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CHAPTER I 

INTRODUCTION 

Modeling using Bayesian methods can be a daunting task to pursue with limited training 

in either machine learning or Bayesian statistics. Algorithms specifically designed to learn the 

Bayesian network structure for a data set can provide access to those without this training. 

Many Bayesian network implementations exist, but are generally aimed at computer scientists 

and focus on teaching how the underlying algorithm is programmed. Few studies have 

examined “off the shelf” implementations of Bayesian network structure learning algorithms 

which could allow an individual with minimal Bayesian model training to build Bayesian 

networks.  

The study has four aims: 1) to compare different Bayesian network structure learning 

different algorithms on real world emergency department ambulance diversion data, 2) to 

compare the machine-learned Bayesian network structures to an expert-created Bayesian 

network, and 3) to compare how well the different Bayesian network structures generalize to  

predict emergency department ambulance diversion up to twelve hours in advance. 
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CHAPTER II 

BACKGROUND 

This chapter provides the purpose of evaluating Bayesian network structure learning 

algorithm packages by using a real world data set of predicting emergency department diversion 

data. The Bayesian network (BN) section gives a brief overview of BNs and a high-level 

explanation of how they work.  The discretization section explains the purpose of discretization 

and describes the two discretization methods implemented in the study. The BN structure 

learning algorithms section describes the motivation to use automated methods for learning 

BNs, and gives a brief explanation of each algorithm included in the study. The last section 

focuses on the emergency department processes, the need to predict ambulance diversion, and 

previous work related to ambulance diversion prediction. 

Purpose 

Medical personnel who have limited computer science and machine learning education 

frequently use "off the shelf" products to develop BN models rather than constructing the 

models themselves. These packages range from implementations developed by the academic 

community, which are often free or in the public domain, to commercial applications, costing 

thousands of dollars.  While individual reviews for specific software packages are available, very 

few studies have compared the performance of “off the shelf” BN structure learning algorithms.  
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Bayesian Networks 

BNs are machine learning methods which use Bayes' theorem to calculate the 

probability that an event will occur. BNs are not a "black box" that obscures the reasoning of 

how the probability is calculated, unlike artificial neural networks or support vector machines.  

The graphical nature of BNs allows a user to see how information flows through the network 

and what the relationships the model represents between the variables. BNs provide methods 

to decompose the joint probability tables, which contain the probability of every combination of 

events, into a compact structure (1).   BNs capture the same information as the joint probability 

tables by modeling the conditional relationships among the variables. 

Figure 1 shows the Chest Clinic BN, a classic example to demonstrate how BNs work (2; 

3). The example is a prototypical medical diagnoses system to identify whether a patient has  

 

tuberculosis, lung cancer, or bronchitis.  The arrows between the variables of the network show 

a hypothesized cause and effect relationship between the variables. For example, smoking can 

Figure 1 The Chest Clinic Bayesian Network without out any evidence provided 
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cause lung cancer or bronchitis, but does not cause tuberculosis. Likewise, visiting Asia can 

affect the probability of having tuberculosis, but does not have a direct effect on the probability 

of having lung cancer or bronchitis. The two nodes at the bottom of the network represent a 

diagnostic test and an observable symptom.  The presence of one or more of these diseases 

influences both the chest x-ray test result and the patient exhibiting dyspnea (shortness of 

breath). 

When new evidence is incorporated into a BN, the probabilities of the unobserved 

variables are updated. Four pieces of new knowledge could be acquired during a clinical visit for  

 

the Chest Clinic BN: a chest x-ray, history of smoking, foreign travel by the patient, or the 

presence of dyspnea in the patient. The network in Figure 2 shows the Chest Clinic network 

instantiated with the previously mentioned evidence.  The probability of the patient having each 

disease is updated based on the new knowledge.  

Figure 2 The Chest Clinic network provided with evidence whether the patient visited Asia, smokes, had an 
abnormal chest X-ray, or has shortness of breath. 
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The full joint probability table for the Chest Clinic network would contain every 

combination of all eight variables, which equal 256 different probabilities (2). Representing the 

joint probability tables as a BN reduces the number of probabilities to 36 conditional 

probabilities. Most real world BNs contain more variables with different numbers of possible 

states. 

BNs use the concept of conditional independence to simplify "...both the structure of 

the model and the amount of computations needed to perform inference and learning ...” (4). 

Two variables are said to be conditionally independent when, given a variable, the two other 

variables do not affect each other. In probability notation, 

 

 

.Variables a and b are said to be conditionally independent of each other given c. For 

example, the probability of having a heat stroke and a car overheating are conditionally 

independent given the day is hot. Having a heat stroke does not affect whether a car overheats 

or not, and vice versa.  If the day is hot, then the probabilities increase for both heat stroke and 

car overheating. Figure 3 shows the graphical representation of this concept. A more detailed 

explanation of BNs and conditional independence can be found in (1; 4; 5). Pourret, Naïm, and 

Marcot provide a set of examples of how BNs have been applied to real world problems, 

including examples in clinical medicine (6). 
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Figure 3 A DAG representation of conditional independence between heat stroke and a car overheating given it is a 
hot day. 

 

Discretization 

Discretization transforms continuous variables into discrete variables while retaining as 

much information as possible (7). Two basic methods of discretization are a) equal frequency 

and b) equal width. 

a) Equal frequency discretization seeks to put an equal number of data points in each 

bin (7; 8).  Figure 4 shows a data set discretized to three bins using equal frequency 

discretization. The algorithm sums up the number of data points in the data set and evenly 

distributes them among the bins. Notice the ranges of numbers in each bin are not the same, 

but each bin has the same number of data points. The equal frequency discretization in this 

instance is not affected by the lack of numbers between two and seven. 

 

1 21 7 7 7 8 8 9

 

Figure 4 An example data set discretized to three bins using equal frequency discretization. The black bars separate 
the three bins. 
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b) Equal width discretization determines the bin ranges based on the range of values in 

the data set (7; 8). Figure 5 shows the same example data set as used with the frequency 

discretization example, but discretized with three bins using equal width discretization. The 

algorithm first calculates the width of each bin. For this example the width size equals 

(91+1)/3=3. The first bin contains all values less than three. The second bin would contain all 

values greater than three, but less than or equal to nine. In this particular data set, no values 

exist within the second bin's range. The final third bin contains all values greater than six, which 

2/3 of the example data lies within the third bin's range. Over all, the final discretization for the 

example data set has two bins containing data. 

 

1 20 7 7 7 8 8 9
 

Figure 5 An example data set discretized to three bins using equal width discretization. The example only contains 
one separation, represented by the black bar, because the middle bin did not hold any data points from the 
example data set 

Structure Learning Algorithms 

The overall structure of a BN is a directed acyclic graph (DAG). The term DAG comes 

from graph theory and consists of vertices and edges. A DAG is a special form of a graph where 

all edges are directed and no cycles exist within the graph. Each of the vertices within the DAG is 

assigned a specific variable from the data set. The edges represent the relationships between 

the variables. 

Searching over all possible DAGs, also called the search space for BN structure learning, 

for a set of variables to find the best structure is infeasible for all but the most trivial of 
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problems. A DAG with 18 unlabeled has approximately 1.6 * 1043 (rounded to two significant 

figures) different possible configurations (9). This number does not account for assigning specific 

variables to each node. Finding the structure or the relationships between the variables, for a 

BN is an NP-Hard problem (4). A heuristic, or rule of thumb, is the common method to reduce 

the overall search space of an NP-hard problem (1; 4). The following sections provide 

descriptions of each structure learning algorithm included in the study and an overview of the 

heuristic used to search for BN structures. 

Greedy Search 

Greedy search uses a “greedy” heuristic to find a solution within a search space. The 

greedy heuristic selects the move that gives the search the most immediate gain without regard 

to the consequences later in the search process (10). Applying greedy search to BN structure 

learning, the greedy search starts with a fully disconnected BN. The greedy search then modifies 

the current BN by adding, removing, or reversing links while maintaining the DAG requirement 

of a BN (5). A comparison metric is supplied to the greedy search method to compare how well 

one structure performs against another one. The search continues until a specified number of 

moves occur without improving the metric. 

 Max-Min Hill Climbing Algorithm 

The Max-Min Hill-Climbing (MMHC) algorithm is a hybrid method for learning Bayesian 

network structures combining constraint-based and search-and-score techniques (11).  First, 

MMHC uses Max-Min Parents and Children (MMPC) to identify the parents and children of each 

variable in the data set.  The Max-Min heuristic in MMPC seeks to maximize the minimum 

association between a variable and the target given the candidate parents and children.  The 
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parents and children information is used to constrain the greedy search (an edge can only be 

added if the parent-child link is identified by MMPC).  The greedy search returns a DAG that 

maximizes the score of a selected evaluation metric. 

Tabu Search 

Tabu search is a heuristic optimization method which uses a short term memory to 

ensure the search explores new areas to prevent being stuck in a local optimum (12; 13). The 

exact implementation used in this study is a proprietary version created by BayesiaLab software 

creators, a commercial BN system. The tabu search starts with a BN structure without any links. 

The operations are the same as the greedy search described above, adding, removing, or 

reversing links to find the best next move. The tabu search differs from the greedy search by 

adding a short-term memory of the links added between moves. When a change to a link 

between two nodes is made, the link is stored in the short-term memory. Tabu search does not  

modify any links in the short term memory for a predetermined number of moves (13). The 

algorithm stops the search when a better network structure is not found for a set number of 

moves. 

Augmented Naïve Bayesian Network 

Naïve Bayesian networks (NB) make the assumption that all variables in the BNs are 

conditionally independent of each other, given the target variable (4; 5). Figure 6 shows the 

graphical representation of this relationship. All variables are children of the target variable.  

The NB structure creates a computationally efficient model requiring only the conditional 

probabilities for each child node given the target variable and the prior probabilities of the 
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target node. While this assumption does not often hold for real life data sets, the NB has shown 

strong results as a predictor (5).  

 

Figure 6 An example naive Bayesian network. 

 

The augmented naïve Bayesian algorithm begins with a NB structure as shown in Figure 

6, but relaxes the conditional independence assumption between the child variables. After 

creating the standard NB structure, the creators of BayesiaLab use a proprietary greedy search 

algorithm to find connections between the child nodes.  Once the algorithm finishes the greedy 

search for relationships between the child variables the network could look as shown in Figure 

7. The blue edges are the original edges from the initial NB structure. The red edges are  

examples of the potential edges that could be added during the greedy search (14). 
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Figure 7 An example augmented Naive Bayesian network structure. The blue lines represent the links added in the 
naive Bayesian network phase and the red lines represent potential links added in the unsupervised search stage. 

Augmented Markov Blanket 

 

 

Figure 8 An example of the three relations within the Markov blanket of a variable: parent nodes(blue), child nodes 
(green), and parents of the children nodes (red). 

 

The Markov blanket for a variable consists of all variables that make it conditionally 

independent of all other variables (1). Figure 8 shows the three types of variable relationships 

included in the Markov blanket: parents (blue), children (green), and children’s parents (red).  
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Similar to the augmented naïve Bayesian algorithm described above, the augmented Markov 

blanket algorithm relaxes the condition that the connections only be made through the target 

variable, but allows connections between the parents, children, and children’s parents of the 

target.  First, the augmented Bayesian network identifies the Markov blanket for the target 

variables. Next, Bayesia's proprietary unsupervised greedy search identifies beneficial 

relationships between the other variables within the Markov blanket. Figure 9 shows the 

original Markov blanket edges in gray. The red and blue edges are examples of edges which 

could identified during the greedy search for relationships between the other variables (14). 

 

Figure 9 Example of how a Markov blanket model could be modified during the augmentation step. The solid lines 
indicate the original links in the Markov blanket. The dashed lines are potential relations learned during the 
unsupervised step 

Semi-supervised Algorithm 

The semi-supervised algorithm is an unpublished proprietary algorithm included in 

BayesiaLab. The semi-supervised algorithm applies BayesiaLab's Markov Blanket algorithm 

recursively (14). 
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Expert Learning 

A common method used to develop BN structures is to employ the help of an expert in 

the field or use the current literature on the topic to determine the relationships between the 

variables (5).  Some disadvantages of using only experts and literature are that only currently 

known relationships between the variables can be learned, the expert could bias the network, 

and it is a time consuming process. 

Outcome Metrics 

 Selection of an outcome metric is an important part of the model building 

process. Each metric brings its own interpretation of what model is best, such as discriminatory 

ability or the amount of model complexity.  Described below are three outcome metrics 

included in the study.  

Area under the Receiver Operator Characteristic Curve 

Receiver operator characteristic (ROC) curves are used as a statistical method to 

evaluate the discriminatory ability of a binary classifier. ROC curves have been used in machine 

learning, medicine (15), and biomedical informatics (16) as a method to evaluate classifiers. ROC 

curves plot the true positive rate of a classifier against the false positive rate to evaluate the 

classifier at different thresholds (15). Metz explains, "...ROC curves provide the most 

comprehensive description, because they indicate of all of the combinations of sensitivity and 

specificity that a diagnostic test is able to provide as the test's 'decision criterion' is varied (17)."  
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Figure 10 An example of three types of ROC curves. The diagonal green line show an ROC curve equivalent to 
random guessing. The red ROC curve has a large AUC, but the blue curve performs for situation where false 
positives are high.  

Figure 10 shows three ROC curves. The closer to the upper left hand corner of the graph 

that the curve lies, the better it perform. If the ROC curve is a diagonal line, like the diagonal 

green ROC curve in Figure 10, the classifier performs equivalent to random guessing. If the ROC 

curve goes below the diagonal line then the classifier is guessing the opposite of the correct 

answer, which can be easily corrected (15).  

The area under the ROC curve (AUC) compares two classifiers in a more generalized 

manner. The AUC is a commonly used index of ROC curve (16). Perfect AUC is equal to 1, having 

the curve in the far left corner; .5 is the equivalent of random guessing, or a diagonal ROC curve 

(15). Though the AUC of one classifier may be higher than another, the classifier with the higher 

AUC may not be the best performing classifier in all situations. Figure 10 displays an example of 

this. The red ROC curve has a higher AUC than blue ROC curve. If a high true positive rate (or 

sensitivity) is needed, the blue ROC curve is the better choice because it has a higher sensitivity 

(15).  An example of when the blue ROC curve would be a better choice is an HIV test. Informing 

a HIV- patient they are HIV+ is a better choice than informing a HIV+ person they are HIV-. AUC 
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does act as a simple quantifiable summary measure for ROC curve when the cost function is not 

known (15) .  

Negative Log Likelihood 

The likelihood of a model quantifies the difference between a model's hypothesized 

distribution and from the true distribution of the data set. The likelihood function for a model 

gives the likelihood the data set was created using the model's parameters (18). The likelihood is 

used to select the set of parameters which maximizes the likelihood of the model in relation to 

the data.  This process is known as maximum likelihood estimation. Using the log of the 

likelihood function (LL) makes the calculation easier to compute since the product of multiple 

probabilities get subsequently smaller making it more susceptible to computational rounding 

errors. The logarithm transformation is a monotonically increasing function. The resulting LL is 

multiplied by negative one in order to make the result of the calculation positive. The equation 

below shows the probability for calculating the likelihood where N is the number of data points, 

d is the true classification of the data point, and θ are the hypothesized parameters for the 

model. The resulting equation is called the negative log likelihood (NLL). The NLL can only be 

used to compare models on the exact same data set, but is not limited to binary outcomes. 

 

 

Akaike Information Criterion 

Akaike information criterion (AIC) was developed in 1973 by Hirotugu Akaike as an 

extension of log likelihood for maximum likelihood estimation (MLE) (19). AIC penalizes a model 
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for complexity, using the concept of Occam’s razor, which can be summed up as the simplest 

explanation is best (20).  Below is the equation for AIC where θ is the set of parameters for a 

model and k is the number of parameters. The penalty term 2k causes the metric to favor less 

complex models to discourage selecting a model which does not generalize well or over fits the 

data set used to create the model. A criticism of information criterion which penalizes models 

for complexity is that they favor overly simplistic models (20). AIC, like the NLL, is not 

generalizable to compare models. AIC must be compared based on the same data set. 

 

 

Emergency Department Ambulance Diversion 

Although time is not a critical factor for most medical care, some patients require 

immediate attention. In situations where the patient is having a heart attack or has been in a car 

accident, timeliness of care for these patients may significantly affect the potential for loss of 

life. To provide timely care most hospitals have an emergency department (ED) open 24 hours a 

day to offer care for patients in need of urgent care. 

Asplin et al. developed a conceptual model that views the ED as an input-throughput-

output model (21). Following is a description of input, throughput, and output processes at 

Vanderbilt University Medical Center’s adult emergency department. A general and detailed 

examination of the emergency department as an input-throughput-output model can be found 

in (21). 

Input (Arrival): Patients arrive at the ED either by ambulance, car, or foot. Patients in 

serious condition are taken directly to a treatment area. Patients not in a serious condition upon 

arrival are registered and wait to be triaged by a nurse or physician. The nurse or physician uses 
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the criteria of the Emergency Severity Index v3 (ESI) to assign an acuity level (22). The ESI 

estimates the amount of ED resources consumed by the patient. Patients not in need of 

immediate medical attention are sent to the waiting room and added to a priority queue.  

Throughput (Clinical/Treatment): Once in the clinical area patients are placed into one 

of nine different types of ED rooms based on the severity of their condition. The physician 

examines the patient to determine whether the patient needs laboratory, radiological, 

electrocardiogram tests, and/or a consultation.  

Output (Discharge): When treatment has been completed the patient is discharged 

home, admitted to the hospital, or transferred to another medical care facility. 

Overcrowding and Diversion 

The Emergency Medical Treatment and Labor Act of 1986 (EMTALA) requires all 

hospitals with an ED to treat and stabilize patients without regard to their ability to pay (23). 

EMTALA has unfortunately created a significant financial burden for hospitals with EDs because 

of the financial loss incurred from patients lacking the ability to pay. The lack of compensation 

results in higher prices for those patients with the ability of pay, whether through insurance or 

privately. Between 1988 and 1998 the number of EDs in the United States decreased by 28% 

(23). In the same period, the number of ED encounters increased by 10%. In addition, the 

severity and complexity of patients has increased (24) due to the increasing age of the general 

population of the United States (25). Hospital administrators aim to keep hospital occupancy as 

close to 100% as possible and in attempt to increase revenue. A full hospital does not allow for 

unexpected increases in demand for inpatient beds. This results in ED patients waiting in the ED 

for an inpatient bed to become available (25). 
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The ED must divert ambulances when overcrowding reaches a critical point of a risk for 

patients currently in the ED or those in transit to the ED due to reduced ability to treat patients. 

When this critical point is reached the hospital then informs the ambulance dispatching 

authority the ED is going on ambulance diversion because of its inability to safely treat new 

incoming critically ill patients. The ambulance authority then sends ambulances to other 

hospitals in the area though the overcrowded ED may be the closest. If more than three 

hospitals in the area are in a state of ambulance diversion, then the diversion is lifted from all 

hospitals. Ambulance diversion leads to an increased amount of time before patients can be 

treated, which could increase the severity of their condition. Patients arriving by means other 

than ambulance continue to be treated. Once the hospital has reduced the amount of 

overcrowding, the hospital alerts the dispatching authority of the ability to accept new 

ambulance patients. Identifying the causes of overcrowding is a complex problem with many 

factors making diversion difficult to identify in advance. Two reviews of the problem of 

emergency department overcrowding can be found in Trzeziak and Rivers (25) and Hoot and 

Aronsky (26). Trzeziak and Rivers gives the motivation for predicting ambulance diversion in 

advance in order to create a system to provide EDs with a much needed early warning system to 

allow ED administrators to: “ ...anticipate and prepare for overcrowding, rather than react to 

overcrowding after it has occurred (25)." 

Previous work 

Solberg et al. (27) gathered 74 experts to determine a generalized set of emergency 

department measures for planning, warning, or research. While measurements provide a 

standard way to evaluate emergency departments, these metrics are limited because they track 

activities over a period of time as explained in the limitations section of the paper.  
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Hoot et al. developed an ED simulation to forecast ED overcrowding 2, 4, 6, and 8 hours 

in advance (28). The simulation predicts seven measures related to ED overcrowding: waiting 

room count, average waiting time, ED occupancy level, average length of stay, number of 

patients waiting to be admitted, the average time a patient waits to be admitted, and the 

probability of ambulance diversion. Hoot et al. did a prospective study of the ForcastED 

simulation system with respect to the seven measures (29). ForcastED had an AUC of 0.93 

predicting two hours in advance to 0.85 for predicting 8 hours in advance. One other study 

specifically included ED diversion as a prediction metric. Leegon et al. developed a Gaussian 

process for predicting ambulance diversion for up to two hours in advance. The Gaussian 

process had an AUC of 0.93 predicting diversion two hours in advance (30).  Gaussian processes 

are not computationally feasible to implement in real world setting at this time. 

 



20 
 

CHAPTER III 

METHODS 

 The following chapter explains the methodology used for evaluating the BN structure 

learning software packages. The setting section provides an overview of technologies 

implemented at Vanderbilt University Medical Center (VUMC). The data section describes the 

original database and feature selection process that selected the eighteen variables. A summary 

from the database specification for each selected variables is in the operational definition of 

variable. The procedures section explains the method discretization process, how the BN 

structures in each of the software packages were created, and the methods used for evaluation. 

Setting 

The adult emergency department (ED) at VUMC is a 45 bed Trauma level I, 

academic, urban ED. During 2008 the adult ED had  more than 55,000 encounters. 

VUMC has an information technology infrastructure with computerized order entry (31)  

and a longitudinal electronic medical record system (32). In addition to the main 

hospital’s information technologies, the ED has an advanced electronic whiteboard 

system (33) and computerized triage application (34); both developed internally at 

VUMC. 
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Data 

A data set was extracted from a locally curated database designed for analyzing ED 

overcrowding. The database contained hospital operational information at five minute intervals 

with no missing values. All data point for a 2-year period from July 1, 2006 – June 30, 2008 were 

included in the study. The data set was subsequently divided into training/validation and test 

sets; each contained one year of data.  ED ambulance diversion was selected as the reference 

standard for identifying overcrowding. The institutional guidelines for when the ED should go on 

diversion are 100% occupancy and more than 10 people in the waiting room. 

The full curated database contained over 100 variables of operational information for 

different parts of the hospital, but focused on the ED and those areas of the hospital likely to 

affect the ED. The eighteen variables selected were based on a previous study. In summary, the 

study used logistic regression models for an initial screening of each variable in the full 

database. The variables were selected based on an AUC above a predefined threshold for each 

time point of prediction. All variables in the previous study performing above the defined AUC 

thresholds for identifying ambulance diversion 1, 2, 3, 4, 6, 8, and 12 hours in advance were 

included in the current study. The current ED diversion status was not included as a predictive 

variable to keep subjective variables to a minimum. The final data set used contained eighteen 

variables and the ED diversion status from the original database.   

Operational definition of variables 

 An internal VUMC specification contained descriptions for each variable in the 

complete database. Below are summaries of the specification definition for each of the 18 

variables and the target variable selected for the study. 



22 
 

1. VUH_ED_DIVERSION - a Boolean variable indicating the current diversion status of 

the ED. VUH_ED_DIVERSION is the reference standard variable for the study. 

2. NO_OF_BED_REQUESTS_ED – an integer variable of the number of inpatient bed 

requests from the ED. 

3. ED_NO_OF_WAITING_ROOM_PTS – an integer variable of the current number of 

patients in the waiting room. 

4. ED_OCCUPANCY -   a real variable ratio of number of patients in all of the ED to the 

number of available licensed beds. The value is calculated as: 

 

 

 

5. ED_PTS_AVG_TIME_TO_ED_BED – a real variable calculating the average time  for a 

patient to be placed in a ED bed. The equation below shows the method of 

calculation for the average time of placement into an ED bed. Where i is equal to 

patients who have been triaged and have not been placed in and ED bed. 

 

 

 

6. ED_NO_OF_CURRENT_PTS – an integer variable of the number of patients in the ED. 

7. ED_NO_OF_NURSES – an integer variable of the number of nurses who worked in 

the ED during the 60 minutes prior to the current time. 
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8. NO_OF_BED_REQUESTS_TRANSFER - an integer variable of the number of admission 

requests from patients at other hospitals. 

9. ED_VOL_HOSP_CAPACITY_ALL_BDS – a real variable calculating the ratio of ED 

volume to hospital capacity for all beds. 

 

 

 

10. ED_VOL_HOSP_CAPACITY_ICU_BDS – a real value calculating the ratio of ED volume 

to available number of ICU Beds. 

 

 

 

11. ED_PTS_AVG_TIME_TO_DISCHARGE – a real variable of the average amount of time 

for both inpatient and outpatients to be discharged. 

12. ED_INPTS_AVG_TIME_TO_DSCHRG -  A real variable of the average time patients 

wait in the ED to be admitted to the hospital. Variable i in the equation below is 

each patient to be admitted with a bed assigned. 
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13. ED_BED_ASSIGN_TIME_AVG - a real variable of the average time for a patient to be 

assigned a bed. Variable i is each patient who has a bed request made for them, but 

has not been assigned a bed.   

 

 

 

14. ED_INPTS_AVG_LOS_TIME - a real variable of the average length of stay for 

inpatients. 

15. ED_PTS_AVG_LOS_TIME - a real variable of the average length of stay for both 

inpatients and outpatients in minutes. 

16. NO_OF_BED_REQUESTS_PERIOP – an integer variable of the number of patients to 

be admitted to the hospital from the perioperative service. 

17. TOTAL_NO_OF_SURGERY_PER_HR – an integer variable of the number of surgeries 

scheduled for the current day. 

18. HOSP_AVAIL_BED_CAPACITY - an integer variable of the number of beds available in 

the hospital. 

19. HOSP_DISCHARGE_POTENTIAL – an integer variable equal to the total number of 

occupied inpatient hospital beds minus the number of patients waiting to be 

discharged from the hospital.  
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Procedures 

The BN structure learning algorithms were evaluated in two steps. The first step 

discretized the data as required for each software package; next, the discretized data were input 

into each of the BN structure learning algorithms. 

Discretization 

All implementations of the BN structure learning algorithms included in the study 

required the data to be discrete. Discretization was completed prior to BN structure learning to 

ensure the individual packages discretization methods were not the actual method being 

evaluated. Two unsupervised discretization algorithms were used in the study: equal distance 

and equal frequency. Equal distance and equal frequency discretization algorithms were 

implemented using a modified version of the Weka data mining libraries  source code (35). The 

modifications were done to allow the Weka’s implementation of the two discretization methods 

to be integrated into the testing framework used for evaluation.  

A greedy search approach was used to determine the optimal number of bins for each 

variable.  Each variable was evaluated with 2- 10 bins. Limiting the number of bins reduced the 

overall complexity possible for each network. A naïve Bayesian classifier implemented in the 

NeticaJ 4.03 API for Java (3) served as the testing model. The bin sizes and variables were 

compared using AUC calculated by PropROC 2.3.1 (36).  The comparison was done using the 

data set for July 1, 2006 – June 30, 2007.  Figure 11 shows how the data set was divided. The 

first 70% of the data set was used as training data to determine the parameters of the naïve 

Bayesian model. The validation data consisted of the remaining 30%.  The validation data was 

used to evaluate each variable's performance when added to the naïve Bayesian model. The 
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process was done for both discretization algorithms and resulted in the creation of two data sets 

for the study. 

  

100%

Test Data

70 %

Training Data

30%
Validation

Data

July 1, 2006 – June 30, 2007 July 1, 2007 – June 30, 2008

 

Figure 11 How the two years of data were divided into training, validation, and test data sets. 

 

The algorithm evaluated each variable/bin combination's AUC result when the 

combination was the only child of the target variable (Figure 12 and Figure 13). The best 

performing variable/bin combination was added to the set of selected variables (Figure 14). The 

remaining bin sizes for the selected variable were discarded. The variable was fixed as child to 

the target variable. Only the top two performing bin sizes for each remaining variable were kept 

(Figure 15).  

The remaining variable/bin combinations were each added as a child of the target node, 

one at a time, to the current set of selected variables (Figure 16). The best performing 

variable/bin combination was added to the final bin sizes (Figure 17). The unused bin size for the 

selected variable was then discarded (Figure 18). The process continued until all variables had a 

bin size chosen (Figure 19). 

Once the final discretization ranges for each discretization algorithm were selected, 

both the training/validation and test data sets were discretized using each discretization 

method.  
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Target

A
Bins: 3

B

Bins: 3

C

Bins: 3

A

Bins: 4

B

Bins: 4

C

Bins: 4

A

Bins: 5

B

Bins: 5

C

Bins: 5

 

Figure 12 Target is the variable to be predicted. A, B, 
and C are the variables in the data set.  In this example 
each variable have been discretized to have 3 – 5 bins. 

 

Target

A
Bins: 3

AUC: .801

B
Bins: 3

AUC: .856

C
Bins: 3

AUC: .654

A
Bins: 4

AUC: .822

B
Bins: 4

AUC: .874

C
Bins: 4

AUC: .635

A
Bins: 5

AUC: .786

B
Bins: 5

AUC: .904

C

Bins: 5

 

Figure 13 Each variable/bin combination were made the 
only child node of the target and evaluated. 

 

Target

A
Bins: 3

AUC: .801

B
Bins: 3

AUC: .856

C
Bins: 3

AUC: .654

A
Bins: 4

AUC: .822

B
Bins: 4

AUC: .874

C
Bins: 4

AUC: .635

A
Bins: 5

AUC: .786

B
Bins: 5
AUC: .904

C
Bins: 5

AUC: .674
 

Figure 14 After all variables have been evaluated the 
best variable/bin combination was fixed as a child in 
the naïve Bayesian network. 

 
 

Target

A
Bins: 3

C
Bins: 3

A
Bins: 4

B
Bins: 5

C

Bins: 5

 

Figure 15 The remaining variables for B are removed.  
Only the top two performing bin sizes for A and C are 
kept. 
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Target

A
Bins: 3

AUC: .824

C
Bins: 3

A
Bins: 4

B
Bins: 5

C

Bins: 5

 

Figure 16 The remaining variable/bin size combinations 
were added one at a time to the current network and 
evaluated. 

Target

A
Bins: 3

AUC: .824

C
Bins: 4
AUC: .898

A
Bins: 4
AUC: .912

B
Bins: 5

C
Bins: 5

AUC: .902

 

Figure 17 Once all variable/bin size combinations have 
been evaluated the best combination was selected and 
added to the network. 

Target

C
Bins: 4

A
Bins: 4

B
Bins: 5

C
Bins: 5

 

Figure 18 This process continued through the remaining 
variables. 

Target

C
Bins: 4

AUC: .923

A
Bins: 3

B
Bins: 5

C
Bins: 5
AUC: .931

 

 
 
 
 
 

Figure 19 The algorithm terminated when all variables 
have had a bin size selected. 



29 
 

Network Creation 

Table 1 Each structure learning algorithm, the package of the implementation, and the type of algorithm. 

Algorithm Software Algorithm Type

Augmented Naïve Bayes Bayesia ® BayesiaLab Supervised

Augmented Markov Blanket Bayesia ® BayesiaLab Supervised

Greedy Search Causal Explorer Unsupervised

Max-Min Hill Climbing Causal Explorer Unsupervised

Semi-supervised Bayesia ® BayesiaLab Semi-supervised

Tabu Search Bayesia ® BayesiaLab Unsupervised  

Six BN structure algorithms implemented by two Bayesian network applications, 

BayesiaLab and Causal Explorer, were included in the study. Bayesia® BayesiaLab 4.5.1 (37), is a 

commercially developed application for data mining and Bayesian network creation, and Causal 

Explorer 1.4 (38) is an academically developed toolbox for MatLab containing several BN 

structure algorithms. All Causal Explorer algorithms were executed in MatLab version 14 release 

2008b (39). All included algorithms guaranteed a DAG would be created. The supervised 

algorithms focus on developing the network structure to predict a specific variable. The 

unsupervised algorithms develop a general structure based on relationships between all 

included variables.  In addition to the machine learning methods, a previous, expert-developed 

Bayesian network was included for comparison. Table 1 lists the algorithms included in the 

study.  

Each application developed Bayesian network structure was learned on the whole 

train/validation data set for predicting diversion one hour in advance. The default methodology 

for creating the Bayesian network structure was used for each algorithm.  The MMHC algorithm 

was only supplied with a data set sampled every 15 minutes rather than 5 minutes to reduce the 

amount of computation time required for generating a DAG. 
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The expert-developed BN was previously created with the same data set for predicting 

ambulance diversion one hour in advance as supplied to the machine learning algorithms. All 

algorithms used data discretized the same way.  

Evaluation 

Each resulting Bayesian network structure was recreated in the BN application Norsys 

Netica 4.02 (3). Each BN structure was trained and evaluated on data to predict ambulance 

diversion at 1, 2, 4, 6, 8, and 12 hours in advance. The network parameters were learned using 

the Norsys® NeticaJ 4.03 API for Java from the entire training/validation set using the counting 

method. The counting method calculates the BN parameters by counting the number of times 

each conditional probability occurs in the data set. The counting method was selected over the 

Expectation-Maximization (EM) algorithm because the data set did not contain missing values 

and it takes more time to obtain the same result as counting method (40). 

Outcome Measures 

The AUC and its 95% confidence interval (CI), negative log likelihood (NLL), and Akaike 

Information Criterion (AIC) were calculated on the test data set not used during discretization or 

model creation. NLL and AIC were selected as additional methods of evaluation because of their 

use in model selection. 
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CHAPTER IV 

RESULTS 

Data 

Descriptive Statistics 

The study's training/validation set contained 104,975 observations and the emergency 

department was on ambulance diversion 23.2% of the time. The test set, which contained leap 

year day for 2008, contained 105,265 observations.  The ED was on ambulance diversion 22.3% 

of the time during the test set. Table 2 statistics for each variable in train/validation and test 

data sets. Table 2 gives the descriptive statistics for the train/validation data sets prior to 

discretization. 
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Table 2 statistics for each variable in train/validation and test data sets. 

Variable Name
Training 

Mean

Training 

Standard 

Deviation

Test 

Mean

Test 

Standard 

Deviation

NO_OF_BED_REQUESTS_ED 10.26 7.05 11.93 7.64

ED_NO_OF_WAITING_ROOM_PTS 4.55 5.50 4.39 5.31

ED_OCCUPANCY 0.80 0.19 0.82 0.22

ED_PTS_AVG_TIME_TO_ED_BED 26.84 37.56 26.51 38.55

ED_NO_OF_CURRENT_PTS 45.97 13.85 45.99 14.73

NO_OF_BED_REQUESTS_PERIOP 4.28 5.12 3.71 4.82

TOTAL_NO_OF_SURGERY_PER_HR 62.77 35.13 61.12 33.90

ED_NO_OF_NURSES 12.96 1.87 12.96 1.87

HOSP_AVAIL_BED_CAPACITY 21.77 38.78 33.09 35.84

NO_OF_BED_REQUESTS_TRANSFER 26.08 12.30 22.98 10.24

ED_VOL_HOSP_CAPACITY_ALL_BDS 0.17 0.13 0.16 0.13

ED_VOL_HOSP_CAPACITY_ICU_BDS 0.38 0.30 0.38 0.32

ED_PTS_AVG_TIME_TO_DISCHARGE 415.67 263.29 423.74 269.01

ED_INPTS_AVG_TIME_TO_DSCHRG 456.95 274.61 461.56 279.12

HOSP_DISCHARGE_POTENTIAL 0.03 0.03 0.04 0.05

ED_BED_ASSIGN_TIME_AVG 443.81 285.61 459.31 280.76

ED_INPTS_AVG_LOS_TIME 552.14 255.47 607.22 289.98  

Discretization 

 Table 3 shows the order each equal frequency discretized variable was selected. 

Table 4 shows the same information as the equal frequency ordering, but for each equal width 

discretized variable. Appendix A contains the bin ranges for each method and the AUCs for the 

first pass of discretization where each variable/bin combination was made the sole child of the 

target variable. 



33 
 

Table 3 shows the order and number of bins for each variable when equal frequency discretization was used. 

Order 

Added
Variable Name

Bin 

Size

1 ED_NO_OF_NURSES 2

2 ED_NO_OF_WAITING_ROOM_PTS 3

3 ED_INPTS_AVG_LOS_TIME 4

4 HOSP_AVAIL_BED_CAPACITY 4

5 TOTAL_NO_OF_SURGERY_PER_HR 8

6 ED_PTS_AVG_TIME_TO_DISCHARGE 4

7 NO_OF_BED_REQUESTS_PERIOP 3

8 NO_OF_BED_REQUESTS_TRANSFER 2

9 ED_OCCUPANCY 4

10 ED_BED_ASSIGN_TIME_AVG 5

11 ED_INPTS_AVG_TIME_TO_DSCHRG 4

12 ED_VOL_HOSP_CAPACITY_ALL_BDS 2

13 ED_PTS_AVG_LOS_TIME 2

14 NO_OF_BED_REQUESTS_ED 3

15 ED_NO_OF_CURRENT_PTS 10

16 ED_VOL_HOSP_CAPACITY_ICU_BDS 2

17 HOSP_DISCHARGE_POTENTIAL 4

18 ED_PTS_AVG_TIME_TO_ED_BED 10  

 

 

Table 4 shows the order and number of bins for each variable when equal width discretization was used. 

Order 

Added
Variable Name

Bin 

Size

1 ED_PTS_AVG_TIME_TO_ED_BED 5

2 ED_NO_OF_WAITING_ROOM_PTS 10

3 ED_INPTS_AVG_LOS_TIME 2

4 HOSP_AVAIL_BED_CAPACITY 3

5 TOTAL_NO_OF_SURGERY_PER_HR 3

6 ED_PTS_AVG_TIME_TO_DISCHARGE 2

7 NO_OF_BED_REQUESTS_PERIOP 2

8 NO_OF_BED_REQUESTS_TRANSFER 7

9 ED_OCCUPANCY 3

10 ED_BED_ASSIGN_TIME_AVG 2

11 ED_INPTS_AVG_TIME_TO_DSCHRG 2

12 ED_VOL_HOSP_CAPACITY_ALL_BDS 2

13 ED_PTS_AVG_LOS_TIME 4

14 NO_OF_BED_REQUESTS_ed 2

15 ED_NO_OF_CURRENT_PTS 3

16 ED_VOL_HOSP_CAPACITY_ICU_BDS 3

17 HOSP_DISCHARGE_POTENTIAL 3

18 ED_NO_OF_NURSES 3  
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Algorithm Comparison 

 

Table 5 gives an overview of the best performing machine learned BN structures. Table 6gives the same overview 
as  

Table 5, but includes the expert-developed network for comparison. Figure 20 plots the 

AUC for each BN structure data set for predicting diversion one hour advanced, the data set the 

structure was developed.  

 gives the AUC and 95% CI for the data graphed in Figure 20. Table 7 shows the overall 

complexity for each network created for each algorithm, using each discretization algorithm. All 

algorithms included 18 variables plus the diversion status except for the augmented Markov 

Blanket which had 16 nodes and the expert-developed network which had 11 in addition to the 

ambulance diversion status. Diagrams of all Bayesian network structures created using the equal 

frequency discretized data set can be found in Appendix B and the network structures created 

using the equal width data set can be found in Appendix C. The complete tables of results for all 

prediction times can be found in Appendix D.   
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Table 5 The best performing algorithms for each of the selected metrics. The letter attached to the end of the 
algorithm indicates whether it was the network where equal frequency (F) discretization was used or equal width 
(W) discretization. Where Area Under ROC has multiple networks list, the networks 95% Confidence Intervals 
overlapped. The table only includes the structure learning algorithms. 

Prediction 

Time
Area Under ROC

Negative Log 

Likliehood

Akaike Information 

Criterion

1 Hour MMHC-F MMHC-F Semi-Supervised-W

2 Hours MMHC-F MMHC-F Tabu-W

4 Hours Tabu-W Tabu-W Tabu-W

Augmented Markov 

Blanket-W

6 Hours Tabu-W Tabu-W Tabu-W

Augmented Naïve 

Bayes-W

8 Hours Augmented Naïve 

Bayes-W

Augmented Markov 

Blanket-W

Augmented Markov 

Blanket-W

Augmented Markov 

Blanket-W

12 Hours Augmented Naïve 

Bayes-W

Semi-Supervised-F Augmented Markov 

Blanket-W  
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Table 6 contains the best BN structures, including the expert network for each of the selected metrics. The letter 
attached to the end of the algorithm indicates whether the network was learned on the equal frequency (F) 
discretized data or equal width (W) discretized data. Where Area under the ROC has multiple networks list, the 
networks 95% Confidence Intervals overlapped. The table only both machine learned structures and the expert 
developed network 

Prediction 

Time
Area Under ROC

Negative Log 

Likliehood

Akaike Information 

Criterion
1 Hour MMHC-F MMHC-F Expert Created -W

Expert Created -F MMHC-F

2 Hours Expert Created -F Expert Created-W Expert Created -W

MMHC-F

4 Hours Expert Created -F Tabu-W Expert Created -W

6 Hours Expert  Created-F Tabu-W Expert Created -F

8 Hours
Expert Created -F

Augmented Markov 

Blanket-W
Expert Created -F

Augmented Naïve 

Bayes-W

Augmented Markov 

Blanket-W

12 Hours Augmented Naïve Semi_Supervised-F Expert Created -F  

 
 

 

 

Figure 20 AUC performance of each learned BN structure on the data set for predicting diversion one hour ahead. 
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Table 7 AUC and 95% CI for each algorithm on the predicting diversion one hour in advance data set 

. 

Algorithms AUC

Aug Markov 0.9198 0.918 0.922

Aug NB 0.9229 0.921 0.925

Semi-Supervised 0.9449 0.943 0.946

Taboo 0.9449 0.944 0.946

MMHC 0.9491 0.948 0.950

Greedy Search 0.9168 0.915 0.919

Expert 0.9473 0.946 0.949

Algorithms AUC

Aug Markov 0.9421 0.941 0.944

Aug NB 0.9352 0.934 0.937

Semi-Supervised 0.9460 0.945 0.947

Taboo 0.9427 0.941 0.944

MMHC 0.9395 0.938 0.941

Greedy Search 0.9334 0.932 0.935

Expert 0.9395 0.938 0.941

Confidence Interval

Confidence Interval

Equal Width Discretized

Equal Frequency Discretized

 

 
 

 

 

Table 8 The number of links and the resulting number of probability tables for each created network structure 

Algorithms

Number of Links 

Between Nodes

Total Number of 

Conditional 

Probabilities

Number of Links 

Between Nodes

Total Number of 

Conditional 

Probabilities
Aug Markov 58 8069 53 3083

Aug NB 66 8994 64 4382

Semi-Supervised 68 13730 57 3331

Taboo 63 6853 56 3397

MMHC 53 5244 60 8430

Greedy Search 76 215966 82 32994

Expert 19 365 19 653

Equal Frequency Discretized Networks Equal Width Discretized Networks
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CHAPTER V 

DISCUSSION 

Six different BN structure learning algorithms were used to create two DAGs learned 

from a data set to predict diversion one hour in advance. Each algorithm created a DAG for both 

of the discretization methods used. The AUC, NLL, and AIC were calculated as an output metrics. 

In this chapter we discuss the quality of the data set, how the machine learned DAGs performed 

in relation to each other, compare the machine learned structures to the expert-developed 

network, and evaluate how well the DAGs generalized predicting ambulance diversion to predict 

up to twelve hours ahead.  

The Data Set 

The train/validation and test data set both contained over 100,000 data points, neither 

of which contained any missing values. The reference standard of ED diversion was not perfect. 

The institutional guidelines state the ED is to go on ambulance diversion when the occupancy is 

greater than or equal 100% and there are 10 or more patients in the waiting room. In the 

train/validation data set the ED was on diversion 80% of the time when these criteria were met 

and 78% of the time for the test set. 

Structure Learning Algorithm Comparison 

Table 6 lists the best performing algorithms for each of the selected metrics. The letter 

attached to the end of the algorithm indicates whether the BN structure was learned from the 

equal frequency (F) or equal width (W) discretization data set. When the AUC field in the table 
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has multiple BNs, this indicates their 95% CI overlap. Except for the BN structures learned from 

the augmented Markov blanket algorithm, all machine learning algorithms included each of the 

18 variables in the structure. Both the structures learned by the augmented Markov blanket 

algorithm on the equal width and equal frequency data sets excluded the 

ED_VOL_HOSP_CAPACITY_ALL_BDS and ED_VOL_HOSP_CAPACITY_ICU_BDS variables. These 

two variables not being included in the network indicates they did not lie within the identified 

Markov Blanket. This implies the nodes did not have a direct effect on the target variable. Their 

inclusion in the other graphs indicates ED_VOL_HOSP_CAPACITY_ALL_BDS and 

ED_VOL_HOSP_CAPACITY_ICU_BDS had some effect on at least one of the other variables 

within the network. 

Notice in Figure 20 the best performing networks for predicting diversion 1, 2, and 4 

hours in advance favored unsupervised algorithms. Since all structures were learned on the data 

set for predicting diversion one hour in advance, the unsupervised algorithms seem to identify 

the relationships between all variables in the data set.  This could indicate the variables which 

affect diversion at 1, 2, and 4 hours in advance are closely related.   

The reason the targeted algorithms performed better when predicting diversion after 4 

hours may be that the relationships between the variables predicting diversion in advance 

change. For the two included supervised algorithms, the overall structures would not likely 

change. These naïve targeted structures develop a skeleton structure based on the target 

variable before looking for relationships between any of the other variables. 

For example, the augmented naïve Bayesian structure first creates a naïve Bayesian 

network. This initial network structure would be the same regardless of which diversion 

prediction data set was used. The only relationships learned that would be dependent on the 
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relationships between the variables at the specified amount of time in advance, but the 

underlying structure would be the same.  

Comparison Structure Algorithms and the Expert-Created Network 

The expert-developed BN was among the best performing networks for both AUC and 

AIC up to 8 hours in advance. Eight hour and above the relationships between the variables 

could have changed. The expert network used only 11 variables compared to the machine 

learned structures which used between 16 and 18 variables. The expert-developed network also 

contained fewer links than the BNs learned by the structure learning algorithms and had fewer 

conditional probability tables. The lower complexity alone would be a reason why the expert-

developed network performed best using AIC. The expert-developed network incurred a much 

smaller penalty for complexity compared to the machine learned structures. 

Though the expert-developed model was simpler, MMHC performed just as well on the 

data sets to predict diversion one and two hours in advance. If discriminative ability is the 

primary concern, MMHC makes an excellent choice because a human is involved in the 

preprocessing of the data, as would also be required to human develop a BN. The user is only 

required to allow MMHC develop the DAG, but the many links make it difficult to learn relations. 

Discretization Methods Comparison 

The BN complexity was a result of discretization showing it to be a factor affecting the 

performance of the learned BNs.  Each BN structure learning algorithm created two structures, 

one for each discretization method. When predicting diversion one hour in advance, the simpler 

network created by the algorithm consistently performed better or was within the 95% CI for 

earlier predicting networks. The equal width discretization tended to result in the less complex 
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networks. Of the machine learned network structures MMHC was the only algorithm which 

created a simpler network using the frequency discretized data set. Overall, the results showed 

discretization was a factor in BN creation because networks with fewer conditional probabilities 

performed better than their more complex counterparts for all, but prediction times less than 

diversion eight hours. Equal width discretization led to simpler networks for all, except MMHC. 

Limitations 

The study was limited by the number of data sets used for  evaluation. Before any 

general conclusions could further be made, a broader number of data sets would be needed. In 

addition to the use of a single data set, a limited number of discretization methods were used 

prior to model building. The simpler models performed best between the two, showing 

discretization affected the results. 
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CHAPTER V 

FUTURE WORK 

 Further exploration in both the comparison of BN structure learning packages 

along with developing a BN for predicting ambulance diversion in advanced are needed. 

Bayesian Network Structure Learning Packages 

Future work evaluating BN structure learning packages could be expanded in several 

ways. The next step in future work is to include a larger number of algorithms for comparison. 

The results should be based on more data sets each discretized using a more expansive number 

of techniques.  

Emergency Department Ambulance Diversion 

 For ambulance diversion, the network should be learned on each of the time points the 

network is expected to predict  rather than learning just one network for all times. Another 

possibility would be to use a score metric like the BDeu score to learn a network structure 

containing all desired prediction times in a single network. Learning on the additional times 

could provide valuable information regarding the relationships between these elements. 

Manual modification of the machine learned BN structures by experts could result in less 

complex models. Bayesian models which specifically integrate the temporal relationships 

between the variables with regard to time, such as dynamic Bayesian networks, hidden Markov 

models, or Kalman filters should be examined. 
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CHAPTER VI 

CONCLUSION 

 The results showed the BN algorithms ability to learn models with strong 

discrimination. Most of the machine learned structures were able to perform as well as the 

expert-developed network. The study showed on the curated data set BN structure algorithms 

can create models with strong discriminatory power. These “off the shelf” implementations of 

BN structure learning algorithms can provide those with entry level machine learning knowledge 

the ability to develop BN models. 
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APPENDIX A 

DISCRETIZATION RESULTS
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Table 9 The selected equal frequency discretization ranges for each variable. 

Equal Frequency Discretization 

Variable Names 
 

Ranges 

ED_NO_OF_CURRENT_PTS 
 

−∞ 27.5 34 37.5 41.5 45.5 49.5 53.5 58.5 65.5 ∞ 

ED_PTS_AVG_TIME_TO_ED_BED 
 

−∞ 0.5 5.5 12.5 22.5 33.5 46.5 60.5 77.5 101.5 ∞ 

TOTAL_NO_OF_SURGERY_PER_HR 
   

−∞ 9.5 14.5 71.5 79.5 84.5 89.5 94.5 ∞ 

ED_BED_ASSIGN_TIME_AVG 
      

−∞ 162.5 357.5 524.5 693.5 ∞ 

HOSP_DISCHARGE_POTENTIAL 
       

−∞ 0.005 0.010 0.045 ∞ 

ED_OCCUPANCY 
       

−∞ 0.675 0.845 0.955 ∞ 

ED_INPTS_AVG_TIME_TO_DSCHRG 
       

−∞ 238.5 462.5 658.5 ∞ 

ED_PTS_AVG_TIME_TO_DISCHARGE 
      

−∞ 202.5 418.5 612.5 ∞ 

ED_INPTS_AVG_LOS_TIME 
       

−∞ 347.5 539.5 733.5 ∞ 

HOSP_AVAIL_BED_CAPACITY 
       

−∞ -12.5 14.5 43.5 ∞ 

NO_OF_BED_REQUESTS_ED 
        

−∞ 6.5 14.5 ∞ 

NO_OF_BED_REQUESTS_PERIOP 
        

−∞ 0.5 5.5 ∞ 

ED_NO_OF_WAITING_ROOM_PTS 
        

−∞ 1.5 5.5 ∞ 

NO_OF_BED_REQUESTS_TRANSFER 
         

−∞ 26.5 ∞ 

ED_VOL_HOSP_CAPACITY_ALL_BDS 
         

−∞ 0.135 ∞ 

ED_PTS_AVG_LOS_TIME 
         

−∞ 401.5 ∞ 

ED_VOL_HOSP_CAPACITY_ICU_BDS 
         

−∞ 0.305 ∞ 

ED_NO_OF_NURSES                   −∞ 12.950 ∞ 
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Table 10 The AUC for each variable/bin size combination for equal frequency discretization when added a sole child node of VUH_ED_DIVERSION. 

  
AUC's From First Pass of Frequency Discretization 

  
Frequency Bin Sizes 

Variable Names 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 

ED_NO_OF_CURRENT_PTS 
 

0.745 
 

0.755 
 

0.757 
 

0.758 
 

0.757 
 

0.759 
 

0.759 
 

0.759 
 

0.761 

ED_PTS_AVG_TIME_TO_ED_BED 
 

0.721 
 

0.708 
 

0.708 
 

0.709 
 

0.710 
 

0.710 
 

0.711 
 

0.711 
 

0.711 

TOTAL_NO_OF_SURGERY_PER_HR 
 

0.676 
 

0.671 
 

0.663 
 

0.675 
 

0.684 
 

0.648 
 

0.686 
 

0.684 
 

0.677 

ED_BED_ASSIGN_TIME_AVG 
 

0.549 
 

0.564 
 

0.577 
 

0.573 
 

0.539 
 

0.553 
 

0.560 
 

0.563 
 

0.557 

HOSP_DISCHARGE_POTENTIAL 
 

0.538 
 

0.555 
 

0.545 
 

0.522 
 

0.533 
 

0.532 
 

0.543 
 

0.539 
 

0.536 

ED_OCCUPANCY 
 

0.723 
 

0.716 
 

0.720 
 

0.714 
 

0.711 
 

0.715 
 

0.716 
 

0.712 
 

0.711 

ED_INPTS_AVG_TIME_TO_DSCHRG 
 

0.567 
 

0.575 
 

0.589 
 

0.586 
 

0.585 
 

0.561 
 

0.568 
 

0.572 
 

0.575 

ED_PTS_AVG_TIME_TO_DISCHARGE 
 

0.569 
 

0.572 
 

0.579 
 

0.579 
 

0.577 
 

0.578 
 

0.563 
 

0.567 
 

0.569 

ED_INPTS_AVG_LOS_TIME 
 

0.521 
 

0.529 
 

0.531 
 

0.516 
 

0.519 
 

0.524 
 

0.512 
 

0.516 
 

0.519 

HOSP_AVAIL_BED_CAPACITY 
 

0.571 
 

0.580 
 

0.574 
 

0.572 
 

0.563 
 

0.567 
 

0.561 
 

0.559 
 

0.557 

NO_OF_BED_REQUESTS_ED 
 

0.615 
 

0.614 
 

0.603 
 

0.607 
 

0.605 
 

0.610 
 

0.610 
 

0.609 
 

0.608 

NO_OF_BED_REQUESTS_PERIOP 
 

0.761 
 

0.647 
 

0.647 
 

0.645 
 

0.645 
 

0.646 
 

0.646 
 

0.646 
 

0.647 

ED_NO_OF_WAITING_ROOM_PTS 
 

0.738 
 

0.723 
 

0.715 
 

0.717 
 

0.717 
 

0.717 
 

0.717 
 

0.717 
 

0.717 

NO_OF_BED_REQUESTS_TRANSFER 
 

0.553 
 

0.553 
 

0.545 
 

0.552 
 

0.551 
 

0.554 
 

0.546 
 

0.546 
 

0.547 

ED_VOL_HOSP_CAPACITY_ALL_BDS 
 

0.621 
 

0.601 
 

0.605 
 

0.603 
 

0.603 
 

0.599 
 

0.602 
 

0.600 
 

0.603 

ED_PTS_AVG_LOS_TIME 
 

0.557 
 

0.540 
 

0.540 
 

0.538 
 

0.541 
 

0.546 
 

0.546 
 

0.542 
 

0.545 

ED_VOL_HOSP_CAPACITY_ICU_BDS 
 

0.636 
 

0.629 
 

0.632 
 

0.630 
 

0.628 
 

0.628 
 

0.629 
 

0.629 
 

0.628 

ED_NO_OF_NURSES   0.802   0.780   0.779   0.776   0.775   0.777   0.777   0.776   0.776 
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Table 11 The selected equal width discretization ranges for each variable. 

Equal Width Discretization 

Variable Names 
 

Ranges 

ED_NO_OF_WAITING_ROOM_PTS 
 

−∞ 3.40 6.80 10.20 13.60 17.00 20.40 23.80 27.20 30.60 ∞ 

NO_OF_BED_REQUESTS_TRANSFER 
   

 
−∞ 10.57 20.14 29.71 39.29 48.86 58.43 ∞ 

ED_PTS_AVG_TIME_TO_ED_BED 
  

    
−∞ 64.60 129.20 193.80 258.40 ∞ 

ED_PTS_AVG_LOS_TIME 
  

     
−∞ 371.00 635.00 899.00 ∞ 

HOSP_AVAIL_BED_CAPACITY 
  

      
−∞ 0.00 82.00 ∞ 

TOTAL_NO_OF_SURGERY_PER_HR 
  

      
−∞ 39.33 76.67 ∞ 

ED_NO_OF_CURRENT_PTS 
  

      
−∞ 36.33 63.67 ∞ 

ED_VOL_HOSP_CAPACITY_ICU_BDS 
  

      
−∞ 1.22 2.45 ∞ 

HOSP_DISCHARGE_POTENTIAL 
  

      
−∞ 0.06 0.11 ∞ 

ED_OCCUPANCY 
  

      
−∞ 0.50 0.89 ∞ 

ED_NO_OF_NURSES 
  

      
−∞ 12.00 14.00 ∞ 

NO_OF_BED_REQUESTS_ED 
  

       
−∞ 20.50 ∞ 

ED_BED_ASSIGN_TIME_AVG 
  

       
−∞ 876.50 ∞ 

ED_INPTS_AVG_TIME_TO_DSCHRG 
  

       
−∞ 780.00 ∞ 

ED_VOL_HOSP_CAPACITY_ALL_BDS 
  

       
−∞ 0.64 ∞ 

ED_PTS_AVG_TIME_TO_DISCHARGE 
  

       
−∞ 746.50 ∞ 

NO_OF_BED_REQUESTS_PERIOP 
  

       
−∞ 17.50 ∞ 

ED_INPTS_AVG_LOS_TIME                   −∞ 896.00 ∞ 
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Table 12 The AUC for each variable/bin size combination for equal width discretization when added a sole child node of VUH_ED_DIVERSION. 

  
AUC's From First Pass of Width Discretization 

  
Width Bin Sizes 

Variable Names 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 

ED_NO_OF_CURRENT_PTS 
 

0.769 
 

0.766 
 

0.760 
 

0.765 
 

0.765 
 

0.755 
 

0.757 
 

0.760 
 

0.760 

ED_PTS_AVG_TIME_TO_ED_BED 
 

0.674 
 

0.593 
 

0.708 
 

0.882 
 

0.876 
 

0.866 
 

0.806 
 

0.788 
 

0.783 

TOTAL_NO_OF_SURGERY_PER_HR 
 

0.639 
 

0.676 
 

0.639 
 

0.648 
 

0.658 
 

0.668 
 

0.626 
 

0.632 
 

0.616 

ED_BED_ASSIGN_TIME_AVG 
 

0.662 
 

0.600 
 

0.541 
 

0.562 
 

0.552 
 

0.558 
 

0.560 
 

0.545 
 

0.557 

HOSP_DISCHARGE_POTENTIAL 
 

0.553 
 

0.558 
 

0.518 
 

0.525 
 

0.516 
 

0.520 
 

0.520 
 

0.521 
 

0.521 

ED_OCCUPANCY 
 

0.732 
 

0.739 
 

0.701 
 

0.707 
 

0.720 
 

0.708 
 

0.708 
 

0.704 
 

0.705 

ED_INPTS_AVG_TIME_TO_DSCHRG 
 

0.661 
 

0.574 
 

0.579 
 

0.567 
 

0.569 
 

0.577 
 

0.572 
 

0.570 
 

0.570 

ED_PTS_AVG_TIME_TO_DISCHARGE 
 

0.651 
 

0.591 
 

0.573 
 

0.562 
 

0.567 
 

0.571 
 

0.568 
 

0.570 
 

0.569 

ED_INPTS_AVG_LOS_TIME 
 

0.527 
 

0.530 
 

0.518 
 

0.519 
 

0.514 
 

0.521 
 

0.513 
 

0.520 
 

0.511 

HOSP_AVAIL_BED_CAPACITY 
 

0.500 
 

0.579 
 

0.552 
 

0.555 
 

0.544 
 

0.574 
 

0.565 
 

0.556 
 

0.551 

NO_OF_BED_REQUESTS_ED 
 

0.633 
 

0.606 
 

0.611 
 

0.597 
 

0.605 
 

0.601 
 

0.599 
 

0.594 
 

0.600 

NO_OF_BED_REQUESTS_PERIOP 
 

0.847 
 

0.828 
 

0.638 
 

0.654 
 

0.645 
 

0.638 
 

0.636 
 

0.646 
 

0.646 

ED_NO_OF_WAITING_ROOM_PTS 
 

0.825 
 

0.667 
 

0.675 
 

0.697 
 

0.717 
 

0.718 
 

0.725 
 

0.726 
 

0.726 

NO_OF_BED_REQUESTS_TRANSFER 
 

0.544 
 

0.545 
 

0.543 
 

0.542 
 

0.539 
 

0.558 
 

0.545 
 

0.552 
 

0.543 

ED_VOL_HOSP_CAPACITY_ALL_BDS 
 

0.627 
 

0.700 
 

0.603 
 

0.599 
 

0.601 
 

0.602 
 

0.606 
 

0.608 
 

0.606 

ED_PTS_AVG_LOS_TIME 
 

0.500 
 

0.543 
 

0.571 
 

0.530 
 

0.540 
 

0.554 
 

0.554 
 

0.543 
 

0.555 

ED_VOL_HOSP_CAPACITY_ICU_BDS 
 

0.728 
 

0.804 
 

0.759 
 

0.611 
 

0.643 
 

0.641 
 

0.630 
 

0.627 
 

0.636 

ED_NO_OF_NURSES 
 

0.802   0.780   0.777   0.776   0.777   0.777   0.776   0.776   0.776 
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APPENDIX B 

FREQUENCY NETWORK STRUCTURES
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Figure 21 Augmented Markov Blanket 
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Figure 22 Augmented Naive Bayesian Network 
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Figure 23 MMHC Learned Structure 
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Figure 24 Taboo Learned Network 
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Figure 25 Greedy Search 
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Figure 26 Semi-Supervised 
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Figure 27 Expert Developed 
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APPENDIX C 

EQUAL WIDTH NETWORK STRUCTURES 
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Figure 28 Markov Blanket 
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Figure 29Augmented Naive Bayesian Network 

 



61 
 

 

Figure 30 MMHC 
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Figure 31 Taboo Search 
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Figure 32 Greedy Search 
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Figure 33 Semi-Supervised 
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Figure 34 Expert-developed 
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APPENDIX D 

NETWORK EVALUATION RESULTS 



67 
 

 

Predicting 1 hour in Advance 

 

 
Equal Frequency Discretized Data Set 

Algorithms AUC 
 

SE of AUC 
 

 

NLL 
 

AIC 

Aug Markov 0.9198 
 

8.88E-04 
  

35757.05 
 

87652.09 

Aug NB 0.9229 
 

8.82E-04 
  

35521.55 
 

89031.10 

Semi-Supervised 0.9449 
 

7.21E-04 
  

26650.50 
 

80761.01 

Taboo 0.9449 
 

7.10E-04 
  

26904.52 
 

67515.04 

MMHC 0.9491 
 

6.89E-04 
  

25531.81 
 

61551.63 

Greedy Search 0.9168 
 

8.95E-04 
  

34756.18 
 

501444.37 

Expert 0.9473 
 

6.96E-04 
  

32474.70 
 

65679.40 

         

 
Equal Width Discretized Data Set 

Algorithms AUC 
 

SE of AUC 

  

NLL 
 

AIC 

Aug Markov 0.9421 
 

7.59E-04 
  

28166.23 
 

62498.47 

Aug NB 0.9352 
 

8.28E-04 
  

30595.78 
 

69955.57 

Semi-Supervised 0.9460 
 

7.15E-04 
  

26202.74 
 

59067.48 

Taboo 0.9427 
 

7.49E-04 
  

26575.39 
 

59944.77 

MMHC 0.9395 
 

7.55E-04 
  

27603.22 
 

72066.44 

Greedy Search 0.9334 
 

8.14E-04 
  

29669.45 
 

125326.90 

Expert 0.9395 
 

8.04E-04 
  

26916.09 
 

55138.18 
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Predicting 2 hours in Advance 

 

 
Equal Frequency Discretized Data Set 

Algorithms AUC 
 

SE of AUC 
 

 

NLL 
 

AIC 

Aug Markov 0.9117 
 

9.38E-04 
  

36900.42 
 

89938.84 

Aug NB 0.9112 
 

9.54E-04 
  

38739.68 
 

95467.36 

Semi-Supervised 0.9282 
 

8.52E-04 
  

29954.08 
 

87368.16 

Taboo 0.9320 
 

8.11E-04 
  

29371.32 
 

72448.65 

MMHC 0.9352 
 

8.10E-04 
  

28711.69 
 

67911.39 

Greedy Search 0.9005 
 

9.98E-04 
  

38010.68 
 

507953.37 

Expert 0.9381 
 

7.74E-04 
  

34691.88 
 

70113.77 

         

         

 
Equal Width Discretized Data Set 

Algorithms AUC 
 

SE of AUC 

  

NLL 
 

AIC 

Aug Markov 0.9305 
 

8.57E-01 
  

30612.86 
 

67391.73 

Aug NB 0.9213 
 

9.44E-04 
  

33692.40 
 

76148.80 

Semi-Supervised 0.9313 
 

8.40E-04 
  

29127.56 
 

64917.11 

Taboo 0.9322 
 

8.49E-04 
  

28739.30 
 

64272.59 

MMHC 0.9264 
 

8.72E-04 
  

29873.50 
 

76607.01 

Greedy Search 0.9207 
 

9.12E-01 
  

32201.49 
 

130390.98 

Expert 0.9311 
 

8.65E-04 
  

28697.59 
 

58701.17 

 

 



69 
 

Predicting 4 hours in Advance 

 

 
Equal Frequency Discretized Data Set 

Algorithms AUC 
 

SE of AUC 
 

 

NLL 
 

AIC 

Aug Markov 0.8720 
 

1.17E-03 
  

43546.21 
 

103230.42 

Aug NB 0.8720 
 

1.18E-03 
  

47463.51 
 

112915.01 

Semi-Supervised 0.8597 
 

1.27E-03 
  

39633.81 
 

106727.61 

Taboo 0.8758 
 

1.18E-03 
  

37674.12 
 

89054.24 

MMHC 0.8659 
 

1.26E-03 
  

38967.56 
 

88423.12 

Greedy Search 0.8362 
 

1.36E-03 
  

49039.18 
 

530010.36 

Expert 0.8998 
 

1.05E-03 
  

41403.5 
 

83537.00 

         

 
Equal Width Discretized Data Set 

Algorithms AUC 
 

SE of AUC 

  

NLL 
 

AIC 

Aug Markov 0.8836 
 

1.16E-03 
  

38510.03 
 

83186.05 

Aug NB 0.8794 
 

1.21E-03 
  

40649.64 
 

90063.28 

Semi-Supervised 0.8627 
 

1.29E-03 
  

39243.43 
 

85148.87 

Taboo 0.8848 
 

1.15E-03 
  

36867.49 
 

80528.98 

MMHC 0.8620 
 

1.31E-03 
  

38925.58 
 

94711.16 

Greedy Search 0.8732 
 

1.20E-03 
  

40799.77 
 

147587.53 

Expert 0.8810 
 

1.21E-03 
  

37280.02 
 

75866.04 
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Predicting 6 hours in Advance 

 

 
Equal Frequency Discretized Data Set 

Algorithms AUC 
 

SE of AUC 
 

 

NLL 
 

AIC 

Aug Markov 0.8269 
 

1.37E-03 
  

51039.79 
 

118217.58 

Aug NB 0.8257 
 

1.39E-03 
  

54594.66 
 

127177.32 

Semi-Supervised 0.7813 
 

1.59E-01 
  

46777.38 
 

121014.77 

Taboo 0.8115 
 

1.49E-03 
  

44149.72 
 

102005.45 

MMHC 0.7777 
 

1.65E-03 
  

47005.46 
 

104498.92 

Greedy Search 0.7693 
 

1.61E-03 
  

58588.38 
 

549108.76 

Expert 0.8542 
 

1.28E-03 
  

47258.07 
 

95246.14 

         

 
Equal Width Discretized Data Set 

Algorithms AUC 
 

SE of AUC 

  

NLL 
 

AIC 

Aug Markov 0.8349 
 

1.43E-03 
  

44396.08 
 

94958.16 

Aug NB 0.8323 
 

1.44E-03 
  

46362.11 
 

101488.22 

Semi-Supervised 0.7914 
 

1.61E-03 
  

45826.09 
 

98314.18 

Taboo 0.8360 
 

1.40E-03 
  

42687.69 
 

92169.38 

MMHC 0.7896 
 

1.63E-03 
  

45761.95 
 

108383.90 

Greedy Search 0.8142 
 

1.49E-03 
  

47682.42 
 

161352.84 

Expert 0.8030 
 

1.62E-03 
  

45708.11 
 

92722.21 
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Predicting 8 hours in Advance 

 

 
Equal Frequency Discretized Data Set 

Algorithms AUC 
 

SE of AUC 
 

 

NLL 
 

AIC 

Aug Markov 0.7857 
 

1.53E-03 
  

56778.54 
 

129695.08 

Aug NB 0.7751 
 

1.60E-03 
  

60699.49 
 

139386.98 

Semi-Supervised 0.7394 
 

1.73E-03 
  

49451.81 
 

126363.63 

Taboo 0.7745 
 

1.60E-03 
  

47082.70 
 

107871.40 

MMHC 0.7193 
 

1.78E-03 
  

50154.43 
 

110796.86 

Greedy Search 0.7179 
 

1.74E-03 
  

63152.91 
 

558237.82 

Expert 0.8081 
 

1.47E-03 
  

50623.57 
 

101977.15 

         

 
Equal Width Discretized Data Set 

Algorithms AUC 
 

SE of AUC 

  

NLL 
 

AIC 

Aug Markov 0.8037 
 

1.54E-03 
  

46981.12 
 

100128.23 

Aug NB 0.8058 
 

1.55E-03 
  

48414.40 
 

105592.80 

Semi-Supervised 0.7420 
 

1.80E-03 
  

48437.01 
 

103536.01 

Taboo 0.7877 
 

1.59E-03 
  

47551.95 
 

101897.90 

MMHC 0.7470 
 

1.76E-03 
  

48454.30 
 

113768.60 

Greedy Search 0.7666 
 

1.66E-03 
  

50943.09 
 

167874.18 

Expert 0.7150 
 

1.90E-03 
  

51791.67 
 

104889.33 
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Predicting 12 hours in Advance 

 

 
Equal Frequency Discretized Data Set 

Algorithms AUC 
 

SE of AUC 
 

 

NLL 
 

AIC 

Aug Markov 0.7619 
 

1.62E-03 
  

61996.33 
 

140130.67 

Aug NB 0.7613 
 

1.65E-03 
  

62770.93 
 

143529.85 

Semi-Supervised 0.7879 
 

1.59E-03 
  

46186.32 
 

119832.64 

Taboo 0.7469 
 

1.70E-03 
  

49496.43 
 

112698.85 

MMHC 0.7298 
 

1.77E-03 
  

50276.56 
 

111041.13 

Greedy Search 0.6725 
 

1.85E-03 
  

68207.27 
 

568346.54 

Expert 0.7623 
 

1.65E-03 
  

55102.35 
 

110934.70 

         

 
Equal Width Discretized Data Set 

Algorithms AUC 
 

SE of AUC 

  

NLL 
 

AIC 

Aug Markov 0.8032 
 

1.51E-03 
  

46904.20 
 

99974.40 

Aug NB 0.8091 
 

1.45E-03 
  

47550.60 
 

103865.20 

Semi-Supervised 0.7093 
 

1.90E-03 
  

50823.81 
 

108309.62 

Taboo 0.6997 
 

1.86E-03 
  

53700.80 
 

114195.60 

MMHC 0.7255 
 

1.80E-03 
  

50167.88 
 

117195.77 

Greedy Search 0.7095 
 

1.81E-03 
  

55723.21 
 

177434.43 

Expert 0.5891 
 

2.05E-01 
  

55782.44 
 

112870.89 
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