By

Bogdan Nica

Dissertation

Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

 MathematicsAugust, 2009
Nashville, Tennessee

Approved:
Professor Guoliang Yu
Professor Dietmar Bisch
Professor Bruce Hughes
Professor Thomas Kephart
Professor Mark Sapir

Părinţilor mei

ACKNOWLEDGEMENTS

First of all, I am grateful to my advisor, Professor Guoliang Yu, for guidance, patience, and encouragements.

I thank Professors Dietmar Bisch, Bruce Hughes, Gennadi Kasparov, Thomas Kephart, and Mark Sapir, for agreeing to be on my PhD committee. During my studies at Vanderbilt, I have taken courses from all of them but one. I would like to use this occasion to express the high esteem I have for them.

Conversations with Guihua Gong, Bruce Hughes, Quayum Khan, Marc Rieffel and Jan Spakula were useful for this work; I thank them all. Also, comments from Dietmar Bisch on the final draft of the thesis were greatly appreciated.

During 2004-2007, I received a Doctoral Research Scholarship from Le Fonds québécois de la recherche sur la nature et les technologies.

TABLE OF CONTENTS

Page
DEDICATION ii
ACKNOWLEDGEMENTS iii
Chapter
I. PREQUEL: THE GELFAND TRANSFORM 4
II. SMOOTH SUBALGEBRAS 6
II. 1 Generalities 6
II. 2 Smooth Fréchet subalgebras coming from closed derivations 8
III. THE PROPERTY OF RAPID DECAY 12
III. 1 Motivation: Sobolev spaces 12
III. 2 Haagerup's inequality for free groups 13
III. 3 Property RD. 14
III. 4 Decaying ℓ^{2}-functions 16
III.4.1 Decaying ℓ^{1}-functions (a comparison) 19
III. 5 Applications of property RD 21
III.5.1 The approach of Connes and Moscovici to the Novikov conjecture 21
III.5.2 Lafforgue's work on the Baum-Connes conjecture 22
III.5.3 Stable ranks of some reduced group C*-algebras 23
III. 6 Quantifying property RD 24
IV. STABLE RANKS 30
IV. 1 Introduction 30
IV. 2 Definitions of stable ranks 31
IV. 3 Stable ranks for $C(X)$ 34
IV. 4 Matrix algebras 37
IV. 5 Relations between stable ranks 37
IV. 6 Dense morphisms and quotients 40
IV. 7 Direct products. Direct limits 41
IV. 8 Inverse limits 42
IV. 9 Homotopy invariance of the connected and the general stable ranks 42
IV. 10 The case of stable rank one 43
IV. 11 Swan's problem 44
IV. 12 Extensions 47
IV. 13 Problems 50
V. THE HOMOTOPY GROUPS OF THE GENERAL LINEAR GROUPS 51
V. 1 Motivation: Stabilization for the algebraic K_{1}-group 51
V. 2 Stabilization of homotopy groups 52
V. 3 Two examples concerning stabilization in K-theory 55
V.3.1 K-theoretic stabilization for $C(X)$ 56
V.3.2 K-theoretic stabilization for tensor products of C^{*}-extensions of \mathcal{K} by $C(X)$ 56
VI. RELATIVELY SPECTRAL MORPHISMS 62
VI. 1 Relatively spectral morphisms 62
VI. 2 Spectral continuity 63
VI. 3 On finiteness 65
VI. 4 The Relative Density Theorem 66
VI. 5 Subexponential norm control 67
VI. $6 \quad \Sigma_{1}$-groups 69
VII. SPECTRAL K-FUNCTORS 72
VII. 1 K-schemes and induced K-functors 72
VII. 2 Spectral K-functors: defining K_{Ω} 74
VII. 3 Spectral K-functors: dependence on Ω 75
VII. 4 Spectral K-functors: recovering K_{0} and K_{1} 76
VII. 5 Spectral K-functors: the Relative Density Theorem. 77
VIII. BACK MATTER 78
VIII. 1 Spectrum 78
VIII. 2 Holomorphic functional calculus 78
VIII. 3 Finiteness 78
VIII. 4 Group algebras 80
VIII. 5 Nuclearity 82
VIII. 6 Hyperbolic groups 82
VIII. 7 Good topological algebras 83
VIII. 8 Fréchet spaces and Fréchet algebras 84
BIBLIOGRAPHY 92

INTRODUCTION

The main theme of this thesis is the interplay between spectral morphisms, K-theory, and stable ranks. Schematically, the inter-connections are captured by the following diagram:

A unital morphism $\phi: A \rightarrow B$ between two algebras is said to be spectral if it is spectrum-preserving, that is, $\operatorname{sp}_{B}(\phi(a))=\operatorname{sp}_{A}(a)$ for all $a \in A$. Typically, the algebras A will be invested with a topology, and the morphism ϕ is furthemore required to be continuous.

The importance of spectral morphisms was firmly established by the Gelfand transform. More recently, it has been used in connection with K-theory (via the Density Theorem) and stable ranks (Swan's problem). In turn, K-theory and stable ranks are connected by stabilization phenomena. This is not surprising, due to the interpretation of stable ranks as noncommutative notions of dimension.

The natural setting for K-theory is that of Banach algebras (Taylor [83], Blackadar [9]). Also, stable ranks are defined in the context of Banach algebras (Rieffel [71]). The larger world of good Fréchet algebras turns out, however, to be the most convenient for our purposes. K-theory is painlessly extended to this context (cf. Bost [11]). In situations pertaining to stable ranks, even the goodness assumption suffices.

Fréchet algebras appear naturally in Noncommutative Geometry (Connes [16]). A motivating example for stepping outside of the Banach context is $C^{\infty}(M)$, the Fréchet algebra of smooth functions on a compact manifold M. The Fréchet structure on $C^{\infty}(M)$ is given by the norms $\|f\|_{k}=\sum_{|\alpha| \leq k}\left\|\partial^{\alpha} f\right\|_{\infty}$, defined using local charts on M. The natural topology on $C^{\infty}(M)$ is thus finer than the one inherited from $C(M)$. Moreover, the subalgebra $C^{\infty}(M)$ is dense in $C(M)$, and every element in $C^{\infty}(M)$ that is invertible in $C(M)$ is actually invertible in $C^{\infty}(M)$. In particular, it follows that $C^{\infty}(M)$ has an open group of invertibles, i.e., it is a good Fréchet algebra.

The opening chapter reviews classical facts around the Gelfand transform which can be viewed as premonitions of some of the topics explored in this thesis.

Chapter 2 is a brief introduction to smooth subalgebras. Unlike the Gelfand context, and in line with
the commutative example provided by $C^{\infty}(M)$, we assume the subalgebras to be dense; more generally, spectral morphisms are almost always assumed to have dense image as well. We also review the noncommutative analogue of the the smooth inclusion $C^{\infty}(M) \hookrightarrow C(M)$, namely the construction of smooth Fréchet subalgebras of Banach algebras by using unbounded derivations. In particular, we obtain a smooth Fréchet subalgebra $S_{2}(\Gamma)$ inside the reduced group C^{*}-algebra $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ of a finitely generated group Γ by using the commutator derivation $a \mapsto[a,|\cdot|]$, where $|\cdot|$ denotes the word-length.

In Chapter 3, we look at the property of Rapid Decay for a finitely generated group Γ. Many groups are known to satisfy this property; we mention here the hyperbolic groups. Our emphasis is less on which groups satisfy property RD, and more on what property RD brings. For instance, property RD makes the smooth Fréchet subalgebra $S_{2}(\Gamma)$ of $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ explicit: it consists of the rapidly decaying ℓ^{2} functions on Γ. The material of this chapter, mostly well-known, is brought together in a novel exposition (compare [85, Ch.8]). A new direction is the idea of quantifying property RD. It is unclear at this point how interesting this idea will turn out, but we nevertheless find that Proposition III.6.2 is a lovely result one can prove in this direction.

Chapter 4, the longest of the thesis, is based on the preprint [62]. It is an introduction to stable ranks updating Rieffel's 20 years old foundational paper [71] - spiced with some new results. Let us point them out. In Section IV.3, Theorem IV.3.2 is actually taken from [61], but Proposition IV.3.4 is the first nontrivial computation of the general stable rank that I know of. In Section IV. 6 a number of new estimates are interspersed between known estimates. Section IV. 8 is a new direction altogether, coming from the fact that we extended the horizon from Banach algebras to good Fréchet algebras. In Section IV.9, the general stable rank half of Proposition IV.9.1 is new. We come upon a more significant result in Section IV.11, where we solve Swan's problem for two of the four stable ranks under consideration (the part of Theorem IV.11.6 concerning the connected stable rank was first proved in [61]).

Stable ranks - particularly the connected stable rank - are relevant for stabilization of homotopy groups of the general linear groups over Banach algebras. This is the topic of Chapter 5. Section V. 2 simplifies the results from [61] which were formulated in terms of certain higher connected stable ranks; in particular, we do away with higher connected stable ranks altogether. Section V.3, concerned with certain exact computations of stable homotopy levels, is completely new.

Chapters 6 and 7 are lifted from [61], essentially without any change. The motivation is to extend the scope of spectrality to situations where the spectral information is only known over a dense subalgebra. We investigate such "relatively spectral" morphisms; to be specific, a morphism $\phi: A \rightarrow B$ is relatively spectral if $\operatorname{sp}_{B}(\phi(x))=\operatorname{sp}_{A}(x)$ for all x in some dense subalgebra X of A. We do not know examples of relatively spectral morphisms that are not spectral. Most likely, examples exist and they are not obvious. But, once again, the point of considering relatively spectral morphisms is to get by with less spectral information. For instance, when one compares two completions of a group algebra $\mathbb{C} \Gamma$, it suffices to consider the spectral behavior of finitely-supported elements. We prove a relative version of the Density Theorem regarding isomorphism in K-theory (Theorem VI.4.2) and we extend the invariance of the connected stable rank to the relatively spectral context (Theorem VI.4.4). Then we take on spectral K-functors, and we prove the Relative Density Theorem for spectral K-functors K_{Ω}, indexed by open subsets $\Omega \subseteq \mathbb{C}$ containing the origin
(Theorem VII.5.1). For suitable Ω, one recovers the usual K_{0} and K_{1} functors. The basic motivation for introducing spectral K-functors is the need for an alternate picture of K_{0}, in which the subset of idempotents is replaced by an open subset.

We collect some background information and terminology in the last chapter. A detailed introduction to Fréchet algebras can be found there.

CHAPTER I

PREQUEL: THE GELFAND TRANSFORM

The spectral aspect first appeared in the context of Gelfand transforms, in the early forties. Gelfand's conceptual proof of a difficult and seminal theorem of Wiener, saying that the algebra $A(T)$ of continuous functions with absolutely convergent Fourier series is spectral in $C(T)$, was the first sign of the potency of Gelfand's theory. (Here T denotes the 1-torus $\{z \in \mathbb{C}:|z|=1\}$.)

As an introduction to the directions taken in thesis, we review some classical results on the Gelfand transform. This brief discussion is based on Taylor's papers [83], [84]; we use [43] as a reference on commutative Banach algebras.

Let A be a unital, commutative Banach algebra. Let X_{A} be the subset of the dual A^{*} consisting of the unital, multiplicative linear functionals on A. Under the induced weak*-topology (i.e., that of pointwise convergence), X_{A} is a compact, Hausdorff space. The space X_{A} is called the maximal ideal space, due to the fact that we have a bijective correspondence, given by $\phi \mapsto \operatorname{ker} \phi$, between functionals in X_{A} and maximal proper ideals of A.

For $a \in A$, let $\hat{a} \in C\left(X_{A}\right)$ denote the evaluation at a. The map $A \rightarrow C\left(X_{A}\right)$, given by $a \mapsto \hat{a}$, is called the Gelfand transform of A. Here are three examples:

- if A is a commutative C^{*}-algebra, then the Gelfand transform is an isomorphism;
- if $A=\ell^{1}\left(\mathbb{Z}^{d}\right)$, then X_{A} is homeomorphic to the d-torus T^{d} so, after suitable identifications, we view the inclusion $\ell^{1}\left(\mathbb{Z}^{d}\right) \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \mathbb{Z}^{d}$ as being the Gelfand transform;
- if A is the disk algebra $A(D)$, namely the closed subalgebra of $C(D)$ consisting of those continuous functions on the disk which are holomorphic in the interior, then X_{A} is homeomorphic to D; with this identification, the Gelfand transform is the inclusion $A(D) \hookrightarrow C(D)$. (Here D is the closed unit disk $\{z \in \mathbb{C}$: $|z| \leq 1\}$.)

In all examples above, the Gelfand transform is injective, but this is not true in general. The Gelfand transform is injective if and only if A is semisimple.

Theorem I.0.1. The Gelfand transform $A \rightarrow C\left(X_{A}\right)$ is a unital, continuous morphism with the property that a is invertible in A if and only if a is invertible in $C\left(X_{A}\right)$.

Strong relations between the structural properties of A and those of $C\left(X_{A}\right)$ - which are, in fact, topological properties of X_{A} - can be established across the Gelfand transform. The first result of this kind is Shilov's Idempotent Theorem (1953), saying that every idempotent in $C\left(X_{A}\right)$ - that is, the characteristic function of a closed and open subset of X_{A} - is the image under the Gelfand transform of an idempotent in A. In hindsight, this gives a strong hint that a K_{0}-isomorphism might be lurking in the background.

Arens (1963) proved the following:
Theorem I.0.2. The Gelfand transform $A \rightarrow C\left(X_{A}\right)$ induces, for each n, an isomorphism

$$
\pi_{0}\left(\operatorname{GL}_{n}(A)\right) \rightarrow \pi_{0}\left(\operatorname{GL}_{n}\left(C\left(X_{A}\right)\right)\right) .
$$

Here the K-theoretic implication is obvious: the Gelfand transform $A \rightarrow C\left(X_{A}\right)$ induces an isomorphism $K_{1}(A) \rightarrow K_{1}\left(C\left(X_{A}\right)\right)$. This was pointed out by Novodvorskii (1967) and, independently, by Eidlin (1967). In fact, Novodvorskii also handled the K_{0}-isomorphism. Thus:

Theorem I.0.3. The Gelfand transform $A \rightarrow C\left(X_{A}\right)$ induces an isomorphism $K_{*}(A) \rightarrow K_{*}\left(C\left(X_{A}\right)\right)$.
In order to state the next result, also due to Novodvorskii, we recall the following definition: the joint spectrum of an n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$ is the subset of \mathbb{C}^{n} given by

$$
\operatorname{sp}\left(a_{1}, \ldots, a_{n}\right)=\left\{\left(\lambda_{1}, \ldots, \lambda_{n}\right): A\left(a_{1}-\lambda_{1}\right)+\cdots+A\left(a_{n}-\lambda_{n}\right) \neq A\right\}
$$

Theorem I.0.4. Let Ω be a homogeneous open subset of \mathbb{C}^{n}. Put

$$
A_{\Omega}=\left\{\left(a_{1}, \ldots, a_{n}\right) \in A^{n}: \operatorname{sp}\left(a_{1}, \ldots, a_{n}\right) \subseteq \Omega\right\}
$$

Then the Gelfand transform $A \rightarrow C\left(X_{A}\right)$ induces an isomorphism $\pi_{0}\left(A_{\Omega}\right) \rightarrow \pi_{0}\left(C\left(X_{A}\right)_{\Omega}\right)$.
The open subset $\Omega=\mathbb{C}^{n} \backslash\{0\}$ is homogeneous, since it admits a transitive action of the complex Lie group $\mathrm{GL}_{n}(\mathbb{C})$. With an eye towards our discussion of stable ranks, we re-denote the set A_{Ω} by

$$
\operatorname{Lg}_{n}(A)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in A^{n}: A a_{1}+\cdots+A a_{n}=A\right\}
$$

In this case, Novodvorskii's theorem reads as follows:
Theorem I.0.5. The Gelfand transform $A \rightarrow C\left(X_{A}\right)$ induces an isomorphism

$$
\pi_{0}\left(\operatorname{Lg}_{n}(A)\right) \rightarrow \pi_{0}\left(\operatorname{Lg}_{n}\left(C\left(X_{A}\right)\right)\right)
$$

Notice that the last column of a matrix in $\mathrm{GL}_{n}(A)$ is an n-tuple in $\operatorname{Lg}_{n}(A)$. The question arises whether the converse holds, namely: given an n-tuple in $\operatorname{Lg}_{n}(A)$, is there an matrix in $\mathrm{GL}_{n}(A)$ having the n-tuple as its last column?

Lin (1973) proved the following:
Theorem I.0.6. An n-tuple $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{Lg}_{n}(A)$ can be filled out to a matrix in $\mathrm{GL}_{n}(A)$ if and only if the n-tuple $\left(\hat{a}_{1}, \ldots, \hat{a}_{n}\right) \in \operatorname{Lg}_{n}\left(C\left(X_{A}\right)\right)$ can be filled out to a matrix in $\mathrm{GL}_{n}\left(C\left(X_{A}\right)\right)$.

In what follows we shall be interested almost exclusively in spectral morphisms that are also dense; this is generally not the case with the Gelfand transform. However, the facts stated in this section bear some resemblance with directions taken in this thesis. Theorem I. 0.3 is a commutative cousin of the Density Theorem in K-theory. Theorems I.0.5 and I.0.6 have to do with preservation of the connected and the general stable ranks. Theorem I.0.4 is, in retrospect, somewhat related to the idea of spectral K-functors.

CHAPTER II

SMOOTH SUBALGEBRAS

II. 1 Generalities

In general, if A is a subalgebra of B then $\operatorname{sp}_{B}(a) \subseteq \operatorname{sp}_{A}(a)$ for each $a \in A$. We are interested in those special inclusions that are spectrum-preserving:

Definition II.1.1. An inclusion of algebras $A \hookrightarrow B$ is spectral if $\operatorname{sp}_{A}(a)=\operatorname{sp}_{B}(a)$ for each $a \in A$; equivalently, if every element of A that is invertible in B is actually invertible in A, i.e., $A \cap B^{\times}=A^{\times}$.

Throughout, inclusions are assumed to be unital. Furthermore, the algebras A and B will be topological algebras (usually A is Fréchet and B is Banach), in which case the inclusion is also assumed to be continuous.

Remark II.1.2. This property can be found under several names in the literature. Bourbaki (Théories Spectrales) says that A is "full" in B. Naimark (Normed Algebras) refers to a spectral inclusion as a "Wiener pair". In other sources, A is said to be "inverse-closed". Closer to our terminology is Schweitzer's [76] "spectral invariance" property.

The following result has been proved more than once [82, Lemma 2.1],[11, Prop. A.2.2], [76, Thm 2.1]. We give a proof due to Swan.

Theorem II.1.3. Let A be a dense subalgebra of a Banach algebra B. If A is spectral in B, then $\mathrm{M}_{n}(A)$ is spectral in $\mathrm{M}_{n}(B)$.

Proof. To show that a dense subalgebra A is spectral in B, it suffices to find U open in B with $A \cap U \subseteq A^{\times}$. Indeed, let $a \in A \cap B^{\times}$; by density, there is $a^{\prime} \in a^{-1} U \cap A$, so $a a^{\prime} \in U \cap A \subseteq A^{\times}$. Thus a has a right inverse in A, hence $a \in A^{\times}$.

We apply this observation to $\mathrm{M}_{n}(A) \hookrightarrow \mathrm{M}_{n}(B)$. Consider the neighborhood V of $1_{n} \in \mathrm{M}_{n}(B)$ given by

$$
\left(\begin{array}{cccc}
B^{\times} & U_{0} & \ldots & U_{0} \\
U_{0} & B^{\times} & \ldots & U_{0} \\
\ldots & \ldots & \ldots & \ldots \\
U_{0} & U_{0} & \ldots & B^{\times}
\end{array}\right)
$$

where U_{0} is a suitable neighborhood of 0 in B. Let $\left(a_{i j}\right) \in \mathrm{M}_{n}(A) \cap V$. In particular, the diagonal has entries in B^{\times}, hence in A^{\times}by spectrality. Row and column operations allow to clear first row and column, except for a_{11}. For suitable U_{0}, we may assume the diagonal of the resulting matrix to still have entries in B^{\times}, in fact in A^{\times}. We continue this process until we end up with a diagonal matrix with entries in A^{\times}. This means that the starting matrix $\left(a_{i j}\right)$ is in $\mathrm{M}_{n}(A)^{\times}$.

Simplicity is inherited by dense and spectral subalgebras:

Proposition II.1.4. Let A be a dense and spectral subalgebra of a Banach algebra B. If B is simple then A is simple.

Proof. Let M be a maximal 2-sided ideal in A. Then $M \cap A^{\times}=\varnothing$, so $M \cap B^{\times}=\varnothing$ by spectrality. As B^{\times} is open, the B-closure \bar{M} also satisfies $\overline{M_{A}} \cap B^{\times}=\varnothing$. But \bar{M} is a 2 -sided ideal in $\bar{A}=B$, by continuity of operations. Hence \bar{M} must be the 0 ideal of B. We conclude that $M=0$.

Remark II.1.5. Schweitzer [77] provides an example in which A is a dense Banach subalgebra of a Banach algebra B, both A and B are simple, yet A is not spectral in B.

We adopt the following
Definition II.1.6. A dense and spectral subalgebra A of a topological algebra B is said to be a smooth subalgebra.

Let M be a compact manifold. Then $C^{k}(M) \hookrightarrow C(M)$ is a smooth inclusion for each $1 \leq k \leq \infty$.
Inspired by this commutative example, a smooth subalgebra A_{∞} of a Banach algebra A is thought of as carrying the differential information, whereas A carries the topological information. Let us point out that some authors require a smooth subalgebra to be a Fréchet subalgebra under a Fréchet topology finer than the topology of A. We consider this situation, of smooth subalgebras being endowed with a Fréchet algebra structure, in the remainder of this chapter.

Proposition II.1.7. Let $A \hookrightarrow B$ be a dense inclusion of Banach algebras. If $r_{A}(a)=r_{B}(a)$ for all $a \in A$ then A is spectral in B.

Proof. Let $a \in A$ be invertible in B. Let $a^{\prime} \in A$ with $\left\|1-a a^{\prime}\right\|_{B}<1$. Then $r_{A}\left(1-a a^{\prime}\right) \leq r_{B}\left(1-a a^{\prime}\right)<1$ and so $a a^{\prime}$ is invertible in A. It follows that a is invertible in A.

Next we consider the connection between the "algebraic fullness" of a subalgebra as described by the spectral property and the "analytic fullness" of a subalgebra expressed by closure under holomorphic calculus.

Definition II.1.8. Let B be a Banach algebra. A subalgebra A is holomorphically closed in B if, for each $a \in A$, we have $f(a) \in A$ whenever f is holomorphic in the neighborhood of $\operatorname{sp}_{B}(a)$.

The following appears, for instance, in [76, Lemma 1.2]:
Proposition II.1.9. Let A be a subalgebra of B.
a) If A is holomorphically closed in B, then A is spectral in B.
b) Let A be a Fréchet subalgebra. If A is spectral in B, then A is holomorphically closed in B.

Proof. a) Let $a \in A \cap B^{\times}$. Since $0 \notin \operatorname{sp}_{B}(a), z \mapsto z^{-1}$ is holomorphic near $\mathrm{sp}_{B}(a)$ and so $a^{-1} \in A$.
b) In the formula

$$
f \mapsto f(a)=\frac{1}{2 \pi i} \oint f(\lambda)(\lambda-a)^{-1} d \lambda
$$

the integrand is A-valued and A-continuous (the inversion $a \mapsto a^{-1}$ is continuous in A). Thus $f(a)$, a limit of Riemann sums, must be in A by the completeness of A.

From the K-theoretic standpoint, the interest in spectral morphisms is motivated by the following useful criterion for K-theoretic isomorphism is known as the Density Theorem. Initial versions are due to Karoubi [44, p.109] and Swan [82, Sec. 2.2 \& 3.1]; see also Connes [15, Appendix 3]. The Density Theorem as stated below is taken from Bost [11, Thm.A.2.1].

Theorem II.1.10. Let $\phi: A \rightarrow B$ be a dense and spectral morphism between good Fréchet algebras. Then ϕ induces an isomorphism $K_{*}(A) \simeq K_{*}(B)$.

Recall, morphisms are assumed to be unital and continuous. A morphism $\phi: A \rightarrow B$ is dense if ϕ has dense image, and spectral if $\operatorname{sp}_{B}(\phi(a))=\operatorname{sp}_{A}(a)$ for all $a \in A$.

II. 2 Smooth Fréchet subalgebras coming from closed derivations

In this section, we show how a closed derivation on a Banach algebra gives rise to a Fréchet subalgebra. Furthermore, the Fréchet subalgebra associated to a closed derivation turns out to be a spectral and dense subalgebra in many cases.

We start with the linear aspect. Let X be a Banach space and $\xi: \operatorname{dom}(\xi) \subseteq X \rightarrow X$ an unbounded linear map, where $\operatorname{dom}(\xi)$ is a linear subspace of X. Recall, the operator ξ is said to be densely defined if $\operatorname{dom}(\xi)$ is dense in X, and closed if $x_{n} \rightarrow x$ and $\xi\left(x_{n}\right) \rightarrow y$ for $\left(x_{n}\right) \subseteq \operatorname{dom}(\xi)$ imply $x \in \operatorname{dom}(\xi)$ and $\xi(x)=y$.

To ξ we associate a Fréchet subspace on which ξ is continuous. For $k \geq 0$, the fact that ξ is closed gives that $\operatorname{dom}\left(\xi^{k}\right)$ is a Banach space under

$$
\|x\|_{k}:=\|x\|+\|\xi(x)\|+\cdots+\left\|\xi^{k}(x)\right\|
$$

and $\xi: \operatorname{dom}\left(\xi^{k+1}\right) \rightarrow \operatorname{dom}\left(\xi^{k}\right)$ is continuous of norm at most 1 . Therefore

$$
\operatorname{dom}\left(\xi^{\infty}\right)=\bigcap_{k \geq 0} \operatorname{dom}\left(\xi^{k}\right)
$$

is a Fréchet subspace of X under the seminorms $\left\{\|\cdot\|_{k}\right\}_{k \geq 0}$, and $\xi: \operatorname{dom}\left(\xi^{\infty}\right) \rightarrow \operatorname{dom}\left(\xi^{\infty}\right)$ is continuous.
The corresponding construction for algebras works best for derivations. Let B be a Banach algebra and $\delta: B \rightarrow B$ a closed unbounded derivation, i.e., a linear map satisfying

$$
\delta(a b)=\delta(a) b+a \delta(b)
$$

defined on a subalgebra $\operatorname{dom}(\boldsymbol{\delta})$. For $k \geq 0$, we equip $\operatorname{dom}\left(\delta^{k}\right)$ with the following norm:

$$
\|a\|_{k}:=\|a\|+\frac{\|\delta(a)\|}{1!}+\cdots+\frac{\left\|\delta^{k}(a)\right\|}{k!}
$$

The iterated Leibniz formula:

$$
\delta^{n}(a b)=\sum_{i=0}^{n}\binom{n}{i} \delta^{i}(a) \delta^{n-i}(b)
$$

gives that $\operatorname{dom}\left(\delta^{k}\right)$ is closed under multiplication. Moreover, $\|\cdot\|_{k}$ is submultiplicative:

$$
\begin{aligned}
\|a b\|_{k} & =\sum_{i=0}^{k} \frac{\left\|\delta^{i}(a b)\right\|}{i!} \leq \sum_{i=0}^{k} \sum_{j=0}^{i} \frac{\left\|\delta^{j}(a)\right\|}{j!} \frac{\left\|\delta^{i-j}(b)\right\|}{(i-j)!} \\
& \leq\left(\sum_{i=0}^{k} \frac{\left\|\delta^{i}(a)\right\|}{i!}\right)\left(\sum_{j=0}^{k} \frac{\left\|\delta^{j}(b)\right\|}{j!}\right)=\|a\|_{k}\|b\|_{k}
\end{aligned}
$$

We conclude that each $\operatorname{dom}\left(\delta^{k}\right)$ is a Banach algebra. Consequently, $\operatorname{dom}\left(\delta^{\infty}\right)$ is a Fréchet subalgebra of B, and $\delta: \operatorname{dom}\left(\delta^{\infty}\right) \rightarrow \operatorname{dom}\left(\delta^{\infty}\right)$ is continuous.

In practice, it is useful to restrict the descending chain of Banach algebras

$$
B=\operatorname{dom}\left(\delta^{0}\right) \supseteq \operatorname{dom}\left(\delta^{1}\right) \supseteq \operatorname{dom}\left(\delta^{2}\right) \supseteq \ldots
$$

to closed subalgebras.
The following theorem is due to R. Ji [38, Thm.1.2]:
Theorem II.2.1. Let A be a closed subalgebra of B such that $A \cap \operatorname{dom}\left(\delta^{\infty}\right)$ is dense in A. Then $A \cap \operatorname{dom}\left(\delta^{\infty}\right)$ is a Fréchet subalgebra of A, and $A \cap \operatorname{dom}\left(\delta^{n}\right)$ is dense and spectral in A for every $1 \leq n \leq \infty$.

Proof. It is clear that $A \cap \operatorname{dom}\left(\delta^{\infty}\right)$ is a Fréchet subalgebra of A. We argue spectrality in the case $n=\infty$, the finite case being done similarly.

For $a \in \operatorname{dom}(\delta)$, the formula

$$
\delta\left(a^{n}\right)=\sum_{i=0}^{n-1} a^{i} \boldsymbol{\delta}(a) a^{n-1-i}
$$

shows that $\left\|\boldsymbol{\delta}\left(a^{n}\right)\right\| \leq n\|a\|^{n-1}\|\boldsymbol{\delta}(a)\|$.
Let $a \in A \cap \operatorname{dom}\left(\delta^{\infty}\right)$ be invertible in A. Assume first that $\|1-a\|<1$. We can then write $a^{-1}=$ $\sum_{n \geq 0}(1-a)^{n}$ in A. We have

$$
\left\|\delta\left((1-a)^{n}\right)\right\| \leq n\|1-a\|^{n-1}\|\delta(1-a)\|
$$

so $\sum_{n \geq 1} \delta\left((1-a)^{n}\right)$ is (absolutely) convergent in A. The fact that δ is closed implies $a^{-1} \in \operatorname{dom}\left(\delta^{1}\right)$ and $\delta\left(a^{-1}\right)=\sum_{n \geq 1} \delta\left((1-a)^{n}\right)$. This is the first step of an obvious induction, which ends up with the conclusion that $a^{-1} \in A \cap \operatorname{dom}\left(\delta^{\infty}\right)$.

In general, the density of $A \cap \operatorname{dom}\left(\delta^{\infty}\right)$ gives some $a^{\prime} \in A \cap \operatorname{dom}\left(\delta^{\infty}\right)$ with

$$
\left\|1-a a^{\prime}\right\| \leq\|a\|\left\|a^{-1}-a^{\prime}\right\|<1 .
$$

We already know that $\left(a a^{\prime}\right)^{-1} \in A \cap \operatorname{dom}\left(\delta^{\infty}\right)$, so $a^{-1} \in A \cap \operatorname{dom}\left(\delta^{\infty}\right)$ as well.
A closed, densely defined operator on X determines a closed derivation on $\mathcal{B}(X)$ and, by restriction, a closed derivation on every closed subalgebra of $\mathcal{B}(X)$. This is more naturally formulated in terms of strongly-closed subalgebras; the norm-closed case is an immediate consequence.

Lemma II.2.2. Let $\xi: X \rightarrow X$ be a closed, densely defined linear map. Then $\delta_{\xi}: \mathcal{B}(X) \rightarrow \mathcal{B}(X)$ given by $\delta_{\xi}(T)=T \xi-\xi T$ is a closed derivation with domain

$$
\operatorname{dom}\left(\delta_{\xi}\right)=\left\{T \in \mathcal{B}(X): T(\operatorname{dom}(\xi)) \subseteq \operatorname{dom}(\xi), \delta_{\xi}(T) \in \mathcal{B}(X)\right\}
$$

Proof. First, note that δ_{ξ} is a derivation and $\operatorname{dom}\left(\delta_{\xi}\right)$ is a subalgebra.
Let $\left(T_{n}\right) \subseteq \operatorname{dom}\left(\delta_{\xi}\right)$ and $T, S \in \mathcal{B}(X)$ such that $T_{n} \rightarrow T$ and $\delta_{\xi}\left(T_{n}\right) \rightarrow S$ strongly. Let $x \in \operatorname{dom}(\xi)$. Then $T_{n}(x) \rightarrow T(x)$ and $T_{n} \xi(x)-\xi T_{n}(x) \rightarrow S(x)$. Combining the latter with $T_{n} \xi(x) \rightarrow T \xi(x)$, we obtain $\xi T_{n}(x) \rightarrow$ $T \xi(x)-S(x)$. As ξ is closed, we get $T(x) \in \operatorname{dom}(\xi)$ and $\xi T(x)=T \xi(x)-S(x)$, i.e., $\delta_{\xi}(T)(x)=S(x)$. By the density of $\operatorname{dom}(\xi)$, we obtain $\delta_{\xi}(T)=S$.

We have thus checked that $T \in \operatorname{dom}\left(\delta_{\xi}\right)$ and $\delta_{\xi}(T)=S$, which proves that δ_{ξ} is closed.
Let Γ be a finitely generated group. Define $L: \ell^{2} \Gamma \rightarrow \ell^{2} \Gamma$ to be the pointwise multiplication by $1+|\cdot|$, where $|\cdot|$ is a fixed word-length function. That is, $L\left(\sum a_{g} \delta_{g}\right)=\sum a_{g}(1+|g|) \delta_{g}$. Then L is a closed and densely defined, with domain

$$
H^{1} \Gamma:=\left\{\sum a_{g} \delta_{g} \in \ell^{2} \Gamma: \sum a_{g}(1+|g|) \delta_{g} \in \ell^{2} \Gamma\right\} .
$$

More generally, for $k \geq 0$ put $H^{k} \Gamma:=\left\{\sum a_{g} \delta_{g} \in \ell^{2} \Gamma: \sum a_{g}(1+|g|)^{k} \delta_{g} \in \ell^{2} \Gamma\right\}$, and $H^{\infty} \Gamma=\cap_{k \geq 0} H^{k} \Gamma$.
To L we associate a closed derivation $\delta: \mathcal{B}\left(\ell^{2} \Gamma\right) \rightarrow \mathcal{B}\left(\ell^{2} \Gamma\right)$ given by $\delta(T)=T L-L T$, with domain

$$
\operatorname{dom}(\delta)=\left\{T \in \mathcal{B}\left(\ell^{2} \Gamma\right): T\left(H^{1} \Gamma\right) \subseteq H^{1} \Gamma, \delta(T) \in \mathcal{B}\left(\ell^{2} \Gamma\right)\right\}
$$

Whenever it makes sense, the action of δ^{k} can be computed as follows:

$$
\delta^{k}\left(\sum a_{g} g\right)\left(\sum b_{h} \delta_{h}\right)=\sum_{x}\left(\sum_{g h=x} a_{g} b_{h}(|g h|-|h|)^{k}\right) \delta_{x}
$$

Lemma II.2.3. $\mathbb{C} \Gamma \subseteq \operatorname{dom}\left(\delta^{k}\right) \subseteq H^{k} \Gamma$ for every $0 \leq k \leq \infty$.
Proof. It suffices to consider k finite. In order to prove $\mathbb{C} \Gamma \subseteq \operatorname{dom}\left(\delta^{k}\right)$, we need to show that each $\delta^{k}(g)$ leaves $H^{1} \Gamma$ invariant and that $\delta^{k}(g)$ is (rather, it extends to) a bounded operator on $\ell^{2} \Gamma$. We have:

$$
\delta^{k}(g)\left(\sum b_{h} \delta_{h}\right)=\sum b_{h}(|g h|-|h|)^{k} \delta_{g h}
$$

Since $||g h|-|h|| \leq|g|$, we get $\left\|\delta^{k}(g)\right\| \leq|g|^{k}$. In fact, equality can be obtained by acting on $\left\{\delta_{h}\right\}_{h \in \Gamma}$. This proves $\delta^{k}(g) \in \mathcal{B}\left(\ell^{2} \Gamma\right)$. Similar estimates show that $\delta^{k}(g)$ leaves $H^{1} \Gamma$ invariant. As for the inclusion $\operatorname{dom}\left(\delta^{k}\right) \subseteq H^{k} \Gamma$, we have:

$$
\delta^{k}\left(\sum a_{g} g\right)\left(\delta_{1}\right)=\sum a_{g}|g|^{k} \delta_{g}
$$

Since $\sum a_{g}|g|^{i} \delta_{g} \in \ell^{2} \Gamma$ for all $0 \leq i \leq k$, we have $\sum a_{g}(1+|g|)^{k} \delta_{g} \in \ell^{2} \Gamma$, i.e., $\sum a_{g} \delta_{g} \in H^{k} \Gamma$.
Putting

$$
S_{2}(\Gamma):=\mathrm{C}_{\mathrm{r}}^{*} \Gamma \cap \operatorname{dom}\left(\delta^{\infty}\right)
$$

we obtain:
Corollary II.2.4. $S_{2}(\Gamma)$ is a dense and spectral Fréchet subalgebra of $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$, as well as a dense subspace of $H^{\infty} \Gamma$.

Remark II.2.5. The construction of $S_{2}(\Gamma)$, due to Connes and Moscovici [17], predates Ji's theorem II.2.1.
Remark II.2.6. It is easily seen that the spaces $H^{k} \Gamma(0 \leq k \leq \infty)$ of decaying functions on Γ do not depend on the choice of word-length on Γ. However, I do not know whether $S_{2}(\Gamma)$ is independent of the choice of word-length.

If we perform the ℓ^{1} version of this construction, namely we take

- $L: \ell^{1} \Gamma \rightarrow \ell^{1} \Gamma$ to be the pointwise multiplication by $1+|\cdot|$, i.e., $L\left(\sum a_{g} \delta_{g}\right)=\sum a_{g}(1+|g|) \delta_{g}$;
- $\ell_{k}^{1} \Gamma:=\left\{\sum a_{g} \delta_{g} \in \ell^{1} \Gamma: \sum a_{g}(1+|g|)^{k} \delta_{g} \in \ell^{1} \Gamma\right\}$, and $\ell_{\infty}^{1} \Gamma=\cap_{k \geq 0} \ell_{k}^{1} \Gamma$
then we obtain $\operatorname{dom}\left(\delta^{k}\right)=\ell_{k}^{1} \Gamma$, with Banach norm

$$
\left\|\sum a_{g} g\right\|_{k}=\sum\left|a_{g}\right|\left(1+\frac{|g|}{1!}+\cdots+\frac{|g|^{k}}{k!}\right) .
$$

This norm is visibly equivalent to the standard norm on $\ell_{k}^{1} \Gamma$, namely $\left\|\sum a_{g} g\right\|_{1, k}=\sum\left|a_{g}\right|(1+|g|)^{k}$. Instead of restricting to $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$, as we did in the ℓ^{2} case, we now restrict to the group ℓ^{1}-algebra $\ell^{1} \Gamma$. We conclude that the ℓ^{1} version of $S_{2}(\Gamma)$ is simply $S_{1}(\Gamma)=\ell_{\infty}^{1} \Gamma$.

Returning to the ℓ^{2} context, the following question then appears: when is $H^{\infty} \Gamma$ included in $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$? This leads us into the next chapter.

CHAPTER III

THE PROPERTY OF RAPID DECAY

III. 1 Motivation: Sobolev spaces

Consider the d-torus T^{d}, parameterized as $e^{i \theta}=\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right)$ for $\theta=\left(\theta_{1}, \ldots, \theta_{d}\right) \in[0,2 \pi)^{d}$. Put $D_{j}=$ $-i \frac{\partial}{\partial \theta_{j}}$, and $D^{\alpha}=D_{1}^{\alpha_{1}} \ldots D_{d}^{\alpha_{d}}$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \mathbb{N}^{d}$. The algebra of k-times differentiable functions $C^{k}\left(T^{d}\right)$ consists of those $f \in C\left(T^{d}\right)$ for which $D^{\alpha} f \in C\left(T^{d}\right)$ whenever $\alpha \in \mathbb{N}^{d}$ with $|\alpha|=\alpha_{1}+\cdots+\alpha_{d} \leq k$. The algebra of smooth functions $C^{\infty}\left(T^{d}\right)$ is the intersection of $C^{k}\left(T^{d}\right)$ over all $k \geq 0$.

For $s>0$, the s-th Sobolev space $H^{s}\left(T^{d}\right)$ is the Banach space obtained by completing the algebra of trigonometric polynomials on T^{d} under the norm

$$
\|f\|_{(s)}=\left(\sum_{m \in \mathbb{Z}^{d}}|\widehat{f}(m)|^{2}(1+|m|)^{2 s}\right)^{1 / 2}
$$

In fact, $H^{s}\left(T^{d}\right)$ is a Hilbert space under the inner product

$$
\langle f, g\rangle_{(s)}=\sum_{m \in \mathbb{Z}^{d}} \widehat{f}(m) \overline{\widehat{g}(m)}(1+|m|)^{2 s} .
$$

Here $|m|$ denotes the length of $m \in \mathbb{Z}^{d}$, i.e., $|m|=\left|m_{1}\right|+\ldots+\left|m_{d}\right|$. As usual, \widehat{f} is the Fourier transform of f :

$$
\widehat{f}(m)=(2 \pi)^{-d} \int_{[0,2 \pi]^{d}} f\left(e^{i \theta}\right) e^{-i \theta \cdot m} \mathrm{~d} \theta
$$

Then the following hold:

- $C^{k}\left(T^{d}\right) \subseteq H^{k}\left(T^{d}\right)$
- $H^{s+k}\left(T^{d}\right) \subseteq C^{k}\left(T^{d}\right)$ for $s>d / 2$ (Sobolev's embedding theorem)
- $H^{s}\left(T^{d}\right)$ is a Banach algebra for $s>d / 2$ (Sobolev's multiplication theorem)
- $H^{s}\left(T^{d}\right)$ is invariant under multiplication by $C^{\infty}\left(T^{d}\right)$
- for $s>t$, the inclusion $H^{s}\left(T^{d}\right) \subseteq H^{t}\left(T^{d}\right)$ is compact (Rellich's compactness lemma)

The algebra of rapidly decaying functions $H^{\infty}\left(T^{d}\right)$ is the intersection of $H^{s}\left(T^{d}\right)$ over all $s>0$. By the first two facts, we have $C^{\infty}\left(T^{d}\right)=H^{\infty}\left(T^{d}\right)$.

The definition of the Sobolev spaces compels us to pass to the dual and to view the Sobolev spaces as being defined on \mathbb{Z}^{d}. From this perspective, the s-th Sobolev space $H^{s}\left(\mathbb{Z}^{d}\right)$ is the Banach space obtained by completing the group algebra of \mathbb{Z}^{d} under the weighted ℓ^{2}-norm

$$
\left\|\sum a_{m} m\right\|_{2, s}=\left(\sum\left|a_{m}\right|^{2}(1+|m|)^{2 s}\right)^{1 / 2} .
$$

We think of the H^{s} spaces on the \mathbb{Z}^{d}-side as being analogues of the C^{k} spaces on the T^{d}-side. More to the point, $H^{\infty}\left(\mathbb{Z}^{d}\right)$ corresponds to $C^{\infty}\left(T^{d}\right)$. The above properties for the Sobolev spaces over T^{d} turn into the following properties for the Sobolev spaces over \mathbb{Z}^{d} :

- $H^{s}\left(\mathbb{Z}^{d}\right) \subseteq \mathrm{C}_{\mathrm{r}}^{*}\left(\mathbb{Z}^{d}\right)$ for $s>d / 2$
- $H^{s}\left(\mathbb{Z}^{d}\right)$ is a Banach algebra for $s>d / 2$
- $H^{s}\left(\mathbb{Z}^{d}\right)$ is invariant under multiplication by $H^{\infty}\left(\mathbb{Z}^{d}\right)$
- for $s>t$, the inclusion $H^{s}\left(\mathbb{Z}^{d}\right) \subseteq H^{t}\left(\mathbb{Z}^{d}\right)$ is compact

Property RD extends this Sobolev context to other groups.

III. 2 Haagerup's inequality for free groups

Much knowledge about reduced group C^{*}-algebras emanates from a number of seminal results on the reduced group C^{*}-algebra of free groups; simplicity of $\mathrm{C}_{\mathrm{r}}^{*} F_{n}$ (due to Powers), or the fact that $\mathrm{C}_{\mathrm{r}}^{*} F_{n}$ has no non-trivial idempotents (due to Pimsner and Voiculescu) immediately come to mind.

Another seminal work on $\mathrm{C}_{\mathrm{r}}^{*} F_{n}$ is due to Haagerup. Haagerup's aim in [31] was proving that, although $\mathrm{C}_{\mathrm{r}}^{*} F_{n}$ is not nuclear, it nevertheless satisfies a certain "metric approximation property". In doing so, Haagerup established two facts about free groups: a fact which would become the so-called Haagerup property, or a-T-menability, and a fact which was later formalized into the property of Rapid Decay. We prove the latter fact in what follows.

We work in a free group F_{n} with $n \geq 2$. By S_{k} we denote the sphere of radius k and by $\left.a \mapsto a\right|_{S_{k}}$ the restriction $\sum a_{g} g \mapsto \sum_{g \in S_{k}} a_{g} g$.

Lemma III.2.1. If $\operatorname{supp}(a) \subseteq S_{k}$ and $\operatorname{supp}(b) \subseteq S_{l}$ then $\left\|\left.(a b)\right|_{S_{j}}\right\|_{2} \leq\|a\|_{2}\|b\|_{2}$. Moreover, $(a b) \mid S_{S_{j}}=0$ unless $|k-l| \leq j \leq k+l$ and $k+l-j$ is even.

The condition on k, l, j from the lemma means that they are the sidelengths of a triangle in the Cayley graph. In particular, the condition on k, l, j is permutation-invariant.

Proof. Let $j=k+l-2 m$ with $0 \leq m \leq \min \{k, l\}$. Write each g of length k as a product $g=g_{1} g_{2}$ with $\left|g_{1}\right|=k-m,\left|g_{2}\right|=m$. Similarly, write each h of length l as a product $h=h_{2} h_{1}$ with $\left|h_{2}\right|=m,\left|h_{1}\right|=l-m$. Note that $(g h)_{j}=\left.\left\langle g_{2}, h_{2}^{-1}\right\rangle\left(g_{1} h_{1}\right)\right|_{S_{j}}$. Putting a and b in the form

$$
a=\sum a_{g_{1} g_{2}} g_{1} g_{2}, \quad b=\sum b_{h_{2} h_{1}} h_{2} h_{1}
$$

we get

$$
(a b)\left|S_{j}=\sum_{g_{1}, h_{1}}\left(\sum_{g_{2}, h_{2}} a_{g_{1} g_{2}} b_{h_{2} h_{1}}\left\langle g_{2}, h_{2}^{-1}\right\rangle\right)\left(g_{1} h_{1}\right)\right| S_{j} .
$$

Then

$$
\left\|\left.(a b)\left|s_{j} \|_{2}^{2} \leq \sum_{g_{1}, h_{1}}\right| \sum_{g_{2}, h_{2}} a_{g_{1} g_{2}} b_{h_{2} h_{1}}\left\langle g_{2}, h_{2}^{-1}\right\rangle\right|^{2}=\sum_{g_{1}, h_{1}}\left|\left\langle\sum_{g_{2}} a_{g_{1 g_{2}}} g_{2},\left(\sum_{h_{2}} b_{h_{2} h_{1}} h_{2}\right)^{*}\right\rangle\right|^{2}\right.
$$

and so

$$
\left\|(a b) \mid S_{j}\right\|_{2}^{2} \leq \sum_{g_{1}, h_{1}}\left\|\sum_{g_{2}} a_{g_{1} g_{2}} g_{2}\right\|_{2}^{2}\left\|\sum_{h_{2}} b_{h_{2} h_{1}} h_{2}\right\|_{2}^{2}=\|a\|_{2}^{2}\|b\|_{2}^{2} .
$$

We conclude that $\left\|\left.(a b)\right|_{S_{j}}\right\|_{2} \leq\|a\|_{2}\|b\|_{2}$.

Theorem III.2.2 (Haagerup). If $\operatorname{supp}(a) \subseteq S_{k}$ then $\|a\| \leq(k+1)\|a\|_{2}$.
Proof. We need to show $\|a b\|_{2} \leq(k+1)\|a\|_{2}\|b\|_{2}$. First we estimate $a b$ on spheres:

$$
\left\|(a b)\left|S_{j}\left\|_{2}=\right\| \sum_{l \geq 0}\left(a b \mid s_{l}\right)\right| s_{j}\right\|_{2} \leq \sum_{l \geq 0}\left\|\left(a b \mid s_{l}\right) \mid s_{j}\right\|_{2}
$$

We have $\left.\left(a b \mid S_{l}\right)\right|_{S_{j}}=0$ unless $|k-l| \leq j \leq k+l$ and $k+l-j$ is even, which can be written as $l=k+j-2 m$ with $0 \leq m \leq \min \{k, j\}$. Using the previous lemma, we continue:

$$
\left\|\left.(a b)\right|_{S_{j}}\right\|_{2} \leq\|a\|_{2} \sum_{m=0}^{\min \{k, j\}}\left\|\left.b\right|_{S_{k+j-2 m}}\right\|_{2} \leq \sqrt{k+1}\|a\|_{2} \sqrt{\sum_{m=0}^{\min \{k, j\}}\left\|\left.b\right|_{S_{k+j-2 m}}\right\|_{2}^{2}}
$$

We get:

$$
\begin{aligned}
\|a b\|_{2}^{2} & =\sum_{j \geq 0}\left\|\left.(a b)\right|_{S_{j}}\right\|_{2}^{2} \\
& \leq(k+1)\|a\|_{2}^{2} \sum_{j \geq 0} \sum_{m=0}^{\min \{k, j\}}\left\|\left.b\right|_{S_{k+j-2 m}}\right\|_{2}^{2} \\
& =(k+1)\|a\|_{2}^{2} \sum_{m=0}^{k} \sum_{j \geq m}\left\|\left.b\right|_{S_{k+j-2 m}}\right\|_{2}^{2} \\
& \leq(k+1)\|a\|_{2}^{2} \sum_{m=0}^{k}\|b\|_{2}^{2}=(k+1)^{2}\|a\|_{2}^{2}\|b\|_{2}^{2}
\end{aligned}
$$

That is, $\|a b\|_{2} \leq(k+1)\|a\|_{2}\|b\|_{2}$ as desired.
Cohen [14] has computed

$$
\left\|\chi_{S_{k}}\right\|=(k+1)(2 n-1)^{k / 2}-(k-1)(2 n-1)^{k / 2-1}
$$

where $\chi_{S_{k}}$ is the characteristic function of the sphere of radius $k \geq 1$ in F_{n}; this extends Kesten's well-known formula $\left\|\chi_{S_{1}}\right\|=2 \sqrt{2 n-1}$. Writing

$$
\left\|\chi_{S_{k}}\right\|=C_{n}\left(k+\frac{n}{n-1}\right)\left\|\chi_{S_{k}}\right\|_{2}, \quad C_{n}=\frac{2 n-2}{\sqrt{2 n(2 n-1)}}
$$

we see that Haagerup's inequality provides the correct degree for k.

III. 3 Property RD

Following Haagerup's seminal result, Jolissaint explicitly defined property RD in [40] (see also the Ktheoretic companion [39]).
Definition III.3.1. Let Γ be a finitely generated group equipped with a word-length $|\cdot|$. We say that Γ has property $R D$ if one of the following equivalent conditions holds:
(RD) there are $C, s>0$ such that, for all $a=\sum a_{g} g \in \mathbb{C} \Gamma$, we have

$$
\left\|\sum a_{g} g\right\| \leq C\left(\sum\left|a_{g}\right|^{2}(1+|g|)^{2 s}\right)^{1 / 2}
$$

(RD.) there are $C, s>0$ so that $\|a\| \leq C(1+n)^{s}\|a\|_{2}$ for all $a \in \mathbb{C} \Gamma$ supported on the n-ball (RD_{\circ}) there are $C, s>0$ so that $\|a\| \leq C(1+n)^{s}\|a\|_{2}$ for all $a \in \mathbb{C} \Gamma$ supported on the n-sphere

This definition does not depend on the choice of the word-length.
More generally, property RD can be defined relative to a length function. Recall, a length function on Γ is a map $l: \Gamma \rightarrow[0, \infty)$ that satisfies: i) $l(1)=0$, ii) $l\left(g^{-1}\right)=l(g)$ for all $g \in \Gamma$, iii) $l(g h) \leq l(g)+l(h)$ for all $g, h \in \Gamma$. The advantage of this generalized approach to RD is that it allows groups that are not necessarily finitely generated. However, for finitely generated groups, having property RD with respect to some length function is equivalent to having property RD with respect to word-length. We confine ourselves to the finite generation situation in what follows.

Free groups have property RD: Haagerup's inequality amounts to (RD_{\circ}) with $s=1$. One of Jolissaint's results from [40] is that groups of polynomial growth have property RD. In fact:

Theorem III.3.2. Let Γ be amenable. Then Γ has property $R D$ iff Γ has polynomial growth.
Proof. We denote by $\rho_{\mathbf{0}}$ the growth function of the balls in Γ. We claim that Γ satisfies (RD.) of order $s>0$ iff $\rho_{\bullet}(n) \prec n^{2 s}$.

Let Γ satisfy (RD.) of order s. For $\chi_{B_{n}}$, the characteristic function of the ball of radius n, it says that $\left\|\chi_{B_{n}}\right\| \leq C(1+n)^{s} \sqrt{\rho_{\bullet}(n)}$. On the other hand, we have $\left|\sum a_{g}\right| \leq\left\|\sum a_{g} g\right\|$ for all $\sum a_{g} g \in \mathbb{C} \Gamma$ by the amenability assumption. For $\chi_{B_{n}}$, we obtain $\rho_{\bullet}(n) \leq\left\|\chi_{B_{n}}\right\|$. It follows that $\rho_{\bullet}(n) \prec(1+n)^{2 s}$ by combining the two inequalities.

Conversely, assume Γ has polynomial growth, with $\rho_{\bullet}(n) \prec n^{2 s}$. For $a=\sum a_{g} g \in \mathbb{C} \Gamma$ supported on the n-ball, we have

$$
\|a\| \leq \sum\left|a_{g}\right| \leq \sqrt{\rho_{\bullet}(n)} \sqrt{\sum\left|a_{g}\right|^{2}} \leq C(1+n)^{s}\|a\|_{2}
$$

meaning that Γ satisfies (RD.) of order s.
If ρ_{\circ} denotes the growth function of the spheres in Γ, then a similar argument shows that Γ satisfies $\left(\mathrm{RD}_{\circ}\right)$ of order $s>0$ iff $\rho_{\circ}(n) \prec n^{2 s}$.

Many more groups enjoy property RD. Here is a sampler:

- hyperbolic groups ([22])
- groups that are relatively hyperbolic to subgroups having property RD ([26])
- groups acting freely on finite dimensional CAT(0) cube complexes ([12])
- cocompact lattices in $\mathrm{SL}_{3}(F)$ for F a local field ([70]) and $F=\mathbb{R}, \mathbb{C}([46])$
- mapping class groups ([8])

Jolissaint [40] showed that property RD is hereditary (a subgroup of an RD-group is also RD) and virtual (a group commensurable to an RD-group is also RD), and that property RD is preserved by amalgamating over finite subgroups.

On the other hand, a group containing an amenable group of superpolynomial growth (for example, $\mathrm{SL}_{n \geq 3}(\mathbb{Z})$ contains a solvable group of exponential growth) does not have property RD. This is the only known obstruction to RD; it would be useful to find others.

A recent collection of questions on property RD can be found in [1]. We single out the following:
Problem. Is property RD invariant under quasi-isometries?
Informally, property RD for a group gives a concrete way to understand its reduced C^{*}-algebra; the subsequent sections are meant to illustrate this. Unfortunately, establishing property RD for a given group is usually quite difficult. Leaving aside a detailed study of which groups have property RD, we focus in what follows on the benefits of property RD. The hope is that a weaker, and more flexible, version of property RD will emerge, a version which still delivers the goods of RD.

III. 4 Decaying ℓ^{2}-functions

One of the most important aspects of property RD is that it leads to a subalgebra $H^{\infty} \Gamma$ of rapidly decaying function inside $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$, hence the very name of Rapid Decay given to the property. This insight of Connes is explained in [39], [40].

Let $H^{s} \Gamma$ be the completion of $\mathbb{C} \Gamma$ under the weighted ℓ^{2}-norm

$$
\left\|\sum a_{g} g\right\|_{2, s}=\sqrt{\sum\left|a_{g}\right|^{2}(1+|g|)^{2 s}} .
$$

Put $L=1+|\cdot|$. Then we can also write $\|a\|_{2, s}=\left\|L^{s} a\right\|_{2}$, where multiplication by (powers of) L is pointwise.
Thinking of $H^{s} \Gamma$ as a noncommutative analogue of the Sobolev spaces, we shall see that property RD guarantees the facts we mentioned in Section III. 1 for $H^{s}\left(\mathbb{Z}^{d}\right)$. We start by taking care of the Rellich Compactness Lemma, for which no assumption on Γ is needed: for $s>t$, we have a continuous inclusion $H^{s} \Gamma \subseteq H^{t} \Gamma$ which is the diagonal matrix $\operatorname{diag}\left(L^{t-s}(g)\right)_{g \in \Gamma}$ with respect to the standard bases. Since L is proper, we have that $H^{s} \Gamma \subseteq H^{t} \Gamma$ is compact. Note that, if Γ has polynomial growth, then $H^{s} \Gamma \subseteq H^{t} \Gamma$ is in fact p-summable for sufficiently large p.

The role of the critical value $d / 2$ we encountered there is played here by the "RD-dimension" of Γ, defined as $\operatorname{rd}(\Gamma)=\inf \{s: \Gamma$ satisfies (RD) of order $s\}$.

The following theorem is taken from [46]:
Theorem III.4.1 (Lafforgue). Assume Γ has property $R D$. If $s>\operatorname{rd}(\Gamma)$ then $H^{s} \Gamma$ is a dense and spectral Banach *-subalgebra of $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$.

Proof. The (RD) inequality says that $H^{s} \Gamma$ is continuously embedded in $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$. Clearly, is dense in $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$. Also, $H^{s} \Gamma$ is $*$-closed and $\|\cdot\|_{2, s}$ is a $*$-norm. We have to show that $H^{s} \Gamma$ is a Banach algebra, and that $H^{s} \Gamma$ is spectral in $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$. We make two preparatory observations.

1) For $g_{1}, \ldots, g_{n} \in \Gamma$ we have

$$
L^{s}\left(g_{1} \ldots g_{n}\right) \leq n^{s}\left(L^{s}\left(g_{1}\right)+\cdots+L^{s}\left(g_{n}\right)\right)
$$

where $L=1+|\cdot|$ as defined above. Indeed, $\left(a_{1}+\cdots+a_{n}\right)^{s} \leq n^{s}\left(a_{1}^{s}+\cdots+a_{n}^{s}\right)$ whenever a_{i} are nonnegative reals: if $s \geq 1$ then $\left(a_{1}+\cdots+a_{n}\right)^{s} \leq n^{s-1}\left(a_{1}^{s}+\cdots+a_{n}^{s}\right)$ by the convexity of $f(x)=x^{s}$ on $[0, \infty)$, and if $0<s<1$, then we simply use $\left(a_{1}+\cdots+a_{n}\right)^{s} \leq a_{1}^{s}+\cdots+a_{n}^{s}$.

Putting $a_{i}=L\left(g_{i}\right)$, and using $L\left(g_{1} \ldots g_{n}\right) \leq L\left(g_{1}\right)+\cdots+L\left(g_{n}\right)$, we obtain the desired inequality.
2) We have the "twin" (RD) inequalities

$$
\begin{aligned}
& \|a b\|_{2} \leq C\|a\|_{2, s}\|b\|_{2} \quad\left(a \in H^{s} \Gamma, b \in \ell^{2} \Gamma\right) \\
& \|a b\|_{2} \leq C\|a\|_{2}\|b\|_{2, s} \quad\left(a \in \ell^{2} \Gamma, b \in H^{s} \Gamma\right)
\end{aligned}
$$

Indeed, the first is essentially the (RD) inequality. The second is obtained from the first:

$$
\|a b\|_{2}=\left\|(a b)^{*}\right\|_{2}=\left\|b^{*} a^{*}\right\|_{2} \leq C\left\|b^{*}\right\|_{2, s}\left\|a^{*}\right\|_{2}=C\|a\|_{2}\|b\|_{2, s}
$$

Let $|a|=\sum\left|a_{g}\right| g$ be the pointwise absolute value of $a=\sum a_{g} g$. For $a, b \in H^{s} \Gamma$ we have:

$$
\begin{aligned}
\|a b\|_{2, s}^{2} & =\sum_{x}\left|\sum_{g h=x} a_{g} b_{h}\right|^{2} L^{2 s}(x) \leq \sum_{x}\left(\sum_{g h=x}\left|a_{g}\right|\left|b_{h}\right| L^{s}(g h)\right)^{2} \\
& \leq 2^{2 s} \sum_{x}\left(\sum_{g h=x}\left|a_{g} \| b_{h}\right| L^{s}(g)+\sum_{g h=x}\left|a_{g}\right|\left|b_{h}\right| L^{s}(h)\right)^{2} \\
& \leq 2^{2 s+1} \sum_{x}\left(\sum_{g h=x}\left|a_{g}\right|\left|b_{h}\right| L^{s}(g)\right)^{2}+2^{2 s+1} \sum_{x}\left(\sum_{g h=x}\left|a_{g} \| b_{h}\right| L^{s}(h)\right)^{2} \\
& =2^{2 s+1}\left(\left\|\left|L^{s} a\right||b|\right\|_{2}^{2}+\left\||a|\left|L^{s} b\right|\right\|_{2}^{2}\right)
\end{aligned}
$$

The "twin" RD inequalities give

$$
\begin{aligned}
& \left\|\left|L^{s} a\left\|b\left|\left\|_{2} \leq C\right\|\right| L^{s} a\left|\left\|_{2}\right\|\right| b \mid\right\|_{2, s}=C\|a\|_{2, s}\|b\|_{2, s}\right.\right. \\
& \left\||a|\left|L^{s} b\right|\right\|_{2} \leq C\||a|\|_{2, s}\left\|\left|L^{s} b\right|\right\|_{2}=C\|a\|_{2, s}\|b\|_{2, s}
\end{aligned}
$$

hence $\|a b\|_{2, s}^{2} \leq 2^{2 s+2} C^{2}\|a\|_{2, s}^{2}\|b\|_{2, s}^{2}$, that is, $\|a b\|_{2, s} \leq 2^{s+1} C\|a\|_{2, s}\|b\|_{2, s}$. We conclude that $\|\cdot\|_{2, s}$ is an algebra norm.

Next, we show that $H^{s} \Gamma$ is spectral in $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$. We have:

$$
\begin{aligned}
\left\|a^{n}\right\|_{2, s}^{2} & =\sum_{x}\left|\sum_{g_{1} \ldots g_{n}=x} a_{g_{1}} \ldots a_{g_{n}}\right|^{2} L^{2 s}(x) \\
& \leq \sum_{x}\left(\sum_{g_{1} \ldots g_{n}=x}\left|a_{g_{1}}\right| \ldots\left|a_{g_{n}}\right| L^{s}\left(g_{1} \ldots g_{n}\right)\right)^{2}
\end{aligned}
$$

Using the inequality established in 1), we continue:

$$
\begin{aligned}
\left\|a^{n}\right\|_{2, s}^{2} & \leq n^{2 s} \sum_{x}\left(\sum_{i=1}^{n} \sum_{g_{1} \ldots g_{n}=x}\left|a_{g_{1}}\right| \ldots\left|a_{g_{n}}\right| L^{s}\left(g_{i}\right)\right)^{2} \\
& \leq n^{2 s+1} \sum_{x} \sum_{i=1}^{n}\left(\sum_{g_{1} \ldots g_{n}=x}\left|a_{g_{1}}\right| \ldots\left|a_{g_{n}}\right| L^{s}\left(g_{i}\right)\right)^{2} \\
& =n^{2 s+1} \sum_{i=1}^{n}\left\||a| \ldots\left|L^{s} a\right| \ldots|a|\right\|_{2}^{2}
\end{aligned}
$$

Pick $s>s^{\prime}>d(\Gamma)$. A repeated application of the "twin" (RD) inequalities of order s^{\prime} gives

$$
\left\||a| \ldots\left|L^{s} a\right| \ldots|a|\right\|_{2} \leq C^{n-1}\||a|\|_{2, s^{\prime}}^{n-1}\left\|\left|L^{s} a\right|\right\|_{2}=C^{n-1}\|a\|_{2, s^{\prime}}^{n-1}\|a\|_{2, s}
$$

hence

$$
\left\|a^{n}\right\|_{2, s} \leq C^{n-1} n^{s+1}\|a\|_{2, s^{\prime}}^{n-1}\|a\|_{2, s}
$$

which implies

$$
r_{H S \Gamma}(a) \leq C\|a\|_{2, s^{\prime}}
$$

On the other hand, for $a \in H^{s} \Gamma$ we have

$$
\|a\|_{2, s^{\prime}} \leq\|a\|_{2, s}^{\frac{s^{\frac{\prime}{s}}}{s}}\|a\|_{2}^{1-\frac{s^{\prime}}{s}}
$$

by the Hölder inequality. From

$$
r_{H^{s \Gamma}}(a) \leq C\|a\|_{2, s}^{\frac{s^{\frac{s}{s}}}{s}}\|a\|_{2}^{1-\frac{s^{\frac{\prime}{s}}}{s}} \leq C\|a\|_{2, s}^{\frac{s^{\frac{s}{s}}}{s}}\|a\|^{1-\frac{s^{\frac{\prime}{s}}}{s}}
$$

we obtain, by using a^{n} and then taking the n-th root, the inequality

$$
r_{H^{S \Gamma}}(a) \leq r_{H^{s \Gamma}}(a)^{\frac{s^{\frac{s}{s}}}{s}} r_{\mathrm{C}_{\mathrm{T}}^{*} \Gamma}(a)^{1-\frac{s^{\prime}}{s}} .
$$

and so $r_{H s \Gamma}(a) \leq r_{\mathrm{C}_{\mathrm{F}} \Gamma}(a)$. We conclude that $H^{s} \Gamma$ is spectral in $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$.
If Γ has property RD, then

$$
H^{\infty} \Gamma=\cap_{s>0} H^{s} \Gamma
$$

is a dense, spectral Fréchet subalgebra of $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$, thought of as the subalgebra of smooth functions on an imaginary "noncommutative space" $\widehat{\Gamma}$. We now see this fact - due to Connes - as a corollary of Theorem III.4.1. It should be mentioned, however, that it predates Lafforgue's theorem. Tying in with the discussion from Section II.2, if Γ satisfies (RD) of order s, then the estimate

$$
\left\|\delta^{k}\left(\sum a_{g} g\right)\right\| \leq\left\|\sum \left|a_{g}\left\|\left.g\right|^{k} g\right\| \leq C\left\|\sum a_{g}(1+|g|)^{k+s} g\right\|_{2}\right.\right.
$$

shows that $H^{k+s} \Gamma \subseteq \operatorname{dom}\left(\delta^{k}\right)\left(\subseteq H^{k} \Gamma\right)$; therefore $\operatorname{dom}\left(\delta^{\infty}\right)=H^{\infty} \Gamma$. We conclude that $S_{2}(\Gamma)$, which is
defined for all finitely generated groups, coincides with $H^{\infty} \Gamma$ whenever Γ has property RD.
We point out that, if $H^{\infty} \Gamma$ is contained in $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ as a subspace, then Γ has property RD. Indeed, both $H^{\infty} \Gamma$ and $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ appear as Fréchet subspaces of $\ell^{2} \Gamma$ so the inclusion $H^{\infty} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is necessarily continuous. As the family of norms $\left\{\|\cdot\|_{2, s}\right\}$ on $H^{\infty} \Gamma$ is nested, it follows that for some $C, s>0$ we have $\|a\| \leq C\|a\|_{2, s}$ for all $a \in H^{\infty} \Gamma$. In particular, this holds on $\mathbb{C} \Gamma$ and so we get RD.

To complete our Sobolev analogy, we are left with showing the following
Proposition III.4.2. Assume Γ has property $R D$. Then, for all $t \geq 0, H^{t} \Gamma$ is invariant under multiplication by $H^{\infty} \Gamma$.

Proof. Assume Γ satisfies (RD) of order s. It is clear that $H^{S} \Gamma$ is invariant under multiplication by $H^{\infty} \Gamma$ whenever $S>s$, since $H^{\infty} \Gamma$ is a subalgebra of $H^{S} \Gamma$. However, the required statement is more general. Let $t \geq 0$. In the proof of Theorem III.4.1 we showed the following estimate, independent of property RD:

$$
\|a b\|_{2, t}^{2} \leq 2^{2 t+1}\left(\left\|\left|L^{t} a\left\|b\left|\left\|_{2}^{2}+\right\|\right| a| | L^{t} b \mid\right\|_{2}^{2}\right)\right.\right.
$$

If $a \in H^{t} \Gamma$ and $b \in H^{\infty} \Gamma$, then using twice one of the "twin" (RD) inequalities of order s

$$
\begin{aligned}
& \left\|\left|L^{t} a\left\|b\left|\left\|_{2} \leq C\right\|\right| L^{t} a\right\|_{2}\||b|\|_{2, s}=C\|a\|_{2, t}\|b\|_{2, s}<\infty\right.\right. \\
& \left\||a|\left|L^{t} b\right|\right\|_{2} \leq C\||a|\|_{2}\left\|\left|L^{t} b\right|\right\|_{2, s}=C\|a\|_{2}\|b\|_{2, t+s}<\infty
\end{aligned}
$$

we conclude that $a b \in H^{t} \Gamma$. Thus $H^{t} \Gamma$ is invariant under right-multiplication by $H^{\infty} \Gamma$; invariance under left-multiplication follows by using the involution.

III.4.1 Decaying ℓ^{1}-functions (a comparison)

Under property RD, decaying ℓ^{2}-functions form a dense and spectral $*$-subalgebra of the reduced group C^{*} algebra. The ℓ^{1} analogue is (too) generic: for any group, decaying ℓ^{1}-functions form a dense and spectral $*$-subalgebra of the group ℓ^{1}-algebra.

Let $\ell_{s}^{1} \Gamma$ denote the completion of $\mathbb{C} \Gamma$ under the weighted ℓ^{1}-norm

$$
\left\|\sum a_{g} g\right\|_{1, s}:=\sum\left|a_{g}\right|(1+|g|)^{s}=\left\|L^{s} a\right\|_{1} .
$$

Proposition III.4.3. $\ell_{s}^{1} \Gamma$ is a dense and spectral Banach $*$-subalgebra of $\ell^{1} \Gamma$.
Proof. Let $a, b \in \ell_{s}^{1} \Gamma$. Using $L(g h) \leq L(g) L(h)$, we have:

$$
\|a b\|_{1, s}=\sum_{x}\left|\sum_{g h=x} a_{g} b_{h}\right| L^{s}(x) \leq \sum_{x}\left(\sum_{g h=x}\left|a_{g} \| b_{h}\right| L^{s}(g) L^{s}(h)\right)=\|a\|_{1, s}\|b\|_{1, s}
$$

This shows that $\ell_{s}^{1} \Gamma$ is a Banach subalgebra of $\ell^{1} \Gamma$; it is clearly dense and $*$-closed. We show $\ell_{s}^{1} \Gamma \hookrightarrow \ell^{1} \Gamma$ is
spectral. The inequality $L^{s}\left(g_{1} \ldots g_{n}\right) \leq n^{s}\left(L^{s}\left(g_{1}\right)+\cdots+L^{s}\left(g_{n}\right)\right)$ is used again:

$$
\begin{aligned}
\left\|a^{n}\right\|_{1, s} & =\sum_{x}\left|\sum_{g_{1} \ldots g_{n}=x} a_{g_{1}} \ldots a_{g_{n}}\right| L^{s}(x) \\
& \leq \sum_{x}\left(\sum_{g_{1} \ldots g_{n}=x}\left|a_{g_{1}}\right| \ldots\left|a_{g_{n}}\right| L^{s}\left(g_{1} \ldots g_{n}\right)\right) \\
& \leq n^{s} \sum_{x}\left(\sum_{i=1}^{n} \sum_{g_{1} \ldots g_{n}=x}\left|a_{g_{1}}\right| \ldots\left|a_{g_{n}}\right| L^{s}\left(g_{i}\right)\right)=n^{s+1}\|a\|_{1}^{n-1}\|a\|_{1, s}
\end{aligned}
$$

Taking the n-th root we get $r_{\ell_{5}^{1} \Gamma}(a) \leq\|a\|_{1}$. We conclude that $\ell_{s}^{1} \Gamma \hookrightarrow \ell^{1} \Gamma$ is spectral.
It follows that

$$
\ell_{\infty}^{1} \Gamma=\cap_{s>0} \ell_{s}^{1} \Gamma
$$

is a dense, spectral Fréchet subalgebra of $\ell^{1} G$.
Schematically, we have the following diagram of dense inclusions:

For an arbitrary group, the diagram should be interpreted as a diagram of Banach and Fréchet spaces. For a group enjoying property RD, it becomes a diagram of Banach and Fréchet algebras, and the inclusions along the rows are spectral.

The spaces $H^{\infty} \Gamma$ and $\ell_{\infty}^{1} \Gamma$ coincide precisely when Γ has polynomial growth. Compare [40, Thm. 3.1.7].
Lemma III.4.4. The following are equivalent:
a) Γ has polynomial growth
b) $H^{s} \Gamma \subseteq \ell^{1} \Gamma$ for some $s>0$
c) $H^{\infty} \Gamma \subseteq \ell^{1} \Gamma$
d) $H^{\infty} \Gamma=\ell_{\infty}^{1} \Gamma$

Proof. $a) \Rightarrow b$): if Γ has polynomial growth then $\sum(1+|g|)^{-2 s}$ converges for s large enough; then CauchySchwarz yields $\sum\left|a_{g}\right| \leq \sqrt{\sum\left|a_{g}\right|^{2}(1+|g|)^{2 s}} \sqrt{\sum(1+|g|)^{-2 s}}$, that is $\|a\|_{1} \leq C\|a\|_{2, s}$ for all $a \in H^{s} \Gamma$.
$b) \Rightarrow a)$: the inclusion $H^{s} \Gamma \subseteq \ell^{1} \Gamma$ is necessarily continuous, so there are $C, s>0$ such that $\|a\|_{1} \leq$ $C\|a\|_{2, s}$ for all $a \in H^{s} \Gamma$; in particular, for the characteristic function of the n-ball we obtain $\left|B_{n}\right| \leq C(1+$ $n)^{s} \sqrt{\left|B_{n}\right|}$ and so $\left|B_{n}\right|$ is dominated by $n^{2 s}$.
$b) \Rightarrow d)$: if $H^{s} \Gamma \subseteq \ell^{1} \Gamma$ then $H^{s+r} \Gamma \subseteq \ell_{r}^{1} \Gamma$ for all $r>0$, so $H^{\infty} \Gamma \subseteq \ell_{\infty}^{1} \Gamma$; the other inclusion, $H^{\infty} \Gamma \supseteq \ell_{\infty}^{1} \Gamma$, is generic.
$d) \Rightarrow c$): clear.
$c) \Rightarrow b$): the inclusion $H^{\infty} \Gamma \subseteq \ell^{1} \Gamma$ is necessarily continuous, so there are $C, s>0$ such that $\|a\|_{1} \leq$ $C\|a\|_{2, s}$ for all $a \in \mathbb{C} \Gamma$; hence $H^{s} \Gamma \subseteq \ell^{1} \Gamma$.

III. 5 Applications of property RD

III.5.1 The approach of Connes and Moscovici to the Novikov conjecture

Connes and Moscovici ([17]) were the first to use the Rapid Decay property for K-theoretic purposes: in order to define a certain pairing between K-theory and cohomology, one needs to pass from the reduced C^{*}-algebra of a group to a smaller algebra having the same K-theory.

Let M be a closed, oriented manifold and Γ a group. For every group cohomology class $[c] \in \mathrm{H}^{\bullet}(\Gamma ; \mathbb{Q})$, one attaches to every map $f: M \rightarrow B \Gamma$ a higher signature $\sigma_{[c]}(M, f)$. The Novikov conjecture is that all these higher signatures only depend on the homotopy type of M. For fixed M and arbitrary Γ, the relevant case is $\Gamma=\pi_{1} M$ as it implies all others. However, the usual point of view is to fix Γ.

In [17] (see also [58] for an overview), Connes and Moscovici prove the following:
Theorem III.5.1. If Γ has polynomial cohomology and property $R D$, then Γ satisfies the Novikov conjecture.
Polynomial cohomology of Γ means that every cohomology class of even degree can be represented by a cocycle of polynomial growth. These two conditions of polynomial control, polynomial cohomology and property RD, come about in the following way.

Let $\mathcal{R} \Gamma$ be the group ring with coefficients in the infinite matrices $\left(a_{i j}\right)$ that are rapidly decaying in the sense that $\left(i^{\alpha} j^{\beta} a_{i j}\right)$ is bounded for all $\alpha, \beta \geq 1$. As a special case of their Index Theorem, Connes and Moscovici recover the higher signatures from a pairing between $\mathrm{H}^{\text {even }}(\Gamma ; \mathbb{C})$ and $K_{0}(\mathcal{R} \Gamma)$:

$$
\sigma_{[c]}(M, f)=C\left\langle\tau_{c}, \operatorname{Ind}_{f, \Gamma} D_{\text {sign }}\right\rangle, \quad[c] \in \mathrm{H}^{2 k}(\Gamma ; \mathbb{C})
$$

Here C is a constant depending only on the dimension of M and the cohomological degree, τ_{c} is a cyclic cocycle on $\mathcal{R} \Gamma$ associated to the group cocycle c, and $\operatorname{Ind}_{f, \Gamma} D_{\text {sign }}$ is a $K_{0}(\mathcal{R} \Gamma)$-valued index for the signature operator $D_{\text {sign }}$ on \widetilde{M}.

The problem is now the homotopy invariance of $\operatorname{Ind}_{\Gamma}$. Let \mathcal{K} denote, as usual, the compacts on a separable, infinite dimensional Hilbert space. The inclusion

$$
\mathcal{R} \Gamma=\mathbb{C} \Gamma \otimes \mathcal{R} \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma \otimes \mathcal{K}
$$

induces a map $K_{0}(\mathcal{R} \Gamma) \rightarrow K_{0}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma \otimes \mathcal{K}\right)=K_{0}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right)$. The image of $\operatorname{Ind}_{\Gamma}$ through this map is a higher index, previously introduced by Mishchenko and Kasparov, which is known to be homotopy invariant. Thus one has to extend to a pairing between $\mathrm{H}^{\text {even }}(\Gamma ; \mathbb{C})$ and $K_{0}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right)$. The result $[16, \mathrm{p} .242]$ is that, in the presence of property RD , one can extend the pairing with a cyclic cocycle of polynomial growth from $K_{0}(\mathcal{R} \Gamma)$ to $K_{0}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma \otimes \mathcal{K}\right)$.

On one hand, hyperbolic groups have property RD. On the other hand, they satisfy polynomial cohomology in the strongest possible way, namely, every cohomology class can be represented by a bounded cocycle; this has been stated by Gromov and proved by Mineyev in [56]. The conclusion is the following:

Corollary III.5.2. Hyperbolic groups satisfy the Novikov conjecture.

Nowadays much stronger results on the Novikov conjecture are known, mainly coming from a coarse geometric approach. See [91] for an overview.

In [53] it is proved that combable groups have polynomial cohomology. This raises the following
Problem. Do combable groups have property RD?
Kato [45] has showed, by different methods, that combable groups satisfy the Novikov conjecture. Another reason that lends credibility to the above problem is that hyperbolic groups, mapping class groups, and groups acting properly discontinuously on $\mathrm{CAT}(0)$ cube complexes are combable.

III.5.2 Lafforgue's work on the Baum-Connes conjecture

Another use of the property of Rapid Decay for K-theoretic purposes features in the remarkable work of Lafforgue [47].

The Baum-Connes conjecture is the statement that a certain assembly map

$$
\mu_{\mathrm{r}}: K_{*}^{\mathrm{top}}(\Gamma) \rightarrow K_{*}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right) \quad(*=0,1)
$$

is an isomorphism. Here $K_{*}^{\text {top }}(\Gamma)$ is a "topological" K-theory for Γ, whereas $K_{*}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right)$ is an "analytical" K-theory for Γ. Higson and Kasparov [34] (see also the expositions [42], [33]) proved the Baum-Connes conjecture for groups with the Haagerup property. The reduced assembly map μ_{r} is the composition of a full assembly map $\mu: K_{*}^{\text {top }}(\Gamma) \rightarrow K_{*}\left(\mathrm{C}^{*} \Gamma\right)$ with the map $K_{*}\left(\mathrm{C}^{*} \Gamma\right) \rightarrow K_{*}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right)$ induced by the natural morphism $\mathrm{C}^{*} \Gamma \rightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$; Higson and Kasparov prove that the latter two maps are isomorphisms.

The method of Higson and Kasparov does not work for groups with property (T), for the map $K_{0}\left(\mathrm{C}^{*} \Gamma\right) \rightarrow$ $K_{0}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right)$ is no longer injective. Lafforgue managed to break the property (T) barrier in [47]. Sporadic results on the Baum-Connes conjecture in the (T) case were known before Lafforgue's work, but Lafforgue handled a large class of groups, including all hyperbolic groups.

Lafforgue introduces a version of KK-theory for Banach algebras in which many features of Kasparov's original KK-theory for C^{*}-algebras have an analogue. However, $\mathrm{KK}^{\text {ban }}$ does not have a product. The $\mathrm{KK}^{\text {ban }}$ approach allows Lafforgue to prove that, for a certain class \mathcal{C}^{\prime} of groups, a variant of the assembly map

$$
\mu_{A}: \mathrm{K}_{*}^{\operatorname{top}}(\Gamma) \rightarrow \mathrm{K}_{*}(A \Gamma) \quad(*=0,1)
$$

is an isomorphism for any unconditional completion $A \Gamma$ of $\mathbb{C} \Gamma$ [47, Théorème 0.0 .2$]$. An unconditional completion $A \Gamma$ is Banach algebra obtained by completing $\mathbb{C} \Gamma$ under a norm $\|f\|_{A}$ that only depends on $g \mapsto$ $|f(g)|$; equivalently, a norm $\|\cdot\|_{A}$ for which $\|f\|_{A} \leq\left\|f^{\prime}\right\|_{A}$ whenever $f, f^{\prime} \in \mathbb{C} \Gamma$ satisfy $|f| \leq\left|f^{\prime}\right|$ pointwise (to see that the first definition implies the second, note that the restriction of the norm $\|\cdot\|_{A}:[0, \infty)^{(\Gamma)} \rightarrow[0, \infty)$ is convex hence non-decreasing).

The class \mathcal{C}^{\prime} includes the following classes of groups:

- groups with the Haagerup property
- groups acting geometrically on a $\mathrm{CAT}(0)$ space
- hyperbolic groups ([57])

To obtain the actual Baum-Connes conjecture, one needs an unconditional completion $A \Gamma$ having the same K-theory as $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$. For instance, an unconditional completion $A \Gamma$ that is a spectral $*$-subalgebra of $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$. This is where property RD comes in, providing the Banach algebra $H^{s} \Gamma$ as the desired unconditional completion.

Summarizing, the groups in the class C^{\prime} which have property RD - hyperbolic groups being an obvious highlight - satisfy the Baum-Connes conjecture. In particular, this approach handles many property (T) groups, groups which were inaccessible to the Higson-Kasparov method. There are, however, property (T) groups - notably $\mathrm{SL}_{n \geq 3}(\mathbb{Z})$ - for which Lafforgue's approach is ineffective.

III.5.3 Stable ranks of some reduced group C^{*}-algebras

The previous two applications of property RD were K-theoretic. Let us now see an application in a different direction.

All we need out of property RD is the following
Lemma III.5.3. Assume Γ has property $R D$. Then, for all $a \in \mathbb{C} \Gamma$ we have

$$
\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|_{2}^{1 / n}
$$

Proof. Let $R(a)=\max \{|g|: g \in \operatorname{supp}(a)\}$ be the radius of the smallest ball supporting $a \in \mathbb{C} \Gamma$. If Γ has RD then $\|a\| \leq C(1+R(a))^{s}\|a\|_{2}$ for some $C, s>0$. Then:

$$
\left\|a^{n}\right\|_{2} \leq\left\|a^{n}\right\| \leq C\left(1+R\left(a^{n}\right)\right)^{s}\left\|a^{n}\right\|_{2} \leq C(1+n R(a))^{s}\left\|a^{n}\right\|_{2}
$$

Taking the n-th root and letting $n \rightarrow \infty$ yields the desired equality of limits.
In [27], a group Γ is said to have the " ℓ^{2} spectral radius" property if it satisfies the conclusion of the lemma. Perhaps [23] is the first paper where this property receives attention. It is easy to show that groups of subexponential growth also enjoy the ℓ^{2} spectral radius property

The next theorem, is a special case of a result due to Dykema, Haagerup and Rørdam [28]; we follow [27] and [73].

Theorem III.5.4. $\mathrm{C}_{\mathrm{r}}^{*} F_{n}$ has stable rank 1.
Stable ranks are discussed extensively in the next chapter. Here, we take the following as a definition: a unital C^{*}-algebra A has stable rank 1 if the invertible group A^{\times}is dense in A.

Proof. Let $a \in \mathbb{C} F_{n}$. There is $\gamma \in F_{n}$ such that the support of γ a generates a free semigroup; take, for instance, $\gamma=x^{N} y^{N}$ where x, y are generators and N is large enough. Then $\left\|(\gamma a)^{n}\right\|_{2}=\|\gamma a\|_{2}^{n}$. Using the ℓ^{2} spectral radius property, we obtain:

$$
r(\gamma a)=\lim _{n \rightarrow \infty}\left\|(\gamma a)^{n}\right\|_{2}^{1 / n}=\|\gamma a\|_{2}=\|a\|_{2}
$$

In general, $r(a) \geq d\left(a, A^{\times}\right)$. Indeed, for every $\varepsilon>0$ we have $r(a)+\varepsilon \notin \operatorname{sp}(a)$, i.e., $a-(r(a)+\varepsilon) \in A^{\times}$. Then $d\left(a, A^{\times}\right) \leq\|a-(a-(r(a)+\varepsilon))\|=r(a)+\varepsilon$.

Therefore $\|a\|_{2}=r(\gamma a) \geq d\left(\gamma a, A^{\times}\right)=d\left(a, A^{\times}\right)$for all $a \in \mathbb{C} F_{n}$. It follows that $\|a\|_{2} \geq d\left(a, A^{\times}\right)$for all $a \in \mathrm{C}_{\mathrm{r}}^{*} F_{n}$.

Assume that the stable rank of $\mathrm{C}_{\mathrm{r}}^{*} F_{n}$ is greater than 1. A result of Rørdam (see [73]) says that there is $a \in \mathrm{C}_{\mathrm{r}}^{*} F_{n}$ with $\|a\|=d\left(a, A^{\times}\right)=1$. We have

$$
1=\|a\|=d\left(a, A^{\times}\right) \leq\|a\|_{2} \leq\|a\|
$$

hence $\|a\|=1=\|a\|_{2}$. Then both $1-a a^{*}$ and $1-a^{*} a$ are positive (by the first equality), and have vanishing trace (by the second equality). We must have $1-a a^{*}=1-a^{*} a=0$, in particular a is invertible. This contradicts the fact that $d\left(a, A^{\times}\right)=1$.

The proof rests on the combination of the ℓ^{2} spectral radius property (which allows us to pass from the operator norm to the 2 -norm) with the "free semigroup" property that every finite subset has a translate that generates a free semigroup (which allows the computation of 2-norms). Hyperbolic groups have property RD, hence they satisfy the ℓ^{2} spectral radius property. It turns out that torsion-free, non-elementary hyperbolic groups have the free semigroup property. Therefore:

Theorem III.5.5 ([27]). If Γ is a torsion-free, non-elementary hyperbolic group, then $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ has stable rank 1.

III. 6 Quantifying property RD

For any finitely generated group Γ that satisfies property RD, we defined the "RD-dimension" of Γ as follows:

$$
\operatorname{rd}(\Gamma)=\inf \{s: \Gamma \text { satisfies }(\mathrm{RD}) \text { of order } s\}
$$

Similarly, we put:

$$
\begin{aligned}
\operatorname{rd}_{\bullet}(\Gamma) & =\inf \left\{s: \Gamma \text { satisfies }\left(\mathrm{RD}_{\bullet}\right) \text { of order } s\right\} \\
\operatorname{rd}_{\circ}(\Gamma) & =\inf \left\{s: \Gamma \text { satisfies }\left(\mathrm{RD}_{\circ}\right) \text { of order } s\right\}
\end{aligned}
$$

Note that these definitions do not depend on the choice of word-length (this is stronger than saying that property RD does not depend of the choice of word-length.)

Lemma III.6.1. $\operatorname{rd}(\Gamma)=\operatorname{rd}_{\bullet}(\Gamma)$ and $\mathrm{rd}_{\circ}(\Gamma) \leq \operatorname{rd}_{\bullet}(\Gamma) \leq \operatorname{rd}_{\circ}(\Gamma)+\frac{1}{2}$.
Proof. That $\operatorname{rd}(\Gamma) \geq \operatorname{rd}_{\bullet}(\Gamma) \geq \operatorname{rd}_{\circ}(\Gamma)$ is trivial. The inequality $\operatorname{rd}(\Gamma) \leq \operatorname{rd} .(\Gamma)$, implicit in [46], works as follows. Let $s>\operatorname{rd} .(\Gamma)$; we show Γ satisfies (RD) of order s. Pick $s>s^{\prime}>\mathrm{rd}_{\bullet}(\Gamma)$, so Γ satisfies (RD.) of
order s^{\prime}. Let A_{n} be the annulus $\left\{g: 2^{n} \leq|g|<2^{n+1}\right\}$. Then:

$$
\begin{aligned}
\left\|\sum a_{g} g\right\| & \leq\left|a_{0}\right|+\sum_{n \geq 0}\left\|\sum_{g \in A_{n}} a_{g} g\right\| \leq\left|a_{0}\right|+C \sum_{n \geq 0} 2^{(n+1) s^{\prime}}\left\|\sum_{g \in A_{n}} a_{g} g\right\|_{2} \\
& \leq\left|a_{0}\right|+C \sum_{n \geq 0} 2^{(n+1) s^{\prime}-n s} 2^{n s}\left(\sum_{g \in A_{n}}\left|a_{g}\right|^{2}(1+|g|)^{2 s}\right)^{1 / 2} \\
& \leq C^{\prime}\left(1+\sum_{n \geq 0} 4^{n\left(s^{\prime}-s\right)}\right)^{1 / 2}\left(\sum\left|a_{g}\right|^{2}(1+|g|)^{2 s}\right)^{1 / 2}
\end{aligned}
$$

Thus Γ satisfies (RD) of order s, as desired. We now prove the remaining inequality, namely $\mathrm{rd} .(\Gamma) \leq$ $\mathrm{rd}_{\circ}(\Gamma)+\frac{1}{2}$. Assume that Γ satisfies $\left(\mathrm{RD}_{\circ}\right)$ of order s; we show that Γ satisfies (RD.) of order $s+\frac{1}{2}$. Let $\sum a_{g} g \in \mathbb{C} \Gamma$ be supported on the n-ball. We have:

$$
\begin{aligned}
\left\|\sum a_{g} g\right\| & \leq \sum_{i \leq n}\left\|\sum_{|g|=i} a_{g} g\right\| \leq C \sum_{i \leq n}(1+i)^{s}\left\|\sum_{|g|=i} a_{g} g\right\|_{2} \\
& \leq C\left(\sum_{i \leq n}(1+i)^{2 s}\right)^{1 / 2}\left\|\sum a_{g} g\right\|_{2} \leq C^{\prime}(1+n)^{s+\frac{1}{2}}\left\|\sum a_{g} g\right\|_{2}
\end{aligned}
$$

Thus (RD.) of order $s+\frac{1}{2}$ holds.
The proof of Theorem III.3.2 shows that, for Γ a group of polynomial growth, we have

$$
\operatorname{deg} \rho_{\bullet}=2 \operatorname{rd}_{\bullet}(\Gamma), \quad \operatorname{deg} \rho_{\circ}=2 \operatorname{rd}_{\circ}(\Gamma)
$$

where $\operatorname{deg} \rho_{\bullet}=\inf \left\{s: \rho_{\bullet}(n) \prec n^{s}\right\}$ and $\operatorname{deg} \rho_{\circ}=\inf \left\{s: \rho_{\circ}(n) \prec n^{s}\right\}$ denote the growth degree of balls, respectively of spheres. Note that $\operatorname{deg} \rho_{\bullet}$ is a non-negative integer: polynomial growth groups are precisely the virtually nilpotent groups (Gromov), while for nilpotent groups we have deg $\rho_{\bullet}=\sum k \operatorname{rank}\left(\Gamma_{k} / \Gamma_{k+1}\right)$ where $\Gamma_{k+1}=\left[\Gamma_{k}, \Gamma\right]$ is the lower central series of Γ (Bass). On the other hand, surprisingly little is known about $\operatorname{deg} \rho_{\circ}$ and how it relates to $\operatorname{deg} \rho_{\bullet}$. It is easy to see that $\operatorname{deg} \rho_{\bullet}-1 \leq \operatorname{deg} \rho_{\circ} \leq \operatorname{deg} \rho_{\bullet}$, which translates precisely in the inequality $d_{\circ}(\Gamma) \leq d_{\bullet}(\Gamma) \leq d_{\circ}(\Gamma)+\frac{1}{2}$. Examples like \mathbb{Z}^{n} and the interpretation of ρ_{\circ} as the discrete derivative of ρ_{\bullet} suggest $\operatorname{deg} \rho_{\circ}=\operatorname{deg} \rho_{\bullet}-1$ should hold.

For free groups, we know that $\mathrm{rd}_{\circ}\left(F_{n}\right)=1$; this follows by combining Haagerup's inequality and Cohen's computation (see Section III.2). Thus $1 \leq \mathrm{rd}_{\mathbf{e}}\left(F_{n}\right) \leq 3 / 2$. It would be interesting to compute the actual value of $\operatorname{rd}\left(F_{n}\right)$. This is relevant to the following speculation:

What is the dimension of the (imaginary) dual of F_{n} ?

One argues by analogy with the free abelian groups \mathbb{Z}^{n}. If we understand dimension from the perspective of the stable rank, then the noncommutative space \widehat{F}_{n} should have dimension 1. Indeed, the fact that $\operatorname{tsr} C\left(\widehat{F}_{n}\right)=$ 1 means that \widehat{F}_{n} has dimension 0 or 1 , and the fact that $\operatorname{csr} C\left(\widehat{F}_{n}\right)=2$ rules out the possibility that the dimension is 0 .

On the other hand, if we understand dimension from the RD viewpoint, then the noncommutative space \widehat{F}_{n} should have dimension 2 or 3 . We have just seen that, in the case of \mathbb{Z}^{n}, the dimension is recovered by
taking twice the "RD-dimension" $\operatorname{rd}\left(\mathbb{Z}^{n}\right)$. Now $2 \leq 2 \mathrm{rd} .\left(F_{n}\right) \leq 3$ so, assuming integrality, the dimension of \widehat{F}_{n} is either 2 or 3 .

If Γ is finite, then $\mathrm{rd}_{\circ}(\Gamma)=\operatorname{rd}_{\bullet}(\Gamma)=\mathrm{rd}_{\circ}(\Gamma)=0$. On the other hand, for infinite groups we have:
Proposition III.6.2. Let Γ be an infinite, finitely generated group. Then $\operatorname{rd}(\Gamma) \geq \frac{1}{2}$.
Note that $\operatorname{rd}(\mathbb{Z})=\frac{1}{2}$, so the lower bound is best possible.
The proof of the above proposition, although elementary, is intricate. Already the fact that an infinite group cannot satisfy (RD) of order 0 is non-trivial, despite its obviousness. Rajagopalan formulated in the early 60 's the following " L^{p}-conjecture": if G is a locally compact group, and $L^{p}(G)$ is closed under convolution for some $p \in(1, \infty)$, then G is compact. The case when G is discrete and $p=2$ (and this is exactly what having (RD) of order 0 means) was solved by Rajagopalan himself in [69] by using structural results on so-called H^{*}-algebras. Our $H^{s} \Gamma$ is both a Hilbert space and, for suitable s, a Banach $*$-algebra; however, it is not a H^{*}-algebra, so Rajagopalan's arguments do not apply. Instead, we find inspiration in the complete solution to the L^{p}-conjecture, given by Saeki [75] almost 30 years after its formulation.

Proof. We argue by contradiction. Assume (RD) of order $\varepsilon \in\left[0, \frac{1}{2}\right.$) holds, hence (RD.) of order ε holds as well with the same constant C. Fix a set of generators for Γ.

Claim 1: There is an integer $r>0$ such that $\left|B_{(n+1) r}\right|>4\left|B_{n r}\right|$ for all n.
If Γ has subexponential growth, then Γ is amenable, and the proof of Theorem III.3.2 says that Γ has in fact sublinear growth; but this is impossible for an infinite group. Thus Γ is of exponential growth, so let $c_{2} \geq c_{1}>0$ be such that $c_{1} e^{n} \leq\left|B_{n}\right| \leq c_{2} e^{n}$ for all n. Let $r>0$ be an integer with $e^{r} \geq 4 c_{2} / c_{1}$. Then:

$$
\frac{\left|B_{(n+1) r}\right|}{\left|B_{n r}\right|} \geq \frac{c_{1} e^{(n+1) r}}{c_{2} e^{n r}}=\frac{c_{1}}{c_{2}} e^{r}>4
$$

From now on, let r be as in Claim 1. For $k \geq 1$, denote by ϕ_{k} the characteristic function of $B_{r k}$, and let $b_{k}:=\left|B_{r k}\right|=\left\|\phi_{k}\right\|_{2}^{2}$. Unless otherwise stated, all infinite sums start from 1 in what follows.

Claim 2: Let $a=\sum a_{k} \phi_{k}$, where $a_{k} \geq 0$ and $a_{k+1} \leq a_{k} / 2$ for all k. Then $\|a\|_{2}<\infty$ iff $\sum a_{k}^{2} b_{k}<\infty$.
On one hand, we have $\|a\|_{2}^{2} \geq \sum\left\|a_{k} \phi_{k}\right\|_{2}^{2}=\sum a_{k}^{2} b_{k}$. On the other hand, we show $\|a\|_{2}^{2} \leq 4 \sum a_{k}^{2} b_{k}$. For all k, l we have $\left\langle\phi_{k}, \phi_{l}\right\rangle=\left\|\phi_{\min \{k, l\}}\right\|_{2}^{2}=b_{\min \{k, l\}}$. Hence:

$$
\|a\|_{2}^{2}=\sum_{k, l} a_{k} a_{l}\left\langle\phi_{k}, \phi_{l}\right\rangle=\sum_{k, l} a_{k} a_{l} b_{\min \{k, l\}} \leq 2 \sum_{k \leq l} a_{k} a_{l} b_{k}=2 \sum_{k}\left(\sum_{l \geq k} a_{l}\right) a_{k} b_{k}
$$

Since $a_{k+1} \leq a_{k} / 2$ for all k, we have $\sum_{l \geq k} a_{l} \leq 2 a_{k}$, thus $\|a\|_{2}^{2} \leq 4 \sum a_{k}^{2} b_{k}$ as desired.
Now we make our choice: let $a=\sum a_{k} \phi_{k}$ with

$$
a_{k}=\frac{1}{\sqrt{k^{\alpha} b_{k}}}, \quad \alpha:=\frac{3}{2}+\varepsilon .
$$

Let $L:=1+|\cdot|$, where $|\cdot|$ is the length function on Γ. Note that the multiplication by (powers of) L is pointwise.

Claim 3: $\left\|L^{\varepsilon} a\right\|_{2}<\infty$.

Inequalities of functions being understood in the pointwise sense, we have:

$$
L^{\varepsilon} a=\sum a_{k}\left(L^{\varepsilon} \phi_{k}\right) \leq \sum a_{k}(1+r k)^{\varepsilon} \phi_{k} \leq \sum a_{k}(2 r k)^{\varepsilon} \phi_{k}=(2 r)^{\varepsilon} \sum a_{k} k^{\varepsilon} \phi_{k}
$$

The plan is to apply Claim 2 to the sum on right hand side. First, we check:

$$
\frac{a_{k+1}(k+1)^{\varepsilon}}{a_{k} k^{\varepsilon}}=\sqrt{\frac{k^{\alpha-2 \varepsilon} b_{k}}{(k+1)^{\alpha-2 \varepsilon} b_{k+1}}}<\sqrt{\frac{b_{k}}{b_{k+1}}}<\frac{1}{2}
$$

We have used the fact that $\alpha-2 \varepsilon>0$, as well as the estimate from Claim 1. Actually, $\alpha-2 \varepsilon>1$ so

$$
\sum\left(a_{k} k^{\varepsilon}\right)^{2} b_{k}=\sum \frac{1}{k^{\alpha-2 \varepsilon}}
$$

is convergent. By Claim $2,\left\|\sum a_{k} k^{\varepsilon} \phi_{k}\right\|_{2}<\infty$ hence $\left\|L^{\varepsilon} a\right\|_{2}<\infty$ as well.
By (RD) of order ε, we have $\left\|a a^{\prime}\right\|_{2} \leq C\left\|L^{\varepsilon} a\right\|_{2}\left\|a^{\prime}\right\|_{2}$; for $a^{\prime}:=L^{\varepsilon} a$, claim 3 implies that $\left\|a\left(L^{\varepsilon} a\right)\right\|_{2}<\infty$. The contradiction will arise from the following:

Claim 4: $\left\|a\left(L^{\varepsilon} a\right)\right\|_{2}=\infty$.
As a preparation, we first prove the following estimate:

$$
\begin{equation*}
\sum_{g \in B_{r n}}(1+|g|)^{\varepsilon}=\sum_{0 \leq i \leq r n}(1+i)^{\varepsilon}\left|S_{i}\right| \geq \frac{1}{2}(r n)^{\varepsilon} b_{n} \tag{III.1}
\end{equation*}
$$

We use the following well-known inequality, a consequence of the rearrangement inequality: if $x_{1} \leq x_{2} \leq$ $\cdots \leq x_{N}$ and $y_{1} \leq y_{2} \leq \cdots \leq y_{N}$, then

$$
\sum_{1 \leq i \leq N} x_{i} y_{i} \geq \frac{1}{N}\left(\sum_{1 \leq i \leq N} x_{i}\right)\left(\sum_{1 \leq i \leq N} y_{i}\right) .
$$

We cannot apply directly the above inequality to the two sequences $\left\{(1+i)^{\varepsilon}\right\}_{0 \leq i \leq r n}$ and $\left\{\left|S_{i}\right|\right\}_{0 \leq i \leq r n}$ because we are not guaranteed to have the latter sequence non-decreasing. Instead, we shall use the r-thick annuli $A_{i}=\{g: r(i-1)<|g| \leq r i\}$. When $i=1$, it is convenient to set $A_{1}=\{g:|g| \leq r\}$. The estimate of Claim 1 yields that the sequence $\left\{\left|A_{i}\right|\right\}_{1 \leq i \leq n}$ increases; in fact $\left|A_{i+1}\right|>3\left|A_{i}\right|$. Then:

$$
\sum_{0 \leq i \leq r n}(1+i)^{\varepsilon}\left|S_{i}\right| \geq \sum_{1 \leq i \leq n}(1+r(i-1))^{\varepsilon}\left|A_{i}\right| \geq \frac{1}{n}\left(\sum_{1 \leq i \leq n}(1+r(i-1))^{\varepsilon}\right)\left(\sum_{1 \leq i \leq n}\left|A_{i}\right|\right)
$$

As $0 \leq \varepsilon<1$, we have $x^{\varepsilon}+y^{\varepsilon} \geq(x+y)^{\varepsilon}$ whenever $x, y \geq 0$. Hence:

$$
\begin{aligned}
\sum_{1 \leq i \leq n}(1+r(i-1))^{\varepsilon} & =\frac{1}{2} \sum_{1 \leq i \leq n}\left((1+r(i-1))^{\varepsilon}+(1+r(n-i+1))^{\varepsilon}\right) \\
& \geq \frac{1}{2} \sum_{1 \leq i \leq n}(2+r n)^{\varepsilon} \geq \frac{1}{2} n(r n)^{\varepsilon}
\end{aligned}
$$

Using $\sum_{1 \leq i \leq n}\left|A_{i}\right|=b_{n}$, we conclude that $\sum_{0 \leq i \leq r n}(1+i)^{\varepsilon}\left|S_{i}\right| \geq \frac{1}{2}(r n)^{\varepsilon} b_{n}$, so (III.1) is proved.

Next, we show the following estimate:

$$
\begin{equation*}
\phi_{n+k}\left(L^{\varepsilon} \phi_{n}\right) \geq \frac{1}{2}(r n)^{\varepsilon} b_{n} \phi_{k} \quad(n, k \geq 1) \tag{III.2}
\end{equation*}
$$

Recall that the inequality is understood pointwise, L^{ε} multiplies pointwise, and $\phi_{n+k}\left(L^{\varepsilon} \phi_{n}\right)$ is the convolution product. Pick $h \in \operatorname{supp}\left(\phi_{k}\right)=B_{r k}$. For each $g \in \operatorname{supp}\left(\phi_{n}\right)=B_{r n}$, we have $h g^{-1} \in \operatorname{supp}\left(\phi_{n+k}\right)=B_{r n+r k}$, so h appears with coefficient at least

$$
\sum_{g \in B_{r n}}(1+|g|)^{\varepsilon}
$$

in the convolution $\phi_{n+k}\left(L^{\varepsilon} \phi_{n}\right)$. Using (III.1), we obtain (III.2).
Now (III.2) yields:

$$
\begin{aligned}
a\left(L^{\varepsilon} a\right) & =\sum_{m, n} a_{m} a_{n} \phi_{m}\left(L^{\varepsilon} \phi_{n}\right) \geq \sum_{m>n} a_{m} a_{n} \phi_{m}\left(L^{\varepsilon} \phi_{n}\right) \\
& =\sum_{k} \sum_{n} a_{n+k} a_{n} \phi_{n+k}\left(L^{\varepsilon} \phi_{n}\right) \geq \frac{1}{2} \sum_{k} \sum_{n} a_{n+k} a_{n}(r n)^{\varepsilon} b_{n} \phi_{k}
\end{aligned}
$$

Let $q \geq 1$. For $n \leq q k$, we have

$$
a_{n} \geq \frac{1}{\sqrt{(q k)^{\alpha} b_{n}}}, \quad a_{n+k} \geq \frac{1}{\sqrt{((q+1) k)^{\alpha} b_{n+k}}} \geq \frac{1}{\sqrt{(2 q k)^{\alpha} b_{n+k}}}
$$

so, using the generic inequality $b_{n+k} \leq b_{n} b_{k}$, we get

$$
a_{n+k} a_{n} b_{n} \geq \frac{1}{2^{\alpha / 2}(q k)^{\alpha}} \sqrt{\frac{b_{n}}{b_{n+k}}} \geq \frac{1}{2^{\alpha / 2}(q k)^{\alpha} \sqrt{b_{k}}}
$$

On the other hand, for $n>(q-1) k$ we have $r n \geq \frac{1}{2} r q k$ as soon as $q \geq 2$. So, for $q \geq 2$ and $(q-1) k<n \leq q k$ we get

$$
a_{n+k} a_{n} b_{n}(r n)^{\varepsilon} \geq \frac{2^{-\varepsilon} r^{\varepsilon}(q k)^{\varepsilon}}{2^{\alpha / 2}(q k)^{\alpha} \sqrt{b_{k}}}=\frac{K}{(q k)^{3 / 2} \sqrt{b_{k}}}
$$

by absorbing the constants into a new constant K; recall, $\alpha=\frac{3}{2}+\varepsilon$. We now sum over n :

$$
\begin{aligned}
\sum_{n} a_{n+k} a_{n}(r n)^{\varepsilon} b_{n} & \geq \sum_{q \geq 2}\left(\sum_{(q-1) k<n \leq q k} a_{n+k} a_{n}(r n)^{\varepsilon} b_{n}\right) \\
& \geq \sum_{q \geq 2}\left(\sum_{(q-1) k<n \leq q k} \frac{K}{(q k)^{3 / 2} \sqrt{b_{k}}}\right) \\
& =K \sum_{q \geq 2} \frac{k}{(q k)^{3 / 2} \sqrt{b_{k}}}=K^{\prime} \frac{1}{\sqrt{k b_{k}}}
\end{aligned}
$$

Here $K^{\prime}=K \sum_{q \geq 2} q^{-3 / 2}$. We now return to our estimate of $a\left(L^{\varepsilon} a\right)$:

$$
a\left(L^{\varepsilon} a\right) \geq \frac{1}{2} \sum_{k} \sum_{n} a_{n+k} a_{n}(r n)^{\varepsilon} b_{n} \phi_{k} \geq \frac{K^{\prime}}{2} \sum_{k} \frac{1}{\sqrt{k b_{k}}} \phi_{k}
$$

We apply the conclusion of Claim 2 to the sum on right hand side. Using the estimate from Claim 1, we check:

$$
\frac{1}{\sqrt{(k+1) b_{k+1}}}<\frac{1}{\sqrt{k b_{k+1}}}<\frac{1}{2 \sqrt{k b_{k}}}
$$

This time

$$
\sum_{k}\left(\frac{1}{\sqrt{k b_{k}}}\right)^{2} b_{k}=\sum_{k} \frac{1}{k}=\infty
$$

so $\left\|a\left(L^{\varepsilon} a\right)\right\|_{2}=\infty$. Claim 4 is proved.
This ends the proof.
Proposition III. 6.2 prompts the following two questions.
Question 1. Is it true that $\operatorname{rd}(\Gamma)=\frac{1}{2}$ precisely when Γ is virtually infinite cyclic?
The answer is, very likely, affirmative. We know this is the case in the polynomial growth regime, so one needs to show $\operatorname{rd}(\Gamma)>\frac{1}{2}$ whenever Γ has exponential growth.

The next question looks much harder, and a negative answer seems more likely.
Question 2. Is it true that $2 \operatorname{rd}(\Gamma)$ is always an integer, if finite?

CHAPTER IV

STABLE RANKS

IV. 1 Introduction

The theory of C^{*}-algebras can be thought of as "noncommutative" topology. This viewpoint is rooted in Gelfand's foundational theorem, saying that a commutative C^{*}-algebra is C^{*}-isomorphic to $C_{0}(X)$ for some locally compact, Hausdorff space X.

Extending topological invariants to the C^{*}-context is, consequently, a key aspect in the study of C^{*} algebras. The topological K-theory of Atiyah and Hirzebruch has been vastly generalized in this way to operator K-theory for C^{*}-algebras. In fact, operator K-theory is most naturally defined for Banach algebras.

We are interested in notions of dimensions for C^{*}-algebras and, more generally, Banach algebras, which extend the notion of (covering) dimension for topological spaces. Recall, we put $\operatorname{dim} X=d$ if d is the least integer with the property that every open cover of X can be refined in such a way that no point of X lies in more than $d+1$ sets; if no such d exists, we put $\operatorname{dim} X=\infty$.

Let us sketch the properties we would expect from such a "rank" for Banach algebras. First, we would like to recover the usual notion of dimension:
D. $\operatorname{rk} C(X)=\operatorname{dim} X$ for a compact space X

Throughout, spaces are assumed to be Hausdorff. Inspired by properties of dimension for topological spaces, we also expect the "rank" to fulfill the following:
Q. if B is a quotient of A, then $\operatorname{rk} A \geq \operatorname{rk} B$
I. if I is an ideal in A, then $\operatorname{rk} I \leq \operatorname{rk} A$
E. if $0 \rightarrow I \rightarrow A \rightarrow B \rightarrow 0$ is an extension, then $\operatorname{rk} A \leq \max \{\operatorname{rk} I, \operatorname{rk} B\}$
L. $\operatorname{rk}\left(\underset{\longrightarrow}{\lim } A_{i}\right) \leq \underline{\lim } \operatorname{rk} A_{i}$
S. $\operatorname{rk}(A \oplus B) \leq \max \{\operatorname{rk} A, \operatorname{rk} B\}$
T. $\operatorname{rk}(A \otimes B) \leq \operatorname{rk} A+\operatorname{rk} B$

In what concerns amplifications, we might desire something more precise than a bound as provided by \mathbf{T}. Namely:
M. for each $n \geq 1, \operatorname{rkM}_{n}(A)$ can be computed from $\operatorname{rk} A$

By now, at least a dozen such ranks have been proposed in the literature. Here, we are interested in the following: the Bass stable rank (bsr), the topological stable rank (tsr), the connected stable rank (csr), and the general stable rank (gsr). The original notion of stable rank is the Bass stable rank, introduced by Bass in [7]. The other three stable ranks under consideration are due to Rieffel [71].

We find it useful to study these four stable ranks together. On one hand, they share many general properties. On the other hand, aspects that are particular to each stable rank are best displayed in contrast with the other stable ranks. The connected and the topological stable rank are topological in nature, whereas the Bass and the general stable rank are purely algebraic. However, similarities emerge between the Bass stable rank and the topological stable rank on one hand, and the connected stable rank and the general stable rank on the other hand.

So far, the Bass stable rank and the topological stable rank have been most thoroughly investigated due to their interpretation as noncommutative dimensions. Although harder to compute in general, the connected stable rank and its higher relatives are the better suited stable ranks for K -theoretic purposes. Of all four stable ranks, the general stable rank is the most difficult to compute.

The stable ranks we are considering are related by the following estimate:

$$
\mathrm{gsr} \leq \mathrm{csr} \leq \mathrm{bsr}+1 \leq \mathrm{tsr}+1
$$

For C^{*}-algebras we have $\mathrm{bsr}=\mathrm{tsr}$, but in general the inequalities can be strict.
The expected properties that we listed above are only satisfied to a certain extent; nevertheless, they serve as a guiding light. The dimension property \mathbf{D} is satisfactory for the Bass and the topological stable rank; it is more complicated for the connected stable rank, whereas for the general stable rank very little is known. Some estimates pertaining to properties $\mathbf{Q}, \mathbf{E}, \mathbf{I}$ are known, but one would expect more. Properties \mathbf{L} and \mathbf{S} are easily satisfied. Behavior under tensorization - property \mathbf{T} - is far from being understood. Finally, for property \mathbf{M} the currently known estimates are rather satisfactory.

Among the other "noncommutative dimensions" that have received attention in the literature, we mention the real rank introduced by Brown and Pedersen, the analytic rank of Murphy, H. Lin's topological tracial rank, and the decomposition rank of Kirchberg and Winter. These ranks are C^{*}-algebraic, and they are typically used for classification purposes. It should be noted that they fulfill the dimension requirement D exactly.

Notations. In what follows, a notation like $\left(a_{i}\right) \in A^{n}$ means that the index i runs from 1 to n, so $\left(a_{i}\right)$ stands for the vector $\left(a_{1}, \ldots, a_{n}\right)$. For an algebra A, the group of invertible elements of A is denoted by A^{\times}. The floor function $\lfloor\cdot\rfloor$ is given by $\lfloor x\rfloor=$ greatest integer that is not greater than x, and the ceiling function $\lceil\cdot\rceil$ is given by $\lceil x\rceil=$ smallest integer that is not smaller than x. The unit interval $[0,1]$ is denoted by I.

IV. 2 Definitions of stable ranks

Let A be a unital topological algebra. Consider, for each $n \geq 1$, the collection of n-tuples that generate A as a left ideal:

$$
\operatorname{Lg}_{n}(A)=\left\{\left(a_{1}, \ldots, a_{n}\right): A a_{1}+\cdots+A a_{n}=A\right\} \subseteq A^{n}
$$

Elements of $\operatorname{Lg}_{n}(A)$ are also called unimodular vectors. Note that $\operatorname{Lg}_{n}(A)$ carries a left action of $\mathrm{GL}_{n}(A)$, namely left-multiplying the transpose of a unimodular vector by an invertible matrix.

The stable ranks under consideration capture the stabilization of certain properties in the sequence
$\left(\operatorname{Lg}_{n}(A)\right)_{n \geq 1}$:
Definition IV.2.1. Let A be a topological algebra. Then:

- the Bass stable rank of A, denoted bsr A, is the least n for which $\operatorname{Lg}_{n+1}(A)$ is reducible to $\operatorname{Lg}_{n}(A)$ in the following sense: if $\left(a_{i}\right) \in \operatorname{Lg}_{n+1}(A)$ then $\left(a_{i}+x_{i} a_{n+1}\right) \in \operatorname{Lg}_{n}(A)$ for some $\left(x_{i}\right) \in A^{n}$;
- the topological stable rank of A, denoted tsr A, is the least n for which $\operatorname{Lg}_{n}(A)$ is dense in A^{n};
- the connected stable rank of A, denoted $\operatorname{csr} A$, is the least n for which $\operatorname{Lg}_{m}(A)$ is connected for all $m \geq n ;$
\cdot the general stable rank of A, denoted gsr A, is the least n such that $\mathrm{GL}_{m}(A)$ acts transitively on $\mathrm{Lg}_{m}(A)$ for all $m \geq n$.

Notation. In what follows, the generic sr denotes any one of bsr, tsr, csr, gsr.
Naturally, we put $\operatorname{sr} A=\infty$ whenever there is no integer n satisfying the required stable rank condition. Also, if A is non-unital, then we put $\operatorname{sr} A:=\operatorname{sr} A^{+}$, where A^{+}is the unitization of A.

Remark IV.2.2. If A is a Banach algebra then it is easy to see that $\operatorname{Lg}_{n}(A)$ is open in A^{n}; in fact, this holds whenever A is a good topological algebra (Lemma VIII.7.5). In particular, $\operatorname{Lg}_{n}(A)$ is connected if and only if $\operatorname{Lg}_{n}(A)$ is path-connected. Indeed, a topological algebra is locally path-connected, since each point has a local basis consisting of balanced sets, so path-connectivity and connectivity are equivalent for open sets.

Since the openness of $\mathrm{Lg}_{n}(A)$ is the only topological feature we need in much of what follows, we formulate the results for good topological algebras whenever we can.

Remark IV.2.3. For a good topological algebra A, we let A_{0}^{\times}denote the connected component of the identity in A^{\times}. Correspondingly, we let $\mathrm{GL}_{n}(A)_{0}$ denote the connected component of the identity in $\mathrm{GL}_{n}(A)$. We note the following

Fact. The action of $\operatorname{GL}_{n}(A)_{0}$ on $\operatorname{Lg}_{n}(A)$ has open orbits.
Indeed, fix $\left(a_{i}\right) \in \operatorname{Lg}_{n}(A)$. Pick some $\left(b_{i}\right) \in A^{n}$ such that $\sum b_{i} a_{i}=1$. Let $U \subseteq A$ be a neighborhood of 0 such that $1_{n}+\left(u_{i} b_{j}\right)_{1 \leq i, j \leq n} \in \operatorname{GL}_{n}(A)_{0}$ whenever $u_{i} \in U$. We claim that $\left(a_{i}^{\prime}\right)$ is in the $\mathrm{GL}_{n}(A)_{0}$-orbit of $\left(a_{i}\right)$ whenever $a_{i}^{\prime} \in a_{i}+U$. To verify the claim, put $a_{i}^{\prime}=a_{i}+u_{i}$ with $u_{i} \in U$. Then

$$
\left(\begin{array}{cccc}
u_{1} b_{1} & u_{1} b_{2} & \ldots & u_{1} b_{n} \\
u_{2} b_{1} & u_{2} b_{2} & \ldots & u_{2} b_{n} \\
& \vdots & & \\
u_{n} b_{1} & u_{n} b_{2} & \ldots & u_{n} b_{n}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)
$$

so $1_{n}+\left(u_{i} b_{j}\right)_{1 \leq i, j \leq n} \in \operatorname{GL}_{n}(A)_{0}$ takes $\left(a_{i}\right)$ to $\left(a_{i}+u_{i}\right)=\left(a_{i}^{\prime}\right)$. The fact is proved.
A consequence is that $\mathrm{Lg}_{n}(A)$ is connected if and only if $\mathrm{GL}_{n}(A)_{0}$ acts transitively on $\mathrm{Lg}_{n}(A)$. Therefore, we can reformulate the definition of the connected stable rank as follows:

- $\operatorname{csr} A$ is the least n for which $\operatorname{GL}_{m}(A)_{0}$ acts transitively on $\operatorname{Lg}_{m}(A)$ for all $m \geq n$

Remark IV.2.4. Strictly speaking, we have defined the left Bass, topological, and connected stable rank. The definition of the right counterpart for each stable rank is based on the right generating n-tuples

$$
\operatorname{Rg}_{n}(A)=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{1} A+\cdots+a_{n} A=A\right\}
$$

Let us consider the symmetry of the stable ranks. Note that, in the case of topological $*$-algebras, there is no difference between left and right stable ranks.

The Bass stable rank is left-right symmetric (Vaserstein [87]; see also [52, Prop.11.3.4]), and so are the connected stable rank (at least for Banach algebras, as shown by Corach - Larotonda [19]) and the general stable rank ([52, Lem.11.1.13]). On the other hand, the topological stable rank is not left-right symmetric. Examples of Banach algebras for which ltsr $\neq \mathrm{rtsr}$ were given recently in [25]. The context is that of nest algebras, which can be thought of as algebras of upper triangular infinite matrices. A nest \mathcal{N} on a Hilbert space H is a chain of closed subspaces of H satisfying the following two conditions:

- $0 \in \mathcal{N}$ and $H \in \mathcal{N}$
- $\cap N_{i} \in \mathcal{N}$ and $\overline{\bigcup N_{i}} \in \mathcal{N}$ whenever $\left\{N_{i}\right\}_{i \in I}$ is a family of subspaces in \mathcal{N}

For a nest \mathcal{N}, the weakly-closed algebra of operators that leave each subspace in \mathcal{N} invariant

$$
T(\mathcal{N})=\{T \in \mathcal{B}(H): T N \subseteq N \text { for all } N \in \mathcal{N}\}
$$

is called the nest algebra determined by \mathcal{N}. It turns out that at least one of $\operatorname{ltsr}(T(\mathcal{N}))$ or $\operatorname{rtsr}(T(\mathcal{N}))$ is infinite, and in many cases both are infinite in fact. However, there are nest algebras where a one-sided topological stable rank is 2 . Let $\left(d_{k}\right)_{k \geq 1}$ be an increasing sequence of natural numbers and let $\left(e_{n}\right)_{n \geq 1}$ be an orthonormal basis for the separable Hilbert space H. Consider the nest \mathcal{N} consisting of the d_{k}-dimensional spaces $N_{k}=\left\langle e_{i}: 1 \leq i \leq d_{k}\right\rangle$, together with $N_{0}=0$ and $N_{\infty}=H$. The main result of [25] is that, if $\left(d_{k}\right)_{k \geq 1}$ grows exponentially, then the corresponding nest algebra has $1 \mathrm{tsr}=\infty$ and $\mathrm{rtsr}=2$. To obtain a nest algebra with $\mathrm{rtsr}=\infty$ and ltsr $=2$, one need only dualize: if \mathcal{N} is a nest, then $\mathcal{N}^{\perp}=\left\{N^{\perp}: N \in \mathcal{N}\right\}$ is a nest whose corresponding algebra $T\left(\mathcal{N}^{\perp}\right)$ equals $T(\mathcal{N})^{*}$.

Remark IV.2.5. In the definition above, $\operatorname{sr} A$ is defined as the least n such that a certain condition sr_{n} involving $\operatorname{Lg}_{n}(A)$ holds. Note that sr_{k} implies sr_{k+1}. This is clear for tsr, as $A \times \operatorname{Lg}_{k}(A) \subseteq \operatorname{Lg}_{k+1}(A)$. For csr and gsr , it holds by design. As for bsr, it is shown as follows. Observe first that the converse of the implication in bsr_{k} is always true, i.e., if $\left(a_{i}+x_{i} a_{k+1}\right) \in \operatorname{Lg}_{k}(A)$ for some $\left(x_{i}\right) \in A^{k}$, then $\left(a_{i}\right) \in \operatorname{Lg}_{k+1}(A)$. Let now $\left(a_{i}\right) \in \operatorname{Lg}_{k+2}(A)$. Then $\left(a_{1}, \ldots, a_{k}, c_{k+1} a_{k+1}+c_{k+2} a_{k+2}\right) \in \operatorname{Lg}_{k+1}(A)$ for some $c_{k+1}, c_{k+2} \in A$. $\operatorname{By~bsr}_{k}$, we have $\left(a_{i}+z_{i}\left(c_{k+1} a_{k+1}+c_{k+2} a_{k+2}\right)\right) \in \operatorname{Lg}_{k}(A)$ for some $\left(z_{i}\right) \in A^{k}$. We get $\left(a_{i}+z_{i}^{\prime} a_{k+2}+z_{i}^{\prime \prime} a_{k+1}\right) \in \operatorname{Lg}_{k}(A)$ after renaming the coefficients, and the previous observation yields

$$
\left(a_{1}+z_{1}^{\prime} a_{k+2}, \ldots, a_{k}+z_{k}^{\prime} a_{k+2}, a_{k+1}\right) \in \operatorname{Lg}_{k+1}(A)
$$

which proves bsr_{k+1}.
The very first computation of stable ranks is, of course, the following $\operatorname{sr} \mathbb{C}=1$.

For a compact space X, the stable ranks of $C(X)$ can be computed - or at least estimated - in terms of the dimension of X. As in manifold theory, we use the notation X^{d} to indicate that X is d-dimensional.

The following is due to Vaserstein [87, Thm.7] for the Bass stable rank, to Rieffel [71, Prop.1.7] for the topological stable rank, and to Nistor [63, Cor.2.5] for the connected stable rank.

Theorem IV.3.1. Let X^{d} be a compact space. Then:

$$
\begin{aligned}
& \operatorname{bsr} C\left(X^{d}\right)=\operatorname{tsr} C\left(X^{d}\right)=\lfloor d / 2\rfloor+1 \\
& \operatorname{gsr} C\left(X^{d}\right) \leq \operatorname{csr} C\left(X^{d}\right) \leq\lceil d / 2\rceil+1
\end{aligned}
$$

In general, the dimensional upper bound for the connected stable rank is not attained; this is due to the fact that the connected stable rank is homotopy invariant (cf. proof of Theorem IV.3.2 below; see also Section IV.9). Thus, if we want the dimensional upper bound for the connected stable rank to be achieved, then we need an assumption which guarantees that a space is not homotopy equivalent to a space of lower dimension (a dimension 1 drop from an even dimension to an odd dimension may be allowed, however).

The following criterion was proved in [61, Prop.6.7]. Roughly, the hypothesis is that the top cohomology group in $H^{\text {odd } \leq d}\left(X^{d}\right)$ is non-vanishing:

Theorem IV.3.2. Let X^{d} be a compact space. Then

$$
\operatorname{csr} C\left(X^{d}\right)=\lceil d / 2\rceil+1
$$

provided $\check{H}^{d}\left(X^{d}\right) \neq 0$ for odd d, or $\check{H}^{d-1}\left(X^{d}\right) \neq 0$ for even d.
In what follows, the convention is that cohomology groups are taken with integer coefficients.
Proof. For simplicity, we assume that X^{d} is a d-dimensional finite CW-complex and we work with the usual cohomology. For a general compact space, cohomology is understood in the Čech sense and results from [35, p. 149-150] are the used in a similar way.

We identify $\operatorname{Lg}_{m} C\left(X^{d}\right)$ with the space of continuous maps $\operatorname{Map}\left(X^{d}, \mathbb{C}^{m} \backslash\{0\}\right)$. Consequently, we have a based identification $\pi_{0}\left(\operatorname{Lg}_{m} C\left(X^{d}\right)\right) \simeq\left[X^{d}, S^{2 m-1}\right]$. Hence, $\operatorname{csr} C\left(X^{d}\right)$ is the least n such that $\left[X^{d}, S^{2 m-1}\right]=0$ for all $m \geq n$. On one hand, this shows that $\operatorname{csr} C\left(X^{d}\right)$ only depends on the homotopy type of X^{d}. On the other hand, we directly recover the dimensional upper bound $\operatorname{csr} C\left(X^{d}\right) \leq\lceil d / 2\rceil+1$. Indeed, if $m \geq\lceil d / 2\rceil+1$ then $2 m-1 \geq d+1$, so $\left[X^{d}, S^{2 m-1}\right]=0$.

We have $\operatorname{csr} C\left(X^{d}\right)=\lceil d / 2\rceil+1$ if and only if $\left[X^{d}, S^{2 m-1}\right] \neq 0$ for $m=\lceil d / 2\rceil$. That is, for odd d we need to check $\left[X^{d}, S^{d}\right] \neq 0$, and for even d we need to check $\left[X^{d}, S^{d-1}\right] \neq 0$. This is achieved by the following
Fact. Let X^{d} be a d-dimensional finite CW-complex. Then:
a) $H^{d}\left(X^{d}\right) \neq 0$ if and only if $\left[X^{d}, S^{d}\right] \neq 0$;
b) $H^{d-1}\left(X^{d}\right) \neq 0$ implies $\left[X^{d}, S^{d-1}\right] \neq 0$.

To prove the fact, we recall that $H^{d}\left(X^{d}\right)$ can be identified with $\left[X^{d}, K(\mathbb{Z}, d)\right]$. Realize the $K(\mathbb{Z}, d)$ CWcomplex by starting with S^{d} as its d-skeleton and then adding cells of dimension $\geq d+2$ that kill the higher homotopy.

For a) we claim that the natural map $\left[X^{d}, S^{d}\right] \rightarrow\left[X^{d}, K(\mathbb{Z}, d)\right]$ is bijective. Surjectivity is clearly a consequence of the Cellular Approximation Theorem. But so is injectivity: a homotopy in $K(\mathbb{Z}, d)$ between $f_{0}, f_{1}: X^{d} \rightarrow S^{d}$ can be assumed cellular, so it maps to the $(d+1)$-skeleton of $K(\mathbb{Z}, d)$ which is S^{d}. That is, the maps $f_{0}, f_{1}: X^{d} \rightarrow S^{d}$ are actually homotopic over S^{d}.

For b), note that the natural map $\left[X^{d}, S^{d-1}\right] \rightarrow\left[X^{d}, K(\mathbb{Z}, d-1)\right]$ is surjective as well. Again, this follows from the Cellular Approximation Theorem, together with the fact that the d-skeleton of $K(\mathbb{Z}, d-1)$ is S^{d-1}.

Remark IV.3.3. The proof actually shows that, for odd d, the criterion is best possible: namely, we have $\operatorname{csr} C\left(X^{d}\right)=\lceil d / 2\rceil+1$ if and only if $H^{d}\left(X^{d}\right) \neq 0$.

Theorem IV.3.2 applies to tori of arbitrary dimension, orientable and non-orientable surfaces with the exception of the 2 -sphere, closed odd-dimensional manifolds, etc. On the other hand, Theorem IV.3. 2 does not apply directly to (even-dimensional) spheres. We treat them in the following:

For S^{d}, the d-sphere, we have:

$$
\operatorname{csr} C\left(S^{d}\right)= \begin{cases}\lceil d / 2\rceil+1 & \text { if } d \neq 2 \\ 1 & \text { if } d=2\end{cases}
$$

We need to revisit the proof of Theorem IV.3.2 in the case d is even. Then $\operatorname{csr} C\left(S^{d}\right)=\lceil d / 2\rceil+1$ if and only if $\left[S^{d}, S^{d-1}\right] \neq 0$. This holds when $d \neq 2$: it is well-known that $\pi_{d}\left(S^{d-1}\right)=\mathbb{Z} / 2$ for $d \geq 4$. For $d=2$, the fact that $\pi_{2}\left(S^{1}\right)=0$ gives $\operatorname{csr} C\left(S^{2}\right)=1$.

If the computation of $\operatorname{csr} C(X)$ was problematic, the computation of $\operatorname{gsr} C(X)$ is significantly more difficult. No general facts are known, so let us state, somewhat loosely, the following:

Problem. Give conditions on a compact space X which allow for an explicit computation of gsr $C(X)$.
The following result seems to be the first non-trivial computation of general stable rank:
Proposition IV.3.4. The general stable rank of $C\left(S^{d}\right)$ is given as follows:

$$
\operatorname{gsr} C\left(S^{d}\right)= \begin{cases}\lceil d / 2\rceil+1 & \text { if } d>4 \text { and } d \notin 4 \mathbb{Z} \\ \lceil d / 2\rceil & \text { if } d>4 \text { and } d \in 4 \mathbb{Z} \\ 1 & \text { if } d \leq 4\end{cases}
$$

Proof. We need two facts:

- Let X be a compact space. According to [71, Prop.10.5], $\operatorname{gsr} C(X)$ is the least positive integer n with the following property: for all $m \geq n$, if W is a left $C(X)$-module with $W \oplus C(X) \simeq C(X)^{m}$ then $W \simeq C(X)^{m-1}$. Via the Serre-Swan dictionary, we can translate this module-theoretic characterization of the general stable rank into a geometric one about complex vector bundles. Namely, $\operatorname{gsr} C(X)$ is
the least positive integer n with the following property: for all $m \geq n$, if E is an $(m-1)$-dimensional vector bundle over X which is trivialized by adding a line bundle over X, then E is trivial.
- Let X be, again, a compact space. Then there is a bijective correspondence

$$
\left[\operatorname{Vect}_{n}(S X)\right] \longleftrightarrow\left[X, \mathrm{GL}_{n}(\mathbb{C})\right]
$$

between the isomorphism classes of n-dimensional complex vector bundles over the suspension $S X$ and the homotopy classes of continuous maps $X \rightarrow \mathrm{GL}_{n}(\mathbb{C})$; see [44, p.36]. This correspondence is implemented by clutching. View $S X$ as the union of two cones over X, denoted X_{+}and X_{-}. On X_{+}, respectively X_{-}, take the trivial vector bundle $X_{+} \times \mathbb{C}^{n}$, respectively $X_{-} \times \mathbb{C}^{n}$. We glue these trivial bundles along $X=X_{+} \cap X_{-}$by a continuous map $f: X \rightarrow \mathrm{GL}_{n}(\mathbb{C})$; specifically, the two copies of \mathbb{C}^{n} above each $x \in X$ get identified by the linear isomorphism $f(x)$. We thus have an n-dimensional vector bundle E_{f} over $S X$ for each continuous map $f: X \rightarrow \mathrm{GL}_{n}(\mathbb{C})$. Note that each n-dimensional vector bundle over $S X$ arises (up to isomorphism) in this way. Indeed, as X_{+}and X_{-}are contractible, every vector bundle over X restricts to trivial vector bundles over X_{+}and X_{-}. Thus all that matters is the way these two trivial vector bundles fit together over X. Furthermore, the direct sum of clutching-type bundles behaves as expected [36, p.136]:

$$
E_{f} \oplus E_{g} \simeq E_{\left(\begin{array}{ll}
f & 0 \\
0 & g
\end{array}\right)}
$$

Therefore, if E_{f} is the n-dimensional bundle given by $f: X \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ then E_{f} is trivial iff f vanishes in $\left[X, \mathrm{GL}_{n}(\mathbb{C})\right]$, and E_{f} is stably trivial iff f vanishes in $\left[X, \mathrm{GL}_{m}(\mathbb{C})\right]$ for some $m \geq n$. To put it differently, there is a bijective correspondence between non-zero elements in the kernel of $\left[X, \mathrm{GL}_{n}(\mathbb{C})\right] \rightarrow\left[X, \mathrm{GL}_{n+1}(\mathbb{C})\right]$, and n-dimensional vector bundles which are not trivial, but they become trivial after adding a line bundle.

Combining these two facts, we conclude that $\operatorname{gsr} C(S X)$ is the least positive integer n with the property that $\left[X, \mathrm{GL}_{m-1}(\mathbb{C})\right] \rightarrow\left[X, \mathrm{GL}_{m}(\mathbb{C})\right]$ is injective for all $m \geq n$.

We now let $X=S^{*}$ to be a sphere, and we recall that the unitary group $\mathrm{U}(n)$ is a retract of $\mathrm{GL}_{n}(\mathbb{C})$. Then $\operatorname{gsr} C\left(S^{*+1}\right)$ is the least positive integer n for which $\pi_{*} \mathrm{U}(m-1) \rightarrow \pi_{*} \mathrm{U}(m)$ is injective for all $m \geq n$. We are thus led to investigating the injectivity of the connecting maps in the $\left(\pi_{*}\right)$ sequence of the unitary groups.

The long exact homotopy sequence associated to the fibration $\mathrm{U}(n) \rightarrow \mathrm{U}(n+1) \rightarrow S^{2 n+1}$ yields that $\pi_{*} \mathrm{U}(n) \rightarrow \pi_{*} \mathrm{U}(n+1)$ is bijective for $n>* / 2$. When $* \leq 3$, one easily checks that all maps in the $\left(\pi_{*}\right)$ sequence are injective. Therefore $\operatorname{gsr} C\left(S^{d}\right)=1$ for $d \leq 4$. (This fact is actually true in general; see item 5) in Remark IV.10.3.)

Assume $* \geq 4$. In order to see what happens right before the stable range $n>* / 2$, we use some computations of homotopy groups of unitary groups as tabulated in [51, p.254]. We split the analysis according to the parity of $*$:

- (even $*$) Put $*=2 k$ with $k \geq 2$. The homotopy groups $\left\{\pi_{2 k} \mathrm{U}(n)\right\}_{n \geq 1}$ stabilize starting from $\pi_{2 k} \mathrm{U}(k+$ 1), and $\pi_{2 k} \mathrm{U}(k+1) \simeq \pi_{2 k} \mathrm{U}(\infty) \simeq 0$ by Bott periodicity. The last unstable group is $\pi_{2 k} \mathrm{U}(k) \simeq \mathbb{Z}_{k!}$, so the
$\operatorname{map} \pi_{2 k} \mathrm{U}(k) \rightarrow \pi_{2 k} \mathrm{U}(k+1)$ is not injective. Thus $\operatorname{gsr} C\left(S^{2 k+1}\right)=k+2$ for $k \geq 2$.
. (odd $*$) Put $*=2 k+1$ with $k \geq 2$. The homotopy groups $\left\{\pi_{2 k+1} \mathrm{U}(n)\right\}_{n \geq 1}$ stabilize starting from $\pi_{2 k+1} \mathrm{U}(k+1)$, and $\pi_{2 k+1} \mathrm{U}(k+1) \simeq \pi_{2 k+1} \mathrm{U}(\infty) \simeq \mathbb{Z}$ by Bott periodicity. The last unstable group $\pi_{2 k+1} \mathrm{U}(k)$ is given as follows:

$$
\pi_{2 k+1} \mathrm{U}(k)= \begin{cases}\mathbb{Z}_{2} & \text { if } k \text { is even } \\ 0 & \text { if } k \text { is odd }\end{cases}
$$

If k is even, then $\pi_{2 k+1} \mathrm{U}(k) \rightarrow \pi_{2 k+1} \mathrm{U}(k+1)$ is not injective. Thus $\operatorname{gsr} C\left(S^{2 k+2}\right)=k+2$ for even $k \geq 2$. For k odd, we must look at the map $\pi_{2 k+1} \mathrm{U}(k-1) \rightarrow \pi_{2 k+1} \mathrm{U}(k)$ in order to see the failure of injectivity. Indeed, $\pi_{2 k+1} \mathrm{U}(k-1)$ has a cyclic group of order $\operatorname{gcd}(k-1,8)$ (which is not 1 , since k is odd) as a direct summand. Thus $\operatorname{gsr} C\left(S^{2 k+2}\right)=k+1$ for odd $k \geq 2$.

Remark IV.3.5. A related, but incomplete, discussion along these lines is carried out by Sheu [78, p. 369370]; in particular, the previous proposition confirms his conjectural Remark [78, p.370]. Let us note that the homotopical information used in the proof of Proposition IV.3.4 quickly leads to an exact computation of the constant C_{G} that appears in the main theorem (5.4) of [78].

The next step would be a computation of $\operatorname{gsr}\left(T^{d}\right)$, where T^{d} stand for the d-dimensional torus. To get a sense of why this is much more challenging than the computation of $\operatorname{gsr}\left(S^{d}\right)$, one need only glance at the proof of Packer and Rieffel [65] that $\operatorname{gsr}\left(T^{5}\right)>1$.
IV. 4 Matrix algebras

Theorem IV.4.1. Let A be a good topological algebra. Then:

$$
\begin{array}{rlr}
\operatorname{tsr}_{n}(A) & =\left\lceil\frac{\operatorname{tsr} A-1}{n}\right\rceil+1 & \operatorname{csr}_{n}(A) \leq\left\lceil\frac{\operatorname{csr} A-1}{n}\right\rceil+1 \\
\operatorname{bsr} \mathbf{M}_{n}(A) & =\left\lceil\frac{\operatorname{bsr} A-1}{n}\right\rceil+1 & \operatorname{gsrM}_{n}(A) \leq\left\lceil\frac{\operatorname{gsr} A-1}{n}\right\rceil+1
\end{array}
$$

This was proved by Vaserstein [87, Thm.3] for the Bass stable rank, by Rieffel [71, Thm.6.1] for the topological stable rank, and by Nistor [63, Prop.2.10] and Rieffel [72, Thm.4.7] for the connected stable rank. Corollary 11.5 .13 of [52] proves the general stable rank estimate (note the dimension shift: gsr as defined in [52] equals gsr -1 as defined here).

We record the following important consequence:
Corollary IV.4.2. If $\operatorname{sr} A=1$ then $\operatorname{sr}_{n}(A)=1$.

IV. 5 Relations between stable ranks

Theorem IV.5.1. Over good topological algebras, we have:

$$
\mathrm{gsr}-1 \leq \mathrm{csr}-1 \leq \mathrm{bsr} \leq \mathrm{tsr}
$$

This is due, quite predictably, to Rieffel [71]; he works with Banach algebras, but the proof works in fact for good topological algebras. The last three inequalities are implicit in Corach - Larotonda [18]. We include the proof, as an exercise in definitions.

Proof. Let A be a good topological algebra. Without loss of generality, we may assume A is unital.
The inequality gsr $A \leq \operatorname{csr} A$ clearly follows from the equivalent definition for the connected stable rank given in Remark IV.2.3.

We prove that $\operatorname{csr} A \leq \operatorname{bsr} A+1$. Letting $m \geq \operatorname{bsr} A$, we need to show that $\operatorname{Lg}_{m+1}(A)$ is path-connected. Let $\left(a_{1}, \ldots, a_{m+1}\right) \in \operatorname{Lg}_{m+1}(A)$, so $\left(a_{1}+x_{1} a_{m+1}, \ldots, a_{m}+x_{m+1} a_{m+1}\right) \in \operatorname{Lg}_{m}(A)$ for some $x_{1}, \ldots, x_{m} \in A$. The path

$$
t \mapsto\left(a_{1}+t x_{1} a_{m+1}, \ldots, a_{m}+t x_{m+1} a_{m+1},(1-t) a_{m+1}\right)
$$

connects $\left(a_{1}, \ldots, a_{m+1}\right)$ to $\left(a_{1}+x_{1} a_{m+1}, \ldots, a_{m}+x_{m+1} a_{m+1}, 0\right)$, and lies in $\operatorname{Lg}_{m+1}(A)$. Indeed, we have $\sum c_{i}\left(a_{i}+t x_{i} a_{m+1}\right)+\left(\sum c_{i} x_{i}\right)(1-t) a_{m+1}=1$ whenever $\sum c_{i}\left(a_{i}+x_{i} a_{m+1}\right)=1$.

Next one connects any element of $\operatorname{Lg}_{m+1}(A)$ of the form $\left(a_{1}^{\prime}, \ldots, a_{m}^{\prime}, 0\right)$ to $(0, \ldots, 0,1)$ via

$$
t \mapsto\left(t a_{1}^{\prime}, \ldots, t a_{m}^{\prime}, 1-t\right) .
$$

This path lies in $\operatorname{Lg}_{m+1}(A)$ as $\sum c_{i}^{\prime}\left(t a_{i}^{\prime}\right)+(1-t)=1$ whenever $\sum c_{i}^{\prime} a_{i}^{\prime}=1$. We have thus connected an arbitrary $\left(a_{1}, \ldots, a_{m+1}\right)$ to $(0, \ldots, 0,1)$ in $\operatorname{Lg}_{m+1}(A)$.

Alternatively, we can prove $\operatorname{csr} A \leq \operatorname{bsr} A+1$ by showing that $\mathrm{GL}_{m+1}^{0}(A)$ acts transitively on $\operatorname{Lg}_{m+1}(A)$ for $m \geq \operatorname{bsr} A$. It suffices to show that each $\left(a_{1}, \ldots, a_{m+1}\right) \in \operatorname{Lg}_{m+1}(A)$ is taken by a product of elementary matrices to the last basis vector $(0, \ldots, 0,1) \in \operatorname{Lg}_{m+1}(A)$. Since $m \geq \operatorname{bsr} A$, we have $\left(a_{i}+x_{i} a_{m+1}\right) \in \operatorname{Lg}_{m}(A)$ for some $\left(x_{i}\right) \in A^{m}$. We first have:

$$
\left(\begin{array}{cccc}
1 & & & x_{1} \\
& \ddots & & \vdots \\
& & 1 & x_{m} \\
& & & 1
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{m} \\
a_{m+1}
\end{array}\right)=\left(\begin{array}{c}
a_{1}+x_{1} a_{m+1} \\
\vdots \\
a_{m}+x_{m} a_{m+1} \\
a_{m+1}
\end{array}\right)
$$

Let $\left(c_{i}\right) \in A^{m}$ such that $\sum c_{i}\left(a_{i}+x_{i} a_{m+1}\right)=1$ and put $c_{i}^{\prime}=\left(1-a_{m+1}\right) c_{i}$. Then:

$$
\left(\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 1 & \\
c_{1}^{\prime} & \ldots & c_{m}^{\prime} & 1
\end{array}\right)\left(\begin{array}{c}
a_{1}+x_{1} a_{m+1} \\
\vdots \\
a_{m}+x_{m} a_{m+1} \\
a_{m+1}
\end{array}\right)=\left(\begin{array}{c}
a_{1}+x_{1} a_{m+1} \\
\vdots \\
a_{m}+x_{m} a_{m+1} \\
1
\end{array}\right)
$$

Now one uses the 1 in the last entry to turn all the other entries of the right-hand side column to 0 , thereby reaching $(0, \ldots, 0,1)$.

We prove that $\operatorname{bsr} A \leq \operatorname{tsr} A$. We actually show that the (left) topological stable rank is no less than the right Bass stable rank, and then we invoke the left-right symmetry of the Bass stable rank. Put $\operatorname{tsr} A=n$. Let
$\left(a_{i}\right) \in \operatorname{Rg}_{n+1}(A)$, so $\sum a_{i} d_{i}=1$ for some $\left(d_{i}\right) \in A^{n+1}$. In A^{n}, the open set $\left\{\left(x_{1}, \ldots, x_{n}\right): a_{1} x_{1}+\cdots+a_{n} x_{n}+\right.$ $\left.a_{n+1} d_{n+1} \in A^{\times}\right\}$is nonempty, for it contains $\left(d_{1}, \ldots, d_{n}\right)$, so it meets the dense subset $\operatorname{Lg}_{n}(A)$. Let $\left(x_{1}, \ldots, x_{n}\right)$ be a common point and pick $\left(c_{i}\right) \in A^{n}$ with $\sum c_{i} x_{i}=1$. As $\sum\left(a_{i}+a_{n+1} d_{n+1} c_{i}\right) x_{i}=\sum a_{i} x_{i}+a_{n+1} d_{n+1} \in A^{\times}$, we get $\left(a_{i}+a_{n+1} d_{n+1} c_{i}\right) \in \operatorname{Rg}_{n}(A)$. We conclude that the right Bass stable rank is at most n.

Herman and Vaserstein [32] have shown that, in the C*-case, there is no distinction between the Bass and the topological stable rank:

Theorem IV.5.2. If A is a C^{*}-algebra then $\operatorname{bsr} A=\operatorname{tsr} A$.
For Banach algebras, this is not true in general:
[[41], [21]] Let $A(D)$ be the disk algebra, that is, the closed subalgebra of $C(D)$ consisting of the functions that are holomorphic in the interior of D. Then $\operatorname{bsr} A(D)=1$ and $\operatorname{tsr} A(D)=2$.

We now provide examples of C^{*}-algebras having all stable ranks infinite. To that end, it suffices to show that the general stable rank is infinite. The following lemma is essentially [29, Prop.1.4] (compare [71, Prop.6.5]):

Lemma IV.5.3. Let A be a unital C^{*}-algebra containing $n \geq 2$ isometries $\left(s_{i}\right)_{1 \leq i \leq n}$ with $\sum_{1}^{n} s_{i} s_{i}^{*}=1$. Then $\mathrm{gsr} A=\infty$.

Proof. Assume gsr A is finite and put $N=\max \{n, \operatorname{gsr} A\}$. In A, one can manufacture N isometries $\left(s_{i}\right)_{1 \leq i \leq N}$ with $\sum_{1}^{N} s_{i} s_{i}^{*}=1$; note that the isometries s_{i} are automatically orthogonal, i.e., $s_{i}^{*} s_{j}=0$ for $i \neq j$. Since $\left(s_{i}^{*}\right)_{1 \leq i \leq N} \in \operatorname{Lg}_{N}(A)$, there is $\alpha \in \operatorname{GL}_{N}(A)$ such that

$$
\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 N} \\
\alpha_{21} & \alpha_{22} & \ldots & \alpha_{2 N} \\
\vdots & \vdots & & \vdots \\
\alpha_{N 1} & \alpha_{N 2} & \ldots & \alpha_{N N}
\end{array}\right)\left(\begin{array}{c}
s_{1}^{*} \\
s_{2}^{*} \\
\vdots \\
s_{N}^{*}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

In particular, $\sum_{1}^{N} \alpha_{2 i} s_{i}^{*}=1$. Right multiplying by s_{j} leads to $\alpha_{2 j}=0$ for all j, contradicting the fact that α is invertible.

The following C^{*}-algebras have all their stable ranks (Bass, topological, connected, or general) infinite:

- \mathcal{B}, the C^{*}-algebra of bounded operators on a separable, infinite dimensional Hilbert space;
- the Calkin algebra Q (the quotient of \mathcal{B} by the ideal \mathcal{K} of compact operators);
- the Cuntz algebra O_{n} (for $2 \leq n<\infty, O_{n}$ is the C^{*}-algebra generated by n isometries $\left(s_{i}\right)_{1 \leq i \leq n}$ subject to $\sum_{1}^{n} s_{i} s_{i}^{*}=1$; this definition is independent of the choice of isometries).

Remark IV.5.4. For the Cuntz algebra O_{∞} (the C^{*}-algebra generated by isometries $\left(s_{i}\right)_{1 \leq i<\infty}$ subject to $\sum_{1}^{\infty} s_{i} s_{i}^{*}=1$, where - again - the definition is independent of the choice of isometries), we have tsr $O_{\infty}=\infty$ and $\operatorname{csr} O_{\infty}=\operatorname{gsr} O_{\infty}=2$.

The fact that $\operatorname{tsr} O_{\infty}=\infty$ is an application of Proposition 6.5 of [71], which states the following variant of Lemma IV.5.3: if a unital C^{*}-algebra A contains two orthogonal isometries, then $\operatorname{tsr} A=\infty$.

That $\operatorname{csr} O_{\infty}=2$ is due to Xue [90]. In fact, Xue shows the following: a purely infinite, simple unital C^{*}-algebra has connected stable rank 2 or ∞ according to whether the order of [1] in the K_{0} group is infinite or finite. Here $K_{0}\left(O_{\infty}\right) \simeq \mathbb{Z}$ with generator [1], whereas for finite $n \geq 2$ we have $K_{0}\left(O_{n}\right) \simeq \mathbb{Z} / n-1$ with generator [1].

As O_{∞} is infinite, csr $O_{\infty}=2$ implies that $\operatorname{gsr} O_{\infty}=2$.

IV. 6 Dense morphisms and quotients

If $\phi: A \rightarrow B$ is a morphism then, abusing notation, we let $\phi: A^{n} \rightarrow B^{n}$ be the obvious map. Clearly $\phi\left(\operatorname{Lg}_{n}(A)\right) \subseteq \operatorname{Lg}_{n}(B)$. A morphism $\phi: A \rightarrow B$ is dense if $\phi(A)$ is dense in B. Although they mean the same thing in the C^{*}-context, dense morphisms are more natural than onto morphisms for Banach and Fréchet algebras.

Proposition IV.6.1. Let $\phi: A \rightarrow B$ be a dense morphism. Then:

$$
\begin{array}{ll}
\operatorname{tsr} B \leq \operatorname{tsr} A & \operatorname{csr} B \leq \max \{\operatorname{csr} A, \operatorname{tsr} A\} \\
& \operatorname{gsr} B \leq \max \{\operatorname{gsr} A, \operatorname{tsr} A\}
\end{array}
$$

The tsr estimate is folklore; the other two are new.
Proof. If $\operatorname{Lg}_{n}(A)$ is dense in A^{n}, then $\phi\left(\operatorname{Lg}_{n}(A)\right)$ is dense in $\phi\left(A^{n}\right)$ which in turn is dense in B^{n}. As $\phi\left(\operatorname{Lg}_{n}(A)\right) \subseteq \operatorname{Lg}_{n}(B)$, it follows that $\operatorname{Lg}_{n}(B)$ is dense in B^{n}. This proves that tsr $B \leq \operatorname{tsr} A$.

Let $m \geq \max \{\operatorname{csr} A, \operatorname{tsr} A\}$. As $m \geq \operatorname{tsr} A$, we have $\phi\left(\operatorname{Lg}_{m}(A)\right)$ dense in $\operatorname{Lg}_{m}(B)$ as above. Since $m \geq \operatorname{csr} A$, $\operatorname{Lg}_{m}(A)$ is connected and so $\phi\left(\operatorname{Lg}_{m}(A)\right)$ is connected. It follows that $\operatorname{Lg}_{m}(B)$ is connected, since it contains a dense connected subset. We conclude that $\operatorname{csr} B \leq \max \{\operatorname{csr} A, \operatorname{tsr} A\}$.

Alternatively, we can show that the $\mathrm{GL}_{m}(B)_{0}$-action on $\operatorname{Lg}_{m}(B)$ is transitive. Let $\left(b_{i}\right) \in \operatorname{Lg}_{m}(B)$, and pick $\left(a_{i}\right) \in \operatorname{Lg}_{m}(A)$ such that $\phi\left(\left(a_{i}\right)\right)$ is in the $\mathrm{GL}_{m}(B)_{0}$-orbit of $\left(b_{i}\right)$. Since $m \geq \operatorname{csr} A$, there is $\alpha \in \mathrm{GL}_{m}(A)_{0}$ taking $(0, \ldots, 0,1) \in A^{m}$ to $\left(a_{i}\right)$. Then $\phi(\alpha) \in \mathrm{GL}_{m}(B)_{0}$ takes $(0, \ldots, 0,1) \in B^{m}$ to $\phi\left(\left(a_{i}\right)\right)$. Therefore $\left(b_{i}\right) \in \operatorname{Lg}_{m}(B)$ is in the $\mathrm{GL}_{m}(B)_{0}$-orbit of $(0, \ldots, 0,1) \in B^{m}$. We conclude that $\operatorname{csr} B \leq \max \{\operatorname{csr} A, \operatorname{tsr} A\}$.

Although slightly longer, the second argument has the advantage of being easily adaptable so as to yield the general stable rank estimate. To spell it out, let $m \geq \max \{\operatorname{gsr} A, \operatorname{tsr} A\}$. As $m \geq \operatorname{tsr} A$, we have $\phi\left(\operatorname{Lg}_{m}(A)\right)$ dense in $\operatorname{Lg}_{m}(B)$. As before, let $\left(b_{i}\right) \in \operatorname{Lg}_{m}(B)$, and pick $\left(a_{i}\right) \in \operatorname{Lg}_{m}(A)$ such that $\phi\left(\left(a_{i}\right)\right)$ is in the $\mathrm{GL}_{m}(B)_{0^{-}}$ orbit of $\left(b_{i}\right)$. Since $m \geq \operatorname{gsr} A$, there is $\alpha \in \mathrm{GL}_{m}(A)$ taking the last basis vector $(0, \ldots, 0,1) \in A^{m}$ to $\left(a_{i}\right)$. Then $\phi(\alpha) \in \mathrm{GL}_{m}(B)$ takes $(0, \ldots, 0,1) \in B^{m}$ to $\phi\left(\left(a_{i}\right)\right)$. Therefore $\left(b_{i}\right) \in \mathrm{Lg}_{m}(B)$ is in the $\mathrm{GL}_{m}(B)$-orbit of $(0, \ldots, 0,1) \in B^{m}$. Therefore $\operatorname{gsr} B \leq \max \{\operatorname{gsr} A, \operatorname{tsr} A\}$.

If morphisms are onto rather than dense, one can say a bit more. The next result is due to Vaserstein [87, Thm.7] for bsr, to Rieffel [71, Thm.4.3] for tsr, and to Elhage-Hassan [29, Thm.1.1] for csr; the gsr estimate is new. Actually, the statement concerning the topological stable rank is the one from Proposition IV.6.1; we include it for the sake of completeness.

Proposition IV.6.2. Let $\phi: A \rightarrow B$ be an onto morphism. Then:

$$
\begin{aligned}
\operatorname{tsr} B & \leq \operatorname{tsr} A \\
\operatorname{bsr} B & \leq \operatorname{css} A
\end{aligned}
$$

Proof. We use the following fact ([7, Lem.4.1]): if $\phi: A \rightarrow B$ is onto, then $\phi: \operatorname{Lg}_{n}(A) \rightarrow \operatorname{Lg}_{n}(B)$ is onto for $n \geq$ bsr A.

Indeed, let $\left(b_{i}\right) \in \operatorname{Lg}_{n}(B)$ and let $\left(a_{i}\right) \in A^{n}$ with $\phi\left(a_{i}\right)=b_{i}$. If $\sum b_{i}^{\prime} b_{i}=1$ and we set $\phi\left(a_{i}^{\prime}\right)=b_{i}^{\prime}$, where $\left(a_{i}^{\prime}\right) \in A^{n}$, then $\phi\left(\sum a_{i}^{\prime} a_{i}\right)=1$. In other words, $\sum a_{i}^{\prime} a_{i}=1+k$ for some $k \in \operatorname{ker} \phi$. Since $\left(a_{1}, \ldots, a_{n}, k\right) \in$ $\operatorname{Lg}_{n+1}(A)$ and $n \geq \operatorname{bsr} A$, we get $\left(a_{i}+c_{i} k\right) \in \operatorname{Lg}_{n}(A)$ for some $\left(c_{i}\right) \in A^{n}$. Now ϕ maps $\left(a_{i}+c_{i} k\right)$ to $\left(b_{i}\right)$.

We look at the stable rank estimates one by one.

- [bsr] Put $n=\operatorname{bsr} A$. Let $\left(b_{i}\right) \in \operatorname{Lg}_{n+1}(B)$, so $\phi\left(a_{i}\right)=b_{i}$ for some $\left(a_{i}\right) \in \operatorname{Lg}_{n+1}(A)$. Reduce to $\left(a_{i}+\right.$ $\left.c_{i} a_{n+1}\right) \in \operatorname{Lg}_{n}(A)$, which maps to $\left(b_{i}+\phi\left(c_{i}\right) b_{n+1}\right) \in \operatorname{Lg}_{n}(B)$ via ϕ. Thus $n \geq \operatorname{bsr} B$.
$\cdot[\mathrm{csr}]$ Let $m \geq \max \{\operatorname{csr} A, \operatorname{bsr} A\}$. Since $\operatorname{Lg}_{m}(A)$ connected and $\operatorname{Lg}_{m}(A)$ maps onto $\operatorname{Lg}_{m}(B)$, we have that $\operatorname{Lg}_{m}(B)$ is connected. Thus $\operatorname{csr} B \leq \max \{\operatorname{csr} A, \operatorname{bsr} A\}$.
- [gsr] Let $m \geq \max \{\operatorname{gsr} A, \operatorname{bsr} A\}$. We show that $\mathrm{GL}_{m}(B)$ acts transitively on $\operatorname{Lg}_{m}(B)$. Let $\left(b_{i}\right),\left(b_{i}^{\prime}\right) \in$ $\operatorname{Lg}_{m}(B)$, and let $\left(a_{i}\right),\left(a_{i}^{\prime}\right) \in \operatorname{Lg}_{m}(A)$ be lifts through ϕ. There is $\alpha \in \mathrm{GL}_{m}(A)$ such that $\alpha \cdot\left(a_{i}\right)^{T}=\left(a_{i}^{\prime}\right)^{T}$, which leads to $\phi(\alpha) \cdot\left(a_{i}\right)^{T}=\left(a_{i}^{\prime}\right)^{T}$ with $\phi(\alpha) \in \mathrm{GL}_{m}(B)$. We conclude that $\operatorname{gsr} B \leq \max \{\operatorname{gsr} A, \operatorname{bsr} A\}$.

Remark IV.6.3. If $\phi: A \rightarrow B$ is onto, it does not follow that $\operatorname{csr} B \leq \operatorname{csr} A$, or that $\operatorname{gsr} B \leq \operatorname{gsr} A$. Consider, for example, the epimorphism $C\left(I^{d+1}\right) \rightarrow C\left(S^{d}\right)$ induced by the inclusion of $S^{d}=\partial I^{d+1}$ into I^{d+1}. Here $\operatorname{csr} C\left(I^{d+1}\right)=1$, as I^{d+1} is contractible, hence $\operatorname{gsr} C\left(I^{d+1}\right)=1$ as well. On the other hand, both $\operatorname{csr} C\left(S^{d}\right)$ and $\operatorname{gsr} C\left(S^{d}\right)$ are on the order of d.

Comparing Prop. IV.6.1 and Prop. IV.6.2, the following question arises: if $\phi: A \rightarrow B$ is a dense morphism, is $\operatorname{bsr} A \geq \operatorname{bsr} B$?

IV. 7 Direct products. Direct limits

Proposition IV.7.1. $\operatorname{sr}(A \oplus B)=\max \{\operatorname{sr}(A), \operatorname{sr}(B)\}$.
Proof. We have $\operatorname{Lg}_{n}(A \oplus B)=\operatorname{Lg}_{n}(A) \oplus \operatorname{Lg}_{n}(B)$ under the identification of $(A \oplus B)^{n}$ with $A^{n} \oplus B^{n}$. The rest is an exercise in definitions.

If A is a finite dimensional C^{*}-algebra, then $\mathrm{sr} A=1$.
Indeed, a finite dimensional \mathbf{C}^{*}-algebra is C^{*}-isomorphic to a direct sum of matrix algebras over \mathbb{C}, and each such matrix algebra has $\mathrm{sr}=1$.

Proposition IV.7.2. sr $\left(\underset{\longrightarrow}{\lim } A_{i}\right) \leq \liminf \operatorname{sr}\left(A_{i}\right)$.
[AF-algebras] In the C^{*} category, an inductive limit of finite dimensional algebras is called an approximately finite dimensional algebra, abbreviated to AF-algebra. A distinguished example of an AF-algebra is \mathcal{K}, the C^{*}-algebra of compact operators on a separable, infinite dimensional Hilbert space.

If A is an $A F$-algebra then $\operatorname{sr} A=1$.

In this section, we compute compute stable ranks for Fréchet algebras from their Arens - Michael realization as inverse limits of Banach algebras with dense connecting morphisms. For terminology and basic facts, we refer to Section VIII. 8 .

Let A_{∞} be a Fréchet algebra arising as the inverse limit of an inverse system

$$
\ldots \longrightarrow A_{k+1} \xrightarrow{\theta_{k}} A_{k} \longrightarrow \ldots \longrightarrow A_{2} \xrightarrow{\theta_{1}} A_{1} \xrightarrow{\theta_{0}} A_{0}
$$

where A_{k} are Banach algebras, and the connecting morphisms θ_{k} have dense image.
Proposition IV.8.1. If A_{∞} is a good Fréchet algebra, then $\operatorname{tsr} A_{\infty}=\sup _{k}\left(\operatorname{tsr} A_{k}\right)$.
Proof. Since the connecting morphisms $\theta_{k}: A_{k+1} \rightarrow A_{k}$ and the coordinate morphisms $\pi_{k}: A_{\infty} \rightarrow A_{k}$ are dense, Proposition IV.6.1 yields the following estimates:

$$
\operatorname{tsr} A_{0} \leq \operatorname{tsr} A_{1} \leq \cdots \leq \operatorname{tsr} A_{\infty}
$$

If $\sup _{k}\left(\operatorname{tsr} A_{k}\right)=\infty$, there is nothing to prove. Let us assume $\sup _{k}\left(\operatorname{tsr} A_{k}\right)=n$. Then $\operatorname{tsr} A_{k}=n$ for large enough k, so, up to discarding a finite initial segment from the inverse system $\left(A_{k}\right)_{k \geq 0}$, we only have to prove the following particular case:

Claim: if $\operatorname{tsr} A_{k}=n$ for all k, then $\operatorname{tsr} A_{\infty}=n$.
We need to prove that $\operatorname{tsr} A_{\infty} \leq n$, i.e., that $\operatorname{Lg}_{n}\left(A_{\infty}\right)$ is dense in A_{∞}^{n}. By [2, Thm. 4.2], we have $\operatorname{Lg}_{n}\left(A_{\infty}\right)=$ $\cap \pi_{k}^{-1}\left(\operatorname{Lg}_{n}\left(A_{k}\right)\right)$. Putting

$$
W_{k}=\pi_{k}^{-1}\left(\operatorname{Lg}_{n}\left(A_{k}\right)\right)
$$

we have that each W_{k} is open in A_{∞}^{n}. We claim that each W_{k} is dense in A_{∞}^{n}. Then the Baire Category Theorem will tell us that $\operatorname{Lg}_{n}\left(A_{\infty}\right)$ is dense in A_{∞}^{n}. Instead of checking that each W_{k} is dense in A_{∞}^{n}, we check that $\pi_{j}\left(W_{k}\right)$ is dense in A_{j}^{n} for all j, k (see Corollary VIII.8.4).

For $j=k$, we have $\pi_{k}\left(W_{k}\right)=\pi_{k}\left(A_{\infty}^{n}\right) \cap \operatorname{Lg}_{n}\left(A_{k}\right)$ dense in A_{k}^{n} because $\pi_{k}\left(A_{\infty}^{n}\right)$ is dense and $\operatorname{Lg}_{n}\left(A_{k}\right)$ is open and dense.

Let $j>k$. We claim that $W_{j} \subseteq W_{k}$. Indeed, if $w_{j} \in W_{j}$ then $\pi_{j}\left(w_{j}\right) \in \operatorname{Lg}_{n}\left(A_{j}\right)$; now $\pi_{k}\left(w_{j}\right)=\theta_{k} \ldots \theta_{j-1} \pi_{j}\left(w_{j}\right) \subseteq$ $\operatorname{Lg}_{n}\left(A_{k}\right)$, so $w_{j} \in W_{k}$ as desired. Thus $\pi_{j}\left(W_{j}\right) \subseteq \pi_{j}\left(W_{k}\right)$, so $\pi_{j}\left(W_{k}\right)$ is dense in $\operatorname{Lg}_{n}\left(A_{j}\right)$ because we already know that $\pi_{j}\left(W_{j}\right)$ is dense in A_{j}^{n}.

Let $j<k$. As $\pi_{k}\left(W_{k}\right)$ is dense in A_{k}^{n}, we get $\theta_{j} \ldots \theta_{k-1} \pi_{k}\left(W_{k}\right)=\pi_{j}\left(W_{k}\right)$ dense in A_{j}^{n}.
The previous proposition seems to be the first result about stable ranks of inverse limits. It is very likely that corresponding statements can be proved for the other stable ranks.
IV. 9 Homotopy invariance of the connected and the general stable ranks

Let A, B be Banach algebras. Two morphisms $\phi_{0}, \phi_{1}: A \rightarrow B$ are homotopic if they are the endpoints of a path of morphisms $\left\{\phi_{t}\right\}_{0 \leq t \leq 1}: A \rightarrow B$, where the continuity of $t \mapsto \phi_{t}$ is in the pointwise sense, namely
$t \mapsto \phi_{t}(a)$ is continuous for each $a \in A$. If there are morphisms $\alpha: A \rightarrow B$ and $\beta: B \rightarrow A$ with $\beta \alpha$ homotopic to id_{A} and $\alpha \beta$ homotopic to id_{B}, then A and B are said to be homotopy equivalent. This notion generalizes the usual homotopy equivalence: two compact spaces X and Y are homotopy equivalent (as spaces) if and only if $C(X)$ and $C(Y)$ are homotopy equivalent (as algebras).

It is clear that the topological and the Bass stable ranks are not homotopy invariant. On the other hand, the connected and the general stable ranks are homotopy invariant. For the connected stable rank, the following result is due to Nistor [63]; for the general stable rank, it is new.

Proposition IV.9.1. Let A and B be Banach algebras. If A and B are homotopy equivalent then $\operatorname{csr} A=\operatorname{csr} B$ and $\operatorname{gsr} A=\operatorname{gsr} B$.

Proof. Assume that there exist morphisms $\alpha: A \rightarrow B$ and $\beta: B \rightarrow A$ with $\beta \alpha$ homotopic to id ${ }_{A}$. If $\left(a_{i}\right) \in$ $\operatorname{Lg}_{m}(A)$, then $(\beta \alpha)\left(\left(a_{i}\right)\right)$ is in the same component as $\left(a_{i}\right)$; in other words, in the same $\mathrm{GL}_{m}(A)_{0}$-orbit.

We show that $\operatorname{csr} A \leq \operatorname{csr} B$. Let $m \geq \operatorname{csr} B$, and pick $\left(a_{i}\right),\left(a_{i}^{\prime}\right) \in \operatorname{Lg}_{m}(A)$. Then $\alpha\left(\left(a_{i}\right)\right), \alpha\left(\left(a_{i}^{\prime}\right)\right)$ are in $\operatorname{Lg}_{m}(B)$, so there is $S_{B} \in \mathrm{GL}_{m}(B)_{0}$ taking $\alpha\left(\left(a_{i}\right)\right)$ to $\alpha\left(\left(a_{i}^{\prime}\right)\right)$. Sending this through β, we get $\beta\left(S_{B}\right) \in$ $\mathrm{GL}_{m}(A)_{0}$ taking $(\beta \alpha)\left(\left(a_{i}\right)\right)$ to $(\beta \alpha)\left(\left(a_{i}^{\prime}\right)\right)$. We conclude that $\left(a_{i}\right)$ and $\left(a_{i}^{\prime}\right)$ are in the same $\mathrm{GL}_{m}(A)_{0}$-orbit.

We show that $\operatorname{gsr} A \leq \operatorname{gsr} B$. Let $m \geq \operatorname{gsr} B$, and pick $\left(a_{i}\right),\left(a_{i}^{\prime}\right) \in \operatorname{Lg}_{m}(A)$. The argument runs just like the one for csr, except that we get some $T_{B} \in \mathrm{GL}_{m}(B)$, rather than some $S_{B} \in \mathrm{GL}_{m}(B)_{0}$, taking $\alpha\left(\left(a_{i}\right)\right)$ to $\alpha\left(\left(a_{i}^{\prime}\right)\right)$. The conclusion is that $\left(a_{i}\right)$ and $\left(a_{i}^{\prime}\right)$ are in the same $\mathrm{GL}_{m}(A)$-orbit.

Corollary IV.9.2. Let X and Y be compact spaces. If X and Y are homotopy equivalent, then $\operatorname{css} C(X)=$ $\operatorname{csr} C(Y)$ and $\operatorname{gsr} C(X)=\operatorname{gsr} C(Y)$.

For instance, if the compact space X is contractible then $\operatorname{csr} C(X)=\operatorname{gsr} C(X)=1$, whereas $\operatorname{tsr} C(X)=$ $\operatorname{bsr} C(X)$ can be made arbitrarily large.

IV. 10 The case of stable rank one

In this section, we look closely at the case when then stable ranks take on their smallest possible value, namely 1 . This discussion is related to a notion of finiteness, which we now recall. A unital algebra A is finite if left-invertible implies invertible in A, equivalently, right-invertible implies invertible in A; we say that A is stably finite if each matrix algebra $\mathrm{M}_{n}(A)$ is finite.

Lemma IV.10.1. Over good topological algebras, we have the following implications:

Proof. Let A be a good topological algebra; we may assume A is unital. Two of the implications, that $\mathrm{tsr}=1 \mathrm{implies} \mathrm{bsr}=1$, and that $\mathrm{csr}=1$ implies $\mathrm{gsr}=1$, follow from Theorem IV.5.1. For the remaining implication, assume $\operatorname{bsr} A=1$, $\operatorname{sogsr} A \leq 2$. In order to conclude that $\operatorname{gsr} A=1$, we are left with arguing that $\operatorname{GL}_{1}(A)=A^{\times}$acts transitively on $\operatorname{Lg}_{1}(A)$, i.e., that A is finite. Let $a \in A$ be left invertible; we show that a is
invertible. Say $b a=1$ with $b \in A$. Then $a b+(1-a b)=1$ says that $(b, 1-a b) \in \operatorname{Lg}_{2}(A)$. As $\operatorname{bsr} A=1$, we get $b+c(1-a b) \in \operatorname{Lg}_{1}(A)$ for some $c \in A$. But $(b+c(1-a b)) a=1$, so $a(b+c(1-a b))=1$. This shows that a is right-invertible as well, therefore invertible.

We have (compare [71, Prop.3.1] and [29, Prop.1.15]):
Proposition IV.10.2. Let A be a unital, good topological algebra. If $\operatorname{sr} A=1$ then A is stably finite.
Proof. It suffices to handle the case gsr $A=1$. Then $\mathrm{GL}_{1}(A)=A^{\times}$acts transitively on $\operatorname{Lg}_{1}(A)$, in other words A is finite. Since we actually have $\operatorname{gsr}_{n}(A)=1$ for each n, we conclude that A is stably finite.

Remark IV.10.3. 1) In general, the implications in Lemma IV.10.1 cannot be reversed, and there is no general relationship between having $\mathrm{tsr}=1$ or $\mathrm{bsr}=1$, and having $\mathrm{csr}=1$.
2) Having $\operatorname{tsr} A=1$ means that A^{\times}is dense in A ([71, Prop.3.1]).
3) Having $\operatorname{css} A=1$ implies that $K_{1}(A)=0$ ([29, Prop.1.15]). Indeed, if $\operatorname{csr} A=1$ then $\operatorname{Lg}_{1}(A)=A^{\times}$ is connected. Since $\operatorname{csr} \mathrm{M}_{n}(A)=1$ for each n, we obtain that $\mathrm{GL}_{n}(A)$ is connected for each n. Therefore $K_{1}(A)=0$.

In particular, if $\operatorname{tsr} A=1$ and $K_{1}(A) \neq 0$, then $\operatorname{csr} A=2$.
4) Having gsr $A=1$ means that every unimodular row over A is the first row of an invertible matrix over A. This property appears under different names in the literature: in [49, p.27] it is termed the "Hermite" property, and in [24, Def.2.2] Davidson and Ji call it "complete finiteness" (we note, however, that both [49] and [24] work on the right). As showed in [49], gsr $A=1$ if and only if every finitely generated, stably free left A-module is in fact free.
5) If A is a commutative Banach algebra and $\operatorname{csr} A \leq 3$, then $\operatorname{gsr} A=1$. In particular, for $d \leq 4$ we have $\operatorname{gsr} C\left(X^{d}\right)=1$.

Indeed, from $\operatorname{csr} A \leq 3$ we deduce that $\mathrm{GL}_{n}(A)$ acts transitively on $\mathrm{Lg}_{n}(A)$ for $n \geq 3$. Also $\mathrm{GL}_{2}(A)$ acts transitively on $\mathrm{Lg}_{2}(A)$, because every 2 -unimodular vector is the last column of a 2×2-matrix when A is commutative. Finally, $\mathrm{GL}_{1}(A)=A^{\times}$acts transitively on $\mathrm{Lg}_{1}(A)=A^{\times}$. Summarizing, $\mathrm{GL}_{n}(A)$ acts transitively on $\operatorname{Lg}_{n}(A)$ for $n \geq 1$, so gsr $A=1$.
[Irrational rotation algebras] Let $\theta \in(0,1)$ be irrational. The irrational rotation algebra A_{θ} is the C^{*} algebra generated by unitaries u, v subject to $v u=\exp (2 \pi i \theta) u v$; this definition is independent of the choice of unitaries. It is known that A_{θ} is simple, and $K_{0}\left(A_{\theta}\right)=K_{1}\left(A_{\theta}\right)=\mathbb{Z}^{2}$.

Putnam [68] has shown that $\operatorname{tsr} A_{\theta}=1$. Thus $\operatorname{csr} A_{\theta}=2$ by using the non-vanishing of K_{1}.
We have seen that $\operatorname{tsr}_{\mathrm{C}_{\mathrm{r}}^{*}}^{*}\left(F_{n}\right)=1$ (Theorem III.5.4). It follows that $\operatorname{csrC}_{\mathbf{r}}^{*}\left(F_{n}\right)=2$, for $K_{1}\left(\mathrm{C}_{\mathrm{r}}^{*}\left(F_{n}\right)\right)=\mathbb{Z}^{n}$ as shown by Pimsner - Voiculescu.

More generally, $\operatorname{tsr}_{\mathrm{r}}^{*}(\Gamma)=1$ for any torsion-free, non-elementary hyperbolic group Γ.

IV. 11 Swan's problem

Swan [82, p.206] implicitly raised the following
Problem. If $\phi: A \rightarrow B$ is a dense and spectral morphism, are the stable ranks of A and B equal?

Swan's problem should be viewed as a stable rank analogue of the Density Theorem in K-theory. In [82], Swan was working with the Bass stable rank and the projective stable rank; however, the above problem has since been considered for many other stable ranks (see, e.g., [5]).

The following lemma is useful in this context:
Lemma IV.11.1. Let $\phi: A \rightarrow B$ be a spectral, dense morphism between good topological algebras. Let $\left(a_{i}\right) \in A^{n}$. Then $\left(a_{i}\right) \in \operatorname{Lg}_{n}(A)$ if and only if $\left(\phi\left(a_{i}\right)\right) \in \operatorname{Lg}_{n}(B)$.

Furthermore, $\phi\left(\operatorname{Lg}_{n}(A)\right)$ is dense in $\operatorname{Lg}_{n}(B)$.
Proof. Let $\left(\phi\left(a_{i}\right)\right) \in \operatorname{Lg}_{n}(B)$. Thus $\sum_{i} b_{i} \phi\left(a_{i}\right) \in B^{\times}$for some $\left(b_{i}\right) \in B^{n}$. As $\phi(A)$ is dense in B and B^{\times}is open, we may assume $b_{i}=\phi\left(a_{i}^{\prime}\right)$ with $a_{i}^{\prime} \in A$. Then $\phi\left(\sum a_{i}^{\prime} a_{i}\right) \in B^{\times}$which means, by spectrality, that $\sum a_{i}^{\prime} a_{i} \in A^{\times}$, i.e., $\left(a_{i}\right) \in \operatorname{Lg}_{n}(A)$. The other implication is trivial.

For the second part, note that $\phi\left(A^{n}\right)$ is dense in B^{n} so $\phi\left(A^{n}\right) \cap \operatorname{Lg}_{n}(B)$ - which equals $\phi\left(\operatorname{Lg}_{n}(A)\right)$, according to the first part - in dense in $\operatorname{Lg}_{n}(B)$.

Swan observed [82, Thm. 2.2 c)] the following:
Proposition IV.11.2. Let $\phi: A \rightarrow B$ be a spectral, dense morphism between good topological algebras. Then $\operatorname{bsr} B \geq \operatorname{bsr} A$.

Proof. Let $n=\operatorname{bsr} B$. If $\left(a_{i}\right) \in \operatorname{Lg}_{n+1}(A)$ then $\left(\phi\left(a_{i}\right)\right) \in \operatorname{Lg}_{n+1}(B)$, so $\left(\phi\left(a_{i}\right)+z_{i} \phi\left(a_{n+1}\right)\right) \in \operatorname{Lg}_{n}(B)$ for some $\left(z_{i}\right) \in B^{n}$. As ϕ is dense and $\operatorname{Lg}_{n}(B)$ is open, we may assume that $z_{i}=\phi\left(x_{i}\right)$ for some $x_{i} \in A$. Thus $\left(\phi\left(a_{i}+\right.\right.$ $\left.\left.x_{i} a_{n+1}\right)\right) \in \operatorname{Lg}_{n}(B)$, and Lemma IV.11.1 yields $\left(a_{i}+x_{i} a_{n+1}\right) \in \operatorname{Lg}_{n}(A)$. We conclude that $n \geq \operatorname{bsr} A$.

Note that a positive answer to item 1) of Remark IV.6.3 would solve Swan's problem for the Bass stable rank. Note also that, if $A \rightarrow B$ is a spectral, dense morphism between Banach algebras, then

$$
\operatorname{tsr} A \geq \operatorname{tsr} B \geq \operatorname{bsr} B \geq \operatorname{bsr} A
$$

since the mere density of the morphism yields $\operatorname{tsr} A \geq \operatorname{tsr} B$ (Prop. IV.6.1), and $\operatorname{tsr} B \geq \mathrm{bsr} B$ holds generically. Thus, generalizations of the Herman-Vaserstein theorem (IV.5.2) to, say, smooth subalgebras of C^{*}-algebras would solve Swan's problem for both the topological and the Bass stable rank whenever A is such a subalgebra.

Swan's theorem for the Bass stable rank has been proved in certain cases. Vaserstein's foundational paper [87] already contains a result in this direction. In our language, Theorem 7 in [87] reads as follows:

Theorem IV.11.3. Let X be a compact space. If A is a spectral, dense subalgebra of $C(X)$, then $\operatorname{bsr}(A)=$ $\operatorname{bsr} C(X)$.

Perhaps more notable is the following result of Badea [5, Thm.1.1, Cor.4.10], which solves Swan's problem for the Bass stable rank for a natural class of dense and spectral inclusions:

Theorem IV.11.4. Let A be a dense and spectral Fréchet $*$-subalgebra of $a \mathrm{C}^{*}$-algebra B. If A is closed under C^{∞}-functional calculus for self-adjoint elements, then $\operatorname{bsr} A=\operatorname{bsr} B$.

In particular, this applies to smooth subalgebras coming from derivations (cf. Theorem II.2.1). Let δ be a closed derivation on the C^{*}-algebra B, and let $B\left(\delta^{n}\right):=B \cap \operatorname{dom}\left(\delta^{n}\right)$ for $1 \leq n \leq \infty$. If $B\left(\delta^{n}\right)$ is dense in B, then $B\left(\delta^{n}\right)$ is a dense and spectral Fréchet $*$-subalgebra of B which is closed under C^{∞}-functional calculus for self-adjoint elements; hence $\operatorname{bsr} B\left(\delta^{n}\right)=\operatorname{bsr} B$. For instance, $\operatorname{bsr} H^{\infty} \Gamma=\operatorname{bsr} \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ for an RD group Γ.

Remark IV.11.5. Badea's results on the Swan problem for the topological stable rank [5, Thm.4.13, Cor. 4.14] have unnatural hypotheses. Badea's earlier paper [4] suffers from the same flaw, although not explicitly.

We consider now the connected stable rank and the general stable rank. For these, one can give a positive answer to Swan's problem in full generality:

Theorem IV.11.6. Let $\phi: A \rightarrow B$ be a spectral, dense morphism between good topological algebras. Then:
a) $\operatorname{gsr} A=\operatorname{gsr} B$;
b) $\operatorname{csr} A=\operatorname{csr} B$, provided B is Fréchet.

Proof. a) First, we show that $\operatorname{gsr} A \geq \operatorname{gsr} B$. The gsr part of the proof of Proposition IV.6.1 applies here almost verbatim. The point is to have $\phi\left(\operatorname{Lg}_{m}(A)\right)$ dense in $\operatorname{Lg}_{m}(B)$; in the proof of Proposition IV.6.1 this was guaranteed as soon as $m \geq \operatorname{tsr} A$, whereas here it holds for all m according to Lemma IV.11.1.

Second, we show that $\operatorname{gsr} B \geq \operatorname{gsr} A$. Let $m \geq \operatorname{gsr} B$. We claim that each unimodular m-vector over A appears as the last column of a matrix in $\mathrm{GL}_{m}(A)$; this means that $\mathrm{GL}_{m}(A)$ acts transitively on $\mathrm{Lg}_{m}(A)$, which then leads to $\operatorname{gsr} A \leq \operatorname{gsr} B$. Let $\left(a_{i}\right) \in \operatorname{Lg}_{m}(A)$. Then $\left(\phi\left(a_{i}\right)\right) \in \operatorname{Lg}_{m}(B)$, so - by the transitivity of the action of $\mathrm{GL}_{m}(B)$ on $\mathrm{Lg}_{m}(B)$ - there is a matrix $\beta \in \mathrm{GL}_{m}(B)$ having $\left(\phi\left(a_{i}\right)\right)$ as its last column. As A is dense in B, we can approximate the entries of β, except for the last column, so as to get a matrix β^{\prime} which has all its entries in $\phi(A)$, has $\left(\phi\left(a_{i}\right)\right)$ as its last column, and β^{\prime} still is invertible in $\mathrm{M}_{m}(B)$. Put $\beta^{\prime}=\phi(\alpha)$, where $\alpha \in \mathrm{M}_{m}(A)$ has $\left(a_{i}\right)$ as its last column. The inclusion $\mathrm{M}_{m}(A) \hookrightarrow \mathrm{M}_{m}(B)$ being spectral, we get $\alpha \in \mathrm{GL}_{m}(A)$. The claim is proved.
b) First, we show $\operatorname{csr} B \geq \operatorname{csr} A$. Let $m \geq \operatorname{csr} A$. Then $\operatorname{Lg}_{m}(A)$ is connected, so $\phi\left(\operatorname{Lg}_{m}(A)\right)$ is connected as well. But $\phi\left(\operatorname{Lg}_{m}(A)\right)$ is dense in $\operatorname{Lg}_{m}(B)$, so it follows that $\operatorname{Lg}_{m}(B)$ is connected. This argument is akin to the one used in the proof of Proposition IV.6.1.

Next, we show $\operatorname{csr} A \geq \operatorname{csr} B$. Let $m \geq \operatorname{csr} B$, and we claim $\operatorname{Lg}_{m}(A)$ is connected; it will then follow that $\operatorname{csr} A \geq \operatorname{csr} B$. Let $\left(a_{i}\right),\left(a_{i}^{\prime}\right) \in \operatorname{Lg}_{m}(A)$. Since $\phi\left(\left(a_{i}\right)\right), \phi\left(\left(a_{i}^{\prime}\right)\right) \in \operatorname{Lg}_{m}(B)$, and $\operatorname{Lg}_{m}(B)$ is path-connected, there is a path $p:[0,1] \rightarrow \operatorname{Lg}_{m}(B)$ such that $p(0)=\phi\left(\left(a_{i}\right)\right)$ and $p(1)=\phi\left(\left(a_{i}^{\prime}\right)\right)$. We shall obtain a broken-line path connecting $\left(a_{i}\right)$ to $\left(a_{i}^{\prime}\right)$ and lying entirely in $\operatorname{Lg}_{m}(A)$. For each $t \in[0,1]$, let V_{t} be an open, convex neighborhood of $p(t)$ contained in $\operatorname{Lg}_{m}(B)$. (Here we use the fact that B is Fréchet; for a general topological algebra, we only have star-convex local bases.) Let $0=t_{0}<t_{1}<\cdots<t_{k}=1$ be such that $\left\{V_{t_{j}}\right\}_{0 \leq j \leq k}$ is an open cover of $p[0,1]$. Connectivity of $p[0,1]$ tells us that we can extract a sub-index set $0=s_{0}<s_{1}<\cdots<$ $s_{l}=1$ such that $V_{s_{j-1}}$ meets $V_{s_{j}}$ for $1 \leq j \leq l$. By the density of $\phi\left(A^{m}\right)$ in B^{m}, we can pick $\left(x_{i}^{j}\right) \in \operatorname{Lg}_{m}(A)$ for $0 \leq j \leq l+1$ such that $\left(x_{i}^{0}\right)=\left(a_{i}\right),\left(x_{i}^{l+1}\right)=\left(a_{i}^{\prime}\right)$, and $\phi\left(\left(x_{i}^{j}\right)\right) \in V_{s_{j-1}} \cap V_{s_{j}}$ for $1 \leq j \leq l$. Let q_{A} be the broken-line from $\left(x_{i}^{0}\right)=\left(a_{i}\right)$ to $\left(x_{i}^{l+1}\right)=\left(a_{i}^{\prime}\right)$ with successive vertices $\left(x_{i}^{j}\right)$, and let q_{B} be the image of q_{A} through ϕ. Then q_{B} is a broken-line from $\phi\left(\left(a_{i}\right)\right)$ to $\phi\left(\left(a_{i}^{\prime}\right)\right)$ with successive vertices $\phi\left(\left(x_{i}^{j}\right)\right)$. Each line
segment from $\phi\left(\left(x_{i}^{j-1}\right)\right)$ to $\phi\left(\left(x_{i}^{j}\right)\right)$ lies in the convex set $V_{s_{j-1}}$, which in turn lies in $\operatorname{Lg}_{m}(B)$. Thus q_{B} is contained in $\operatorname{Lg}_{m}(B)$. By Lemma IV.11.1, we conclude that q_{A} lies entirely in $\operatorname{Lg}_{m}(A)$.

Remark IV.11.7. For the connected stable rank part, a proof similar to the one in part a) can be given if one uses the definition involving the transitivity of the $\mathrm{GL}_{m}(\cdot)_{0}$-action on $\operatorname{Lg}_{m}(\cdot)$. However, one still needs the assumption that B is Fréchet at the point of replacing a $\beta \in \mathrm{GL}_{m}(B)_{0}$ by $\phi(\alpha)$ with $\alpha \in \mathrm{GL}_{m}(A)_{0}$. The approach in terms of the connectivity of $\mathrm{Lg}_{m}(\cdot)$ is more convenient for a subsequent generalization (Theorem VI.4.4).

Remark IV.11.8. The connected stable rank result from Theorem IV.11.6 significantly generalizes [5, Thm.4.15] by removing the commutativity assumption on the algebras.

The inclusion $\ell^{1}\left(\mathbb{Z}^{d}\right) \hookrightarrow \mathrm{C}_{\mathbf{r}}^{*}\left(\mathbb{Z}^{d}\right)$ is dense and spectral. We have

$$
\operatorname{bsr} \ell^{1}\left(\mathbb{Z}^{d}\right)=\operatorname{bsr} \mathrm{C}_{\mathrm{r}}^{*}\left(\mathbb{Z}^{d}\right) \quad\left(=\operatorname{bsr} C\left(T^{d}\right)=\lfloor d / 2\rfloor+1\right)
$$

by Theorem IV.11.3. Note that the result on the connected stable rank follows from Theorem I. 0.5 as well. Also,

$$
\begin{gathered}
\operatorname{csr} \ell^{1}\left(\mathbb{Z}^{d}\right)=\operatorname{csrC}_{\mathrm{r}}^{*}\left(\mathbb{Z}^{d}\right) \quad\left(=\operatorname{csr} C\left(T^{d}\right)=\lceil d / 2\rceil+1\right) \\
\operatorname{gsr} \ell^{1}\left(\mathbb{Z}^{d}\right)=\operatorname{gsr}_{\mathrm{r}}^{*}\left(\mathbb{Z}^{d}\right) \quad\left(=\operatorname{gsr} C\left(T^{d}\right)=? ? ? ? ?\right)
\end{gathered}
$$

by Theorem IV.11.6. The topological stable rank of $\ell^{1}\left(\mathbb{Z}^{d}\right)$ is known ([66], [55]), and we have once again

$$
\operatorname{tsr} \ell^{1}\left(\mathbb{Z}^{d}\right)=\operatorname{tsr} \mathrm{C}_{\mathbf{r}}^{*}\left(\mathbb{Z}^{d}\right) \quad\left(=\operatorname{tsr} C\left(T^{d}\right)=\lfloor d / 2\rfloor+1\right) .
$$

IV. 12 Extensions

Given a short exact sequence

$$
0 \longrightarrow J \longrightarrow A \longrightarrow B \longrightarrow 0
$$

we want to relate the stable ranks $\operatorname{sr} J, \operatorname{sr} A, \operatorname{sr} B$. Initially, we might hope that $\operatorname{sr} A=\max \{\operatorname{sr} J, \operatorname{sr} B\}$ but this turns to be false in general for each stable rank under consideration (for csr and gsr, see item 2 of Remark IV.6.3; for bsr and tsr, see Example IV. 12 below). We are, however, guided by the above equality in what follows.

We have already bounded the stable ranks of B interms of the stable ranks of A in Proposition IV.6.2. The goal is to bound the stable ranks of J in terms of those of A, and the stable ranks of A in terms of those for J and B.

The setting for the results of this section is that of Banach algebras. In some of the results below, we need the closed ideal J to have a bounded approximate identity. Recall, a bounded approximate identity for J is a net $\left(j_{\alpha}\right)$ of elements of J having uniformly bounded norm, and such that $j_{\alpha} j \rightarrow j$ and $j j_{\alpha} \rightarrow j$ for all
$j \in J$. In the C^{*}-setting, this is automatic: every closed ideal in a C^{*}-algebras has a bounded approximate identity.

As far as stable ranks are concerned, there is no loss of generality if we assume that A is unital (else, just "unitize" A and B in the exact sequence). Let J^{+}be the unital Banach subalgebra of A obtained by adjoining the unit of A to J. Note that the (closed) inclusion $J^{+} \hookrightarrow A$ is spectral: if $(\lambda+j) a=1$ for some a in A, then $\lambda \neq 0$ and $a=\lambda^{-1}-\lambda^{-1} j a \in J^{+}$.

First, we prove a lemma that will help us recognize unimodular vectors over J^{+}:
Lemma IV.12.1. Assume J has an approximate identity. Then $\operatorname{Lg}_{n}\left(J^{+}\right)=\operatorname{Lg}_{n}(A) \cap\left(J^{+}\right)^{n}$.
Proof. The inclusion " \subseteq " is obvious; we show the other inclusion. Let $\left(\lambda_{i}+j_{i}\right) \in\left(J^{+}\right)^{n}$, where $\lambda_{i} \in \mathbb{C}$ and $j_{i} \in J$, and assume $\left(\lambda_{i}+j_{i}\right) \in \operatorname{Lg}_{n}(A)$. Let $\left(a_{i}\right) \in A^{n}$ such that $\sum a_{i}\left(\lambda_{i}+j_{i}\right)=1$. In particular, there is i_{0} such that $\lambda_{i_{0}} \neq 0$ (else $\sum a_{i}\left(\lambda_{i}+j_{i}\right)$ lies in J).

Let $\left(j_{\alpha}\right) \subseteq J$ be an approximate identity for J. We look for $\left(a_{i}^{\prime}\right) \in\left(J^{+}\right)^{n}$ such that $\sum a_{i}^{\prime}\left(\lambda_{i}+j_{i}\right)$ is close enough to 1 as to make it invertible in A. Since $\sum a_{i}^{\prime}\left(\lambda_{i}+j_{i}\right) \in J^{+}$, it is actually invertible in J^{+}, allowing us to conclude that $\left(\lambda_{i}+j_{i}\right) \in \operatorname{Lg}_{n}\left(J^{+}\right)$as desired.

Put

$$
a_{i_{0}}^{\prime}:=a_{i_{0}}+\sum_{i \neq i_{0}} \frac{\lambda_{i}}{\lambda_{i_{0}}} a_{i}\left(1-j_{\alpha}\right), \quad a_{i}^{\prime}:=a_{i} j_{\alpha} \quad\left(i \neq i_{0}\right)
$$

with α still to be chosen. Observe that $\left(a_{i}^{\prime}\right) \in\left(J^{+}\right)^{n}$. Indeed, for $i \neq i_{0}$ this is obvious, and we only have to check that $a_{i_{0}}^{\prime} \in J^{+}$. From $\sum a_{i}\left(\lambda_{i}+j_{i}\right)=1$ we deduce that $\sum \lambda_{i} a_{i} \in 1+J$, so we obtain

$$
a_{i_{0}}+\sum_{i \neq i_{0}} \frac{\lambda_{i}}{\lambda_{i_{0}}} a_{i}\left(1-j_{\alpha}\right) \in\left(a_{i_{0}}+\sum_{i \neq i_{0}} \frac{\lambda_{i}}{\lambda_{i_{0}}} a_{i}\right)+J=\frac{1}{\lambda_{i_{0}}}\left(\sum \lambda_{i} a_{i}\right)+J \subseteq J^{+} .
$$

On the other hand,

$$
\begin{aligned}
& \sum a_{i}^{\prime}\left(\lambda_{i}+j_{i}\right)=\left(a_{i_{0}}+\sum_{i \neq i_{0}} \frac{\lambda_{i}}{\lambda_{i_{0}}} a_{i}\left(1-j_{\alpha}\right)\right)\left(\lambda_{i_{0}}+j_{i_{0}}\right)+\sum_{i \neq i_{0}}\left(a_{i} j_{\alpha}\right)\left(\lambda_{i}+j_{i}\right) \\
&=\left(\sum \lambda_{i} a_{i}\right)\left(1+\frac{j_{i_{0}}}{\lambda_{i_{0}}}\right)+\sum_{i \neq i_{0}} a_{i} j_{\alpha}\left(j_{i}-\frac{\lambda_{i}}{\lambda_{i_{0}}} j_{i_{0}}\right)
\end{aligned}
$$

which converges to

$$
\left(\sum \lambda_{i} a_{i}\right)\left(1+\frac{j_{i_{0}}}{\lambda_{i_{0}}}\right)+\sum_{i \neq i_{0}} a_{i}\left(j_{i}-\frac{\lambda_{i}}{\lambda_{i_{0}}} j_{i_{0}}\right)=a_{i_{0}}\left(\lambda_{i_{0}}+j_{i_{0}}\right)+\sum_{i \neq i_{0}} a_{i}\left(\lambda_{i}+j_{i}\right)=1 .
$$

Thus, we pick α such that $\sum a_{i}^{\prime}\left(\lambda_{i}+j_{i}\right)$ is invertible in A. This ends the proof.
As expected, for the dimensional stable ranks (bsr and tsr) we can estimate the stable rank of J in terms of the stable rank of A. In the next proposition, the Bass stable rank result is due to Vaserstein [87, Thm.4], and it is a purely ring-theoretic fact. The topological stable rank result is due to Rieffel [71, Thm.4.4].

Proposition IV.12.2. Let J be a closed ideal in A. Then $\operatorname{bsr} J \leq \operatorname{bsr} A$. If J has a bounded approximate identity, then $\operatorname{tsr} J \leq \operatorname{tsr} A$.

Not surprisingly, for the homotopic stable ranks (csr and gsr) such a result is not true, that is, neither $\operatorname{csr} J \leq \operatorname{csr} A$ nor gsr $J \leq \operatorname{gsr} A$ hold in general. Consider again the situation of Remark IV.6.3, namely the epimorphism $C\left(I^{d+1}\right) \rightarrow C\left(S^{d}\right)$ induced by the inclusion of $S^{d}=\partial I^{d+1}$ into I^{d+1}. We have the following exact sequence:

$$
0 \longrightarrow C_{0}\left(I^{d+1} \backslash \partial I^{d+1}\right) \longrightarrow C\left(I^{d+1}\right) \longrightarrow C\left(S^{d}\right) \longrightarrow 0
$$

As $C_{0}\left(I^{d+1} \backslash \partial I^{d+1}\right)^{+}=C\left(I^{d+1} / \partial I^{d+1}\right)=C\left(S^{d+1}\right)$, we have that both $\operatorname{csr} C_{0}\left(I^{d+1} \backslash \partial I^{d+1}\right)$ and $\operatorname{gsr} C_{0}\left(I^{d+1} \backslash\right.$ ∂I^{d+1}) are on the order of d, whereas $\operatorname{csr} C\left(I^{d+1}\right)=\operatorname{gsr} C\left(I^{d+1}\right)=1$ since I^{d+1} is contractible.

Next, we estimate the stable rank of A in terms of the stable rank of J and the stable rank of B. The bsr estimate is due to Vaserstein [87, Thm.4], the tsr estimate to Rieffel [71, Thm.4.11], and the csr estimate is due to Nagy [60, Lem.2] and independently to Sheu [78, Thm.3.9]. We observe that a gsr estimate can be established in the same way.

Proposition IV.12.3. Let $0 \rightarrow J \rightarrow A \rightarrow B \rightarrow 0$ be an exact sequence of Banach algebras. Then:

$$
\left.\begin{array}{rlrl}
\operatorname{tsr} A & \leq \max \{\operatorname{tsr} J, \operatorname{tsr} B, \operatorname{css} B\} & & \mathrm{csr} A
\end{array} \leq \max \{\operatorname{csr} J, \operatorname{csr} B\}\right\}
$$

For the csr and gsr estimates, it is assumed that J has an approximate identity.
Proof. We justify the csr and the gsr estimates. Let $\pi: A \rightarrow B$ denote the quotient map; as usual, we abuse notation and we denote by π all other maps naturally induced by π.

Let $m \geq \max \{\operatorname{csr} J, \operatorname{csr} B\}$. Let $\left(a_{i}\right) \in \operatorname{Lg}_{m}(A)$, so $\pi\left(a_{i}\right) \in \operatorname{Lg}_{m}(B)$. As $m \geq \operatorname{csr} B$, there is $\beta \in \operatorname{GL}_{m}(B)_{0}$ such that $\beta\left(\pi\left(a_{1}\right), \ldots, \pi\left(a_{m}\right)\right)^{T}=(1,0, \ldots, 0)^{T} \in B^{m}$. Since $\pi: \mathrm{GL}_{m}(A)_{0} \rightarrow \mathrm{GL}_{m}(B)_{0}$ is onto ([83]), there is $\alpha \in \mathrm{GL}_{m}(A)_{0}$ with $\pi(\alpha)=\beta$ and so $\alpha\left(a_{1}, \ldots, a_{m}\right)^{T}=\left(j_{1}+1, j_{2}, \ldots, j_{m}\right)^{T}$ for some $\left(j_{i}\right) \in J^{m}$. It follows that $\left(j_{1}+1, j_{2}, \ldots, j_{m}\right) \in \operatorname{Lg}_{m}(A) \cap\left(J^{+}\right)^{m}=\operatorname{Lg}_{m}\left(J^{+}\right)$. As $m \geq \operatorname{csr} J$, there is $\mu \in \mathrm{GL}_{m}\left(J^{+}\right)_{0}$ such that $\mu\left(j_{1}+1, j_{2}, \ldots, j_{m}\right)^{T}=(1,0, \ldots, 0)^{T}$. Thus $\mathrm{GL}_{m}(A)_{0}$ acts transitively on $\mathrm{Lg}_{m}(A)$.

For the estimate $\operatorname{gsr} A \leq \max \{\operatorname{gsr} J, \operatorname{csr} B\}$, the steps are the same up to the appearance of μ. In this case, μ is in $\mathrm{GL}_{m}\left(J^{+}\right)$, and the conclusion is that $\mathrm{GL}_{m}(A)$ acts transitively on $\mathrm{Lg}_{m}(A)$.

The following C^{*}-algebraic example will show that $\operatorname{tsr} A \leq \max \{\operatorname{tsr} J, \operatorname{tsr} B\}$ does not hold in general. Since the Bass and the topological stable ranks coincide for C^{*}-algebras, the same example shows that $\operatorname{bsr} A \leq \max \{\operatorname{bsr} J, \operatorname{bsr} B\}$ does not hold in general.

The Toeplitz algebra \mathcal{T} is the C^{*}-algebra generated by a non-unitary isometry. The Toeplitz algebra can be realized as an extension as follows:

$$
0 \longrightarrow \mathcal{K} \longrightarrow \mathcal{T} \longrightarrow C\left(S^{1}\right) \longrightarrow 0
$$

Therefore:

$$
\begin{gathered}
\operatorname{tsr} \mathcal{T} \leq \max \left\{\operatorname{tss} \mathcal{K}, \operatorname{tsr} C\left(S^{1}\right), \operatorname{csr} C\left(S^{1}\right)\right\} \\
\operatorname{csr} \mathcal{T} \leq \max \left\{\operatorname{csr} \mathcal{K}, \operatorname{csr} C\left(S^{1}\right)\right\}
\end{gathered}
$$

Since $\operatorname{csr} \mathcal{K}=\operatorname{tsr} \mathcal{K}=\operatorname{tsr} C\left(S^{1}\right)=1$ and $\operatorname{csr} C\left(S^{1}\right)=2$, we get $\operatorname{tsr} \mathcal{T} \leq 2$ and $\operatorname{gsr} \mathcal{T} \leq \operatorname{csr} \mathcal{T} \leq 2$. As \mathcal{T} is infinite, we conclude that $\operatorname{sr} \mathcal{T}=2$.

IV. 13 Problems

1. We know the stable ranks of $\mathrm{C}_{\mathrm{r}}^{*} F_{n}$. What are the stable ranks of other group algebras associated to the free groups? In the case of the full C^{*}-algebra, Rieffel [71, Thm.6.7] showed that $\operatorname{tsr}^{\mathrm{C}^{*}}\left(F_{n}\right)=\infty$.

Problem. Compute $\operatorname{csrC}^{*}\left(F_{n}\right)$ and $\operatorname{gsrC}^{*}\left(F_{n}\right)$.
Problem. Compute the stable ranks of $\ell^{1}\left(F_{n}\right)$.
It is tempting to conjecture that, in general, the stable ranks of $\ell^{1} \Gamma$ equal the corresponding stable ranks of $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$.
2. For a Banach algebra A and a compact space X, let $A(X)$ denote the Banach algebra of continuous maps from X to A. Rieffel [71, Cor.7.2] proved that $\operatorname{tsr} A(I) \leq \operatorname{tsr} A+1$ for any unital C^{*}-algebra A, and asked the following [71, Ques.1.8]:

Problem. Is it true that

$$
(R) \quad \operatorname{tsr} A\left(I^{2}\right) \leq \operatorname{tsr} A+1
$$

whenever A is a unital Banach algebra?
The motivation comes from the commutative case: it is easily checked that the answer is positive whenever A is the commutative C^{*}-algebra of continuous functions on a compact space.

We point out that Rieffel's problem is equivalent, at least in the C^{*}-setting, to the following statement: $\operatorname{tsr}\left(A \otimes C\left(X^{d}\right)\right) \leq \operatorname{tsr} A+\lceil d / 2\rceil$ whenever X^{d} is d-dimensional compact space and A is a unital C^{*}-algebra. This, in turn, is slightly stronger than axiom \mathbf{T} for tensor products by $C(X)$, which puts forth the estimate $\operatorname{tsr}(A \otimes C(X)) \leq \operatorname{tsr} A+\operatorname{tsr} C(X)$ whenever X is compact and A is a C^{*}-algebra.

The non-trivial direction of the equivalence is shown in [59] (p. 990, comments after Cor.1.12). It is proved there that $\operatorname{tsr}\left(A \otimes C\left(X^{d}\right)\right)=\operatorname{tsr} A\left(I^{d}\right)$ whenever X is a finite CW-complex of dimension d, and that $\operatorname{tsr}\left(A \otimes C\left(X^{d}\right)\right) \leq \operatorname{tsr} A\left(I^{d}\right)$ whenever X is a compact space of dimension d. On the other hand, the estimate $\operatorname{tsr} A\left(I^{2}\right) \leq \operatorname{tsr} A+1$ leads to $\operatorname{tsr} A\left(I^{d}\right) \leq \operatorname{tsr} A+\lceil d / 2\rceil$.

Sudo claims in [80] a proof for (R); however, Proposition 1 of [80] cannot hold. For if it is true, then it implies $(\dagger) \operatorname{tsr} A(I)=\max \{\operatorname{csr} A, \operatorname{tsr} A\}$ for all C^{*}-algebras A, by using Nistor's description for $\operatorname{tsr} A(I)$ as the absolute connected stable rank of A. Putting $A=C\left(I^{k}\right)$ in (\dagger) leads to $\operatorname{tsr} C\left(I^{k+1}\right)=\operatorname{tsr} C\left(I^{k}\right)$ for all $k \geq 1$, since $\operatorname{csr} C\left(I^{k}\right)=1$ by the homotopy invariance of the connected stable rank. This is a contradiction. The reader might enjoy finding elementary counterexamples to [80, Prop.1].

As we shall see in the next chapter, the estimate (R) has consequences in the problem of estimating stabilization of homotopy groups attached to the GL_{n}-sequence.

CHAPTER V

THE HOMOTOPY GROUPS OF THE GENERAL LINEAR GROUPS

In this chapter we are interested in stabilization theorems in topological K-theory and, more generally, in stabilization phenomena for the homotopy groups of the general linear group over Banach algebras. The stable ranks - the connected one, especially - play the key role in this discussion.

V. 1 Motivation: Stabilization for the algebraic K_{1}-group

Bass [7] devised his "stable range" condition as a way to control the sequence

$$
\cdots \rightarrow \mathrm{GL}_{n}(R) / \mathrm{E}_{n}(R) \rightarrow \mathrm{GL}_{n+1}(R) / \mathrm{E}_{n+1}(R) \rightarrow \ldots
$$

which yields the algebraic K_{1}-group $K_{1}^{\mathrm{alg}}(R)$ in the limit. For a unital ring R, the elementary group $\mathrm{E}_{n}(R)$ is the subgroup of $\mathrm{GL}_{n}(R)$ generated by the elementary matrices $\left\{1_{n}+e_{i j}\right\}_{1 \leq i \neq j \leq n}$. The quotient $\mathrm{GL}_{n}(R) / \mathrm{E}_{n}(R)$ is not necessarily a group, i.e., $\mathrm{E}_{n}(R)$ may not normal in $\mathrm{GL}_{n}(R)$. The map $\mathrm{GL}_{n}(R) \rightarrow \mathrm{GL}_{n+1}(R)$, given by $* \mapsto\left(\begin{array}{cc}* & 0 \\ 0 & 1\end{array}\right)$, sends $\mathrm{E}_{n}(R)$ to $\mathrm{E}_{n+1}(R)$, so it induces a well-defined map $\mathrm{GL}_{n}(R) / \mathrm{E}_{n}(R) \rightarrow \mathrm{GL}_{n+1}(R) / \mathrm{E}_{n+1}(R)$.

The following theorem was conjectured by Bass in [7]. Bass proved the surjectivity part, whereas the injectivity part, significantly more difficult, is due to Vaserstein [86].

Theorem V.1.1. Let R be a unital ring. The map

$$
\mathrm{GL}_{n}(R) / \mathrm{E}_{n}(R) \rightarrow \mathrm{GL}_{n+1}(R) / \mathrm{E}_{n+1}(R)
$$

is surjective for $n \geq \operatorname{bsr} R$, and injective for $n \geq \operatorname{bsr} R+1$. In particular, $\mathrm{GL}_{n}(R) / \mathrm{E}_{n}(R)$ is a group isomorphic to $K_{1}^{\mathrm{alg}}(R)$ for $n \geq \mathrm{bsr} R+1$.

Similar stabilization phenomena occur in higher algebraic K-theory (cf. Suslin [81]). For a sequence of non-stable K_{i}-groups

$$
K_{i, 1}(R) \rightarrow K_{i, 2}(R) \rightarrow \cdots \rightarrow K_{i, n}(R) \rightarrow K_{i, n+1}(R) \rightarrow \ldots
$$

we expect stabilization whenever n is larger than the Bass stable rank. The issue here is how to define the non-stable K_{i}-groups. Two possibilities are $K_{i, n}^{V}(R)$ in the sense of Volodin, and $K_{i, n}^{Q}(R)$ in the sense of Quillen (see [81] for the definitions); there is a canonical map $K_{i, n}^{V}(R) \rightarrow K_{i, n}^{Q}(R)$ for $n \geq 2 i+1$ ([81, Thm.8.1]). The stabilization results for the two choices of non-stable K_{i}-groups read as follows ([81, Thm.4.1, Thm.8.2]):

- the map $K_{i, n}^{V}(R) \rightarrow K_{i, n+1}^{V}(R)$ is surjective for $n \geq \operatorname{bsr} R+i-1$, and bijective for $n \geq \operatorname{bsr} R+i$
- the map $K_{i, n}^{Q}(R) \rightarrow K_{i, n+1}^{Q}(R)$ is surjective for $n \geq \max \{i+1, \operatorname{bsr} R\}+i-1$, and bijective for $n \geq$ $\max \{i+1, \operatorname{bsr} R\}+i$

V. 2 Stabilization of homotopy groups

Let A be a unital, good topological algebra. The sequence

$$
\{1\}=\mathrm{GL}_{0}(A) \hookrightarrow A^{\times}=\mathrm{GL}_{1}(A) \hookrightarrow \mathrm{GL}_{2}(A) \hookrightarrow \ldots
$$

induces, for each $k \geq 0$, a sequence of (identity-based) homotopy groups:

$$
\left(\pi_{k}\right) \quad \pi_{k}\left(\mathrm{GL}_{0}(A)\right) \rightarrow \pi_{k}\left(\mathrm{GL}_{1}(A)\right) \rightarrow \pi_{k}\left(\mathrm{GL}_{2}(A)\right) \rightarrow \ldots
$$

In order to formulate our results, we introduce the following notations:
$\cdot \operatorname{surj}_{k} A$ is the least $n \geq 1$ such that $\pi_{k}\left(\mathrm{GL}_{m-1}(A)\right) \rightarrow \pi_{k}\left(\mathrm{GL}_{m}(A)\right)$ is surjective for all $m \geq n$
$\cdot \operatorname{inj}_{k} A$ is the least $n \geq 1$ such that $\pi_{k}\left(\operatorname{GL}_{m-1}(A)\right) \rightarrow \pi_{k}\left(\operatorname{GL}_{m}(A)\right)$ is injective for all $m \geq n$
$\cdot \operatorname{bij}_{k} A$ is the least $n \geq 1$ such that $\pi_{k}\left(\mathrm{GL}_{m-1}(A)\right) \rightarrow \pi_{k}\left(\mathrm{GL}_{m}(A)\right)$ is bijective for all $m \geq n$
Of course, $\operatorname{bij}_{k} A=\max \left\{\operatorname{surj}_{k} A, \operatorname{inj}_{k} A\right\}$. With these notations, we state
Proposition V.2.1. For $k \geq 0$, we have:
a) $\operatorname{surj}_{k} A \leq \operatorname{csr} A\left(S^{k}\right)$ and $\operatorname{inj}_{k} A \leq \operatorname{csr} A\left(S^{k+1}\right)$
b) $\max \left\{\operatorname{surj}_{k+1} A, \operatorname{inj}_{k} A, \operatorname{csr} A\right\}=\operatorname{csr} A\left(S^{k+1}\right)$

Before we prove the proposition, we record a lemma (first stated by Elhage Hassan [29]) which says, in particular, that $\operatorname{csr} A\left(S^{k}\right) \geq \operatorname{csr} A$ for all $k \geq 0$.

Lemma V.2.2. For every compact space X, we have $\operatorname{csr} A(X) \geq \operatorname{csr} A$.
Proof. Identifying $\operatorname{Lg}_{m}(A(X))$ with the continuous maps from X to $\operatorname{Lg}_{m}(A)$, we see that the evaluation at an arbitrary $x \in X$ induces an onto map $\operatorname{Lg}_{m}(A(X)) \rightarrow \operatorname{Lg}_{m}(A)$. Hence $\operatorname{Lg}_{m}(A)$ is connected whenever $\operatorname{Lg}_{m}(A(X))$ is connected.

Proof of Proposition V.2.1. Let $m \geq \operatorname{csr} A$. According to [20, Cor.1.6] one has a long exact homotopy sequence:

$$
\begin{aligned}
\cdots & \rightarrow \pi_{k+1}\left(\operatorname{Lg}_{m}(A)\right) \rightarrow \pi_{k}\left(\operatorname{GL}_{m-1}(A)\right) \rightarrow \pi_{k}\left(\operatorname{GL}_{m}(A)\right) \rightarrow \pi_{k}\left(\operatorname{Lg}_{m}(A)\right) \rightarrow \cdots \\
& \cdots \rightarrow \pi_{1}\left(\operatorname{Lg}_{m}(A)\right) \rightarrow \pi_{0}\left(\operatorname{GL}_{m-1}(A)\right) \rightarrow \pi_{0}\left(\operatorname{GL}_{m}(A)\right) \rightarrow 0
\end{aligned}
$$

Also, for $m \geq \operatorname{csr} A$ we can simply identify

$$
\pi_{k}\left(\operatorname{Lg}_{m}(A)\right)=\pi_{0}\left(\left(\operatorname{Lg}_{m}(A)\right)\left(S^{k}\right)\right)=\pi_{0}\left(\operatorname{Lg}_{m}\left(A\left(S^{k}\right)\right)\right)
$$

without having to keep track of basepoints.
a) If $m \geq \operatorname{csr} A\left(S^{k}\right)(\geq \operatorname{csr} A)$, then $\operatorname{Lg}_{m}\left(A\left(S^{k}\right)\right)$ is connected, so $\pi_{k}\left(\operatorname{Lg}_{m}(A)\right)$ vanishes. Therefore $\pi_{k}\left(\operatorname{GL}_{m-1}(A)\right) \rightarrow$ $\pi_{k}\left(\operatorname{GL}_{m}(A)\right)$ is surjective. We conclude that $\operatorname{surj}_{k} A \leq \operatorname{csr} A\left(S^{k}\right)$.

If $m \geq \operatorname{csr} A\left(S^{k+1}\right)(\geq \operatorname{csr} A)$, then $\operatorname{Lg}_{m}\left(A\left(S^{k+1}\right)\right)$ is connected, so $\pi_{k+1}\left(\operatorname{Lg}_{m}(A)\right)$ vanishes. Therefore $\pi_{k}\left(\mathrm{GL}_{m-1}(A)\right) \rightarrow \pi_{k}\left(\mathrm{GL}_{m}(A)\right)$ is injective. We conclude that $\operatorname{inj}_{k} A \leq \operatorname{csr} A\left(S^{k+1}\right)$.
b) By part a), we have $\operatorname{surj}_{k+1} A \leq \operatorname{csr} A\left(S^{k+1}\right)$ and $\operatorname{inj}_{k} A \leq \operatorname{csr} A\left(S^{k+1}\right)$. Since $\operatorname{csr} A \leq \operatorname{csr} A\left(S^{k+1}\right)$, we get $\max \left\{\operatorname{surj}_{k+1} A, \operatorname{inj}_{k} A, \operatorname{csr} A\right\} \leq \operatorname{csr} A\left(S^{k+1}\right)$.

To prove the reversed inequality, we let $m \geq \max \left\{\operatorname{surj}_{k+1} A, \operatorname{inj}_{k} A, \operatorname{csr} A\right\}$. In the following piece of the long exact homotopy sequence

$$
\pi_{k+1}\left(\mathrm{GL}_{m-1}(A)\right) \rightarrow \pi_{k+1}\left(\mathrm{GL}_{m}(A)\right) \rightarrow \pi_{k+1}\left(\operatorname{Lg}_{m}(A)\right) \rightarrow \pi_{k}\left(\mathrm{GL}_{m-1}(A)\right) \rightarrow \pi_{k}\left(\mathrm{GL}_{m}(A)\right)
$$

the first map is surjective and the last map is injective. A simple analysis of exactness (kernel equals image) shows that $\pi_{k+1}\left(\operatorname{Lg}_{m}(A)\right)$ must vanish, hence $\operatorname{Lg}_{m}\left(A\left(S^{k+1}\right)\right)$ is connected. We conclude that $\operatorname{csr} A\left(S^{k+1}\right) \leq$ $\max \left\{\operatorname{surj}_{k+1} A, \operatorname{inj}_{k} A, \operatorname{csr} A\right\}$.

Corollary V.2.3. For $k \geq 0$, we have:
a) $\operatorname{bij}_{k} A \leq \max \left\{\operatorname{csr} A\left(S^{k}\right), \operatorname{csr} A\left(S^{k+1}\right)\right\}$
b) $\operatorname{csr} A\left(S^{k+1}\right) \leq \max \left\{\mathrm{bij}_{k} A, \operatorname{bij}_{k+1} A, \operatorname{csr} A\right\}$

Dimensional upper bounds for $\operatorname{surj}_{k}, \operatorname{inj}_{k}$, or bij_{k} are obtained by using the following
Lemma V.2.4. For $k \geq 0$ we have $\operatorname{csr} A\left(S^{k}\right) \leq \operatorname{bsr} A\left(I^{k+1}\right)$. In particular, $\operatorname{csr} A\left(S^{k}\right) \leq \operatorname{tsr} A+k+1$. If Rieffel's estimate (R) holds, then $\operatorname{css} A\left(S^{k}\right) \leq \operatorname{tsr} A+\lfloor k / 2\rfloor+1$.

Proof. First, we handle the case $k=0$: we show that $\operatorname{csr} A \leq \operatorname{bsr} A(I)$. We use again the following ([7, Lem.4.1]): if $A \rightarrow B$ is onto and $m \geq \operatorname{bsr} A$ then $\operatorname{Lg}_{m}(A) \rightarrow \operatorname{Lg}_{m}(B)$ is onto. Now consider the quotient map $A(I) \rightarrow A \oplus A$, obtained by evaluating at endpoints. Let $m \geq \operatorname{bsr} A(I)$; then the induced map $\left(\operatorname{Lg}_{m}(A)\right)(I) \rightarrow$ $\operatorname{Lg}_{m}(A) \oplus \operatorname{Lg}_{m}(A)$ is onto. This means precisely that any two points in $\operatorname{Lg}_{m}(A)$ can be connected by a path in $\operatorname{Lg}_{m}(A)$.

For the general case, start from the fact that $A\left(S^{k}\right)$ is a quotient of $A\left(I^{k+1}\right)$. Hence

$$
\operatorname{csr} A\left(S^{k}\right) \leq \max \left\{\operatorname{csr} A\left(I^{k+1}\right), \operatorname{bsr} A\left(I^{k+1}\right)\right\}
$$

by Proposition IV.6.2. Note that $\operatorname{csr} A\left(I^{k+1}\right)=\operatorname{csr} A$ by homotopy invariance. Since $A(I)$ is a quotient of $A\left(I^{k+1}\right)$, we have $\operatorname{bsr} A\left(I^{k+1}\right) \geq \operatorname{bsr} A(I) \geq \operatorname{csr} A$. We conclude that $\operatorname{csr} A\left(S^{k}\right) \leq \operatorname{bsr} A\left(I^{k+1}\right)$.

For the estimates in terms of the topological stable rank, we first recall that bsr $\leq \mathrm{tsr}$. From $\operatorname{tsr} A(I) \leq$ $\operatorname{tsr} A+1$ one obtains $\operatorname{tsr} A\left(I^{k+1}\right) \leq \operatorname{tsr} A+k+1$, hence $\operatorname{csr} A\left(S^{k}\right) \leq \operatorname{tsr} A+k+1$. If (R) holds, then $\operatorname{tsr} A\left(I^{k+1}\right) \leq$ $\operatorname{tsr} A+\lfloor k / 2\rfloor+1$, hence $\operatorname{csr} A\left(S^{k}\right) \leq \operatorname{tsr} A+\lfloor k / 2\rfloor+1$.

The conjectured upper bound $\operatorname{csr} A\left(S^{k}\right) \leq \operatorname{tsr} A+\lfloor k / 2\rfloor+1$ is known to hold when $k=1$: namely, Corollary 8.6 of [71] says that $\operatorname{csr} A\left(S^{1}\right) \leq \operatorname{tsr} A+1$ whenever A is a unital Banach algebra. (In [71], this is stated for unital C^{*}-algebras but the proof works for unital Banach algebras as well.)

We thus get a further corollary (recovering Theorem 10.10 of [71] and Theorem 2.10 of [72]):
Corollary V.2.5. Let A be a unital Banach algebra. Then the natural map

$$
\pi_{0}\left(\mathrm{GL}_{m}(A)\right) \rightarrow \pi_{0}\left(\mathrm{GL}_{m+1}(A)\right)
$$

is surjective for $m \geq \operatorname{csr} A-1$, and bijective for $m \geq \operatorname{css} A\left(S^{1}\right)-1$; in particular, it is bijective for $m \geq \operatorname{tsr} A$.
Remark V.2.6. i) From the surjectivity part we recover the fact that $K_{1}(A)=0$ when $\operatorname{csr} A=1$.
ii) Assume $\operatorname{tsr} A=1$. We have already observed that $K_{1}(A) \neq 0$ implies $\operatorname{csr} A=2$ (Remark IV.10.3). Conversely, $\operatorname{csr} A=2$ implies $K_{1}(A) \neq 0$. Indeed, assume $K_{1}(A)=0$. Then $\operatorname{Lg}_{1}(A)=A^{\times}$(since $\operatorname{tsr} A=1$ implies A is finite) and $\pi_{0}\left(A^{\times}\right) \simeq K_{1}(A)=0$, meaning that $\operatorname{Lg}_{1}(A)$ is connected. Together with $\operatorname{csr} A \leq 2$ (again, due to $\operatorname{tsr} A=1$), we obtain $\operatorname{csr} A=1$, a contradiction.

One should compare part a) of Proposition V.2.1, in conjunction with Lemma V.2.4, with Theorem V.1.1, Theorem 6.3 in [20], Theorems 10.12 in [71], and Proposition 6 of [88]. On the other hand, Theorem 4.1 of [6] (see also Theorem 2.9 of [72]) improves our injectivity upper bound $\operatorname{inj}_{k} A \leq \operatorname{csr} A\left(S^{k+1}\right)$ to $\operatorname{inj}_{k} A \leq \operatorname{gsr} A\left(S^{k+1}\right)^{1}$. This may help in certain instances (for example in low dimensions, by using item 5) in Remark IV.10.3), but otherwise the general stable rank is much harder to compute than the connected stable rank.

Summarizing, our upper bounds for stabilization in homotopy essentially recover the known results on this topic. But the lower bounds for homotopic stabilization are new. We shall exploit them in the next section.

Remark V.2.7. For Banach algebras, the homotopy stabilization has a K-theoretic interpretation. The K_{1} group and the K_{0} group are the limit groups of the direct sequences $\left(\pi_{0}\right)$ and $\left(\pi_{1}\right)$:

$$
K_{1}(A)=\underline{\longrightarrow} \pi_{0}\left(\mathrm{GL}_{n}(A)\right), \quad K_{0}(A) \simeq \underline{\longrightarrow} \pi_{1}\left(\mathrm{GL}_{n}(A)\right)
$$

We stress the following aspect: stabilization for $\left(\pi_{0}\right)$ is indeed stabilization for K_{1}, whereas stabilization for $\left(\pi_{1}\right)$ is construed as stabilization for K_{0}.

Using the "homotopic" bounds provided by the connected stable rank, we have:

$$
\begin{aligned}
& \cdot K_{1}(A) \simeq \pi_{0}\left(\operatorname{GL}_{n}(A)\right) \text { for } n \geq \operatorname{csr} A\left(S^{1}\right)-1 \\
& \cdot K_{1}(A) \simeq \pi_{0}\left(\operatorname{GL}_{n}(A)\right) \text { and } K_{0}(A) \simeq \pi_{1}\left(\operatorname{GL}_{n}(A)\right) \text { for } n \geq \max \left\{\operatorname{csr} A\left(S^{1}\right), \operatorname{csr} A\left(S^{2}\right)\right\}-1 .
\end{aligned}
$$

In terms of the "dimensional" bounds, we have:

$$
\begin{aligned}
& \cdot K_{1}(A) \simeq \pi_{0}\left(\mathrm{GL}_{n}(A)\right) \text { for } n \geq \operatorname{tsr} A \\
& \cdot K_{1}(A) \simeq \pi_{0}\left(\operatorname{GL}_{n}(A)\right) \text { and } K_{0}(A) \simeq \pi_{1}\left(\operatorname{GL}_{n}(A)\right) \text { for } n \geq \operatorname{tsr} A+2 .
\end{aligned}
$$

It is likely that one can use in fact $\operatorname{tsr} A+1$, instead of $\operatorname{tsr} A+2$, in the last line.
Remark V.2.8. In connection with the homotopy stabilization phenomena discussed in this section, we mention the following remarkable family of examples constructed by Villadsen [88]:

For each $N \geq 1$, there is a unital, simple C^{*}-algebra A_{N} having $\operatorname{tsr} A_{N}=N$ with the following property: for all $k \geq 0$, the natural map $\pi_{k}\left(\mathrm{GL}_{m-1}\left(A_{N}\right)\right) \rightarrow \pi_{k}\left(\mathrm{GL}_{m}\left(A_{N}\right)\right)$ is bijective when $m \geq N+1$, but not surjective when $m=N$.

[^0]The coexistence of simplicity with high topological stable rank is already interesting. It was an open problem for a long time whether there are simple C^{*}-algebras having a given topological stable rank $N \geq 2$. (Note that simple, finite C^{*}-algebras tend to have stable rank 1 , whereas simple, infinite C^{*}-algebras always have infinite topological stable rank). The first examples were provided by Villadsen in 1999, and the above examples should be viewed as a significant refinement of his original construction.

We end this section by emphasizing the following ideas:

- the stable rank that is best suited for controlling stabilization in the homotopy sequences $\left(\pi_{*}\right)$ is the connected stable rank;
- estimates in terms of connected stable ranks admit, in turn, upper bounds by the dimensional stable ranks (the topological stable rank and the Bass stable rank) which are typically easier to compute;
- Rieffel's conjectured inequality (R) plays a crucial role in providing good dimensional estimates for the connected stable ranks, hence in estimating homotopy stabilization.

V. 3 Two examples concerning stabilization in K-theory

Let A be a Banach algebra. The direct limit of the $\left(\pi_{k}\right)$ homotopy sequence is, by definition, the K-group $K_{k+1}(A)$; by Bott periodicity, $K_{k+1}(A)$ is isomorphic to $K_{0}(A)$ or $K_{1}(A)$ according to whether k is odd or even.

According to our notations, the natural map

$$
\pi_{k}\left(\mathrm{GL}_{n}(A)\right) \rightarrow K_{k+1}(A)
$$

becomes an isomorphism starting from $n=\operatorname{bij}_{k} A-1$ precisely. We have upper bounds for $\operatorname{bij}_{k} A-1$; primarily in terms of the connected stable rank, and secondarily in terms of the topological stable rank. But what is $\operatorname{bij}_{k} A-1$ exactly? Unfortunately, we are unable to provide exact computations for, say, the class of commutative C^{*}-algebras. The non-triviality of such an exact computation is apparent even in the trivial case $A=\mathbb{C}$ (this is related to, but easier than the proof of Proposition IV.3.4).

What we can compute, however, is the exact level of stabilization for pairs of consecutive homotopy sequences. Namely, we consider the problem of finding the least n for which the natural maps induce isomorphisms

$$
\left\{\begin{array}{l}
\pi_{k}\left(\operatorname{GL}_{n}(A)\right) \simeq K_{k+1}(A) \\
\pi_{k+1}\left(\operatorname{GL}_{n}(A)\right) \simeq K_{k+2}(A)
\end{array}\right.
$$

simultaneously in the homotopy sequences $\left(\pi_{k}\right)$ and $\left(\pi_{k+1}\right)$.
Note that each such pairing recovers the K-theory of A in the limit. If we think of stabilization in a single homotopy sequence as stabilization in one of the two K-groups, then the joint stabilization we want to study is truly stabilization for the K-theory (i.e. for both K-groups) of A.

For the results in this section, the criterion provided by Theorem IV.3.2 is crucial. We recall: if d is odd and $\check{H}^{d}\left(X^{d}\right) \neq 0$, then $\operatorname{csr} C\left(X^{d}\right)=1+\lceil d / 2\rceil$. Here X^{d} denotes a d-dimensional compact space.

V.3.1 K-theoretic stabilization for $C(X)$

We consider the problem of joint stabilization, as described above, for $A=C\left(X^{d}\right)$. First of all, part a) of Proposition V.2.1 becomes the following upper bound:

Proposition V.3.1. Let $A=C\left(X^{d}\right)$. For $k \geq 0$, the natural map $\pi_{k}\left(\operatorname{GL}_{n}(A)\right) \rightarrow K_{k+1}(A)$ is an isomorphism starting from $n=1+\lfloor(d+k) / 2\rfloor$.

Proof. We have $\operatorname{bij}_{k} C\left(X^{d}\right) \leq \max \left\{\operatorname{csr} C\left(X^{d} \times S^{k}\right), \operatorname{csr} C\left(X^{d} \times S^{k+1}\right)\right\}$, and

$$
\operatorname{csr} C\left(X^{d} \times S^{k}\right) \leq 1+\lceil(d+k) / 2\rceil, \quad \operatorname{csr} C\left(X^{d} \times S^{k+1}\right) \leq 1+\lceil(d+k+1) / 2\rceil .
$$

Thus $\operatorname{bij}_{k} C\left(X^{d}\right)-1 \leq\lceil(d+k+1) / 2\rceil=1+\lfloor(d+k) / 2\rfloor$.
Proposition V.3.2. Let $A=C\left(X^{d}\right)$, where the compact space X^{d} satisfies $\check{H}^{d}\left(X^{d}\right) \neq 0$. Let $k \geq 0$ have the same parity as d. Then $n=1+\frac{1}{2}(d+k)$ is the least integer for which the natural maps induce isomorphisms

$$
\left\{\begin{array}{l}
\pi_{k}\left(\operatorname{GL}_{n}(A)\right) \simeq K_{k+1}(A) \\
\pi_{k+1}\left(\operatorname{GL}_{n}(A)\right) \simeq K_{k+2}(A)
\end{array}\right.
$$

simultaneously.
Proof. The least integer for which we have the required simultaneous isomorphisms is

$$
C_{k}:=\max \left\{\mathrm{bij}_{k} A, \mathrm{bij}_{k+1} A\right\}-1 .
$$

We know $C_{k} \leq 1+\lfloor(d+k+1) / 2\rfloor=1+\frac{1}{2}(d+k)$ from the previous proposition. On the other hand, Corollary V.2.3 says that max $\left\{C_{k}, \operatorname{csr} C\left(X^{d}\right)-1\right\} \geq \operatorname{csr} C\left(X^{d} \times S^{k+1}\right)-1$. By the Kunneth formula, we have $\check{H}^{d+k+1}\left(X^{d} \times S^{k+1}\right) \simeq \check{H}^{d}\left(X^{d}\right) \neq 0$. Therefore

$$
\operatorname{css} C\left(X^{d} \times S^{k+1}\right)-1=\lceil(d+k+1) / 2\rceil=1+\frac{1}{2}(d+k) .
$$

As $1+\frac{1}{2}(d+k)>\lceil d / 2\rceil \geq \operatorname{csr} C\left(X^{d}\right)-1$ it follows that $C_{k}=1+\frac{1}{2}(d+k)$.

V.3.2 K-theoretic stabilization for tensor products of \mathbf{C}^{*}-extensions of \mathcal{K} by $C(X)$

In Section V.3.1, we computed K-theoretic stabilization over commutative C^{*} algebras. In this section, we do the same for some noncommutative examples:

Theorem V.3.3. For $1 \leq i \leq n$, let A_{i} be an extension of \mathcal{K} by $C\left(X_{i}\right)$ with X_{i} a compact metrizable space. Put $A:=A_{1} \otimes \cdots \otimes A_{n}$, and $X:=X_{1} \times \cdots \times X_{n}$. Let $d=\operatorname{dim} X$, and let $k \geq 0$.
a) The natural map $\pi_{k}\left(\mathrm{GL}_{n}(A)\right) \rightarrow K_{k+1}(A)$ is an isomorphism for $n \geq 1+\lfloor(d+k) / 2\rfloor$.
b) Assume $d \neq 0, \check{H}^{d}(X) \neq 0$, and k has the parity of d. Then $n=1+\frac{1}{2}(d+k)$ is the least integer for which the natural maps induce isomorphisms

$$
\left\{\begin{array}{l}
\pi_{k}\left(\operatorname{GL}_{n}(A)\right) \simeq K_{k+1}(A) \\
\pi_{k+1}\left(\operatorname{GL}_{n}(A)\right) \simeq K_{k+2}(A)
\end{array}\right.
$$

simultaneously.

For instance, the Toeplitz algebra \mathcal{T} fits in an exact sequence $0 \rightarrow \mathcal{K} \rightarrow \mathcal{T} \rightarrow C\left(S^{1}\right) \rightarrow 0$. So $\mathcal{T}^{\otimes n}$, the n-fold tensor power of the Toeplitz algebra, would be an example of the type of C^{*}-algebras under consideration.

Theorem V.3.3 is completely analogous to the result of the previous section, but the proof is more involved. The key point is Proposition V.3.7, which computes $\operatorname{csr} A\left(S^{k+1}\right)$ for k having the same parity as d. We remind the reader that the behavior of stable ranks under tensor products is poorly understood, so we are very far from being able to derive Theorem V.3.3 from the result of the previous section.

We need to work with the connected stable rank, as well as with the topological stable rank. However, the reader should keep in mind the following slogan: if each A_{i} is an extension of \mathcal{K} by the symbol space $C\left(X_{i}\right)$, then the stable ranks of $A_{1} \otimes \cdots \otimes A_{n}$ equal the corresponding stable ranks of the "symbol space" $C\left(X_{1}\right) \otimes \cdots \otimes C\left(X_{n}\right) \simeq C\left(X_{1} \times \cdots \times X_{n}\right)$; furthermore, this remains true after tensoring both A and $C(X)$ by some $C(Z)$. Although not always true, this slogan is valid enough to capture the spirit of the results.

In preparation for the first lemma, we collect some estimates we will use along the way:

- (extensions) Let $0 \rightarrow J \rightarrow A \rightarrow B \rightarrow 0$ be an exact sequence of C^{*}-algebras. Then:

$$
\begin{gathered}
\max \{\operatorname{tsr} J, \operatorname{tsr} B\} \leq \operatorname{tsr} A \leq \max \{\operatorname{tsr} J, \operatorname{tsr} B, \operatorname{csr} B\} \\
\operatorname{csr} A \leq \max \{\operatorname{csr} J, \operatorname{csr} B\}, \quad \operatorname{csr} B \leq \max \{\operatorname{tsr} A, \operatorname{csr} A\}
\end{gathered}
$$

- (tensoring by $\mathcal{K})$ Let A be a unital C^{*}-algebra. Then:

$$
\operatorname{tsr}(A \otimes \mathcal{K}) \leq \operatorname{tsr} A, \quad \operatorname{csr}(A \otimes \mathcal{K}) \leq \operatorname{csr} A
$$

Rieffel [71, Thm.6.4] showed that $\operatorname{tsr}(A \otimes \mathcal{K}) \leq 2$, and that $\operatorname{tsr} A=1$ implies $\operatorname{tsr}(A \otimes \mathcal{K})=1$. A similar situation occurs for the connected stable rank (Nistor [63, Cor.2.5\&2.12], Sheu [78, Thm.3.10]).

- (tensoring by $C(X)$) Let A be a unital C^{*}-algebra, and X a compact space. Then:

$$
\operatorname{tsr}(A \otimes C(X)) \geq \operatorname{tsr} A, \quad \operatorname{csr}(A \otimes C(X)) \geq \operatorname{csr} A
$$

The first estimate is due to the fact that the topological stable rank does not increase by passing to quotients. The second estimate is proved in Lemma V.2.2.

In what follows, it is convenient to use the notation $\operatorname{msr} A:=\max \{\operatorname{tsr} A, \operatorname{csr} A\}$ ([60]).

Lemma V.3.4. Let $0 \rightarrow \mathcal{K} \rightarrow A \rightarrow C(Y) \rightarrow 0$ be an exact C^{*}-sequence with A unital and Y compact. Then, for each nuclear unital C^{*}-algebra D, we have:

$$
\begin{aligned}
\operatorname{msr}(D \otimes A) & =\operatorname{msr}(D \otimes C(Y)) \\
\operatorname{tsr}(D \otimes A) & \geq \operatorname{tsr}(D \otimes C(Y)) \\
\operatorname{csr}(D \otimes A) & \leq \operatorname{csr}(D \otimes C(Y))
\end{aligned}
$$

Proof. We use the stable rank estimates for the exact sequence

$$
0 \rightarrow D \otimes \mathcal{K} \rightarrow D \otimes A \rightarrow D \otimes C(Y) \rightarrow 0 .
$$

For the topological stable rank, we know

$$
\begin{gathered}
\max \{\operatorname{tsr}(D \otimes \mathcal{K}), \operatorname{tsr}(D \otimes C(Y))\} \leq \operatorname{tsr}(D \otimes A) \\
\operatorname{tsr}(D \otimes A) \leq \max \{\operatorname{tsr}(D \otimes \mathcal{K}), \operatorname{tsr}(D \otimes C(Y)), \operatorname{csr}(D \otimes C(Y))\}
\end{gathered}
$$

which, using $\operatorname{tsr}(D \otimes \mathcal{K}) \leq \operatorname{tsr} D \leq \operatorname{tsr}(D \otimes C(Y))$, simplify to

$$
\begin{gather*}
\operatorname{tsr}(D \otimes C(Y)) \leq \operatorname{tsr}(D \otimes A) \tag{V.1}\\
\operatorname{tsr}(D \otimes A) \leq \max \{\operatorname{tsr}(D \otimes C(Y)), \operatorname{csr}(D \otimes C(Y))\} . \tag{V.2}
\end{gather*}
$$

Similarly, for the connected stable rank we have:

$$
\begin{gathered}
\operatorname{csr}(D \otimes A) \leq \max \{\operatorname{csr}(D \otimes \mathcal{K}), \operatorname{csr}(D \otimes C(Y))\} \\
\operatorname{csr}(D \otimes C(Y)) \leq \max \{\operatorname{tsr}(D \otimes A), \operatorname{csr}(D \otimes A)\}
\end{gathered}
$$

Since $\operatorname{csr}(D \otimes \mathcal{K}) \leq \operatorname{csr} D \leq \operatorname{csr} D \otimes C(Y)$, we get:

$$
\begin{gather*}
\operatorname{csr}(D \otimes A) \leq \operatorname{csr}(D \otimes C(Y)) \tag{V.3}\\
\operatorname{csr}(D \otimes C(Y)) \leq \max \{\operatorname{tsr}(D \otimes A), \operatorname{csr}(D \otimes A)\} \tag{V.4}
\end{gather*}
$$

Taken together, the numbered relations are equivalent to the required relations.
Proposition V.3.5. Let A and X be as in Theorem V.3.3. Then, for every compact space Z we have:

$$
\begin{aligned}
\operatorname{msr}(A \otimes C(Z)) & =\operatorname{msr} C(X \times Z) \\
\operatorname{tsr}(A \otimes C(Z)) & \geq \operatorname{tsr} C(X \times Z) \\
\operatorname{csr}(A \otimes C(Z)) & \leq \operatorname{csr} C(X \times Z)
\end{aligned}
$$

Proof. We argue by induction on n. The base case $n=1$ is obtained by setting $D=C(Z)$ in Lemma V.3.4:

$$
\begin{aligned}
\operatorname{msr}\left(A_{1} \otimes C(Z)\right) & =\operatorname{msr} C\left(X_{1} \times Z\right) \\
\operatorname{tsr}\left(A_{1} \otimes C(Z)\right) & \geq \operatorname{tsr} C\left(X_{1} \times Z\right) \\
\operatorname{csr}\left(A_{1} \otimes C(Z)\right) & \leq \operatorname{csr} C\left(X_{1} \times Z\right)
\end{aligned}
$$

Next, we handle the induction step. Assume the conclusion of the proposition is valid for $n=k$; we show it holds for $n=k+1$. We need to check the following:

$$
\begin{array}{r}
\operatorname{msr}\left(\otimes_{i=1}^{k+1} A_{i} \otimes C(Z)\right)=\operatorname{msr} C\left(\times_{i=1}^{k+1} X_{i} \times Z\right) \\
\operatorname{tsr}\left(\otimes_{i=1}^{k+1} A_{i} \otimes C(Z)\right) \geq \operatorname{tsr} C\left(\times \times_{i=1}^{k+1} X_{i} \times Z\right) \\
\operatorname{csr}\left(\otimes_{i=1}^{k+1} A_{i} \otimes C(Z)\right) \leq \operatorname{csr} C\left(\times_{i=1}^{k+1} X_{i} \times Z\right)
\end{array}
$$

Setting $D=\otimes_{i=1}^{k} A_{i} \otimes C(Z)$ in Lemma V.3.4, and then invoking the induction step, we have:

$$
\begin{array}{r}
\operatorname{msr}\left(\otimes_{i=1}^{k} A_{i} \otimes A_{k+1} \otimes C(Z)\right)=\operatorname{msr}\left(\otimes_{i=1}^{k} A_{i} \otimes C\left(X_{k+1} \times Z\right)\right)=\operatorname{msr} C\left(\times_{i=1}^{k} X_{i} \times X_{k+1} \times Z\right) \\
\operatorname{tsr}\left(\otimes_{i=1}^{k} A_{i} \otimes A_{k+1} \otimes C(Z)\right) \geq \mathrm{tsr}\left(\otimes_{i=1}^{k} A_{i} \otimes C\left(X_{k+1} \times Z\right)\right) \geq \operatorname{tsr} C\left(\times_{i=1}^{k} X_{i} \times X_{k+1} \times Z\right) \\
\operatorname{csr}\left(\otimes_{i=1}^{k} A_{i} \otimes A_{k+1} \otimes C(Z)\right) \leq \operatorname{csr}\left(\otimes_{i=1}^{k} A_{i} \otimes C\left(X_{k+1} \times Z\right)\right) \leq \operatorname{csr} C\left(\times_{i=1}^{k} X_{i} \times X_{k+1} \times Z\right)
\end{array}
$$

The induction step is proved.
We state, at this point, the following result of Nistor [63, Thm.4.4]:
Theorem V.3.6. Let A and X be as in Theorem V.3.3, and let Z be a compact metrizable space. Assume $\operatorname{dim}(X \times Z) \neq 1$.

Then $\operatorname{tsr}(A \otimes C(Z))=\operatorname{tsr} C(X \times Z)=1+\lfloor\operatorname{dim}(X \times Z) / 2\rfloor$.
For instance, we obtain that $\operatorname{tsr} \mathcal{T}^{\otimes n}=1+\lfloor n / 2\rfloor$ for $n \geq 2$. However, $\operatorname{tsr} \mathcal{T}=2$ so the previous formula cannot hold for $n=1$; in particular, the assumption $\operatorname{dim} X \neq 1$ cannot be removed in the above theorem.

We mention that Nistor states the above result for those compact spaces X_{i} which can be realized as an inverse limit of finite CW-complexes of dimension $\operatorname{dim} X_{i}$ (see assumptions before Lemma 3.7 in [63]). He then points out that Theorem V.3.6 holds whenever X_{i} is a compact manifold. However, a result of Freudenthal from the 1920's says that every compact metrizable space can be realized as such an inverse limit.

Our Proposition V.3.5 strengthens Proposition 3.4 of [63]; the additional information we have is the equality $\operatorname{msr}(A \otimes C(Z))=\operatorname{msr} C(X \times Z)$. We use it by exploiting the fact that the connected stable rank is larger than the topological stable rank in odd dimensions:

Proposition V.3.7. Let A and X be as in Theorem V.3.3, and let Z be a compact metrizable space. Assume $\operatorname{dim}(X \times Z)$ is odd, $\operatorname{dim}(X \times Z) \neq 1$, and $\check{H}^{d}(X \times Z) \neq 0$.

Then $\operatorname{csr}(A \otimes C(Z))=\operatorname{csr} C(X \times Z)=1+\lceil\operatorname{dim}(X \times Z) / 2\rceil$.

Proof. The assumptions on $X \times Z$ imply that $\operatorname{csr} C(X \times Z)=1+\lceil\operatorname{dim}(X \times Z) / 2\rceil$, which is greater than $\operatorname{tsr} C(X \times Z)=1+\lfloor\operatorname{dim}(X \times Z) / 2\rfloor$ since $\operatorname{dim}(X \times Z)$ is odd. Together with Theorem V.3.6, this gives

$$
\operatorname{msr} C(X \times Z)=\operatorname{csr} C(X \times Z)>\operatorname{tsr} C(X \times Z)=\operatorname{tsr}(A \otimes C(Z))
$$

Now $\operatorname{msr}(A \otimes C(Z))=\operatorname{msr} C(X \times Z)$ forces $\operatorname{csr}(A \otimes C(Z))=\operatorname{csr} C(X \times Z)$.
Finally, we give:
Proof of Theorem V.3.3. a) By Proposition V.3.5, we have

$$
\operatorname{csr}\left(A \otimes C\left(S^{k+1}\right)\right) \leq \operatorname{csr} C\left(X \times S^{k+1}\right) \leq 1+\lceil(d+k+1) / 2\rceil=2+\lfloor(d+k) / 2\rfloor
$$

It follows that $\mathrm{bij}_{k} A-1 \leq 1+\lfloor(d+k) / 2\rfloor$.
b) Now let $k \geq 0$ have the same parity as $d=\operatorname{dim} X$. Recall that the least integer for which we have the required simultaneous isomorphisms is

$$
C_{k}:=\max \left\{\operatorname{bij}_{k} A, \operatorname{bij}_{k+1} A\right\}-1 .
$$

From part a) we know $C_{k} \leq 1+\lfloor(d+k+1) / 2\rfloor=1+\frac{1}{2}(d+k)$. Since $\operatorname{dim}\left(X \times S^{k+1}\right)=d+k+1$ is odd and different from 1, and $\check{H}^{d+k+1}\left(X \times S^{k+1}\right) \simeq \check{H}^{d}(X) \neq 0$, we can apply Proposition V.3.7 to get

$$
\operatorname{csr}\left(A \otimes C\left(S^{k+1}\right)\right)=1+\lceil(d+k+1) / 2\rceil=2+\frac{1}{2}(d+k) .
$$

From Corollary V.2.3 we get:

$$
\max \left\{C_{k}, \operatorname{csr} A-1\right\} \geq \operatorname{csr} C\left(A \otimes C\left(S^{k+1}\right)\right)-1=1+\frac{1}{2}(d+k)
$$

But $1+\frac{1}{2}(d+k)>\lceil d / 2\rceil \geq \operatorname{csr} C(X)-1 \geq \operatorname{csr} A-1$; for the last estimate, we applied Proposition V.3.5 in the case when Z is a singleton. It follows that $C_{k}=1+\frac{1}{2}(d+k)$.

Remark V.3.8. Each A_{i} is in the "bootstrap class" ([9, Def.22.3.4]), so the K-theory of A can be computed in terms of the K-theory of the A_{i} 's by using Schochet's Künneth formula for tensor products ([9, Thm.23.1.3]). In particular, if the A_{i} 's have torsion-free K-theory, then the K-theory of A is simply

$$
K_{*}(A) \simeq \otimes_{i=1}^{n} K_{*}\left(A_{i}\right)
$$

Remark V.3.9. For $n \geq 1$, let \mathcal{I}_{n} be the Toeplitz C^{*}-algebra on the odd-dimensional sphere $S^{2 n-1}$; these higher analogues of the usual Toeplitz algebra \mathcal{T} were introduced by Coburn [13]. Then \mathcal{T}_{n} is a C^{*}-extension of \mathcal{K} by $C\left(S^{2 n-1}\right)$:

$$
0 \rightarrow \mathcal{K} \rightarrow \mathcal{I}_{n} \rightarrow C\left(S^{2 n-1}\right) \rightarrow 0
$$

When $n>1$, we have that $\operatorname{csr} \mathcal{T}_{n}=n+1$ (by Proposition V.3.7) and tsr $\mathcal{T}_{n}=n$ (by Theorem V.3.6). For $n=1$, we already know that $\operatorname{csr} \mathcal{T}=\operatorname{tsr} \mathcal{T}=2$ (Example IV.12).

CHAPTER VI

RELATIVELY SPECTRAL MORPHISMS

VI. 1 Relatively spectral morphisms

In this section, we discuss relatively spectral morphisms. We emphasize the comparison between relatively spectral morphisms and spectral morphisms.

Recall that a morphism $\phi: A \rightarrow B$ is spectral if $\operatorname{sp}_{B}(\phi(a))=\operatorname{sp}_{A}(a)$ for all $a \in A$; equivalently, for $a \in A$ we have $a \in A^{\times} \Leftrightarrow \phi(a) \in B^{\times}$. We are concerned with the following relative notion:

Definition VI.1.1. A morphism $\phi: A \rightarrow B$ is spectral relative to a subalgebra $X \subseteq A$ if $\operatorname{sp}_{B}(\phi(x))=\operatorname{sp}_{A}(x)$ for all $x \in X$; equivalently, for $x \in X$ we have $x \in A^{\times} \Leftrightarrow \phi(x) \in B^{\times}$. A morphism $\phi: A \rightarrow B$ is relatively spectral if ϕ is spectral relative to some dense subalgebra of A.

If $\phi: A \rightarrow B$ and $\psi: B \rightarrow C$ are morphisms, then $\psi \phi$ is spectral relative to X if and only if ϕ is spectral relative to X and ψ is spectral relative to $\phi(X)$. This shows, in particular, that the passage from surjective to dense morphisms naturally entails a passage from spectral to relatively spectral morphisms. It also follows that a morphism $\phi: A \rightarrow B$ is relatively spectral if and only if both the dense morphism $\phi: A \rightarrow \overline{\phi(A)}$ and the inclusion $\overline{\phi(A)} \hookrightarrow B$ are relatively spectral (where $\overline{\phi(A)}$ is the closure of $\phi(A)$ in B). In other words, relative spectrality has two aspects: the dense morphism case and the closed-subalgebra case. We are interested in the dense morphism case in this paper.

In practice, the following criterion for relative spectrality is useful:
Proposition VI.1.2. Let $\phi: A \rightarrow B$ be a dense morphism between good Fréchet algebras. Let $X \subseteq A$ be a dense subalgebra. The following are equivalent:
i) $\mathrm{sp}_{B}(\phi(x))=\mathrm{sp}_{A}(x)$ for all $x \in X$
ii) $r_{B}(\phi(x))=r_{A}(x)$ for all $x \in X$.

Proof. For ii) \Rightarrow i), let $x \in X$ with $\phi(x) \in B^{\times}$. Let $\left(x_{n}\right) \subseteq X$ with $\phi\left(x_{n}\right) \rightarrow \phi(x)^{-1}$. We have $r_{B}(1-$ $\left.\phi\left(x_{n}\right) \phi(x)\right) \rightarrow 0$, that is, $r_{A}\left(1-x_{n} x\right) \rightarrow 0$. In particular, $x_{n} x \in A^{\times}$for large n so x is left-invertible. A similar argument shows that x is right-invertible. Thus $x \in A^{\times}$.

Typically, the domain of a dense, relatively spectral morphism cannot be a C^{*}-algebra:
Lemma VI.1.3. Let $\phi: A \rightarrow B$ be $a *$-morphism, where A is $a \mathrm{C}^{*}$-algebra and B is a Banach $*$-algebra. If ϕ is dense and spectral relative to a dense $*$-subalgebra, then ϕ is an isomorphism.

Proof. Note first that ϕ is onto, as $\phi(A)$ is both dense and closed. Let X be a dense $*$-subalgebra of A relative to which ϕ is spectral. For $x \in X$ we have:

$$
\|x\|_{A}^{2}=\left\|x x^{*}\right\|_{A}=r_{A}\left(x x^{*}\right)=r_{B}\left(\phi\left(x x^{*}\right)\right) \leq\left\|\phi\left(x x^{*}\right)\right\|_{B} \leq\|\phi(x)\|_{B}^{2}
$$

It follows that $\|a\|_{A} \leq\|\phi(a)\|_{B} \leq C\|a\|_{A}$ for all $a \in A$, where $C>0$. Thus ϕ is an algebraic isomorphism, and ϕ can be made into an isometric isomorphism by re-norming B.

Let us point out two disadvantages in working with relatively spectral morphisms.
First, if $\phi: A \rightarrow B$ is a spectral morphism between Fréchet algebras and B is good, then A is good as well. If ϕ is only relatively spectral, then the knowledge that A is good has to come from elsewhere; that is why our examples involve Banach algebras only.

Second, spectrality is well-behaved under amplifications: if $\phi: A \rightarrow B$ is a dense and spectral morphism then each $\mathrm{M}_{n}(\phi): \mathrm{M}_{n}(A) \rightarrow \mathrm{M}_{n}(B)$ is a dense and spectral morphism ([82, Lem.2.1],[11, Prop.A.2.2], [76, Thm.2.1]). We have been unable to prove a similar result for relatively spectral morphisms.

Problem. Let $\phi: A \rightarrow B$ be a dense and relatively spectral morphism. Is $\mathrm{M}_{n}(\phi): \mathrm{M}_{n}(A) \rightarrow \mathrm{M}_{n}(B)$ a relatively spectral morphism for each $n \geq 1$?

We thus have to introduce a stronger property that describes relative spectrality at all matrix levels:
Definition VI.1.4. A morphism $\phi: A \rightarrow B$ is completely spectral relative to a subalgebra $X \subseteq A$ if each $\mathrm{M}_{n}(\phi): \mathrm{M}_{n}(A) \rightarrow \mathrm{M}_{n}(B)$ is spectral relative to $\mathrm{M}_{n}(X)$. A morphism $\phi: A \rightarrow B$ is completely relatively spectral if each $\mathrm{M}_{n}(\phi): \mathrm{M}_{n}(A) \rightarrow \mathrm{M}_{n}(B)$ is relatively spectral.

In concrete situations, one has a "subexponential norm control" which guarantees relative spectrality at all matrix levels; see Section VI.5.

Let Γ be a finitely-generated amenable group, and consider the dense inclusion $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$.
If Γ has polynomial growth then $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is spectral (Ludwig [50]). On the other hand, if Γ contains a free subsemigroup on two generators then $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is not spectral (Jenkins [37]). In between these two results, say for groups of intermediate growth, it is unknown whether $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is spectral or not.

Turning to relative spectrality, it is easy to see that $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is spectral relative to $\mathbb{C} \Gamma$ if Γ has subexponential growth. Indeed, we show that $r_{\ell^{1} \Gamma}(a)=r_{\mathrm{C}_{\mathrm{r}}^{*} \Gamma}(a)$ for $a \in \mathbb{C} \Gamma$. We have $r_{\mathrm{C}_{\mathrm{r}}{ }^{*}}(a) \leq r_{\ell^{1} \Gamma}(a)$ from $\|a\| \leq\|a\|_{1}$, so it suffices to prove that $r_{\ell}{ }^{1} \Gamma(a) \leq r_{\mathrm{C}_{\mathrm{F}}^{*} \Gamma}(a)$. If $a \in \mathbb{C} \Gamma$ is supported in a ball of radius R, then a^{n} is supported in a ball of radius $n R$. We then have

$$
\left\|a^{n}\right\|_{1} \leq \sqrt{\operatorname{vol} B(n R)}\left\|a^{n}\right\|_{2} \leq \sqrt{\operatorname{vol} B(n R)}\left\|a^{n}\right\| .
$$

Taking the n-th root and letting $n \rightarrow \infty$, we obtain $r_{\ell l_{\Gamma}^{1}}(a) \leq r_{\mathrm{C}_{\mathrm{r}}^{*} \Gamma}(a)$.
This example serves as a preview for Example VI.5, where we show that $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is in fact completely spectral relative to $\mathbb{C} \Gamma$, and for Section VI.6, where we investigate the groups Γ for which $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is spectral relative to $\mathbb{C} \Gamma$.

In general, it is hard to decide whether a relatively spectral morphism is spectral or not. For instance, we do not know any examples of relatively spectral morphisms that are not spectral. Under spectral continuity assumptions, however, it is easy to show that relatively spectral morphisms are in fact spectral. We discuss this point in the next subsection.

VI. 2 Spectral continuity

A relatively spectral morphism $\phi: A \rightarrow B$ is described by a spectral condition over a dense subalgebra of A. In the presence of spectral continuity, this spectral condition can be then extended to the whole of A, i.e., ϕ
is a spectral morphism. It might seem, at first sight, that both A and B need to have spectral continuity for this to work, but in fact spectral continuity for A suffices.

Spectral continuity can be interpreted in three different ways. The strongest form is to view the spectrum as a map from a good Fréchet algebra to the non-empty compact subsets of the complex plane, and to require continuity of the spectrum with respect to the Hausdorff distance. Recall, the Hausdorff distance between two non-empty compact subsets of the complex plane is given by $d_{H}\left(C, C^{\prime}\right)=\inf \left\{\varepsilon>0: C \subseteq C_{\varepsilon}^{\prime}, C^{\prime} \subseteq C_{\varepsilon}\right\}$, where C_{ε} denotes the open ε-neighborhood of C. Letting S denote the class of good Fréchet algebras with continuous spectrum in this sense, we have:

Proposition VI.2.1. Let $\phi: A \rightarrow B$ be a relatively spectral morphism between good Fréchet algebras. If $A \in \mathcal{S}$ then ϕ is spectral.

Proof. Let $a \in A$; we need to show that $\operatorname{sp}_{A}(a) \subseteq \operatorname{sp}_{B}(\phi(a))$. Let $\varepsilon>0$ and pick $x_{n} \rightarrow a$ such that $\operatorname{sp}_{A}\left(x_{n}\right)=$ $\operatorname{sp}_{B}\left(\phi\left(x_{n}\right)\right)$. For $n \gg 1$ we have $\operatorname{sp}_{B}\left(\phi\left(x_{n}\right)\right) \subseteq \operatorname{sp}_{B}(\phi(a))_{\varepsilon}$ by Lemma VIII.7.3. On the other hand, the continuity of the spectrum in A gives $\operatorname{sp}_{A}(a) \subseteq \operatorname{sp}_{A}\left(x_{n}\right)_{\varepsilon}$ for $n \gg 1$. Combining these two facts, we get $\operatorname{sp}_{A}(a) \subseteq \operatorname{sp}_{A}\left(x_{n}\right)_{\varepsilon}=\operatorname{sp}_{B}\left(\phi\left(x_{n}\right)\right)_{\varepsilon} \subseteq \operatorname{sp}_{B}(\phi(a))_{2 \varepsilon}$ for $n \gg 1$. As ε is arbitrary, we are done.

The usefulness of Proposition VI.2.1 is limited by the knowledge about the class \mathcal{S}. There are surprisingly few results on \mathcal{S}; we did not find in the literature any results complementing the ones contained in Aupetit's survey [3]. The following list summarizes the results mentioned by Aupetit:
a) if A is a commutative Banach algebra then A is in S
b) if A is a commutative Banach algebra and B is a Banach algebra in \mathcal{S}, then the projective tensor product $A \otimes B$ is in \mathcal{S} ([3, Thm.5, p.139])
c) if A is a commutative Banach algebra then $\mathrm{M}_{n}(A) \in \mathcal{S}$ ([3, Cor.1, p.139])
d) if A is a Banach algebra in \mathcal{S}, then every closed subalgebra of A is in \mathcal{S} ([3, Thm.3, p.138])

A result of Kakutani says that $B(H)$, the algebra of bounded operators on an infinite-dimensional Hilbert space, is not in \mathcal{S} ([3, p.34]).

The second form of spectral continuity, weaker than the one above, is adapted to $*$-algebras. We now require continuity of the spectrum (with respect to the Hausdorff distance) on self-adjoint elements only. Denoting by $S_{\text {sa }}$ the class of good Fréchet $*$-algebras whose spectrum is continuous on the self-adjoint elements, we have:

Proposition VI.2.2. Let $\phi: A \rightarrow B$ be a relatively spectral $*$-morphism between good Fréchet $*$-algebras. If $A \in S_{\mathrm{sa}}$ then ϕ is spectral.

Proof. Arguing as in the proof of Proposition VI.2.1, we see that $\operatorname{sp}_{A}\left(a^{*} a\right)=\operatorname{sp}_{B}\left(\phi\left(a^{*} a\right)\right)$ for all $a \in A$. Let $a \in A$ with $\phi(a) \in B^{\times}$. Then $\phi\left(a^{*} a\right), \phi\left(a a^{*}\right) \in B^{\times}$, and the previous equality of spectra gives $a^{*} a, a a^{*} \in A^{\times}$. Therefore $a \in A^{\times}$.

According to [3, Cor.4, p.143], symmetric Banach $*$-algebras are in $\mathcal{S}_{\text {sa }}$. Recall that a Banach $*$-algebra is symmetric if every self-adjoint element has real spectrum. We obtain:

Corollary VI.2.3. Let $\phi: A \rightarrow B$ be a relatively spectral $*$-morphism between Banach $*$-algebras. If A is symmetric then ϕ is spectral.

The third meaning that one can give to spectral continuity is continuity of the spectral radius. Let \mathcal{R} denote the class of good Fréchet algebras with continuous spectral radius. Continuity of the spectrum (with respect to the Hausdorff distance) implies continuity of the spectral radius, that is, $\mathcal{S} \subseteq \mathcal{R}$; the inclusion is strict ([3, p.38]). Kakutani's result, mentioned above, actually says that $B(H)$ is not in \mathcal{R}.

Proposition VI.2.4. Let $\phi: A \rightarrow B$ be a dense and relatively spectral morphism between good Fréchet algebras. If $A \in \mathcal{R}$ then ϕ is spectral.

Proof. The proof is very similar to that of Proposition VI.2.1. Let $a \in A$; we need to show that $r_{A}(a) \leq$ $r_{B}(\phi(a))$. For then Proposition VI.1.2 allows us to conclude that ϕ is spectral. Let $\varepsilon>0$ and pick $x_{n} \rightarrow a$ such that $r_{A}\left(x_{n}\right)=r_{B}\left(\phi\left(x_{n}\right)\right)$. For $n \gg 1$ we have $r_{B}\left(\phi\left(x_{n}\right)\right) \leq r_{B}(\phi(a))+\varepsilon$, i.e., $r_{A}\left(x_{n}\right) \leq r_{B}(\phi(a))+\varepsilon$. Letting $n \rightarrow \infty$ and using the continuity of the spectral radius in A, we get $r_{A}(a) \leq r_{B}(\phi(a))+\varepsilon$. As ε is arbitrary, we are done.

Finally, note that if B satisfies one of the above forms of spectral continuity and $\phi: A \rightarrow B$ is spectral, then A satisfies that spectral continuity as well.

VI. 3 On finiteness

Recall, an algebra A is finite if the left-invertibles of A are actually invertible, equivalently, if the rightinvertibles of A are actually invertible. An algebra A is stably finite if each matrix algebra $\mathrm{M}_{n}(A)$ is finite. Stable-finiteness is relevant in K-theory, for it guarantees the non-vanishing of K_{0}.

Proposition VI.3.1. Let $\phi: A \rightarrow B$ be a dense morphism between good topological algebras.
a) Assume ϕ is relatively spectral. Then A is finite if and only if B is finite.
b) Assume ϕ is completely relatively spectral. Then A is stably finite if and only if B is stably finite.

Proof. We prove a). Part b) is an obvious corollary.
Letting $L(A)$ denote the left-invertibles of A, note that the density of A^{\times}in $L(A)$ suffices for finiteness. Indeed, if $a \in L(A)$ then $u_{n} \rightarrow a$ for some invertibles u_{n}. There is $a^{\prime} \in A$ with $a^{\prime} a=1$, so $a^{\prime} u_{n} \rightarrow 1$. Hence $a^{\prime} u_{n} \in A^{\times}$for large n, thus $a^{\prime} \in A^{\times}$and we conclude $a \in A^{\times}$.

Let X be a dense subalgebra of A relative to which ϕ is spectral.
Assume B is finite. Let $a \in L(A)$ and let $x_{n} \rightarrow a$ where $x_{n} \in X$. Then $\phi\left(x_{n}\right) \rightarrow \phi(a) \in L(B)=B^{\times}$so, by relative spectrality, x_{n} is eventually invertible. Thus A^{\times}is dense in $L(A)$.

Assume A is finite. We claim that $\phi(L(A))$ is dense in $L(B)$; as $\phi(L(A))=\phi\left(A^{\times}\right) \subseteq B^{\times} \subseteq L(B)$, it will follow that B^{\times}is dense in $L(B)$. Let $b \in L(B)$ with $b^{\prime} b=1$. Pick sequences $\left(x_{n}\right),\left(x_{n}^{\prime}\right)$ in X so that $\phi\left(x_{n}\right) \rightarrow b$, $\phi\left(x_{n}^{\prime}\right) \rightarrow b^{\prime}$. Since $\phi\left(x_{n}^{\prime} x_{n}\right) \rightarrow 1$, relative spectrality gives that x_{n} is left-invertible for large n. This proves that $\phi(L(A))$ is dense in $L(B)$.

VI. 4 The Relative Density Theorem

We adapt Proposition A.2.6 of [11] as follows:
Lemma VI.4.1. Let A, B be Fréchet spaces and $\phi: A \rightarrow B$ be a continuous linear map with dense image. Let $U \subseteq A, V \subseteq B$ be open with $\phi(U) \subseteq V$. If X is a dense subspace of A such that $U \cap X=\phi^{-1}(V) \cap X$ then ϕ induces a weak homotopy equivalence between U and V.

Proof. First, we show that ϕ induces a bijection $\pi_{0}(U) \rightarrow \pi_{0}(V)$. We make repeated use of the local convexity. For surjectivity, pick $v \in V$. As V is open and $\phi(X)$ is dense, there is $v_{X} \in V \cap \phi(X)$ such that v and v_{X} can be connected by a segment in V. If $u_{X} \in X$ is a pre-image of v_{X}, then $u_{X} \in U$. For injectivity, let $u, u^{\prime} \in U$ such that $\phi(u), \phi\left(u^{\prime}\right)$ are connected in V. As U is open and X is dense, there are $u_{X}, u_{X}^{\prime} \in U \cap X$ such that u and u_{X}, respectively u^{\prime} and u_{X}^{\prime}, can be connected by a segment in U. That is, we may assume that we start with $u, u^{\prime} \in U \cap X$. As V is open and $\phi(X)$ is dense, if $\phi(u)$ and $\phi\left(u^{\prime}\right)$ can be connected by a path in V then they can be connected by a piecewise-linear path p_{B} lying entirely in $V \cap \phi(X)$. Take pre-images in X for the vertices of p_{B} and extend to a piecewise-linear path p_{A} connecting u to u^{\prime}. Since the path p_{A} lies in X and is mapped inside V, it follows that p_{A} lies in U. We conclude that u, u^{\prime} are connected in U.

Next, let $k \geq 1$. We show that ϕ induces a bijection $\pi_{k}(U, a) \rightarrow \pi_{k}(V, \phi(a))$ for each $a \in U$. Up to translating U by $-a$ and V by $-\phi(a)$, we may assume that $a=0$. Fix a basepoint \bullet on S^{k}. The dense linear map $\phi: A \rightarrow B$ induces a dense linear map $\phi_{k}: A\left(S^{k}\right) \rightarrow B\left(S^{k}\right)$, which restricts to a dense linear map $\phi_{k}^{\bullet}: A\left(S^{k}\right)^{\bullet} \rightarrow B\left(S^{k}\right)^{\bullet}$. The \bullet-decoration stands for restricting to the based maps sending \bullet to 0 . With $U\left(S^{k}\right)^{\bullet}, V\left(S^{k}\right)^{\bullet}, X\left(S^{k}\right)^{\bullet}$ playing the roles of U, V, X, we get by the first part that ϕ_{k}^{\bullet} induces a bijection $\pi_{0}\left(U\left(S^{k}\right)^{\bullet}\right) \rightarrow \pi_{0}\left(V\left(S^{k}\right)^{\bullet}\right)$. That means precisely that ϕ induces a bijection $\pi_{k}(U, 0) \rightarrow \pi_{k}(V, 0)$.

Let us give some details on the previous paragraph. That $A\left(S^{k}\right)^{\bullet}$, respectively $B\left(S^{k}\right)^{\bullet}$, is a Fréchet space follows by viewing it as a closed subspace of the Fréchet space $A\left(S^{k}\right)$, respectively $B\left(S^{k}\right)$. The map $\phi_{k}: A\left(S^{k}\right) \rightarrow B\left(S^{k}\right)$ is given by $\phi_{k}(f)=\phi \circ f$, and it is obviously linear and continuous. Consequently, the restriction $\phi_{k}^{\bullet}: A\left(S^{k}\right)^{\bullet} \rightarrow B\left(S^{k}\right)^{\bullet}$ is linear and continuous. The fact that $X\left(S^{k}\right)^{\bullet}$ is dense in $A\left(S^{k}\right)^{\bullet}$ is showed using a partition of unity argument. This also proves the density of ϕ_{k} and ϕ_{k}^{\bullet}. Next, $U\left(S^{k}\right)$ is open in $A\left(S^{k}\right)$ (Remark VIII.8.12) so $U\left(S^{k}\right)^{\bullet}$ is open in $A\left(S^{k}\right)^{\bullet}$; similarly, $V\left(S^{k}\right)^{\bullet}$ is open in $B\left(S^{k}\right)^{\bullet}$. Finally, $\phi_{k}^{\bullet}\left(U\left(S^{k}\right)^{\bullet}\right) \subseteq V\left(S^{k}\right)^{\bullet}$ and

$$
U\left(S^{k}\right)^{\bullet} \cap X\left(S^{k}\right)^{\bullet}=\left(\phi_{k}^{\bullet}\right)^{-1}\left(V\left(S^{k}\right)^{\bullet}\right) \cap X\left(S^{k}\right)^{\bullet}
$$

are immediate to check: they boil down to $\phi(U) \subseteq V$ and $U \cap X=\phi^{-1}(V) \cap X$ respectively.
It is not hard to imagine that, modulo notational complications, the idea used to treat π_{0} has a higherdimensional analogue. The underlying phenomenon is that homotopical considerations for open subsets of Fréchet spaces can be carried out in a piecewise-affine fashion over a dense subspace. Bost's elegant approach of upgrading π_{0} knowledge to higher homotopy groups is, however, more economical.

As we shall see, the above Lemma immediately yields the Relative Density Theorem in spectral Ktheory (Theorem VII.5.1) for good Fréchet algebras. First, a quick proof for the Relative Density Theorem in the Banach algebra case:

Theorem VI.4.2. Let $\phi: A \rightarrow B$ be a dense and completely relatively spectral morphism between Banach algebras. Then ϕ induces an isomorphism $K_{*}(A) \simeq K_{*}(B)$.

Proof. Let $\phi: A \rightarrow B$ be a dense morphism that is spectral relative to a dense subalgebra $X \subseteq A$, that is, $A^{\times} \cap X=\phi^{-1}\left(B^{\times}\right) \cap X$. Lemma VI.4.1 says that ϕ induces a bijection $\pi_{*}\left(A^{\times}\right) \rightarrow \pi_{*}\left(B^{\times}\right)$for $*=0,1$. Thus, if $\phi: A \rightarrow B$ is a dense and completely relatively spectral morphism then ϕ induces a bijection $\pi_{*}\left(\mathrm{GL}_{n}(A)\right) \rightarrow$ $\pi_{*}\left(\mathrm{GL}_{n}(B)\right)$. It follows that ϕ induces a bijection

$$
\xrightarrow{\lim } \pi_{*}\left(\mathrm{GL}_{n}(A)\right) \rightarrow \xrightarrow{\lim } \pi_{*}\left(\mathrm{GL}_{n}(B)\right) .
$$

That is, ϕ induces an isomorphism $K_{*+1}(A) \simeq K_{*+1}(B)$. As the Bott isomorphism $K_{0}(A) \simeq K_{2}(A)$ is natural, we conclude that ϕ induces an isomorphism $K_{*}(A) \simeq K_{*}(B)$.

Remark VI.4.3. The surjectivity part in the Relative Density Theorem was known to Lafforgue ([48, Lem.3.1.1] and comments after [47, Cor.0.0.3]).

Another application of Lemma VI.4.1 is the following strengthening of Theorem IV.11.6:
Theorem VI.4.4. Let $\phi: A \rightarrow B$ be a dense and relatively spectral morphism, where A and B are good Fréchet algebras. Then $\operatorname{csr} A=\operatorname{csr} B$.

Proof. We have $\phi\left(\operatorname{Lg}_{m}(A)\right) \subseteq \operatorname{Lg}_{m}(B)$. We claim that $\operatorname{Lg}_{m}(A) \cap X^{m}=\phi^{-1}\left(\operatorname{Lg}_{m}(B)\right) \cap X^{m}$, where X is a dense subalgebra of A relative to which ϕ is spectral. Let $\left(x_{i}\right) \in X^{m}$ with $\left(\phi\left(x_{i}\right)\right) \in \operatorname{Lg}_{m}(B)$, so $\sum c_{i} \phi\left(x_{i}\right)=1$ for some $\left(c_{i}\right) \in B^{m}$. Density of ϕ allows to approximate each c_{i} by some $\phi\left(x_{i}^{\prime}\right)$, where $x_{i}^{\prime} \in X$, so as to get $\sum \phi\left(x_{i}^{\prime}\right) \phi\left(x_{i}\right)=\phi\left(\sum x_{i}^{\prime} x_{i}\right) \in B^{\times}$. Now $\sum x_{i}^{\prime} x_{i} \in X$, so relative spectrality gives $\sum x_{i}^{\prime} x_{i} \in A^{\times}$, i.e., $\left(x_{i}\right) \in \operatorname{Lg}_{m}(A)$ as desired.

Lemma VI.4.1 applied to the dense morphism $\phi: A^{m} \rightarrow B^{m}$ gives that ϕ induces a weak homotopy equivalence between $\operatorname{Lg}_{m}(A)$ and $\operatorname{Lg}_{m}(B)$. In particular, $\operatorname{Lg}_{m}(A)$ is connected if and only if $\operatorname{Lg}_{m}(B)$ is connected.

VI. 5 Subexponential norm control

Let A and B be Banach algebra completions of an algebra X. Say that A and B are spectrally equivalent over X if $\operatorname{sp}_{A}(x)=\operatorname{sp}_{B}(x)$ for all $x \in X$, and completely spectrally equivalent over X if $\mathrm{M}_{n}(A)$ and $\mathrm{M}_{n}(B)$ are spectrally equivalent over $\mathrm{M}_{n}(X)$ for each $n \geq 1$.

Proposition VI.5.1. The connected stable ranks and the property of being finite are invariant under spectral equivalence. Furthermore, K-theory and the property of being stably finite are invariant under complete spectral equivalence.

Proof. Let A, B be Banach algebra completions of X. Let \bar{X} be the Banach algebra obtained by completing X under the norm $\|x\|:=\|x\|_{A}+\|x\|_{B}$. Then $r_{\bar{X}}(x)=\max \left\{r_{A}(x), r_{B}(x)\right\}$ for all $x \in X$. Now, if A and B are spectrally equivalent over X then $r_{\bar{X}}(x)=r_{A}(x)=r_{B}(x)$ for all $x \in X$. We obtain dense and relatively
spectral morphisms $\bar{X} \rightarrow A, \bar{X} \rightarrow B$ by extending the inclusions $X \hookrightarrow A, X \hookrightarrow B$. Thus $\operatorname{csr} A=\operatorname{csr} \bar{X}=\operatorname{csr} B$, and A is finite if and only if \bar{X} is finite if and only if B is finite.

If A and B are completely spectrally equivalent over X then we obtain morphisms $\bar{X} \rightarrow A, \bar{X} \rightarrow B$ that are completely spectral relative to X. Hence $K_{*}(A) \simeq K_{*}(\bar{X}) \simeq K_{*}(B)$, and A is stably finite if and only if \bar{X} is stably finite if and only if B is stably finite.

Two algebras that are spectrally equivalent need not be connected by a morphism. Consider, however, the following $*$-context: A is a Banach $*$-algebra, B is a C^{*}-algebra, and X is a dense $*$-subalgebra of A and B. The argument used in the proof of Lemma VI.1.3 shows the following: if A and B are spectrally equivalent over X, then there is a dense and relatively spectral morphism $A \rightarrow B$ extending the identity on X.

In practice, complete spectral equivalence arises from subexponential norm control. We formulate this as follows.

A gauge function on a group Γ is a map $S \mapsto \omega(S) \in[1, \infty)$ on the finite nonempty subsets of Γ which is non-decreasing, i.e., $S \subseteq S^{\prime}$ implies $\omega(S) \leq \omega\left(S^{\prime}\right)$. A gauge function ω is subexponential if $\omega\left(S^{n}\right)^{1 / n} \rightarrow 1$ for each finite nonempty subset $S \subseteq \Gamma$.

Proposition VI.5.2. Let $А Г$ and $B \Gamma$ be Banach algebra completions of a group algebra $\mathbb{C} \Gamma$. Assume that there are subexponential gauge functions ω, ω^{\prime} such that

$$
\|a\|_{B} \leq \omega(\operatorname{supp} a)\|a\|_{A}, \quad\|a\|_{A} \leq \omega^{\prime}(\operatorname{supp} a)\|a\|_{B}
$$

for all $a \in \mathbb{C} \Gamma$. Then $A \Gamma$ and $B \Gamma$ are completely spectrally equivalent over $\mathbb{C} \Gamma$.
Proof. Let $k \geq 1$. For all $\left(a_{i j}\right) \in \mathrm{M}_{k}(\mathbb{C} \Gamma)$ we have analogous subexponential estimates in the matrix algebras $\mathrm{M}_{k}(A \Gamma)$ and $\mathrm{M}_{k}(B \Gamma)$:

$$
\left\|\left(a_{i j}\right)\right\|_{B} \leq \omega\left(\operatorname{supp}\left(a_{i j}\right)\right)\left\|\left(a_{i j}\right)\right\|_{A}, \quad\left\|\left(a_{i j}\right)\right\|_{A} \leq \omega^{\prime}\left(\operatorname{supp}\left(a_{i j}\right)\right)\left\|\left(a_{i j}\right)\right\|_{B}
$$

As $\omega\left(\operatorname{supp}\left(a_{i j}\right)^{n}\right) \leq \omega\left(\left(\operatorname{supp}\left(a_{i j}\right)\right)^{n}\right)$, we get $r_{A}\left(\left(a_{i j}\right)\right)=r_{B}\left(\left(a_{i j}\right)\right)$ for all $\left(a_{i j}\right) \in \mathrm{M}_{k}(\mathbb{C} \Gamma)$.
Let Γ be a group of subexponential growth. We claim that $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is completely spectral relative to $\mathbb{C} \Gamma$.

Indeed, let ω be the subexponential gauge function on Γ given by $\omega(S)=\sqrt{\operatorname{vol} B(S)}$, where $B(S)$ denotes the ball centered at the identity that circumscribes S. For $a \in \mathbb{C} \Gamma$ we have $\|a\| \leq\|a\|_{1}$ and $\|a\|_{1} \leq$ $\omega(\operatorname{supp} a)\|a\|_{2} \leq \omega(\operatorname{supp} a)\|a\|$, i.e., we are in the conditions of Proposition VI.5.2. We infer that $K_{*}\left(\ell^{1} \Gamma\right) \simeq$ $K_{*}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right)$.

Remark VI.5.3. Consider, at this point, the following conjecture:
For any discrete countable group Γ, the inclusion $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ induces an isomorphism $K_{*}\left(\ell^{1} \Gamma\right) \simeq$ $K_{*}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right)$.

Let us refer to this statement as the BBC conjecture, for it connects the Bost conjecture with the BaumConnes conjecture. We find the BBC conjecture to be a natural question on its own, outside of the Bost-Baum-Connes context. One knows, by combining results of Higson and Kasparov on the Baum-Connes side with results of Lafforgue on the Bost side, that the BBC conjecture holds for groups with the Haagerup property. On the other hand, the spectral approach allowed us to verify the BBC conjecture for groups of subexponential growth. The severe limitations of the spectral approach are made evident by this comparison.

Let Γ be a finitely generated group with property RD. Recall, this means that there are constants $C, d>0$ such that $\|a\| \leq C\|a\|_{2, d}$ for all $a \in \mathbb{C} \Gamma$, where the weighted ℓ^{2}-norm $\|\cdot\|_{2, d}$ is given by

$$
\left\|\sum a_{g} g\right\|_{2, d}=\sqrt{\sum\left|a_{g}\right|^{2}(1+|g|)^{2 d}}
$$

For $s>d$, the weighted ℓ^{2}-space

$$
H^{s} \Gamma=\left\{\sum a_{g} g:\left\|\sum a_{g} g\right\|_{2, s}<\infty\right\}
$$

is a Banach subalgebra of $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$. The goal being the isomorphism $K_{*}\left(H^{s} \Gamma\right) \simeq K_{*}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right)$, we showed in Theorem III.4.1 that $H^{s} \Gamma$ is a spectral subalgebra of $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$.

The relative perspective for establishing the desired K-theoretic isomorphism is much easier. Let ω_{s} be the subexponential gauge function on Γ given by $\omega_{s}(S)=(1+R(S))^{s}$, where $R(S)$ is the radius of the ball centered at the identity that circumscribes S. For $s>d$, we have $\|a\| \leq C\|a\|_{2, s}$ and $\|a\|_{2, s} \leq$ $\omega_{s}(\operatorname{supp} a)\|a\|_{2} \leq \omega_{s}(\operatorname{supp} a)\|a\|$ for all $a \in \mathbb{C} \Gamma$. From Proposition VI.5.2 it follows that $K_{*}\left(H^{s} \Gamma\right) \simeq$ $K_{*}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right)$.

VI. $6 \quad \Sigma_{1}$-groups

We consider groups Γ for which the inclusion $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is spectral relative to $\mathbb{C} \Gamma$. Let us refer to such groups Γ as Σ_{1}-groups. That is, Γ is a Σ_{1}-group if $r_{\ell}{ }^{1} \Gamma(a) \leq\|a\|$ for all $a \in \mathbb{C} \Gamma$. The Σ_{1} condition is the ℓ^{1} analogue of the ℓ^{2}-spectral radius property discussed in Section III.5.3. The major difference is that the " ℓ^{2}-spectral radius property" is satisfied by many non-amenable groups (e.g. by hyperbolic groups) whereas Σ_{1}-groups are necessarily amenable:

Proposition VI.6.1. We have:
a) Σ_{1} is closed under taking subgroups;
b) Σ_{1} is closed under taking directed unions;
c) Σ_{1}-groups are amenable;
d) Σ_{1}-groups do not contain $F S_{2}$, the free semigroup on two generators;
e) groups of subexponential growth are Σ_{1}-groups.

Proof. a) An embedding $\Lambda \hookrightarrow \Gamma$ induces isometric embeddings $\ell^{1} \Lambda \hookrightarrow \ell^{1} \Gamma, \mathrm{C}_{\mathrm{r}}^{*} \Lambda \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$.
b) Let Γ be the directed union of the Σ_{1}-groups $\left(\Gamma_{i}\right)_{i \in I}$. If $a \in \mathbb{C} \Gamma$, then $a \in \mathbb{C} \Gamma_{i}$ for some i and we know that $r_{\ell^{1} \Gamma_{i}}(a)=r_{\mathrm{C}_{\mathrm{r}}^{*} \Gamma_{i}}(a)$ can also be read as $r_{\ell l^{1} \Gamma}(a)=r_{\mathrm{C}_{\mathrm{r}}^{*} \Gamma}(a)$.
c) Let Γ be a Σ_{1}-group. The inclusion $\ell^{1} \Gamma \hookrightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ factors as $\ell^{1} \Gamma \hookrightarrow \mathrm{C}^{*} \Gamma \rightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$. It follows that $\mathrm{C}^{*} \Gamma \rightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is spectral relative to $\mathbb{C} \Gamma$, so necessarily $\mathrm{C}^{*} \Gamma \rightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is an isomorphism, i.e., Γ is amenable.

Here is another argument. By a), it suffices to show that Γ is amenable in the case Γ is finitely generated, say by a finite symmetric set S. For $a \in \mathbb{R}_{+} \Gamma$ we have $\left\|a^{n}\right\|_{1}=\|a\|_{1}^{n}$, so $r_{\ell^{1} \Gamma}(a)=\|a\|_{1}$. We obtain $r_{\mathrm{C}_{\mathrm{r}}^{*} \Gamma}\left(\chi_{S}\right)=$ $r_{\ell^{1} \Gamma}\left(\chi_{S}\right)=\left\|\chi_{S}\right\|_{1}=\# S$. By Kesten's criterion, Γ is amenable.
d) Let Γ be a Σ_{1}-group and assume, on the contrary, that $x, y \in \Gamma$ generate a free subsemigroup. If the support of $a \in \mathbb{C} \Gamma$ generates a free subsemigroup then $\left\|a^{n}\right\|_{1}=\|a\|_{1}^{n}$, hence $r_{\ell^{1} \Gamma}(a)=\|a\|_{1}$. Together with the Σ_{1} condition, this gives $\|a\|=\|a\|_{1}$ for those $a \in \mathbb{C} \Gamma$ whose support generates a free subsemigroup. Consider now $a=1+i x+i x^{-1} \in \mathbb{C} \Gamma$. On one hand, the support of $(y x) a$ generates a free subsemigroup, so $\|a\|=\|(y x) a\|=\|(y x) a\|_{1}=\|a\|_{1}=3$. On the other hand, we have $\|a\|^{2}=\left\|a a^{*}\right\|=\left\|3+x^{2}+x^{-2}\right\| \leq 5$, a contradiction.
e) This was proved in Example VI.5.

Thus Σ_{1}-groups include the subexponential groups and are included among amenable groups without free subsemigroups. Note that there are examples, first constructed by Grigorchuk, of amenable groups of exponential growth that do not contain a copy of $F S_{2}$. A well-known result of Rosenblatt says that such examples cannot occur among solvable groups: that is, a solvable group either has subexponential growth, or it contains $F S_{2}$.

Remark VI.6.2. If one considers the groups Γ for which the inclusion $\ell^{1} \Gamma \hookrightarrow \mathrm{C}^{*} \Gamma$ is spectral relative to $\mathbb{C} \Gamma$, then the analogues of parts a), b), d), e) of Proposition VI.6.1 still hold.

After Lafforgue, we say that a Banach algebra completion $A \Gamma$ of $\mathbb{C} \Gamma$ is an unconditional completion if the norm $\|\cdot\|_{A}$ of $A \Gamma$ satisfies $\||a|\|_{A}=\|a\|_{A}$ for all $a \in \mathbb{C} \Gamma$, where $|a|$ denotes the pointwise absolute value. The simplest example of unconditional completion is $\ell^{1} \Gamma$. For groups with property $\operatorname{RD}, H^{s} \Gamma(s \gg 1)$ is an unconditional completion. In light of [47], one is interested in finding unconditional completions $A \Gamma$ having the same K-theory as $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$. One way to achieve $K_{*}(A \Gamma) \simeq K_{*}\left(\mathrm{C}_{\mathrm{r}}^{*} \Gamma\right)$ would be to have $A \Gamma$ and $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ completely spectrally equivalent over $\mathbb{C} \Gamma$. For amenable groups, however, one cannot do better than Σ_{1}-groups:

Proposition VI.6.3. Let Γ be amenable. If there is an unconditional completion $A \Gamma$ with the property that $A \Gamma$ and $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ are spectrally equivalent over $\mathbb{C} \Gamma$, then in fact $\ell^{1} \Gamma$ and $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ are spectral over $\mathbb{C} \Gamma$, i.e., Γ is a $\Sigma_{1-\text { group }}$.

Proof. We first show that $r_{\ell^{1} \Gamma}(a)=r_{\mathrm{C}_{\mathrm{r}}^{*} \Gamma}(a)$ whenever $a \in \mathbb{C} \Gamma$ is self-adjoint. The spectral equivalence of $A \Gamma$ and $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ yields $\|a\|=r_{\mathrm{C}_{\mathrm{r}}^{*}} \Gamma(a)=r_{A \Gamma}(a) \leq\|a\|_{A}$ for all self-adjoint $a \in \mathbb{C} \Gamma$. Since Γ is amenable, we get $\|a\|_{1}=\||a|\| \leq\||a|\|_{A}=\|a\|_{A}$ for all self-adjoint $a \in \mathbb{C} \Gamma$, so $\|a\| \leq\|a\|_{1} \leq\|a\|_{A}$ for all self-adjoint $a \in \mathbb{C} \Gamma$. It follows that $r_{\ell^{1} \Gamma}(a)=r_{\mathrm{C}_{\mathrm{r}}^{*} \Gamma}(a)$ for all self-adjoint $a \in \mathbb{C} \Gamma$.

Next, one needs to adapt the proof of Proposition VI.1.2 to the following $*$-version:

Let $\phi: A \rightarrow B$ be a dense $*$-morphism between Banach $*$-algebras, and let $X \subseteq A$ be a dense *-subalgebra. If $r_{B}(\phi(x))=r_{A}(x)$ for all self-adjoint $x \in X$, then $\phi: A \rightarrow B$ is spectral relative to X.

Indeed, let $x \in X$ with $\phi(x)$ invertible in B; we show x invertible in A. Pick $\left(x_{n}\right) \subseteq X$ such that $\phi\left(x_{n}\right) \rightarrow$ $\phi(x)^{-1}$. Then $\phi\left(\left(x x_{n}\right)\left(x x_{n}\right)^{*}\right) \rightarrow 1$, so

$$
r_{A}\left(1-\left(x x_{n}\right)\left(x x_{n}\right)^{*}\right)=r_{B}\left(\phi\left(1-\left(x x_{n}\right)\left(x x_{n}\right)^{*}\right)\right) \rightarrow 0 .
$$

It follows that $\left(x x_{n}\right)\left(x x_{n}\right)^{*}$ is invertible in A for large n. Similarly, $\left(x_{n} x\right)^{*}\left(x_{n} x\right)$ is invertible in A for large n. We conclude that x is invertible in A.

The above proof becomes even simpler if one makes the (natural) assumption that the unconditional completion $A \Gamma$ is a Banach $*$-algebra. One then argues, as in the proof of Lemma VI.1.3, that $\|a\| \leq\|a\|_{A}$ for all $a \in \mathbb{C} \Gamma$.

CHAPTER VII

SPECTRAL K-FUNCTORS

By a K-functor we simply mean a functor from good Fréchet algebras to abelian groups. The notion of K-scheme we introduce below provides a general framework for constructing K-functors. A K-functor is usually required to be stable, homotopy-invariant, half-exact and continuous. These properties do not concern us here. We point out, however, that the functors induced by K-schemes are stable and homotopyinvariant by construction.

Roughly speaking, a K-scheme is a selection of elements in each good Fréchet algebra in such a way that morphisms and amplifications preserve the selection. An open set $\Omega \subseteq \mathbb{C}$ containing the origin selects, in every good Fréchet algebra, those elements whose spectrum is contained in Ω. We can thus associate to each Ω a K-functor K_{Ω}; these K-functors are called spectral K-functors. For suitable choices of Ω, one recovers the K_{0} and K_{1} functors. We investigate how K_{Ω} depends on Ω and we show, for instance, that conformally equivalent domains yield naturally equivalent spectral K-functors. Finally, we prove the Relative Density Theorem for spectral K-functors.

VII. 1 K-schemes and induced K-functors

A K-scheme S associates to each good Fréchet algebra A a subset $A_{S} \subseteq A$, such that the following axioms are satisfied:
$\left(S_{1}\right) 0 \in A_{S}$
$\left(S_{2}\right)$ if $a \in \mathrm{M}_{p}(A)_{S}$ and $b \in \mathrm{M}_{q}(A)_{S}$ then $\operatorname{diag}(a, b) \in \mathrm{M}_{p+q}(A)_{S}$
$\left(S_{3}\right)$ if $\phi: A \rightarrow B$ is a morphism then $\phi\left(A_{S}\right) \subseteq B_{S}$
Two trivial examples are the zero K-scheme $A \mapsto\left\{0_{A}\right\}$ and the full K-scheme $A \mapsto A$; more interesting examples will appear shortly. Observe, at this point, the following consequence of $\left(S_{3}\right)$: the set of S-elements in a good Fréchet algebra is invariant under conjugation.

A K-scheme S gives rise to a K-functor K_{S}. We first construct a functor V_{S} with values in abelian monoids, then we obtain a functor with values in abelian groups via the Grothendieck functor.

Let A be a good Fréchet algebra. The embeddings $\mathrm{M}_{n}(A) \hookrightarrow \mathrm{M}_{n+1}(A)$, given by $a \mapsto \operatorname{diag}(a, 0)$, restrict to embeddings $\mathrm{M}_{n}(A)_{S} \hookrightarrow \mathrm{M}_{n+1}(A)_{S}$. Put

$$
V_{S}(A)=\left(\bigsqcup_{n \geq 1} \mathrm{M}_{n}(A)_{S}\right) / \sim
$$

where the equivalence relation \sim is that of eventual homotopy, that is, $a \in \mathrm{M}_{p}(A)_{S}$ and $b \in \mathrm{M}_{q}(A)_{S}$ are equivalent if $\operatorname{diag}\left(a, 0_{n-p}\right)$ and $\operatorname{diag}\left(b, 0_{n-q}\right)$ are path-homotopic in $\mathrm{M}_{n}(A)_{S}$ for some $n \geq p, q$.

In other words:

$$
V_{S}(A)=\underline{\longrightarrow} \pi_{0}\left(\mathrm{M}_{n}(A)_{S}\right)
$$

Lemma VII.1.1. $V_{S}(A)$ is an abelian monoid under $[a]+[b]:=[\operatorname{diag}(a, b)]$.

Proof. For $a, b \in \mathrm{M}_{n}(A)$, conjugating by $\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)$, where $0 \leq t \leq \frac{\pi}{2}$, gives a a path-homotopy in $\mathrm{M}_{2 n}(A)$ between $\operatorname{diag}(a, b)$ and $\operatorname{diag}(b, a)$. Next we show that for $a \in \mathrm{M}_{p}(A)$ and $b \in \mathrm{M}_{q}(A)$ we have a pathhomotopy in $\mathrm{M}_{4 p+4 q}(A)$ between $\operatorname{diag}\left(a, b, 0_{3 p+3 q}\right)$ and $\operatorname{diag}\left(b, a, 0_{3 p+3 q}\right)$. By $\left(S_{2}\right)$, we can do the following shuffling of blocks:

$$
\begin{aligned}
\operatorname{diag}\left(a, b, 0_{3 p+3 q}\right) & \sim_{h} \operatorname{diag}\left(0_{2 p+2 q}, a, b, 0_{p+q}\right)=\operatorname{diag}\left(0_{2 p+q}, 0_{q}, a, b, 0_{p}, 0_{q}\right) \\
& \sim_{h} \operatorname{diag}\left(0_{2 p+q}, b, 0_{p}, 0_{q}, a, 0_{q}\right) \\
& \sim_{h} \operatorname{diag}\left(0_{2 p+q}, b, a, 0_{q}, 0_{p}, 0_{q}\right)=\operatorname{diag}\left(0_{2 p+q}, b, a, 0_{p}, 0_{2 q}\right) \\
& \sim_{h} \operatorname{diag}\left(b, a, 0_{p}, 0_{2 p+q}, 0_{2 q}\right)=\operatorname{diag}\left(b, a, 0_{3 p+3 q}\right)
\end{aligned}
$$

It is easy to check that addition is well-defined, associative, commutative, and has [0] as identity.
Let $\phi: A \rightarrow B$ be a morphism. We then have a monoid morphism $V_{S}(\phi): V_{S}(A) \rightarrow V_{S}(B)$ given by $V_{S}(\phi)([a])=[\phi(a)]$. Here we use ϕ to denote each of the amplified morphisms $\mathrm{M}_{n}(A) \rightarrow \mathrm{M}_{n}(B)$.

So far, we have that V_{S} is a monoid-valued functor on good Fréchet algebras. Let K_{S} be obtained by applying the Grothendieck functor to V_{S}. We conclude:

Proposition VII.1.2. K_{S} is a K-functor.
The K-functor associated to a K-scheme is modeled after the K_{0} functor, which arises in this way from the idempotent K-scheme $A \mapsto \operatorname{Idem}(A)$. One could introduce a multiplicative version of K-scheme, by replacing the axiom $0 \in A_{S}$ with the axiom $1 \in A_{S}$, and suitably define a corresponding K -functor so that one recovers the K_{1} functor from the (multiplicative) K-scheme $A \mapsto A^{\times}$. However, the difference between the "additive" axiom $0 \in A_{S}$ and the "multiplicative" axiom $1 \in A_{S}$ is a unit shift, which makes such a "multiplicative" K-scheme essentially redundant. Therefore, up to the natural equivalence induced by the unit shift, we may think of the K_{1} functor as arising form the shifted invertible K-scheme $A \mapsto A^{\times}-1$.

A morphism of K-schemes $f: S \rightarrow S^{\prime}$ associates to each good Fréchet algebra A a continuous map $f: A_{S} \rightarrow A_{S^{\prime}}$ such that the following axioms are satisfied:
$\left(M S_{1}\right) f(0)=0$
$\left(M S_{2}\right)$ if $a \in \mathrm{M}_{p}(A)_{S}$ and $b \in \mathrm{M}_{q}(A)_{S}$ then $\operatorname{diag}(f(a), f(b))=f(\operatorname{diag}(a, b))$ in $\mathrm{M}_{p+q}(A)_{S^{\prime}}$
$\left(M S_{3}\right)$ if $\phi: A \rightarrow B$ is a morphism then the following diagram commutes:

Proposition VII.1.3. A morphism of K-schemes $f: S \rightarrow S^{\prime}$ induces a natural transformation of K-functors $K_{f}: K_{S} \rightarrow K_{S^{\prime}}$.

Proof. If suffices to show that $f: S \rightarrow S^{\prime}$ induces a natural transformation $V_{f}: V_{S} \rightarrow V_{S^{\prime}}$. First, we show that for any good Fréchet algebra A there is a monoid morphism $f_{A}: V_{S}(A) \rightarrow V_{S^{\prime}}(A)$. Second, we show that for
any morphism $\phi: A \rightarrow B$ the following diagram commutes:

Let A be a good Fréchet algebra. Define $f_{A}: V_{S}(A) \rightarrow V_{S^{\prime}}(A)$ by $f_{A}([a])=[f(a)]$. Note that f_{A} is welldefined: if $a \in M_{p}(A)_{S}$ and $b \in \mathrm{M}_{q}(A)_{S}$ are eventually homotopic, i.e., $\operatorname{diag}\left(a, 0_{n-p}\right)$ and $\operatorname{diag}\left(b, 0_{n-q}\right)$ are path-homotopic in some $\mathrm{M}_{n}(A)_{S}$, then

$$
f\left(\operatorname{diag}\left(a, 0_{n-p}\right)\right)=\operatorname{diag}\left(f(a), 0_{n-p}\right)
$$

and

$$
f\left(\operatorname{diag}\left(b, 0_{n-q}\right)\right)=\operatorname{diag}\left(f(b), 0_{n-q}\right)
$$

are path-homotopic in $\mathrm{M}_{n}(A)_{S^{\prime}}$, i.e., $f(a) \in M_{p}(A)_{S^{\prime}}$ and $f(b) \in \mathrm{M}_{q}(A)_{S^{\prime}}$ are eventually homotopic. Clearly f_{A} is a monoid morphism: we have $f_{A}([0])=[f(0)]=[0]$ by $\left(M S_{1}\right)$, while by $\left(M S_{2}\right)$ we have

$$
\begin{aligned}
f_{A}([a]+[b])=f_{A}[\operatorname{diag}(a, b)] & =[f(\operatorname{diag}(a, b))] \\
& =[\operatorname{diag}(f(a), f(b))]=[f(a)]+[f(b)]=f_{A}([a])+f_{A}([b]) .
\end{aligned}
$$

The commutativity of the diagram follows from $\left(M S_{3}\right)$.
Note that, if $f: S \rightarrow S^{\prime}$ and $g: S^{\prime} \rightarrow S^{\prime \prime}$ are morphisms of K-schemes then $g f: S \rightarrow S^{\prime \prime}$ is a morphism of K-schemes and $K_{g f}=K_{g} K_{f}$.

The morphisms of K-schemes $f, g: S \rightarrow S^{\prime}$ are homotopic if $f, g: A_{S} \rightarrow A_{S^{\prime}}$ are homotopic for any good Fréchet algebra A. If that is the case, then f and g induce the same natural transformation $K_{f}=K_{g}: K_{S} \rightarrow K_{S^{\prime}}$. The K-schemes S, S^{\prime} are homotopy equivalent if there are morphisms of K-schemes $f: S \rightarrow S^{\prime}$ and $g: S^{\prime} \rightarrow S$ such that $g f$ is homotopic to id_{S} and $f g$ is homotopic to $\mathrm{id}_{S^{\prime}}$. A K-scheme S is contractible if S is homotopy equivalent to the zero K-scheme $A \mapsto\left\{0_{A}\right\}$.

Proposition VII.1.4. If the K-schemes S and S^{\prime} are homotopy equivalent, then the K-functors K_{S} and $K_{S^{\prime}}$ are naturally equivalent. In particular, if the K-scheme S is contractible then K_{S} is the zero functor.

VII. 2 Spectral K-functors: defining K_{Ω}

Let $0 \in \Omega \subseteq \mathbb{C}$ be an open set. The spectral K-scheme S_{Ω} associates to each good Fréchet algebra A the subset $A_{\Omega}=\{a: \operatorname{sp}(a) \subseteq \Omega\}$; note that A_{Ω} is open (Lemma VIII.7.4).

The axioms for a K-scheme are easy to check: $\left(S_{1}\right)$ is due to the fact that we imposed $0 \in \Omega,\left(S_{2}\right)$ follows from

$$
\operatorname{sp}_{M_{p+q}(A)}(\operatorname{diag}(a, b))=\operatorname{sp}_{M_{p}(A)}(a) \cup \operatorname{sp}_{M_{q}(A)}(b)
$$

while $\left(S_{3}\right)$ follows from the fact that morphisms are non-increasing on spectra.
The full K-scheme and the shifted invertible K-scheme are spectral K-schemes; they are obtained by taking $\Omega=\mathbb{C}$, respectively $\Omega=\mathbb{C} \backslash\{-1\}$.

On the other hand, the zero K-scheme and the idempotent K-scheme are not spectral K-schemes.
The K-functor associated to the spectral K-scheme S_{Ω} is denoted by K_{Ω} and is referred to as a spectral K-functor.

We compute $K_{\Omega}(\mathbb{C})$.
Assume, for simplicity, that Ω has finitely many connected components $\Omega_{0}, \Omega_{1}, \ldots, \Omega_{k}$, where Ω_{0} is the component of 0 . For $1 \leq i \leq k$, let $\#_{i}(a)$ denote the number of eigenvalues, counted with multiplicity, of $a \in$ $\mathrm{M}_{n}(\mathbb{C})$ that lie in Ω_{i}. Then the eigenvalue-counting map $\#: V_{\Omega}(\mathbb{C}) \rightarrow \mathbb{N}^{k}$ given by $\#([a])=\left(\#_{1}(a), \ldots, \#_{k}(a)\right)$ is well-defined. Visibly, \# is a surjective morphism of monoids. We show \# is injective. For $1 \leq i \leq k$, pick a basepoint $\lambda_{i} \in \Omega_{i}$ and think of

$$
\lambda(a)=\operatorname{diag}(\underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{\#_{1}(a)}, \ldots, \underbrace{\lambda_{k}, \ldots, \lambda_{k}}_{\#_{k}(a)})
$$

as a normal form for $a \in \mathrm{M}_{n}(\mathbb{C})$. It suffices to show that a is eventually homotopic to $\lambda(a)$. Similar matrices are eventually homotopic; this is true for any K-scheme in fact. Thus a is eventually homotopic to its Jordan normal form. Up to a spectrum-preserving homotopy, one can assume that the Jordan normal form is in fact diagonal. Finally, a homotopy sends all eigenvalues in each Ω_{i} to the chosen basepoint λ_{i}, and all eigenvalues in Ω_{0} to 0 . That is, we can reach a diagonal matrix $\operatorname{diag}(\lambda(a), 0, \ldots, 0)$.

Therefore $V_{\Omega}(\mathbb{C})$ is isomorphic to \mathbb{N}^{k} and, consequently, $K_{\Omega}(\mathbb{C})$ is isomorphic to \mathbb{Z}^{k}.

VII. 3 Spectral K-functors: dependence on Ω

An open set $\Omega \subseteq \mathbb{C}$ containing 0 is thought of as a based open set. Correspondingly, a holomorphic map $f: \Omega \rightarrow \Omega^{\prime}$ sending 0 to 0 is called a based holomorphic map.

Proposition VII.3.1. A based holomorphic map $f: \Omega \rightarrow \Omega^{\prime}$ induces a morphism of K-schemes $f_{*}: S_{\Omega} \rightarrow S_{\Omega^{\prime}}$, hence a natural transformation of K-functors $K_{f_{*}}: K_{\Omega} \rightarrow K_{\Omega^{\prime}}$. In particular, a based conformal equivalence between Ω and Ω^{\prime} induces a natural equivalence between K_{Ω} and $K_{\Omega^{\prime}}$.

Proof. Let A be a good Fréchet algebra. We have a map $f_{*}: A_{\Omega} \rightarrow A_{\Omega^{\prime}}$ given by $f_{*}(a):=f(a)=O_{a}(f)$, where $O_{a}: O(\Omega) \rightarrow A$ is the holomorphic calculus of $a \in A_{\Omega}$. We claim that f_{*} is continuous. Indeed, let $a_{n} \rightarrow a$ in A_{Ω}. Pick a (topologically tame) cycle γ containing $\operatorname{sp}(a)$ in its interior. Since the set of elements whose spectrum is contained in the interior of γ is open, we may assume without loss of generality that all the a_{n} 's have their spectrum contained in the interior of γ. Then

$$
f_{*}\left(a_{n}\right)-f_{*}(a)=\frac{1}{2 \pi i} \oint_{\gamma} f(\lambda)\left(\left(\lambda-a_{n}\right)^{-1}-(\lambda-a)^{-1}\right) d \lambda
$$

and so $f_{*}\left(a_{n}\right) \rightarrow f_{*}(a)$ since the integrand converges to 0 . We show that f_{*} is a morphism of K-schemes.

Axiom $\left(M S_{1}\right)$ is obvious.
For $\left(M S_{2}\right)$ we use the uniqueness of holomorphic calculus. Let $O_{a}: O(\Omega) \rightarrow \mathrm{M}_{p}(A)$ be the holomorphic calculus for a, and $O_{b}: O(\Omega) \rightarrow \mathrm{M}_{q}(A)$ be the holomorphic calculus for b. Then $\operatorname{diag}\left(O_{a}, O_{b}\right): O(\Omega) \rightarrow$ $\mathrm{M}_{p+q}(A)$ given by $g \mapsto \operatorname{diag}\left(O_{a}(g), O_{b}(g)\right)$ is a holomorphic calculus for $\operatorname{diag}(a, b)$; thus $O_{\operatorname{diag}(a, b)}=\operatorname{diag}\left(O_{a}, O_{b}\right)$, in particular $f_{*}(\operatorname{diag}(a, b))=\operatorname{diag}\left(f_{*}(a), f_{*}(b)\right)$.

For $\left(M S_{3}\right)$, we use again the uniqueness of holomorphic calculus. If $O_{a}: O(\Omega) \rightarrow A$ is the holomorphic calculus of $a \in A_{\Omega}$ then $\phi \circ O_{a}: O(\Omega) \rightarrow B$ is a holomorphic calculus for $\phi(a)$ hence $\phi \circ O_{a}=O_{\phi(a)}$, in particular $\phi\left(f_{*}(a)\right)=f_{*}(\phi(a))$ for all $a \in A_{\Omega}$.

For the second part, if suffices to check that $(g f)_{*}=g_{*} f_{*}$ for based holomorphic maps $f: \Omega \rightarrow \Omega^{\prime}$ and $g: \Omega^{\prime} \rightarrow \Omega^{\prime \prime}$. That is, we need $(g f)(a)=g(f(a))$ for all $a \in A_{\Omega}$. This follows once again by the uniqueness of holomorphic calculus: as both $h \mapsto(h f)(a)$ and $h \mapsto h(f(a))$ are holomorphic calculi $O\left(\Omega^{\prime}\right) \rightarrow A$ for $f(a)$, we get $(h f)(a)=h(f(a))$ for all $h \in O\left(\Omega^{\prime}\right)$, in particular for g.

Corollary VII.3.2. If Ω is connected and simply connected then K_{Ω} is the zero functor.
Proof. By the conformal invariance of K_{Ω} and the Riemann Mapping Theorem, we may assume that Ω is either the entire complex plane, or the open unit disk. To show that K_{Ω} is the zero functor, it suffices to get $\pi_{0}\left(A_{\Omega}\right)=0$ for every good Fréchet algebra A. Indeed, each $a \in A_{\Omega}$ can be connected to 0_{A} by the path $t \mapsto t a$, path which lies in A_{Ω} since $t \Omega \subseteq \Omega$ for $0 \leq t \leq 1$.

In a more sophisticated formulation, S_{Ω} is contractible.
Proposition VII.3.1 shows that the functor K_{Ω} depends only on the conformal type of Ω. But more is true, in fact: K_{Ω} depends only on the holomorphic homotopy type of Ω. Roughly speaking, the notion of holomorphic homotopy type is obtained from the usual notion of homotopy type by requiring the maps to be holomorphic rather than continuous.

The based holomorphic maps $f, g: \Omega \rightarrow \Omega^{\prime}$ are holomorphically homotopic if there is a family of based holomorphic maps $\left\{h_{t}\right\}_{0 \leq t \leq 1}: \Omega \rightarrow \Omega^{\prime}$ such that $h_{0}=f, h_{1}=g$ and $t \mapsto h_{t} \in O(\Omega)$ is continuous. If that is the case, then the induced morphisms of K-schemes $f_{*}, g_{*}: S_{\Omega} \rightarrow S_{\Omega^{\prime}}$ are homotopic. If there are based holomorphic maps $f: \Omega \rightarrow \Omega^{\prime}$ and $g: \Omega^{\prime} \rightarrow \Omega$ such that $f g$ is holomorphically homotopic to $\mathrm{id}_{\Omega^{\prime}}$ and $g f$ is holomorphically homotopic to id_{Ω}, then Ω and Ω^{\prime} are said to be holomorphic-homotopy equivalent. If that is the case, then the K-schemes S_{Ω} and $S_{\Omega^{\prime}}$ are homotopy equivalent in the sense described in the previous subsection. Therefore:

Proposition VII.3.3. If Ω and Ω^{\prime} are holomorphic-homotopy equivalent, then K_{Ω} and $K_{\Omega^{\prime}}$ are naturally equivalent.

VII. 4 Spectral K-functors: recovering K_{0} and K_{1}

The K_{1} functor can be obtained from the shifted invertible K-scheme $A \mapsto A^{\times}-1$. That is, K_{1} is naturally equivalent to K_{Ω} for $\Omega=\mathbb{C} \backslash\{-1\}$. The K_{0} functor can be obtained from the idempotent K -scheme $A \mapsto$ $\operatorname{Idem}(A)$. However, the idempotent scheme is not a spectral K-scheme. We now realize the K_{0} functor as a spectral K-functor.

Proposition VII.4.1. $K_{0}=K_{\Omega}$ for $\Omega=\mathbb{C} \backslash\left\{\operatorname{Re}=\frac{1}{2}\right\}$.
Proof. Let χ denote the function defined on Ω as $\chi=0$ on $\left\{\operatorname{Re}<\frac{1}{2}\right\}$ and $\chi=1$ on $\left\{\operatorname{Re}>\frac{1}{2}\right\}$. Consider the holomorphic functions $\left\{h_{t}\right\}_{0 \leq t \leq 1}: \Omega \rightarrow \Omega$ defined as $h_{t}=(1-t) \mathrm{id}+t \chi$. We claim that $\left\{\left(h_{t}\right)_{*}\right\}_{0 \leq t \leq 1}$ is a strong deformation of S_{Ω} to the idempotent K-scheme. It will then follow that $K_{\Omega}=K_{0}$.

Let A be a good Fréchet algebra. We need to show that $\left\{\left(h_{t}\right)_{*}\right\}_{0 \leq t \leq 1}$ is a strong deformation from A_{Ω} to the idempotents of A. Each $\left(h_{t}\right)_{*}: A_{\Omega} \rightarrow A_{\Omega}$ is continuous. The map $t \mapsto h_{t}$ is $O(\Omega)$-continuous, so $t \mapsto\left(h_{t}\right)_{*}$ is A-continuous. At $t=0,\left(h_{0}\right)_{*}=\mathrm{id}_{A_{\Omega}}$. At $t=1,\left(h_{1}\right)_{*}=\chi_{*}$ takes idempotent values since $\chi^{2}=\chi$. Finally, each $\left(h_{t}\right)_{*}$ acts identically on idempotents. Indeed, it suffices to show that χ_{*} acts identically on idempotents. Letting e be an idempotent, we have

$$
\chi(e)=\frac{1}{2 \pi i} \oint_{\gamma_{1}}(\lambda-e)^{-1} d \lambda=\frac{1}{2 \pi i} \oint_{\gamma_{1}}\left(\frac{1-e}{\lambda}+\frac{e}{\lambda-1}\right) d \lambda=e
$$

where γ_{1} is a curve around 1 .
Remark VII.4.2. The fact that K_{0} can be described in terms of elements with spectrum contained in $\mathbb{C} \backslash$ $\left\{\operatorname{Re}=\frac{1}{2}\right\}$ is discussed in [74, pp. 193-196]; the above proof is essentially the one given there. It is this alternate picture for K_{0} that inspired us in defining the K_{Ω} groups. Note that K_{Ω} is naturally equivalent to K_{0} whenever Ω is the disjoint union of two open subsets of \mathbb{C} which are connected and simply connected.

VII. 5 Spectral K-functors: the Relative Density Theorem

Finally, we prove the Relative Density Theorem for spectral K-functors. In particular, we obtain the Relative Density Theorem for the usual K-theory. In the case of K_{0}, this proof is more elementary than the proof of Theorem VI.4.2, which used the Bott periodicity.

Theorem VII.5.1. If $\phi: A \rightarrow B$ is a dense and completely relatively spectral morphism between good Fréchet algebras, then ϕ induces an isomorphism $K_{\Omega}(A) \simeq K_{\Omega}(B)$.

Proof. Let $\phi: A \rightarrow B$ be a dense morphism that is spectral relative to a dense subalgebra $X \subseteq A$. Obviously $A_{\Omega} \cap X=\phi^{-1}\left(B_{\Omega}\right) \cap X$, so ϕ induces a bijection $\pi_{0}\left(A_{\Omega}\right) \rightarrow \pi_{0}\left(B_{\Omega}\right)$ by Lemma VI.4.1. Thus, if $\phi: A \rightarrow B$ is a dense and completely relatively spectral morphism then ϕ induces a bijection $\pi_{0}\left(\mathrm{M}_{n}(A)_{\Omega}\right) \rightarrow \pi_{0}\left(\mathrm{M}_{n}(B)_{\Omega}\right)$ for each $n \geq 1$. It follows that ϕ induces a bijection

$$
\xrightarrow{\lim } \pi_{0}\left(\mathrm{M}_{n}(A)_{\Omega}\right) \rightarrow \xrightarrow{\lim } \pi_{0}\left(\mathrm{M}_{n}(B)_{\Omega}\right) .
$$

In other words, $V_{\Omega}(\phi): V_{\Omega}(A) \rightarrow V_{\Omega}(B)$ is a bijection. We conclude that ϕ induces an isomorphism $K_{\Omega}(A) \rightarrow$ $K_{\Omega}(B)$.

CHAPTER VIII

BACK MATTER

VIII. 1 Spectrum

Let A be a unital Banach algebra, and let $a \in A$. The spectrum of a is $\operatorname{sp}(a)=\left\{\lambda \in \mathbb{C}: a-\lambda \notin A^{\times}\right\}$. The spectrum is a non-empty compact set. The spectral radius of a is $r(a)=\max \{|\lambda|: \lambda \in \operatorname{sp}(a)\}$. The spectral radius formula is the following equality:

$$
r(a)=\lim _{n \rightarrow \infty}\left\|a^{n}\right\|^{1 / n}
$$

In particular $r(a) \leq\|a\|$. Note that $r(1-a)<1$ implies $a \in A^{\times}$.

VIII. 2 Holomorphic functional calculus

Let A be a unital Banach algebra, and fix $a \in A$ and $\Omega \subseteq \mathbb{C}$ an open neighborhood of $\operatorname{sp}(a)$. Let $O(\Omega)$ be the unital algebra of functions that are holomorphic in Ω, endowed with the topology of uniform convergence on compacts. There is a morphism $O(\Omega) \rightarrow A$ given as follows:

$$
f \mapsto f(a)=\frac{1}{2 \pi i} \oint f(\lambda)(\lambda-a)^{-1} d \lambda
$$

The integral is taken around a finite collection of paths in Ω where f, such that the winding number is 1 for each point of $\operatorname{sp}(a)$.

The morphism $O(\Omega) \rightarrow A$ is unital and continuous; furthermore, we have the spectral mapping property $\operatorname{sp} f(a)=f(\operatorname{sp}(a))$ for each $f \in O(\Omega)$.

VIII. 3 Finiteness

A unital complex algebra A is finite if every left-invertible element of A is invertible in A, equivalently, if every right-invertible element of A is invertible in A. A unital complex algebra A is stably finite if $\mathrm{M}_{n}(A)$ is finite for all $n \geq 1$.

This definition makes sense for rings. Using the terminology "finite" in that case would be ill-advised; instead, one calls a ring with the above property "Dedekind finite".

The main source of stably finite C^{*}-algebras is given by tracial C*-algebras. Recall, a trace on a unital *-algebra A is a functional $\operatorname{tr}: A \rightarrow \mathbb{C}$ satisfying $\operatorname{tr}(a b)=\operatorname{tr}(b a)$ for all $a, b \in A$, and $\operatorname{tr}\left(a^{*} a\right) \geq 0$ for all $a \in A$. A trace tr is faithful if $\operatorname{tr}\left(a^{*} a\right)=0$ implies $a=0$, and normalized if $\operatorname{tr}(1)=1$. A tracial $*$-algebra is a $*$-algebra endowed with a faithful, normalized trace. If A is a tracial $*$-algebra, then $\mathrm{M}_{n}(A)$ is a tracial $*$-algebra as well: set $\operatorname{tr}_{n}\left(\left(a_{i j}\right)\right)=\frac{1}{n} \sum a_{i i}$.

Lemma VIII.3.1. Let A be a tracial C^{*}-algebra. If $e \in A$ is an idempotent then $0 \leq \operatorname{tr}(e) \leq 1$, with $\operatorname{tr}(e)=0$ iff $e=0$ and $\operatorname{tr}(e)=1$ iff $e=1$.

Proof. We may assume e is a projection $\left(z=\left(\left(2 e^{*}-1\right)(2 e-1)+1\right)^{1 / 2}\right.$ is invertible and $z e z^{-1}$ is easily checked to be a projection with $\operatorname{tr}\left(z e z^{-1}\right)=\operatorname{tr}(e)$). Then $\operatorname{tr}(e)=\operatorname{tr}\left(e^{*} e\right) \geq 0$, with equality iff $e=0$. Applying this to the projection $1-e$, we get $\operatorname{tr}(e) \leq 1$, with equality iff $e=1$.

Proposition VIII.3.2. Let A be a tracial C^{*}-algebra. Then A is stably finite.
Proof. Let $a, b \in A$, and assume that $a b=1$. Then $b a$ is an idempotent, and $\operatorname{tr}(b a)=1$. By the previous lemma, we must have $b a=1$. This shows that A is finite. Applying this to matrix algebras over A, we conclude that A is stably finite.

If A is a tracial C^{*}-algebra, then the trace tr induces a monomorphism $\operatorname{tr}: K_{0}(A) \rightarrow \mathbb{R}$ sending the class of 1_{A} to 1 ; in particular, the class of 1_{A} has infinite order in $K_{0}(A)$. The latter fact is actually true for stably finite C^{*}-algebras. This is certainly well-known, but we could not find a reference in the literature so we prove it in the next

Lemma VIII.3.3. Let R be a unital ring. If R is stably finite in the above sense, then the class of 1_{R} has infinite order in $K_{0}(R)$.

Proof. Assume $k \cdot[1]=[0]$ in $K_{0}(R)$ for some positive integer k. This means that there is an idempotent e in a matrix ring $\mathrm{M}_{n}(R)$ such that $[e]+k \cdot[1]=[e]+[0]$ in $V_{0}(R)$. Let N be a multiple of k such that $N \geq n$. After adding 0 's down the diagonal, we may view e as an idempotent in $\mathrm{M}_{N}(R)$. We have $[e]+N \cdot\left[1_{R}\right]=$ $[e]+\left[0_{R}\right]$, i.e., $[e]+\left[1_{\mathrm{M}_{N}(R)}\right]=[e]+\left[0_{\mathrm{M}_{N}(R)}\right]$. Thus, up to replacing R by $\mathrm{M}_{N}(R)$, we may assume that we have $[e]+\left[1_{R}\right]=[e]+\left[0_{R}\right]$ in $V_{0}(R)$ for some idempotent e in R. Now, this means that in some matrix ring $\mathrm{M}_{q}(R)$ we have

$$
U\left(\begin{array}{lllll}
e & & & & \\
& 1 & & & \\
& & 0 & & \\
& & & \ddots & \\
& & & & 0
\end{array}\right)=\left(\begin{array}{lllll}
e & & & & \\
& 0 & & & \\
& & 0 & & \\
& & & \ddots & \\
& & & & 0
\end{array}\right) U
$$

for some invertible matrix $U=\left(u_{i j}\right)$. Performing the products, we get:

$$
\left(\begin{array}{ccccc}
u_{11} e & u_{12} & 0 & \ldots & 0 \\
u_{21} e & u_{22} & 0 & \ldots & 0 \\
& \ldots & & \ldots & \\
u_{q 1} e & u_{q 2} & 0 & \ldots & 0
\end{array}\right)=\left(\begin{array}{ccccc}
e u_{11} & e u_{12} & e u_{13} & \ldots & e u_{1 q} \\
0 & 0 & 0 & \ldots & 0 \\
& \ldots & & \ldots & \\
0 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

Comparison in the first column gives $u_{21} e=\cdots=u_{q 1} e=0$. Comparison in the second column yields
$u_{22}=\cdots=u_{q 2}=0$ and $u_{12}=e u_{12}$. Now let $\left(x_{i j}\right)$ be the inverse of $\left(u_{i j}\right)$. From

$$
\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 q} \\
x_{21} & x_{22} & \ldots & x_{2 q} \\
\ldots & \ldots & \ldots & \ldots \\
x_{q 1} & x_{q 2} & \ldots & x_{q q}
\end{array}\right)\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 q} \\
u_{21} & 0 & \ldots & u_{2 q} \\
\ldots & \ldots & \ldots & \ldots \\
u_{q 1} & 0 & \ldots & u_{q q}
\end{array}\right)=\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
\\
& & \ddots \\
\\
& & \\
& & 1
\end{array}\right)
$$

we get $x_{21} u_{12}=1$. By finiteness, we get u_{12} invertible in R. Then $e=1$, hence $u_{21}=\cdots=u_{q 1}=0$. Also, $x_{11} u_{12}=0$ so $x_{11}=0$. We now have

$$
\left(\begin{array}{cccc}
0 & x_{12} & \ldots & x_{1 q} \\
x_{21} & x_{22} & \ldots & x_{2 q} \\
\ldots & \ldots & \ldots & \ldots \\
x_{q 1} & x_{q 2} & \ldots & x_{q q}
\end{array}\right)\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 q} \\
0 & 0 & \ldots & u_{2 q} \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & u_{q q}
\end{array}\right)=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right)
$$

which gives a contradiction in the (1,1)-position.
Let us mention the following counterpoint to the above lemma: for the Cuntz algebra O_{∞}, the class of the identity has infinite order in K_{0}; however, O_{∞} is infinite (in fact, "very" infinite in a certain technical sense).

VIII. 4 Group algebras

Let Γ be a (discrete, countable) group. The starting object is the group algebra $\mathbb{C} \Gamma$. As a vector space, $\mathbb{C} \Gamma$ is the \mathbb{C}-span of Γ. The multiplication on $\mathbb{C} \Gamma$ is by convolution:

$$
\left(\sum a_{g} g\right)\left(\sum b_{h} h\right)=\sum\left(\sum_{g h=x} a_{g} b_{h}\right) x
$$

Note here that inversion in Γ turns $\mathbb{C} \Gamma$ into a $*$-algebra by defining $\left(\sum a_{g} g\right)^{*}=\sum \bar{a}_{g} g^{-1}$.
By an analytic group algebra associated to Γ we mean a completion of the group algebra $\mathbb{C} \Gamma$; the $*$ operation usually extends, so analytic group algebras are $*$-algebras. Such an analytic group algebra can be a Fréchet algebra, a Banach algebra, a C*-algebra, or a von Neumann algebra. Most analytic group algebras are defined as algebras of operators; others appear as sequence spaces with summability conditions (though they can also be viewed as algebras of operators).

The broad question of a topic that could be called Analytic Group Theory is to understand how properties of Γ are reflected in properties of analytic group algebras associated to Γ. Analytic Group Theory can thus be viewed as a bridge between Group Theory and Noncommutative Geometry. Typically, it is the Noncommutative Geometry end that is the busiest, for the passage from a group to an analytic group algebra is a tremendous increase in complexity. This is partly due to the fact that we are trading a relatively small object, the group, for a much larger object. But the key source of mystery is the fact that most analytic group
algebras are defined implicitly. It is only rarely the case, e.g. within the commutative world, that analytic group algebras can be made explicit.

There are many, many analytic group algebras one can associate to a group Γ. Here, we recall three of the most fundamental ones: the Banach algebra $\ell^{1} \Gamma$, and the C^{*}-algebras $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ and $\mathrm{C}^{*} \Gamma$. Another fundamental group algebra is the von Neumann algebra $L \Gamma$; in the coarse setting, an important group C^{*}-algebra is the uniform (Roe) algebra $\mathrm{C}_{\mathrm{u}}^{*} \Gamma$.

The group ℓ^{1}-algebra $\ell^{1} \Gamma$ is the Banach algebra completion of $\mathbb{C} \Gamma$ under the norm $\left\|\sum a_{g} g\right\|_{1}=\sum\left|a_{g}\right|$. Concretely, $\ell^{1} \Gamma=\left\{\sum a_{g} g: \sum\left|a_{g}\right|<\infty\right\}$; this algebra is the prominent example of a "sequential" group algebra.

The reduced C^{*}-algebra $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is the completion of $\mathbb{C} \Gamma$ with respect to the left regular representation. Recall, the left regular representation $\lambda: \Gamma \rightarrow \mathcal{B}\left(\ell^{2} \Gamma\right)$ is the unitary representation given by $\lambda(g)\left(\sum a_{h} \delta_{h}\right)=$ $\sum a_{h} \delta_{g h}$. The representation λ extends by linearity to a faithful $*$-representation $\lambda: \mathbb{C} \Gamma \rightarrow \mathcal{B}\left(\ell^{2} \Gamma\right)$, and $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is defined as the operator-norm closure of $\mathbb{C} \Gamma$ inside $\mathcal{B}\left(\ell^{2} \Gamma\right)$. An alternate notation for the reduced C^{*}-algebra of Γ is $C_{\lambda}^{*} \Gamma$.

The full (or maximal, or universal) C^{*}-algebra $\mathrm{C}^{*} \Gamma$ is the completion of $\mathbb{C} \Gamma$ under the norm $\|a\|_{*}=$ $\sup \|\pi(a)\|$ where π runs over the equivalence classes of unitary (cyclic) representations of Γ. More settheoretically comforting is to define $\mathrm{C}^{*} \Gamma$ as the enveloping C^{*}-algebra of $\ell^{1} \Gamma$. That is, $\mathrm{C}^{*} \Gamma$ is the completion of $\ell^{1} \Gamma$ under the norm $\|a\|_{*}=\left\|\pi_{\text {univ }}(a)\right\|$, where the universal representation $\pi_{\text {univ }}=\oplus \pi_{f}$ of $\ell^{1} \Gamma$ collects the representations π_{f} induced by the states f of $\ell^{1} \Gamma$.

For $a \in \mathbb{C} \Gamma$ we have $\|a\| \leq\|a\|_{*} \leq\|a\|_{1}$. It follows that the identity on $\mathbb{C} \Gamma$ extends to $*$-morphisms in such a way that the following diagram commutes:

The morphism $\ell^{1} \Gamma \rightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is injective since $\ell^{1} \Gamma$ is faithfully represented on $\ell^{2} \Gamma$. Hence $\ell^{1} \Gamma \rightarrow \mathrm{C}^{*} \Gamma$ is injective as well. The morphism $\mathrm{C}^{*} \Gamma \rightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is surjective; the reason is that a $*$-morphism between C^{*} algebras has closed image. We record the following important

Fact. $\mathrm{C}^{*} \Gamma \rightarrow \mathrm{C}_{\mathrm{r}}^{*} \Gamma$ is an isomorphism iff Γ is amenable.
Outside the amenable world, the two group C^{*}-algebras may differ drastically.

- [functoriality] The full C^{*}-algebra is functorial: a group morphism $\Gamma \rightarrow \Gamma^{\prime}$ induces a C^{*}-morphism $\mathrm{C}^{*} \Gamma \rightarrow \mathrm{C}^{*} \Gamma^{\prime}$. The reduced C^{*}-algebra is, however, not functorial. The simplicity of $\mathrm{C}_{\mathrm{r}}^{*}\left(F_{n}\right)$ (due to Powers) is the most dramatic illustration of this fact: although a free group has plenty of non-trivial quotients, its reduced C^{*}-algebra has none!
- [traces $]$ There is a standard trace $\operatorname{tr}(a)=\left\langle a\left(\delta_{e}\right), \delta_{e}\right\rangle$ on $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$, making $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ a tracial C^{*}-algebra. On the other hand, $\mathrm{C}^{*} \Gamma$ may not be tracial, e.g., for $\Gamma=\mathrm{SL}_{n \geq 3}(\mathbb{Z})$ (due to Bekka).
- [idempotents] For Γ torsion-free, the Kaplansky-Kadison conjecture claims that $\mathrm{C}_{\mathrm{r}}^{*} \Gamma$ has no idempotents other than 0 and 1 . By now, this has been verified for many classes of groups, e.g. hyperbolic groups.

On the other hand, the full C^{*}-algebra $C^{*} \Gamma$ may contain non-trivial idempotents: this is the case whenever Γ has Kazhdan's property (T). Connecting these two statements is the fact that many hyperbolic groups have Kazhdan's property (T).

VIII. 5 Nuclearity

In general, there are many C^{*}-completions for the algebraic tensor product $A \odot B$ of the C^{*}-algebras A and B. Every C^{*}-norm on $A \odot B$ turns out to be a cross-norm, i.e., $\|a \otimes b\|=\|a\|\|b\|$ for $a \in A, b \in B$. Among all C^{*}-norms on $A \odot B$, there is a least one $\left(\|\cdot\|_{\min }\right)$ and a greatest one $\left(\|\cdot\|_{\max }\right)$. The minimal (or spatial) tensor norm $\|\cdot\|_{\text {min }}$ comes from the representation $A \odot B \hookrightarrow \mathcal{B}\left(H_{A} \otimes H_{B}\right)$, independent of the chosen representations $A \hookrightarrow \mathcal{B}\left(H_{A}\right), B \hookrightarrow \mathcal{B}\left(H_{B}\right)$. The completion of $A \odot B$ under $\|\cdot\|_{\min }$ is denoted $A \otimes_{\min } B$. The maximal tensor norm $\|\cdot\|_{\text {max }}$ is given by

$$
\left\|\sum a_{i} \otimes b_{i}\right\|:=\sup \left\|\sum \pi_{A}\left(a_{i}\right) \pi_{B}\left(b_{i}\right)\right\|
$$

where the supremum being taken over all pairs of commuting representations $\pi_{A}: A \rightarrow \mathcal{B}(H), \pi_{B}: B \rightarrow$ $\mathcal{B}(H)$. The completion of $A \odot B$ under $\|\cdot\|_{\max }$ is denoted $A \otimes_{\max } B$. See [89, Appendix T] for details.

A C ${ }^{*}$-algebra A is nuclear if $A \otimes_{\min } B \simeq A \otimes_{\max } B$ for each C^{*}-algebra B; in other words, for each C^{*}-algebra B, the algebraic tensor product $A \odot B$ admits a unique C^{*}-norm. Basic examples of nuclear C^{*} algebras are the finite-dimensional C^{*}-algebras (e.g. $\mathrm{M}_{n}(\mathbb{C})$) and the commutative C^{*}-algebras (i.e. $C_{0}(X)$ for X a locally compact Hausdorff space). However, \mathcal{B} is not nuclear.

We have the following important
Fact. The class of nuclear C^{*}-algebras is closed under taking ideals, quotients, extensions, inductive limits, tensor products, and crossed products by amenable groups.

Nuclearity is not inherited by subalgebras in general. However, subalgebras of nuclear C*-algebras are exact. A C^{*}-algebra A is said to be exact if min-tensoring by A preserves short exact sequences, i.e., for each short exact sequence of C^{*}-algebras $0 \rightarrow J \rightarrow B \rightarrow Q \rightarrow 0$, the sequence

$$
0 \rightarrow J \otimes_{\min } A \rightarrow B \otimes_{\min } A \rightarrow Q \otimes_{\min } A \rightarrow 0
$$

is also exact. In other words, exactness is C^{*}-flatness with respect to the minimal tensor product. It should be noted that the maximal tensor product, on the other hand, is functorial and preserves short exact sequences.

VIII. 6 Hyperbolic groups

A geodesic metric space X is hyperbolic if there is $\delta \geq 0$ such that every geodesic triangle in X is δ-thin, i.e., each side of the triangle is contained in the δ-neighborhood of the union of the other two sides. It is a fundamental fact that hyperbolicity is invariant under quasi-isometries.

Hyperbolicity is a coarse notion of negative curvature. A metric notion of negative curvature is expressed by the $\mathrm{CAT}(\kappa)$ condition, where $\kappa<0$, which says that geodesic triangles are thinner than comparison geodesic triangles in the standard hyperbolic plane of curvature κ. Clearly, a CAT (κ) space is hyperbolic.

A finitely generated group Γ is (Gromov) hyperbolic if its Cayley graph is hyperbolic; this definition is independent of the choice of generating set.

Virtually cyclic groups, i.e., finite groups and virtually-Z groups, are called elementary; they are hyperbolic groups and should be considered as low-dimensional accidents. More interesting examples of hyperbolic groups are provided by

- finitely generated free groups (all geodesic triangles in a tree are 0 -thin);
- fundamental groups of compact Riemannian manifolds of negative sectional curvature (if M is such a manifold, then $\pi_{1}(M)$ is quasi-isometric to the universal cover \widetilde{M}; but \widetilde{M} is hyperbolic since the negative sectional curvature assumption makes \widetilde{M} a $\operatorname{CAT}(\kappa)$ space for some $\kappa<0)$;
- $C^{\prime}(1 / 6)$ small-cancellation groups (to explain what the $C^{\prime}(1 / 6)$-condition means, consider a finite presentation $\langle A \mid R\rangle$ whose relators are cyclically reduced, let $R^{ \pm}=R \cup R^{-1}$ and think of the elements of $R^{ \pm}$as circular words; the $C^{\prime}(1 / 6)$-condition for $\langle A \mid R\rangle$ requires that a common arc of two distinct circular words from $R^{ \pm}$has length less than a sixth of each word's length).

A subgroup of a hyperbolic group is either an elementary group, or it contains the free group on two generators. In particular, hyperbolic groups are amenable precisely when they are elementary.

VIII. 7 Good topological algebras

A (complex) topological algebra is a complex algebra endowed with a topological vector space structure such that multiplication is separately continuous. The following class of topological algebras is of interest in this work:

Definition VIII.7.1. A topological algebra A is a good topological algebra if i) the group of invertibles A^{\times} is open, and ii) the inversion $a \mapsto a^{-1}$ is continuous on A^{\times}.

This terminology is taken from [11]. Elsewhere in older literature, they are also called Waelbroeck algebras.

The main condition in the above definition is i). Some of what follows requires i) only, but we include ii) for several reasons. First, we do not know examples of topological algebras which satisfy i) but fail ii). Second, ii) is automatic for the topological algebras we are particularly interested in, namely Fréchet algebras. Third, the algebras that satisfy i) only have an uninspiring name: topological Q-algebras.

The next result is due to Swan [82, Corollary 1.2]:
Lemma VIII.7.2. If A is a good topological algebra then $\mathrm{M}_{n}(A)$ is a good topological algebra.
Let us substantiate the terminology of "good" by the following facts. The first fact implies, in particular, that the spectral radius is well-defined in a good topological algebra.

Lemma VIII.7.3. If A is a good topological algebra, then $\operatorname{sp}(a)$ is compact for all $a \in A$.
Proof. Let $a \in A$. We show $\operatorname{sp}(a)$ is closed: if $\lambda_{n} \in \operatorname{sp}(a)$ and $\lambda_{n} \rightarrow \lambda$, then $\left(\lambda_{n}-a\right)_{n}$ is a sequence of non-invertibles converging to $\lambda-a$, hence $\lambda-a$ is non-invertible i.e. $\lambda \in \operatorname{sp}(a)$. We show $\operatorname{sp}(a)$ is bounded: assuming, on the contrary, that there is $\lambda_{n} \in \operatorname{sp}(a)$ with $\lambda_{n} \rightarrow \infty$, we get that $\left(1-\lambda_{n}^{-1} a\right)_{n}$ is a sequence of non-invertibles converging to 1 , a contradiction.

Lemma VIII.7.4. Let A be a good topological algebra. Then $\{a: \operatorname{sp}(a) \subseteq U\}$ is open in A for any open set $U \subseteq \mathbb{C}$.

Proof. Putting $\Lambda=\mathbb{C} \backslash U$, we need $\{a: \operatorname{sp}(a)$ meets $\Lambda\}$ closed in A. So let $a_{n} \rightarrow a$ with $\operatorname{sp}\left(a_{n}\right)$ meeting Λ at, say, λ_{n}. If $\left(\lambda_{n}\right)_{n}$ is unbounded, by passing to a subsequence we may assume $\lambda_{n} \rightarrow \infty$, so $\left(1-\lambda_{n}^{-1} a_{n}\right)_{n}$ is a sequence of non-invertibles converging to 1 , a contradiction. Thus $\left(\lambda_{n}\right)_{n}$ is bounded and by passing to a subsequence we may assume that $\lambda_{n} \rightarrow \lambda \in \Lambda$. Then $\left(\lambda_{n}-a_{n}\right)_{n}$ is a sequence of non-invertibles converging to $\lambda-a$, thus $\lambda-a$ is non-invertible i.e. $\lambda \in \operatorname{sp}(a)$. We conclude that $\operatorname{sp}(a)$ meets Λ.

Lemma VIII.7.5. Let A be a good topological algebra, and $n \geq 1$. Then $\operatorname{Lg}_{n}(A)$ is open in A^{n}.
Proof. Let $\left(a_{i}\right) \in \operatorname{Lg}_{n}(A)$, so $\sum b_{i} a_{i}=1$ for some $\left(b_{i}\right) \in A^{n}$. There is a neighborhood U of 0 such that $\sum b_{i} U \subseteq A^{\times}-1$. Then, for $a_{i}^{\prime} \in a_{i}+U$, we have

$$
\sum b_{i} a_{i}^{\prime} \in \sum b_{i} a_{i}+\sum b_{i} U=1+\sum b_{i} U \subseteq 1+\left(A^{\times}-1\right)=A^{\times}
$$

hence $\left(a_{i}^{\prime}\right) \in \operatorname{Lg}_{n}(A)$.

VIII. 8 Fréchet spaces and Fréchet algebras

In this section, we provide the definitions and the salient facts of the theory of Fréchet spaces and Fréchet algebras. Our exposition is quite detailed and essentially self-contained.

We shall deal with inverse systems and inverse limits, so let us recall these notions first. Categorically speaking, a countable inverse system in a category \mathcal{C} is given by a sequence of objects $\left(X_{k}\right)_{k \geq 0}$ together with connecting morphisms $\xi_{k}: X_{k+1} \rightarrow X_{k}$. Diagrammatically:

$$
\ldots \longrightarrow X_{k+1} \xrightarrow{\xi_{k}} X_{k} \longrightarrow \ldots \longrightarrow X_{2} \xrightarrow{\xi_{1}} X_{1} \xrightarrow{\xi_{0}} X_{0}
$$

An object X equipped with morphisms $\pi_{k}: X \rightarrow X_{k}$ which are compatible with the connecting morphisms, in the sense that $\xi_{k} \circ \pi_{k+1}=\pi_{k}$, is an inverse limit for the inverse system $\left(X_{k}\right)_{k \geq 0}$ if it has the following universal property: for every object X^{\prime} equipped with morphisms $\pi_{k}^{\prime}: X^{\prime} \rightarrow X_{k}$ satisfying $\xi_{k} \circ \pi_{k+1}^{\prime}=\pi_{k}^{\prime}$, there is a unique morphism $\phi: X^{\prime} \rightarrow X$ such that $\pi_{k}^{\prime}=\pi_{k} \circ \phi$. If it exists, the inverse limit is unique up to isomorphism and is denoted $\lim _{\rightleftarrows} X_{k}$. If the category \mathcal{C} has products, then inverse limits exist in C : the subobject X_{∞} of ΠX_{k} consisting of the coherent sequences

$$
X_{\infty}=\left\{\left(x_{k}\right)_{k \geq 0}: \xi_{k}\left(x_{k+1}\right)=x_{k}\right\}
$$

equipped with the (restrictions of the) natural projections $\pi_{k}: X_{\infty} \subseteq \Pi X_{k} \rightarrow X_{k}$, is an inverse limit for the inverse system $\left(X_{k}\right)_{k \geq 0}$. We call X_{∞} the realization of $\lim _{\leftrightarrows} X_{k}$. Note that the inverse limit is unchanged if one passes to a subsequence. More precisely, if $\left(X_{k_{j}}\right)_{j \geq 0}$ is the inverse system whose connecting maps are obtained by composing the connecting maps of the inverse system $\left(X_{k}\right)_{k \geq 0}$, then $\underset{\leftrightarrows}{\lim } X_{k_{j}} \simeq \lim X_{k}$. This can be shown abstractly, or concretely by noticing that a coherent sequence is uniquely determined by its entries over a subsequence $\left(k_{j}\right)_{j \geq 0}$.

Definition VIII.8.1. A topological vector space X is a Fréchet space if the topology of X is given by a family of seminorms $\left\{\|\cdot\|_{k}\right\}_{k \geq 0}$ which is

- separating: $\|x\|_{k}=0$ for all $k \geq 0$ implies $x=0$;
- ordered: $\|\cdot\|_{k} \leq\|\cdot\|_{k+1}$ for all $k \geq 0$;
- complete: if $\left(x_{n}\right)$ is Cauchy under each $\|\cdot\|_{k}$, then there is $x \in X$ such that $\left(x_{n}\right)$ converges to x under each $\|\cdot\|_{k}$.

We start by looking at Fréchet spaces which are inverse limits of Banach spaces; further in this section we shall see that every Fréchet space can be realized in this way. Consider an inverse system of Banach spaces

$$
\ldots \longrightarrow X_{k+1} \xrightarrow{\xi_{k}} X_{k} \longrightarrow \ldots \longrightarrow X_{2} \xrightarrow{\xi_{1}} X_{1} \xrightarrow{\xi_{0}} X_{0}
$$

where each X_{k} is equipped with a Banach norm $\|\cdot\|_{k}$. We may assume that the connecting maps ξ_{k} : $X_{k+1} \rightarrow X_{k}$ are non-expanding; clearly every inverse system of Banach spaces can be normalized as such by inductively rescaling the norms.

Endow $X_{\infty}=\left\{\left(x_{k}\right)_{k \geq 0}: \xi_{k}\left(x_{k+1}\right)=x_{k}\right\} \subseteq \Pi X_{k}$ with the following family of seminorms:

$$
\left\|\left(x_{k}\right)_{k \geq 0}\right\|_{(k)}:=\left\|x_{k}\right\|_{k}
$$

Using the (restrictions of the) natural projections $\pi_{k}: X_{\infty} \subseteq \prod X_{k} \rightarrow X_{k}$, we can write these seminorms as $\left\|x_{\infty}\right\|_{(k)}:=\left\|\pi_{k}\left(x_{\infty}\right)\right\|_{k}$. It is easy to check that X_{∞} is closed in ΠX_{k}, and that X_{∞} is a Fréchet space under $\left\{\|\cdot\|_{(k)}\right\}_{k \geq 0}$.

In the category of Fréchet spaces (!), X_{∞} is the inverse limit of the system of Banach spaces $\left(X_{k},\|\cdot\|_{k}\right)$.
The next lemma will be useful later on:
Lemma VIII.8.2. Let $Z \subseteq X_{\infty}$. Then Z is dense in X_{∞} iff $\pi_{k}(Z)$ is dense in $\pi_{k}\left(X_{\infty}\right)$ for all k.
Proof. The forward direction is trivial. For the converse, we show that Z meets every (non-empty) basic open set

$$
X_{\infty} \cap \pi_{k_{1}}^{-1}\left(U_{k_{1}}\right) \cap \cdots \cap \pi_{k_{j}}^{-1}\left(U_{k_{j}}\right)
$$

where each $U_{k_{j}}$ is an open subset of $X_{k_{j}}$. Let $N=\max \left\{k_{1}, \ldots, k_{j}\right\}+1$ and pull back each $U_{k_{j}}$ in X_{N} using the connecting maps, i.e., define the following open sets:

$$
V_{N}^{j}=\left(\xi_{k_{j}} \circ \cdots \circ \xi_{N-1}\right)^{-1}\left(U_{k_{j}}\right) \subseteq X_{N}
$$

Then

$$
X_{\infty} \cap \pi_{N}^{-1}\left(V_{N}^{j}\right)=X_{\infty} \cap\left(\xi_{k_{j}} \circ \cdots \circ \xi_{N-1} \circ \pi_{N}\right)^{-1}\left(U_{k_{j}}\right)=X_{\infty} \cap \pi_{k_{j}}^{-1}\left(U_{k_{j}}\right)
$$

hence

$$
\begin{aligned}
X_{\infty} \cap \pi_{k_{1}}^{-1}\left(U_{k_{1}}\right) \cap \cdots \cap \pi_{k_{j}}^{-1}\left(U_{k_{j}}\right) & =X_{\infty} \cap \pi_{N}^{-1}\left(V_{N}^{1}\right) \cap \cdots \cap \pi_{N}^{-1}\left(V_{N}^{j}\right) \\
& =X_{\infty} \cap \pi_{N}^{-1}\left(V_{N}^{1} \cap \cdots \cap V_{N}^{j}\right)
\end{aligned}
$$

which meets Z by the density of $\pi_{N}(Z)$ in $\pi_{N}\left(X_{\infty}\right)$.
In general, it is possible that the inverse limit X_{∞} ends up being an uneventful 0 -space. An obvious way to counteract this possibility is to demand the connecting maps to be surjective (in which case the projection maps would be surjective as well), but that would not fit well with many natural situations (see Example VIII. 8 below). Instead, we consider an "almost" surjectivity condition on the connecting maps ξ_{k} which will make the projections maps π_{k} "almost" surjective as well.

The next statement is known as the abstract Mittag-Leffler theorem and it is due to Bourbaki.
Theorem VIII.8.3. Assume that each connecting map $\xi_{k}: X_{k+1} \rightarrow X_{k}$ has dense image. Then each projection $\pi_{k}: X_{\infty} \rightarrow X_{k}$ has dense image.

Proof. It suffices to show that $\pi_{0}\left(X_{\infty}\right)$ is dense in X_{0}, for one has $\pi_{0}\left(\lim _{\longleftarrow} X_{k \geq i}\right)=\pi_{i}\left(\lim _{\longleftrightarrow} X_{k \geq 0}\right)$. Pick $x_{0} \in X_{0}$ and $\varepsilon>0$. For each k, pick $x_{k+1} \in X_{k+1}$ such that $\left\|x_{k}-\xi_{k}\left(x_{k+1}\right)\right\|_{k}<\varepsilon / 2^{k}$.

Fix k. For $n \geq k$ let $z_{k}^{(n)}=\left(\xi_{k} \circ \cdots \circ \xi_{n-1}\right)\left(x_{n}\right) \in X_{k}$, where $z_{k}^{(k)}=x_{k}$. As each connecting map is nonexpanding, we have:

$$
\left\|z_{k}^{(n)}-z_{k}^{(n+1)}\right\|_{k} \leq\left\|z_{n}^{(n)}-z_{n}^{(n+1)}\right\|_{n}=\left\|x_{n}-\xi_{n}\left(x_{n+1}\right)\right\|_{n}<\varepsilon / 2^{n}
$$

Thus $\left(z_{k}^{(n)}\right)_{n \geq k}$ is Cauchy; let $z_{k}^{(n)} \rightarrow y_{k}$ in X_{k}. In particular, for $k=0$ we get that $z_{0}^{(0)}=x_{0}$ is within 2ε of y_{0}. We are therefore done once we show $\left(y_{k}\right)_{k \geq 0} \in X_{\infty}$. But $z_{k+1}^{(n)} \rightarrow y_{k+1}$ implies $z_{k}^{(n)}=\xi_{k}\left(z_{k+1}^{(n)}\right) \rightarrow \xi_{k}\left(y_{k+1}\right)$, hence $\xi_{k}\left(y_{k+1}\right)=y_{k}$.

The abstract Mittag-Leffler theorem holds, more generally, in the context of complete metric spaces. Interpreting the density of the projections as a non-vanishing result for the inverse limit, Bourbaki obtains the classical Mittag-Leffler theorem in complex analysis concerning the existence of meromorphic functions with prescribed poles. Density as a means for existence is the motivation that underlies the Baire category theorem, as well; in fact, one can easily derive the latter from the abstract Mittag-Leffler theorem; see [30].

We derive two corollaries. The first is an improvement on Lemma VIII.8.2:
Corollary VIII.8.4. Assume that each connecting map $\xi_{k}: X_{k+1} \rightarrow X_{k}$ has dense image, and let $Z \subseteq X_{\infty}$. Then Z is dense in X_{∞} iff $\pi_{k}(Z)$ is dense in X_{k} for all k.

The second corollary says that an inverse system of Banach spaces with dense connecting maps is not normable, unless it is "stationary" from a certain point on:

Corollary VIII.8.5. Assume that each connecting map $\xi_{k}: X_{k+1} \rightarrow X_{k}$ has dense image. Then X_{∞} is normable iff the connecting maps are eventually bijective.

Proof. Assume v is a Banach norm on X_{∞} which induces the Fréchet topology we already have on X_{∞}. Then $v \leq C\|\cdot\|_{(N)}$ for some N, and $\|\cdot\|_{(k)} \leq C_{k} v$ for all k; hence $\|\cdot\|_{(k)} \leq C_{k}^{\prime}\|\cdot\|_{(N)}$ for all k. When $k \geq N$, we obtain $\|\cdot\|_{(k+1)} \leq C_{k+1}^{\prime}\|\cdot\|_{(N)} \leq C_{k+1}^{\prime}\|\cdot\|_{(k)}$. Thus:

$$
c_{k}\|\cdot\|_{(k+1)} \leq\|\cdot\|_{(k)} \leq\|\cdot\|_{(k+1)} \quad(k \geq N)
$$

This leads to

$$
c_{k}\|\cdot\|_{k+1} \leq\left\|\xi_{k}(\cdot)\right\|_{k} \leq\|\cdot\|_{k+1} \quad(k \geq N)
$$

on $\pi_{k+1}\left(X_{\infty}\right)$. Since $\pi_{k+1}\left(X_{\infty}\right)$ is dense in X_{k+1}, it follows that the previous double inequality actually holds on X_{k+1}. That makes ξ_{k} bijective for $k \geq N$.

Conversely, if ξ_{k} bijective for $k \geq N$ then the Open Mapping Theorem guarantees that a double inequality as above holds for $k \geq N$. We quickly obtain the equivalence of the seminorms $\|\cdot\|_{(k)}$ for $k \geq N$, and X_{∞} is then normed by $\|\cdot\|_{(N)}$.

Next, we show that every Fréchet space can be realized as an inverse limit of Banach spaces. This is the Arens - Michael theorem.

Let X be a Fréchet space under the family of seminorms $\left\{\|\cdot\|_{k}\right\}_{k \geq 0}$. Let X_{k} denote the $\|\cdot\|_{k}$-completion of X modulo the degenerate subspace of $\|\cdot\|_{k}$. The ordering on the seminorms implies that, before completions, we had an inverse system of normed spaces with surjective and non-expanding connecting maps:

$$
\cdots \xrightarrow{\theta_{2}} X /\left\{\|\cdot\|_{2}=0\right\} \xrightarrow{\theta_{1}} X /\left\{\|\cdot\|_{1}=0\right\} \xrightarrow{\theta_{0}} X /\left\{\|\cdot\|_{0}=0\right\}
$$

After completions, we have an inverse system of Banach spaces with dense and non-expanding maps:

$$
\cdots \xrightarrow{\bar{\theta}_{2}} X_{2} \xrightarrow{\bar{\theta}_{1}} X_{1} \xrightarrow{\bar{\theta}_{0}} X_{0}
$$

The inverse limit of this inverse system is a Fréchet space denoted X_{∞}.
Proposition VIII.8.6. X_{∞} is isometrically isomorphic to X.

Proof. There is a natural map $p_{k}: X \rightarrow X_{k}$, and $\|x\|_{k}=\left\|p_{k}(x)\right\|_{X_{k}}$. Let $p=\prod p_{k}: X \rightarrow \prod X_{k}$. The fact that $\left\{\|\cdot\|_{k}\right\}_{k \geq 0}$ is separating translates into p being injective. As $\bar{\theta}_{k}\left(p_{k+1}(x)\right)=p_{k}(x)$, we have $p(X) \subseteq X_{\infty}$. Furthermore, for each $k,\|x\|_{k}=\left\|p_{k}(x)\right\|_{X_{k}}=\|p(x)\|_{(k)}$ meaning that $p: X \rightarrow X_{\infty}$ is isometric as a map between Fréchet spaces. We are left with showing the surjectivity of p. By the completeness of X, it suffices to show that $p(X)$ dense in X_{∞}. For that, it suffices to show that $\pi_{k}(p(X))$ is dense in X_{k} for all k. But that is obvious: $\pi_{k}(p(X))=p_{k}(X)$, which is dense in X_{k}.

The inverse limit of a descending chain of Banach spaces

$$
\cdots \subseteq X_{2} \subseteq X_{1} \subseteq X_{0}
$$

can be identified with $\bigcap_{k \geq 0} X_{k}$ via the diagonal embedding. The Fréchet structure on $\bigcap_{k \geq 0} X_{k}$ is simply the restriction of the family $\left\{\|\cdot\|_{k}\right\}_{k \geq 0}$ to $\bigcap_{k \geq 0} X_{k}$.

Assume each X_{k+1} is dense in X_{k}. Then Theorem VIII.8.3 says that X_{∞} is dense in each X_{k}. Furthermore, if the descending sequence $\left(X_{k}\right)$ does not stabilize, then X_{∞} is not normable by Corollary VIII.8.5.

We end our discussion by mentioning that Fréchet spaces enjoy the three fundamental principles of functional analysis: the Open Mapping Theorem, the Closed Graph Theorem, and the Uniform Boundedness

Principle. As an application of the Closed Graph Theorem for Fréchet spaces, we state the following useful fact:

Lemma VIII.8.7. Let X_{∞}, Y_{∞} be Fréchet subspaces of Banach spaces X, Y such that the inclusions $X_{\infty} \hookrightarrow X$ and $Y_{\infty} \hookrightarrow Y$ are continuous. Then a restriction $\phi \mid: X_{\infty} \rightarrow Y_{\infty}$ of a continuous linear map $\phi: X \rightarrow Y$ is continuous.

In particular, if $X_{\infty}, X_{\infty}^{\prime}$ are Fréchet subspaces of the Banach space X such that the inclusions $X_{\infty} \hookrightarrow X$ and $X_{\infty}^{\prime} \hookrightarrow X$ are continuous, and if $X_{\infty} \subseteq X_{\infty}^{\prime}$, then the inclusion $X_{\infty} \hookrightarrow X_{\infty}^{\prime}$ is continuous.

We now move to Fréchet algebras. Recall, algebras and their morphisms are assumed to be unital; however, in the next definition we do not require the seminorms to be unital.

Definition VIII.8.8. A Fréchet algebra A is an algebra endowed with a family of seminorms $\left\{\|\cdot\|_{k}\right\}_{k \geq 0}$ such that:

- A is a Fréchet space under the seminorms $\left\{\|\cdot\|_{k}\right\}_{k \geq 0}$
- for each k the seminorm $\|\cdot\|_{k}$ is submultiplicative, i.e., $\|a b\|_{k} \leq\|a\|_{k}\|b\|_{k}$ for all $a, b \in A$

If A is a Fréchet algebra under the seminorms $\left\{\|\cdot\|_{k}\right\}_{k \geq 0}$ then $\mathrm{M}_{n}(A)$ is a Fréchet algebra under the seminorms given by $\left\|\left(a_{i j}\right)\right\|_{k}=\sum_{i, j}\left\|a_{i j}\right\|_{k}$; this will be the standard Fréchet structure on matrix algebras in what follows.

Remark VIII.8.9. It is also common to call a Fréchet algebra a topological algebra that is a Fréchet space as a topological vector space. A Fréchet algebra with submultiplicative seminorms is then called (following Michael [54]) a locally multiplicatively-convex or, simply, an m-convex Fréchet algebra.

The terminology " σ-Banach algebra" for the type of algebra described in Definition VIII. 8.8 would be more suggestive, and it would avoid the confusion around what is meant by a Fréchet algebra. Furthermore, it would be consistent with the notion of σ - C^{*}-algebras which is already in use. Alas, terminologies are what they are.

Mutatis mutandis, our discussion of Fréchet spaces extends to the context of Fréchet algebras. Consider an inverse system of Banach algebras

$$
\ldots \longrightarrow A_{k+1} \xrightarrow{\alpha_{k}} A_{k} \longrightarrow \ldots \longrightarrow A_{2} \xrightarrow{\alpha_{1}} A_{1} \xrightarrow{\alpha_{0}} A_{0}
$$

where each A_{k} is equipped with a Banach algebra norm $\|\cdot\|_{k}$. We may assume the connecting morphisms $\alpha_{k}: A_{k+1} \rightarrow A_{k}$ to be non-expanding. The inverse limit $\lim A_{k}$ in the category of Fréchet algebras is realized by the (unital) Fréchet algebra

$$
A_{\infty}=\left\{\left(a_{k}\right)_{k \geq 0}: \alpha_{k}\left(a_{k+1}\right)=a_{k}\right\} \subseteq \prod A_{k}
$$

equipped with the family of seminorms described by $\|a\|_{(k)}:=\left\|\pi_{k}(a)\right\|_{k}$.
The inverse limit of an inverse system of C^{*}-algebras with surjective (equivalently, dense) connecting morphisms is termed a σ - C^{*}-algebra.

Conversely, every Fréchet algebra as an inverse limit of Banach algebras in a canonical way. Let A be a Fréchet algebra under the family of seminorms $\left\{\|\cdot\|_{k}\right\}_{k \geq 0}$. Let A_{k} be the (unital) Banach algebra obtained by completing A modulo the degeneracy ideal of $\|\cdot\|_{k}$. We obtain an inverse system of Banach algebras with non-expanding, dense morphisms:

$$
\cdots \xrightarrow{\bar{\theta}_{2}} A_{2} \xrightarrow{\bar{\theta}_{1}} A_{1} \xrightarrow{\bar{\theta}_{0}} A_{0}
$$

Let A_{∞} denote the Fréchet algebra arising as the inverse limit of the inverse system thus obtained. Then A_{∞} is isometrically isomorphic to A.

Proposition VIII.8.10. Let A_{∞} denote the inverse limit $\underset{\leftrightarrows}{\lim } A_{k}$. Then:
a) $a \in A^{\times}$iff $\pi_{k}(a) \in A_{k}^{\times}$for all k;
b) $\operatorname{sp}_{A_{\infty}}(a)=\bigcup \operatorname{sp}_{A_{k}}\left(\pi_{k}(a)\right)$ for $a \in A_{\infty}$. In particular, $\operatorname{sp}(a)$ is nonempty for all $a \in A_{\infty}$;
$r_{A_{\infty}}(a)=\sup _{k} r_{A_{k}}\left(\pi_{k}(a)\right)$ for $a \in A_{\infty}$. In particular, if $r_{A_{\infty}}(1-a)<1$ then $a \in A_{\infty}^{\times}$.
Proof. a) The forward direction is clear; we show the converse. For each k let $b_{k} \in A_{k}$ be the inverse of $\pi_{k}(a)$. As b_{k+1} is the inverse of $\pi_{k+1}(a)$, we get $\alpha_{k}\left(b_{k+1}\right)$ is the inverse of $\alpha_{k}\left(\pi_{k+1}(a)\right)=\pi_{k}(a)$. Thus $\alpha_{k}\left(b_{k+1}\right)=b_{k}$, and we conclude that $b=\left(b_{k}\right)_{k \geq 0}$ is an inverse of a in A_{∞}.
$b)$ is a spectral reformulation of a), and c) follows easily.
Let $A=A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \ldots$ be a descending chain of Banach algebras with continuous inclusions. Then $\cap_{k \geq 0} A_{k}$ is a Fréchet subalgebra of A.

If each A_{k+1} is dense in A_{k} (equivalently, if each A_{k} is dense in A) then $\cap_{k \geq 0} A_{k}$ is dense in A.
If each A_{k+1} is spectral in A_{k} (equivalently, if each A_{k} is spectral in A) then $\cap_{k \geq 0} A_{k}$ is spectral in A.
Inversion is a continuous operation on A_{∞}^{\times}; this is justified by mimicking the Banach algebra proof. However, A_{∞}^{\times}may not be open, i.e., A_{∞} may not be a good topological algebra.

Let X be a σ-compact and locally compact Hausdorff space, for instance a proper metric space. We can exhaust X by a non-decreasing sequence of compact subsets $\left(X_{k}\right)_{k \geq 0}$ with $X_{k} \subseteq$ int X_{k+1}; the advantage of such an exhaustion is the fact that f is continuous on X iff the restriction of f to each X_{k} is continuous. Then $C(X)$ has a natural Fréchet algebra structure, given by the seminorms $\|f\|_{k}=\sup _{x \in X_{k}}|f(x)|$. Its canonical inverse system of Banach algebras is

$$
\ldots \rightarrow C\left(X_{2}\right) \rightarrow C\left(X_{1}\right) \rightarrow C\left(X_{0}\right) .
$$

The invertible group of $C(X)$, consisting of the non-vanishing functions, is not open. Indeed, let f_{k} be a continuous extension of the characteristic function of X_{k}. Then $\left(f_{k}\right)$ is a sequence of non-invertibles converging to 1 .

The Fréchet algebra $C(X)$ is a (commutative) σ - C^{*}-algebra.
Inspired by the above example, one can formulate a general situation where a Fréchet algebra fails to have an open group of invertibles.
Proposition VIII.8.11. Let $\cdots \xrightarrow{\alpha_{2}} A_{2} \xrightarrow{\alpha_{1}} A_{1} \xrightarrow{\alpha_{0}} A_{0}$ be an inverse system of semisimple Banach algebras and let A_{∞} be its inverse limit. If A_{∞}^{\times}is open, then the connecting morphisms α_{k} are eventually isomorphisms.

In particular, if a $\sigma-\mathrm{C}^{*}$-algebra has an open group of invertibles, then it is actually a C^{*}-algebra.
Proof. If A is semisimple, and $\alpha: A \rightarrow B$ is not injective, then there is a non-invertible $a \in A$ such that $\alpha(a)=1$. Indeed, the non-zero ideal ker α cannot be contained in $1+A^{\times}$, by the semisimplicity of A. Hence, the identity of B can be lifted to a non-invertible in A.

Arguing by contradiction, say that there is a subsequence $\left(\alpha_{k_{j}}\right)$ of non-injectives. For each j, let $a^{(j)} \in A_{\infty}$ be obtained as follows: lift $1 \in A_{0}$ to $1 \in A_{1}$ and so on to $1 \in A_{k_{j}}$, then to a non-invertible in $A_{k_{j}+1}$, after which lift arbitrarily. Then $a^{(j)}$ is non-invertible, and $a^{(j)} \rightarrow 1$ in A_{∞}.

Remark VIII.8.12. If X, Y are topological spaces then $X(Y)$ denotes the continuous maps from Y to X. Let X be a compact Hausdorff space and let A be a Fréchet algebra under the seminorms $\left\{\|\cdot\|_{k}\right\}_{k \geq 0}$. Then $A(X)$ is a Fréchet algebra under the seminorms $\|f\|_{k}:=\sup _{x \in X}\|f(x)\|_{k}$. As inversion is continuous in A^{\times}, we have $A(X)^{\times}=A^{\times}(X)$. Since $V(X)$ is open in $A(X)$ whenever V is an open subset of A, we obtain in particular that $A(X)$ is good whenever A is good.

K-theory for Fréchet algebras is rather technical. In [67], Phillips defines and studies a "representable" K-theory which coincides with the usual K-theory in the case of good Fréchet algebras ([67, Thm.7.7]). Phillips is partly motivated by the context of $\sigma-C^{*}$-algebras - which, we have seen above, are not good in the non-trivial case. A systematic use is made of the fact that a Fréchet algebra is the inverse limit of an inverse system of Banach algebras with dense connecting morphisms; however, the details of lifting Banach algebraic results to the Fréchet algebraic level of generality are painful.

As a particular case of [67, Thm.6.5], we have the following Milnor $\lim _{\longleftarrow}{ }^{1}$-sequence:
Theorem VIII.8.13. Let $A_{\infty}=\lim _{\rightleftarrows} A_{k}$ be a good Fréchet algebra, arising as the inverse limit of an inverse system of Banach algebras with dense connecting maps:

$$
\ldots \longrightarrow A_{k+1} \xrightarrow{\alpha_{k}} A_{k} \longrightarrow \ldots \longrightarrow A_{2} \xrightarrow{\alpha_{1}} A_{1} \xrightarrow{\alpha_{0}} A_{0}
$$

Then there is a natural short exact sequence

$$
0 \longrightarrow \lim _{\longleftarrow}^{1} K_{1-*}\left(A_{k}\right) \longrightarrow K_{*}\left(A_{\infty}\right) \longrightarrow \lim _{\longleftarrow} K_{*}\left(A_{k}\right) \longrightarrow 0
$$

Remark VIII.8.14. Let us describe the functor $\lim _{\longleftarrow}{ }^{1}$. Consider an inverse system of abelian groups

$$
\ldots \longrightarrow G_{k+1} \xrightarrow{\phi_{k}} G_{k} \longrightarrow \ldots \longrightarrow G_{2} \xrightarrow{\phi_{1}} G_{1} \xrightarrow{\phi_{0}} G_{0}
$$

and let $\Delta: \Pi G_{k} \rightarrow \Pi G_{k}$ be given by

$$
\Delta\left(\left(g_{k}\right)_{k \geq 0}\right)=\left(g_{k}-\phi_{k}\left(g_{k+1}\right)\right)_{k \geq 0}
$$

Then $\lim _{\longleftarrow} G_{k}$ is (isomorphic to) the kernel of Δ, and we define $\lim _{\longleftarrow}{ }^{1} G_{k}$ to be the cokernel of Δ. We therefore have an exact sequence

$$
0 \longrightarrow \lim _{\longleftarrow}^{1} G_{k} \longrightarrow \prod G_{k} \stackrel{\Delta}{\longrightarrow} \prod G_{k} \longrightarrow \lim _{\longleftarrow} G_{k} \longrightarrow 0 .
$$

If the connecting maps ϕ_{k} are surjective, then $\lim ^{1} G_{k}=0$.
Holomorphic functional calculus for Fréchet algebras can be obtained from the holomorphic functional calculus for Banach algebras; this is done via the Arens - Michael realization of Fréchet algebras as inverse limits of Banach algebras ([67, Lem.1.3]).

For good Fréchet algebras, we have a direct extension of the holomorphic functional calculus for Banach algebras:

Proposition VIII.8.15. Let A be a good Fréchet algebra, $a \in A$ and $\Omega \subseteq \mathbb{C}$ an open neighborhood of $\operatorname{sp}(a)$. Then there is a unique (unital and continuous) morphism $O(\Omega) \rightarrow A$ sending id_{Ω} to a, given by

$$
O_{a}(f)=f(a):=\frac{1}{2 \pi i} \oint f(\lambda)(\lambda-a)^{-1} d \lambda
$$

where the integral is taken around a cycle (finite union of closed paths) in Ω containing $\operatorname{sp}(a)$ in its interior. Furthermore, we have $\operatorname{sp} f(a)=f(\operatorname{sp}(a))$ for each $f \in O(\Omega)$.

The unique morphism indicated by the previous proposition is referred to as the holomorphic calculus for a. Here $O(\Omega)$, the unital algebra of functions that are holomorphic in Ω, is endowed with the topology of uniform convergence on compacts.

BIBLIOGRAPHY

[1] Open Problems, AIM workshop on property RD (2006)
[2] R. Arens: Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182
[3] B. Aupetit: Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer 1979
[4] C. Badea: Subalgebras with the same K-theory and the same stable rank, Internat. Math. Res. Notices (1994), no. 10, 401-414
[5] C. Badea: The stable rank of topological algebras and a problem of R. G. Swan, J. Funct. Anal. 160 (1998), no. 1, 42-78
[6] C. Badea: Stable ranks, K-groups and Witt groups of some Banach and C C^{*}-algebras, Function spaces (Edwardsville, IL, 1998), 55-64, Contemp. Math. 232, Amer. Math. Soc. 1999
[7] H. Bass: K-theory and stable algebra, Publ. IHES 22 (1964), 5-60
[8] J.A. Behrstock, Y.N. Minsky: Centroids and the Rapid Decay property in mapping class groups, arXiv:0810.1969
[9] B. Blackadar: K-theory for operator algebras, Second edition, Mathematical Sciences Research Institute Publications 5, Cambridge University Press 1998
[10] B. Blackadar, J. Cuntz: Differential Banach algebra norms and smooth subalgebras of C^{*}-algebras, J. Operator Theory 26 (1991), no. 2, 255-282
[11] J.-B. Bost: Principe d'Oka, K-théorie et systèmes dynamiques non commutatifs, Invent. Math. 101 (1990), no. 2, 261-333
[12] I. Chatterji, K. Ruane: Some geometric groups with rapid decay, Geom. Funct. Anal. 15 (2005), no. 2, 311-339
[13] L.A. Coburn: Singular integral operators and Toeplitz operators on odd spheres, Indiana Univ. Math. J. 23 (1973/74), 433-439
[14] J.M. Cohen: Operator norms on free groups, Boll. Un. Mat. Ital. B (6) 1 (1982), no. 3, 1055-1065
[15] A. Connes: An analogue of the Thom isomorphism for crossed products of a C^{*}-algebra by an action of \mathbb{R}, Adv. in Math. 39 (1981), no. 1, 31-55
[16] A. Connes: Noncommutative geometry, Academic Press, 1994
[17] A. Connes, H. Moscovici: Cyclic cohomology, the Novikov conjecture and hyperbolic groups, Topology 29 (1990), no. 3, 345-388
[18] G. Corach, A.R. Larotonda: Stable range in Banach algebras, J. Pure Appl. Algebra 32 (1984), no. 3, 289-300
[19] G. Corach, A.R. Larotonda: Unimodular matrices in Banach algebra theory, Proc. Amer. Math. Soc. 96 (1986), no. 3, 473-477
[20] G. Corach, A.R. Larotonda: A stabilization theorem for Banach algebras, J. Algebra 101 (1986), no. 2, 433-449
[21] G. Corach, F.D. Suárez: Stable rank in holomorphic function algebras, Illinois J. Math. 29 (1985), no. 4, 627639
[22] P. de la Harpe: Groupes hyperboliques, algèbres d'opérateurs et un théorème de Jolissaint, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 14, 771-774
[23] P. de la Harpe, A.G. Robertson, A. Valette: On the spectrum of the sum of generators of a finitely generated group. II, Colloq. Math. 65 (1993), no. 1, 87-102
[24] K.R. Davidson, Y.Q. Ji: Topological stable rank of nest algebras, to appear in Proc. London Math. Soc., preprint 2008
[25] K.R. Davidson, R.H. Levene, L.W. Marcoux, H. Radjavi: On the topological stable rank of non-selfadjoint operator algebras, Math. Ann. 341 (2008), no. 2, 239-253; erratum: Math. Ann. 341 (2008), no. 4, 963-964
[26] C. Druţu, M. Sapir: Relatively hyperbolic groups with rapid decay property, Int. Math. Res. Not. (2005), no. 19, 1181-1194
[27] K.J. Dykema, P. de la Harpe: Some groups whose reduced C^{*}-algebras have stable rank one, J. Math. Pures Appl. (9) 78 (1999), no. 6, 591-608
[28] K.J. Dykema, U. Haagerup, M. Rørdam: The stable rank of some free product C*-algebras, Duke Math. J. 90 (1997), no. 1, 95-121; erratum: Duke Math. J. 94 (1998), no. 1, 213
[29] N. Elhage Hassan: Rangs stables de certaines extensions, J. London Math. Soc. (2) 52 (1995), no. 3, 605-624
[30] J. Esterle: Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem, Proceedings of the conference on Banach algebras and several complex variables (New Haven, Conn., 1983), 107-129, Contemp. Math. 32, Amer. Math. Soc. 1984
[31] U. Haagerup: An example of a nonnuclear C^{*}-algebra, which has the metric approximation property, Invent. Math. 50 (1978/79), no. 3, 279-293
[32] R.H. Herman, L.N. Vaserstein: The stable range of C^{*}-algebras, Invent. Math. 77 (1984), no. 3, 553-555
[33] N. Higson: The Baum-Connes conjecture, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. 1998, Extra Vol. II, 637-646
[34] N. Higson, G. Kasparov: E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001), no. 1, 23-74
[35] W. Hurewicz, H. Wallman: Dimension Theory, Princeton Mathematical Series, v. 4. Princeton University Press 1941
[36] D. Husemoller: Fibre bundles, Graduate Texts in Mathematics 20, Springer 1994
[37] J.W. Jenkins: Symmetry and nonsymmetry in the group algebras of discrete groups, Pacific J. Math. 32 (1970), 131-145
[38] R. Ji: Smooth dense subalgebras of reduced group C^{*}-algebras, Schwartz cohomology of groups, and cyclic cohomology, J. Funct. Anal. 107 (1992), no. 1, 1-33
[39] P. Jolissaint: K-theory of reduced C^{*}-algebras and rapidly decreasing functions on groups, K-Theory 2 (1989), no. 6, 723-735
[40] P. Jolissaint: Rapidly decreasing functions in reduced C^{*}-algebras of groups, Trans. Amer. Math. Soc. 317 (1990), no. 1, 167-196
[41] P.W. Jones, D. Marshall, T. Wolff: Stable rank of the disc algebra, Proc. Amer. Math. Soc. 96 (1986), no. 4, 603-604
[42] P. Julg: Travaux de N. Higson et G. Kasparov sur la conjecture de Baum-Connes, Séminaire Bourbaki 1997/98, Astérisque No. 252 (1998), 151-183
[43] E. Kaniuth: A course in commutative Banach algebras, Graduate Texts in Mathematics 246, Springer 2009
[44] M. Karoubi: K-theory. An introduction, Grundlehren der Mathematischen Wissenschaften, Band 226, Springer, 1978
[45] T. Kato: Asymptotic Lipschitz maps, combable groups and higher signatures, Geom. Funct. Anal. 10 (2000), no. 1, 51-110
[46] V. Lafforgue: A proof of property (RD) for cocompact lattices of $\operatorname{SL}(3, \mathbb{R})$ and $\mathrm{SL}(3, \mathbb{C})$, J. Lie Theory 10 (2000), no. 2, 255-267
[47] V. Lafforgue: K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes, Invent. Math. 149 (2002), no. 1, 1-95
[48] V. Lafforgue: K-théorie bivariante pour les algèbres de Banach, groupö̈des et conjecture de Baum-Connes. Avec un appendice d'Hervé Oyono-Oyono, J. Inst. Math. Jussieu 6 (2007), no. 3, 415-451
[49] T.Y. Lam: Serre's problem on projective modules, Springer Monographs in Mathematics, Springer 2006
[50] J. Ludwig: A class of symmetric and a class of Wiener group algebras, J. Funct. Anal. 31 (1979), no.2, 187-194
[51] A.T. Lundell: Concise tables of James numbers and some homotopy of classical Lie groups and associated homogeneous spaces, Algebraic topology (San Feliu de Guxols, 1990), 250-272, Lecture Notes in Math. 1509, Springer 1992
[52] J.C. McConnell, J. C. Robson: Noncommutative Noetherian rings (With the cooperation of L.W. Small), A Wiley-Interscience Publication. John Wiley \& Sons 1987
[53] R. Meyer: Combable groups have group cohomology of polynomial growth, Q. J. Math. 57 (2006), no. 2, 241261
[54] E.A. Michael: Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. no. 11 (1952)
[55] K.M. Mikkola, A.J. Sasane: Bass and topological stable ranks of complex and real algebras of measures, functions and sequences, to appear in Complex Analysis and Operator Theory, 2009
[56] I. Mineyev: Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal. 11 (2001), no. 4, 807-839
[57] I. Mineyev, G. Yu: The Baum-Connes conjecture for hyperbolic groups, Invent. Math. 149 (2002), no. 1, 97-122
[58] H. Moscovici: Cyclic cohomology and invariants of multiply connected manifolds, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 675-688, Math. Soc. Japan 1991
[59] M. Nagisa, H. Osaka, N.C. Phillips: Ranks of algebras of continuous C^{*}-algebra valued functions, Canad. J. Math. 53 (2001), no. 5, 979-1030
[60] G. Nagy: Stable rank of C^{*}-algebras of Toeplitz operators on polydisks, Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), 227-235, Oper. Theory Adv. Appl. 24, Birkhäuser 1987
[61] B. Nica: Relatively spectral morphisms and applications to K-theory, J. Funct. Anal. 255 (2008), 3303-3328
[62] B. Nica: Stable ranks - an introduction, preprint 2009
[63] V. Nistor: Stable range for tensor products of extensions of \mathcal{K} by $C(X)$, J. Operator Theory 16 (1986), no. 2, 387-396
[64] M.E. Novodvorskii: Certain homotopic invariants of the space of maximal ideals, Mat. Zametki 1 (1967), 487494
[65] J.A. Packer, M.A. Rieffel: Wavelet filter functions, the matrix completion problem, and projective modules over $C\left(\mathbb{T}^{n}\right)$, J. Fourier Anal. Appl. 9 (2003), no. 2, 101-116
[66] M. Pannenberg: Stable rank of Fourier algebras and an application to Korovkin theory, Math. Scand. 67 (1990), no. 2, 299-319
[67] N.C. Phillips: K-theory for Fréchet algebras, Internat. J. Math. 2 (1991), no. 1, 77-129
[68] I. Putnam: The invertible elements are dense in the irrational rotation C^{*}-algebras, J. Reine Angew. Math. 410 (1990), 160-166
[69] M. Rajagopalan: On the L^{p}-space of a locally compact group, Colloq. Math. 10 (1963), 49-52
[70] J. Ramagge, G. Robertson, T. Steger: A Haagerup inequality for $\widetilde{A}_{1} \times \widetilde{A}_{1}$ and \widetilde{A}_{2} buildings, Geom. Funct. Anal. 8 (1998), no. 4, 702-731
[71] M.A. Rieffel: Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301-333
[72] M.A. Rieffel: The homotopy groups of the unitary groups of noncommutative tori, J. Operator Theory 17 (1987), no. 2, 237-254
[73] M. Rørdam: The stable rank of $C_{\mathrm{red}}^{*}\left(F_{n}\right)$ is one-a survey, Operator algebras and quantum field theory (Rome, 1996), 51-58, Int. Press 1997
[74] M. Rørdam, F. Larsen, N. Laustsen: An introduction to K-theory for C^{*}-algebras, London Mathematical Society Student Texts 49, Cambridge University Press, 2000
[75] S. Saeki: The L L^{p}-conjecture and Young's inequality, Illinois J. Math. 34 (1990), no. 3, 614-627
[76] L.B. Schweitzer: A short proof that $M_{n}(A)$ is local if A is local and Fréchet, Internat. J. Math. 3 (1992), no. 4, 581-589
[77] L.B. Schweitzer: A nonspectral dense Banach subalgebra of the irrational rotation algebra, Proc. Amer. Math. Soc. 120 (1994), no. 3, 811-813
[78] A. Sheu: A cancellation theorem for modules over the group C^{*}-algebras of certain nilpotent Lie groups, Canad. J. Math. 39 (1987), no. 2, 365-427
[79] G. Skandalis: Progrès récents sur la conjecture de Baum-Connes. Contribution de Vincent Lafforgue, Séminaire Bourbaki 1999/2000, Astérisque No. 276 (2002), 105-135
[80] T. Sudo: Stable rank of C^{*}-tensor products with the algebras of continuous functions on product spaces of intervals, Sci. Math. Jpn. 57 (2003), no. 3, 463-467
[81] A.A. Suslin: Stability in algebraic K-theory, Algebraic K-theory, Part I (Oberwolfach, 1980), 304-333, Lecture Notes in Math. 966, Springer 1982
[82] R.G. Swan: Topological examples of projective modules, Trans. Amer. Math. Soc. 230 (1977), 201-234
[83] J.L. Taylor: Banach algebras and topology, Algebras in analysis (Proc. Instructional Conf. and NATO Advanced Study Inst., Birmingham, 1973), 118-186, Academic Press 1975
[84] J.L. Taylor: Topological invariants of the maximal ideal space of a Banach algebra, Advances in Math. 19 (1976), no. 2, 149-206
[85] A. Valette: Introduction to the Baum-Connes conjecture (From notes taken by Indira Chatterji. With an appendix by Guido Mislin), Lectures in Mathematics ETH Zürich, Birkhäuser 2002
[86] L.N. Vaserstein: On the stabilization of the general linear group over a ring, Math. USSR-Sb. 8 (1969), 383-400
[87] L.N. Vaserstein: The stable range of rings and the dimension of topological spaces, Funkcional. Anal. i Priložen. 5 (1971), no. 2, 17-27
[88] J. Villadsen: Comparison of projections and unitary elements in simple C ${ }^{*}$-algebras, J. Reine Angew. Math. 549 (2002), 23-45
[89] N.E. Wegge-Olsen: K-theory and C^{*}-algebras. A friendly approach, Oxford University Press 1993
[90] Y. Xue: The connected stable rank of the purely infinite simple C ${ }^{*}$-algebras, Proc. Amer. Math. Soc. 127 (1999), no. 12, 3671-3676
[91] G. Yu: Higher index theory of elliptic operators and geometry of groups, International Congress of Mathematicians, Vol. II, 1623-1639, Eur. Math. Soc. 2006

[^0]: ${ }^{1}$ This bound, together with the proof of Proposition IV.3.4, suggest that $\mathrm{inj}_{k} A$ equals the general stable rank of the k-th suspension of A.

