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CHAPTER I

INTRODUCTION

Mass spectrometry in context

Mass Spectrometry (MS) is a widely used technology capable of discriminating 

proteins and their post-digestion peptide products on the basis of mass and charge.  In the 

past two decades, MS instrumentation and techniques have come to have a considerable 

impact on the way proteins and protein mixtures have been analyzed.  Traditionally, once 

a protein of interest had been isolated through techniques such as two-dimensional gel 

electrophoresis (2DE), further protein analysis had been complicated by the inherent 

difficulty of ionizing proteins and peptides while minimizing fragmentation.  Bolstered 

by the creation of ionization methods such as matrix-assisted laser desorption/ionization 

(MALDI), protein analysis benefits from sensitive, precise, direct measurement of large 

polypeptides effective, when linked with techniques such as time-of-flight mass analysis 

(TOF), over a large mass range.

MALDI-TOF analysis detects mass-to-charge (m/z) ratios of ionized proteins and 

MALDI spectra depict signal intensities associated with abundance and efficiency with 

which the proteins ionize.  When an unknown protein is analyzed simultaneously with 

and calibrated against a standard of known mass, precise mass measurements of the 

unknown protein can thus be determined.  MALDI involves ionization of a sample 

through exposure to a beam of laser-generated light onto a ultraviolet-absorbing matrix 

containing a small proportion of the sample to be analyzed.  The composition of the 
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matrix (small aromatic organic acids) varies depending on the application required and 

generally depends on the size of peptide fragments (ex. Sinapinic acid for the analysis of 

larger peptides and α-cyano-4-hydroxycinnamic acid (ACCA) for smaller peptides or 

peptides from tryptic digests).  The ionized peptides separate according to mass and 

charge, their time of flight (TOF) increasing with m/z ratio. Surface enhanced laser 

desorption/ionization (SELDI) is a variation of MALDI.  In SELDI-TOF MS, the surface 

of the sample chip acts as a separation step (e.g. via positive ion exchange, 

hydrophobicity, metal-binding) with the goal of allowing for increased sensitivity and 

reducing the need for expensive and time-intensive sample pre-processing and separation 

steps.

MS analysis and techniques have generated considerable excitement in the 

clinical domain as potentially powerful tools for the analysis of protein and peptide 

mixtures.  Significant headway toward unambiguous identification of components of 

interest remains a significant challenge when analyzing very complex protein mixtures.  

The continued development and utilization of pre-processing separation techniques such 

as liquid chromatography (LC) [Covey 1986] and the use of tandem MS [Boyd 1994], 

which identifies peptide sequences both offer promise in helping to resolve such 

challenges.

MS studies in clinical bioinformatics

Within the last four years, several researchers have explored the use of MS for 

clinical applications in the broad areas of early cancer detection, clinical diagnosis and 

clinical outcome prediction.  Domains involve a variety of tissue types – blood serum, 
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tissue biopsy, nipple aspirate fluid, pancreatic juice – in the analysis of a variety of 

cancers – ovarian, prostate, renal, breast, head and neck, lung, laryngeal, hepatic, 

cervical, pancreatic, colorectal, bladder – and non-cancers – hepatitis, and 

cerebrovascular accidents .  Published reports indicate remarkable potential for this 

technology to diagnose disease with minimally invasive testing procedures, low cost, and 

– in some cases – unprecedented accuracy. It is expected by many that MS together with 

gene expression microarrays and related mass-throughput technologies will revolutionize 

medicine in the near future [Anderson 2002].

Though the ultimate goal of many such studies may be to identify specific 

biomarkers for disease, most approach the problem as one of pattern recognition within 

mass spectra independent of identification of the peptides contributing to the 

discriminating patterns.  In particular, blood serum appears to have attracted the attention 

of most clinical proteomics investigations, due to a combination of low cost and ease of 

sample collection and resulting promise as a screening tool.  The success of such 

investigation depends primarily on the validity of the intuitive notion that – given blood 

necessarily traveling in close proximity to virtually every cell in the human body (tumor

or otherwise) – a serum sample represents an informative passport stamped with useful 

molecular clues as to the state of the entire body.  For example, in support of this notion, 

it is noted that prostate serum antigen (PSA) levels are regularly monitored (through non-

MS, anti-PSA antibody techniques) in aid of prostate cancer detection.
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Protocols for Clinical MS and Historical Considerations

There is an 

exponentially 

increasing body of 

literature producing 

attempts at convincing 

methodologies for the 

analysis of MS data in 

the clinical domain.  

Major studies (2002-

2004) are highlighted 

in Table 1; though no study incorporates all of the illustrated components, each falls 

within the data analysis paradigm summarized in Figure 1.  Some milestones in the 

development of appropriate methodologies follows.

In February 2002, Petricoin et al. published the landmark paper “Use of proteomic 

patterns in serum to identify ovarian cancer.” [Petricoin 2002]  In this study, mass spectra 

were generated and partitioned into a training and testing set.  A genetic algorithm and 

self-organizing cluster analysis was applied to determine discriminatory signature 

patterns (m/z ratios that yielded good classification results in the training set).  

Corresponding signature patterns were then taken from samples in the test set and 

compared with the discriminatory pattern and a classification posited.  The success of the 

genetic algorithm to classify was then evaluated in terms of sensitivity, specificity, and 

positive predictive value.   Note that, in reference to Figure 1, pre-processing steps such 

Figure 1: Abstracted protocol for MS data analysis 
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as normalization, base-line correction, peak detection, feature selection, and peak 

alignment were not performed.

Table 1: Current methods used in MS data analysis

Number of Samples Study Design
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Metric++++

Petricoin 02/2002
ovarian 
cancer

100 16 100 216 1-fold GA sens/spec

Li 05/2002
breast 
cancer

41 25 103 169 100-fold NR P multivariate sens/spec.

Adam 07/2002
prostate 
cancer

82 77 167 326 1-fold NRBPA DT sens/spec

Qu 07/2002
prostate 
cancer

96 92 197 386 10-fold NR P
ROC-
analysis
DT (boosted)

sens/spec.

Vlahou 02/2003
ovarian 
cancer

95 0 44 139 10-fold NRPA DT acc

Yanagisawa 08/2003
lung 
cancer

14 0 79 93 LOOCV  RBPA WFCCM acc

Hilario 09/2003
lung 
cancer

17 0 24 41 10-fold N PBA

DT
KNN
MLP
Naïve Bayes

acc

Kozak 10/2003
ovarian 
cancer

56 19 109 184 1-fold NR P multivariate
sens/spec
ROC
acc

Won 12/2003
renal 
cancer

6 15 15 36 0-fold  RBPA DT
sens/spec
acc

Koopmann 02/2004
pancreatic 
cancer

60 60 60 180 30-fold NRBP multivariate
sens/spec
ROC

Wadsworth 03/2004
head and 
neck 
cancer

102 0 99 201 1-fold NR P DT sens/spec

Zhu 08/2004
liver 
cancer

25 25 20 70 1-fold    PA DT
sens/spec
PPV

Wong 08/2004
cervical 
cancer

27 0 35 62 1-fold NRBPA
ROC-
analysis

sens/spec
positive/ne
gative PV

Prados 08/2004
cerebrova
scular 
accidents

0 21 21 42 10-fold NRBPA
SVM
KNN
MLP

sens/spec

Vlahou 08/2004
bladder 
cancer

33 92 105 230 1-fold N  PA DT sens/spec

Yu 11/2004
colorectal 
cancer

92 35 55 182 10-fold NR P 
SVM
NN

sens/spec
+ Overall study design key: n-fold: n-fold cross-validation, LOOCV: leave-one-out cross validation
++ Pre-processing key: N: normalization, R: range restriction, B: baseline subtraction, P: Peak detection and/or binning, A: Peak 
alignment
+++ Classifier key: SVM: support vector machine, NN: neural network, GA: genetic algorithm, DT: decision tree, MLP: multi-layer 
perception, KNN: K-nearest neighbor, WFCCM: weighted flexible compound covariate method
++++ sens: sensitivity; spec: specificity; acc: accuracy
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Peak detection, alignment, and selection as applied to cancer classification were 

first reported in the literature by Adam et al. [Adam 2002].  A decision tree classifier was 

used.  The peak detection procedure used, a potentially important pre-processing step, 

was dependent on the use of a proprietary algorithm embedded in Ciphergen SELDI 

software version 3.0.  In July 2003, Coombes et al. [Coombes 2003] published the first 

publicly accessible peak detection algorithm (available for download in Matlab format).  

It appears that samples were obtained in replicate from pooled sources for healthy 

patients and cancer patients respectively.  The number of patients pooled in each category 

does not appear to be disclosed, hindering evaluation of their methodology.  

Nevertheless, publication and relatively full disclosure of the algorithms involved serves 

as a healthy model for other researchers in the field [Coombes 2003].  Coombes peak 

detection algorithms have undergone further development, incorporating wavelet 

transformation, and exist as part of the publicly available Cromwell package [Coombes 

2005].

In December 2003, Zhu et al. published an attempt to enhance the signal-to-noise 

ratio through smoothing of the spectra through use of a Gaussian filter, opening up 

interesting possibilities in terms of the application of signal analysis techniques to the MS

domain [Zhu 2003].

Problems existing in current MS analysis

While recognizing the embryonic nature of such studies and the difficulty in 

navigating what can be seen as significant uncharted territory, it is important to point out 

that the studies listed in Table 1 tend to suffer from one or more (often avoidable) 
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problems which may affect confidence in their specific results.  These include: 1) Lack of 

disclosure of key methods components, preventing reproducibility [Adam 2002]; 2) 

Overfitting is a phenomenon in which a classification model has high predictive power 

on training data, but relatively low predictive power when applied to unseen future 

(testing) data.  The ultimate case of overfitting occurred in a few cases in which there was 

no testing set at all, effectively evaluating the performance of the data analysis 

methodology on the basis of its ability to classify the data on which the methodology was 

applied [Rosty 2002] [Won 2003]. Perfect classification results may be obtained in this 

way, but the ability to generalize to unseen data is compromised.  3) One-time 

partitioning of the data, problematic in the sense that enthusiasm as to the strength of a 

particular result is tempered by not knowing whether the performance is affected by 

chance allocation of samples [Petricoin 2002], [Adam 2002]; 4) Lack of randomization 

when assigning to train and test categories, a key step in helping to ensure that the 

algorithms are learning to distinguish between the classes being studied rather than 

between mitigating biases associated with assignment to the training and testing 

categories.  For example, a test set collected at a different time or location, or 

collected/analyzed with a different instrument, may create differences which are 

statistically significant, but of little value to analyzing the problem; 5) Some studies use 

accuracy, a performance metric that is sensitive to prior probability of a disease 

[Yanagisawa 2003].  If the proportion of disease samples in a dataset does not reflect the 

prevalence of disease within the population of study, a classifier can present itself in an 

artificially strong light when prevalence is not considered.  In addition, the dependence of 
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such metrics on prior probabilities complicates comparison of the strength of a certain 

data analysis methodology from dataset to dataset.

Sample-dependent challenges in biomarker detection

In the case of blood proteomics and the search for a priori unknown cancer 

biomarkers (or, more generally, the search for spectral motifs indicative of cancer), the 

proverbial search for the needle in the haystack is complicated considerably by the fact 

that the nature of the haystack (normal variations in blood composition) has yet to be 

fully distinguished from the nature of the needle (tumor biomarkers).  In addition, even if 

discriminatory spectral motifs are discovered and appear to be robust in their ability to 

distinguish between normal and diseased samples, it remains to be determined whether 

such motifs are specific for the disease of interest or whether they represent a generalized 

response of the body to the presence of any of a range of pathological processes.  For 

example, it has been noted that for several cancers (prostate, lung, breast) a strongly 

associated serum elevation in acute phase protein levels may be determined through 

MALDI analysis and, indeed, is sensitive and specific when identifying serum samples 

from cancer patients as compared with serum samples from healthy volunteers.  Much of 

the value of this discriminatory power is lost in recognition of the fact that acute phase 

protein levels are elevated in response to a diverse range of diseases – including the 

generalized inflammatory response [Vejda 2002].  Just as with the earliest stages of 

cancer, some in this range may be subclinical (i.e. cannot be trivially filtered prior to 

screening); some such confounding conditions may have a prevalence that would result in 
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an unwarranted and likely dangerous increase in the investigative and/or treatment 

measures that would ensue if such a “discriminatory” screening test were to be used.

Tissue and disease domains studied

At the time of research design and planning, publicly available MS datasets (for 

protein mixtures) largely represented MALDI or SELDI-MS analysis of blood serum.  

Blood is composed of two fractions: blood cells and blood plasma.  Blood plasma 

consists mainly of water, mineral salts, and protein.  The protein content in blood plasma 

falls into four categories, of which the first three listed make up the preponderance of the 

total protein content in blood plasma: 1) albumins; 2) globulins (includes 

immunoglobulins and lipoproteins); 3) fibrinogen (protein that polymerizes to form fibrin 

during blood clotting); 4) Low molecular weight (LMW) proteins.  Blood serum refers to 

blood plasma from which the coagulation factors (e.g. fibrinogen) have been removed.  It 

is the hope of proteomics research as applied to blood serum analysis and cancer 

diagnosis/classification, that information gleaned from a single locus (blood serum) can 

yield information about a diversity of loci (ovary, prostate, breast, lung, etc.)

Known proteins of higher molecular weight are almost invariably present from 

sample to sample and include those such as albumin which may be perceived as more 

likely to cloud effective analysis than to contribute.  Therefore, it may seem 

advantageous to remove them (through centrifugation methods, for example) prior to MS

analysis.  However, in terms of sample preparation, simply removing protein of higher 

molecular weight may result in significant information loss; for example, albumin is 

known to bind and transport proteins of low molecular weight (cytokines, lipoproteins, 
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and the proteolytic fragments of proteins with different histological origins).  Therefore, 

such proteins with higher molecular weight can either be incorporated into the analysis 

(in which case their binding properties may interfere with detection of LMW proteins) or 

be subjected to solvent conditions that interfere with protein-protein interactions prior to 

removal.  None of the datasets incorporated in this study seemed to take this into account 

before SELDI-TOF analysis.

Challenges in MS classification and biological discovery

Comparison of microarray with MS analysis

The analysis of high throughput data such as microarray data has involved severe 

modeling and statistical challenges, the most notable of which include multiple sources of 

data noise, very large numbers of predictor variables, lack of consistency in data-

generating platforms, and small sample sizes.  As shown in figure 2, the analysis of MS 

data introduces further analytic challenges, requiring additional pre-processing steps, the 

most notable of which are baseline correction of spectra, the detection of peaks 

corresponding to proteins and their peptide products, the alignment of peaks across 

spectra, and the convolution of intensity values for different peptides corresponding to 

the same mass-to-charge values. Additionally, in typical MS analysis, proteins are 

unknown a priori and identified by mass-to-charge ratios (as opposed to the use of known 

gene probes in microarray analysis); hence data-modeling tends to be heavily, if not 

exclusively, guided by the data and not by biological knowledge.
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Contrary to microarray data analysis, where a multitude of systems exist for 

assisting both seasoned and inexperienced analysts, no such system currently exists that 

will automatically enable a statistically naïve user to create, from start to finish, 

diagnostic/early-detection models and selection of protein markers from MS data.  

Therefore, there is a strong need for systems that will allow both high-quality first-pass 

analyses of MS data, as well as enhancing work of the data analyst.

MS data analysis challenges

The typical MS spectrum, which upon visualization appears continuous, is in 

actuality represented by tens of thousands of discrete points each representing a unique 

m/z value and an intensity (representing relative mass abundance) at that m/z value.  If 

considering each m/z point as a potential variable, the extraordinarily large number of 

variables (as compared with sample size) presents challenges the solutions to which are 

not trivial.  Currently, there is no consensus as to how MS data should be treated in 

cancer diagnosis, and the development of appropriate and effective data analysis methods 

is an area of active research.  Data analysis has extended to the domain of machine 

learning, the technology and study of algorithms through which machines can "learn" or 

automatically improve through experience.  It remains the case that the theoretical 

foundation of the algorithms and statistical methods involved, their implementation, and 

their interdependency put the field of machine learning beyond the expertise of most 

researchers in the field of clinical cancer research.

Currently, much of this research is being done by expert biostatisticians, and a 

thorough de novo analysis of a single dataset may necessarily involve a considerable 
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period of time on the order of days, weeks, or months.  There is a need for clinician-

scientists and other biomedical researchers without expertise in the field of machine 

learning to have access to intelligent software that permits at least a first pass analysis as 

to the diagnostic capabilities of data obtained from MS analysis.
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CHAPTER II

DEVELOPMENT/TECHNICAL DESCRIPTION OF FAST-AIMS

Existing automated systems for disease classification

The goal of this proposal is the creation of a decision support tool, FAST-AIMS: 

Fully Automated Software Tool for Artificial Intelligence in Mass Spectrometry, for use 

in the domain of cancer diagnosis.  Although several systems in existence address 

focused aspects of the overall analysis, no publicly available (commercial or free) 

software system exists that accomplishes our goals - that is, a complete analysis of MS 

clinical data, beginning with raw spectra and ending with a diagnostic or prognostic 

model and an associated set of biomarkers.  Machine learning techniques have been 

automated as applied to the domain of microarray analysis, and exist in varying stages of 

development.  These include: 1) Gene Expression Model Selector (GEMS) a 

multicategory support vector machine tool developed by Alexander Statnikov, a graduate 

student in the Discovery Systems Laboratory at Vanderbilt University [Statnikov 2002]; 

2) GeneCluster 2.0, a standalone application developed at MIT [Reich 2004]; 3) the web-

based Gene Expression Data Analysis Tool (caGEDA) developed by the University of 

Pittsburg Medical Center (UPMC) [Patel 2004].
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Development of a protocol schema for FAST-AIMS MS analysis

Peak detection and baseline subtraction

In effect, peak detection is a form of feature selection, in which the classification 

algorithms focus on the predictive value of few variables (also called features) relative to 

the entire range.  For example, peak detection may indicate the existence of several 

hundred m/z points of interest, as compared with the original raw data including tens of 

thousands of possible m/z values.

Prior to development of FAST-AIMS, neither baseline subtraction nor peak 

detection were incorporated in our preliminary studies.  However, while creating FAST-

AIMS, the Coombes et al peak detection and baseline subtraction algorithms [Coombes 

2003], together with Yasui et al’s peak alignment algorithm were incorporated [Yasui 

2003].  At the time of system design, these were among the very few publicly available, 

peer-reviewed preprocessing algorithms, and we have had good results using them in 

prior experiments.  The original Coombes algorithm for peak detection utilizes the 

following procedure:

1. Use first differences between successive time points to locate all local 

maxima and minima

2. Use the median absolute value of the first differences to define “noise”

3. Eliminate all local maxima whose distance to the nearest local 

minimum is less than the noise

4. Combine local maxima that are separated by fewer then T (default T=3) 

intervals or by less than M relative mass units (default M=0.05% of 
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smaller mass).  Retain highest local maximum when combining nearby 

peaks.

5. Compute the slopes from the left hand local minimum up to the local 

maximum and from the local maximum down to the right-hand local

minimum.  Eliminate peaks where both slopes are less than half the 

value of the noise.

Feature selection

For the preliminary studies, Recursive Feature Elimination (RFE) was used in an 

attempt to reduce the number of variables (m/z values) for study.  RFE ranks the features 

based on the weight learned by Support Vector Machine analysis [Guyon 2002].  The 

RFE algorithm iteratively removes the lowest half of these (features found least amenable 

to SVM separation on the basis of class) and proceeds to re-rank the variables based on 

SVM analysis of the remaining variables.  RFE has been incorporated into FAST-AIMS.

Additionally, the HITON Markov Blanket induction algorithm [Aliferis 2003a] 

has been incorporated into FAST-AIMS.  HITON determines the Markov Blanket (MB) 

of a given target variable (in this case, the presence or absence of illness); this involves 

identifying the smallest set of variables the values for which maximize the ability to 

predict that target.  Effectively, this reduces noise (improving accuracy of results) as well 

as computation time through several orders of reduction in the size of a given set of 

features.

In independent experiments on several data domains (drug discovery, clinical 

diagnosis, text categorization, lung cancer microarray, MS prostate cancer) and feature 
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set sizes, HITON and RFE algorithms were compared with a variety of peak selection 

procedures and were found to consistently select fewer peaks without loss of 

classification accuracy as compared with univariate, principal component-based, 

parameter-shrinkage, and wrapping methods [Aliferis 2003a].

Normalization

In preliminary experiments, normalization involved mapping of intensities to the 

range {min(y)  0, max(y)  1} by taking each intensity and mapping it to intensity-

percentile/100.  FAST-AIMS incorporates several other normalization techniques, the 

selection and sequence of which can be specified by the user [Fananapazir 2005].

Classification

During preliminary experiments, three classification algorithms were tested: K-

Nearest Neighbor (KNN) [Fix 1951], Linear Support Vector Machine (LSVM), and 

Polynomial Support Vector Machine (PSVM) [Vapnik 1998].  While creating FAST-

AIMS, multi-class SVMs were chosen because of their robust, high performance in 

published analyses of MS data and other mass-throughput data, most notably gene 

expression arrays in which SVMs outperformed all major pattern recognition algorithms

[Statnikov 2005a].  SVMs have several additional attractive features including being able 

to handle arbitrarily complex functions, relative insensitivity to the curse of 

dimensionality, principled variable reduction, and an abundance of optimization methods 

– some empirical, and some theoretically-motivated [Guyon 2002].
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Experimental design

A nested cross-validation design [Dudoit 2003] was used in which the inner cross-

validation is used to optimize parameters for the classifiers and conduct data pre-

processing and peak selection, while the outer loop estimates the error of the resulting 

classifier. This design closely follows the powerful GEMS system for automated analysis 

of array gene expression data, in which it was shown via comparison to published 

analyses and cross-dataset evaluations that overfitting is avoided [Statnikov 2005b].

Ten-fold cross validation was used in the preliminary studies.  This experimental 

design requires that the data be split into ten mutually exclusive subsets.  This was done 

in a stratified manner - class proportions approximated that of the original dataset.  Each 

subset is taken in sequence to be the “test set” upon which the classification model 

derived from the remaining nine subsets (the “training set”) is evaluated.  The parameters 

for the algorithms involved can be optimized within a given training set through iterative 

partitioning of the training set itself (nested cross-validation) and averaging the 

performance of parameter permutations.  In this way, parameters for a given classifier 

can be optimized on the basis of their performance on the train-test set after having been 

trained on the train-train set.  The selected optimized parameters, and the classification 

model they produce, can then be tested on the test set [Kohavi 1995].

For further discussion and comparison of stratified nested ten-fold cross-

validation with other possible techniques, please refer to appendix B.



18

Performance metric

In preliminary experiments, the performance metric used to generate a 

performance score in each case was the Area Under the Curve based on the Receiver 

Operating Characteristic (ROC).  The ROC curve is obtained by plotting sensitivity 

against 1 – specificity as the discrimination threshold is varied for a given classification 

model.  The Area Under the Curve (AUC) can then be calculated.

One advantage to using ROC as a performance metric is that, given its 

dependence on sensitivity and specificity values, the ROC is insensitive to prior 

probabilities.  In other words, the ROC metric is an evaluation of the classification 

model’s ability to discriminate between classes, and (unlike metrics such as accuracy) 

represents a value that is independent of the relative distribution of the classes being 

studied within a given dataset.

In FAST-AIMS, the user can select either ROC or accuracy as a performance 

metric.  Given that ROC analysis is limited to binary classification tasks, accuracy is used 

when there are three or more classes.

Technical description of FAST-AIMS

The graphical user interface for FAST-AIMS was developed using Delphi 7.0 

with all algorithms programmed in Matlab 6.5.  Other than a downloadable executable, 

no additional software is required to run FAST-AIMS.

FAST-AIMS provides an intuitive wizard-like interface with defaults provided at 

every stage.  In such manner, users need not be familiar with all steps of data analysis.  

The input for FAST-AIMS consists of an MS dataset.  FAST-AIMS can automatically 
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perform any of the following tasks: a) generate a classification model by optimizing the 

parameters of classification and peak detection algorithms; b) estimate future 

classification performance of the optimized model; c) generate a model and estimate 

classification performance in tandem; d) apply an existing model to a new set of patients.  

In the process, the system also offers the option of identifying biomarkers that capture the 

classification tasks of interest and can be used to explore the underlying biological 

mechanisms.  Below, we outline the main steps in the analysis as performed by FAST-

AIMS:

• First, the system is given a series of spectra.  

• The data is then split into multiple training and test sets.  Baseline subtraction, 

peak detection, and peak alignment are performed on the spectra within each 

training set.  All steps that can be performed on each spectrum independently of 

the others (i.e., peak identification and normalization) are conducted for all of the 

data once. All steps that require consideration of multiple spectra (e.g., peak 

alignment and peak selection) are performed de novo for each sub-split of the 

data, so that these steps are not overfitted to the test spectra.

• A user-specified normalization sequence is applied within each training set.

• One or more user-selected feature selection algorithms are then applied to each 

training set.  

• The system then uses user-selected classifiers and selected range(s) of associated 

parameters from which to optimize the model.

• The system is now ready to optimize, select, and save a classification model based 

on the preceding steps.  The user can specify the metric to be used for evaluation 
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of the model (ROC or accuracy) after which the model is built and applied to the 

test set(s) in a task-dependent manner.  

• All steps are logged and reported as the user navigates through the system.
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CHAPTER III

EVALUATION OF FAST-AIMS

Preliminary studies

To demonstrate proof of principle, most of the algorithms to be incorporated into 

the proposed FAST-AIMS system, including the data pre-processing steps outlined in 

Figure 1, were tested on the Matlab platform in a series of automated classification tasks. 

Three classifiers (KNN, LSVM, PSVM) and three methods of feature selection (all 

features, LSVM-RFE, PSVM-RFE) were applied to three publicly available datasets 

[Adam 2002] [Petricoin, Ardekani 2002] [Petricoin, Ornstein 2002].

The results of these preliminary classification studies are tabulated (Table 2).  As 

might be expected, KNN performs relatively poorly given the likelihood of many low-

relevance features.  Nevertheless, the KNN classifier has been widely used as a 

benchmark in pattern recognition classification experiments because of its conceptual 

simplicity and its asymptotic behavior (its error is bounded by twice the Bayes error 

when the training set size approaches infinity [Cover 1967]).  SVMs use a hyperplane to 

partition training data based on their class assignment [Vapnik 1998].  Features which are 

more amenable to partitioning are assigned higher weight – data which is non-separable 

can still be partitioned by minimizing the effects of a misclassification cost parameter.  

This quality allows SVMs to perform favorably relative to other classifiers on datasets 

with large dimensionality; the “curse of dimensionality” being somewhat circumvented.  
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The theory underlying SVMs has been well characterized, and implementations exist 

which allow for reasonable execution time. 

In addition to demonstrating the feasibility of creating an automated software 

system, preliminary classification studies were helpful in finalizing the selection of 

algorithms to be incorporated into FAST-AIMS.  SVMs, particularly polynomial support 

vector machines (PSVM), appear to perform particularly well as classifiers of MS data, 

influencing the decision to lend significant focus to SVM incorporation and parameter 

Table 2: Results from Preliminary Classification Studies

Feature Selection Method
A. Average AUC values† Classifier

All Features LSVM - RFE PSVM - RFE

KNN 0.84425 0.96863 0.93739

LSVM 0.99460 0.99595 0.99796Adam_Prostate_070102*

PSVM 0.99659 0.99316 0.99747

KNN 0.88150 0.91382 0.79238

LSVM 0.95455 0.91898 0.85350Petricoin_Ovarian_021402**

PSVM 0.94409 0.91564 0.84032

KNN 0.85498 0.92219 0.83498

LSVM 0.92981 0.93026 0.85102Petricoin_Prostate_070302***

PSVM 0.93121 0.92788 0.83679

Feature Selection Method
B. AUC Range† Classifier

All Features LSVM - RFE PSVM - RFE

KNN 0.58847 - 0.97263 0.93157 - 1.00000 0.87928 - 0.99413

LSVM 0.98534 - 1.00000 0.99022 - 1.00000 0.99413 - 1.00000Adam_Prostate_070102*

PSVM 0.99120 - 0.99965 0.98240 - 1.00000 0.98925 - 1.00000

KNN 0.50588 - 0.99545 0.62273 - 1.00000 0.40455 - 0.96471

LSVM 0.80000 - 1.00000 0.49091 - 1.00000 0.52727 - 0.99412Petricoin_Ovarian_021402**

PSVM 0.75455 - 1.00000 0.50909 - 1.00000 0.43636 - 0.99412

KNN 0.59643 - 0.99667 0.66190 - 1.00000 0.28333 - 1.00000

LSVM 0.57143 - 1.00000 0.57262 - 1.00000 0.36667 - 1.00000Petricoin_Prostate_070302***

PSVM 0.59881 - 1.00000 0.59881 - 1.00000 0.31667 - 1.00000

Number of Features Selected by Feature Selection MethodC. Number of Features 
Selected All Features LSVM - RFE PSVM - RFE

Adam_Prostate_070102*
Range 
(Avg.)

779 - 779 (779) 24 - 97 (65.2) 97 - 389 (194.1)

Petricoin_Ovarian_021402**
Range 
(Avg.)

15154-15154 
(15154) 14 - 118 (49.9) 14 - 1894 (1421.9)

Petricoin_Prostate_070302***
Range 
(Avg.)

15154-15154 
(15154) 14 - 236 (70.5) 3 - 59 (16.8)

* [Adam 2003], ** [Petricoin, Ardekani 2002], *** [Petricoin, Ornstein 2003]
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optimization in the development of FAST-AIMS.  In terms of feature selection, RFE-

LSVM greatly reduces the size of the feature set without sacrificing performance.  In fact, 

in most cases, classification performance was improved through using RFE as a feature 

selection method.

Evaluation one: study of FAST-AIMS with multiple users

An evaluation study was designed such that the classification performance of 

FAST-AIMS would be compared with that of an expert biostatistician familiar with MS 

analysis.  In designing the study, it was envisioned that FAST-AIMS users would 

represent a range of expertise; and study participants were recruited on this basis.

A dataset was selected [Banez 2003] and spectra were randomly assigned to a 

training set (n=108) and testing set (n=54).  Class distribution (cancer, non-cancer) was 

maintained in each.  The testing set (and associated class information) was strictly 

withheld from all users during the evaluation period.  Each study participant was given 

access to the training data and given approximately one month to submit a classification 

model.  Each was asked to estimate the performance of the submitted model (FAST-

AIMS users were to rely on FAST-AIMS’ built-in model-performance estimation 

functionality for this purpose).  FAST-AIMS users were given a copy of a user manual 

[Fananapazir 2005] that was to be their only resource for instruction in the use of FAST-

AIMS beyond a preliminary meeting (January 2005) describing the software (in general 

terms) and the evaluation study.  Study participants were asked to work independently of 

one another.
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Assuming successful generation of classification models with the tools at hand, 

each submitted model would then be applied to the withheld testing set and classification 

performance reported and compared using the ROC metric.

Description of Banez dataset

A strict requirement of the multiple-user study was that the dataset chosen for the 

purpose of evaluation was not to have been used in prior development and testing of 

FAST-AIMS.  In addition, selection of the Banez prostate cancer dataset was based on it 

being of relatively large sample size and on relative lack of use in the public domain 

(reducing risk of chance prior exposure by those participating in the evaluation).  The full 

dataset consists of a total of 162 SELDI-MS spectra (one spectrum per patient, 106 from 

patients with prostate cancer and 56 controls) taken from blood serum.

Description of evaluation study participants

Through the selection and participation of users of varying degrees of experience, 

and through comparison of FAST-AIMS users with non-FAST-AIMS users, the study 

design sought to provide a preliminary evaluation of the potential of such software to 

measure up to the performance of a highly qualified biostatistician, as well as to the 

performance of the human expert group associated with the original published analysis of 

the data.

There were seven study participants: one biomedical informatics faculty member, 

one graduate student with experience in MS analysis, two biomedical informatics 

scientific programmers, one medical student with no experience in MS data analysis or 
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machine learning techniques, one graduate student with experience in machine learning 

but no prior exposure to MS data, and an expert biostatistician.

Users were grouped as follows: 1) Users of FAST-AIMS: both those with no prior 

familiarity with FAST-AIMS or MS data (n=2) and those familiar with FAST-AIMS and 

MS data (n=4); 2) An expert biostatistician (n=1) with substantial prior exposure to 

analysis of MS data who was asked to produce a model independently of FAST-AIMS.

Table 3: Characteristics of classification models generated during multi-user evaluation

Prior 
familiarity 
with FAST-

AIMS 
and/or MS

Computer time 
to generate 

model++
User time Strategies 

Employed+++

Estimated 
performance 

(ROC)

Actual 
Performanc

e (ROC)

User 1 Y 8 hours

LOOCV
BC, PD, PA
AF, RFE, HITON
SVM-gauss

0.810 0.802

User 2 Y 9 hours

10-fold
BC,PD, PA 
AF, HITON
SVM-poly

0.773 0.779

User 3 Y 19 hours

10-fold
BC,PD, PA
AF, HITON
SVM-poly

0.760 0.773

User 4 Y 3 hours
10-fold
HITON
SVM-poly

0.717 0.773

User 5
† N 55 hours

10-fold
BC,PD, PA
AF, RFE, HITON
SVM-gauss

0.786 0.777

FAST-
AIMS users

User 6
† N 22 hours

< 30 minutes 

10-fold
AF
SVM-poly

0.789 0.773

Expert Biostatistician+ 7 hours
UDWT, BC, 
WFCCM

0.808 0.811

+ Model developed independently of FAST-AIMS
++ For FAST-AIMS users, time to generate model is computation time (not user time).  User time was < 30 
minutes in all cases.
+++ Strategies employed key: n-fold: n-fold cross validation, LOOCV: leave-one-out cross-validation, BC: 
baseline correction (Coombes), PD: peak detection (Coombes), peak alignment (Coombes), AF: all features, 
RFE: recursive feature elimination, SVM-poly: support vector machine (polynomial kernel), SVM-gauss: support 
vector machine (gaussian kernel), UDWT: undecimated discrete wavelet transformation, WFCCM: weighted 
flexible compound covariate method
† Users 5 and 6 had no exposure to FAST-AIMS or MS analysis prior to the evaluation study.
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Results for evaluation one

Results are detailed in Table 3 and 

summarized in Figure 3.

All FAST-AIMS users in the evaluation 

study were able to develop a classification 

model.  In terms of classification performance, 

the expert biostatistician did have an edge over 

the users of FAST-AIMS.  However, the value 

of FAST-AIMS is evident.  First, the time that 

it takes for a user to enter the parameters for 

automatic model generation is significantly less than the time that it takes for an expert 

biostatistician to develop a working model.  Second, the difference between the 

performance of the FAST-AIMS users and the expert biostatistician is not large, 

indicating that a non-expert, if using FAST-AIMS, may be able to approximate the 

performance of an expert.

We also note that FAST-AIMS 

users perform better (accuracy range: 

76.1-80.4%) than the accuracy reported 

by either of two methods used to classify 

the same data in a previous paper (42% 

and 67%) [Banez 2003].  As such, even 

the non-expert user of FAST-AIMS may 

find his classification performance on or 



27

above par with work published by expert biostatisticians (see Figure 4).

Significantly, the ROC values reported by all FAST-AIMS users (ROC range: 

0.773 - 0.802) as well as by the biostatistician (0.811) are all greater than the ROC range 

of 0.663-0.699 reported in a recent landmark study determining the limitations of PSA 

screening.  MS data seems to hold great potential as compared with PSA, no screening 

threshold for which yields high sensitivity and high specificity for prostate cancer 

screening in healthy men [Thompson 2005].

Results were published and presented for the 2005 AMIA Symposium 

[Fananapazir 2005].

Evaluation two: study of FAST-AIMS with multiple datasets

The remaining major deliverable in the thesis proposal consisted of carrying out a 

separate evaluation of FAST-AIMS performance on multiple datasets from the MS 

clinical domain.   For comparison’s sake, this evaluation was performed using the same 

three datasets incorporated into the preliminary studies.

In this evaluation, 10-fold cross-validation was used to generate the model with 

the best average performance (ROC) when averaged over all splits.  The additional task 

of estimating performance when applied to new data was also specified when running the 

FAST-AIMS analysis.  As compared with the preliminary studies, the FAST-AIMS 

evaluation included the following differences:

1. For the Petricoin ovarian dataset [Petricoin, Ardekani 2002] and the 

Petricoin prostate dataset [Petricoin, Ornstein 2002], Coombes baseline 

subtraction/peak-detection, and Yasui peak alignment were performed.  The 
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Adam prostate dataset [Adam 2002] is a pre-processed dataset, baseline 

subtraction and peak detection/alignment already having been performed.

2. KNN was not used for classification.

3. HITON was included as a feature selection method.

4. Classifiers and feature selection methods were not considered separately 

when optimizing model parameters.  Rather, the selection of the best 

classifier and feature selection combination was recognized as part of the 

optimization process and reported as components of a unified model.

Results for evaluation two

Results for the multiple dataset evaluation of FAST-AIMS are summarized in 

Table 4 and represent two separate tasks.

In the first task, a classification model is generated for each dataset, representing 

the combination of methods and parameters that yielded the highest average ROC when 

averaged over each of the ten data splits.

Table 4: Results from multiple dataset evaluation of FAST-AIMS
Estimated ROC 
Performance:

Range (Average)

Number of features:
Range (Average)

Model Selected †

Adam_Prostate_070102*
0.96825 – 1.0
(0.98110)

30 – 779
(212)

LSVM (Cost: 1000)
LSVM-RFE (Cost: 100, # 
features: 90)

Average ROC: 0.99883

Petricoin_Ovarian_021402**
0.88232 – 1.0
(0.95946)

20 – 15154
(3162)

LSVM (Cost: 1000)
All Features

Average ROC: 0.96128

Petricoin_Prostate_070302***
0.78112 – 0.99454

(0.92052)
100 – 15154

(8192)

PSVM (Cost: 1000, Deg: 2)
All Features

Average ROC: 0.98815

* [Adam 2003], ** [Petricoin, Ardekani 2002], *** [Petricoin, Ornstein 2003]
† SVM models have a cost parameter which permits some misclassifications. Increasing the value of C increases the cost of 
misclassifying points and forces the creation of a more accurate model that may not generalize well.
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A better estimate of performance when applied to new data is obtained through 

the nested cross-validation technique employed in the second task.  Each training data 

split is used to generate a model in a manner similar to the task described in the 

paragraph above (using n-1 cross-validation that is blind to information contained in the 

withheld testing data split).  Once the model for a given training split has been selected, it 

is applied to the associated testing split; the performance (ROC) is recorded.  The average 

of these ten ROC values (for 10-fold cross-validation) is recognized as a better estimate 

of predictive power [table 4].  As such, the estimated ROC performance is the 

performance predicted in classifying new data if free to consider all permutations of the 

classification and feature selection methods (and associated parameters) selected by the 

user for consideration in model generation, and only indirectly represents the estimated 

performance for the specific combination of classifiers, feature selection methods, and 

parameters incorporated by the model generated by the previous task.  This fact becomes 

clear when one considers that each of the ten splits used in cross validation may yield a 

different “best” classifier/feature-selection-method combination; none of which are 

guaranteed to be the same as the model generated by the first task.
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CHAPTER IV

CONCLUSIONS AND DISCUSSION

This thesis describes work towards creation and evaluation of FAST-AIMS (Fully 

Automated Software Tool for Artificial Intelligence in Mass Spectrometry), a system for 

the automated development and evaluation of diagnostic models from clinical MS data.  

Two evaluations of this software are described; the first evaluation comparing the 

performance of models generated by several system users from a MS dataset to that of a 

model generated by an expert biostatistician; the second evaluation sought to use FAST-

AIMS to develop classification models in three datasets and to help draw more general 

conclusions as to the value of such methods across multiple datasets in the clinical 

domain.

In the first evaluation, it is noted that when the classification models were applied 

to the withheld portion of the dataset, ROC analysis shows that FAST-AIMS allowed 

naïve and expert users alike to nearly match the performance of an expert biostatistician.  

In addition, results compared favorably with, and indeed proved superior to previous 

work on the same dataset.  Initial attempts to evaluate the role of MS data in prostate 

cancer screening as compared with PSA seem to indicate that MS data has the potential 

to produce models that have superior sensitivity and specificity.

In the second evaluation, results were clearly demonstrative of the powerful 

classification power of machine learning techniques when applied to three MS datasets in 

the clinical domain.  To what extent discriminatory power is attributable to relevant 
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biological processes is an area of intense debate and continued research [Diamandis 

2004].

Necessarily, the focus of this thesis has been fundamentally guided by dataset 

availability within the emergent area of clinical MS analysis of protein mixtures.  The 

development and evaluation of software that employs powerful, robust machine learning 

techniques to classify cancer and non-cancer specimens has been described.  In light of 

challenges discussed within the introduction, it is acknowledged that such classification, 

even if robust, can only be as meaningful as the datasets themselves allow.  Certainly 

when applied to the datasets discussed, the machine learning methods employed by 

FAST-AIMS are able to distinguish between classes of disease in unbiased fashion.  

Powerful as they may be, such methods in and of themselves are limited by the quality of 

the information inherent in these datasets.  For example, such classification methods are 

not able to ignore the classification “assistance” of differences attributable to non-

biological factors such as might be created by biased sample collection or biased 

instrumentation conditions.  Even when such bias is minimized, it is not possible to 

ignore class differences attributable to real but, in terms of clinical utility, trivial 

biological phenomena such as those manifested by general physiologic responses to 

disease.  It is conceivable that a dataset could be produced that includes control samples 

associated with potentially confounding non-cancer disease processes, forcing FAST-

AIMS to attempt identification of discriminatory patterns more specific for the cancer of 

interest.  In general, the inclusion of appropriate controls is either incomplete, limited by 

lack of samples, perhaps not even considered, or thwarted by the current gap in 

knowledge as to what a range of appropriate controls would look like.
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That being said, it is my strong belief that the true value of this study does not 

depend on any putative biological assertions or even, ultimately, on the quality of the 

current datasets.  Until development of a modality with perceived greater screening 

potential, MS will likely continue gaining momentum in the clinical research domain, 

generating datasets with more samples, better consistency in sample collection, improved 

sample pre-processing, inclusion of well-thought out sample controls, etc.  Yet – no 

matter how good the dataset – success in overcoming the enormity of the challenge posed 

by the classification task (and, certainly, success in biomarker identification) is dependent 

on the continued development of powerful, fast, non-overfitted techniques such as those 

incorporated by the software presented here.

Creation of user-friendly software will be important for the clinical use of mass 

spectrometry.  Eventually, such software development will help create meaningful 

collaboration between those with expertise in MS analysis and other researchers whose 

expertise, though perhaps not greatly overlapping, would consequently find effective 

synergy and new avenues in the ultimate goal of reducing the significant societal burden 

imposed by cancer.  The work presented in this thesis represents an initial step in 

recognition of the need for such a development.
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APPENDIX A

MASTER’S THESIS DELIVERABLES

The following deliverables were presented to the Master’s Thesis Committee and 

approved on April 2nd, 2004, and is reproduced from the written thesis proposal.

 Task
1. Allow importation of comma-separated data (text file)
2. Allow selection of normalization procedure and parameters
3. Allow selection of feature selection and parameters

a. RFE (recursive feature elimination)
4. Allow selection of peak detection, baseline subtraction and parameters

a. Coombes et al. peak detection (if time permits)
b. Coombes et al. baseline subtraction (if time permits)

5. Allow selection of classifiers and parameters
a. KNN
b. LSVM
c. PSVM
d. RBF-SVM (as time permits)
e. DT (as time permits)
f. NN (as time permits)
g. Multi-category SVM (as time permits)

6. Employ “smart defaults”
7. Ability to save and run classification parameters on “new” samples
8. Output log of experiment details as a text file
9. Move all executable files to disk and run independently of additional software
10. Incorporate a “wizard-like” interface
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APPENDIX B

RESEARCH DESIGN OF FAST-AIMS’ ANALYSIS

In the preliminary experimental design, as well as programming architecture of 

FAST-AIMS, three types of cross-validation (as opposed to bootstrapping) were 

considered: one-fold, n-fold, and leave-one-out cross-validation.  Stratified vs. non-

stratified and nested vs. non-nested methods were also considered.  The decision to use 

nested, stratified ten-fold cross-validation was based on prior work related to bias-

variance decomposition analysis.

According to bias-variance decomposition analysis, the generalization error for a 

classification model can broken down into three components: noise, bias, and variance

[Aliferis 2006].  Noise refers to uncertainty inherent in a given dataset and represents the 

error of the optimal classification model from the class of all possible classification 

models.  Bias refers to the difference in error between the optimal classification model 

and the best classification model from the class of all possible classification models given 

by a specific classifier (if a classifier is able to determine the optimal classification 

model, bias is zero).  Variance refers to the difference in error between the best 

classification model that a specific classifier is able to produce and that of the actual 

model produced.

Prior work [Kohavi 1995] has shown that bootstrapping (in which instances are 

selected for training with replacement) demonstrates lower variance as compared with 

cross-validation, but demonstrates larger bias on specific datasets and higher 

computational cost [Efron 1997] [Braga-Neto 2004].  When implementing cross-
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validation, stratification was determined to reduce both bias and variance [Kohavi 1995].  

Ten-fold cross-validation was determined to have very low bias across datasets tested, 

with higher-fold cross-validation (including LOOCV) offering little improvement.  

Lower-fold cross-validation (e.g. one-fold, 2-fold, 5-fold), though having lower 

computational cost, offer biases that are pessimistic. Ten-fold cross-validation was 

recommended as having the best trade-off between bias and computational cost [Kohavi 

1995].

Nested n-fold cross-validation [Dudoit 2003], as compared with n-fold cross-

validation, has been shown to be powerful in detecting overfitting and estimating 

generalization error conservatively for microarray and other high-dimensionality data

[Statnikov 2005b] [Aliferis 2003b].
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