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CHAPTER I

INTRODUCTION

An elliptic differential operator on a compact manifold M is Fredholm, meaning that it is in-

vertible modulo K , the algebra of compact operators. The analytical index of an elliptic operator

A defined by

indA = dimKerA−dimKerA∗ (I.1)

is invariant under homotopy and stable under compact perturbation. The index of an elliptic op-

erator measures how far it is from being invertible, and depends on the topological information

associated to the operator and the manifold. According to the Atiyah-Singer index theorem, indA

depends only on the equivalence class of its principal symbol σA of A in K0(T M) 1 and the index

formula is obtained by applying the Chern character 2 ch : K0(T M)→ Heven(T M) to the symbol

σA, multiplied by the Todd class Td(M) (a topological invariant of M) and then integrating on the

tangent space T M [6],

indA =
∫

T M
ch(σA) ·Td(M). (I.2)

The index formula (I.2) indicates significant connections to geometry, topology and complex anal-

ysis. For example, (I.2) reduces to the Gauss-Bonnet-Chern theorem, the Hirzebruch signature

theorem or the Riemann-Roch theorem, when A is interpreted as a certain Dirac operator. 3 More-

over, (I.2) motivates a careful study of the elliptic operators over M. The abstract elliptic operators

on M were made into a group K0(M) or K0(C(M)), called the K-homology of M, by imposing

appropriate equivalence relations [3] [21] and the analytical index is reinterpreted as a group ho-

momorphism, called the assembly map:

µ : K0(M)→ K0(K ) = Z : [A] 7→ indA. (I.3)

1The K-theory K∗(M) of a compact manifold M is a cohomology theory. K0(M) is the Grothendieck group of stably
isomorphic vector bundles over M. A vector bundle over BM (the ball bundle of M), which is trivial over the sphere
bundle SM, can be viewed as an element in K0(T M).

2The Chern character is a ring homomorphism between two cohomology theories.
3The operator A corresponds to the de Rham operator, the signature operator or the Dolbeault (Cauchy-Riemann)

operator, respectively.
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The link between this analytical index (I.1) and the topological index (I.2) is the Poincaré duality

K0(M)∼= K0(T M) : [A] 7→ [σA], (I.4)

which is well-interpreted using the product structure invented by Kasparov [23].

We further study (I.3) when there is a symmetry on the space. For example, we obtain an op-

erator Ã when lifting an elliptic operator A on compact X to its universal cover X̃ . The operator Ã

that commutes with the action of the fundamental group G = π1(X) of X , defines an element in

the equivariant K-homology K0
G(C0(X̃)), and is invertible modulo the algebra of “compact opera-

tors” on some Hilbert C∗(G)-module, and therefore has an analytical index in the K-theory group

K0(C∗(G)):

K0
G(C0(X̃))→ K0(C∗(G)) : [Ã] 7→ IndÃ. (I.5)

The higher index IndÃ in (I.5) relates closely to the representation theory of G, the topological

and geometrical properties of the manifold, in particular, to the Novikov conjecture on homotopy

invariance of higher signatures [23], and the Gromov-Lawson-Rosenberg conjecture on the exis-

tence of positive scaler curvatures [30]. Index theory uses an operator algebra approach to study

problems in topology and geometry, some of which have not been solved using the topological and

geometrical approach.

In general the assembly map (I.5) can be formulated for a locally compact group G and a

G-invariant elliptic operator A on a proper G-space X with compact quotient. Kasparov [22] con-

structed a topological index of A using the bivariant K-theory (KK-theory). In fact, on the operator

level, there is a duality between a G-invariant elliptic operator [A] in K∗G(C0(X)) and its symbol

[σA] in KKG(C0(X),C0(T X)) via the intersection product with the Dolbeault operator D on T X :

[A] = [σA]⊗C0(T X) [D] ∈ K∗G(C0(X)). (I.6)

This is the G-equivariant version of (I.4). The topological index of A in K∗(C∗(G)) is defined by

taking the image of A under the descent map jG and then by contracting with a projection [p] in
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K0(C∗(G,C0(X))), constructed from the constant 1 function on the quotient X/G :

KKG(C0(X),C)
jG

// KK(C∗(G,X),C∗(G))
[p]⊗̂ // KK(C,C∗(G)) .

The topological index was proved to be the same as the analytical index in [24], [22].

The difficulty of computing the higher index IndA∈K0(C∗(G)) for a general group G motivates

the attempt to build a homomorphism from K0(C∗(G)) to a simpler object. The purpose of this

thesis is to find an R-valued index of elliptic operators as above by taking the trace of the IndA

in K∗(C∗(G)) and to obtain a cohomological formula concerning the topological information

associated to the manifold and the operator. My work is based on the following two special

cases:

• Atiyah investigated the case when X admits a cocompact free action of a discrete group G.

The L2-index is defined using an operator trace on G-invariant elliptic operators on X and

coincides with the index of the corresponding operator on the quotient manifold [4].

• When G is a unimodular Lie group and H is a compact subgroup, Connes and Moscovici

proved an L2-index formula for a G-invariant elliptic pseudo-differential operator A acting

on sections of homogeneous vector bundles over G/H, considered as an element in some

type II von Neumann algebra. The trace of the projection onto Ker(A), called von Neu-

mann dimension, is the right concept of the dimension, and an R-valued index formula was

obtained [12].4

Let G be a locally compact unimodular group, X be a properly cocompact G-manifold

with a cutoff function c ∈ C∞
c (X),5 and E be a G-vector bundle over X . Let A : L2(X ,E)→

L2(X ,E) be a G-invariant elliptic operator and let PKerA is the projection onto the kernel of A.

The L2-index of A is defined as follows:

indA = trG PKerA− trG PKerA∗

4The R index is the alternating sum of the L2-Betti number when A is the de Rham operator.
5A non-negative, compactly supported function p ∈C∞

c (X) is a cuttoff function if
∫

G c(g−1x)dg = 1 for all x ∈ X .
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where G-trace trG defined similarly to the definition in [4] and calculated by

trG S = tr(c
1
2 Sc

1
2 ) =

∫
X

c(x)TrKS(x,x)dx, (I.7)

where KS(x,y) ∈ End(Ex,Ey) is the Schwartz kernel of S. Here, S is bounded G-invariant pseudo-

differential operator with a smooth kernel. In particular, PKerA, PKerA∗ are such operators. The

main theorem of this thesis is the following:

Theorem I.0.1. Let X be a complete Riemannian manifold where a locally compact unimodular

group G acts properly and cocompactly. If A is a zero order properly supported elliptic pseudo-

differential operator, then the L2-index of A defined by taking the “trace” of its K-theoretic index,

is given by the formula

indA =
∫

T X
c(x)(Â(T X))2ch(σ(A)). (I.8)

The formula (I.8) generalizes the L2-index formula of free cocompact group actions due to

Atiyah [4] and the L2-index formula for the homogeneous space of unimodular a Lie group due

to Connes and Moscovici [12]. The study of L2-index in general has implications in many other

areas of mathematics [33], [26]. For example, the non-vanishing of the L2-index for the signature

operator on X indicates the existence of L2-hormonic forms on X . The L2-index is of interest to

the study of the discrete series representation [12] and has been modified to prove the Novikov

conjecture for hyperbolic groups [13].

The proof of the Theorem I.0.1 uses the proof structure in [12] and concerns the following

three steps:

1. To prove (I.8), consider A as an element in the K-homology K0
G(C0(X)), which has a “higher”

index in K0(C∗(G)). The L2-index of A depends only on the equivalent class of its higher

index in K0(C∗(G)). This is proved by defining a trace on a dense holomorphic closed ideal

S (E ) in K (E ), which has the same K-theory with C∗(G). The trace is the von Neumann

trace of a type II von Neumann algebra in the sense of [11]. A general discussion on the link

between the L2-index and the “higher” index” may be found in [31].

2. We reduce the problem of finding indA into finding indDV (σA) for some Dirac type operator

DV (σA) which has the same “higher index” as A. Here D is the Dolbeault operator on ΣX and

4



V (σA) is a vector bundle over ΣX obtained by a gluing construction using the fact that σA|SX

is elliptic. 6 The Kasparov’s K-theoretic index formula [22] is essential in the argument. The

formulation of Dirac type operators out of elliptic operators is related to the vector bundle

modification construction in the definition of geometric K-homology [7].

3. Calculate indDV (σA) using the heat kernel method. When D is the first order operator of

Dirac type, there is the Mckean-Singer formula for the L2-index:

indD = trG e−tD∗D− trG e−tDD∗ , t > 0. (I.9)

In the case of the compact manifold without group action, a cohomological formula was

obtained by studying the local invariants of metrics and connections [5], [16]. The proof for

the local index formula was greatly simplified by a rescaling argument of Getzler [15] on the

asymptotic expansion of the heat kernel e−tD2
around t = 0, 7 Since the index indD in (I.9)

is local when t → 0+, 8 the group action is not going to affect the calculation. Instead of

approximating the heat kernel on a compact manifold, I approximate the heat kernel k(x,x)

timed by cutoff function c(x) for the non-compact X . The proof is based on a modification

of the proofs in [29], [8].

The structure of the thesis goes as follows:

Chapter II is to introduce the elliptic theory and to formulate the problem. G-trace and L2-index

are defined in the last section of this chapter. Chapter III is to formulate Kasparov’s K-theoretic

index formula and to relate it with the L2-index. The first two steps of the proof are finished in

section III.3. Chapter IV is devoted to the heat kernel method in sections IV.1 and IV.2 and to

complete the third step of the proof in section IV.3. The reductions and applications are in section

IV.4. The Appendices serves as some background information to the thesis.

6ΣX is the manifold glued by two copies of ball bundle BX ⊂ T X along the boundary SX ∈ T X , the sphere bundle.
7Here D means

(
0 D∗

D 0

)
and it acts on a graded Hilbert space.

8We compute the coefficients in the asymptotic expansion by localizing at a point.
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CHAPTER II

ELLIPTIC OPERATORS

This chapter introduces the G-invariant elliptic operator on a manifold having properly cocom-

pact group action and its L2-index. Section 1 focuses on relevant properties of elliptic operators

in the classical definition. Second 2 is about Dirac operators, the important examples of elliptic

operators to be referred later. The elliptic operator in the context of the group action is discussed in

section 3. The relation between the Von Neumann trace and the L2-index are presented in the last

section.

II.1 Elliptic pseudo-differential operators

This section serves as the motivation, construction and canonical knowledges of elliptic pseudo-

differential operators. The section is summarized mainly from [18] and [1].

II.1.1 Elliptic theory on Rn.

A differential operator on Rn of order m is a linear map

P = ∑
|α|≤m

aα(x)Dα : C∞
c (Rn)→C∞

c (Rn),

where aα ∈C∞(Rn) and Dα is the (α1, · · · ,αn) partial derivative with |α|= α1 + · · ·+αn. Differen-

tial operators can be made into multiplication, which is less complicated via Fourier transformation,

1 which motivates the definition of symbol. The symbol p(x,ξ ) of P is

p(x,ξ ) = ∑
|α|≤m

aα(x)(iξ )α .

Note that P̂u(ξ ) = p(x,ξ )û(ξ ) where û(ξ ) =
∫

e−i<x,ξ>u(x)dx, with < x,ξ >=
n

∑
i=1

xiξi and P may

be reproduced from its symbol by

1Fourier transformation can be defined on the tempered distribution S ′ i.e. the set of linear forms on S , which
are continuous with respect to the semi-norm defined by supx∈Rn |xα ∂ β u(x)|. It is not hard to see that S ′ contains all
L2-functions.

6



Pu(x) = (2π)−n
∫

Rn
ei<x,ξ>p(x,ξ )û(ξ )dξ = (2π)−n

∫
Rn×Rn

ei<x−y,ξ>p(x,ξ )u(y)dydξ . (II.1)

The principal symbol of P is the ξ -homogenous part with the highest degree:

σP(x,ξ ) = ∑
|α|=m

aα(x)ξ α .

We say that P is elliptic if its principal symbol σP is nonzero when ξ 6= 0. Ellipticity is an

important property in the sense that such a operator has an “almost inverse” Q. Since Q may not

be a differential operator, it is necessary to investigate a broader class of operators – “Pseudo-

differential operators”.

A pseudo-differential operator A is of order m if its symbol a(x,ξ ) belongs to the Hörmander’s

1,0-class Sm = Sm(Rn×Rn) =

{a ∈C∞(Rn×Rn) : |∂ α
x ∂

β

ξ
a(x,ξ )| ≤Cα,β (1+ |ξ |)m−|β |,∀α,β ∈N,x ∈ K ⊂Rn compact}. (II.2)

The topology on Sm is defined by |a|m
α,β = sup(x,ξ )∈Rn×Rn{(1+ |ξ |−(m−|β |))|∂ α

x ∂
β

ξ
a(x,ξ )|}, which

is a semi-norm. We define A to be the integration formula out of its symbol a(x,ξ ) ∈ Sm:

Au(x) = (2π)−n
∫

Rn
ei<x,ξ>a(x,ξ )û(ξ )dξ = (2π)−n

∫
Rn×Rn

ei<x−y,ξ>a(x,ξ )u(y)dydξ . (II.3)

Denote the set of order m pseudo-differential operator by Ψm. We say that A is a smoothing operator

if a(x,ξ ) ∈ S−∞ .= ∩m∈RSm. It is trivial to check that ∪m∈RSm forms a graded algebra, i.e.

• If m < n then Sm ⊂ Sn; If a,b ∈ Sm, then a+b ∈ Sm; If a ∈ Sm,b ∈ Sn then ab ∈ Sm+n.

Therefore given A ∈ Ψm, we define the principle symbol σA(x,ξ ) to be the class of the symbol

a(x,ξ ) in Sm/Sm−1. One reason that principle symbols are more convenient in use is that they

preserve algebraic operation of operators, i.e.

σAB = σAσB,σA∗ = σA.

7



The algebraic operations for symbols, however, are more complicated:

Proposition II.1.1. 1. (Symbol of adjoint) Let a(x,ξ ) ∈ Sm where A is the corresponding op-

erator and let a∗(x,ξ ) be the symbol of the adjoint A∗. Then a∗(x,ξ )∼∑α
1

α! ∂
α

ξ
Dα

x ā. Recall

that an asymptotic sum of a(x,ξ ) denoted by

a∼
∞

∑
j=0

a j (II.4)

is a series of symbols
∞

∑
j=0

a j satisfying a j ∈ Sm j and a−
k

∑
j=0

a j ∈ Smk+1 ,∀k ≥ 0, where m j →

−∞ is a decreasing sequence.

By definition, for a ∈ Sm0 , there exists am j ∈ Sm j , where m j → −∞ is decreasing, so that

a∼
∞

∑
j=0

a j.

2. (Symbol of composition) Let a(x,ξ )∈ Sm,b(x,ξ )∈ Sn, where A,B are the corresponding op-

erators, and let c(x,ξ ) be the symbol of AB. Then c∈ Sm+n and c(x,ξ )∼∑
α

1
α!

(∂ α

ξ
a)(Dα

x b).

The pseudo-differential operator A ∈ Ψm extends to a densely defined operator on L2(Rn) in

the sense of distribution, i.e.

< Au(x),φ(x) >=< u(x),At
φ(x) > ∀u(x) ∈ L2(Rn),∀φ(x) ∈C∞

c (Rn),

where if A = ∑aαDα then Atφ = ∑(−1)|α|Dα(aαφ). When m > 0, A is not bounded. But A can be

made into a bounded operator (Proposition II.1.3) if we choose to use Sobolev space. Recall that

Sobolev space Hs is the completion of

{u ∈S :
∫

(1+ |ξ |2)s|û(ξ )|2dξ < ∞} (II.5)

under the Sobolev norm

‖u‖2
s = (2π)−n

∫
(1+ |ξ |2)s|û(ξ )|2dξ .

Clearly, H0(Rn) = L2(Rn) and Hs(Rn) ⊂ Ht(Rn) if s > t. A remarkable fact about the Sobolev

space is the Sobolev embedding theorem:

8



Theorem II.1.2. For each real number s > n
2 + k, there is a continuous embedding Hs(Rn) ⊂

Ck(Rn), where Ck(Rn) are the set of the k-times differentiable functions on Rn.

The following proposition is a consequence of Theorem II.1.2.

Proposition II.1.3. If a(x,ξ ) ∈ Sm, then A = a(x,D) : C∞
c (Rn)→ C∞(Rn) extends to a bounded

operator Hs(Rn)→ Hs−m(Rn) for all s ∈ R. In particular, a pseudo-differential operator with a

non-positive order is bounded on L2(Rn).

Ellipticity extends to pseudo-differential operators. A pseudo differential operator A ∈ Ψm is

elliptic if

|σA(x,ξ )| ≥ cK |ξ |m, for any |ξ | ≥ cK , and x ∈ K ⊂ Rn,

where K is any compact subset in Rn and cK is a constant depending on K. The following equivalent

definitions suggest a key property of elliptic operators.

Proposition II.1.4. Let a(x,ξ ) ∈ Sm be the symbol of a pseudo-differential operator. Then the

following statements are equivalent:

1. The operator A corresponds to a(x,ξ ) is elliptic.

2. There exists b(x,ξ ) ∈ S−n (let B be the corresponding operator), such that AB− Id and

BA− Id are smoothing operators.

II.1.2 Elliptic theory on manifold

At this point, we investigate pseudo-differential operators acting on smooth functions on a mani-

fold, or smooth sections of a vector bundle, instead of on C∞
c (Rn,Ck). In order to conveniently rep-

resent a pseudo-differential operator on a manifold, we introduce the amplitude, a concept slightly

extending the symbol. Set Sm(Rn×Rn) =

{a∈C∞(Rn×Rn×Rn) : |∂ α
x,y∂

β

ξ
a(x,y,ξ )| ≤Cα,β (1+|ξ |)m−|β |,∀α,β ,a(x,y,ξ )= 0, |x−y| is large}.

(II.6)
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a(x,y,ξ ) ∈ Sm(Rn×Rn) is an amplitude and defines a pseudo-differential operator of order m via

Au(x) = (2π)−n
∫

Rn×Rn
ei<x−y,ξ>a(x,y,ξ )u(y)dydξ .2 (II.7)

Locally, for an open set U ⊂ Rn, a continuous linear operator

A : C∞
c (U,Rk)→C∞(U,Rk)

is a pseudo-differential operator of order m if for all φ ,ψ ∈C∞
0 (Rn),suppφ ,suppψ ⊂U,φAψ is

an order less or equal to m pseudo-differential operator and there exists ψ0,φ0 so that ψ0Aψ0 is of

order m.

Up to the difference of a smoothing operator on U , A has a unique symbol a belonging to the

set of the the local symbols Sm
loc(U×Rn),

i.e. a ∈C∞(U×Rn) and φa ∈ Sm(Rn×Rn) for all φ ∈Cc(U).

When A extends to S ′(U)→ D(U), where D(U) is the set of distributions on U , A∗ is no

longer a pseudo-differential operator. To obtain a “closed set of operators”, we require A to have

proper support. Recall that A is properly sopported if for any compact subset K ⊂U , there is a

compact subset L with

suppu⊂ K⇒ suppAu ∈ L and u = 0 on L⇒ Au = 0 on K. (II.8)

A properly supported A maps Cc(U,Rm) to itself. There are “plenty of” properly supported pseudo-

differential operators because of the following proposition. Therefore we may assume properly

supportness without loss of generality.

Proposition II.1.5. If a(x,ξ ) ∈ Sm
loc(U ×Rn), then there exists an operator R with smooth kernel

in C∞(U×U) such that a(x,D)+R is properly supported.

Pseudo-differential operators can be defined on C∞
c (X ,E), smooth sections of vector bundle

2In the case of manifold, the exponent i < x−y,ξ > turns out to be a general function of three variable, and is called
phase function.
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E over manifold X with compact support 3. Recall that a smooth manifold M of dimension n is

described by an open cover {Ui} patched by smooth transition functions, i.e. homeomorphism

φi : Vi → Ui, where Vis are open set of a n dimensional vector space and φ
−1
j ◦ φi is smooth on

where it is defined. Recall that a vector bundle is a pair (E, p : E → X), where p is a continuous

onto map between two topological spaces E and X , satisfying the following conditions:

1. The set p−1(x) is homeomorphic to a vector space V of finite dimemsion for any x ∈ X . We

call V the fiber and X the base space.

2. (Local trivialization.) For any x ∈ X , there exists a open set U containing x such that there is

a homeomorphism φ from U×V to p−1(U).

3. If φ1 : U1×V → p−1(U1) and φ2 : U2×V → p−1(U2) are two trivializations and U1∩U2 is

non empty, then the composition function φ
−1
1 ◦φ2 is continuous on (U1∩U2)×V.

Example II.1.6. The cotangent bundle T ∗X is the set of all points (x,v)∈ T ∗X consisting of a point

x ∈ X and a covector v ∈ T ∗x X , and the basis at x is dx1, · · · ,dxn, where dxi( ∂

∂x j
) = δi j. The pro-

jection map is p(x,v) = x. Let (x,v) ∈ T ∗X and open set V ⊂M containing x has local coordinates

(x1, · · · ,xn), so the one form v is denoted by ∑
n
i=1 ξidxi, and

V ×Rn→ p−1(V ) : (x1, · · · ,xn,ξ1, · · · ,ξn) 7→ (x,v)

is the local trivialization. If (y1, · · · ,yn) is another coordinates on V , then it can be written into

functions of x: (y1(x1, · · · ,xn), · · · ,yn(x1, · · · ,xn)) and let y′(x) be the Jacobi matrix (i.e. the deriva-

tive of yis with respect to x js ), then by simple calculation we have that (x,t y′(x)η) and (y(x),η)

represents the same point.

Definition II.1.7. Let X be a manifold of dimension n and let E,F be complex vector bundles over

X . We say that

A : C∞
c (X ,E)→C∞(X ,F)

is a pseudo-differential operator of order m if for each diffeomorphism f from a coordinate neigh-

3A section s of a vector bundle (E, p : E→ X), is a continuous map from X to E such that p◦ i = IdX
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borhood X f ⊂ X to an open set U f ∈ Rn, there exists A f ∈Ψm
loc(U f ) such that

(A f u)◦ f = A(u◦ f ),∀u ∈C∞
c (U f ).

Alternatively, A can be expressed as a finite sum ∑Aα module infinite smoothing operators,

where φαAαψ
−1
β

is a pseudo-differential operator of order k with compact support, and where

φα : RdimE→Ui,ψβ : RdimF→Vj are local coordinates. The class of all order n pseudo-differential

operator from section of E to that of F is denoted by Ψn(X ;E,F).

We define a(x,ξ ) to be a symbol in class Sm(X ;E,F) if the following are satisfied,

1. In the local chart presentations or in coordinates of T ∗X , a(x,ξ ) is a symbol of order m.

2. Globally, a(x,ξ ) is a smooth section of the bundle End(π∗E,π∗F), the linear transformation

from fiber of π∗E to the fiber of π∗F over same base point in T ∗X depending continuously

on the coordinate on X , over T ∗X . Recall that π : T ∗X→ X is a projection and that π∗E,π∗F

are the pull-back vector bundle over T ∗X 4

π∗E −−−−→ Ey y
T ∗X π−−−−→ X .

The notion of the symbol cannot be extended to the case of the manifold because it is not com-

patible under coordinate change. But the difference of the same local symbol on two coordinate

systems are of lower order. In fact, let A ∈ Ψm(X ;E,F), and let fi : X fi → U fi , i = 1,2 be the

diffeomorphism from coordinate neighborhood X fi to an open set in Rn. If X f1 ∩ X f2 6= /0 and

denote f12 = f1 ◦ f−1
2 : f2(X f1 ∩X f2)→ f2(X f1 ∩X f2), in the definition (A f1u) ◦ f1 = A(u ◦ f1) =

A f2(u◦ f1 ◦ f−1
2 )◦ f2. Then (A f1u)◦ f12 = A f2(u◦ f12). If the symbol of A fi is σA f i , then

σA f1
( f12(x),ξ )−σA f2

(x, f ′t12ξ ) ∈ Sm−1( f2(X f1 ∩X f2)).

Hence, a good replacement is the principle symbol which only cares the highest order part. The

4If π : E → X is a vector bundle and f : Y → X is a continuous map, then the pull back bundle π∗(E) over T ∗X is
defined as {(x,v) : f (x) = π(v),∀x ∈ Y,∀v ∈ E}.
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following proposition shows that the principal symbol is globally defined on the cotangent bundle

T ∗X .5

Proposition II.1.8. There is a well-defined element σ ∈ Sm(T ∗X) such that σ−σA f ∈ Sm−1(T ∗X f )

for any coordinate system f : X f →U f . This element is the principal symbol of A.

Remark II.1.9. The symbol

σA : π
∗E→ π

∗F (II.9)

of A is a globally defined linear map and σA is a matrix-valued function over T ∗X , i.e. σA(x,ξ ) ∈

End(Ex,Fx). Note that each A ∈Ψm(E,F) has a principal symbol σA in Sm(E,F)/Sm−1(E,F).

A can be represented by its symbol, (amplitude, being more precise). To present it we detour

to Riemannian structures on the manifold and Riemannian covariant derivatives. Recall that a

Riemannian manifold is a real smooth manifold X in which each tangent space is equipped with an

inner product gi j =< ∂

∂xi
, ∂

∂x j
> ( where xis are local coordinate on X ,) which varies smoothly from

point to point. The metric allows us to define various notions such as angles, lengths of curves,

curvature. For real vector bundle E over X , we define the Riemannian vector bundle, i.e. there is

an inner product in each fiber and smoothly depends on the point on the manifold. For complex

vector bundle with continuous inner product in each fiber, the name is Hermition vector bundle.

Every real (complex) vector bundle admits a Riemannian (Hermition) structure. Let (E, p) be a

vector bundle over X . A connection on E is a linear map

∇ : C∞(E)→C∞(T ∗X⊗E), such that ∇( f e) = d f ⊗ e+ f ∇e, for all f ∈C∞(X),e ∈C∞(E).

The connection can be defined on bases with a matrix of 1-form. Let e1, · · · ,em be basis of frames

in E. Then ∇ei = ∑
n
i=1 Γi

j⊗ e j, where Γi
j are 1-forms over base space X . Given a vector field V on

X , i.e. a section of the tangent bundle, we define a map from C∞(E) to itself by ∇V (e) =< ∇e,V >,

where <,> means pairing of V with 1-form. ∇V is called the covariant derivative with respect

to V , which generalizes the directional derivative. The covariant derivative is Riemannian if V <

e, f >=< ∇V e, f > + < e,∇V f > and it is used to define differentiation of frames in vector bundle

5As a convention for simplicity we use the word symbol to mean principal symbol. Denote σA the principal symbol
of A.
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E. A section s in vector bundle E is parallel along a vector field V if (∇V (x)e)(x) = 0 for all x in X

where vector field is defined.

The amplitude of A is defined similarly as (II.6) and can be represented by its symbol σA(x,ξ ):

a(x,y,ξ ) = α(x,y)σA(q(y,(x,ξx))), (II.10)

where α ∈ C∞(X ×X) has support contained in a small neighborhood of the diagonal such that

α(x,x) = 1,α(x,y) ≥ 0 for all x,y ∈ X and q : X ×T ∗X → T ∗X : (y,(x,ξx)) 7→ (y,ξy) where ξy is

parallel transport of ξx from x to y.

Remark II.1.10. The symbol of A is σA(x,ξ ) = a(x,x,ξ ).

Since a(x,y,ξ ) vanishes outside a small neighborhood U of the diagonal of X ×X , there is a

homeomorphism

v : U → a neighborhood of zero section in T ∗X : (x,y) 7→ (x,exp−1
x y),

where expx : TxX→X is the exponential map. We define pseudo-differential operator A :Cc(X ,E)→

Cc(X ,F) by

Au(x) =
∫

X×T ∗x X
ei<v(x,y),ξ>a(x,y,ξ )u(y)dydξx =

∫
X×T ∗x X

eiΦ(x,y,ξ )a(x,y,ξ )u(y)dydξx, (II.11)

where Φ(x,y,ξ ) =< exp−1
x (y),ξx > is the phase function.

Definition II.1.11. An operator A ∈ Ψm(E,F) is elliptic if for any compact subset K in X , there

exists a constant cK > 0 such that the matrix inverse of σA(x,ξ ) exists and satisfies

|σA(x,ξ )−1| ≤ cK(1+ |ξ |)−m

for any (x,ξ ) ∈ T ∗X |K .

A can be modified and “replaced” without changing its index. The following assumptions

on A are standard in the sense that, both A and σA represent some equivalent classes in the KK-

group (Appendix E) and we can change A or σA without changing the equivalent classes. The
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reductions/assumptions are explained as follows. These assumptions are used in the thesis without

loss the generality.

1. Assume A to be properly supported.

Under this circumstance, A : Cc(X ,E)→Cc(X ,F) extends to a densely defined operator A :

L2(X ,E)→ L2(X ,F), where L2(X ,E) is the completion of Cc(X ,E) under the inner product

( f ,g) =
∫

X < f (x),g(x) > dx.

Definition II.1.12. A is properly supported if the projection from its amplitude’s X×X sup-

port to each X is proper map, equivalently, The projection from the support of the distribution

kernel of A to both factors of X×X is proper map. This definition is equivalent to (II.8).

2. Assume A to be odd and (essentially) self-adjoint acting on Z/2-graded space.

Replace A : L2(X ,E)→L2(X ,F) by

0 A∗

A 0

 acting on Z/2-graded Hilbert space L2(X ,E⊕

F). Then we can apply functional calculus of A.

3. It is sufficient to consider 0-order pseudo differential operators (Ψ0).

In fact, if a self-ajoint, properly supported differential operator A : L2(X ,E)→ L2(X ,E) has

order m > 0, it can be normalized into a 0-order pseudo-differential operator via functional

calculus: B = A√
1+A2 . The fact that

√
1+A2 is invertible and positive implies that A,B have

the same index. The reason to consider a 0-order operator is because such an operator is

bounded on L2(X ,E) in the case we are interested (Refer to the section II-3). Of course,

another way to get a bounded operator is to use Riemannian metric to define Sobolev space

Hs(X ,E) analogous to the line (II.5). Then A : Hs(X ,E)→ Hs+m(X ,F) is bounded, if A ∈

Ψm(X ;E,F) is properly supported.

4. When ‖ξ‖ is large, the invertibility of σA can be modified into σA being unitary.6

Hence the ellipticity for a 0-order self-adjoint properly supported odd operator A acting on a

Z/2 graded Hilbert space L2(X ,E) is carried out as follows.

6Replace σA by (σAσ∗A)−
1
2 σA. Note that (σAσ∗A)−

1
2 is not defined when ‖ξ‖ is small.
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Definition II.1.13. A ∈Ψ0(E) with symbol σA is elliptic if for any compact subset K ⊂ X ,

‖σA(x,ξ )2−1‖→ 0 uniformly for x ∈ K, and for ξ → ∞ in T ∗x X . (II.12)

The reason to study ellipticity is motivated by the following Theorem II.1.14. Being invert-

ible up to smoothing operators is a key feature of elliptic operators. There are several interesting

corollaries. An immediate observation is that the solutions for an elliptic operator are smooth. A

not very obvious corollary is that elliptic operators have indices. But the elliptic operators acting

on a compact X are Fredholm (Appendix A) and have a Fredholm index, which is well-known in

Operator Theory and which motivates the study of higher indices for elliptic operators.

Theorem II.1.14. For elliptic operator P of order m there is a pseudo-differential operator Q

(called paramatrix of P) of order −m, uniquely defined up to a difference of smoothing operator,

such that PQ− Id and QP− Id are smoothing operators.

II.2 Dirac and Dolbeault operators

Dirac operator is an important and manageable example of an elliptic differential operator. Dol-

beault operator is a special case of a Dirac operator. The canonical Dirac operator captures the

geometry of the manifold it acts on. The knowledge on Dirac operators is summarized from [20]

Chapter 2 and that on “the Dolbeault operators” is summarized from [20], [8].

Clifford algebra

Let V be a vector space over a field k (C or R) and let q be a bilinear quadratic form on V (i.e.

homogenous polynomial of degree two in several variables). Let

T (V ) = k⊕V ⊕ (V ⊗V )⊕ (V ⊗V ⊗V )⊕·· ·

be the free tensor algebra of V . The Clifford algebra Cl(V,q) is an associate algebra with unit

defined by:

T (V )/Ideal generated by {v⊗ v+q(v,v)1, for all v ∈V}.

Remark II.2.1. Let q(v) = q(v,v). Then q(u,v) = 1
2(q(u+ v)−q(u)−q(v)).
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Example II.2.2. • Let e1,e2 be basis of V = R2 and let q(x1e1 +x2e2) = x2
1−x2

2. Then Cl(R2,q)

and is isomorphic to C as algebras.

• Cl(V,0) is isomorphic to the exterior algebra Λ∗V . Clifford algebra is an enhancement of

Λ∗V and sometimes we use elements of Λ∗V to represent elements of Cl(V,q).

Clifford algebra is “universal” in the following sense and it is equivalent to the definition of

Clifford algebra.

Proposition II.2.3. Let f : V → A be a linear map from V to any associative k-algebra with unit,

such that f (v) · f (v) =−q(v)1 for all v∈V . Then f extends uniquely to a k-algebra homomorphism

f̃ : Cl(V,q)→ A. Moreover, up to isomorphism Cl(V,q) is the unique associative k-algebra with

this property.

Remark II.2.4. Clifford algebra is Z2-graded. In fact, α : V →V : v 7→ −v extends to an automor-

phism of Cl(V,q) using Proposition II.2.3. Let

Cli(V,q) = {φ ∈ Cl(V,q) : α(φ) = (−1)i
φ}, i = 0,1.

Then we have Cl = Cl0⊕Cl1, and Cli ·Cl j ⊆ Cli+ j, where the indices are taken module 2.

Example II.2.5. There are some special Clifford algebras used in this thesis: Clr,s
.= Cl(V,q) where

V = Rr+s and q(x) = x2
1 + · · ·x2

r − x2
r+1− ·· ·x2

r+s. In particular, Cln
.= Cln,0 and Cl∗n

.= Cl0,n. If

V = Cr+s we denote the corresponding algebras by Clr,s,Cln,Cl∗n. Clr,s is generated by the q-

orthonormal basis in Rr+s : e1, · · · ,er+s with the relation:

eie j + e jei =−2δi j when i≤ r and eie j + e jei = 2δi j when i > r.

The are classification of Cln and Cln can be found at [20] theorem I.4.3. We need Cl2n 'M2n(C)

in this thesis.

Clifford module

Let W be a vector space over field k and let Endk(W,W ) be the linear transformation of W . W

is a Cl(V,q)-module over k if there is a k-representation of Cl(V,q):

ρ : Cl(V,q)→ Endk(W,W ).
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If V is a k-manifold and Λ∗(T ∗V ) is the exterior bundle over cotangent bundle T ∗V , then Λ∗(T ∗V )

is a Cl(T ∗V )-module as is shown in the following example.

Example II.2.6. • Let V be an n-dimensional real manifold and Λ∗(T ∗V ) be the exterior alge-

bra over T ∗V . Define q(v,w) = (v,w),v,w ∈V , where (·, ·) is the Riemannian metric on T ∗V

and where T ∗V and TV are identified using the Riemannian metric. Define

c : T ∗V → End(Λ∗(T ∗V )) : v 7→ ε(v)− ι(v),

where ε(v)w = v∧w and ι(v) is the contraction with the co-vector q(v, ·) ∈V ∗ :

ι(v)v1∧·· ·∧ vp =
n

∑
i=1

(−1)i+1q(vi,v)v1∧·· ·∧ v̂i∧·· ·∧ vp.

Since

ε(v)ι(w)+ ι(w)ε(v) = q(v,w),v,w ∈V, (II.13)

then c(v)2 = −q(v)2 = −(v,v) · 1 = −‖v‖2 · 1 for all v ∈ V and then we can extend c to the

Clifford algebra Cl(T ∗V )' Cln. We call c(x) Clifford multiplication on the exterior algebra

by x ∈ Cl(T ∗V ).

• Let V be a n dimensional C-linear space with a inner product (·, ·) (C-conjugate linear in the

first variable, C-linear in the second variable) and a anti-linear involution x→ x∗. Define the

quadratic form q(x) = (x∗,x). Define the Clifford multiplication by

c : V → EndC(Λ∗V ) : x 7→ ε(x∗)− ι(x).

Using (II.13) we have c(x)2 =−q(x,x∗) ·1 =−‖x‖2 ·1. Then c extends to Cl(V )' Cln.

In the example II.2.6 the Cl,Cl module is not ireducible. The following is an irreducible Cl2n-

module. There is a classification of irreducible modules of Cln and Cln in [20] theorem I.5.8.

Example II.2.7. Let V be a 2n-dimensional real space underlying Cn, where x1, . . . ,xn,y1, . . . ,yn are

orthonormal basis. Choose the Hermitian inner product on V , C-linear in the second coordinate,
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and define q(x) = (x∗,x) The map

c : V → EndC(Λ0,∗V ) : xi 7→
1√
2
(ε(z̄i)− ι(zi);y j 7→

1√
2
(iε(z̄ j)+ iι(z j))

extends to a homomorphism on Cl(V )⊗C and Cl(V )⊗C ' End(Λ0,∗V ). Then S = Λ0,∗V is a

irreducible Cl2n-module.

A Clifford module can be constructed using a principal bundle. Recall that a principal G-bundle

is a fiber bundle π : P→ X with fiber G (for every point x ∈ X there is an open set U containing x

such that π−1(U) is homeomorphic to U×G) together with a continuous left action G×P→ P by

a topological group G such that G preserves each fiber of P and acts freely and transitively on it.

All vector bundles can be obtained from a principal bundle using the associate bundle con-

struction. Let π : P→ X be a principal G-bundle over X and let HomeoF (with compact-open

topology) be the group of homeomorphisms of another space F . For a continuous homomorphism

ρ : G→ HomeoF , we construct a vector bundle over X of fiber F by taking the quotient of P×F

by the orbit of the free group action:

g(p, f ) = (pg−1,ρ(g) f ),g ∈ G, p ∈ P.

The quotient is the bundle associate to P by ρ and denoted by P×ρ F.

Example II.2.8. Let X be a Riemannian manifold and P = POX be the principal On(R)-bundle of

the tangent frames and let ρ : On(R)→O(Rn) denote the identity representation and ρ∗ : On(R)→

O(Rn) be defined by ρ∗(g) = ρ(g−1)T (T means transpose). Then T X = PO(X)×ρ Rn and T ∗X =

PO(X)×ρ∗ (Rn)∗. Also, Λ∗(T ∗X) = PO×ρ Λ∗(Rn)∗.

Let M be a Cln (or a Cln) module and let X be a Riemannian manifold. A Clifford module is

the associated bundle PO×c M where c : Rn → EndM is the Clifford representation on M. As a

special case, a Clifford bundle is defined by Cl(T ∗M) = PO×c Λ∗(T ∗X), where c is the map in the

first item of Example II.2.6

The Canonical Dirac operator is defined on a “irreducible” Clifford module S over an oriented

manifold X (spin structure is further required). Recall that a spin group Spinn s a two fold cover
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of SOn
7 and X has a spin structure if the principal bundle PSOn over X , decided by the structure

group SOn, can be lifted to a principle Spinn-bundle. Spin group is a group in the Clifford algebra:

Spinn ⊂ Cln[20].

Example II.2.9. • When n≥ 3, a spin structure on E is a principal Spinn bundle PSpin(E) with

a two sheet covering η : PSpin(E)→ PSO(E) such that η(pg) = η(p)η0(g),η0 : Spinn →

SOn,∀p ∈ PSpin(E),g ∈ Spinn.

• When n = 2, a spin structure of E is defined analogously with Spinn replaced by SO2 and

η0 : SO2→ SO2 being the two fold covering.

Let X be an oriented Riemannian manifold with a spin structure η : PSpin(E)→ PSO(X), a (real)

spinor bundle X is a bundle of the form

S(T X) = PSpin(T X)×µ M,

where M is a left irreducible Cln-module and µ : Spinn→ SO(M) is the representation of elements

of Spinn ⊂ Cln on M. S(T ∗X) is a Clifford module over Cl(T ∗X). Sometimes we use elements

from the exterior algebra to represent the elements in Cl(T ∗X) because of the vector space isometry

Λ∗(T ∗X)' Cl(T ∗X).

Dirac operators

Let X be an n-dimensional Riemannian manifold with Clifford bundle Cl(T X). Let V be a

left Cl(T X)-module. To define Dirac operator we need to define a connection on V. Let ∇ be a

Levi-Civita connection on T X . ∇ extends to Cl(T ∗X), the bundle of Clifford algebra constructed

from T M. Hence ∇ extends to Cl(T M).

A connection ∇V : C∞(M,V )→C∞(M,T ∗M⊗V ) on V is a Clifford connection if ∇V is com-

patible with ∇,

i.e. [∇V
X ,c(a)] = c(∇X a),X ∈C∞(M,T M),a ∈C∞(M,T M),

where c(a) is Clifford multiplication of a on V. A Clifford connection always exists for Clifford

module ([8] Corollary 3.41).
7When n≥ 3, Spinn is the universal cover.
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Definition II.2.10. Let ∇V be a Clifford connection on X . The the first-order differential operator

D : L2(X ,V )→ L2(X ,V ),Du =
n

∑
j=1

c(e j) ·∇V
e j

u

is called the Dirac operator, where e1, . . . ,en are orthonormal basis for T X , ε1, . . . ,en are dual bases

in T ∗X and ”c(·)” denotes Clifford multiplication of e j ∈ Cl(T ∗X) on V via module structure. We

say that D2 is a generalized Laplacian. A spin structure on X is needed if V = S is a irreducible

Cl(T ∗X)-module.

Remark II.2.11. If X = Rn,eis are constants satisfying c(e j) · c(e j)+ c(e j) · c(ei) =−2δi j, then D2

is reduced to

−(
∂ 2

∂e2
1
+ · · ·+ ∂ 2

∂e2
n
).

Proposition II.2.12 ([20]). Let D be a Dirac operator of bundle S defined above, the (principal)

symbol

σ(D)(x,ξ ) = ic(ξ )

and σ(D2)(x,ξ ) = ‖ξ‖2, where c(·) means Clifford multiplication by ξ on the fiber Ex. Dirac

operator is elliptic.

Example II.2.13. Let n = 1,X = R,Cl1 = V = C, e1 = i, ∇e1 =
∂

∂x1
, so D = i

∂

∂x1
.

Dirac operators are commonly used in index theory of elliptic operators. Next we introduce a

class of examples of Dirac operators that are used in the formulation of the index formula, namely,

Dolbeault operators. They are first order differential operators acting on differential forms on an

almost complex manifold.

Let V be a real vector space and let J : V →V be a R-linear isomorphism. Then J is a complex

structure on V if

J2 =−Id.

We may equip real vector space V with a structure of complex vector space if V admits a complex

structure J. Let v ∈ V and then a scaler multiplication of a complex number a + ib(a,b ∈ R) is

defined by (a+ ib)v = av+bJ(v).

Example II.2.14. The complex space Cn has a complex structure. In fact, the element (z1, · · · ,zn),z j =
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x j + iy j,x j,y j ∈ R viewed as in a R-space is expressed as (x1,y1, · · · ,xn,yn)and the complex struc-

ture J is defined to be

J(x1,y1, · · · ,xn,yn) = (−y1,x1, · · · ,−yn,xn).

It corresponds the multiplication by i in Cn.

Similar to the exterior algebra Λ∗V of real vector space V we build the complex exterior algebra

for V with a complex structure J: Consider V ⊗R C and extend J to a C-linear map on V ⊗R C by

J(v× a) = J(v)⊗ a for v ∈ V,a ∈ C and still J2 = −Id. Let V 1,0 and V 0,1 be the eigenspace

correpond the eigenvalues i,−i of J respectively. Then there is an isomorphism V ⊗R C ' V 1,0⊕

V 0,1 : ix j 7→ x j− iy j,y j 7→ x j + iy j where V 1,0 and V 0,1 are R-isomorphic and related by conjugation:

v×a = v× a for v ∈ V,a ∈ C. Let Λp,q be the subspace of Λ∗V ⊗R C of form u∧ v where u ∈

ΛpV 1,0,v ∈ ΛqV 0,1 and we have the direct sum V ⊗R C =
2n

∑
r=0

∑
p+q=r

Λ
p,qV.

To some manifold J can be similarly defined. Let X be a manifold. A vector bundle isomor-

phism

J : T X → T X

is called an almost complex structure for X if the isomorphism Jx : TxX → TxX of fiber over each

point x∈ X is a complex structure for TxX . A 2n-dimensional differentiable manifold has an almost

complex structure.

Example II.2.15. Let X be a manifold and T ∗X be its cotangent bundle and (x,ξ ) be its local

coordinate. There is a almost complex structure on

T ∗X : J(
∂

∂x1
,

∂

∂ξ1
, · · · , ∂

∂xn
,

∂

∂ξn
) = (

∂

∂ξ1
,− ∂

∂x1
, · · · , ∂

∂ξn
,− ∂

∂xn
).

(Horizontal part x imaginary and vertical part ξ real.)

Define Λp,qT ∗X , the complex exterior algebra bundle of type (p,q) on X with almost complex

structure, by working on each fiber of T ∗X . The sections of the vector bundle ΛT ∗X over X is the

C-valued differential forms of type (p,q) (also denoted by Λp,q(X)).

Let {w1, · · · ,wn} be local frame for T ∗X1,0 restrict to some open set U ⊂X , then {w1, · · · ,wn} is

a local frame for T ∗X0,1. If we let d be the exterior derivative from Λp,q(T ∗X) to ∑
r+s=p+q−1

Λ
r,s(T ∗X).
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Then Set ∂ = πp+1,q ◦d,∂ = πp,q+1 ◦d where πp,q is the projection to the subspace space of (p,q)-

forms.

Example II.2.16. For a complex manifold 8 with local holomorphic coordinate z1, · · · ,zn, then

∂ =
n

∑
j=1

∂

∂ z j
dz j,∂ =

n

∑
j=1

∂

∂ z j
dz j.

Definition II.2.17. Dolbeault operator is defined as

∂̄ + ∂̄
∗ : Λ

0,∗→ Λ
0,∗

for manifold X with an almost complex structure. Alternatively, Dolbeault operator is an operator

on L2(X ,Λ0,∗T ∗X) with symbol

σ(x,d f ) = i(ε(∂ f )− ι(∂ f ))

where ι(dz) is defined by contraction using C linear quadratic form q(dz̄,dz) = (dz,dz) where (·, ·)

is a Hermitian metric C-linear in the second coordinate. 9

Remark II.2.18. Since σ(x,dx j)2 =
i
2

ε(dz̄ j)−
i
2

ι(dz j), and σ(x,dy j) =−1
2

ε(dz̄ j)−
1
2

ι(dz j),

then σ(x,dx j)2 =
1
2
‖x j‖2,σ(x,dy j)2 =

1
2
‖y j‖2. So Dolbeaut operators are special kinds of

Dirac operators. 10

Example II.2.19. Consider T X with an almost complex structure in the previous example, and let

(x,ξ ) be the local coordinate and η ,ζ be the coordinate of the cotangent vector in T ∗(T X) in the

x and ξ direction respectively. Similar to the case of complex manifold ∂̄ =
1
2
(

∂

∂ξ
+ i

∂

∂x
), the

Dolbeault operator is
√

2(∂̄ + ∂̄ ∗) acting on the exterior algebra bundle Λ0,∗(T 0,1(T X))∗. Recall

that dz = dξ +dx = ζ + iη and dz̄ = dξ − idx = ζ − iη The symbol of the Dolbeault operator is

σ((x,ξ ),ζ ) =
1
2
(ε(η + iζ )− ι(−η + iζ )),σ((x,ξ ),η) =

1
2
(ε(−ζ + iη)+ ι(−ζ − iη)),

which are elements in π∗(Λ∗(T ∗X)) and where π : T (T ∗X)→ T ∗X is vector bundle projection.
8The manifold is locally homeomorphic to Cn and the transition functions are holomorphic.
9The Dolbeault operator defined using symbol represent a larger class of operators, which differ by a 0-order terms.

10Being more precise, there is a multiple of
√

2 on the operator or symbol, so that σ(x,v)2 = ‖v‖2.
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Remark II.2.20. Dolbeault operator on an almost complex manifold can be represented in terms

of Definition II.2.10 using a superconnection. If X is Kähler, which means that the Levi-Civita

connection ∇ on Λ∗T ∗X preserves Λ0,∗(T 0,1)∗, then it can be shown that the restriction of ∇ on

Λ0,∗(T 0,1)∗ is a Clifford connection. The Dirac operator constructed using this connection coin-

cides with
√

2(∂̄ + ∂̄ ∗), which coincide with Definition II.2.17 of the Dolbeault operator. In fact,

when X is Kähler,

∂̄ = ∑ε(z̄i)∇z̄i , ∂̄ ∗ =−ι(z̄i)∇zi([8] Proposition 3.67).

In general we can choose the Levi-Civita connection ∇ 11 of the bundle Λ0,∗(T 0,1)∗ and define

the Dirac operator by

D =
√

2∑(ε(z̄i)∇z̄i− ι(zi)∇zi). (II.14)

Recall that c(z̄ j) =
√

2ε(z̄ j) and c(z j) = −
√

2ι(z j) by Example II.2.7, then (II.14) coincides with

Definition II.2.10. The Dirac operator D in (II.14) and the Dolbeault operator
√

2(∂̄ + ∂̄ ∗) are Dirac

operators of the same Clifford module and they have the same symbol.

II.3 Equivariant elliptic operators

This section introduces our target–the elliptic operator for proper cocompact action and proves an

elliptic property (Theorem II.1.14) in this case. Given a complete Riemannian manifold X , a vector

bundle (E,π) and an properly supported elliptic operator A : Cc(X ,E)→ Cc(X ,E), we study the

case when X admits a group action and when A commutes with this group G.

We impose the following assumptions on the group G :

1. G is locally compact, i.e. the group is also a locally compact Hausdorff topological space,

which means on G there is a unique, up to scaler multiple, left-invariant Haar measure.

Recall that a left-invariant Haar measure µ on G is a nonzero left invariant Radon measure,

i.e. µ(sE) = µ(E) for any Borel set E ⊂ G and s ∈ G.

2. G is uni-modular, i.e. there exists a bivariant Haar measure on G. The name uni-modular

comes from the “modular function”. In fact, if G is not unimodular, µ-is not right invariant,

11This connection needs to be projected to the sub-bundle because the original operator may not preserve the subspace.
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instead, there will be a continuous homomorphism ∆ : G→ R called modular function, so

that µ(Es) = ∆(s)µ(E). When G is unimodular, ∆(g) = 1,∀g ∈ G. A uni-modular locally

compact group contains two most interesting cases,

• G is compact with µ(G) = 1;

• G is discrete, with µ(e) = 1.

For simplicity, write dg .= dµ(g). From the above assumption we have d(tg) = dg,d(gt) = dg

and d(g−1) = dg for any g, t ∈ G.

The action G on X is assumed to be

1. Proper, i.e. the pre-image of a compact set via the continuous G-action G×X → X ×X :

(g,x) 7→ (g · x,x) is compact.

Remark II.3.1. Isotropy group Gx = {g ∈ G | gx = x} is compact.

2. Cocompact, i.e. the quotient X/G is compact.

3. Isometric, i.e. < x,y >=< gx,gy >,g ∈ G,x,y ∈ T X . 12

Remark II.3.2. The reason to assume isometric action is to make sure the sphere bundle SX ∈ T X

is a G-manifold. This is a technical requirement. One reason to choose properly cocompact action

is the existence of the cutoff function for any X with properly cocompact action.

Definition II.3.3. A function c ∈ C∞
c (X) is said to be a cutoff function if it is a non-negative,

compact supported function c ∈C∞
c (X) so that

∫
G

c(g−1x)dg = 1 for all x ∈ X .

Proposition II.3.4. A properly cocompact space has a cutoff function c ∈C∞
c (X) given by

c(x) =
h(x)∫

G h(g−1x)dg
,

where h(x) ∈C∞
c (X) is nonnegative and has non empty intersection with each orbit.

Remark II.3.5. Another reason for the assumptions is the structure theorem of proper space and the

existence of volume element on X .
12Properness and cocompactness imply the isometry condition.
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Example II.3.6. Let G be a Lie group and H be a compact subgroup, and let X = G/H, a homo-

geneous space consisting of all the left cosets of H in G. It has a proper G-action. Let E be a

representation space of H. The induced representation space Y = G×H E, the orbits of G×E by

the action of H: h(g,e) = (gh,h−1e),g ∈G,e ∈ E,h ∈H, which forms a G-vector bundle over X , is

a proper G-space. Every proper space turns out to have such a local structure by the slice theorem

appearing below.

Definition II.3.7. [27] Let X be a G-space and K (referred as the slicing subgroup) a close subgroup

of G. A K-invariant subset S⊂ X is a K-slice in X if

1. The union G(S)(called tubular set) of all orbits intersecting S is open;

2. There is a G-equivariant map f : G(S)→G/K called the slicing map, such that S = f−1(eK).

Theorem II.3.8 (Slice theorem). Let G be a locally compact group and X be a proper G-space and

x∈ X . Then for any neighborhood O of x in X, there exists a compact subgroup K of G with Gx ⊂K

and a K-slice S such that x ∈ S⊂ O

An introduction of the slice theorem may be found at [2] section 2. According to [10] Ch. II,

Theorem 4.2, the tubular set G(S)⊂ X with a compact slicing subgroup K is a twisted product, i.e.

G(S) is G-homeomorphic to G×K S. Since X is covered by G-invariant neighborhood and X/G is

compact, then X has a finite sub-cover:

X = ∪N
i=1G×Ki Si = ∪N

i=1G(Si). (II.15)

The local structure (II.15) of X defines a G-invariant measure on X , denoted by the volume element

dx. In fact, The measure of a set in G(Si) can be calculated from the measure on G and on Si divided

by the measure of Ki. To get the measure of a set in X , intersect it with each slice and times the

measure of the portion in the slice by the G-invariant partition of unity function and figure out the

weighted sum.

With uni-modular group G acting on X , let (E,π) be a G-vector bundle over X , i.e.

1. There is a smooth G action on E such that π(gv) = gπ(v) for v ∈ E;

2. The maps of the fibers g : Ex→ Egx are linear.
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We move on to the properly supported pseudo-differential operator A : C∞
c (X ,E) → C∞

c (X ,E).

There is a natural G action on Cc(X ,E), the set of continuous sections of the G-bundle E van-

ishing at infinity, by

(g · f )(x) = g( f (g−1x)),g ∈ G, f ∈C∞
c (X ,E).

Choose a G-invariant Hermitian structure on E and let L2(X ,E) be the completion of Cc(X ,E)

under inner product, which is invariant under the left action of G:

< f ,g >L2=
∫

X
< f (x),g(x) >Ex dx,x ∈ X .

Let E = E0⊕E1 be a Z/2-graded G-vector bundle and let A be a self-adjoint operator with odd

grading i.e. A =

 0 A∗0

A0 0

 . Recall that A is of order m if its symbol σA(x,ξ ) satisfies

| ∂ a

∂x|a|
∂ b

∂ξ |b|
σA(x,ξ )| ≤Ca,b,K(1+‖ξ‖)m−|b| (II.16)

for any compact set K ⊂ X , where Ca,b,K is a constant depending on a,b,K. And A can be con-

structed from its amplitude via line (II.11). Conversely, the principle symbol σA(x,ξ ) of A can

be computed locally by the term with highest degree in ξ in e−ix·ξ Aeix·ξ for properly supported A.

Another concept associating A and σA is the integral kernel of A.

Definition II.3.9. KA(x,y) ∈ End(Ey,Fx) is said to be the Schwartz kernel of A if

Au(x) =
∫

X
KA(x,y)u(y)dy for all u(x) ∈C∞

c (X ,E).

KA(x,y) is expressed in the distributional sense

KA(x,y)(w) =
∫

X×T ∗X
eiΦ(x,y,ξ )a(x,y,ξ )w(x,y)dxdydξ ,w ∈C∞

c (X×X). (II.17)

Definition II.3.10. A ∈Ψ0(X ;E,E) is a G-invariant operator, if

A(g f ) = gA( f ), f ∈ L2(X ,E),g ∈ G.
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The action of G on A is then defined by g(A) = gAg−1.

Remark II.3.11. The Schwartz kernel of a G-invariant operator A satisfies

KA(x,y) = KA(gx,gy) for all x,y ∈ X ,g ∈ G. (II.18)

The G action on vector bundle E,F gives rise to a G-bundle End(π∗E,π∗F), and the symbol

of a G-invariant operator A is a G-invariant section in this vector bundle. Conversely, if σA(x,ξ ) a

G-invariant symbol, then there is a G-invariant operator with symbol σA(x,ξ ):

Denote by Ψn
G(Ψn

G,p) the subset of G-invariant (properly supported) operators in Ψn and by Ψn
c

the subset of operators with compact support. There is an averaging process defined by [12]:

AvG : Ψ
∗
c →Ψ

∗
G,p : P 7→

∫
G

gPg−1dg. (II.19)

Clearly, AvG is surjective, and AvG(cA), where c(x) is a cutoff function, is a G-invariant operator

with the symbol a(x,ξ ). Note that if A ∈Ψ∗G,p then A = AvG(cA).

Next we focus on elliptic pseudo-differential operators. A pseudo-differntial operator A ∈Ψm

is elliptic if there exists B ∈Ψ−m so that

‖σAσB− I‖→ 0 and ‖σBσA− I‖→ 0 (II.20)

uniformly in x ∈ K, where K is any compact subset in X , as ξ → ∞ in T ∗x X .

Proposition II.3.12. 1. If A ∈Ψn
c , then Av(A) ∈Ψn

G,p.

2. If A ∈Ψn
G,p(X) is elliptic, then there exists a parametrix Q ∈Ψ

−n
G,p(X) such that

1−AQ = S1 ∈Ψ
−∞

G,p(X),1−QA = S2 ∈Ψ
−∞

G,p(X), (II.21)

where Ψ
−∞

G,p(X) = ∩n∈RΨn
G,p(X) is the set of smoothing operators.

3. If S ∈Ψ
−∞

G,p(X), then KS(x,y) is smooth and properly supported.

Proof. 1. Clearly, AvG(A) ∈ Ψ∗G,p(X). Let a(x,y,ξ ) ∈ Sm(X ×T ∗X) be the amplitude and by

definition K = {(x,y) ∈ X ×X |a(x,y,ξ ) 6= 0} is compact. Using the fact that the Rieman-
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nian metric on T ∗X is G-invariant and the measure on X is G-invariant, we calculated the

amplitude for AvG(A) as ∫
G

a(g−1x,g−1y,ξg−1x)dg

which is in Sn because the integral is taken over a compact set {g ∈ G|(g−1x,g−1y) ∈ K}.

2. Let A ∈Ψn
G,p(X) be elliptic and c ∈C∞

c (X) be the cutoff function of X . Cover X by bounded

open balls and finitely many open balls {Ui}N
i=1 such that supp(c) : supp(c) ⊂ ∪N

i=1Ui. Let

{ai}N
i=1 be a partition of unity subordinate to the finite cover. Since A is elliptic |σA| ≥C(1+

|ξ |)n for all |ξ | ≥CK uniformly for compact K⊂X , then there exists Qi ∈Ψ−n
c (Ui),1≤ i≤N

so that

AQi−ai = R1,i,QiA−ai = R2,i

are elements in Ψ−∞
c (Ui). Extend elements in Ψ∗c(Ui) to Ψ∗c(X) and then

c
N

∑
i=1

QiA− c = c
N

∑
i=1

R2,i.

Since
N

∑
i=1

Qi ∈Ψ
−n
c (X),

N

∑
i=1

R2,i ∈Ψ
−∞
c (X), then set

Q =
∫

G
g(c

N

∑
i=1

Qi)dg ∈Ψ
−n
G,p(X) and S =

∫
G

g(c
N

∑
i=1

R2,i)dg ∈Ψ
−∞

G,p(X).

Then QA =
∫

G
g(c

N

∑
i=1

Qi)Adg =
∫

G
g(c)g(

N

∑
i=1

QiA)dg =
∫

G
g(c)dg +

∫
G

g(c)g(
n

∑
i=1

R2,i)dg =

I +S.

Similarly, there is a Q′ =
∫

G
g(

N

∑
i=1

Qic)dg ∈Ψ
−n
G,p(X) and S′ ∈Ψ

−∞

G,p(X) so that AQ′− I = S′.

Since Q′+ SQ′−Q = (1 + S)Q′−Q = Q(AQ′− 1) = QS′, then Q′−Q ∈ Ψ
−∞

G,p(X). Hence

there are S1,S2 = S ∈Ψ
−∞

G,p(X) such that AQ = 1+S1,QA = 1+S2.

3. If A ∈Ψ
−∞

G,p(X), then cA ∈Ψ−∞
c (X).

We know that cA ∈Ψ−∞
c (X) is equivalent to the fact that KcA(x,y) is smooth and compactly
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supported in X×X . Therefore the statement follows from the fact that

KA(x,y) = KAvG(cA)(x,y) =
∫

G
KcA(g−1x,g−1y)dg

and the fact that the integral vanish outside a compact set in G.

II.4 Von Neumann trace and L2-index

Let X be a complete Riemannian manifold on which a locally compact unimodular group G acts

properly and cocompactly. Let c ∈C∞
c (X) be a cutoff function of X . Let E,F be G-bundles over

X . Let A : L2(X ,E)→ L2(X ,F) (A ∈ Ψ∗G,p(X ,E,F)) be a G-invariant, properly supported elliptic

operator with the distribution kernel KA : X ×X → End(E,F). When X is compact and when G is

trivial, dimKerA,dimKerA∗ are finite and their difference defines the index of A. In the equivariant

case we measure the size of KerA,KerA∗ by a real number (von Neumann dimension). An L2-index

of A, analogous to the Fredholm index is defined at the end of the section. Refer to Appendix B for

a brief introduction for von Neumann algebra and trace.

We start with a few examples of defining von Neumann trace of the projections.

Example II.4.1 (Atiyah’s L2-index theorem for free cocompact action [4].). Let X be a compact

manifold, where X̃ is its universal cover and G = π1(X) y X̃ freely with fundamental domain U .

Let D : L2(X)→ L2(X) be an elliptic differential operator and D̃ : L2(X̃)→ L2(X̃), a G-invariant

operator, be the lift of D to X̃ . To find the correct notion in measuring Ker D̃ and Ker D̃∗, the fact

that dimKerD = trPKerD inspires to apply appropriate trace to PKer D̃, the projection onto Ker D̃.

Now PKer D̃ is a G-invariant operator acting on the Hilbert space:

L2(X̃) = L2(G)⊗L2(U). (II.22)

In (II.22), G acts on L2(G) by the left regular representation g ·k(h) = k(g−1h),g,h ∈G,k ∈ L2(G)

and on L2(U) trivially. Then PKer D̃ is an element in

R(L2(G))⊗B(L2(U)), (II.23)
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where R(L2(G)) is the commutant of the left regular representation of G, i.e. the weak closure of

the right regular representation of G. There is a natural von Neumann trace defined on (II.23):

trG(S⊗T ) = τ(S) · tr(T ), (II.24)

where

τ( ∑
g∈G

cgUg) = c0,cg ∈ C,Ug(k)(h) = k(hg)

and tr(T ) = ∑i < Tei,ei >, with {ei} the orthonormal basis for L2(U).

Hence the L2-index of D̃ is defined as

indD̃ = trGPker D̃− trGPker D̃∗ . (II.25)

Example II.4.2 (L2-index theorem of homogeneous space for Lie group [12].). Let G be a unimod-

ular Lie group and H be a compact subgroup. Consider the homogenous space M = G/H of left

cosets of H in G and a G-bundle E over M = G/H, then the fiber of E at eH, denoted by V = E|eH ,

is a H-space,
V = E|eH

h∈H−−−−→ V = E|eHy y
eH h∈H−−−−→ eH

It is easy to see that E is a representation of G induced by the representation of H on V :

E = G×H V,E = induceG
HV.

Let A : C∞
c (M,E1)→C∞

c (M,E2) be a G-invariant and properly supported pseudo-differential oper-

ators of order n. Then C∞
c (M,E) is identified with (C∞

c (G)⊗V )H , the elements in C∞
c (G)⊗V that

are invariant under the action of H, where H acts on Cc(G)⊗V by

h( f (g),e) = ( f (gh−1),h(e)),∀h ∈ H,g ∈ G,e ∈V.

The actions of G and that of H on L2(G)⊗V commutes, because G acts on L2(M,E ) = (L2(G)⊗
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E)H by

g( f (h)⊗ e) = f (g−1h)⊗ e,∀g,h ∈ G, f ∈C∞
c (G),e ∈ E.

Since KerA is a G-invariant subspace of L2(M,E) = (L2(G)⊗V )H , the projection PKerA belongs to

R(L2(G))⊗End(V ), on which there is a well defined trace. R(L2(G)) has a dense subset S such

that ∀x ∈ S, there exist f ∈ L2(G) such that x = R( f ) =
∫

G f (g)Ugdg, where Ug(k(h)) = k(hg),k ∈

L2(G),h,g ∈ G. There is a canonical faithful, finite and normal trace defined by the property

τ(R( f )∗R( f )) =
∫

G
| f (g)|2dg for f ∈ L2(G) with R( f ) ∈R(L2(G)). (II.26)

Define trG(PKerA) by multiplying the trace τ on R(L2(G)) by the matrix trace Tr on EndE. Then

we have the L2-index

indA = trG PkerA− trG PkerA∗ ∈ R.

In order to find a finite “L2-index” for the G-invariant operators on properly cocompact man-

ifold X , we make the following definition for the G-trace. At the first glance, the definition looks

different from the one discussed in the previous examples. But the two traces coincide on the

projections onto the kernel of an elliptic operator.

Definition II.4.3. A bounded operator S : L2(X ,E)→ L2(X ,E), which commutes with the action

of G, is of G-trace class if S is G-invariant and if φSψ is of trace class for all φ ,ψ ∈C∞
c (X). Recall

that a bounded operator T on Hilbert space H is of trace class if ∑i |< Tei,ei > |< ∞ where eis are

orthonormal basis of the Hilbert space and its trace is defined as tr(T ) = ∑
i

< Tei,ei > . If S is a

G-trace class operator, we calculate the G-trace by the formula

trG(S) = tr(c1Sc2), (II.27)

where c1,c2 ∈C∞
c (X) being positive and satisfying c1c2 = c for any cutoff function c on X .

Remark II.4.4. This definition is essentially the definition of the G-trace class operator appeared

in [4] where G is assumed to be discrete. Similar to Lemma 4.9 of [4], we prove in the following

proposition that trG is well defined, i.e. trG is independent of the choice of c1,c2 and c.

Proposition II.4.5. Let S (bounded, G-invariant and positive) be a G-trace class operator and
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c1,c2,d1,d2 ∈C∞
0 (X) be positive functions satisfying

∫
G

c1(g−1x)c2(g−1x)dg = 1 and
∫

G
d1(g−1x)d2(g−1x)dg =

1, i.e., c = c1c2,d = d1d2 are cutoff functions on X . Then tr(c1Sc2) = tr(d1Sd2).

Proof. Let K = {g ∈ G|supp(g · (d1d2))∩ suppc 6= /0} and then K is compact by the properness of

the group action. Hence,

tr(c1Sc2) = tr(
∫

G
[g · (d1d2)]c1Sc2dg) = tr(

∫
K
[g · (d1d2)]c1Sc2dg)

=
∫

K
tr([g ·d1][g ·d2]c1Sc2)dg =

∫
K

tr(c1[g ·d1]D[g ·d2]c2)dg

=
∫

K
tr([g−1 · c1]d1Sd2[g−1 · c2])dg = tr([

∫
G

g(c1c2)dg]d1Sd2) = tr(d1Dd2).

Using the fact that tr is a well-defined trace on the compactly supported operators on X , it is

easy to see that trG is linear, faithful, normal and semi-finite. The tracial property of trG is proved

in the following proposition together with some other properties of trG.

Proposition II.4.6. 1. A properly supported smoothing operator A ∈Ψ
−∞

G,p is of G-trace class.

If KA : X×X → EndE is the kernel of the operator then its G-trace is calculated by

trG(A) =
∫

X
c(x)TrKA(x,x)dx, (II.28)

where c is a cutoff function and Tr is the matrix trace of EndE. In fact, this formula holds

for all G-invariant operators having smooth integral kernel.

2. If A ∈Ψ∗G is of G-trace class, so is A∗.

3. If A ∈Ψ∗G is of G-trace class and B ∈Ψ∗G is bounded, then AB and BA is of G-trace class.

4. If AB and BA are of G-trace class, then trG(AB) = trG(BA)

Proof. Let φ ,ψ ∈Cc(X) and let {α2
i }N

i=1 be the G-invariant partition of unity in the last proposition.

1. Proposition II.3.12 item 3 shows that A∈Ψ
−∞

G,c has smooth kernel KA(x,y). Then KφAψ(x,y)=

φ(x)KA(x,y)ψ(y), is smooth and compactly supported, which means φAψ is of trace class.
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The integral formula for smoothing operator is classical. A proof may be found at [32]

Section 2.21.

2. Because ψ̄Aφ̄ has finite trace by definition, then φA∗ψ = (ψ̄Aφ̄)∗ is of trace class.

3. Assume G-trace class operator A ∈ Ψ∗G,c. Since suppψ is compact then by proper sup-

portness of A, there is a compact set K so that suppAψ ⊂ K. Choose η ,ζ ∈ C∞
c (X) with

K ⊂ suppη and ηζ = η . Then ηAψ = Aψ and for bounded B ∈Ψ∗G, φBAψ = φBζ ηAψ =

(φBζ )(ηAψ). Since φBζ is bounded operator with compact support and ηAψ is trace class

operator then their product is also a trace-class operator. So BA is of G-trace class. AB is of

G-trace class because B∗A∗ is of G-trace class.

If A ∈ Ψ∗G, then we have A = A1 + A2 so that A1 ∈ Ψ∗G,c and A2 has smooth kernel (which

follows from a classical statement saying that the Schwartz kernel is smooth off the diago-

nal). Then the statement follows from the fact that φA1ψ has smooth, compactly supported

Schwartz kernel.

4. We first prove a special case when AB and BA have smooth integral kernels. Use the slice

theorem (II.15) and let {G×Ki Si = G(Si)}N
i=1 be G-invariant tubular open sets covering X ,

then there exist G-invariant maps αi : X → [0,1] with suppαi ⊂ G(Si) such that
N

∑
i=1

α
2
i = 1.

In fact, let α̃i
2 be the partition of unity of X/G subordinate to the open sets G(Si)/G. Lift α̃i

to αi on X , then {α2
i } is the G-invariant partition of unity of X . Then:

trG(AB) =
∫

X

∫
X

c(x)Tr(KA(x,y)KB(y,x))dydx

=∑
i, j

∫
G×Ki Si

∫
G×K j S j

α
2
i (x)α2

j (y)c(x)Tr(KA(x,y)KB(y,x))dydx

=∑
i, j

1
µ(Ki)µ(K j)

∫
Si

∫
S j

α
2
i (s̄)α2

j (t̄)
∫

G

∫
G

c(ht)Tr(KA(gs,ht)KB(ht,gs))dgdsdhdt

=∑
i, j

1
µ(Ki)µ(K j)

∫
Si

∫
S j

α
2
i (s̄)α2

j (t̄)
∫

G
Tr(KA(s̄,ht)KB(ht, s̄))dgdsdhdt = trG(BA).

Note that in the third equality, ḡs .= (g,s)Ki = x ∈ G×Ki Si and h̄t .= (h, t)K j = y ∈ G×K j

S j and by definition αi(s̄) = αi(ḡs),α j(t̄) = α j(h̄t). Also, we have used (II.18), dh−1 =

dh,d(h−1g) = dg, and change of variable in the fourth equality.
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If either A or B are properly supported, (say A), then trG(AB) = tr(c1ABc2) = tr(
∫

G c1Ag ·

(c1c2)Bc2). So the g ∈ G making c1Ag · c1 form a compact set K, which allow us to inter-

change tr and
∫

K , use tracial property of tr and G-invariance of A and B to prove trG(AB) =

trG(BA)

In general let A = A1 +A2 and B = B1 +B2 where A1,B1 are properly supported and A2,B2 are

bounded and have smooth kernel. Then trG(AB) = trG(BA) using the special cases discussed

above.

Remark II.4.7. Let S be a bounded G-invariant operator with smooth integral kernel and let Si
.=

αiSαi ∈Ψ−∞
c (X ;E,E). Then α2

i S is of G-trace class by Proposition II.4.6 item 3. We may calculate

trG(S) as follows,

trG(S) = trG(
N

∑
i=1

α
2
i S) =

N

∑
i=1

∫
G×Ki Si

αi(x)c(x)TrKS(x,x)αi(x)dx

=
N

∑
i=1

∫
G×Ki Si

c(x)TrKSi(x,x)dx =
N

∑
i=1

µ(Ki)−1
∫

G×Si

c((g,s))TrKSi((g,s),(g,s))dgds

=
N

∑
i=1

µ(Ki)−1
∫

G×Si

c((g,s))TrKSi((e,s),(e,s))dgds =
N

∑
i=1

µ(Ki)−1
∫

Si

TrKSi(s,s)ds.

The above trace formula coincides with the trace formulas in the special cases.

1. Let X be compact with G being trivial and H0 = L2(X ,E0),H1 = L2(X ,E1) be separable

Hilbert spaces, with orthonormal basis {ei},{ fi}. There is a faithful, normal and semi-finite

trace Tr on B(H0,H1) so that tr(A) = ∑(Aei, fi) for A≥ 0. The set of trace class operators is

defined as the linear span of positive operators with finite trace.

2. When the action is free and cocompact, we have X = G×U , and for bounded positive self

adjoint operator S with smooth kernel, we have that trG(S) =
∫

U
TrKS(x,x)dx.

3. For the homogeneous space of Lie group X = G/H, and for S ∈Ψ
−∞

G,p(X), we have trG(S) =

KS(e,e), where e ∈ G is the identity.

Proposition II.4.8. If P∈Ψm
G,p is an elliptic operator, then trG(PKerP0), trG(PKerP∗0 ) < ∞. Moreover,

PKerP0 ,PKerP∗0 ∈Ψ
−∞

G .
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Proof. There is a Q∈Ψ
−m
G,p so that 1−QP0 = S ∈Ψ

−∞

G,p. Denote (1−S∗)(1−S) = 1−T and T ∗T is

of G-trace class because it is a smoothing operator (smoothing operators are closed under addition

and product). It is sufficient to prove dimG(Ker(1−T )) < ∞ because

KerP0 ⊂ Ker(1−S) = Ker(1−T ).

Observe that Ker(1−T ) is the eigenspace of T ∗T at 1, then PKer(1−T ) = δ1(T ∗T ) ≤ T ∗T . So the

fact that T ∗T is of G-trace class implies that trG(PKer(1−T )) < ∞.

For the second statement, PKerP0 is a smoothing operator because it maps L2-sections to ele-

ments in KerP0, which are smooth by Proposition II.3.12. To prove to, we apply 1−QP0 = S∈Ψ
−∞

G,p

to PKerP0 and get PKerP0 = SPKerP0 ∈Ψ
−∞

G .

Remark II.4.9. Using the G-trace property, there is another way to define the G-trace of PKerA. Let

{α2
i } be the G-invariant partition of unity in Proposition II.4.6 item 4. Then by the same property,

trG PKerA = ∑
i

trG(αiPKerAαi)

where every summand αiPKerAαi is G-invariant and restricts to a slice G×Ki Si ⊂ X . Similar to the

example of homogeneous space for unimodular Lie groups (Example II.4.2), The action of G on E

is induced by the action of Ki on V = E|Si
13

V = E|Si

k∈Ki−−−−→ V = E|Siy y
{e}×Si

k∈Ki−−−−→ {e}×Si

there is decomposition L2(G×Ki Si,E) = (L2(G)⊗L2(Si,V ))Ki be the elements of L2(G)⊗L2(S,V )

invariant under the action of K, where k ∈ K acts by

k( f (g),h(s)) = ( f (gk−1),k ·h(s)),g ∈ G,s ∈ S, f ∈ L2(G),h ∈ L2(S,V ).

13In E|Si , being more precise, Si = {(e,s)Ki ⊂ X |s ∈ Si}.
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The G-invariance of kerA implies that αiPkerAαi is an element of

R(L2(G))⊗B(L2(Si,V )). (II.29)

and this element commutes with the action of the group Ki on R(L2(G))⊗B(L2(Si,V )). Here

R(L2(G)) is the weak closure of the right regular representation of G (L1(G) more precisely)

represented on L2(G). On this set there is a natural von Neumann trace determined by

τ(R( f )∗R( f )) =
∫

G
| f (g)|2dg,

where f ∈ L2(G)∩L1(G) and R( f ) =
∫

G
f (g)R(g)dg. Here R(g) is the right regular representation

of g ∈ G on L2(G). Also B(L2(Si,V )) also has a subset where an operator trace tr can be defined.

There is a natural normal, semi-finite and faithful trace defined on R(L2(G))⊗B(L2(Si,V )) given

by τ⊗ tr on algebraic tensors. Refer to [28] Section 2 for a detailed description.

This trace coincides with the G-trace in Definition II.4.3 on the set of bounded operator with

smooth kernel. In fact, let S = A⊗B∈R(L2(G))⊗B(L2(Si,V )), which commutes with the action

of Ki, and where A and B have smooth kernel. In [12], it has been shown that τ(A) = KA(e,e). Let

d ∈C∞
c (G) be any cutoff function for G. Then τ(A) =

∫
G

d(g)KA(g,g)dg. Then

τ(A) tr(B) =
∫

G
d(g)KA(g,g)dg

∫
Si

KB(s,s)ds

=
∫

G×Si

1
µ(Ki)

c((g,s))KS((g,s),(g,s))dgds

=
∫

G×Ki Si

c(x)KS(x,x)dx.

Therefore we have proved the following proposition.

Proposition II.4.10. Over Ψ
−∞

G,p(X ;E,E) the G-trace equals the natural von Neumann trace on

the von Neumann algebra R(L2(X ,E)), the weak closure of all the natural bounded operators on

L2(X ,E) which commute with the action of G. The L2-index is the difference of the von Neumann

trace of PKerP0 and PKerP∗0 .

Example II.4.11. When G is a discrete group acting on itself by the left translation, choose c(g) =
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
1 g = e

0 g 6= e
then trcT = ∑

g∈G
< T δg,δg >=< ∑

g∈G
g−1(cT )gδe,δe >=< Av(cT )δe,δe > = trG Av(cT ).

In general, Av(c·) : B(L2(G))→R(L2(G)) extends to the map Ψc→ΨG,p : cT → Av(cT ) which

preserve the corresponding trace. When T is G-invariant, T = Av(cT ) and the following provides

the motivation for the trG formula: trG T = trG Av(cT ) = trcT.

When A : L2(X ,E)→ L2(X ,E) in Ψ∗G is an elliptic operator over X with properly cocompact G

action. According to proposition II.4.8, define a real valued G-dimension of K, a closed G-invariant

subspace of L2(X ,E), by

dimG K = trG PK

where PK is the projection from L2(X ,E) onto K, which is a G-invariant operator.

Definition II.4.12. The L2-index of A is

indA = dimG KerA−dimG KerA∗. (II.30)

An immediate computation of the L2-index is the following proposition.

Proposition II.4.13. Let A∈Ψm
G,p be elliptic and P be the operator so that 1−PA = S1,1−AP = S2

are of G-trace class, then

indA = trG S1− trG S2.

Proof. The proof is based on [4]. We have

S1PKerA = PKerA and PKerA∗S2 = PKerA∗

by composing PA = 1−S1 with PKerA and by composing PKerA∗ with 1−S2 = AP respectively. Also,

A(PA) = (AP)A implies AS1 = S2A. Set Q = δ0(A∗A)A∗ where δ0(0) = 1,δ0(x) = 0 for x 6= 0, then

QA = 1−PKerA,AQ = 1−PKerA∗ .

On one hand trG S1−trG PKerA = trG S1(1−PKerA)= trG(S1QA), on the other hand trG S2−trG PKerA∗ =

trG S2(1−PKerA∗) = trG(S2AQ) = trG(AS1Q). Therefore trG S1− trG S2 = trG PKerA− trG PKerA∗ by
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Proposition II.4.6.

The purpose of proposition III.3 is to derive the following McKean-Singer formula, which is

used later.

Corollary II.4.14. If D ∈Ψ1
G(X ,E0,E1) is a first order elliptic differential operator, t > 0, then

indD = trG(e−tD∗D)− trG(e−tDD∗), (II.31)

which in particular means that indD is independent of t > 0.

Proof. To prove (II.31) we need the following lemma.

Lemma II.4.15. Let D be as above, then e−tDD∗ and e−tD∗D are of G-trace class.

Let P =
∫ t

0
e−sD∗DD∗ds, which is the parametrix of D because

1−PD = e−tD∗D, I−DP = e−tDD∗

and they are of G-trace class by the lemma. The statement follows from Proposition III.3.

Proof of lemma II.4.15. It is sufficient to prove the case when t = 1. (The independence of t can be

carried out by a modification of the second proof of [8] Theorem 3.50.) The proof is based on the

ideas in [17] [12].

If λ ∈C− [0,∞), then λ I−D∗D is invertible. Let L = {λ ∈C|d(λ ,R+) = 1} be a curves in C

and be clock-wise oriented. Then

e−D∗D =
1

2πi

∫
L

e−λ

λ I−D∗D
dλ .

Let φ ,ψ ∈Cc(X) be supported in a compact set K ⊂ X and let {αk}N
i=1 be a partition of unity

subordinated to a open cover of K of local coordinate. We “approximate” φe−D∗Dψ by an operator

in Ψ−∞
c (with smooth and compactly supported Schwartz kernel) by inverting λ I−D∗D “locally”.

Let pk be the symbol (not the principal symbol) of αiφ(λ I −D∗D)−1ψ . Then pk has the
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asymptotic sum

pk ∼
∞

∑
j=2

a− j on a local coordinate (defined in (II.4)), i.e. Op(p−
m

∑
j=2

a− j) ∈Ψ
−m−1
c ∀m > 1,

(II.32)

where Op means the operator corresponding to the local symbol.

For any l > 0 and n > 0, choose a large enough M and set the operator approximating αiφ(λ I−

D∗D)−1ψ to be

Pk(λ ) = Op(
M

∑
j=2

a− j), (II.33)

in the sense that Pk(λ ) is analytic in λ and for any fixed u ∈ L2(X ,E),

‖(Pk(λ )−αiφ(λ I−D∗D)−1
ψ)u‖l ≤C(1+ |λ |)−n, (II.34)

where the norm is the Soblev l-norm ‖ ·‖l. The estimate (II.34) is made possible by the asymptotic

sum (II.32). In fact, let r(x,ξ ) be the symbol of R .= Pk(λ )−αiφ(λ I −D∗D)−1ψ which is in

S−M−1 and then the left hand side of (II.34) is ‖Ru‖l =
∫
(1 + |ξ |2)l|R̂u(ξ )|dξ , where Ru(x) =∫

e<x−y,ξ>r(x,ξ )u(y)dydξ can be controlled by the right hand side of (II.34) when M >> 2l +2n

because by definition of r(x,ξ ) there is a constant C so that |r(x,ξ )|< C(1+ |ξ |)−M−1.

Set

E(λ ) =
N

∑
k=1

Ek(λ ) =
N

∑
k=1

1
2πi

∫
L

e−λ Pk(λ )dλ , (II.35)

Then the following two observations prove that φe−D∗Dψ is of trace class.

1. The operator E(λ ) is a compactly supported operator with smooth Schwartz kernel.

Proof of claim. We need to show that the Schwartz kernel of Ek(λ ) is smooth. In view

of (II.33) and (II.35), it is sufficient to show that Op(a j), j ≤ −2 has smooth kernel and∫
L e−λ ∂ β (Op(a j)u)dλ is integrable for all β . This claims can be proved by the symbolic

calculus ([17]). The crucial part in the argument. is that by Proposition II.1.1, all a j, j ≤−2

contains the factor e−σ2(D∗D) and the fact that e−tσ2(D∗D) is rapid decreasing in ξ contributes

to the convergence of the integrals.

2. the function (E(λ )−φe−D∗Dψ)u ∈ H l for any fixed u ∈ L2.
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Proof of claim. Using (II.34), and fix a u ∈ L2(X ,E)

‖(E(λ )−φe−D∗D
ψ)u‖l ≤

1
2π

N

∑
k=1

∫
L

e−λ‖(Pk(λ )−αkφ(D∗D−λ I)−1
ψ)u‖ldλ

≤C
∫

L
e−λ (1+ |λ |)−ndλ → 0 as n→ ∞.

Note that E(λ ) depends on the number M, which is chosen based on l,n, and it it always has

compactly supported smooth kernel by the first claim and hence E(λ )u ∈ C∞
c ⊂ H l. The second

claim shows that φe−D∗Dψ is in H l . 14

Let l → ∞, then by the Sobolev Embedding Theorem (φe−D∗Dψ)u is smooth for all u ∈ L2.

Therefore φe−D∗Dψ has compactly supported smooth kernel and is a trace-class operator.

14When n→ ∞, there is a sequence of E(λ ) ∈ H l approaching φe−D∗Dψ in ‖ · ‖l norm.
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CHAPTER III

THE HIGHER INDEX AND THE L2-INDEX

In this chapter, we discuss Kasparov’s K-theoretic index formula and construct the R-valued

index by taking “trace” of the “higher index” of elliptic operators in the context of KK-theory. This

R-valued index is analytical in the same spirit as the Fredholm index, and equals to the L2-index

in the last chapter. We introduce the motivation and the formulation of the higher index in section

1 and a topological formula, the K-theoretic index formula, in section 2. In the third section we

discuss the R-valued index and prove that the L2-index is stable and depends only on the topological

information of the manifold and of the vector bundle.

III.1 Higher index

Let A be an elliptic operator on a compact manifold. The index is an integer calculated by the

difference of the dimensions of the null spaces of A and A∗. In this section we investigate the spirit

of taking index and apply the inspiration to define the index for elliptic operators that may not be

Fredholm. Recall that for a Fredholm operator A, two important observations are that A is invertible

module a compact operator and that A has an integer index. The link between the two is obvious

when the index is viewed as an element in K-theory. The first part of the section is summarized

from any standard K-theory textbook such as [9] and the last part of the section is based on [24].

K-theory for a locally compact Hausdorff space X is a cohomology theory K∗(X). The elements

in the group represent classes of complex vector bundles under some equivalent relation. The group

is a homotopy invariant and measures how far the vector bundle is from being trivial.

• When X is compact,

1. K0(X) is the Grothendieck group of semigroup of the stable isomorphism class of com-

plex vector bundles over X . Recall that the direct sum of two complex vector bundles

(E, p),(F,q) over X is defined as E⊕F = {(x,(e, f )) : p(e) = q( f ),x ∈ X ,e ∈ E, f ∈

F}. A general element in K0(X) is the formal difference of the two isomorphism class

of vector bundles [E]− [F ] and the class of trivial bundles represents the 0 element of
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the group. For example, K0(pt) = Z is calculated by the difference of dimension of two

C vector spaces. The morphism is defined by the pull back bundle.1

2. K1(X) is the abelian group of the homotopy classes of the set { f : X→GL∞(C) is continuous},

where GL∞(C) = limn GLn(C) under inclusion.

• The K group of locally compact space X is defined by K∗(X) = Ker{i∗ : K∗(X+)→K∗(pt)},

where X+ is the one point compactification of X , and i : pt→ X+ is the inclusion map.

Remark III.1.1. A proper continuous map f : X → Y between locally compact Hausdorff spaces

defines an algebra homomorphism F :C0(Y )→C0(X) : F(g) = g◦ f . Then a complex vector bundle

E over X+(the one point compactification of X), corresponds a projective module, which is a direct

summand of the free module⊕n
i=1C0(X). E is determined by the projection from⊕n

i=1C0(X) to the

summand. 2

K-theory can be defined on C∗-algebras. Recall that a C∗-algebra A is a Banach algebra3

with a ∗-operation on A with: (aA + bB)∗ = aA∗+ bB∗, for any a,b ∈ C,A,B ∈ A ; (A∗)∗ = A;

(AB)∗ = B∗A∗; ‖A∗A‖ = ‖A‖2. A C∗-algebra having a unit is unital. The unitalization of a C∗-

algebra4 is analogous to the one point compactification of a space. If Mn(A) is the set of all n×n

A-valued matrices, then M(A), the inductive limit of Mn(A) by identify element in R ∈ Mn(A) toR 0

0 0

 ∈Mn+m(B), is still a C∗-algebra.

• K0(A) group of a unital C∗ algebra A is the Grothendieck group of the semigroup of pro-

jection classes of M(A) under ⊕, where P⊕Q =

P 0

0 Q

 (P,Q ∈ Mn(A) for some large

n) and P ∼ Q if there exists a continuous projection path St ∈ C([0,1],M(A)) such that

S0 = P,S1 = Q. The element in this group is denoted by ([P], [Q])or[P]− [Q]. For enough

large n and for P,Q,B,S ∈Mn(A), we say that [P]− [Q] = [R]− [S] if their exists an idempo-

1If f : X → Y is continuous, then f ∗ : K0(Y )→ K0(X) : E 7→ f ∗E.
2There exists a bundle F so that E ⊕F = T is an n dimensional trivial bundle, there is a direct sum of sections

C0(E)⊕C0(F) = C0(T ) = C0(X+)⊕·· ·⊕C0(X+).
3A is a Banach algebra if it is a complex algebra and complete under its norm ‖ · ‖, i.e. ‖ · ‖ : A→ [0,∞) : x 7→ ‖x‖

such that (1) ‖c ·x‖= |c|‖x‖ for any x ∈ A,c ∈C; (2)‖x+y‖ ≤ ‖x‖+‖y‖ for any x,y ∈ A; (3)‖x‖= 0 if and only if x = 0
where x ∈ A.

4B+ = {(a,c) : a∈ B,c∈C} where the multiplication is (a,c)(b,d) = (ab+bc+ad,cd) and unit is (0,1), with norm
‖a+ c‖= ‖a‖+‖c‖.
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tent T ∈Mn(A) such that P + S + T ∼ Q + R + T.) 5 The morphism is that if f : A→ B is a

∗-homomorphism preserving identity, then f∗ : K0(A)→ K0(B) : [P] 7→ [ f ◦P].

K0 is a homotopy invariant.

• K1(A) is defined as the abelian group GL(A) over the equivalent relation ∼ under direct sum

or matrix multiplication, where GLn(A) is the set of all n×n invertible A-valued-matrices and

GL(A) is the inductive limit of GLn(A) by identifying B∈GLn(A) to

B 0

0 I

∈GLn+m(A).,

and equivalent relation is by continuous path of unitaries6 in GL(A).

• When A is not unital, K∗(A) = Ker p∗ where p : A+→ C is the projection map.

Proposition III.1.2. 1. the group K0 and K1 are related by the isomorphism K1(A)'K0(A(0,1)),

where A(0,1), the suspension of A, is the set of all continuous functions from [0,1] to A van-

ishing at 0 and 1.

2. K-theory preserves morita equivalence: K∗(A) ' K∗(A⊗K ), where K is the set of all

compact operators on some Hilbert space.

3. K-theory has the six term exact sequence: If 0 // I
i // A

π // A/I // 0 is short

exact, then there is a six term exact sequence

K1(I)
i∗ // K1(A)

π∗ // K1(A/I)

∂

��
K0(A/I)

δ

OO

K0(A)
π∗

oo K0(I)i∗
oo

.

The boundary map ∂ is called index map and δ is called exponential map.

4. K-theory has the Bott periodicity,

K0(A) = K0(A(0,1)2).

5P is a projection if P2 = P,P∗ = P.
6U is a unitary if U∗U = UU∗ = I.
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Example III.1.3. The six-term exact sequence allows us to compute more K-groups. For example,

when I = K and A = B, we have that

K1(K (H))
i∗ // K1(B(H))

π∗ // K1(B/K )

∂

��
K0(B/K )

δ

OO

K0(B(H))
π∗

oo K0(K (H))
i∗

oo

is exact. Since K∗(B(H)) ' 0 and K∗(K (H)) ' K∗(C), thenK0(B/K ) ' K1(K ) ' 0 and

K1(B/K )' K0(K )' Z.

Remark III.1.4. As a corolllary of Example III.1.3 we see the link between Fredholm operator F

and its index. In fact, F being a Fredholm module means that [F ] ∈ K1(B/K ). Up to a compact

perturbation of F , its poler decomposition has form F = PV , where P is positive invertible and V

is a partial isometry and F and V have the same Fredholm index. Lift V ∈ U (B/K ) (where U

means unitary) to an invertible element

w =

 V 1−VV ∗

1−V ∗V V ∗

 ∈M2(B(H)),

with w−1 =

 V ∗ 1−V ∗V

1−VV ∗ V

. A direct calculation of ∂ [V ] .= [wp0w−1]− [p0] shows that

∂ [F ] = ∂ [V ] = [1−VV ∗]− [1−V ∗V ] = [PKerV ]− [PKerV ∗ ] ∈ K0(K (H)) = Z.

Since K0(K (H))→Z is given by the difference of the dimension of two projections in K0(K (H)),

∂ [F ] is the Fredholm index of [F ]. The index of Fredholm operator is an element of K0(K (H)).

Analogous to the Fredholm operators, the elliptic operators with proper cocompact group action

are invertible up to some “small algebras” (the “Compact operators” over C∗(G). Refer to the

definition of the group C∗-algebra C∗(G) in Appendix C). Using the boundary map of a six-

term exact sequence, a finer index in K0(C∗(G)) is obtained. Being precise, extend the elliptic

differential operator A : Cc(X ,E)→ Cc(X ,E), where A ∈ Ψ0
G,p(X ,E,E) by completing Cc(X ,E)

into a Hilbert-C∗(G) module (The definition of Hilbert B-module can be found in Appendix E).
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The construction was done in [23] and sketched as follows. Embed Cc(X ,E) into Cc(G,L2(X ,E))

by

f 7→ (g 7→ c
1
2 g · f ), f ∈Cc(X ,E),g ∈ G, where c is cutoff function of X .

And there are pre-Hilbert Cc(G)-module structures on Cc(X ,E) defined by

< f ,h >Cc(G) (g) =
∫

X
< f (x),(g ·h)(x) >Ex dx

with the module multiplication

f ·b(x) =
∫

G
g · f (x) ·b(g−1)dg, f ,h ∈Cc(X ,E),b ∈Cc(G),

and on Cc(G,L2(X ,E)) defined by

< f ,h >Cc(G) (g) =
∫

G
< f (s),h(sg) >L2 ds

with module multiplication

f ·b(g) =
∫

G
(h−1 · f )(gh−1)b(h)dh, f ,h ∈Cc(G,L2(X ,E)),b ∈Cc(G).

The norm of the Hilbert module is ‖ f‖C∗(G) = ‖< f , f >C∗(G) ‖
1
2 The embedding

i : Cc(X ,E) ↪→Cc(G,L2(X ,E))

preserves the C∗(G)-valued inner product. Further, completing both side under ‖ · ‖C∗(G), we get a

submodule E . (It is the completion of Cc(X ,E) in the Hilbert C∗(G)-module C∗(G,L2(X ,E)).) E

is a direct summand of C∗(G,L2(X ,E)). In fact, i has an adjoint

p : Cc(G,L2(X ,E))→Cc(X ,E) : p( f ) =
∫

G
g(c)

1
2 ·g( f (g−1))dg.

Since it is easy to check that p ◦ i = id then i ◦ p is a projection. E is the convolution of the

projection i◦ p with the algebra C∗(G,L2(X ,E)).
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The operator A :Cc(X ,E)→Cc(X ,E) in Ψ0
G(X ,E,E) extends to two bounded maps A : L2(X ,E)→

L2(X ,E) and A : E → E with ‖A‖E ≤ ‖A‖L2(E).

Denote by L (E ) the C∗-algebra of all bounded operators on E having adjoint. Then A : E → E

defines an element in L (E ) according to the following lemma.

Lemma III.1.5. [24] Let X be a complete Riemannian manifold and G be a locally compact

group which acts on X properly and isometrically with compact quotient X/G. Let A : Cc(X ,E)→

Cc(X ,E) be a properly supported G-invariant pseudo differential operator of order 0 on a vector

bundle E on X. Then A extends to a bounded operators on E , which is the completion of Cc(X ,E)

in the norm ‖< e,e > ‖
1
2
C∗(G).

On the Hilbert C∗(G) module E , the rank one operator is defined by

θe1,e2(e)(x) = e1(e2,e)(x) =
∫

X
(
∫

G
θg(e1)(x),g(e2)(y)dg)e(y)dy,∀x ∈ X .

The closure of the the linear combinations of the rank one operators under the norm of L (E ) is the

set of ”compact operators” denoted by K (E ). The elements of K (E ) can be identified to be the

integral operator with G-invariant continuous kernel and with proper support. Using the following

feature of the compact operators of the Hilbert module and the definition of ellipticity, the index in

K-theory group can be obtained.

Proposition III.1.6. [24] If the symbol of the G-invariant properly supported operator A of order

0 is bounded in the cotangent direction by a constant. Then the norm of A in B(E )/K (E ) does

not exceed that constant. The operator A is compact (A ∈K (E )) if the symbol of A is 0 at infinity

(in cotangent direction).

Recall that A is elliptic if

‖σA(x,ξ )2−1‖→ 0 as ξ → 0,x ∈ K

uniformly for any compact set K⊂X . Then using Proposition III.1.6 we have that A2−Id ∈K (E ).

If A acts on graded space with A =

 0 A∗0

A0 0

, then [A0] ∈ K1(B(E )/K (E )). The image of the
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class in the K-theory of the quotient algebra under the boundary map in the six term exact sequence

∂ : KG
∗ (B(E )/K (E ))→ KG

∗+1(K (E ))

assigns A an element in KG
0 (K (E )). This is the K-theoretic index of A, denoted by IndA. Note

that when E is a Hilbert space without group action, IndA coincides with that discussed in Remark

III.1.4.

The compact C∗(G)-module K (E ) and C∗(G) are equivalent in the following sense.

Definition III.1.7. Let E be a Hilbert B-module, a E-B equivalence bi-module X is an E-B-module

equipped with E and B valued inner products with respect to X is a right Hilbert B module and a

left Hilbert E-module, satisfying < x,y >E z = x < y,z >B,∀x,y,z∈ X and < X ,X >B spans a dense

subset of B and < X ,X >E spans a dense subset of E. We say that E and B are strongly Morita

equivalent if there is a E-B equivalent bi-module.

Example III.1.8. Let E be a left K (E ) module defined by the inner product E ×E →K (E ) :

(x,y) 7→ θx,y and let E be a right Hilbert C∗(G)-module. It is easy to verify the conditions of the

above definition and conclude that K (E ) and C∗(G) are strongly Morita equivalent. In particular,

A is strongly Morita equivalent with A⊗K for any C∗-algebra A.

Using the classical fact that K-theory preserves Morita equivalence we have that

K∗(K (E ))' K∗(C∗(G))

and

IndA ∈ K0(C∗(G)).

The K-theoretic index IndA can also be formulated topologically. Let f ∈C0(X) be the operator

on L2(X ,E) defined by point-wise multiplication and let A∈Ψ0
p(X ;E,E) be elliptic. Using Rellish

lemma one may check that A0 : L2(X ,E0)→ L2(X ,E1) satisfies the following conditions: (A0A∗0−

I) f ∈ K (L2(X ,E1)), (A∗0A0− I) f ∈ K (L2(X ,E0)), A f − f A ∈ K (L2(X ,E)) and A0− g ·A0 ∈

K (L2(X ,E1),L2(X ,E2)) for all g ∈ G. This shows that A ∈ K0
G(C0(X)), a group dual to K-theory

called K-homology. Recall K-homology in the Appendix D. Both K-homology and K-theory are
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special cases of KK-theory (Appendix E), a more general group, KKG(B,C), a group depending

on two C∗-algebras. In fact we have

KKG(C,C) = KG
0 (C),KKG(B,C) = K0

G(B)

and the good thing about this group is that it has an associative intersection product

KKG(A,B)×KKG(B,C)→ KKG(A,C).

Proposition III.1.9. The elliptic operator A : L2(X ,E)→ L2(X ,E) in Ψ0
G,p gives a class of cycle

[(L2(X ,E),A)] ∈ KKG(C0(X),C)

where C0(X) acts on L2(X ,E) by pointwise multiplication. Its K-theoretic index is in fact defined

by the following assembly map:

KKG(C0(X),C)
jG
// KK(C∗(G,C0(X)),C∗(G))

[p]⊗C∗(G,C0(X)) // KK(C,C∗(G)) ,

where [p] is defined by some projection associated to the cut-off function c.

Proof. Let p .= c · g(c) ∈Cc(X ,Cc(X)) and it is easy to check that P is an idempotent. The direct

summand E ⊂ C∗(G,L2(X ,E)) is obtained by convoluting p on the left to C∗(G,L2(X ,E)). We

denote [p] as the class for the cycle

[(pC∗(G,C0(X)),0)] ∈ KK(C,C∗(G,C0(X))).

Applying the descent map jG to [(L2(X ,E),A)] ∈ KKG(C0(X),C), we get

[(C∗(G,L2(X ,E)), Ã)] ∈ KK(C∗(G,C0(X)),C∗(G)),

where Ã f (g) = A( f (g)),g ∈G, f ∈C∗(G,L2(X ,E)) and the representation of C∗(G,C0(X)) on the

Hilbert module C∗(G,L2(X ,E)) can be made from the C0(X) action and G action on L2(X ,E).

Finally by compressing this cycle with [p], we get a cycle [(E , pÃi)], which is an [(E ,A)] module a
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“compact operator” in K (E ). Therefore the image under the assembly map is

[(E ,A)] ∈ KKG(C,C∗(G)) = KKG
0 (C∗(G)).

III.2 K-theoretic index formula

This section talks about a topological formula of the K-theoretic index defined in the last section.

The important fact to be used in later calculations is the following K-homological formula by

Kasparov. And the K-theoretic index formula is a corollary of the K-homological formula.

Theorem III.2.1. [24] Let X be a complete Riemannian manifold and let G be a locally compact

group acting on X properly and isometrically. Let A be a G-invariant elliptic operator on X of

order 0. Then

[A] = [σA]⊗C0(T ∗X) [D] ∈ K∗G(C0(X)), (III.1)

where [D] is the class defined by the dolbeault operator ∂

∂ξ
+ i ∂

∂x on T ∗X .

Theorem III.2.1 means that the class of an elliptic operator A depends only on its symbol and

the manifold on which it acts. When X is compact and when G is trivial, The formula (III.1)

explains the map structure in the duality of K-theory and K-homology:

K0(X)→ K0(T X) : [A]→ [σA].

The theorem says that [A] is given by the index pairing of the symbol with some fundamental

operator (Dolbeult) on T X . This is the essence of the Atiyah-Singer index theorem. To understand

Theorem III.2.1, the symbol σA and the paring in (III.1) is explained.

III.2.1 The symbol class [σA]

The symbol of a 0-order elliptic operator A is easily observed to be an element in KKG(C0(X),C0(T X))

using ellipticity

‖σ2
A(x,ξ )− I‖→ 0,ξ → ∞, in T ∗x X ,x ∈ K ⊂ X . (III.2)
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In fact, consider C0(T X ,π∗E), where π : T ∗X → X , as a Hilbert module over C0(T X) using the

Hermitian structure on E, and the set of “compact operators” is C0(T X ,End(π∗E)). Also C0(X)

acts on C0(π∗E0⊕π∗E1) by pointwise multiplication. Hence for all f ∈C0(X), (σ2
A− I) f is com-

pact by (III.2) and [σA, f ] is compact by the fact that [σA, f ] is of order −1. Therefore the symbol

σA : π∗(E0)→ π∗(E1) defines the following element in KK-theory:

[(C0(T X ,π∗E0⊕π
∗E1),

 0 σ∗A0

σA0 0

)] ∈ KKG(C0(X),C0(T ∗X)).

The symbol σA also defines a G-bundle ([5] section 7). Let B(X)⊂ T X be the ball bundle with

sphere bundle S(X)⊂ T X as its boundary. A new manifold ΣX is obtained by gluing two copies of

B(X) along their boundaries:

ΣX = B(X)∪S(X) B(X). (III.3)

The action of G on T X extends naturally to ΣX because G acts on X isometrically. And a G-vector

bundle over ΣX is built out of σA as follows: The ellipticity of A implies the invertibility of the

symbol restricted to S(X): σA|S(X). Define a G-vector bundle over Σ(X) by gluing the σA on the

boundary:

V (σA) = π
∗E0|B(X)∪σA|S(X)

π
∗E1|B(X), (III.4)

Note that V (σA) is a class in the representable K-theory RKK0
G(C0(X),C0(ΣX)).

Proposition III.2.2. The homomorphism

KKG(C0(X),C0(T X))→ KKG(C0(X),C0(ΣX)) : [(C0(T X ,π∗E),σA)] 7→ [(C0(ΣX ,V (σA)),0)]

naturally follows from the inclusion map i : C0(T X)→C0(ΣX).

Proof. The pre-image of [(V (σA),0)] of i∗ in KKG(C0(X),C0(T X)) is [(V (σA)|T X ,0)]. We con-
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struct a projection out of M1
.=

 0 σ∗A

σA 0

 as follows,

P = [
1

1+σAσ∗A

σAσ∗A σ∗A

σA 1

]− [

1 0

0 0

].

Then

[(C0(T X ,π∗E0⊕π
∗E1),M1)] =[(C0(T X ,π∗E0⊕π

∗E1),P)]

=[(PC0(T X ,π∗E0⊕π
∗E1),1)]+ [((1−P)C0(T X ,π∗E0⊕π

∗E1),0)]

=[(C0(T X ,V (σA)|T X),0)]

Remark III.2.3. When X is compact and when G is trivial, the inclusion C→C(X) further reduces

σA to an element of KK(C,C0(T X)) by “forgetting” the action of C(X) on the Hilbert-C0(T X)

module. Therefore,

KK(C,C0(T X)))' K0(C0(T X))

is identified using the Fredholm picture of KK-theory, i.e. σA is invertible module compact oper-

ators of some Hilbert-C0(T X) module, which is strong Morita equivalent to C0(T X). σA provides

an alternative definition to K0(C0(T X)) instead of using a vector bundle. The vector bundle that is

trivial at infinity in T X and that corresponds σA is constructed by gluing π∗E|B(X) and π∗E|T X B(X)◦

along the boundary using the fact that σA|S(X) is invertible. This bundle is the restriction of V (σA)

to T X .

III.2.2 Index pairing

Formula (III.1) is some form of pairing. When X is compact with trivial group action, apply the

map

c∗ : K0(C(X))→ K0(C)
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induced by constant map c to both sides of (III.1). The left hand side of (III.1) is then the Fredholm

index of A and the right hand side is the intersection product of [σA] ∈ K0(T X) with [D] ∈ K0(T X).

When [σA] is viewed as a class of vector bundle V , the intersection product is well known to be the

Fredholm index of the Dirac operator D with coefficients in V . Then the formula (III.1) is reduced

to

[A] = [σA]⊗ [D] = [DV ].

Definition III.2.4. Let [(H,φ ,F)]∈K0(C0(X)) be an even Fredholm module and let [P]∈K0(C(X))

be an equivalent class of projections. 7 Extend φ(P) : Mn(C0(X))→B(⊕n
i=1H) by applying φ to

each entry. Since φ has degree 0, so does φ(P), which maps ⊕n
j=1Hi to itself (i = 1,2). Define an

operator

T̃ = φ(P)diag(T, · · · ,T )φ(P) : φ(P)(⊕n
i=1H0)→ φ(P)(⊕n

i=1H1)

which is Fredholm and the index of which is independent of the choice of the representatives in

K-theory or K-homology. The index pairing is defined as

K0(A)×K0(A)→ Z : ([H,φ ,F ], [P]) 7→ Ind(T̃ ). (III.5)

Example III.2.5. The index pairing of [(L2(S1),M,
−i d

dθ√
1+(i d

dθ
)2

)]∈K1(C(S1)) and [eiθ ]∈K1(C(S1))

under (III.5) is −1 in K0(C)' Z.

In (III.1) the Dolbeault operator D is a first order differential operator D =
√

2(∂ +∂ ∗) acting

on smooth sections of Λ∗(T ∗X) on T ∗X (ExampleII.2.19). Let H be Hilbert space of L2-forms of

bi-degree (0,∗) on T ∗X graded by the odd and even degree forms. Then D is an essentially self

adjoint operator on H of degree 1. The C∗-algebra C0(T ∗X) acts on H by point-wise multiplication.

The Dolbeault element is

[(H,
D√

1+D2
)] ∈ K0

G(C0(T ∗X)) = KKG(C0(T ∗X),C).

Proof of Theorem III.2.1. (Kasparov [24]) Let A ∈Ψ0
G,p(X ;E,E) be an odd, self-adjoint operator.

The intersection product σA]D defines an operator on T ∗X . Let D1 = dξ + d∗
ξ

+ ε(ξ ) + ι(ξ ) be

7H = H0⊕H1,F =
(

0 T ∗

T 0

)
, and P2 = P ∈Mn(C0(X)).
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the family of the Bott-Dirac operators on each fibers of T ∗X . Intersect A with D1 and we get a

pseudo-differential operator A]D1 on T ∗X . The K-homology class defined by D1 represents the

multiplicative identity in the ring KKG(C0(X),C0(X)) because D1 having Fredholm index 1 in the

fiber. Then A]D1 represents the same element with A in KKG(C0(T X),C). The statement follows

from the following observations.

• The symbols of A]D1 and σA]D are of order 0.

• The symbol of A]D1 and σA]D are computed as follows by the intersection product. Let

ν : R→ [0,1] is a smooth nondecreasing function such that ν(t) = 0 when t is in some small

open set containing 0 and ν(t) = 1 for t in some small open set of 1.

σA]D1 = M1(σA⊗̂1)+N1(1⊗̂σD1)

where M2
1 = ν( ‖η‖2+1

‖ξ‖2+‖η‖2+‖ζ‖2+1) and N2
1 = 1−M2

1 .

σσA]D = M(σA⊗̂1)+N(1⊗̂σD)

where M2 = ν( ‖ξ‖2+1
‖ξ‖2+‖η‖2+‖ζ‖2+1) and N2 = 1−M2. Recall that σD = ε(−η + iζ )+ ι(−η +

iζ ).

• The two symbols represent the same element in KKG(C0(T X),C). In fact the two differ

by a rotation in (ξ ,η) and therefore they are homotopic and define the same element in

K∗(C0(X)).

The Dolbeault operator on T ∗X extends to the proper cocompact G-manifold ΣX which has

an almost complex structure. We just glue two Dolbeault operators on B(X) ⊂ T X along the

boundary (The normal directions of S(X) in B(X) need to switch signs on different pieces). The

new Dolbeault operator [D̄] is clearly G-invariant and defines an element in KKG(C0(ΣX),C). 8

8In Chapter 4 we simply denote [D̄] by [D].
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Obviously i : C0(T X)→C0(ΣX) induces the natural map

i∗ : KKG(C0(ΣX),C)→ KKG(C0(T X),C) : [D̄] 7→ [D]. (III.6)

Corollary III.2.6. Suppose we have the same conditions in the K-homological formula Theorem

III.2.1. Then

1. The elliptic operator [A] coincides with the intersection product in [V (σA)]⊗ [D̄] in

KKG(C0(X),C0(ΣX))×KKG(C0(ΣX),C)→ KKG(C0(X),C0(ΣX)).

2. The elliptic operator A relates to an Dirac operator in the following sense:

[A] = j∗[D̄V (σA)] (III.7)

where j∗ : KKG(C0(ΣX),C) → KKG(C0(X),C) is induced by the inclusion j : C0(X) →

C0(ΣX).

Proof. The first statement is a result of functorality of the intersection product

[A] = [σA]⊗C0(T X) [D] = [σA]⊗C0(T X) i∗[D̄] = i∗[σA]⊗C0(ΣX) [D̄] = [V (σA)]⊗C0(ΣX) [D̄].

To prove the second statement, we calculate

[V (σA)]⊗C0(ΣX) [D̄] = [(C0(ΣX ,V (σA)),φ1,0)]⊗C0(ΣX) [(L
2(ΣX ,Λ∗(ΣX)),φ2,F)] = [(H,η ,G)]

where H =C0(ΣX ,V (σA))⊗C0(ΣX) L2(ΣX ,Λ∗(ΣX)) and F = D̄√
1+D̄2 . By Definition E.0.43, G needs

to satisfy the following two conditions.

1. G is an F-connection;

2. G has the property η(a)[0⊗1,G]η(a)≥ 0 module K (H).

By the stabilization theorem E.0.21, there is a C0(ΣX)-valued projection P so that C0(ΣX ,V (σA)) =
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P(⊕C0(ΣX)). Therefore,

H = P(⊕C0(ΣX))⊗C0(ΣX) L2(ΣX ,Λ∗(ΣX)) = φ2(P)(⊕L2(ΣX ,Λ∗(ΣX))).

We claim that

G = φ2(P)(⊕F)φ2(P) (III.8)

First note that the statement is proved if the claim is true. In fact, one needs only to observe that

φ2(P)(⊕L2(ΣX ,Λ∗(ΣX))) = L2(ΣX ,Λ∗(ΣX)⊗V (σA)) and φ2(P)(⊕D̄)φ2(P) = D̄V (σA) on H. To

prove the claim (III.8), it is sufficient to show the following observations.

• (G2−1)η( f ) ∈K (H), f ∈C0(X);

• [G,η( f )] ∈K (H), f ∈C0(X);

• [T̃ξ ,F ⊕G] ∈ K (L2(ΣX ,Λ∗(ΣX))⊕H),∀ξ ∈ C0(ΣX ,V (σA)), where T̃ξ =

 0 T ∗
ξ

Tξ 0

 ∈
B(L2(ΣX ,Λ∗(ΣX))⊕H),Tξ ∈ B(L2(ΣX ,Λ∗(ΣX)),H) is defined by Tξ (η) = ξ ⊗̂η ∈ H.

(Definition E.0.40)

An important corollary to Theorem III.2.1 is the K-theoretic index formula. The right hand

side represents topological information from the operator and the manifold.

Theorem III.2.7. [22] Let X be a complete Riemannian manifold, on which a locally compact

group G acts properly and isometrically with compact quotient. Let A be a properly supported

G-invariant elliptic operator on X of order 0. Then

IndA = [c]⊗C∗(G,C0(X)) jG([A]) = [c]⊗C∗(G,C0(X)) jG([σA])⊗C∗(G,C0(T ∗X)) jG([D]) ∈ K∗(C∗(G)).

Where [c] is the projection in C∗(G,L2(X ,E)) defined by [c] = (c ·g(c))
1
2 and [D] is the Dolbeault

element.
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III.3 Link to the L2-index

In the K-theoretic index theorem, there is no general algorithm for K0(C∗(G)). The “trace” of

K0(C∗(G)), which is a real number, is easier to compute. We prove in this section that this numer-

ical index coincides with the L2-index.

Recall that the class under the isomorphism KK(C,C∗(G))∼= K0(C∗(G)) of element [(E ,A)] ∈

KK(C,C∗(G)) is the K-theoretic index of A. This index is represented by a formal difference of

some C∗(G)-valued matrices due to the following remark.

Remark III.3.1. First of all, by adding a degenerate cycle [(HC∗(G),1)] ∈ KK(C,C∗(G)) to [(E ,A)]

and by the Kasparov stabilization theorem E ⊕HC∗(G)
∼= HC∗(G), we may replace E by HC∗(G). By

the axioms of KK-cycle, A is an odd self adjoint operator

 0 A∗0

A0 0

 on graded Hilbert module

HC∗(G), then A2−1 ∈K (E ) implies that

A0A∗0− I ∈K (HC∗(G)) and A∗0A0− I ∈K (HC∗(G))

and so A0 is a generalized Fredholm operator. Now the generalized Atkinson theorem ([34] sec-

tion 17.1) claims that the set of the generalized Fredholm operators in L (HC∗(G)) coincide with

the following set {F ∈L (HC∗(G))|∃K ∈K (HC∗(G)),s.t.Ker(F +K) and Ker(F +K)∗ are finitely

generated, im(F + K)is closed.} Hence up to a compact perturbation we may assume that A0 has

closed range and that Ker(A0),Ker(A∗0) are finitely generated C∗(G)-submodule. Now we have the

boundary map (This is the Fredholm picture of KK-theory): KK(C,C∗(G))→ K0(K (HC∗(G)))∼=

K0(C∗(G)) :

(E ,A) 7→ [

 A0A∗0 A0
√

1−A∗0A0√
1−A∗0A0A∗0 1−A∗0A0

]− [

1 0

0 0

]. (III.9)

If the elliptic operator A0 ∈L (HC∗(G)) has a closed range, then there exists polar decomposition

A0 = U
√

A∗0A0 with KerA0 = KerU , where U is the partial isometry from imA∗0 to imA0 ([34]

Theorem 15.3.8). Also, 1−A∗0A0 ∈K (E ) implies that U−A0 ∈K (E ) and so we may replace A0

by U in the boundary map (III.9). Since 1−U∗U = PkerA0 ,1−UU∗ = PkerA∗0 , then the image of the
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boundary map is reduced to

[1−U∗U ]− [1−UU∗] = [PkerA0 ]− [PkerA∗0 ] ∈ K0(C∗(G)),

which is the K-theoretic index.

Recall that topologically, the K-theoretic index of [A] ∈ K0
G(C0(X)), according to [22] is de-

fined to be IndtA
.= [p]⊗C∗(G,C0(X)) jG([A]) ∈ K0(C∗(G)), which is the image of [A] under the de-

scent map jG : KKG(C,C0(X))→ KK(C∗(G),C0(G,C0(X))) composed with the intersection prod-

uct with a projection [p] ∈ KK(C,C∗(G,C0(X))), [p]⊗C∗(G,C0(X)) : KK(C∗(G,C0(X)),C∗(G))→

KK(C,C∗(G)). Here [p] .=(c ·g(c))
1
2 is the projection represented as an element in K0(C∗(G,C0(X))).

Analytically, the K-theoretic index of A is constructed explicitly in the first section of the chapter.

As a generalization of Atiyah-Singer index theorem, Kasparov proved that Inda and Indt coincide

[22], [24]. We will simply use Ind to denote the K-theoretic index. In summary, the K-theoretic

index under the homomorphism Ind : K0
G(C0(X))→ KK(C,C∗(G))' K0(K (E )) is calculated by

[(L2(X ,E),A)] 7→ [(E , Ā)] 7→ [

 Ā0Ā∗0 Ā0

√
1− Ā∗0Ā0√

1− Ā∗0Ā0Ā∗0 1− Ā∗0Ā0

]− [

1 0

0 0

], (III.10)

where Ā = Av(cA). Note that the second arrow is the Fredholm picture of KK(C,C∗(G)) via

boundary map.

Given the K-theoretic index IndA∈K0(K (E )), we will define the a homomorphism K0(K (E ))→

R. To do this we find a dense subalgebra S (E ) of K (E ) on which a “trace” can be defined and

which is closed under holomorphic functional calculus. Since K (E ) is generated by G-invariant

operators with continuous and properly supported kernel, we define S (E ) to be a subset of the

bounded G-invariant operators with smooth kernels. Let S : C∞
c (X ,E)→C∞

c (X ,E) be a G-invariant

smoothing operators. Extend S to an operator S̄ ∈B(E ) and then S̄ ∈S (E ). Define the trace on

S̄ ∈S (E ) by trG(S) and still denote by trG The trace is well defined for all the elements of S (E ).

In fact, S (E ) ⊂ S (E ⊗C∗(G) R(G)) ⊂ R(L2(X ,E)) and S (E ⊗C∗(G) R(G)) is a subset of all

G-trace class operators. Recall that trG is defined on a dense subset of the G-invariant operators on
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L2(X ,E),which can be represented as elements of

R(L2(G))⊗ (⊕i, jB(L2(Ui,E),L2(U j,E)),

and an element of the set can be expressed in terms of a R(L2(G))-valued matrix.

Proposition III.3.2. • We have the isomorphism K0(K (E ))' K0(S (E )).

• The G-trace trG on S defines a group homomorphism

trG∗ : K0(K (E ))→ R.

Proof. Proposition II.4.6 part 4 suggests that S (E ) is an ideal of B(E ). Let S∈S (E ) and for any

holomorphic function f defined on the spectrum of S with f (0) = 0, there is another holomorphic

function g so that f (z) = zg(z). We require f (0) = 0 because K (E ) does not contain identity.

Since the spectrum of S is bounded and g is continuous which implies that g is a bounded function,

i.e. g(S) ∈B(E ), f (S) = Sg(S), then f (S) ∈S (E ). Hence S (E ) is a dense subalgebra of K (E )

closed under holomorphic functional calculus. Therefore K∗(K (E )) = K∗(S (E )).

An element of K0(S (E )) is represented by projection matrix with entry in S (E ), on which

there is a natural trace consists of the combination of the matrix trace with τ on S (E ). Note that

if the element was represented by difference of two classes of matrices with entries in S (E )+,

the algebra by adding a unit, then we define the trace of this extra unit to be 0. Hence we obtain a

homomorphism trG∗ : K∗(S (E ))→ R by the properties of the trace τ .

Composing with the K-theoretic index, A has a numerical index in the image of the map

K0
G(C0(X)) K-theoretic index−−−−−−−−−→ K0(S )

trG∗−−→ R

and this number depends only on the symbol class and the manifold according to Kasparov’s K-

theoretic index formula. We show that this number is in fact the L2-index.

Proposition III.3.3. Let P ∈Ψ0
G,p(X ;E,E) be elliptic, then its L2-index coincides with the trace of

its K-theoretic index, i.e. indP = trG∗(Ind[P]).
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Proof. Let P = A and then P = Ā = Av(cA) in III.10. Then

IndP = [

 P0P∗0 P0
√

1−P∗0 P0√
1−P∗0 P0P∗0 1−P∗0 P0

]− [

1 0

0 0

].

We shall alter the matrix representatives without changing the equivalent class, so that we may

apply trG to the 2×2-matrices.

Given P0 ∈Ψ0
G,p(X ;E0,E1) and using Proposition II.3.12, there is a Q ∈Ψ0

G,p so that 1−QP =

S0,1−PQ = S1. According to the boundary map construction in [13] section 2, we lift

0 −Q

P 0


which is invertible in M2(B(E )/S (E )) to an invertible element u =

S0 −(1+S0)Q

P S1

 in

M2(B(E )) and then

IndP .= [u

1 0

0 0

u−1]− [

0 0

0 1

] = [

 S2
0 S0(1+S0)Q

P0S1 1−S2
1

]− [

0 0

0 1

].

Therefore, trG∗(IndP) = trG(S2
0) + trG(1− S2

1)− τ(1) = trG(S2
0)− trG(S2

1). Choose another Q′ .=

2Q−QPQ, then 1−Q′P0 = S2
0,1−PQ′ = S2

1 with S2
0,S

2
1 being smoothing operators. Then using

Proposition , we conclude that trG(S2
0)− trG(S2

1) = indP. Hence trG∗(IndP) = indP.

Remark III.3.4. Let X = G/H be a homogeneous space of a unimodular Lie group G (where H is a

compact subgroup). In [12] section 3, it was shown directly that the L2-index depends only on the

symbol class [σP] of P in KG
0 (C0(T X)). Plus, there exists a homomorphism i : KG

0 (C0(T X))→ R

so that i[σP] = indP.

Note that the Poincaré duality between K-homology and K-theory implies that KG
0 (C0(T X))'

K0
G(C0(X)). So L2-index essentially gives a homomorphism:

ind : K0
G(C0(X))→ R. (III.11)

But the L2-index is not well-defined for all the representing cycles of the K-homology.

Remark III.3.5. In this section we work on the cycles in K0
G(C0(X)) as elliptic pseudo-differential
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operators on X . Let Y be another properly cocompact manifold and E be a G-bundle where

L2(X ,E) admits C0(X) representation. And if we have [(L2(Y,E),Q)] ∈ K0
G(C0(X)) with Q ∈

Ψ0
G,p(Y ;E,E), we may carry out similar statements of this section easily.

To compute indA, the L2-index of A, we use the fact that indA factors through the K-theoretic

index homomorphism together with [A] = j∗[D̄V (σA)] in (III.7). As indicated by the following

commuting diagram,

KKG(C0(X),C)
µ // KK(C,C∗(G)) τ // R

KKG(C0(ΣX),C)

j∗
OO

µ

66lllllllllllll

(III.12)

the L2-index of A can be computed by the L2-index of a Dirac type operator constructed out of the

symbol of A. The statement is summarized in the following proposition.

Proposition III.3.6. Let A be a properly supported G-invariant elliptic operator of order 0, D be

the Dolbealt operator on ΣX and V (σA) is the G-vector bundle over ΣX built using σA. Then

indA = indDV (σA) (III.13)
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CHAPTER IV

L2-INDEX OF DIRAC TYPE OPERATORS

To find a cohomological formula for the L2-index of A, it is sufficient to figure out a formula for

the Dirac type operator according to Proposition III.3.6. Let M be an even-dimensional (dimM =

n) properly cocompact G-manifold with a G-Clifford bundle V , which is a Cl(T M)-module via

Clifford multiplication. Let D be a Dirac type operator acting on sections in V . We compute indD

using the heat kernel method in section IV.1 IV.2 and apply it to the case when

M = ΣX ,D = DV (σA)

in section IV.3. In section IV.4 the L2-index formula for free cocompact action [4] and for homoge-

neous space for Lie group [12] are obtained as corollaries. In the following we assume V = V0⊕V1

be Z/2 graded and D be odd and essentially self-adjoint, i.e. D =

 0 D∗0

D0 0

.

IV.1 Heat kernel method

The Schwartz kernel kt(x,y) of the solution operator e−tD2
of the heat equation ut +D2u = 0 on M is

the heat kernel. The L2-index of D is expressed using kt(x,x) by the Mckean-Singer formula (II.31)

and is independence of t. The heat kernel method is to calculate indD by finding lim
t→0+

kt(x,x). The

method was invented by Patodi for Dirac operators on compact manifold and further studied by

Atiyah, Bott, Gilkey and Getzler, etc. Now the heat kernel method is a commonly-used analytical

method in proving various versions of index formula. The outline of the method in the context

of proper cocompact group action is explained in this section, and the proof of some technical

theorems (Theorem IV.1.8, Lemma IV.1.11) are done in the next section.

We start by recalling the Mckean-Singer formula in the line (II.31):

Proposition IV.1.1. The index of the odd self adjoint G-invariant Dirac operator D : L2(M,V )→

L2(M,V ) is calculated by

indD = strG(e−tD2
), (IV.1)
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where strG(

a b

c d

) = trG(a)− trG(d) and D2 =

D∗0 D0 0

0 D0D∗0

 .

The Dirac type operators D are constructed as follows. On T M there is a G-invariant Levi-

Civita connection ∇. In fact, because of the G-invariant partition of unity on M, it is sufficient

to find a G-invariant metric when M = G×H S. But such a metric can be defined using an H-

invariant metric on S. The Levi-Civita connection ∇ extends to Cl(T M). Let the Z2 graded vector

bundle V be a Clifford module over Cl(T M) = Cl(T M)⊗C. Let ∇V be the G-invariant Clifford

connection on V . A Dirac operator D : C∞(M,V )→C∞(M,V ) is defined under the composition of

the connection ∇V and the Clifford multiplication c : C∞(M,T ∗M×V )→C∞(M,V ) by

D = ∑
i

c(ei)∇V
ei
,

where eis are orthonormal basis of the bundle T M and eis are the dual basis of T ∗M.

Let RV = ∇V 2 be the curvature tensor of connection ∇V , then

D2 = ∑
i j

c(ei)∇V
ei
c(e j)∇V

e j
= ∑

i j
c(ei)[∇V

ei
,c(e j)∇V

e j
]

= ∑
i j

c(ei)[∇V
ei
,c(e j)]∇V

e j
+∑

i j
c(ei)c(e j)[∇V

ei
,∇V

e j
]

= ∑
i j

c(ei)c(∇eie j)∇V
e j
−

n

∑
i=1

(∇V
ei
)2 + ∑

i< j
c(ei)c(e j)[∇V

ei
,∇V

e j
]

=−∑
i
(∇V

ei
)2 +∑

i
∇

V
∇ei ei

+ ∑
i< j

c(ei)c(e j)RV (ei,e j)
.= ∆

V + ∑
i< j

c(ei)c(e j)RV (ei,e j)

is a generalized Laplacian. RV ∈ Λ2(M,EndV ) can be further decomposed, which is explained as

follows.

Let S be the spinor (irreducible) representation of Cl(TxM). It is a standard fact that

EndS = S⊗S∗ = Cl(TxM).

The fiber of the Clifford module V at x has the decomposition Vx = S⊗W. Therefore on the

endomorphism level we have

EndVx = Cl(TxM)⊗EndW. (IV.2)
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Here W is the set of vectors in Vx that commute with the action of Cl(TxM) and EndW is the set of

transformations of Vx that commute with Cl(TxM). Denote EndCl(TxM)(Vx)
.= EndW.

Proposition IV.1.2 ([8] Proposition 3.43). The curvature RV of a Clifford connection ∇V on V

decomposes under the isomorphism (IV.2) as

RV = RS +FV/S

where RS(ei,e j) = 1
4 ∑kl(R(ei,e j)ek,el)ckcl is the action of the Riemannian curvature R = ∇2 of M

on the bundle V and FV/S ∈ Λ2(M,EndClV ) is called the twisting curvature of V.

Proposition IV.1.3 (Lichnerowicz Formula, [8] Proposition 3.52). Using the previous notation, the

generalized Laplacian is calculated by:

D2 =−
n

∑
i=1

(∇V
ei
)2 +∑

i
∇

V
∇ei ei

+
1
4

rM + ∑
i< j

FV/S(ei,e j)c(ei)c(e j),

where ei is a local orthonormal frame of T M ' T ∗M and FV/S(ei,e j) ∈ EndClV are the coefficient

of the twisting curvature of the Clifford connection ∇V .

Having D2 we can consider the heat equation

∂

∂ t
u(t,x)+D2u(t,x) = 0,u(x,0) = f (x)

and then (etD2
f )(x) is the solution. Denote by kt(x,y) the Schwartz kernel of e−tD2

and kt is a

smooth map M×M→ Hom(V,V ) and satisfies e−tD2
f (x) =

∫
M

kt(x,y) f (y)dy. We call kt(x,y) the

heat kernel.

Remark IV.1.4. Fix y then kt(x,y) is the fundamental solution of ut +D2
x u = 0 with initial condition

δ (x− y). We study heat kernel to compute the L2-index of D .

The following lemma is some property of the heat kernel to be used later.

Lemma IV.1.5. 1. For f (x) ∈ L2(M), e−tD2
f is a smooth section;

2. The kernel kt(x,y) of e−tD2
tends to δ function weakly, i.e. e−tD2

s(x)=
∫

M
kt(x,x0)s(x0)dx0→

s(x) uniformly on compact set in x as t→ 0.

64



Proof. We have proved that the Schwartz kernel of ce−tD2
is smooth in Lemma II.4.15. So

(e−tD2
f )(x) =

∫
G×M

c(g−1x)kt(x,y) f (y)dydg .=
∫

G
hg(x)dg,

where hg(x) =
∫

M
c(g−1x)kt(x,y) f (y)dy is smooth in x ∈ M for fixed g ∈ G. Using the fact that

e−tD2
is a bounded operator and that c(x) is smooth and compactly supported, we conclude that

hg(x) depends smoothly on g∈G . Let K be any compact neighborhood of x, then by the properness

of the group action, the set

Z .= {g ∈ G|c(g−1x) 6= 0,x ∈ K,g ∈ G}

is compact and then (e−tD2
f )(x) =

∫
Z

hg(x)dg is smooth for x ∈ K. Therefore the first statemante

is proved.

To prove the second one, let u be a smooth function with norm 1. Then < e−tD2
u,u >=∫

λ∈sp(D)
e−tλ 2

dPu,u (sp means spectrum). Since the set of integrals for 0 < t ≤ 1 is bounded by

1, then by the dominant convergent theorem,

< e−tD2
u,u >→

∫
λ∈sp(D)

1dPu,u =< u,u > as t→ 0.

Example IV.1.6. Given the heat equation

ut −
n

∑
i=1

∂ 2

∂ 2xi
= 0

on Rn, the heat kernel is

pt(x,y) =
1

(4πt)n/2 e−d(x,y)2/4t (IV.3)

from the theory of partial differential equation.

The heat kernel for curved manifold M is more complicated. The formula (IV.3) suggests a first

approximation for the heat kernel on M. The small time behavior of heat kernel kt(x,y) for x near

y depends on the local geometry of x near y. This is made precise by the asymptotic expansion for
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kt(x,y).

Definition IV.1.7. Let B be a Banach space with norm ‖·‖ and f : R+→ B : t 7→ f (t) be a function.

A formal series
∞

∑
k=0

ak(t) with ak(t) ∈ E is called an asymptotic expansion for f , denoted by f (t)∼
∞

∑
i=0

ak(t), if for any m > 0, there are Mm and εm > 0. So that for all l ≥Mm, t ∈ (0,εm], we have

‖ f (t)−
l

∑
k=0

ak(t)‖ ≤Ctm.

When M is compact and when B = C0(M,End(V,V )) has C0-norm ‖ f‖ = supx∈M | f (x)|, it is

the standard fact that the heat kernel kt(x,x) of e−tD2
has an asymptotic expansion

kt(x,x)∼
1

(4πt)n/2

∞

∑
j=0

t ja j(x)

where a j(x) ∈ Hom(Vx,Xx),x ∈M are smooth sections. (Refer to [29] Theorem 7.15). In the case

of non-compact M having group action, this theorem can be modified as follows. The theorem is

proved in the next section.

Theorem IV.1.8. Let M be a proper cocompact Riemannian manifold and D be a Dirac type

operator acting on the sections of Clifford bundle V , and kt be the heat kernel of e−tD2
. There is an

asymptotic expansion for c(x)kt(x,x) under the C0-norm ‖ f‖= supx∈M | f (x)| :1

c(x)kt(x,x)∼ c(x)
1

(4πt)n/2

∞

∑
j=0

t ja j(x) (IV.4)

where a j ∈ C∞(M,EndV ) and a j(x) depends only on the the geometry at x (involving metrics,

connection coefficients and their derivatives). In particular a0(x) = 1.

Remark IV.1.9. From (IV.4) lim
t→0+

c(x)strkt(x,x) = lim
t→0+

c(x)
1

(4πt)n/2

l

∑
j=0

t j stra j(x) for sufficient

large l. Then to calculate the left hand side it is sufficient to investigate a js on the right hand side.

In the Remark (IV.1.9) strai,ai(x) ∈ EndVx, needs to be figured out. If a ∈ EndVx then a has

decomposition

a = b⊗ c,b ∈ Cl(TxM),c ∈ EndW under (IV.2).

1The asymptotic expansion works for any Cl-norm for l ≥ 0. But we only need l = 0.
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The super-trace stra is then calculated by

str(b⊗ c) = τ(b) · strV/S(c) (IV.5)

where strV/S in (IV.5) is the super-trace of C-linear endomorphism of W under the identification

EndCl(T Mx)(Vx) = EndC(W ) and τs is the the super-trace on EndS = S⊗S∗ = Cl(TxM). Note that

by definition of the super-trace, τs(t) = τ(vt), where v is the grading operator of Cl(TxM) 2.

The super-trace τs on Cl(TxM) is explicitly calculated by the following lemma:

Lemma IV.1.10 ([8] Proposition 3.21). Let dimM = n = 2m and let c = ∑ci1i2···ik ei1ei2 · · ·eik

be an element in Cl(R2m) ' Cl(TxM) = End(S), where eis are orthonormal frames of TxM and

ci1i2···ik ,1≤ i1 ≤ i2 ≤ ·· · ≤ ik ≤ n be the coefficient of the base ei1ei2 · · ·eik in Cl(TxM). Then

τs(c) = (−2i)
n
2 c12···n.

Proof. Since the grading operator of Cl(TxM) is ime1 · · ·e2m, then by definition τs(c)= τ(ime1 · · ·e2mc).

It is sufficient to check when c is in the basis of Cl(TxM):

• First of all we have τ(e1 · · ·e2m) = (−2i)m. It follows from the fact that (e1 · · ·e2m)2 = (−1)m

and that the action of 1 on S has trace equals to 2m, the dimension of S.

• If a = ei1 · · ·eik does not contain e j, then τs(a) = 0. Because a is written as graded commu-

tator a = 1
2 [e ja,e j], τs(a) = τs(1

2 [e ja,e j]) = 0.

We say that A is a filtered algebra if A =∪∞
0 Ai and Ai⊂Ai+1,Ai ·A j ⊂Ai+ j. The Clifford algebra

is a filtered algebra and we have

Cl(TxM) = Cl(Rn) = ∪n
i=0Cli

2This is a general definition of the supertrace. For M2(A) with standard even grading,
(

1 0
0 −1

)
is the grading

operator and then str(
(

a b
c d

)
) = tra− trd
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where Cli is the linear combination of e j1 · · ·e jk ,k ≤ i. In proving Theorem IV.1.8 in the next

section, the following lemma is obtained (Corollary IV.2.4)

Lemma IV.1.11. Let ai(x) be the ith term in the asymptotic expansion. Then

ai(x) ∈ Cl2i⊗EndCl(T Mx)(Sx). (IV.6)

Remark IV.1.12. An easy corollary of Lemma IV.1.10 and the line (IV.6) is that strai(x) = 0 for

i≤ n
2 . Therefore

indD =
1

(4πt)
n
2

∑
i≥ n

2

t i
∫

M
c(x)str(ai(x))dx. (IV.7)

Furthermore, since the index is independent of t and n is even, we have the following theorem.

Theorem IV.1.13. The index of the graded Dirac operator D is equal to

indD =
1

(4π)
n
2

∫
M

c(x)str(an/2(x))dx. (IV.8)

Example IV.1.14. ([29] Proposition 7.19) For 2-dim manifold, consider the de Rham operator D =

d + d∗ on differential forms, (IV.8) reduces to the Gauss-Bonnet theorem ind(D) =
1

4π

∫
M

kdx

where k is twice the Gaussian curvature.

The indD in (IV.8) can be calculated analytically in terms of differential forms on M by the

following is the main theorem of this section.

Theorem IV.1.15. Let R be the curvature 2-form with respect to the Levi-Civita connection on

the manifold (on T M). Then str(a n
2
(x)) is the n form part of (−2i)n/2det

1
2 ( R/2

sinhR/2) trV/S(e−F). In

particular,

indD = (2πi)−
n
2

∫
M

c(x)Â(M) · ch(V/S). (IV.9)

where

Â(M) = det
1
2 (

R/2
sinhR/2

)

is the Â-class of T M and

ch(V/S) = trV/S(e−FV/S
)

is the relative Chern character, i.e. Chern character of the twisted curvature FV/S of bundle S.
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Remark IV.1.16. The characteristic class is using Chern-Weil’s definition and to be compatible

with the topological definition, we sometimes need to replace the curvature R by
R

2πi
. In the proof

of the theorem, we use R to define Â. But starting from the next section, we use
R

2πi
to define Â.

Then the L2-index formula is

indD =
∫

M
c(x)Â(M) · ch(V/S).

Because of Theorem IV.1.13, the proof of Theorem IV.1.15 is to calculate str(an/2(x))∈End(Vx).

The idea of doing that is to localize the operator D and the heat kernel kt(x,y) at a point x. Because

the local calculation is irrelevant to M being compact or not, we use the classical calculation of

stra n
2

on a compact manifold without modification. In the rest of the section, I summarize the

idea of the calculation without further verification. For details, please refer to [8] Chapter 4.

Getzler symbol

The first step is to “change” the operators on M to T M, without changing the initial condition

of the heat kernel. Getzler [14] gives a systematic way of investigating the top order part of an

operator by introducing a generalized version of symbol. The formulation needs the (Getzler)

symbol for a n
2
(x) ∈ End(Vx) and for differential operators acting on L2(M,V ), such as D .

Definition IV.1.17. Let A = ∪∞
0 Ai be a filtered algebra. Denote by G(A) the new graded algebra

G(A) =⊕∞
0 G(A)i =⊕∞

0 Ai/Ai−1,

then the projection σ : ⊕∞
0 Ai → G(A) is called the symbol map. Its component of degree i is the

projection restricted to Ai,

σi : Ai→ G(A).

Remark IV.1.18. 1. If a ∈ Am−1 then σm(a) = 0;

2. If a ∈ Am and a′ ∈ Am′ , then σm(a)σm′(a′) = σm+m′(aa′).

Example IV.1.19. • Let Ai be the set of degree i pseudo-differential operators, then G(A) is the

set of (principal) symbols.
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• Let T be a vector space and A = Cl(T ) be the complex Clifford algebra of T . Then Ai = Cli,

the linear span of elements of form v1 · · ·vk,v j ∈V,k ≤ i, and G(A) = Λ∗T and

σ : Cl(T )→ Λ
∗T : a 7→ c(a) ·1,

where 1 ∈ Λ∗T , Λ∗T is the representation space of Cl(T ).

• The filtration used in the calculation of the L2-index is the Clifford filtration. End(Vx), under

the decomposition End(Vx) = Cl(TxM)⊗End(W ), is a filtered algebra using the standard

filtration on Cl(TxM).

σ : End(Vx) = Cl(TxM)⊗End(W )→ Λ
∗TxM⊗End(W ) : a⊗b 7→ c(a) ·1⊗b. (IV.10)

Recall from Lemma IV.1.11, the degree of ai is 2i under Clifford filtration on small neighbor-

hood of x0 in TxM. i.e. ai(x) ∈Cl2i(Tx0M)⊗EndCl(Tx0 M)(Vx0). Since the supertrace of an element c

of the Clifford algebra Cl(R2m) is equal to the top degree part of the of c: str(c) = (−2i)mc12···2m,

we have the following relationship between a n
2
(x) and its symbol.

Proposition IV.1.20. The asymptotic coefficient a n
2
(x) and its symbol are related as follows:

str(a n
2
(x)) = (−2i)n/2 strV/S(σn(a n

2
(x))). (IV.11)

This proposition together with Lemma IV.1.11 and Theorem IV.1.13,

indD =
1

(2πi)
n
2

∫
M

c(x)strV/S(σn(a n
2
(x))) =

(4π)
n
2

(2πi)
n
2

∫
M

c(x)strV/S(σ(kt(x,x))|t=1, (IV.12)

where kt(x,x)∼ 1
(4πt)

n
2

∑
∞
i=0 t iai(x) and σ(kt(x,x)) = (4π)−

n
2 ∑

n
2
i=0 t−

n
2 +iσ2i(ai(x))).

The geometric meaning of the symbol σ : End(Vx0)→ Λ∗Tx0M⊗EndCl(Vx0) in (IV.10) is to

localize ai(x) and the Schwartz kernel kt(x,x0) to Tx0M.

Restrict the Dirac operator D on a coordinate neighborhood O of x0 in M (then V |O is trivial).

Let U be the neighborhood of x0 in Tx0M homeomorphic to O. The heat kernel kt(x,x0),x ∈ O
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localized to O can be transformed to a function on R+×U taking values in EndVx0 :

σ(kt(expx,x0)) = k(t,x) = τ(x0,x)kt(x,x0),x ∈ O,x ∈U, t ∈ R+, 3

where τ(x0,x) : Vx→Vx0 is the identification of the fiber Vx and Vx0 . We are interested in k(t,0) =

kt(x0,x0). Note that k(t,x)[k] =


t

k−n
2 σk(a k

2
(x0))+o(t

k−n
2 ) k is even

0 k is odd
by Lemma IV.1.11

Also, consider D acting on a neighborhood of the tangent space C∞(U,EndVx0) instead of

C∞(M,EndV ). Then ∂

∂ t + D2 induces a new operator ∂

∂ t + L acting on C∞(R+ ×U,Λ∗T M ⊗

EndCl(V )) after localization.

Proposition IV.1.21 ([8] Lemma 4.16). L is represented by the following fomula.

L =−
n

∑
i=1

(∇V
ei
)2 +

n

∑
i=1

∇
V
∇ei ei

+
1
4

rM + ∑
i< j

FV/S(ei,e j)c(dxi)c(dx j),

where eis are the local orthonormal frame obtained by parallel transport from the orthonormal

basis of Tx0M and where

∇
V
ei

=
∂

∂xi
+

1
4 ∑

j;k<l
Rkli jxjc(dxk)c(dxl)+ ∑

k<l
fikl(x)c(dxk)c(dxl)+gi(x).

In the last line, Rkli j = (R(ei,e j)el,ek)x0 is the Riemannian curvature at x0 and fikl(x) = O(|x|2),

gi(x) = O(|x|) are error terms.

As is discussed in [8], k(t,x) is the solution to the equation

(
∂

∂ t
+L)u(t,x) = 0, (IV.13)

Rescaling process

To calculate σ(kt(x,x)) in (IV.12), a rescaling process on the space of functions C∞(R+ ×

U,Λ∗T M⊗EndCl(V )) is used. For all a ∈ C∞(R+×U,Λ∗T M⊗EndCl(V )), define the rescaling

(0 < λ ≤ 1) as

δλ a(t,x) =
n

∑
k=0

λ
− k

2 a(λ t,λ
1
2 x)[k]

3We identify EndVx0 with Λ∗T ∗x0
M⊗EndW.
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where [k] means the filtered degree in Λ∗T M.

Define the rescaled heat kernel by

r(λ , t,x) = λ
n
2 (δλ k)(t,x)

and the motivation is the fact that

lim
λ→0

r(λ , t = 1,x = 0)= lim
λ→0

n

∑
i=0

λ
n−i

2 k(λ t,x)[i]|(t,x)=(1,0) = ∑
0≤i≤n,i is even

σi(a i
2
(x0))= (4π)

n
2 σ(kt(x0,x0))|t=1.

(IV.14)

Definition IV.1.22. A differential operator A acting on C∞(R×U,Λ∗T M⊗EndCl(V )) has Getzler

order m if the following limit exists

lim
λ→0

λ
m
2 δλ Aδ

−1
λ

.

Example IV.1.23. 1. A polynomial p(x) has order−deg p; A polynomial p(t) has order−2deg p;

2. ∂

∂xi
has order 1; ∂

∂ t has order 2 (δλ ∂tδ
−1
λ

= λ−1∂t ; δλ ∂xiδ
−1
λ

= λ−
1
2 ∂xi);

3. Exterior multiplication by a convector α has order 1 and interior −1

δλ ext(α)δ−1
λ

= λ−
1
2 ext(α); δλ int(α)δ−1

λ
= λ

1
2 int(α).

Remark IV.1.24. Using (IV.13) and the Example IV.1.23-2, it is trivial to check that (∂t +λδλ Lδ
−1
λ

)r(λ , t,x)=

0.

Using the asymptotic expansion of kt(x,x0) and parallel transport, k(t,x) has an asymptotic

expansion and then the rescaled heat kernel

r(λ , t,x) = λ
n
2 (δλ k)(t,x)

has an asymptotic expansion in λ . It is proved in [8] Proposition 4.17-4.20 that limλ→0 r(λ , t,x)

exists and is the solution to the equation

∂t +σ2(D2) .= ∂t + lim
λ→0

λδλ Lδ
−1
λ

= 0.4 (IV.15)

4σ2(D2) is called the Getzler symbol of D2.
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Hence by (IV.14) the heat kernel of the heat equation (IV.15) evaluated at t = 1,x = 0 is exactly

σ0(a0(x))+ · · ·+σn(a n
2
(x)) = (4π)

n
2 σ(kt(x,x))|t=1.

Harmonic Oscillator

The limiting operator exists and is of the form of some harmonic oscillator, expressed by the

following proposition.

Proposition IV.1.25. limλ→0 δλ Lδ
−1
λ

exists, i.e. L has Getzler order 2 and σ2(D2) .= limλ→0 δλ Lδ
−1
λ

,

the Getzler symbol of D2, relative to an orthonormal basis of Tx0M is

−∑
i
(

∂

∂xi −
1
4 ∑

j
Ri jx j)2 +F (IV.16)

where Ri j is the Riemann curvature of the manifold at p(skew symmetric matrix of two forms) and

F is the twisting 2-form at p (2 forms with values in EndCl(V ), then entries of R commutes with

that of F)

The heat kernel of (IV.16) can be solved explicitly.

• It is sufficient to show solve the equation when F = 0.5

• The curvature matrix R is skew symmetric and we may assume it is a diagonal of 2×2 matrix 0 θ

−θ 0

 . Then (IV.16) reduces to ∂

∂ t − ( ∂

∂x −
1
4 θy)2− ( ∂

∂y + 1
4 θx)2 = 0

• We look for a solution of kernel invariant under the rotation of R2 about (0,0). The it is

sufficient to solve
∂w
∂ t
− ∂ 2w

∂x2 −
1
16

θ
2x2w = 0 (IV.17)

whose solution is given by the Mehler’s formula

1
(4πt)1/2 (

itθ/2
sinh itθ/2

)
1
2 e−

1
8 iθx2 coth(itθ/2). (IV.18)

5The solution of the non-linear equation has an extra multiple of e−tF to the solution of the linear one.
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Let R1 =

 0 θ

−θ 0

, R2 =

iθ 0

0 −iθ

 and x = (x,y)T . Since det
R1

sinhR1
= det

R2

sinhR2
=

(
iθ

sinh iθ
)2, then the heat kernel of

∂w
∂ t
− ∂ 2w

∂x2 −
1
16

θ
2x2w+

∂w
∂ t
− ∂ 2w

∂y2 −
1

16
θ

2y2w = 0 evaluated

at t = 1,x = 0 is
1

(4π)
n
2

det
1
2 (

R1/2
sinhR1/2

). Then Theorem IV.1.15 is easily verified.

IV.2 Proofs of the assertions

In this section we study the heat kernel kt(x,y) of e−tD2
. We construct an “approximate heat kernel”

of kt(x,y) and obtain Theorem IV.1.8 and Lemma IV.1.11 as corollaries. The proof is a modification

of the case of operators on “compact” manifold, which can be found in [29] Theorem 7.15 or in [8]

Chapter 2.

Since Kt(x,y) satisfies the heat equation:

∂

∂ t
kt(x,y)+D2kt(x,y) = 0,k0(x,y) = δy(x) (IV.19)

where D operates on x-coordinate only, we fix y and denote it by x0 and solve this equation locally

on a coordinate neighborhood x ∈ Ox0 of x0. we approximate the heat kernel kt(x,x0),x ∈ Ox0

locally by looking for a formal solution

pt(x,x0)
∞

∑
i=0

t i
αi(x) (IV.20)

to the equation (IV.19), where

pt(x,x0) =
1

(4πt)
n
2

e−
r2
4t (r = |x|= d(x,x0))

is the heat kernel to the standard Dirac operator on Euclidean space (IV.3). Denote by st(x,x0) =

∑
∞
i=0 t iαi(x) in (IV.20) and the heat kernel is written as

kt(x,x0) = pt(x,x0)st(x,x0). (IV.21)

D2, given by the Lichnerowicz Formula (Proposition IV.1.3) on Ox0 , has the Lemma IV.2.1
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when operating on (IV.21).

Lemma IV.2.1 ([29] equation 7.16). Let r = |x| and g = det(gi j) where (gi j) is the Riemannian

metric on M. Then

[
∂

∂ t
+D2](ptst) = pt [

∂

∂ t
+D2 +

r
4gt

∂g
∂ r

+
1
t

∇r ∂

∂ r
]st . (IV.22)

To find the formal solution (IV.20), set the right hand side of (IV.22) to be 0 and then the

vanishing of the coefficients for t is enables us to find αi inductively via

∇ ∂

∂ r
(rig

1
4 α j(x)) =


0 i = 0

−ri−1g
1
4 D2αi−1(x) i > 0

6 (IV.23)

• (Solve α0(x)) It is trivial to see that pt(x,x0) = 1
(4πt)

n
2

e−
r2
4t → δx0(x) uniformly as t → 0+.

From Lemma IV.1.5, kt(x,x0)→ δx0(x) uniformly as t → 0+ for all x ∈ K, where K ⊂ X

is any compact subset. Therefore α0(x0) = 1 is the necessary assumption. The first line in

(IV.23) indicates that g
1
4 α0(x) = g(x0)

1
4 α0(x0) = 1, and then α0(x) = g−

1
4 (x) is determined

by α0(x0).

• (Solve αi(x), i > 0) Inductively the smoothness of αi implies the uniqueness of the smooth

solution αi+1. In fact, when solving the equation in (IV.23), the constant term has to be 0

otherwise αi+1 is not smooth at r = 0. Then αi+1 is smooth except that it may blow up at 0.

But by setting r = 0 in the second line in (IV.23) we have αi+1(x0) =−1
j (D

2αi)(x0) which

makes sense if αi is smooth. Therefore, there exists a sequence of smooth sections {αi(x)}

in End(Vx0 ,Vx) uniquely determined by α0(x0) = 1.

• From solving the equations we see that αis depends on the local geometry at x0. For example,

α1(x) = 1
6 k(x)−K(x), where k is scaler curvature and K satisfies D2 = ∆+K.

Note that αis are defined on a coordinate neighborhood Ox0 and depend smoothly on the local

geometry around x0. Denote αi(x) by αi(x,x0),x ∈ Ox0 . Now for any x0
.= y ∈ M, we obtain the

formal solution αi(x,y) which smoothly depends on both x and y for x ∈ Oy (Oy is a coordinate

6Refer to [29] equation 7.17.
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neighborhood of y ∈M). Choose O′ ⊂M×M such that {(x,x)|x ∈M} ⊂O′ ⊂∪y∈MOy and choose

φ(x,y) ∈C∞(M×M) so that φ(x,y) =


1 (x,y) ∈ O′

0 (x,y) /∈ ∪y∈MOy

.7

Definition IV.2.2. Let (IV.21) be the true heat kernel. Define

hn
t (x,y) = pt(x,y)

n

∑
i=0

t iai(x,y) (IV.24)

where ai(x,y) = φ(x,y)αi(x,y) ∈C∞(M×M) and supported in a neighborhood of the diagonal.

Proposition IV.2.3. Let kt(x,y) be the heat kernel and hn
t (x,y) be the one in (IV.24). Let c(x) ∈

C∞(M) be the cutoff function of the properly cocompact G-manifold M. Choose c̄ ∈C∞
c (M) satis-

fying c(x)c̄(x) = c(x),x ∈M. For all m > 0, there is a Nm, so that for all l > Nm and t ∈ (0,1],

‖c(x)hl
t(x,y)c̄(y)− c(x)kt(x,y)c̄(y)‖< Ctm (IV.25)

where ‖ f‖= supx,y∈M | f (x,y)|.

Corollary IV.2.4. Theorem IV.1.8 and Lemma IV.1.11 are true assuming the proposition.

Proof. • Let x = y in Proposition IV.2.3, then (IV.25) reduces to ‖c(x)hl
t(x,x)−c(x)kt(x,x)‖<

Ctm and therefore Theorem IV.1.8 is proved.

• We define ai(x) = ai(x,x) to be α(x,x). To see Lemma IV.1.11, we need to show that

αi(y,y) ∈ Cl2i⊗EndCl(Vy). Set x = y in (IV.23), then

α0(y,y) = 1 and α j(y,y) =−1
j
(D2

α j−1)(y,y).

with α0(y,y)= 1∈Cl0⊗EndCl(Vy). Inductively, the fact that D2 contains the factor c(ei)c(e j),

makes sure that the degree of αi(x) does not increase more than 2 compared to αi−1(x).

7This definition is based on a cutoff function appeared in defining the approximate heat kernel in [8] Definition 2.28.

76



Proof of Proposition IV.2.3. For all m, let Nm > max{n+1,m+ n
2}, where n = dimM. By definition

hNm
t (x,y) approximately satisfies the heat equation in the sense that

(
∂

∂ t
+D2)hNm = tNm pt(x,y)D2aNm(x,y)+O(t∞) .= rt(x,y), (IV.26)

where the first term in (IV.26) comes from the calculation of the formal solution 8 and what remains

O(t∞) is of order t∞, because this term contains the derivatives of φ , which are of 0-value for x near

y, and pt(x,y),(x 6= y), which decreases faster than any positive power tk as t → 0+. rt(x,y) has

the following properties:

• The remainder rt(x,y) is smooth for any fixed t > 0. Because pt(x,y) =
1

(4πt)
n
2

e−
d(x,y)2

4t and

ai(x,y)s (in Definition IV.2.2) are smooth functions, for all t > 0.

• Denote the kth Sobolev norm on Cm(M×M) by ‖ · ‖k. Then for all fixed t > 0 and for all

k: ‖c(x)rt(x,y)c̄(y)‖k exists. Because c(x)rt(x,y)c̄(y) is smooth and compactly supported on

M×M.

•

‖c(x)rt(x,y)c̄(y)‖ n
2 +1 < Ctm uniformly for all t ∈ (0,1]. (IV.27)

Proof. In the first term

c(x)tNm pt(x,y)(D2aNm(x,y))c̄(y)

of c(x)rt(x,y)c̄(y), only tNm pt(x,y) has t, it is sufficient to know the order of t in the kth

derivative (in x or y) of tNm pt(x,y), where k ≤ n
2 + 1 and the order is: tNmt−

n
2 t−k = tNm− n

2−k.

So

‖c(x)tNm pt(x,y)(D2aNm(x,y))c̄(y)‖ n
2 +1 ≤

n
2 +1

∑
k=0

cktNm− n
2−k.

Since Nm > n + 1, there are no terms of non-positive order in t on the right hand side. In

addition, since Nm > n
2 +m, then for all t ∈ (0,1] , there is a constant C so that

‖c(x)tNm pt(x,y)(D2aNm(x,y))c̄(y)‖ n
2 +1 ≤C1tNm− n

2 ≤C1tm.

8In fact, using (IV.22), (IV.23), we have ( ∂

∂ t +D2)[pt(x,y)∑
Nm
j=0 t jα j(x,y)] = tNm pt(x,y)D2αNm(x,y).
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The derivatives of c(x)O(t∞)c̄(y) does not has any terms containing negative power of t so

‖c(x)O(t∞)c̄(y)‖ n
2 +1 < C2tm for all t ∈ (0,1].

Next, we want to use the rt(x,y) to relate kt(x,y) and hNm
t (x,y) using the following claim:

Claim: There is a unique smooth solution for the following equation:


(

∂

∂ t
+D2)ut(x,y) = rt(x,y)

u0(x,y) = 0

9 (IV.28)

Proof. It is trivial to check that u1 =
∫ t

0 e−(t−τ)D2
rτ(x,x0)dτ is smooth and satisfies the equation. If

u2 is another smooth solution, then u = u1−u2 satisfies ( ∂

∂ t +D2)u = 0,u0 = u(t = 0) = 0. Hence

d
dt
‖u‖2

L2 =
d
dt

< u,u >=−< u,D2u >−< D2u,u >=−2‖Du‖2
L2

implies that ‖u‖2 is non-decreasing in t, and so ‖u(t = 0)‖= 0 forces u = u1−u2 = 0.

Since hNm
t (x,y)−kt(x,y) is also a solution to the equation (IV.28), by the uniqueness of solution

we have

hNM
t (x,y)− kt(x,y) =

∫ t

0
e−(t−τ)D2

rτ(x,y)dτ,

then, for all t ∈ (0,1],

‖c(x)kt(x,y)c̄(y)− c(x)hNm
t (x,y)c̄(y)‖ n

2 +1 ≤ t sup{‖c(x)rτ(x,y)c̄(y)‖ n
2 +1|0≤ τ ≤ t} ≤Ctm,

where second inequality is because of (IV.27).

By the Sobolev embedding theorem, for all p > n
2 , ‖u‖ ≤C0‖u‖p for u ∈ H p, where ‖ · ‖ is the

C0 sup norm and ‖ · ‖p is the Sobolev p-norm. Therefore,

‖c(x)kt(x,y)c̄(y)− c(x)hNm
t (x,y)c̄(y)‖ ≤C′‖c(x)kt(x,y)c̄(y)− c(x)hNm

t (x,y)c̄(y)‖ n
2 +1 ≤C′Ctm.10

9ut(x,y) is regard as a function of t and x.
10Since c(x) and c̄(x0) are compactly supported, the function in the norm is supported in a compact set in M×M,

where the theorem can be applied.
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IV.3 Conclusion

In this section we prove the L2-index formula for a G-invariant (G is unimodular) elliptic opera-

tor operator A acting on properly cocompact space X . Now we have Theorem III.3.6, and so to

calculate indA it is enough to figure out indDV (σA) where D is the Dolbeault operator on ΣX , and

where V (σA) is a bundle over ΣX . DV (σA) is a generalized Dirac operator and we use the heat kernel

method to calculate the case when D = DV (σA), M = ΣX in the last two sections. The following

proposition, as a corollary to Theorem IV.1.15, is essential in obtaining the L2-index formula of A.

Proposition IV.3.1. Let G be a locally compact unimodular group and let M be properly cocom-

pact G-manifold of dimension n having an almost complex structure, curvature R, a cutoff function

c ∈C∞
c (M) and a G-bundle E with curvature F. Let D be the Dolbeault operator on M. Then the

L2-index of the generalized Dirac operator DE is,

indDE =
∫

M
cTd(M)ch(E),

where Td(M) = det( R
1−eR ) and ch(E) = trs(e−F).

Both Td(M) and ch(E) are G-invariant forms. So the integral does not depend on the choice

of the cutoff function. If M = ΣX , then the cutoff function on M can be obtained from the cutoff

function on X by setting the values of the elements in the same fiber to be the same. The following

index formula is immediate assuming the proposition.

Theorem IV.3.2. Let X be a complete Riemannian manifold where a locally compact unimodular

group G acts properly, cocompactly and isometrically. If A is a zero order properly supported

elliptic pseudo-differential operator, then the L2 index of A is given by the formula

ind(A) =
∫

T X
c(x)(Â(X))2ch(σA). (IV.29)

Proof. Set M = ΣX ,V = VσA . By Proposition IV.3.1,

indA =
∫

ΣX
c(x)Td(ΣM)ch(VσA) =

∫
T X

c(x)Td(T X⊗C)ch(σA).
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Observe that Td(T X⊗C) = Â(X)2, the statement follows.

Proof of Proposition IV.3.1. The prove is essentially a summary of a part of section 4.1 in [8] Let X

be a m dimensional proper cocompact G-manifold, then M = ΣX has an almost complex structure

J. Say xi,yi,1≤ i≤ m are a local frame of T M and J(xi) = yi,J(yi) =−xi. J extend C-linearly to

T M⊗C = T M1,0⊕T M0,1 where

T M1,0 = {v− iJv|v ∈ T M},

the set of holomorphic tangent vectors of the form zi
.= x j− iy j, is the i-eigenspace of J and

T M0,1 = {v+ iJv,v ∈ T M},

the set of anti-holomorphic tangent vectors of form z̄ j
.= x j + iy j, is the −i-eigenspace of J. We

have real isomorphisms

π
1,0 : T M→ T M1,0,v 7→ v1,0 =

1
2
(v− iJv) and π

0,1 : T M→ T M0,1,v 7→ v0,1 =
1
2
(v+ iJv).

Therefore (T M,J) ' T M1,0 ' T M0,1 as an almost complex bundle. Similarly, the complexified

cotangent bundle decomposes as T ∗M⊗C = T ∗M1,0⊕T ∗M1,0 where

T ∗M1,0 = {η ∈ T ∗M⊗C|η(Jv) = iη(v)},

covectors of form z j .= x j + iy j, 11 is the C-dual of T M1,0 and

T ∗M0,1 = {η ∈ T ∗M⊗C|η(Jv) =−iη(v)},

covectors of form z̄ j .= x j− iy j, is the C-dual of T M0,1. We also have real isomorphism

T ∗M→ T ∗M1,0 : η 7→ η
1,0 =

1
2
(η− i(η ◦ J)) and T ∗M→ T ∗M0,1 : η 7→ η

0,1 =
1
2
(η + i(η ◦ J)).

If g is the G-invariant Riemannian metric on M, then the G-invariant Hermitian metric is defined

11x j(xi) = δi j,y j(yi) = δi j
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by h(X ,Y ) = g(X ,Y ) +
√
−1g(X ,J(Y )) for vector fields X ,Y ∈ T M. Let Λ∗M be the bundle of

exterior algebra of M and Ω∗M, the set of smooth sections, splits into type (p,q), p+q = ∗ with

Λ
p,qT ∗M = (ΛpT ∗M1,0)⊗ (ΛqT ∗M0,1) =⊕p+q=kΛ

p,qT ∗M.

If α ∈ Ωp,q(M), then the differential decomposes into dα = ∑
p+q+1
i=0 (dα)1,p+q+1−i and set ∂α =

(dα)p+1,q, ∂̄α = (dα)p,q+1. The Dolbeault operator ∂̄ : Ω0,q → Ω0,q+1 is the order 1 differential

operator given in the local coordinate by ∂̄ = ∂

∂ξ
+ i ∂

∂x in the local coordinate (x,ξ ) ∈ ΣX = M.12

Dolbeault operator “is” the canonical Dirac operator on M. In fact, the bundle S = Λ0,∗T ∗M

has an action of cotangent vectors via Clifford multiplication:

c(η)s =
√

2(ε(η0,1)(s)− ι(η1,0)s),η ∈ T ∗M,s ∈ Λ
0,∗T ∗M, 13

where ε is the exterior multiplication and ι is the C-linear compression by a vector.

There is a G-invariant Hermitian metric (·, ·) and Levi-Civita connection ∇L on S. The Dol-

beault operator is defined to be D = ∑c(ei)∇L
ei

where eis are local orthonormal basis of T M. Now

if there is an auxiliary complex G-vector bundle E →M, with a G-invariant Hermitian metric and

G-invariant connection ∇E the Dolbeault operator DE acting on V = S⊗E with coefficient in E

can be represented by (up to an lower order term):

DE = ∑c(ei)∇V
ei
, where ∇

V = ∇
L⊗1+1⊗∇

E .

Let ∇ be the Levi-Civita connection of M and R = ∇2 ∈ Λ2(M,so(T M)) be Riemannian cur-

vature, the matrix with two forms coefficient representing the curvature of M,

R(X ,Y ) = ∇X ∇Y −∇Y ∇X −∇[X ,Y ],X ,Y ∈C∞(M,T M).

12If use grading, the Dolbeault is ∂̄ + ∂̄ ∗ on Ω0,∗M.
13c(xi) = 1√

2
ε(z̄)− ι(z),c(xi)c(x j)+ c(x j)c(xi) =−2δi j.
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In the orthonormal frame ei of T M,

R(ei,e j) =−∑
k<l

(R(ei,e j)el,ek)ek∧ el,

where we identify so(T M) with two forms on M. Now we have a Clifford module S = Λ(T 0,1M)∗,

Cl(T M)⊗C = End(S), on which T ∗M acts by Clifford multiplication. On S there is a Clifford

connection ∇S so that the Clifford multiplication by unit vectors preserve the metric and ∇S is

compatible with the connection on M. 14 Let RS = (∇S)2 be the curvature associated to ∇S. It is

well know that the Lie algebra isomorphism spinn ' son given by 1
4 [v,w] 7→ v∧w implies that

RS(ei,e j) =
1
2 ∑

k<l
(R(ei,e j)ek,el)c(ek)c(el) =

1
4 ∑

kl
(R(ei,e j)ek,el)c(ek)c(el).

On S, there is also a Levi-Civita connection, denoted by ∇L. The associated curvature RL =

(∇V )2 ∈ EndS is written as

RL = RS +F

where RS(·, ·)= 1
4 ∑kl(R(·, ·)z̄k,zl)c(z̄k)c(zl)+ 1

4 ∑kl(R(·, ·)zk, z̄l)c(zk)c(z̄l)∈Cl(T M) and F ∈EndClV

is the twisting curvature.

Recall that the curvature of the Levi-Civita connection on ΛV ∗ is the derivation of the algebra

ΛV ∗ which coincide with R(ei,e j) on V and is given by the formula

∑
kl

< ek,R(ei,e j)el > ε(ek)ι(el) = ∑
kl

(R(ei,e j)el,ek)ε(ek)ι(el).

Let R− be the curvature of the Levi-Civita connection on T 0,1M. Note that R = R−. Then the

curvature of the ∇V on S = Λ(T 0,1)∗ is given by

RL(·, ·) =
1
4 ∑

i, j
(R−(·, ·)zi, z̄ j)ε(z̄ j)ι(zi) =−1

8 ∑
i, j

(R−(·, ·)zi, z̄ j)c(z̄ j)c(zi).

14∇(φ) ·σ = (∇φ) ·σ +φ · (∇σ),φ ∈Ω1,σ ∈Ω0,∗.
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Using the fact that c(zi)2 = 0,c(z̄i)2 = 0,c(zi)c(z̄ j)+ c(z̄ j)c(zi) =−4δ i j15 we have

FV/S = RV −RS =
1
2 ∑

k
(Rzk, z̄k) =

1
2

TrR+FE

and a direct calculation shows that

Â(M)eFV/S
= det

R/2
sinhR/2

e
1
2 TrR(eFE

) = det
R

eR−1
(eFE

) = Td(M)Tr(e−FE
).

IV.4 Spectial cases

IV.4.1 Atiyah’s L2-index theorem

Corollary IV.4.1. Let D be an elliptic operator on a compact manifold X and D̃ be the π1(X)-

invariant operator defined on the universal cover space X̃ , then ind D̃ = indD.

Proof. The Atiyah-Singer index theorem for compact manifold states that indD =
∫

T X Â(X)2chσD.

The L2-index theorem states that ind D̃ =
∫

T X̃ c(x)Â(X̃)2chσD̃. The statement follows because c(x)

adds to 1 on each orbit and Â(X̃)2 and chσD̃, being π1(X) invariant is the lift of Â(X)2 and chσD

respectively.

IV.4.2 L2-index theorem for homogeneous space for Lie group G.

Let G be a unimodular Lie group and H be a compact subgroup. Let M = G/H, the space of the

left coset of H, be the homogeneous G space and D be a G-invariant elliptic operator on the bundle

E over M. Recall that for all G-bundle E there is a H-space E = E |eH so that E = G×H E. In

particular, any tangent vector is determined by a tangent vector in V = TeHM, because

T M = G×H V.

15c(z) = c(x)+ ic(y),c(z̄) = c(x)− ic(y).
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Let Ω ∈ Λ2(T M)∗⊗gl(T M) be the curvature of M, associated to the G-invariant Levi-Civita con-

nection on T M. Then we have the G-invariant Â-class

Â(M) = det
1
2

Ω/2
sinhΩ/2

.

Let ΣM be the G-manifold obtained by gluing two copies of π∗E|BM → BM along the boundary

and ΩE ∈Λ2(ΣM)∗⊗gl(V (σA)) be a curvature form associated to some G-invariant connection on

V (σD) over ΣM. Then

ch(σD) = TreΩE |T M

is the Chern character of V (σA) restricted to T M. Let ΩV be the curvature tensor Ω restricted to

V = TeHM and ΩE
V be the curvature tensor ΩE restricted to V. Then we define the corresponding

Â-class and Chern character as

Â(M)V
.= det

1
2

ΩV /2
sinhΩV /2

and ch(σD)V
.= TreΩE

V

We have a corollary of the L2-index theorem for homogeneous space.

Corollary IV.4.2. The L2-index of G-invariant elliptic operator D : L2(M,E )→ L2(M,E ) is

indD =
∫

V
Â2(M)V ch(σA)V . (IV.30)

Proof. The L2-index theorem of D says that

indD =
∫

T M
cÂ2(M)ch(σA).

Since T M = G×H V , the integration of form cÂ2(M)ch(σA) on T M can be lifted to an H-invariant

form on G×V and then integrated over the group part and then the tangent space at eH. Since

Â2(M)ch(σA) is G-invariant, then at any g ∈ G, the form will be the same as its value at the unit e

of G: Â2(M)V ch(σA)V . Hence,

∫
T M

cÂ2(M)ch(σA) =
∫

V
Â2(M)V ch(σA)V

∫
G

c(g−1v)vol =
∫

V
Â2(M)V ch(σA)V ,
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where vol is the volume form on G.

Remark IV.4.3. This formula IV.30 coincides with the L2-index formula in [12]. The components

of the formula in IV.30 are sketched as follows. On the Lie algebra g of G there is an H-invariant

splitting g = h⊕m where h is the Lie algebra of H and m is an H-invariant complement. V =

TeH(G/H) is a candidate for m. There is a curvature form on m defined by

Θ(X ,Y ) =−1
2

θ([X ,Y ]),X ,Y ∈m (IV.31)

where θ is the connection form given by the projection θ : g→ h. Θ composed with r : h→ gl(E),

the differential of a unitary representation of H on some vector space E, is an H-invariant curvature

form

Θr(X ,Y ) = r(Θ(X ,Y )),X ,Y ∈m.

Then

ch : R(H)→ H∗(g,H) : r 7→ TreΘr

is a well-defined Chern character ([12] page 309). Also, compose the curvature form (IV.31),

with h→ gl(V ), the differential of the H-module structure of V . And a curvature form on V

ΘV ∈ Λ2m∗⊗gl(V ) is constructed and the Â-class is defined as

Â(g,H) = det
1
2

ΘV /2
sinhΘV /2

.

The L2-index formula of D is

indD =
∫

V
ch(a)Â(g,H), (IV.32)

where a is an element of the representation ring R(H) so a is the pre-image of V (σD)|V +
16 under

the Thom isomorphism R(H)→ KH(V ).17

To see that IV.30 and IV.32 are the same one, we prove the following assertions.

1. The restriction of Â(M) to V is the same as Â(g,H) in the cohomology group. (Â(M)V =

16V+ is space V adding one point at infinity. It is the ball fiber in ΣM at eH.
17This Thom isomorphism exists only for the case when the action of H on V H → SO(V ) lifts to Spin(V ). The

general case was done by introducing a double covering of H and by reducing the problem to this situation. Please refer
to the construction in [12] on page 307.
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Â(g,H)).

Proof. Since T M = G×H V is a principal G-bundle over V/H and V is a principal H-bundle

over V/H, then by [25] II Prop. 6.4, the connection form on T M restricted to V is also a

connection form. Also, on the homogeneous space G/H, the restriction of any G-invariant

tensor on T M to V is an H-invariant tensor on V. Therefore ΩV is an H-invariant curvature

form on V and the restriction Â(M)V is the Â-class defined by curvature ΩV . By definition

Â(g,H) is the Â-class of the curvature ΘV on V , Â-class of another connection on the same

V . Then the statement is proved because Â is a topological invariant and is independent of

the choice of connection on V.

2. The restriction of chσD to V is the same as in the cohomology group (ch(σD)V = ch(a)).

Proof. Similar to the last proof, ΩE
V is an H-invariant curvature form of V (σD)|V + restricted

to V. Recall that V (σD) is glued by G-invariant symbol σD and therefore it is determined by

its restriction at the ball fiber, V +. By definition V (σD)|V + is glued two copies of BV ×E on

the boundary by σD|SV . Note that the evaluation of σD|SV at ξ ∈ SV is

σD(eH,ξ ) ∈ GL(E),ξ ∈V,‖ξ‖= 1.

H-bundle V (σD)|V = V ×H E where r : H → E. Hence the curvature ΩE
V is r composed

with some curvature form on V. Hence the statement follows from the fact that ch(r) is

independent of the connection and the choice of the H-invariant splitting of G.
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APPENDIX I

FREDHOLM OPERATORS

This section is a brief review of the Fredholm theory. Let H be a Hilbert space and B(H)

is the set of the bounded linear operators, and K (H) is the set of all compact operators, i.e. the

completion of the finite rank operators under operator norm. T ∈ B(H) is called a Fredholm

operator if T +K (H) is invertible in B(H)/K (H). Equivalently, T ∈B(H) is Fredholm if and

only if

1. The range of T is closed;

2. The dimension of the kerT and kerT ∗ are finite.

The index for the Fredholm operator T is defined as

indT = dimker(T )−dimker(T ∗).

Example A.0.4. Let H = { f ∈C(S1)|
∫

f (θ)einθ dθ = 0}, and let T = PMeiθ be the Toeplitz operator

where Meiθ is the multiplication operator by eiθ and P is the projection onto H. The Fredholm index

indT =−1.

Fredholm index is a nice analytical invariant.

Proposition A.0.5. Let S and T be Fredholm, K be compact, and let Tt be a path of Fredholm

operators continuous in t,0≤ t ≤ 1. Then

1. ind(ST ) = indS + indT ;

2. indT = ind(T +K);

3. indT0 = indT1.

Elliptic operator on compact manifold X is Fredholm. In fact, Rellich Lemma implies that

for X , if s < t, then the inclusion map Hs(X)→ Ht(X) is a compact map. Hence we have the

following statement saying that a pseudo-differential operator acting on a compact manifold with

negative order is compact. In particular, smoothing operator over compact manifold is compact.
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Proposition A.0.6. Let a(x,ξ ) ∈ Sm(X),m < 0 with x-coordinate supported in K, a compact set,

then a(x,D) : Hs(X)→ Hs(X) is a compact operator for any s.

Hence we have the following corollary to theorem II.1.14: An elliptic pseudo-differential op-

erator P over a compact manifold is Fredholm. If X is non-compact and let M f be a multiplication

operator by f (x) ∈C0(X), then

(PQ− Id)M f ,(QP− Id)M f

are compact. The analytical index of the elliptic operator in the case of compact manifold is defined

to be the Fredholm index. The elliptic operators on compact manifold are almost invertible and the

index of elliptic operators measures how far the operators are from being invertible.
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APPENDIX II

VON NEUMANN ALGEBRA AND TRACE

We introduce the ”relative dimension” in this section and define the analytic index of equivari-

ant elliptic operator in the next subsection.

Let M be a subset of B(H) and we define its commutant as M′ = {A ∈B(H) : AB = BA,∀B ∈

M}. A Von Neumann algebra is a ∗-subalgebra M ⊂B(H) satisfying M = M′′.

The weak operator topology on B(H) is defined by the following set of basic neighborhoods

of any operator A ∈B(H) :

U(x1, · · · ,xN ;y1, · · · ,yN ;ε;A) = {B ∈B(H)||((B−A)xi,yi)| ≤ ε, i = 1, · · · ,N}.

Let {Aγ} be a net of operators in B(H) we say A∈B(H) the weak limit of {Aγ} if Aγ converge

toA in the weak operator topology. A subalgebra M of B(H) is said to be weakly closed if M is

closed under weak operator topology.

Theorem B.0.7 (von Neumann Double commutant theorem). Let M be a ∗-subalgebra in B(H)

containing 1, then the following conditions are equivalent:

(1)M = M′′; (2) M is weakly closed; (3) M is strongly closed.

Example B.0.8. L∞(R). Every commutative von Neumann algebra is isomorphic to L∞(X) for some

measure space (X ,µ) and for some σ -finite measure space X. The theory of von Neumann algebras

has been called noncommutative measure theory, while the theory of C∗-algebras is sometimes

called noncommutative topology.

Let M be a von Neumann algebra. We say A ∈ M is positive if there exist B ∈ M such that

A = BB∗ and denote A≥ 0 if A positive. Let M+ = {A ∈M : A≥ 0} and we define trace of M on

M+ as follows:

Definition B.0.9. A trace on M is a linear map τ : M+→ [0,∞] satisfying the following conditions:

(1)τ(AA∗) = τ(A∗A)(tracial);

(2)τ(A) = 0 implies A = 0 (faithful);
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(3) If Aγ is an increasing net of elements converge to A, then τ(Aγ) increasing and converge to τ(A)

(normal);

(4) For every A ∈M+, τ(A) = sup{τ(B) : B ∈M+,B≤ A,τ(B) < ∞)}(semifinite).

A von Neumann algebra M whose center consists of C ·1 (1 is the identity operator) is called

a factor. von Neumann showed that every von Neumann algebra on a separable Hilbert space is

isomorphic to a direct integral of factors. This decomposition is essentially unique. Thus, the

problem of classifying isomorphism classes of von Neumann algebras on separable Hilbert spaces

can be reduced to that of classifying isomorphism classes of factors.

Let P ∈ M is be a projection, i.e., P = P2 = P∗. Hence P ∈ M+. There is a partial order <

on the set of projections (P < Q if Im(P)⊂ Im(Q)) and an equivalent relation(Two projections are

said to be equivalent if there is a partial isometry u ∈M such that uu∗ = P,u∗u = Q). A projection

P is said to be finite if P∼Q < P implies P = Q, and said to be infinite if it is not finite. It is a fact

that any factor has a trace such that the trace of a non-zero projection is non-zero and the trace of

an infinite projection is infinite. Such a trace is unique up to scaler multiple. The type of a factor

can be defined from the possible values of this trace. [32]

Definition B.0.10. Let DM(H) = {imP ∈ H|P = P∗ = P2 ∈ M} for any von Neumann algebra

M ∈B(H). Given a trace τ : M→ [0,∞], define the corresponding dimension function

dimτ : DM(H)→ [0,∞] : ImP 7→ τ(P).

We denote it by dimM if τ is fixed before. The following are some important properties of dimM.

Proposition B.0.11. [32] (1) dimM(L) = 0 if and only if L = 0;

(2)If L1,L2 ∈ DM(H),L1 ⊂ L2, then dimM(L1)≤ dimM(L2);

(3)If {Li, i ∈ I} are closed subspace of H and orthogonal to each other, Li ∈ DM(H),∀i and L =

supi Li is the smallest closed subspace in H including all Li, i ∈ I, then L ∈ DM(H) and

dimM(L) = ∑
i∈I

dimM(Li)

where the sum is the least upper bound of the finite sums;

(4) If L ∈ DM(H) and U ∈M is unitary then U(L) ∈ DM(H) and dimM(U(L)) = dimM(L).
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APPENDIX III

CROSSED PRODUCT

Let A be a C∗-algebra and G be a locally compact group, G acts on A by continuous homomor-

phism α : G→ Aut(A), where Aut(A) is the group of ∗-isomorphism between A and itself. We call

(A,G,α) a covariant system. We construct a space including both A and G such that the action of

G on A is “inner” in the space.

Definition C.0.12. A covariant representation of covariant system (A,G,α) is a pair of represen-

tations (π,ρ) of A and G on the same Hilbert space such that

ρ(g)π(a)ρ(g)∗ = π(αg(a)) for all a ∈ A,a ∈ G,

where π : A→B(H) is a ∗-homomorphism and ρ : G→U (H) is a unitary representation of G.

Remark C.0.13. A covariant representation always exists for a covariant system. In fact, let π be

a ∗-representation of C∗-algebra A on Hilbert space H. Consider the Hilbert space L2(G,H), the

square integrable H-valued functions on G with norm ‖x‖2 =
∫

G
‖x(t)‖2dt. G acts on L2(G,H) by

left regular representation ρ(g) ·x(t) = x(g−1t) and (π(a)x)(s) = π(α−1
s a)x(s),s ∈G. Then (π,ρ)

is a covariant representation of (A,G,α).

Definition C.0.14. The convolution algebra Cc(G,A) (A-valued function on G with compact sup-

port ) has convolution as product (a1 · a2)(t) =
∫

G
a1(s) ·αs((a2(s−1t)))ds and involution a∗(t) =

αt((a(t−1))∗) ·∆(t)−1 where a,a1,a2 ∈Cc(G,A).

Proposition C.0.15. If (A,G,α) has a covariant representation π,ρ on a Hilbert space H, then

there is a non-degenerate representation (π×ρ) of Cc(G,A) on H such that (π×ρ)(y)=
∫

π(y(t))ρtdt

for any y ∈Cc(G,A)

For each representation Cc(A,G)→B(H), an element x in the convolution algebra has a norm

through representation. We consider all the representation of Cc(A,G) and take the supremum of

the norm of x, we get a new norm ‖ · ‖ and the completion of the convolution algebra under this
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norm is the crossed product of G with A: Aoα G or C∗(G,A,α). The completion of Cc(G,A) under

the norm defined by the representation in remark C.0.13 is called reduced crossed product of A by

G: A oαr G or C∗r (G,A).

Remark C.0.16. Let A = C, on which G acts trivially, the cross product is the group C∗-algebra

C∗(G) and the reduced cross product by reduced group C∗-algebra C∗r (G). C∗(G) and C∗r (G) are

the same if and only if G is amenable.

Example C.0.17. C(Z2)oZ2 'M2(C);C0(Z)oZ'K (l2(Z));C0(RoZ)'C(S1)⊗K (l2(Z));

If G acts on X properly and freely, then C0(X)o G'C0(X/G)⊗K .

Example C.0.18. 1. C0(G/H)o G = C∗(H)⊗K .

2. Let H be a compact subgroup of G and M is a compact smooth manifold with action of H

smoothly and isometrically. H acts on G×M by h(g,m) = (gh,h−1m),∀h∈H,g∈G,m∈M,

then C0((G×M)/H)o G'C0(M)o H⊗K .
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APPENDIX IV

ANALYTIC K-HOMOLOGY

The section is a brief formulation of elliptic operators as an element in K-homology. Let E,F

be complex vector bundles over X with a Hermitian metric and A : Cc(X ,E)→ Cc(X ,F) be a 0-

order elliptic pseudo-differential operator with proper support , and it extends to a bounded map

A : L2(X ,E)→ L2(X ,F). One of the properties characterizing A is that A is locally a Fredholm

operator, i.e. (AA∗− Id)M f ∈K (L2(X ,F)),(A∗A− Id)M f ∈K (L2(X ,E)), for any f ∈ C0(X),

where M f is the operator of multiplication by f . A has another property called pseudo local:

[A,M f ] = AM f −M f A ∈K (L2(E))

where f (x) ∈C0(X).

If E = F and A self-adjoint A = A∗, The properties reduced to

(A2− Id)M f ∈K (L2(E)), [A,M f ] ∈K (L2(E)).

where A is replaced by an odd operator

0 A∗

A 0

 . The properties of the 0-order elliptic operators

can be summarized as A ∈ H, graded or without grading:

• (A2− Id)M f ∈K (H),

• [A,M f ] ∈K (H),

• A∗ = A.

Let A be a separable C∗-algebra.

• An odd Fredholm module over A is a triple (H,φ ,F) where

– H is a Hilbert space;

– φ : A→B(H) is a ∗-homomorphism;
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– F ∈B(H) such that F = F∗, [F,φ(a)] ∈K (H), (F2−1)φ(a) ∈K (H) for any a ∈ A.

• An even Fredholm module is defined with additional assumptions that H is graded with ε =1 0

0 −1

, φ(a) has degree 0 and F has degree 1. Recall that H is graded if there is a grading

operator ε : H→H such that ε2 = Id. So H splits into a direct sum of H0 = {v ∈H : Jv = v}

and H1 = {v ∈ H : Jv =−v}. An operator F : H → H is said have degree 0 if Fε = εF and

have degree 1 if Fε =−εF.

The group of K-homology K0(A)/K1(A), a cohomology theory for C∗-algebra A, is defined by

the set of even/odd Fredholm A modules under the direct sum operation

(H1,φ1,F1)⊕ (H2φ2,F2) = (H1⊕H2,φ1⊕φ2,F1⊕F2)

module equivalent relations ∼, i.e. x ∼ y if there exists a degenerated Fredholm module z,w

such that x⊕ zis homotopic to y⊕w. Recall that (H,φ ,F) is degenerate if φ(a)F = Fφ(a),(1−

F2)φ(a) = 0 for all a ∈ A and (H1,φ1,F1) is homotopic to (H2,φ2,F2) if there is a continuous path

(H1,φ1,Tt) of Fredholm module under strong operator topology such that T0 = F1 and (H1,φ1,T1)

is isomorphic 1 to (H2,φ2,F2). The morphism of the functor is given by the composition of the

representation

φ
∗ : Ki(B)→ Ki(A) : [(H,ψ,F)] 7→ [(H,ψ ◦φ ,F)],

given a ∗-homomorphism φ : A→B. If A is further a G-algebra, the equivariant K-homology Ki
G(A)

can be defined out of homotopy classes of cycle (H,φ ,F), where H has a unitary representation π

of G and φ : A→B(H) is a G-invariant ∗-homomorphism 2 and g ·F−F ∈K (H)3. For example,

the 0-order equivariant elliptic operator we are interested defines an element in Ki
G(C0(X)).

1Two Fredholm A-module (H1,φ1,F1),(H2,φ2,F2) are isomorphic if φ1,φ2 and F1,F2 are unitary equivalent(i.e. there
exist a unitary operator U : H1→ H2 such that T2 = UT1U∗,φ2(a) = Uφ1(a)U∗).

2(H,φ ,π) is a covariant representation of A.
3g ·F = π(g)Fπ−1(g).
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APPENDIX V

KK-THEORY

This section is a summary on some well-know facts in KK-theory as preliminary knowledge to

the thesis. A complete discussion can be found in [9][19]. Cycles in KK-group are represented by

abstract elliptic operators acting on the following “Hilbert space with coefficient”.

Definition E.0.19. A pre-Hilbert B-module is a complex vector space E as well as a right B-

module with inner product < ·, ·>: E×E → B which is linear in the second variable and satisfies

the following relations: For all b ∈ B,x,y ∈ E,

1. < x,yb >=< x,y > b,

2. < x,y >∗=< y,x >

3. < x,x >≥ 0 where < x,x >= 0 if and only if x = 0.

There is a norm defined on each Hilbert B-module: ‖e‖= ‖< e,e > ‖ 1
2 ,e∈ E. A Hilbert B-module

is the completion of a pre-Hilbert module in this norm.

For example, C∗-algebra B is a Hilbert B-module < x,y >= x∗y; Every closed right ideal of

B is a Hilbert B-module; The completion of ⊕∞
1 B(sequences in B that are eventually 0) under the

norm

< (a1, · · ·),(b1, · · ·) >= ∑
n

a∗nbn

is a Hilbert B-module, denoted by HB. Theorem E.0.21 implies that any separable Hilbert B module

is a direct summand of HB. Analogous to the Hilbert space theory we look at bounded linear

operator on Hilbert module and the “compact” ones. Let E1,E2 be Hilbert B-modules, and the

following be the set of bounded linear operators,

BB(E1,E2) = {T : E1→ E2 : ∃T ∗ : E2→ E1,∀x ∈ E1,y ∈ E2,< T x,y >=< x,T ∗y >}.

Denote B(E) = BB(E) = BB(E,E). Note that T ∈ BB(E1,E2) is bounded with norm ‖T‖ =
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sup{‖T x‖ : ‖x‖ ≤ 1}, and B(E) is a C∗-algebra. For x ∈ E1,y ∈ E2, define rank one operator by

θx,y : E1→ E2 : z 7→ x < y,z > .

It is easy to see that θ ∗x,y = θy,x,T θx,y = θT x,y,θx,yT = θx,T ∗y for T ∈B(E1,E2). The compact Hilbert

B-module KB(E1,E2) is the closure of the linear span of the rank one operators θx,y. It is a closed

ideal of BB(E1,E2). Write K (E) = KB(E,E) and KB = K (HB). For example, KC is the set of

all compact operators in a Hilbert space. Note that elements in KB(E1,E2) may not be compact.

Example E.0.20. 1. The map K (B) = KB(B)→ B : θx,y 7→ xy∗ is a ∗-isomorphism.

2. For Hilbert module E B(E⊕·· ·⊕E)'Mn(C)⊗B(E), K (E⊕·· ·⊕E)'MnC⊗K (E).

In particular, K (B⊕·· ·⊕B)'Mn(C)⊗B = Mn(B).

3. We have that KB
.= K (HB)' B⊗K .

In the theory of Hilbert space, the set of bounded linear operators can be viewed as the multi-

plier algebra of the set of all compact operators. We have similar result for Hilbert module,

B(B)'M (B),B(Bn)'Mn(M (B)),B(HB) = M (K ⊗B).

The following Stabilization Theorem by Kasparov is a generalization of the Serre-Swan theorem.

Theorem E.0.21. If E is a countably generated Hilbert B-module, E⊕HB ' HB.

The following two definitions concerns the tensor product of two Hilbert modules.

Definition E.0.22. Let Ei be a Hilbert Bi-module, i = 1,2 and φ : B1→B(E2) be a ∗-homomorphism,

view E2 as a left B1-module via φ . Define a B2-valued pre-inner product of the algebraic tensor

product of E1,E2 by

< x1⊗ x2,y1⊗ y2 >=< x2,φ(< x1,y1 >1)y2 >2 .

The completion of the algebraic tensor product with respect to this inner product is the tensor

product of E1 and E2, denoted by E1⊗φ E2 (or E1⊗B E2), which is a Hilbert B2-module.
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Example E.0.23. φ : B1 → B2 is a ∗-homomorphism, then B1 ⊗φ B2 is isomorphic to φ(B1)B2

through x⊗ y 7→ φ(x)y.

Remark E.0.24. There is a natural homomorphism B(E1)→B(E1⊗φ E2) : F 7→ F⊗ Id

Definition E.0.25. The external tensor product E1⊗E2 is the completion of the algebraic tensor

product with respect to the inner product

< x1⊗ x2,y1⊗ y2 >=< x1,y1 >⊗< x2,y2 > .

To state the definition in a nice form, graded C∗-algebras and graded Hilbert modules are used.

Definition E.0.26. A grading on C∗-algebra A is a ∗-automorphism J of A, satisfying J2 = Id. Let

A(0) = {a : Ja = a},A(1) = {a : Ja =−a},

we have A = A(0)⊕A(1),xy ∈ A(m+n) if x ∈ A(m),y ∈ A(n). A grading operator on A is a unitary and

self-adjoint operator in B(A) such that A(n) = {a ∈ A : g∗ag = (−1)na}. We say that A has an even

grading if there is a grading operator. A ∗-homomorphism φ : A→ B is a graded homomorphism

if φ(A(n)) ⊂ B(n). Graded commutator is [a,b] = ab− (−1)deg(a)deg(b)ba on the homogeneous

elements a,b.

Example E.0.27. Let A be a C∗−algebra.

• M2(A) has thestandard even grading with grading operator

1 0

0 −1

.

• A⊕A has the standard odd grading J : A⊕A→ A⊕A : (x,y) 7→ (y,x).

Definition E.0.28. Let A,B be graded C∗-algebras. Then the graded tensor C∗-algebra A⊗̂B is the

completion of the algebraic tensor product A�B with the operations

(a1⊗̂b1)(a2⊗̂b2) = (−1)deg(b1)deg(a2)a1a2⊗̂b1b2,(a⊗̂b)∗ = (−1)deg(a)deg(b)a∗⊗̂b∗.

In general the completion is not unique but we will consider the case when it is unique: A,B =

C0(X).
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Example E.0.29. A motivation for graded tensor is the construction of the Clifford algebra: Define

Cl1 by C2 with standard odd grading and define Clp⊗̂Clq ' Clp+q inductively. The following

statements are easy corollary of proposition E.0.30:

• When n = 2m, Cln = M2m(C) with standard even grading.

• When n = 2m+1, Cln = M2m⊕M2m with standard odd grading.

Proposition E.0.30. • If A is evenly graded and M2(C) has the standard even grading, then

A⊗̂M2 'M2(A);

• If A is evenly graded then A⊗̂Cl1 ' A⊕A with the standard odd grading;

• Let A be graded C∗-algebra with Z2 action α , then A⊗̂Cl1'Aoα Z2, in particular, Cl1⊗̂Cl1'

M2(C).

Definition E.0.31. Let B be a graded C∗−algebra, a graded Hilbert B-module E is a decomposi-

tion E(0)⊕E(1) with E(m)B(n) ⊂ E(m+n),< E(m),E(n) >∈ B(m+n). The grading on Hilbert module

induces a grading on B(E),K (E).

Definition E.0.32 (Graded tensor product of Hilbert modules). Let E1,E2 be graded Hilbert mod-

ules over A,B respectively, and φ : A→ E2 be a graded ∗-homomorphism, then graded tensor

product E1⊗̂φ E2 is the ordinary tensor product with grading deg(x⊗̂y) = deg(x)+deg(y).

With the above preparation, we are ready to introduce the KK-cycles.

Definition E.0.33. Let A,B be graded C∗-algebras with action of a locally compact group G, an

(A,B)-bimodule (Kasparov A,B-module) is a triple (E,φ ,F) where

• E is a graded Hilbert B-module;

• φ : A→B(E) is a graded ∗-homomorphism and A acts on E through φ ;

• F ∈B(E), with degree 1, such that [φ(a),F ],φ(a)(F2− 1),φ(a)(F −F∗),φ(a)(g ·F −F)

are all in K (E) for all a ∈ A(Sometimes for simplicity we replace φ(a) with a).
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We denote the set of all (A,B)-bimodules by E G(A,B). Note that the triples (E1,φ1,F1) and (E2,φ2,F2)

are not distinguished if there is a graded (A,B)-bimodule isomorphism u : E1 → E2 satisfying

F2 = uF1u−1. An (A,B)-bimodule is degenerate if

[φ(a),F ] = φ(a)(F2−1) = φ(a)(F−F∗) = φ(a)(g ·F−F) = 0,∀a ∈ A.

Two (A,B)-modules are homotopic if there is a norm continuous path of (A,B)-bimodule is (E,φ ,Ft).

The addition of two (A,B)-bimodule is the direct sum

(E1,φ1,F1)⊕ (E2,φ2,F2) = (E1⊕E2,φ1⊕φ2,F1⊕F2) = (E1⊕E2,

φ1 0

0 φ2

 ,

F1 0

0 F2

).

The group KK(A,B) is defined by the quotient of E G(A,B) by homotopy up to stabilization of

degenerate modules.

Remark E.0.34. KKG(A,B) is an abelian group. In fact, let −E be the Hilbert with the oppo-

site grading of E and u ∈ B(E,−E) be the identity map the inverse of (E,φ ,F) is given by

(−E,φ ′,−uFu−1) here the action φ ′ of A on -E is defined by φ(a)u(x) = u(ε(a)x) here ε is the

grading for A.

cos t ·F sin tu−1

sin t ·u −cos tuFu−1

 joints (E,φ ,F)⊕−(E,φ ,F) and a degenerate element.

Proposition E.0.35 (Functorial property). f : A2→ A1, a homomorphism of graded C∗-algebras,

gives a homomorphism

f ∗ : KKG(A1,B)→ KKG(A2,B) : (E,φ ,F) 7→ (H,φ ◦ f ,F).

g : B1→ B2, a homomorphism of graded C∗-algebra, induces a homomorphism of

h∗ : KKG(A,B1)→ KKG(A,B2) : (E,φ ,T ) 7→ (E⊗̂gB2,φ⊗̂1,T ⊗̂1).

τD : KKG(A,B)→ KKG(A⊗̂D,B⊗̂D) : (E,φ ,F) 7→ (E⊗̂D,φ⊗̂1,F⊗̂1) is a homomorphism.

Definition E.0.36. Denote KKG
0 (A,B) = KKG(A,B) and define KKG

1 (A,B) = KKG(A,B⊗̂Cl1).

Proposition E.0.37. 1. KKG(A1⊕A2,B)' KKG(A1,B)⊕KKG(A2,B).
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2. KKG(A,B) ' KKG(A⊗̂K ,B) ' KKG(A,B⊗̂K ).τK : KKG(A,B)→ KKG(A⊗̂K ,B⊗̂K )

is an isomorphism.

3. g1,g2 : D→ B are homotopic⇒ g0∗ = g1∗ : KKG(A,D)→ KKG(A,B);

f0, f1 : A→ D are homotopic⇒ f ∗0 = f ∗1 : KKG(D,B)→ KKG(A,B).

4. (Bott Periodicity) τCl1 : KKG(A,B)→ KKG(A⊗̂Cl1,B⊗̂Cl1) is an isomorphism.

Example E.0.38. KK(C,C) = Z. In fact, in [(H,φ ,F)] ∈ KK(C,C), H = H0 ⊕H1, H0,H1 are

trivially graded and H1 has opposite grading to H0, φ is determined by its value at 1, so we

let φ(1) =

P 0

0 Q

, P,Q are projections and F =

0 S

T 0

 . (H,φ ,F) is reduced to (H0 ⊕

H1,

P 0

0 Q

 ,

0 S

T 0

).

Proposition E.0.39. KKG(C,A) = KG
0 (A) when G is compact.

KK-theory is not simply a generalization of K-theory and K-homology. There is an associative

product between KK-groups

KKG(A,D)×KKG(D,B)→ KKG(A,B).

Let (E1,φ ,F1)∈ E G(A,D),(E2,φ ,F2)∈ E G(D,B) and construct a (A,B)-bimodule (E,φ ,F) where

E = E1⊗̂φ2E2,φ = φ1⊗̂φ21,F ∈B(E)

is a suitable combination of F1 and F2, which in precise is constructed using connection.

Definition E.0.40. Let E1 be a Hilbert D-module and E2 be a (D,B)-bimodule, E = E1⊗̂DE2,F2 ∈

B(E2). An element F ∈B(E) is said to be an F2-connection for E1 if and only if

[T̃ξ ,F2⊕F ] ∈K (E2⊕E),∀ξ ∈ E1,

where T̃ξ =

 0 T ∗
ξ

Tξ 0

 ∈B(E2⊕E),Tξ ∈B(E2,E) is defined by Tξ (η) = ξ ⊗̂η ∈ E.
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Proposition E.0.41. If E1 is countably generated and [F2,φ(d)] ∈K (E),∀d ∈D then there exists

a F2 connection.

Example E.0.42. If [F2,φ(D)] = 0, then 1⊗̂F2 makes sense in B(E) and is a F2 connection on E.

Definition E.0.43. Let A,B,D be graded G-algebras and (E1,φ ,F1),(E2,ψ,F2) are (A,D),(D,B)-

bimodule respectively. Let E = E1⊗̂ψE2 be (A,B)-bimodule and F ∈B(E), the triple (E,η ,F) is

an intersection product (Kasparov product) if it satisfy the following conditions:

1. The cycle (E,η ,F) ∈ E G(A,B), a (A,B)-bimodule.

2. The operator F is a F2 connection on E for E1.

3. F have the property: η(a)[F1⊗̂1,F ]η(a)∗ ≥ 0,∀a ∈ A, module K (E).

The set of all F such that (E,η ,F) is an intersection product is denoted by F1]DF2. Denote z =

x⊗D y if z is intersection product of x and y.

Theorem E.0.44. If A is separable, the intersection product exists and unique up to homotopy.

Moreover, it passes through the quotient and defines a bilinear pairing:

KKG(A,D)×KKG(D,B)→ KKG(A,B).

We can further have KKG
i (A,B)×KKG

j (A,B)→ KKG
i+ j(A,B)(i+j mod 2). For example:

KKG
1 (A,D)×KKG

1 (D,B)→ KKG
0 (A,B) : (x,y) 7→ x⊗̂D⊗̂Cl1τCl1y.

Theorem E.0.45. Let A,D1 be separable, x1 ∈ KKG(A,D1),x2 ∈ KKG(D1,D2),x3 ∈ KKG(D2,B),

then (x1⊗D1 x2)⊗D2 x3 = x1⊗D1 (x2⊗D2 x3). The intersection product is associative.

Definition E.0.46. In general for A1,A2 separable, we could define the pairing

KKG(A1,B1⊗̂D)×KKG(D⊗̂A2,B2)→KKG(A1⊗̂A2,B1⊗̂B2) : (x,y) 7→ x1⊗D x2 = τA2(x)⊗B1⊗̂D⊗̂A2
τB1(y).

Remark E.0.47. When D = C, the product KKG(A1,B1)×KKG(A2,B2)→ KKG(A1⊗̂A2,B1⊗̂B2)

is exterior intersection product and for x∈KKG(A1,B1),y∈KKG(A2,B2) we have x⊗C y = y⊗C x.

(They differ by (−1)i j if x ∈ KKi,y ∈ KK j)
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Definition E.0.48. For G−C∗-algebra A, we have a identity element 1A ∈KKG(A,A) as [(A,0,0)].

Proposition E.0.49. 1 is a unit of the product: 1⊗C x = x⊗C 1 = x,∀x ∈ KKG(A,B) for separable

A.

Remark E.0.50. KKG(C,C) is a ring with multiplication defined by intersection product. When G

is compact, KKG(C,C) ∼= R(G) as rings. KKG(C,C) is a “representation” of non-compact group

G.

Remark E.0.51. Let G be compact, A1 = B2 = A2 = B1 = C, consider the pairing the pairing

KKG(C,D)×KKG(D,C)→KKG(C,C). Given (E,φ1,F1)∈KKG(C,D),(E2,φ2,F2)∈KKG(D,C),

then F ∈ F1]F2 is defined by

φ2(F1⊗̂1)+φ2(
√

1−F2
1 ⊗̂1) · (1⊗̂F2).

Remark E.0.52 (Idea of building up the product). Given (E1,φ1,F1) ∈ E G(A,D),(E2,φ2,F2) ∈

E G(D,B), want to build F ∈ B(E1⊗̂φ2E2) such that F ∈ E G(A,B). F1⊗̂1 ∈ B(E1⊗̂φ2E2) but it

is not a candidate for F because a · (1⊗̂1−F2
1 ⊗̂1) = a · ((1−F2

1 )⊗̂1) 6∈K (E1⊗̂φ2E2). Similarly

for 1⊗̂F2(Note sometimes we need to replace it by F2 connection on E1⊗̂φ2E2). So instead we

consider a ”convex” combination of F1⊗̂1 and 1⊗̂F2: F = M(F1⊗̂1)+ N(1⊗̂F2) where M,N are

positive operators on E1⊗̂φ2E2 and M2 +N2 = 1. And F ∈ E G(A,B) when imposing suitable con-

ditions on M,N (the technical part), but at the same time the conditions on M,N are not too strong

to prevent their existence. The following is an example of using intersection product to produce

Dirac operators on exterior algebra bundle over Rn from Dirac operator on R.

Example E.0.53. Dirac operator D j = i d
dx j

: C0(R)→C0(R) has symbol σD j(x,ξ ) = iξ e j, where e j

is basis for R. Let f j = ie j, (then fi f j + f j fi = 2δi j) and let Fj =
σ(D j)

1+σ(D j)σ(D∗) ∈KK(Cl,C0(R)). The

exterior intersection product KK(Cl,C0(R))×KK(Cl,C0(R))→ KK(M2(C),C0(R2)) is defined

(using the fact that Cl⊗̂Cl 'M2(C) and C0(R)⊗̂C0(R)'C0(R2)). Let

M =
1+ξ1 f1

1+‖ξ1‖2 +‖ξ2‖
andN =

1+ξ2 f2

1+‖ξ1‖2 +‖ξ2‖

and F = MF1 + NF2. F is the normalization of Dirac operator
∂

∂x1
f1 +

∂

∂x2
f2 acting exterior

algebra bundle (acted on by Clifford multiplication) over R2.
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In the end of this section we define the induction homomorphism (or descent map)

jG : KKG(A,B)→ KK(C∗(G,A),C∗(G,B)).

Recall the special case (Green-Julg theorem): when G is compact, KG
i (B)'Ki(C∗(G,B)). It has its

dual in K-homology: when G is discrete: Ki
G(A)'Ki(C∗(G,A)). The construction goes as follows,

1. Let B be a G-C∗-algebra with G locally compact. Construct convolution algebra Cc(G,B) by

(b1 ·b2)(t) =
∫

G
b1(s) · s(b2(s−1t))ds,b∗(t) = t(b(t−1))∗∆(t)−1.

Its closure under maximal C∗ norm C∗(G,B) is the crossed product of G and B.

2. For a G-algebra B and a Hilbert B-module E, define Hilbert Cc(G,B)-module Cc(G,E) by

(e ·b)(t) =
∫

G
e(s) · s(b(s−1t))ds

and the Cc(G,B)-valued inner product

(e1,e2)(t) =
∫

G
s−1(e1(s),e2(st))Eds,∀e,e1,e2 ∈Cc(G,E),b ∈Cc(G,B).

The completion of Cc(G,E) under norm ‖e‖ = ‖(e,e)‖
1
2
C∗(G,B), denoted by C∗(G,E), is a

Hilbert C∗(G,B)-module.

3. If (E,φ ,T )∈E G(A,B), we have (C∗(G,E),(φ̃), T̃ ), where φ̃ is the induced action of C∗(G,A)

on C∗(G,E) in step 1 and T̃ acts on C∗(G,E) by (T̃ e)(s) = T (e(s)),∀e ∈Cc(G,E),s ∈ G.

4. For G-algebra B1,B2, and Hilbert Bi module Ei and a homomorphism B1→B(E2), we have

tensor product C∗(G,E1)⊗C∗(G,B) C∗(G,E2)'C∗(G,E1⊗B1 E2).

Theorem E.0.54. Let group G be second countable, for G-algebras A and B there exist natural

homomorphism: jG : KKG(A,B)→ KK(C∗(G,A),C∗(G,B)) with the properties:

(1)If x1 ∈ KKG(A,D),x2 ∈ KKG(D,B) and x1⊗D x2 exists, then jG(x1⊗D x2) = jG(x1)⊗C∗(G,D)

jG(x2).

(2) When A=B, jG(1A) = 1C∗(G,A).
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