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CHAPTER I 

 

INTRODUCTION 

 

 What types of instructional practices maximize student learning? In typical 

classrooms, students spend much of their classroom time practicing math skills (Hiebert, 

Givvin, Garnier, & Hollingsworth, 2005). Is having students work through practice 

problems an effective use of their time? Or rather, would scaffolding practice with a 

conceptually-oriented learning activity that pushes them to reflect on what they do and do 

not understand be better? Prior research suggests that a conceptually oriented learning 

activity, such as self-explanation, improves learning through focusing the learner’s 

attention on attempting to understand the underlying concepts, but it has not been 

simultaneously contrasted with a group of students who received the same amount of 

practice and group who received the same amount of study time.  In the introduction, the 

potential learning benefits of self-explanation and practice within mathematics will be 

discussed, and then compared. This study investigated the differential learning benefits of 

these two uses of instructional time with the aim of elucidating the roles of self-

explanation, amount of practice, and study time in learning.  

 

Conceptually Oriented Learning Activity: Self-Explanation 

 

One conceptually oriented learning activity that has intuitive appeal and empirical 

backing is prompting students to generate explanations to themselves, referred to as self-
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explanation. Self-explanation can be defined as generating explanations to oneself that 

contain information that is not directly given in the learning materials in an attempt to 

make sense of new information (Berthold, Eysink, & Renkl, 2009; Chi, 2000; Rittle-

Johnson, 2006). The self-explanation effect was initially discovered while observing 

students learning physics by studying worked examples. The students who learned most 

spontaneously generated more and higher quality self-explanations, or statements that 

refined, expanded, or related the underlying principle to the problem at hand. The amount 

and quality of these statements were correlated with learning gains (Chi, Bassok, Lewis, 

Reimann, & Glaser, 1989; Renkl, 1997). This finding inspired many studies that 

investigated self-explanation as a causal learning mechanism, in which people are 

prompted to self-explain correct materials. This effect has now been demonstrated across 

many domains, such as reading, electrical engineering, and biology, and in wide-ranging 

age groups, from 4-year-olds to adults (Ainsworth & Loizou, 2003; Calin-Jageman & 

Ratner, 2005; Mayer & Johnson, 2010; McNamara, 2004; Rittle-Johnson, Saylor, & 

Swygert, 2008). Prompting students to self-explain encourages them to make their 

knowledge explicit (Chi, Leeuw, Chiu, & Lavancher, 1994). 

The act of explaining while making sense of new information is thought to 

increase understanding through a variety of mechanisms, and is generally thought to 

facilitate the integration of new and existing knowledge. Although prompting students to 

self-explain can be thought of as a conceptually-oriented activity, it can benefit both 

conceptual and procedural knowledge. Conceptual knowledge can be defined as an 

understanding of principles governing a domain and the interrelations between units of 

knowledge (Bisanz & LeFevre, 1992; Greeno, Riley, & Gelman, 1984; Rittle-Johnson, 
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Siegler, & Alibali, 2001). Self-explanation is thought to benefit conceptual knowledge by 

focusing the learner’s attention onto attempting to identify the relevant aspects of a 

domain and its underlying concepts and principles. Specifically, self-explanation helps 

students continuously update and correct their mental models of the domain and its 

principles (Chi et al., 1994), facilitates the construction of inference rules that are used in 

the formation of general principles and proceduralized into usable skills (Chi et al., 

1989), and fosters generalization (Lombrozo, 2006). Self-explanation is thought to 

support the creation of novel goal structures that allow for generalization (Crowley & 

Siegler, 1999). Prompts to self-explain often encourage the learner to verbalize, and thus 

make explicit, their knowledge of concepts that govern the domain. As such, both 

implicit and explicit conceptual knowledge should be enhanced.  

Self-explanation can also improve procedural knowledge, or action sequences for 

solving problems (Anderson, 1993; Rittle-Johnson & Alibali, 1999). The act of self-

explaining is thought to broaden the range of problems to which children accurately 

apply correct procedures, and promote invention of new procedures (Lombrozo, 2006; 

Seigler, 2002; Rittle-Johnson, 2006). Conceptual and procedural knowledge help each 

other grow, and developing and linking conceptual and procedural knowledge is 

important for competence in mathematics (Hiebert, 1986; Rittle-Johnson & Alibali, 1999; 

Rittle-Johnson, Siegler, & Alibali, 2001).  

Specifically within problem solving domains, self-explanation has been 

demonstrated to have positive effects. When self-explaining, students are often asked to 

study worked examples (e.g., the problem solving steps of a probability problem) (Große 

& Renkl, 2004), and then cite a principle or otherwise explain why each step in the 
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worked example is correct. Specifically within mathematics, self-explanation has 

sometimes been shown to increase conceptual and procedural knowledge, as well as 

transfer of knowledge to novel tasks, compared to solving the same number of problems 

without explaining (e.g., Rittle-Johnson, 2006; Atkinson, Renkl, & Merrill, 2003; Hilbert, 

Renkl, Kessler, Reiss, 2008).  

The conceptually oriented activity of prompting students to self-explain can 

benefit student learning. However, self-explanation requires a significant amount of time 

compared to working through the practice problems alone (Matthews & Rittle-Johnson, 

2009). Additionally, self-explanation can be difficult for a teacher to administer on a 

whole-class basis. Therefore, it is important to consider if self-explanation is more 

effective than having students work through practice problems, a classroom activity that 

is easier to implement. 

 

Practice 

 

The practice and repetition of solving problems has long been upheld as a very 

practical route to learning, and might indeed be an efficient path to proficiency. There are 

two broad possibilities for why practice can increase learning (Jonides, 2004). First, 

practice could allow the learner to acquire greater skill at applying an initial problem 

solving strategy. Second, practice could allow the learner to acquire a new and more 

efficient strategy. 

The first possibility has a wealth of supporting evidence. In regard to math 

learning in children, it has been said “practice is important because it can serve to make 
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the use of rules, principles, and thinking strategies, as well as specific facts, automatic” 

(Baroody, 1987). Research in basic cognitive processes arrived at the same general 

conclusions. Practice results in the reorganization or restructuring of specific action 

sequences (Anderson, 1982; 1983; 1987; Rosenbloom & Newell, 1987), and increases the 

speed of these processes (Frensch & Geary, 1993). Practice on a narrow set of problems 

also automatizes the mental processes that underlie the problem solving procedure 

(Logan, 1990; Shiffrin & Schneider, 1977), thus reducing the load on working memory 

that serves as a single work-space for carrying out cognitive processes (Anderson, 1982; 

1983; 1987; Rosenbloom & Newell, 1987). Durable, long-term memory traces of the 

acquired skill are formed with practice (Chi, Glaser, & Farr, 1988; Ericsson, Krampe, & 

Tesch-Romer, 1993). Practice also strengthens correct strategy application, and weakens 

incorrect strategies (Siegler, 2002). 

Practice could also serve to help the learner discover a new problem-solving 

strategy. As a learner works through more practice problems, they have time to discover 

and test out new, possibly more efficient, problem solving strategies (Lemaire & Siegler, 

1995; Siegler & Jenkins, 1989; Siegler & Stern, 1998). New strategies are often not 

immediately discovered but instead require an accumulation of experience to uncover. 

Indeed, high levels of practice are often necessary for the discovery of correct procedures 

(Brunstein, Betts, & Anderson, 2009). Even once a correct strategy is used for the first 

time, it is not used consistently until much later (Siegler & Jenkins, 1989). For example, 

when practicing complex arithmetic, learners modified their strategies and eventually 

settled on a stable problem solving routine (Cary & Carlson, 1999). These new strategies 

may facilitate generalization to new problem types (Rittle-Johnson, 2006). Thus, having 
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the time to work through multiple practice problems is important for new strategy 

discovery and use. 

 

Comparing Practice and Self-Explanation Prompts 

 

Which learning activity is the best use of instructional time? Evidence from the 

self-explanation literature informs this question. A common approach for investigating 

the effects of self-explanation is to have two conditions work through the same number of 

practice problems. Both conditions solve the problems, but the self-explain condition 

spends additional time responding to explanation prompts. In studies with this design, 

there is evidence for a benefit of self-explanation (Calin-Jageman & Ratner, 2005; Pine & 

Messer, 2000; Rittle-Johnson, 2006; Siegler, 1995; 2002; Wong, Lawson, & Keeves, 

2002).  However, in these studies the self-explain condition had the double benefit of 

more time thinking about the material overall and of explaining, relative to the practice-

only condition. Indeed, the amount of time on task has been shown to be a very reliable 

and powerful predictor of learning (Helmke & Renkl, 1992; Logan, 1990; Renkl, 1997), 

and thus one must attend to this when trying to determine the cause of learning. 

Another way to investigate the comparative benefits of practicing versus 

prompting for self-explanations is to give both conditions the same amount of study time. 

There are still important differences between these conditions; namely that the control 

condition now has more practice problems to work through. There are only two studies 

on math learning with this design, and the results are mixed. When this design was used 

in a study on mathematical equivalence with elementary school students, there was no 



7  
 

apparent benefit of self-explanation compared to students who practiced twice as many 

problems (Matthews & Rittle-Johnson, 2009). However, this study provided all students 

with conceptual instruction, which the researchers believed may have lessened the benefit 

of the explanation prompts. Another study did find a benefit of self-explanation with high 

school students learning geometry (Aleven & Koedinger, 2002). These students were 

asked to complete geometry proofs and provide a principle justifying each step of their 

proof. Importantly, the students were given feedback on the quality of their explanations 

and could not move along in the sequence until they gave a correct explanation. This 

feedback on explanation quality is uncommon in the self-explanation literature. In this 

case, the students who self-explained had improved transfer abilities compared to the 

control students, even though the self-explain students solved significantly fewer 

problems. Given the differences in these two studies, no definitive conclusions about the 

relative merits of practice and prompting for explanations can be drawn.  

When solving the same number of problems, prompting for self-explanations was 

shown to be beneficial, however the self-explain condition had more study time. When 

both conditions have the same amount of study time, but the self-explain condition works 

through fewer problems, the results are mixed. Is it really the act of explaining that 

increases learning? Or, if given a comparable amount of time for practice, can the student 

come to the same level of proficiency on his or her own? In order to carefully evaluate 

these questions, the current study investigated the benefits of self-explanation while 

controlling for the amount of time and number of practice problems.  
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The Target Domain 

 

We examined the benefits of self-explanation in the domain of mathematical 

equivalence. Mathematical equivalence is a foundational concept that links arithmetic to 

algebra (Baroody & Ginsburg, 1983; Carpenter, Franke, & Levi, 2003; Kieran, 1981; 

Knuth, Stephens, McNeil, & Alibali, 2006; MacGregor & Stacey, 1997).  Mathematical 

equivalence problems (i.e. 3 + 5 + 6 = __ + 6) tap the idea that the amount on both sides 

of an equation are equal. Correctly solving problems such as these is challenging for 

elementary school children (Alibali, 1999; Carpenter et al., 2003; Perry, 1991; Perry, 

Church, & Goldin-Meadow, 1988; Rittle-Johnson, 2006), and many studies demonstrate 

that children have difficulties with the concept of mathematical equivalence (Alibali, 

1999; Behr, 1980; Cobb, 1987; Falkner, Levi, & Carpenter, 1999; Jacobs, Franke, 

Carpenter, Levi, & Battey, 2007; Li, Ding, Capraro, & Capraro, 2008; McNeil, 2007; 

Perry, 1991; Powell & Fuchs, 2010; Rittle-Johnson, 2006; Rittle-Johnson & Alibali, 

1999; Weaver, 1973). These difficulties stem in part from the fact that most students 

initially view the equal sign operationally, as a command to do the calculation on the left 

and place the answer to the right of the equal sign (Baroody & Ginsburg, 1983; McNeil 

& Alibali, 2005). They do not understand that the equal sign is really a relational symbol, 

denoting that the expressions or quantities on both sides of the equation are equivalent or 

of the same value (Baroody & Ginsburg, 1983; Behr, 1980; Carpenter et al., 2003; 

McNeil & Alibali, 2005). Indeed, the operational view of the equal sign can impede the 

development of the correct relational view (Kieran, 1981; McNeil & Alibali, 2005). This 

conceptual misunderstanding interferes with related procedural skills. When solving open 
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equation problems (i.e. 3 + 5 + 6 = __ + 6), students with the operational view exhibit use 

of specific incorrect strategies. A common naïve incorrect strategy is to add the numbers 

before the equal sign while completely disregarding the addend on the right side of the 

equation (Matthews & Rittle-Johnson, 2009). Not only is having a relational 

understanding of equivalence necessary for correct problem solving, it is foundational for 

later algebraic reasoning (Jacobs et al., 2007; Kieran, 1992; Knuth et al. 2006; National 

Research Council, 1998; Steinberg, Sleeman, & Ktorza, 1991). Overcoming the 

operational view and adopting a relational view of equivalence was the goal of the 

current intervention. Also, this domain provides a proven learning domain for more 

rigorously testing the efficacy of self-explanation as a learning activity: self-explanation 

paired with procedural instruction has been shown to be beneficial for procedural 

knowledge within mathematical equivalence when the control condition solves the same 

number of problems (Rittle-Johnson, 2006; Siegler, 2002).  

 

Current Study 

 

 In the current study we evaluated the effects of prompting students to self-

explanation relative to students who received the same amount of practice and those who 

received twice as many practice prompts to approximate the same amount of time on 

task. When considered against comparable practice and comparable time on task, does 

self-explanation have a unique benefit for learning? This question was evaluated with 

three conditions. The Control condition received six practice problems, and no self-

explanation prompts. The Self-Explain condition also received six practice problems, but 
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was prompted to self-explain on each problem. The Additional-Practice condition 

received twelve practice problems, which has been determined to take the same amount 

of time as self-explaining with six problems (Matthews & Rittle-Johnson, 2009). The 

effect of condition was evaluated in terms of explicit and implicit conceptual knowledge, 

procedural learning and procedural transfer.  

We hypothesized that (1) self-explanation prompts would focus the learner on 

verbalizing the principle of mathematic equality and broaden the range of problems initial 

strategies can be applied to. This will result in greater conceptual knowledge, as well as 

greater procedural knowledge than the control condition. (2) Additional practice 

problems would allow the learner to strengthen their initial problem solving strategy and 

allow for the discovery of new strategies, resulting in greater procedural knowledge than 

the control condition. (3) self-explanation would be more beneficial for learning than 

additional practice because conceptual knowledge would be greater and procedural 

transfer would be facilitated. 
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CHAPTER II   

 

METHOD 

 

Participants  

The current study was conducted with students in second, third and fourth grade 

classes from two urban parochial schools serving similar middle-class, predominantly 

Caucasian populations. Consent to participate was obtained from 167 students and their 

parents. A pretest was administered on a whole-class basis, and students who did not 

already have a sufficient ability to solve math equivalence problems were selected to 

participate. Pretests were scored quickly, as to allow for intervention work to begin 

immediately. This initial pretest score of less than 85% correct overall identified the 108 

children who participated in the instructional intervention. These students were randomly 

assigned to an intervention condition. After a more detailed pretest scoring, students who 

had a score of less than 80% correct on each of the conceptual and procedural knowledge 

measures were ultimately included, resulting in a sample of 80 students. Of these, 5 

students were dropped. Three students’ intervention sessions were interrupted by 

unexpected school activities, one student received extra math tutoring and we were asked 

by the school to exclude that student, and one student was accidentally run through the 

intervention twice. 75 students were included in the final sample, which included 35 

second graders (16 girls and 19 boys), 28 third graders (17 girls and 11 boys), and 16 

fourth graders (6 girls and 10 boys). The average age was 8.79 years (range 7.44 – 
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10.69).  Teachers reported that the students had encountered math equivalence problems 

before, but not frequently. The intervention took place during the spring semester.  

 

Table 1. Number of students in each condition by grade 

 

 Grade  

 2nd 3rd 4th Total 

Control 11 7 2 20 

Self-Explain 8 9 5 22 

Additional Practice 16 12 5 33 

Total 35 28 12 75 

 

Design 

 

 Participating students completed a pretest, an intervention, an immediate posttest, and 

a two-week retention test. Students were randomly assigned to one of three conditions: 

the Control condition (n=20), the Self-Explain condition (n=22), and the Additional-

Practice condition (n=33) (see Table 1). During the intervention, students were provided 

procedural instruction on two mathematical equivalence problems and then worked 

through either six or twelve practice problems on their own. Students in the Control 

condition worked through six practice problems, students in the Self-Explain condition 

also worked through six practice problems, but were prompted to self-explain, and 

students in the Additional-Practice condition worked through 12 practice problems. 

Answer feedback was given on all problems, and self-explain students were prompted to 

explain why example solutions of the problem they just solved were correct or incorrect. 
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Materials 

 

Intervention 

The intervention was conducted one-on-one using a computer interface designed 

using EPrime software (Psychology Software Tools, 2007). During the intervention, 

problems were presented on a computer screen. The program recorded the students’ 

responses and amount of time they spent on each part of the intervention. Students were 

also video- and audio-recorded using the computer’s built-in camera, and the current 

screen was captured concurrently. An additional audio recorder was used as well. 

 

Assessments 

The pre-, post- and retention tests were paper and pencil tests that were completed 

individually. The assessments used in this study were developed in previous 

measurement development projects (Matthews, Rittle-Johnson, McEldoon, & Taylor, 

under review; Rittle-Johnson, Matthews, Taylor, & McEldoon, 2011). These assessments 

have been developed to target an elementary student’s understanding of mathematical 

equivalence and have been tested for validity and reliability (Rittle-Johnson et al., 2011). 

One version was used as the pretest, and an isomorphic version was used as the post and 

retention tests.  The assessments were broken down into a conceptual knowledge section 

that focused on the meaning of the equal sign and allowable equation structures, and a 

procedural knowledge section that focused on solving equations with missing addends. 

The conceptual knowledge section had two components. One focused on explicit 
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conceptual knowledge, namely on the meaning of the equal sign. This section contained 6 

items, and included questions such as “What does the equal sign (=) mean? Can it mean 

anything else?” and asked students to define the equal sign in various contexts (See Table 

2). The implicit conceptual knowledge section tested students on their knowledge of 

allowable equation structures. This section contained 11 items, such as judging equations 

(i.e. 8=8; 5 + 3 = 3 + 5) as true or false (5 items), explaining how they know equations of 

various structures are true or false (2 items), reconstructing equations from memory after 

a delay (3 items), and one filler item to ensure they were attending to the assessment (see 

Table 3). The memory items were administered by the researcher proctoring the 

assessment. Students were shown an equation in a non-traditional format (i.e. 5 + 2 = _ + 

3) for five seconds, and were then asked to write it down exactly as they had seen it. 

Students are more able to encode equations into their memory if they already have 

schemas for those structures as allowable and familiar formats, and these items measured 

this capacity (Larkin, McDermott, Simon, & Simon, 1980; McNeil & Alibali, 2004; 

Rittle-Johnson et al., 2011).  
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Table 2. Explicit Conceptual Knowledge Assessment Items and Scoring Criteria 

 

Explicit Conceptual Knowledge Items 

Pre, Post, & Retention Scoring Criteria 

What does the equal sign (=) mean? Can it mean 
anything else? 

1 point if defined relationally at any 
time - keyword “same” in either 
spot (e.g. "same on both sides") 

Which of these pairs of numbers is equal to 6 + 4? : 
5+5, 4+10, 1+2, none of the above 1 point if selects '5+5' 

Which answer choice below would you put in the 
empty box to show that five cents is the same amount 

of money as one nickel? : 5 cents, =, +, don't know 
1 point if selects '=' 

Is "The equal sign means the same as" a good 
definition of the equal sign? Circle good or not good. 1 point if selects 'good' 

Which of the definitions above is the best definition of 
the equal sign? The equal sign means the same as, The 

equal sign means add, or The equal sign means the 
answer to the problem. 

1 point is selects 'The equal sign 
means the same as' 

In this statement: 1 dollar = 100 pennies, What does 
this equal sign mean? 

1point if defined relationally at any 
time - keyword “same”  
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Table 3. Implicit Conceptual Knowledge Assessment Items and Scoring Criteria 

 

Implicit Conceptual Knowledge Items 

Judgment Items Memory Items 

Pretest Post & Retention Scoring Criteria Pretest Post & Retention Scoring Criteria 

8 = 8 3 = 3 1 point if 'true' 5 + 2 = __ + 3 6 + 3 = __ + 2 If student puts numerals, 
operators, equal sign, 
and blank in correct 
respective positions; 1 
point for each problem. 
Based on the coding of 
McNeil & Alibali 
(2004). 

7 + 6 = 0 5 + 3 = 8 Filler __ + 5 = 5 + 8 + 7 __ + 7 = 3 + 5 + 7 

5 + 3 = 3 + 5 31 + 16 = 16 + 31 1 point if 'true' 5 + 4 + 8 = 5+ __ 4 + 3 + 9 = 4 + __ 

8 = 5 + 10 5 + 5 = 5 + 6 1 point if 'false' Judge & Explain 

3 + 1 = 1 + 1 + 2 7 + 6 = 6 + 6 + 1 1 point if 'true' Pretest Post & Retention Scoring Criteria 

4 = 4 + 0 6 = 6 + 0 1 point if 'true' 8 = 5 + 3        T/F? 
How do you know? 

7 = 3 + 4        T/F? 
How do you know? 

If student judges as 
'true', and notes that both 
sides have the same sum 
or same value, or that 
inverse is true; 1 point 
for each problem       4 + 1 = 2 +3  T/F? 

How do you know? 
6 + 4 = 5 + 5  T/F? 
How do you know? 

 

 

The procedural knowledge section contained 12 items; 4 easy filler items that 

were included to motivate the student and ensure they were attending to the assessment, 

and 8 learning and transfer items (See Table 4). Learning items that had the same 

equation structure as those in the intervention (i.e. 3 + 4 + 5 = __ + 5) (4 at pretest and 3 

at post and retention test), and transfer items had an equation structure unlike the 

intervention items that included subtraction or had the missing addend on the left (i.e. 8 + 

__ = 8 + 6 + 4; 6 - 4 + 3 = __ + 3) (4 at pretest and 5 at post and retention test). The 

learning items could be solved using the procedure learned during the intervention, but 

the transfer items required applying or adapting the procedures learned during the 
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intervention- a standard measure of transfer (Atkinson et al., 2003; Chen & Klahr, 1999). 

Students were asked to show their work on these problems, so their problem solving 

strategy use could later be coded.  

 

Table 4. Procedural Knowledge Assessment Items 

 

Procedural Knowledge Items 
 Pretest  Post & Retention 
Item Equation Classification Equation Classification 
1 __ + 5 = 9 Filler 4 + __ = 8 Filler 
2 7 = __ + 3 Filler 8 = 6 + __  Filler 
3 5 + __ = 6 + 2 Learning 3 + 4 = __ + 5 Learning 
4 3 + 6 = 8 + __ Learning 7 + 6 + 4 = 7 + __ Learning 
5 4 + 5 + 8 = __ + 8 Learning __ + 2 = 6 + 4 Transfer 
6 __ + 6 = 8 + 5 + 6 Transfer 8 + __ = 8 + 6 + 4 Transfer 
7 8 + 5 - 3 = 8 + __ Transfer 6 - 4 + 3 = __ + 3 Transfer 
8 5 - 2 + 4 = __ + 4 Transfer 5 + 6 - 3 = 5 + __ Transfer 
9 13 = n + 5 Filler 10 = z + 6 Filler 
10 y + 6 = 5 + 5 Filler y + 4 = 8 + 2 Filler 
11 6 + 3 + 2 = __ + 2 Learning 3 + 6 + 5 = __ + 5 Learning 
12 7 + 9 - 4 = 7 + __ Transfer 2 + 8 - 4 = 2 + __ Transfer 

 

Far transfer was assessed at retention test with eight items intended to tap a higher 

level of conceptual thinking (e.g., “17 + 12 = 29 is true. Is 17 + 12 + 8 = 29 + 8 true or 

false? How do you know?”). However, performance on the far transfer items was quite 

low, and no differences were found across conditions, so this subscale was not considered 

in further analyses. 
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Procedure 

 

Pretests were administered on a whole class basis and took 30 minutes to 

complete. Eligible children participated in a one-on-one intervention session with an 

experimenter within a few weeks after the pretest. The intervention session lasted about 

50 minutes, and consisted of procedural instruction, intervention problem solving, and an 

immediate post-test.  The retention test was then administered on average 2 weeks after 

the intervention session on a whole class basis, and took about 30 minutes.  

Instruction. At the beginning of the intervention, all students received procedural 

instruction on how to solve repeated addend problems. This was chosen because prior 

research has demonstrated a benefit of self-explaining in conjunction with procedural 

instruction (Rittle-Johnson, 2006). Students were shown two repeated addend problems, 

both with the blank in the final position (i.e. 3+4+6=6+__), and were taught an add-

subtract procedure (Matthews & Rittle-Johnson, 2009; Perry, 1991; Rittle-Johnson, 

2006). The experimenter described the procedure, and then asked the student to find the 

missing addend using the following procedure: “There are many ways to solve a problem 

like this, but one way you could solve it is to add up the 3, the 4, and the 6 on this side of 

the equal sign (gesture around the left side of the equation), and then subtract the 6 over 

here on the other side of the equal sign (gesture to the 6 on the right), and then that 

amount goes in this blank here. Now see if you can solve this problem using that 

strategy.” Once the student provided an answer, they were asked to report how they 

solved the problem (a strategy report prompt) and were then provided accuracy feedback 
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on the value of the missing addend. The experimenter led each student through two 

instruction problems.   

 

Intervention Problems 

All intervention problems were standard mathematical equivalence problems with 

a repeated addend on both sides of the equation, and the position of the blank alternated 

between the first or last addend on the right hand side of the equation (i.e. 3+4+6=6+__; 

or 3+4+6=__+6) (See Table 5). These were adapted from Matthews & Rittle-Johnson 

(2009), and have been used in several studies on this topic (i.e. Perry et al., 1988). The 

students were presented with either six or twelve of these repeated addend problems. 

Scratch paper was provided for the students to use if they wished. They were asked to 

quietly determine what number belonged in the blank, and to type their answer directly 

onto the computer. Their answer was displayed in the blank. Students were asked to 

verbally report how they determined their answer (strategy report). Once they reported 

their strategy, the correct answer was displayed on the screen below the original problem 

and the student’s answer, and accuracy feedback was given (“You’re right/Actually, 7 

was the right answer”). In the Control and Additional-Practice conditions, the student 

then proceeded directly on to the next practice problem. Students in the self-explain 

condition were given an explanation prompt after each intervention problem. 
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Table 5. Intervention Items 

 

Intervention Items 
Item Equation Condition 
1 6 + 3 + 4 = 6 + __ All 
2 3 + 4 + 8 = __ + 8 All 
3 5  + 3 + 9 = 5 + __ All 
4 9 + 7 + 6 = __ + 6 All 
5 9 + 3 + 5 = 9+ __ All 
6 7 + 8 + 5 = __ + 5 All 
7 2  + 5 + 9 = 2 + __ Add'l Practice 
8 3 + 7 + 8 = __ + 8 Add'l Practice 
9 6 + 3 + 9 = 6+ __ Add'l Practice 
10 8 + 3 + 7 = __ + 7 Add'l Practice 
11 4 + 5 + 3 = 4 + __ Add'l Practice 
12 6 + 7 + 3 = __ + 3 Add'l Practice 

 

Self-Explanation Prompts 

 In the Self-Explain condition, after each practice problem, students were presented 

with two examples of the same problem they just solved, one with a correct answer, and 

another with an incorrect answer. They were told that these were answers from students 

at another school. “I showed this problem to students at another school. Allison came up 

with 7, which is the correct answer, and Jenny came up with 13, which is an incorrect 

answer.” Order of presentation of the correct and incorrect example alternated between 

problems. Both correct and incorrect examples were displayed simultaneously on the 

screen.  

The students were then prompted to consider the strategies and reasoning behind 

each example. “How do you think Allison got 7, which is the correct answer? Why do you 

know that 7 is the right answer? How do you think Jenny came up with 13, which is a 

wrong answer? Why do you know that 13 is a wrong answer?” The How questions were 

designed to have students report the strategy by which they think the hypothetical 
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students solved the problems. Students often gave replies such as, “He added the 3 and 

the 4 and the 6 and got 13.” The Why questions were self-explanation prompts. The goals 

of these prompts were for the students to consider the conceptual basis for why an answer 

was correct or not; and ideally, the equivalent nature of both sides of the equation. 

Students often gave answers such as “It’s the correct answer because he subtracted the 

6.” A high quality, or conceptually-based explanation would appeal to the idea that both 

sides are equal, such as “because I know that 3+4+6 is 13, and then 7+6 is 13”. Once 

students replied to all four of these correct and incorrect How and Why prompts, they 

moved on to solve the next intervention problem. 

 

Intervention Completion 

 The amount of time it took each student to solve a problem, report their strategy, 

and self-explain each problem was recorded. After the students completed the 

intervention problems, they completed a backward digit span task to measure their 

working memory capacity, as a metric for general processing ability. The students then 

completed an immediate posttest. A retention test was administered on a whole class 

basis on an average of two weeks after all students in a particular class completed the 

intervention session.  
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Coding 

 

Assessments 

Conceptual knowledge. The students’ explicit and implicit conceptual knowledge 

was measured by their performance on items that concerned the meaning of the equal 

sign and allowable structures for equations. The six items in the explicit conceptual 

knowledge section were scored as correct or incorrect. See Table 2 for details. The 

implicit conceptual knowledge section contained 10 scored items that were scored as 

either correct or incorrect. See Table 3 for details. Internal consistency, as assessed by 

Cronbach’s alpha, was good at both pretest (α = .701) and posttest (α=.769). 

Procedural knowledge. Procedural knowledge was measured in the assessment 

and during the intervention as the students’ ability to use a correct problem solving 

strategy to solve open equation items. Based on their written work, students’ problem 

solving strategies were inferred and classified as either a correct strategy, an incorrect 

strategy, or that the item was unattempted. See Table 9. Correct strategies include 

Equalizer (determine the values on both sides of the equation, and determine the value 

needed to make them equal), Add-Subtract (add all the numbers on the left side of the 

equation and then subtract the value on the right), Grouping (in problems with repeated 

addends, ignore the repeated value and sum the other two to determine the value of the 

missing addend), or they could have determined the correct answer but had an Incomplete 

Procedure (describe some operations but not enough to classify) or had Insufficient work. 

Incorrect strategies include Add All (add all numbers in the problem and place the sum in 
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the blank), Add to Equal (add all the numbers up to the equal sign and place that sum in 

the blank), or used an Other Incorrect strategy.   

Students could be given a correct problem solving strategy code even if they did 

not come up with the computationally correct answer. This coding is in line with prior 

research studies in this domain (Matthews & Rittle-Johnson, 2009; McNeil & Alibali, 

2004). Accuracy measured by correct strategy use and by computational accuracy are 

highly correlated (R=0.95). See Table 9 for coding scheme details. Internal consistency, 

as assessed by Cronbach’s alpha, was good at both pretest (α = .672) and posttest 

(α=.821). 

 

Intervention 

Practice problems. Verbal strategy reports from the intervention problems were 

coded for problem solving strategy use, in the same way as the written procedural 

knowledge assessment items.  

Explanations. In the intervention session in the Self-Explain condition, students’ 

verbal explanations were coded for explanation quality. See Table 12 for coding scheme 

and student performance data. 

 

Reliability 

A primary coder coded all student work. An independent coder coded 20% of all 

student work. Kappa coefficients for interrater agreement were determined for 

assessments at all time points (see Table 6). 
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Table 6. Reliability Kappa Coefficients 

 

Reliability Kappa Coefficients 
Assessment Pretest Posttest Retention 
 Conceptual    
  Structure 0.827 0.867 0.912 
  Equal Sign 1.000 1.000 1.000 
  Procedural 0.856 0.909 0.933 
  Far Transfer   0.970 
Intervention 
 Strategies 0.725   
 Explanations    
  How Right 0.936   
  Why Right 0.687   

    Why Wrong 0.877     
 

Missing Data 

 

Our retention test was administered on a whole class basis, and five students were 

absent for the retention test. One of the absent students was in second grade, and the other 

4 were in third grade. Two of the students were in the Additional-Practice condition, 2 

were in the Control condition, and 1 of the students was in Self-Explain condition. The 

absent students had a range of assessment scores and did not differ from the other 

students on the pretest, so we could presume they were missing at random. Their missing 

data were replaced using a multiple imputation technique; because multiple imputation 

leads to more precise and unbiased conclusions than does case-wise deletion (Peugh & 

Enders, 2004; Schafer & Graham, 2002). We used the expectation-maximization (EM) 

algorithm for Maximum Likelihood Estimation via the missing value analysis module of 

SPSS, as recommended by Schafer and Graham (2002). The children’s missing scores 

were estimated from all non-missing values on continuous variables that were included in 
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the analyses presented below. Analyses using a case-wise deletion approach yielded the 

same pattern of findings.  

 

Data Analysis 

 

 The hypotheses are tested in the following analyses by using and ANOVA model 

with three planned comparisons. The effect of additional practice is determined by 

comparing Additional-Practice to Control, the effect of explaining with the same amount 

of practice and more time is determined by comparing Self-Explain to Control, and the 

better use of additional time on task is evaluated by comparing Additional-Practice to 

Self-Explain. 
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CHAPTER III   

 

RESULTS 

 

We first discuss students’ performance on the pretest. We follow this with a report 

of the effects of condition on students’ posttest and retention test performance, as well as 

specific strategy use. Finally, we explore how condition affected performance on 

intervention activities, including the quality of students’ explanations, and how this 

related to performance on the assessments. 

 

Pretest Knowledge 

 

There were no initial differences between conditions in grade (M=2.7, SD=.73), 

age at pretest (M= 8.8, SD=.80), or backwards digit span (M=4.6, SD=1.3). There were 

also no differences in their IOWA standardized national percentile rank scores in math 

(M=57.23, SD=24.44) or reading (M=61.40, SD=23.87).  

The conditions were also similar in pretest scores. Means and standard deviations 

are listed in Table 7. There were no significant differences in conceptual knowledge 

overall or in explicit conceptual knowledge. However, the Additional-Practice condition 

had significantly higher implicit conceptual knowledge scores than the Self-Explain 

condition, F(1,71)=4.21, p=0.044, ηp
2 =0.056. There were no differences on procedural 

learning items, but there were differences on procedural transfer items. The Additional-

Practice condition performed better than the Self-Explain condition, F(1,71)=7.854, 
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p=.007, ηp
2 =0.10. Differences in pretest scores were addressed in later analyses by 

having pretest score entered as a covariate.  

 

Assessment Performance 

 

To analyze differences between conditions on the post and retention test scores, a 

series of repeated measures ANCOVAs were performed, with the pretest measure of the 

respective outcome variable and backwards digit span entered as covariates. The 

covariates were used to control for prior knowledge and general ability differences. 

Planned contrasts were conducted to find specific differences between the Self-

Explanation and Control conditions, Additional-Practice and Control conditions, and 

Self-Explain and Additional-Practice conditions. Tables present raw means and standard 

deviations unless otherwise noted, and the graphs in Figures 1-4 present post and 

retention test marginal means and standard error bars. Details of each analysis including 

the F value, significance level, and effect size are presented in Table 8.  
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Table 7. Assessment Component Scores by Condition. Raw mean percentage correct and 
standard deviations shown. 
 
 

Assessment 
Component 

Time Control Self-
Explanation 

Additional 
Practice 

Mean SD Mean SD Mean SD 

Conceptual 
Knowledge 

Pretest 38.3 21.7 36.6 17.7 43.4 20.4 
Posttest 45.0 23.6 55.1 22.5 47.8 20.4 
Retention 47.2 25.9 55.0 25.0 54.5 19.8 

 Explicit-  
Equal Sign 

Pretest 35.8 29.8 39.4 27.0 35.9 24.0 
Posttest 50.0 32.4 47.7 30.1 44.9 29.3 
Retention 50.9 30.5 49.2 28.1 50.0 31.3 

 Implicit- 
Structure 

Pretest 39.6 22.4 35.2 21.5 47.2 23.9 
Posttest 42.5 23.1 58.7 22.9 49.2 23.5 
Retention 45.4 26.5 57.9 27.9 56.7 21.9 

Procedural Knowledge 
 Learning Items 

  Correct 
Strategy Use 

Pretest 27.1 28.4 33 35.7 26.5 28.6 
Posttest 48.3 38.2 56.1 41.6 67.7 32.8 
Retention 38.5 38.4 57.6 42.7 58.5 42.7 

 Transfer Items 

  Correct 
Strategy Use 

Pretest 12.4 15.1 21.6 23.5 30.3 27.8 
Posttest 37 32 52.7 39.3 46.1 37.2 
Retention 43.5 37.2 60.8 32.5 49 37.8 

 

Table 8. Assessment Performance by Condition using Planned Comparisons. Significant 
differences between conditions noted, as determined via ANCOVAs with backward digit 
span and the measure at pretest used as covariates.  
 
 

Assessment 
Component 

DFs Additional Practice 
vs Control 

Self-Explain vs 
Control 

Self-Explain vs 
Additional Practice 

 F p ηp
2 F p ηp

2 F p ηp
2 

Conceptual 
Knowledge 1,70 0.244 0.623 0.004 6.343 0.014* 0.089 5.272 0.025* 0.075 

 Explicit-  
Equal Sign 1,65 0.085 0.771 0.001 0.218 0.642 0.003 0.049 0.825 0.001 

 Implicit- 
Structure 1,65 1.081 0.302 0.016 14.06 0.000* 0.178 9.301 0.003* 0.125 

Procedural Knowledge 
 Learning Items 
  Correct 

Strategy Use 1,70 4.607 0.035* 0.062 1.324 0.254 0.019 0.838 0.363 0.012 

  Incorrect 
Strategy Use 1,70 4.443 0.039* 0.060 2.285 0.135 0.032 0.241 0.625 0.003 

 Transfer Items 
  Correct 

Strategy Use 
1,70 0.080 0.777 0.001 2.207 0.142 0.031 1.858 0.177 0.026 

  Incorrect 
Strategy Use 1,70 0.016 0.900 0.000 2.931 0.091 0.040 3.974 0.050* 0.054 
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Effect of Condition on Conceptual Knowledge 

Students in the Self-Explain condition generally had higher conceptual knowledge 

scores than students in the other two conditions. The conceptual knowledge part of the 

assessment included two sections. The explicit conceptual knowledge section focused on 

the meaning of the equal sign, and the implicit conceptual knowledge section focused on 

knowledge of equation structures.  

 

 

 

Figure 1. Conceptual Knowledge percent correct scores by condition. Posttest and 
retention test marginal means and standard errors shown, with covariates of pretest 
conceptual knowledge score and backward digit span included.  
 

When considering conceptual knowledge overall, although the Self-Explain 

condition outperformed both the Control condition and the Additional-Practice condition 

a little (see Figure 1), differences between conditions were not significant. 

The conceptual knowledge section had two sections, one on the explicit 

knowledge of the meaning of the equal sign, and one on implicit knowledge of 
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equivalence as evidenced by student knowledge of different equation structures. There 

were no differences between conditions on the measure of explicit conceptual knowledge.  

 

 
 
Figure 2. Implicit Conceptual Knowledge percent correct scores by condition. Posttest 
and retention test marginal means and standard errors shown, with covariates of pretest 
implicit conceptual knowledge score and backward digit span included. 
 

The implicit conceptual knowledge section had significant differences between 

conditions (see Figure 2). The Self-Explain condition outperformed the Control and 

Additional-Practice conditions, and there was no difference between the Control and 

Addition-Practice conditions, see Table 8 for details. Follow-up analyses indicated the 

difference between Self-Explanation and the other conditions was due in part to the Self-

Explanation condition marginally outperforming the Additional-Practice condition on the 

memory items, F(1,65)=3.45, p=.068, ηp
2 =.050, and outperforming the Control 

Condition on equation structure judgment items, F(1,65)=7.36, p=.009, ηp
2 =.102.  

To summarize, conceptual knowledge was greatest overall in students who were 

prompted to self-explain their reasoning, relative to students who had the same problem 

solving experience but were not prompted to explain (Control), and students who had 
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twice as much problem solving experience (Additional Practice). This advantage was 

found within implicit, but not explicit, conceptual knowledge.  

 

Effect of Condition on Procedural Knowledge 

The procedural knowledge items can be broken down into learning items (3) that 

were similar in equation structure to the intervention items, and transfer items (5) that had 

a novel equation structure. The following analyses will explore differences in procedural 

accuracy, as measured by correct strategy use between conditions on learning and 

transfer items. Follow-up analyses explored differences in incorrect strategy use, 

unattempted items, and use of specific strategies.  

 

Procedural Learning. Correct strategy use on learning items was highest in the 

Additional-Practice condition, followed by the Self-Explain and then the Control 

conditions. There was a significant difference between the Additional-Practice and 

Control conditions, but Self-Explain didn’t differ from either (see Table 8 and Figure 3). 

Follow-up analyses indicated that the Additional-Practice condition also used fewer 

incorrect strategies than the Control condition. There were no differences in unattempted 

procedural learning items between conditions.  
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Figure 3. Procedural Learning percent correct strategy use by condition. Posttest and 
retention test marginal means and standard errors shown, with covariates of pretest 
procedural learning score and backward digit span included. 
 

Procedural Transfer. Mean correct strategy use on procedural transfer items was highest 

in the Self-Explain condition, although there were no statistically significant differences 

between conditions.  Follow-up analyses indicated that the Self-Explain condition used 

fewer incorrect strategies than the Additional-Practice condition  and marginally fewer 

than the Control condition, F(1,70)=3.974, p=.050, ηp
2 =.054 and F(1,70)=2.931, p=.091, 

ηp
2 =.04, respectively. There were no significant differences in the amount of 

unattempted transfer items.  
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Figure 4. Procedural Transfer percent correct strategy use by condition. Posttest and 
retention test marginal means and standard errors shown, with covariates of pretest 
procedural transfer score and backward digit span included. 

 

Specific Strategy Use 

There were no differences between conditions in use of any specific strategy at 

pretest. The most common strategy was the Add-to-Equal strategy, being used on average 

on 47% of the items. This is a common mathematical equivalence misconception that 

elementary children have (McNeil & Alibali, 2005). Pretest use of the Add-Subtract 

strategy was very low (3%), but after they were taught to use this strategy, use increased 

to 65% during the intervention. Table 9 outlines all the different correct and incorrect 

strategies coded for, an example of student work using that strategy, and the raw means 

and standard deviations of percent strategy use at all time points. Significant differences 

in strategy use by condition are denoted by asterisks on the respective time point.  
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Table 9. Overall Strategy Use. Average percent strategy use and standard deviations. 
Significant and marginal differences between conditions noted, as determined via 
ANCOVAs with strategy use at pretest as a covariate.  

 

Strategy Example for 
3 + 4 + 8 = _ + 8 

Time Control Self-
Explain 

Add'l 
Practice 

Correct Strategies 
Equalizer 3+4 is 7, 7+8 is 15, and 7+8 is also 

15 
 

Pretest 5.3  (9.6) 5.7  (13.2) 8.7  (15.5) 
Intervention 4.2  (7.4) 12.1  (25.8) 7.6  (13.1) 
Posttest 4.4  (14.8) 12.5  (29.1) 12.5  (27.1) 
Retention 14.6  (27.5) 17.9  (33.2) 23.4  (36.8) 

Add-
Subtract 

I did 8+4+3 equals 15, and subtract 8 Pretest 1.3  (5.7) 4  (14.1) 3.4  (9.5) 
Intervention 68.3  (31.9) 64.4  (36.1) 64.1  (36.4) 
Posttest 16.3  (23.7) 22.2  (32.7) 24.2  (27.6) 
Retention 6.9  (24) 21.4  (32.1) 16.5  (30) 

Grouping I took out the 8s and I added 3+4 Pretest 0  (0) 0.6  (2.7) 0.4  (2.2) 
Intervention 5  (15.4) 0.8  (3.6) 4  (10.2) 
Posttest* 3.1  (14) 0.6  (2.7) 0.4  (2.2) 
Retention* 5.6  (15.6) 0  (0) 0.8  (3.1) 

Incomplete 
Procedure 

I added 7 plus 8 (gave correct 
answer) 

Pretest 0.7  (2.9) 1.1  (5.3) 0.4  (2.2) 
Intervention 3.3  (11.6) 0.8  (3.6) 0.8  (2.4) 
Posttest 1.3  (5.6) 1.1  (5.3) 0  (0) 
Retention 0  (0) 0.6  (2.7) 0  (0) 

Insufficient 
Work 

I used my fingers Pretest 11.2  (14.4) 15.9  (22.2) 15.5  (17.4) 
Intervention 10  (21.9) 7.6  (21.7) 3.8  (6.9) 
Posttest 16.3  (21.5) 17.6  (21) 17  (26.3) 
Retention 14.6  (18.8) 21.4  (27.1) 12.5  (18.5) 

Incorrect Strategies 
Add All I added 8 and 3 and 4 and 8 together Pretest 5.9  (20.1) 10.2  (21.4) 9.1  (21.5) 

Intervention 1.7  (5.1) 4.5  (9.2) 3  (5.8) 
Posttest* 12.5  (26.9) 8  (16.6) 4.2  (11.1) 
Retention 8.3  (23.5) 12.5  (26.2) 4.8  (16) 

Add to 
Equal 

I just added 3+4+8 Pretest 46.7  (23.9) 45.5  (33.5) 47  (26.7) 
Intervention 5  (9.5) 3  (6.6) 6.1  (11.7) 
Posttest* 30.6  (20.9) 22.2  (25.6) 29.5  (27.7) 
Retention* 35.4  (31.6) 15.5  (18.1) 33.1  (32.4) 

Other 
Incorrect 

I just added 8 to 3 Pretest 10.5  (14) 9.7  (20.7) 4.9  (9.3) 
Intervention 0.8  (3.7) 6.1  (17.5) 5.1  (9.1) 
Posttest 3.1  (5.6) 5.7  (10) 8.3  (14.2) 
Retention 7.6  (15.5) 3  (5.5) 4  (9.3) 

Blank  Pretest 18.4  (25.5) 7.4  (22) 10.6  (18.5) 
Posttest 12.5  (21.1) 10.2  (23) 3.8  (9.1) 
Retention 6.9  (14.4) 7.7  (17.4) 4.8  (12.8) 

 
 

Specific problem solving strategy use at the three assessment times and during the 

intervention session was examined. ANCOVAs for strategy use at intervention, post-test, 

and retention test, with pretest strategy use as a covariate were performed. Backward 
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digit span was not included as a covariate in these exploratory analyses so that 

differences in raw strategy use could be considered.  

Follow-up analyses that examined differences in specific strategy use revealed 

some differences between conditions. The Self-Explain condition used the common and 

incorrect Add-to-Equal strategy significantly less overall than the Control and the 

Additional Practice conditions, F=(1,65)=4.30, p=.04, ηp
2 =.09 and F=(1,65)= 4.09, 

p=.05, ηp
2 =.059, respectively. As this is a prevalent naïve strategy, the dampening of this 

strategy was important. The Control condition used the correct Grouping strategy 

significantly more than the Self-Explain condition, F=(1,65)= 4.42, p=.04, ηp
2 =.064, 

although actual frequency of use was very low. 

There were no differences between conditions in using the Add-Subtract strategy. 

This was not surprising given that this was the strategy demonstrated during the 

procedural instruction. Student use of this Add-Subtract strategy was related to students’ 

implicit conceptual knowledge scores. Use of the Add-Subtract strategy during the 

intervention was related to implicit conceptual knowledge scores at posttest (R=.286, 

p=.02). Add-Subtract use during the retention test was also related to post and retention 

test implicit conceptual knowledge scores (R=.358, p=.003; R=.240, p=.053).  

 

Assessment Results Summary 

To summarize, there was an advantage of the Additional-Practice condition 

relative to Control condition on procedural learning items, in terms of more correct and 

less incorrect strategy use. There were no differences between the Additional-Practice 

and Self-Explain conditions on the learning items. On procedural transfer items, there 
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was a small advantage for the Self-Explain condition relative to Additional-Practice 

condition, as they used incorrect strategies less often. The Self-Explain condition had the 

greatest mean procedural transfer accuracy, although this was not a significant difference. 

They did, however, use the fewest incorrect strategies. The Self-Explain condition also 

used the prevalent incorrect strategy Add-to-Equal strategy significantly less than the 

Control and Additional Practice conditions. At pretest, the Additional-Practice condition 

had significantly higher transfer performance than the Self-Explain condition, and this 

may potentially be contributing to the non-significant findings.  

 

Effect of Condition on Intervention Activities 

 

To explore reasons for differences in assessment performance by condition, 

intervention problem solving performance is examined. As expected, the Control 

condition took less time to complete the intervention practice problems (M=6.7 minutes, 

SD=2), and the Self-Explain (M=14.1 minutes, SD=4.75) and Additional-Practice 

(M=11.7minutes, SD=4.8) conditions indeed took additional time. Despite efforts to keep 

intervention time equal, students in the Self-Explain condition took significantly more 

time to complete the intervention than students in the Additional-Practice condition, 

F(1,71)=4.825, p=0.031, ηp
2 = 0.064.  

There were no differences in accuracy on intervention problems between 

conditions, both when considering average intervention accuracy across all solved 

problems and when considering performance on only the first six items that students in 

all conditions completed. The average intervention accuracy was 73% correct (SD= 
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27%).  The students in the Additional-Practice condition did improve slightly on the 

second six intervention items, with accuracy increasing from 67.7% to 78.3%, t(32)= -

1.923, p(two-tailed)=.063. Their accuracy quickly stabilized on these additional items.  

 

Intervention Strategy Repertoire 

To explore the students’ strategy use during intervention, we examined the 

number of different correct and incorrect strategies students’ used (see Table 10). It is 

important to keep in mind that students in the Additional-Practice condition solved 

twelve intervention problems while the other conditions only solved six. The results were 

broken down into total counts, as well as counts for the first six intervention items and 

the second six intervention items. 

Students used about 2 different strategies (M=2.3, SD= 1.3), regardless of 

condition.  Thus, students in the Additional-Practice condition, who solved twice as many 

practice problems, did not use a wider range of strategies than the other two conditions. 

However, these students did use significantly fewer different strategies on the second six 

items than on the first six items. The number of total different strategies dropped from 2.3 

to 1.7 (t(32)=2.89, p(two-tailed)=.007), and the number of different correct strategies 

dropped from 1.7 to 1.3 (t(32)=2.27, p(two-tailed)=.03). There was no difference in the 

number of different incorrect strategies between the two time points.  
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Table 10. Number of Different Intervention Strategies by condition. Means and standard 
deviations. 
 
 

Number of Different Intervention Strategies 
 Condition Out of All Items First 6 Items Second 6 Items 
Total Total 2.3 (1.3) 2.1 (1.1)  
 Control 2.1 (0.8) 2.1 (0.8)  
 Self Explain 2 (1) 2 (1)  
 Add’l Practice 2.7 (1.7) 2.3 (1.3) 1.7 (1.1) 
Correct Total 1.7 (0.8) 1.6 (0.8)  
 Control 1.7 (0.7) 1.7 (0.7)  
 Self Explain 1.5 (0.7) 1.5 (0.7)  
 Add’l Practice 1.9 (1) 1.7 (0.9) 1.3 (0.7) 
Incorrect Total 0.6 (0.9) 0.5 (0.8)  
 Control 0.4 (0.7) 0.4 (0.7)  
 Self Explain 0.6 (0.9) 0.6 (0.9)  
 Add’l Practice 0.9 (1) 0.6 (0.9) 0.4 (0.7) 

 

Specific strategy use during the intervention was examined as well. There are no 

differences in overall percentage strategy use between conditions with the exception of 

Other Incorrect use, as discussed earlier and reported in Table 9. These results also 

remain true when considering strategy use on only the first six intervention items. To 

investigate the effects of additional practice, strategy use on the first and second set of 

intervention problems were compared. However, in the second six intervention problems, 

the amount of Insufficient Work significantly decreased from 36% to 9% (t(32)=2.058, 

p=.048). Additionally, the amount of the more sophisticated Grouping strategy increased 

from 12% to 36% (t(32)= -1.854, p=.073). Seven students in the Additional-Practice 

condition used the Grouping strategy for the first time during the intervention. Of these, 4 

used it for the first time during the first six problems, and the other 3 used it for the first 

time during the second six problems.  
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High Quality Strategy Invention 

In order to gain insight into individual students’ learning and strategy acquisition, 

we examined when a student used a strategy for the first time and the percentage of 

students who had ever used a given strategy at least once. Percentages are presented in 

Table 11. Descriptively, the students who had additional practice problems during the 

intervention invented new correct strategies more frequently and sooner than students 

who only had six practice problems.  There were no significant differences in the 

percentage of Equalizer strategy use by condition overall, although fewer students were 

Equalizer users in the Control and Self-Explanation conditions. The Control and Self-

Explanation students who did use the Equalizer strategy must have been using it more 

frequently than the Additional Practice students who used the Equalizer strategy. 

Invention of the Grouping strategy during intervention was highest in the Control and 

Additional-Practice conditions (15% and 21% vs. 4.5%). The percentage of students who 

had ever used the Grouping strategy was the same between the Control (35%) and 

Additional-Practice conditions (33%), but there was a significant difference in percentage 

use between all conditions, with the Control students using it most. Therefore, the 

Additional Practice students who were Grouping-users must have been using this strategy 

less frequently.  
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Table 11. Strategy Invention and Use. Percentage of students who used the strategy for 
the first time at each time point, and running total of students who have used the strategy 
at least once, by condition. 

 

Percentage of Students’ Initial Use of Strategy and Running Total 
Strategy Condition Pretest Intervention Posttest Retention 
Correct  
 Equalizer Control 30 5 (35) 0 (35) 20 (55) 
 Self-Explain 22.7 9.1 (31.8) 4.5 (36.4) 13.6 (50) 
 Add'l Practice 36.4 24.2 (60.6) 12.1 (72.7) 3 (75.8) 
 Grouping Control 5 15 (20) 0 (20) 15 (35) 
 Self-Explain 4.5 4.5 (9.1) 4.5 (13.6) 0 (13.6) 
 Add'l Practice 3 21.2 (24.2) 0 (24.2) 9.1 (33.3) 

 
  

In summary, all students used an average of 2.3 different strategies during the 

intervention, with about 1.7 being correct and 0.6 being incorrect. Additional intervention 

practice facilitated the invention of the correct Equalizer and Grouping strategies, 

although their use was not retained at a high level. Overall, there was no immediate effect 

of condition on intervention problem solving performance. The additional practice did 

seem to enable students to stabilize their strategies repertoires and allowed for the 

invention of the more sophisticated Grouping strategy.  

 

Self-Explanation Quality 

 
 After solving an intervention problem, students in the Self-Explanation condition 

were shown the same problem with a correct and an incorrect solution. They were 

prompted to give an explanation as to why the answer was correct or incorrect. See Table 

12 for explanation types and percentage use. While responding to the prompt, students 

discussed the concept of the equal sign or equality (e.g., “Both sides have to equal the 
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same thing”), mentioned a procedure (e.g., “You are supposed to add the first two 

numbers”), talked about the quality of the answer (e.g., “Because you get the right 

answer”), or made other observations (e.g., “He wasn’t paying close attention”). Students 

most frequently talked about procedures (57.5% of explanations), and they occasionally 

discussed the answer (15.1% of explanations).  They only discussed the concept of 

equality on 6.4% of explanations, indicating that their explanations were often not 

focused on articulating the equivalence relationship. There were no differences in 

explanation quality when discussing correct and incorrect answers.  
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Table 12. Self-Explanation Quality Coding and Percent Use and Standard Deviations. 

 
Explanation 

Type 
Description Example Percentage Use 

Why 
Right 

Why 
Wrong 

Why 
Total 

Conceptual Recognizes that both sides of 
the equation are equal, either 
verbally or in gesture OR 
displays some understanding 
of the equals sign. Often use 
the term “same” or “equals 
sign”  
*must be unambiguously 
referring to both sides of the 
equation 

·“because this (points) makes 
12 and so does this (points)”  
·“they both have to equal the 
same thing”  
“both sides have to seem the 
same”  
·“because there’s an equal sign” 
·“because it says equals after 
the 5” 

3.8 
(14.5) 

9.1  
(25) 

6.4 
(17.4) 

Procedure Talks about a specific 
procedure for solving the 
equation – mentions specific 
operation or number(s) (i.e., 
use terms “add”, “subtract”, 
“minus”, etc.), even if the 
procedure is incorrect.  Does 
not display any conceptual 
understanding of two equal 
sides or the equal sign. 

For the correct prompt 
“9+7+6=16+6”  
·“because you have to add 9+7” 
·“he probably subtracted 
something”  
For the incorrect prompt 
“9+7+6=22+6”  
·“because he left off the last 6”  
·“because he added 9 + 7 + 6” 

63.6 
(36.2) 

51.5 
(38.8) 

57.5 
(33.3) 

Answer Refers to the quality of the 
answer, with no justification. 
Must talk only about the 
answer or focus mainly on the 
answer.  Usually use the term 
“answer” 

·“because you get the 
right/wrong answer”  
·“because the answer/it makes 
sense/doesn’t make sense” 
·“because you’ll get it right” 
·“because the answer is 22” 

13.6 
(27) 

16.6 
(25.2) 

15.1 
(21.3) 

Other Does not fit into any other 
category, vague, unintelligible 

·“that’s how you’re supposed to 
do it”  
·“it’s easier”  
· teachers taught you that way”  
·“it makes sense”  
·“…used all the numbers”  
·“She learned it”  
·“He wasn’t paying close 
attention” 
 

9.8 
(18.3) 

11.4 
(18.8) 

10.6 
(16.7) 

Don’t 
Know 

The student said they did not 
know or could not provide an 
explanation 

·“I don’t know” 9.1 
(17.6) 

11.4 
(25.9) 

10.6 
(16.7) 

 

The frequency of the explanation types given related to strategies the students 

used to solve the intervention practice problems. Students’ explanation type was 

correlated with intervention strategy use, controlling for backward digit span and pretest 
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conceptual and procedural knowledge. The use of an Equals explanation correlated with 

Equalizer strategy use (R=.812, p=.000), Procedure explanations correlated with Add-

Subtract strategy use (R=.48, p=.044), Answer explanations negatively correlated with 

Equalizer strategy use (R= -.418, p=.085), Other explanations correlated with Insufficient 

work (R=.467, p=.051), and Don’t Knows correlated with Add to Equal (R= .512, p=.03), 

Other Incorrect (R=.549, p=.018), Grouping (R=.775, p<.001), and negatively with Add-

Subtract strategies (R= -.445, p=.064). The Grouping finding is not reliable, as only one 

Self-Explain student used Grouping during the intervention, and only two out of six 

times. There were no strong correlational patterns between explanation quality and 

strategy use on the assessments.  

Overall, students’ explanations of why example solutions were correct or not were 

mostly based on the strategies they had used to determine the solutions. Explanations that 

directly discussed an equivalence relationship were infrequent, occurring only about 6% 

of the time. The discussion of procedures was related to the students’ own correct 

strategy use. Given the overall benefit of prompts to explain on implicit conceptual 

knowledge and procedural learning, this discussion of procedures may potentially play a 

role in improving their understanding of mathematical equivalence.  

 

Summary 

 

In regard to our hypotheses, we have found that (1) Self-Explanation increased 

conceptual but not procedural knowledge relative to the Control condition, (2) 

Additional-Practice increased procedural learning but not transfer relative to the Control 
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condition, and (3) because conceptual knowledge was greater and incorrect strategy use 

on transfer items was lower, Self-Explanation was more beneficial for learning than 

Additional-Practice. 
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CHAPTER IV 

 

DISCUSSION 

 

Prompting students to self-explain benefitted conceptual and procedural 

knowledge when compared to students who received the same amount of practice 

problems or the same amount of instructional time. This benefit was maintained over a 

two-week delay. Specifically, prompts to self-explain increased implicit conceptual 

knowledge of allowable equation structures, decreased incorrect strategy use on 

procedural transfer items, and lessened the use of a prevalent naïve incorrect strategy. 

Additional practice problems benefitted learning relative to the control condition as well, 

but only on procedural learning items.  

When prompted to explain why an example answer was correct or incorrect, 

students mostly appealed to the procedures used to determine that answer. These 

explanation prompts increased students’ understanding of equation structures, or implicit 

conceptual knowledge. The findings are in line with prior research that finds self-

explanation prompts are beneficial for conceptual knowledge. Unlike prior studies, 

however, we demonstrated and refined this relationship in a sample in which self-

explaining is not confounded with amount of practice or time on task. These findings 

expand upon past research by more carefully isolating and evaluating the effects of self-

explanation prompts. The effect of self-explanation and additional practice on conceptual 

and procedural knowledge will be discussed. 
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Self-Explanation and Conceptual Knowledge 

 

Self-Explanation supports increases in conceptual knowledge in mathematics. Our 

findings indicate that these gains are due to the process of explaining itself, and self-

explanation is more beneficial for learning than working through additional practice 

problems for the same amount of time. This study complements a growing body of 

literature that self-explanation prompts can improve conceptual knowledge in problem-

solving domains.  Past research has demonstrated this when students in the control 

condition solve the same number of problems in less time (Calin-Jageman & Ratner, 

2005), solve or study the same number of problems in the same amount of time in more 

complex domains (Atkinson et al., 2003; de Bruin, Rikers, & Schmidt, 2007; Hilbert et 

al., 2008) or solve more problems to equate time (Aleven & Koedinger, 2002).  In this 

last study, however, students not only received prompts to self-explain; they also received 

feedback on their explanations and had to produce a correct explanation before 

continuing to the next problem, making it unclear if self-explanation prompts alone were 

sufficient to support conceptual knowledge more than additional practice.   

 Self-explanation could have increased conceptual knowledge through several 

mechanisms. First, the act of explaining is thought to update and correct the learner’s 

mental model of the domain and its principles, primarily through drawing attention to 

gaps in the learner’s understanding (Chi et al., 1994). In the current study, students were 

asked to explain why example answers were correct and incorrect. This may have 

encouraged students to notice that the incorrect answer added all the numbers up until the 

blank, which typifies a naïve conception of equality, and that the correct answer resulted 
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in equivalent values on either side of the equal sign, which is the primary principle of 

mathematical equivalence. Second, explanations are also thought to benefit conceptual 

understanding because they facilitate construction of inference rules that are used in the 

formation of general principles, and are then proceduralized into usable skills (Chi et al., 

1989). Explaining why an example answer was correct or incorrect may have also 

encouraged the learner to consider problem solving strategies more often, and this may 

have been driving students to infer the principle of equating both sides of the equation.  

In the current study, the majority of the explanations were based on procedures, and so 

this may have been enough to drive learning of concepts. However, there was little 

evidence in this study that suggested this greater conceptual knowledge was 

proceduralized into useable skills, as there was not a significant benefit of explaining for 

procedural learning.  

Explanation is also thought to create novel goal structures within the problem-

solving domain, and this allows for strategy generalization (Crowley & Siegler, 1999; 

Lombrozo, 2006). Children’s naïve understanding of equivalence is that the goal is to 

compute operations and put an answer after the equal sign, and the more sophisticated 

goal is to make both sides equal. It has been found that students who correctly understand 

the principle of equivalence also have an increased understanding of allowable equation 

structures (Rittle-Johnson et al., 2011). Perhaps through explaining problem solving 

strategies, the goal of the problem is implicitly considered, which facilitates consideration 

of the equation structure itself. In the current study, students who self-explained had 

superior performance on implicit conceptual knowledge, which focused directly on 

allowable equation structures.  
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The most compelling mechanism that accounts for the benefit of self-explanation 

on conceptual knowledge in this case is that explanation supports an increase in 

awareness of the problem’s goal-structure (Crowley & Siegler, 1999). Not only would a 

fuller understanding of a problem’s goal structure allow for more appropriate strategy 

use, as evidenced by superior mean performance on procedural learning and transfer 

items, but it would allow for a firmer encoding of the problem structure itself. Indeed, 

McNeil & Alibali (2004) found that students who had more correct problem solving 

strategies were also more accurate at encoding equation structures in math equivalence 

problems exactly like the ones used in the current study. In the domain of mathematical 

equivalence, the goal is to find the missing value that will make both sides of the 

equation equal. This is the core principle of mathematical equivalence, and it is the key to 

correctly solving novel problems. This core principle focuses on understanding the 

structure of the equation. In the current study, prompts to explain did not result in 

increases in explicit conceptual knowledge of equivalence, as was the case in several 

prior studies (Große & Renkl, 2004; Mwangi & Sweller, 1998; Rittle-Johnson, 2006; 

Rittle-Johnson & Russo, 1999). However, there was a large benefit of explaining for 

implicit conceptual knowledge of allowable equation structures. Students are often 

unable to describe how they succeeded at a task despite being able to perform it (Siegler 

& Stern, 1998). Implicit knowledge often precedes explicit knowledge, and activating 

implicit knowledge prepares the learner to make their knowledge explicit (Broaders, 

Cook, Mitchell, & Goldin-Meadow, 2007). Overall, self-explanation prompts may benefit 

conceptual knowledge when prompts focus the learner on the underlying principle by 

making the problem solving goal structure more salient. Note that self-explanation is not 
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the only route to improved conceptual knowledge.  For example, in most studies, students 

do not receive direct instruction on correct concepts, and concept-based instruction may 

reduce or replace the benefits of self-explanation (Matthews & Rittle-Johnson, 2009). 

 

Self-Explanation and Procedural Knowledge 

 

In the current study, there were no strong benefits of self-explanation on 

procedural knowledge, although means were in the expected direction with slightly more 

correct strategy use and less incorrect strategy use. Specifically, self-explanation 

significantly lowered incorrect strategy use relative to Additional-Practice on procedural 

transfer items. Self-explanation has been proposed to benefit procedural knowledge by 

broadening the range of problems to which strategies can be applied (Lombrozo, 2006; 

Rittle-Johnson, 2006), and by promoting the invention of new strategies (Rittle-Johnson, 

2006; Siegler, 2002). Neither of these mechanisms were supported in the current study. 

Broader strategy application, evidenced by superior performance on transfer items, was 

not found, and neither was an increase in strategy invention. Self-explanation did seem to 

dampen incorrect strategy use, with significantly less of the incorrect Add-to-Equal 

strategy being used relative to the other two conditions on the assessments.  

 The current study did not find a benefit of self-explaining on procedural 

knowledge, contrary to several prior studies (Aleven & Koedinger, 2002; Atkinson et al., 

2003; Calin-Jageman & Ratner, 2005; de Bruin et al., 2007; Hilbert et al., 2008; Rittle-

Johnson, 2006). This discrepant finding may be because we taught the students a strategy 

that worked on all learning items and required only minimal adjustment to be generalized 
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to transfer items. For example, one of the most challenging transfer items was 6 – 4 + 3 = 

__ + 3. Students could still find the total value on left side of the equation, and subtract 

the quantity on the right to find the missing value. Most students used this one strategy 

the majority of the time, and use of alternative strategies was very low. This is consistent 

with the finding that children often do not use new strategies when a more familiar one is 

viable (Siegler & Jenkins, 1989). This may be why we did not see larger differences in 

correct strategy use on procedural learning and transfer items- the transfer items used did 

not require a great amount of adaptation of the taught strategy, and many students were 

able to do so. Generalization of specific strategies is a proposed mechanism of self-

explanation (Crowley & Siegler, 1999; Lombrozo, 2006; Rittle-Johnson, 2006). Given 

prior work and our self-explain students’ increased conceptual knowledge, it seems likely 

that their procedural skills would have been superior if they had been given transfer items 

that required more of an adaptation of the taught problem solving strategy. However, this 

study used the same design as Rittle-Johnson (2006) that found a benefit of self-

explaining relative to our Control condition. They only major difference between this and 

the current study is that the students in Rittle-Johnson (2006) had considerably lower 

prior knowledge, with a pretest-in criteria of <50% at pretest, compared to the current 

criteria of <80% at pretest. This may be an important difference that drives the 

discrepancy in findings between these two studies.  

 

 

 

 



51  
 

Self-Explanation and Other Learning Factors 

 

The efficacy of self-explanation for both conceptual and procedural learning may 

be dependent on other conditions in the learning environment. In designs in which both 

conditions have the same number of problems and time on task, self-explanation does 

have a benefit when the prompt focuses the learner on the underlying principles 

(Atkinson et al., 2003; de Bruin et al., 2007; Hilbert et al., 2008), but not when the focus 

is on the procedures used (Große & Renkl, 2004; Mwangi & Sweller, 1998).  The type of 

instruction provided is important as well. In two studies nearly identical to the current 

study, conceptual instruction was given instead of procedural instruction, and no benefit 

of self-explanation was found relative to the Additional-Practice condition (DeCaro & 

Rittle-Johnson, under review; Matthews & Rittle-Johnson, 2009).  Indeed, in DeCaro & 

Rittle-Johnson (under review), self-explanation was less beneficial for learning than 

practice for students with high (but not low) prior knowledge. This finding suggests that 

self-explanation is a better learning activity for students with low prior knowledge. This 

may, in part, shed light on why the current findings are not in line with Rittle-Johnson 

(2006) that compared self-explanation to our Control condition, and found a benefit in 

procedural, but not conceptual knowledge.  

 

Additional Practice and Procedural Knowledge 

 

 Self-Explanation is not the only path to learning. Practice can benefit learning as 

well. Additional practice did increase student performance on procedural learning items. 
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This study supports the account that practice increases the learner’s skill at applying an 

initial problem solving strategy (Jonides, 2004). This extra experience working through 

practice problems increased students’ performance on procedural learning items that 

could be solved in the same exact way as the practice problems. Students with additional 

practice also had lower levels of incorrect strategy use on these items. Practice has been 

proposed to benefit learning precisely through the strengthening of correct strategies 

(Jonides, 2004) and dampening of incorrect strategies (Siegler, 2002). This may have 

been driven in part by the building of a strong memory trace of the correct problem 

solving strategy (Chi et al., 1988; Ericsson et al., 1993). The students’ use of the taught 

correct strategy may have also become more automatic with practice (Logan, 1990; 

Shiffrin & Schneider, 1977). Descriptively, the Additional-Practice students trended 

towards attempting more procedural knowledge items than students in the other 

conditions. This suggests that they were more willing to attempt to apply the strategy 

they had learned, even if it was not successful.  

 Practice is also proposed to increase learning through allowing for the discovery 

of new, and presumably better, strategies (Jonides, 2004).  This extra experience is 

thought to allow the learner to discover and test out new strategies (Lemaire & Siegler, 

1995; Siegler & Jenkins, 1989; Siegler & Stern, 1998). New and more conceptually based 

strategies were indeed invented during the extra practice problems. However, these new 

strategies were not utilized more often overall on the subsequent assessments. This is 

likely due to the fact that all of the procedural knowledge items could be correctly solved 

using a modification to the taught strategy, makes the need to use the new strategies less 
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salient. Indeed, children do not often use new strategies when a more familiar one is 

viable (Siegler & Jenkins, 1989).  

 

Future Directions 

 

 While the current study gave us several important insights, when considering 

these findings with the prior literature, a few open issues remain. The learning benefits of 

self-explanation seem to be influenced by several other factors, and these factors should 

be studied systematically in order to have a more fine-tuned understanding of how 

exactly self-explaining enacts its benefit, and under what conditions this benefit is 

optimized. First off, how the self-explanation prompt focuses the learner’s attention on 

the principle(s) of the domain is important. Prompts that in some way focus the learner on 

the underlying principles are more effective for learning than those that focus on the 

procedures used. Additionally, how these principle-based prompts interact with the 

problem-solving goal structure should be considered carefully. Second, the type of 

instruction given to the learner seems to greatly influence the efficacy of self-explanation 

prompts. Giving students conceptual instruction seems to wipe out the benefits of self-

explaining (DeCaro & Rittle-johnson, under review; Matthews & Rittle-Johnson, 2009). 

However, this has only been found in the domain of mathematical equivalence, and the 

conceptual basis of this domain is fairly constrained. The main principle can be captured 

by one idea: that the equal sign means ‘the same’ and that both sides of an equation need 

to be the same amount. Students are told this directly when given conceptual instruction 

in these studies. If conceptual instruction can be given without ‘giving it all away’, 
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perhaps in more complex domains, self-explanation may still be a beneficial learning 

activity. Finally, self-explanation may be a more effective learning activity for some 

learners relative to others. Evidence is starting to suggest that the learners’ prior 

knowledge level interacts with the efficacy of self-explanation prompts. In DeCaro & 

Rittle-Johnson (under review), self-explanation was better for learners with low prior 

knowledge, and additional practice was better for learners with high prior knowledge. 

The current study did not find a benefit for explaining in procedural knowledge relative 

to Control, whereas Rittle-Johnson (2006) did. Perhaps it is important that the current 

study had students with higher prior knowledge than those in Rittle-Johnson (2006). 

Research from the cognitive load literature may be useful to inform this area of 

investigation (i.e. Paas, Renkl, & Sweller, 2004). Future research should consider how 

explanation prompt type, instruction, and prior knowledge interact with the benefits of 

self-explanation in order to more clearly understand the mechanisms of self-explanation, 

and to determine under what conditions learning with self-explanation is optimal.  

 

Conclusions 

 

 Self-explanation as a pedagogical tool is a useful exercise, and its benefits go 

deeper than simply keeping the learner engaged for an extended period of time. Practice 

does indeed increase the learner’s ability to carry out the practiced task. However, 

prompts to explain the underlying principle, even in subtle ways such as asking why an 

answer is right or wrong, benefit procedural learning as much as additional practice, and 
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increase conceptual understanding more than additional practice. In this way, carefully 

designed explanation prompts are a worthwhile use of instructional time.   
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