The-Leader Deployment

In some cases, approximate follow the leader deployment may be sufficient to accomplish a

given task. In order to measure closeness to exact follow the leader deployment, we define an error

metric that quantifies the maximum displacement of any point along the backbone:

E = max
t1

max
t2

max
σ
‖ p(σ, t1) − p(σ, t2)‖ , (5.19)

where σ denotes arc lengths along the robot which exist for both times t1 and t2. That is, σ ∈

[0,Le] with Le = min(L(t1),L(t2)). This error metric captures the largest movement of the back-

bone at any arc length point during the entire deployment period, and has units which are the same

as p. This error metric does not perfectly capture the amount of “stretching” that would occur in a

tissue surrounding the needle path, because some component of the difference p(σ, t1) − p(σ, t2)

may be tangential to the path. The tangential component will often be small, however, due to the

comparison occurring at equal arc lengths. Note that the error is non-decreasing with time, which

for an insertion corresponds also to non-decreasing error with insertion length. Minimizing this

error over the set of possible actuator trajectories would give a best-case follow-the-leader behav-

ior for a given robot design. This error metric could also provide a bound for planning and design

algorithms which seek to design both the properties of the tube set and the actuation sequence to

be used for a specific task.

We now apply this error metric to explore two cases. The first is that of two circularly pre-

curved tubes in the case that ψ2 − ψ1 , nπ, meaning that the curvatures lie out of plane and the

torsional mechanics become nontrivial. The second case is of two helical tubes with opposite

handedness. We show that under certain conditions these tubes approximately follow the leader.

For all simulations the deployment proceeds with both tubes fully overlapping and extending in
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length.

5.5.1 Dimensionless Model for Two Constant-Precurvature Tubes

The equations for two circularly precurved tubes may be conveniently nondimensionalized,

which reduces the number of design parameters to a minimal set and allows conclusions to be

drawn without regard to the overall size of a particular design. We first replace ψ1(s, t) and ψ2(s, t)

with θ(s, t) = ψ2(s, t) − ψ1(s, t). The arc length is then transformed into normalized arc length

s̃ = s/L ∈ [0,1]. Let the symbol ‘∼’ over the top of a variable represent the quantity as nondimen-

sionalized and as a function of the normalized arc length. Then the precurvatures of the tubes may

be nondimensionalized as ũ∗i = Lu∗i . The torsional boundary value problem for two tubes (see

[36]) is then given in nondimensional form by

θ̃′′ − λ sin(θ̃) = 0 (5.20)

subject to the boundary conditions

θ̃(0, t) = θ̃0(t)

θ̃′(1, t) = ũ∗2z − ũ∗1z .

(5.21)

Note that under the assumption of circularly precurved tubes and that Poisson’s ratio ν is the same

for both tubes, the bifurcation parameter λ = ũ∗1ũ∗2(1 + ν). The dependence on squared length is

not omitted in this expression, rather it is present through the definition of ũ1 and ũ2. We assume

for the remainder of this section that ν = 0.33, the value quoted for Nitinol by the manufacturer,

for both tubes. The differential kinematic equations may also be nondimensionalized as

p̃′ = z̃ (5.22)

R̃′ = R̃̂̃u (5.23)
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where the relations hold that L p̃(s̃) = p(Ls̃) and R̃(s̃) = R(Ls̃). The normalized curvature ũ is

computed as ũ = Lu, which is more explicitly found as

ũxy =
1

1 + γb
ũ∗1x



1

0


+

γb

1 + γb
ũ∗2x



cos θ̃

sin θ̃


ũz = −

γt

1 + γt
θ̃′

(5.24)

where γb is the dimensionless bending stiffness ratio E2I2/E1I1 and γt is the dimensionless tor-

sional stiffness ratio G2 J2/G1 J1. For tubes which have the same value of Poisson’s ratio, γ = γt =

γb, which will be assumed with some loss of generality for the remainder of this section. Addition-

ally, let η = ũ∗2/ũ
∗
1 represent the precurvature ratio. We then choose the following set of parameters

that uniquely define the entire solution space up to a rigid transformation of the backbone: γ, η, ν,

λ, and θ̃0. Fixing ν leaves only four parameters determining the forward kinematic problem.

The objective of the metric is to find the maximum movement of the backbone at any arclength

point. Since the domain of s̃ is [0,1] for any solution p̃, we must take care to compare points which

correspond to the same physical arc length. Note that during any particular deployment, the only

term not constant in λ is L, meaning that we may find that for arbitrary times t1 and t2 at which the

tubes have nonzero length,
√
λ2/λ1 = L2/L1. Furthermore, we may parameterize the deployment

by λ rather than by time. Considering these facts, the error metric may be nondimensionalized as

Ẽ(λ) =

max
λ1

λ1<λ

max
λ2

λ2<λ1

max
σ̃∈[0,1]



√
λ1

λ
p̃(σ̃

√
λ2/λ1, λ1) −

√
λ2

λ
p̃(σ̃, λ2)



(5.25)

where we assume, without loss of generality, that λ1 > λ2. Note that to compute Ẽ(λ) for an

insertion sequence, we must additionally know the actuator history θ̃0(λ), stiffness ratios, Pois-

son’s ratio, and the curvature ratio, and these additional parameters have been suppressed from

the notation. Once equipped with this nondimensionalized error, the error may be computed by

E(L, λ) = LẼ(λ) for a deployment which has final overlapped tube length L. This nondimen-
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Figure 5.4: The dimensionless follow-the-leader error at a stiffness ratio of γ = 1 and curvature
ratio η = 1. The value θ̃0 represents the relative angle between the tubes at s = 0, which is held
constant during the insertion.

sionalized error metric, unlike the original metric, is not non-decreasing. This fact may be seen

from the division by
√
λ on the right hand side of (5.25) and is consistent with the fact that longer

insertions may incur less error on a percentage basis of the final length.

In the subsections that follow we investigate the behavior of this error metric for varying

choices of tube designs and actuation. In all cases the model equations are solved via a nonlinear

Galerkin method, using MATLAB’s fsolve to perform the minimization of the weighted residual

equations. Once this solution is obtained, the kinematic equations are integrated via ode45 and

interpolated to 2000 evenly spaced points.

5.5.2 The Effect of Initial Angular Difference

In order to investigate the follow-the-leader error for varying angular differences between the

tubes, we choose tubes that have circular precurvature and vary the nondimensional parameters of

the model. The actuator history is given by θ̃0(0, t) = constant.

The dimensionless error is shown in Figure 5.4 for the case of equal stiffnesses and equal
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Figure 5.5: The dimensionless follow-the-leader error at an initial angle θ̃0 = 160° and curvature
ratio η = 1 for varying stiffnesses.
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Figure 5.6: The dimensionless follow-the-leader error at an initial angle θ̃0 = 160° and stiffness
ratio γ = 1 for varying curvature ratios.
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curvatures for various initial angular differences at s = 0. It is seen that a maximum in the error

occurs near an initial angle of 160 °.

5.5.3 The Effect of Tube Stiffness Ratio

Figure 5.5 displays the dimensionless error for varying stiffness ratios, using the worst-case an-

gular difference from the previous subsection of 160 ° and tubes of equal curvature. The maximum

amount of error occurs when the stiffnesses are equal, and is reduced as one tube becomes stiffer

relative to the other.

5.5.4 The Effect of Tube Curvature Ratio

Figure 5.6 shows the dimensionless error for varying curvature ratios with equal stiffness tubes

at a 160 ° relative angle. It is seen that the minimum occurs at unity. However, the effect of varying

the curvature ratio is clearly less significant than the effect of varying stiffness ratio. Unlike varying

stiffness, the error is slightly increased as the tubes deviate from unity curvature ratio.

5.5.5 The Effect of Actuation Sequence

It is important to note that the proximal boundary conditions θ̃(0, t) = constant and R(0, t) =

constant which were chosen for the previous subsections imply a particular actuation sequence

during the deployment, because the tubes must be grasped at a location s < 0 in order for the

insertion to extend from s = 0 forward. Torsional windup in the section s < 0 must be compensated

so that the two boundary conditions θ̃(0, t) and R(0, t) are held fixed. Note further that there is no

guarantee that this choice of actuation provides the minimum follow-the-leader error. Rather, this

choice makes the equations amenable to the preceding analysis. One subtle benefit of this choice is

that the graphs in Figures (5.4)-(5.6) may be labeled simply ‘λ’ along the abscissa because it does

not matter whether the value is taken at the end of an insertion or during the middle of an insertion.

In order to give one comparison to a different choice of actuation, however, we examine the
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case where one applies no rotational actuation during the insertion. In all physical prototypes built

to date of which we are aware, there is a section of tube which is not precurved present before

the curved section, termed a transmission length. To account for this length, if it is present, we

introduce the parameter λs = L2
su∗1xu∗2x (1 + ν), where Ls is the straight length of tube located at

s̃ < 0. We term this actuation with no rotational motion “uncompensated,” and θ̃(−d(t), t) = α,

where d is the non-dimensional length (nondimensionalized by the currently overlapped length

L(t) of the tubes) of the portion of the tubes physically located at s̃ < 0 and α is the rotational

actuator relative angle. The value d may then be computed as

d =

√
λs

λ(t)
+

√
λ f

λ(t)
− 1, (5.26)

with λ f being the value of λ at the end of the insertion sequence, and where λ(t) > 0. Then, the

proximal boundary condition changes to θ̃(0, t) = α + dθ̃′(0, t), and we must also account for the

change in the initial axial rotation of tube 1 at s̃ = 0. This rotation is R(0, t) = Rz (−d(t)θ̃′(0, t)γt/(1+

γt )).

Figure 5.7 shows the error metric as a function of λ f for various choices of the ratio λs/λ f , with

γ = 2, η = 1, and θ̃(−d(t), t) = 160 °. Note that with this choice of actuation, λ is no longer the

only changing parameter in the torsional boundary value problem and forward kinematic problem,

because λ, λ f , and d must all be known in order to find the correct solution to the kinematic

equations part-way through an insertion. It is for this reason that Figure 5.7 shows λ f on the

abscissa. For high values of λ f , the follow-the-leader error is lower in magnitude than those for

the previous, compensated actuation method. However, a direct comparison is not valid since the

relative angle θ̃(s, t) is significantly lower for most of the uncompensated solutions when compared

to the 160 ° compensated solution. As the straight length increases, the torsional windup in the

region s̃ < 0 increases, lowering the effective relative angle for the region s̃ > 0 and thus decreasing

the follow-the-leader error. However, for lower values of λ f , where most prototypes have been

built to date, the error increases substantially with increasing transmission length. Thus, where
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Figure 5.7: The follow-the-leader error has a more complex pattern with respect to the straight
transmission length. Here θ̃(−d) is set to 160 °, γ = 2, and η = 1. As λs is increased relative to
λ f , the error at low values of λ f increases, but the error at high values of λ f decreases.

it is feasible, the compensated actuation method should be preferred to this uncompensated one

when follow-the-leader deployment is desired. We note that in some cases excessive transmission

length will prevent all values of θ̃0 from being achievable due to bifurcation.

5.5.6 Helically Precurved Tubes

Another case that provides interesting study is that of two opposite-handed helices. For this

simulation we will choose a set of tubes and an insertion length that results in a bifurcation pa-

rameter λ > π2/4. It is harder to span many values of curvature in this case because there is a

two-parameter family of both torsion and curvature for each tube. For illustrative purposes, we

will choose the parameters EI1 = EI2 = 1, and u∗1z = −25 m−1 and u∗2z = +25 m−1. When

ψ2(0, t) − ψ1(0, t) = 0 is maintained and the curvature is high enough, the tubes will conform to a

planar shape and “unwind” so that ψ2(s, t) − ψ1(s, t) stays less than π over the entire length of the

insertion. Figure 5.8 depicts how the two helical shapes conform to a common centerline. Since

no error will occur during the second stage of insertion when the inner tube continues to deploy

beyond the outer one, an overall robot curve featuring a first almost-circular segment followed by

a second helical segment can be achieved in a quasi follow-the-leader manner. For three choices of
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Inner
Helix

Outer
Helix

Combined

Figure 5.8: Two helically precurved tubes of opposite handedness and equal stiffness combine to
form an almost-circular section followed by a helical section. Where the two helices interact they
twist each other into a common plane. This configuration can be reached in a quasi follow-the-
leader manner.

curvature which are sufficiently high, the follow-the-leader error versus insertion length is shown

for the first stage of fully overlapped insertion in Figure 5.9. For this simulation the density of the

discretization is again 2000 points along the length of each solution, with 1000 discrete insertion

steps in order to obtain a smooth result.

Unlike the two circularly precurved tubes, the helices conforming to a plane have better tip-

following behavior when the curvature is increased. This is easily explained by the fact that the

higher curvature allows ψ2 − ψ1 to stay closer to zero, which would be a perfect follow-the-leader

case for circularly precurved tubes. Essentially, the preset torsion of the tubes is “removed” by the

material twisting when the curvature is sufficiently high. From a design perspective this is a trade-

off where increasing the torsion allows the second segment of the insertion to more rapidly leave

the plane of the first segment, but also requires higher curvature to achieve the desired behavior.
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Figure 5.9: For the helical “unwinding” case, again error increases with insertion length, but de-
creases with increasing curvature.

5.5.7 How to Use Nondimensional Approximate Follow the Leader Results in Practice

Given a physical robot design and motion plan, Figures 5.4, 5.5, and 5.6 can be used to predict

the follow-the-leader error. For example, consider two tubes with curvatures of u∗1x = 20 m−1 and

u∗2x = 15 m−1, where each tube is precurved for its entire final length of insertion. Consider a

motion plan in which the two tubes will be deployed together for 50 mm, and then the inner tube

deploys by itself another 50 mm. Assume that the plan uses the compensated actuation method

discussed in Section 5.5.5, and prescribes an initial angle θ(0, t) = 90 ◦.

We wish to know how much follow-the-leader error can be expected from these tubes and

this deployment plan. First, note that since the overlapped length L = 50 mm, the dimensionless

parameter λ = L2u∗1xu∗2x (1 + 0.33) = 1.0. From Figure 5.4, we see that at λ = 1, equal stiffness

tubes at θ(0, t) = 90 ◦ would be predicted to have a follow-the-leader error less than 1 % of L.

Figure 5.5 tells us that the effect of the stiffness ratio is to slightly reduce the error, and Figure 5.6

shows us that the curvature ratio u∗2x/u
∗
1x = 1.33 will slightly increase the error, roughly canceling

the effect of the stiffness ratio. Therefore, we predict an error of less than 1 % of L = 50 mm, or

0.5 mm, during the first stage of deployment, and no error during the second stage.

118



5.6 Experimental Helical Case Demonstration

In this section we examine the follow-the-leader behavior of a physical prototype. The ex-

periment shows the case of two same-handed helices inserted in free space, providing a proof-of-

concept demonstration of an odd solution case. We emphasize that this section is not intended to

be a conclusive, statistical statement about practically achievable distributions of errors. In this

section we present the results of measurement of the follow-the-leader error of a single insertion as

a proof of concept for follow-the-leader deployment of helically precurved concentric tubes, which

has never before been demonstrated.

5.6.1 Experimental Protocol

An outer tube and an inner wire were first independently shape-set via heat treatment into

helical shapes. To create a helix with the correct precurvature we converted u∗x and u∗z into the

more physically intuitive helical pitch 2πp and radius r , using the following relationships:

r =
u∗x

u∗2x + u∗2z
p =

u∗z
u∗2x + u∗2z

. (5.27)

Note that here a negative value for p would indicate a left-handed helix, and a positive value a

right-handed helix.

To set the helical precurved shape, the tube and wire were each wrapped in a helical profile

with a pitch of 2πp = 160 mm around a steel cylinder 19 mm in diameter, with the proximal

part of the tube/wire left free to leave the surface of the fixture in order to remain in a straight

configuration. Figure 5.11 shows the process. The tube and wire were placed in an air furnace at

500 °C for 30 minutes. This heating was followed by an immediate quench in room-temperature

water, followed by a second heating period at 600 °C for 5 minutes. A second water quench was

performed immediately after the second heating period. Note that the full theory of heat treating

Nitinol is a complex metallurgy problem and the interested reader is directed to [161, 162] for

further information. Broadly speaking, the first heat treatment period sets the shape, while the
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Figure 5.10: The robot grasps the tube and wire at their respective bases where rotation and trans-
lation are applied. The rigid sheath straightens the precurved portions of the tube and wire when
they are retracted.

second moves the transition point between Austenite and Martensite back below room temperature

so that the sample is superelastic at room temperature. Accounting for the diameters of the tube and

wire, by (5.27), they were constrained around the steel cylinder with u∗1x = 13.64, u∗1z = −33.75,

u∗2x = 13.92, and u∗2z = −33.48 before heat treating began, where all values are in units of rad/m.

The robot described in [29] was used to independently control the insertion and rotation of the

concentric tube and wire, which passed through a rigid sheath that served to constrain the tubes to

be straight at arc lengths s < 0. Since both tubes are helical, the bases of the tubes must be turned

during insertion in order to maintain the angles ψi (0) at a constant value. The rate of twist must

be equal to the precurved helical torsion, which can be seen from the fact that the tubes undergo

no material torsion at negative arc lengths. A photograph of the experimental setup is shown in

Figure 5.10.

All measurements were taken with a stereo camera system of two Sony XCD-X710 firewire

cameras, calibrated using a rectangular 10 mm square grid and the Camera Calibration Toolbox for

MATLAB. To triangulate points, a point in one image was clicked, and then the intersection of the

epipolar line and the feature of interest was selected in the second image.

The insertions were performed according to the steps outlined in Section 5.3.4. Before begin-

120



19 mm

160 mm

(a) Fixture (Top View)

(b) Fixture (Front View)

(c) Shape Set Tube/Wire

Figure 5.11: The tube and wire were constrained to the surface of a cylinder in a helix at two points,
with the proximal end of the tube left free. The dots indicate the locations of the constraints. The
tube and wire after the shape setting process are shown after trimming to length.
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Parameter Outer Tube Inner Wire
Outer Diameter 2.18 1.58 mm
Inner Diameter 2.02 0.00 mm
Curvature (u∗x) 8.4 9.9 m−1

Torsion (u∗z) -31.6 -34.3 m−1

Table 5.1: Tube parameters after the shape-setting process. The tube diameters and Poisson’s ratio
are taken from manufacturer’s data.

ning the insertion the two helices were aligned, with their tips at s = 0. Next, the inner wire was

inserted forward while holding ψ1(0) = 0. It was then rotated to ψ1(0) = π and finally retracted

while holding ψ1(0) = π. This initial setup procedure minimizes frictional effects by reducing the

arc length of overlapping tube and wire during initial rotation and also causing the tubes to slide

relative to one another after rotation. Since it is known that friction between the tubes induces a

hysteresis between the relative base angle ψ2(0) − ψ1(0) and the relative tip angle ψ2(`) − ψ1(`)

(see [155]) frictional effects additionally need to be considered when designing a real device, as

the base actuators must be able to maintain sufficient control over the axial rotation of the tubes.

The steps of Section IV-E were implemented 0.5 cm at a time, with an insertion velocity of ap-

proximately 0.5 cm/s. After each 0.5 cm step insertion was paused and a pair of stereo images was

captured for analysis. The backbone shape was discretized in each image pair manually using the

triangulation technique discussed above with a density of approximately 1 point every 2 to 5 mm.

5.6.2 Experimental Results

Table 5.1 lists the tube parameters as measured after heat treatment. The radius and pitch were

estimated from points collected with the stereo cameras using a nonlinear regression. The results

indicate that the curvature (u∗1x and u∗2x) relaxed approximately 40 percent after removal from the

steel cylinder. In contrast, the torsion (in the helical parameter sense, not a material sense) did

not change appreciably. This makes sense intuitively, because there is no internal torsional strain

associated with wrapping the tube around the cylinder as we did before heat treating. The tube and

wire after shape setting and trimming to length are shown in Figure 5.11.
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Figure 5.12: The experimental follow-the-leader error for two helical tubes in free space. The gray
shaded area denotes the margin of error using our estimate of 0.5 mm measurement error at any
point along the insertion.

Experimental results for a single free space insertion are shown in Figure 5.12. The graph

of error versus insertion distance reveals that for an 80 mm insertion, overall error is only 2 mm.

The most likely sources of error are the unmodeled effects of diametral clearances between tubes,

friction between the tubes, and manufacturing error in the shapes of the tubes. Note that this

demonstration is not designed to corroborate the simulation cases presented before, since the model

would predict zero error for this experiment. What the experiment does demonstrate is that the

modeling errors are small enough that such an insertion could be practical.

5.7 A Neurosurgical Example

Consider epilepsy treatment as a motivating clinical example for follow-the-leader deployment.

This application was suggested in [24] which addressed the design of a magnetic resonance imag-

ing (MRI) compatible concentric tube robot actuation system, but did not address tube design or

deployment strategy. Epilepsy is estimated to affect 1% of the global population at some point

in their lives. Anti-seizure medications are the first line of defense, but about 20-30% of people
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Figure 5.13: Two views showing the trajectory of a two-tube concentric tube robot with helical
precurvatures. At all times the path stays within the safe area (shown in blue) designated by an
experienced neurosurgeon. The helical shape allows the path to stay nearer to the middle of the
allowable area in the axial plane, while traveling approximately along the Euclidean skeleton of
the hippocampus. The straight needle shown in black must pass much closer to the boundaries of
the blue insertion zone in order to remain close to the skeleton. Mean distance to the skeleton is
1.5 mm for the concentric tube robot and 2.4 mm for the straight needle. The concentric tube robot
enters through a straight, rigid tube.

do not respond to them [163]. For many of these patients, surgical removal of the hippocampus

is highly effective in controlling seizures, but carries with it all the risks (bleeding, inadvertent

damage to nearby critical brain structures, blood vessels, etc.) typically associated with a major

surgery on the brain. As discussed in [24], it would be highly desirable to perform a less-invasive

needle-based treatment in which thermal energy is deployed from the tip of a needle that is inserted

along the axis of the hippocampus, while monitoring brain temperatures using magnetic resonance

imaging (MRI) temperature maps. Recent clinical results of minimally invasive MRI-Guided laser

ablation of the hippocampus indicate that straight needles are able to surgically treat on average

60 % of the desired volume [164].

To explore whether helical follow-the-leader trajectories might be useful in this application,

an experienced neurosurgeon first defined the bounds of a safe insertion region, using an occipital

approach, for the cannula by drawing contours on an MRI image set of a patient’s head. The safe

insertion zone geometry the surgeon indicated is shown in blue on Figure 5.13. The surgeon also
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segmented the target portion of the hippocampus to be ablated (shown in brown on the Figure).

Next, we considered delivery of an ablator that radiates energy radially around the needle tip, such

as the acoustic ablation probe in [18]. With such a probe, it would be desirable to deliver the ablator

along the central axis of the hippocampus. This central axis, known as the Euclidean skeleton, was

computed for a voxelized image of the hippocampus using the method of Lee et al. [165]. We

used the mean distance between the skeleton points and the concentric tube robot trajectory as a

measure of how well an ablator could thermally treat the hippocampus by radiating energy evenly

in all radial directions.

To demonstrate that our helical case can provide a more desirable result than a straight needle,

we generated an optimal straight needle trajectory using principal component analysis (PCA).

Using all skeleton points results in a trajectory that lies outside the insertion zone, so points were

gradually excluded from the tail of the hippocampus, toward the posterior side of the head, until

a trajectory was found that passed entirely inside the safe insertion zone marked by the surgeon.

This straight needle trajectory results in a mean distance to the skeleton of 2.4 mm.

We then considered designs with two helical tubes of identical helical torsion, with the objective

of staying within the safe region of the brain and minimizing the mean distance to the skeleton.

A design consisting of tube curvatures and lengths was manually selected and the resulting shape

was positioned and rotated using fminsearch in MATLAB to minimize the mean distance to the

hippocampus skeleton. This design is shown in Figure 5.13. The resulting tubes have a stiffness

ratio of 2.3, and curvatures of 20 m−1 and 80 m−1 for the inner and outer tubes, respectively. Both

tubes have a helical torsion of -10 m−1. The curved tubes enter through a third, straight, rigid

tube, which is assumed to be stiff enough to completely straighten the curved tubes when they are

retracted inside of it.

The helical tubes have a smaller mean distance to the skeleton of 1.5 mm, and they would allow

ablation of tissues in the tail of the hippocampus that cannot be reached with the straight needle,

which is important given that correlations exist between higher resection volume and better clin-

ical outcomes [166]. The ability to treat the tail of the hippocampus may increase the potential
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for seizure freedom. Furthermore, as can be seen in Figure 5.13 the helical tubes do not require

a needle trajectory that is very close to the boundary of the safe zone for the entire deployment

(meaning that a small registration error could potentially significantly damage the patient’s brain).

Using helical tubes also provides the ability to alter the insertion point without substantially reduc-

ing the covered volume by slightly altering the tube design, thus avoiding patient-specific obstacles

such as sulci near the surface of the brain.

We note that in future work, automated planners could design the tubes for this application,

and could consider all design objectives including obstacle avoidance and desired insertion points.

However, such optimization routines are an active area of research themselves (see e.g. [78]) and

are beyond the scope of this dissertation. It is also worth noting that the example described in

this section shows that even a hand-selected (i.e. not optimized) helical design was capable of

performing the desired surgical task better than the optimal straight needle trajectory.

5.8 Conclusions

In this chapter we have explored follow-the-leader behavior as it relates to concentric tube

robots, showing that it is possible, but only with appropriate precurvature selections and deploy-

ment sequences. We derived the conditions that must hold for follow-the-leader deployment in

general, and explored various two-tube cases in depth. Fortunately, even these “simple” circular

and helical precurvature special cases provide a large design space of possible curves. Thus, we

expect them to enable a number of new clinical applications where concentric tube robots act as

steerable needles in both soft tissues and open or liquid-filled spaces in the human body — cases

where the robot operates in a manner conceptually similar to our epilepsy treatment illustration.

We anticipate that approximate follow-the-leader behavior will also be useful in applications like

traversing a lumen where a tolerance exists between the robot and wall, or in tissues where some

stretching is permitted. In such cases, our metric for comparing a general deployment to a follow-

the-leader deployment will be useful in assessing the ability of an existing robot to achieve the

surgical task at hand. The metric may also be useful in future design and motion planning studies

126



for concentric tube robots. In summary, follow-the-leader deployment appears to be a useful at-

tribute for concentric tube robots. It enables them to act like steerable needles that do not depend

on tissue interaction to steer. This ability to travel along desired curved trajectories through both

soft tissue and open space may enable a variety of minimally invasive interventions to be developed

in the future.
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Chapter 6

Sensing: Intrinsic Force Sensing

Concentric tube robots, like other robots with a continuously flexible backbone, possess the

promising capability of intrinsic force sensing. In theory, if the robot backbone is predicted to be

at one location but is observed at another, one can infer that a load has been applied. If enough

information is present, the entire three-dimensional force can be estimated in this way. Existing

studies have either made simplifying assumptions that drastically alter the mechanics of the model

or have used expensive embedded sensing technologies that can directly measure strains to in-

fer the applied loads. Position measurement is a feasible option with the widespread deployment

of magnetic trackers in surgical suites, but to date there has not been a complete demonstration

of force sensing for a generally designed concentric tube robot undergoing large torsional defor-

mations under externally applied loads. The contribution of this chapter is the validation of a

fixed-interval smoothing framework for the estimation of the entire state of the robot along its full

length. A simulation demonstrates accurate force estimation, and an experimental trial indicates

performance that is acceptable but with substantial noise present.

6.1 Introduction

Concentric tube robots enable access to difficult-to-reach surgical sites, and have been investi-

gated for applications including endonasal surgery [29], cardiac surgery [9], lung surgery [7], and

fetal surgery [15], among others. In addition to enhancing access and dexterity, concentric tube

robots may become even more powerful surgical devices if they are endowed with force sensing

capabilities. Sensed forces could be used to help doctors “feel” tissues to discern differences in

tissue stiffness that indicate subsurface objects like tumors, blood vessels, nerves, or anatomical

planes, the locations of which are often critical to the outcome of the surgical procedure. This

information can be presented to the surgeon using graphical displays [167], or machine learning
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techniques can be used to autonomously differentiate tissue types [168]. The forces of interaction

can also simultaneously provide information about the robot itself, to provide data for localization

at the surgical site and registration to the body [169].

However, sensing the forces of interaction with the environment is challenging for concentric

tube robots due to their small size (typically 1-2 mm, and sometimes even smaller) making direct

integration of traditional force sensors along the shaft of the robot impractical. Due to their inherent

flexibility, concentric tube robots have the potential to achieve intrinsic force sensing. Known

equivalently known as “manipulator as sensor,” and “deflection-based force sensing,” this concept

has been demonstrated in multi-backbone continuum robots [83], continuum robots modeled as

a single elastic backbone [67], and suggested for tendon-driven continuum robots [170], but has

never before been applied to concentric tube robots of general designs which incur substantial

twisting deformations under external loads (see Fig. 6.1).

By leveraging the mechanics model of Chapter 1.7, the sensed forces can be inferred from

the observed discrepancy between the predicted and actual shapes of the robot backbone. Given

enough sensors and an accurate enough model, the shape provides sufficient information to esti-

mate multiple contact loads. In this chapter, a single external load at the tip of the robot is estimated

by incorporating two five-degree-of-freedom magnetic tracking sensors into the shaft of a concen-

tric tube robot. To generate the force estimate, the problem is viewed as a state reconstruction

problem for the differential equations that govern the state of the robot along its length. A Kalman

filter and backwards smoother are used to create a fixed-interval smoother that estimates the inter-

nal force and moment as one part of the complete system state. In this method the filter acts in

space rather than in time.

The sensor feedback is provided by magnetic tracking in the experiments, although in princi-

ple any position measurement method could be used. Magnetic tracking is advantageous due to its

nearly ubiquitous deployment in neurosurgical suites and non-contact, non-line-of-sight measure-

ments.
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Centerline

Out of Plane Load

Figure 6.1: A load placed at the tip of a robot, out of the plane of the robot and in the plane of
the page. This load will cause a twisting deformation in the shaft of the inner tube, and in the
case where the outer sheath is very stiff this will be initially the predominant mode of deformation.
Existing approximations made for force inference do not handle this situation correctly.

6.2 Related Work

A concentric tube robot consists of concentric, precurved, superelastic tubes. Changing the

translation and rotation of each tube causes the resultant equilibrium conformation to change and

provides a means of actuating the robot. Mechanics models have been previously developed [48,

55, 57] that can provide the forward kinematic solution, the differential kinematics of the robot,

and the compliance matrix which maps differential external wrenches to differential twists at any

location along the length of the robot.

Concentric tube robots fall within a broader robot classification called continuum robots, all

of which are capable of some kind of intrinsic force sensing. Other devices are also capable of

this – an early illustration of the end-effector-as-sensor concept was a study on tensegrity struc-

tures that are amenable to force sensing [171]. It has also been demonstrated with parallel robots

operating near singular configurations [172]. The first application in continuum robots was the

work of Xu and Simaan [83, 173], who demonstrated that one could deduce wrenches applied

to a multi-backbone continuum robot using load cells measuring the tension/compression in each

backbone. Bajo and Simaan described how to infer the location of a point of contact of the robot

and environment using the relative position of points on the robot shape [174]. The work in this
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chapter also uses measurements of multiple points along the length of the robot to provide robust-

ness to modeling errors. Shape reconstruction, the dual problem to force reconstruction, has also

been considered using PVDF deflection sensors for hyper-flexible beams [175]. Strain measure-

ments with fiber Bragg grating sensors have also been used to provide force sensing capability in

concentric tube robots and shape reconstruction in other continuum devices. [73, 71, 176].

Towards achieving intrinsic force sensing via position feedback, Rucker and Webster developed

an Extended Kalman Filter (EKF) approach for the general class of continuum robots, and provided

the specific example of applying it in simulation to a tendon-driven robot [170]. For continuum

robots whose deformation (deviation from the unloaded shape) can be modeled as a single elastica,

Mahvash and Dupont developed real-time force sensing and compliance control methods [67],

and applied them to a concentric tube robot composed of two fully overlapping tubes that did

not slide axially with respect to one another, which are together well-approximated by a single

elastica. An elliptic integral interpolation map was employed by Wei et al. to provide a real-time

estimation of applied forces on a concentric tube robot used for microstent delivery [23]. This

method leverages the fact that the exact solutions for the planar deflections of a beam can be

accurately interpolated with polynomials based on the total bending angle and the direction of

the applied load as interpolation parameters. The values of these interpolation parameters are

then found in real-time to match the observed robot tip location. Hasanzadeh and Janabi-Sharifi

demonstrated the solution of the inverse problem for applied loads on intracardiac catheters. They

used a nonlinear, discretized quasi-static model of the catheter and used the Levenberg-Marquardt

method to solve for the applied load as an unknown parameter in the model given observations of

the tip location of the catheter [177].

The methods developed in this chapter share similarities with several of these previous works

but also generalize them. In particular, the approach presented here allows for the natural in-

corporation of as many sensors as desired, allows for general three-dimensional deflections of the

robot, and accounts for uncertainty in the position measurements, the actuation, and the quasi-static

model.
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6.3 Technical Approach

6.3.1 Overview

The approach taken here combines information from the model, the measured actuator values,

a measured registration to the base of the robot, and magnetic tracker measurements along the

centerline of the robot. Except for the model equations, all other information is treated as mea-

surements with associated statistical uncertainty. A continuous-domain Kalman filter is used to

first estimate the states in a forward integration of the model equations (from the base to the tip

of the robot), and a Rauch-Tung-Striebel smoother is then used in a backwards integration of the

model equations to provide an optimal estimate of the entire state of the robot, including the inter-

nal force and moment. Since we assume a single point load at the tip of the robot, the internal force

is simply equal to the applied force by Newton’s law, and is therefore used as the final estimate.

The estimation is performed in a quasi-static sense, meaning that time-dynamics are explicitly

ignored. The underlying assumption is that both the actuation and the external loads are slowly

changing in time. Specifically, both of these changing quantities must be on a slower time scale

than the vibrational dynamics of the robot, which are unmodeled.

6.3.2 The Extended Kalman Filter Prediction

A continuous-discrete Kalman filter provides a natural framework within which to incorporate

the sensor measurements and estimate the state of the robot. A convenient formulation of the

Kalman filter allows the system state, which naturally lies on a manifold due to the presence of a

rotation element, be represented in terms of a matrix group structure.

The system state y is embedded in a matrix group. The state is split into a part yo = (σ,ψ,mz,n,m)

and a part yg = (p, q), where σi is the material arc length along the ith tube, ψi is the rotational

displacement of the tube relative to the Bishop frame, miz is the torsional moment carried by the

ith tube, p is the position of the robot centerline, q is the orientation of the Bishop frame, n is the
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internal force, and m is the internal moment. These parts then placed in a matrix as

y =



X 0

0 yg


(6.1)

where

X =



In×n yo

01×n 1


(6.2)

The dimension of the state is p = 3N + 12 where N is the number of tubes, but 3N + 13 numerical

values are used so that the rotation element q can be represented without a singularity as a quater-

nion. It is straightforward to verify that matrix multiplication results in addition for the part yo,

and multiplication (the homogeneous transformation law) on the geometry part yg.

The mechanics model propagates the state along the arc length:

y′ = y χ̂(y) (6.3)

The quantity χ̂(y) is an element of the Lie algebra, which encodes derivatives of x and g. This

matrix has the form

χ̂ =



T 0

0 ξ̂


, T =



0n×n f (y)

01×n 0


(6.4)

so that on each respective part of the state one has

∂

∂s
yg = yg ξ̂ (y)

∂

∂s
yo = f (y)

(6.5)

Define the natural mapping between R(3N+12) and the elements χ̂ as

χ =



f (y)

ξ


= [χ̂]∨ (6.6)
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and the inverse mapping is provided by



f (y)

ξ



∧

= χ̂ (6.7)

The “vee” and “hat” notation is overloaded to work for both the full state vector and for only the

geometric part. On the geometric part of the equations ξ =
[
vT ωT

] T
is the usual 6-dimensional

twist vector describing a rigid body velocity.

The extended Kalman filter propagates the mean and covariance according to a process model

with noise and discrete measurement updates. The process noise model is additive with χ̂, so that

the process is given by

y′ = y(χ̂ + n̂ χ) (6.8)

The noise term is normally distributed so that cov(n χ,n χ) = Q. Q is a symmetric matrix whose

entries depend on the nature and magnitude of the noise in each of the state equations.

The mean state µ(s) is a group element and the covariance matrix P(s) describes the uncer-

tainty in the body frame, such that a sample ỹ is drawn from the distribution through ỹ = µ exp( ẑ),

where z is independently normally distributed with covariance cov(z, z) = P. The exponential on

this product group is given by

exp( ẑ) = (zo,exp( ẑg)) (6.9)

The filter propagates these in arc length according to the differential equations

µ′ = µχ̂(µ) (6.10)

P′ = FP + PFT +Q (6.11)

where

F = Jχ − ad(χ) (6.12)
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and

ad(χ) =



0 0

0 adse3(ξ )


(6.13)

In this last equation the term ad(ξ ) is defined by

adse3(ξ ) =



ω̂ v̂

0 ω̂


(6.14)

The Jacobian matrix Jχ is the matrix of all directional derivatives of χ(y) with respect to perturba-

tions of y along the standard basis directions e1, ..., en and E1, ...E6 in the body frame convention.

In block matrix form,

Jχ =



A B

C D


(6.15)

the blocks are defined element-wise by

Ai j =
∂ fi

∂x j
, Bi j = Ẽr

j ( fi)

Ci j =
∂ξi

∂x j
, Di j = Ẽr

j (ξi)
(6.16)

Blocks B and D use the directional derivative operator

Ẽr
i ( f ) =

d
dγ

f (x, g exp(γEi))
�����γ=0

(6.17)

The basis vectors Ei = êi for i = 1 through 6, which are the standard basis elements for the Lie

algebra se(3).

6.3.3 The EKF Measurement Updates

The update step is carried out at discrete measurement locations where information is added

by sensing partial information about the state. In the case of the magnetic tracking data used in the
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experiments, the sensors measure the position p(s) and the tangent axis z(s) of the centerline of

the curve at discrete points sk on the robot. The Kalman filter update equations

Kk = P−HT
k (HkP−HT

k + Ck )−1

δµ = Kk zk

µ+ = µ−(I + δµ∧)

P+ = (I −KkHk )P−(I −KkHk )T +KkCkKT
k

(6.18)

apply at this location, with the state (µ−,P−) becoming (µ+,P+) across the discontinuity in the

solution where the sensor adds new information to the estimate. Equation (6.18) conveniently

encodes the update step for both the mechanics part of the state and the geometry part of the

state. The innovation zk is defined as the difference between the measured value and the predicted

measurement. The matrix Hk maps the body-frame state “error” δµ onto the difference in actual

and predicted measurements:

Hkδµ = zk (6.19)

For zk to be a difference in position in the spatial frame, for example, the matrix Hk must rotate the

relevant part of δµ from the body-frame representation to the spatial frame representation, yielding

for a robot with N tubes that

Hk =

[
03×(3N+6) 03×3 R(q−) 03×3

]
(6.20)

for the position sensors. For the tangent axis measurement the matrix Hk is given by

Hk =

[
03×(3N+6) 03×3 −R(q−) ê3

]
(6.21)

The matrix R(q) is the rotation matrix associated with the unit quaternion q.
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6.3.4 Smoothing and Iterating

The smoothed estimate µs and associated covariance Ps are solved for in a backwards integra-

tion step (from the tip to the base of the robot) once the posterior mean µ and covariance P are

known from solving the forward filter equations. The equations governing the smoothed estimate

and smoothed covariance are

µ′s = µs
[
χ(µs) +QP−1(s)(µ−1µs − I)∨

]

P′s = (F +QP−1)Ps + Ps (F +QP−1)T −Q
(6.22)

The continuity of the solution is guaranteed by these differential equations [178].

The smoothed estimate is then used as the force estimate and partially as a new estimate

for the unknown boundary conditions at the base of the robot. The distal boundary conditions,

b(y(L)) = 0 as a function of the state vector, act as an additional measurement on the state. This

false measurement is added to the list of measurements during the forward sweep of the Kalman

filter, and at the end of the backwards sweep the unknown initial states yu(L) have been partially

updated to the necessary values in order that the distal boundary function is approximately main-

tained. Upon solving the smoothing equations backwards, the initially unknown parts of the state

at the proximal end of the robot, namely the torsional moments mz and the internal force and

torque n and m are updated and then used as the initial condition for the subsequent forward solve.

The new configuration variables ci+1, which describe the actuator locations at the next time,

are incorporated into the state as new initial conditions at the base of the robot, and combine

with the estimated unknowns from the prior solve to form a complete initial condition for the

forward solution. Although in principle the covariance could be propagated forward in time after

each solve and the new actuation could be treated as a measurement like any other, the simpler

approach of simply resetting the covariance matrix to a fixed value for each new time step prevents

some numerical instability issues and also ensures that the filter does not "lock-on" to a fixed value

for the external loads and become too slow in its future estimations.
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6.3.5 Observability

This procedure requires a set of measurements for which the complete state is observable. How-

ever, the observability requirement is not particularly restrictive, which is easily shown through a

heuristic argument. In the absence of external forces the boundary value problem is solvable us-

ing only known information, that is without any additional measurements. If the compliance map

relating differential changes in the applied loads and the additional external sensor measurements

provides information which is linearly independent or "full-rank", the system remains observable

in the presence of external loads. In particular, a single three dimensional force can be predicted

from a single, additional three-dimensional position measurement at a point along the robot which

experiences a three-dimensional deflection under that force.

On the other hand, if the observability matrix relating changes in the sensor measurements to

changes in the system state is singular or nearly so, as would be the case for an infinitely rigid,

straight rod with an axially applied force, then the force cannot be observed from the deflection.

This implies the requirement that the robot be substantially curved, but since precurvature is the

principle which enables actuation at all in concentric tube robots, a single applied force at the robot

end-effector is observable.

6.4 Experimental Validation

6.4.1 Materials & Methods

The above framework was tested using an NDI Aurora magnetic tracking system for position-

based feedback in a three-tube concentric tube robot. The experimental setup is shown in Fig-

ure 6.3. The constrained exit point of the tubes was first registered using a point-based registration

to fiducial marks embedded in the front of the robot, providing the rigid transformation between

the tracker frame and the robot base frame. In order to ensure that this registration provides a con-

sistent initial tangent orientation for the duration of the experiment, the tube was placed through a

rigidly mounted PTFE sleeve with a slight interference fit that supports approximately 2 cm of the
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tube length.

The concentric tubes were designed as a straight segment followed by a curved segment. The

initial, unconstrained shapes of the tubes were determined by pulling a tracking coil down the

center of each tube at a rate of a few millimeters per second while it was fixed to a flat table

with a temporary adhesive. Approximately 2,500 data points were collected along the length of

each tube. These measurements were then fit with a piecewise polynomial having 20 segments

to produce a function p(s) describing the tube, parameterized by the arc length variable with

ds =
√

dx2 + dy2 + dz2, and the derivatives of the fit curve were used to compute the curvature

function for each tube according to the Bishop frame equations,

u∗ix = −(p∗i )′′(s) · y∗i (s)

u∗iy = (p∗i )′′(s) · x∗i (s)
(6.23)

where x∗i and y∗i are the vectors of the Bishop frame which satisfies the equations

∂

∂s
p∗i = R∗i e3

∂

∂s
R∗i = R∗i û

∗
i

(6.24)

with u∗i =
[
u∗ix u∗iy 0

] T
. The fit p∗i (s) was chosen by a nonlinear optimization of the piecewise

polynomial control points to minimize the mean distance from the collection of points to the spline

curve. The resulting curvature functions are shown in Figure 6.2. The largest (primary) component

of the curvature function is shown for each tube The shapes are approximately planar, making the

other non-zero curvature component close to zero. The secondary component of the curvature, not

shown in the figure, was retained for use in the model.

The remaining tube parameters such as the length and diameter are shown in Table 6.1. The

overall length of each tube was measured with a standard ruler by straightening the tube against

the ruler edge. The outer and inner diameters were provided from manufacturer’s data, and are

provided for scale. They are not needed for the model, and the directly measured stiffnesses were
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Figure 6.2: Primary tube curvatures along the local x∗i axis.

used in the experimental data analysis instead of a calculated stiffness. The bending stiffness of

each tube was characterized by a three-point bending test. Using the standard formula for the

cross-sectional second area moment, a computed value of Young’s modulus for each tube fell

within the range of 59 - 67 GPa, which is within manufacturer’s estimates for Nitinol. The only

other relevant material parameter for the mechanics model is Poisson’s ratio, or equivalently the

ratio between bending and torsional stiffness. The value 0.33 was used for Poisson’s ratio based

on manufacturer’s data.

The magnetic tracking coils were placed at two locations along the length of the robot. The

first coil was placed 7.8 mm from the distal tip, and the second coil was placed 114 mm from the

distal tip. Each coil measures the position in coordinates of the tracker’s base frame and the tangent

vector which points along the axis tangential to the robot centerline.
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Parameter Inner Middle Outer
Length [mm] 620 415 258

O.D. [mm] 1.27 1.92 2.54
I.D. [mm] 1.07 1.58 2.25

Stiffness [mN-m2/rad] 3.749 23.90 46.88

Table 6.1: The tube parameters for the force-sensing experiment.

External Load

Concentric Tube Robot

Tube Actuators

Magnetic
Field Generator

Interference Fit
PTFE Sleeve

Front Plate with
Fiducial Marks

Tracker Interface
Unit

Figure 6.3: Experimental setup for testing intrinsic force estimation

6.4.2 Calibration

The robot was driven to 20 randomly generated positions with the actuators following piece-

wise linear trajectories between the points. No load was placed on the robot. As the robot moved

through the programmed trajectory, the actuator positions were recorded at 50 Hz and the positions

of two magnetic tracking coils were recorded at 40 Hz. These two streams were post-processed to

time-align them and were then resampled to 5 Hz for analysis. This set of data was then trimmed

to remove artifacts that resulted from the resampling step.

The remaining set of 11,906 data points was then used to calibrate nuisance parameters to

achieve an optimal fit between the forward kinematic model and the recorded data in terms of
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Parameter Value
rx [rad] 0.0178881
ry [rad] 0.000376569

β1h [mm] -292.6
β2h [mm] -219.9
β3h [mm] -126.7
ψ1h [rad] -0.271
ψ2h [rad] 0.132
ψ3h [rad] 0.040
ds [mm] 106.7

Table 6.2: Calibrated parameters for the force sensing experiment

the mean absolute error between corresponding pairs of points. Parameters calibrated included

two rotational parameters in the registration corresponding to the axes in the plane of the front

of the robot, the six actuator home locations, and the distance between the tracking coils. The

rotational parameters are denoted rx and ry, the actuator home rotations by ψih and translations

by βih, and the inter-sensor distance by ds. The resulting parameters are shown in Table 6.2. The

final mean error between the open-loop forward kinematic model and the measured sensor data

was approximately 4 mm.

6.4.3 Experimental Protocol

A hanging mass of 27.1 g was suspended from the end effector of the robot while it was moved

through a preprogrammed trajectory. The robot was driven to 20 randomly generated positions

with the actuators following piecewise linear trajectories between the points. Figure 6.4 shows the

actuator paths over the course of the experiment, which lasted for a duration of 2,505 seconds. The

rotational actuation was constrained so as not to induce snapping or instability under the applied

load. During this time, the magnetic tracker was set to record the locations and orientations of two

tracking coils placed in the central lumen of the robot. After the actuator locations and tracker data

data was collected, it was processed to time-align, resample and decimate to 5 Hz.

The forward Kalman filter and backward RTS equation were programmed to use all of the

available data with varying levels of uncertainty. The initial covariance matrix (initial in arc length)
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Figure 6.4: The actuator trajectories during the force sensing experiment. The random rotational
and translational actuation was performed over 2,505 s to generate a set of continuous test config-
urations.
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is set to a constant value for each time point at the most proximal actuator location, then integrated

forward and backwards to achieve the complete estimate. The filter was set up to estimate all of

the model states, but the Kalman update equation excludes the update for σ, which is known to

a high degree of certainty from the inextensibility of the tubes. Updating σ could also cause the

unpleasant possibility of a tube ending at one arc length and then reappearing at a later arc length

due to a measurement changing the value of σi. At the end of the backwards smoother solution,

the residual value of σ1 was used to offset the actuator location for the innermost tube. This closes

the loop on tangential error and prevents mismatches between the true arc length at the first sensor

and the modeled arc length, which would produce large force estimates. The modeled distance

between the two sensors was fixed, however, for the entire estimation period.

The initial covariance matrix was set to a diagonal matrix, with blocks specified according to

each component of the state. The initial conditions, with units, were as follows:

Pσσ (β) = 1.0 × 10−6 I3×3 (m2)

Pψψ (β) = 2.7 × 10−4 I3×3 (rad2)

Pmzmz (β) = 1.0 × 10−4 I3×3 (N2m2)

Ppp(0) = 1.0 × 10−4 I3×3 (m2)

Pqq(0) = 8.1 × 10−3 I3×3 (rad2)

PN N (β) = 1.0 × 10−4 I3×3 (N2)

PM M (β) = 1.0 × 10−4 I3×3 (N2m2)

(6.25)

The arc length β is defined as the minimum arc length of any of the tubes’ grasped locations.

Note that the covariance for the states p and q is known at the front of the robot, where the

registration is measured, rather than at the actuators. To transform these to the arc length β, the
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adjoint transformation law is used [179],



Ppp(β) Ppq(β)

Pqp(β) Pqq(β)


=



R p̂R

0 R





Ppp(0) Ppq(0)

Pqp(0) Pqq(0)





R bpR

0 R



T

(6.26)

where R and p in this expression are the rotation and translation from the front of the robot to the

most proximal actuator location, typically given by R = I and p = βe3. The derivatives required

for the integration of the covariance matrix are provided in Appendix A.3. The process covariance

matrix is set to zero except for the block corresponding to the body-frame angular velocity of q

and the equation for m′z. The former covariance block was set to Qqq = 2.5 × 10−5 I3×3, and the

latter to Qmzmz = 1.0 × 10−4 I3×3.

For each measurement in time, the filter equations were applied once with a single forward

and backward integration. The initial conditions for the states σ, ψ, p, and q are specified by

measurements at s = β. The remaining states n, m, and mz are carried forward based on the solu-

tion provided by the solution of the RTS equations at the previous time step, modeling quasistatic

(slowly moving) conditions.

The Kalman filter incorporated eight separate measurements during the forward integration. At

each of the sensors a measurement was made on the position p(sk ), k = 1,2 and the tangent vector

R(sk )e3. The measurement covariance matrices for these sensors measurements were chosen to

be 1 × 10−6 I3×3 and 2.5 × 10−3 I3×3, respectively. Their units are m2 and rad2, respectively. At

the endpoint of each tube, a false measurement was made that the torsional moment miz is zero.

For the innermost tube, this measurement had covariance 1 × 10−12 N2m2, and for the outer two

tubes, the measurement had covariance 1× 10−6 N2m2. Additionally, at the distal end of the robot,

a measurement was made at each time step that no internal moment is present (it must vanish at

the end of the robot), and this measurement was simulated to have covariance 1 × 10−12 N2m2.

In addition to processing the physical data, the code was validated to function correctly by

simulating the same trajectory as was followed by the hardware. The 266 mN load was simulated

in a downward direction, and the magnetic tracking sensors were simulated without noise or bias.
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6.5 Results

The results of the software validation are shown in Figure 6.5. The state estimation system

rapidly converges to a small steady-state error, and a small amount of noise is present due to the

time-varying inputs, which are not accounted for in the quasistatic filtering system. The results

of the physical experiment are shown in Figures 6.6 through 6.8. The filter does not converge on

an estimate for the force because of the choice of a constant initial covariance matrix. The force

magnitude, shown in Figure 6.7 is estimated with error between minimum and maximum bounds

of -20% and +20% error after the initial ramp up period and before the final ramp down period.

During this central period the magnitude error has mean -2.6% and standard deviation 7.5%. The

initial and final ramp up and down are due to the fact that in the starting and ending configurations

the dead mass was resting on the surface of the tracker and therefore applied a smaller load to the

robot. The angular error, shown in Figure 6.8, in the force prediction is similarly small, with the

mean angular error of 8.6 degrees and standard deviation of 3.2 degrees.

6.6 Discussion

The technique of using state-reconstruction techniques for the estimation of the internal loads is

useful from the standpoint that only a-priori knowledge and a basic calibration are required for the

estimation procedure. This is in contrast to a data-fitting approach which uses regression models,

which would require an extremely rich data set to accomodate all of the possible loading scenarios.

The mechanics model provides rich information which would be expensive and time-consuming

to learn from a large, high-dimensional data set.

The errors present in the force prediction arise from the discrepancy between the physical robot

and the model. Although the filter maintains the estimate within reasonable bounds through the

incorporation of model uncertainty, there is an inherent tradeoff between the speed and accuracy of

the prediction and the risk of instability and filter divergence due to rapidly changing estimates on

the underlying nonlinear problem. This tradeoff is managed through the selection of the covariance
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Figure 6.5: The simulated force sensing system validates correct operation of the software.
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Figure 6.6: The estimated forces over the complete experimental trial.
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matrices, where lower model and process covariance result in greater trust in the model.

It was observed that the performance of the method is highly sensitive to the selected covariance

matrices. For example, despite the fact that the true measurement covariance on the magnetic

tracking coils is much lower than the values used for the tangent axis measurement in the Kalman

filter, it was observed that lowering this value to even half as much as the values reported caused the

estimation to diverge. This is likely due to the fact the measured values are “unlikely” according

to the model. Physically constraining a rod to pass through two points at prescribed arc lengths

and with specified tangent angles may create large forces and torques. In selecting the covariance

matrices, one must be careful to consider ways in which the model may be overly constrained by

the measurements.

There is an underlying assumption that the time-history of the robot is known when the filter

is initialized, and that the initial state of the filter is in sufficient agreement with the first set of

sensor measurements to avoid divergence of the filter in the initial steps. Because of the possibility

of bifurcation in some concentric tube robots, it may not always be sufficient to compute the

kinematics using only the known actuator values, since this could result in a solution which is

not close to the current physical state of the robot. One way to resolve this is to start the robot in a

configuration with the property that the actuator locations specify a unique configuration, such as

with all curvatures aligned in a robot with planar tube precurvatures.

The quasistatic conditions imply that the state of the system is slowly changing, thus guaran-

teeing for most time steps that the solution at the previous time step is close enough to the current

state of the robot that the linearization in the filter is a valid approximation. Due to the possibility

of snapping, even slowly changing actuation or loads can induce rapid changes in the state, which

would likely cause instability in the filter as a result of the linearization being a poor approximation

of the model. Two possibilities for resolving this are (1) to run the filter at a very high rate in time,

or (2) to alter the Kalman update equation to constrain the state update to remain within a trust

region of the linearization, and then iterating the forward and backwards integration steps multiple

times at each time step. This second option would convert the Kalman filter (EKF) into an iterated

149



extended Kalman filter (IEKF) [180]. If the filter state is allowed to drift too far from the actual

physical robot state, it may not be possible to guarantee that the filter will converge to an accurate

estimate of the physical state.

Associated with the issue of axial stiffness is the possibility of a tracking sensor being at a

different true arc length than the modeled sensor. Achieving the low angular error in the force pre-

dictions requires the estimation of a length offset for the sensor. The offset parameter is estimated

and then applied to the (modeled) value of β1 after each iteration in time to correct the modeled

sensor arc length to match. Keeping the covariance associated with this parameter small prevents

the modeled sensor location from moving too rapidly and causing instability. This approach works

well as long as the tube is not nearly straight and under an axial load, in which case a true deflection

under load could be estimated as an error in the sensor location.

As can be seen from the results, possible disadvantages of this method are the lack of conver-

gence to a constant load and relatively high noise floor. While the predictive power is adequate for

some applications like contact detection with bone during surgery, the filtering approach may not

be sufficient for applications requiring high fidelity force estimates on the order of millinewtons of

resolution. The noise floor is at about 50 millinewtons in this experiment, which is due to the fact

that the filter cannot adequately distinguish, for small external loads, the difference between open-

loop modelling error and applied loads. The only ways to resolve this would be to either make the

model more accurate or incorporate different sensors which measure information more sensitive to

the applied loads (e.g. internal material strains). The former approach could use regression-based

models to estimate and correct for the open-loop model error, and the latter approach could incor-

porate sensors such as fiber-bragg grating strain sensors. Both of these approaches are possible

areas of future work.

Another disadvantage of the spatial filter approach is that this method is computationally expen-

sive in comparison to interpolation-based approaches, and a real-time implementation is currently

challenging with general purpose processors. The covariance matrices add significant computa-

tional burden, and in particular the smoothing equation is difficult to compute due to the required
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linear system solves. One possible area of future work for accelerating the computations is paral-

lelization of the methods, which would allow computation with highly parallel graphics processing

units or field programmable gate arrays.

Finally, it should be noted that even though the Kalman filter equations are derived to be op-

timal, many of the assumptions in this derivation are violated in this particular usage. Hence, it

is not technically accurate to say that this approach is statistically optimal. The most significant

abuse is that equation (6.8) assumes the error in the model consists of only Gaussian, zero-mean

noise. In the case of this system, that assumption is not satisfied. Most of the error in the model

is due to unmodeled effects such as tube clearance, friction, and imperfect knowledge of the tube

precurvatures. These effects tend to create a bias in the model rather than noise. Because of this,

the process covariance is difficult to estimate, and in this work was simply manually selected to

achieve reasonable performance. As a result, it would probably be more correct to call this method

a state observer than a true Kalman filter. It may be possible to improve the performance through

the optimal selection of the covariance matrices, which is a possible area for future work.

6.7 Conclusions

Intrinsic force sensing and the manipulator-as-sensor paradigm provide new opportunities for

gathering force information with the addition of only position and orientation sensing. Through

the use of optimal state estimation techniques, the internal loads in concentric tube robots can be

estimated based on observed sensor measurements. A Kalman filter and optimal smoother were

demonstrated on a prototype concentric tube robot predict a constant dead load at the end effector

with mean magnitude error of only 2.7% and mean angular error of only 8.6 degrees. A noise

floor was additionally observed at 50 mN for a prototype robot. These force estimates will be

useful for future work incorporating environmental contact detection and awareness into surgical

robot platforms. Future work will focus on improvement of dynamic algorithm performance, the

incorporation of novel sensors, and improvements to the calibration procedure for mitigating the

effects of open-loop modeling error.
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Chapter 7

Future Work and Conclusions

7.1 Future Work in Hardware Design

The actuation unit design presented in this thesis builds upon the previously designed actua-

tion units and provides a solution which solves many of the problems encountered in the previous

prototypes. It uses modularity to facilitate tool exchange and at the same time to allow for a ster-

ile barrier between the patient and the robot. It also solves the problem of placing multiple tools

through the narrow opening of the nostrils. However, several design problems remain open. One

such opportunity for design advancement is the incorporation of additional sensing technologies,

such as magnetic tracking or fiber Bragg grating strain sensors, while maintaining sterility barri-

ers. The fixed endoscope in the design, which makes sense for pituitary tumor removals, would

be better replaced with a flexible robotic endoscope to match the curvilinear capabilities of the

concentric tube robots. The incorporation of a robotic stereo endoscope into a small enough pack-

age for endoscopic skull base surgery will be challenging, but would vastly improve the system

usability.

The shape setting system is currently useful for laboratory prototyping, but could be improved

upon by considering other fixture materials which do not suffer the charring and resulting slight

error in the final tube shape. One exciting area of research is the possibility for patient-customized

robot designs. In order for such a system to be practical for concentric tube robots, there is a need

for rapid and accurate shape setting. One possibility is the development of robotic shape setting

techniques using fully automated, combined heating and bending robots. Future advancements to

the algorithm which drives the shape setting system, and verification of the material properties of

the tubes after shape setting may enable rapid fabrication of customized surgical robots which can

be ordered to specifications made by automated or semi-automated designers.
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7.2 Future Work in Modeling and Analysis

The follow-the-leader analysis of Chapter 5 and the elastic stability analysis of Chapter 4 can

be extended in many different ways. The basis tenets of the analysis could be applied to other con-

tinuum robot architectures. Any continuum structure which is cantilevered will buckle, but robots

which have additional complexity stemming from flexible actuation and the associated additional

energy storage should provide opportunities for unique analyses. A complete understanding of

elastic stability becomes necessary if one wants to take continuum robots to their absolute perfor-

mance limits. Although the inherent flexibility of continuum robots has been generally presented

as an advantage, stability is one price that is paid to gain these advantages. Controllers and motion

planners which are "stability-aware" will in the future enable continuum robots to perform tasks

with significantly greater dynamic performance and with much greater loads.

When used as needles, concentric tube robots are surrounded by tissue that stabilizes the path

which was originally cut, as though there were an additional outer concentric tube. Depending on

the tissue properties, this restoring force may allow significant expansion in the set of allowable

paths that can be stably traversed by concentric tube robots, whereby an initial straight section

of the path, stabilized by the tissue, is then followed by a highly curved section. Although the

same type of trajectory could be achieved by including a stiff outer tube, having two curved tubes,

opposed in curvature and stabilized by the tissue, would enable more interesting opportunities for

steering the needle after it has been partially inserted. This is similar to the design approach of

Loser [25], but the stabilizing influence of the tissue has never been modeled or considered.

Similarly, follow-the-leader behavior is a useful strategy for traversing tortuous paths through

human anatomy or cluttered environments, and further extensions to the follow-the-leader the-

ory could provide, for example, on-line controllers that correct for follow-the-leader error during

an actuation sequence based on feedback from physical measurements. In addition, the follow-

the-leader model presented in this thesis assumes that a trajectory which is spatially invariant is

optimal. This may not be the case once inhomogeneous tissues or the cutting forces of penetrat-

ing tissue are considered. The inclusion of tissue models may reveal greater insight into optimal
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follow-the-leader strategies.

Future advancements to the model for concentric tube robots may also warrant revisiting these

analyses. The incorporation of additional model effects such as friction, non-concentricity and

non-tangency of the tubes will all have some effect on follow-the-leader behavior. The current

model, moreover, does not include the effects of the superelastic stress-strain response of Nitinol,

which may be responsible for a portion of the observed error in the kinematic model predictions.

Despite the fact that the strains encountered are often below the nominal threshold for the onset of

superelasticity, multiple calibrations have now found fitted parameter values which lie outside of

the physically realistic bounds for the ratio of bending and torsional stiffness of each component

tube.

7.3 Future Work in Intrinsic Force Sensing

The intrinsic force sensing technique and the experimental results in Chapter 6 are an initial

implementation and investigation of what might be possible with intrinsic geometry-based force

sensing. There remains much work to do in this area, and future studies will focus on improving

the quality of the predictions and on how to use the force estimates for useful purposes during

surgery.

Toward the first of these goals, the most likely means of substantial improvement in the force

estimates is probably to improve the open-loop kinematic modeling accuracy. As demonstrated

in simulation, when the filter receives input data that matches the model perfectly, the resulting

performance is quite good. Regression-based error modeling to "close-the-gap" between the me-

chanics model and the observed experimental data could provide a correction term which is learned

through observation. An alternative means to improving the estimates could be to use more sophis-

ticated filtering methods such as filters based on the unscented transform or other non-Gaussian

error models. Additional experiments are also necessary to characterize the dynamic performance

of the geometry-based force sensing for concentric tube robots. The filtering algorithm should be

improved by explicitly incorporating the known information about how the state changes through
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time, including the time-varying actuation in particular.

The second goal of using the estimates for surgeons’ benefit remains relatively uncharted terri-

tory with many opportunities for new ideas and experiments. Even if the fidelity of the estimated

forces is not high enough to provide direct feedback to a surgeon through haptics, the robot may

still be able to use this information to enforce virtual fixtures around observed critical anatomy,

detect the puncture of a suture and provide assistance, or to localize itself within the environment.

7.4 Conclusion

Chapter 2 presented the design of a new system for endonasal surgery. The major improve-

ments of this system beyond the already existing prototypes are the implementation of a sterility

barrier, the introduction of modular tools, and the ability to deliver four tools through a single nos-

tril. This chapter also presented a method for fabricating the Nitinol tubes used for concentric tube

robots by using an electrical heating method under feedback control. Several successful examples

of shape setting were demonstrated.

Chapter 3 introduced techniques for efficiently evaluating the kinematics and statics of concen-

tric tube robots. Using the already existing model, this work explored solutions to the problems

of real-time computation and computational efficiency, and showed that solution rates an order of

magnitude faster than previously reported are possible with careful implementation. The real-time

constraint is important for surgical systems, and the ability to solve the model rapidly will facili-

tate research in motion planning and computational design. A high-order runge kutta method was

shown to be accurate and efficient in solving the model equations due to its ability to take large

integration steps. Real-time implementation was achieved by conversion of the two-point bound-

ary value problem typically associated with the model differential equations into an initial value

problem that can be explicitly solved without iteration.

Chapter 4 provided an analysis of the elastic energy stored by concentric tube robots, and

showed that snapping behavior is predicted by the second variation of the stored energy functional.

Making the analogy to buckled beams resulted in a connection to the existing literature on the elas-
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tic stability of post-buckled beams, from which the tools of analysis were adapted to the concentric

tube robot model. A stability computation was introduced, based on a conjugate point condition,

that assigns a relative measure of stability to each configuration of the robot, which we believe will

be useful for future work in control and motion planning, and it was shown that the addition of a

third tube might have benefits in terms of stability over two-tube robots. A physical experiment

demonstrated the correctness of the predictions. It was also shown that the behavior can sometimes

be avoided in the configuration space when there are more than two tubes, and that three tubes can

sometimes be stably rotated through full relative rotations even when two tubes of the same design

cannot.

Chapter 5 analyzed follow-the-leader behavior in concentric tube robots, in which the shaft

of the robot stays exactly along the path traced by the tip of the robot as it elongates. This type

of behavior is useful for traversing solid tissue or constrained lumens. It was shown that perfect

behavior is only possible in a subset of designs using a strict subset of actuation, but that all circu-

larly precurved designs of two tubes can closely mimic follow-the-leader behavior with only slight

error, and some helical designs may also provide approximately correct behavior. In order to ana-

lyze “closeness” to follow-the-leader behavior, a scalar error metric was presented to measure the

deviation from the ideal behavior during a given actuation trajectory. A specific actuation sequence

in both translation and rotation was chosen for two tubes which resulted in a low follow-the-leader

error. An example application in the treatment of epilepsy was examined using these results.

Lastly, Chapter 6 examined the ability of concentric tube robots to act as force sensors. By

observing the deflection of the robot under an external load, both the magnitude and direction

of that load can in general be inferred. A spatial statistical filter was developed to estimate the

configuration of the robot from measurements of the boundary conditions and measurements of

the position at two locations along the robot. The combination of a forwards filtering integration

and a backwards smoothing integration results in a complete estimate of the state of the robot at

every point along its length. This configuration estimate in turn provides a direct estimate of the

applied load. It was experimentally demonstrated that the force on a three-tube robot undergoing
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large deflections could be inferred with a mean magnitude error of only 2.7%, and with worst case

bounds of ± 20% over widely varying tube translations and rotations.

In summary, the hardware design and shape setting method presented in Chapter 2 and the

real-time software presented in Chapter 3 together provide a complete endonasal surgical robot.

The model analysis of Chapters 4 and 5 provide the means to design concentric tube robots for tasks

requiring follow-the-leader deployment and the ability to avoid elastic instabilities. The former is

important for tasks requiring traversal of winding lumens or insertion through solid tissues, and the

latter is critical to safe operation as both a needle and a manipulator. Concentric tube robots possess

many advantageous properties as minimally invasive surgical devices, and it is my hope that this

work will be used by future researchers to continue the advancement of continuum robotics in

surgery.
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Appendix A

Model Derivation and Equations

A.1 Derivation of the Model Equations

The energy functional is given explicitly by

E[uB,ψ1, ...,ψn] =
1
2

∫ L

0

N∑
i=1

∆uT
i Ki∆ui ds (A.1)

Using the relationship that ui = RT
ψi
uB + ψ

′
i e3, and the fact that RT

z KiRz = Ki for any z-axis

rotation Rz,

E[uB,ψ1, ...,ψN ] =
1
2

∫ L

0

N∑
i=1

∆ūT
i Ki∆ūi ds (A.2)

where ∆ūi = Rψi∆ui. Expanding, ∆ūi = uB − Rψi u
∗
i + ψ

′
i e3. Then the Euler-Lagrange equations

describing the first-order necessary conditions for a stationary energy functional are

−
∂L
∂uB

= 0

∂

∂s
∂L
∂ψ′i
−
∂L
∂ψi
= 0

(A.3)

The first equation expands to become

*
,

N∑
i=1

kib+
-
uB −

N∑
i=1

kibRψi u
∗
i = 0 (A.4)

Note that the torsional term ψ′i e3 drops out because of the chain rule, which invokes the relationship

∂∆ūi

∂uB
=



1 0 0

0 1 0

0 0 0



(A.5)
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due to the two-dimensional nature of uB. Equation (A.4) is easily solved for uB.

For the second of the Euler-Lagrange equations, for the functions ψi, the second equation in

(A.3) may be expanded and the following simplifications applied:

eT
3 Ki

∂Rψi

∂ψi
u∗i = 0 u∗Ti RT

ψi
Ki
∂Rψi

∂ψi
u∗i = 0

uT
BKie3 = 0 u∗Ti RT

ψi
Kie3 = 0

(A.6)

These identities may be verified via the basic matrix arithmetic rules. After applying the simplifi-

cations, the resulting equation of motion is

(kitψ
′
i )
′ − uT

BKi
∂Rψi

∂ψi
u∗i = 0 (A.7)

A.2 Derivation of Generalized Forces

In order to incorporate external loads, the generalized forces associated with these loads must

be found and placed on the right hand side of the appropriate Euler-Lagrange equations. In this

section a derivation is performed for the case of an applied force at the tip of the robot, Ftip. This

derivation is carried out using vector calculus methods, and in this section most vector quantities

represent physical vectors rather than coordinates, so that, for example uB = uBxxB+uBy yB instead

of uB =

[
uBx uBy 0

] T
. Equations in which symbols denote coordinate vectors are noted.

The virtual work associated with the tip force is

δW = Ftip · δp(L) (A.8)

where δp(L) is the virtual (vector) displacement at the tip of the robot. In order to express the

Euler-Lagrange equations the generalized force Qu must be found for which

δW =
∫ L

0
Qu · δru

b
B ds (A.9)
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The variation δruB is a “coordinate variation” of uB, defined as

δruB = δuBxxB + δuBy yB (A.10)

This is distinguished from the vector variation δuB, which must also include the variation of the

frame vectors xB and yB.

By the commutativity of the δ process with integration and differentiation,

δp(L) =
∫ L

0
δp′(s) ds =

∫ L

0
δzB (s) ds (A.11)

Since zB is constrained to be a unit vector, the variation δzB must be orthogonal to zB, and the

variation is parameterized by the angular variation δω of the frame, such that

δxB = δω × xB

δyB = δω × yB

δzB = δω × zB

(A.12)

The variation δω is not independent of δuB; there can only be one variation δzB, yet both of

the former variations influence the latter. The relationship between δω and δuB is derived from

the requirement that (δzB)′ = δ(z′B).

(δω × zB)′ = δ(uB × zB) (A.13)

After expanding, substituting, and applying the Jacobi rule,

δω × (uB × zB) = −uB × (zB × δω) − zB × (δω × uB)

one finds that

(δω′ + (δω × uB) − δuB) × zB = 0 (A.14)
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After noting that analogous equations must hold for the other frame vectors xB and yB, the con-

clusion is that the term in parentheses is identically zero, i.e.

δω′ = δuB − (δω × uB) (A.15)

Re-writing the principle of virtual work,

δW = Ftip ·

∫ L

0
δω × zB ds =

∫ L

0
(zB × Ftip) · δω ds (A.16)

Define the function m, up to a constant, such that

m′ = −zB × Ftip (A.17)

Then,

δW =
∫ L

0
−m′ · δω ds (A.18)

Integrating by parts,

δW = − [m · δω]L
0 +

∫ L

0
m · δω′ ds (A.19)

Expanding δω′ using the constraint of equation (A.15),

δW = − [m · δω]L
0 +

∫ L

0
m · (δuB − δω × uB) ds (A.20)

The vector variation δuB is re-written in terms of the coordinate variation and the variation of

the frame vectors. This relationship is provided by the transport theorem

δuB = δruB + δω × uB (A.21)
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Plugging in, the terms δω × uB cancel, and

δW = − [m · δω]L
0 +

∫ L

0
m · δruB ds (A.22)

The generalized force along δruB is found as Qu = m. The natural boundary condition on m is

m(L) = 0 since δω is unconstrained at this point. At s = 0, δω = 0 as a result of the boundary

condition on RB (0).

The equation for the curvature uB, expressed in the notation of coordinate vectors, is

− *
,

N∑
i=1

kib+
-
uB +

N∑
i=1

kibRψi u
∗
i = (RTm)1:2 (A.23)

where it is assumed that m is represented by coordinates in the inertial frame, so that RTm rotates

these coordinates into the body frame. The subscript (1 : 2) denotes that only the components of

m along x and y are applied to this equation. This is a result of the fact that δuBz = 0.

A.3 Expressions for State Equations and Derivatives

In this appendix, all of the quantities needed to compute the state equations and the nonzero

blocks of [∂ξ/∂y] are listed. They have been placed in matrix-vector form where possible for ease

of converting to a computer program and for efficiency of implementation. Note that [·]xy means

either the top 2 rows, the left two columns or the upper-left 2 × 2 block, depending on context.

The curvature vector uB has been compressed from 3D to 2D. The nonzero terms of the matrix

∂ξi/∂y j are given in the following equations.

∂ξψ

∂σ
= diag

(
∂cit (σi)
∂σi

)
diag

(
mz

) ∂ξψ

∂mz
= Ct (A.24)

∂ξmz

∂σ
=
∂T

∂σ

∂ξmz

∂ψ
=
∂T

∂ψ

∂ξmz

∂m
=
∂T

∂m
(A.25)
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∂ξmz

∂q
=
∂T

∂q
(A.26)

∂ξq

∂σ
=
∂uB

∂σ

∂ξq

∂ψ
=
∂uB

∂ψ

∂ξq

∂m
=
∂uB

∂m
(A.27)

∂ξm

∂n
= −

(
p′

) ∧
= −(qe3q

−1)∧ (A.28)

∂ξm

∂q
=

[
−n̂qe2q

−1 n̂qe1q
−1 03×1

]
(A.29)

kb =

[
k1b(σ1) ... kNb(σN )

] T
(A.30)

Kb = diag(kb) (A.31)

F =
[
F1 ... FN

]
Fi = Rz (ψi)u∗i (σi) (A.32)

G =
[
G1 ... GN

]
Gi = Rz (ψi)

∂u∗i (σi)
∂σi

(A.33)

T (y) = KbFT SuB (σ,ψ,mb
xy) (A.34)

Kb,σ = diag
(
∂kib(σi)
∂σi

)
(A.35)
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∂T

∂σ
=Kb,σdiag(FT SuB) +Kbdiag

(
GT SuB

)
+KbFT S

∂uB

∂σ

(A.36)

∂T

∂ψ
= Kbdiag

(
FTuB

)
+KbFT S

∂uB

∂ψ
(A.37)

∂T

∂m
= −KbMT ∂uB

∂m
(A.38)

∂T

∂q
= KbFT S

∂uB

∂q
(A.39)

ktot =

N∑
i=1

kib(σi)
∂ktot

∂σ
=

[
∂k1b

∂σ1
...

∂kNb

∂σN

]
(A.40)

uB (y) =
1

ktot

(
FkB +

[
q−1mq

]
xy

)
(A.41)

∂uB

∂σ
= −

1
ktot

uB
∂ktot

∂σ
+

1
ktot

FKb,σ +
1

ktot
GKb (A.42)

∂uB

∂ψ
=

1
ktot

MKb (A.43)

∂uB

∂m
=

1
ktot

[
RT (q)

]
xy

(A.44)

∂uB

∂q
=

1
ktot

[
(RT (q)m)∧

]
xy

(A.45)
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Rz (ψ) =



cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)


(A.46)

S =



0 −1

1 0


(A.47)

R(q) =
[
qe1q

−1 qe2q
−1 qe3q

−1
]

(A.48)

A.4 Derivation of the Jacobian Equations

Define Ji as the ith column of the Jacobian matrix. In order to derive the equation governing

the Jacobian matrix, we make use of the facts that the state can be embedded in a matrix group and

that flows along the fields f = yξ and hi = yJi must commute. Therefore,

∂

∂s
(yJi) −

∂

∂ci

(
yξ

)
= 0 (A.49)

Using the product rule to expand the partial derivative with respect to ci and multiplying by y−1 on

the left,
∂

∂s
Ji = Jiξ − ξ Ji +

∂

∂ci ξ (A.50)

Noting the commutator,
∂

∂s
Ji = −adξ Ji +

∂

∂ci ξ (A.51)

Now, using the directional derivative operator Ẽr
k , we compute the partial of ξ with respect to ci,

yielding
∂

∂s
Ji = −adξ Ji +

N∑
k=1

Ẽr
k (ξ )Ji

k (A.52)

187



Appendix B

The Second Variation

In the calculus of variations, it is well known that Euler’s equation is a necessary but not

sufficient condition for a minimum, and it is equivalent to the first variation functional being equal

to zero,

δE[h] =
∫
D

[Fxh + Fx ′h
′] dσ = 0

for all admissible variations h for which x0 + h satisfies the boundary conditions of the problem.

The quantities Fx and Fx ′ are evaluated along the extremal curve x0 for which Euler’s equation is

satisfied. The expression Fxh is interpreted as a row vector multiplied by a column vector.

It is also well known that for x0 to be a weak minimum of the energy functional, the second

variation δ2E[h] must be strictly positive for all nonzero admissible variations h. The second

variation is given by

δ2E[h] =
1
2

∫
D

(Fxxh,h) + 2(Fxx ′h
′,h) + (Fx ′x ′h

′,h′) dσ (B.1)

where Fxx , Fxx ′, and Fx ′x ′ are the matrices of second partial derivatives, evaluated as before along

the extremal curve x0, and the parentheses denote the scalar product (a,b) =
∑

aibi.

For the problems generated by the concentric tube robot problem, we have that the mixed

partial derivatives Fxx ′ = 0. An integration by parts reveals that (B.1) is equivalent to

δ2E[h] = 〈Sh,h〉 =

∫
D

(Sh,h) dσ (B.2)

which is an inner product on the underlying Hilbert space of admissible variations. Then, the

spectral theorem for self-adjoint operators on Hilbert spaces shows that the second variation is
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strictly positive only when all eigenvalues of the second variation operator S, defined by

Sh = −
(
Fx ′x ′h

′) ′ + Fxxh ,

are positive.1 It is a prerequisite for the condition δ2E[h] > 0 to be transformed into the condition

on the eigenvalues of S that the eigenvectors of S form a complete orthonormal set for the underly-

ing Hilbert space. For the operators generated by the concentric tube robot model, the eigenvectors

of S do form such a basis, as guaranteed by Theorem 1 of Dwyer and Zettl, which says that S is

a self-adjoint operator [153]. The eigenvalue equation Sψ = ρψ is a Sturm-Liouville eigenvalue

problem, which has a countably infinite number of orthonormal eigenvectors with eigenvalues that

are all real and bounded below. Because there are an infinite number of eigenvalues, a direct

computation will not suffice for a feasible numerical test of stability.

Fortunately, continuous changes in Fxx , Fx ′x ′ and the endpoints of the interval D cause contin-

uous changes in the spectrum of S [181]. The basic idea for a numerical test is the following: if

one can show that S has positive eigenvalues on some shortened domain which is a subset J ⊂ D,

then the endpoints of J can be continuously varied to the endpoints of D while watching for zero-

crossings in the eigenvalues of S [150]. If S has a zero eigenvalue for some choice of J, then

we have an equation Sh = 0 on that domain with boundary conditions on h also satisfied at the

endpoints of J.

If the problem has Dirichlet boundary conditions, it is well known that stability is determined

by looking for conjugate points [154], and the conjugate point formulation and the eigenvalue

characterization have been shown to be equivalent [150, 182]. For concentric tube robots, the

boundary conditions are not Dirichlet, and therefore the conjugate point condition must be modi-

fied. We must first verify that all eigenvalues of S are positive when the operator is taken to act

on a shorter domain. For concentric tube robots, this means a shorter robot. Second, we look

for conjugate points, which occur when Sh = 0 is solved for an admissible variation h, which is

1A technical note is that admissible variations are only those such that each component of (Fx′x′h
′)′ is absolutely

continuous. For the concentric tube robot kinematics, h represents a variation in the rotational angles of the tubes, the
variation in moment is differentiable and has a continuous derivative.
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precisely when S has an eigenvalue at zero. This two-part modification is explained in detail by

Hoffman et al. [149].

We are no longer guaranteed that a conjugate point results in an increase in the number of

negative eigenvalues [150], because the Neumann boundary condition, in general, prevents the

eigenvalues from being strictly decreasing functions the domain length. Nevertheless, we can still

conclude that the absence of a conjugate point implies positive eigenvalues, making it a sufficient

condition.
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Appendix C

Proofs

C.1 Proof Of Result 1

We define the family of related eigenvalue problems

Sφ = ρφ, φ(β) = 0, φ′(a) = 0 (C.1.1)

for the variable endpoint a, with β < a ≤ 1. It is known that the eigenvalues ρi, i = 1,2, ...,

move continuously with respect to continuous changes in a [150, 181]. The basic idea of the test

is that if there is a small enough a where all eigenvalues are positive, then for an eigenvalue of the

problem (C.1.1), with a = 1, to be negative, it must cross zero as a varies between β and 1. This

condition can be checked with a simple test.

To look for an eigenvalue at zero in any of the related problems (C.1.1), we assume that zero is

an eigenvalue, with eigenvector h, by setting Sh = 0, i.e. we set −h′′ + λ cos(θ)h = 0. It follows

that there exists a length σ for which Sh = 0, h(β) = 0, and h′(σ) = 0. Since we do not know

σ, we begin at the proximal boundary, where we know that h(β) = 0. Because S is linear, the

eigenvectors have arbitrary scale, so that if h is an eigenvector, h′(β) may be arbitrarily chosen

by scaling (h must be non-trivial). We choose h′(β) = 1, and integrate the differential equation

forward. In doing this, we have enforced both the differential form and the proximal boundary of

the entire family of operators (C.1.1). If the distal boundary condition h′(σ) = 0 is not satisfied for

any σ, then zero is not an eigenvalue for any of the operators of the family (C.1.1), contradicting

the assumption of an eigenvalue at zero.

Since zero is not an eigenvalue for any of the problems, and if the problem has no negative

eigenvalues for a sufficiently small value of a, it is not possible that the boundary value problem

on the whole interval has a negative eigenvalue by continuity of the spectrum with changes in the
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interval endpoint a.

To see that no eigenvalues are negative for small a, note that S can be decomposed into S = T +

Q, with T h = −h′′ and Qh = λ cos(θ)h. As a becomes smaller, it is known that the eigenvalues of

T become larger. The operator Q can be seen as a perturbation of T , and when the eigenvalues of

T are made sufficiently large by choosing a sufficiently small, the perturbation Q, being bounded

in magnitude, is incapable of moving an eigenvalue negative. The argument of this paragraph is

made rigorously by Hoffman and Manning in [149].

C.2 Proof Of Result 2

We begin by showing that the eigenvalues of the problem are positive when the boundary

conditions at L are moved to be close to the boundary conditions at β. Here the allowable variation

hi belongs to the space Di ([βi,ai]) = { f , (kit f ′) ∈ AC([βi,ai]) : f (βi) = 0, (kit f ′)(ai) = 0}, and

the collection h belongs to the Cartesian product D(S) = D1 × ... × Dn. Consider the eigenvalue

problem in which ai = βi + ε for some small ε . Then, we still have the decomposition of S as

in the proof of Theorem 1 as S = T + Q. The operator T acts diagonally on the hi, and so the

eigenvalues γ of T h = γh may be found as the eigenvalues of n independent problems. The

eigenvalues are positive and the smallest eigenvalue can be made arbitrarily large by the choice of

ε . Consider the extension of hi to the whole interval [β,L], where it must be that h(β) = h(βi) and

h′(L) = h′(βi + Li) since the two-point extension of (1.18) simulates the tubes as having infinite

torsional stiffness and zero bending stiffness in the regions [β, βi] and [βi + Li,L]. The operator

Q is identically the zero operator over the interval [β, βmax] due to the restriction of equation (4.2)

and the form of Fψψ . The extended domain of the operator will be called D[β,L](S). We will refer

to h as the extension, since any solution on the domain D(S) can be extended to a solution on

the domain D[β,L](S). The eigenvalues of S do not change during the extension to the left when

all βi are moved to the left to β. The eigenvalues may change as all ai which are less than βmax

are increased to βmax , but all remain strictly greater than zero since the equations are decoupled

and still of the form T h = γh. Finally, the eigenvalues may change by a bounded amount as the
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ai are increased to βmax + ε , but by choice of ε we can guarantee that this change will not cause

the eigenvalues to become negative. Thus, there is some domain for which the eigenvalues are all

positive. As ai are then increased together, ai = a → L, if an eigenvalue crosses zero we have a

sub-problem on the interval [β,a] for which Sh = 0 has a non-trivial solution h, which is to say

that there is a choice of constants c with c , 0 so that H22(a)c = 0, and therefore h(s) = H12c is

an eigenvector with eigenvalue zero. If, on the other hand, we do not have det H22(a) = 0 for any

a, then it must be that if zero is not an eigenvalue of Sh = 0 on any interval [β,a], and since the

spectrum changes continuously with a, det H22 > 0 on the whole interval thus guarantees that S

has only positive eigenvalues on the whole domain [β,L].

The proof tacitly assumes that the eigenvalues move continuously with changes in the endpoint

of the interval on which S is defined, which is known to be true for the scalar Sturm-Liouville

problem [181]. It is reasonable to assume this remains true for the matrix problem due to the fact

that the resolvent operators of S on different domains with “close” endpoints are close in precise

sense. For a discussion of resolvent convergence in the context of Sturm-Liouville problems, see

for example [183].

C.3 Proof of Corollary 4

The stability metrics are determined by behavior of solutions to an ODE of the following form

H′ =



0 D

F 0


H, (C.3.1)

where H ∈ R2n×2n, D ∈ Rn×n, with D = DT , and F ∈ Rn×n, with F = FT . To analyze this system,

we partition the matrix H into four equal size blocks

H =



H11 H12

H21 H22


(C.3.2)
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We have two solutions to this equation, A and B, with the initial conditions A(0) = I and B(1) = I.

We aim to prove that det A11(1) = det B22(0). Because of the full-rank initial condition A(0) = I,

we may form the state transition matrix Φ(t, s) = A(t)A−1(s). Then, we have the following

solutions:
A(1) = Φ(1,0)A(0)

B(0) = Φ(0,1)B(1)
(C.3.3)

Examining B(0) more closely, we find that due to the initial conditions,

B(0) = A−1(1). (C.3.4)

Consider the block form of A−1, as

A−1 =



Ã11 Ã12

Ã21 Ã22


. (C.3.5)

Then, we have that B22(0) = Ã22. We form the differential equation on A−1, as

(A−1)′ = −A−1



0 D

F 0


AA−1 = −A−1



0 D

F 0


(C.3.6)

Now, due to the symmetry of D and F we consider the transpose of this equation,



ÃT
11 ÃT

21

ÃT
12 ÃT

22



′

= −



0 F

D 0





ÃT
11 ÃT

21

ÃT
12 ÃT

22


(C.3.7)

Thus we see that
(ÃT

22)′ = −DÃT
21

(ÃT
21)′ = −FÃT

22

(C.3.8)
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with initial conditions ÃT
22(0) = I and ÃT

21(0) = 0 due to the initial condition A(0) = I. Now, note

that the differential equations which govern A11 are

A′11 = DA21

A′21 = FA11

(C.3.9)

with initial conditions A11(0) = I and A21(0) = 0. A change of variables on equation (C.3.8)

which lets V = −ÃT
21 so that the negative signs become flipped in (C.3.8), yields exactly the same

system on ÃT
22 as on A11, and so we have by the existence and uniqueness theorems on IVPs that

A11(1) = ÃT
22(1). Finally, we have that

B22(0) = AT
11(1) (C.3.10)

and thus we are guaranteed that det B22(0) = det A11(1), as was to be proven.
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