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CHAPTER I 

 

 INTRODUCTION 

 

Parkinson’s Disease 

 

General Overview 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder present in 

~1-2% of the population in the United States over 60 years of age, with symptoms that 

include a progressive decline in motor function, tremor, bradykinesia, rigidity, and 

postural instability.  PD is characterized by the preferential loss of the nigrostriatal 

dopaminergic neurons, whose axons terminate within the striatum and release dopamine 

(DA) onto medium spiny neurons (MSNs).  The neuropathological findings in PD 

include a decrease in spine density of striatal MSNs, and patients with PD display a 

decreased MSN dendrite number and length (McNeill et al., 1988; Zaja-Milatovic et al., 

2005).   

Concurrent with the morphological changes in MSNs, nigrostriatal dopaminergic 

neurons undergo a variety of changes including the development of cytoplasmic, 

eosinophilic inclusions known as Lewy bodies (soma) or Lewy neurites (neuronal 

processes), and prematurely die (Braak and Braak, 2000).  Lewy bodies are composed of 

polymerized α-synuclein, abnormally phosphorylated neurofilaments, ubiquitin, 

proteasome subunits, heat-shock proteins, and neurofilaments (Lotharius and Brundin, 

2002).  To definitively diagnose PD, a combination of clinical evaluation and post-
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mortem confirmation of the presence of Lewy bodies is required.  As post-mortem delay 

affects the stability of many proteins, the use of human tissue in studies examining the 

biochemical mechanisms underlying progression of PD may be difficult to interpret. 

 

Known Mechanisms of PD   

Both genetic and environmental factors influence the development of PD.  

Mutations in the following genes have been linked to either sporadic or familial PD 

cases: UCH-L1 (ubiquitin carboxyl-terminal hydrolase L1), PINK1 (PTEN-induced 

kinase-1), DJ1, PARK 2 (parkin), LRRK 2 (leucine-rich repeat kinase 2), and SNCA (α-

synuclein) (Warner and Schapira, 2003; Farrer, 2006).  It is unclear how each of the 

mutations leads to the PD phenotype, but altered protein processing appears to be a 

common theme.  First, mutant α-synuclein more readily oligomerizes and accumulates at 

possibly toxic doses (Moore et al., 2005).  Second, mutations that reduce enzymatic 

activity of parkin, a ubiquitin E3 ligase, may contribute to the accumulation of putative 

parkin substrates, such as α-synuclein, CDCrel-1, CDCrel-2, Pael-R, cyclin-E, p38/JTV-

1, FBP-1, and EPS-15  (Moore et al., 2005; Fallon et al., 2006; Savitt et al., 2006).  

Environmental factors also play a role in the development of many cases of PD.  

Exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), originally an 

inadvertent byproduct of meperidine, can cause parkinsonism in humans within 7-14 

days.  After systemic injection, MPTP is converted to MPP+ by monoamine oxidase B.  

MPP+ enters dopaminergic neurons via the DA transporter, and accumulates in the 

mitochondria.  An inhibitor of mitochondrial complex I, MPP+ increases free radical 

release and oxidative damage, ultimately resulting in the degeneration of DA neurons.  
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Consistent with this finding, exposure to other mitochondrial complex I inhibitors such as 

various herbicides, pesticides, and natural compounds have been reported to increase PD 

risk (Greenamyre et al., 2001; Warner and Schapira, 2003).   For many sporadic cases of 

PD, no known causative factor has yet been identified.  

 

Current Therapies 

The most commonly used therapy for PD patients attempts to replace DA by 

providing the direct precursor to DA, L-DOPA (Schapira, 2005).  Treatment with L-

DOPA is effective in controlling motor symptoms of PD, but typically becomes less 

effective with long-term use and can eventually cause unwanted motor complications, 

such as dyskinesias and a “wearing-off” phenomenon (Martignoni et al., 2003).  

Wearing-off is a phenomenon that may be related to the pulsatile administration of L-

DOPA, and describes the re-emergence or worsening of parkinsonian symptoms prior to 

taking the next scheduled dose of L-DOPA.  Unfortunately, the numerous side effects of 

dopaminergic agonists may complicate clinical management.   

 Surgical implantation of a ‘pacemaker’ device in the subthalamic nucleus is an 

increasingly used therapeutic strategy to suppress the hyperactivity of this brain region.  

High frequency stimulation of the subthalamic nucleus dramatically, but not completely, 

reduces many of the motor symptoms associated with PD (Benabid et al., 2005).   While 

this type of deep brain stimulation results in an improved quality of life for many 

patients, there are potential surgical complications, along with reports of 

neuropsychological alterations (Volkman, 2004; Benabid et al., 2005). The long-term 

effectiveness of this type of intervention is unknown, and it may not halt the cellular and 
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subcellular pathologies that are hallmarks of PD.  

 

Model System: Unilateral 6-OHDA Lesioned Rat 

 Several animal models have provided invaluable insight into the mechanisms 

underlying PD and were considered for use in the experiments described in this 

dissertation.  Many of these other models use toxins such as reserpine, 

methamphetamine, MPTP, or rotenone to either temporarily or permanently deplete 

dopaminergic neurons in the rat (Beal, 2001; Betarbet et al., 2002).  However, the most 

widely used model is the unilaterally 6-OHDA (6-hydroxydopamine) lesioned rat.  This 

model is generated by unilateral injection of the neurotoxin 6-OHDA into the substantia 

nigra, and has three main advantages over other models.  First, degeneration of the 

nigrostriatal dopaminergic neurons is confined to one hemisphere, leaving the intact 

contralateral hemisphere as an internal control.  Second, the decrease in MSN spine 

density on the side ipsilateral to the 6-OHDA lesion resembles that observed in human 

PD patients (McNeill et al., 1988; Stephens et al., 2005; Zaja-Milatovic et al., 2005).  

One drawback to using this model is that the DA neuron degeneration occurs within 10-

14 days after injection of L-DOPA, more rapid than the slow nigrostriatal degeneration 

recorded in PD.  In addition, most published reports that use 6-OHDA lesioned rats use 

the rats at a relatively young age (typically 3-6 months of age), within a few weeks of the 

lesion surgery.  Thus, this short-term lesion in younger animals may not accurately 

recapitulate the complex interaction between gradual loss of DA and aging in human PD. 

Finally, the use of an animal model such as the 6-OHDA lesioned rat, allows examination 

of the evolving biochemical and structural changes at many different time points 
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following DA depletion, an undertaking not possible in studies using human postmortem 

tissue.   

 

Basal Ganglia 

 

General Overview: Function and Anatomy  

The major function of the basal ganglia is to process incoming signals from 

throughout the cortex, and funnel the information through the thalamus prior to returning 

to various regions of the frontal lobe of the cortex.  This cortical-basal ganglia circuit 

allows the execution, coordination, and control of voluntary movement.  Four parallel 

circuits exist within the basal ganglia that control different sets of functions.  Some 

functions regulated by the basal ganglia circuits include motivation / emotion (limbic 

loop), coordination of extrapersonal space maps (association loop), limb movements 

(skeletomotor loop), and eye movements (occulomotor loop).  Diseases that impact the 

basal ganglia, such as PD, can modify the normal functioning of any of these circuits.  

The motor and limbic circuits are particularly affected in PD, and thus result in a 

characteristic behavioral phenotype that includes akinesia, bradykinesia, resting tremor, 

shuffling gait, and rigidity (Gelb et al., 1999; Suchowersky et al., 2006).  

The striatum is the major input region of the basal ganglia that processes signals from 

other parts of the brain.  Roughly 95% of the neurons within the striatum are MSNs that 

synthesize and release the inhibitory neurotransmitter, γ-aminobutyric acid (GABA, see 

Fig. 1).  The remaining 5% of striatal neurons are aspiny interneurons, which contain 

acetylcholine, somatostatin, NADPH-diaphorase, GABA, parvalbumin, or calretinin.  
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Cortical and thalamic glutamatergic neurons provide the major excitatory inputs into the 

three divisions of the striatum: the caudate nucleus, the putamen, and the nucleus 

accumbens (Figs. 1, 2).  Corticostriatal glutamatergic afferents typically terminate on the 

MSN spine heads, forming asymmetric synapses as defined by the presence of the 

postsynaptic density (PSD) (Arbuthnott et al., 2000).  The dopaminergic innervation from 

the substantia nigra pars compacta is thought to function by modulating both the 

excitatory glutamatergic input, as well as the output of the striatum.   

Output nuclei of the basal ganglia transmit signals to the thalamus, which in turn 

communicates these signals to different areas of the frontal cortex. Output nuclei include 

the internal segment of the globus pallidus, ventral pallidum, and the substantia nigra pars 

reticulata. The neurons within these nuclei synthesize and release GABA, and thus the 

major output from the basal ganglia is inhibitory.   

The intrinsic nuclei make connections and relay information from the input nuclei 

primarily to other regions of the basal ganglia.  The four intrinsic nuclei are the external 

segment of the globus pallidus, the subthalamic nucleus, the substantia nigra pars 

compacta, and the ventral tegmental area. The neurons within these nuclei synthesize and 

release a variety of neurotransmitters, such as GABA (external segment of the globus 

pallidus), glutamate (subthalamic nucleus), and dopamine (substantia nigra pars 

compacta and ventral tegmental area). 

 6
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 Striatum: Direct and Indirect Pathways  

 Striatal MSNs are divided into two different subtypes that project either directly 

or indirectly to the output nuclei of the basal ganglia (Fig. 2).  The direct pathway MSNs 

contain substance P and dynorphin in addition to GABA, and project directly to the 

substantia nigra pars reticulata.  Indirect pathway MSNs contain enkephalin in addition to 

GABA, and project to other intrinsic nuclei which in turn communicate information to 

the output nuclei.  PD causes an imbalance between the normal signaling through the 

direct and indirect pathways, in favor of the indirect pathway (Blandini et al., 2000) (Fig. 

3).  Mechanisms leading to this imbalance are discussed in depth in the later section on 

dopamine receptors (p. 15).  This imbalance results in excessive excitation of the output 

nuclei, inhibiting thalamic signaling to the frontal cortex.  Overall, the relatively 

enhanced signaling via the indirect pathway reduces motor-dependent behavior, 

producing the hypokinetic state observed in PD.  

 

6-OHDA Lesioned Rat: Behavior 

 Systemic administration of L-DOPA exposes receptors in both the intact and 

lesioned hemispheres to DA.  Thus, DA receptors in the lesioned hemisphere are 

supersensitive to this DA and are no longer in balance with the opposite, intact 

hemisphere.  Therefore, unilaterally 6-OHDA lesioned rats with a greater than ~85% 

reduction in striatal tyrosine hydroxylase (TH) that receive an injection of L-DOPA will 

rotate in a direction contralateral to the lesioned hemisphere (Schwarting and Huston, 

1996; Lundblad et al., 2002).  The final result of this imbalance is an elevated inhibitory 

GABAergic output from the basal ganglia to the thalamus and motor cortex in only the 
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lesioned hemisphere (Schwarting and Huston, 1996; Blandini et al., 2000).  The motor 

cortex regulates motor responses in limbs on the opposite side of the body.  Therefore, 

the motor cortex ipsilateral to the lesion is less active, resulting in decreased contralateral 

limb movement and contralateral rotations in response to L-DOPA challenge (Schwarting 

and Huston, 1996).  Chronic, intermittent L-DOPA administration (every 12 hrs.)

 10



 11



results in faster rotation (sensitization) and the acute behavioral effects of L-DOPA are 

maintained for a shorter period of time, reminiscent of the “wearing-off” observed after 

long-term L-DOPA therapy in human PD patients (Schwarting and Huston, 1996; 

Olanow et al., 2006).   

 

Synaptic Plasticity 

 

General Overview 

Corticostriatal glutamatergic synapses are the major excitatory input to striatal 

medium spiny neurons.  These synapses are therefore a key site for dopaminergic 

modulation of incoming excitatory signals into the basal ganglia.  The importance of 

dopaminergic modulation is highlighted in PD, in which the loss of DA results in 

development of a number of characteristic motor pathologies (see p. 1, 8-9).  Therefore, a 

closer examination of the mechanisms underlying the dopaminergic modulation of 

corticostriatal synapse function will help in understanding the significance of the 

biochemical changes that occur in the striatum following DA depletion.  To date, the 

mechanisms underlying the bidirectional modulation of synaptic function have been most 

clearly defined in the hippocampus.  

 The hippocampus is a region of the brain involved in learning and memory, and 

has been the focus of many studies examining synaptic plasticity.  Changes in synaptic 

strength are examined by electrically stimulating excitatory glutamatergic axons and 

recording the postsynaptic responses in the hippocampus CA1 region.  Stimulation of 

these synapses with low frequency stimulation (LFS, 1-5 Hz) leads to a long-lasting 
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depression of synaptic transmission.  In contrast, high frequency stimulation (HFS, 10-

100 Hz) or chemical stimulation of excitatory synapses in the hippocampus leads to a 

long-lasting enhancement of synaptic transmission.  These persistent changes in synaptic 

strength are referred to as long-term depression (LTD) and long-term potentiation (LTP), 

respectively (Stanton, 1996; Malinow and Malenka, 2002; Daoudal and Debanne, 2003).   

 

Molecular Mechanisms 

Hippocampal LTD weakens synapses, at least in part through the activation of 

phosphatases.  LTD is dependent on activation of postsynaptic N-methyl-D-aspartate 

receptors (NMDAR), which allow influx of extracellular Ca2+ in response to LFS.  As the 

phosphatase calcineurin (PP2B) has a higher affinity for Ca2+ than opposing kinases, 

PP2B is preferentially activated by LFS.  Furthermore, LTD produces increases in 

activities of the protein phosphatases 1 (PP1, transient increase) and 2A (PP2A, long-

lasting increase) (Thiels et al., 1998; Thiels et al., 2000).  The subcellular localization of 

PP1 is critical for the induction of LTD, as PP1 localization away from the synapse 

prevents LTD induction (Feng et al., 2000; Morishita et al., 2001).  LTD induction results 

in the dephosphorylation of the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-

isoxazole proprionic acid receptor (AMPAR), presumably as a consequence of the LTD-

induced elevation in phosphatase activity.  Dephosphorylation of GluR1 results in both 

an acute decrease in responsiveness of AMPA receptors to glutamate, and receptor 

internalization, a topic of a later section in this chapter on glutamate receptors.  Thus, the 

outcome of LTD is a decreased postsynaptic response to subsequent glutamate 

stimulation.  
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Hippocampal LTP is also NMDA receptor-dependent but strengthens synapses, so 

that subsequent exposure to glutamate results in an increased excitability of the 

postsynaptic cell.  HFS induces a strong activation of the NMDA receptor, resulting in a 

postsynaptic influx of extracellular Ca2+ that is sufficient to activate downstream kinases, 

such as CaMKII, which phosphorylate key postsynaptic substrates.  One mechanistic 

explanation for the long-lasting effect of LTP is that LTP-inducing protocols and 

NMDA-dependent postsynaptic Ca2+ transients drive AMPA receptor subunits into the 

synapse (Shi et al., 1999; Hayashi et al., 2000; Shi et al., 2001).  A higher number of 

synaptic AMPA receptors should directly increase the amount of postsynaptic excitability 

in response to presynaptic glutamate release.  The role of CaMKII in hippocampal LTP 

will be discussed in a later section (p. 29-32). 

 

Striatal Synaptic Plasticity 

Mechanisms of striatal synaptic plasticity appear to be quite different from those 

used in the hippocampus and are relatively poorly understood.  The striatum processes 

both glutamatergic and dopaminergic input, and determines the overall output of the 

basal ganglia.  The intrinsic membrane properties of striatal MSNs influence the output of 

the striatum.  In vivo, MSNs spontaneously transition from a resting “downstate” 

membrane potential close to -80 mV to an “upstate” depolarized potential near -50 mV 

(Wilson and Kawaguchi, 1996).  Action potentials are generated from the more highly 

depolarized upstate.  Transition between upstate and downstate membrane potentials is 

thought to modulate the overall output of the striatum.  More specifically, transitions to 

the upstate enhance dendritic and spine L-type voltage-gated calcium channel (VGCC), 
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and decrease T-type VGCC contributions to the overall Ca2+ current (Carter and Sabatini, 

2004).  In addition, the upstate transition changes the dominant postsynaptic Ca2+ source 

from Ca2+-permeable AMPA receptors to NMDA receptors (Carter and Sabatini, 2004).   

State transitions in MSNs may mediate changes in striatal synaptic plasticity in 

the acute striatal slice (Picconi et al., 2005).  A high frequency stimulus can produce 

either long-lasting increases or decreases in synaptic transmission at corticostriatal 

synapses.  High-frequency stimulation of corticostriatal synapses results in LTD, the 

prominent form of HFS-induced synaptic plasticity in the adult dorsolateral striatum 

(Calabresi et al., 1992a; Calabresi et al., 1992b; Choi  and Lovinger, 1997).  In contrast, 

non-physiological conditions such as the exclusion of extracellular magnesium increase 

synaptic efficacy, resulting in an NMDA-receptor-dependent, HFS-induced LTP 

(Calabresi et al., 1992c).  The regional heterogeneity within the striatum as well as the 

age-related changes in synaptic plasticity may contribute to the production of differing 

forms of synaptic plasticity by the same stimulus (Lovinger et al., 1993; Partridge et al., 

2000).   

 

Neuronal Disruptions in PD    

 

Disruptions in Medium Spiny Neuron Morphology  

Changes in MSN spine density and morphology have been reported in PD 

(McNeill et al., 1988; Stephens et al., 2005; Zaja-Milatovic et al., 2005).  The decrease in 

spine density of MSNs is paralleled in the 6-OHDA lesioned rat, ranging from 14-19%, 

with a specific 14-17% loss of spines that form asymmetric synapses (Ingham et al., 
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1998; Arbuthnott et al., 2000; Day et al., 2006).  Moreover, a 43% decrease in 

asymmetric synapses specific to indirect pathway MSNs (Day et al., 2006) provides an 

explanation for the decreased signaling through the indirect pathway.  Further 

examination of ultrastructural changes in the spine following DA depletion indicate both 

an increased area of asymmetric terminals and an increased number of perforated PSDs 

(Meshul et al., 2000).  In combination, these findings suggest that while fewer 

corticostriatal glutamatergic terminals synapse directly on MSNs in the indirect pathway, 

the functional signaling of these remaining synapses may be altered.  

 

Disruptions in Striatal Plasticity    

The loss in dopaminergic and glutamatergic synapses formed by MSNs can have 

profound effects on striatal synaptic plasticity.  Several forms of corticostriatal synaptic 

plasticity are disrupted following DA depletion (Calabresi et al., 1992a; Centonze et al., 

1999; Partridge et al., 2000; Tang et al., 2001).  Specifically, neurons in the dorsolateral 

striatum of the normal adult rat exhibit LTD in response to HFS, which is ablated 

following a unilateral 6-OHDA lesion.  LTD in the striatum contralateral to the lesion 

remains normal (Partridge et al., 2000).  LTD in the DA depleted region can be restored 

by application of dopamine or by co-application of D1 and D2 receptor agonists 

(Calabresi et al., 1992b).   

 

Striatal Dopamine Receptors  

 Nigrostriatal dopaminergic afferents typically synapse on the spine and/or 

dendrite shaft of the striatal MSN (Bouyer et al., 1984; Freund et al., 1984).  This DA 
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input is ideally positioned to modulate the activity of the MSNs, and thus the output of 

the entire basal ganglia.  Striatal MSNs contain DA receptors of the D1 class (D1, D5) and 

the D2 class (D2, D3, and D4).   

 D1 receptors are located in the spine head and neck of postsynaptic asymmetric 

synapses (Bergson et al., 1995).  Activation of D1 receptors activates adenylyl cyclase, 

which elevates cAMP levels, and results in activation of protein kinase A (PKA).  Active 

PKA phosphorylates the cytosolic protein DARPP-32 (dopamine and cAMP-regulated 

phosphoprotein 32 kDa), at Thr34, which renders DARPP-32 a potent inhibitor of PP1 in 

vitro (Hemmings et al., 1984; Greengard et al., 1999).  The hypothesized final effect of 

D1 receptor pathway activation in vivo is a decrease in PP1 activity, although changes in 

striatal PP1 activity have not been directly measured following D1 stimulation. 

 Activation of D2 receptors inhibits adenylyl cyclase and stimulates the release of 

Ca2+ via IP3 receptors on the endoplasmic reticulum (Hernandez-Lopez et al., 2000) (Fig. 

4).  The release of intracellular Ca2+ activates a Ca2+-dependent phosphatase, PP2B, 

which dephosphorylates phospho-Thr34-DARPP-32 (Nishi et al., 1997).  Thus, the final 

effect of D2 pathway activation is likely a disinhibition of PP1, which is expected to 

promote the net dephosphorylation of PP1 substrates.  

 

Striatal Distribution of Dopamine Receptors   

Historically, the colocalization of DA receptors in MSNs has been controversial 

due to the poor quality of subtype-specific antibodies.  Recently, bacterial artificial 

chromosome (BAC)-D1 and BAC-D2 receptor transgenic mice have been created that 

express EGFP under the control of the D1 (or D2) receptor promoter (Heintz, 2001).  In  
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these mice, cells that normally express D1 (or D2) receptor also produce EGFP.  BAC-D1 

transgenic mice express EGFP exclusively in MSN direct pathway projection neurons.  In 

contrast, BAC-D2 receptor transgenic mice express EGFP exclusively in indirect 

pathway neurons.  These data suggest that direct pathway neurons express D1 receptors, 

while indirect pathway neurons express D2 receptors (Gerfen, 2006).  However, other D2 

receptors may be present on neurons expressing D1 receptors, and vice versa. 

 D2 receptors are also present on non-MSN striatal neurons.  Cholinergic 

interneurons express functional D2 receptors, and release acetylcholine in response to 

stimulation by quinpirole, a D2 agonist (DeBoer et al., 1996).  In turn, some MSNs 

lacking D2 receptors possess synaptic muscarinic M1 receptors (Hersch et al., 1994), and 

can thus indirectly respond to a D2 agonist.  This indirect cellular signaling explains why 

MSNs in the direct pathway respond to D2 agonist stimulation, even though they do not 

express D2 receptors.  D2 receptors also are present on a population of presynaptic 

corticostriatal terminals, where they function to inhibit neurotransmitter release from a 

subset (~85%) of corticostriatal terminals in acute striatal slices (Bamford et al., 2004b).  

 

Effects of Dopamine Depletion 

 As a result of a unilateral 6-OHDA lesion, the striatum ipsilateral to the lesion 

becomes supersensitive, altering the output of the basal ganglia in this hemisphere.  Up to 

8 weeks following a unilateral 6-OHDA lesion, there is an increase in the number of D2 

receptors (Araki et al., 1998), D2 mRNA (Gerfen et al., 1990; Xu et al., 1992), and D2 

maximal binding (Bmax) (Cai et al., 2002) in the dorsolateral striatum ipsilateral to the 

lesion, while the D1 number and mRNA levels remain constant.  More recently, Day et al. 
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(Day et al., 2006) have shown that DA depletion results in a decreased spine density on 

only indirect pathway (D2), and not direct pathway (D1) MSNs. 

 

Glutamate Receptors  

 

Striatal Glutamate Receptor Types and Distribution 

Glutamate is the major excitatory neurotransmitter in the central nervous system.  

Many types of glutamate receptors are more abundant in the striatum than in other 

regions of the basal ganglia (Blandini et al., 2000), underscoring the role of the striatum 

as the main excitatory input nucleus of the basal ganglia.  Members of the major families 

of glutamate receptors are present in the striatum: the ionotropic receptors (AMPAR and 

NMDAR), and group I metabotropic glutamate receptors (mGluR1 and mGluR5). 

Subcellular localization of both AMPA and NMDA receptors both at the PSD and 

peri-synaptically enables rapid detection of presynaptic glutamate release.  AMPA 

receptors are tetrameric transmembrane receptors, composed of subunits GluR1-4.  In the 

mature hippocampus, AMPA receptors exist as tetramers, containing GluR1 + GluR2 or 

GluR3 + GluR2 subunits (Wenthold et al., 1996; Malinow and Malenka, 2002).  In the 

hippocampus, GluR4 receptor expression is limited largely to the first postnatal week 

(Zhu et al., 2000).  The GluR2/3 AMPA receptors constitutively recycle in and out of the 

plasma membrane, but synaptic activity is required for synaptic insertion of GluR1/2 

AMPA receptors (Shi et al., 1999).  These receptors are found at the PSD, peri-

synaptically, and in intracellular vesicles close to the synapse.  Activation of AMPA 

receptors by glutamate results in the influx of Na+ and sometimes Ca2+, enabling 
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membrane depolarization.  Many striatal AMPA receptors contain GluR2 subunits that 

prevent Ca2+ entry (Jayakar and Dikshit, 2004).   

AMPA receptor phosphorylation plays an important role in receptor function.  

Phosphorylation of GluR1 at Ser831 increases channel conductance (Barria et al., 1997; 

Barria et al., 1997; Derkach et al., 1999), while phosphorylation at Ser845 increases 

channel open probability (Banke et al., 2000).  In AMPA receptors that contain the 

GluR2 subunit, these effects of phosphorylation at Ser831 appear to be lost, as the 

conductance of GluR1/2 receptors remains low, even after phosphorylation of GluR1 at 

Ser831 (Oh and Derkach, 2005).  Phosphorylation at these sites is regulated by several 

kinases and phosphatases during synaptic plasticity in the hippocampus.  During LTD, 

both Ser831/845 sites become dephosphorylated (Lee et al., 2000).  In contrast, LTP results 

in phosphorylation at Ser831, and reversal of LTD results in phosphorylation of Ser845 

(Barria et al., 1997; Lee et al., 2000).  Thus, in response to an excitatory stimulus, AMPA 

receptors contribute to changes in postsynaptic excitability by increased synaptic 

insertion.  

NMDA receptors are heterotetrameric transmembrane receptors, composed of 

different combinations of subunits NR1, NR2A, NR2B, and NR2C.  When activated by 

concomitant membrane depolarization and glutamate binding, postsynaptic NMDA 

receptors allow influx of extracellular Na+ and Ca2+.  Striatal NMDA receptor subunits 

are thought to be tetrameric complexes, composed of either NR1/NR2A, NR1/NR2B, or 

NR1/NR2A/NR2B (Dunah and Standaert, 2003).  NR3A and NR3B expression is largely 

restricted to the immature brain (Sucher et al., 1995) or spinal motor neurons (Nishi et al., 

2001), respectively.  The NR1/NR2A/NR2B complexes are exclusively in the 
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synaptosomal membrane fraction (Dunah and Standaert 2003), consistent with a synaptic 

localization.  However, the NR1/NR2A and NR1/NR2B complexes are present in three 

membrane-associated fractions: light membranes, synaptosomal membranes, and 

synaptic vesicles.  It is unknown whether these latter receptor complexes are in transit for 

insertion or removal from the plasma membrane.  

Metabotropic glutamate receptors function to modulate synaptic plasticity in 

many brain regions, including the striatum.  In the striatum, group I metabotropic 

receptors are present peri-synaptically on MSNs and on cholinergic interneurons, 

whereas group II and group III mGluRs are present on presynaptic corticostriatal 

terminals and glial cells (Gubellini et al., 2004).  Activation of mGluR1 is necessary for 

striatal LTD induction (Sung et al., 2001).  The expression of mGluR subtypes on 

nigrostriatal dopaminergic terminals is less well defined.  A family of G-protein coupled 

receptors, the group I mGluRs are coupled to phospholipase C (PLC).  Activation of 

group I mGluRs results in both the release of intracellular Ca2+ from the ER via an IP3-

mediated pathway, and enhances L-type VGCC conductance (Hermans and Challiss, 

2001).   

 

Glutamate Receptor Modulation by Dopamine Depletion 

Modulation of MSN glutamate receptors following DA depletion may alter the 

detection of corticostriatal glutamatergic signals within the striatum.  There are 

conflicting reports as to whether D1 activation modulates AMPAR subcellular 

redistribution, an effect that may be dependent on the specific D1 agonist used in the 

studies, or the use of fresh brain slices vs. cultured neurons (Dunah and Standaert, 2001; 
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Mangiavacchi and Wolf, 2004).  While it is unclear if DA modulates the subcellular 

localization of AMPA receptors, it may modify their function.  In striatal slices, D1 

activation stimulates PKA-mediated phosphorylation of GluR1 at Ser845, suggesting an 

increased channel open probability (Price et al., 1999; Banke et al., 2000; Snyder et al., 

2000).   

 Dunah and Standaert have demonstrated a D1-dependent redistribution of NR1, 

NR2A, and NR2B subunits from light membrane and synaptic vesicle-enriched 

membranes to synaptosomal membranes, suggesting synaptic insertion (Dunah and 

Standaert, 2001).  Moreover, this DA-dependent redistribution of NMDA receptor 

subunits is dependent on fyn protein tyrosine kinase (Dunah et al., 2004), and can be 

induced by tyrosine phosphatase inhibitors (Hallett et al., 2006).  Together, these findings 

suggest that an imbalance between tyrosine phosphatase and tyrosine kinase activities 

may play a role in NMDA receptor subcellular redistribution in the striatum.  

Group I mGluR antagonists alleviate motor symptoms in DA-depleted rats, 

possibly by reducing corticostriatal glutamate release (Ossowska et al., 2006).  In 

addition, DA depletion results in increased number and Bmax of group II mGluRs, which 

is reversible by L-DOPA (Picconi et al., 2002; Gubellini et al., 2004). 

 

Voltage-Gated Channels 

 Plasma membrane depolarization activates voltage-gated calcium channels 

(VGCC) to allow an influx of Ca2+ ions.  Based on sequence homology and function, 

VGCC are divided into three classes: Cav1 (high-voltage activated, L-type channels), 

Cav2 (low-voltage activated P/Q, N, and R-type channels) and Cav3 (low-voltage 
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activated, T-type channels) (Trimmer and Rhodes, 2004).  VGCC consist of (1) a 

transmembrane voltage-sensing α-subunit that forms the channel pore, (2) 

transmembrane γ and δ subunits, and (3) an intracellular β-subunit. Each of these subunits 

plays a unique role in modulating Ca2+ influx (Catterall, 2000). 

 

L-type Calcium Channels: Modulation by Dopamine Depletion 

  Each of the classes of VGCC is present in the striatum.  Two types of L-type 

channels are present in MSNs of both the direct and indirect pathways, the Cav1.3α1 and 

the Cav1.2α1.  Functional data have localized the L-type channels to the MSN synapse 

(Calabresi et al., 1994; Cepeda et al., 1998; Carter and Sabatini, 2004).  In addition, 

immunoelectron microscopy has identified a long splice variant of the Cav 1.3α1 subunit 

in MSN spines (Day et al., 2006), where it is likely targeted by the scaffolding protein, 

Shank (Olson et al., 2005). 

 L-type channels can be modulated by signaling via DA-associated signaling 

pathways.  D1 activation enhances L-type channel conductance via a PKA-mediated 

mechanism (Surmeier et al., 1995), and D2 or M1 muscarinic receptor activation inhibits 

L-type channel conductance via a calcineurin-mediated mechanism (Hernandez-Lopez et 

al., 2000).  This dopaminergic and cholinergic modulation of striatal L-type channels is 

dependent on the targeting of L-type channels by Shank (Olson et al., 2005).  One 

possible function of L-type channels is in the regulation of MSN morphology, as mice 

lacking Cav1.3α1 have an increased MSN spine density (Day et al., 2006).  Moreover, 

chronic treatment with an L-type antagonist, nimodipine, rescues the 6-OHDA lesion-

induced decrease in MSN spine density (Day et al., 2006).  Following DA depletion, the 
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loss of D2-mediated inhibition of L-type channels may allow unregulated Ca2+ influx 

through these channels.  An unregulated influx of Ca2+ is expected to have multiple 

consequences on intracellular signaling pathways, specifically on Ca2+-dependent 

enzymes such as CaMKII. 

  

CaMKII 

 

General Overview 

Isoforms of mammalian CaMKII (α, β, γ, δ) are encoded by four separate genes; 

each has unique patterns of mRNA alternative splicing and protein expression throughout 

the body.  Calcium/calmodulin-dependent protein kinase II (CaMKII) is one of the most 

abundant proteins in the brain, accounting for 1-2% of total protein.  In the brain, 

CaMKII holoenzymes are predominantly found as either heteromultimers of both the α 

and β isoforms, or homomultimers of either isoform. The two major CaMKII isoforms in 

the striatum, α and β, are expressed in a 3:1 ratio. CaMKIIα is one of the most abundant 

proteins expressed in dendritic spines, comprising anywhere from 2-10% of the total 

protein in PSDs (Hanson and Schulman, 1992; Colbran, 2004a).  A multifunctional 

enzyme (Fig. 5), CaMKII (1) is activated by increases in intracellular Ca2+, (2) 

phosphorylates proteins at serine or threonine residues, (3) translocates from the cytosol 

to the PSD in response to neuronal activity, (4) serves as a “molecular memory” 

molecule, propagating signals long after the elevated Ca2+ subsides, and (5) may help 

serve as a scaffold for AMPA receptors to the plasma membrane (Lisman and 

Zhabotinsky, 2001; Lisman et al., 2002; Colbran and Brown, 2004).   
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CaMKII Structure  

A dodecameric holoenzyme, each CaMKII monomer contains the catalytic, 

regulatory, variable, and association domains (Fig. 6).  The monomers assemble into two 

stacked, hexameric rings via the C-terminal association domains (residues 315-478).  The 

N-terminal catalytic domain (residues 1-272) contains both the ATP and the substrate  

binding sites, and mediates the phosphotransferase activity.  The variable domains 

constitute the major regions of dissimilarity between the different CaMKII isoforms, and 

as a result of alternative splicing, can contain up to 4 different inserted cassettes.  The 

regulatory domain (residues 273-314) is made up of the autoinhibitory and calmodulin 

binding regions.  In the resting state, the autoinhibitory region binds the catalytic domain, 

and prevents substrate access, maintaining CaMKII in an inactive state (Lisman et al., 

2002; Griffith, 2004; Colbran, 2004a).   

 

CaMKIIα Regulation by Ca2+

When local Ca2+ levels are elevated as a result of neuronal activity, 

Ca2+/calmodulin (Ca2+/CaM) binds to CaMKII (Fig. 6).  CaM binding disrupts 

interactions between the catalytic and autoinhibitory domains, allowing substrates and 

ATP access to the catalytic sites.  Ca2+/CaM binding activates CaMKII and induces a 

rapid autophosphorylation of CaMKIIα at Threonine 286 (Thr286).  Thr286 

autophosphorylated CaMKII has an enhanced affinity for Ca2+/CaM.  Although CaMKII 

phosphorylation at Thr286 is often used as an indirect measure of CaMKII activity, there is 

not always an exact temporal correlation (Lengyel et al., 2004).   

CaMKII is also subject to forms of Ca2+-independent regulation, via 
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autophosphorylation at Thr305 and /or Thr306.  First, a slow autophosphorylation at Thr306 

in the basal state occludes the CaM-binding site, preventing CaM from binding (Colbran, 

1993).  Autophosphorylation at Thr306 maintains CaMKII in an inactive state, 

unresponsive to changes in Ca2+ levels, until this site is dephosphorylated by 

phosphatases.  Second, the removal of Ca2+/CaM after phosphorylation at Thr286 enables  

a rapid autophosphorylation at either Thr305 or Thr306 and Ser314 (Hashimoto et al., 1987; 

Patton et al., 1990; Hanson and Schulman, 1992).  Although phosphorylation at Thr305/306 

occludes the CaM binding site, the prior phosphorylation at Thr286 maintains CaMKII in a 

constitutively active state.  Thus, CaMKII that is phosphorylated at both Thr286 and 

Thr305/306 is active, but is unresponsive to subsequent changes in Ca2+ concentration. 

 

CaMKII Regulation by Endogenous CaMKII Inhibitors 

 Endogenous CaMKII inhibitors, CaMKII-Nα and CaMKII-Nβ are present 

throughout the brain, and bind the catalytic domains of CaMKIIα and β with an IC50 of 

50 nM (Chang et al., 1998).  While CaMKIIα is localized diffusely throughout cultured 

hippocampal neurons, CaMKII-N seems restricted to the soma, proximal dendrites, and 

possibly axonal processes (Chang et al., 2001).  It is not currently known how CaMKII-N 

regulates CaMKII activity in vivo.
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CaMKII Regulation by Phosphatases   

CaMKII activity is acutely regulated via dephosphorylation at Thr286 by  

phosphatases (Colbran, 2004b).  PSD-associated CaMKII is selectively dephosphorylated 

by PP1, while cytosolic CaMKII is dephosphorylated by PP2A (Strack et al., 1997a).  

Specifically, the cAMP-pathway regulation of PP1 ‘gates’ CaMKII activity in other brain 

regions (Blitzer et al., 1998; Brown et al., 2000).  Thus, striatal CaMKII may be similarly 

regulated by D1 receptor signaling.   

 

CaMKII Subcellular Localization 

The holoenzyme isoform composition modulates the subcellular localization and 

activity-driven targeting of the enzyme.  The CaMKIIβ isoform binds to actin filaments 

in vitro, a complex that is disrupted by the presence of both Ca2+/CaM (Ohta et al., 1986).  

Specifically, a region in the association domain of only the β isoform targets CaMKIIβ 

homomers to F-actin (Shen et al., 1998; Fink et al., 2003).  CaMKII is found at PSDs in 

cytoplasmic tower-like arrays (Petersen et al., 2003), and the predominant alpha isoform 

is found diffusely throughout neurons (Gleason et al., 2003; reviewed in Fink and Meyer, 

2002).  One advantage to altering CaMKII subcellular localization is to position the 

kinase at synaptic sites.  CaMKII can bind to several PSD-associated proteins, such as F-

actin, α-actinin, densin-180, cdk5, synGAPβ, the NR2B subunit of the NMDA receptor, 

which may drive translocation to the PSD (Colbran and Brown, 2004; Schulman, 2004; 

Merrill et al., 2005).  It is unknown at this time whether any of these binding partners are 

found in the CaMKII tower-like structures.   

Synaptic activity in the hippocampus increases CaMKII autophosphorylation at 
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Thr286 and Thr253 and increases the association of CaMKII with PSDs (Strack et al., 

1997b; Migues et al., 2006).  Moreover, autophosphorylation of CaMKII increases its 

affinity for NR2B, providing an activity-dependent regulatory mechanism of CaMKII 

localization to the PSD (Strack and Colbran, 1998; Strack et al., 2000).  The interaction 

of active CaMKII with the NR2B subunit of the NMDAR is required for normal LTP in 

hippocampal organotypic cultures (Barria and Malinow, 2005).  More specifically, 

NMDA receptor-mediated Ca2+ influx results in CaMKIIα autophosphorylation and rapid 

translocation to the PSD, close to numerous synapse-associated substrates.  CaMKII is 

necessary and sufficient to drive one of these substrates, GluR1, to the synapse (Hayashi 

et al., 2000; Lee et al., 2000).  Phosphorylation of GluR1 at Ser831 by CaMKII enhances 

conductance through the AMPA receptor, providing a mechanism for a rapid alteration in 

synaptic plasticity (Barria et al., 1997; Barria et al., 1997; Derkach et al., 1999), as 

previously discussed on p. 20.  In addition, PSD-associated CaMKII is in close proximity 

to PP1, which dephosphorylates and inactivates CaMKII.  Thus, the proteins that interact 

with CaMKII in this restricted environment allow synaptic activity to be transformed into 

a localized, specific response in the synapse.   

 

CaMKII Function in vivo  

Numerous studies have investigated the role of CaMKII in learning and memory 

using transgenic mice.  These studies have used different strategies, such as manipulation 

of (1) the total level of CaMKIIα, (2) the level of active (phospho-Thr286) CaMKIIα, or 

(3) the level of CaMKIIα locally translated in dendrites (Elgersma et al., 2004).  The role 

of CaMKII in behavioral learning and memory has been assessed using various 
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hippocampal-dependent behavioral assays, such as the Morris water maze. When total 

protein levels of CaMKIIα are decreased in the hippocampus, CaMKIIα homozygous or 

heterozygous null mice display impaired spatial learning (Silva et al., 1992; Hinds et al., 

1998; Frankland et al., 2001; Elgersma et al., 2002).  Furthermore, the ability of CaMKII 

to undergo normal Ca2+/CaM-dependent and Ca2+/CaM-independent autophosphorylation 

is also critical, as transgenic or knock-in mice expressing mutant CaMKIIα (T286A, 

T286D, T305D, and T305/306VA) all have impaired spatial memory (Bach et al., 1995; 

Mayford et al., 1996; Giese et al., 1998; Elgersma et al., 2002).   

The function of CaMKII in vivo has also been examined in a model of synaptic 

learning and memory, LTP.  There is an increase in both the Ca2+-dependent and total 

CaMKII activity after LTP, that is accompanied by a transient increase in CaMKII 

autophosphorylation at Thr286 and an increase in phosphorylation of the CaMKII 

substrates synapsin I and MAP-2 (Fukunaga et al., 1993; Fukunaga et al., 1995; Lengyel 

et al., 2004).  Active CaMKII is only necessary for the induction, but not the maintenance 

of LTP, as application of the CaMKII inhibitory peptide, AC3-I, only blocks LTP if 

applied prior to, but not after induction (Chen et al., 2001).  Not only is CaMKII activity 

important, but adequate CaMKII levels are key for normal synaptic plasticity.  LTP is 

severely impaired in CaMKIIα null mutant mice (-/-), mice partially lacking CaMKIIα 

(+/-), and in transgenic CaMKIIα (T286A, T286D, T305D, and T305/306VA) mice  

(Silva et al., 1992; Hinds et al., 1998; Elgersma et al., 2002; Elgersma et al., 2004).   

Adequate levels of CaMKII may be important in part to bind the NR2B subunit of the 

NMDA receptor, an event which is required for normal LTP (Barria and Malinow, 2005). 

LTP induction in the hippocampus CA1 region elevates total dendritic CaMKIIα 
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protein levels by an NMDA receptor- and MAP-kinase-dependent mechanism (Ouyang et 

al., 1999; Giovannini et al., 2001). More recently, high synaptic activity was shown to 

upregulate CaMKIIα expression in cultured hippocampal neurons (Thiagarajan et al., 

2002).  Both protein synthesis machinery and CaMKIIα mRNA, have been localized to 

neuronal dendrites (Steward and Schuman, 2003). Binding of the CPE-binding protein 

(CPEB) to two cytoplasmic polyadenylation elements (CPEs) in the CaMKIIα 3’-

untranslated region (UTR) facilitates efficient transport of CaMKIIα mRNA to dendrites 

(Huang et al., 2003).  NMDA receptor-dependent phosphorylation of CPEB on Ser174 

appears to initiate local CaMKIIα translation via an Aurora kinase and / or a CaMKII-

dependent mechanism (Huang et al., 2002; Atkins et al., 2005).  

Local, dendritic synthesis of CaMKIIα is essential for late-phase LTP, as seen in 

transgenic mice lacking the 3’-untranslated region (UTR) of the CaMKIIα gene (Miller et 

al., 2002).  Disruption of the entire 3’-UTR blocks dendritic mRNA transport and reduces 

hippocampal CaMKIIα protein levels, resulting in abnormal late-phase LTP and long-

term memory.  These mice have less CaMKII in the dendrites and at the PSD, impaired 

late-phase-LTP, and impaired spatial memory.  In summary, normal CaMKII levels, 

CaMKII function (activity, autophosphorylation, targeting), and local dendritic synthesis 

are all essential for normal synaptic plasticity, learning, and memory.   

 

Role of CaMKII in Disease 

 Previous studies suggest that DA modulates striatal CaMKII.  Chronic 

administration of either a systemic D1 or D2 agonist to 6-OHDA lesioned rats enhances 

phosphorylation at unidentified serine(s) in NR2A and NR2B, respectively (Oh et al., 
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1999).  Intrastriatal injection of the CaMKIIα inhibitor, KN93, reverses these DA 

agonist-induced changes in NMDA receptor subunit phosphorylation.  The reversal  of 

NMDA receptor phosphorylation by KN93 implies that CaMKIIα plays a role in the 

phosphorylation of these receptor subunits in the 6-OHDA lesioned rat (Oh et al., 1999).  

Moreover, intrastriatal administration of CaMKII inhibitors KN-93 or Ant-AIP-II 

normalizes 6-OHDA lesion-induced changes in motor coordination and corticostriatal 

LTP (Picconi et al., 2004).  In total, CaMKII appears to play a critical role in the 6-

OHDA lesion-induced alterations of behavior and synaptic plasticity in rodents.  

Finally, CaMKII is misregulated in a mouse model of Angelman’s mental 

retardation syndrome (AS) (Weeber et al., 2003).  Patients with AS display severe mental 

retardation, severe learning deficits, frequent seizures, and an ataxic gait.  AS results 

from deletion or truncation of the maternally derived Ube3A gene, which encodes for E6-

AP, an E3-ubiquitin ligase.  The Ube3A gene is subject to brain specific imprinting, such 

that only the maternally-derived E6-AP is normally expressed in the hippocampus.  A 

mouse model for AS was created that lacks the maternal Ube3A gene, and thus expresses 

no E6-AP in the hippocampus (Weeber et al., 2003).  The AS phenotype is reflected in 

the AS mice, which display impaired NMDA-dependent and NMDA-independent LTP, 

impaired spatial learning, impaired motor coordination, and frequent seizures (Jiang et 

al., 1998; Miura et al., 2002; Weeber et al., 2003).  Although the level of hippocampal 

CaMKII is unaltered in these mice, the phosphorylation of hippocampal CaMKII at 

Thr286 and Thr305 is elevated.  Interestingly, preventing CaMKII phosphorylation in AS / 

Thr305V/306A mice rescues the hippocampal learning and plasticity deficits(van 

Woerden et al. 2007).  The increased phosphorylation of CaMKII may directly result 
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from the decreased PP1/PP2A activity in the hippocampus of AS mice.  This mouse 

model displays how a disruption in the balance between CaMKII and PP1/PP2A activity 

in the hippocampus results in a severe neurological disease.  

 

Protein Phosphatase 1 

 

General Overview 

 The serine / threonine protein phosphatases present in the brain include PP1, 

PP2A, PP2B, and PP2C.  The four PP1 catalytic subunit isoforms, α, β, γ1, and γ2 share 

at least 70% sequence identity (Ceulemans and Bollen, 2004) and are found at high levels 

in the striatum, relative to other brain regions (Shima et al., 1993; da Cruz E Silva et al., 

1995; Strack et al., 1999).  PP1 dephosphorylates numerous neuronal proteins, thereby 

helping to maintain the balance between kinase and phosphatase activity in the cell.   

 

PP1 Structure   

Crystal structures of PP1 catalytic subunits show that the enzyme exists in a 

single globular domain (Egloff et al., 1995; Kita et al., 2002; Terrak et al., 2004) (Fig. 7).  

The carboxy- and amino-termini are excluded from this central globular domain.  The 

carboxy-terminus contains threonine residues, that when phosphorylated, reduce PP1 

enzymatic activity.  The center of the enzyme contains a sandwich of β-sheets and two 

metal ions (Fe2+ and Mn2+), thought to be necessary for phosphatase activity (Egloff et 

al., 1995).  The active site of PP1 is located at the center of a Y-shaped depression in the 

surface of the enzyme (Fig. 7).  The three grooves that make up this Y-shaped depression  
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are referred to as the C-terminal groove, the acidic groove, and the hydrophobic groove.  

Many PP1 inhibitors used in the experiments described in this dissertation block PP1  

activity by interacting with portions of this Y-shaped groove.  For example, microcystin-

LR interacts with two metal-bound water molecules and binds Cys273 in the β12- β13 

loop, which flanks the catalytic site, thus blocking access to the PP1 active site 

(Ceulemans and Bollen, 2004). 

 

Regulation of PP1 Activity 

PP1 activity is thought to be acutely regulated in the brain by the endogenous 

phosphatase inhibitors DARPP-32 / inhibitor-1 and inhibitor-2, as well as by 

phosphorylation of PP1 itself at Thr320 (Allen, 2004).  Previously, DA regulation of 

striatal PP1 activity has been linked to endogenous PP1 inhibitors, DARPP-32 and 

inhibitor-1, which become active following phosphorylation by PKA (phospho-Thr34-

DARPP-32 / phospho-Thr35-inhibitor-1) (Svenningsson et al., 2004).  DARPP-32 

knockout mice display numerous deficits, such as an altered phosphorylation of PP1 

substrates, a decreased DA-induced GABA release from MSNs, and a deficit in DA-

induced striatal Fos expression (Fienberg et al., 1998).  In slices from DARPP-32 

knockout mice, D1 agonists did not modulate AMPAR current, as shown by the lack of 

D1-mediated AMPAR current rundowns.  In addition, these mice also displayed a 

reduced DA / forskolin-induced phosphorylation of the NR1 subunit of the NMDAR.  

These data indicate that DARPP-32 plays a critical role in mediating the downstream 

effects of D1 signaling, presumably via the inhibition of PP1 activity. 

A second endogenous PP1 inhibitor, Inhibitor-2, inhibits PP1 activity by forming 
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a complex with PP1 (Cohen, 1989).  GSK-3 phosphorylation of Inhibitor-2 at Thr72 

changes the conformation of the Inhibitor-2/PP1 complex, relieving PP1 inhibition 

(Cohen, 1989).  Although signaling through D2 receptors activates GSK-3 (Beaulieu et 

al., 2004), it is unclear whether striatal DA regulates striatal PP1 via Inhibitor-2 

phosphorylation.   

Phosphorylation of PP1 at the C-terminal Thr320 by cdc2 inhibits PP1 activity 

(Dohadwala et al., 1994).  This phosphorylation may inhibit PP1 activity by the binding 

of phospho-Thr320 to the PP1 active site, blocking substrate access (Egloff et al., 1995).  

As cdc2 is a cyclin-dependent kinase that phosphorylates PP1 in a cell cycle-dependent 

manner, it is unclear how phosphorylation of striatal PP1 at Thr320 in vivo might be 

regulated by cdc2 or a related cyclin-dependent kinase, cdk5. 

 

Subcellular Localization of PP1: Scaffolding Proteins 

The three major PP1 isoforms (α, β, and γ1) are each enriched in distinct 

subcellular compartments in neurons (da Cruz E Silva et al., 1995; Ouimet et al., 1995; 

Strack et al., 1999; Bordelon et al., 2005).  The subcellular localization of the PP1β and 

γ1 isoforms is very different, with PP1β largely limited to the soma and dendritic shafts, 

and PP1γ1 found throughout the neuron, but concentrated at synapses (Ouimet et al., 

1995; Strack et al., 1999; Bordelon et al., 2005).  Due to it’s concentration at synapses, 

PP1γ1 is poised to rapidly dephosphorylate synaptic substrates, such as CaMKII and 

GluR1.  The homologous F-actin binding proteins spinophilin and neurabin appear to be 

responsible for the selective targeting of the γ1 isoform of PP1 to dendritic spines 

(MacMillan et al., 1999; Strack et al., 1999; Terry-Lorenzo et al., 2002; Carmody et al., 
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2004; Bordelon et al., 2005).  Specifically, immunoelectron microscopy has revealed that 

PP1γ1 is enriched exclusively in the PSD, while PP1α is found both at the PSD, and 

deeper in the spine head (Bordelon et al., 2005).  Spinophilin and neurabin, two PSD-

associated scaffolding proteins, selectively interact with the γ1 isoform of PP1 and 

preferentially coimmunoprecipitate with PP1γ1 (MacMillan et al., 1999; Terry-Lorenzo 

et al., 2002; Carmody et al., 2004).  In contrast, PP1β is more abundant in dendritic shafts 

and the soma (Strack et al., 1999; Bordelon et al., 2005).  This selective interaction with 

spinophilin / neurabin may aid in the specific targeting of PP1γ1 to the synapse. 

 

Function of striatal PP1 

The balance between kinase and phosphatase activity is critical for normal 

regulation of cell signaling.  In the forebrain, CaMKII is selectively dephosphorylated by 

PP1 at the PSD (Strack et al., 1997a; Strack et al., 1997b).  The regulation of PP1 

localization and activity by spinophilin and neurabin is critical for normal striatal 

synaptic plasticity and morphology (Surmeier et al., 1995; Yan et al., 1999; Feng et al., 

2000; Pisani et al., 2005; Terry-Lorenzo et al., 2005; Allen et al., 2006).  In the 

hippocampus, inhibition of PP1 via cAMP-dependent pathways functions as a regulatory 

‘gate’ to allow enhanced CaMKII autophosphorylation at Thr286 (Blitzer et al., 1998; 

Brown et al., 2000).  While the exact mechanisms involved in regulation of striatal 

CaMKII are unknown, it seems likely that the regulation by PP1 may be similar to that 

found in the forebrain and hippocampus.  Many acute effects of DA in the striatum are 

mediated by the modulation of protein phosphatases, especially via the modulation of 

PP1 by DARPP-32, spinophilin, and calcineurin (Svenningsson et al., 2004).  Although 
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regulation of PP1 is thought to play a key role mediating the actions of DA in the 

striatum (Feng et al., 2000; Allen et al., 2006), such alterations of PP1 activity have not 

been directly demonstrated.   

 

Role of PP1 in Disease 

Dysregulation of phosphatase activity has been implicated in a wide variety of 

human diseases or disease models, such as cancer, diabetes, and neurodegenerative 

disease.  For example, increased phosphorylation of several proteins has been reported in 

Angelman’s mental retardation syndrome (Weeber et al., 2003), amyotrophic lateral 

sclerosis (Strong et al., 2005), multiple sclerosis (Schneider et al., 2004), Charcot-Marie-

Tooth disease (Begley and Dixon, 2005), and Alzheimer’s disease (Liu et al., 2005).  In 

particular, studies in a mouse model of Angelman’s syndrome suggest that decreased 

protein phosphatase activity results in increased phosphorylation of hippocampal 

CaMKII at Thr286 and Thr305 and disruptions of synaptic plasticity, learning and memory. 

Thus, the development of strategies to normalize the activity of critical protein 

phosphatases might be a fruitful therapeutic strategy for treatment of multiple 

neurodegenerative diseases. 

PP1 is thought to play a key role mediating the actions of DA in the normal 

striatum (Feng et al., 2000; Allen et al., 2006).  However, DA depletion disrupts the 

normal DA receptor signaling and thus is expected to interfere with normal regulation of 

DARPP-32.  This is consistent with the observation that striatal DA depletion results in 

enhanced phosphorylation of multiple synaptic proteins (Oh et al., 1999; Dunah et al., 

2000; Picconi et al., 2004; Brown et al., 2005).    

 40



Summary 
 

Striatal DA depletion results in several changes in MSN morphology and disrupts 

corticostriatal synaptic plasticity.  However, the molecular and biochemical mechanisms 

underlying these consequences of long-term DA depletion are not well understood.  

Previous reports have largely examined the consequences of short-term DA depletion, 

and not the chronic, long-term DA depletion seen in PD.  Based on prior studies, mostly 

in other brain regions, I predicted that striatal DA depletion and / or subsequent DA 

replacement therapy would alter expression and / or function of key striatal synaptic 

proteins.   

Protein phosphorylation and dephosphorylation acutely modulate protein 

function, protein-protein interactions, and neuronal plasticity.  Striatal DA signaling 

pathways may acutely modulate two critical signaling enzymes, CaMKII and PP1.  The 

goal of this research is to determine how both short-term and more chronic DA depletion 

modify the regulation of striatal CaMKII and PP1.  Changes in these signaling proteins 

following DA depletion may play a role in the progression of symptoms during 

Parkinson’s disease, as well as in the changing efficacy and debilitating side effects 

associated with DA replacement therapy.  

 41



Hypothesis and Specific Aims 

 

Hypothesis: Removal of nigrostriatal dopaminergic neurons alters the regulation of both 

CaMKII and PP1, and common downstream targets. 

 

Aim I: Determine the impact of DA depletion on the subcellular localization and activity 

of striatal CaMKII. 

 

Aim II: Determine the role of DA and glutamate in the regulation of CaMKII in acute 

striatal slices. 

 

Aim III: Determine the impact of DA depletion on striatal PP1/PP2A levels and activity. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

6-OHDA Lesion Surgery  

Male Sprague-Dawley rats (Harlan; Indianapolis, IN) were housed under a 12:12 

light: dark cycle with food and water freely available. Experiments were performed in 

accordance with the Guide for the Care and Use of Laboratory Animals (NIH), under the 

oversight of the Institutional Animal Care and Use Committee.  Rats (3 months old) were 

anesthetized with ketamine/xylazine or isoflurane and 6-OHDA HBr (4 μg/μL free base 

in 0.02% ascorbate) was infused into two sites in the substantia nigra (AP: -5.3, L: 2.3 

and 1.0, DV: -8.3) (Paxinos and Watson, 1986), at a rate of 0.25 μl/min.  Sham-lesioned 

rats received injections of vehicle alone.  Age-matched non-injected rats were also used 

in some studies.  At the times indicated after surgery, rats were lightly anesthetized with 

isoflurane, decapitated, and the brain removed.  Data reported in Chapters III and V were 

obtained from batches of 6-8 rats each that were sacrificed 3 weeks, 6-12 weeks, 9 

months, 11 months, or 18-20 months after 6-OHDA lesion surgery (as indicated within 

each chapter).  For presentation purposes, we pooled data obtained from animals 3-12 

weeks and 9-11 months after surgery.  There were no statistically significant differences 

between batches of animals within each set of pooled data.  Moreover, differences 

observed in the pooled data were observed in both individual groups of animals at each 

time point.  Successful lesion surgery was designated by a loss of at least 90% striatal 

tyrosine hydroxylase (TH), as determined by immunoblot. 
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L-DOPA Treatment & Behavioral Screening   

Rats 6-12 weeks after 6-OHDA lesion were treated with L-DOPA methyl ester / 

benserazide (50 / 12.5 mg/kg, ip), or benserazide alone every 12 hours for 9 days, then 

were sacrificed 16 hours after the last injection.  Benserazide is a peripheral L-DOPA 

decarboxylase inhibitor that prevents metabolism of L-DOPA in the periphery.  This L-

DOPA treatment paradigm induced the characteristic increase in contralateral rotation 

frequency by the final day of treatment (data not shown), consistent with previous reports 

(Schwarting and Huston, 1996).  This repeated injection paradigm was designed to mimic 

the effects of repeated, pulsatile L-DOPA administration to PD patients.  In these 

experiments, only rats with ≥90% TH depletion displayed successful contralateral 

rotation behavior.  

 

Tissue Collection and Preparation  

Dorsolateral Striatal Tissue Homogenates: Punches (1.15 mm ID) of 

dorsolateral striatum were removed from both hemispheres of 1.0 mm thick coronal 

slices, at the level of the crossing of the anterior commissure, and flash frozen on dry ice 

within 2 min of decapitation.  Tissue punches were stored at –80°C.  We confirmed that 

this procedure minimized postmortem changes in CaMKII phosphorylation (Suzuki et al., 

1994; Lengyel et al., 2001). 

Whole Striatal Extracts and Subcellular Fractionation: Whole extracts were 

prepared by sonicating striatal tissue punches in 200-300 μl 2% SDS with 10 µg/ml 

leupeptin and 1 µg/ml pepstatin.  PSD-enriched fractions were prepared by homogenizing 

frozen striatal punches in ice-cold 7 mM Tris-HCl, pH 7.5 containing 0.2 mM EDTA, 0.2 
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mM EGTA, 320 mM sucrose, 1 mM benzamidine, 10 µg/ml aprotinin, 10 µg/ml 

leupeptin, 10 µM pepstatin, 1 µM microcystin, 0.5 nM cypermethrin, and 1 mM NaVO4, 

using a Kontes tissue homogenizer.  After centrifugation (1000 x g for 7 min at 4°C) to 

separate a pellet fraction enriched in nuclei (P1), Triton X-100 (1% final) was added to 

the supernatant fraction (S1).  S1 fractions were mixed gently for 30 min at 4°C, then re-

centrifuged (100,000 x g for 1 hr at 4°C) to separate a supernatant (S2) enriched in 

cytosolic/detergent-soluble membrane proteins, and a pellet (P2) enriched in cytoskeletal 

elements including PSDs.  Protein concentrations of samples were determined by the 

method of Lowry (Lowry et al., 1951). 

Subcellular fractionation efficiency was confirmed by evaluating the distribution 

of phospho-Thr286-CaMKII, total CaMKII, total GluR1, and total DARPP-32 in each 

fraction.  In the P2 fraction, phospho-Thr286-CaMKIIα was ~30-fold more concentrated 

than in the accompanying S2 fraction.  In addition, CaMKIIα was 7-fold and GluR1 was 

2-fold more concentrated in the P2 fraction than the S2 fraction.  In contrast, DARPP-32 

was 10-fold more concentrated in the S2 fraction than in the P2 fraction. 

 

Immunoblot Analysis 

Immunoblots: Samples (20-40 µg protein per lane) were fractionated by SDS-

PAGE and transferred to nitrocellulose membranes, which were stained with Ponceau-S 

(Sigma) and then digitally scanned.  After blocking (PBST in 2% milk), membranes were 

probed with the indicated primary antibodies: phosphorylation site-specific primary 

antibodies were incubated overnight at 4°C, whereas other primary antibodies were 

incubated for 2 hours at room temperature.  Membranes were then washed and incubated 
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for 1 hr at room temperature with the alkaline phosphatase or horseradish peroxidase 

conjugated secondary antibodies.  Alkaline phosphatase conjugated secondary antibodies 

were detected with 5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt (BCIP, Pierce) 

and nitroblue tetrazolium chloride (NTB, Pierce).  Horseradish peroxidase-conjugated 

secondary antibodies were detected with enhanced chemiluminescence (Perkin Elmer) 

and multiple X-ray film exposures to ensure that signals were within the linear range.  In 

some cases primary and HRP-conjugated secondary antibodies were stripped from the 

membrane by incubation in stripping buffer (62.5 mM Tris-HCl (pH 7.5), 2% SDS, 0.8% 

2-mercaptoethanol) for 1 hr at 50°C.  Stripping efficiency was confirmed by subsequent 

incubation with secondary antibody and development.  Membranes were then incubated 

in PBST blocking buffer for 1 hr prior to reprobing with different primary antibodies. 

Antibodies: The following primary antibodies were used for immunoblotting: 

goat anti-CaMKII α/β  (1:4000, (McNeill and Colbran, 1995)), mouse anti-CaMKIIα 

(ABR, 1:4000), rabbit anti-phospho-Thr286-CaMKIIα (Promega, 1:2500), rabbit anti-

phospho-Thr305-CaMKIIα (1:10,000, (Elgersma et al., 2002)), rabbit anti-DARPP-32 

(Cell Signaling, 1:4000), rabbit anti-phospho-Thr34-DARPP-32 (Cell Signaling, 1:250), 

rabbit anti-phospho-Thr75-DARPP-32 (Cell Signaling, 1:500), rabbit anti-GluR1 

(Upstate, 1:4000), rabbit anti-phospho-Ser831- GluR1 (Upstate, 1:500), rabbit anti-

phospho-Ser845- GluR1 (Upstate, 1:2000), rabbit anti-neurabin (1:2500, (MacMillan et 

al., 1999)), mouse anti-NR1 (Chemicon, 1:3000), rabbit or mouse anti-NR2B (Molecular 

Probes, 1:500), sheep and rabbit anti-PP1γ1 and anti-PP1β (Colbran et al., 1997; Strack et 

al., 1999; Colbran et al., 2003), mouse anti-PP2Ac (Transduction Labs, 1:4000),  mouse 

anti-PSD-95 (Upstate, 1:1000), rabbit anti-spinophilin (1:2000) (MacMillan et al., 1999), 
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mouse anti-tyrosine hydroxylase (ImmunoStar, 1:1000), and rabbit anti- phospho-PKA 

substrate (Cell Signaling, 1:1000).  Secondary antibodies were from Jackson 

Immunoresearch (goat anti-rabbit AP, 1:1000), Sigma (rabbit anti-mouse AP, 1:2000), 

Promega (goat anti-mouse HRP, 1:2000; goat anti-rabbit HRP, 1:4000), Vector 

Laboratories (rabbit anti-goat AP, 1:2000), or AlphaQuest (rabbit anti-goat HRP, 

1:4000).  

 

Characterization of CaMKIIα Phosphorylation Site-Specific Antibodies 

In an attempt to confirm the phospho-substrate specificity of phospho-Thr286-

CaMKII and phospho-Thr305-CaMKII, purified wild-type mCaMKIIα or mCaMKIIα 

mutants T286A, T305A, T306A, and T305/306A were autophosphorylated under two 

different conditions.  All autophosphorylation reactions were stopped by addition of 

SDS-PAGE sample buffer, and boiled at 100ºC for 5 min.  Samples were immunoblotted 

for either phospho-Thr286-CaMKIIα (1:2500, Promega) or Phospho-Thr305/306-CaMKIIα 

(1:10,000, (Elgersma et al., 2002)).  All autophosphorylation reactions were carried out 

using CaMKIIα (wild-type), or the following CaMKIIα mutants: T286A, T305A, T306A, 

and T305/306A.  

Basal autophosphorylation conditions were previously optimized to produce 

selective phosphorylation primarily at Thr306, but also at Thr305 (Colbran, 1993).  Briefly, 

CaMKII (1 µM subunit) was incubated for 60 min at 30°C with 50 mM HEPES pH 7.5, 

10 mM magnesium acetate, 1 mM EGTA, and 1mM ATP.  Immunoblots of wild-type 

CaMKII following basal autophosphorylation revealed a band detected by the phospho-

Thr305-CaMKII antibody.  Furthermore, all but the CaMKII T305/306A mutant also were 
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detected by the phospho-Thr305-CaMKII antibody after basal autophosphorylation (Fig. 8, 

Basal).  In contrast, neither the wild-type, nor the CaMKII mutants were immunoreactive 

with the phospho-Thr286-CaMKII antibody.  Thus, this antibody recognized CaMKII 

when phosphorylated at either Thr305 or Thr306. 

In parallel assays, autophosphorylation conditions (+ Ca2+/CaM) were used to 

fairly selectively label phospho-Thr286, as previously described (McNeill and Colbran, 

1995).  Briefly, autophosphorylation at Thr286 and other unidentified sites was achieved 

by incubating 5 µM CaMKIIα at 30ºC for 4 minutes with 50 mM HEPES pH 7.5, 2 mM 

magnesium acetate, 1.5 mM CaCl2, 10 μM CaM, and 1 mM ATP.  Under these 

conditions, all but the T286A mutant were detected by the phospho-Thr286 antibody, as 

expected.  In contrast, the phospho-Thr305 antibody detected strong immunoreactivity 

from wild-type and all CaMKII mutants (Fig. 8, + Ca2+/CaM), indicating that this 

antibody is not specific for CaMKII phosphorylated at only Thr305 or Thr306.  It appears 

that under these conditions, CaMKII is becoming phosphorylated at an immunoreactive 

site that is not Thr305 or Thr306.   

Previous studies have used the phospho-Thr305 antibody to detect a specific 

immunoreactive signal using hippocampal homogenates from TT305/306VA or T305D 

mice as negative controls (Elgersma et al., 2002; Weeber et al., 2003).  It is possible that 

the in vitro phosphorylation conditions used here somehow promote phosphorylation of 

purified CaMKII at sites in addition to those observed in vivo.  Candidate 

phosphorylation sites include sites containing two consecutive threonine residues 

(Thr401/402 and Thr477/478) or threonine residues surrounded by hydrophobic residues 

(Thr241, Thr261, Thr443).  2D-electrophoresis combined with mass  
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spectrometry will allow precise identification of these sites.  Since the specificity of the 

phospho-Thr305 antibody is in question, only the phospho-Thr286 antibody was used in 

subsequent experiments.  In the future, affinity purification of the phospho-Thr305 

antibody may improve the specificity.   

 

Quantitation of Immunoblots and Statistical Analysis  

Whole striatal homogenates: Optical densities of total protein loaded in each gel 

lane (Ponceau S-stained membranes) and specific immunoblotted proteins were measured 

using NIH Image 1.6 (http://rsb.info.nih.gov/nih-image).  Immunoblotted protein band 

densities in each lane were normalized to total protein loaded in the corresponding lane to 

yield a “normalized immunoblot signal”.  Statistical comparisons of normalized 

immunoblot signals were performed using either one or two-way ANOVA with Scheffe’s 

post-hoc tests or post-hoc t-tests, as indicated.  For graphing purposes, the mean 

normalized immunoblot signal obtained from the intact hemisphere of 6-OHDA lesioned 

rats was set at 100% and values from individual samples were expressed relative to this 

value.  

Subcellular fractions: For analysis of PSD-enriched fractions, the relative “total 

mass” of the specific protein in each sample was obtained by correcting the “normalized 

immunoblot signals” for the volume of P2 fraction loaded on each lane and the total 

volume of the corresponding P2 fraction.  

Acute striatal slices:  For analysis of data obtained in acute slice experiments, 

values obtained for all slices from a single animal were normalized to a control slice from 

 50

http://rsb.info.nih.gov/nih-image)was


that animal (treated with aCSF alone), then pooled within each experiment.  For slices 

from 6-OHDA lesioned rats, the mean normalized immunoblot signal obtained from the 

intact hemisphere of 6-OHDA lesioned rats was set at 100% and values from individual 

samples were expressed relative to this value.  Data normalization in this way allowed a 

more direct comparison between experiments. 

All immunoblot signals quantitated were within the linear range of detection.  To 

ensure this, only immunoreactive bands that met the following criteria were quantitated: 

(1) low immunoreactive signals must be at least 10% higher than the minimum signal 

detectable by Image J, and (2) strongly immunoreactive signals must fall 10% below the 

maximal signal detectable by Image J.  Any exposures of immunoblots containing bands 

that fell outside of these criteria were not used in quantitation analysis.  If possible, a 

different exposure of the immunoblot was used, or the data not complying with the above 

criteria were excluded from further analysis.  Finally, only rats with >90% depletion of 

striatal TH relative to the intact contralateral striatum were included in statistical 

analyses.  

 
 

Phosphatase Activity Assays  

Punches (1.15 mm ID) of dorsolateral striatum were removed from both 

hemispheres of 1.0 mm thick coronal slices, at the level of the crossing of the anterior 

commissure.  Tissue was homogenized immediately following dissection in ice-cold 

homogenization buffer (7 mM Tris-HCl, pH 7.5 containing 0.2 mM EDTA, 0.2 mM 

EGTA, 320 mM sucrose, 1 mM benzamidine, 10 µg/ml aprotinin, 10 µg/ml leupeptin, 10 

µM pepstatin, 50 mM NaF, 50 mM β-glycerophosphate, 20 mM Na pyrophosphate), 
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using a Kontes tissue homogenizer.  Striatal homogenates were immediately frozen at      

-80ºC, and used for activity assays within two weeks.  Whole dorsolateral striatal extracts 

were assayed for phosphatase activities using [32P]-phosphorylase a, [32P]-casein, or [32P-

Thr286]-CaMKIIα as previously described (Strack et al., 1997a).  Whole striatal extracts 

(10 µl of 0.1-0.2 mg/ml extract) were incubated (30 min, 30°C) with either [32P]-

phosphorylase a or [32P]-casein in 50 mM Tris-HCl, pH 7.5, 0.1 M NaCl, 20 mM 

Mg(Ac)2, 10 mg/ml BSA, 0.2 mM EGTA, 1mM DTT.  Assays using [32P]-Thr286-

CaMKIIα were incubated at 30°C for 45 min.  Assays using [32P]-phosphorylase a also 

included 5 mM caffeine.  Assay blanks were incubated without extract.  Assays were 

terminated by addition of 40 μl 40% (w/v) trichloroacetic acid, incubated in ice for 15 

min, then centrifuged (10,000 x g, 10 min).  Supernatants (80 μl) were subjected to liquid 

scintillation counting to quantify 32P release.  PP2A activity was defined as the activity 

inhibited by 2.5 nM okadaic acid.  PP1 activity was defined as the difference in activities 

measured using 2.5 nM and 2.5 μM okadaic acid.  PP1γ1 activity was defined as the 

phosphatase activity inhibited by Nb(146-493).   

 

Phosphatase Inhibitor Proteins 

Nb(146-453) and Nb(146-493) were prepared as GST fusion proteins and 

characterized previously (Carmody et al., 2004).  Nb(146-453) does not contain the PP1 

binding domain (residues 457-460) or the PP1γ1-selectivity domain (residues 473-479) 

that are present in Nb(146-493).  Inhibitor-2 (Calbiochem), and okadaic acid (LC 

laboratories), were also used in some assays, as indicated. 
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Immunoprecipitations 

Fresh whole striata were homogenized in: 2 mM Tris-HCl, pH 7.5, containing 2 

mM EDTA, 2 mM EGTA, 1 mM DTT, 0.2 mM PMSF, 1 mM benzamidine, 40 mg/l 

soybean trypsin inhibitor, 10 mg/l leupeptin, and 0.5% Triton-X-100.  Striatal 

homogenates were diluted to 1 mg/ml in 500 μl IP buffer (150 mM NaCl, 50 mM Tris-

HCl, pH 7.5, 0.5% Triton-X-100), and incubated (rotating, 1 hr., 4°C).  Homogenates 

were centrifuged (10,000 x g, 10 min., 4°C), and the resulting supernatant (homogenate 

supernatant) was used in immunoprecipitation experiments.  Homogenate supernatants 

were precleared by incubation (rotating 1 hr., 4°C) with gammabind-G Sepharose 

(Amersham Biosciences) followed by centrifugation.  Precleared homogenate 

supernatants were incubated with either goat preimmune serum, sheep anti-PP1γ1, or 

sheep anti-PP1β antibodies (rotating, 1 hr., 4°C).  Thirty microliters of a 50:50 

gammabind-G Sepharose slurry was added, and the incubation continued overnight at 

4°C.  Immunoprecipitates were sedimented and washed 5 times with 1 ml IP buffer prior 

to dilution in homogenization buffer (excluding Triton-X-100).  10 μl of the diluted 

immunoprecipitate pellet was immediately assayed for phosphatase activity, in the 

presence of 2.5 nM okadaic acid.  Aliquots of the immunoprecipitated pellets and 

supernatants were diluted in SDS-PAGE buffer, fractionated by SDS-PAGE, and 

immunoblotted. 

 

Acute Striatal Slice Preparation 

Acute striatal slices (400 μm thick) were prepared from unlesioned control rats 

(270-300g), or rats 4 weeks after unilateral 6-OHDA lesion.  Following dissection, rat 

 53



brains were immediately placed in ice-cold artificial cerebral spinal fluid (aCSF), 

consisting of 124 mM NaCl, 4.4 mM KCl, 1.2 mM MgSO4, 1.0 mM NaH2PO4, 2.5 mM 

CaCl2, 26 mM NaHCO3, and 10 mM glucose.  Coronal slices were made with a 

vibratome while the brain was submerged in aCSF, oxygenated with 95% oxygen / 5% 

carbon dioxide.  Only slices rostral to the meeting of the anterior commissure were used 

in these experiments.  Slices were transferred to and maintained on submerged nylon 

mesh chambers in recirculating, oxygenated aCSF at 30ºF, and allowed to equilibrate for 

1 hr prior to addition of any drug.  Osmolarity of aCSF was monitored at the beginning 

and end of each experiment, and remained between 290 and 320 mOsm.  At the end of 

each experiment, slices were immediately flash frozen on dry ice, dorsolateral striatum 

was removed, placed in frozen tubes, and stored at -80ºC until sonicated as indicated 

above.  The use of only dorsolateral striatum compared to the whole striatum resulted in a 

lower variability in immunoblot signal across different samples.  Field recordings (done 

by Danny Winder) containing N1 (fiber volley response) and N2 (evoked response) 

verified the health of striatal slices following a 1 hour incubation in aCSF was similar to 

that seen previously (Norman et al., 2005).   

Glutamate agonists / antagonists applied to the striatal slices were as follows: 100 

μM NMDA, 5 min. (NMDA receptor agonist) ; 20-200 μM APV, 5 or 20 min. as 

indicated (selective NMDA receptor antagonist) ; 50 μM AMPA, 5 min. (AMPA receptor 

agonist);  100 μM ACPD, 20 min. (selective mGluR group I/II agonist).  Dopamine 

agonists applied were: 1 μM SKF81297, 5 min. (D1-like agonist); 1 μM quinpirole, 5 

min. (selective D2-like agonist).  To inhibit endogenous, spontaneous neuronal activity in 

striatal slices by blocking voltage-dependent sodium channels, 1 μM TTX was used in 
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some experiments.  Extracellular Ca2+ was chelated by application of 3 mM BAPTA for 

2-10 min (as indicated).  
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CHAPTER III 

 

CHRONIC DOPAMINE DEPLETION DISRUPTS NORMAL 

PHOSPHORYLATION OF INTRACELLULAR SIGNALING PROTEINS 

 

Introduction 

Parkinson's Disease (PD) is a neurodegenerative disorder resulting in striatal 

dopamine depletion that strikes 1-2% of the population over 60 years of age. Normal 

aging induces morphological changes in striatal medium spiny neurons (MSNs) (Ingham 

et al., 1989), which constitute ~95% of the total striatal neuron population.  However, the 

loss of nigrostriatal dopamine input results in additional morphological and functional 

alterations in striatal MSNs.  For example, enduring changes in MSN dendritic structure 

have been reported in Parkinson’s Disease and in a rat model of parkinsonism induced by 

6-hydroxydopamine (6-OHDA) lesion of the substantia nigra (McNeill et al., 1988; 

Ingham et al., 1998; Arbuthnott et al., 2000; Meshul et al., 2000; Zaja-Milatovic et al., 

2005).  Moreover, nigrostriatal dopamine depletion in animal models affects striatal long-

term depression (Partridge et al., 2000) and long-term potentiation (Centonze et al., 1999; 

Picconi et al., 2004; Norman et al., 2005). 

Both synaptic and morphological plasticity in hippocampal neurons are 

modulated by intracellular signaling proteins, such as CaMKII and related proteins 

(Smart and Halpain, 2000; Winder and Sweatt, 2001; Lisman et al., 2002; Colbran and 

Brown, 2004).  The association of CaMKII, PP1, spinophilin, and neurotransmitter 

receptors with synapses and postsynaptic densities (PSDs) also is dynamically regulated 
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[Colbran, 2004a #140; Colbran, 2004b #274; Griffith, 2004 #278; Schulman, 2004 #277; 

Malinow, 2003 #128].  The morphological and functional effects of striatal dopamine 

depletion presumably result from changes in the expression and/or function of dendritic 

cytoskeletal and signaling proteins. 

Acute dopamine signaling modulates both NMDA- and AMPA-type glutamate 

receptors (Svenningsson et al., 2004).  Although the effects of chronic dopamine 

insufficiency associated with PD are poorly understood, studies in animal models have 

demonstrated modest changes in levels of some glutamate receptor subunits and of PSD-

95 in synaptic membranes (Porter et al., 1994; Oh et al., 1999; Dunah et al., 2000; 

Betarbet et al., 2004; Picconi et al., 2004), as well as altered phosphorylation of the 

NMDA receptor NR2B, NR2A, and NR1 subunits (Menegoz et al., 1995; Oh et al., 1999; 

Dunah et al., 2000).  However, most of these previous studies analyzed whole striatal 

samples from relatively young animals (3-6 months), typically within 6 weeks of 

dopamine depletion.  Notably, PD is a progressive disease induced by chronic striatal 

dopamine depletion, most often in aging individuals.  Normal aging modifies synaptic 

plasticity in the striatum and in other brain regions (Ou et al., 1997; Rosenzweig and 

Barnes, 2003), and also affects intracellular signaling proteins (Norris et al., 1998; Foster 

et al., 2001; Foster et al., 2003).  Thus, the full manifestation of PD may result from the 

combined effects of dopamine depletion and normal aging.  

Here, I report novel changes in signaling pathways of the dorsolateral striatum 

that occur in a graded manner following 6-OHDA lesion of the nigrostriatal pathway. 

Enduring elevations in the phosphorylation of CaMKII and DARPP-32 are seen within 3 

weeks, whereas phosphorylation of GluR1 increases only after several months of 
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dopamine depletion.  

 

Results

Short-term Dopamine depletion enhances Thr286 phosphorylation of CaMKIIα   

Striatal TH levels were decreased by ~95% at 3-12 weeks after unilateral 6-

OHDA injections into the substantia nigra (Fig. 9 A).  No changes in total levels of 

several synaptic proteins were observed, including NMDA receptor NR2B subunit, 

synaptophysin, CaMKIIα, or CaMKIIβ (Fig. 9 A, B).  In contrast, Thr286 phosphorylation 

of CaMKIIα was significantly increased by DA depletion relative to both the 

contralateral intact striatum, and to control striatum from sham-lesioned or non-lesioned 

rats (Fig. 9 B).   

To test the effects of DA replacement on CaMKIIα phosphorylation, 6-OHDA 

lesioned rats were treated with either vehicle or L-DOPA for 9 days (see Chapter II).  In 

rats that received vehicle injections, Thr286 phosphorylation was significantly elevated in 

the lesioned striatum relative to intact striatum.  However, Thr286 phosphorylation in both 

hemispheres of L-DOPA injected rats was similar to that in the intact striatum from 

vehicle-injected rats; i.e., L-DOPA treatment completely reversed the increase in Thr286 

phosphorylation without affecting CaMKII phosphorylation in the intact striatum (Fig. 9). 

However, L-DOPA did not significantly change the total levels of TH, CaMKIIα, 

CaMKIIβ, PP1γ1, and spinophilin (data not shown). 

PSD-enriched cytoskeletal fractions from the striatum of 6-OHDA lesioned rats 

sacrificed 3 weeks after surgery were also analyzed by immunoblotting. As seen in whole 

striatal extracts, Thr286 phosphorylation of CaMKIIα in the PSD-enriched fractions was  
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significantly elevated.  However, total levels of PSD-associated CaMKIIα (but not 

CaMKIIβ) were slightly but significantly decreased (Fig. 10).  

 

Dopamine depletion does not globally affect PKA substrate phosphorylation 

Using an antibody that recognizes phosphorylated serine/threonine PKA 

substrates containing the motif RRXpS/pT, no significant global change in 

immunoreactive signal was detected in comparing intact and lesioned hemispheres (Fig. 

11).  However, two unidentified proteins at ~81 kDa and at ~52 kDa may be more highly 

phosphorylated in the lesioned hemisphere. 

 

Dopamine depletion does not alter the levels of striatal phosphatases and PP1 regulatory 
proteins  
 

Increased Thr286 phosphorylation of CaMKIIα following DA depletion may result 

from altered regulation of striatal protein phosphatases, major targets of DA signaling 

(Svenningsson et al., 2004).  We observed no significant changes in total levels of PP1γ1 

and protein phosphatase 2A (PP2A) catalytic subunits, or of the PP1 scaffolding proteins 

spinophilin and neurabin 3-12 weeks post-operatively (Fig. 12 A).  Moreover, there were 

no significant changes in the amounts of PP1γ1 or spinophilin associated with the PSD-

enriched cytoskeletal fraction (Fig. 10).  Interestingly, while levels of total DARPP-32 

remained unchanged, the phosphorylation of DARPP-32 at Thr75 (but not Thr34) was 

markedly increased in DA-depleted striatum (Fig. 12 B).  The repeated L-DOPA 

injection paradigm (see Methods) completely reversed the increase in Thr75 

phosphorylation (Fig. 12 C).  
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Aging alters the expression of synapse-associated proteins

Since PD is associated with aging, the effects of aging on signaling proteins in 

normal and DA-depleted dorsolateral striatum were assessed.  There were no significant 

differences in levels of CaMKIIα, phospho-Thr286-CaMKIIα,  phospho-Thr34-DARPP-

32, phospho-Thr75-DARPP-32, PP2Ac, or PP2B in striatum from control rats at 4-6 

months, 12-14 months, and 21-23 months of age (Fig. 13A, C, and E).  However, there 

was a significant increase in PP1γ1 and a significant decrease in spinophilin and neurabin 

in control rats at 21-23 months of age (Fig. 13 F).  In addition, there was a trend for 

decreasing levels of DARPP-32 with normal aging, but this was only statistically 

significant at 12-14 months of age (Fig. 13 F).  

 

Long-term effects of striatal dopamine depletion  

Analysis of dorsolateral striatum from rats sacrificed 9-11 or 18-20 months after 

6-OHDA injections (i.e., at 12-14 or 21-23 months of age) revealed results consistent 

with those in short-term lesioned rats.  Total levels of multiple signaling proteins were 

unchanged after chronic DA depletion (Figs. 14, 15).  However, the elevated 

phosphorylation of CaMKIIα at Thr286 and of DARPP-32 at Thr75 seen 3-12 weeks post-

operatively was also detected at both later time points (Fig. 14).  

 

Long-term dopamine depletion enhances phosphorylation of GluR1 at Ser831  

Since aging and chronic DA depletion yield complex changes in the levels and 

phosphorylation of CaMKIIα, PP1γ1, and PP1 regulatory proteins, we examined a 

common downstream target of these enzymes, the GluR1 subunit of the AMPA-type  
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glutamate receptor.  There were no changes in the levels of GluR1 or of the 

phosphorylation of GluR1 at Ser831 or Ser845 during normal aging (4-23 months of age; 

Fig. 13 B).  DA depletion had no significant effect on the levels of total GluR1 in whole 

striatal extracts at any time point (Fig. 16), or in PSD-enriched fractions (Fig. 10). 

Phosphorylation of GluR1 at Ser831 was unaltered 3-12 weeks post-surgery, but was 

significantly elevated in DA-depleted striatum at both 9-11 and 18-20 months post-

operatively (Fig. 16).  In contrast, phosphorylation of GluR1 at Ser845 was not 

significantly different between the hemispheres at any time point after surgery (Fig. 16). 

 

Discussion  

 

Dopamine depletion increases Thr286 phosphorylation of CaMKIIα  

Phosphorylation of CaMKIIα at Thr286 was significantly increased within 3 weeks 

of 6-OHDA lesion surgery in both total homogenates and PSD-enriched subcellular 

fractions of dorsolateral striatum (Figs. 9, 10).  A recent study using whole striatum 

detected enhanced Thr286 phosphorylation of CaMKIIα in a PSD-enriched fraction, but 

not in the total homogenate (Picconi et al., 2004).  Notably, dorsolateral striatum receives 

the densest nigrostriatal DA inputs (Nakano et al., 2000) perhaps suggesting that this 

region will be most severely affected by 6-OHDA lesion of the Substantia Nigra. Thus, 

differences between these studies may reflect the analysis of different parts of the 

striatum, or the choice of different rat strains.  
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 Phosphorylation at Thr286 stabilizes CaMKII binding to PSD proteins and 

synapses in hippocampal neurons (Strack et al., 1997b; Yamauchi and Yoshimura, 1998; 

Shen and Meyer, 1999; Colbran, 2004a). Therefore, it was surprising that total CaMKIIα  

levels in the PSD-enriched fractions isolated from the dorsolateral striatum were 

decreased (Fig. 10).  Significant changes in other PSD-associated protein levels were not 

detected, although quantitative ultrastructural studies may reveal more subtle changes in 

subcellular distribution.  In addition, it should be noted that total CaMKIIα levels in PSD 

fractions from whole striatum were unaltered (Picconi et al., 2004).  A similar decrease in 

hippocampal PSD-associated total CaMKIIα in the face of enhanced Thr286 

phosphorylation was also observed in a mouse model of Angelman’s Syndrome, which 

lacks an E6AP-ubiquitin ligase (Weeber et al., 2003).  However, it is important to note 

that CaMKIIα association with PSDs is regulated by additional mechanisms, such as 

autophosphorylation at Thr305/306 (Shen et al., 2000; Elgersma et al., 2002) and a protein 

kinase C-driven mechanism (Fong et al., 2002), likely involving dynamic interactions of 

CaMKII with multiple binding partners in the PSD (Colbran, 2004a).  It would be 

interesting to examine the effect of DA depletion on CaMKII phosphorylation at 

Thr305/306, but appropriately specific reagents were not available (see Chapter II).  Thus, 

mechanisms of CaMKII targeting to PSDs in striatum and the role of DA modulation in 

regulating CaMKII phosphorylation and activity warrant further investigation. 

 

Mechanisms for increased Thr286 phosphorylation following dopamine depletion   

Thr286 autophosphorylation of CaMKII is acutely induced by Ca2+ influx via 

voltage-gated calcium channels or NMDA receptors or by the release of intracellular Ca2+ 
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stores (Hanson and Schulman, 1992).  These effects of Ca2+ mobilization are opposed 

and reversed by multiple protein phosphatases (Colbran, 2004b).  For example, PSD-

associated CaMKII is selectively dephosphorylated by PP1, presumably the PP1γ1 

isoform that appears to be selectively targeted to dendritic spines by binding to 

spinophilin and/or neurabin (MacMillan et al., 1999; Strack et al., 1999; Terry-Lorenzo et 

al., 2002; Carmody et al., 2004; Bordelon et al., 2005).  Thus, increased Thr286 

phosphorylation following DA depletion might be due to increased Ca2+ mobilization 

resulting from lack of modulation of corticostriatal excitatory inputs to MSNs, or due to 

inhibition of protein phosphatases acting on CaMKII.   

Many acute effects of DA in the striatum are mediated by modulation of protein 

phosphatases, especially via the modulation of PP1 by DARPP-32 and spinophilin 

(Svenningsson et al., 2004).  However, we found no evidence for changes in the total 

levels of multiple phosphatase catalytic subunits or of PP1 regulatory proteins following 

DA depletion, in either whole dorsolateral striatal extracts or PSD-enriched subcellular 

fractions.  DARPP-32 is phosphorylated at Thr34 by PKA following acute D1 receptor 

activation (presumably decreasing PP1 activity) and dephosphorylated by PP2B in 

response to activation of D2 receptors, as well as the NMDA-, AMPA-, and mGluR5-

type glutamate receptors (Svenningsson et al., 2004; Nishi et al., 2005).  Surprisingly, but 

consistent with prior reports (Picconi et al., 2003; Chergui et al., 2004), there were no 

significant changes in Thr34 phosphorylation at any time point following 6-OHDA lesion.  

In addition, no significant global change in immunoreactive signal was detected using an 

antibody that recognizes phosphorylated PKA substrates (Fig. 11).  Although 

immunoreactive signal was elevated for two unidentified proteins, these data as a whole 
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suggest a lack of global change in PKA activity.  These results are consistent with other 

reports indicating no change in striatal cAMP levels following 6-OHDA lesion (Nash and 

Brotchie, 2000).  Thus, additional cellular mechanisms may normalize DARPP-32 

phosphorylation at Thr34 after chronic DA depletion. 

In contrast to the lack of changes in Thr34 phosphorylation, DARPP-32 

phosphorylation at Thr75 was significantly elevated by DA depletion.  Moreover, L-

DOPA injections rescued this increase.  Thr75 is phosphorylated by cyclin-dependent 

kinase 5 (cdk5) and dephosphorylated by PP2A. PP2A activity may be reduced following 

DA depletion due to the loss of a D1 receptor mediated, PKA-dependent activation of 

PP2A (Nishi et al., 2000), or due to CaMKII-dependent inhibition of PP2A (Fukunaga et 

al., 2000).  It is possible that increased glutamatergic signaling following DA depletion 

also activates cdk5, contributing to the enhanced phosphorylation of DARPP-32 Thr75.  

In combination, these data provide no direct evidence for alterations in protein 

phosphatases following DA depletion, although the data cannot rule out alterations in 

specific subtypes or changes in activity due to other mechanisms.  The elevated 

phosphorylation of specific residues in CaMKII, DARPP-32, GluR1, and two 

unidentified specific proteins at ~81 kDa and at ~52 kDa suggest an imbalance in the 

regulation of as yet unidentified cellular kinases and / or phosphatases.  Alternatively, 

these changes reflect enhanced glutamatergic signaling due to the loss of DA modulation.  

Further studies will be required to determine the contributions of PP2A and cdk5 to the 

elevated phosphorylation of DARPP-32 following DA depletion, and whether these 

changes play a role in enhancing Thr286 phosphorylation of CaMKII.  
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Consequences of aging and chronic dopamine depletion  

Increased Thr286 phosphorylation of CaMKIIα is evident within 3 weeks of 6-

OHDA lesion surgery and is maintained for up to 18 months.  However, increased 

phosphorylation of a well-established CaMKII substrate, Ser831 in the AMPA-type 

glutamate receptor GluR1 subunit, did not become evident until 9 -11 months and was 

maintained for up to 18 months.  Thus, prolonged DA depletion can have biochemical 

consequences beyond those seen in the shorter-term studies that are typically performed. 

GluR1 phosphorylation depends not only on CaMKII activity, but also on the 

activity of opposing phosphatases, such as PP1/ PP2A and PP2B (Lee et al., 2000; 

Snyder et al., 2000; Vinade and Dosemeci, 2000).  Total PP1/PP2A and PP2B activities 

increase during aging even though PP2A and PP2B protein levels remain constant (Norris 

et al., 1998; Foster et al., 2001; Foster et al., 2003) (Fig. 13C). We found that while total 

levels of the PP1γ1 isoform increased significantly with aging, the levels of spinophilin, 

neurabin and DARPP-32 decreased (Fig. 13 F). Thus, we hypothesize that in young rats, 

PSD-targeted PP1γ1 prevents the accumulation of Ser831 phosphorylated GluR1 

following DA depletion; reduced levels of PSD-associated CaMKIIα may also contribute 

to the lack of increase in Ser831 phosphorylated GluR1.  However, as levels of spinophilin 

and neurabin decrease with normal aging, levels of PSD-targeted PP1 may decrease 

(despite the overall increase in PP1γ1 levels), allowing accumulation of Ser831 

phosphorylated GluR1 in response to increased levels of Thr286 phosphorylated CaMKII 

following DA depletion.  Further studies are clearly warranted to understand the interplay 

between changes in signaling pathways induced by DA depletion and by normal aging.  
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Relationship of observed changes to synaptic plasticity  

DA acutely regulates both CaMKII (Gu and Yan, 2004; Picconi et al., 2004) and 

AMPA receptors (Snyder et al., 2000; Chao et al., 2002) and CaMKII regulates the 

unitary conductance and trafficking of AMPA-type glutamate receptors (Malinow and 

Malenka, 2002; Malinow, 2003; Allen, 2004).  Moreover, normal synaptic plasticity 

requires phosphorylation of CaMKII at Thr286 (Lisman et al., 2002; Colbran and Brown, 

2004) and of AMPA receptor GluR1 subunits (Lee et al., 2003).  Although roles of 

CaMKII and GluR1 phosphorylation in the striatum are poorly understood, short-term 

striatal DA depletion disrupts multiple forms of striatal synaptic plasticity (Centonze et 

al., 1999; Partridge et al., 2000; Norman et al., 2005).  Recently, CaMKII inhibitors were 

shown to rescue a defect in striatal synaptic plasticity following short-term DA depletion 

(Picconi et al., 2004).  However, our data suggest that long-term DA depletion may 

enhance glutamate receptor-mediated transmission by increasing the levels of Ser831 

phosphorylated GluR1.  

The normal aging-related decrease in spine density of striatal MSNs in the rat 

(Ingham et al., 1993) likely contributes to an aging-related decline in motor behavior.  

Aging-related changes in corticostriatal synaptic function are indicated by decreased  

paired-pulse, post-tetanic, and NMDA receptor-dependent long-term potentiation 

(Akopian and Walsh, 2006).  In addition, less stimulation is required to detect EPSPs in 

striatal slices from aged rats, suggesting that either more neurotransmitter is released 

from cortical terminals in response to presynaptic stimulation or that striatal neurons are 

more excitable (Akopian and Walsh, 2006).  Together, these data  are consistent with the 

idea that while the total number of synapses decreases with aging, a compensatory 
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mechanism allows the remaining synapses to become stronger, as suggested by the 

elevated levels of phospho-Thr286-CaMKIIα and phospho-Ser831-GluR1 after long-term 

DA depletion.  It will be interesting to determine whether prolonged periods of DA 

depletion induce additional changes in striatal synaptic plasticity and whether CaMKII 

inhibitors are similarly effective after GluR1 phosphorylation has increased. 

 

Relationship of observed changes to morphological changes in MSNs  

Dendritic morphology of cortical and hippocampal neurons is sensitive to changes 

in expression of many proteins, including CaMKIIα, PSD-95, neurabin, and spinophilin 

(Feng et al., 2000; Oliver et al., 2002; Jourdain et al., 2003; Lee et al., 2004; Li et al., 

2004; Tang et al., 2004).  Given the morphological changes associated with striatal DA 

depletion in PD and in animal models (Ingham et al., 1998; Arbuthnott et al., 2000; 

Meshul et al., 2000; Zaja-Milatovic et al., 2005), it is somewhat surprising that total 

striatal levels of all proteins analyzed here were unchanged, even after prolonged DA 

depletion.  However, our observations confirm and extend previous studies demonstrating 

a lack of changes in GluR2/3, α-actinin-2, and PSD-95 following 6-OHDA lesion 

(Dunah et al., 2000), although some studies report changes in levels of other glutamate 

receptor subunits (Porter et al., 1994; Oh et al., 1999; Dunah et al., 2000; Betarbet et al., 

2004; Picconi et al., 2004).  In contrast to the modest effects of DA depletion, decreased 

spinophilin levels (Fig. 13 F) may be associated with aging-related losses of dendritic 

spines (Ingham et al., 1989; Ou et al., 1997).  Thus, morphological changes which occur 

following DA depletion and during normal aging are likely caused by different cellular 

mechanisms.   
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Relevance to Parkinson’s Disease  

L-DOPA administration completely reversed increases in the phosphorylation of 

CaMKII and DARPP-32 at Thr286 and Thr75, respectively.  In our studies, tissue was 

harvested 16 hours following the final L-DOPA injection and the half-life of L-DOPA is 

approximately 90 minutes.  Thus, little (if any) L-DOPA would be present when animals 

were sacrificed, consistent with the fact that L-DOPA did not affect phosphorylation of 

CaMKII or DARPP-32 in the intact (normal) striatum (Figs. 9C, 12C).  These data 

suggest that DA depletion induces significant, sustained alterations in striatal signaling 

mechanisms that can be reversed by L-DOPA within a few weeks of DA depletion.  This 

mechanism may contribute to the sustained therapeutic benefits of L-DOPA 

administration during initial phases of PD (Thanvi and Lo, 2004).  Additional studies that 

examine signaling in normal and DA-depleted striatum at various times after 6-OHDA 

lesion surgery may provide useful insights into the evolving responses to DA replacement 

therapy in PD. 

Idiopathic PD is associated with aging.  It will be important to determine whether 

changes in phosphorylation of CaMKII, DARPP-32, and GluR1 occur in PD, although 

such studies may be complicated by dephosphorylation of these proteins in postmortem 

human tissue.  Nevertheless, to the best of my knowledge, the slow development of 

increased GluR1 phosphorylation at Ser831 following DA depletion represents the first 

report of unique biochemical effects of long-term (9-20 months) DA depletion in rodents. 

These data may be explained by a novel interaction between aging and DA depletion, 

indicating that short-term DA depletion in animal models of parkinsonism may not fully 

recapitulate the human disease.  Moreover, the evolving responses of signaling proteins 
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following DA depletion may play a role in the progression of symptoms during PD, as 

well as in the changing efficacy and debilitating side effects associated with DA 

replacement therapy. 
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CHAPTER IV 

 

PHOSPHORYLATION OF CAMKII IS ACUTELY REGULATED BY NMDA 
RECEPTOR ACTIVATION 

 
 

Introduction 

Parkinson’s disease (PD) is a neurodegenerative disorder that arises from the loss 

of nigrostriatal dopamine (DA) input to the striatum.  Terminals of corticostriatal 

glutamatergic neurons and nigrostriatal dopaminergic neurons converge on dendritic 

spine heads of striatal MSNs, suggesting that this region of the basal ganglia is in an ideal 

location for integration of dopamine and glutamate-mediated signaling pathways.   

CaMKII is a well established modulator of excitatory transmission in the 

hippocampus.  Activation of the NMDA receptor mediates Ca2+-influx that enhances 

CaMKII autophosphorylation (Fukunaga et al., 1996).  Phosphorylation of CaMKII at 

Thr286 enhances Ca2+-independent CaMKII activity (Hudmon and Schulman, 2002, 2002; 

Colbran and Brown, 2004) and translocation to the PSD (Strack et al., 1997b).  Active 

CaMKII is necessary for the induction of NMDA receptor-dependent LTP (Lisman and 

Zhabotinsky, 2001; Lisman et al., 2002).   

Previous reports indicate a role for dopaminergic regulation of striatal CaMKII, as 

DA depletion results in elevated CaMKII phosphorylation at Thr286, which is reversed by 

chronic L-DOPA administration (Chapter III, Fig. 9C); (Picconi et al., 2004; Brown et 

al., 2005).  The most commonly used therapy for controlling motor symptoms of PD, L-

DOPA treatment can cause unwanted motor complications, such as dyskinesias and a 

“wearing-off” phenomenon, and eventually becomes less effective with long-term use 
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(Schapira, 2005).  The “wearing-off” phenomenon may be related to the pulsatile 

administration of L-DOPA, and describes the re-emergence or worsening of parkinsonian 

symptoms prior to taking the next scheduled dose.  Acute administration of L-DOPA to 

rats with unilateral 6-OHDA lesions results in a contralateral turning behavior 

(Schwarting and Huston, 1996).  With more chronic L-DOPA administration, rotation 

frequency increases (sensitization) and the effects of L-DOPA are maintained for a 

shorter period of time, reminiscent of the “wearing-off” observed after long-term L-

DOPA therapy in human PD patients.  This “wearing-off” effect is reversible by 

administration of the CaMKII inhibitor KN-93 (Oh et al., 1999), suggesting that active 

CaMKII plays a role in this phenomenon.  In addition, CaMKII inhibition also 

normalizes DA-depletion induced deficits in LTP and behavior (Picconi et al., 2004).  In 

combination, these studies suggest that CaMKII plays a critical role in the development 

of not only the parkinsonian phenotype, but also some of the side effects associated with 

chronic L-DOPA treatment.   

While it is clear that chronic DA depletion modulates CaMKII 

autophosphorylation, the roles of glutamate and DA in the normal regulation of striatal 

CaMKII signaling have not been determined.  Further examination of the acute regulation 

of striatal CaMKII may eventually provide insight into the evolving effectiveness and use 

of glutamatergic and dopaminergic receptor modulatory drugs as therapies for PD.  Here, 

we show that CaMKII autophosphorylation is acutely regulated by NMDA receptor 

activation and extracellular Ca2+ influx in the normal striatum. 
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Results 

  

Phosphorylation of CaMKII decreases with time after tissue collection. 

It is critical to minimize the variability in CaMKII phosphorylation that may 

occur due to preparation of acute striatal slices.  Therefore, freshly isolated striatal slices 

were incubated in aCSF over a time course of 0 to 120 minutes.  Phospho-Thr286-CaMKII 

levels in whole tissue extracts were then quantitated by immunoblot.  A highly variable 

level of CaMKII phosphorylation was detected in individual slices immediately after 

slice preparation, which  decreased to a relatively consistent and stable baseline after 60-

90 min. incubation in aCSF (Fig. 17).  

 

Striatal CaMKII phosphorylation at Thr  is acutely regulated by NMDA receptors 286

Glutamate released from corticostriatal synapses is the major excitatory input to 

the striatum.  Glutamate regulates CaMKII via multiple receptor pathways in other brain 

regions.  To determine the acute regulation of CaMKII phosphorylation by NMDA 

receptor-mediated signaling pathways, increasing concentrations of NMDA were applied 

to striatal slices.  NMDA (20 or 100 μM) increased CaMKII autophosphorylation by 

60%, an effect blocked by prior application of APV (Fig. 18 A).  In a separate 

experiment, NMDA again increased CaMKII autophosphorylation (Fig. 18 B), but 

incubation with APV alone did not significantly alter CaMKII phosphorylation, 

suggesting that there is a low basal NMDA receptor activity in acute striatal slices.  The 

NMDA-induced increase in CaMKII autophosphorylation was compared with that of 

GluR1 phosphorylation.  NMDA increased phosphorylation of GluR1 at Ser831, but  
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caused an insignificant decrease in phosphorylation at Ser845 (Fig. 18 C, D), consistent 

with previous reports in hippocampal tissue (Lee et al., 1998; Vanhoose and Winder, 

2003).  Furthermore, phosphorylation of striatal DARPP-32 at Thr34 and Thr75 was 

decreased by NMDA (Fig. 18 E, F), consistent with a previous report (Nishi et al., 2002).  

We also investigated the role of AMPA-type and metabotropic glutamate receptors in 

regulating autophosphorylated striatal CaMKII.  Neither the AMPA receptor  

agonist AMPA (Fig. 19) nor the mGluR group I and II agonist ACPD had any significant 

effect on CaMKII phosphorylation (Fig. 20).  However, phosphorylation of DARPP-32 at 

Thr34 and Thr75 was regulated by these agents.  In combination, these results indicate that 

striatal glutamate elevates Thr286 phosphorylation of striatal CaMKII primarily via 

activation of NMDA receptor. 

 

CaMKII is highly phosphorylated at Thr  in striatal slices 286

We next compared the level of phospho-Thr286-CaMKII immunoreactivity in 

acute striatal slices (incubated 1 hr. in aCSF) with acute hippocampal slices treated in an 

similar manner (Vanhoose and Winder, 2003).  Inclusion of samples from both striatal 

and hippocampal slices on the same immunoblot enabled direct comparison of phospho-

protein levels.  The level of phospho-Thr286-CaMKII in striatal slices was twofold higher 

than in hippocampal slices (Fig. 21).  In comparison, levels of a CaMKII substrate, 

phospho-Ser831-GluR1, were higher in the hippocampus, while phospho-Ser845-GluR1 

levels were similar in both tissues.  These results indicate that under basal conditions 

CaMKII is more highly phosphorylated in the striatum than in the hippocampus.  

We next sought to understand why CaMKII is so highly phosphorylated in the striatum 
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under basal incubation conditions.  Release of endogenous neurotransmitters due to 

spontaneous activity may stimulate Ca2+ influx and / or inhibit phosphatases, resulting in 

high levels of phospho-Thr286-CaMKII.  However, blockade of spontaneous activity in 

the slice by incubation with the voltage-gated sodium channel blocker TTX (1 μM, 30 

min) had no significant effect on phospho-Thr286-CaMKII levels (Fig. 22).  

We then explored the impact of removing extracellular Ca2+, which would prevent 

entry of Ca2+ via multiple pathways.  Addition of an extracellular Ca2+ chelator (BAPTA) 

to the aCSF resulted in a greater than 90% decrease in levels of phospho-Thr286-CaMKII 

within 3 min (Fig. 23 A).  This was accompanied by a more modest, but significant 

reduction in GluR1 phosphorylation at Ser831, with no change in Ser845 phosphorylation 

(Figs. 23 B, C).  In combination, these data suggest that Ca2+ influx via a pathway that 

does not require spontaneous activity is driving the high basal levels of phospho-Thr286-

CaMKII under basal conditions. 
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Discussion  

This chapter describes the first efforts to define the acute regulation of striatal 

CaMKII by glutamate.  The regulation of CaMKII by glutamate has been studied 

extensively in other brain regions.  While previous studies have examined the 

glutamatergic regulation of phosphatases and other proteins in the striatum, we are not 

aware of any reports on the acute impact of these signaling pathways on CaMKII.  

 

Role of Glutamate in regulating CaMKII autophosphorylation 

Glutamatergic regulation of CaMKII autophosphorylation has been previously 

defined in other brain regions.  The contributions of NMDA and AMPA receptors to 

synaptic Ca2+ signaling depends on the activation state of the MSNs in acutely isolated 

slices.  The majority of Ca2+ influx occurs through Ca2+-permeable AMPA receptors in 

the downstate (Carter and Sabatini, 2004).  In contrast, membrane depolarization to the 

upstate switches the source of Ca2+ influx to NMDA receptors (Carter and Sabatini, 

2004).  However, the contributions of NMDA or AMPA receptor-mediated Ca2+ influx 

on striatal CaMKII phosphorylation have not previously been characterized.  Our data 

indicate that neither AMPAR nor mGluR regulation significantly alters CaMKII 

autophosphorylation.  In contrast, activation of NMDAR significantly increased CaMKII 

autophosphorylation.   

Despite the widespread effects of glutamate on other signaling proteins, we found 

that CaMKII autophosphorylation in the striatal slice was significantly enhanced by 

NMDA, and not by AMPA or mGlu receptor signaling pathways.  I confirmed the 
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reported response of different phospho-proteins to these various drugs, and despite the 

variations in experimental protocols, the responses of phospho-DARPP-32 and phospho-

GluR1 were consistent with those found in previous literature.  

  

CaMKII is highly phosphorylated at Thr286 in striatal slices 

CaMKII autophosphorylation at Thr286 is twofold higher in striatal slices than in 

hippocampal slices.  We considered several factors that may contribute to this difference.  

Spontaneous release of glutamate does not appear to be responsible since antagonists of 

NMDAR, AMPAR, or mGluR receptors have no significant effect on CaMKII 

autophosphorylation (data not shown).  Moreover, spontaneous release of acetylcholine 

from cholinergic interneurons activates postsynaptic L-type Ca2+ channels on MSNs 

(Olson et al., 2005).  However, blockade of action potentials in striatal slices using the 

voltage-gated Na+ channel blocker TTX had no effect on basal levels of CaMKII 

autophosphorylation.  Finally, there may be a high basal Ca2+ efflux from intracellular 

stores.  Any combination of these Ca2+ sources may mediate the high basal CaMKII 

autophosphorylation in striatal slices.   

 

Basal CaMKII autophosphorylation is regulated by extracellular Ca2+

Extracellular Ca2+ can enter the postsynaptic cell through voltage-gated ion 

channels, such as voltage-gated calcium channels (VGCC) or Ca2+-permeable AMPA 

receptors.  Basal influx of extracellular Ca2+ appears to promote CaMKII 

autophosphorylation in the striatum (Fig. 23 A), by an undetermined route of entry.   
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While postsynaptic Ca2+ influx plays a role in directly enhancing striatal CaMKII 

phosphorylation, presynaptic Ca2+ influx essential for neurotransmitter release may also 

play a role.  It is possible that BAPTA-mediated inhibition of spontaneous 

neurotransmitter release or decrease in quantal size plays a role in lowering CaMKII 

autophosphorylation (Hardingham et al., 2006).  This scenario appears unlikely, as 

inhibition of spontaneous neurotransmitter release by TTX had no effect on CaMKII 

autophosphorylation.  

A high influx of extracellular Ca2+ in the absence of any external stimuli is 

surprising, although spontaneous Ca2+ transients have been observed in acute striatal 

slices (Osanai et al., 2006).  Spontaneous, brief elevations in cytoplasmic Ca2+ may 

originate from the release of Ca2+ from intracellular stores, a possibility not addressed by 

experiments presented in this dissertation.  Decreased extracellular Ca2+ results in a time-

dependent dephosphorylation of CaMKII in cultured dorsal root ganglion neurons (Cohen 

and Fields, 2006).  The decreased CaMKII autophosphorylation results from depletion of 

Ca2+ from intracellular stores without changing bulk intracellular Ca2+.  Although low 

extracellular Ca2+ decreases CaMKII autophosphorylation in both dorsal root ganglion 

cultures and hippocampal neuronal cultures (Scholz and Palfrey, 1998; Cohen and Fields, 

2006), a rapid decrease is observed here in CaMKII autophosphorylation in striatal slices.  

This rapid CaMKII dephosphorylation in striatal slices suggests one or both of the 

following: (1) that striatal phosphatase activity is very high, and (2) a strong drive for 

enhanced CaMKII autophosphorylation may be present in striatal slices.  
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Implications for Parkinson’s Disease 

Previous reports indicate a role for DA in the regulation of striatal CaMKII, since 

DA depletion results in elevated CaMKII phosphorylation at Thr286 that can be reversed 

by repeated administration of L-DOPA (Chapter III, Fig. 9); (Brown et al., 2005).  

Treatment with L-DOPA is initially effective in controlling motor symptoms of PD, but 

commonly causes unwanted motor complications such as dyskinesias and a “wearing-

off” phenomenon, and eventually becomes less effective with long-term use.  Enhanced 

CaMKII activity has been previously implicated in the “wearing-off” phenomenon 

induced by chronic L-DOPA in the 6-OHDA lesioned rat.  DA agonists are commonly 

used medications for PD patients, to help control motor symptoms early in the course of 

the disease.  Unfortunately, side effects similar to those seen in animals treated with L-

DOPA gradually develop after prolonged use.  Therefore, a better understanding of the 

biochemical pathways modulated by DA and glutamate receptor signaling in the striatum 

may aid in future evaluation of aberrant signaling following DA depletion.  Importantly, 

defining the normal DA and glutamate receptor regulation of CaMKII may help to 

determine how such signaling pathways are altered after DA depletion and long-term L-

DOPA therapy. 

Determining the acute regulation of CaMKII in the striatal slice by DA and 

glutamate will ultimately help in understanding the changes in biochemical signaling 

pathways that occur following long-term L-DOPA therapy.  DA depletion alters NMDA 

receptor phosphorylation, which may modulate their subcellular distribution (Raman et 

al., 1996; Tingley et al., 1997; Dunah and Standaert, 2001; Dunah et al., 2004; Hallett et 

al., 2006). Similarly, DA depletion increases D2 receptor number (Araki et al., 1998) and 
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BBmax (Cai et al., 2002).  Therefore, CaMKII regulation by NMDA receptor signaling is 

likely altered following DA depletion.  It will be important for future studies to determine 

the effects of DA depletion and L-DOPA therapy in the acute regulation of CaMKII.  In 

addition, it will be informative to investigate how DA treatment modulates the NMDA-

induced elevation in CaMKII autophosphorylation.  Targeting striatal Ca -sensitive 

signaling pathways that are misregulated following DA depletion may be a useful 

strategy for treatment of PD.     

2+
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CHAPTER V 

 

DOPAMINE DEPLETION SELECTIVELY ALTERS THE BALANCE 
BETWEEN PP1 AND CAMKII IN THE DORSOLATERAL STRIATUM 

 

 

Introduction 

Calcium/calmodulin-dependent protein kinase II (CaMKII) and protein phosphatase 1 

(PP1) are critical for synaptic plasticity.  Autophosphorylation of CaMKII at Thr286 is 

required for normal long-term potentiation (LTP) and hippocampus-based learning and 

memory (reviewed in (Lisman et al., 2002)).  PP1 selectively dephosphorylates CaMKII 

that is associated with PSDs, whereas soluble CaMKII is primarily dephosphorylated by 

PP2A (Strack et al., 1997a; Strack et al., 1997b), and inhibition of PP1 via cAMP-

dependent pathways promotes autophosphorylation at Thr286 and LTP induction (Blitzer 

et al., 1998; Brown et al., 2000).  Spinophilin and neurabin are similar F-actin-binding 

proteins that selectively target the PP1γ1 isoform to dendritic spines, modulating spine 

morphology and synaptic plasticity (MacMillan et al., 1999; Strack et al., 1999; Feng et 

al., 2000; Oliver et al., 2002; Terry-Lorenzo et al., 2002; Carmody et al., 2004; Bordelon 

et al., 2005; Terry-Lorenzo et al., 2005; Allen et al., 2006).  Thus, coordinated regulation 

of hippocampal CaMKII and PP1 is critical for normal physiological responses. 

Loss of nigrostriatal dopamine inputs in Parkinson’s Disease or in parkinsonian 

animal models results in morphological alterations in striatal medium spiny neurons 

(MSNs) (McNeill et al., 1988; Ingham et al., 1998; Meschul et al., 1999; Arbuthnott et 

al., 2000; Zaja-Milatovic et al., 2005; Day et al., 2006), which constitute >90% of the 
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total striatal neuron population, and impairment of multiple forms of corticostriatal 

synaptic plasticity (Centonze et al., 1999; Centonze et al., 2001; Picconi et al., 2003; 

Norman et al., 2005).  Symptoms of Parkinson's Disease initially respond to dopamine 

replacement therapy, but as the disease progresses this approach generates debilitating 

side-effects and/or loses efficacy.  The study of animal models (e.g., the 6-OHDA 

lesioned rat) has provided innumerable insights about terminal consequences of striatal 

dopamine depletion and the mechanisms underlying striatal deficits in Parkinson’s 

Disease, resulting in improved therapeutic strategies (reviewed in (Cenci et al., 2002)).  

Dopamine depletion increases Thr286 autophosphorylation of CaMKII and this 

increase is reversed by dopamine-replacement using L-DOPA (Picconi et al., 2004; 

Brown et al., 2005).  Moreover, CaMKII inhibitors normalize dopamine depletion-

induced alterations in both synaptic plasticity and behavior (Oh et al., 1999; Picconi et 

al., 2004), suggesting that altered regulation of CaMKII plays a critical role in the 

parkinsonian phenotype.  The enhanced phosphorylation of CaMKII at Thr286 is sustained 

at similar levels for up to 18 months after inducing dopamine depletion (Brown et al., 

2005).  However, increased phosphorylation of a downstream CaMKII target, Ser831 in 

the AMPA-type glutamate receptor GluR1 subunit, is detected 9-18 months, but not 3-6 

weeks, after dopamine depletion, (Brown et al., 2005).  These data suggest complex 

interactions between the effects of long-term dopamine depletion and aging that may 

have additional effects on striatal function.  

 
Striatal dopamine depletion could increase CaMKII autophosphorylation by at least 

two potentially linked mechanisms.  First, increased corticostriatal glutamatergic drive 

(Meschul et al., 1999; Jonkers et al., 2002) might activate NMDA receptors or voltage-
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gated Ca2+ channels, enhancing postsynaptic Ca2+ influx and CaMKII 

autophosphorylation.  Second, reduced protein phosphatase activity(ies) might allow 

increased phosphorylation of CaMKII and other proteins.  Many acute effects of 

dopamine are thought to require inhibition of striatal PP1 by the Thr34-phosphorylated 

form of DARPP-32 (Svenningsson et al., 2004; Pisani et al., 2005), although reduced PP1 

activity has not been directly demonstrated.  Regulation of PP1 localization by 

spinophilin and neurabin also is critical for normal synaptic plasticity and dendritic spine 

morphology (Surmeier et al., 1995; Yan et al., 1999; Feng et al., 2000; Allen et al., 2006).  

Although total striatal levels of spinophilin, neurabin, DARPP-32 and the PP1γ1isoform 

are not significantly affected when analyzed at times ranging from 3 weeks to 18 months 

following dopamine depletion, phosphorylation of DARPP-32 at Thr75, but not at Thr34, 

is increased at all time points (Brown et al., 2005).  Here, we report that striatal DA 

depletion causes a selective decrease in the activity of a specific PP1 isoform, PP1γ1.  

This chronic reduction of PP1γ1 activity may play a key role in mediating changes in 

synaptic morphology and/or function by allowing enhanced phosphorylation of multiple 

synaptic proteins, including CaMKIIα. 

 

Results 

Protein phosphatase activities and/or localization can be regulated by direct 

phosphorylation of their catalytic subunits, or by phosphorylation of their regulatory 

subunits.  Thus, we developed conditions for tissue homogenization that would limit 

dephosphorylation of putative regulatory sites following homogenization of striatal 

samples, but allowed for detection of phosphatase activities.  Organic phosphatase 
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inhibitors such as microcystin LR are effective at preventing protein dephosphorylation 

following homogenization, but they are essentially irreversible.  Indeed, no activity was 

detected in striatal homogenates when homogenates containing microcystin LR were 

diluted 10-fold immediately prior to the phosphatase assays (data not shown). Therefore, 

a mixture of inorganic phosphatase inhibitors was included in the tissue homogenization 

buffer (see Chapter II), allowing the effective detection of PP1 and PP2A activity if 

striatal homogenates were diluted 10-fold immediately prior to the assay.   

 

Total phosphatase activity is decreased following DA depletion  

We measured phosphatase activities in extracts of dorsolateral striatum ipsilateral 

or contralateral to 6-OHDA lesion of the substantia nigra.  Extracts were prepared from 

different batches of animals 3-4 weeks or 10-11 months after lesion surgery in order to 

assess consequences of long-term dopamine depletion, mimicking Parkinson's Disease in 

humans.  Activity in the DA-depleted striatum was significantly decreased by 18% using 

[32P]-phosphorylase a as a model substrate when measured 3-4 weeks after lesion surgery 

(Fig. 24 A), or by 14% when measured 10-11 months after surgery (data not shown; 

n=13, p = 0.041).  In contrast, there was no significant difference in total phosphatase 

activities at either time point when [32P]-casein was used as the substrate (Fig. 24 B and 

data not shown). 

 

DA depletion selectively decreases PP1 activity  

The specific enzymes detected in phosphatase assays of whole tissue homogenates 

depends on the substrate used.  Generally, [32P]-phosphorylase a is considered a PP1-
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selective substrate, but also detects PP2A activity, whereas [32P]-casein is a selective 

PP2A substrate (Cohen, 1989).  In order to more selectively measure PP1 and PP2A 

activities in striatal extracts from DA-depleted rats, I re-assessed phosphatase activites 

toward [32P]-phosphorylase a and [32P]-casein in the presence of either 0, 2.5 nM, or 2.5 

μM okadaic acid.  Okadaic acid is a selective PP2A inhibitor when used in low 

nanomolar concentrations, but will additionally inhibit PP1 at low micromolar levels 

(Cohen, 1991).  Thus, I defined PP2A activity as the amount of activity inhibited by 2.5 

nM okadaic acid, and PP1 activity as the difference in activities measured at 2.5 nM and 

2.5 µM okadaic acid.  PP1 activity detected using [32P]-phosphorylase a was significantly 

decreased by 22% at 3-4 weeks following lesion surgery (Fig. 25 A) and by 16% at 10-11 

months after surgery (data not shown; n=13, p= 0.014).   However, PP2A activity 

detected using either [32P]-phosphorylase a or [32P]-casein substrate was not significantly 

different between the lesioned and intact striata when measured 3-4 weeks (Fig. 25 B) or 

10-12 months (data not shown; n=13, p=0.153) after lesion surgery.   
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 DA depletion inhibits PP1-mediated activity toward CaMKIIα   

In order to ascertain whether DA depletion affects dephosphorylation of a 

physiologically relevant substrate, I assayed phosphatase activity toward exogenous 

Thr286-autophosphorylated CaMKIIα in the presence of various concentrations of okadaic 

acid.  The total phosphatase activity toward [32P-Thr286]-CaMKIIα was not significantly 

different between intact and DA depleted striatal extracts.  As previously reported in 

whole forebrain extracts (Strack et al., 1997a), approximately 80% of this activity could 

be assigned to PP2A based on the sensitivity to 2.5 nM okadaic acid, but this PP2A 

activity was unaffected by DA depletion.  In contrast, PP1 activity toward [32P-Thr286]-

CaMKIIα (defined as the difference in activities at 2.5 nM and 2.5 µM okadaic acid) was 

significantly decreased by ~19% 3-4 weeks after DA-depletion surgery (Fig. 26).  

 

Phosphatase isoform levels are unchanged by DA depletion 

 In order to examine the possibility that the decreased phosphatase activity in DA 

depleted striatum is due to changes in the levels of specific phosphatase catalytic subunit 

isoforms, aliquots of striatal extracts used in activity assays in Figs. 24-26 were 

immunoblotted for various isoforms of PP1 (α, β, γ1) and PP2A.  These proteins are 

highly expressed in MSNs, but are also present in presynaptic terminals.  Despite 

substantial loss of dopaminergic terminals, as reflected by the loss of  >90% of tyrosine 

hydroxylase, there were no significant differences in levels of PP1 and PP2A catalytic 

isoforms between intact and lesioned hemispheres (Fig. 27).  This may reflect the 

relatively low expression of these proteins in dopaminergic terminals and/or the small 

contribution of these terminals to total striatal tissue.   
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Nb(146-493) is a novel, selective inhibitor of PP1γ1 in striatal extracts 

PP1 isoforms are differentially targeted in neurons.  We developed an assay to 

determine contributions of PP1 isoforms toward total striatal PP1 activity.  Nb(146-493) 

is a GST-fusion protein that inhibits purified brain PP1γ1 catalytic subunit ≈20-fold more 

potently that it inhibits purified brain PP1β catalytic subunit (Carmody et al., 2004).  In 

contrast, Nb(146-453) is a GST fusion protein that lacks the canonical PP1 binding 

domain, and is therefore not an effective PP1 inhibitor (Carmody et al., 2004).  The 

sensitivity of PP1 holoenzymes in normal striatal extracts to Nb(146-493) and other 

phosphatase inhibitors was determined using [32P]-phosphorylase a as a model substrate. 

Approximately 15-20% of the activity was inhibited by nM concentrations of okadaic 

acid, and the remaining activity was almost completely inhibited by µM concentrations of 

okadaic acid, suggesting that total PP1 activity accounted for about 80% of the [32P]-

phosphorylase phosphatase activity.  Consistent with this value, Inhibitor-2, a PP1-

specific inhibitor, blocked approximately 75% of the total activity with an apparent 

EC50% of ~10 nM. Nb(146-493) inhibited a maximum of about 45% of the total activity at 

the highest concentration tested (1 µM), with an apparent EC50 of about 100 nM.  

However, Nb(146-453), a GST-Nb fusion protein lacking the PP1-binding domain, had 

no significant effect on striatal phosphatase activity.  Thus, Nb(146-493) only partially  

inhibits striatal PP1 activity at a concentration of 1 µM (Fig. 28 A). 
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  The partial inhibition of total PP1 activity by Nb(146-493) may be due to the 

differential inhibition of PP1 isoforms.  In order to assess the effect of Nb(146-493) on 

native PP1 isoform complexes, I assayed striatal PP1γ1 or PP1β complexes isolated by 

immunoprecipitation.  Analysis of the immunoprecipitates by immunoblotting for PP1 

isoforms confirmed the specificity of the immunoprecipitations (Fig. 28 B), as 

documented previously.  Both immunoprecipitated isoforms displayed activity toward 

phosphorylase a in the presence of 2.5 nM okadaic acid and their activities were 

completely blocked by 2.5 µM okadaic acid, consistent with the specific 

immunoprecipitation of PP1.  Nb(146-493) almost completely blocked activity in the 

PP1γ1 immunoprecipitate, but had no significant effect on activity in the PP1β 

immunoprecipitate.  These data establish that 1 µM Nb(146-493) functions as a novel, 

selective inhibitor of native striatal PP1γ1 complexes over PP1β complexes. 

 

DA depletion selectively decreases striatal PP1γ1 activity  

To examine the possibility that DA depletion alters PP1γ1 activity, dorsolateral 

striatal extracts from 6-OHDA-lesioned rats were assayed for [32P]-phosphorylase 

phosphatase activity in the absence and presence of Nb(146-493) (Fig. 29).  Nb(146-493) 

inhibited approximately 50% of the activity in extracts prepared from the intact, non-

lesioned hemisphere, but only approximately 35% of the activity in DA-depleted 

samples.  Significantly, DA depletion reduced the total PP1 activity by approximately 

22%, but there was no significant difference in the Nb(146-493)-insensitive activities in  
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samples from the two hemispheres. Similar data were obtained in samples collected 3-4 

weeks and 10-11 months after the 6-OHDA lesion surgery.  Thus, DA depletion 

significantly reduced the Nb(146-493)-sensitive activity at both 3-4 weeks (17%, p= 0.03, 

data not shown) and 10-11 months (Fig. 29) after 6-OHDA-lesion surgery.  These data 

suggest that DA depletion results in a significant, selective and sustained reduction of the 

activity of striatal PP1γ1.   

 

Discussion 

Striatal protein phosphatases play a key role in mediating many of the acute 

effects of DA on the striatum.  In particular, it is widely accepted that the activity and 

localization of PP1 are acutely modulated by DA via the phosphorylation/ 

dephosphorylation of regulatory and targeting proteins such as DARPP-32 and 

spinophilin, even though corresponding changes in PP1 activity have not been directly 

demonstrated.  The α and γ1 PP1 isoforms are found within both the presynaptic 

corticostriatal terminals and are more abundant in the postsynaptic MSN dendritic spines 

(Bordelon et al., 2005), indicating possible postsynaptic and presynaptic contribution to 

the changes in phosphatase activity reported here.  Here, I show that PP1 activity is 

significantly reduced following striatal DA depletion and I present evidence that this may 

be achieved by the selective regulation of one of the three PP1 isoforms.  The decreased 

activity of a specific PP1 isoform may be important in mediating the chronic effects of 

DA depletion.  
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DA depletion selectively decreases PP1 activity 

My initial studies using model substrates showed that there was a significant 

reduction in phosphatase activity toward [32P]-phosphorylase a, but not toward [32P]-

casein (Fig. 24).  Although both PP1 and PP2A can dephosphorylate [32P]-phosphorylase 

a, PP1 accounts for approximately 80% of the activity toward this substrate in brain 

extracts (Strack et al., 1997a).  Various concentrations of okadaic acid were used to more 

selectively isolate PP1 activity from PP2A, confirming that PP1 activity was significantly 

decreased following DA depletion, and that PP2A activity was unaffected.  Similar 

reductions in the total PP1 activity were detected 3-4 weeks and 10-11 months after the 

6-OHDA lesion surgery.  Moreover, PP1 activity toward the Thr286 autophosphorylation 

site in CaMKIIα (a physiologically relevant substrate in postsynaptic densities) was 

significantly decreased by DA depletion.  This reduction of PP1 activity may contribute 

to the enhanced autophosphorylation of CaMKIIα at Thr286 and other synaptic proteins 

that has been previously documented following DA depletion (Oh et al., 1999; Dunah et 

al., 2000; Picconi et al., 2004; Brown et al., 2005). 

 

PP1γ1 is selectively modulated following dopamine depletion 

Three major PP1 isoforms are present in the striatum (α, β, and γ1).  Although the 

activities of PP1 isoforms are not known to differ, they are enriched in distinct 

subcellular compartments (da Cruz E Silva et al., 1995; Ouimet et al., 1995; Strack et al., 

1999; Bordelon et al., 2005), presumably due to isoform-selective interactions with 

targeting subunits.  In particular, PP1γ1 is enriched in dendritic spines and at the PSD, 

where it colocalizes with spinophilin/neurabin (MacMillan et al., 1999; Terry-Lorenzo et 
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al., 2002; Bordelon et al., 2005).  Thus, PP1γ1 is poised to efficiently dephosphorylate 

synaptic substrates, such as CaMKII and GluR1, and also to respond to activation of D1 

and D2 DA receptors that are localized on dendritic spine heads and necks.   

In the present studies, I developed a new approach to selectively assess the 

contribution of PP1γ1 to total PP1 activity.  Previously, our lab has shown that Nb(146-

493) is a 20-fold more potent inhibitor of purified PP1γ1 catalytic subunits (EC50 ≈ 1 nM) 

than of purified PP1β catalytic subunits (Carmody et al., 2004).  In assays of whole 

striatal homogenates, I show here that Nb(146-493) only partially inhibits the total PP1 

activity. The isoform-independent inhibitors okadaic acid and inhibitor-2 show that 75-

80% of the total phosphorylase phosphatase activity is due to PP1, but 1 µM Nb(146-

493) surprisingly inhibits only about 45% of the total activity (Fig. 28 A).  In addition, 1 

µM Nb(146-493) is unable to inhibit native PP1β holoenzymes isolated by 

immunoprecipitation, but completely inhibits native PP1γ1 holoenzymes (Fig. 28 B).  The 

reduced inhibitory potency of Nb(146-493) in whole tissue extracts (EC50 ≈ 200 nM) 

presumably reflects the fact that the GST-fusion protein has to competitively displace 

endogenous regulatory subunits from the catalytic subunits.   

Assays of striatal extracts from 6-OHDA lesioned rats showed that Nb(146-493)-

insensitive PP1 activity was unaltered, but that Nb(146-493)-sensitive activity was 

substantially reduced following DA depletion.  Since Nb(146-493) can be effectively 

used to differentiate contributions of PP1 isoforms, these data suggest that DA depletion 

significantly decreases the activity of striatal PP1γ1, but does not affect the activity of 

striatal PP1β.  These observations represent the first evidence that the activities of PP1 

isoforms can be differentially modulated in situ.  
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Mechanisms for regulating striatal PP1 activity 

The simplest mechanism to account for isoform-selective changes in PP1 activity 

following DA depletion would be alterations in the expression levels of the catalytic 

subunits.  However, no significant differences in the total tissue levels of any PP1 

catalytic subunit isoform were detected (Fig. 27).  Multiple mechanisms can acutely 

modulate striatal PP1 activity in response to activation of various DA receptors.  Most 

prominently, DARPP-32 inhibits PP1 following phosphorylation at Thr34 by PKA in 

response to D1 receptor activation.  Phosphorylation of DARPP-32 at Thr75 in response 

to activation of D2 receptors interferes with Thr34 phosphorylation (Svenningsson et al., 

2004).  However, DARPP-32 does not appear to play a role in the reduction in PP1γ1 

activity following DA depletion.  DARPP-32 interactions are not known to be isoform-

selective, and DA depletion does not alter the total levels or phosphorylation of DARPP-

32 at Thr34 (Picconi et al., 2003; Chergui et al., 2004; Brown et al., 2005).  However, it 

should be noted that phosphorylation at Thr75 of DARPP-32 is substantially increased 

following DA depletion (Brown et al., 2005). 

Other mechanisms that have been implicated in regulating PP1 activity include 

the actions of inhibitor-2 (Cohen, 1989) and direct phosphorylation of the catalytic 

subunit by cdc2 (Dohadwala et al., 1994).  However, these mechanisms are not known to 

be PP1 isoform-selective.  Thus, it seems unlikely that these mechanisms account for the 

selective reduction of PP1γ1 activity following DA depletion. 

In contrast to these isoform-independent regulatory mechanisms, PP1γ1 

selectively interacts with spinophilin and neurabin (MacMillan et al., 1999; Carmody et 

al., 2004), F-actin binding proteins that colocalize with PP1γ1 in dendritic spines  (Allen, 
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2004).  Spinophilin and neurabin play critical roles in the acute DA signaling and in 

modulating corticostriatal synaptic plasticity (Feng et al., 2000; Allen et al., 2006). 

However, DA depletion does not change the total levels of spinophilin/neurabin, or alter 

the amount of these proteins present in PSD-enriched cytoskeletal fractions (Brown et al., 

2005).  Moreover, normal DA signaling does not appear to modify the interaction 

between spinophilin and PP1 (Hsieh-Wilson et al., 2003).  Nevertheless, I suggest that 

the isoform-selective effects of DA depletion may reflect the fact that PP1γ1 co-localizes 

with spinophilin/neurabin and DA receptors in dendritic spines, whereas PP1β is 

preferentially localized to dendritic shafts and the soma.  

 

Impact of reduced PP1γ1 activity following dopamine depletion  

Decreased PP1γ1 activity following DA depletion may play a critical role in the 

increased phosphorylation of numerous synaptic PP1 substrates, including subunits of 

NMDA- and AMPA-type glutamate receptors and CaMKIIα (Oh et al., 1999; Dunah et 

al., 2000; Picconi et al., 2004; Brown et al., 2005).  Reduced PP1 activity and/or the 

hyperphosphorylation of these PP1 substrates is presumably important in the disruptions 

of bidirectional striatal synaptic plasticity and behavior following DA depletion  

(Centonze et al., 1999; Oh et al., 1999; Centonze et al., 2001; Picconi et al., 2003; Picconi 

et al., 2004; Norman et al., 2005).  Many of the effects of DA depletion can be rescued by 

“treatments” that normalize these processes.  For example, an L-DOPA injection 

paradigm rescues the hyperphosphorylation of CaMKII at Thr286, and administration of a 

CaMKII inhibitor normalizes defects in synaptic plasticity and behavior that result from 

striatal DA depletion (Oh et al., 1999; Picconi et al., 2004).  Moreover, disruptions in the 
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balance between kinase and phosphatase activities may play a role in several other 

neurodegenerative diseases or disease models.  For example, increased phosphorylation 

of several proteins has been reported in Angelman’s mental retardation syndrome 

(Weeber et al., 2003), amyotrophic lateral sclerosis (Strong et al., 2005), multiple 

sclerosis (Schneider et al., 2004), Charcot-Marie-Tooth disease (Begley and Dixon, 

2005), and Alzheimer’s disease (Liu et al., 2005).  In particular, studies in a mouse model 

of Angelman’s syndrome suggest that decreased protein phosphatase activity results in 

increased phosphorylation of hippocampal CaMKII at Thr286 and Thr305 and disruptions 

of synaptic plasticity, learning and memory. Thus, the development of strategies to 

increase the activity of critical protein phosphatases might be a fruitful therapeutic 

strategy for treatment of Parkinson’s Disease, Angelman’s syndrome and possibly other 

neurodegenerative diseases. 
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CHAPTER VI 

 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary 

Protein phosphorylation and dephosphorylation acutely modulate protein 

function, protein-protein interactions, and neuronal plasticity.  DA depletion in the 6-

OHDA lesioned rat model of PD results in both the enhanced phosphorylation of 

numerous serine / threonine substrates and alterations in synaptic plasticity and behavior 

(Girault et al., 1992; Oh et al., 1998; Centonze et al., 1999; Oh et al., 1999; Dunah et al., 

2000; Centonze et al., 2001; Picconi et al., 2003; Picconi et al., 2004; Brown et al., 2005; 

Norman et al., 2005).  In combination, the data reported in this dissertation extend 

previous reports in the literature by demonstrating that striatal DA depletion induces an 

imbalance in the activity of specific serine / threonine phosphatases and kinases. 

CaMKII is a critical neuronal signaling enzyme, and phosphorylation at Thr286 

correlates with an increase in enzyme activity (Hudmon and Schulman, 2002, 2002; 

Colbran and Brown, 2004).  Increased Thr286 phosphorylation of CaMKIIα is evident 

within 3 weeks of 6-OHDA lesion surgery and is maintained for up to at least 18 months 

(see Chapter III).  In addition, slow development of the phosphorylation of a well-

established CaMKII substrate, Ser831-GluR1, represents the first report of unique 

biochemical effects of long-term (9-20 months) DA depletion in rodents.  Thus, 

prolonged DA depletion results in unique biochemical consequences beyond those seen 

in the shorter-term studies typically performed.   
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In the normal striatum, PP1 is a key phosphatase that may ‘gate’ the activity of 

CaMKII, preventing prolonged hyperphosphorylation and hyperactivation of CaMKII.  

Decreased striatal PP1 activity measured in these studies is consistent with the elevated 

phosphorylation of numerous PP1 substrates following DA depletion (Chapters III and 

V).  Furthermore, this dissertation includes the first direct measurement of a specific 

decrease in the activity of the PP1γ1 isoform following DA depletion.  Since PP1γ1 is 

enriched at the PSD, these results suggest that PSD-localized PP1 is critical for normal 

corticostriatal synaptic plasticity.   

As levels of the PP1γ1 scaffolding proteins spinophilin and neurabin decrease with 

normal aging, levels of PSD-targeted PP1 may also decrease, despite the aging-related 

increase in PP1γ1 levels.  This might result in a synaptic mislocalization of PP1γ1 away 

from synapses, disrupting the balance between CaMKII and PP1 activities at the synapse.  

This imbalance would allow the DA depletion-induced accumulation of phospho-Ser831-

GluR1 in response to increased CaMKII autophosphorylation.  Thus, it is possible that 

the combination of aging-related and DA depletion mechanisms result in the novel 

findings associated with the long-term DA depletion.  

Misregulated CaMKII has been implicated in the DA depletion-induced changes 

in synaptic plasticity, and the “wearing-off” phenomenon associated with chronic L-

DOPA therapy.  By defining how glutamate acutely regulates striatal CaMKII, my 

findings provide the basis for future studies.  Investigation of the evolving changes in 

biochemical signaling pathways following DA depletion and during DA replacement 

strategies may be key in understanding the changing efficacy of chronic L-DOPA 

therapy.  These findings indicate a high level of basal CaMKII autophosphorylation in the 
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striatum, which is coupled to Ca2+ influx (Chapter IV).  NMDA receptors acutely 

regulate striatal CaMKII autophosphorylation (Chapter IV).  In light of the known DA 

depletion-induced changes in both NMDA and D2 receptors, it is possible that 

glutamatergic and dopaminergic regulation of CaMKII is altered.   

 

Outstanding Questions 

 

What mediates the selective decrease in activity of PP1γ1? 

It is unclear how DA depletion causes a decrease in the activity of a specific PP1 

isoform, especially with no evidence for a decrease in the total levels or the subcellular 

localization of PP1γ1.  There are no known endogenous isoform-specific inhibitors of 

PP1γ1.  Two synapse-associated proteins, spinophilin and neurabin, show a preference for 

binding the PP1γ1 isoform over the PP1β isoform.  These isoform-specific interactions 

with spinophilin and neurabin are believed to target PP1γ1 to the synapse.  Therefore, it is 

possible DA depletion somehow alters the interactions between spinophilin/neurabin and 

PP1γ1 in a way that renders PP1γ1 less active.  To examine this possibility, striatal 

spinophilin/neurabin/ PP1γ1 complexes can be immunoprecipitated from DA-depleted 

striata, and examined not only for the amount of each protein, but also the activity of 

PP1γ1 bound to either scaffolding protein.  In addition, it is also possible that an as yet 

unknown endogenous isoform-specific inhibitor is recruited to the spinophilin/neurabin/ 

PP1γ1 complexes.  To examine this possibility, the immunoprecipitated 

spinophilin/neurabin/ PP1γ1 complexes can be examined by mass spectrometry to detect 

unknown associated proteins. 
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Does a short-term 6-OHDA lesion in aged rats result in elevated phospho-Ser831-GluR1? 

In comparing the effects of 6-OHDA lesion at different survival times after lesion 

surgery, I found that only long-term lesion (9-20 months) and not short-term lesion (3-12 

weeks) resulted in elevated levels of phospho-Ser831-GluR1 in the lesioned hemisphere 

(Chapter III).  From these data alone, it is unclear whether the elevated phospho-Ser831-

GluR1 observed in long-term lesioned rats was a result of either chronic, long-term  DA 

depletion alone or in combination with the aging-related changes in PP1, spinophilin, and 

neurabin levels (Chapter III).  It is possible that the decrease in spinophilin and neurabin 

with age mislocalizes PP1 away from synaptic substrates, such as GluR1.  Examination 

of the 6-OHDA lesion-induced changes in aged rats allowed to survive 3 weeks after 

unilateral 6-OHDA lesion surgery may help to dissect out the reasons for the enhanced 

GluR1 phosphorylation.   

 

Is striatal synaptic plasticity or responsiveness to L-DOPA altered in long-term lesioned 
rats (minimum 9-11 month 6-OHDA lesion)? 
 

The data presented here suggest that long-term dopamine depletion may enhance 

glutamate receptor-mediated transmission by increasing the levels of Ser831 

phosphorylated GluR1.  It will be interesting to determine whether prolonged periods of 

DA depletion induce additional changes in striatal synaptic plasticity beyond those 

previously seen after short periods of DA depletion.  It is currently unknown whether 

CaMKII inhibitors or L-DOPA are similarly effective in reversing the deficits in behavior 

and synaptic plasticity after GluR1 phosphorylation has increased.  Traditionally, it is 

difficult to study synaptic plasticity in aged rats, which may impede this line of 

investigation.   
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Does L-DOPA rescue other 6-OHDA lesion-induced abnormalities? 

While it is clear that chronic L-DOPA rescues the DA depletion-induced 

elevation in phospho-Thr286-CaMKII and phospho-Thr75-DARPP-32 (Chapter III), it is 

unknown whether changes in other proteins noted here are similarly rescued by L-DOPA 

treatment.   It is possible that L-DOPA may rescue the decreased PP1γ1 activity reported 

in Chapter V.  To examine this possibility, after receiving at least 9 days of L-DOPA 

treatment, striatal tissue from 6-OHDA lesioned rats can be examined for changes in 

PP1γ1 activity.  It will also be important to assess whether L-DOPA can rescue the 

elevated phosphorylation of GluR1 at Ser831 seen only after long-term 6-OHDA lesion.  

A failure of L-DOPA to rescue increased phosphorylation of GluR1 may be a factor in 

the loss of efficacy and development of side effects associated with long-term DA 

replacement therapy.   

 

How long does the L-DOPA-mediated rescue of lesion-induced abnormalities last? 

Data reported here indicate that chronic L-DOPA treatment for 9 days reverses 

the lesion-induced enhancement in phospho-Thr286-CaMKII levels.  While the half-life of 

L-DOPA is ~1.5 hours, the decrease in CaMKII autophosphorylation persists until at 

least 16 hours after the last L-DOPA injection (Chapter III).  Surprisingly, in vivo L-

DOPA treatment for only 1 day does not rescue any of the DA-depletion induced changes 

in phospho-Thr286-CaMKII levels, CaMKIIα activity, limb-use asymmetry, and synaptic 

plasticity (Picconi et al., 2004).  Comparison of these two studies raises the following 

questions: (1) how long does the L-DOPA-induced rescue in phospho-Thr286-CaMKIIα in 

the lesioned hemisphere last, and (2) how many L-DOPA injections are needed for 
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sustained rescue?  To address these questions, lesioned rats injected with L-DOPA for up 

to 9 days can be evaluated for phospho-Thr286-CaMKII levels at 30 min, 2hrs, and 32 hrs 

after final L-DOPA injection.   

CaMKII activity has been linked with the enhanced “wearing-off” phenomenon 

associated with only chronic (21 days) L-DOPA use (Oh et al., 1999).  As treatment with 

a CaMKII inhibitor rescues the “wearing-off” phenomenon, this raises the possibility that 

CaMKII activity has become elevated despite prolonged L-DOPA use.  It is possible that 

chronic in vivo L-DOPA treatment may enable a different mechanism of phospho-

CaMKII regulation by NMDA / D1 / D2 signaling.  To examine this possibility, 

experiments using acute striatal slices from 6-OHDA lesioned rats chronically treated 

with L-DOPA may yield some answers.  It is possible that chronic (21 days) L-DOPA 

modulates the NMDA/D1/D2 receptor regulation of phospho-CaMKII, possibly in both 

the lesioned and intact hemispheres.  These experiments may provide insight into the 

biochemical mechanisms that evolve with prolonged L-DOPA therapy and may underlie 

some of the problems associated with long-term use of this therapeutic strategy in PD.  

 

Does DA depletion alter the acute regulation of striatal CaMKII? 

Chronic DA depletion results in enhanced levels of striatal phospho-Thr286-

CaMKII, which is reversed by in vivo  L-DOPA (Brown et al., 2005).  Striatal DA 

depletion results in alterations in the subcellular localization as well as phosphorylation 

of NMDA receptors (Oh et al., 1998; Oh et al., 1999; Dunah et al., 2000; Dunah and 

Standaert, 2003), possibly modulating receptor activity.  Interestingly, the changes in 

induced by DA depletion in MSN morphology and DA receptors appear restricted to D2-
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expressing MSNs (Gerfen et al., 1990; Araki et al., 1998; Cai et al., 2002; Day et al., 

2006), suggesting that DA depletion modulates D2 receptor signaling, to disrupt normal 

regulation of CaMKII.  In light of the high basal CaMKII autophosphorylation, it is 

critical to determine if the DA depletion-induced increase in CaMKII 

autophosphorylation is maintained in slices from 6-OHDA lesioned rats.  In addition, it 

would be informative to learn whether the NMDA or DA regulation of CaMKII is 

modified following 6-OHDA lesion.  Data from an initial experiment provide tantalizing 

clues  to suggest that D2 and NMDA receptor signaling pathways together control 

CaMKII autophosphorylation in the lesioned striatum (Figs. 30 and 31).  Although the 

interpretation of these data is compromised by the relatively low number of samples in 

some treatment groups due to technical problems.   

The results presented here are consistent with the finding that MSNs spend less 

time in the downstate and more time in the upstate following 6-OHDA lesion (Pang et al., 

2001; Tseng et al., 2001).  In combination, increased time in the upstate (Pang et al., 

2001; Tseng et al., 2001) and  increased Ca2+ influx through NMDA receptors in the 

upstate (Carter and Sabatini, 2004) suggest that influx of extracellular Ca2+ via NMDA 

receptors may contribute to the increase in CaMKII autophosphorylation in the DA-

depleted striatum.  The idea that  influx of extracellular Ca2+ via NMDA receptors 

contributes to the increase in CaMKII autophosphorylation in the DA-depleted striatum is 

supported by the apparently complete reversal of CaMKII autophosphorylation by APV 

(Fig. 30).   
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Is the cellular and subcellular distribution of spine-associated proteins altered following 
the DA-depletion induced decrease in spine density? 
 

Although there is a distinct decrease in the MSN spine density of striatopallidal 

neurons (D2, indirect pathway) and in the axospinous asymmetric synapses, it is unclear 

whether the PSDs are maintained on the dendritic shaft (Day et al., 2006).  Moreover, the 

total levels of multiple synapse-associated proteins remains unchanged in total striatal 

homogenates following DA depletion (Dunah et al., 2000; Picconi et al., 2004; Brown et 

al., 2005).  In fact, it is surprising how few proteins change after either 6-OHDA lesion, 

or throughout aging, or a combination of both.  Therefore, it is probable that these 

synaptic proteins are not simply degraded.     

In light of the data presented in Chapter III, it is probable that synaptic proteins 

are not simply degraded following the DA depletion-induced decrease in MSN spine 

density.  Instead, synaptic proteins may be maintained at dendritic shaft synapses or 

redistributed elsewhere in the cell.  Phosphorylation can modulate the subcellular 

localization of several proteins, and phosphorylation of many synaptic proteins is 

elevated in the DA depleted striatum.  The subcellular redistribution of  

hyperphosphorylated proteins, such as CaMKII, GluR1, and DARPP-32 can be examined 

by either immunofluorescent confocal microscopy or immunoelectron microscopy. 

It would be very informative to determine how DA depletion might alter the 

cellular localization of hyperphosphorylated proteins, such as CaMKII, GluR1, and 

DARPP-32.  Immunostaining striatal tissue from the recently developed BAC-D1 or 

BAC-D2 transgenic mice would to help identify the cellular localization of these 

changes.  Alternatively, striatal slices from rats could be immunostained for both the 

phospho-proteins noted above, and specific markers of the direct or indirect pathway 
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MSNs, such as substance P and dynorphin (direct pathway MSNs), or enkephalin 

(indirect pathway MSNs).  The determination of the cellular localization for the 

phosphorylation changes noted in CaMKII and other proteins may enable more precise 

targeting of PD therapies. 

 

Does elevated phospho-Thr286-CaMKII cause decreased MSN spine density? 

MSN spine density decreases and phospho-Thr286-CaMKII levels increase 

following DA depletion, but it is unclear whether these changes are functionally linked.  

Recently, Day et al. (2006) reported that nimodipine, an L-type Ca2+ channel antagonist, 

prevents the DA depletion-induced decreased spine density.  In an initial experiment, 

examination of dorsolateral striatal homogenates from these same animals suggested that 

nimodipine lowers the overall levels of autophosphorylated CaMKII in both intact and 

lesioned hemispheres, and abolishes the difference between the hemispheres (Fig.32).  

These findings might indicate that the elevated CaMKII autophosphorylation does not 

play a role in the decrease in MSN spine density, but these experiments need to be 

repeated to increase statistical power.  In addition, it will be exciting to quantitate MSN 

spine density in wild-type, T286A-CaMKII, or T286D-CaMKII transgenic mice with and 

without prior exposure to MPTP to induce DA depletion.  If CaMKII 

autophosphorylation does not cause the spine decrease, all groups should display a 

similar degree of spine loss after MPTP.  One assumption in these experiments is that 

both the decrease in MSN spines and the elevated CaMKII autophosphorylation will be 

observed in wild-type mice after MPTP exposure.   
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 If CaMKII autophosphorylation does play a role in spine loss, T286A-CaMKII mice 

should be protected against MPTP-induced spine loss. 

 

Are the DA-depletion-induced behavioral abnormalities mediated by elevated phospho-
Thr286-CaMKII?  
 

I have shown that chronic L-DOPA normalizes 6-OHDA lesion-induced increases 

in phospho-Thr286-CaMKIIα levels (Chapter III).  Similar studies have reported that L-

DOPA rescues DA depletion-induced changes in CaMKIIα activity, limb-use asymmetry, 

and synaptic plasticity in rats (Picconi et al., 2004).  The duration of contralateral turning 

behavior in response to an acute injection of L-DOPA decreases with more chronic L-

DOPA administration.  This alteration in behavioral response to L-DOPA is rescued by 

treatment with a CaMKII inhibitor, KN-93 (Oh et al., 1999).  In combination, these 

studies raise the possibility that DA depletion induces behavioral effects that are 

mediated by CaMKII.  To address this question, locomotor / rearing measurements could 

be taken from wild-type or T286A-CaMKIIα transgenic mice +/- MPTP treatment.  Wild-

type adult C57BL/6 male mice given MPTP injections resulting in ~90% decrease in 

striatal dopamine display decreased locomotion and rearing  (Sedelis et al., 2001). 

Treatment of these mice with L-DOPA increases the locomotion and rearing behaviors.  

The hypothesis here is that if elevated phospho-Thr286-CaMKIIα plays a role in  

mediating behavioral abnormalities, T286A-CaMKIIα mice will be either completely or 

partially resistant to MPTP-mediated disruptions in behavior.    
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How does L-DOPA regulate CaMKII in vivo? 

In light of the increase in D2 receptor density, it is possible that the D2 receptor 

signaling pathways are more responsive to L-DOPA following DA depletion.  One 

hypothesis that arises from these findings is that L-DOPA, acting primarily at the D2 

receptors, rescues the elevated CaMKII autophosphorylation.  To investigate this 

possibility further, CaMKII phosphorylation may be monitored in 6-OHDA lesioned rats 

treated with either L-DOPA, a D2 agonist, or a combination of a D2 antagonist and L-

DOPA.  If L-DOPA does primarily act via stimulation of D2 receptors, treatment with 

either a D2 agonist or L-DOPA are both expected to reverse the lesion-induced increase 

in CaMKII autophosphorylation.  The D2 antagonist is expected to prevent the L-DOPA 

reversal of phospho-Thr286-CaMKII levels.  L-DOPA likely acts at both D1 and D2 

receptors.  Therefore, simultaneous administration of D1 and D2 receptor antagonists to 

unlesioned rats may recapitulate elevated phospho-Thr286-CaMKII observed after 6-

OHDA lesion.  

It is possible that L-DOPA acts via presynaptic D2 to inhibit glutamate release 

from corticostriatal glutamatergic terminals.  Based on the results reported from the acute 

slice experiments in Chapter IV and Fig. 30 (this chapter), administration of an NMDAR 

antagonist to rats with a unilateral 6-OHDA lesion is expected to reverse the lesion-

induced elevation in CaMKII autophosphorylation.  This is an exciting hypothesis, as 

future studies could further examine the impact of NMDA receptor subunit-specific 

antagonists to treat the motor symptoms of some patients with PD.   

 

 

 128



Final Summary 

This dissertation presents evidence of dopaminergic regulation of two key 

synaptic signaling enzymes, CaMKII and PP1.  It will be important to determine whether 

changes in phosphorylation of CaMKII, PP1, DARPP-32, and GluR1 also occur in PD, 

although such studies may be complicated by protein dephosphorylation in postmortem 

human tissue.  Moreover, the evolving responses of signaling proteins following DA 

depletion may play a role in the progression of symptoms during Parkinson’s Disease, as 

well as in the changing efficacy and debilitating side effects associated with dopamine 

replacement therapy.  Although it is unclear what causes PD in most human patients, the 

possibility that such striatal Ca2+-sensitive signaling pathways are misregulated implies 

that targeting these pathways may be a useful strategy in developing future treatments for 

PD.   

Disruptions in the balance between kinase and phosphatase activities may be a 

more global phenomenon in neurodegenerative disease than previously realized.  

Numerous reports indicate protein hyperphosphorylation in neurological disorders and 

neurodegenerative diseases or disease models, such as PD (Girault et al., 1992; Oh et al., 

1998; Oh et al., 1999; Dunah et al., 2000; Picconi et al., 2004; Brown et al., 2005), 

Angelman mental retardation syndrome (Weeber et al., 2003), amyotrophic lateral 

sclerosis (Strong et al., 2005), multiple sclerosis (Schneider et al., 2004), Charcot-Marie-

Tooth disease (Begley and Dixon, 2005), and Alzheimer’s disease (Liu et al., 2005).  

Additional studies which examine the regulation of kinase/phosphatase signaling 

pathways may provide useful insights for development of future therapies for Parkinson’s 

disease and many other neurological diseases.   
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APPENDIX 

 

PHOSPHORYLATION OF CAMKII MAY BE ACUTELY  
REGULATED BY DOPAMINE 

 
 

Nigrostriatal dopaminergic input is ideally positioned to modulate the activity of 

striatal MSNs, and thus possibly alter the output of the entire basal ganglia.  Striatal 

MSNs contain dopamine receptors of the D1 class (D1, D5) and the D2 class (D2, D3, and 

D4). CaMKII autophosphorylation may be modulated via DARPP-32/PP1 signaling.  

Alternatively, these receptor pathways may modulate CaMKII phosphorylation via their 

effects on Ca2+ channels, glutamate receptors, or  mobilization of  Ca2+ from intracellular 

stores (Nishi et al., 1997; Hernandez-Lopez et al., 2000).   

 

Dopamine minimally regulates CaMKII phosphorylation at Thr286

In preliminary efforts to determine whether D1 receptors acutely regulate CaMKII 

phosphorylation, striatal slices were incubated with SKF81297, a D1 receptor agonist (5 

min).  SKF81297 did not significantly alter the levels of phospho-Thr286-CaMKII (Fig. 33 

A).  To confirm that SKF81297 was effectively penetrating the slice and acting at D1 

receptors, the phosphorylation of GluR1 was evaluated.  SKF81297 increased GluR1 

phosphorylation at Ser845 by 68%, but not at Ser831 (Fig. 33 B ,C), consistent with 

previous reports (Snyder et al., 2000; Chao et al., 2002; Swayze et al., 2004).  

Next, to determine whether D2 receptor activation modulates striatal CaMKII 

autophosphorylation, slices were incubated with quinpirole, a D2 receptor agonist (5 

min.).  Quinpirole application resulted in a statistically insignificant increase in phospho-
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Thr286-CaMKII by 54% (n=6, p=0.06) but a significant increase of  phospho-Ser831-

GluR1 by 101% (n=6, p=0.01) (Fig. 34 A, B).   

In combination, our data do not provide  convincing evidence for regulation of 

CaMKII autophosphorylation by either D1 or D2 receptor pathways in normal striatum, 

at least at the time points tested.  However, this interpretation is limited by the variability 

within and between individual batches of slices.  Although these results may suggest a 

minimal D1/D2 regulation of CaMKII autophosphorylation, a small, but significant effect 

might be revealed either by increasing the sample size or by examination of different time 

points. 
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