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I. INTRODUCTION 

 

As intensive care medicine has evolved as a specialty, significant advances have 

been made in the treatment of patients in this setting. Despite these promising advances, 

infections remain a significant challenge in the care of the critically ill. Epitomizing this 

challenge, A. baumannii has gained increasing recognition as a cause of nosocomial 

infections. A. baumannii has established itself within the hospital niche where it is 

responsible for between 3 and 20 percent of total ICU infections worldwide (291). In 

addition, A. baumannii is among the most frequent causes of infection following natural 

disasters and in American and Canadian battlefield casualties in the Middle East (134, 

139, 140, 199, 227, 242, 245, 277, 280). The burden of A. baumannii disease is 

particularly pronounced in the developing world where this organism is among the top 

three causes of nosocomial pneumonia and blood stream infections (8). In these 

infections, mortality rates can reach up to 100 percent in certain clinical settings (94, 273). 

Compounding these problems is the growing burden of A. baumannii disease caused by 

multidrug resistant strains, which leave few therapeutic options (71, 167, 193, 225). 

Surveillance data from numerous countries in North America, Europe and Asia place 

multidrug resistance rates in A. baumannii at between 48 and 85 percent of isolates, with 

the highest rates in Asia and Eastern Europe (82, 93, 94, 128). Although currently rare, 

pan-drug resistance has been reported for A. baumannii (16, 45, 85, 86, 272). The 

emergence of bacteria resistant to all clinically available antibiotics is a sentinel event 

signaling the dawn of a post-antibiotic era. 
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As rates of multidrug and pan-drug resistance increase, development of new 

antibacterials to treat these infections languishes. Since the introduction of tigecycline in 

2005, there have been no new drugs developed to treat infections caused by MDR Gram-

negative bacilli such as A. baumannii (31). Notably, resistance to tigecycline emerged 

rapidly in A. baumannii and the first mechanisms were reported as early as 2007 (224, 

255). As a result, A. baumannii is currently listed as an organism for which acquired 

resistance may be a problem. Based on these facts, it is clear that novel approaches for 

the development of drugs to treat Gram-negative bacteria are desperately needed. Toward 

this end, the work described in the following chapters addresses this need by elucidating 

mechanisms of A. baumannii antibiotic resistance and pathogenesis and the critical host 

factors that defend against this organism.  

 

Antibiotic resistance mechanisms utilized by A. baumannii 

 
A. baumannii is a relatively new problem in the hospital setting. As a result, basic 

aspects of A. baumannii physiology, antibiotic resistance and pathogenesis are only 

beginning to be elucidated. Armed with its arsenal of antibiotic resistance determinants 

and its ability to persist for long periods on dry surfaces, A. baumannii is poised for 

survival in the hospital niche (28, 127, 225). Antibiotic resistance has been investigated 

extensively at the genetic level revealing specific resistance mechanisms against a 

number of antibiotics. These resistance mechanisms include antibiotic efflux (e.g. 

AdeABC, AbeM), enzymatic inactivation (e.g. AmpC, OXA-like beta-lactamases), and 

decreased permeability of the outer membrane (e.g. loss of CarO, 33-36kDa Omp) (28, 

58, 108, 167, 181, 201, 225, 232, 235, 269, 283, 290). In addition, whole-genome 
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sequencing approaches comparing MDR A. baumannii with susceptible strains have 

highlighted additional genetic features that potentially contribute to antibiotic resistance.  

One feature common to MDR A. baumannii is the presence of one or more large 

resistance islands containing up to 90 genes associated with antibiotic resistance (6, 118, 

286). The size of these islands makes them prominent features in the genomes sequenced 

to date. However, the size and composition of resistance islands varies considerably 

among MDR A. baumannii and many antibiotic resistance genes present in MDR strains 

do not reside within a discrete resistance island (6, 60, 70, 118, 270, 286). These studies 

highlight the diversity of antibiotic resistance mechanisms encoded at the genetic level in 

A. baumannii and the complexity of antibiotic resistance in this nosocomial pathogen.  

Although considerable progress has been made towards identifying genes 

associated with resistance, few studies have investigated the mechanisms regulating 

resistance in A. baumannii (7, 58, 87, 181, 232). In particular, little is known about 

whether resistance phenotypes are constitutive and therefore static, or whether resistance 

is modulated in response to external signals. Genomic comparisons between pathogenic A. 

baumannii and the non-pathogenic A. baylyi strain ADP1 have highlighted a subset of 

475 genes referred to as the pan-A. baumannii accessory genes that are conserved among 

pathogenic strains but absent from ADP1 (6). As noted by Adams, et al., approximately 

12% of the pan-A. baumannii genes encode predicted transcription factors, suggesting 

that A. baumannii has acquired extensive regulatory capacity as a consequence of growth 

in association with the human host. Further underscoring its regulatory needs, A. 

baumannii can survive under a wide variety of environmental conditions, which is 

highlighted by an ability to survive desiccation for long periods of time, resist 
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antimicrobials and utilize a broad range of nutrient sources (127, 255, 283). Taken 

together, A. baumannii is a metabolically versatile organism whose clinical burden is 

compounded by the acquisition of large antibiotic resistance islands and the capacity to 

adapt readily to new antimicrobial insults. The work described in Chapters II and III 

elucidate the ability of A. baumannii to respond to signals from the environment in order 

to augment its intrinsic antibiotic resistance profile. 

 

A. baumannii pathogenesis and host response 

 
 A. baumannii is an opportunistic pathogen that rarely causes disease in healthy 

individuals. A. baumannii pneumonia, which is the most frequent manifestation of A. 

baumannii infection, presents with an acute course, and is associated with high mortality 

(39, 214, 248). Despite this demonstrated clinical pathology, A. baumannii elaborates few 

known virulence factors. Few A. baumannii virulence factors have been identified and 

characterized in vivo. These include Outer Membrane Protein A (OmpA) Penicillin 

Binding Protein 7/8 (PBP 7/8) and Phospholipase D (Pld), among others (52, 123, 254). 

Other putative virulence factors of A. baumannii include iron acquisition systems and 

genes involved in biofilm formation, but only a subset of these have demonstrated roles 

in vivo (34, 74, 91, 157, 239, 249). This work represents progress toward understanding A. 

baumannii pathogenesis, but it is clear that there remains much to be discovered. In 

Chapters III and V the contributions of LpsB and ZnuB to pathogenesis are defined. This 

work establishes LPS biosynthesis and Zn acquisition as important processes during 

colonization of the host.  
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In addition to identifying virulence factors, investigating the interaction of 

bacterial factors with the host is fundamental to our 

understanding of the pathogenic mechanisms 

employed by A. baumannii. LPS is an important 

pathogen-associated molecular pattern of Gram-

negative bacteria. LPS initiates the inflammatory 

response, which is critical in the host’s defense 

against invading pathogens. However, LPS-induced 

inflammation can result in significant pathology 

making this molecule an important virulence factor 

of Gram-negative bacteria. In addition to its direct 

role in virulence, LPS is also critical for maintaining 

the integrity of the outer membrane. LPS 

biosynthesis therefore stands out as a viable target for development of novel drug targets. 

The typical LPS structure consists of lipid A (endotoxin), inner and outer core 

oligosaccharides and O-linked polysaccharides, or O-antigen (Figure 1). Lipid A 

represents the most conserved structure and nearly all Gram-negative bacteria possess 

orthologues of the canonical lipid A synthesis genes found in E. coli (129, 240). While 

the oligosaccharide core is often well conserved within a given genus, the structures can 

vary considerably between unrelated bacteria. The core is assembled by a series of 

glycosyltransferases, which each demonstrate high substrate specificity (202). The high 

degree of specificity observed in glycosyltransferases and the sequential addition of 

carbohydrates within the core means that disruption of a single enzyme can lead to loss of 

Figure 1: Schematic diagram of 

LPS from A. baumannii strain 

19606 (292).  
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a branching chain or a truncated LPS molecule with loss of the O-antigen. The structures 

of LPS derived from several A. baumannii strains have been determined (177, 292, 293). 

However, despite the predicted role for A. baumannii LPS in the pathogenesis of 

infections caused by this organism, the genes involved in LPS biosynthesis were not 

characterized prior to this work. The experimental results discussed in Chapter III 

demonstrate the identification of a glycosyltransferase involved in the first step of LPS 

biosynthesis and define the role for this protein in antibiotic resistance and pathogenesis.  

As introduced above, LPS is recognized by the host and serves as a potent 

inflammatory signal. Lipid A is the primary determinant of the potency of a given LPS 

molecule. This property is based on the affinity of lipid A for the TLR4/MD-2 complex 

on host cells (36, 266). Binding of lipid A to the receptor complex leads to activation of 

NFB and expression of proinflammatory cytokines such as tumor necrosis factor (TNF) 

, interleukin (IL)-1 and IL-6 (36). Other components of LPS are also important in 

mediating pathogen-host interactions. Core oligosaccharides, in particular, are bound by 

host proteins such as surfactant protein D, and promote internalization of bacteria through 

interaction with cell surface receptors (19, 260, 294, 317). The latter event also leads to 

rapid activation of NFB (260). It is not known whether this mechanism of binding and 

internalization occurs with A. baumannii LPS. It is known, however, that A. baumannii 

LPS induces a robust proinflammatory response. The contribution of LPS to pathogenesis 

and inflammation are discussed in Chapters III and IV.  

Defining the host response to A. baumannii is critical to understanding A. 

baumannii pathogenesis. Although much attention has focused on how the innate 

immune response contributes to clearance of A. baumannii, evidence exists in the 
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literature that the inflammatory response may also contribute to pathogenesis. Clinical 

data from patients with Acute Respiratory Distress Syndrome (ARDS) suggest that high 

levels of proinflammatory cytokine concentrations in bronchoalveolar lavage fluid 

(BALF) correlate with increased susceptibility to infections (28, 29). Consistently, pro-

inflammatory cytokines such as TNF, IL-1 and IL-6 stimulate growth of Acinetobacter 

spp. in vitro (19, 27). In addition, animal models of A. baumannii infection have 

highlighted the possibility for differential roles for some components of innate immunity 

in response to A. baumannii (22, 35). For example, neutrophils are required for bacterial 

clearance in experimental A. baumannii pneumonia (35, 46). However, infections in 

NADPH phagocyte oxidase deficient mice suggest that increased inflammation in the 

absence of normal effector (i.e. killing) function may actually promote infection (35). 

Taken together these data suggest that there exists a balance between beneficial 

inflammation that leads to bacterial clearance and pathologic inflammation that 

paradoxically promotes A. baumannii infection. However, characteristics of the 

inflammatory response elicited by A. baumannii that may be beneficial or pathologic to 

the host have not been defined. Furthermore, neither the contribution of specific bacterial 

factors to the inflammatory response in vivo, nor the contribution of inflammation to A. 

baumannii pathogenesis has been elucidated. Chapter IV presents data demonstrating that 

transposon mutants of A. baumannii induce a host response that effectively clears a WT A. 

baumannii infection. This work demonstrates the intricacy of the pathogen-host 

interaction in that aberrant expression of a PAMP in the transposon mutants completely 

abrogates the pathogenesis of the mutant and exerts a dominant negative effect on WT 

bacteria.  
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Nutritional immunity: Exploiting essentiality and toxicity  

at the pathogen-host interface 

 
Transition metals occupy an essential niche within biological systems. Their 

electrostatic properties stabilize substrates or reaction intermediates in the active sites of 

enzymes, while their heightened reactivity is harnessed for catalysis. However, the latter 

property renders transition metals toxic at high concentrations. Bacteria, like all living 

organisms, must regulate the levels of these elements in order to satisfy physiological 

needs while avoiding harm. It is therefore not surprising that the host capitalizes on both 

the essentiality and toxicity of transition metals to defend against bacterial invaders. Fe 

acquisition by A. baumannii has been studied extensively, but nothing is currently known 

about the role for other metals in A. baumannii pathogenesis (4, 34, 72, 74, 77, 124, 208, 

316). Chapter V presents data identifying a Zn acquisition system in A. baumannii and 

demonstrates its role in pathogenesis. This work establishes a role for Zn at the A. 

baumannii-host interface. However, emerging evidence in the literature demonstrates that 

the role for transition metals in bacterial infections is more complex than simply the 

withholding of essential metals by the host. The sections below discuss established and 

emerging paradigms in nutrient metal homeostasis at the pathogen-host interface.  

 

Transition metals at the pathogen-host interface 

Transition metals function in a number of crucial biological processes and are 

therefore necessary for the survival of all living organisms. These metals are frequently 

incorporated into metalloproteins including metalloenzymes, storage proteins and 

transcription factors. The functional roles of transition metals in biological systems can 
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be broken down broadly into non-catalytic functions, redox and non-redox catalysis. Of 

the redox active metals, Fe is most commonly used, followed by Cu and Mo (12). In both 

eukaryotes and prokaryotes, approximately 50 percent of nonheme Fe and Cu proteins 

are oxidoreductases or other electron transfer proteins (12). In addition, heme Fe is an 

important cofactor for respiration, as well as various biosynthetic and metabolic 

processes. Although Mg is the most prevalent non-redox metal found in enzymes, Zn is 

the most common transition metal (12). Zn can serve structural as well as catalytic roles 

in proteins. Interestingly, the distribution of Zn-binding proteins differs significantly 

between bacteria, archaea and eukaryotes with enzymes constituting approximately 80 

percent of the zinc proteomes of archaea and bacteria but less than 50 percent in 

eukaryotes (13). Zn-dependent transcription factors make up 44 percent of the eukaryotic 

zinc proteome demonstrating that Zn plays an important role in gene regulation in higher 

organisms (13). Consequently, Zn-binding proteins make up a larger proportion of the 

total proteome in eukaryotes as compared to bacteria and archaea (11).  

All living organisms require transition metals in order to survive; yet the catalytic 

activity imparted by these metals also potentiates their toxicity. It is therefore necessary 

that the levels of transition metals be carefully controlled. Moreover, the mechanisms 

used to limit the availability of free metals also serves as a countermeasure against 

invading bacteria. The human body is a rich reservoir of essential nutrients for those 

bacteria that have evolved the mechanisms to exploit this resource. In order to prevent 

infection with pathogenic organisms, humans, like other mammals, restrict access to 

essential metals in a process termed “nutritional immunity”. Originally coined to refer to 

restriction of iron availability by the host, the term “nutritional immunity” can also be 
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applied to mechanisms for withholding other essential transition metals or directing the 

toxicity of these metals against microbial invaders. This review will focus on four of 

these metals, namely Fe, Mn, Zn and Cu and discuss the roles for these metals at the 

pathogen-host interface. In addition, emerging paradigms in nutritional immunity will be 

reviewed, including host strategies for metal intoxication, the interplay between host 

genetics and the outcome of bacterial infections, and the extension of nutritional 

immunity to include non-metals.  

 

Fe limitation: a universal strategy in innate defense  

Fe is the fourth most abundant element in the Earth’s crust and the most abundant 

transition metal in the human body. In bacteria, Fe is a co-factor of many enzymes and as 

such plays a crucial role in diverse physiological processes such as DNA replication, 

transcription and central metabolism (12). Furthermore, the Fe-containing protoporphyrin 

heme is incorporated into cytochromes, thus participating in energy generation through 

respiration.  Fe is required by virtually all bacterial pathogens. Therefore, vertebrates 

limit Fe access to exploit this requirement as a potent defense against infection (299, 301). 

As a result, bacteria must elaborate systems for acquiring Fe in order to successfully 

colonize host tissues. Recent reviews have focused on bacterial systems for acquiring Fe 

and the mechanisms utilized by vertebrate hosts to withhold Fe from invading bacteria 

(35, 42, 102, 205, 215). These mechanisms are discussed below to allow comparison with 

other systems.  
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Mechanisms for withholding iron from invading bacteria 

To prevent access to Fe, vertebrates use a number of proteins that render this 

valuable nutrient largely inaccessible to bacteria that lack sophisticated Fe-capturing 

systems (Figure 2a).  The vast majority of Fe within vertebrates is complexed to heme, a 

tetrapyrrole ring encircling a singular Fe atom and the cofactor of the oxygen transport 

protein hemoglobin.  Hemoglobin is further contained within circulating erythrocytes, 

representing an additional barrier to access by pathogens. If free hemoglobin or heme is 

released from erythrocytes, these molecules are rapidly bound by haptoglobin and 

hemopexin, respectively.  Therefore, for bacterial pathogens to access this rich Fe pool, 

they must lyse erythrocytes, remove heme from hemoglobin or hemopexin, then liberate 

Fe from the macrocyclic conjunction of heme.   

In addition to heme, Fe is stored intracellularly in the Fe storage protein ferritin 

and is therefore only accessible to intracellular pathogens or to extracellular pathogens 

following host cell lysis. At physiological pH, extracellular Fe
2+

 is oxidized to the 

insoluble Fe
3+

 and mobilized by the serum protein transferrin, which binds Fe
3+

 with 

exceptionally high affinity. Free Fe is also bound by lactoferrin, a globular glycoprotein 

of the transferrin family that is present in secretions such as breast milk, tears, and saliva. 

Notably, lactoferrin is present within the granules of polymorphonuclear leukocytes and 

is therefore a crucial component of the innate response to infection.    
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Figure 2. Fe limitation and Fe acquisition during bacterial infections.  
a. Overview of Fe limitation strategies in the vertebrate host. Fe

3+
 is stored intracellularly in complex with 

ferritin (F), bound by serum transferrin (TF) or bound by lactoferrin (LTF) at mucosal surfaces. In the 

blood, Fe
2+

 is complexed with heme, which is bound by hemoglobin within red blood cells (RBCs). Upon 

red cell lysis, hemoglobin is bound by haptoglobin (Hpt) and free heme is scavenged by hemopexin (Hpx). 

b. Representative Fe acquisition systems expressed by Gram negative and Gram positive pathogens. Both 

Gram negative and Gram positive pathogens possess systems to acquire Fe
3+

-siderophores, Fe
2+

-heme, Fe
3+

 

from transferrin and/or free Fe
2+

. Not all systems are expressed by the same organism. TF, transferrin; SIP, 

siderophore interacting protein; Hpt, haptoglobin; OM, outer membrane; P, periplasm; IM, inner 

membrane; CW, cell wall; CM, cytoplasmic membrane. c. Overview of the interactions between 

pathogenic and symbiotic bacteria with their plant hosts. Bacterial infection induces the expression of 

AtNRAMP3/4 in plant cell vacuoles and subsequent translocation of Fe into the cytosol, which contributes 

to generation of reactive oxygen species (ROS). Bacterial siderophores induce an iron deficiency response, 

which is transmitted to roots via an unknown molecular signal. In roots, up-regulation of FRO2 leads to 

reduction of Fe
3+

 in the soil to Fe
2+

 and import by the Fe transporter IRT1. Symbiotic bacteria associated 

with the rhizosphere secrete siderophores which inhibit growth of pathogenic fungi and facilitate iron 

acquisition in roots. F, ferritin; TF, transferrin; ROS, reactive oxygen species.  
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Bacterial iron acquisition 

 All bacterial pathogens must have mechanisms to circumvent nutritional 

immunity.  In the case of Fe, these strategies are numerous and vary considerably across 

organisms.  Perhaps the most elegant strategy to circumvent host-mediated Fe 

sequestration is that of Borrelia burgdorferi, the causative agent of Lyme disease.  By 

substituting Mn in place of Fe within its Fe-requiring enzymes, this organism does not 

require Fe to infect its host (234).  However, as discussed in subsequent sections, the host 

encodes additional mechanisms to restrict Mn availability.  

Organisms that must acquire Fe do so using different strategies that can be 

generally divided into siderophore acquisition systems and heme acquisition systems 

(Figure 1b).  Siderophores are low molecular weight Fe chelators that are secreted by 

bacterial cells and bind Fe with an affinity that surpasses that of transferrin and 

lactoferrin (10
23

 M
−1

) (259). Utilization of siderophore-bound Fe first requires 

recognition by cognate receptors at the bacterial cell surface. As these molecules are too 

large to diffuse through non-selective porins in the outer membranes of Gram-negative 

bacteria, energy-dependent transport of siderophores is mediated through TonB-

dependent receptors. The periplasm of Gram-negative bacteria lacks ATP or ionic 

gradients that can drive transport across the outer membrane. Therefore, energy from the 

proton motive force generated at the inner membrane is harnessed by the TonB-ExbB-

ExbD system to mediate outer membrane transport. In the periplasm, substrate binding 

protein (SBP) components of ATP-binding cassette (ABC) family transporters recognize 

the siderophore-Fe complex and ultimately shuttle this complex to the cognate transporter. 

Gram-positive bacteria also express SBPs, however these proteins are tethered to the 
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cytoplasmic membrane. In both Gram-positive and Gram-negative bacteria, once 

siderophores are internalized into the cytoplasm, the Fe is released through reduction to 

Fe
2+

 or through enzymatic degradation of the siderophore.  The end result is the release of 

Fe for use as a nutrient source. To combat siderophore-mediated Fe acquisition, 

vertebrates produce neutrophil gelatinase-associated lipocalin (NGAL), also known as 

lipocalin 2 or siderocalin, which binds and sequesters siderophores away from bacteria 

(89). However, some bacteria produce ‘stealth’ siderophores that evade siderocalin by 

chemical modification (2). 

Heme acquisition systems typically involve a cell surface receptor for either heme 

or hemoproteins, which pass heme through a membrane transport system into the 

cytoplasm. Several well-characterized systems have been described in Gram-negative 

bacteria (35, 57). In Gram-positive bacteria, the major systems described to date include 

the Fe-regulated surface determinant (Isd) system found in many Firmicutes as well as 

Shr, Shp and HtsABC found in the Streptococci (111, 130, 185, 203, 209). The first step 

in heme transport involves binding of heme, hemoglobin, or hemoglobin-haptoglobin 

complexes by cell wall-anchored receptors (Gram-positive) or TonB-dependent receptors 

(Gram-negative) (76, 217, 230, 231, 282, 315). Heme is then extracted from hemoglobin 

and relayed to a substrate binding protein associated with a heme-specific ABC family 

transporter that mediates translocation into the cytoplasm (165, 176, 182, 200, 209, 315).  

In addition to surface bound receptors for heme and hemoproteins, some Gram-

negative and Gram-positive bacteria produce secreted proteins that complex heme, which 

are known as hemophores and are functionally analogous to siderophores (43, 84, 97). 
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Once bound to heme, hemophores are recognized by hemophore receptors and the heme 

is internalized.   

 Upon translocation into the bacterial cytoplasm heme is degraded by heme 

catabolizing enzymes (Figure 2b).  These heme oxygenases can be classified into three 

different enzyme families.  The HO-1 family of heme oxygenases is evolutionarily 

related to the eukaryotic heme degrading enzymes (304).  HO-1 family members are 

present in both Gram-negative and Gram-positive bacteria and degrade heme to free Fe 

and biliverdin (304).  The IsdG-family heme oxygenases are found in both Gram-

negative and Gram-positive bacteria, and these enzymes degrade heme to Fe and the 

chromophore, staphylobilin (49, 101, 237, 244). More recently, a third family of heme 

oxygenases represented by the Campylobacteri jejuni ChuZ enzyme has been described 

(312, 313).  The product of ChuZ-mediated heme degradation is not yet known. 

Although Fe is predominantly transported in the chelated form, a number of 

bacteria transport free Fe
2+

 using the FeoB family of transporters (17, 40, 183, 220, 221, 

288). FeoB is a large membrane protein containing a GTP-binding domain that is similar 

to eukaryotic G proteins(40). GTPase activity is necessary for Fe
2+

 transport and coupling 

of the G protein and membrane transporter as domains within the same protein make 

FeoB unique compared to eukaryotic G-protein coupled receptors(183). FeoB is typically 

co-expressed with FeoA, a small SH3-domain protein likely found within the cytoplasm 

and FeoC, which is thought to act as a Fe-S dependent repressor(40). Overall, FeoB 

represents a unique family of bacterial transition metal transporters whose members are 

important for virulence in numerous pathogens (17, 220, 221, 288). 

  



 30 

Table 1. Selected bacterial iron uptake systems referenced in the text. 

Substrate Cell surface 
Cell wall/ 

periplasm 

Cytoplasmic 

membrane  
Pathogens (disease) 

Heme, 

Hemoglobin, 

Hpt/hemoglobin 

IsdA (heme)(231) 

IsdC (165, 

176) 
IsdDEF(176) 

S. aureus (multiple) (185) IsdB (hemoglobin) (230, 

282) 

IsdH (Hpt/hemoglobin) (76) 

IsdXI/X2(84) (secreted 

hemophores) 

B. anthracis (anthrax) 

(182) 

Shp (heme) (209) 

 HtsABC (209, 315) 

Streptococcus pyogenes 

(pharyngitis, necrotizing 

fasciitis) 
Shr (methemoglobin) (217, 

315) 

 

SvpA 

(203) 
HupDGC (130) 

Listeria monocytogenes 

(listeriosis) (130, 203) 

HmuR HmuT HmuSUV Yersinia pestis (plague) 

PhuR PhuT PhuSUV 

Pseudomonas aeruginosa 

(multiple, immune 

compromised host) 

Transferrin 

(Fe
3+

) 
TbpA (R/OMT), TbpB 

  

Neisseria spp. 

(meningitis, gonorrhea) 

(206, 261) 

Siderophore 

  

SirABC 

(Staphyloferrin 

B)(47) 

S. aureus, S. pyogenes 

  

HtsABC, Fhu 

(Staphyloferrin A) 

(23) 

S. aureus 

FepA (enterobactin) FepB 
FepCD (ABC-

family)  

FpvA (pyoverdine) 
 

*pyoverdine 

dissociates in 

periplasm 

Pseudomonas aeruginosa 

Fe
2+

 
  

FeoB (G protein) 

Escherichia coli 

(gastrointestinal and 

urinary tract infections) 

(183) 

Helicobacter pylori 

(peptic ulcer disease) 

(288) 

Xanthamonas oryzae pv. 

Oryzae (bacterial blight in 

rice) (221) 

Campylobacter jejuni 

(220) 

Streptococcus suis (17) 

 

Nutritional immunity is not a defensive strategy that is exclusive to vertebrates. A 

number of mechanisms for Fe restriction exist in plants and invertebrates including the 
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expression of ferritins and transferrins (83, 95, 159). In the entomopathogen, 

Photorhabdus luminescens, Fe availability may serve as an important signal for the 

switch between symbiotic colonization and pathogenic infection. In these bacteria, certain 

iron acquisition systems are crucial for virulence but dispensable for symbiosis (297). 

Similarly, iron acquisition via siderophores serves as a virulence strategy for 

phytopathogens, while siderophores produced by symbiotic bacteria in the rhizosphere 

can be beneficial to plants (Figure 2c). Clearly, iron acquisition is important for both 

bacterial pathogenesis and symbiosis.  

 

Roles for Fe in plant-microbe interactions.  

As introduced above, plants express a number of mechanisms for Fe restriction 

including ferritins and transferrins. In addition, plants express at least four different 

members of the natural resistance-associated macrophage protein (NRAMP) family of 

Mn and Fe transporters. The role for NRAMP transporters in immunity was first 

appreciated in vertebrates, where phagosomal NRAMP1 pumps both Mn and Fe out of 

the phagosome, thus reducing Fe and Mn availability to pathogens within this 

compartment (122). In Arabidopsis thaliana, AtNRAMP3 and AtNRAMP4 are up-

regulated in the plant vacuole in response to Erwinia chrysamthemii infection and are 

important for Fe transport and host defense (263). It is not clear, however, whether Fe 

withholding from the bacterium is the primary mechanism of AtNRAMP3/4-mediated 

plant defenses. AtNRAMP3/4 contribute to H2O2 accumulation in infected leaves 

suggesting that extrusion of Fe from the vacuole to the cytoplasm may be important for 

generating the oxidative burst (263). The role for nutritional immunity in plant defenses 
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is also evidenced by the fact that Fe acquisition systems are required for virulence in a 

number of phytopathogens (83, 221). Siderophore biosynthesis and uptake systems are 

the most common mechanism employed by phytopathogens to acquire nutrient Fe from 

their hosts (159). Beyond facilitating Fe uptake by pathogenic bacteria, siderophores have 

been shown to exert effects on Fe distribution and overall physiology within the plant 

host (Figure 2c) (63, 263). These effects include induction of the salicylic acid signaling 

pathway in leaves and an Fe deficiency response in roots (63, 263). Interestingly, 

symbiotic bacteria within the rhizosphere also produce siderophores (251). These bacteria 

promote plant growth and their siderophores are thought to benefit the plants by 

defending against pathogenic fungal species as well as by enhancing Fe acquisition in 

roots (64, 158, 159, 251). In addition to siderophores, Xanthomonas oryzae pv. oryzae, 

which causes bacterial blight in rice, expresses FeoB and this Fe acquisition system is 

necessary for pathogenesis (221). Clearly, Fe availability is a crucial component of both 

pathogenic and symbiotic relationships between plants and bacteria. Moreover, 

withholding of iron is a conserved innate immune strategy across multiple kingdoms of 

life. 
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Host mechanisms for chelating Mn and Zn at mucosal and epithelial surfaces 

 

Figure 3. Mn and Zn homeostasis at the pathogen-host interface.  

a. Zn and Mn sequestration by S100 family proteins at epithelial surfaces and within tissue abscesses. 

S100A7 is released at epithelial surfaces where it inhibits bacterial invasion through chelation of Zn. In 

deep tissues, infection leads to recruitment of neutrophils which deliver calprotectin (S100A8/A9) to the 

infection site. Calprotectin inhibits bacterial growth through chelation of Mn and Zn and is thought to be 

transported away from the abscess by an as yet unknown mechanism. Engulfment of bacteria by 

macrophages leads to decreased Zn uptake and increased Zn efflux from the cytoplasm and efflux of Mn 

and Fe from the phagosome by NRAMP1. b. Representative Mn and Zn uptake systems expressed by 

pathogenic bacteria. c. Proposed mechanisms of Zn intoxication employed by the host and Zn 

detoxification systems expressed by pathogens. Upon infection, Zn accumulates in the phagolysosome 

where it is toxic to bacteria. Gram negative and Gram positive bacteria primarily alleviate Zn toxicity 

through efflux of excess Zn from the cytoplasm. d. Proposed mechanism for Zn toxicity in bacteria. When 

the extracellular Zn:Mn ratio is high, Zn binds the SBP of Mn-specific transporters, preventing Mn binding 

and uptake.  
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Mn and Zn in pathogen-host interactions 

Nutritional immunity is not limited to strategies for withholding Fe (137). Mn and 

Zn also play vital roles within bacteria. Mn serves a catalytic role in many proteins and is 

important in oxidative stress resistance (15, 184, 271, 284). In some bacteria, Mn can 

replace the more reactive Fe in Fe-containing proteins, reducing oxidative damage to 

these proteins (271). Furthermore, Mn-dependent superoxide dismutases are encoded by 

many pathogens, indicating that these organisms require Mn to defend against 

superoxide (136). Zn is the second most abundant transition metal in most living systems 

and can serve both catalytic and structural roles within proteins (104).  In fact, it is 

estimated that Zn-binding proteins represent approximately 4-8 percent of all proteins 

encoded in the genomes of prokaryotes (11).  Given these crucial roles for Mn and Zn in 

bacterial physiology, it is not surprising that sequestration of these nutrient metals is an 

important innate defense strategy.  

 

Chelating Mn and Zn at mucosal and epithelial surfaces 

The S100 family of proteins is a large family of calcium binding proteins found 

within vertebrates.  A number of S100 proteins have been implicated in defense against 

infection, and S100A7, S100A8/A9 and S100A12 are key factors in nutritional immunity 

(Figure 3a). S100A7, also known as psoriasin, is secreted by keratinocytes and inhibits 

microbial growth through the chelation of nutrient Zn (98). S100A12, also known as 

calgranulin C, binds both Zn and Cu in vitro and Cu-S100A12 participates in the 

generation of superoxide species (194, 195). It is not yet known whether the 

antimicrobial properties of this protein result from generation of superoxide or through 
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nutrient metal sequestration. S100A8 and S100A9 function as a heterodimer known as 

calprotectin (also referred to as MRP 8/14 and calgranulin A/B). Calprotectin makes up 

approximately 40 percent of the protein composition of the neutrophil cytoplasm and this 

protein is highly antimicrobial against a variety of bacterial and fungal pathogens (56, 

186, 285). The antibacterial activity of calprotectin results from chelation of nutrient Mn 

and Zn (56). Chelation of Mn and Zn by calprotectin is mediated through two high-

affinity binding sites both of which are capable of binding Zn with nanomolar affinity 

while only one binds Mn with such affinity (136). Since the initial report defining the 

role for calprotectin in protection against Staphylococcus aureus infection, this protein 

has been implicated in defense against infection by Salmonella Typhimurium and the 

fungal pathogens Aspergillus spp. and Candida spp. (26, 164, 186, 285). However, as 

discussed below, some pathogens have evolved elegant mechanisms to counteract or 

exploit the antimicrobial properties of calprotectin. 

In addition to their metal chelating properties, psoriacin, calprotectin, and 

S100A12 (also known as calgranulin C) have proinflammatory properties and serve as 

markers for many inflammation-mediated pathologies (116). Given the multiple roles for 

these S100 proteins in nutrient metal chelation and inflammation, it remains to be 

determined whether the inflammatory properties of these proteins are impacted by metal 

binding. 

 

Bacterial Mn and Zn acquisition systems 

The importance of Mn and Zn acquisition to pathogenesis has been demonstrated 

in a number of organisms including S. Typhimurium, Campylobacter jejuni, Yersinia 
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spp., Brucella abortus, and Streptococcus spp. (9, 14, 38, 44, 204, 226). The mechanisms 

of Mn and Zn transport across the outer membrane of Gram-negative bacteria are not 

completely defined. Although previously believed to diffuse through non-selective 

porins, designated transporters have recently been described suggesting that in some 

bacteria the outer membrane provides a selective barrier to these essential nutrients 

(Figure 3b). One such example is MnoP of Bradyrhizobium japonicum, which is a Mn-

selective channel that facilitates transport of free Mn across the outer membrane (110).  

Although transport of Mn through MnoP is thought to be passive, transport of Zn 

across the outer membrane may be an energy-dependent process powered by the TonB-

ExbB-ExbD system. A Zn-regulated TonB-dependent receptor designated ZnuD, has 

been described in Neisseria meningitidis and orthologues of this receptor are encoded in 

the genomes of several pathogens(274). ZnuD shares sequence similarity with the heme 

transporter HumA of Morexalla catarrhalis and facilitates heme acquisition when 

expressed in E. coli (151). These findings, together with the dual regulation of ZnuD by 

Zur (Zn uptake regulator) and Fur (Fe uptake regulator), suggest that ZnuD may 

participate in both Zn and heme acquisition(151). Alternatively, cross-regulation of 

ZnuD may stem from an increased need for exogenous heme under Zn-limiting 

conditions, since some endogenous heme biosynthetic enzymes require Zn (160). 

Zn-chelating compounds analogous to siderophores have not been identified in 

pathogenic bacteria. However, a putative tsinkosphore (“tsinkos” is greek for Zn) 

biosynthetic operon, the coelibactin gene cluster, has been identified in the antibiotic 

producing bacterium Streptomyces coelicolor. In S. coelicolor this gene cluster is 

regulated by Zur in a Zn-dependent manner, supporting a role for this cluster and its 
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putative product in the transport of Zn (133). Moreover, pyochelin from Pseudomonas 

aeruginosa binds Zn and Cu with high affinity in vitro, although transport of Zn-

pyochelin has not been demonstrated in vivo (33). Nonetheless, the possibility remains 

that pathogenic bacteria secrete small molecule Zn chelators as a strategy to acquire this 

nutrient during infection.   

The import of Mn and Zn across the cytoplasmic membrane of both Gram-

positive and Gram-negative bacteria is primarily facilitated by either ATP-binding 

cassette (ABC)-family transporters or NRAMP family transporters (137, 145). These 

include high affinity uptake systems such as ZnuABC, AdcBCA and MntABC as well as 

the NRAMP-family Mn transporter MntH (9, 14, 38, 44, 204, 226, 284). Some FeoB 

orthologues may also transport Mn (61). Translocation of Mn and Zn by ABC family 

transporters is analogous to that described above for siderophores and heme. Several 

examples of Mn and Zn acquisition systems are depicted in Figure 3b and listed in Table 

2.  

A number of Mn and Zn transporters have demonstrated roles in pathogenesis, but 

a direct role in evading nutrient chelation by calprotectin or other host proteins has 

generally not been demonstrated. One exception is the recent evidence that S. 

Typhimurium expressing the ZnuABC zinc uptake system are resistant to calprotectin 

mediated Zn chelation (164). This system allows S. Typhimurium to resist the high levels 

of calprotectin that accumulate in the intestine following infection. Moreover, S. 

Typhimurium exploits calprotectin-mediated Zn-chelation in order to outcompete the 

host’s microbiota, which are less well adapted to the resulting nutrient deplete 

environment (164).   
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Table 2. Selected bacterial transporters of Mn and Zn.  

Mn
2+

 uptake 

MnoP (Outer membrane) Bradyrhizobium japonicum (110) 

MntABC (ABC-family) Neisseria gonorrhoeae (284) 

PsaBCA (ABC-family) Streptococcus pneumoniae (210) 

MntH (NRAMP-family) 
Brucella abortus (10) 

Yersinia spp. (44, 226) 

Zn
2+

 uptake 

ZnuABC (ABC-family) 
Campylobacter jejuni (62) 

Salmonella spp. (9, 38) 

ZnuD (outer membrane) Neisseria meningitides (274) 

AdcBCA, AII (ABC-family) S. pneumonia (22) 

 

Exploiting Mn and Zn toxicity to kill invading bacteria 

In addition to mechanisms for withholding nutrient metals from invading bacteria, 

increasing evidence is emerging to suggest that mammalian nutritional immunity 

harnesses the toxic properties of transition metals to kill bacteria. It was recently 

determined that following engulfment of either Mycobacterium tuberculosis (Mtb) or E. 

coli, macrophages release Zn from intracellular stores which then accumulates in the 

phagolysosome (30). Survival within the phagolysosome depends on the expression of a 

Zn efflux system in Mtb, supporting the idea that bacteria encounter Zn toxicity in vivo 

and that the ability to resist Zn toxicity is important for pathogenesis (30).  

Bacterial Mn and Zn detoxification is primarily mediated by P-type ATPases 

(Figure 3c). These ATP-driven pumps have narrow substrate specificity, which is 

dictated by a membrane-embedded metal recognition site (115). Zn can also be exported 

via RND-family transporters that span the inner membrane, periplasm and outer 

membrane of Gram-negative bacteria. In this case, energy from the proton motive force 

drives efflux from the cytoplasm or periplasm to the cell exterior. The requirement for 

Mn and Zn efflux systems in the pathogenesis of several bacteria suggests that bacteria 



 39 

encounter Mn and Zn toxicity in vivo (30, 252, 289). However, the mechanisms by which 

Mn and Zn cause toxicity are not fully known. Emerging data suggest that maintaining a 

defined ratio of transition metals is important for bacterial physiology (126, 187).  For 

example, PsaA of S. pneumoniae binds both Mn and Zn, while only Mn is transported by 

the cognate ATP-dependent permease (68, 155). In this case, increasing the Zn:Mn 

extracellular ratio leads to high-affinity binding of Zn to PsaA, blocking Mn uptake and 

thus potentiating the effects of Mn depletion (187). Additionally, the Zn efflux 

transporter czcD is up-regulated under Mn-limiting conditions, suggesting that Zn 

toxicity may be enhanced under Mn-deplete conditions (210). 

 

Cu: new insights into an ancient antibacterial agent 

Humans have recognized the antibacterial effects of Cu for millennia and have 

exploited this property for industrial and medical purposes (257). Despite the long history 

of Cu use as an antimicrobial, we have only recently begun to appreciate that Cu has a 

role in innate defense. The accumulation of Cu at sites of infection was first demonstrated 

in Mtb pulmonary infections where it was found that Cu resistance is necessary for Mtb 

virulence (307). In the mammalian host, bacteria encounter Cu within the 

phagolysosomes of macrophages. Interferon gamma induces expression of the Cu 

transporter Ctr1, which actively takes up Cu from the extracellular environment (302). 

Atox1 then shuttles Cu to ATP7A, a Cu transporter on the phagolysosomal membrane, 

facilitating Cu accumulation within this compartment (141, 143, 302) (Figure 4a).  

The mechanisms of Cu toxicity are not completely understood; however, 

accumulating evidence suggests that toxicity may be multifactorial involving both 
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oxidative damage and disruption of Fe-S clusters. Like Fe, Cu(I) can undergo Fenton 

chemistry, reacting with H2O2 to produce hydroxyl radicals which in turn damage lipids, 

proteins and DNA (Figure 4a). Cu enhances the bactericidal capacity of macrophages in 

vitro, an effect which is further magnified by the addition of H2O2 and reversed by the 

addition of the antioxidant ebselen (302). In addition to oxidative damage, recent 

characterization of a copA mutant of N. gonorrhoeae revealed a role for Cu in 

potentiating nitrosative stress (69). CopA is a Cu exporter with homologues found in a 

number of bacteria. Loss of this protein in N. gonorrhoeae leads to increased sensitivity 

to copper and nitrosative stress. Cervical epithelial cells produce NO in response to 

gonococcal infection (78); however, it is not yet known whether gonococci are exposed 

to extracellular Cu at this site of infection or whether Cu intoxication occurs following 

engulfment by immune cells. Finally, Cu also targets Fe-S clusters in dehydratases 

involved in processes such as branched-chain amino acid synthesis. The resulting 

disruption of crucial metabolic processes can be reversed by addition of pathway end 

products in some bacteria (3, 178). Since addition of pathway end products does not 

reverse Cu toxicity in all bacteria, it is likely that multiple mechanisms of toxicity exist 

(3). The precise mechanism of toxicity likely depends on the bacterium and the 

physiological conditions in which Cu is encountered.  

Cu acquisition and detoxification in bacteria 

The mechanisms of Cu acquisition in bacteria are largely unknown. Methane 

oxidizing bacteria (methanotrophs) utilize Cu in their methane monooxygenases (MMOs) 

and Cu accumulation regulates the switch from soluble, Cu-independent sMMO to the 

membrane-bound, Cu-dependent pMMO (99, 138, 146) (Figure 4b). Methanotrophs 
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produce Cu-chelating compounds known as chalkophores (“chalko” is Greek for copper) 

or methanobactins (mbs) (21, 138, 142). Mbs produced by Methylosinus trichosporium 

OB3b bind Cu(I) with affinities in the range of 10
19

 – 10
20

 M
-1

 depending on pH (80, 

100). Internalization of methanobactin is dependent on the TonB/ExbB/ExbD system and 

is thus proposed to be analogous to siderophore uptake utilizing TonB-dependent 

receptors and ABC-family transporters (20). It remains to be determined whether 

pathogenic bacteria express compounds similar to methanobactin to acquire Cu. In 

addition to methanobactin-mediated transport, unchelated Cu can also be taken up by the 

cell, presumably by diffusion through outer membrane porins (20). 

In contrast to the dearth of information regarding mechanisms of Cu uptake, the 

mechanisms of Cu detoxification have been characterized in multiple pathogenic bacteria 

and these systems are often necessary for pathogenesis (3, 264, 265, 296, 307). Bacteria 

possess several lines of defense against Cu toxicity, beginning with their relatively low 

physiological need for Cu and the physical localization of Cu-dependent proteins outside 

the cytoplasm. In addition, bacteria possess multiple mechanisms to detoxify the 

cytoplasm and periplasm in the presence of excess Cu. In general, this involves 

expression of cytoplasmic Cu chaperones, Cu exporters and periplasmic multicopper 

oxidases (257). Mycobacterial Cu resistance involves expression of the cytoplasmic Cu 

chaperone, MymT, the Cu(I) transporter, CtpV, and a mycomembrane transporter, MctB 

(88, 166, 296, 307) (Figure 4c).  Both CtpV and MctB are necessary for full virulence of 

Mtb (296, 307). In Gram-negative bacteria, Cu resistance is likewise mediated by the 

expression of Cu exporters. The gastrointestinal pathogen, Salmonella enterica sv. 

Typhimurium expresses two independently regulated P-type ATPases, CopA and GolT. 
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Expression of copA is induced by CueR/SctR in the presence of Cu together with genes 

encoding a putative periplasmic Cu chaperone, CueP, and the multicopper oxidase 

CuiD/CueO (3, 144, 216).  The latter functions to oxidize Cu(I) to Cu(II) in the periplasm 

and homologues of this protein are necessary for Cu resistance in several bacteria (3, 144, 

218). In addition to CopA, E. coli also expresses an RND-family Cu exporter known as 

CusABC. CopA and CusABC are independently regulated, and expression of these two 

systems provides a graded response to different levels of Cu toxicity (218). Cu 

detoxification strategies in Gram-positive bacteria are mostly analogous to those of 

Gram-negative bacteria. In some cases, a second P-type ATPase, CopB, as well as a 

putative cytoplasmic Cu chaperone, CopZ, are coexpressed with CopA (171). The 

multitude of Cu detoxification systems expressed by pathogenic bacteria highlights the 

importance of Cu intoxication as a host defense strategy and the applicability of Cu as an 

antimicrobial agent. 
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Figure 4. New insights into 

the roles for Cu in innate 

immunity.  

a. Mechanisms of Cu 

intoxication within 

macrophages. Following 

phagocytosis of bacteria, 

interferon gamma induces 

expression of the Cu 

importer Ctr1. Cu is bound 

by Atox1 and shuttled to the 

phagosomal Cu transporter, 

ATP7A. Accumulation of 

copper within the 

phagolysosome contributes 

to bacterial killing through 

multiple mechanisms 

including disruption of Fe-S 

cluster-containing bacterial 

proteins and generation of 

reactive oxygen species. 

This leads to inhibition of 

bacterial metabolic 

processes and damage to 

DNA, proteins and lipids. b. 

Cu acquisition systems in 

methanotrophs. 

Methanotrophs produce a 

copper chelating compound, 

methanobactin, which is 

secreted via an unknown 

mechanism. Cu acquisition 

occurs through import of 

Cu-methanobactin or free 

Cu and accumulation of 

intracellular Cu induces the 

switch from sMMO to 

pMMO utilization. c. Cu 

detoxification systems 

expressed by pathogenic 

bacteria. Bacteria encode 

multiple mechanisms to 

detoxify the cytoplasm or 

periplasm from excess Cu 

including expression of Cu 

efflux systems, periplasmic 

multicopper oxidases and 

cytoplasmic Cu chaperones. 

As indicated by the 

numerous transcriptional 

activators and repressors 

depicted, many bacteria express several independently regulated Cu detoxification systems, which provide 

a graded response to Cu toxicity.  
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Evolutionary perspectives on nutrient metal acquisition and pathogenesis 

The direct impact of nutritional immunity on human infectious diseases becomes 

clear when considering patients with inherited defects in transition metal homeostasis. To 

date this is primarily restricted to defects in Fe homeostasis, although inherited disorders 

in Cu (Wilson’s disease) and Zn (hyperzincemia/hypercalprotectinemia) homeostasis 

have been described. Hypercalprotectinemia, thought to be an inherited condition, is 

associated with autoimmunity but it remains to be determined whether these patients 

experience alterations in their ability to fight infections (121, 256). In contrast, it is well 

established that patients with Fe overload conditions are often susceptible to numerous 

infectious diseases. For example, frequent transfusions in patients with thalassemias and 

other chronic anemias lead to excess Fe that predisposes these patients to infections (156, 

295). Patients with inherited or acquired forms of the Fe storage disorder, 

hemochromatosis, are particularly susceptible to infections with enteric Gram-negative 

pathogens such as Vibrio vulnificus and Yersinia enterocolitica (96, 174). Interestingly, 

macrophages from patients with the inherited form of hemochromatosis resulting from 

the C282Y mutation in the gene HFE are very low in Fe. This observation led to the 

hypothesis that these patients are resistant to infection by intracellular pathogens such as 

S. typhi, the causative agent of typhoid fever, and Mtb, the replication of which depends 

on intracellular Fe pools. If this is the case, resistance to some pathogens may provide 

evolutionary pressure to maintain this allele within the population (300). 

The existence of bacterial receptors that specifically recognize Fe or heme-

binding proteins of their preferred or obligate hosts exemplifies the central role for 

nutritional immunity in the host-pathogen relationship. For example, Staphylococcus 
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aureus IsdB preferentially binds human hemoglobin over hemoglobin from other species, 

demonstrating that S. aureus has evolved to recognize hemoglobin from its primary host 

with greater affinity (230, 282). This interaction plays an important role in pathogenesis 

as S. aureus preferentially utilizes human hemoglobin as an Fe source and transgenic 

mice expressing human hemoglobin are more susceptible to S. aureus infection in an 

IsdB-dependent manner (230).  The structural basis for IsdB binding to human 

hemoglobin has not been determined. However, the co-crystal structure of IsdH NEAT 

domain 1 with human hemoglobin demonstrates interactions with several residues that 

differ between human and mouse hemoglobin and thus may mediate preferential 

recognition of the human protein (150). Host Fe source preference is not unique to S. 

aureus as other bacterial pathogens that preferentially colonize humans also grow better 

on human hemoglobin compared to hemoglobin from other species (230). In addition, the 

obligate human pathogens N. meningitidis and N. gonorrhoeae express the transferrin 

binding receptors TbpA and TbpB, which preferentially recognize human transferrin (261, 

311). Species specificity appears to be dictated by interactions between TbpA with 

residues on transferrin that are unique to the human protein (206). Both the examples of 

IsdB from S. aureus and TbpA from Neisseria spp. introduce the intriguing possibility 

that polymorphisms in human hemoglobin or human transferrin may impact susceptibility 

or resistance to infection.  

 

Conclusions and areas for ongoing or future study in nutritional immunity 

Advances in our understanding of nutritional immunity and the requirements of 

pathogens for transition metal homeostasis have led to numerous clinical and industrial 
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applications. Cu has been used to prevent bacterial overgrowth on industrial surfaces and 

introduced into numerous medical devices to reduce the risk of bacterial infections (29, 

41, 190). In addition, siderophores have been used therapeutically in patients with Fe 

overload disorders, and chalkophores show promise in treating Wilson’s disease, an 

inherited copper storage disorder (276, 314).  

It is clear that nutrient limitation by the host and nutrient acquisition by bacteria 

are crucial processes in the pathogenesis of infectious diseases. Likewise, transition metal 

intoxication has emerged as an important component of host defense while bacterial 

detoxification systems are necessary for pathogenesis. To date, much of the work in 

nutritional immunity has focused on transition metals. However, bacterial pathogens also 

rely on their hosts for additional nutrients such as carbon, nitrogen and sulfur. Emerging 

evidence suggests that successful adaptation to the host environment depends on the 

ability to take advantage of the available or predominant carbon sources (109, 233, 250, 

279, 305). This is particularly true of intracellular pathogens whose nutrient pool is the 

host cell cytoplasm (79, 236). Unlike nutrient metal restriction by the host, it remains to 

be determined whether specific mechanisms to limit non-metal nutrients are components 

of nutritional immunity.  

As the field of nutritional immunity progresses many important questions remain open. 

Bacterial transition metal acquisition systems have been extensively characterized for 

their roles in virulence. Despite this fact, the precise mechanisms through which nutrient 

metal starvation impact bacterial processes has not been clearly defined. This represents 

an area for active ongoing investigation. One recent example is the demonstration that 

Mn chelation by calprotectin inhibits bacterial superoxide defenses (136). S. aureus 
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encodes two Mn-dependent superoxide dismutases (SODs). Treatment with calprotectin 

sensitizes S. aureus to superoxide generating compounds by limiting Mn availability and 

thus reducing SOD activity. Furthermore, S. aureus is more sensitive to neutrophil killing 

following exposure to calprotectin. These findings lead to a model in which neutrophils 

deliver a double hit to S. aureus by delivering calprotectin to the site of infection (i) 

where calprotectin chelates available Mn and Zn (ii). Mn chelation by calprotectin 

reduces SOD activity (iii), thereby sensitizing S. aureus to ROS generated by the 

neutrophil (iv) (Figure 5). Given the important role for Mn in resistance to oxidative 

stress in other bacteria, as well as the possibility that Zn chelation by CP could inhibit 

Cu/Zn-SODs, this model may be generally applicable to numerous pathogens (210). 

 

Figure 5. Overview of the impact of CP on S. aureus superoxide defenses. 

Bacterial genomes encode a multitude of predicted metal-dependent enzymes, 

however many of their functions and metal co-factor requirements have not been 

experimentally validated. Moreover, whether additional host proteins contribute to 

nutrient limitation and the contribution of metalloproteins to processes such as immune 

cell recruitment, trafficking and activation remain to be determined.  Metals have a 

tremendous impact on the outcome of all host-microbe interactions. Therefore, defining 
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the mechanisms and molecular machinery at play during the struggle for nutrient metal 

has the potential to uncover new therapeutic targets for the treatment of both plant and 

animal infections.   
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A version of the following chapter (Chapter II: Acinetobacter baumannii increases 

tolerance to antibiotics in response to extracellular NaCl) was previously published in 

Antimicrobial Agents And Chemotherapy, 2010, 54: 3, 1029–1041| doi: 10.1128/ 

AAC.00963-09. 
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II. Acinetobacter baumannii increases tolerance to antibiotics in response to 

extracellular NaCl 

 

Introduction 

 

Acinetobacter baumannii is well adapted to the hospital environment where 

infections caused by this organism are associated with significant morbidity and mortality. 

Genetic determinants of antimicrobial resistance have been described extensively, yet the 

mechanisms through which A. baumannii regulates antibiotic resistance have not been 

defined. An extensive regulatory capacity is encoded within the genome of A. baumannii, 

which likely contributes to this organism’s ability to adapt to a broad range of 

environmental conditions. Based on these facts, we hypothesize that A. baumannii must 

possess mechanisms to sense and respond to the external environment, and that the 

associated regulatory systems may contribute to antibiotic resistance in this organism. In 

an attempt to identify the regulatory mechanisms governing resistance in A. baumannii 

we first sought to identify environmental signals encountered within the hospital 

environment or the human host that contribute to antibiotic resistance. We examined 

sodium chloride (NaCl) specifically as NaCl is ubiquitous within the hospital 

environment and within the human host, and is found at varying concentrations in drug 

formulations, wound dressings, intravenous fluids, body fluids and on the surface of the 

skin, among other sites. Through proteomic and transcriptional analyses our work 

establishes that NaCl, and more broadly monovalent cations, are important environmental 

signals sensed by A. baumannii.  Specifically, NaCl exposure induces a regulatory 
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cascade that ultimately results in decreased susceptibility to antibiotics of distinct classes. 

Our data further demonstrate that this response to NaCl is conserved among MDR 

clinical isolates and that NaCl-induced antibiotic tolerance is likely multi-factorial, being 

mediated through both transcriptional and post-translational regulation of cell envelope 

composition. Taken together, these data demonstrate that A. baumannii regulates its 

intrinsic antibiotic resistance profile in response to a commonly encountered 

environmental signal, underscoring the adaptability of this organism to growth within the 

hospital environment and within its host. 

 

Materials and Methods 

 

Bacterial strains, media and antibiotics 

The reference strain ATCC 17978 and the sequenced clinical strain AYE were 

obtained from the American Type Culture Collection (Manassas, Virginia). Clinical 

isolates were obtained from the University of Nebraska Medical Center (Omaha, NE). A. 

baumannii strain AB0057 was a gift from Dr. Robert Bonomo (Case Western Reserve 

University, Cleveland, OH) and A. baumannii strains AB900 and AB307-0294 were gifts 

from Dr.  Anthony Campagnari (State University at Buffalo, Buffalo, NY). All 

experiments were performed using the reference strain ATCC 17978 unless otherwise 

specified. Bacteria were routinely maintained on Mueller Hinton Agar (MHA) or broth 

(MHB). All antibiotics and the efflux pump inhibitor Phenyl-Arginine -naphthylamide 

(PAN) were obtained from Sigma-Aldrich (St. Louis, MO). Stock solutions of 

antibiotics were made in water, stored at -80 C and thawed on ice prior to use.  
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SDS-PAGE analysis of supernatant proteins  

Overnight cultures of A. baumannii ATCC 17978 were diluted 1:100 in Luria 

Broth (LB) +/- 200 mM NaCl or MHB (without NaCl) and MHB supplemented with 

NaCl or KCl to final concentrations of 50, 90, 150 or 300 mM and incubated at 37 C 

with shaking at 180 rpm. Bacteria were harvested by centrifugation and supernatants 

were collected and filtered through 0.22 m syringe filters (Millipore Corporation, 

Billerica, MA) to remove residual cells. Proteins were precipitated from the supernatants 

by addition of cold trichloroacetic acid (TCA) to a final concentration of 20 % (v/v) and 

the samples were incubated at 4 C overnight. Precipitated proteins were pelleted by 

centrifugation (20 minutes, 10,500 x g), washed once with cold ethanol (100 %) and 

resuspended in Laemmli sample buffer (62.5 mM Tris, 10 % v/v glycerol, 2 % wt/v 

sodium dodecylsulfate, 5 % v/v 2-mercaptoethanol, 0.001 % wt/v bromophenol blue) 

(24). Proteins were resolved by SDS-PAGE in 15 % polyacrylamide gels and visualized 

by staining with Coomassie Brilliant Blue (Pierce, Rockford, IL).  

 

Protein sample preparation for proteomic analysis  

For proteomic analyses, A. baumannii was cultured as above in LB +/- 200 mM 

NaCl. Proteins were precipitated from filtered supernatants by addition of ammonium 

sulfate to 80 % saturation and incubating with constant mixing at 4 C for 4 hours. 

Precipitated proteins were pelleted by centrifugation (10,500 x g, 20 minutes) and 

resuspended in 600 l Tris-buffered saline (150 mM NaCl, 10 mM Tris, pH 7.6). The 

samples were dialyzed into Tris buffer (20 mM Tris pH 7.5, 100 mM NaCl, 1 mM EDTA, 

0.02 % sodium azide) overnight, mixed with Laemmli sample buffer and electrophoresed 
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approximately 2 cm into a 15 % polyacrylamide gel. Gels were stained with Colloidal 

Blue, destained with water, and the entire protein-containing region was excised and 

subjected to in-gel trypsin digestion using a standard protocol [Ham 2005].  Briefly, the 

gel regions were washed with 100 mM ammonium bicarbonate for 15 minutes and the 

proteins were reduced with 5 mM DTT in fresh ammonium bicarbonate for 20 minutes at 

55° C.  After cooling to room temperature, iodoacetamide was added to 10 mM final 

concentration and placed in the dark for 20 minutes at room temperature.  The solution 

was discarded and the gel pieces washed with 50 % acetonitrile/50 mM ammonium 

bicarbonate for 20 minutes, followed by dehydration with 100 % acetonitrile.  The liquid 

was removed and the gel pieces were completely dried, re-

modified trypsin (Promega, Madison, WI) in 100 mM NH4HCO3 and digested overnight 

at 37 °C.  Peptides were extracted by three changes of 60 % acetonitrile/0.1 % 

trifluoroacetic acid, and all extracts were combined and dried in vacuo. Samples were 

-MS-MS analysis. 

 

LC-MS-MS Analysis and Protein Identification 

Resulting peptides were analyzed using a Thermo Finnigan LTQ ion trap 

instrument equipped with a Thermo MicroAS autosampler and Thermo Surveyor HPLC 

pump, Nanospray source, and Xcalibur 2.0 SR2 instrument control.  Peptides were 

separated on 

-line solid-phase extraction 

liquid silicate Kasil 1 (Cortes 1987)] similar to that previously described (25). The flow 
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from the HPLC pump was split prior to the injection valve to achieve flow-rates of 700 

nL-

Mobile phase B consisted of 0.1 % formic acid in acetonitrile.  A 95 min gradient was 

performed with a 15 min washing period (100 % A for the first 10 min followed by a 

gradient to 98 % A at 15 minutes) to allow for solid-phase extraction and removal of any 

residual salts.  Following the washing period, the gradient was increased to 25 % B by 50 

min, followed by an increase to 90 % B by 65 min and held for 9 min before returning to 

the initial conditions.  Tandem spectra were acquired using a data-dependent scanning 

mode in which one full MS scan (m/z 400-2000) was followed by 9 MS-MS scans.  

Tandem spectra were searched against the Acinetobacter subset of the UniRef100 

database using the SEQUEST algorithm.  The database was concatenated with the 

reverse sequences of all proteins in the database to allow for the determination of false 

positive rates.  Protein matches were preliminarily filtered using the following criteria:  

cross-correlation (Xcorr) value of ≥ 1.0 for singly charged ions, ≥ 1.8 for doubly charged 

ions, and ≥ 2.5 for triply charged ions.  A ranking of primary score (RSp) of ≤ 5 and a 

preliminary score (Sp) of ≥ 350 were also required for positive peptide identifications.  

Once filtered based on these scores, all proteins identified by less than two peptides were 

eliminated, resulting in false positive rates of < 1 %. SEQUEST output was then filtered 

using IDPicker using a false positive ID threshold (default is 0.05 or 5 % false positives) 

based on reverse sequence hits in the database. Protein reassembly from identified 

peptide sequences is done with the aid of a parsimony method recently described by 

Zhang et al., which identifies indiscernible proteins (protein groups) that can account for 

the identified peptides (310). Only proteins present in each of three independent samples 
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were considered in subsequent analyses. The relative abundance of each protein was 

estimated by counting total spectra corresponding to each protein ID and normalizing 

first to the size of the predicted protein and subsequently to spectral counts for EF-Tu. 

EF-Tu was selected for sample normalization as this protein is a highly abundant 

cytoplasmic protein that is constitutively expressed under a wide range of tested 

conditions and its abundance in culture supernatants was not expected to change in 

response to NaCl (unpublished data). Data from three independent samples were 

averaged for each condition (low and high NaCl) and statistically significant differences 

were determined by Student’s t test (p ≤ 0.05). 

 

Growth conditions for bacterial RNA isolation 

Overnight cultures of A. baumannii strain ATCC 17978 were diluted 1:100 in 

fresh medium (LB for microarray only and TSB or MHB for quantitative RT-PCR) or 

medium supplemented with 150 or 200 mM NaCl. Cultures were grown at 37 C to early 

exponential and stationary phases then mixed with an equal volume of ice-cold 

ethanol:acetone (1:1) or with two volumes RNA protect bacterial reagent, and stored at -

80 C.   For RNA isolation, mixtures were thawed on ice and cells were collected by 

centrifugation. Cells were disrupted either mechanically or by enzymatic lysis. For 

mechanical disruption, cell pellets were washed once and suspended in TE buffer (10 

mM Tris-HCl, 1 mM EDTA, pH 7.6).  Cell suspensions were transferred to lysing matrix 

B tubes (MP Biomedicals, Solon, OH) and were lysed by two cycles of mechanical 

disruption in a FP120 shaker (Thermo Scientific, Waltham, MA) at settings 5.0 and 4.5 

for 20 s.  Cell debris was removed by centrifugation at 16,000 x g at 4 C for 10 min. For 
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enzymatic lysis, bacterial pellets were suspended in TE buffer containing 15 mg/ml 

lysozyme and 20 mg/ml proteinase K (QIAGEN, Valencia, CA) and incubated at 37 C 

for 1 hour. Following mechanical or enzymatic lysis total RNA was isolated from cell 

lysates using Qiagen RNeasy
®

 Mini columns following the manufacturer’s 

recommendation for prokaryotic RNA purification (QIAGEN, Valencia, CA).  RNA 

concentrations were determined spectrophotometrically (OD260 1 = 40 g/ml). 

 

GeneChip® Analyses 

Ten micrograms of each RNA sample was reverse transcribed, fragmented, 3’ 

biotinylated, and hybridized to an A. baumannii GeneChip
®
, following the 

manufacturer’s recommendations for antisense prokaryotic arrays (Affymetrix, Santa 

Clara, CA).  The GeneChips
®
 used in this study, PMDACBA1, are custom-made 

microarrays that were developed based on the genomic sequence of A. baumannii strain 

ATCC 17978 and all additional unique A. baumannii GenBank entries that were available 

at the time of design (270).  In total, 3731 predicted A. baumannii open reading frames 

and 3892 ATCC17978 intergenic regions greater than 50 base pairs in length are 

represented on PMDACBA1.  GeneChip
®
 data for biological replicates were normalized, 

averaged, and analyzed using GeneSpring GX 7.3.1 Analysis Platform software (Agilent 

Technologies; Redwood City, CA). Genes that were considered differentially expressed 

in response to NaCl exhibited ≥ 2-fold increase or decrease in transcript titer in 

comparison to mock treated cells, were determined to be “present” by Affymetrix 

algorithms during the induced condition, and demonstrated a significant change in 

expression (p ≤ 0.05) as determined by Student’s t test. Transcripts demonstrating 
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significant changes were divided based on whether they were up-regulated or down-

regulated and organized according to the Cluster of Orthologous Groups (COG) 

functional classifications (Appendix I, Tables 12 and 13). 

 

Quantitative RT-PCR confirmation of microarray results 

To validate the results of the microarray analyses, five predicted transporters and 

two transcriptional regulators for which transcripts were increased in response to NaCl 

were selected for confirmation by quantitative real-time reverse transcriptase PCR. To 

confirm that NaCl exerted similar changes in gene expression in MHB, we examined 

expression of representative transporters that were up-regulated in high NaCl in the array, 

as well as carO, which was down-regulated in NaCl. Reverse transcription was carried 

out on 2 g total RNA using 200 units M-MLV reverse transcriptase and 1 g random 

hexamers according to the manufacturer’s protocol (Promega, Madison, WI). Real-time 

PCR was performed using Platinum® SYBR green qPCR SuperMix-UDG (Invitrogen, 

Carlsbad, CA). Each 20 l reaction contained 10 l SuperMix, 200 nM primers, and 10 

ng cDNA template (0.01 ng template for 16S rRNA). Primers for real-time PCR are listed 

in Appendix I, Table 11. The efficiency of each primer pair was determined by carrying 

out RT-PCR on serial dilutions of cDNA and the specificity was verified by melting 

curve analyses (95°C for 1 minute followed by melting at 1°C decrements for 10 seconds 

from 95°C to 35°C). Following verification of primer efficiency and specificity, RT-PCR 

analyses were routinely carried out according to the following amplification protocol: 50 

C for 2 minutes (UDG incubation), 95 C for 2 minutes and 40 cycles of 95 C for 15 

seconds, 58 C for 30 seconds and 72 C for 30 seconds in an iQ5 Real-Time PCR 



 58 

Detection System (Bio-Rad). Data were analyzed using iQ5 Optical System Software, 

version 2.0 (Bio-Rad) and relative quantification was determined by the Ct method 

normalizing to 16S rRNA.  

 

Growth curve and MIC analyses of antimicrobial resistance 

Overnight cultures of A. baumannii were diluted 1:100 in MHB without NaCl and 

grown to an OD600 of 0.4. The cultures were then diluted to a final cell density of 10
5
 

CFU/ml in 100 l MHB or MHB supplemented with NaCl (150 mM) or KCl (150 mM) 

with or without the following antibiotics: amikacin, 4.5 mg/L; gentamicin, 1.125 mg/L; 

colistin, 0.75 or 1.5 mg/L, imipenem, 0.0625 mg/L; or levofloxacin, 0.09 mg/L. These 

antibiotic concentrations were selected because they were at or just below the inhibitory 

concentration for A. baumannii strain 17978 grown without NaCl. For efflux inhibition 

assays, A. baumannii was incubated with the efflux pump inhibitor PAN (60 mg/L) for 

30 minutes at room temperature prior to addition of antibiotics. The growth curves were 

performed in triplicate in 96-well, round-bottom plates (Corning Inc., Corning, NY), 

incubating the cultures for 12 hours at 37C with shaking at 180 rpm. Bacterial growth 

was monitored by measuring the optical density of the culture at 600 nm at 2-hour 

intervals. Minimum inhibitory concentrations were determined by broth microdilution 

according to NCCLS standards except that medium (MHB) was supplemented with 150 

mM NaCl where indicated. 
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Results 

 

A. baumannii secretes antibiotic resistance determinants and virulence factors in 

response to NaCl.  

To investigate the response of A. baumannii to external signals that may be 

encountered within the hospital environment or upon infection of the human host, we first 

examined proteins released into culture supernatants upon exposure of A. baumannii to a 

variety of conditions.  Tested conditions included several types of rich growth media 

(tryptic soy broth [TSB], Luria broth [LB], brain-infusion broth, brain-heart infusion 

broth), iron limitation in rich or minimal media, pH ranging from 5.5-8.5, and high 

concentrations of NaCl (Figure 6 and data not shown). Of these conditions, we noted the 

most striking difference in supernatant protein profiles when A. baumannii was cultured 

in high NaCl. Specifically, supplementation with 200 mM NaCl produces an overall 

increase in proteins released into culture medium (Figure 6).  

 

 

Figure 6. NaCl induces increased release of proteins into culture 

supernatants.  

Total protein was precipitated with trichloroacetic acid from filtered 

supernatants of A. baumannii grown to stationary phase in LB (-) or LB 

supplemented with 200 mM NaCl (+) and resolved by SDS-PAGE in 15 % 

polyacrylamide gels. * = bands that increase in high NaCl. 

 
To rule out the possibility that the increased abundance 

of protein in culture media was the result of increased cell lysis 

or disruption of the bacterial membrane, we assessed membrane 

damage upon NaCl exposure. Propidium iodide-staining of cells 

taken at several time points upon culture in low or high NaCl 
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followed by flow cytometric analyses showed no significant difference in the proportion 

of stained cells (membrane-compromised), to unstained cells (live, membrane intact) 

(data not shown). These results suggest that the increased release of proteins into the 

extracellular environment upon culture in NaCl is independent of cell lysis or membrane 

damage. To determine if this response involved a subset of proteins or represented a 

global increase in protein secretion, we identified secreted proteins from A. baumannii 

grown in LB +/- 200 mM NaCl by liquid chromatography/tandem mass spectrometry 

(LC/MS/MS). Searching resultant tandem spectra against Acinetobacter sequences led to 

positive identification of approximately 60 proteins in A. baumannii supernatants (Table 

3; for complete experimental details and data analysis, see Chapter II, Materials and 

Methods). These proteins were comprised predominantly of membrane and periplasmic 

proteins with few predicted cytoplasmic proteins, further confirming that the increased 

abundance of proteins upon NaCl exposure is not due to increased cell lysis. Notably, a 

large number of the identified proteins were differentially secreted in response to NaCl 

(Table 3). Outer membrane proteins were overrepresented among proteins that increased 

significantly in high NaCl, while intracellular proteins involved in metabolism and 

protein folding generally showed little changes between the two conditions.  We predict 

that the lack of change in intracellular proteins between the two conditions reflects the 

fact that these proteins are not likely secreted. Rather, identification of these proteins in 

supernatants likely results from a limited amount of cell lysis that occurs during normal 

bacterial growth in both conditions. Interestingly, proteins associated with antibiotic 

resistance also increased significantly in high NaCl. These were CarO and the 33-36 kDa 

outer membrane protein (omp), which are two porins with predicted roles in antibiotic 
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transport through the outer membrane. CarO has been shown to form non-selective pores 

and loss or inactivation of this porin has been associated with increased resistance to 

carbapenems (163, 181, 247). The 33-36kDa omp has not been characterized as 

extensively as CarO, however loss of this predicted porin has also been associated with 

resistance to carbapenems in A. baumannii (54). In addition to these two porins we 

observed a significant increase in the abundance of two chromosomally encoded beta-

lactamases (AmpC and OXA-95) and outer membrane protein A (OmpA).  OmpA has 

been implicated in virulence, both in cell culture and animal models of A. baumannii 

pathogenesis, and is modeled to contribute to biofilm formation (50-52, 91). These 

changes in protein abundance in culture supernatants suggest that A. baumannii regulates 

expression and/or secretion of specific proteins in response to NaCl. Furthermore, the 

large number of outer membrane proteins and proteins associated with antibiotic 

resistance suggests that the response to NaCl in A. baumannii may have an impact on 

antibiotic resistance.  

Table 3: Proteins identified by LC/MS/MS analysis of supernatants from A. baumannii cultured in 

LB or LB + 200 mM NaCl.  

Accession # Description 

Average 

Spectral Count
a 

p-

value
b
 

Predicted 

MW 

(kDa) 
High 

NaCl 

Low 

NaCl 

Outer Membrane 

YP_001085848 Outer membrane protein A 1.605 0.355 0.033 38.4 

YP_001085848 Outer membrane protein A 6.282 1.091 0.022 38.4 

YP_001085848 Outer membrane protein A 14.415 2.104 0.018 38.4 

YP_001085848 Outer membrane protein A 2.380 0.465 0.008 38.4 

YP_001086308 putative outer membrane protein 6.629 1.083 0.044 25.6 

YP_001085614 peptidoglycan-associated lipoprotein 1.564 0.209 0.032 20.8 

YP_001083918 putative outer membrane protein 3.332 0.863 0.018 22.5 

YP_001085744 outer-membrane lipoproteins carrier protein 1.581 0.393 0.042 25.1 

YP_001084998 putative outer membrane protein 0.161 0.036 0.100 91.9 

YP_001084997 putative outer membrane protein 1.866 0.908 0.005 8.2 

YP_001085452 lipoprotein 0.274 0.110 0.191 29.9 

Antibiotic Resistance 

YP_001083108 

 

putative RND type efflux pump involved in 

aminoglycoside resistance 2.764 0.881 0.101 36.7 
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YP_001086288 

 
33-36 kDa outer membrane protein - associated 

with carbapenem resistance 1.753 0.338 0.033 34.0 

YP_001085388 beta-lactamase (AmpC)     

YP_001083548 
carboxy-terminal protease for penicillin-binding 

protein 0.453 0.273 0.304 80.4 

YP_001085752 RND family drug transporter (AdeK) 0.160 0.082 0.115 52.9 

YP_001085752 RND family drug transporter (AdeK) 0.445 0.082 0.022 52.9 

YP_001084546 beta-lactamase OXA-95 0.739 0.166 0.021 31.4 

YP_001085557 29 kDa outer membrane protein (CarO) 1.132 0.263 0.036 29.0 

YP_001085388 beta-lactamase (AmpC) 0.271 0.071 0.041 46.4 

Hypothetical Proteins 

YP_001085392 hypothetical protein 1.399 0.308 0.019 44.6 

YP_001084326 hypothetical protein 2.091 1.128 0.169 18.8 

YP_001084552 putative signal peptide 1.078 0.358 0.008 20.8 

YP_001085962 

  

putative signal peptide, metallo-beta-lactamase 

superfamily 0.385 0.309 0.410 31.9 

YP_001084993 putative signal peptide 0.398 0.197 0.037 30.9 

YP_001084084 putative Signal Peptide (Contains OsmY region) 0.665 0.133 0.048 24.7 

YP_001083928 outer membrane lipoprotein 1.100 0.269 0.152 12.2 

YP_001083365 hypothetical protein 0.666 0.223 0.053 14.7 

Protein Synthesis/Chaperone Proteins 

YP_001083352 protein chain elongation factor EF-Tu 1.000 1.000 --- 44.5 

YP_001083902 elongation factor G 0.212 0.195 0.781 78.8 

YP_001085682 60 kDa chaperonin 0.340 0.336 0.912 57.2 

YP_001084601 30S ribosomal protein S1 0.179 0.205 0.761 61.1 

YP_001085965 chaperone protein dnaK 0.138 0.152 0.871 69.5 

YP_001084218 ATP-dependent protease, Hsp 100 0.057 0.081 0.575 95.3 

YP_001083134 thiol:disulfide interchange protein 0.460 0.142 0.155 23.2 

YP_001086079 50S ribosomal protein L3 0.317 0.193 0.213 22.5 

Bacterial Programmed Cell Death 

YP_001085817 bacteriolytic lipoprotein entericidin B 3.731 0.661 0.176 5.0 

YP_001085544 putative serine protease 0.416 0.127 0.200 50.2 

Cell Wall Biosynthesis 

YP_001086026 putative lytic murein transglycosylase, soluble 1.048 0.832 0.234 76.5 

YP_001085967 
putative membrane-bound lytic murein 

transglycosylase 0.526 0.430 0.706 47.9 

YP_001085340 
membrane-bound lytic murein transglycosylase 

B 0.481 0.183 0.036 36.9 

Glucose Metabolism 

YP_001083999 aldose 1-epimerase precursor 4.167 2.989 0.236 41.5 

YP_001084980 glucose dehydrogenase 2.795 1.313 0.031 14.8 

YP_001084980 
quinoprotein glucose dehydrogenase-B 

precursor 0.979 0.487 0.023 52.8 

YP_001084927 enolase 0.118 0.183 0.025 46.4 

TCA cycle 

YP_001085734 succinyl-CoA ligase [ADP-forming] subunit alpha 0.179 0.403 0.067 30.7 

YP_001085733 succinyl-CoA synthetase beta chain 0.192 0.329 0.383 41.4 

YP_001085497 isocitrate dehydrogenase 0.116 0.077 0.551 82.5 

YP_001083613 aconitate hydratase 1 0.055 0.060 0.896 100.3 

Electron Transport Chain 

YP_001084520  glutamate/aspartate transport protein 4.596 0.855 0.025 32.1 

YP_001083240 ATP synthase subunit beta 0.109 0.190 0.023 50.3 

Q6FAL6 glutaminase-asparaginase 0.613 0.122 0.050 37.9 
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YP_001086024 malate dehydrogenase 0.239 0.294 0.442 35.4 

YP_001083238 ATP synthase subunit alpha 0.098 0.121 0.453 56.0 

Antioxidant 

YP_001084237 alkyl hydroperoxide reductase, C22 subunit 0.264 0.410 0.025 20.7 

Other 

YP_001085613 Protein TolB precursor 1.085 0.648 0.705 46.4 

YP_001085247 CsuA/B 0.922 0.860 0.774 18.7 

YP_001084991 protein RecA 0.145 0.232 0.301 37.8 

Q6F9W2 host factor I for bacteriophage Q beta replication 0.321 0.317 0.956 17.1 
a
Spectral counts were averaged from three independent replicates after first normalizing to the size of the 

expected protein and subsequently to an internal constitutively expressed protein (EF-Tu). 
b
P-values were determined by Student’s t test. Boldface type indicates proteins that exhibit a statistically 

significant difference in abundance between the low and high NaCl samples.  

 

NaCl induces up-regulation of putative efflux transporters.  

The results of our proteomic analyses of supernatant proteins suggest that A. 

baumannii orchestrates the release of proteins into culture media upon exposure to high 

concentrations of NaCl. To determine if these changes are transcriptionally mediated we 

sought to determine the global transcriptional response to NaCl by microarray analyses. A. 

baumannii was cultured as above in LB +/- 200 mM NaCl. RNA was isolated from 

stationary phase bacteria and analyzed by hybridization to Affymetrix GeneChip
®
 arrays. 

Over 150 genes were found to be significantly up-regulated in response to NaCl 

(Appendix I, Table 12). Genes involved in inorganic ion transport and metabolism, 

secondary metabolite biosynthesis, transport and catabolism, and transcriptional 

regulation were among those most highly represented in the up-regulated transcripts. We 

also observed up-regulation of several genes associated with pilus formation and a cluster 

of genes involved in biosynthesis and transport of the siderophore acinetobactin, which is 

involved in resistance to iron starvation (74). Interestingly, we observed down-regulation 

of carO and the 33-36kDa Omp (6.4-fold and 2.7-fold, respectively; Appendix I, Table 

13) and constitutive expression of OmpA, AmpC and OXA-95, all of which were 
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increased in abundance in the proteomic analyses of culture supernatants. These results 

suggest that the increased presence of these proteins in culture media is not likely 

controlled at the transcriptional level. Given that many of the proteins that increased in 

abundance in culture supernatants showed decreased transcript levels, it is possible that 

release of these proteins represents a post-translational mechanism for down-regulating 

their membrane abundance.  

One class of genes in which many members were up-regulated is that of putative 

efflux transporters. Approximately 20% of the up-regulated transcripts belong to genes 

encoding putative transport proteins (Table 4 and Figure 7A). The overrepresentation of 

transporter genes in the up-regulated transcripts is striking and to our knowledge has not 

been observed in other bacteria in which global transcriptional responses to NaCl or 

osmotic stress have been investigated (18, 290). Of the 33 transcripts encoding 

components of 25 distinct transporters that increased in high NaCl, 18 (14 distinct 

transporters) belong to families in which members have been associated with transport of 

antibiotics or other toxic compounds (179, 181, 275). These include the Resistance-

Nodulation-Division family (RND), the Drug/Metabolite Transporter family (DMT), the 

ATP-binding Cassette (ABC) family and the Major Facilitator Superfamily (MFS). In 

addition, two genes (A1S_2141 and A1S_1814) are predicted to encode transporters for 

K
+
 or Na

+
, respectively (Figure 7a). To validate the microarray results we selected a 

subset of genes for confirmation by quantitative RT-PCR.   Specifically, we selected five 

transporters with predicted roles in antibiotic resistance, as well as two TetR-family 

transcriptional regulators that were significantly up-regulated in the high NaCl condition 

(Appendix I, Table 12). Representative qPCR results are given in Figure 7b, which 
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confirmed that the tested transcripts were increased in high NaCl as compared to the low 

NaCl condition. Notably, five transcripts displayed a dose-response to NaCl with a 

further increase in expression at 260 mM NaCl as compared to 200mM NaCl. Taken 

together, these results demonstrate that NaCl induces significant changes in gene 

expression in A. baumannii. Furthermore, these results demonstrate extensive regulation 

of efflux transporters upon NaCl exposure, which may contribute to antibiotic resistance.  
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Table 4: Predicted transporters that were found to be significantly upregulated in response to NaCl 

by microarray analysis 

Locus tag Description Fold-induction
a 

A1S_1769 putative RND family drug transporter 2.9 

A1S_2304 putative RND family drug transporter 2.9 

A1S_2932 heavy metal efflux pump (CzcA) 2.6 

A1S_2934 heavy metal RND efflux outer membrane protein (CzcC) 16.0 

A1S_3445 putative RND family cation/multidrug efflux pump 3.2 

A1S_0565 DMT family permease 2.1 

A1S_1323 DMT family permease 3.4 

A1S_1992 DMT family permease 2.6 

A1S_1284 ABC-type nitrate/sulfonate/bicarbonate transport systems 2.3 

A1S_1286 ABC-type nitrate/sulfonate/bicarbonate transport systems 10.1 

A1S_1287 ABC nitrate/sulfonate/bicarbonate family transporter 2.0 

A1S_1361 ABC-type spermidine/putrescine transport system 2.2 

A1S_1362 ABC-type Fe
3+

 transport system 9.4 

A1S_1722 putative ATP-binding component of ABC transporter 2.0 

A1S_2378 putative ABC transporter 14.3 

A1S_2388 putative ferric acinetobactin transport system 4.0 

A1S_2389 putative ferric acinetobactin transport system 23.2 

A1S_1751 AdeA2 membrane fusion protein 25.9 

A1S_1752 AdeA1 membrane fusion protein 8.7 

A1S_2376 putative ABC-type antimicrobial peptide transport system 11.8 

A1S_2377 putative ABC-type multidrug transport system 3.6 

A1S_3420 MATE family drug transporter 12.1 

A1S_0596 putative transporter 2.2 

A1S_0915 putative MFS transporter 3.2 

A1S_1331 major facilitator superfamily 2.7 

A1S_1739 major facilitator superfamily 4.1 

A1S_2198 putative mutlidrug resistance protein 2.4 

A1S_3146 multidrug efflux transport protein 17.6 

A1S_1209 putative benzoate transport porin (BenP) 16.2 

A1S_1814 predicted Na
+
-dependent transporter 2.5 

A1S_1956 putative amino acid permease 2.0 

A1S_2141 potassium-transporting ATPase A chain 2.4 

A1S_3251 transporter, LysE family 3.9 
a
Fold-induction in transcript level in LB + 200 mM NaCl relative to  LB without NaCl supplementation. 

Boldface type indicates transporters with predicted roles in extrusion of antibiotics or other toxic 

compounds from the cell.  
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Figure 7: A. baumannii up-regulates putative efflux transporters upon culture in high NaCl media 

A) RNA was extracted from A. baumannii grown to stationary phase in LB or LB supplemented with 200 

mM NaCl. The fold-change in transcript levels determined by microarray analyses are shown for putative 

transporters that increased significantly in A. baumannii upon culture in LB supplemented with 200 mM 

NaCl relative to A. baumannii cultured without NaCl supplementation. RND = Resistance-Nodulation-

Division; DMT = Drug/Metabolite Transporter; MFS = Major Facilitator Superfamily; MATE = Multidrug 

and Toxic Compound Extrusion family; ABC = ATP-Binding Cassette superfamily; B) Fold-change in 

transcript levels of selected transporters and transcriptional regulatory genes in 200 mM and 260 mM NaCl 

as compared to media alone as determined by real-time PCR. The fold-change in expression was 

determined using the Ct method. Error bars represent one standard deviation (SD) from the mean and in 

some cases are too small to be seen. The data are representative of at least three independent biological 

replicates. C) Fold-change in transcript levels of selected genes in MHB + 150 mM NaCl relative to MHB 

without NaCl as determined by real-time PCR. Error bars represent the mean  SD. Each bar represents the 

average of three independent biological replicates. Expression changes comparing MHB + NaCl to MHB 

alone were statistically significant (p < 0.05 by Student’s t test) for each gene tested. 

 

NaCl induces tolerance to distinct classes of antibiotics.  

The changes observed in gene expression and secreted protein profile suggest that 

the response to NaCl in A. baumannii may lead to increased resistance to antibiotics. 

MHB is the recommended medium for antibiotic susceptibility testing, therefore we first 

sought to confirm that NaCl induces similar changes in gene expression and protein 
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secretion in MHB as observed in LB. Furthermore, since MHB is formulated without 

NaCl, this medium permits improved titration of NaCl concentrations and therefore better 

resolution of the dose-response to NaCl. Quantitative RT-PCR results demonstrated that 

NaCl induces increased expression of representative transporter genes as well as down-

regulation of the transcript for CarO, further supporting the microarray analyses (Figure 

7c). A. baumannii was cultured in MHB or MHB supplemented with NaCl at 

concentrations between 50 and 300 mM and the resulting supernatant proteins were 

examined by SDS-PAGE. Consistent with the results obtained in LB, there was a 

significant increase in the total abundance of supernatant proteins upon exposure to 300 

mM NaCl (Figure 8). Furthermore, the amount of protein released into culture 

supernatants increased in a dose-dependent manner with increasing concentrations of 

NaCl. These data confirm that NaCl induces similar transcriptional and post-translational 

regulation of membrane proteins in MHB as in LB, providing the foundation for 

examining NaCl effects on antibiotic resistance in this medium. Moreover, these data 

expand upon previous results by demonstrating that 

the secretion of proteins into culture media increases 

in a dose-dependent manner with increasing NaCl.  

 

Figure 8. SDS-PAGE analyses of proteins released into 

culture supernatants.  

Total protein was precipitated with trichloroacetic acid from 

filtered supernatants of A. baumannii grown to stationary phase 

in MHB [-] or MHB supplemented with NaCl to final 

concentrations of 50 mM, 90 mM, 150 mM and 300 mM and 

resolved by SDS-PAGE in 15 % polyacrylamide gels. M = 

molecular mass marker; * = bands that increase with increasing 

NaCl. 
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Figure 9. NaCl induces increased tolerance to distinct classes of antibiotics in A. baumannii.  

A. baumannii strain ATCC 17978 was challenged with amikacin (4.5 mg/L), colistin (0.75 mg/L), 

gentamicin (1.125 mg/L), imipenem (0.0625 mg/L) or levofloxacin (0.09 mg/L) with (dashed lines) or 

without (solid lines) NaCl supplementation of culture media to a final concentration of 150 mM. Bacterial 

growth was monitored by measuring the optical density of the cultures at 600 nm with each point 

representing the mean  SD of at least three cultures (error bars may be too small to be seen). Asterisks 

indicate statistically significant changes in growth upon antibiotic challenge in media containing NaCl 

compared to media lacking NaCl as determined by Student’s t test (* p < 0.05; ** p < 0.005; *** p < 

0.0005).  

 

To determine whether NaCl impacts antibiotic resistance we determined 

minimum inhibitory concentrations for antibiotics from several distinct classes. These 

assays revealed modest increases in the minimum inhibitory concentrations for amikacin, 

levofloxacin and colistin (3, 1.5 and 2-fold increases, respectively). These changes were 

not sufficient to raise the MIC above clinical breakpoints for resistance to any of the 

drugs tested. However, the incremental increase in resistance nonetheless supported the 

hypothesis that the adaptive response to NaCl impacts susceptibility to antibiotics and 

suggested that NaCl may induce a tolerant phenotype in A. baumannii. To assess 

tolerance to antibiotics we monitored growth of A. baumannii challenged with sub-lethal 

concentrations of several classes of antibiotics in the presence or absence of NaCl. 

Growth curve analyses demonstrated that in the presence of physiologic NaCl 
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concentrations (150 mM), A. baumannii displays a significant increase in its ability to 

resist inhibition by antibiotics from four distinct classes: aminoglycosides (amikacin and 

gentamicin), quinolones (levofloxacin), carbapenems (imipenem) and polypeptides 

(colistin) (Figure 9). Given that growth is reduced slightly by NaCl alone, the effect of 

NaCl on antibiotic resistance is even more striking. The protective effect of NaCl is more 

apparent at late time points, which supports a model in which A. baumannii must first 

adapt to NaCl and this adaptive response results in increased tolerance to antibiotics. 

Together, the growth curve analyses demonstrate that NaCl induces tolerance to clinically 

relevant antibiotics.   

To determine whether other cations similarly impact tolerance we performed 

growth curve analyses as above using KCl in the place of NaCl. KCl induces significant 

tolerance to amikacin, colistin and levofloxacin, comparable to the effect observed with 

NaCl (Figure 10A). Examination of supernatant proteins from A. baumannii cultured in 

KCl concentrations ranging from 50-300 mM revealed that KCl exposure results in 

increased abundance of proteins in culture supernatants in a similar pattern as that 

observed for NaCl (Figure 10B). We did not observe the same trend in supernatant 

protein profiles or increased antibiotic resistance upon treatment of A. baumannii with 

high concentrations of sucrose (data not shown). These results suggest that A. baumannii 

may respond to increased concentrations of monovalent ions, rather than to NaCl 

specifically or osmotic stress more generally.  
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Figure 10. Effects of KCl on resistance to antibiotics and on release of proteins into culture media.  

A) Growth curve analyses of A. baumannii challenged with antibiotics in MHB (solid lines) or MHB 

supplemented with 150 mM KCl (dashed lines) at the indicated concentrations. Error bars represent the 

mean  1 SD and may be obscured by the symbol in some cases. Asterisks indicate statistically significant 

changes in growth upon antibiotic challenge in media containing KCl compared to media lacking KCl as 

determined by Student’s t test (* p < 0.05; ** p < 0.005; *** p < 0.0005). B) SDS-PAGE of TCA-

precipitated proteins from A. baumannii culture supernatants. A. baumannii was grown to stationary phase 

in MHB supplemented with 50 mM, 86 mM, 154 mM or 308 mM KCl. * = bands that increase with 

increasing concentrations of KCl. 

Inhibition of efflux reduces NaCl-induced resistance to amikacin and levofloxacin.  

Effects of NaCl on resistance to aminoglycosides have been described for several 

species of both Gram-negative and Gram-positive bacteria (37, 283). While it has been 

proposed in previous studies that the observed NaCl-induced increase in antibiotic 

resistance may be the result of passive inhibition of antibiotic uptake by elevated external 

salt concentration, this has not been conclusively demonstrated (37, 283). In addition, the 

possibility that a regulated response to NaCl mediates antibiotic resistance has not 

previously been investigated. The observation that NaCl induces increased expression of 

efflux pumps introduces the intriguing possibility that the effect of NaCl on antibiotic 

resistance or tolerance is a regulated process, rather than a passive effect on antibiotic 
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uptake. Therefore, to determine the contribution of efflux to NaCl-induced antibiotic 

tolerance we tested whether the efflux pump inhibitor PAN prevents the NaCl-induced 

response. PAN is active against a broad spectrum of efflux pumps and its mechanism of 

action is thought to involve competitive inhibition (168). We pre-treated A. baumannii 

with 60 mg/L PAN for 30 minutes in media with or without NaCl then challenged as 

above with amikacin, colistin, levofloxacin or imipenem. NaCl-induced tolerance to 

levofloxacin and amikacin were significantly reduced upon pre-treatment of A. 

baumannii with PAN (Figure 11). However, we did not observe a difference in the 

effect of NaCl on tolerance to imipenem in the presence or absence of the efflux pump 

inhibitor (data not shown). It is possible that decreased permeation of imipenem into the 

cell, through loss or decreased expression of CarO and the 33-36 kDa Omp, is a more 

important mechanism in mediating tolerance to imipenem in response to NaCl. 

Paradoxically, tolerance to colistin is significantly increased in the presence of PAN 

(Figure 11). At colistin concentrations of 1.5 mg/L, PAN induces resistance to colistin 

regardless of the NaCl content of the media, restoring growth to approximately 75 % of 

that observed in the absence of colistin (Figure 11). Importantly, NaCl alone was not 

sufficient to induce protection of A. baumannii against challenge with 1.5 mg/L of 

colistin (Figure 11). NaCl induced significant resistance to colistin at lower 

concentrations (0.75 mg/L), preventing assessment of the effect of PAN on colistin 

resistance below 1.5 mg/L (data not shown).  Taken together, these data demonstrate that 

antibiotic efflux contributes significantly to NaCl-induced tolerance to levofloxacin and 

amikacin, while alternative mechanisms are necessary for mediating tolerance to 

imipenem and colistin. 
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Figure 11. NaCl-induced resistance to levofloxacin and amikacin is due in part to increased antibiotic 

efflux.   

A. baumannii was treated with amikacin, levofloxacin or colistin in MHB (filled bars) or MHB + 150 mM 

NaCl (white bars) in the presence or absence of 30 mg/L of the efflux pump inhibitor, PAN. Bacterial 

growth was monitored for 12 hours and the optical densities of the cultures were normalized to the 

respective untreated (i.e. antibiotic-free) controls and expressed as the percent bacterial growth. Statistical 

analysis was performed by Student’s t test comparing PAN-treated with respective PAN-untreated 

controls. Error bars =  1 SD from the mean; * p < 0.05, ** p < 0.005.  

 

NaCl induces tolerance to colistin in multidrug resistant clinical isolates of A. 

baumannii.  

Table 5: Antibiotic susceptibility profiles of clinical isolates obtained from the University of Nebraska 

Medical Center compared to the reference strain ATCC 17978. 

Isolatea Source Site 

Antibiotic Susceptibility 

S

A

M 

T

Z

P 

T

I

M 

A

T

M 

F

E

P 

C

T

X 

C

A

Z 

C

R

O 

A

M

K 

G

E

N 

T

O

B 

C

I

P 

L

V

X 

I

P

M 

M

E

M 

S

X

T 

T

E

T 

17978b ATCC CSF S S - R S - - I S S S S - S S R - 

510 UNMC Sputum R R R R R R R R R R R R I S S R - 

2824 UNMC Urine S R R R R R R R R R R R R S S R R 

2898 UNMC Ankle R R R R R R R R R R R R I S S R - 

4860 UNMC Urine R - R R R R R R R R R R R S - R R 

5191 UNMC Urine R - R R R R R R R R R R R S - R R 
a
Strains in bold are classified as multidrug resistant.  

b
Susceptibility data for the reference strain ATCC 17978 has been published previously (6).  

ATCC = American Type Culture Collection, UNMC = University of Nebraska Medical Center, CDC = 

Centers for Disease Control and Prevention; R = resistant, S = susceptible, ND = not determined; SAM = 

ampicillin/sulbactam, TZP = piperacillin/tazobactam, TIM = ticarcillin/clavulanate, ATM = aztreonam, 

FEP = cefepime, CTX = cefotaxime, CAZ = ceftazidime, CRO = ceftriaxone, AMK = amikacin, GEN = 

gentamicin, TOB = tobramycin, CIP = ciprofloxacin, LVX = levofloxacin, IPM = imipenem, MEM = 

meropenem, SXT = trimethoprim-sulfamethoxazole, TET = tetracycline 

 
The strain used in the experiments described in the previous sections is a drug-

susceptible strain of A. baumannii isolated in 1951 (229). Given that recent clinical 

isolates of A. baumannii are resistant to most available antibiotics, we sought to 
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determine whether NaCl impacts resistance in recent MDR isolates of A. baumannii.  We 

specifically investigated whether NaCl induces tolerance to drugs to which the clinical 

isolates were otherwise susceptible. MDR clinical isolates of A. baumannii were obtained 

from the University of Nebraska Medical Center (Table 5). Drug susceptibility profiles 

were reported by the University of Nebraska Medical Center clinical microbiology 

laboratory. The MDR phenotype was defined as resistance to three or more of the 

following antibiotic classes: -lactam--lactamase inhibitor combinations, 

antipseudomonal cephalosporins (ceftazidime of cefepime), aminoglycosides (gentamicin, 

amikacin or tobramycin), quinolones (ciprofloxacin or levofloxacin), and carbapenems 

(imipenem or meropenem). Although MIC data were not available for colistin, resistance 

to colistin has only been reported in a handful of cases in the literature and colistin is 

increasingly used in the treatment of MDR A. baumannii (148, 223). We therefore sought 

to determine if NaCl could induce tolerance to colistin in each of the MDR clinical 

isolates. Growth curves performed in MHB with or without NaCl demonstrated that all of 

the isolates show similar susceptibility to colistin in the absence of NaCl as that observed 

with the reference strain.  Likewise, all of the A. baumannii isolates were protected 

against 0.75 mg/L colistin in the presence of 150 mM NaCl (Figure 12). Similar to the 

results with the reference strain, the MIC for colistin was increased up to 2-fold in the 

presence of NaCl for the majority of clinical isolates tested (Table 6). Interestingly, 

UNMC 4860 shows more rapid tolerance to colistin in the presence of NaCl as 

demonstrated by the growth curve analyses, but the MIC (determined following 24 hours 

of exposure to drug) actually decreased slightly. To confirm that the conservation of the 

NaCl-induced response extended to clinical strains from distinct geographic locations, we 
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also performed MIC assays on two of the recently sequenced MDR isolates (AYE and 

AB0057) and two of the susceptible isolates (AB307-0294, AB900) all of which showed 

similar increases in the colistin MIC in response to NaCl (data not shown). These results 

demonstrate that NaCl-induced colistin tolerance is conserved among recent clinical 

isolates of MDR A. baumannii.  

 

Figure 12. NaCl-induced resistance to colistin is 

conserved among drug susceptible and 

multidrug resistant A. baumannii.  
A. baumannii 17978 and nine clinical isolates were 

treated with colistin (0.75 mg/L) with (solid bars) 

or without (open bars) NaCl-supplementation of 

culture media to a final concentration of 150 mM. 

Bacterial growth was monitored for 12 hours and 

the optical densities of the cultures were 

normalized to growth in the absence of colistin in 

the respective media (i.e. with or without NaCl).  

Statistically significant differences comparing 

media alone to media supplemented with NaCl 

were determined by Student’s t-test. Error bars =  

1 SD from the mean; * p < 0.005. 

 

Table 6: Colistin MIC values determined in MHB (-) or MHB supplemented with 150 mM NaCl (+).  

Isolate Source Site 
NaCl 

- + 

17978 ATCC CSF 0.75 1.5 

510 UNMC Sputum 0.75 1.5 

2824 UNMC Urine 0.75 1.5 

2898 UNMC Ankle 1 1.5 

4860 UNMC Urine 2 1.5 

5191 UNMC Urine 0.75 1.5 
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Discussion 

 
 

In this study we have taken a multifaceted approach to demonstrate that A. 

baumannii responds to extracellular NaCl by regulating membrane proteins through 

transcriptional and post-translational mechanisms. Furthermore, the response to NaCl 

results in tolerance to four distinct classes of antibiotics. Both NaCl and KCl were found 

to induce similar changes in protein secretion and antibiotic resistance, suggesting that 

the signal sensed by A. baumannii is not NaCl itself, but may be monovalent cations or 

anions. We have not directly tested whether it is the cationic or anionic component that is 

required for the NaCl/KCl-induced response; however it has been reported previously 

that Na
+
 and K

+
, but not Cl

-
 induce resistance to tobramycin in Pseudomonas aeruginosa 

and Burkholderia cenocepacia (283). We therefore hypothesize that monovalent cations 

are the relevant signal for A. baumannii.  

Our data demonstrate that NaCl affects the expression of a large number of genes; 

however the transcriptional response does not support a model whereby NaCl induces an 

osmotic stress response at the concentrations evaluated. Up-regulation of a choline 

dehydrogenase (A1S_0925) may have a role in osmoprotection; however, apart from 

A1S_0925, the transcriptional changes observed did not resemble osmotic stress 

responses of P. aeruginosa or Escherichia coli (18, 298). In particular, the up-regulation 

of 18 genes encoding components of putative drug efflux pumps was distinctive. The 

transcriptional response to NaCl in A. baumannii therefore appears to be unique as a 

direct response to NaCl. Interestingly, the quality of the NaCl-response in A. baumannii 

bore similarity with the transcriptional changes described in B. cenocepacia upon culture 
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in sputum from patients with cystic fibrosis, including up-regulation of genes encoding 

putative efflux transporters, oxidoreductases and iron acquisition systems (75). It is 

unclear to what extent the NaCl concentration in sputum may have been responsible for 

inducing the transcriptional response in B. cenocepacia. It is interesting, however, that 

both responses appear to involve resistance to antibiotics as well as physiologic stress 

conditions such as oxidative stress and iron limitation.  

Previous studies investigating the effect of NaCl on antibiotic resistance have 

shown that NaCl and KCl induce increased resistance to aminoglycosides while other 

antibiotics have not been evaluated (283). The mechanisms proposed for mediating NaCl-

induced resistance involve passive effects of NaCl such as interference with antibiotic 

uptake. Our data reveal that NaCl-induced antibiotic tolerance may involve an active 

response mediated through a regulated transcriptional program as well as post-

transcriptional or post-translational regulation of membrane protein expression and/or 

secretion. 

As described above, our microarray analyses highlighted the up-regulation of 33 

genes representing 25 putative transporters of which 12 are annotated as putative drug 

transporters. These include the membrane fusion component of the AdeABC efflux pump 

(AdeA), as well as the major facilitator superfamily transporter CraA. AdeABC mediates 

resistance to a number of antibiotics in A. baumannii although the function and regulation 

of this pump have not been investigated in A. baumannii strain ATCC 17978 (179, 181). 

It was recently determined that CraA is conserved among A. baumannii strains sequenced 

to date and mediates intrinsic chloramphenicol resistance (247). Given the number of 

putative efflux pumps that are up-regulated in response to NaCl, it is possible that the 
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antibiotic tolerance observed is the result of the combined action of several or all of these 

pumps.  

The contribution of efflux to antibiotic tolerance in response to NaCl is supported 

by the fact that tolerance to levofloxacin and amikacin can be partially reversed upon the 

addition of a non-selective efflux pump inhibitor. Failure to see complete reversal of the 

resistance phenotype may be due to an inability to achieve complete efflux inhibition at 

the PAN concentrations used; however increasing the concentration of PAN leads to 

growth inhibition independent of antibiotic treatment. An alternative explanation for the 

failure to completely reverse NaCl-induced antibiotic resistance is that resistance to 

levofloxacin and amikacin may be mediated by multiple overlapping mechanisms, which 

is supported by our data that suggest that NaCl has a broad effect on gene expression. 

Proteomic analyses of A. baumannii culture supernatants highlighted an increased 

abundance of several porins for which loss or inactivation has been associated with 

resistance to carbapenems. Based on the known functions of the putative 29 kDa porin 

(CarO) and the 33-36 kDa porin, their release in response to NaCl may result in 

decreased permeability to antibiotics. These proteins were down-regulated at the 

transcriptional level, suggesting that A. baumannii may shed these proteins to decrease 

their membrane abundance. Similarly, it was recently reported that A. baumannii down-

regulates membrane expression of OmpA32 (33-36kDa Omp), OmpA38, CarO and OmpW 

in response to sub-MIC tetracycline, without alteration in transcript levels for the 

corresponding genes (310). Increased abundance of these Omps in culture supernatants 

suggested that down-regulation occurs through selective release from the membrane and 

the authors proposed that this might be related to tetracycline resistance, although 
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resistance was not directly evaluated (310). Consistent with the proposed model, we have 

demonstrated that A. baumannii is more resistant to several classes of antibiotics upon 

exposure to NaCl, including imipenem which would be predicted based on the known 

role of CarO and the 33-36kDa Omp in resistance to carbapenems (54, 163, 232, 269). In 

addition, the same group has recently published the results of proteomic analyses of outer 

membrane vesicles (OMVs) produced by A. baumannii. Proteins enriched in OMVs 

included homologues of CarO, OmpA and AmpC (152). The overlap between our 

proteomic results and the OMV proteome suggest that monovalent cations may induce 

increased membrane vesicle production, but this remains to be determined. 

The finding that A. baumannii increases resistance to colistin upon exposure to 

NaCl is of considerable clinical interest as colistin is currently the last resort agent against 

MDR A. baumannii. Colistin resistance is uncommon clinically, with only a handful of 

case reports emerging out of Asia (148, 223). The mechanisms involved in mediating 

resistance to colistin have not been fully elucidated in A. baumannii. Proteomic profiles 

have been determined for in vitro-generated colistin-resistant A. baumannii; however 

these strains developed gross perturbations in general metabolic functions complicating 

interpretation of the results (87). A recent advancement in our understanding of colistin 

resistance in A. baumannii was the finding that mutations in the two-component system 

PmrAB lead to colistin resistance (7). The mechanism of PmrB-dependent colistin 

resistance is thought to result from increased expression of the lipid A-modifying 

phosphoethanolamine transferase, PmrC. In addition, low pH and ferric iron induce 

colistin resistance, yet this was not associated with increased expression of the pmrCAB 

operon, suggesting that additional mechanisms exist for mediating colistin resistance in A. 
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baumannii (7). Earlier studies in E. coli have suggested there may be a relationship 

between osmotic stress responses and responses to polymyxin antibiotics (161, 211). 

While the transcriptional response presented herein does not support a typical osmotic 

stress response, it is possible that the intersection of osmotic adaptation and polymyxin 

resistance may converge on an as-yet-unidentified pathway in A. baumannii. Notably, we 

did not observe increased tolerance to colistin in the presence of NaCl with E. coli (data 

not shown), further suggesting that the response to NaCl in A. baumannii may be distinct. 

Perhaps more intriguing is the observation that the efflux pump inhibitor PAN induced 

significant resistance to colistin over and above that induced by NaCl. Importantly, we 

have determined that the combined effect of PAN and NaCl results in an increase in the 

MIC to  4 mg/L, which is the breakpoint for colistin resistance in A. baumannii (data not 

shown). The mechanism of PAN-induced colistin resistance remains elusive. It is 

possible that the interaction of PAN with efflux transporters promotes stability of the 

outer membrane or that inhibition of efflux itself stabilizes the flux of solutes and water 

that would otherwise contribute to colistin-mediated cell death. Alternatively, PAN may 

induce additional transcriptional changes that confer protection against colistin. Further 

elucidation of the mechanisms of both cation-induced antibiotic tolerance as well as 

PAN-mediated colistin resistance may provide insight into the normal resistance 

response to colistin in A. baumannii.  

 

Clinical implications of cation-induced antibiotic tolerance.  

NaCl is ubiquitous within the hospital environment suggesting that A. baumannii 

encounters this signal within its hospital niche.  The finding that A. baumannii becomes 



 81 

more resistant to clinically relevant antibiotics in response to NaCl concentrations 

encountered within the human host highlights intriguing questions regarding the 

implications of these findings to the clinical setting. Our data suggest that MIC 

determined in vitro might be discrepant with the inducible tolerance of A. baumannii 

when exposed to NaCl or KCl within the human body. Although the magnitude of change 

in resistance to antibiotics was not as large as that described with constitutive over-

expression of a broad-specificity efflux pump, the incremental increase in resistance may 

be sufficient to promote tolerance among otherwise susceptible isolates within the body. 

In this way, the response to NaCl might enhance the bacterium’s ability to persist until 

conditions are more favorable for growth or until additional resistance determinants can 

be accumulated. In addition, local concentrations of electrolytes such as NaCl or KCl in 

specific tissues such as the urinary tract may exceed serum concentrations and may 

complicate eradication of A. baumannii from these sites. Finally, given that NaCl induces 

tolerance to a broad spectrum of antibiotics and that the response to colistin appears to be 

conserved among multidrug-resistant clinical isolates, targeting the regulatory systems 

responsible for mediating antibiotic resistance in response to NaCl may have therapeutic 

potential in combination with conventional antibiotics. This strategy might be particularly 

beneficial in combination with drugs such as colistin that possess narrow therapeutic 

windows by decreasing the dose required for efficacy thus limiting associated toxicity.   

This work demonstrates that an extracellular signal encountered by A. baumannii 

results in increased antibiotic tolerance. This extends previous observations regarding the 

effects of NaCl on aminoglycoside resistance by demonstrating that in A. baumannii 

NaCl and KCl induce tolerance not only to aminoglycosides but also to levofloxacin, 
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imipenem (NaCl) and colistin. We have also demonstrated that A. baumannii regulates 

membrane protein expression and secretion at transcriptional and post-translational levels 

in response to a ubiquitous, non-antibiotic signal, and we demonstrate that this response 

results in increased antibiotic resistance. Further work to identify the systems responsible 

for sensing and adapting to NaCl or other monovalent cations and translating this signal 

into an increased resistance phenotype will provide valuable insight into the intrinsic 

mechanisms of adaptation and resistance in A. baumannii and holds promise in 

identifying novel therapeutic targets.  
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III. Genetic determinants of intrinsic colistin tolerance in Acinetobacter baumannii 

 

Introduction 

 
 

Colistin, or polymyxin E, is a cationic peptide antibiotic that is increasingly used 

to treat multidrug resistant infections. In many cases, colistin is the only remaining 

antibiotic effective in treating MDR A. baumannii. Resistance to colistin is currently rare 

in A. baumannii; however, heteroresistance and complete resistance to colistin have been 

reported clinically (128, 148, 170, 191). It is feared that the increasing use of colistin 

coupled with clonal spread of colistin-resistant isolates will quickly lead to widespread 

resistance to this drug. As evidence of this possibility, in Korea, rates of colistin 

resistance as high as 27.9% have been noted (148). These facts underscore the need to 

define the mechanisms mediating colistin resistance in A. baumannii. Mutations in the 

two-component system PmrAB are thought to induce colistin resistance by activating the 

two-component system ultimately leading to increased phosphoethanolamine 

modification of lipid A (7, 24, 169, 222). This modification reduces the net negative 

charge of the outer membrane thus reducing the affinity of colistin for this subcellular 

target. Colistin resistance can also be mediated by complete loss of LPS production 

through mutations or insertions in the genes encoding the lipid A biosynthesis machinery 

(105, 191). Notably, colistin resistance is most commonly mediated by adaptive and 

occasionally reversible mutations rather than by acquisition of resistance determinants (7, 

24). Moreover, evolution of resistant isolates through adaptive mutations during 

antibiotic therapy is well documented in A. baumannii (114, 170). Taken together, these 
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facts highlight the adaptability of this organism to the hospital environment and suggest 

that A. baumannii possesses intrinsic mechanisms to resist the initial onslaught of 

antibiotic therapy until adaptive mutations or resistance determinants can be acquired. 

However, the molecular basis for these intrinsic resistance mechanisms in A. baumannii 

is largely unknown.  

In Chapter II the data demonstrating that A. baumannii increases tolerance to four 

distinct classes of antibiotics, including colistin, in response to physiologic concentrations 

of monovalent cations were discussed (112). In this chapter I describe the identification 

of over 30 genes involved in this inducible colistin tolerance in A. baumannii. A majority 

of these genes converge on pathways and systems involved in osmotolerance including 

those involved in compatible solute and cell envelope biosynthesis as well as in protein 

folding.  We further define the function of one of these genes, lpsB, and demonstrate the 

role for LpsB in cationic antimicrobial peptide resistance and pathogenesis in the lung.  
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Methods 

 

Bacterial strains and reagents 

A. baumannii strain ATCC 17978 (Ab7978) was obtained from the American 

Type Culture Collection and was used for all experiments unless otherwise noted. 

Primers and plasmids used in this study are listed in Table 7. Colistin sulfate was 

obtained from Sigma-Aldrich (St. Louis, MO). LL-37 was purchased from Phoenix 

Pharmaceuticals. 

Table 7. Primers and plasmids used in this work. 

Primers 

lpsbKO1 CCCGGATATCGTGATGCAATTTGGTATAGTCC 

lpsbKO2 CCCGCATATGACTGATGACCTTGTGCAACC 

lpsbKO3 CCCGCATATGCCTCAGCACAGTGGTTTAACC 

lpsbKO4 CCCGGATATCTAACGCGCTTGCTGTACTTG 

lpsbKO6 TTACCAATGCACAAGCTCAAG 

lpsbKO7 TAACCTTGACGGTTCTACGC 

X430F GCCCGAATTCGCTTCGTATCGCACCAACTC 

X430R CCCGGATATCTCAATTCAATACACTTTGATATAGCTC 

Plasmids   

pKOlpsB lpsB inactivation vector in pEX100T This work 

plpsB lpsB complementation vector This work 

pWH1266 E. coli-A. baumannii shuttle vector (117) 

pAB001 Derivative of pMU125 lacking gfp This work 

pMU125 Derivative of pWH1266 containing gfp (73) 

pEX100T sacB conjugative plasmid for gene replacement (74) 

 

Transposon library screen and mutant identification 

A transposon library was generated in Ab17978 using the EZ-Tn5 <R6Kori-

KAN-2> transposome system (Epicentre) as described previously (125). A total of 8,000 

mutants were screened for loss of NaCl-induced colistin resistance by challenging with 
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1.5 mg/L colistin in Mueller Hinton Broth (MHB) with or without supplementation with 

150 mM NaCl. Mutants that demonstrated no growth after 24 hours in NaCl-

supplemented media were selected for further analysis. Phenotypes were confirmed by 

growth curve analysis in MHB ± NaCl ± colistin as described previously (112). With 

selected mutants, minimum inhibitory concentrations for colistin and LL-37 were 

determined by broth microdilution in MHB using established methods (1). 

The locations of transposon insertions were determined by rescue cloning as 

described previously (74).  Functional predictions for the disrupted genes were based on 

annotations in NCBI and The SEED (219). The SEED viewer was used to analyze 

genomic contexts surrounding the transposon integration sites. Predicted operons are 

based on proximity and orientation of predicted open reading frames as well as 

conservation of the genetic organization in multiple species.  

 

Metabolic pathway analysis 

 Metabolic pathway analysis was carried out using the Kyota Encyclopedia of 

Genes and Genomes (KEGG) pathways program (http://www.genome.jp/kegg/). The 

database was filtered for genes and pathways predicted to be present in A. baumannii 

17978 based on gene annotations in NCBI since there is limited experimental data 

available on this organism.  

 

LPS analysis 

Bacteria were harvested from LB agar plates in 150 mM NaCl, normalized to an 

OD600 of 1.5, pelleted and resuspended in lysing buffer (2% SDS, 4% 2-mercaptoethanol, 
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10% glycerol, 0.1 M Tris-HCl, pH 6.8). Samples were then boiled for 10 min, cooled to 

60C and treated with proteinase K for 1 hour. These samples were electrophoresed 

through a 15 % acrylamide gel and stained with Pro-Q Emerald 300 LPS stain according 

to the manufacturer’s recommendations (Invitrogen). 

 

Complementation of the LPS synthesis defect in 5A7 

The E. coli-A. baumannii GFP expression vector pMU125 was modified by 

digesting with EcoRV to excise GFP and self-ligated to produce pAb001. A 1500 bp 

fragment including lpsB and 500 bp of flanking sequence was amplified from WT 

genomic DNA using primers X430F and X430R. The product was digested with EcoRI 

and EcoRV and cloned into the cognate sites of pAb001 to produce plpsB. The 

complementation vector plpsB was introduced into 5A7 by electroporation as previously 

described (123).  

 

Site-directed insertional mutagenesis of lpsB 

In order to assess the contribution of LpsB to pathogenesis in vivo, a strain was 

first generated in which the gene encoding LpsB was inactivated by allelic replacement. 

Approximately 1000 bp of DNA sequence on each side of lpsB were amplified using 

primers lpsbKO1 and lpsbKO2 (lpsB-up) or lpsbKO3 and lpsbKO4 (lpsB-down).  The 

flanking sequences, lpsB-up and lpsB-down, were cloned separately into pCR2.1 

(Invitrogen) using the TA cloning method specified by the manufacturer. LpsB-down was 

excised by digesting with NdeI and XhoI and cloned into the cognate sites of pCR2.1-

lpsB-up.  The combined flanking regions were then excised by digestion with EcoRV and 
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cloned into SmaI-digested pEX100T to yield pKO-lpsB-UD.  The kanamycin resistance 

gene, aph, was amplified from pKAN-2 (Epicentre), digested with NdeI and cloned into 

the NdeI sites of pKO-lpsB-UD. The resulting vector, pKO-lpsB was introduced into 

Ab17978 by electroporation and integration of the plasmid was selected by plating on LB 

agar supplemented with 40 g/ml kanamycin.  Kanamycin-resistant colonies were 

counter selected on LB agar supplemented with 40 g/ml kanamycin and 2% w/v sucrose. 

Loss of the plasmid backbone was confirmed based on positive growth on sucrose-

containing plates and failure to grow on LB agar supplemented with 500 g/ml ampicillin. 

Integration of aph into lpsB was confirmed by PCR using primers that anneal outside the 

region contained in pKO-lpsB (lpsbKO6 and lpsbKO7) and observing a shift in 

molecular weight corresponding to the insertion of aph. Disruption of lpsB function was 

confirmed by SDS-PAGE analysis of LPS from lpsB. 

 

Microarray analysis. 

Bacterial cultures were grown overnight in Luria-Bertani (LB) medium 

supplemented with the appropriate antibiotic, diluted in fresh medium and grown at 37C 

for 3.5 hours. Cultures were then mixed with an equal volume of ice-cold ethanol-acetone 

(1:1) and stored at −80°C for RNA processing.  For RNA extraction, samples were 

thawed on ice and total bacterial RNA was released by mechanical disruption and 

purified using Qiagen RNeasy columns (Qiagen, Valencia, CA), as previously described 

(112).  For microarray analysis, ten micrograms of each RNA sample were reverse 

transcribed, fragmented and 3′biotinylated as previously reported (25). Resulting labeled 

cDNA (1.5 μg) was hybridized to custom-made A. baumannii GeneChip (PMDACBA1) 
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according to the manufacturer's recommendations for antisense prokaryotic arrays 

(Affymetrix, Inc., Santa Clara, CA). Data from three independent biological replicates 

were analyzed as described in Hood et al. (2010).  RNA species exhibiting ≥ 2-fold 

change in expression with titers above background as determined by Affymetrix 

algorithms in lpsB and were found to be statistically differentially expressed (t-test p ≤ 

0.05) were reported.  

 

Preparation of bacterial cultures for in vivo studies 

Bacteria were harvested from log-phase cultures of Ab17978 or lpsB, washed 

and resuspended in phosphate-buffered saline (PBS) and adjusted to 1 x 10
7
 CFU/l. 

Bacterial cell counts were confirmed post-infection by plating serial dilutions of each 

inoculation.  

 

A. baumannii pneumonia model 

All animal experiments were approved by the Vanderbilt Institutional Animal 

Care and Use Committee. We have previously established a murine Acinetobacter 

pneumonia model in our laboratory (123). Briefly, six to eight week old, female C57BL/6 

mice were anesthetized and infected intranasally with 30 l of bacterial suspension.  

Mice were euthanized at 36 hours post infection (hpi) and lungs were aseptically 

removed, weighed and homogenized in 1 ml sterile PBS. Serial dilutions were plated on 

LB agar and/or LB agar containing kanamycin (40 g/ml). 
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Results 

 
 

Identification of genes involved in NaCl-induced colistin tolerance 

Based on our previous studies demonstrating that NaCl induces increased 

resistance to colistin, we designed a transposon mutant screen to identify genes involved 

in mediating this resistance (Figure 13). In the primary screen, over 8,000 mutants were 

tested for loss of NaCl-induced colistin resistance by challenging with 1.5 mg/L colistin 

in the presence or absence of 150 mM NaCl (Figure 13a). Approximately 300 mutants 

were identified that failed to grow in the presence of NaCl and these mutants were 

confirmed for their colistin sensitivity by growth curve analyses (Figure 13b). The 

transposon integration sites were determined for all of the mutants that consistently 

demonstrate increased sensitivity to colistin despite NaCl-supplementation of media 

(Figure 13b). These genomic loci were compared with data from the SEED to assess 

whether the disrupted genes were found within predicted operons and putative functions 

were assigned based on annotations in NCBI and the SEED (Table 8). These analyses 

resulted in the identification of 31 mutants with loss of NaCl-induced colistin-resistance. 
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Figure 13. Schematic overview of the transposon library screen to identify genes involved in NaCl-

induced colistin resistance.  

(a) Bacteria were challenged with 1.5 mg/L colistin in Mueller Hinton Broth (MHB) with or without 150 

mM NaCl. Data from a representative plate are shown. (b) Mutants that failed to grow in NaCl-

supplemented MHB were confirmed by growth curve analyses. A representative mutant is shown that is 

inhibited by colistin (col) in the presence of NaCl. (c) The transposon insertion sites were determined for 

all confirmed mutants. The genomic locus for lpsB (5A7) is shown with a schematic of the EZ-Tn5 

transposon. 

Upon further analysis, it was found that the predicted functions fell into several 

broad categories (Table 8) In particular, genes involved in amino acid transport and 

metabolism, protein folding, phosphate metabolism and cell envelope biogenesis were 

over-represented. Interestingly, the genes with predicted roles in amino acid biosynthesis 

and energy production cluster into three interconnected pathways (Figure 14) The amino 

acid biosynthesis genes are found in pathways leading to production of osmolytes that 

mediate osmotic tolerance through membrane and protein stabilization (67, 119, 308). 

These genes include those involved in proline biosynthesis from glutamate and in 

aspartate metabolism. Genes involved in the citrate cycle were also identified, which can 
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mediate interconversion of aspartate and glutamate. Taken together, these analyses 

highlight critical contributions to intrinsic colistin resistance of genes involved directly in 

maintenance of membrane integrity and protein folding as well as those indirectly 

involved in these processes through compatible solute synthesis. 
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Table 8. Transposon mutants with reduced NaCl-induced colistin resistance. 

Name Insertion site Acc. # Gene annotation 

Phosphate metabolism 

2F12 intergenic 
A1S_2445 High-affinity phosphate transport protein (PstB) 

A1S_2444 Putative periplasmic protease 

18G3 gene A1S_3030 Phosphate-inducible protein, phoH-like 

22F11 gene A1S_0462 Putative phosphatase 

42F6 gene A1S_0607 exopolyphosphatase 

Envelope biogenesis 

6D2 gene A1S_2982 YidD 

11E4 gene A1S_2250 Zn-dependent protease with chaperone function 

20A5 intergenic A1S_3424 Putative lipoprotein-34 precursor (NlpB) 

5A7 gene A1S_0430 Putative glycosyltransferase (LpsB) 

23E5 gene A1S_1030 DNA-binding ATP-dependent protease La 

19C4 gene A1S_0499 
Putative Fe-S-cluster redox enzyme (Ribosomal RNA 

large subunit methyltransferase N) 

RNA synthesis, processing, modification and degradation 

20A5 intergenic A1S_3425 Phosphoribosylaminoimidazole-succinocarboxamide 

18G3 intergenic 
A1S_0531 Putative GTPase 

A1S_0532 Oligoribonuclease 

19C4 gene A1S_0499 
Putative Fe-S-cluster redox enzyme (Ribosomal RNA 

large subunit methyltransferase N) 

6D2 gene A1S_2982 YidD 

Amino acid transport and metabolism (Glutamate, Apartate, Alanine), Urea cycle 

22E8 gene A1S_3185 Glutamate synthase subunit alpha 

17H6 intergenic 
A1S_1142 Aspartate kinase 

A1S_1143 Hypothetical protein 

20B10 gene A1S_2793 Putative amino-acid transport protein 

41C12 gene A1S_2454 Diaminobutyrate-2-oxoglutarate transaminase 

20A2 intergenic 
A1S_2023 Hypothetical protein 

A1S_2024 Glutamate 5-kinase 

20A1 gene A1S_3025 Malate dehydrogenase 

TCA cycle 

6H4 gene A1S_2477 monomeric isocitrate dehydrogenase 

31A2 gene A1S_2710 Citrate synthase 

Cofactor biosynthesis 

14G3 gene A1S_0807 8-amino-7-oxononanoate synthase 

Multidrug efflux system 

18D2 gene A1S_0909 Multidrug resistance protein B 

20A11 intergenic 
A1S_1231 Major facilitator superfamily transporter 

A1S_1232 EsvB 

Lipid metabolism 

20B2 intergenic 
A1S_3159 Lipase chaperone 

A1S_3160 Lipase 

Phage 

37A5 intergenic 
A1S_1585 Putative replicative DNA helicase 

A1S_1586 EsvKI 

1A1 rDNA   23S ribosomal RNA 

20C2 rDNA   16S ribosomal RNA 

4A5 rDNA   16S ribosomal RNA 

4G1 rDNA   23S ribosomal RNA 

6A3 rDNA   16S ribosomal RNA 

6H5 rDNA   16S ribosomal RNA 
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Figure 14. Metabolic pathways disrupted in colistin-sensitive mutants of A. baumannii.  

Colored boxes indicate enzymes or transporters whose gene or predicted operon was disrupted in one of the 

colistin-sensitive transposon mutants.  Dashed borders indicate genes that were directly disrupted by the 

transposon insertion or the immediate downstream genes if the insertion was intergenic. Boxes of the same 

color indicate genes in the same predicted operon. Asterisks indicate genes in a predicted operon upstream 

of a transposon insertion site. Names of amino acids or compatible solutes that contribute to osmotic 

protection are indicated with red lettering. 

 

LpsB contributes to colistin resistance.  

In mutant 5A7, the transposon disrupts lpsB, which encodes a glycosyltransferase 

involved in synthesis of the lipopolysaccharide (LPS) core (173). SDS-PAGE analyses of 

LPS from wildtype and 5A7 confirmed that this strain produces a truncated LPS, which is 

complemented by providing a wildtype copy of lpsB in trans (Figure 15a-b) (173). The 

core region of LPS is important for maintaining the structure and integrity of the outer 

membrane (32). To confirm the role for A. baumannii LPS core in mediating resistance to 
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colistin, we performed kill curve analyses in the presence of increasing concentrations of 

colistin with or without NaCl. These analyses demonstrate that 5A7 is more susceptible 

to colistin than WT and that 5A7 lacks NaCl-induced colistin resistance (Figure 15c).  

 

Figure 15. Demonstration of the LPS synthesis defect and colistin sensitivity of 5A7.  

(a) SDS-PAGE analysis of LPS purified from WT and 5A7. LPS isolated from E. coli (Ec), WT A. 

baumannii and 5A7 was electrophoresed in a 12 % polyacrylamide gel and stained with Pro-Q Emerald 

300 LPS stain. A higher molecular weight band is present in the WT lane (arrow), but this band is absent in 

5A7. (b) Complementation of the LPS synthesis defect by providing lpsB in trans. LPS samples were 

electrophoresed and stained as in (a). (c) Kill curves comparing colistin sensitivities of WT with 5A7 in 

media with or without NaCl supplementation (150 mM). The data are presented as the mean ± one S.D. 

from the mean of at least three biological replicates. In some cases error bars may be obscured by the 

symbols. Curves were generated by non-linear regression analysis using a least squares fitting method. 

 

Adaptation to chronic membrane instability 

 Disruption of core LPS biosynthesis in A. baumannii leads to increased sensitivity 

to human serum and detergents (173). These facts suggest that inactivation of lpsB 

compromises outer membrane integrity. Given that colistin acts through disruption of the 

bacterial membrane, an lpsB mutant can serve as a tool to probe the adaptations that 

allow A. baumannii to survive in the presence of chronic membrane perturbation. In order 

to determine how A. baumannii responds to the chronic membrane instability resulting 

from loss of LpsB function, we first generated a targeted deletion of lpsB in Ab17978 

(lpsB) and confirmed that this mutant produced a truncated LPS molecule similar to 



 96 

5A7 (Figure 16a). We next performed microarray analyses comparing WT Ab17978 

with lpsB during exponential growth (Appendix II, Table 14).  

 A significant proportion of the genes whose expression is altered in lpsB are 

involved in metabolic processes and energy generation within the cell. For example, we 

observed down-regulation of genes encoding for numerous ribosomal proteins suggesting 

that protein synthesis may be decreased in the mutant. We also observed down-regulation 

of genes encoding enzymes involved in fatty acid biosynthesis pathways. Strikingly, 

some of the most highly up-regulated genes are those involved in phenylacetic acid 

(PAA) degradation, pyruvate metabolism and the TCA cycle. Overall, these changes 

suggest a decrease in biosynthetic processes and an overall increase in catabolism and 

energy generation. These data demonstrate that disruption of lpsB profoundly impacts 

critical cellular processes.  

 

Involvement of LpsB in the pathogenesis of pneumonia. 

Colistin shares a similar mechanism of action with antimicrobial peptides of the 

innate immune system. Cationic antimicrobial peptides (AMPs) are known to be 

important mediators of host defense at mucosal surfaces. A. baumannii LPS stimulates 

the release of AMPs from respiratory epithelial cells in vitro, suggesting that AMPs may 

be an important component of host defenses that A. baumannii must overcome during 

infection of the lung (180). We therefore hypothesized that the mechanisms involved in 

colistin resistance would likewise confer resistance to antimicrobial peptides and 

contribute to virulence. Furthermore, our microarray analyses demonstrate that disruption 

of lpsB significantly alters critical cellular processes, which may also impact A. 
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baumannii growth within the host. To test the role for LpsB in pathogenesis, we first 

determined whether disruption of lpsB increases sensitivity to antimicrobial peptides of 

the innate immune system. To do this, we performed kill curves with the human 

antimicrobial peptide, LL-37. These analyses revealed a significant reduction in the 

minimum inhibitory concentration of LL-37 for lpsB as compared to wildtype (Figure 

16b). These data establish that LpsB contributes to protection against cationic AMPs of 

the innate immune system. 

 

Figure 16. A. baumannii strains lacking LpsB are attenuated for virulence in the lung.   

(a) SDS-PAGE analysis of LPS from WT, 5A7 and an lpsB-deleted strain (lpsB). (b) Kill curves 

comparing LL-37 sensitivities of WT with lpsB. The data are presented as the mean ± one S.D. from the 

mean of at least three biological replicates. In some cases error bars may be obscured by the symbols. 

Curves were generated by non-linear regression analysis using a least squares fitting method. (c) Bacterial 

burdens in lungs of mice infected with WT or lpsB harvested at 36 hpi. Data are combined from two 

independent experiments with n = 4-5 mice per group in each experiment.  *** p < 0.001 as determined by 

two-tailed, unpaired Student’s t test. Horizontal bars indicate means for each data set. Red symbols indicate 

CFU below the limit of detection. 

 

 A. baumannii LPS is important in activating the inflammatory response in the 

lung (147, 180). However, the role for LPS in the pathogenesis of pulmonary infections 

has not been demonstrated for A. baumannii. To elucidate the contribution of A. 
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baumannii LPS to pulmonary infection we intranasally infected mice with WT or lpsB 

and allowed the infection to proceed for 36 hours. Quantification of bacteria in lungs 

revealed a nearly 4-log reduction in bacterial burden in lpsB-infected mice compared to 

WT (Figure 16c). These data establish that LpsB plays a critical role in the pathogenesis 

of A. baumannii pulmonary infections.  

 

Discussion 

 

A. baumannii is emblematic of the looming public health crisis threatening nearly 

all facets of medical practice. Namely, A. baumannii represents the growing burden of 

infections caused by organisms resistant to most, if not all, conventional antibiotics. This 

organism has proven particularly challenging due to its ability to persist in the hospital 

environment, its resistance to both antibiotics and common disinfectants and its 

propensity to acquire resistance to new antimicrobial agents. The latter fact underscores 

the adaptability of this organism to the hospital environment and suggests that A. 

baumannii possesses intrinsic mechanisms to respond and adapt to antibiotic treatment.  

Colistin resistance in A. baumannii is currently rare and typically arises through 

adaptation of a previously susceptible isolate often during treatment with colistin in vivo. 

The fact that colistin resistance arises without the acquisition of horizontally transferred 

resistance determinants suggests that A. baumannii possesses intrinsic mechanisms to 

resist colistin. Furthermore, recent evidence suggests that strains that adapt to colistin 

treatment must undergo significant changes in physiologic processes in order to maintain 

the resistance phenotype (105, 170). Taken together, these facts underscore the need to 



 99 

better understand the inherent mechanisms that contribute to colistin resistance in order to 

identify possible targets for therapeutic intervention. 

We have previously demonstrated that A. baumannii increases resistance to 

colistin in response to physiologic concentrations of NaCl. We have now identified over 

30 genes involved in this adaptation in A. baumannii. Colistin like other polymyxins, acts 

by disrupting the cell envelope leading to osmotic lysis of the bacterium by dysregulating 

the permeability of the bacterial membrane (162, 212, 213). Given the action of colistin it 

is not surprising that many of the genes identified are involved in processes that protect 

the bacterium from osmotic stress. For example, we identified several genes with roles in 

the synthesis of compatible solutes such as proline [Fig. 2]. Importantly, certain 

compatible solutes not only act as neutral osmolytes, but also exert protective effects by 

preventing protein misfolding (67, 119, 308). Proline, in particular, is known to protect 

protein structure at physiologically attainable concentrations. Furthermore, proline 

synthesis and uptake are typically induced by NaCl (67). Taken together, the results of 

the transposon mutagenesis screen suggest that bacteria exposed to colistin experience 

osmotic stress, which can be alleviated through synthesis of compatible solutes and 

expression of proteases that presumably degrade misfolded proteins. When these systems 

are inactivated, A. baumannii is more susceptible to colistin and NaCl no longer exerts a 

protective effect. 

Upon loss of LpsB function some of the most highly up-regulated genes in lpsB 

are those involved in the tricarboxylic acid cycle and in the phenylacetic acid (PAA) 

degradation pathway. It is not clear what the source of PAA is in lpsB. Protein synthesis 

appears to be down regulated based on the reduced expression of many genes encoding 
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for ribosomal proteins. Furthermore, genes encoding for several proteases are up 

regulated. It is possible that endogenous phenylalanine is being converted to PAA to 

serve as a substrate for this degradation pathway. Furthermore, we observed up-

regulation of a gene encoding for a polyhydroxyalcanoate (PHA) granule-associated 

protein. These granules are known to be reservoirs for carbon and energy within the cell 

and some of the PHAs can provide substrates for PAA degradation (92). The significance 

of this up-regulation is also unclear for A. baumannii although the PAA pathway has 

been implicated in antibiotic resistance in B. cenocepacia and it is known to be up-

regulated during growth in cystic fibrosis sputum (103, 258). Furthermore, we have 

demonstrated that the efflux pump inhibitor phenylalanine-beta-naphthylamide (PAN) 

paradoxically induces resistance to colistin (112). Although the mechanism has not been 

determined, it is possible that PAN is cleaved to yield phenylalanine as a substrate for 

PAA degradation and that activation of this pathway provides protection against 

membrane-destabilizing agents.  

It has been demonstrated previously that an lpsB mutant of A. baumannii exhibits 

decreased competitive fitness during co-infection with WT bacteria in a soft tissue model 

of infection (173). However, in the soft tissue model the mutant does not exhibit a 

virulence defect in a single strain infection. The striking difference between the 

phenotypes of the lpsB mutants in pulmonary and soft tissue models of infection suggests 

that A. baumannii has different virulence requirements depending on the infection site. 

These differences may stem from physical characteristics of the infection site, variation 

in innate immune factors and differing nutrient availability. It has been established, for 

example, that A. baumannii induces production of antimicrobial peptides at mucosal sites 
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like the lung (180). The increased sensitivity of lpsB to these defense peptides likely 

contributes to this strain’s reduced virulence in the lung. Moreover, we have defined 

significant changes in genes involved in nutrient acquisition and metabolism in lpsB. It 

is possible that nutritional requirements and availability in the lung may also restrict 

growth of lpsB, particularly if this strain lacks the flexibility to adapt to the host 

environment. The possibility that nutrient availability impacts both pathogenesis and 

antibiotic resistance in A. baumannii is particularly intriguing as further work in this area 

may elucidate novel targets for therapeutic intervention. 

The rise of extensively drug resistant bacteria that are capable of causing lethal 

infections is rapidly creating a public health crisis yet therapeutic development has failed 

to keep pace. A. baumannii poses a particular challenge due to the ability of this 

bacterium to readily acquire resistance to new antibiotics. This fact underscores the 

adaptability of A. baumannii within the hospital and host environments. Targeting 

mechanisms that mediate the intrinsic antibiotic resistance of A. baumannii is therefore a 

viable strategy in developing novel inhibitors that could serve as adjuncts to our current 

antibiotic armamentarium.  
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IV. Acinetobacter baumannii transposon mutants redirect host inflammation to 

promote pathogen clearance. 

 

Introduction 

 
The clinical burden of A. baumannii infections is greatly compounded by the high 

rates of antibiotic resistance observed in this organism. Moreover, as discussed in 

Chapters II and III, A. baumannii readily adapts to the hospital environment and readily 

acquires resistance to new antimicrobial. Considering the propensity of A. baumannii to 

develop resistance to small molecule therapies, development of immune-enhancing 

therapeutics represents a viable alternative strategy to combat this important emerging 

pathogen. In order to design therapeutics that augment the host response to infection, it is 

necessary to understand the components of the immune system that are critical for 

promoting bacterial clearance. Toward this end, the work described herein addresses this 

need through the identification of transposon mutants of A. baumannii that attenuate WT 

infection in vivo. These strains represent a valuable to tool to understand the host 

response to A. baumannii infection. Moreover, these strains may be valuable as a new 

class of biologic therapeutic for the treatment or prevention of A. baumannii pneumonia. 

 

  



 103 

Methods 

 

Bacterial strains 

A. baumannii strain ATCC 17978 (Ab7978) was obtained from the American Type 

Culture Collection and was used for all experiments unless otherwise noted. A. 

baumannii strain Ab307 was a gift from Dr. Anthony Campagnari (Buffalo, NY).  

 

Transposon library screen and mutant identification 

A transposon library was generated in Ab17978 using the EZ-Tn5 <R6Kori-KAN-2> 

transposome system (Epicentre) as described previously (125). A total of 8,000 mutants 

were screened for loss of NaCl-induced colistin resistance by challenging with 1.5 mg/L 

colistin in Mueller Hinton Broth (MHB) with or without supplementation with 150 mM 

NaCl. Mutants that demonstrated no growth after 24 hours in NaCl-supplemented media 

were selected for further analysis. Phenotypes were confirmed by growth curve analysis 

in MHB +/- NaCl +/- colistin as described previously (112). The locations of transposon 

insertions were determined by rescue cloning (74).  

 

Preparation of bacterial cultures for in vivo studies 

Bacteria were harvested from log-phase cultures of Ab17978, Tn5A7 or Ab307, washed 

and resuspended in phosphate-buffered saline (PBS) and adjusted to 1 x 10
7
 CFU/l. 

Bacterial cell counts were confirmed post-infection by plating serial dilutions of each 

inoculation. For co-infections, equal amounts of wildtype and lpsB were combined to 

yield 3 x 10
8
 CFU/30 l (total). For treatment experiments, bacteria were killed by 
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adding an equal volume of ethanol: acetone (1:1) to the culture. Killed bacteria were 

pelleted, washed once with ethanol: acetone then washed and resuspended in PBS as 

described above. Efficiency of killing was confirmed by plating. In addition, plating 

mixtures of killed bacteria with live wildtype bacteria confirmed that this method did not 

affect the viability of wildtype bacteria in vitro. 

 

A. baumannii pneumonia model 

All animal experiments were approved by the Vanderbilt Institutional Animal Care and 

Use Committee. We have previously established a murine Acinetobacter pneumonia 

model in our laboratory (125). Six to eight week old, female C57BL/6 mice were used for 

all experiments unless otherwise noted. C3H/HeJ mice were obtained from Jackson 

Laboratories. C3H control mice were obtained from Charles River Laboratories. MyD88
-

/-
 mice were a gift from Sebastian Joyce (Vanderbilt University). Mice were anesthetized 

and infected intranasally with 30 l of bacterial suspension. For pre-treatment 

experiments, mice were anesthetized and 30 l of killed bacteria were administered 

intranasally 24 hours prior to infection. At the indicated times mice were euthanized and 

lungs were aseptically removed, weighed and homogenized in 1 ml sterile PBS. Serial 

dilutions were plated on LB agar and/or LB agar containing kanamycin (40 g/ml). 

Bacterial dissemination was assessed either by plating blood or by measuring bacterial 

burdens in spleens. In some experiments, right lungs were used for determination of 

bacterial burdens, while left lungs were used for RNA isolation or flow cytometry as 

described below. In all cases CFU were normalized to the mass of the tissue analyzed. 
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Tissue preparation for histology 

Histopathology was assessed at 36 hpi in at least two mice per experimental group. Lungs 

were inflated and fixed with 10 % neutral buffered formalin. Lungs were paraffin 

embedded, sectioned and stained with hematoxylin and eosin or Gram-stained according 

to standard procedures. Lung sections were examined by a veterinary pathologist blinded 

to infection groups. Representative images are presented. 

 

RNA isolation and PCR array 

Lungs from infected animals were aseptically removed, transferred to RNAlater solution 

(Ambion) and stored at -20 C until subsequent analyses. Approximately 30 mg of lung 

tissue was lysed and homogenized in 600 l buffer RLT (Qiagen) in lysing matrix D 

tubes using a FastPrep tissue lyser (2 x 45 s at setting 6.0). RNA was isolated from tissue 

lysates using an RNeasy kit according to the manufacturer’s recommendations for animal 

tissues (Qiagen). Reverse transcription was performed with the SABiosciences RT
2
 

cDNA synthesis kit according to the manufacturer’s recommendations using 2.5 g total 

RNA as template. Gene expression analysis was carried out using the SABiosciences 

mouse inflammatory cytokine/chemokine RT
2
 Profiler

TM
 PCR array using RT

2
 SYBR 

green PCR master mix according to the manufacturer’s recommendations. A complete 

list of genes and controls included in the array are listed in Supplementary Table 1 online. 

Data were analyzed by the Ct method using the RT
2
 Profiler

TM 
PCR Array Data 

Analysis tool (http://www.sabiosciences.com/pcr/arrayanalysis.php?target=upload). 

Genes that demonstrated greater than 2-fold regulation compared to uninfected controls 

http://www.sabiosciences.com/pcr/arrayanalysis.php?target=upload
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were further analyzed for differences in expression between wildtype and lpsB-infected 

animals.  

 

Flow cytometric analysis of neutrophils in infected lungs 

Flow cytometric analyses were performed with total erythrocyte-free lung cells isolated 

at 24 hpi from individual mice infected as described above with Ab17978 or lpsB. 

Antibodies and reagents for cell surface staining were purchased from BD Pharmingen. 

Analyses were carried out with a FACSCalibur® instrument (Becton Dickinson) and the 

data were analyzed using FlowJo software (Treestar Inc.) as described previously (55). 

 

Neutrophil depletion experiments 

Neutrophil depletion was achieved by intraperitoneal injection of 250 g rat IgG2b anti-

Gr-1 mAb RB6-8C5 (anti-neutrophil antibody) in 100l PBS 24 hours prior to infection 

and again at the time of infection. Control mice were treated in the same way with an 

isotype control antibody. The bacterial inoculation was reduced to 3 x 10
7
 CFU in order 

to reduce mortality associated with infection of neutrophil depleted mice. The infections 

were carried out as above using WT bacteria and killed Tn5A7.  

 

Macrophage depletion 

Liposomal encapsulation of clodronate (dichloromethylene diphosphonate) was 

performed as described previously (207). Briefly, a mixture of 8 mg cholesterol (Avanti, 

Alabaster, AL) and 86 mg egg-phosphatidylcholine (dioleoyl-phosphatidylcholine, 
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Avanti, Alabaster, AL) dissolved in chloroform were evaporated under nitrogen. 

Chloroform was further removed by placing under low vacuum in a speedvac the 

concentrator. Clodronate was prepared by dissolving 1.2 g dichloromethylene 

diphosphonic acid (Sigma) in 5 ml sterile PBS. The clodronate solution (5 ml) was added 

to the evaporated lipid preparation and mixed thoroughly. Control liposomes were 

prepared by adding 5 ml PBS to an identical lipid preparation. The solutions were 

sonicated and ultracentrifuged at 100,000 g for 1 h at 4°C. The liposome pellet was 

washed in 5 ml PBS, and ultracentrifuged at 100,000 g for 1 h at 4°C. Liposomes were 

resuspended in 5 ml PBS and stored at 4 C for no more than 24 hours before use. Mice 

were anesthetized with isoflurane and treated intranasally with 50 l of clodronate or 

control liposomes 48 hours prior to infection. Infections were then carried out as 

described above using WT bacteria and killed Tn5A7 or Tn20A11. 

 

Microarray analysis. 

Bacterial cultures were grown overnight in Luria-Bertani (LB) medium 

supplemented with the appropriate antibiotic, diluted in fresh medium and grown at 37C 

for 3.5 hours. Cultures were then mixed with an equal volume of ice-cold ethanol-acetone 

(1:1) and stored at −80°C for RNA processing.  For RNA extraction, samples were 

thawed on ice and total bacterial RNA was released by mechanical disruption and 

purified using Qiagen RNeasy columns (Qiagen, Valencia, CA), as previously described 

(112).  For microarray analysis, ten micrograms of each RNA sample were reverse 

transcribed, fragmented and 3′biotinylated as previously reported (25). Resulting labeled 

cDNA (1.5 μg) was hybridized to custom-made A. baumannii GeneChip (PMDACBA1) 
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according to the manufacturer's recommendations for antisense prokaryotic arrays 

(Affymetrix, Inc., Santa Clara, CA) and data were analyzed as described in Hood et al. 

(2010).  RNA species exhibiting ≥ 2-fold change in expression with titers above 

background as determined by Affymetrix algorithms in lpsB and were found to be 

statistically differentially expressed (t-test p ≤ 0.05) were reported. 

 

Generation of new transposon mutants and mock-mutagenized strains 

Transposon mutants were generated using the EZTn5 transposome kit as previously 

described and plated on LBA supplemented with kanamycin. Eight of the resulting 

colonies were picked and saved for future analyses. For mock transposon mutagenesis, 

the same mutagenesis protocol was followed except that the transposon DNA was 

omitted from the reaction. Bacteria were then plated on LBA and pooled into a single 

stock. For in vivo experiments, the transposon mutants were cultured independently then 

pooled, killed with ethanol: acetone and washed as described above. The mock treated 

strains were grown as a single, pooled culture, then killed and treated as above for the 

transposon mutants.  

 

Whole genome sequencing 

Genomic DNA was isolated from Ab17978S, Ab17978D (parent strain for the transposon 

mutants), Tn5A7, Tn20A11 and six of the newly derived transposon mutants described in 

the preceding section (Tn1-4, 7-8) using the Wizard genomic kit (Promega) according to 

the manufacturer’s protocol for Gram-negative bacteria. Whole genome sequencing was 

carried out on an Illumina Genome Analyzer II using paired end, 100bp reads. Sample 
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preparation and sequencing was carried out by the Vanderbilt Genome Sciences Resource 

core laboratory.  

 

Results 

 
 

A. baumannii Tn5A7 attenuates wildtype infection. 

 In Chapter III I described the identification of a transposon mutant (Tn5A7) in 

which the transposon disrupts lpsB. The precise mechanism governing the reduced 

pathogenesis of LPS core biosynthesis mutants has not been defined. Serum resistance 

contributes to bacterial virulence and serum sensitivity has been proposed as the 

mechanism for the reduced pathogenesis of mutants defective in LPS core biosynthesis 

(173). However, we have previously demonstrated that a serum-sensitive Phospholipase 

D mutant of A. baumannii is attenuated for extra-pulmonary dissemination but fully 

virulent in the murine lung (125). These data suggest that serum sensitivity alone does 

not portend attenuation in pulmonary infection. Given the importance of LPS in 

triggering inflammation, we hypothesized that the dramatic attenuation of lpsB mutants in 

the lungs results from an altered inflammatory response. In keeping with this hypothesis I 

tested whether co-infection with wildtype bacteria would alter the virulence phenotype of 

Tn5A7. Mice were infected with 3 x 10
8
 CFU of either wildtype, Tn5A7 or a 1:1 mixture 

of wildtype and Tn5A7. Unexpectedly, co-infection of wildtype and Tn5A7 resulted in 

significant attenuation of wildtype bacteria. Lung histopathology in co-infected mice 

resembled results obtained with Tn5A7 alone (Figure 17a). In addition, co-infection 

leads to a greater than 4-log reduction in wildtype bacterial burden in lungs compared to 
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wildtype administered alone (1.66 x 10
5
 ± 11.99 CFU/g versus 4.09 x 10

9
 ± 4.27 CFU/g) 

(Figure 17b).  The Tn5A7-mediated attenuation of wildtype is not due to the two-fold 

reduction in wildtype inoculum (data not shown). Moreover, co-infection prevents extra-

pulmonary dissemination (Figure 17c). Taken together these data demonstrate that 

Tn5A7 attenuates the virulence of wildtype A. baumannii upon infection of the murine 

lung.  
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Figure 17. A. baumannii strains lacking LpsB are attenuated for virulence and promote bacterial 

clearance in vivo.   
(a) Histological sections from lungs harvested at 36 hpi. Top row: Hematoxylin and eosin staining, original 

magnification = 10x. Bottom row: Gram staining showing bacteria in alveolar spaces (WT) and within 

macrophages (WT and co-infection; arrows, inset). Original magnification = 100x. (b) Bacterial burden in 

lungs of mice infected with wildtype (WT), Tn5A7 or co-infected with WT and Tn5A7 at 36 hpi. Bacterial 

burdens for the co-infection are graphed as the total bacterial burden (WT and Tn5A7) and the respective 

counts for WT and Tn5A7 as determined by plating on selective media. n = 20 (WT) or 15 (Tn5A7 and co-

infection). (c) Bacterial burden in blood of mice infected with WT, Tn5A7 or co-infected with both strains 

at 36 hpi. n = 20 (WT) or 15 (Tn5A7 and co-infection). (d) Bacterial burden in lungs of mice infected with 

WT, Tn5A7 or co-infected with both strains during a time course of infection. For co-infections, individual 

WT and Tn5A7 bacterial counts, as determined by plating on selective media, are shown. n = 5 mice per 

group at each time point. * p < 0.05, ** p < 0.005, *** p < 0.001 as determined by two-tailed, unpaired 

Student’s t test. Bars indicated the mean  1 SD from the mean. 

 

Tn5A7 attenuates wildtype infection by inducing increased bacterial clearance from 

the lung. 

 The significant attenuation of wildtype bacteria upon co-infection with Tn5A7 

suggests that Tn5A7 either promotes bacterial clearance or prevents wildtype bacteria 

from establishing infection in the lung. However, it is also possible that Tn5A7 directly 

inhibits wildtype growth. Growth curves of wildtype and lpsB in vitro did not show any 

effect of Tn5A7 on wildtype growth, confirming that the effect of Tn5A7 requires the 

host environment (data not shown). To distinguish between increased clearance of 

wildtype bacteria and a decreased ability to establish infection in the lung, we examined 

bacterial burdens in lungs during a time course of infection. At 1 hpi, bacterial burdens 

were equivalent in mice infected with either wildtype, Tn5A7 or co-infected with both 

strains.  This result suggests that Tn5A7 does not prevent WT from establishing infection 

in the lung. Similar results were obtained for wildtype and Tn5A7 at 4 hpi. By this time 

point, bacterial burdens began to decrease in co-infected mice. At 24 hpi, we observed a 

4-log reduction in bacterial burden in Tn5A7-infected mice compared to wildtype. 

Similarly, in co-infected mice, we observed a 3-log reduction in wildtype bacterial 
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burden and a 4-log reduction for Tn5A7 (Figure 17d). Taken together, these data suggest 

that Tn5A7 interfaces with the host to promote increased clearance of wildtype bacteria.  

Chemically inactivated Tn5A7 is effective in inhibiting WT A. baumannii infection. 

 

Figure 18. Application of Tn5A7 to the treatment of A. baumannii pneumonia.  

(a) Bacterial burden at 36 hpi in lungs of mice infected with Ab17978 and treated with vehicle (PBS), 

chemically-killed Ab17978 (killed WT) or chemically-killed Tn5A7 (killed Tn5A7). (b) Bacterial burden at 

36 hpi in lungs of mice infected with Ab307 and treated with vehicle (PBS) or killed Tn5A7. (c) Bacterial 

burden in spleens of mice infected with Ab17978 or Ab307 and mock-treated (PBS) or treated with killed 

Tn5A7. (d) Dorsal view of representative whole lungs harvested at 36 hpi showing large areas of 

hemorrhage and disease affecting nearly the whole lung of an untreated mouse compared to mild 

hyperemia and focal disease in a treated mouse. R = right lung, L = left lung. (e) Bacterial burden at 36 hpi 

in lungs of mice infected with Ab17978 and mock-treated (PBS) or treated with killed Tn5A7 24 hours 

prior to infection (T-24) or at the time of infection (T=0). * p < 0.05, ** p < 0.005, *** p < 0.001 as 

determined by two-tailed, unpaired Student’s t test. 



 114 

 The results described above raise the intriguing possibility that the immune 

response elicited by Tn5A7 could be harnessed therapeutically for the treatment of A. 

baumannii infections. As an initial proof of concept, it was necessary to determine 

whether live bacteria were required for the attenuating effect of Tn5A7. To test this 

possibility, we infected mice with wildtype and co-administered an equal inoculation of 

chemically killed Tn5A7 or PBS as a vehicle control. By 36 hpi, bacterial burdens in 

mice treated with killed Tn5A7 were nearly 8-logs less than those of PBS-treated controls 

(5.12 x 10
8
 ± 17.9 CFU/g versus 7.66 x 10

0
 ± 30.9 CFU/g) (Figure 18a).  In fact, A. 

baumannii was undetectable in the majority of animals treated with the killed Tn5A7 

preparation.  This effect was specific for Tn5A7 since treatment with killed wildtype A. 

baumannii did not reduce bacterial burdens below those of untreated controls (Figure 

18a). To determine if killed Tn5A7 is efficacious against other A. baumannii strains, we 

infected mice with Ab307, a blood isolate obtained from a patient at Erie County Medical 

Center in 1994.  This strain has previously been shown to be virulent in rat pneumonia 

and soft tissue infection models (254). Similar to Ab17978, we found that treatment of 

Ab307-infected mice with killed Tn5A7 significantly reduced Ab307 bacterial burdens 

by 36 hpi (Figure 18b). Treatment with killed Tn5A7 prevented extra-pulmonary 

dissemination as demonstrated by undetectable bacterial loads in the spleens of both 

Ab17978 and Ab307-infected mice (Figure 18c). The beneficial effects of treatment with 

Tn5A7 were evident on gross examination of lungs, where lungs from untreated mice 

showed large areas of hemorrhage affecting both lungs, compared to only mild 

hyperemia present in focal areas of treated lungs (Figure 18d). Finally, we assessed the 

ability of Tn5A7 to prevent A. baumannii infection by pre-treating mice with killed 
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Tn5A7 24 hours prior to infection. Pre-treatment of mice produced a 2-log reduction in 

bacterial burden in the lungs at 36 hpi (Figure 18e). Taken together, these experiments 

establish that Tn5A7 has potential as a whole cell therapeutic for the treatment and 

prevention of A. baumannii pneumonia. 

 

Tn5A7 blunts the inflammatory response to A. baumannii.  

Few studies have examined the host inflammatory response to A. baumannii 

infection in vivo. Tn5A7 therefore serves as a valuable tool to define an inflammatory 

that is effective in rapidly clearing an A. baumannii infection. We therefore employed a 

mouse inflammatory gene array to measure the expression of 84 inflammatory genes in 

lung tissue harvested from mice infected with WT or Tn5A7. RNA was isolated from the 

lungs of infected mice at 1, 4 and 24 hpi. Uninfected controls were also taken at 24 hpi. A 

total of 14 genes were up-regulated greater than 2-fold in wildtype-infected mice 

compared to uninfected controls at 1 hpi, and this number increased to 31 genes at 4 hpi 

(Figure 19, 20 a-b). These up-regulated factors consisted primarily of pro-inflammatory 

cytokines, chemokines and their respective receptors (Figure 20a-b and Figure 21a). 

Interestingly, we did not observe significant up-regulation of interferon-γ upon infection 

with wildtype A. baumannii at any time point (Figure 20a-b). In fact, at 24 hpi there was 

significant down-regulation of the interferon-γ-inducing cytokines IL-18 and IL-15, and 

significant up-regulation of the anti-inflammatory cytokine IL-10 (Figure 21b). Another 

unexpected finding was the significant down-regulation of the neutrophil chemoattractant 

CXCL15 at 24 hpi (Figure 21b). The up-regulation of anti-inflammatory cytokines 

together with down-regulation of pro-inflammatory cytokines/chemokines in the face of 
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persistently elevated bacterial burdens, suggests that A. baumannii maintains its foothold 

in the lung by inducing an anti-inflammatory response.  

 

Figure 19. Cluster analysis of all genes 

regulated at least 5-fold in at least one 

experimental group compared to uninfected 

control.  

PCR array data were analyzed using the 

SABiosciences data analysis software package. 

Genes and data sets were clustered according 

to overall expression patterns. 
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Figure 20. PCR array data for all genes that demonstrated at least 5-fold regulation in at least one 

experimental group compared to uninfected control. 
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RNA was isolated from lungs harvested at the indicated time points from animals infected with WT or 

Tn5A7. Gene expression analyses were carried out with the Mouse Inflammatory Gene RT
2
 PCR Array 

(SABiosciences). Data are presented as the fold-regulation (log10) compared to uninfected controls. 

Statistically significant differences between WT and Tn5A7 are indicated by asterisks (*p<0.05, **p<0.005, 

***p<0.001) and were determined by two-way ANOVA with Bonferroni post-tests to compare WT and 

Tn5A7 at each time point. C reactive protein, Crp; caspase 1, Casp1; CC chemokine ligand, Ccl; CC 

chemokine receptor, Ccr; CD40 ligand, CD40lg; Chemokine (C motif) receptor, Xcr; CXC chemokine 

ligand, Cxcl; CXC chemokine receptor, Cxcr; integrin alpha M, Itgam; interferon-γ, Ifn-γ; interleukin, Il; 

TNF receptor sub-family, Tnfrsf; tumor necrosis factor, Tnf. 

 

Significant differences in inflammatory gene expression were observed between 

wildtype- and Tn5A7-infected mice (Figures 19, 20 and 21a-b). Specifically, the 

magnitude of gene regulation was decreased in Tn5A7 compared to wildtype even at 

early time points when bacterial burdens in lungs were similar (Fig. 19e Figures 20-21). 

In particular, Tn5A7 induced only mild down-regulation of certain pro-inflammatory 

molecules (IL-18, IL-15, CXCL-15) and little up-regulation of IL-10 (Figure 21b). IL-3 

and C-reactive protein (Crp) were down-regulated throughout the time course in Tn5A7-

infected mice whereas these two genes were up-regulated in wildtype-infected lungs 

(Figure 21b). Interestingly, at 24 hpi IL-1 and IL-1 expression were persistently 

elevated in Tn5A7-infected mice compared to wildtype, although these differences did 

not reach statistical significance (Figure 21b). Finally, CXCR-2 was up-regulated in 

Tn5A7-infected mice compared to wildtype (Figure 21b).  CXCR-2 is the receptor for 

neutrophil chemotactic cytokines such as CXCL-1 and CXCL-15, suggesting increased 

neutrophil recruitment to Tn5A7-infected lungs (46, 59, 107, 253).  To test this 

hypothesis, we determined neutrophil numbers in lungs of wildtype and Tn5A7-infected 

mice at 24 hpi by flow cytometry. These analyses revealed a 2-fold increase in total 

neutrophil numbers in the lungs of Tn5A7-infected mice compared to wildtype (Figure 

21c). Taken together, these data demonstrate that wildtype A. baumannii elicits a potent 

pro-inflammatory response early in infection but initiates an anti-inflammatory response 
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by 24 hpi. Infection with Tn5A7 reduces the magnitude of the anti-inflammatory 

response leading to increased neutrophil recruitment and persistent pro-inflammatory 

cytokine expression consistent with the ability of this strain to attenuate wildtype 

infection.  
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Figure 21. Measurement of the inflammatory response to WT and Tn5A7.  

(a-b) PCR array data for a subset of inflammatory genes whose expression exhibited at least 5-fold 

regulation compared to uninfected controls at 4 hpi (a) or 24 hpi (b). Data are presented as the fold-

regulation (log10) compared to uninfected controls. Statistical significance was determined by two-way 

ANOVA with Bonferroni post-tests. Asterisks indicate statistically significant differences between WT and 

Tn5A7 where * p < 0.05, ** p < 0.005 and *** p < 0.001. (c) Neutrophil counts measured in lung tissue of 

mice infected with WT or Tn5A7. Statistical significance was determined by two-tailed, unpaired Student’s 

t test. C reactive protein, Crp; CXC chemokine ligand, Cxcl; CXC chemokine receptor, Cxcr; interferon-, 

Ifn-; interleukin, Il; tumor necrosis factor-, Tnf. 
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Attenuation of WT bacteria by treatment with Tn5A7 does not depend on 

neutrophils or macrophages. 

Since neutrophil recruitment appears to be increased in mice infected with Tn5A7, 

we hypothesize that neutrophils are a key mediator in the response to Tn5A7. In order to 

define the contribution of neutrophils to the attenuating effect of Tn5A7, mice were 

depleted of neutrophils using an antibody raised against Ly6G (RB6-8C5). Control mice 

were treated with an isotype control antibody. Despite the increase in the number of 

neutrophils observed in mice infected with Tn5A7 demonstrated above, depletion of 

neutrophils did not reverse the attenuating phenotype (Figure 22).  

 

Figure 22. Effect of neutrophil depletion on the attenuating effect of Tn5A7. 

Bacterial burden at in lungs of mice treated with isotype control or anti-neutrophil antibody (-PMN) 

measured at 36 hpi with WT bacteria with or without treatment with killed Tn5A7.  

 

A role for macrophages in A. baumannii infection has not been demonstrated 

previously. However, given that important role that macrophages play in other bacterial 

infections, and the fact that alveolar macrophages are present in the lung and poised to 
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respond to bacterial invaders, we determined whether macrophages play a role in the 

response to Tn5A7. In order to assess the contribution of macrophages to the attenuating 

phenotype, mice were treated with clodronate-loaded liposomes 48 hours prior to 

infection to deplete macrophages. Consistent with the neutrophil depletion experiments, 

the total bacterial burden was increased in macrophage-depleted mice but the transposon 

mutants still dramatically attenuate WT infection. These data demonstrate that 

macrophages are important in protection against A. baumannii infections, but not for the 

attenuating phenotype of Tn5A7. Taken together with the results of the neutrophil 

depletion experiments, these data suggest that neutrophils and macrophages are not the 

primary cell types mediating the attenuating effect of the transposon mutants (Figure 23).  

 

Figure 23. Macrophages contribute to defense against A. baumannii but are not required for the 

attenuating phenotype.  

Macrophages were depleted by intranasal administration of clodronate-loaded liposomes. Additional mice 

were treated with PBS loaded control liposomes. The bacterial burdens in lungs of mice at 36 hpi with WT 

bacteria with or without treatment with killed transposon mutant are depicted. Red symbols indicate CFU 

below the limit of detection. *** p < 0.001 as determined by one-way ANOVA.  
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TLR4 is not required for the dominant negative effect of the transposon mutants. 

Neither neutrophils nor macrophages appear to be the primary cell types 

mediating the attenuating phenotype of Tn5A7. We demonstrate above that inflammatory 

gene expression changes as a result of infection with Tn5A7 compared to WT. Moreover, 

bacterial clearance is increased in Tn5A7-infected animals very early post infection. 

These findings suggest that Tn5A7 is recognized by resident cells in the lung in order 

initiate a rapid response to the infection. In P. aeruginosa infections, the respiratory 

epithelium is itself critical in responding to bacterial infection and activating the immune 

response. It is therefore possible that Tn5A7 is recognized by pattern recognition 

receptors (PRRs) expressed on the lung epithelium. As a first step in determining how 

Tn5A7 is recognized by the host, we sought to evaluate the necessity of individual PRRs 

in the response to Tn5A7. In order to select a candidate PRR, we considered the fact that 

attenuation of WT infection by Tn5A7 does not require live bacteria, suggesting that 

Tn5A7 expresses a surface-exposed ligand that is recognized by the host to activate the 

immune response. Moreover, this ligand is not disrupted by treatment with ethanol and 

acetone. Given that the transposon disrupts a gene involved in LPS biosynthesis, I 

hypothesize that the truncated LPS produced by this strain may be responsible for the 

attenuating phenotype. In TLR4
-/-

 (C3H/HeJ) mice infected with WT bacteria, co-

infection with Tn5A7 exerts an equal magnitude of protective effect compared to the 

same co-infection in WT C3H mice (Figure 24). These data suggest that while TLR4
-/-

 

mice are more susceptible to infection with A. baumannii they maintain the ability to 

respond to Tn5A7 and clear WT infection. 
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Figure 24. TLR4 is not required for the attenuating phenotype of Tn5A7. 

Bacterial burdens in lungs of C3H (Tlr4
+/+

) and C3H/HeJ (TLR4
-/-

) infected with WT A. baumannii, 

Tn5A7 or a 1:1 mixture of both strains. 

 

The attenuating phenotype of Tn5A7 is not due to disruption of lpsB. 

In mutant Tn5A7 the transposon inserts into lpsB causing a disruption in LPS core 

biosynthesis. However, TLR4 is not necessary for the attenuating phenotype of Tn5A7. 

This result can be explained by the fact that the LPS core is not directly recognized by 

TLR4, and it also suggests that Tn5A7, which elicits the attenuating phenotype, must 

express another protein or molecule. Since transposon mutagenesis can induce secondary 

mutations or polar effects on other genes it was necessary to determine whether 

disruption of lpsB is responsible for the attenuating phenotype. The LPS biosynthesis 

phenotype of Tn5A7 can be rescued by providing a WT copy of lpsB on a plasmid 

(Tn5A7::plpsB). Treatment of WT bacteria with chemically inactivated Tn5A7::plpsB 

resulted in the same level of attenuation as treatment with Tn5A7 alone (Figure 25). 

Furthermore, co-infection of WT with the targeted deletion mutant, lpsB, does not lead 

to attenuation of the WT infection (Figure 25). Taken together, these data demonstrate 
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that disruption of lpsB is not directly responsible for the attenuating effect of Tn5A7 on 

WT bacteria.  

 

 

Figure 25. Disruption of lpsB is not responsible for the attenuating phenotype of Tn5A7.  

A. Bacterial burden in lungs harvested at 36 hpi from mice infected with WT, lpsB or co-infected with 

both strains. B. Bacterial burden in lungs of mice infected with WT and mock treated (PBS) or treated with 

killed Tn5A7 or killed Tn5A7::plpsB. *** p < 0.001 as determined by Student’s t test.  

 

 

Transposon mutagenesis induces the attenuating phenotype with a high frequency. 

There are several possible ways in which transposon mutagenesis can induce a 

phenotype that is not the direct result of gene disruption by the transposon itself. These 

possibilities include polar effects on the expression of genes near the site of integration, 

secondary mutations that arise during the process of mutagenesis, or the transposon itself 

may exert unexpected effects on the host bacterium. As an initial experiment to 

differentiate between these possibilities, I selected another mutant from the transposon 

library and repeated the treatment experiments with chemically inactivated bacteria as 

before. In mutant 20A11, the transposon disrupts the gene for a putative major facilitator 

family transporter that is not related to LPS biosynthesis. When WT are bacteria are 
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treated with chemically killed 20A11, this treatment attenuates the WT infection similar 

to treatment with Tn5A7 (Figure 26). These data suggest a role for the transposon itself 

in mediating the attenuating effect. However, this experiment does not rule out the 

possibility that the process of transposon mutagenesis induces this phenotype at a high 

frequency.  

 

Figure 26. Demonstration of the attenuating phenotype in a separate 

transposon mutant.  

Bacterial burden in lungs harvested at 36hpi from mice infected with WT 

A. baumannii and mock treated (PBS) or treated with killed Tn5A7 or 

killed Tn20A11. Tn20A11 is a transposon mutant in which the transposon 

integration disrupts a predicted MFS family transporter that is not 

involved in LPS biosynthesis. 

 

 

 

To address the possibility that the process of transposon mutagenesis induces this 

phenotype at a high frequency, I generated new transposon mutants following the same 

mutagenesis procedure that was used to generate the original library. In addition, a mock 

mutagenesis protocol was carried out in which bacteria were transformed with the 

transposase but the transposon DNA was excluded from the reaction. Eight colonies were 

picked from the transposon mutagenized bacteria. Since there is no method for selecting 

bacteria that have taken up the transposase without the transposon DNA, following 

electroporation, the bacteria from the mock mutagenesis were plated and the pooled 

without selection. Mice were infected with WT bacteria mixed with chemically-killed, 

pooled transposon mutants or mock mutagenized bacteria. Treatment with the pooled 

transposon mutants reduced WT bacterial burdens but not to the same extent as treatment 



 129 

with either Tn5A7 or Tn20A11 (Figure 27). In contrast, the mock treated cells had no 

effect on WT bacterial growth. The intermediate effect of the pooled mutants suggests 

that only a subset of the mutants have the attenuating phenotype. Taken together, the 

infections with multiple transposon mutants suggest that the process of transposon 

mutagenesis induces the attenuating phenotype. Moreover, this phenotype arises with 

high frequency, since at least one out eight mutants must have the phenotype in order for 

the pooled mixture to have an effect on WT infection. 

 

Figure 27. Induction of the therapeutic phenotype by transposon mutagenesis.  

Bacterial burden in lungs harvested at 36 hpi from mice infected with WT bacteria and mock treated (PBS) 

or treated with a mixture of eight newly derived transposon mutants (New Tn5) or a mixture of mock 

transposon mutants.  

 

Attenuating mutants do not share any common secondary mutations. 

To determine if the process of transposon mutagenesis induced common mutations at 

sites secondary to the transposon integration site, whole genome sequencing was carried 

out on Tn5A7, Tn20A11 and a subset of the pooled mutants described above. In addition, 

the Ab17978 parent strain and a separate stock of Ab17978 were also sequenced. The 

parent strain for the transposon mutants is designated as Ab17978D, while the other is 
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referred to as Ab17978S. Unexpectedly, sequencing did not identify any point mutations, 

insertions or deletions that were common to the transposon mutants. In fact, although 

there were five point mutations identified in Tn5A7 and Tn20A11 compared to 

Ab17978D, these mutations were not found in the more recently derived transposon 

mutants. Given that the same five nucleotide changes were found in both Tn5A7 and 

Tn20A11, these mutations are most likely present in all of the mutants from the library. 

Since these mutations are not conserved in the other transposon mutants, these changes 

are not likely to be the cause for the attenuating phenotype.  

 

Attenuating mutants share a common pattern of gene dysregulation.  

Transcriptional analyses were undertaken to compare the expression profiles of 

WT, 20A11, 5A7 and lpsB. Expression profiles in each of the transposon mutants was 

compared to WT. Expression changes that were common between Tn5A7 and lpsB 

were thought to derive from disruption of lpsB and were therefore ignored. Likewise, 

gene expression changes common between all three mutants are likely the result of 

kanamycin treatment, so those changes were also filtered out. Finally, Expression 

changes common between Tn5A7 and Tn20A11 result from the transposon mutagenesis. 

The bacterial cultures for the microarray experiments were grown exactly as if they were 

for the infection studies. I therefore hypothesize that one or a combination of genes that 

change in expression in these two mutants is responsible for the attenuating phenotype. 

These transcriptional analyses are summarized in Figure 28 and Appendix III, Tables 17 

and 18. We focused our attention on genes that were up regulated in the transposon 

mutants compared to WT. This decision is based on the fact that the mutants exert a 
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dominant negative effect on WT bacteria. It is therefore more likely that the mutants 

overexpress a surface-exposed pathogen-associated molecular pattern (PAMP), which 

augments recognition and response by the host.  

 Among the genes that are most highly up-regulated are those that encode genes 

involved in horizontal gene transfer (A1S_0663, A1S_0664, A1S_0665 and A1S_0666). 

These genes appear to be encoded within a horizontally acquired DNA element. 

Moreover, several transposases or transposase-associated genes are also modestly up-

regulated (A1S_0211, A1S_0773, A1S_0774, A1S_0777, A1S_1172). Other genes that 

encode proteins with possible bacterial surface accessibility include two outer membrane 

or inner and outer membrane-spanning transporters (A1S_1241, A1S_1771, A1S_1772 

and A1S_1773). Taken together, the microarray analyses define a conserved 

transcriptional program in two transposon mutants when compared to WT bacteria.  
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Figure 28. Subtractive microarray defining a conserved pattern of gene expression in attenuating 

strains.  

A. Number of genes whose expression differed in Tn5A7, Tn20A11 and lpsB relative to WT by 

microarray analysis. Numbers in overlapping circles indicate the number of genes common to the two 

strains. B. Heat map displaying relative expression of genes that were significantly upregulated in Tn5A7 

and Tn20A11 compared to WT. Data are clustered according to similarity in expression profiles. Bold type 

face indicates genes or transcriptional units targeted for inactivation.   
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The attenuating effect of the transposon mutants requires signaling through MyD88. 

The data presented above suggest that immune signaling is disrupted by treatment 

with the transposon mutants. In addition, as discussed above, the fact that killed bacteria 

are sufficient to induce the curative immune response strongly suggests that these 

mutants express a PAMP that is readily accessible to its cognate PRR in vivo. To test this 

hypothesis, we performed the infection and treatment experiments in MyD88
-/-

 mice 

since these mice would lack responsiveness to several of the major bacterial PAMPs. 

MyD88
-/-

 mice are more susceptible to A. baumannii infection than their heterozygous 

littermates and WT controls (Figure 29). Importantly, Mice infected with WT bacteria 

and treated with killed Tn20A11 only exhibit a modest reduction in bacterial burden 

compared to untreated mice. These data establish a role for MyD88 signaling in the 

response to the transposon mutants. Moreover, these data further support the hypothesis 

that the attenuating effect of the mutants involves recognition of a PAMP.  

 

Figure 29. Involvement of MyD88 in the attenuating phenotype of the transposon mutants. 

Bacterial burden in lungs of WT or MyD88-/- mice at 36 hpi with Ab17978+PBS or Ab17978+killed Tn 

mutant. 

  

 The microarray analyses above demonstrate up regulation of a locus possibly 

involved in horizontal gene transfer in Tn5A7 and Tn20A11. We hypothesized that up-
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regulation of these genes may lead to increased exposure of bacterial DNA to PRRs in 

vivo. In order to define the contribution of surface-exposed DNA to the attenuating effect 

of the transposon mutants, the mutants were treated with DNase prior to treatment with 

ethanol and acetone. Proteinase K treatment, alone or in combination with DNase 

treatment, was also included in order to determine whether a surface exposed protein is 

responsible for the attenuation. Mice were infected with WT bacteria and treated at the 

time of infection with killed Tn20A11 that had been treated with DNase, Proteinase K, or 

sequentially with both enzymes. A partial reduction in the attenuating phenotype of 

Tn20A11 was observed with each of the three treatment conditions (Figure 30). Addition 

of DNase and proteinase K followed by immediate treatment with ethanol and acetone 

did not reduce the attenuating phenotype establishing that the reduction observed above 

cannot be accounted for simply by the addition of DNase and Proteinase K. Failure to 

completely reduce the phenotype may result from incomplete digestion.  

 

Figure 30. Effect of DNase and proteinase K pre-treatment on the therapeutic effect of Tn20A11.  

Bacterial burden in lungs of mice infected with WT bacteria and treated with killed 20A11 treated with 

DNase and/or proteinase K or left untreated. * p < 0.05, *** p < 0.001 by one-way ANOVA. 
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Discussion 

 
 

Mammals have evolved elegant mechanisms to recognize invading pathogens and 

mobilize an infantry of soluble and cellular effectors capable of controlling and clearing 

the invading microbe. Likewise, pathogens have also evolved means to evade these 

defenses and proliferate in their mammalian hosts. The intricate balance that underlies the 

host-pathogen interaction is exemplified by the finding that transposon mutagenesis of A. 

baumannii results in strains that tailor the host response to induce pathogen clearance. 

The precise mechanism governing this attenuating effect is not known, however the fact 

that attenuating mutants share a common pattern of gene dysregulation suggests that the 

aberrant expression of a bacterial PAMP triggers host inflammation in vivo. Notably, in 

mice treated with the transposon mutants, WT A. baumannii is rapidly cleared from the 

lungs without residual histopathology. This demonstrates that these strains do not merely 

induce a robust immune response, but that the immune response is tailored for both 

pathogen elimination from the lung and protection of tissue integrity. 

Inflammatory dysregulation contributes to disease susceptibility in infections of 

critically ill patients (188, 189). Consistent with this clinical observation, the pattern of 

gene expression reported here following infection with wildtype A. baumannii bears 

numerous features typical of the immunosuppressive phase of sepsis (27, 197). Notably, 

sepsis develops during the course of primary lung infection with A. baumannii and the 

observed immunosuppression, which is dependent on full-length LPS, results in failure to 

clear this initial infection. This is a clinically relevant situation and one that is associated 

with high mortality in hospitalized patients (81, 246, 268). The hallmarks of post-septic 
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immunosuppression, namely lack of interferon-γ expression and up-regulation of IL-10, 

are observed throughout wildtype A. baumannii infection. However, while many studies 

focus on the IL-10/IFN axis in sepsis, therapeutic modulation of these cytokines in vivo 

has had mixed results (132, 197, 198). It is therefore notable that A. baumannii infection 

results in the regulation of a broad panel of pro- and anti-inflammatory cytokines, many 

of whom have demonstrated roles in host defense against pulmonary infections (46, 107, 

120, 132, 153, 197, 253, 303). Furthermore, the expression of numerous genes differs 

significantly between wildtype and Tn5A7 infections and these patterns associate with 

drastically different disease outcomes. These data underscore the fact that coordinated 

regulation of the full complement of inflammatory genes contributes to the outcome of 

bacterial infections.  

The inflammatory gene expression data provide possible mechanisms for the 

attenuating effect of the transposon mutants in vivo. One potential confounding factor 

however, is the fact that there are vast differences in bacterial burden at the time points at 

which we observe the greatest changes in gene expression. It is therefore not clear to 

what extent these changes are responsible for the increase in bacterial clearance, or 

whether these changes are the result of lower bacterial burdens at these time points. 

Furthermore, the time course infection data demonstrate that bacterial clearance begins 

very quickly following the initiation of the infection. The latter point, together with a lack 

of a role for neutrophils and macrophages, suggest that the respiratory epithelium itself or 

other resident cells within the lungs must respond to the infection and initiate the 

response.  Future work will address these points and is discussed in Chapter VIII.  
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It is notable that neither neutrophils nor macrophages were required for the 

attenuating phenotype of the transposon mutants. While these data imply another cell 

type such as the respiratory epithelium or dendritic cells in activating the response, it is 

necessary to consider that the depletion experiments likely do not remove all of the 

targeted cells. It is therefore possible that a sufficient number of cells remain to carry out 

their effector function. Regardless of the cell type responsible for recognition of the 

transposon mutants, it is clear that MyD88 is necessary for the attenuating effect of these 

strains. This implies that a PAMP is expressed by the bacteria and recognized by host 

TLRs. However, MyD88 is also involved in IL-1 and TNF receptor signaling, so it is not 

possible to rule out involvement of these receptors at this time. Interestingly, genes 

involved in either the synthesis or export of known PAMPs were not found to be 

upregulated in the transposon mutants. One possible exception to this finding is the up-

regulation of four genes that make up part of a putative competence locus (Figure 31). 

Bacterial DNA activates the immune response through recognition by TLR9. It is 

possible that DNA associated with these competence proteins is exposed to the immune 

system. However, it is also possible that the phenotype induced by the transposon 

mutants results from recognition of a previously uncharacterized bacterial PAMP. 

 

Figure 31. Schematic diagram of a highly upregulated locus in Tn5A7 and Tn20A11. 

The four most highly upregulated genes in the array encode a putative competence locus consisting of a 

putative DNA helicase (1), replication C family protein (2), putative mating pair formation protein (3) and 

TrbL/VirB6 plasmid conjugal transfer protein (4). 
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 The rise of extensively drug resistant bacteria that are capable of causing lethal 

infections is rapidly creating a public health crisis yet therapeutic development has failed 

to keep pace. A. baumannii poses a particular challenge due to the intrinsic drug 

resistance imparted by its impermeable outer membrane. Furthermore, up-regulation of 

efflux pumps and down-regulation of outer membrane porins leads to rapid acquisition of 

resistance to new antibiotics (112, 179, 181, 224, 255). Based on these facts, reliance 

solely on small molecule antibiotics is unlikely to provide a lasting solution to the 

growing burden of A. baumannii infections. Novel strategies for the treatment and 

prevention of these infections are therefore desperately needed. Toward this end, the 

work described herein demonstrates that Tn5A7 restores the host’s ability to mount an 

effective immune response and clear a wildtype A. baumannii infection. Notably, Tn5A7 

exerts a magnitude of effect that is equal to or greater than virtually all published reports 

of antibiotic therapy in murine models of A. baumannii pneumonia (48, 131, 149, 192, 

228, 306, 309). Illustrating this point, in a comparable pneumonia model, tigecycline 

elicits only a 2- to 5-log reduction in bacterial burden by 48 hpi, compared to complete 

bacterial clearance in nearly all animals treated with Tn5A7 by 36 hpi (Figure 19) (228). 

Notably, tigecycline is the only new drug that has been approved for the treatment of A. 

baumannii infections in recent years and resistance to this drug has already been reported 

(224, 255). These facts underscore the potential for further elucidation of the mechanism 

of the attenuating effect in order to harness this host response for the treatment for A. 

baumannii pneumonia. Moreover, this treatment strategy has advantages over selective 

modulation of individual cytokines since the transposon mutants marshal the full 
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complement of host defenses required for effective pathogen clearance. Taken together, 

this work demonstrates that the bacterial pathogens can be engineered to harness innate 

host defenses and to attenuate A. baumannii infections.  Thus, innate immune enhancing 

biologics may represent a novel class of antimicrobials that can be developed for the 

treatment of a variety of infectious diseases.    
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V. ZnuB contributes to zinc acquisition, resistance to calprotectin and pathogenesis 

of Acinetobacter baumannii infections 

 

Introduction 

 
Despite the growing clinical burden of A. baumannii disease there remains 

relatively little known about the basic mechanisms of A. baumannii pathogenesis. It is 

well established that all bacteria require certain transition metals in order to carry out 

basic physiologic functions. Mammalian hosts take advantage of this requirement by 

limiting the availability of metals in a process referred to as nutritional immunity. 

Although this term was first used to describe the withholding of iron from invading 

bacteria, more recently it was established that mammalian hosts likewise sequester other 

metals including manganese and zinc. As a result, bacterial pathogens need efficient 

mechanisms to acquire nutrient metals from their hosts in order to cause infection. In the 

case of A. baumannii, several mechanisms for iron acquisition have been elucidated. 

These include siderophore biosynthesis and transport machinery, which have been shown 

to play a role during infection. However, there is currently nothing known about the roles 

for other essential metals such as manganese or zinc during A. baumannii infection. 

Moreover, mechanisms for acquiring these metals have not been elucidated.  

Herein we describe the role for the host protein calprotectin in protection against 

A. baumannii pneumonia. Calprotectin (calgranulin A/B, MRP 8/14) is an S100 family 

protein consisting of a heterodimer of S100A8 and S100A9. Calprotectin is an important 

inflammatory marker and exhibits antimicrobial activity through the chelation of Mn and 

Zn (26, 116, 186, 278). Although the role for this protein has been demonstrated in 

systemic and gastrointestinal infections, the role for this protein in bacterial pneumonia 
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has not been examined previously. In addition to investigating the contribution of 

calprotectin to host defense against A. baumannii we further utilize CP-mediated metal 

chelation to define bacterial processes that are affected by Mn and Zn limitation. Finally, 

we describe a zinc acquisition system in A. baumannii and define the role for this system 

in A. baumannii pathogenesis.  

 

Materials and Methods 

 

Bacterial strains and reagents 

All experiments were performed using A. baumannii strain ATCC 17978 or its 

derivatives unless otherwise noted. The transposon mutant library was constructed using 

the EZ-Tn5 transposome system as described previously (123). A. baumannii strain 

AB0057 is a carbapenemase-producing strain with an imipenem MIC of >12 g/ml (6). 

This strain was a gift from Robert Bonomo. Chemicals and antibiotics were purchased 

from Sigma unless otherwise noted. Recombinant human calprotectin was used for all in 

vitro experiments and was expressed and purified as described previously (56). 

 

In vitro growth inhibition assays with calprotectin 

Overnight cultures of A. baumannii were diluted 1:20 in chelex-treated RPMI 

(ChxRPMI) without metals added back and incubated for 1 hour at 37C. Following 

incubation, the cultures were further diluted 1:50 in CP growth media, which consists of 

20 percent CP diluted in CP buffer (20 mM Tris, pH 7.5, 100 mM NaCl, 10 mM beta-

mercaptoethanol, 3 mM CaCl2), and 80 percent ChxRPMI to which was added 0.1 mM 
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CaCl2, 1mM MgSO4 and 10 M FeSO4. In some assays, Mn and/or Zn were also added 

at the indicated concentrations. Bacteria were incubated at 37 C and growth was 

monitored at 1 to 2-hour intervals throughout the time course.  

 

A. baumannii infections 

Wildtype C57BL/6 mice were obtained from Jackson Laboratories and allowed at 

least one week of acclimation time prior to infections. S100A9
-/-

 mice, which are 

functionally calprotectin-deficient were a gift from Wolfgang Nacken (Institute of 

Experimental Dermatology, University of Münster, 48149 Münster, Germany). All of the 

infection experiments were approved by the Vanderbilt University Institutional Animal 

Care and Use Committee. In vivo studies utilized the A. baumannii pneumonia previously 

developed in our laboratory with a few modifications (123). Briefly, mice were infected 

with 3-5 x 10
8
 CFU A. baumannii in 50 l PBS. At the indicated times post infection 

mice were euthanized and CFU were enumerated in lungs and livers. We initially 

performed time course studies comparing male C57BL/6 with S100A9
-/-

 mice for their 

susceptibilities to A. baumannii infection to determine the optimal age at which to 

perform subsequent experiments (data not shown). Based on these studies, 9 week-old 

male mice were used for subsequent experiments. For co-infection experiments, equal 

numbers of WT and znuB were mixed to yield a total of 5 x 10
10

 CFU/ml and mice were 

infected with 50 l of the combined mixture. At 36 hours post infection (hpi), mice were 

euthanized and differential bacterial counts were determined in lungs and livers by 

plating organ homogenates on LBA or LBA supplemented with 40 g/ml kanamycin. 
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Transposon mutant library screen 

A transposon library was constructed using the EZ-Tn5 transposome system as 

described previously (123). Since growth of WT bacteria is significantly attenuated in 

ChxRPMI without Mn or Zn added back, the growth conditions were modified for the 

primary screen in order to facilitate rapid screening of over 4000 mutants. Mutants were 

inoculated directly from frozen stocks into LB and incubated at 37 C overnight. Bacteria 

were then sub-cultured at a 1:20 dilution in ChxRPMI for 1 hour at room temperature. 

Following the 1-hour subculture, bacteria were diluted 1:50 into 96-well plates containing 

100 l of CP screening media, which consisted of 50 percent RPMI (not chelex-treated) 

without supplemental metals and 50 percent CP (40 g/ml) in CP buffer. The plates were 

incubated at 37 C with shaking at 180 rpm for 10-12 hours and growth was monitored 

by measuring the optical density of the cultures at 600 nm. Mutants whose growth in the 

presence of CP differed by more than two standard deviations from the plate average 

were confirmed by repeating the inhibition assay as described above for the primary 

screen. Mutants that exhibited growth comparable to WT in media without CP but whose 

growth in the presence of CP differed significantly from that of WT bacteria were 

selected for insert identification. The transposon insertion sites were determined by 

inverse PCR or by sequencing directly from chromosomal DNA using primers KAN-1 

and KAN-2.  

 

Identification of a putative zur-binding consensus sequence and zur-regulated genes 

The intergenic region between znuA and zur was searched for possible Zur 

binding motifs using the consensus 19 bp zur box (AATGTTATAWTATAACATT) 
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derived from the analysis of 13 genes from several gamma-Proteobacteria (135). BLAST 

analysis was then employed to search for this A. baumannii zur box in the Ab17978 

genome. Once possible zur-regulated genes were identified, 300bp of 5’ flanking 

sequence was collected from each gene. These sequences were searched for motifs using 

the Multiple Em for Motif Elicitation (MEME) tool, which confirmed the putative zur 

boxes from the majority of genes analyzed (154). Each of the zur box sequences was then 

input into WebLogo 2.0 to generate a sequence logo that graphically represents the 

degree of sequence conservation at each nucleotide position (82). 

 

Construction of znuB 

Approximately 1000 bp of flanking DNA sequence was amplified from the 

immediate 5’ and 3’ regions surrounding znuB. The kanamycin resistance gene aph was 

amplified from pUCK1 and the three PCR products were stitched by overlap extension 

PCR as described previously (248). This PCR product was cloned into pCR2.1 

(Invitrogen) and sequence verified. The product was then re-amplified and the resulting 

linear DNA product was transformed into Ab17978 to generate an in-frame allelic 

replacement of znuB with aph. Transformants were selected on LBA supplemented with 

40 g/ml kanamycin. The resulting colonies were screened for integration of the 

kanamycin cassette into the correct locus using locus-specific primers that anneal outside 

the region contained within the knock out construct.  
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ICP-MS analyses of intracellular zinc concentrations 

Bacteria were cultured overnight in chxRPMI with 0.1 mM CaCl2, 1mM MgSO4 

and 10 M FeSO4 added.  Bacteria were sub-cultured 1:20 in fresh chxRPMI for 1 hour. 

For experiments with CP, the bacteria were then sub-cultured 1:50 into 10 mL CP growth 

media with 37.5 g/ml CP and 50 M Mn. Since znuB grows very poorly under these 

conditions, WT bacteria were harvested after approximately 6 hours (OD600 = 0.6), while 

znuB cultures were harvested after approximately 10 hours (OD600 = 0.4). For the 

experiments without CP, the bacteria were sub-cultured 1:50 into fresh media similar to 

the overnight conditions except that Mn and 
68

Zn were added to final concentrations of 

100 M and 1 M, respectively. The bacteria were harvested after approximately 8 hours 

(OD600 = 0.6). In all cases, at the indicated time points, bacteria from the overnight 

cultures or the sub-cultures were pelleted by centrifugation (10 minutes, 6,000 x g), 

washed twice with water and transferred to Teflon vials. Bacterial pellets were dried by 

incubation at 50 C overnight then digested by boiling in nitric acid for 6 hours at 130 C.  

Elemental quantification was performed on the Thermo Element 2 HR-ICPMS 

(Thermo Fisher Scientific, Bremen, Germany) coupled with ESI auto sampler (Elemental 

Scientific, Omaha, NE). The HR-ICPMS is equipped with a PFA microflow nebulizer 

(Elemental Scientific, Omaha, NE), a double channel spray chamber (at room 

temperature), a magnetic sector followed by an electric sector, and a second electron 

multiplier.  The sample uptake was achieved through self-aspiration via 0.25 mm ID 

sample probe and sample capillary. The operation parameters are listed in Table 9. 
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Table 9. HR-ICP-MS parameters. 

Instrument Element 2  HR-IC-MS 

RF power 1200 W 

Cool gas 16.00 L min
-1

 

Auxiliary gas 0.8 L min
-1

 

Sample gas 1.05 L min
-1

 

Resolution mode Medium resolution (4000) 

Isotopes measured 
55

Mn, 
57

Fe, 
63

Cu, 
65

Cu, 
66

Zn, 
68

Zn 

Runs 10 

Passes 1 

Samples per peak 20 

Sample time 0.01 s 

 

Imipenem inhibition assays 

Bacteria were cultured in Mueller Hinton Broth  (MHB) overnight then sub-

cultured 1:1000 in MHB containing 25 M TPEN and imipenem (0 – 20 g/ml). Where 

indicated, ZnSO4 was added to a final concentration of 100 M. Bacteria were cultured 

for 24 hours while the optical densities of the cultures were monitored at 600 nm. 

Minimum inhibitory concentrations were determined as the concentration in the first well 

in which no bacterial growth was observed.  

 

 

Results 

 

Calprotectin contributes to defense against A. baumannii infection.  

Calprotectin has been implicated in defense against bacterial pathogens through 

chelation of manganese and zinc (56, 136, 164). This protein makes up approximately 50 

percent of the neutrophil cytoplasmic protein content, which facilitates accumulation of 

CP at sites of infection. Neutrophils are a critical component of the innate response to A. 
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baumannii infection; however, the role for CP in A. baumannii infection has not been 

demonstrated previously (238, 287). As a first step toward elucidating a possible role for 

CP in A. baumannii infection, growth inhibition assays were performed with increasing 

concentrations of CP (Figure 32a). These assays demonstrate that CP inhibits A. 

baumannii growth with an IC50 of approximately 60 g/ml under these conditions. 

Importantly, the inhibitory effect of CP is completely reversed by the addition of excess 

Mn and Zn. Moreover, a variant of CP in which the Mn and Zn binding sites are mutated 

is unable to inhibit A. baumannii growth (data not shown). Finally, treatment with CP 

reduces intracellular accumulation of Mn and Zn (Figure 32b). Taken together, these 

results establish that CP inhibits A. baumannii growth through chelation of Mn and Zn.  

In order to determine if CP contributes to host defense against A. baumannii 

pneumonia, we obtained S100A9
-/-

 mice and compared their susceptibility to A. 

baumannii infection with wildtype C57BL/6 mice. S100A9
-/-

 mice are functionally CP-

deficient because S100A8 does not form stable homodimers. Although A. baumannii is 

rarely causes lethal infection in immunocompetent mice, a significant increase in 

mortality was observed over a 72-hour time course in S100A9
-/-

 mice (Figure 32c). 

Consistent with this observation, bacterial burdens were significantly higher at 36 hpi in 

the lungs of S100A9
-/- 

mice compared to WT. Moreover, dissemination to secondary sites 

was also increased in CP-deficient mice as evidenced by an increase in bacterial burden 

in livers. We did not see a significant increase in bacterial burden at 72 hpi suggesting 

that those mice that survive to 72 hours are eventually able to control their infection. 

Taken together, these data demonstrate that CP is an important component of the innate 

immune response to A. baumannii pulmonary infections.  
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Figure 32. CP inhibits A. baumannii growth in vitro and contributes to protection against A. 

baumannii infection.  

(a) CP-mediated inhibition of A. baumannii growth in vitro is Mn and Zn dependent. A. baumannii growth 

in the presence of increasing concentrations of CP with (dashed lines) or without (solid lines) excess Mn 

and Zn added back. Data represent the average of three biological replicates. (b) Treatment with CP 

reduces intracellular Mn and Zn accumulation. (c-d) CP contributes to host defense against A. baumannii 

infection. (c) Survival of WT or CP-deficient mice following infection with A. baumannii. Data were 

averaged from three independent experiments with 8-16 mice per group in each experiment. ** p < 0.01 as 

determined by Gehan-Breslow-Wilcoxon Test.  (d) Bacterial burden in lungs and livers of WT or CP-

deficient mice 36 hpi with A. baumannii. Data were averaged from three independent experiments with 5-

10 mice per group in each experiment. ** p < 0.01 as determined by Student’s t test. 

Identification of A. baumannii mutants with altered sensitivity to CP 

 The contribution of CP to defense against A. baumannii infection suggests that A. 

baumannii requires Mn and/or Zn in order to maximally colonize the murine lung. To 

date, no Mn or Zn acquisition systems have been described in A. baumannii and specific 

bacterial processes that require either of these metals have not been described in this 

organism. In order to determine the impact of Mn and Zn limitation on A. baumannii 

physiological processes, we performed a transposon library screen to identify mutants 

with either increased or decreased resistance to CP (Figure 33a). We screened 
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approximately 4000 mutants and selected 40 whose growth was significantly different 

from WT in the presence of CP, but unchanged compared to WT in media without CP. 

Many of these mutants had transposon insertions into ribosomal RNA-encoding genes. 

We have observed the same pattern in previous transposon library screens (Chapter III). 

It is possible that these sites represent areas of the chromosome into which the transposon 

preferentially integrates and we therefore did not follow up on any of these mutants. Of 

the remaining mutants, approximately half were mutants with increased sensitivity to CP, 

while the others demonstrate increased resistance. Interestingly, a majority of the mutants 

cluster into a few common categories based on the putative functions of the proteins 

encoded by the genes disrupted by transposon integration (Figure 33b and Table 10). 

These functions include biofilm formation and polysaccharide production, inorganic ion 

transport and DNA replication or repair.  
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Figure 33. Transposon library screen to identify bacterial processes affected by CP treatment.  

(a) Bacterial growth from a representative plate of mutants cultured in media alone or media with 40 g/ml 

CP. (b) Growth of selected mutants relative to WT bacteria cultured in media alone or media containing 40 

g/ml CP. Mutants are classified according to the predicted functional category of the gene disrupted by 

the transposon. ** p < 0.01, *** p < 0.001  for relative growth in the presence of CP compared to media 

alone, as determined by two-way ANOVA. (c) Growth curves comparing WT A. baumannii and znuB::Tn5 

in the presence or absence of 25 g/ml CP.  
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Table 10. Transposon mutants with altered sensitive to CP.  

Mutant ID Locus tag Description Phenotype Insert type 

PDL05G12 A1S_2148 

flavin reductase-like protein; putative 

acetyl-CoA synthetase/AMP-(fatty) acid 

ligase 

resistant intergenic 

PDL31A10 A1S_0352 hypothetical protein resistant intergenic 

PDL02D10 
A1S_2505; 

A1S_2506 

hypothetical protein (110bp 5`); putative 

GGDEF family protein (290bp 3`) 
sensitive intergenic 

PDL23H1 
A1S_2841; 

A1S_2842 

putative type 4 fimbrial biogenesis protein 

FimT (not present in the SEED); Acetyl-

CoA C-acyltransferase 

sensitive intergenic 

PDL15F1 A1S_3277 putative pirin-like protein sensitive intergenic 

PDL03F9 A1S_0367 

glutathione-regulated potassium-efflux 

system protein (K(+)/H(+) antiporter) 

(KefB) 

resistant intragenic 

PDL03H9 A1S_0367 
glutathione-regulated potassium-efflux 

system protein (K(+)/H(+) antiporter) 
resistant intragenic 

PDL03H10 A1S_0367 
glutathione-regulated potassium-efflux 

system protein (K(+)/H(+) antiporter) 
resistant intragenic 

PDL05D12 A1S_0196 Long-chain-fatty-acid-CoA ligase resistant intragenic 

PDL06C3 A1S_3463 Cro-like protein (pAb1) resistant intragenic 

PDL26D12 A1S_2040 putative phage integrase resistant intragenic 

PDL31A11 A1S_1053 hypothetical protein resistant intragenic 

PDL31A9 A1S_0118 hypothetical protein resistant intragenic 

PDL11C6 A1S_3142 putative membrane protein resistant intragenic 

PDL04G7 A1S_0143 high affinity Zn transport protein sensitive intragenic 

PDL06H4 A1S_2477 isocitrate dehydrogenase sensitive intragenic 

PDL09F4 A1S_0076 aconitate hydratase sensitive intragenic 

PDL05A7 A1S_0430 Putative glycosyltransferase sensitive intragenic 

PDL19C1 A1S_2588 Holliday junction DNA helicase RuvB sensitive intragenic 

PDL22A12 A1S_0023 putative malic acid transport protein sensitive intragenic 

PDL23E2 A1S_3472 DNA replication protein (pAB2) sensitive intragenic 

PDL23F8 A1S_0060 hypothetical protein sensitive intragenic 

PDL12B4 A1S_0749 BfmS sensitive intragenic 

PDL42C3 
A1S_3352; 

A1S_3353 

putative OHCU decarboxylase; putative 

transthyretin-like protein precursor 
sensitive intragenic 

PDL42F9 A1S_0696 putative MutT/nudix family protein sensitive intragenic 

PDL39D4 A1S_0118 hypothetical protein sensitive intragenic 

 

Identification of a Zn uptake system in A. baumannii 

 In mutant 4G7 the transposon disrupts a predicted znuB orthologue. In other 

bacteria, ZnuB is a cytoplasmic membrane permease involved in Zn uptake (9, 38, 62, 
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65). This protein is part of an ABC-family transporter where ZnuC is the cognate ATPase 

and ZnuA is the periplasmic substrate-binding protein (9, 38, 62, 65). Consistent with a 

role for the putative A. baumannii ZnuB in Zn transport, disruption of znuB by integration 

of the transposon leads to increased sensitivity to CP (Figure 33c). Since transposon 

mutagenesis can cause polar effects on neighboring genes, we generated a targeted 

deletion mutant in which znuB was replaced by an in-frame copy of the kanamycin 

resistance gene, aph, which was used for all subsequent experiments. In order to confirm 

that znuB was more sensitive to CP than WT bacteria, the CP growth inhibition assays 

were repeated with znuB in CP growth media. CP growth media was chosen over the 

transposon screening media since this medium allows for better titration of the Zn and 

Mn concentrations and would allow for differentiation between the effects of Zn- and 

Mn-chelation on znuB. Interestingly, znuB did not exhibit a significant defect in 

growth compared to WT bacteria grown in the presence of CP in CP growth media 

without Mn or Zn added (Figure 34). Similarly, when either Zn alone or Zn and Mn were 

added back to CP growth media, both WT and znuB exhibit similar growth levels and 

are no longer inhibited by CP. However, if only Mn is added back to CP growth media, 

growth of znuB is significantly inhibited in the presence of increasing concentrations of 

CP, while WT growth is not. The observation that growth of znuB cannot be rescued by 

supplementation with Mn alone confirms that this mutant is sensitive to growth in Zn 

limiting conditions. The fact that znuB does not exhibit reduced growth compared to 

WT when neither Mn nor Zn were added back was unexpected given the previous results 

with 4G7. However, given that both WT and znuB are significantly inhibited under 

these conditions, it is possible that the low basal level of Mn and Zn in the media is 
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sufficient to reduce WT growth to similar levels as znuB. Consistent with this 

hypothesis, znuB exhibits impaired growth compared to WT in rich media (LB) in the 

presence of the Zn-selective chelator, TPEN (Figure 35). The latter finding supports a 

role for ZnuB in Zn acquisition since this mutant is particularly sensitive to growth in low 

Zn concentrations and Zn addition is necessary to rescue znuB from CP-mediated 

growth inhibition. 

 

Figure 34. CP growth inhibition assays comparing WT with znuB.  

Bacteria were cultured in CP growth media in the presence of increasing concentrations of CP with or 

without addition of Zn, Mn or Zn and Mn. Data are presented as the percent growth relative to bacteria 

growth without CP. Curve fit was performed using a non-linear regression with variable slope.   

 

Figure 35. Comparison of the effect of TPEN on inhibition of WT and znuB with or without 

addition of excess Zn.  

(a) Growth curves comparing WT (black) and znuB (blue) in the presence of 6.25 M TPEN with (dashed 

lines) or without (solid lines) addition of 50 M Zn. (b) Growth inhibition assays in increasing 

concentrations of TPEN.  
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Regulation of znuB in Zn-limiting conditions 

In a number of bacteria, the expression of high affinity Zn acquisition systems 

like ZnuABC is repressed in the presence of Zn by the Zn uptake regulator, Zur (9, 38, 

135, 267). To determine whether znuB is under similar transcriptional control in A. 

baumannii we first determined whether Ab17978 encodes a zur homologue. The genomic 

context surrounding znuB is illustrated in Figure 36a. Homologues of both zur and znuC 

are present within the same predicted operon as znuB, while znuA is divergently 

transcribed, but still encoded within the same locus. In other bacteria, Zur is a Zn-

dependent repressor that binds to a 19 bp consensus sequence in the presence of Zn to 

repress transcription of genes involved in Zn uptake (135). The intragenic region between 

znuA and zur was searched for a possible Zur-binding site using the consensus sequence 

from γ-Proteobacteria. This search yielded a possible Zur-binding sequence within 100 

bp of the znuA translational start site (Figure 36b). Since a second site was not identified 

in the region between znuA and zur it is likely that binding at this sequence leads to 

repression of both znuA and zurznuCB. 

 Using the putative A. baumannii zur box sequence, we next conducted a BLAST 

search against the A. baumannii genome in order to identify additional putative Zur-

regulated genes (Figure 36c and Table 11). These candidate Zur-regulated genes were 

further validated by searching for sequence motifs within their 5’ flanking sequences. 

The latter analysis, which employed the MEME analysis tool, independently identified 

the zur box in a majority of the genes analyzed. Based on these results a list of putative 

Zur-regulated genes was constructed (Table 11). A number of the predicted Zur-

regulated genes in A. baumannii are regulated by Zur in other bacteria. These include the 
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ribosomal L31 protein, carbonic anhydrase and the Znu system (53, 135, 175, 196, 267). 

While the functional significance of Zur-regulation has been elucidated for some of these 

genes, in many cases the function of the encoded proteins and their roles in Zn 

homeostasis have not been defined. Interestingly, Ab17978 encodes two predicted TonB-

dependent receptors with highly conserved Zur-binding sequences immediately upstream. 

One of these genes, A1S_2892 is found within the chromosome, while A1S_3475 is 

found within one of this strain’s native plasmids. These transporters have homology 

(include percentages) to ZnuD, a Zur-regulated receptor involved in Zn and heme 

transport in N. meningitidis (274). Based on their homology and putative zur-regulation, 

we have designated these genes as znuD1 (A1S_2892) and znuD2 (A1S_3475).  

 

Figure 36. Genetic characterization of a putative Zn uptake system in A. baumannii 

(a) Schematic representation of the genomic locus containing znuA and the zurznuCB operon. (c) 

Consensus Zur operator sequence. (d) Predicted Zur-regulated genes. (e) qPCR analysis of the expression 

of genes predicted to be involved in Zn uptake across the outer (znuD1, znuD2, TonB) and inner (znuA, 

znuB, znuC) membranes. 
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To determine whether these genes are regulated under Zn-limiting conditions, A. 

baumannii was grown in LB or LB supplemented with the Zn-chelator, TPEN, at a 

concentration of 25 M. This concentration was selected because at this concentration of 

TPEN znuB begins to exhibit decreased growth compared to WT bacteria. This suggests 

that the Znu system is required for optimal growth under these conditions and is therefore 

likely to be induced under these conditions in WT bacteria. Consistent with this 

hypothesis, transcripts for znuA, znuB, znuC, znuD1 and znuD2 were all increased in 

TPEN-containing media compared to media without TPEN (Figure 34D). These data 

support the hypothesis that ZnuABC, ZnuD1 and ZnuD2 are involved in Zn acquisition. 

Table 11. Locus tags and descriptions of predicted Zur-regulated genes 

Locus tag Description 

A1S_0144 Zur (ZnuB, ZnuC) 

A1S_0145 ZnuA 

A1S_0391 LSU ribosomal protein L31p 

A1S_0452 TonB (ExbB, ExbD) 

A1S_2892 Putative TonB-dependent receptor, ZnuD1 (Pld) 

A1S_3103 Uncharacterized ABC transporter (LPS assembly) 

A1S_3225 Carbonic anhydrase 

A1S_3329 Peptidase, M23/M37 family 

A1S_3411 Putative metal chaperone involved in Zn homeostasis 

A1S_3412 Hypothetical protein, putative signal peptide (Peptidase M15) 

A1S_3475 Putative tonB dependent receptor protein, ZnuD2 (plasmid pAB2) 

 

 The outer membrane of Gram-negative bacteria represents a significant 

permeability barrier for ions and small molecules. In many bacteria, transport of 

transition metal ions across the outer membrane is thought to occur by diffusion through 

non-selective porins. However, the expression of two TonB-dependent receptors in A. 

baumannii under Zn-limiting conditions suggests that transport of Zn across the outer 

membrane of this organism may be an energy dependent process similar to the case in N. 
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meningitidis. Transport through TonB-dependent receptors requires the TonB-ExbB-

ExbD system, which harnesses energy from the proton motive force generated at the 

inner membrane to facilitate transport across the outer membrane. Interestingly, A. 

baumannii encodes two predicted TonB-ExbB-ExbD systems, one of which appears to be 

under transcriptional control by Zur, based on the presence of a Zur-binding consensus 

sequence upstream. We have designated the putative Zur-regulated system TonB1-

ExbB1-ExbB2, based on its location within the chromosome relative to the position of 

the predicted Fur-regulated system. Although this system was previously shown to be up-

regulated in the presence of the iron chelator 2,2-dipyridyl, we sought to determine 

whether Zn-limiting conditions induce expression of either of the tonBexbBexbD operons 

(124). In the presence of 25M TPEN, transcripts for both tonB genes were up-regulated 

4 to 5-fold (Figure 36d). Given that TPEN can also bind Fe with high affinity, up-

regulation of both genes does not rule out the possibility that one system responds 

preferentially to depletion of one metal compared to the other. Taken together, these data 

further suggest that translocation of Zn across the outer membrane is an energy-

dependent process in A. baumannii.  

 

Figure 37. Contribution of the Znu system to pathogenesis in vivo.  

Bacterial burden in lungs (a) and livers (b) of mice co-infected with WT A. baumannii and znuB. Red 

symbols indicate CFU below the limit of detection. * p < 0.05, ** p < 0.01, *** p < 0.001 as determined by 

one-way ANOVA. 
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ZnuB contributes to the pathogenesis of A. baumannii pulmonary infections. 

Based on the finding that CP contributes to host defense against A. baumannii 

infection and that znuB is more sensitive to CP-mediated Zn chelation in vitro, we 

hypothesized that disruption of Zn acquisition would reduce A. baumannii virulence. To 

define the contribution of znuB to pulmonary infections, WT and S100A9
-/-

 mice were 

co-infected with an equal mixture of WT and znuB and bacterial burdens were 

quantified at 36 hpi in lungs and livers. WT A. baumannii significantly outcompetes 

znuB for colonization of the lungs of both WT and CP-deficient mice (Figure 37a). Of 

particular interest is the finding that znuB could only be detected in the livers of two 

mice (10 percent) (Figure 37b). Moreover, dissemination of znuB to the liver is nearly 

rescued in S100A9
-/-

 mice. These data suggest that CP-mediated Zn-chelation is 

particularly important in limiting bacterial dissemination from the primary site of 

infection in the lung. Taken together, the results of the in vivo studies demonstrate that Zn 

acquisition through ZnuB contributes to A. baumannii pathogenesis. 

 

Zn chelation reverses carbapenem resistance in MDR A. baumannii. 

Multidrug resistance is a common problem complicating the treatment of A. baumannii 

infections. One of the few remaining antibiotic classes available for the treatment of A. 

baumannii infections is the carbapenems. However, carbapenem resistance is becoming 

increasingly common primarily through dissemination of genes encoding carbapenem 

hydrolyzing enzymes or carbapenemases. Currently there are no carbapenemase 

inhibitors available for combination therapy. Interestingly, many of these enzymes are 

metalloenzymes that require Zn for their hydrolyzing activity. This fact led us to 
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hypothesize that Zn limitation may serve as a valuable adjunct to carbapenem therapy. To 

test this hypothesis, we determined the imipenem MIC against the carbapenem resistant 

clinical isolate, Ab0057, in the presence or absence of 25 M TPEN. Treatment with 

TPEN reduced the imipenem MIC to below the clinical breakpoint for imipenem 

resistance in A. baumannii and this effect was reversed by addition of excess Zn (Figure 

38). The same experiments were performed with levofloxacin since resistance to 

levofloxacin is mediated by mutation of the drug’s target and therefore should not be 

impacted by Zn chelation. Consistently, the levofloxacin MIC was unchanged by Zn 

limitation and remained above the breakpoint for clinically defined resistance (Figure 

38). These results highlight Zn-limitation as a possible mechanism to combat carbapenem 

resistance in A. baumannii. 

 

Figure 38. Effect of Zn chelation on resistance to imipenem and levofloxacin an MDR isolate of A. 

baumannii. 

Bacterial growth measured at 24 hours in LB medium in the presence of increasing concentrations of 

imipenem or levofloxacin and TPEN, with or without addition of excess Zn.  
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Discussion 

 
 

Transition metals occupy an essential niche within biological systems. The 

essentiality of transition metals to invading bacterial pathogens has been exploited by 

vertebrate hosts as an innate defense strategy against these infections. Most work has 

focused on iron sequestration as a mechanism of nutritional immunity; however, it is now 

known that nutritional immunity includes strategies to withhold other essential metals 

such as Mn and Zn. In this Chapter, I have demonstrated that Mn and Zn chelation by CP 

inhibits A. baumannii growth in vitro and that CP is important for defense against A. 

baumannii pulmonary infections. Moreover, I have used CP to elucidate physiological 

processes that are impacted by Mn and Zn chelation by screening a transposon library for 

mutants with increased or decreased susceptibility to CP. This screen identified over 40 

mutants with altered sensitivity to CP. The putative contributions of the genes identified 

in the screen to Mn and Zn homeostasis are discussed below. Finally, I have identified a 

Zn acquisition system in A. baumannii and defined its Zn-dependent regulation and its 

roles in Zn uptake and pathogenesis. 

By comparing the results of the transposon mutagenesis screen with the putative A. 

baumannii Zur regulon it is possible to identify a number of physiological processes that 

are impacted by Zn and/or Mn concentrations. For example, a number of genes identified 

in the transposon screen encode proteins with known or potential roles in biofilm 

formation. While some of these genes may be involved in biofilm formation directly (e.g. 

A1S_0749, bfmS; A1S_2841), others have potential roles in signaling (A1S_2506), or 

polysaccharide production (A1S_0060, A1S_0430) (90, 281). Although the proteins 
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encoded by the latter subset of genes are predicted to be involved in LPS biosynthesis, 

LPS biosynthesis and exopolysaccharide biosynthesis machinery often overlap. 

Nonetheless, one cannot rule out that CP impacts LPS biosynthesis directly and that this 

effect rather than potential contributions to biofilm formation is the reason for identifying 

the polysaccharide synthesis genes in the screen. In support of a direct impact on LPS 

biosynthesis, LpxC, which catalyzes a critical step in lipid A biosynthesis, is a Zn-

dependent enzyme. Taking all of these data into consideration, we can conclude that 

biofilm formation and polysaccharide production are regulated in response to Zn or Mn-

limitation.  

The results of the transposon screen also highlight DNA replication and repair as 

processes that are impacted by calprotectin treatment. Since DNA polymerases require 

Zn for function it is not surprising that Zn-limitation would impact DNA replication. 

However, it is not clear why disrupting a DNA replication protein encoded on the pAB2 

plasmid would result in decreased resistance to CP. It is interesting to note, however, that 

this plasmid also carries znuD2. It is possible that disruption of the replication protein 

encoded on this plasmid causes a polar effect on znuD2, either directly impacting its 

expression or perhaps by reducing the copy number of the plasmid. In contrast, the effect 

of disrupting ruvB is perhaps more clear. RuvB is a DNA helicase which functions with 

RuvA in the repair of stalled replication forks. Since DNA polymerases require Zn, Zn-

limitation may lead to stalling of the replication fork. A similar process has been shown 

for Salmonella typhimurium where treatment with nitric oxide displaces Zn from Zn-

containing enzymes (241). This disruption then leads to stalled replication forks, which 
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require RuvAB for repair. Disruption of ruvB sensitizes bacteria to Zn-limitation by CP, 

presumably because these stalled replication forks are no longer efficiently repaired.  

 A mutant in which mutT is disrupted is more sensitive to CP treatment. In other 

bacteria, MutT is important for the repair of oxidative DNA damage. Oxidative damage 

to DNA involves the formation of oxidized guanine, which is highly mutagenic due to 

ambiguous base pairing with either cytosine or adenine. MutT specifically hydrolyzes 

both 8-oxo-deoxyguanosine triphosphate (8-oxo-dGTP) and 8-oxo-guanosine 

triphosphate (8-oxo-rGTP), which are otherwise incorporated in DNA and RNA opposite 

template A. This activity therefore prevents misincorporation of these nucleotides into 

DNA and RNA, respectively (24). Mn contributes directly to protection from oxidative 

stress in other bacteria. Mn can replace Fe in some proteins, preventing oxidative damage 

to these proteins. Moreover, some bacteria encode Mn-dependent superoxide dismutases 

(SODs), which directly protect against oxidative damage by detoxifying superoxide by 

dismutation to hydrogen peroxide, which is then converted to water by catalase. Based on 

these roles for Mn in oxidative stress resistance, CP treatment perpetuates oxidative stress 

(136). A. baumannii does not have Mn-dependent SODs; rather it has one Cu/Zn-

dependent SOD and one Fe-dependent SOD. Interestingly, the gene immediately 

upstream from the Cu/Zn-dependent SOD was hit in the transposon screen. This gene 

encodes a putative PerR-regulated outer membrane protein of unknown function and 

disruption of this gene increases resistance to CP. It is not yet known whether disruption 

of this omp is directly responsible for the decreased susceptibility to CP. Taken together, 

the results of the transposon screen suggest that CP treatment indirectly induces DNA 



 163 

damage through oxidative stress or inhibition of replication machinery and that repair of 

this damage is necessary to resist the effects of CP.  

A final category of genes identified in the screen that should be mentioned are 

those classified in the COG functional category of inorganic ion transport and 

metabolism. ZnuB will be discussed in greater detail below. In addition to znuB, two 

mutants were identified in which the transposon inserts into a gene encoding a non-

ribosomal peptide synthetase (NRPS). The transposon inserts into a different site in each 

of the mutants. While their phenotypes initially appeared to be opposing, subsequent 

analyses have demonstrated that at later time points, both mutants appear to be slightly 

more resistant to CP (data not shown). The function of this NRPS is not yet known, 

however it is annotated as part of a pyoverdine biosynthesis cluster. Identification of 

these mutants could have several implications. Intracellular concentrations of transition 

metals are carefully regulated in bacteria in order to meet physiologic needs and avoid 

toxicity. Moreover, the relative abundance of individual metals can influence the toxicity 

of others (126, 187, 289). As a result, it is not only the absolute abundance of a given 

metal that is important, but also its ratio with respect to other metals. The fact that the 

two NRPS mutants appear to be more resistant to CP suggests that reducing iron uptake 

may be beneficial under Zn and/or Mn-limiting conditions. Further work is necessary to 

define the contribution of this NRPS to transition metal homeostasis.  

Additional genes that encode proteins with putative roles in inorganic ion 

transport and metabolism were identified within the putative Zur regulon. In particular, 

the genes encoding the remaining components of the Znu inner membrane transporter, as 

well as two ZnuD homologues and a TonB system were all up-regulated in Zn-limiting 
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conditions. Although it was previously thought that transition metal ions such as Zn
2+

 and 

Mn
2+

 freely diffuse through non-selective porins, the identification of ZnuD in Neisseria 

spp. suggests that in some bacteria transport of Zn across the outer membrane may be an 

energy-dependent process (274). A. baumannii strain 17978 has two putative ZnuD 

homologues, one encoded on the chromosome and the other on a plasmid. In contrast to 

N. meningitidis, A. baumannii also encodes a TonB/ExbB/ExbD system, which is up-

regulated in low Zn conditions. Notably, a Zn-regulated TonB system has not been 

described previously. It appears that Zn transport across the outer membrane of A. 

baumannii is energy dependent. Recently, the ZnuD from N. meningitidis was shown to 

contribute to heme acquisition when expressed in E. coli (151). This finding suggests that 

ZnuD is either a heme transporter that is up-regulated in low Zn conditions, or that ZnuD 

transports more than one substrate. Although Zn-dependent regulation of a heme 

transporter has not been shown previously, several key enzymes involved in heme 

biosynthesis require Zn. It is therefore possible that under low Zn conditions, bacteria are 

unable to synthesize sufficient quantities of heme and must up-regulate transporters for 

exogenous heme acquisition. It remains to be determined whether either of the ZnuD 

transporters in A. baumannii directly transport Zn or heme.  

As summarized above, we identified a transposon mutant in which the transposon 

integrates into znuB. A targeted deletion of znuB is more sensitive to CP and other Zn 

chelators, particularly in the presence of excess Mn. This latter finding is interesting and 

supports the idea that transition metal toxicity is highly dependent on the relative 

abundances of each essential metal, not just on the absolute concentration of any 

individual metal. Notably, the phenotype of the znuB mutant can be rescued by addition 



 165 

of excess Zn, suggesting that A. baumannii possesses an additional mechanism to 

transport Zn across the inner membrane. Although we did not identify additional 

inorganic ion transporters in the analysis of the putative Zur regulon, it is possible that Zn 

is being transporter through a low affinity or non-specific transporter. Based on the 

observation that excess Mn potentiates the effects of Zn chelation on znuB, it is also 

possible that Zn acquisition in this mutant depends on an inner membrane Mn transporter. 

If this is the case, in the presence of excess Mn the transporter would translocate its 

preferred substrate, further reducing Zn acquisition by znuB. 

In addition to the role for ZnuB in Zn acquisition and resistance to CP in vitro, 

this protein also contributes to pathogenesis in vivo. Although infections with znuB 

alone did not result in a significant virulence defect in this mutant (data not shown), co-

infection with WT demonstrates that znuB is less able to compete with WT in vivo. 

Notably, in the lung, znuB exhibits reduced competitive fitness in both WT and CP-

deficient mice, suggesting that other factors in addition to CP may contribute to Zn 

limitation within the lung. In contrast, the ability of znuB to disseminate past the 

primary site of infection was nearly completely abrogated during co-infection with WT A. 

baumannii in WT mice. However, in CP-deficient mice, znuB disseminated efficiently 

to the liver where bacterial burdens for the mutant approached those for WT bacteria. 

These data suggest that CP is particular important in defending against dissemination to 

secondary sites like the liver. Previous studies have demonstrated an important role for 

CP in limiting bacterial replication and abscess formation in liver during S. aureus 

systemic infections (56). This finding would support a possible role for CP in specifically 

limiting replication in the liver. However, it remains to be determined for A. baumannii 
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infections whether CP inhibits bacterial growth in the bloodstream or whether CP is 

important for protecting against colonization of the liver itself.  

Another notable observation with regard to CP treatment in the presence of excess 

metals was the observation that in the presence of excess Zn or Mn, A. baumannii 

actually grows better with increasing concentrations of CP (Figure 34). The mechanism 

for the increased CP-dependent growth has not been elucidated. However, it does not 

appear to depend on the metal-binding capacity of CP since a mutant of CP that no longer 

binds Mn or Zn also enhances growth of A. baumannii in the presence of excess Mn and 

Zn (data not shown). It is possible that CP is degraded by a Mn or Zn dependent protease 

allowing the resulting peptides to be taken up as a carbon source. Interestingly, S. aureus 

abscesses are Zn deplete despite the presence of abundant CP. This suggests that metal-

bound CP is removed from the site of infection. Given that we observe increased growth 

in the presence of increased concentrations of CP in metal-replete conditions, it is 

possible that removal of CP from the site of infection is necessary to prevent bacteria 

from utilizing CP as a nutrient (amino acid or metal) source. Elemental imaging of Zn in 

A. baumannii infected lungs does not show the same pattern of Zn depletion as that seen 

in S. aureus abscesses (Figure 39) However, given the substantial structural differences 

between lung and liver, particularly the fact that healthy lung is primarily open airways, it 

is difficult to make direct comparisons regarding the distribution of Zn in these two 

models. Perhaps as the technologies improve to allow low or sub-micrometer resolution 

in LA-ICP-MS analyses it will be possible to more accurately define elemental 

distribution in lungs in response to infection. 
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Figure 39. Elemental imaging by LA-ICP-MS analysis of lungs during A. baumannii infection.  

Elemental distribution in lungs of C57BL/6 (WT) or S100A9-/- (CP) mice harvested at 36 hpi with A. 

baumannii. Lungs were perfused with NaS sulfide for 30 min to precipitate Zn in situ and prevent washing 

out of this ion during fixation. Lungs were then fixed in paraformaldehyde, embedded in paraffin sectioned 

at 30 m thickness. Prior to LA-ICP-MS analysis tissue sections were deparaffinized in xylene. Regions of 

greater ion intensity correspond with areas of increased inflammation and infiltration of the lungs based on 

histological analyses of serial sections. 

 
Vertebrate hosts have evolved elegant mechanisms to withhold essential metals 

from invading pathogens. Likewise, bacterial pathogens have evolved efficient means to 

acquire metals from their vertebrate hosts. Based on these important roles for transition 

metals at the pathogen-host interface, bacterial metal acquisition systems represent 

possible targets for therapeutic development. Given that znuB exhibits only a modest 

virulence defect in the lung, targeting this system may not be effective alone for the 

treatment of A. baumannii infections. However, the observation that Zn-limitation 

reverses imipenem resistance in a carbapenem-producing clinical isolate suggests that Zn 

chelation may be a viable strategy to use in combination with existing antimicrobial 

compounds. Given the dire need for new antibiotics effective against MDR A. baumannii, 
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combination strategies like this one may be critical in the battling this important public 

health threat. 
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Vi. Circadian variation in susceptibility to Acinetobacter baumannii pulmonary 

infections. 

 

Introduction 

 
 

Circadian rhythms control numerous physiologic processes including sleep/wake 

cycles, feeding behaviors and metabolism (147, 180, 308). Disruption of circadian 

rhythms, such as that observed in shift workers, has been associated with a large number 

of disease states. Recently, the impact of circadian rhythms on immune function has been 

described (32, 93, 103, 106, 169, 172). People have observed alterations in immune 

function with respect to time of day for a long time. However, many studies have focused 

primarily circadian variation in the responsiveness to pro-inflammatory stimuli, or in the 

expression of various immune effectors. Few studies have examined whether these 

variations in the immune response impact susceptibility to bacterial infections or the 

outcome of those infections.  

I have made the anecdotal observation that mice seem to differ in their 

susceptibility to A. baumannii infection based on the time of day that the infection is 

initiated. I sought to confirm these observations in a controlled setting in order to 

determine the effect of circadian cycles on A. baumannii infection. A. baumannii is a 

particular problem in hospitalized patients and these patients frequently suffer from 

disruption of their circadian rhythms. By understanding the influence of circadian 

rhythms on susceptibility to infection it may be possible to modify the clinical 

environment in order to reduce A. baumannii infections.  
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Methods 

 

A. baumannii infection model and housing conditions 

The A. baumannii pneumonia model described in previous chapters was used for all of 

the studies except that the housing conditions were modified as described below in order 

to control light exposure. Mice were housed in standard cages, which were placed inside 

a ventilated box with an internal light source. The walls of the box are painted black to 

prevent transmission of external light. The mice were either exposed to a 12h: 12h light: 

dark (LD) cycle or to constant dim red light (RR). Fresh bacterial cultures were prepared 

for each infection. The infections were initiated at the indicated times and allowed to 

proceed for 48 hours at which point lungs were harvested for enumeration of CFU.  

 

Infections with A. baumannii blsA  

Bls1 is a blue light sensing domain containing protein which mediates light-dependent 

regulation of motility and biofilm formation (67). We obtained a knockout of blsA as a 

gift from Luis Actis (Miami University) and tested the virulence of this mutant in the A. 

baumannii pneumonia model. Bacteria were grown planktonically at room temperature in 

constant darkness or in the presence of white light. Bacteria that were cultured in light 

were then used to infect mice housed in RR conditions, while bacteria cultured in the 

dark were used to infect mice housed in LD conditions. This experimental setup was 

selected to distinguish between contribution of light sensing in the culture conditions 

prior to infection and light sensing in vivo. Infections were performed as described above 

and bacterial CFU in lungs were enumerated at 48 hpi. 
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Results and Discussion 

 
 

Mice are most susceptible to infection near the onset of their active period. 

In order to determine if mice differ in their susceptibility to infection based on the 

time of infection initiation, we housed mice in a controlled 12:12 LD cycle and infected 

at 6-hour intervals beginning at ZT = 10 (two hours prior to activity onset). Since mice 

are nocturnal, ZT = 12, which is the beginning of the dark cycle, is the time of activity 

onset. A significant difference in bacterial burden was observed at 48 hpi when mice 

were infected at ZT = 10, compared to any other time point. The lowest bacterial burdens 

were observed at ZT = 22 and ZT = 4 (Figure 40A). Notably the magnitude of the 

change in bacterial burden between the highest and lowest points is roughly equivalent to 

the difference observed with depletion of neutrophils (Figure 40A). These data 

demonstrate a significant daily variation in susceptibility to infection based on the time of 

infection initiation.  

 By definition, in order for a process to be considered circadian in nature, it must 

vary over a 24-hour period and this cyclical variation must remain intact in constant 

conditions. Since the experiments described above only demonstrate diurnal variation in 

susceptibility to infection, we repeated the experiments in constant conditions (RR). 

Although the amplitude of the cycle decreased compared to the LD conditions, there 

remained a peak bacterial burden in mice infected at CT = 10 compared to other time 

points (Figure 40B). These data demonstrate that susceptibility to A. baumannii 

infections is regulated by the circadian cycle.  
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Figure 40. Susceptibility to A. baumannii infection is under circadian regulation.  

(a) Bacterial burdens in lungs of mice housed in 12:12 light: dark cycles (LD) and infected at ZT 4, 10, 16 

and 22 and harvested  at 48 hpi. ZT = zeitgeber time where ZT = 0 is the beginning of the light phase, 

which in our experiments was approximately 6:00 am. (b) Bacterial burdens in lungs of mice housed in 

constant dim red light and infected at CT 4, 10, 16 and 22. CT = circadian time, where CT = 12 is the onset 

of the active phase for nocturnal animals, which corresponds to ZT = 12 or the onset of the dark phase 

when the mice are housed in LD conditions. Lungs were harvested at 48 hpi. ** p < 0.01, *** p < 0.001 as 

determined by one-way ANOVA.  

 

Contribution of a bacterial light sensing protein to A. baumannii infection 

 The results described above demonstrate circadian variation in susceptibility to A. 

baumannii infection. However, it is possible that at least some of this difference could be 

the result of light sensing or circadian rhythmicity within the bacterium itself. A. 

baumannii possess a blue-light sensing domain-containing protein, which mediates 

regulation of biofilm formation and motility in response to blue light. In order to 

determine whether this protein contributes to the circadian variation in A. baumannii 

infection, we obtained a mutant in which blsA is deleted (blsA). Since light sensing 

modulates phenotypes that might be important at the initiation of infection (e.g. motility), 

it was necessary to differentiate between light sensing prior to infection and during 

infection. To do this, the bacteria were in white light or in the dark. Bacteria cultured in 

the dark were then used to infect mice housed in LD conditions, while bacteria cultured 

in the light were used to infect mice housed in RR. Regardless of the culture conditions, 



 173 

blsA did not exhibit a change in bacterial burden in the lungs of mice compared to WT 

bacteria (Figure 41). These data suggest that blsA does not play a role during infection in 

this model. Moreover, these data reinforce the conclusion that susceptibility to A. 

baumannii infection is regulated by the host’s circadian clock. 

 

Figure 41. Contribution of blsA to A. baumannii pathogenesis.  

Bacterial burdens in lungs of mice housed in 12: 12 light dark cycles (LD) or constant dim red light (DD) 

and infected with WT or blsA. No statistically significant differences were observed between any of the 

groups. 
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Vii. Summary and significance 

 
 

As infections due to multidrug resistant organisms become increasingly common, 

therapeutic development to treat these infections languishes. Acinetobacter baumannii 

poses a particular challenge due to the intrinsic drug resistance imparted by its 

impermeable outer membrane. Furthermore, up-regulation of efflux pumps and down-

regulation of outer membrane porins leads to rapid acquisition of resistance to new 

antibiotics (113, 255). While rates of multi- and pan-drug resistant A. baumannii increase, 

the antibacterial development pipeline remains virtually devoid of agents effective 

against MDR Gram-negative pathogens. LpxC inhibitors have been highlighted recently 

as promising new drugs for Gram-negatives. However, these drugs may have little 

efficacy against A. baumannii since LPS is not essential in at least some clinical and 

laboratory strains of A. baumannii (105, 170, 191). These facts further suggest that 

innovative strategies for the identification of new therapeutic targets are desperately 

needed to counter the growing burden of A. baumannii infections. Toward this end, my 

work has focused on basic bacterial physiological processes and pathogenesis with the 

ultimate goal of elucidating new targets for therapeutic intervention.  

There are a number of ways to approach therapeutic development for challenging 

MDR pathogens such as A. baumannii. The strategies addressed in my work fall into two 

broad categories: 

1. Restoring the utility of currently available therapeutics. 
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2. “Outside the box” strategies including interventions that target the host 

response to infection and attempts to modulate the host response in order to modify 

disease outcome. 

 

 

Restoring the utility of currently available antibiotics by targeting antibiotic 

resistance determinants in A. baumannii. 

 

Targeting intrinsic and inducible resistance in A. baumannii 

Acinetobacter baumannii poses a formidable therapeutic challenge due to its 

numerous antibiotic resistance determinants and its ability to acquire resistance to new 

antibiotics through adaptation or mutation. In Chapter II, the ability of A. baumannii to 

adapt to signals encountered within the hospital environment in order to augment 

antibiotic resistance was discussed. The mechanisms underlying NaCl-induced resistance 

to colistin was further elucidated in Chapter III where screening of a transposon mutant 

library identified over 30 genes involved in inducible colistin resistance in A. baumannii. 

One of the genes identified was lpsB, which encodes a glycosyltransferase involved in 

LPS synthesis. We demonstrate that loss of LpsB function results in increased sensitivity 

to both colistin and cationic antimicrobial peptides of the innate immune system. 

Moreover, LpsB is critical for pathogenesis in a pulmonary model of infection. Taken 

together, the data presented in Chapters II and III define bacterial processes required for 

intrinsic antibiotic tolerance in A. baumannii and underscore the importance of outer 

membrane structure in both antibiotic resistance and pathogenesis of A. baumannii. 
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Targeting Zn acquisition to combat imipenem resistance 

The data presented in Chapter V establish the role for a newly identified Zn 

transporter in A. baumannii Zn acquisition in vitro and pathogenesis in vivo. Interestingly, 

we determined that Zn chelation in vitro reverses imipenem resistance in a 

carbapenemase-expressing clinical isolate of A. baumannii. Since carbapenemases are 

Zn-dependent metalloenzymes, reversal of the imipenem resistance phenotype is most 

likely due to inhibition of the catalytic activity of the carbapenemase. Carbapenems are 

currently one of the last remaining classes of antibiotics with activity against A. 

baumannnii. However, resistance to carbapenems is increasingly common in this 

organism. In parts of Latin America and Africa, resistance rates to imipenem exceed 40 

percent. Importantly, none of the available beta lactamase inhibitors are effective against 

carbapenemases meaning that there are currently no carbapenemase inhibitors available 

for combination therapy. These facts highlight the significance of our results 

demonstrating the synergistic activity of a Zn chelator with imipenem. Additional work 

will be necessary to determine the in vivo efficacy of Zn chelation as a combination 

therapy for carbapenem-resistant A. baumannii. 

 

Alternative therapeutic strategies that enhance host defenses to prevent or reduce 

the severity of A. baumannii infections. 

 
 

Dominant negative mutants of A. baumannii 

As discussed above, A. baumannii rapidly acquires resistance to new 

antimicrobials. Based on this fact, reliance solely on small molecule antibiotics is 
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unlikely to provide a lasting solution to the growing burden of A. baumannii infections. 

Novel strategies for the treatment and prevention of these infections are therefore 

desperately needed. Toward this end, we have identified therapeutic strains of A. 

baumannii that augment the vertebrate host’s ability to mount an effective immune 

response and cure a WT A. baumannii infection. Notably, treatment with these strains 

exerts a therapeutic effect equal to or greater than virtually all published reports of 

antibiotic therapy in murine models of A. baumannii pneumonia (48). Illustrating this 

point, in a comparable pneumonia model, tigecycline elicits only a 2- to 5-log reduction 

in bacterial burden. In comparison, we observe complete bacterial clearance in animals 

co-treated with Tn5A7 (Figure 18) (228).
 
These facts underscore the potential for further 

development of these strains as biologic therapy for A. baumannii pneumonia. In order 

for this strategy to be realized, however, further elucidation of the mechanisms mediating 

attenuation in this model is necessary. An experimental approach to address this point is 

discussed in Chapter VIII. 

Beyond a direct therapeutic application of the transposon mutants, these strains 

also serve as valuable tool for the understanding host responses to bacterial pneumonia. 

Mammals have evolved elegant mechanisms to recognize invading pathogens and 

mobilize an infantry of soluble and cellular effectors capable of controlling and 

eliminating the invading microbe. Likewise, pathogens have evolved means to evade 

these defenses and proliferate in their mammalian hosts. The work described in Chapter 

IV lays the foundation for delineating critical factors on both sides of the pathogen-host 

interaction using mutants of A. baumannii that shift the balance toward a host response 

that favors pathogen elimination. The idea of recruiting host responses to combat 
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infection is well established in the area of acquired immunity with the use of vaccines. 

However, immune-enhancing strategies are not well established in the area of innate 

immunity or in the treatment of acute bacterial infections. Most strategies have applied 

individual cytokines to promote host defenses, but this strategy has had minimal and 

mixed results. Innate defenses rely on the orchestration of a full panel of cellular and 

molecular effectors. Administration of the transposon mutants, therefore, has advantages 

over selective modulation of individual cytokines since these strains marshal the full 

complement of host defenses required for effective pathogen clearance. As such, the 

work described herein together with the opportunities provided by this foundational work 

move the field forward by providing critical innovations for the study of host pathogen 

interactions. Defining the specific bacterial products expressed by the bacteria that induce 

the attenuating phenotype will lead to the identification of bacterial factors that promote 

effective host responses. This work thus lays the foundation for engineering bacterial 

strains or recombinant proteins that elicit a protective host response to infection. In 

addition, these strains can be applied to the understanding of the host immune response 

by elucidating the full spectrum of host effectors elicited by the mutants.  

 

Manipulation of circadian rhythms to reduce susceptibility to A. baumannii 

infection. 

A. baumannii is an important cause of infections in hospitalized patients. 

Importantly, hospitalized patients frequent suffer from circadian disruption as result of 

medical procedures, medications or underlying medical conditions. Our data demonstrate 

that mice exhibit significant variation in their susceptibility to infection based on the time 
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of infection initiation. While the immunological mechanisms governing this variation in 

susceptibility are yet to be determined, these data nonetheless have important 

implications for the treatment and prevention of A. baumannii infections. For example, it 

may be possible in some cases to monitor treatment practices in order to minimize 

susceptibility to infection during the more susceptible periods within the circadian cycle. 

Minimizing invasive procedures that increase infection risk during susceptible periods in 

the circadian cycle could potentially reduce transmission of A. baumannii during these 

procedures. Moreover, it may be possible to manipulate specific aspects of the immune 

response once the immune effectors that contribute to circadian susceptibility to infection 

are identified.  
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Acinetobacter baumannii transposon mutants and implications for genetic 

manipulation and investigation of pathogenesis. 

 
 
 

 Transposon mutagenesis is a widely used technology in bacterial genetics 

since it provides a means to generate large libraries of mutants that can be screened for 

phenotypes of interest. However, transposon mutagenesis has disadvantages including the 

possibility of causing polar effects on genes adjacent to the integration site or the 

introduction of secondary mutations that have global effects on gene expression. For 

example, it is well established that transposon mutagenesis of Staphylococcus aureus 

frequently leads to point mutations in the sae or agr loci, which encode global virulence 

regulators. Until this problem was recognized, numerous genes were assigned functions 

in virulence factor regulation only to later discover that the phenotypes were the result of 

secondary mutations. We have identified a conserved pattern of gene dysregulation 

induced upon transposon mutagenesis in A. baumannii, which appears to occur with 

fairly high frequency. This is a critical finding in A. baumannii research. Methods for 

genetic manipulation of A. baumannii are in their early stages of development. As such, 

most investigators rely on transposon mutagenesis to establish the genetic basis for 

phenotypes of interest. Therefore, further characterization of the transposon mutants will 

elucidate the consequences of transposon mutagenesis in A. baumannii. In so doing, this 

work will be critical for progress in A. baumannii research by providing methods to 

prevent the off-target effects of transposon mutagenesis or to screen out mutants in which 

these effects have occurred.  
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Viii. Future directions 

 
 

Redirection of host inflammation to promote bacterial clearance 

 

 It is becoming increasingly clear that small molecule antibiotics alone will not 

provide a lasting solution to the growing burden of MDR A. baumannii. Based on this 

fact, therapeutic strategies that augment the host response to infection represent a viable 

strategy for the treatment or prevention of A. baumannii infections. The work described 

in Chapter IV represents the initial identification and characterization of A. baumannii 

transposon mutants that induce an inflammatory response in vivo that is effective in 

clearing a WT A. baumannii infection. There remain a number of critical questions to 

address with regard to these mutants and their mechanism of action within the host.  

 

1. Identify the bacterial product responsible for inducing the attenuating phenotype 

of the transposon mutants.  

The striking attenuation of WT infection elicited by the transposon mutants 

warrants further investigation into the mechanisms underlying this phenotype. To date, 

identification of the specific bacterial product has been hampered by the recalcitrance of 

these strains to targeted genetic manipulation. I therefore propose a multifaceted 

approach to identify the bacterial factors responsible for the attenuating phenotype.  
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1a. Develop an in vitro system that recapitulates the pattern of attenuation observed 

in vivo.  

Currently, the only methods for testing candidate mutants or bacterial products for 

their attenuating activity is to test these candidates in vivo. We have previously hesitated 

to develop an in vitro system for screening purposes because bacterial clearance in vivo is 

likely a multifactorial process that cannot be completely recapitulated in vitro. This 

makes it unclear what the readout for such an in vitro system should be. However, it is 

clear that as this project moves forward, an in vitro system would not only allow for 

screening of candidate bacterial products, but would also be of tremendous value for 

future therapeutic development. Specifically, if an in vitro phenotype accurately predicts 

in vivo activity, the in vitro system could be screened for chemical compounds that elicit 

the same response. Such compounds could have therapeutic value without requiring 

administration of the bacterial product. In order to develop an in vitro assay system I 

propose to screen the major cell types that are present in the lung for differences in 

bacterial invasion and cytotoxicity in response to infection with WT, Tn mutants, or a 

combination of WT and the Tn mutants. These cell types would include respiratory 

epithelial cells, dendritic cells, macrophages and mast cells. To supplement these assays, 

proinflammatory cytokine production in response to infection can also be measured since 

a specific pattern of cytokine production may serve as a molecular signature for the 

attenuating phenotype. These data would then be compared to in vivo attenuating activity 

and cytokine profiles to determine the predictive value of the in vitro system. These 

experiments would result in an in vitro system to evaluate candidate mutants or bacterial 
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products for their attenuating activity. Moreover, the system could be adapted for high 

throughput screening of therapeutic compounds that likewise have attenuating activity. 

 

1b. Identify bacterial products that are recognized by the host upon treatment with 

the transposon mutants.  

Proteinase K treatment partially reverses the phenotype of the transposon mutants 

suggesting that a surface exposed protein is either recognized by the host directly or that 

is required for recognition of another ligand. Both possibilities suggest that the protein is 

accessible to the host during infection. It is therefore possible that antibodies could be 

raised against this product in mice infected with the transposon mutants. As an initial 

proof of concept, mice treated with the transposon mutants should be allowed to recover 

from their infection and then re-challenged with WT bacteria with or without treatment 

with the transposon mutant. If antibodies are generated against the bacterial product 

necessary for the attenuating effect, the transposon mutant should lose its therapeutic 

activity in the WT challenge. It may be necessary to use a different WT strain for the 

second infection, since antibodies generated against the transposon mutant may protect 

against WT infection if they recognize conserved antigens between the two strains. In 

order to identify the protein component necessary for the attenuating phenotype, we can 

fractionate the transposon mutant and separate the proteins from these fractions by 2D-

DIGE. Serum from convalescent mice infected with the transposon mutant can then be 

used to probe the resulting proteins for those that were accessible and immunogenic in 

vivo. Proteins recognized by antibodies in the convalescent serum can then be identified 

by mass spectrometry. These proteins can be cross-referenced with the microarray data to 
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generate a focused candidate list for the protein required for the attenuating phenotype. 

To identify the specific protein responsible for the effect, genetic approaches, outlined 

below, can be attempted to knock out or knock down the gene of interest. In addition, 

depending on the number of candidates identified, antibodies can be raised against each 

candidate and this antiserum can be used to block recognition of the bacterial product by 

the host. 

 

1c. Define the genetic element encoding the bacterial product that elicits the 

attenuating immune response.  

The transposon mutants have proven recalcitrant to targeted manipulation of the 

chromosome such as targeted deletion of candidate genes. Nonetheless, defining the 

genetic basis of the attenuating phenotype is critical to our understanding of the 

mechanism of the in vivo attenuation as well as for our understanding of the mechanism 

through which transposon mutagenesis induces this phenotype. An alternative to making 

targeted deletions in the transposon mutants is to knock down the expression of candidate 

genes using anti-sense RNA. This strategy would be beneficial regardless of whether the 

above experiments are successful in identifying the bacterial product necessary for the 

attenuating phenotype. We know that we can express genes in trans in the transposon 

mutants based on the fact that we can complement the LPS synthesis defect of Tn5A7 by 

providing a WT copy of lpsB on a plasmid. It is therefore conceivable that anti-sense 

constructs specific for the candidate genes of interest can be generated and evaluated for 

their ability to inhibit the attenuating phenotype of the transposon mutants. One 

complicating factor in this approach is that we do not currently have antibodies to the 



 185 

proteins of interest. However, the antisera generated above could be used to probe for 

loss of a protein band corresponding to the predicted size of the targeted protein. 

 

2. Elucidate the host factors necessary for recognizing the transposon mutants and 

mediating bacterial clearance. 

We have demonstrated that MyD88 is necessary for the attenuating effect of the 

transposon mutants on WT A. baumannii infection. Based on the results of the DNase and 

proteinase K experiments, I hypothesize that signaling through TLR9 and/or TLR2 are 

required for the attenuating phenotype. Others have previously shown synergy between 

activation of TLR9 and the TLR2/6 heterodimer in protecting against bacterial 

pneumonia (128). The role for TLR9 in defense against A. baumannii infection has not 

been demonstrated previously. However, infection of TLR2
-/-

 mice actually leads to 

reduced bacterial burdens as compared to WT. The mechanism behind this paradoxical 

observation is not defined and does not preclude a role for signaling through TLR2 in our 

model. I propose to define the roles for TLR9 and TLR2 in mediating the host response 

to the transposon mutants by performing the infection and treatment experiments in mice 

that lack one or both of these PRRs.  

TLR9
-/-

 mice are not commercially available so as a preliminary experiment we 

treated mice with oligonucleotides (ODN) that inhibit signaling through TLR9 or a 

control oligonucleotide with neither inhibitory nor stimulatory activity. Mice treated with 

anti-TLR9 ODN exhibit a 100-fold increase in bacterial burden compared to mice treated 

with control ODN (Figure 42). While a similar increase is observed in the Tn20A11-

treated groups, Tn20A11 still dramatically attenuates the WT infection.  These data 
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suggest that TLR9 may not be required for the attenuating phenotype. However, in the 

absence of a complete knockout of TLR9, we cannot conclude with certainty that TLR9 

is not involved. It is possible that the level of TLR9 inhibition was not sufficient to 

reverse the transposon-mediated effect. Work is ongoing to determine the effectiveness of 

the anti-TLR9 ODN treatment. In addition future work will also determine whether TLR2 

is required for the attenuating phenotype and to more clearly demonstrate whether or not 

TLR9 is involved in response to the transposon mutants. 

 

Figure 42. Contribution of TLR9 to the attenuating effect of the transposon mutants.  

Mice were treated with 30 g of anti-TLR9 or control ODN 24 hours prior to infection and at the time of 

infection. Bacterial burden are shown for lungs harvested at 36 hpi from mice infected with WT A. 

baumannii with or without co-treatment with killed Tn20A11 are shown.  

 

3. Define the mechanism through which transposon mutagenesis induces the 

attenuating phenotype.  

Our sequence analyses did not identify any conserved mutations across all of the 

transposon mutants. However, these analyses unexpectedly identified evidence of large 

chromosomal duplications and rearrangements. In some cases, these changes were 

present in all strains that were sequenced, suggesting that these may simply be errors in 

the original, published sequence. Although copy number has not yet been confirmed, it is 
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intriguing to speculate that variation in the copy number of some genes might lead to 

changes in expression or regulation of the affected genes. One region of the chromosome 

where this is particularly interesting is within a putative endogenous transposon at 

approximately 200 kb. A schematic representation of this locus is given in Figure 43.  

 

Figure 43. Genomic loci encoding the competence-related genes up-regulated in the array (locus 1) 

and two related transposons.  

Genes are represented by arrows where homologous genes are the same color. Whole genome sequencing 

identified TniA as a locus with significant variation including possible variation in copy number. 

Interestingly, the gene encoding the transposition helper protein, TniB is upregulated in the transposon 

mutants and a homologue of this gene lies immediately upstream of the competence locus. Moreover, locus 

2 is a frequent site for integration of large antibiotic resistance islands in MDR clinical isolates. Taken 

together, these data suggest that locus 2 may be a hotspot for recombination and that activation of the 

transposition helper protein, TniB, may contribute to the transposon-induced phenotype.  

 

The sequence coverage in locus 1 is greater than four times the coverage observed 

in other areas of the genome. Moreover, in at least four of the sequenced transposon 

mutants there was evidence for allelic variation within this locus. The latter conclusion is 

based on the fact that there were numerous point mutation within this site that were only 

present in a subset of the sequence reads generated from the high throughput sequencing. 

It is also interesting to not that TniB is upregulated in the transposon mutants that were 

included in the microarray. Finally, a locus with partial homology to locus 1 is located at 



 188 

approximately 700 kb and the region of homology lies immediately adjacent to the four 

most highly upregulated genes in the microarray. Taken together, these data suggest that 

expression of the putative competence locus may be affected by copy number variation at 

a distant, homologous locus.  

While the hypothesis outlined above remains to be tested, it is important to note 

that genomic plasticity and large chromosomal amplifications are not unprecedented in 

Acinetobacter spp. In fact, genome amplification has been described extensively in 

Acinetobacter sp. strain ADP1 (243, 262). In this organism, amplification of large regions 

of the chromosome that encode genes involved in metabolism of aromatic substrates can 

arise at high frequency even in the absence of selective pressure. Based on phenotypic 

analyses of the resulting mutants, it is proposed that spontaneous duplication of 

chromosomal segments allows for a copy-number dependent increase in the expression of 

the duplicated genes (243, 262). Interestingly, long-range interactions between distant 

chromosomal sites have also been described (262). In the mutants that arise through 

amplification, genomic duplications can result in over 100 copies of a given amplicon. 

Moreover, amplifications can each be as large as 300 kb and can account for up 1 Mb of 

the resulting genome (262). Under non-selective conditions, the duplication frequency 

was estimated at between 10
-4

 – 10
-5

, suggesting that genome amplification can serve as a 

major source of genetic variation within a species (243). Although genomic amplification 

has not been described for A. baumannii the results of our sequencing data strongly 

suggest that certain regions of the chromosome may be duplicated in our strains. Based 

on these results, a first step toward understanding how transposon mutagenesis induces 

the attenuating phenotype will be to define the copy number variations and allelic 
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variations present in all of our sequenced strains. From there it will be possible to 

determine whether there are common features, such as higher copy number, in the 

transposon mutants as compared to either WT strain. Finally, Southern hybridization can 

be used to screen for large chromosomal rearrangements and duplications. We can then 

utilize the transposon mutagenesis protocol to determine whether chromosomal 

rearrangements occur as a consequence of mutagenesis. Alternatively, transient 

expression of the transposase enzyme may induce the genomic rearrangements. This can 

be tested by expressing a transposase from a constitutive promoter on a plasmid and 

determining whether expression of the transposase induces chromosomal rearrangement. 
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Nutrient metal acquisition and metal dependent processes in A. baumannii 

 

1. Elucidate the mechanisms for Zn acquisition in A. baumannii.  

Chapter IV presents data identifying a Zn uptake system in A. baumannii and the initial 

characterization of this system and its role in Zn uptake and pathogenesis. These results 

determined that A1S_0142 encodes ZnuB, the permease component of an ABC 

transporter that contributes to Zn acquisition in vitro and pathogenesis in vivo. Moreover, 

additional genes encoding proteins predicted to be involved in outer membrane transport 

were also identified. This work highlights several important areas for future investigation 

into the mechanisms for Zn acquisition in A. baumannii.  

 

1a. Define the inner membrane Zn transport machinery in A. baumannii.  

Zn supplementation rescues the growth of znuB suggesting that additional transporters 

exist that are capable of transporting Zn across the inner membrane. However, additional 

inner membrane Zn transporters have not yet been identified in A. baumannii. To address 

this gap in our current knowledge, the transporters that compensate for loss of znuB 

function should be identified by performing transcriptional analyses of znuB compared 

to WT in Zn-replete and Zn-deplete conditions. These studies would identify transporters 

that are up-regulated in response to Zn-starvation in znuB. Once the transporters are 

identified, it will be possible to generate deletion mutants of these genes in order to 

determine their contribution to Zn uptake. In addition, ICP-MS analyses of the resulting 

mutants, combined with growth assays in combinations of various metal concentrations 

can be used to determine the primary substrate for the transporter. Together, these 
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analyses will determine whether these transporters primarily transport Zn, or whether 

other metals or other compounds are preferentially transported. 

 

1b. Elucidate the mechanism for translocation of Zn across the outer membrane.  

In many bacteria, transport of Zn across the outer membrane is thought to occur by 

passive diffusion through non-selective channels. In contrast, A. baumannii has two 

predicted Zur-regulated, TonB-dependent receptors, as well as a predicted Zur-regulated 

TonB/ExbB/ExbD system. Moreover, all of the genes encoding these components are 

induced in Zn-replete conditions. These results suggest that Zn transport across the outer 

membrane is an energy dependent process, but this remains to be experimentally 

confirmed. In order to determine the mechanism of Zn transport across the outer 

membrane, deletion mutants of the two ZnuD-encoding genes as well as for the predicted 

Zur-regulated TonB system should be generated. The contribution of these systems to Zn 

acquisition can then be assessed by measuring the growth of the resulting mutants in Zn-

limiting conditions. In addition, direct interactions between TonB and each of the outer 

membrane receptors can be measured by immunoprecipitation using a tagged version of 

TonB. This type of analysis has been employed to define the interaction between P. 

aeruginosa TonB1 and the pyoverdine receptor, FpvA (5). Alternatively, interactions 

between these proteins can be determined by cysteine substitution of key residues 

predicted to form part of the TonB-box of the receptors and conserved receptor-

interaction residues in TonB. This method has likewise been successful in defining the 

interaction between E. coli TonB and FepA (66). Together, these experiments would 
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define the mechanism for Zn uptake from the external environment, across the outer 

membrane, periplasm and inner membrane to reach the cytoplasm. 

 

2. Define the A. baumannii Zur regulon and the roles for Zur-regulated genes in Zn 

uptake and homeostasis.  

Initial in silico data have identified a number of candidate Zur-regulated genes. While 

several of the genes involved in Zn acquisition are induced in Zn-limiting conditions 

(Chapter V, Figure 36D), a direct role for Zur in regulating these genes has not been 

demonstrated. 

 

2a. Elucidate the transcriptional profiles of a zur deletion mutant compared to WT 

bacteria in Zn-replete and Zn-deplete conditions.  

In order to validate the in silico analyses described above, a zur deletion mutant will be 

generated. Transcriptional analyses of this strain compared to WT bacteria in Zn-replete 

and Zn-deplete conditions will identify genes whose expression is no longer Zn-

responsive in the absence of Zur. Direct measurement of Zur binding to target promoters 

would further confirm the direct role for Zur in regulation of the putative targets.  

 

2b. Determine the function of Zur-regulated genes and define their roles in Zn 

homeostasis.  

Based on the results of 1a, genes can be prioritized based on those with known functions 

in other bacteria and those without known functions. Based on the in silico analyses, 
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several promising candidates have already been identified, and the role for Zur in 

regulating these genes can be determined directly even without a zur deletion mutant. 

Candidates that are particularly interesting include a putative metallochaperone that may 

be involved in metallocenter formation as well as a carbonic anhydrase. The former is of 

particular interest because of its possible role in metallocenter formation. Determining the 

specific target of this protein, together with the metals with which it associates should 

provide valuable information regarding the regulation of metalloprotein synthesis under 

Zn limiting conditions. The carbonic anhydrase is particular interesting based on several 

factors. First, several gamma-proteobacteria encode putative Zur-regulated carbonic 

anhydrases, suggesting an important physiological role for this protein under Zn-limiting 

conditions. Secondly, several genes were identified in the transposon mutagenesis screen 

that encode proteins with roles in maintaining intracellular pH. Carbonic anhydrases 

regulate pH by the conversion of bicarbonate to CO2. Among all of the biologically 

active transition metals, Zn displays the strongest Lewis acid character. It is therefore 

intriguing to speculate about the interplay between intracellular pH and the catalytic 

activity and stability of Zn-dependent enzymes or proteins under Zn-limiting conditions. 

 

3. Elucidate the A. baumannii metalloproteome and define changes to the 

metalloproteome as a result of nutrient metal limitation.  

 

Predicted metalloproteins make up a significant proportion of the proteins encoded within 

bacterial genomes. Predicted Zn-binding proteins, for example, account for 4-8 percent of 

the proteins encoded within the genomes of Gram-negative and Gram-positive bacteria 
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(11). However, the majority of these proteins have not been experimentally validated for 

their metal-binding capacity, or for the role for the associated metal in protein function. 

Moreover, changes in the expressed metalloproteome in response to nutrient metal 

starvation have not been described. Understanding such changes would provide valuable 

insight into the physiological processes that are critical under nutrient limited conditions 

as well as into the basic mechanisms through which bacteria respond to nutrient 

limitation. Given that vertebrate hosts represent nutrient limiting environments for 

invading bacteria, understanding the physiologic response to nutrient limitation may 

identify novel avenues for therapeutic development. In order to define the 

metalloproteome of A. baumannii, fractionation of native proteins and separation by gel 

electrophoresis can be combined with laser-ablation inductively coupled plasma mass 

spectrometry (LA-ICP-MS). Proteins that are found associated with transition metals can 

then be identified by mass spectrometry. These analyses can then be combined with 

analyses of proteins isolated from bacteria grown under nutrient-metal restricted 

conditions to evaluate resulting changes in the total proteome and the metalloproteome. 

 

4.  Determine the contribution of transition metal intoxication to A. baumannii 

pathogenesis.  

The work discussed in Chapter V focused on Zn acquisition and the effects of Zn 

sequestration on A. baumannii. However, as discussed in the Chapter I, Zn intoxication is 

recognized as a component of the innate immune response to certain bacterial pathogens. 

I have identified a transposon mutant in which the gene encoding a putative Cd/Zn/Cu 

efflux transporter is disrupted by integration of the transposon. This mutant is extremely 
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sensitive to growth in high Zn concentrations, suggesting that the transporter is important 

in mediating resistance to Zn intoxication (Figure 44). Future work will determine the 

contribution of this transporter to resistance to other toxic metals such as Cu and Cd, as 

well as its role in pathogenesis.  

 

Figure 44. Mn and Zn intoxication of A. baumannii.  

WT A. baumannii and isogenic derivatives with Tn insertions in znuB or czcA2 were cultured in LB 

medium supplemented with Mn or Zn at final concentrations ranging from 0 to 1 mM. While modest 

growth inhibition is observed in WT and znuB::Tn5 in the presence of 0.5 and 1 mM Zn, czcA2::Tn5 is 

significantly inhibited in by concentrations as low as 100 mM Zn. In contrast, Mn was not inhibitory at any 

of the concentrations tested.   
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Appendix 1. Supplementary tables associated with Chapter II. 

 

Table 12: Primers used for real-time PCR 

Target gene Primer Name Sequence 

A1S_2396 RT2396F GCTGAATGATTGTGCCTTCC 

 RT2396R CCAACGCTTATCAAACCGC 

A1S_2647 RT2647F CTGAATGATTGTGCCTTCTACC 

 RT2647R AGAACACTAAAACCTGATGCCTC 

A1S_1751 RT1751F GGTGCTTTCCATGCTGCC 

 RT1751R AAGGTACAGCGGAAATTCGTC 

A1S_1769 RT1769F CCTGTGTAATATCGGCTTGACC 

 RT1769R TGATTACCCGTGCAGACTTGG 

A1S_2198 RT2198F GCCGCCCAGTCATTATTGC 

 RT2198R GAACAACATCGAAACATCTGAAGC 

A1S_2377 RT2377F TTGCTAATTGAACGACACCTTC 

 RT2377R CAACCTTACTGCGAGCACTTG 

A1S_2642 RT2642F CTACAGGTTACGGTGGTGCTTTG 

 RT2642R TTTGTTCCGTTAATTTTGATAGTACC 

A1S_3146 RT3146F ATAGCATTGAAACAGCAGCAGC 

 RT3146R CTTGCTTGTTAATAGGTATGACACTC 

A1S_r01 (16S rRNA) RTR01F GCTAATAGATGAGCCTAAGTCGG 

  RTR01R CAGACCCGCTACAGATCGTC 
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Table 13: Transcripts that increased significantly upon NaCl exposure as determined by microarray 

analysis 

 

Locus Tag Description Fold Inductiona 

   

Amino Acid Metabolismb   

A1S_0925 choline dehydrogenase 2.1 

A1S_0956 L-aspartate dehydrogenase 4.3 

A1S_1274 alcohol dehydrogenase GroES-like protein 8.9 

A1S_1364 aminotransferase class V 2.2 

A1S_1957 putative L-kynurenine hydrolase 18.2 

   

Carbohydrate metabolism   

A1S_0804 trehalose-6-phosphate phophatase 3.0 

   

Cell envelope biogenesis, outer membrane   

A1S_0494 putative glycosyl transferase 2.8 

A1S_1792 nucleoside-diphosphate-sugar epimerase 29.4 

A1S_3218 membrane fusion protein, EsvF1 2.1 

   

Cell motility and secretion   

A1S_0464 Sec-independent protein translocase protein 2.6 

A1S_2090 P pilus assembly protein, chaperone PapD 2.5 

A1S_2214 P pilus assembly protein, CsuD 25.8 

A1S_2215 P pilus assembly protein, CsuC 2.2 

A1S_2216 type 1 pili protein, CsuB 2.9 

A1S_3165 pilin like competence factor 2.5 

   

Coenzyme Metabolism   

A1S_2397 molybdopterin biosynthesis enzyme, MoeA 5.5 

A1S_2581 isochorismate synthetase 11.1 

   

DNA replication, recombination and repair   

A1S_0657 transposase 3.1 

A1S_1501 phage integrase 2.5 

A1S_2015 DNA-directed DNA polymerase 2.4 

   

Energy Production/Conversion   

A1S_0849 tartrate dehydrogenase 8.1 

A1S_0950 putative ferredoxin reductase subunit of phenylpropionate dioxygenase 3.1 

A1S_1528 hypothetical protein A1S_1528, Proline dehydrogenase 2.3 

A1S_1719 4Fe-4S ferredoxin iron-sulfur binding 2.5 

   

Inorganic ion transport and metabolism   

A1S_0092 putative ferric siderophore receptor protein 2.8 

A1S_0947 putative vanillate O-demethylase oxygenase subunit (VanA-like) 4.7 

A1S_1123 putative flavin-binding monooxygenase 3.7 

A1S_1808 hypothetical protein, Di- and tricarboxylate transporters 12.8 

A1S_2386 putative ferric acinetobactin binding protein 3.0 
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A1S_2387 BauE 2.7 

A1S_2971 putative vanillate O-demethylase oxygenase subunit 2.6 

   

Lipid Metabolism   

A1S_0112 acyl-CoA synthetase/AMP-acid ligase II 27.6 

A1S_1108 acyl coenzyme A dehydrogenase 18.6 

A1S_2229 putative acyl-CoA dehydrogenase-related protein 3.6 

A1S_3326 hypothetical protein, predicted membrane protein 2.6 

   

Post-translational modification, protein turnover, chaperones   

A1S_3415 maleylacetoacetate isomerase 2.7 

   

Regulation   

A1S_0205 hypothetical protein A1S_0205, transcriptional regulator 5.8 

A1S_0963 putative transcriptional regulator, AraC family 2.3 

A1S_1081 putative transcriptional regulator, TetR family 3.1 

A1S_1272 putative transcriptional regulator 21.9 

A1S_1282 putative transcriptional regulator, CopG 2.9 

A1S_1393 putative two-component sensor kinase 3.5 

A1S_1763 putative transcriptional regulator 3.4 

A1S_1775 transcriptional activator, LuxR family 26.4 

A1S_2006 response regulator protein 3.3 

A1S_2396 putative transcriptional regulator, TetR family 7.7 

A1S_2396 putative transcriptional regulator 43.1 

A1S_2647 putative transcriptional regulator, TetR family 37.3 

A1S_2647 putative transcriptional regulator 15.7 

A1S_2747 transcriptional regulator, LysR family 2.2 

A1S_2771 putative transcriptional regulator, AraC family 2.3 

A1S_3255 putative transcriptional regulator, AraC/XylS family 9.7 

A1S_3271 putative transcriptional regulator, LysR family 2.1 

   

Resistance/Defense Mechanisms   

A1S_1751 AdeA2 membrane fusion protein 25.9 

A1S_1752 AdeA1 membrane fusion protein 8.7 

A1S_2376 putative ABC-type antimicrobial peptide transport system 11.8 

A1S_2377 putative ABC-type multidrug transport system 3.6 

A1S_3420 MATE family drug transporter 12.1 

A1S_3445 putative RND family cation/multidrug efflux pump 3.2 

   

Secondary metabolites biosynthesis, transport and catabolism   

A1S_0948 putative short-chain dehydrogenase 11.5 

A1S_1105 hypothetical protein A1S_1105 2.2 

A1S_1125 putative transferase 13.2 

A1S_1387 oxidoreductase 13.9 

A1S_2227 putative methyltransferase 2.6 

A1S_2373 putative acinetobactin biosynthesis protein 3.1 

A1S_2381 putative acinetobactin biosynthesis protein 3.1 

A1S_2382 non-ribosomal peptide synthetase, BasD 29.0 

A1S_2382 non-ribosomal peptide synthetase, BasD 2.3 
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A1S_2383 putative acinetobactin biosynthesis protein 17.2 

A1S_2576 putative non-ribosomal peptide synthetase 2.3 

A1S_2580 23-dihydro-2,3-dihydroxybenzoate synthetase, isochorismatase 3.4 

A1S_3414 fumarylacetoacetase 2.7 

   

Translation, ribosomal structure and biogenesis   

A1S_0089 dual specificity pseudouridine synthase 2.2 

   

Transporters and Permeases   

A1S_0565 hypothetical protein A1S_0565, DMT family permease 2.1 

A1S_0596 putative transporter 2.2 

A1S_0915 putative MFS transporter 3.2 

A1S_1209 putative benzoate transport porin (BenP) 16.2 

A1S_1284 ABC-type nitrate/sulfonate/bicarbonate transport systems 2.3 

A1S_1286 
binding-protein-dependent transport systems, inner membrane 
component 10.1 

A1S_1287 ABC nitrate/sulfonate/bicarbonate family transporter 2.0 

A1S_1323 hypothetical protein A1S_1323, DMT family permease 3.4 

A1S_1331 major facilitator superfamily MFS_1 2.7 

A1S_1361 ABC-type spermidine/putrescine transport system, ATPase component 2.2 

A1S_1362 ABC-type Fe3+ transport system permease component 9.4 

A1S_1722 putative ATP-binding component of ABC transporter 2.0 

A1S_1739 major facilitator superfamily MFS_1 4.1 

A1S_1769 putative RND family drug transporter 2.9 

A1S_1814 putative transporter 2.5 

A1S_1956 putative amino acid permease 2.0 

A1S_1992 DMT family permease 2.6 

A1S_2141 potassium-transporting ATPase A chain 2.4 

A1S_2198 putative mutlidrug resistance protein, Major facilitator superfamily 2.4 

A1S_2304 putative RND family drug transporter 2.9 

A1S_2378 putative ABC transporter 14.3 

A1S_2388 putative ferric acinetobactin transport system permease protein 4.0 

A1S_2389 putative ferric acinetobactin transport system permease protein 23.2 

A1S_2932 heavy metal efflux pump CzcA 2.6 

A1S_2934 heavy metal RND efflux outer membrane protein, CzcC family 16.0 

A1S_3146 multidrug efflux transport protein, major facilitator superfamily 17.6 

A1S_3251 transporter, LysE family 3.9 

   

Proteins with general function predictions/functions unknown   

A1S_0032 putative signal peptide 3.7 

A1S_0110 hypothetical protein 3.0 

A1S_0117 hypothetical protein 3.0 

A1S_0211 transposition helper 2.5 

A1S_0296 hypothetical protein 10.7 

A1S_0301 predicted esterase of the alpha/beta hydrolase fold 2.1 

A1S_0396 uncharacterized protein conserved in bacteria 2.6 

A1S_0425 hypothetical protein, Neuromodulin 2.2 

A1S_0440 hypothetical protein 2.1 

A1S_0660 transposition helper 4.2 

A1S_0673 putative transposase 2.6 
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A1S_0677 transposase 4.3 

A1S_0740 putative phage related protein 2.4 

A1S_0741 hypothetical protein 3.6 

A1S_0847 putative signal peptide 3.5 

A1S_0889 putative hemolysin 2.5 

A1S_0946 hypothetical protein 4.0 

A1S_0954 putative hydrolase 3.5 

A1S_0959 putative signal peptide 5.5 

A1S_1053 hypothetical protein, M protein trans-acting positive regulator 2.6 

A1S_1148 hypothetical protein 3.8 

A1S_1149 hypothetical protein 3.5 

A1S_1150 hypothetical protein 4.0 

A1S_1151 uncharacterized conserved protein 7.9 

A1S_1167 uncharacterized conserved protein 2.7 

A1S_1233 predicted outer membrane protein 5.4 

A1S_1383 surface antigen 2.6 

A1S_1385 hypothetical protein, Ribosomal protein L31e 2.4 

A1S_1583 hypothetical protein 2.6 

A1S_1588 phage terminase-like protein large subunit 13.7 

A1S_1589 phage-related protein 2.1 

A1S_1592 putative phage head-tail adaptor 9.7 

A1S_1595 hypothetical protein 2.2 

A1S_1744 putative electron transfer flavoprotein 21.4 

A1S_1770 hypothetical protein, GH3 auxin-responsive promoter 2.2 

A1S_1802 uncharacterized protein conserved in bacteria 3.3 

A1S_1803 uncharacterized protein conserved in bacteria 2.4 

A1S_1809 putative hydrolase transmembrane protein 3.6 

A1S_1811 uncharacterized protein conserved in bacteria 2.4 

A1S_1851 penicillin G amidase 2.4 

A1S_1897 predicted membrane protein 2.0 

A1S_1901 predicted metal-dependent hydrolase 2.1 

A1S_1952 uncharacterized conserved protein 5.4 

A1S_2032 hypothetical protein 3.2 

A1S_2074 hypothetical protein, OB-fold nucleic acid binding domain 4.2 

A1S_2228 uncharacterized proteins, LmbE homologs 2.8 

A1S_2278 putative hydrolase of the alpha/beta superfamily 20.9 

A1S_2400 predicted metal-dependent hydrolase 2.3 

A1S_2889 putative signal peptide 4.3 

A1S_3120 hypothetical protein 2.1 

A1S_3338 uncharacterized conserved small protein 2.3 
aFold-induction in LB + 200 mM NaCl relative to LB without NaCl supplementation. 
bTranscripts were divided into functional categories based on cluster of orthologous groups (COG) classifications.
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 Table 14: Transcripts that decreased significantly upon exposure to NaCl as determined by 

microarray analyses 
 

Locus Tag Description Fold Repressiona 

   
Amino acid transport and metabolismb 

A1S_0071 tyrosine aminotransferase tyrosine repressible, PLP-dependent 5.1 

A1S_0095 D-amino acid dehydrogenase 6.3 

A1S_0177 
cysteine synthase A/O-acetylserine sulfhydrolase A subunit PLP-
dependent enzyme 8.1 

A1S_0203 hypothetical protein 2.7 

A1S_0227 aminopeptidase A 4.4 

A1S_0238 threonine synthase pyridoxal-5'-phosphate-dependent enzyme 5.1 

A1S_0239 homoserine dehydrogenase 5.1 

A1S_0258 argininosuccinate lyase 3.6 

A1S_0259 argininosuccinate lyase 3.5 

A1S_0274 anthranilate synthase component I; TrpE 3.5 

A1S_0346 hypothetical protein 3.2 

A1S_0415 putative hydrolase haloacid dehalogenase-like family 2.1 

A1S_0427 aspartate-semialdehyde dehydrogenase NAD(P)-binding 2.9 

A1S_0471 homoserine O-acetyltransferase 2.0 

A1S_0472 2-isopropylmalate synthase 6.1 

A1S_0483 phosphogluconate dehydratase 4.6 

A1S_0489 gamma-glutamyl phosphate reductase 4.3 

A1S_0543 acetolactate synthase III large subunit 6.9 

A1S_0544 acetolactate synthase isozyme III small subunit 7.7 

A1S_0545 acetohydroxy acid isomeroreductase 6.4 

A1S_0575 cysteine synthase B 4.1 

A1S_0610 pyrroline-5-carboxylate reductase 3.1 

A1S_0686 ATP-phosphoribosyltransferase 3.1 

A1S_0687 histidinol dehydrogenase 5.4 

A1S_0688 histidinol-phosphate aminotransferase 4.5 

A1S_0712 hypothetical protein 4.0 

A1S_0737 
5-methyltetrahydropteroyltriglutamate-homocysteine 
methyltransferase 12.4 

A1S_0888 acetylglutamate kinase 4.2 

A1S_0905 putative D-amino acid oxidase 2.8 

A1S_0912 ribosomal protein L22 3.4 

A1S_0962 putative glutaminase 2.6 

A1S_1000 sulfate adenylyltransferase subunit 2 6.1 

A1S_1039 aminopeptidase P 3.2 

A1S_1068 argininosuccinate synthetase 3.8 

A1S_1069 argininosuccinate synthetase 6.9 

A1S_1084 glycine/D-amino acid oxidases (deaminating) 2.8 

A1S_1119 choline dehydrogenase and related flavoproteins 2.7 

A1S_1142 aspartate kinase 3.0 

A1S_1178 ATP phosphoribosyltransferase 3.8 

A1S_1463 serine acetyltransferase 2.7 

A1S_1473 putative aminotransferase 4.3 

A1S_1532 glycine cleavage complex protein H 3.4 

A1S_1610 Zn-dependent oligopeptidase 2.3 
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A1S_1632 cysteine desulfurase 6.0 

A1S_1633 cysteine desulfurase 4.3 

A1S_1664 phospho-2-dehydro-3-deoxyheptonate aldolase 5.0 

A1S_1683 o-succinylhomoserine sulfhydrylase 3.4 

A1S_1705 putative (RR)-butanediol dehydrogenase 3.3 

A1S_1762 hypothetical protein 4.4 

A1S_1913 N-acetyl-gamma-glutamyl-phosphate reductase 3.0 

A1S_1916 threonine dehydratase 4.4 

A1S_1936 acetylornithine aminotransferase 2.4 

A1S_1980 ornithine carbamoyltransferase 3.6 

A1S_1984 D-amino acid dehydrogenase small subunit 6.2 

A1S_2009 3-dehydroquinate dehydratase type II 3.4 

A1S_2044 putative ferredoxin-dependent glutamate synthase 2.1 

A1S_2084 chorismate mutase 2.4 

A1S_2092 aminopeptidase N 3.9 

A1S_2274 aminoacyl-histidine dipeptidase 2.5 

A1S_2276 hypothetical protein A1S_2276 2.9 

A1S_2277 hypothetical protein A1S_2277 4.4 

A1S_2281 putative anthranilate phosphoribosyltransferase 2.8 

A1S_2307 serine hydroxymethyltransferase 6.4 

A1S_2319 hypothetical protein A1S_2319 4.7 

A1S_2335 510-methylenetetrahydrofolate reductase 3.9 

A1S_2351 glutamine synthetase 5.8 

A1S_2352 glutamine synthetase 5.5 

A1S_2354 Peptidase M24 2.3 

A1S_2355 anthranilate synthase component II 4.1 

A1S_2359 anthranilate phosphoribosyltransferase 2.5 

A1S_2360 indole-3-glycerol phosphate synthase (IGPS) 2.3 

A1S_2426 lactoylglutathione lyase 5.8 

A1S_2453 L-24-diaminobutyrate decarboxylase 3.7 

A1S_2454 L-24-diaminobutyrate:2-ketoglutarate 4-aminotransferase 4.2 

A1S_2496 putative phosphoserine phosphatase 3.5 

A1S_2508 aspartate aminotransferase A 4.9 

A1S_2631 diaminopimelate epimerase 2.4 

A1S_2632 diaminopimelate decarboxylase 2.7 

A1S_2686 carbamoyl-phosphate synthase small chain 7.4 

A1S_2687 carbamoyl-phosphate synthase large subunit 5.7 

A1S_2774 putative homoserine kinase (ThrH) 2.4 

A1S_2775 3'-phosphoadenylylsulfate reductase 4.9 

A1S_2875 tryptophan synthase beta chain 3.8 

A1S_2876 N-(5'-phosphoribosyl)anthranilate isomerase 5.5 

A1S_2904 branched-chain amino acid transferase 4.3 

A1S_3046 oligopeptidase A 2.9 

A1S_3047 oligopeptidase A 2.7 

A1S_3109 dehydroshikimate reductase NAD(P)-binding 2.9 

A1S_3128 succinylglutamate desuccinylase 2.1 

A1S_3131 arginine succinyltransferase 2.7 

A1S_3132 succinylornithine transaminase 3.2 
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A1S_3133 
 

bifunctional N-succinyldiaminopimelate-
aminotransferase/acetylornithine transaminase protein 5.1 

A1S_3134 glutamate dehydrogenase (NAD(P)+) oxidoreductase protein 7.5 

A1S_3152 D-3-phosphoglycerate dehydrogenase 5.2 

A1S_3182 glutamate synthase small chain 3.0 

A1S_3185 glutamate synthase large chain precursor 3.5 

A1S_3187 3-dehydroquinate synthase 2.3 

A1S_3190 shikimate-kinase 3.1 

A1S_3222 homocysteine synthase 2.8 

A1S_3234 hypothetical protein A1S_3234 4.5 

A1S_3235 
imidazole glycerol phosphate synthetase glutamine 
amidotransferase subunit 3.7 

A1S_3245 imidazole glycerol phosphate synthase cyclase subunit 2.1 

A1S_3302 putative two-component sensor 2.8 

A1S_3370 putative aminotransferase 3.0 

A1S_3405 histidine ammonia-lyase 5.6 

A1S_3406 urocanate hydratase 7.6 

A1S_3407 urocanase 9.0 

A1S_3423 dihydrodipicolinate synthase 7.9 

A1S_3442 dihydrodipicolinate reductase 3.6 

A1S_3455 dihydroxy-acid dehydratase 4.3 

 tryptophan synthase alpha chain 8.2 

 aspartate ammonia-lyase (aspartase) 3.9 

 succinylarginine dihydrolase 3.7 

 gamma-glutamyl kinase 2.7 

 tryptophan synthase subunit beta 2.6 

 urease alpha subunit 2.6 

 chorismate synthase 2.2 

   

Carbohydrate transport and metabolism   

A1S_0064 putative phosphoglucose isomerase 4.8 

A1S_0066 hypothetical protein A1S_0066 2.0 

A1S_0073 
 

putative carboxyphosphonoenolpyruvate phosphonomutase or 
putative methylisocitrate lyase (PrpB) 5.1 

A1S_0230 phosphoglycerate mutase III cofactor independent 3.5 

A1S_0330 triosephosphate isomerase 2.7 

A1S_0484 hypothetical protein A1S_0484 3.1 

A1S_0486 thermoresistant gluconokinase 3.5 

A1S_0492 beta-N-acetyl-D-glucosaminidase 2.2 

A1S_0571 hydroxypyruvate isomerase 2.5 

A1S_0589 phosphocarrier protein (HPr-like) 5.1 

A1S_0705 D-ribulose-5-phosphate 3-epimerase 3.0 

A1S_0887 phosphomannomutase 3.6 

A1S_0965 mutarotase precursor 2.4 

A1S_1520 transketolase 5.6 

A1S_1521 transketolase 4.0 

A1S_1543 phosphoglycerate kinase 2.4 

A1S_1871 putative phosphoglycerate mutase related protein 2.5 

A1S_1898 enolase 4.3 

A1S_1915 ribose 5-phosphate isomerase 4.4 
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A1S_1922 putative sugar kinase protein 5.3 

A1S_2052 hypothetical protein A1S_2052 4.1 

A1S_2164 phosphoenolpyruvate synthase 5.7 

A1S_2200 L-sorbosone dehydrogenase 2.4 

A1S_2283 putative inorganic polyphosphate/ATP-NAD kinase 3.3 

A1S_2450 putative pyruvate decarboxylase 2.9 

A1S_2501 glyceraldehyde-3-phosphate dehydrogenase 3.9 

A1S_2596 fructose-16-bisphosphatase 4.6 

A1S_2847 glucose dehydrogenase 4.7 

A1S_2848 glucose dehydrogenase 4.6 

A1S_3105 inositol-1-monophosphatase 2.8 

A1S_3248 glycerol uptake facilitator 4.3 

A1S_3320 phosphoglucosamine mutase 6.5 

 fructose-16-bisphosphate aldolase, class II 3.6 

 Sequence 1 from Patent EP1367120 2.7 

   

Cell cycle control, cell division, chromosome partitioning   

A1S_0049 protein tyrosine kinase 2.7 

A1S_0124 putative chromatin partitioning ATPase (ParA family ATPase) 3.8 

A1S_0137 hypothetical protein A1S_0137 2.6 

A1S_0246 cell division protein 3.1 

A1S_0639 IncC protein 5.4 

A1S_0780 putative ATP-binding protein 2.6 

A1S_0798 putative cell division protein (ZipA-like) 5.4 

A1S_0876 putative cell division protein (FstK) 5.8 

A1S_0879 cell division topological specificity factor 4.1 

A1S_0880 minC activating cell division inhibitor a membrane ATPase 6.1 

A1S_0881 cell division inhibitor 2.5 

A1S_1551 chromosome partitioning protein 2.3 

A1S_1896 putative cell division protein (FtsB-like) 5.5 

A1S_2182 glucose-inhibited division protein A 3.8 

A1S_2656 hypothetical protein A1S_2656 2.8 

A1S_2781 rod shape-determining protein 3.0 

A1S_3141 putative partition-related protein 4.8 

A1S_3205 cell division protein 3.5 

A1S_3331 cell division protein tubulin-like GTP-binding protein and GTPase 4.8 

A1S_3332 cell division protein 4.6 

   

Cell wall/membrane/envelope biogenesis   

A1S_0019 Signal peptidase II 3.8 

A1S_0051 putative outer membrane protein 2.9 

A1S_0052 WecC protein 2.8 

A1S_0055 WecE protein 3.9 

A1S_0059 putative glycosyltransferase 2.1 

A1S_0060 hypothetical protein A1S_0060 2.4 

A1S_0061 putative UDP-galactose phosphate transferase 5.4 

A1S_0062 putative UTP-glucose-1-phosphate uridylyltransferase 5.5 

A1S_0063 putative UDP-glucose 6-dehydrogenase 5.1 

A1S_0065 putative UDP-glucose 4-epimerase 7.4 
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A1S_0096 alanine racemase 2 PLP-binding, catabolic 4.2 

A1S_0237 
 

D-alanyl-D-alanine endopeptidase penicillin-binding protein 7 
and penicillin-binding protein 8 5.2 

A1S_0245 UDP-N-acetylmuramoylalanine-D-glutamate ligase 2.8 

A1S_0292 putative outer membrane protein W 8.7 

A1S_0380 glutamate racemase 4.4 

A1S_0431 lipid A biosynthesis lauroyl acyltransferase 2.6 

A1S_0493 carboxy-terminal protease 3.4 

A1S_0495 putative glycosyl transferase 3.2 

A1S_0540 putative minor lipoprotein 4.3 

A1S_0622 putative lipoprotein precursor (VacJ) transmembrane 4.5 

A1S_0685 UDP-N-acetylglucosamine 1-carboxyvinyltransferase 3.4 

A1S_0884 putative outer membrane protein 6.0 

A1S_0989 monofunctional biosynthetic peptidoglycan transglycosylase 2.2 

A1S_1009 putative lipoprotein 4.0 

A1S_1020 penicillin-binding protein 2 2.1 

A1S_1055 hypothetical protein A1S_1055 4.2 

A1S_1193 OmpA/MotB 5.2 

A1S_1236 D-arabinose 5-phosphate isomerase 3.3 

A1S_1546 organic solvent tolerance protein precursor 3.0 

A1S_1550 glucose-inhibited division protein B 2.9 

A1S_1618 hypothetical protein A1S_1618 3.5 

A1S_1919 putative phospholipase A1 precursor (PldA) 3.3 

A1S_1965 UDP-acetylglucosamine acyltransferase 4.7 

A1S_1967 hypothetical protein A1S_1967 4.9 

A1S_1968 putative outer membrane protein (OmpH) 4.5 

A1S_1969 putative outer membrane protein 3.5 

A1S_1970 putative membrane-associated Zn-dependent proteases 1 2.7 

A1S_1987 putative UDP-galactose 4-epimerase (GalE-like) 2.7 

A1S_2050 UDP-N-acetylenolpyruvoylglucosamine reductase FAD-binding 2.4 

A1S_2132 putative outer membrane protein 3.7 

A1S_2202 aspartate racemase 22.8 

A1S_2284 hypothetical protein A1S_2284 4.2 

A1S_2317 putative lipoprotein precursor (RlpA-like) 2.2 

A1S_2432 lipoprotein precursor 2.5 

A1S_2435 
D-ala-D-ala-carboxypeptidase; penicillin-binding protein 5 
(precursor) 2.7 

A1S_2479 putative D-ala-D-ala-carboxypeptidase penicillin-binding protein 3.0 

A1S_2503 putative outer membrane lipoprotein 3.9 

A1S_2522 GTP-binding protein 3.0 

A1S_2595 peptidoglycan-associated lipoprotein precursor 4.6 

A1S_2609 putative lipid A biosynthesis lauroyl acyltransferase 4.8 

A1S_2657 putative transglycosylase 2.4 

A1S_2780 rod shape-determining protein 2.2 

A1S_2834 mechanosensitive channel 5.1 

A1S_2849 putative glucose-sensitive porin (OprB-like ) 5.3 

A1S_2866 hypothetical protein A1S_2866 3.9 

A1S_2900 
putative lipopolysaccharide core biosynthesis glycosyl 
transferase LpsC 3.1 

A1S_2962 putative membrane-bound lytic murein transglycosylase 4.1 
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A1S_2987 putative lipoprotein precursor 3.8 

A1S_2995 hypothetical protein A1S_2995 2.8 

A1S_3027 putative lytic murein transglycosylase soluble 2.5 

A1S_3094 putative nucleoside-diphosphate-sugar epimerase 2.6 

A1S_3176 hypothetical protein A1S_3176 3.6 

A1S_3196 putative penicillin binding protein (PonA) 4.0 

A1S_3197 putative penicillin binding protein (PonA) 3.7 

A1S_3201 phospho-N-acetylmuramoyl-pentapeptide transferase 3.7 

A1S_3203 
UDP-N-acetylmuramoylalanyl-D-glutamate-2 6-diaminopimelate 
ligase 3.1 

A1S_3204 
septum formation penicillin binding protein 3, peptidoglycan 
synthetase 3.4 

A1S_3206 S-adenosylmethionine methyltransferase 3.5 

A1S_3311 hypothetical protein A1S_3311 2.1 

A1S_3329 EsvJ 5.1 

A1S_3330 UDP-3-O-acyl-N-acetylglucosamine deacetylase 2.8 

A1S_3333 cell division protein 4.9 

A1S_3334 D-alanine-D-alanine ligase B 4.1 

A1S_3335 UDP-N-acetylmuramate--alanine ligase 3.5 

A1S_3336 
 

UDP-N-acetylglucosamine:N-acetylmuramyl- (pentapeptide) 
pyrophosphoryl-undecaprenol N-acetylglucosamine transferase 5.5 

A1S_3393 hypothetical protein A1S_3393 3.5 

A1S_3394 hypothetical protein A1S_3394 4.2 

A1S_3395 glucosamine-fructose-6-phosphate aminotransferase 3.3 

A1S_3396 glucosamine-fructose-6-phosphate aminotransferase 3.7 

 2-dehydro-3-deoxyphosphooctonate aldolase 4.5 

 3-deoxy-manno-octulosonate cytidylyltransferase 3.3 

   

Cell motility   

A1S_0271 putative general secretion pathway protein 2.3 

A1S_0370 general secretion pathway protein G 4.6 

A1S_0500 type 4 fimbrial biogenesis protein 4.8 

A1S_0616 secretion protein XcpR 2.5 

A1S_1510 Fimbrial protein 2.3 

A1S_1559 type 4 fimbrial biogenesis protein 3.7 

A1S_2020 hypothetical protein A1S_2020 2.5 

   

Coenzyme transport and metabolism   

A1S_0036 
3-demethylubiquinone-9 3-methyltransferase and 2-octaprenyl-
6-hydroxy phenol methylase 2.8 

A1S_0221 hypothetical protein A1S_0221 3.0 

A1S_0262 porphobilinogen deaminase 2.4 

A1S_0350 
 

S-adenosylmethionine : 2-DMK methyltransferase and 2-
octaprenyl-6-methoxy-14-benzoquinone methylase 4.5 

A1S_0457 dihydrofolate reductase 2.7 

A1S_0584 
2-amino-4-hydroxy-6-hydroxymethyldihydropteridine 
pyrophosphokinase 2.6 

A1S_0585 3-methyl-2-oxobutanoate hydroxymethyltransferase 4.3 

A1S_0586 3-methyl-2-oxobutanoate hydroxymethyltransferase 5.0 

A1S_0587 pantoate-beta-alanine ligase 3.9 
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A1S_0713 quinolinate synthetase A 3.1 

A1S_0821 hypothetical protein A1S_0821 2.4 

A1S_0825 aspartate 1-decarboxylase precursor 4.2 

A1S_0837 glutamyl tRNA reductase 2.9 

A1S_0845 phosphopantetheine adenylyltransferase 6.2 

A1S_0858 
putative glutamine-dependent NAD(+) synthetase (NAD(+) 
synthase 2.7 

A1S_0906 delta-aminolevulinic acid dehydratase 6.3 

A1S_1040 
ubiH protein 2-octaprenyl-6-methoxyphynol hydroxylase, 
FAD/NAD(P)-binding 3.2 

A1S_1041 putative FAD-dependent monooxygenase 2.7 

A1S_1345 PaaK 3.6 

A1S_1346 phenylacetyl-CoA ligase 3.1 

A1S_1356 p-hydroxybenzoate hydroxylase transcriptional activator 6.0 

A1S_1511 biotin synthase 4.0 

A1S_1519 methionine adenosyltransferase 3.9 

A1S_1566 putative 6-pyruvoyl-tetrahydropterin synthase 3.0 

A1S_1619 
S-adenosylmethionine2-demethylmenaquinone 
methyltransferase 5.0 

A1S_1660 
nicotinate-nucleotide-dimethylbenzimidazole 
phosphoribosyltransferase 2.8 

A1S_1696 hypothetical protein A1S_1696 2.6 

A1S_1996 hypothetical protein A1S_1996 3.0 

A1S_1997 molybdopterin converting factor large subunit 4.6 

A1S_2134 putative ubiquinone biosynthesis protein 2.8 

A1S_2144 dihydroneopterin aldolase 3.3 

A1S_2146 molybdopterin biosynthesis protein 2.6 

A1S_2264 ThiF/ThiS complex component 3.7 

A1S_2334 S-adenosyl-L-homocysteine hydrolase 5.7 

A1S_2349 4-hydroxybenzoate octaprenyltransferase 2.4 

A1S_2350 chorismate pyruvate lyase 2.3 

A1S_2464 glutamate-1-semialdehyde aminotransferase 5.1 

A1S_2465 putative thiamin-phosphate pyrophosphorylase 2.3 

A1S_2516 pyridoxal phosphate biosynthetic protein 2.7 

A1S_2674 hypothetical protein A1S_2674 2.7 

A1S_2697 multifunctional protein 3.0 

A1S_2725 multifunctional protein 5.6 

A1S_2732 solanesyl diphosphate synthase 2.7 

A1S_2760 geranyltranstransferase 2.4 

A1S_2867 hypothetical protein A1S_2867 5.0 

A1S_2868 hypothetical protein A1S_2868 3.4 

A1S_2877 vitamin B12 receptor precursor 3.8 

A1S_2999 4-hydroxythreonine-4-phosphate dehydrogenase 3.7 

A1S_3106 1-deoxyxylulose-5-phosphate synthase 2.4 

A1S_3107 GTP cyclohydrolase II 2.5 

A1S_3108 coproporphyrinogen III oxidase 8.5 

A1S_3319 pyridoxamine 5'-phosphate oxidase 4.6 

A1S_3337 glutathione synthetase 2.4 

A1S_3388 hypothetical protein A1S_3388 4.7 

A1S_3389 67-dimethyl-8-ribityllumazine synthase 5.4 

A1S_3391 thiamin-monophosphate kinase 2.3 
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 lipoate synthase 8.3 

 riboflavin synthase alpha chain 5.7 

   

DNA replication, recombination and repair   

A1S_0001 DNA replication initiator protein 2.8 

A1S_0002 DNA polymerase III 3.1 

A1S_0004 DNA gyrase 6.1 

A1S_0016 site-specific tyrosine recombinase 2.2 

A1S_0209 transposase 6.5 

A1S_0210 transposase 4.9 

A1S_0222 putative DNA modification methylase 4.5 

A1S_0226 DNA polymerase III chi subunit 3.6 

A1S_0319 hypothetical protein A1S_0319 2.7 

A1S_0356 exonuclease V beta chain 3.5 

A1S_0357 exonuclease V beta chain 2.4 

A1S_0414 
(di)nucleoside polyphosphate hydrolase (Ap5A 
pyrophosphatase) 4.3 

A1S_0439 DNA topoisomerase type I omega protein 2.7 

A1S_0539 putative DNA polymerase III delta subunit 2.4 

A1S_0576 hypothetical protein A1S_0576 2.2 

A1S_0603 integration host factor alpha subunit 6.5 

A1S_0612 DNA polymerase I 3.0 

A1S_0661 phage integrase family protein 6.2 

A1S_0672 resolvase 3.1 

A1S_0697 putative MutT/nudix family protein 2.8 

A1S_0838 DNA primase 2.1 

A1S_0839 DNA primase 3.4 

A1S_1052 putative NADH pyrophosphatase 2.5 

A1S_1054 hypothetical protein A1S_1054 2.5 

A1S_1065 ribonuclease T 4.1 

A1S_1189 putative N-6 Adenine-specific DNA methylase 2.6 

A1S_1206 ATP-dependent helicase 2.3 

A1S_1207 ATP-dependent helicase 2.5 

A1S_1251 mismatch repair protein 3.1 

A1S_1252 methyl-directed mismatch repair 2.1 

A1S_1465 DNA polymerase III alpha chain 3.0 

A1S_1558 DNA polymerase III delta prime subunit 2.1 

A1S_1560 putative deoxyribonuclease 2.9 

A1S_1567 uracil-DNA glycosylase 4.2 

A1S_1573 integration host factor beta subunit 6.1 

A1S_1623 transcription-repair coupling protein 2.6 

A1S_1637 DNA-binding protein HU-beta 7.0 

A1S_1685 recombination protein gap repair 3.7 

A1S_1962 DNA strand exchange and recombination protein 5.9 

A1S_2056 
DNA polymerase III tau and gamma subunits (DNA elongation 
factor III) 2.9 

A1S_2114 methyl-directed mismatch repair enzyme 2.9 

A1S_2115 methyl-directed mismatch repair enzyme 3.5 

A1S_2174 
replicative DNA helicase;chromosome replication chain 
elongation 2.9 
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A1S_2175 
replicative DNA helicase;chromosome replication chain 
elongation 3.9 

A1S_2260 ATP-dependent RNA helicase (DEAD box) 3.2 

A1S_2437 putative Nudix hydrolase 4.7 

A1S_2504 excinuclease ABC subunit B 4.3 

A1S_2551 Tn7-like transposition protein B 2.6 

A1S_2587 holliday junction helicase subunit A 2.7 

A1S_2603 putative chromosomal replication initiator DnaA-type 3.1 

A1S_2626 DNA gyrase 5.1 

A1S_2629 site-specific tyrosine recombinase 2.2 

A1S_2830 DNA-3-methyladenine glycosylase 2.1 

A1S_2831 formamidopyrimidine-DNA glycosylase 3.0 

A1S_2908 putative integrase 2.4 

A1S_2927 Phage integrase 2.5 

A1S_3095 ATP-dependent DNA helicase 2.2 

A1S_3287 RecBCD nuclease ssDNA-binding protein 5.0 

A1S_3435 3-methyl-adenine DNA glycosylase I 2.9 

 putative ATPase 2.1 

   

Energy production and conversion   

A1S_0005 putative Cytochrome b precursor 4.0 

A1S_0140 NAD-linked malate dehydrogenase 5.1 

A1S_0147 ATP synthase protein I 5.7 

A1S_0148 membrane-bound ATP synthase F0 sector, subunit a 8.5 

A1S_0150 membrane-bound ATP synthase F0 sector, subunit c 9.6 

A1S_0151 membrane-bound ATP synthase F0 sector, subunit b 9.4 

A1S_0152 membrane-bound ATP synthase F1 sector, delta-subunit 8.9 

A1S_0156 membrane-bound ATP synthase F1 sector, epsilon-subunit 7.5 

A1S_0200 inorganic pyrophosphatase 7.8 

A1S_0257 hypothetical protein A1S_0257 2.3 

A1S_0378 EsvG 4.2 

A1S_0420 3-isopropylmalate dehydrogenase 4.3 

A1S_0429 glutamate:aspartate symport protein (DAACS family) 2.3 

A1S_0436 putative Zn-dependent oxidoreductase 3.0 

A1S_0480 fumarate hydratase 7.5 

A1S_0481 phosphate acetyltransferase 4.9 

A1S_0482 acetate kinase (propionate kinase) 4.8 

A1S_0558 aconitate hydratase 1 4.6 

A1S_0752 NADH dehydrogenase I chain A 8.7 

A1S_0753 NADH dehydrogenase I chain B 8.9 

A1S_0755 NADH dehydrogenase I chain E 8.7 

A1S_0756 NADH dehydrogenase I chain F 9.1 

A1S_0757 NADH dehydrogenase I chain G 8.0 

A1S_0758 NADH dehydrogenase I chain H 6.6 

A1S_0759 NADH dehydrogenase I chain I 2Fe-2S ferredoxin-related 8.4 

A1S_0760 NADH dehydrogenase I chain J 7.6 

A1S_0761 NADH dehydrogenase I chain K 7.6 

A1S_0762 NADH dehydrogenase I chain L 7.6 

A1S_0763 NADH dehydrogenase I chain M membrane subunit 8.2 

A1S_0764 NADH dehydrogenase I chain N 7.2 
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A1S_0995 rubredoxin 3.8 

A1S_1008 isocitrate lyase 6.2 

A1S_1181 putative oxidoreductase aldo/keto reductase family 3.9 

A1S_1249 7-Fe ferredoxin 4.3 

A1S_1335 phenylacetic acid degradation protein paaN 7.1 

A1S_1340 phenylacetate-CoA oxygenase/reductase PaaK subunit 6.0 

A1S_1368 pyruvate ferredoxin/flavodoxin oxidoreductase 3.0 

A1S_1369 putative oxidoreductase protein 3.0 

A1S_1370 oxidoreductase 3.0 

A1S_1433 ubiquinol oxidase subunit II 2.1 

A1S_1434 ubiquinol oxidase subunit I 2.3 

A1S_1601 malate synthase G 6.5 

A1S_1631 iron-binding protein 5.4 

A1S_1924 cytochrome d terminal oxidase polypeptide subunit I 11.3 

A1S_1925 cytochrome d terminal oxidase polypeptide subunit II 10.8 

A1S_1986 fumarase C 3.9 

A1S_2053 putative iron-containing alcohol dehydrogenase 2.6 

A1S_2111 oxygen-insensitive NADPH nitroreductase 5.6 

A1S_2126 aconitate hydratase 2 8.9 

A1S_2127 aconitate hydratase 2 9.0 

A1S_2128 aconitate hydratase 2 8.9 

A1S_2166 cytochrome o ubiquinol oxidase subunit II 8.2 

A1S_2167 cytochrome o ubiquinol oxidase subunit I 7.5 

A1S_2168 cytochrome o ubiquinol oxidase subunit III 6.8 

A1S_2169 cytochrome o ubiquinol oxidase subunit IV 8.2 

A1S_2248 2-keto-D-gluconate reductase 4.4 

A1S_2257 glycerol-3-phosphate dehydrogenase 2.3 

A1S_2258 putative nitroreductase 2.7 

A1S_2297 putative 4Fe-4S ferredoxin 3.7 

A1S_2328 soluble pyridine nucleotide transhydrogenase 3.1 

A1S_2338 hypothetical protein (MaeB) 6.7 

A1S_2452 NAD-dependent aldehyde dehydrogenases 4.1 

A1S_2459 putative oxidoreductase 8.8 

A1S_2475 isocitrate dehydrogenase 5.8 

A1S_2477 isocitrate dehydrogenase 7.9 

A1S_2627 electron transfer flavoprotein alpha-subunit 5.0 

A1S_2628 electron transfer flavoprotein beta-subunit 6.8 

A1S_2640 putative oxidoreductase molybdopterin 4.4 

A1S_2644 nitroreductase 7.1 

A1S_2668 phosphoenolpyruvate carboxykinase 3.7 

A1S_2702 putative alcohol dehydrogenase 3.2 

A1S_2710 hypothetical protein A1S_2710 7.7 

A1S_2711 succinate dehydrogenase cytochrome b556 subunit 9.5 

A1S_2712 succinate dehydrogenase hydrophobic subunit 9.0 

A1S_2713 succinate dehydrogenase flavoprotein subunit 9.4 

A1S_2714 succinate dehydrogenase iron-sulfur subunit 7.9 

A1S_2715 
2-oxoglutarate decarboxylase component of the 2-oxoglutarate 
dehydrogenase complex (E1) 6.7 

A1S_2716 
 

dihydrolipoamide succinyltransferase component of 2-
oxoglutarate dehydrogenase complex (E2) 7.2 
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A1S_2717 dihydrolipoamide dehydrogenase 6.8 

A1S_2718 succinyl-CoA synthetase beta chain 7.8 

A1S_2719 succinyl-CoA synthetase alpha chain 7.5 

A1S_2766 Putative oxydoreductase protein zinc-containing 3.5 

A1S_2828 putative FMN oxidoreductase 4.5 

A1S_2952 putative pyridine nucleotide-disulfide oxidoreductase class I 2.7 

A1S_3025 malate dehydrogenase 6.5 

A1S_3085 putative flavohemoprotein 3.8 

A1S_3130 succinylglutamic semialdehyde dehydrogenase 3.3 

A1S_3151 putative FAD/FMN-containing dehydrogenase 4.8 

A1S_3231 putative acetyl-CoA hydrolase/transferase 9.7 

A1S_3280 NADP+-dependent succinate semialdehyde dehydrogenase 2.5 

A1S_3293 
Putative NADPH:quinone reductase and related Zn-dependent 
oxidoreductase 2.9 

A1S_3327 
dihydrolipoamide S-acetyltransferase E2 component of the 
pyruvate dehydrogenase complex 4.6 

A1S_3328 
pyruvate decarboxylase E1 component of the pyruvate 
dehydrogenase complex 5.0 

A1S_3449 phosphoenolpyruvate carboxylase 4.1 

 membrane-bound ATP synthase F1 sector, beta-subunit 9.9 

 membrane-bound ATP synthase F1 sector, alpha-subunit 9.6 

 membrane-bound ATP synthase F1 sector, gamma-subunit 8.8 

 NADH dehydrogenase I chain CD 8.7 

 aconitate hydratase 1 5.8 

 FAD dependent oxidoreductase 2.5 

   

Inorganic ion transport and metabolism   

A1S_0141 putative dyp-type peroxidase 3.9 

A1S_0145 transcriptional repressor of Zn transport system (Fur family) 5.6 

A1S_0170 putative outer membrane copper receptor (OprC) 5.1 

A1S_0412 catalase 9.8 

A1S_0530 hypothetical protein A1S_0530 5.7 

A1S_0800 bacterioferritin 2.5 

A1S_0891 hemerythrin-like metal-binding protein 4.6 

A1S_0984 putative carbonic anhydrase 3.8 

A1S_0990 polyphosphate kinase 3.0 

A1S_1001 ATP-sulfurylase subunit 1 6.8 

A1S_1386 catalase 3.0 

A1S_1615 PAPS (adenosine 3'-phosphate 5'-phosphosulfate) 3.0 

A1S_1860 ring hydroxylating dioxygenase Rieske (2Fe-2S) protein 5.5 

A1S_1988 putative intracellular sulfur oxidation protein (DsrE-like) 3.1 

A1S_2343 superoxide dismutase 8.3 

A1S_2829 putative tonB-dependent receptor protein 2.4 

A1S_2924 putative Rhodanese-related sulfurtransferase 5.9 

A1S_2935 copper resistance protein B precursor 2.6 

A1S_3175 bacterioferritin 3.5 

A1S_3379 thiosulfate sulfurtransferase 3.2 

   

Intracellular trafficking, secretion, and vesicular transport   

A1S_0528 protein exporting molecular chaperone 4.1 
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A1S_1565 general secretion pathway protein K 2.5 

A1S_1930 cell division protein 2.8 

A1S_2521 leader peptidase 3.5 

A1S_2591 
tolerance to group A colicins single-stranded DNA filamentous 
phage 2.2 

A1S_2594 tolerance to colicins E2 E, A, and K 4.2 

A1S_2913 putative preprotein translocase IISP family membrane subunit 4.7 

A1S_2915 preprotein translocase IISP family, membrane subunit 3.2 

A1S_2916 preprotein translocase IISP family, membrane subunit 3.1 

A1S_2980 hypothetical protein A1S_2980 3.6 

A1S_2981 Inner membrane protein (IMP) integration factor 4.3 

 secretion protein 8.4 

 preprotein translocase IISP family membrane subunit 5.6 

 
preprotein translocase IISP family auxillary membrane 
component 4.1 

 preprotein translocase secretion protein of IISP family 3.8 

 preprotein translocase IISP family, part of the channel 3.2 

   

Lipid transport and metabolism   

A1S_0034 putative oxoacyl-(acyl carrier protein) reductase 2.2 

A1S_0087 Short-chain dehydrogenase/reductase SDR 3.6 

A1S_0305 3-ketoacyl-CoA thiolase 4.7 

A1S_0312 
CDP-diacylglycerol--glycerol-3-phosphate 3-
phosphatidyltransferase 3.2 

A1S_0496 putative phosphatidylglycerophosphatase B 4.4 

A1S_0502 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase 5.5 

A1S_0508 putative acyltransferase 3.0 

A1S_0509 putative acyl carrier protein 4.1 

A1S_0534 NADH-dependent enoyl-ACP reductase 2.7 

A1S_0608 
acetyl-coenzyme A carboxylase carboxyl transferase (alpha 
subunit) 5.2 

A1S_0817 hypothetical protein A1S_0817 3.0 

A1S_0818 hypothetical protein A1S_0818 4.4 

A1S_0819 acyl carrier protein (ACP) 4.6 

A1S_0863 beta-ketoacyl-ACP synthase I 4.6 

A1S_0864 beta-ketoacyl-ACP synthase I 5.2 

A1S_0883 putative phospholipid/glycerol acyltransferase 3.2 

A1S_0933 putative acyl-CoA thioester hydrolase 2.4 

A1S_1208 hypothetical protein A1S_1208 3.4 

A1S_1261 putative 3-hydroxyacyl-CoA dehydrogenase 2.1 

A1S_1341 enoyl-CoA hydratase/carnithine racemase 4.9 

A1S_1342 putative enoyl-CoA hydratase II 5.3 

A1S_1343 PaaC 5.7 

A1S_1344 thiolase 4.2 

A1S_1534 putative dehydratase 2.4 

A1S_1568 putative enoyl-CoA hydratase/isomerase 4.2 

A1S_1704 acetoin dehydrogenase 2.1 

A1S_1729 putative acetyl-CoA acetyltransferase 3.4 

A1S_1737 3-hydroxybutyrate dehydrogenase 5.0 

A1S_1847 3-oxoadipate CoA-transferase subunit B 9.6 

A1S_1848 beta-ketoadipyl CoA thiolase 10.9 
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A1S_1870 putative oxidoreductase (short chain dehydrogenase) 2.2 

A1S_1891 beta-ketoadipyl CoA thiolase 9.5 

A1S_1966 hypothetical protein A1S_1966 5.3 

A1S_1972 phosphatidate cytidylyltransferase 3.8 

A1S_1973 undecaprenyl pyrophosphate synthetase 4.0 

A1S_1982 2C-methyl-D-erythritol 24-cyclodiphosphate synthase 2.6 

A1S_2010 biotin carboxyl carrier protein of acetyl-CoA carboxylase (BCCP) 5.4 

A1S_2011 biotin carboxylase (A subunit of acetyl-CoA carboxylase) 5.6 

A1S_2047 putative lysophospholipase 2.7 

A1S_2060 putative dehydratase 5.8 

A1S_2061 putative short-chain dehydrogenase 5.6 

A1S_2062 putative acyl-CoA thiolase 4.3 

A1S_2099 hypothetical protein A1S_2099 3.1 

A1S_2458 putative fatty acid desaturase 9.3 

A1S_2548 putative enoyl-CoA hydratase/isomerase 2.7 

A1S_2667 hypothetical protein A1S_2667 2.4 

A1S_2734 putative phosphatidylglycerophosphatase B 3.5 

A1S_2740 putative oxidoreductase/dehydrogenase 3.3 

A1S_2842 putative acetyl-CoA acetyltransferase 2.3 

A1S_2869 acetylCoA carboxylase beta subunit 6.3 

A1S_2881 putative fatty acid desaturase 5.7 

A1S_2886 acyl-CoA dehydrogenase 4.3 

A1S_2887 acyl-CoA dehydrogenase A 3.1 

A1S_2947 hypothetical protein A1S_2947 4.2 

A1S_2990 putative acyltransferase 2.2 

A1S_3017 phosphatidylserine synthase 2.2 

A1S_3090 acyl-CoA thioesterase II 4.2 

A1S_3091 glycerol-3-phosphate acyltransferase 4.1 

A1S_3111 putative acyl-CoA dehydrogenase 3.1 

A1S_3169 4-hydroxy-3-methylbut-2-enyl diphosphate reductase 4.3 

A1S_3224 acyl coenzyme A reductase 3.0 

A1S_3309 acetyl-CoA synthetase 3.1 

A1S_3344 esterase 2.6 

A1S_3378 phosphatidylserine decarboxylase 2.3 

A1S_3392 phosphatidylglycerophosphatase A 2.4 

 1-deoxy-d-xylulose 5-phosphate reductoisomerase 4.2 

   

Nucleotide transport and metabolism   

A1S_0130 GMP synthetase 3.9 

A1S_0458 thymidylate synthase 4.0 

A1S_0468 hypothetical protein A1S_0468 2.4 

A1S_0498 nucleoside diphosphate kinase 5.7 

A1S_0607 exopolyphosphatase 3.5 

A1S_0696 putative MutT/nudix family protein 2.8 

A1S_0746 ribonucleoside-diphosphate reductase beta subunit 7.8 

A1S_0747 ribonucleoside diphosphate reductase alpha subunit 6.2 

A1S_0765 uracil phosphoribosyltransferase 3.2 

A1S_0784 deoxycytidine triphosphate deaminase 2.6 

A1S_0829 ribose-phosphate pyrophosphokinase 5.0 
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A1S_1023 adenylate kinase 4.4 

A1S_1066 dihydroorotase 4.9 

A1S_1179 adenylosuccinate synthetase 4.5 

A1S_1191 aspartate carbamoyltransferase non-catalytic chain 2.9 

A1S_1475 phosphoribosylglycinamide formyltransferase 2 4.2 

A1S_1571 cytidylate kinase 3.7 

A1S_1575 orotidine-5'-phosphate decarboxylase 2.1 

A1S_1624 hypothetical protein A1S_1624 6.0 

A1S_1678 putative histidine triad family protein 4.1 

A1S_1890 3-carboxy-ciscis-muconate cycloisomerase 5.5 

A1S_1900 CTP synthase 6.6 

A1S_1975 uridylate kinase 6.2 

A1S_2187 hypothetical protein A1S_2187 4.9 

A1S_2188 hypothetical protein A1S_2188 4.2 

A1S_2189 phosphoribosylamine--glycine ligase 2.9 

A1S_2211 ADP-ribose pyrophosphatase 2.1 

A1S_2251 amidophosphoribosyltransferase 3.5 

A1S_2253 dihydroorotate oxydase 5.2 

A1S_2441 adenylosuccinate lyase 2.8 

A1S_2585 phosphoribosylformylglycinamidine synthase 5.5 

A1S_2605 phosphoribosylaminoimidazole synthetase 3.9 

A1S_2963 phosphoribosylaminoimidazole carboxylase ATPase subunit 4.5 

A1S_2964 phosphoribosylaminoimidazole carboxylase mutase subunit 5.8 

A1S_2973 guanine deaminase 2.1 

A1S_3035 xanthine phosphoribosyltransferase 2.8 

A1S_3170 guanylate kinase 3.4 

A1S_3321 IMP dehydrogenase 7.2 

A1S_3425 phosphoribosylaminoimidazole-succinocarboxamide synthase 4.7 

A1S_3431 putative histidine triad family protein 3.0 

 aspartate carbamoyltransferase catalytic subunit 3.2 

   

Posttranslational modification, protein turnover, chaperones   

A1S_0013 hypothetical protein A1S_0013 2.6 

A1S_0018 FKBP-type peptidyl-prolyl cis-trans isomerase 3.6 

A1S_0037 alkali-inducible disulfide interchange protein 3.5 

A1S_0047 FKBP-type 22KD peptidyl-prolyl cis-trans isomerase (rotamase) 3.9 

A1S_0048 FKBP-type peptidyl-prolyl cis-trans isomerase (rotamase) 3.8 

A1S_0135 hypothetical protein A1S_0135 2.7 

A1S_0136 glutathione S-transferase 2.2 

A1S_0159 glutathione peroxidase 5.9 

A1S_0308 beta-hydroxylase 3.5 

A1S_0364 curved DNA-binding protein 3.4 

A1S_0366 heat shock protein Hsp33 3.8 

A1S_0408 putative glutathione S-transferase 2.1 

A1S_0455 peptide methionine sulfoxide reductase 4.7 

A1S_0475 trigger factor septum formation molecular chaperone 3.6 

A1S_0476 ATP-dependent Clp protease proteolytic subunit 4.0 

A1S_0477 ATP-dependent Clp protease ATP-binding subunit 3.4 

A1S_0529 glutaredoxin 5.4 
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A1S_0594 putative glutathione S-transferase 2.5 

A1S_0606 hypothetical protein A1S_0606 7.1 

A1S_0844 ssrA-binding protein (Small protein B) 2.7 

A1S_0873 putative arginine-tRNA-protein transferase 2.5 

A1S_0875 thioredoxin reductase 3.5 

A1S_0937 peptidyl-prolyl cis-trans isomerase 2.1 

A1S_1016 urease accessory protein 3.3 

A1S_1017 urease accessory protein 4.1 

A1S_1018 urease accessory protein 2.5 

A1S_1030 DNA-binding ATP-dependent protease La 2.9 

A1S_1031 DNA-binding ATP-dependent protease La 2.7 

A1S_1180 putative Zn-dependent protease with chaperone function 4.6 

A1S_1183 hypothetical protein A1S_1183 3.4 

A1S_1186 ATP-dependent protease Hsp 100 5.0 

A1S_1195 putative glutathione S-transferase 2.7 

A1S_1199 putative glutathionine S-transferase 2.7 

A1S_1205 alkyl hydroperoxide reductase C22 subunit 8.7 

A1S_1411 putative glutathione S-transferase protein 4.9 

A1S_1412 glutathione S-transferase-like protein 3.6 

A1S_1469 peptide methionine sulfoxide reductase 5.7 

A1S_1470 glutathione peroxidase 6.9 

A1S_1474 uridylyltransferase 4.4 

A1S_1489 putative glutathione S-transferase 3.1 

A1S_1522 
predicted redox disulfide bond formation protein OsmC-like 
protein 2.4 

A1S_1545 peptidyl-prolyl cis-trans isomerase 3.0 

A1S_1620 hypothetical protein A1S_1620 2.4 

A1S_1628 heat shock protein 4.1 

A1S_1629 co-chaperone protein (Hsc20) 6.5 

A1S_1638 peptidyl-prolyl cis-trans isomerase precursor 4.2 

A1S_1639 peptidyl-prolyl cis-trans isomerase precursor 3.2 

A1S_1910 ATP-binding protease component 3.4 

A1S_1937 putative glutaredoxin-related protein 4.6 

A1S_2109 peptidyl-prolyl cis-trans isomerase precursor 2.2 

A1S_2170 protoheme IX farnesyltransferase 7.1 

A1S_2177 putative proteasome protease 2.5 

A1S_2244 putative O-sialoglycoprotein endopeptidase gcp 2.9 

A1S_2250 hypothetical protein A1S_2250 3.3 

A1S_2296 putative protease 6.0 

A1S_2340 HtrA-like serine protease 4.6 

A1S_2429 putative ATP-dependent protease 2.9 

A1S_2430 putative ATP-dependent protease 2.6 

A1S_2444 putative protease (SohB) 2.2 

A1S_2481 FKBP-type peptidyl-prolyl cis-trans isomerase 3.4 

A1S_2510 chaperone protein 4.6 

A1S_2525 putative serine protease 2.8 

A1S_2540 putative organic radical activating enzyme 3.7 

A1S_2545 bacterioferritin comigratory protein 4.0 

A1S_2608 putative protease; putative signal peptide peptidase sppA 2.4 

A1S_2634 DNA repair protein 3.5 
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A1S_2658 heat shock protein 5.1 

A1S_2664 chaperone Hsp60 6.5 

A1S_2665 chaperone Hsp10 5.6 

A1S_2681 cell division protein 5.7 

A1S_2758 putative membrane protease subunit 3.5 

A1S_2825 putative thiol:disulphide interchange protein (DsbC-like) 2.0 

A1S_2880 putative signal peptide 3.4 

A1S_2948 thioredoxin C-3 5.4 

A1S_2949 hypothetical protein A1S_2949 4.7 

A1S_2959 Hsp 24 nucleotide exchange factor 3.7 

A1S_2960 chaperone Hsp70 6.2 

A1S_3126 peptidase S8 and S53 subtilisin, kexin, sedolisin 3.5 

A1S_3347 thiol:disulfide interchange protein precursor 2.6 

A1S_3365 disulfide bond formation protein 2.5 

A1S_3443 heat shock protein Hsp40 3.3 

A1S_3460 putative glutathione S-transferase 2.2 

 putative organic radical activating enzyme 4.5 

 urease accessory protein 2.9 

   

Regulation     

A1S_0025 putative transcriptional repressor 3.8 

A1S_0038 putative transcriptional regulator 2.7 

A1S_0072 putative transcriptional regulator (GntR family) 2.0 

A1S_0218 nitrogen assimilation regulatory protein P-II 2 6.3 

A1S_0220 putative transcriptional regulator 3.9 

A1S_0248 DnaK suppressor protein 5.5 

A1S_0316 putative transcriptional regulator 2.2 

A1S_0320 hypothetical protein A1S_0320 3.4 

A1S_0410 hca cluster transcriptional activator (LysR family) 2.4 

A1S_0422 putative transcriptional regulator (AraC family) 3.8 

A1S_0450 putative transcriptional regulator (TetR-family) 2.5 

A1S_0548 putative transcriptional regulator (TetR family) 3.5 

A1S_0574 GacS-like sensor kinase protein 2.3 

A1S_0618 hypothetical protein A1S_0618 3.0 

A1S_0654 regulatory protein ArsR 6.6 

A1S_0684 putative toluene tolerance protein Ttg2F 5.1 

A1S_0768 putative transcriptional regulator (LysR family) 3.0 

A1S_0811 hypothetical protein A1S_0811 4.3 

A1S_0944 putative transcriptional regulator (PcaU-like) 2.6 

A1S_0992 transcriptional regulator (LysR family) 5.6 

A1S_1006 putative transcriptional regulator 3.5 

A1S_1007 putative transcriptional regulator 5.7 

A1S_1090 putative transcription regulator (AsnC family) 2.8 

A1S_1113 putative transcriptional regulator 2.2 

A1S_1141 carbon storage regulator 7.1 

A1S_1182 cyclic AMP receptor protein 6.2 

A1S_1218 heavy metal regulator HmrR 3.1 

A1S_1347 PaaX 2.8 

A1S_1377 transcriptional regulator acrR family 2.3 
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A1S_1533 putative transcriptional regulator (AraC family) 3.1 

A1S_1540 putative transcriptional regulator (TetR family) 2.2 

A1S_1552 chromosome partitioning protein 4.3 

A1S_1561 putative transcriptional regulator 3.7 

A1S_1578 putative transcriptional regulator 2.8 

A1S_1634 iscRSUA operon repressor 5.1 

A1S_1713 putative transcriptional regulator (AraC family) 2.8 

A1S_1728 
putative transcriptional regulator DNA-binding transcriptional 
regulator (LysR family) 2.1 

A1S_1842 Cat operon transcriptional regulator (LysR family) 2.4 

A1S_1906 hypothetical protein A1S_1906 3.8 

A1S_1939 putative transcriptional regulator 2.4 

A1S_1977 two-component regulatory system sensory kinase 2.2 

A1S_1978 response regulator protein 3.3 

A1S_1979 putative transcriptional regulator 3.4 

A1S_1994 hypothetical protein A1S_1994 3.2 

A1S_2181 transcriptional factor 3.0 

A1S_2223 transcriptional regulator AraC family 23.1 

A1S_2320 transcriptional regulator AraC family 8.3 

A1S_2431 putative transcriptional regulator 4.0 

A1S_2699 putative transcriptional regulator 2.1 

A1S_2814 twitching motility protein 3.0 

A1S_2815 twitching motility protein 2.3 

A1S_2851 putative transcriptional regulator (AraC family) 5.1 

A1S_2884 
two component signal transduction system kinase sensor 
component 2.4 

A1S_2906 putative sensory transduction histidine kinase 4.9 

A1S_3230 sensory histidine kinase (OmpR) 4.4 

A1S_3294 putative transcriptional regulator (TetR/AcrR family) 2.6 

A1S_3315 putative transcriptional regulator (ArsR family) 4.3 

A1S_3341 catabolite repression control protein 2.4 

A1S_3376 two-component sensor 3.3 

A1S_3417 regulatory proteins IclR 2.5 

   

Resistance/Defense mechanisms   

A1S_0774 putative RND family drug transporter 2.1 

A1S_1535 putative transport protein 3.3 

A1S_1555 lipid transport protein flippase 3.1 

A1S_2059 putative esterase 2.9 

 beta-lactamase SHV-1b gene 15.5 

   

Secondary metabolites biosynthesis, transport and catabolism   

A1S_0470 methionine biosynthesis protein 6.9 

A1S_1073 hemolysin-type calcium-binding region 2.6 

A1S_1337 phenylacetic acid degradation B 7.5 

A1S_1884 protocatechuate 34-dioxygenase alpha chain (3,4-PCD) 11.8 

A1S_1885 protocatechuate 34-dioxygenase beta chain (3,4-PCD) 10.8 

A1S_2406 hypothetical protein A1S_2406 3.2 

A1S_2936 copper resistance protein A precursor 3.1 

A1S_3198 23S ribosomal RNA G745 methyltransferase 2.4 
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A1S_3278 hydrolase isochorismatase family 2.9 

A1S_3430 putative dienelactone hydrolase 3.1 

   

Transcription   

A1S_0282 transcription antitermination protein 6.8 

A1S_0288 DNA-directed RNA polymerase beta' chain 5.6 

A1S_0335 transcription termination/antitermination L factor 3.1 

A1S_0766 putative cold shock protein 2.6 

A1S_1144 merops peptidase family S24 2.2 

A1S_1318 GCN5-related N-acetyltransferase 4.0 

A1S_1389 DNA polymerase V component 2.8 

A1S_1582 transcriptional regulator Cro/CI family 3.3 

A1S_2037 EsvI 2.1 

A1S_2119 putative acetyltransferase 2.1 

A1S_2186 DNA-binding protein 4.8 

A1S_2199 GCN5-related N-acetyltransferase 2.3 

A1S_2261 putative cold shock protein 3.3 

A1S_2262 EsvH 2.9 

A1S_2462 RNA helicase 2.4 

A1S_2519 ribonuclease III 2.4 

A1S_2598 putative RNA polymerase sigma factor 5.5 

A1S_2688 transcription elongation factor 3.2 

A1S_2706 
sigma D (sigma 70) factor of RNA polymerase major sigma factor 
during exponential growth 5.5 

A1S_3045 exoribonuclease R 3.3 

A1S_3056 RNA polymerase alpha subunit 7.3 

A1S_3113 hypothetical protein A1S_3113 4.1 

A1S_3171 RNA polymerase omega subunit 7.5 

A1S_3227 putative RNA binding protein 2.4 

A1S_3228 putative RNA binding protein 2.6 

A1S_3390 transcription termination L factor 4.7 

   

Signal transduction mechanisms   

A1S_0050 putative protein tyrosine phosphatase 2.3 

A1S_0122 putative morphogenic pathway activator (BolA) 4.2 

A1S_0214 universal stress protein 2.3 

A1S_0236 response regulator 5.3 

A1S_0272 hypothetical protein A1S_0272 4.1 

A1S_0413 phosphoenolpyruvate-protein phosphotransferase 3.9 

A1S_0579 GTP pyrophosphokinase 5.7 

A1S_0620 putative anti-anti-sigma factor 6.0 

A1S_0621 putative two-component response regulator 2.9 

A1S_0671 protein tyrosine phosphatase 13.8 

A1S_1246 putative universal stress protein 3.3 

A1S_1419 anti-sigma factor ChrR 2.1 

A1S_1625 putative adenylate or guanylate cyclase 4.6 

A1S_1626 putative adenylate or guanylate cyclase 2.9 

A1S_1949 putative diguanylate cyclase/phosphodiesterase 2.6 

A1S_1950 putative universal stress protein 4.6 

A1S_2051 putative phosphotyrosine protein phosphatase 3.0 
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A1S_2072 putative universal stress protein family 8.2 

A1S_2417 starvation-induced peptide utilization protein 4.0 

A1S_2418 starvation-induced peptide utilization protein 4.6 

A1S_2692 putative universal stress protein A (UspA) 4.6 

A1S_2751 transcriptional regulator 3.2 

A1S_2835 GTP-binding elongation factor family protein 4.2 

A1S_2883 transcriptional regulator protein (OmpR family) 3.0 

A1S_2997 bis(5'-nucleosyl)-tetraphosphatase symmetrical 3.7 

A1S_3030 phosphate starvation-inducible protein (PhoH-like) 3.9 

A1S_3172 hypothetical protein (SpoT) 2.8 

A1S_3229 two-component response regulator 5.6 

A1S_3304 putative two-component response regulator 2.8 

A1S_3374 positive pho regulon response regulator 6.7 

A1S_3375 positive pho regulon response regulator 5.1 

   

Translation, ribosomal structure and biogenesis   

A1S_0014 tyrosyl-tRNA synthetase 2.4 

A1S_0020 isoleucyl-tRNA synthetase 4.4 

A1S_0042 ribonuclease PH 2.3 

A1S_0097 hypothetical protein A1S_0097 4.9 

A1S_0165 putative Sua5/YciO/YrdC/YwlC family protein 2.5 

A1S_0168 Zinc(II) binding peptide deformylase 1 8.2 

A1S_0185 hypothetical protein A1S_0185 3.1 

A1S_0247 putative glutamyl t-RNA synthetase 2.5 

A1S_0283 50S ribosomal protein 10.2 

A1S_0284 50S ribosomal protein 9.3 

A1S_0285 50S ribosomal protein 10.2 

A1S_0286 50S ribosomal protein 9.8 

A1S_0338 ribosome-binding factor A 3.7 

A1S_0360 30S ribosomal protein S15 7.6 

A1S_0361 polyribonucleotide nucleotidyltransferase 5.4 

A1S_0403 ribonuclease E 5.1 

A1S_0421 protein chain initiation factor IF-1 7.1 

A1S_0447 50S ribosomal protein L33 7.0 

A1S_0448 50S ribosomal protein L28 8.9 

A1S_0503 histidyl-tRNA synthetase 5.7 

A1S_0541 leucyl-tRNA synthetase 4.3 

A1S_0542 leucyl-tRNA synthetase 3.0 

A1S_0554 peptide chain release factor 3 2.8 

A1S_0583 poly(A) polymerase I (PAP) 4.0 

A1S_0592 threonyl-tRNA synthetase 5.1 

A1S_0593 protein chain initiation factor IF-3 6.3 

A1S_0597 50S ribosomal protein L20 9.6 

A1S_0601 phenylalanyl-tRNA synthetase alpha-subunit 3.6 

A1S_0602 phenylalanyl-tRNA synthetase beta subunit 4.1 

A1S_0810 putative ribosomal large subunit pseudouridine synthase B 5.9 

A1S_0813 hypothetical protein A1S_0813 2.9 

A1S_0816 50S ribosomal protein L32 6.8 

A1S_0826 peptidyl-tRNA hydrolase 3.0 
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A1S_0827 peptidyl-tRNA hydrolase 4.1 

A1S_0828 50S ribosomal protein L25 4.7 

A1S_0841 ribosomal large subunit pseudouridine synthase D 4.1 

A1S_0868 protein chain elongation factor EF-G GTP-binding 8.8 

A1S_0998 lysyl-tRNA-synthase 4.3 

A1S_1176 alanyl-tRNA synthetase 2.6 

A1S_1235 cysteinyl-tRNA synthetase 2.4 

A1S_1464 putative tRNA/rRNA methyltransferase 2.9 

A1S_1481 putative GTP-binding protein 2.5 

A1S_1572 30S ribosomal protein S1 6.3 

A1S_1617 30S ribosomal protein S20 4.5 

A1S_1693 putative adenine-specific methylase 2.4 

A1S_1940 methionine aminopeptidase 5.7 

A1S_1961 heat shock protein 15 3.9 

A1S_1974 ribosome releasing factor 5.8 

A1S_1976 hypothetical protein A1S_1976 4.2 

A1S_2108 glutaminyl-tRNA synthetase 5.0 

A1S_2113 delta(2)-isopentenylpyrophosphate tRNA-adenosine transferase 3.8 

A1S_2171 30S ribosomal protein S6 9.0 

A1S_2172 30S ribosomal protein S18 9.8 

A1S_2173 50S ribosomal protein L9 9.2 

A1S_2245 30S ribosomal protein S21 7.4 

A1S_2322 protein chain elongation factor 7.1 

A1S_2323 30S ribosomal protein S2 9.1 

A1S_2324 methionine aminopeptidase 4.3 

A1S_2419 elongation factor P 5.3 

A1S_2423 50S ribosomal protein L31 7.1 

A1S_2439 tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase 3.4 

A1S_2476 putative pseudouridine synthase 3.8 

A1S_2570 
putative siderophore biosynthesis protein; putative 
acetyltransferase 2.4 

A1S_2597 putative tRNA/rRNA methyltransferase 2.0 

A1S_2636 putative lysyl-tRNA synthetase 3.5 

A1S_2682 cell division protein 6.4 

A1S_2683 hypothetical protein A1S_2683 3.5 

A1S_2698 putative tRNA/rRNA methyltransferase 2.2 

A1S_2720 tryptophanyl-tRNA synthetase 3.6 

A1S_2726 seryl-tRNA synthetase 4.8 

A1S_2727 seryl-tRNA synthetase 3.9 

A1S_2730 50S ribosomal protein L27 3.6 

A1S_2731 50S ribosomal protein L21 7.7 

A1S_2742 valyl-tRNA synthetase 5.1 

A1S_2743 valyl-tRNA synthetase 3.0 

A1S_2777 ribonuclease G endoribonuclease G 2.9 

A1S_2782 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit C 4.1 

A1S_2783 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit A 6.2 

A1S_2784 aspartyl/glutamyl-tRNA(Asn/Gln) amidotransferase subunit B 4.8 

A1S_2819 prolyl-tRNA synthetase 3.2 

A1S_2894 aspartyl-tRNA synthetase 4.3 

A1S_2983 RNase P 3.1 
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A1S_2984 50S ribosomal protein L34 5.0 

A1S_2998 S-adenosylmethionine-6-N'N'-adenosyl 4.2 

A1S_3000 50S ribosomal protein L13 9.1 

A1S_3001 30S ribosomal protein S9 6.6 

A1S_3028 putative tRNA-i(6)A37 modification enzyme 4.0 

A1S_3029 putative tRNA-i(6)A37 modification enzyme 3.4 

A1S_3055 50S ribosomal protein L17 6.6 

A1S_3057 30S ribosomal protein S4 7.4 

A1S_3058 30S ribosomal protein S11 7.8 

A1S_3059 30S ribosomal protein S13 7.6 

A1S_3060 50S ribosomal protein L36 9.0 

A1S_3062 50S ribosomal protein L15 7.7 

A1S_3063 50S ribosomal protein L30 8.1 

A1S_3064 30S ribosomal protein S5 7.9 

A1S_3065 50S ribosomal protein L18 7.5 

A1S_3066 50S ribosomal protein L6 7.7 

A1S_3067 30S ribosomal protein S8 8.9 

A1S_3068 30S ribosomal protein S14 8.4 

A1S_3069 50S ribosomal protein L5 8.1 

A1S_3070 50S ribosomal protein L24 8.2 

A1S_3071 50S ribosomal protein L14 7.3 

A1S_3072 30S ribosomal protein S17 9.0 

A1S_3073 50S ribosomal protein L29 10.2 

A1S_3074 50S ribosomal protein L16 8.9 

A1S_3075 30S ribosomal protein S3 8.5 

A1S_3076 50S ribosomal protein L22 8.7 

A1S_3077 50S ribosomal protein L2 9.0 

A1S_3078 50S ribosomal protein L23 8.5 

A1S_3079 50S ribosomal protein L4 8.2 

A1S_3080 50S ribosomal protein L3 8.8 

A1S_3081 30S ribosomal protein S10 9.7 

A1S_3118 glycyl-tRNA synthetase alpha chain 3.0 

A1S_3119 glycyl-tRNA synthetase beta chain 2.6 

A1S_3161 50S ribosomal protein L19 6.0 

A1S_3162 tRNA (guanine-1-)-methyltransferase 3.9 

A1S_3163 16S rRNA processing protein 6.2 

A1S_3164 30S ribosomal protein S16 7.4 

A1S_3173 hypothetical protein A1S_3173 4.9 

A1S_3209 glutamyl-tRNA synthetase 3.2 

A1S_3210 glutamyl-tRNA synthetase 3.6 

 30S ribosomal protein S12 8.9 

 30S ribosomal protein S7 8.9 

 protein chain elongation factor 8.8 

 tRNA nucleotidyl transferase 3.0 

   

Transporters   

A1S_0144 high affinity Zn transport protein 4.6 

A1S_0228 hypothetical protein A1S_0228 3.5 

A1S_0229 hypothetical protein A1S_0229 2.6 
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A1S_0243 putative ferrous iron transport protein B 2.2 

A1S_0339 pH adaptation potassium efflux system protein G 3.6 

A1S_0340 pH adaptation potassium efflux system E transmembrane protein 4.9 

A1S_0341 pH adaptation potassium efflux system D transmembrane protein 5.6 

A1S_0342 pH adaptation potassium efflux system C transmembrane protein 6.6 

A1S_0343 pH adaptation potassium efflux system transmembrane protein 5.3 

A1S_0367 
glutathione-regulated potassium-efflux system protein 
(K(+)/H(+) antiporter) 2.0 

A1S_0375 magnesium and cobalt efflux protein 3.2 

A1S_0446 putative transport protein (CPA2 family ) 2.5 

A1S_0453 putative biopolymer transport protein (ExbB) 4.5 

A1S_0454 putative biopolymer transport protein (ExbD) 5.7 

A1S_0485 high-affinity gluconate permease (GntP family) 2.8 

A1S_0669 bile acid:sodium symporter 8.3 

A1S_0709 putative cation efflux system protein 3.4 

A1S_0777 putative threonine efflux protein (RhtC) 2.7 

A1S_0783 hypothetical protein A1S_0783 2.8 

A1S_0790 hypothetical protein A1S_0790 3.2 

A1S_0877 threonine efflux protein 2.4 

A1S_0930 high-affinity choline transporter (BCCT family) 2.6 

A1S_0931 high-affinity choline transporter (BCCT family) 2.3 

A1S_0972 phosphate transporter 3.0 

A1S_0979 
putative membrane-bound protein in GNT I transport system 
(GntY) 2.5 

A1S_1004 citrate transporter 3.5 

A1S_1080 putative lipoprotein 4.1 

A1S_1135 putative transporter 3.3 

A1S_1136 putative transporter 3.7 

A1S_1239 putative transport protein 4.2 

A1S_1240 putative transport protein 4.3 

A1S_1271 putative chloride transport protein 2.2 

A1S_1490 glutamate/aspartate transport protein 2.8 

A1S_1505 yyaM 15.8 

A1S_1554 putative biopolymer transport protein ExbD/TolR 2.4 

A1S_1716 chromate transporter 2.2 

A1S_1736 hypothetical protein A1S_1736 3.2 

A1S_1917 putative potassium uptake protein 2.2 

A1S_2133 hypothetical protein A1S_2133 2.1 

A1S_2190 putative lipoprotein 4.8 

A1S_2191 putative lipoprotein 3.5 

A1S_2192 D-and L-methionine transport protein 3.5 

A1S_2193 putative permease protein 3.0 

A1S_2196 membrane-associated dicarboxylate transport protein 3.4 

A1S_2221 sodium/glutamate symport carrier protein 2.5 

A1S_2224 threonine efflux protein 12.8 

A1S_2280 aerobic C4-dicarboxylate transport protein 3.2 

A1S_2427 putative transporter 2.1 

A1S_2445 high-affinity phosphate transport protein 3.4 

A1S_2584 MFS family drug transporter 2.3 

A1S_2612 transport protein of outer membrane lipoproteins 2.1 
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A1S_2613 transport protein of outer membrane lipoproteins 2.3 

A1S_2633 D-alanine/D-serine/glycine transport protein (APC family) 4.0 

A1S_2671 MFS permease 3.1 

A1S_2723 putative Na+/H+ antiporter 2.3 

A1S_2762 aromatic amino acid transporter (APC family) 4.0 

A1S_2763 aromatic amino acid transporter (APC family) 3.4 

A1S_2773 putative long-chain fatty acid transport protein 4.0 

A1S_2860 putative transport protein (MFS superfamily) 2.2 

A1S_2939 ATPase E1-E2 type: Heavy metal translocating P-type ATPase 2.9 

A1S_3100 putative toluene tolerance protein (Ttg2D) 5.1 

A1S_3101 toluene tolerance efflux transporter 5.3 

A1S_3102 toluene tolerance efflux transporter 4.3 

A1S_3103 toluene tolerance efflux transporter 3.4 

A1S_3214 cation efflux system protein 2.9 

A1S_3221 putative transport protein 5.8 

A1S_3288 putative transport protein (MFS superfamily) 4.1 

A1S_3298 putative high affinity choline transport protein (Bet-like) 4.5 

A1S_3300 putative sodium:solute symporter 4.4 

A1S_3404 proline transport protein (APC family) 2.9 

A1S_3450 putative uracil transport protein (NCS2 family) 2.1 

   

General function prediction only   

A1S_0017 putative flavoprotein 3.1 

A1S_0035 putative phosphoglycolate phosphatase 2 (PGP 2) 2.7 

A1S_0053 MviM protein 3.5 

A1S_0054 WbbJ protein 2.8 

A1S_0057 capsular polysaccharide synthesis enzyme 3.3 

A1S_0134 pirin-related protein 4.7 

A1S_0190 hypothetical protein A1S_0190 4.7 

A1S_0268 putative DNA binding protein 4.0 

A1S_0273 phosphoglycolate phosphatase 2.7 

A1S_0290 hypothetical protein A1S_0290 2.3 

A1S_0344 putative ATP binding site 3.5 

A1S_0348 
2-octaprenylphenol hydroxylase of ubiquinone biosynthetic 
pathway 4.3 

A1S_0406 putative phosphoglycolate phosphatase protein 2.3 

A1S_0469 hypothetical protein A1S_0469 7.7 

A1S_0490 putative hydrolase 2.8 

A1S_0499 putative Fe-S-cluster redox enzyme 4.3 

A1S_0506 putative GTP-binding protein EngA 4.1 

A1S_0516 hypothetical protein A1S_0516 2.0 

A1S_0619 putative carbon-nitrogen hydrolase 5.4 

A1S_0698 putative anhydratase 3.2 

A1S_0703 putative esterase 2.3 

A1S_0731 amidohydrolase 3.5 

A1S_0738 putative flavoprotein oxidoreductase 7.6 

A1S_0815 hypothetical protein A1S_0815 6.4 

A1S_0822 putative hydrolase 3.4 

A1S_0836 putative signal peptide 2.4 

A1S_0840 putative competence protein (ComL) 3.7 
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A1S_0843 putative flavodoxin or tryptophan repressor binding protein 3.2 

A1S_0859 
putative glutamine-dependent NAD(+) synthetase (NAD(+) 
synthase 4.4 

A1S_0890 putative glutamine amidotransferase 4.1 

A1S_0993 estB 4.6 

A1S_0994 rubredoxin reductase 3.9 

A1S_1005 putative hemolysin-related protein 2.7 

A1S_1050 putative signal peptide 3.3 

A1S_1187 CinA-like protein 2.6 

A1S_1188 putative N-6 Adenine-specific DNA methylase 2.9 

A1S_1237 
3-Deoxy-D-manno-octulosonate 8-phosphate (KDO 8-P) 
phosphatase 2.3 

A1S_1245 putative acyltransferase 2.2 

A1S_1321 putative hemolysin 2.8 

A1S_1339 phenylacetate-CoA oxygenase PaaJ subunit 6.5 

A1S_1348 
carbonic anhydrases/acetyltransferases isoleucine patch 
superfamily 3.8 

A1S_1395 hypothetical protein A1S_1395 4.6 

A1S_1518 putative suppressor of F exclusion of phage T7 3.0 

A1S_1579 putative ATPase 4.0 

A1S_1644 hypothetical protein A1S_1644 2.9 

A1S_1658 putative hydrolase haloacid dehalogenase-like family 2.3 

A1S_1690 putative ATPase 3.4 

A1S_1833 hypothetical protein A1S_1833 3.4 

A1S_1872 putative phosphotransferase 3.0 

A1S_1876 putative metallo-beta lactamase 2.2 

A1S_1902 hypothetical protein A1S_1902 3.2 

A1S_1907 putative peroxidase 4.9 

A1S_1920 putative metalloprotease 3.2 

A1S_1929 putative oxidoreductase 4.6 

A1S_1935 hypothetical protein A1S_1935 3.6 

A1S_1942 hypothetical protein A1S_1942 3.1 

A1S_2116 hypothetical protein A1S_2116 3.0 

A1S_2145 putative kinase 3.4 

A1S_2194 putative hydroxyacylglutathione hydrolase 3.1 

A1S_2204 paraquat-inducible protein 3.6 

A1S_2241 hypothetical protein A1S_2241 3.1 

A1S_2242 putative AAA ATPase superfamily 2.3 

A1S_2252 putative colicin V producing membrane protein 2.9 

A1S_2436 putative transferase 2.4 

A1S_2440 putative purine metabolism protein 2.3 

A1S_2478 putative trypsin-like serine protease 3.3 

A1S_2493 putative 2-nitropropane dioxygenase 3.2 

A1S_2498 putative GTP-binding protein (Obg) 3.8 

A1S_2514 Short-chain alcohol dehydrogenase of unknown specificity 3.7 

A1S_2518 
GTP-binding protein16S rRNA-binding,ribosome-associated 
GTPase 4.0 

A1S_2529 hypothetical protein A1S_2529 2.5 

A1S_2542 hypothetical protein A1S_2542 4.0 

A1S_2590 putative thioesterase 2.7 

A1S_2604 putative permease (PerM family) 5.1 
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A1S_2607 putative hydrolase 2.6 

A1S_2662 putative hydrolase 7.0 

A1S_2700 putative flavodoxin or tryptophan repressor binding protein 2.3 

A1S_2707 hypothetical protein A1S_2707 3.0 

A1S_2708 hypothetical protein A1S_2708 6.1 

A1S_2722 hypothetical protein A1S_2722 3.0 

A1S_2765 putative intracellular protease/amidase 4.0 

A1S_2785 putative protease 7.3 

A1S_2792 putative esterase of the alpha-beta hydrolase superfamily 2.3 

A1S_2824 hypothetical protein A1S_2824 4.0 

A1S_2859 putative hemolysin III (HLY-III) 3.2 

A1S_2940 copper resistance protein CopC 2.7 

A1S_2950 hypothetical protein A1S_2950 2.4 

A1S_3003 stringent starvation protein B 2.9 

A1S_3021 hypothetical protein A1S_3021 4.9 

A1S_3031 hypothetical protein A1S_3031 2.5 

A1S_3048 hypothetical protein A1S_3048 3.6 

A1S_3084 hypothetical protein A1S_3084 3.2 

A1S_3087 putative cell cycle coordination GTPase (EngB) 2.7 

A1S_3088 hypothetical protein A1S_3088 2.2 

A1S_3097 putative signal peptide 4.5 

A1S_3179 hypothetical protein A1S_3179 5.8 

A1S_3232 putative acyltransferase 3.2 

A1S_3241 putative polyketide synthesis monooxygenase 3.3 

A1S_3244 putative homoserine kinase (ThrB) 2.5 

A1S_3276 hypothetical protein A1S_3276 2.7 

A1S_3349 hypothetical protein A1S_3349 5.1 

A1S_3360 putative esterase 2.6 

A1S_3436 putative alcohol dehydrogenase 4.4 

 malate dehydrogenase FAD/NAD(P)-binding domain 4.6 

A1S_0588 hypothetical protein A1S_0588 3.5 

   

Function unknown   

A1S_0011 hypothetical protein A1S_0011 3.3 

A1S_0015 hypothetical protein A1S_0015 7.2 

A1S_0090 hypothetical protein A1S_0090 5.5 

A1S_0091 hypothetical protein A1S_0091 3.8 

A1S_0128 hypothetical protein A1S_0128 4.2 

A1S_0217 hypothetical protein A1S_0217 2.9 

A1S_0293 putative signal peptide 2.8 

A1S_0323 hypothetical protein A1S_0323 2.8 

A1S_0334 hypothetical protein A1S_0334 2.4 

A1S_0349 hypothetical protein A1S_0349 4.7 

A1S_0352 polyphosphate-AMP phosphotransferase 3.8 

A1S_0379 hypothetical protein A1S_0379 4.6 

A1S_0385 putative Zinc-binding protein 2.5 

A1S_0388 hypothetical protein A1S_0388 3.8 

A1S_0428 hypothetical protein A1S_0428 4.2 

A1S_0441 hypothetical protein A1S_0441 3.5 



 262 

A1S_0473 iron-uptake factor 2.1 

A1S_0497 hypothetical protein A1S_0497 3.6 

A1S_0501 hypothetical protein A1S_0501 4.5 

A1S_0504 hypothetical protein A1S_0504 4.6 

A1S_0505 hypothetical protein A1S_0505 4.2 

A1S_0533 hypothetical protein A1S_0533 5.7 

A1S_0550 putative VGR-related protein 3.0 

A1S_0552 hypothetical protein A1S_0552 4.7 

A1S_0570 hypothetical protein A1S_0570 7.4 

A1S_0590 hypothetical protein A1S_0590 3.3 

A1S_0704 hypothetical protein A1S_0704 6.1 

A1S_0812 hypothetical protein A1S_0812 5.1 

A1S_0820 putative peptidoglycan-binding LysM 7.6 

A1S_0824 hypothetical protein A1S_0824 2.1 

A1S_0842 hypothetical protein A1S_0842 2.8 

A1S_0862 hypothetical protein A1S_0862 2.9 

A1S_0893 hypothetical protein A1S_0893 3.3 

A1S_1038 hypothetical protein A1S_1038 4.0 

A1S_1219 glutathione-dependent formaldehyde-activating GFA 2.2 

A1S_1244 hypothetical protein A1S_1244 2.1 

A1S_1258 hypothetical protein A1S_1258 3.0 

A1S_1288 putative VGR-related protein 4.2 

A1S_1291 hypothetical protein A1S_1291 4.2 

A1S_1293 hypothetical protein A1S_1293 2.6 

A1S_1294 hypothetical protein A1S_1294 4.0 

A1S_1295 hypothetical protein A1S_1295 3.6 

A1S_1296 hypothetical protein A1S_1296 20.1 

A1S_1319 hypothetical protein A1S_1319 7.4 

A1S_1336 hypothetical protein A1S_1336 8.1 

A1S_1338 hypothetical protein A1S_1338 7.7 

A1S_1496 hypothetical protein A1S_1496 3.8 

A1S_1523 putative signal peptide 6.8 

A1S_1630 hypothetical protein A1S_1630 5.4 

A1S_1646 hypothetical protein A1S_1646 2.5 

A1S_1676 hypothetical protein A1S_1676 2.9 

A1S_1684 hypothetical protein A1S_1684 3.9 

A1S_1688 hypothetical protein A1S_1688 3.7 

A1S_1691 hypothetical protein A1S_1691 2.5 

A1S_1886 gamma-carboxymuconolactone decarboxylase (CMD) 9.8 

A1S_1911 putative protease 4.5 

A1S_1926 hypothetical protein A1S_1926 11.9 

A1S_1964 putative signal peptide 2.6 

A1S_2048 hypothetical protein A1S_2048 2.9 

A1S_2130 hypothetical protein A1S_2130 3.9 

A1S_2203 hypothetical protein A1S_2203 3.2 

A1S_2205 paraquat-inducible protein A 2.5 

A1S_2246 hypothetical protein A1S_2246 6.5 

A1S_2263 hypothetical protein A1S_2263 2.6 

A1S_2282 hypothetical protein A1S_2282 3.9 
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A1S_2318 hypothetical protein A1S_2318 2.3 

A1S_2342 hypothetical protein A1S_2342 2.5 

A1S_2416 hypothetical protein A1S_2416 3.8 

A1S_2455 putative signal peptide 2.5 

A1S_2466 hypothetical protein A1S_2466 3.8 

A1S_2467 hypothetical protein A1S_2467 3.5 

A1S_2549 hypothetical protein A1S_2549 2.7 

A1S_2615 hypothetical protein A1S_2615 2.2 

A1S_2635 hypothetical protein A1S_2635 5.5 

A1S_2705 hypothetical protein A1S_2705 3.5 

A1S_2721 hypothetical protein A1S_2721 3.7 

A1S_2761 hypothetical protein A1S_2761 3.9 

A1S_2796 hypothetical protein A1S_2796 2.6 

A1S_2806 hypothetical protein A1S_2806 2.8 

A1S_2807 hypothetical protein A1S_2807 2.2 

A1S_2809 bacteriolytic lipoprotein entericidin B 8.2 

A1S_2820 hypothetical protein A1S_2820 9.8 

A1S_2823 hypothetical protein A1S_2823 2.7 

A1S_2843 hypothetical protein A1S_2843 3.0 

A1S_2922 hypothetical protein A1S_2922 5.0 

A1S_2925 hypothetical protein A1S_2925 4.4 

A1S_2926 hypothetical protein A1S_2926 3.4 

A1S_2931 hypothetical protein A1S_2931 8.2 

A1S_2951 putative sulfide dehydrogenase 4.1 

A1S_2967 hypothetical protein A1S_2967 2.1 

A1S_2975 hypothetical protein A1S_2975 2.3 

A1S_2978 hypothetical protein A1S_2978 4.6 

A1S_2982 hypothetical protein A1S_2982 2.2 

A1S_3037 putative ribonuclease (Rbn) 2.8 

A1S_3052 hypothetical protein A1S_3052 3.8 

A1S_3149 hypothetical protein A1S_3149 4.3 

A1S_3178 hypothetical protein A1S_3178 3.8 

A1S_3180 putative signal peptide 5.8 

A1S_3236 hypothetical protein A1S_3236 4.5 

A1S_3242 putative transmembrane protein 3.7 

A1S_3301 hypothetical protein A1S_3301 7.4 

A1S_3343 hypothetical protein A1S_3343 2.6 

A1S_3367 hypothetical protein A1S_3367 4.7 

A1S_3369 hypothetical protein A1S_3369 5.1 

A1S_2163 hypothetical protein A1S_2163 2.8 

   

Unassigned   

A1S_0077 hypothetical protein A1S_0077 3.1 

A1S_0123 hypothetical protein A1S_0123 3.3 

A1S_0125 hypothetical protein A1S_0125 3.1 

A1S_0131 putative adenylyltransferase 3.6 

A1S_0133 hypothetical protein A1S_0133 2.1 

A1S_0148 F0F1 ATP synthase subunit A 8.4 

A1S_0157 hypothetical protein A1S_0157 3.5 
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A1S_0169 hypothetical protein A1S_0169 11.4 

A1S_0201 putative outer membrane protein 3.3 

A1S_0207 hypothetical protein A1S_0207 7.4 

A1S_0224 hypothetical protein A1S_0224 2.3 

A1S_0225 hypothetical protein A1S_0225 3.0 

A1S_0244 hypothetical protein A1S_0244 2.2 

A1S_0264 hypothetical protein A1S_0264 2.9 

A1S_0269 putative general secretion pathway protein 2.1 

A1S_0274 anthranilate synthase component I, TrpE 3.3 

A1S_0353 hypothetical protein A1S_0353 2.4 

A1S_0355 exonuclease V gamma chain 2.7 

A1S_0363 hypothetical protein A1S_0363 3.8 

A1S_0374 apolipoprotein N-acyltransferase copper homeostasis protein 3.6 

A1S_0390 putative type III effector 2.0 

A1S_0419 hypothetical protein A1S_0419 5.7 

A1S_0434 hypothetical protein A1S_0434 2.4 

A1S_0438 hypothetical protein A1S_0438 2.7 

A1S_0444 hypothetical protein A1S_0444 6.3 

A1S_0445 hypothetical protein A1S_0445 6.6 

A1S_0447 RpmG 7.0 

A1S_0456 hypothetical protein A1S_0456 2.6 

A1S_0509 putative acyl carrier protein 4.0 

A1S_0516 hypothetical protein A1S_0516 2.3 

A1S_0518 hypothetical protein A1S_0518 2.0 

A1S_0526 hypothetical protein A1S_0526 2.7 

A1S_0553 hypothetical protein A1S_0553 3.9 

A1S_0556 hypothetical protein A1S_0556 2.4 

A1S_0561 hypothetical protein A1S_0561 2.9 

A1S_0574 GacS-like sensor kinase protein 2.5 

A1S_0600 hypothetical protein A1S_0600 3.7 

A1S_0615 hypothetical protein A1S_0615 3.5 

A1S_0627 hypothetical protein A1S_0627 4.4 

A1S_0638 hypothetical protein A1S_0638 2.6 

A1S_0640 hypothetical protein A1S_0640 2.1 

A1S_0641 hypothetical protein A1S_0641 2.4 

A1S_0670 protein tyrosine phosphatase 11.7 

A1S_0675 dihydropteroate synthase 7.9 

A1S_0683 putative sigma(54) modulation protein RpoX 9.2 

A1S_0690 FilA 3.2 

A1S_0695 FilF 2.2 

A1S_0701 hypothetical protein A1S_0701 3.4 

A1S_0702 hypothetical protein A1S_0702 4.6 

A1S_0710 putative SMR family drug transporter 4.0 

A1S_0736 hypothetical protein A1S_0736 12.7 

A1S_0743 hypothetical protein A1S_0743 9.8 

A1S_0748 two-component regulatory activator (OmpR family) 4.5 

A1S_0749 BfmS 3.3 

A1S_0750 hypothetical protein A1S_0750 6.0 

A1S_0770 hypothetical protein A1S_0770 2.2 
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A1S_0771 hypothetical protein A1S_0771 5.8 

A1S_0776 putative transcriptional regulator (TetR-family) 2.3 

A1S_0779 hypothetical protein A1S_0779 5.8 

A1S_0785 hypothetical protein A1S_0785 2.7 

A1S_0786 putative signal peptide 2.2 

A1S_0787 putative signal peptide 2.4 

A1S_0865 hypothetical protein A1S_0865 2.8 

A1S_0878 hypothetical protein A1S_0878 3.4 

A1S_0892 hypothetical protein A1S_0892 3.6 

A1S_0894 outer membrane lipoprotein 3.1 

A1S_0895 ferric uptake regulator 2.5 

A1S_0903 hypothetical protein A1S_0903 2.2 

A1S_0908 RND family multidrug resistance secretion protein 2.4 

A1S_0911 hypothetical protein A1S_0911 3.6 

A1S_0913 hypothetical protein A1S_0913 2.9 

A1S_0914 hypothetical protein A1S_0914 2.9 

A1S_0974 hypothetical protein A1S_0974 2.4 

A1S_0975 hypothetical protein A1S_0975 2.9 

A1S_0997 hypothetical protein A1S_0997 3.1 

A1S_0999 putative signal peptide 4.2 

A1S_1022 hypothetical protein A1S_1022 2.9 

A1S_1027 putative signal peptide 2.6 

A1S_1036 hypothetical protein A1S_1036 3.1 

A1S_1037 hypothetical protein A1S_1037 3.2 

A1S_1042 hypothetical protein A1S_1042 4.7 

A1S_1072 hypothetical protein A1S_1072 2.4 

A1S_1204 hypothetical protein A1S_1204 2.6 

A1S_1238 hypothetical protein A1S_1238 3.2 

A1S_1248 hypothetical protein A1S_1248 3.2 

A1S_1273 hypothetical protein A1S_1273 3.1 

A1S_1290 hypothetical protein A1S_1290 2.3 

A1S_1292 putative signal peptide 2.8 

A1S_1388 hypothetical protein A1S_1388 6.4 

A1S_1462 hypothetical protein A1S_1462 4.1 

A1S_1476 hypothetical protein A1S_1476 7.6 

A1S_1524 hypothetical protein A1S_1524 3.3 

A1S_1526 hypothetical protein A1S_1526 2.2 

A1S_1547 organic solvent tolerance protein precursor 2.6 

A1S_1574 hypothetical protein A1S_1574 4.6 

A1S_1636 putative poly(hydroxyalcanoate) granule associated protein 2.4 

A1S_1679 putative signal peptide 4.4 

A1S_1689 hypothetical protein A1S_1689 3.5 

A1S_1846 3-oxoacid CoA-transferase subunit A 9.7 

A1S_1859 aromatic-ring-hydroxylating dioxygenase beta subunit 6.0 

A1S_1863 hypothetical protein A1S_1863 5.7 

A1S_1879 hypothetical protein A1S_1879 4.8 

A1S_1912 hypothetical protein A1S_1912 3.7 

A1S_1931 hypothetical protein A1S_1931 3.3 

A1S_1932 hypothetical protein A1S_1932 5.3 



 266 

A1S_1933 hypothetical protein A1S_1933 3.1 

A1S_1934 hypothetical protein A1S_1934 3.8 

A1S_1951 hypothetical protein A1S_1951 2.9 

A1S_1983 putative signal peptide 2.1 

A1S_1989 hypothetical protein A1S_1989 2.4 

A1S_1998 hypothetical protein A1S_1998 3.5 

A1S_2012 putative signal peptide 2.9 

A1S_2020 hypothetical protein A1S_2020 2.5 

A1S_2041 hypothetical protein A1S_2041 4.1 

A1S_2049 hypothetical protein A1S_2049 3.1 

A1S_2100 hypothetical protein A1S_2100 2.1 

A1S_2131 hypothetical protein A1S_2131 5.1 

A1S_2165 hypothetical protein A1S_2165 2.9 

A1S_2183 putative signal peptide 7.2 

A1S_2185 hypothetical protein A1S_2185 2.0 

A1S_2195 hypothetical protein A1S_2195 4.1 

A1S_2249 hypothetical protein A1S_2249 2.5 

A1S_2256 putative phosphohistidine phosphatase 2.2 

A1S_2275 hypothetical protein A1S_2275 3.7 

A1S_2285 hypothetical protein A1S_2285 2.5 

A1S_2341 HtrA-like serine protease 5.2 

A1S_2348 hypothetical protein A1S_2348 2.5 

A1S_2371 hypothetical protein A1S_2371 4.9 

A1S_2421 hypothetical protein A1S_2421 2.1 

A1S_2443 surface adhesion protein putative 2.0 

A1S_2469 hypothetical protein A1S_2469 2.8 

A1S_2491 putative signal peptide 2.1 

A1S_2495 hypothetical protein A1S_2495 2.3 

A1S_2505 hypothetical protein A1S_2505 3.3 

A1S_2507 hypothetical protein A1S_2507 3.1 

A1S_2509 putative chaperone 4.1 

A1S_2520 putative signal peptide 3.5 

A1S_2538 outer membrane protein CarO precursor 6.4 

A1S_2539 putative tetrahydropyridine-2-carboxylate N-succinyltransferase 4.7 

A1S_2540 putative organic radical activating enzyme 3.1 

A1S_2541 putative organic radical activating enzyme 3.6 

A1S_2543 hypothetical protein A1S_2543 3.1 

A1S_2552 ATPase 3.3 

A1S_2553 transposition site target selection protein D 3.0 

A1S_2593 
tolerance to group A colicins single-stranded filamentous DNA 
phage 2.4 

A1S_2599 hypothetical protein A1S_2599 5.0 

A1S_2600 hypothetical protein A1S_2600 3.8 

A1S_2616 hypothetical protein A1S_2616 3.0 

A1S_2618 RND efflux transporter 2.1 

A1S_2626 DNA gyrase 5.4 

A1S_2655 hypothetical protein A1S_2655 3.1 

A1S_2659 hypothetical protein A1S_2659 3.2 

A1S_2672 putative signal peptide 3.6 

A1S_2684 hypothetical protein A1S_2684 2.1 
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A1S_2696 hypothetical protein A1S_2696 4.8 

A1S_2703 hypothetical protein A1S_2703 3.0 

A1S_2724 putative hemagglutinin/hemolysin-related protein 5.1 

A1S_2728 hypothetical protein A1S_2728 3.5 

A1S_2735 AdeI 5.2 

A1S_2736 RND family drug transporter 4.4 

A1S_2737 AdeK 5.1 

A1S_2741 hypothetical protein A1S_2741 3.2 

A1S_2753 putative protein (DcaP-like) 4.9 

A1S_2757 hypothetical protein A1S_2757 4.8 

A1S_2776 hypothetical protein A1S_2776 4.3 

A1S_2786 putative signal peptide 2.6 

A1S_2787 hypothetical protein A1S_2787 3.3 

A1S_2797 hypothetical protein A1S_2797 3.7 

A1S_2809 bacteriolytic lipoprotein entericidin B 8.4 

A1S_2846 CysI-like sulfite reductase protein 2.4 

A1S_2861 putative signal peptide 3.0 

A1S_2874 hypothetical protein A1S_2874 2.4 

A1S_2895 hypothetical protein A1S_2895 2.8 

A1S_2898 hypothetical protein A1S_2898 2.1 

A1S_2902 hypothetical protein A1S_2902 2.7 

A1S_2926 hypothetical protein A1S_2926 3.5 

A1S_2928 hypothetical protein A1S_2928 2.4 

A1S_2961 hypothetical protein A1S_2961 3.1 

A1S_2985 hypothetical protein A1S_2985 2.0 

A1S_2989 putative phospholipase D protein 2.4 

A1S_2994 hypothetical protein A1S_2994 3.2 

A1S_3004 hypothetical protein A1S_3004 3.3 

A1S_3024 hypothetical protein A1S_3024 2.1 

A1S_3034 hypothetical protein A1S_3034 2.4 

A1S_3043 hypothetical protein A1S_3043 3.5 

A1S_3060 50S ribosomal protein L36 8.7 

A1S_3099 putative toluene-tolerance protein (Ttg2E) 5.8 

A1S_3110 hypothetical protein A1S_3110 2.3 

A1S_3112 hypothetical protein A1S_3112 2.1 

A1S_3125 putative signal peptide 2.9 

A1S_3133 
 

bifunctional N-succinyldiaminopimelate-
aminotransferase/acetylornithine transaminase protein 3.7 

A1S_3150 putative signal peptide 2.8 

A1S_3155 hypothetical protein A1S_3155 3.0 

A1S_3186 putative signal peptide 3.7 

A1S_3199 hypothetical protein A1S_3199 2.9 

A1S_3208 putative peptide signal 10.2 

A1S_3213 hypothetical protein A1S_3213 3.0 

A1S_3220 cation efflux system protein 2.9 

A1S_3233 hypothetical protein A1S_3233 3.8 

A1S_3250 hypothetical protein A1S_3250 2.9 

A1S_3261 hypothetical protein A1S_3261 3.4 

A1S_3297 putative outer membrane protein 2.7 
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A1S_3297 putative outer membrane protein 2.2 

A1S_3303 hypothetical protein A1S_3303 7.1 

A1S_3317 putative outer membrane protein 3.5 

A1S_3317 putative outer membrane protein 2.5 

A1S_3348 putative signal peptide 4.9 

A1S_3350 hypothetical protein A1S_3350 5.7 

A1S_3368 hypothetical protein A1S_3368 6.0 

A1S_3384 hypothetical protein A1S_3384 3.7 

A1S_3385 hypothetical protein A1S_3385 7.2 

A1S_3387 hypothetical protein A1S_3387 4.4 

A1S_3424 putative lipoprotein-34 precursor (NlpB) 5.2 

A1S_3454 hypothetical protein A1S_3454 3.3 
aFold-repressed in LB + 200 mM NaCl relative to LB without NaCl supplementation. 
bTranscripts were divided into functional categories based on cluster of orthologous groups (COG) 
classifications.  
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Appendix II. Supplementary tables associated with Chapter III 

 

Table 15. Genes that are significantly upregulated in lpsB compared to WT. 

Fold up-regulation Locus tag Description 

7.4 A1S_0103 3-hydroxyisobutyrate dehydrogenase 

3.1 A1S_0184 hypothetical protein A1S_0184 

2.4 A1S_0389 hypothetical protein A1S_0389 

2.0 A1S_0452 hypothetical protein A1S_0452 

3.0 A1S_0482 acetate kinase (propionate kinase) 

2.5 A1S_0548 putative transcriptional regulator (TetR family) 

7.9 A1S_0549 hypothetical protein A1S_0549 

3.9 A1S_0630 hypothetical protein A1S_0630 

4.5 A1S_0631 hypothetical protein A1S_0631 

2.7 A1S_0632 DNA primase 

2.8 A1S_0633 hypothetical protein A1S_0633 

3.8 A1S_0634 hypothetical protein A1S_0634 

2.4 A1S_0640 hypothetical protein A1S_0640 

2.4 A1S_0641 hypothetical protein A1S_0641 

2.3 A1S_0642 hypothetical protein A1S_0642 

3.6 A1S_0643 hypothetical protein A1S_0643 

5.6 A1S_0644 hypothetical protein A1S_0644 

4.4 A1S_0645 hypothetical protein A1S_0645 

3.1 A1S_0646 IcmB protein 

2.2 A1S_0647 IcmO protein 

2.7 A1S_0649 putative phage primase 

2.6 A1S_0650 conjugal transfer protein 

2.2 A1S_0651 TraB protein 

2.5 A1S_0683 putative sigma(54) modulation protein RpoX 

2.4 A1S_0801 putative transport protein (permease) 

3.4 A1S_0803 trehalose-6-phosphate synthase 

2.7 A1S_0823 34 dihydroxy-2-butanone-4-phosphate synthase 

2.1 A1S_0836 putative signal peptide 

2.1 A1S_0857 hypothetical protein A1S_0857 

2.1 A1S_0902 lactoylglutathione lyase-related protein 

2.9 A1S_0908 putative MFS family drug transporter 

2.4 A1S_0909 putative MFS family drug transporter 

3.8 A1S_0909 putative MFS family drug transporter 

5.3 A1S_0918 hypothetical protein A1S_0918 

2.4 A1S_0918 hypothetical protein A1S_0918 

3.2 A1S_0997 hypothetical protein A1S_0997 

2.2 A1S_1008 isocitrate lyase 

2.3 A1S_1110 hydroxybenzaldehyde dehydrogenase 
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2.2 A1S_1114 transcriptional regulator for ferulate or vanillate catabolism 

(GntR family) 

2.2 A1S_1141 Carbon storage regulator 

2.2 A1S_1219 Glutathione-dependent formaldehyde-activating GFA 

3.0 A1S_1220 putative threonine efflux protein 

2.8 A1S_1222 possible exonuclease 

5.9 A1S_1228 Cold shock protein 

3.0 A1S_1249 7-Fe ferredoxin 

2.5 A1S_1255 lipid A biosynthesis lauroyl acyltransferase 

3.1 A1S_1263 L-2-haloalkanoic acid dehalogenase 

3.0 A1S_1266 hypothetical protein A1S_1266 

2.9 A1S_1267 putative lactam utilization protein 

3.0 A1S_1268 hypothetical protein A1S_1268 

3.1 A1S_1269 putative allophanate hydrolase subunit 1 and 2 

2.4 A1S_1270 hypothetical protein A1S_1270 

3.6 A1S_1319 hypothetical protein A1S_1319 

10.2 A1S_1335 Phenylacetic acid degradation protein paaN 

10.0 A1S_1336 hypothetical protein A1S_1336 

17.9 A1S_1337 Phenylacetic acid degradation B 

18.9 A1S_1338 hypothetical protein A1S_1338 

17.7 A1S_1339 Phenylacetate-CoA oxygenase PaaJ subunit 

10.2 A1S_1340 Phenylacetate-CoA oxygenase/reductase PaaK subunit 

32.9 A1S_1341 Enoyl-CoA hydratase/carnithine racemase 

16.3 A1S_1342 putative enoyl-CoA hydratase II 

18.3 A1S_1343 PaaC 

6.0 A1S_1344 Thiolase 

6.7 A1S_1345 PaaK 

5.2 A1S_1346 phenylacetyl-CoA ligase 

2.8 A1S_1347 PaaX 

2.4 A1S_1348 Carbonic anhydrases/acetyltransferases isoleucine patch 

superfamily 

2.3 A1S_1354 (Acyl-carrier protein) phosphodiesterase 

2.9 A1S_1385 hypothetical protein A1S_1385 

4.2 A1S_1386 Catalase 

3.8 A1S_1395 hypothetical protein A1S_1395 

2.8 A1S_1430 malonate utilization transcriptional regulator (LysR family) 

2.6 A1S_1435 hypothetical protein A1S_1435 

2.7 A1S_1471 putative transcriptional regulator (AraC family) 

3.0 A1S_1476 hypothetical protein A1S_1476 

2.7 A1S_1499 hypothetical protein A1S_1499 

51.2 A1S_1505 yyaM 

3.6 A1S_1512 putative ferredoxin 

2.6 A1S_1523 putative signal peptide 
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4.1 A1S_1526 hypothetical protein A1S_1526 

3.0 A1S_1532 glycine cleavage complex protein H 

2.3 A1S_1540 putative transcriptional regulator (TetR family) 

2.7 A1S_1615 PAPS (adenosine 3'-phosphate 5'-phosphosulfate) x 

2.0 A1S_1616 hypothetical protein A1S_1616 

2.9 A1S_1620 hypothetical protein A1S_1620 

2.5 A1S_1626 putative adenylate or guanylate cyclase 

2.6 A1S_1636 putative poly(hydroxyalcanoate) granule associated protein 

3.8 A1S_1639 peptidyl-prolyl cis-trans isomerase precursor 

5.5 A1S_1658 putative hydrolase haloacid dehalogenase-like family 

2.3 A1S_1676 hypothetical protein A1S_1676 

2.6 A1S_1680 hypothetical protein A1S_1680 

2.5 A1S_1696 hypothetical protein A1S_1696 

3.2 A1S_1699 acetoin:26-dichlorophenolindophenol oxidoreductase alpha 

subunit 

4.5 A1S_1700 acetoin:26-dichlorophenolindophenol oxidoreductase beta 

subunit 

2.5 A1S_1701 dihydrolipoamide acetyltransferase 

3.8 A1S_1702 dihydrolipoamide dehydrogenase 

3.2 A1S_1703 dihydrolipoamide dehydrogenase 

2.7 A1S_1704 acetoin dehydrogenase 

3.3 A1S_1713 putative transcriptional regulator (AraC family) 

2.4 A1S_1734 hypothetical protein A1S_1734 

3.7 A1S_1736 hypothetical protein A1S_1736 

2.8 A1S_1737 3-hydroxybutyrate dehydrogenase 

7.2 A1S_1747 anthranilate dioxygenase reductase 

2.2 A1S_1756 transcriptional regulator AraC family 

5.6 A1S_1778 putative methylenetetrahydrofolate reductase 

2.6 A1S_1786 putative iron transport protein 

2.3 A1S_1827 hypothetical protein A1S_1827 

3.1 A1S_1833 hypothetical protein A1S_1833 

2.5 A1S_1876 putative metallo-beta lactamase 

2.4 A1S_1877 hypothetical protein A1S_1877 

5.2 A1S_1878 hypothetical protein A1S_1878 

4.0 A1S_1896 putative cell division protein (FtsB-like) 

2.1 A1S_1906 hypothetical protein A1S_1906 

2.3 A1S_1908 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase 

2.2 A1S_1924 cytochrome d terminal oxidase polypeptide subunit I 

4.3 A1S_1932 hypothetical protein A1S_1932 

4.6 A1S_1933 hypothetical protein A1S_1933 

3.6 A1S_1934 hypothetical protein A1S_1934 

2.5 A1S_1937 putative glutaredoxin-related protein 

2.7 A1S_1949 putative diguanylate cyclase/phosphodiesterase 

5.7 A1S_1950 putative universal stress protein 
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7.1 A1S_1954 serine proteinase 

2.6 A1S_1986 fumarase C 

2.7 A1S_1987 putative UDP-galactose 4-epimerase (GalE-like) 

2.4 A1S_1988 putative intracellular sulfur oxidation protein (DsrE-like) 

2.6 A1S_1989 hypothetical protein A1S_1989 

2.1 A1S_1990 hypothetical protein A1S_1990 

2.1 A1S_1995 molybdopterin biosynthesis protein 

2.0 A1S_1997 molybdopterin converting factor large subunit 

2.4 A1S_1998 hypothetical protein A1S_1998 

2.0 A1S_1999 molybdopterin biosynthesis protein A 

6.8 A1S_2041 hypothetical protein A1S_2041 

5.1 A1S_2042 putative transcriptional regulator (TetR family) 

2.9 A1S_2067 transcriptional regulatory protein 

2.1 A1S_2072 putative universal stress protein family 

2.7 A1S_2080 putative siderophore receptor 

2.2 A1S_2081 TonB-dependent siderophore receptor 

3.6 A1S_2093 hypothetical protein A1S_2093 

4.2 A1S_2101 putative transcriptional regulator 

2.3 A1S_2110 UDP-23-diacylglucosamine hydrolase 

3.2 A1S_2119 putative acetyltransferase 

2.6 A1S_2121 hypothetical protein A1S_2121 

2.5 A1S_2146 molybdopterin biosynthesis protein 

2.8 A1S_2177 putative proteasome protease 

2.9 A1S_2178 putative transglutaminase 

3.9 A1S_2180 hypothetical protein A1S_2180 

3.5 A1S_2183 putative signal peptide 

3.8 A1S_2202 Aspartate racemase 

2.4 A1S_2205 paraquat-inducible protein A 

2.1 A1S_2206 paraquat-inducible protein A 

3.0 A1S_2223 transcriptional regulator AraC family 

8.8 A1S_2230 hypothetical protein A1S_2230 

8.8 A1S_2230 hypothetical protein A1S_2230 

2.3 A1S_2242 putative AAA ATPase superfamily 

3.6 A1S_2261 putative cold shock protein 

2.1 A1S_2262 EsvH 

3.6 A1S_2275 hypothetical protein A1S_2275 

2.1 A1S_2291 hypothetical protein A1S_2291 

3.3 A1S_2317 putative lipoprotein precursor (RlpA-like) 

2.3 A1S_2360 indole-3-glycerol phosphate synthase (IGPS) 

2.9 A1S_2406 hypothetical protein A1S_2406 

2.6 A1S_2447 EsvD 

19.3 A1S_2449 aromatic amino acid transporter (APC family) 

85.2 A1S_2450 putative pyruvate decarboxylase 
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3.1 A1S_2451 Transcriptional regulator AsnC family 

23.0 A1S_2452 NAD-dependent aldehyde dehydrogenases 

2.4 A1S_2466 hypothetical protein A1S_2466 

2.4 A1S_2469 hypothetical protein A1S_2469 

3.5 A1S_2475 isocitrate dehydrogenase 

2.8 A1S_2485 putative glycosyltransferase 

3.0 A1S_2496 putative phosphoserine phosphatase 

3.6 A1S_2503 putative outer membrane lipoprotein 

6.5 A1S_2567 putative thioesterase 

4.3 A1S_2598 putative RNA polymerase sigma factor 

3.5 A1S_2599 hypothetical protein A1S_2599 

4.2 A1S_2600 hypothetical protein A1S_2600 

2.1 A1S_2615 hypothetical protein A1S_2615 

3.7 A1S_2638 hypothetical protein A1S_2638 

2.3 A1S_2653 transcription elongation factor GreB 

2.3 A1S_2654 putative periplasmic binding protein of 

transport/transglycosylase 

2.5 A1S_2666 putative 3'5'-cyclic-nucleotide phosphodiesterase 

3.0 A1S_2667 hypothetical protein A1S_2667 

3.3 A1S_2696 hypothetical protein A1S_2696 

2.4 A1S_2724 putative hemagglutinin/hemolysin-related protein 

3.3 A1S_2785 putative protease 

2.5 A1S_2792 putative esterase of the alpha-beta hydrolase superfamily 

11.1 A1S_2820 hypothetical protein A1S_2820 

3.8 A1S_2823 hypothetical protein A1S_2823 

2.3 A1S_2843 hypothetical protein A1S_2843 

2.2 A1S_2873 hypothetical protein A1S_2873 

2.4 A1S_2908 putative integrase 

2.5 A1S_2947 hypothetical protein A1S_2947 

2.0 A1S_2950 hypothetical protein A1S_2950 

2.7 A1S_2975 hypothetical protein A1S_2975 

2.1 A1S_2985 hypothetical protein A1S_2985 

2.5 A1S_2987 putative lipoprotein precursor 

2.8 A1S_3148 NADPH specific quinone oxidoreductase 

2.8 A1S_3149 hypothetical protein A1S_3149 

4.4 A1S_3155 hypothetical protein A1S_3155 

2.8 A1S_3171 RNA polymerase omega subunit 

43.3 A1S_3174 putative regulatory or redox component complexing with Bfr 

in iron storage and mobility (Bfd) 

2.8 A1S_3206 S-adenosylmethionine methyltransferase 

5.1 A1S_3266 aldo/keto reductase family oxidoreductase 

2.3 A1S_3267 hypothetical protein A1S_3267 

3.2 A1S_3272 putative transporter (MFS superfamily) 
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2.3 A1S_3301 hypothetical protein A1S_3301 

3.0 A1S_3303 hypothetical protein A1S_3303 

2.2 A1S_3374 positive pho regulon response regulator 
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Table 16. Genes that are significantly downregulated in lpsB compared to WT 

Fold down-regulation Locustag Description 

2.7 A1S_0058 Glycosyltransferase 

2.0 A1S_0064 putative phosphoglucose isomerase 

2.0 A1S_0066 hypothetical protein A1S_0066 

10.4 A1S_0067 L-lactate permease 

2.3 A1S_0068 L-lactate utilization transcriptional repressor (GntR 

family) 

4.4 A1S_0069 L-lactate dehydrogenase FMN linked 

3.4 A1S_0070 D-lactate dehydrogenase NADH independent, FAD-

binding domain 

4.8 A1S_0095 D-amino acid dehydrogenase 

3.7 A1S_0096 alanine racemase 2 PLP-binding, catabolic 

3.4 A1S_0097 hypothetical protein A1S_0097 

6.1 A1S_0098 D-serine/D-alanine/glycine transport protein 

3.3 A1S_0099 D-serine/D-alanine/glycine transport protein 

3.6 A1S_0099 D-serine/D-alanine/glycine transport protein 

3.1 A1S_0157 hypothetical protein A1S_0157 

3.2 A1S_0170 putative outer membrane copper receptor (OprC) 

2.0 A1S_0201 putative outer membrane protein 

2.1 A1S_0284 50S ribosomal protein 

2.1 A1S_0286 50S ribosomal protein 

2.9 A1S_0291 hypothetical protein A1S_0291 

2.0 A1S_0297 hypothetical protein A1S_0297 

2.2 A1S_0340 pH adaptation potassium efflux system E 

transmembrane protein 

2.3 A1S_0341 pH adaptation potassium efflux system D 

transmembrane protein 

2.2 A1S_0342 pH adaptation potassium efflux system C 

transmembrane protein 

2.6 A1S_0343 pH adaptation potassium efflux system transmembrane 

protein 

2.4 A1S_0365 putative amino-acid efflux transmembrane protein 

2.2 A1S_0424 putative L-asparaginase I (AnsA) 

4.2 A1S_0429 glutamate:aspartate symport protein (DAACS family) 

2.3 A1S_0446 putative transport protein (CPA2 family ) 

2.8 A1S_0485 high-affinity gluconate permease (GntP family) 

2.1 A1S_0486 thermoresistant gluconokinase 

2.1 A1S_0524 hypothetical protein A1S_0524 

2.6 A1S_0525 hypothetical protein A1S_0525 

2.2 A1S_0526 hypothetical protein A1S_0526 

10.2 A1S_0566 pyridine nucleotide transhydrogenase (proton pump) 

alpha subunit (part1) 
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9.4 A1S_0567 pyridine nucleotide transhydrogenase (proton pump) 

alpha subunit (part2) 

10.1 A1S_0568 pyridine nucleotide transhydrogenase beta subunit 

2.0 A1S_0608 acetyl-coenzyme A carboxylase carboxyl transferase 

(alpha subunit) 

2.8 A1S_0742 iron-regulated protein 

3.0 A1S_0743 hypothetical protein A1S_0743 

3.6 A1S_0747 ribonucleoside diphosphate reductase alpha subunit 

4.6 A1S_0781 putative MTA/SAH nucleosidase 

2.1 A1S_0797 putative chromosome segregation ATPases 

2.8 A1S_0806 adenosylmethionine-8-amino-7-oxononanoate 

aminotransferase 

3.0 A1S_0807 8-amino-7-oxononanoate synthase 

2.0 A1S_0817 hypothetical protein A1S_0817 

2.5 A1S_0852 dioxygenase alpha subunit 

2.5 A1S_0854 NAD-dependent succinate aldehyde dehydrogenases 

2.7 A1S_0862 hypothetical protein A1S_0862 

2.9 A1S_0863 beta-ketoacyl-ACP synthase I 

2.2 A1S_0864 beta-ketoacyl-ACP synthase I 

2.1 A1S_0868 protein chain elongation factor EF-G GTP-binding 

2.0 A1S_0877 threonine efflux protein 

2.4 A1S_0891 hemerythrin-like metal-binding protein 

2.9 A1S_0921 arginine/ornithine antiporter 

3.0 A1S_0922 putative homocysteine S-methyltransferase family 

protein 

2.2 A1S_0930 high-affinity choline transporter (BCCT family) 

2.4 A1S_0931 high-affinity choline transporter (BCCT family) 

8.8 A1S_0971 methionine synthase 

2.1 A1S_1032 hypothetical protein A1S_1032 

2.3 A1S_1072 hypothetical protein A1S_1072 

2.6 A1S_1088 hypothetical protein A1S_1088 

4.6 A1S_1089 hypothetical protein A1S_1089 

2.1 A1S_1091 succinylornithine transaminase (carbon starvation 

protein C) 

2.3 A1S_1092 succinylornithine transaminase (carbon starvation 

protein C) 

2.6 A1S_1094 D-serine/D-alanine/glycine transporter 

5.4 A1S_1368 Pyruvate ferredoxin/flavodoxin oxidoreductase 

5.7 A1S_1369 putative oxidoreductase protein 

4.8 A1S_1370 Oxidoreductase 

2.4 A1S_1372 hypothetical protein A1S_1372 

3.1 A1S_1373 putative acyl-CoA carboxylase alpha chain protein 

2.6 A1S_1374 3-methylglutaconyl-CoA hydratase 
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3.3 A1S_1375 putative propionyl-CoA carboxylase (Beta subunit) 

3.8 A1S_1376 Acyl-CoA dehydrogenase 

2.5 A1S_1378 putative long chain fatty-acid CoA ligase 

2.4 A1S_1441 putative signal peptide 

2.8 A1S_1442 taurine ABC transporter periplasmic taurine-binding 

protein 

2.7 A1S_1466 glutaminase-asparaginase 

3.0 A1S_1491 glutamate/aspartate transport protein 

2.7 A1S_1492 glutamate/aspartate transport protein 

2.4 A1S_1503 transmembrane pair 

2.7 A1S_1504 Purine-cytosine permease 

2.4 A1S_1528 hypothetical protein A1S_1528 

2.9 A1S_1530 SSS family major sodium/proline symporter 

3.0 A1S_1595 hypothetical protein A1S_1595 

2.4 A1S_1810 putative tartrate transporter 

2.4 A1S_2016 Phage-related lysozyme 

2.2 A1S_2017 hypothetical protein A1S_2017 

4.6 A1S_2021 hypothetical protein A1S_2021 

5.5 A1S_2022 putative tail fiber 

2.0 A1S_2024 Glutamate 5-kinase 

3.8 A1S_2025 hypothetical protein A1S_2025 

5.0 A1S_2026 hypothetical protein A1S_2026 

5.5 A1S_2027 hypothetical protein A1S_2027 

2.1 A1S_2035 hypothetical protein A1S_2035 

2.2 A1S_2057 methyl viologen resistance protein (MFS superfamily) 

2.5 A1S_2068 putative benzoate membrane transport protein 

2.1 A1S_2149 putative acyl CoA dehydrogenase oxidoreductase 

protein 

2.0 A1S_2323 30S ribosomal protein S2 

2.0 A1S_2427 putative transporter 

2.0 A1S_2429 putative ATP-dependent protease 

2.1 A1S_2458 putative fatty acid desaturase 

2.0 A1S_2470 putative protease 

2.1 A1S_2501 glyceraldehyde-3-phosphate dehydrogenase 

3.2 A1S_2531 sulfate transport protein 

2.0 A1S_2532 sulfate transport protein 

2.0 A1S_2532 sulfate transport protein 

2.6 A1S_2559 hypothetical protein A1S_2559 

2.2 A1S_2626 DNA gyrase 

2.6 A1S_2664 chaperone Hsp60 

2.5 A1S_2665 chaperone Hsp10 

2.3 A1S_2668 phosphoenolpyruvate carboxykinase 

2.2 A1S_2687 carbamoyl-phosphate synthase large subunit 
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2.1 A1S_2701 putative amino acid transport protein (APC family) 

2.1 A1S_2715 2-oxoglutarate decarboxylase component of the 2-

oxoglutarate dehydrogenase complex (E1) 

2.4 A1S_2719 succinyl-CoA synthetase alpha chain 

2.1 A1S_2723 putative Na+/H+ antiporter 

2.7 A1S_2753 putative protein (DcaP-like) 

2.1 A1S_2790 microcin B17 transport protein 

3.8 A1S_2793 putative amino-acid transport protein 

2.0 A1S_2819 prolyl-tRNA synthetase 

2.0 A1S_2838 lysine-specific permease 

2.2 A1S_2869 acetylCoA carboxylase beta subunit 

2.1 A1S_2897 UDP-N-acetylglucosamine 2-epimerase 

3.0 A1S_2919 hypothetical protein A1S_2919 

2.3 A1S_2959 Hsp 24 nucleotide exchange factor 

2.8 A1S_2960 chaperone Hsp70 

2.4 A1S_2968 hypothetical protein A1S_2968 

2.1 A1S_2982 hypothetical protein A1S_2982 

2.8 A1S_3047 oligopeptidase A 

2.2 A1S_3055 50S ribosomal protein L17 

2.0 A1S_3060 50S ribosomal protein L36 

2.2 A1S_3063 50S ribosomal protein L30 

2.1 A1S_3064 30S ribosomal protein S5 

2.4 A1S_3065 50S ribosomal protein L18 

2.0 A1S_3067 30S ribosomal protein S8 

2.5 A1S_3076 50S ribosomal protein L22 

2.1 A1S_3079 50S ribosomal protein L4 

9.2 A1S_3128 succinylglutamate desuccinylase 

7.6 A1S_3130 succinylglutamic semialdehyde dehydrogenase 

7.9 A1S_3131 arginine succinyltransferase 

9.2 A1S_3132 succinylornithine transaminase 

5.5 A1S_3133 bifunctional N-succinyldiaminopimelate-

aminotransferase/acetylornithine transaminase protein 

5.2 A1S_3133 bifunctional N-succinyldiaminopimelate-

aminotransferase/acetylornithine transaminase protein 

5.1 A1S_3134 glutamate dehydrogenase (NAD(P)+) oxidoreductase 

protein 

4.3 A1S_3135 putative APC family S-methylmethionine transporter 

(MmuP) 

2.0 A1S_3176 hypothetical protein A1S_3176 

2.4 A1S_3211 putative APC family S-methylmethionine transporter 

(MmuP) 

3.5 A1S_3217 RND divalent metal cation efflux transporter 

3.8 A1S_3218 EsvF1 

3.4 A1S_3218 EsvF1 

3.6 A1S_3219 Putative RND family drug transporter 
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2.8 A1S_3252 putative DNA/RNA non-specific endonuclease G 

protein 

3.0 A1S_3273 putative peptide signal 

2.1 A1S_3276 hypothetical protein A1S_3276 

2.9 A1S_3283 gamma-aminobutyrate permease 

2.1 A1S_3297 putative outer membrane protein 

2.0 A1S_3297 putative outer membrane protein 

3.4 A1S_3355 hypothetical protein A1S_3355 

2.6 A1S_3364 putative VGR-related protein 

2.2 A1S_3386 phosphoserine phosphatase 

2.0 A1S_3395 glucosamine--fructose-6-phosphate aminotransferase 

3.4 A1S_3402 Arginase/agmatinase/formimionoglutamate hydrolase 

3.6 A1S_3403 imidazolonepropionase 

3.1 A1S_3404 proline transport protein (APC family) 

2.9 A1S_3405 histidine ammonia-lyase 

2.6 A1S_3406 urocanate hydratase 

2.3 A1S_3407 Urocanase 

2.6 A1S_3410 putative acyltransferase 

4.0 A1S_3413 APC family aromatic amino acid transporter 

12.2 A1S_3414 Fumarylacetoacetase 

15.4 A1S_3415 Maleylacetoacetate isomerase 

10.8 A1S_3416 Glyoxalase/bleomycin resistance protein/dioxygenase 

9.1 A1S_3418 4-hydroxyphenylpyruvate dioxygenase 

2.4 A1S_3449 phosphoenolpyruvate carboxylase 
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Appendix III. Supplementary tables associated with Chapter IV 

 
 

Table 17. Genes that are significantly upregulated in Tn5A7 and Tn20A11 compared to WT and 

lpsB. 

Fold upregulation 

Locustag Description Tn5A7 Tn20A11 

12.6 7.9 A1S_0040 putative oxidoreductase 

2.1 2.3 A1S_0211 Transposition Helper 

3.6 5.8 A1S_0372 protein secretion chaperone 

3.8 5.5 A1S_0648 hypothetical protein A1S_0648 

14.9 15.5 A1S_0663 putative DNA helicase 

15.6 15.3 A1S_0664 replication C family protein 

14.6 14.2 A1S_0665 putative mating pair formation protein 

14.7 14.7 A1S_0666 TrbL/VirB6 plasmid conjugal transfer protein 

5.1 6.0 A1S_0667 hypothetical protein A1S_0667 

3.7 4.7 A1S_0673 putative transposase 

3.5 4.3 A1S_0674 putative transposase 

2.8 2.3 A1S_0677 transposase 

2.1 2.3 A1S_0837 glutamyl tRNA reductase 

3.7 2.7 A1S_0945 putative ferredoxin 

2.6 3.6 A1S_1046 Lysine exporter protein (LYSE/YGGA) 

9.5 7.8 A1S_1172 putative transposase 

4.0 2.8 A1S_1241 putative RND family drug transporter 

4.9 3.1 A1S_1771 hypothetical protein A1S_1771 

11.9 8.0 A1S_1772 Putative MFS family drug transporter 

5.9 5.4 A1S_1773 RND family drug transporter 

11.9 7.7 A1S_1773 

 5.5 5.8 A1S_1823 Transcriptional Regulator TetR family 

2.9 2.4 A1S_1846 

 2.6 2.4 A1S_1890 3-carboxy-ciscis-muconate cycloisomerase 

4.2 3.4 A1S_1952 hypothetical protein A1S_1952 

2.6 4.7 A1S_2019 hypothetical protein A1S_2019 

3.7 6.1 A1S_2020 

 3.8 5.7 A1S_2020 hypothetical protein A1S_2020 

8.2 6.2 A1S_2034 hypothetical protein A1S_2034 

3.3 3.0 A1S_2086 putative short chain dehydrogenase 

3.4 2.0 A1S_2300 Amino acid ABC transporter permease protein 

3.9 3.4 A1S_2302 

ABC Lysine-arginine-ornithine transporter periplasmic 

ligand binding protein 

4.0 4.6 A1S_2303 transcriptional regulator LysR family 

3.4 3.5 A1S_2473 transcriptional regulator LysR family 

2.3 2.1 A1S_2504 excinuclease ABC subunit B 
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6.2 10.8 A1S_2650 GCN5-related N-acetyltransferase 

4.3 4.6 A1S_2699 putative transcriptional regulator 

3.5 3.5 A1S_2839 hypothetical protein A1S_2839 

4.1 4.9 A1S_3259 putative transcriptional regulator YdzF 

3.6 4.5 A1S_3260 hypothetical protein A1S_3260 

5.6 3.8 A1S_3294 putative transcriptional regulator (TetR/AcrR family) 
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Table 18. Genes that are significantly downregulated in Tn5A7 and Tn20A11 compared to WT and 

lpsB. 

Fold downregulation 

Locustag Description Tn5A7 Tn20A11 

2.2 2.6 A1S_0034 putative oxoacyl-(acyl carrier protein) reductase 

2.4 2.3 A1S_0055 WecE protein 

3.3 2.3 A1S_0106 putative enoyl-CoA hydratase/isomerase 

2.6 2.6 A1S_0107 putative enoyl-CoA hydratase/isomerase family protein 

2.5 2.8 A1S_0130 GMP synthetase 

3.4 2.5 A1S_0148 

 3.2 2.9 A1S_0150 membrane-bound ATP synthase F0 sector, subunit c 

3.6 3.0 A1S_0151 membrane-bound ATP synthase F0 sector, subunit b 

2.9 2.5 A1S_0156 

membrane-bound ATP synthase F1 sector, epsilon-

subunit 

3.1 2.4 A1S_0283 50S ribosomal protein 

2.7 3.2 A1S_0285 50S ribosomal protein 

2.6 2.6 A1S_0288 DNA-directed RNA polymerase beta' chain 

2.6 2.3 A1S_0290 hypothetical protein A1S_0290 

2.5 3.3 A1S_0292 putative outer membrane protein W 

2.2 2.3 A1S_0339 pH adaptation potassium efflux system protein G 

2.2 2.9 A1S_0367 

glutathione-regulated potassium-efflux system protein 

(K(+)/H(+) antiporter) 

2.2 2.2 A1S_0395 Na+-driven multidrug efflux pump 

3.3 3.9 A1S_0402 putative very-long-chain acyl-CoA synthetase 

3.1 2.3 A1S_0460 prolipoprotein diacylglyceryl transferase 

3.1 2.9 A1S_0483 phosphogluconate dehydratase 

3.0 3.3 A1S_0484 hypothetical protein A1S_0484 

2.2 2.4 A1S_0492 beta-N-acetyl-D-glucosaminidase 

3.0 2.4 A1S_0498 nucleoside diphosphate kinase 

2.1 2.6 A1S_0571 hydroxypyruvate isomerase 

2.3 3.5 A1S_0600 hypothetical protein A1S_0600 

2.7 2.6 A1S_0602 phenylalanyl-tRNA synthetase beta subunit 

2.6 2.6 A1S_0614 

putative small conductance mechanosensitive ion 

channel 

2.6 2.7 A1S_0615 hypothetical protein A1S_0615 

2.8 2.3 A1S_0695 FilF 

2.7 2.6 A1S_0746 ribonucleoside-diphosphate reductase beta subunit 

2.6 2.3 A1S_0753 NADH dehydrogenase I chain B 

2.9 2.1 A1S_0755 NADH dehydrogenase I chain E 

2.7 2.3 A1S_0759 

NADH dehydrogenase I chain I 2Fe-2S ferredoxin-

related 

2.6 2.4 A1S_0763 NADH dehydrogenase I chain M membrane subunit 

2.3 2.4 A1S_0983 lipase 

2.2 2.2 A1S_0994 rubredoxin reductase 

2.2 2.1 A1S_1045 Co/Zn/Cd efflux system 
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2.6 2.3 A1S_1199 putative glutathionine S-transferase 

2.3 2.1 A1S_1205 alkyl hydroperoxide reductase C22 subunit 

2.0 2.4 A1S_1352 cytochrome B561 

3.0 2.3 A1S_1493 glutamate/aspartate transport protein 

2.1 2.1 A1S_1521 transketolase 

2.9 3.4 A1S_1572 30S ribosomal protein S1 

2.4 2.0 A1S_1841 hypothetical protein A1S_1841 

3.3 2.9 A1S_1946 1-phosphofructokinase 

2.9 2.1 A1S_2124 putative permease (MFS superfamily) 

2.8 2.8 A1S_2166 cytochrome o ubiquinol oxidase subunit II 

2.6 2.6 A1S_2172 30S ribosomal protein S18 

2.4 2.3 A1S_2188 hypothetical protein A1S_2188 

2.7 2.7 A1S_2189 phosphoribosylamine--glycine ligase 

2.3 2.9 A1S_2296 Putative protease 

3.8 2.2 A1S_2418 starvation-induced peptide utilization protein 

2.7 3.1 A1S_2428 putative ATP-dependent protease 

2.1 2.3 A1S_2526 L-aspartate oxidase 

2.5 2.7 A1S_2671 MFS permease 

2.3 2.8 A1S_2716 

dihydrolipoamide succinyltransferase component of 2-

oxoglutarate dehydrogenase complex (E2) 

2.6 2.8 A1S_2730 50S ribosomal protein L27 

2.5 2.3 A1S_2731 50S ribosomal protein L21 

2.5 2.6 A1S_2847 glucose dehydrogenase 

3.1 3.6 A1S_2894 aspartyl-tRNA synthetase 

2.6 2.3 A1S_2967 hypothetical protein A1S_2967 

2.6 2.7 A1S_3000 50S ribosomal protein L13 

3.0 2.3 A1S_3037 putative ribonuclease (Rbn) 

3.0 3.2 A1S_3056 RNA polymerase alpha subunit 

3.0 3.0 A1S_3057 30S ribosomal protein S4 

2.9 3.0 A1S_3059 30S ribosomal protein S13 

3.0 3.2 A1S_3066 50S ribosomal protein L6 

3.0 2.8 A1S_3068 30S ribosomal protein S14 

2.9 3.2 A1S_3069 50S ribosomal protein L5 

3.0 3.0 A1S_3070 50S ribosomal protein L24 

2.9 3.1 A1S_3071 50S ribosomal protein L14 

2.9 3.6 A1S_3072 30S ribosomal protein S17 

2.9 2.8 A1S_3073 50S ribosomal protein L29 

3.0 2.9 A1S_3075 30S ribosomal protein S3 

3.1 3.1 A1S_3077 50S ribosomal protein L2 

3.1 3.1 A1S_3078 50S ribosomal protein L23 

3.0 2.7 A1S_3080 50S ribosomal protein L3 

2.6 3.6 A1S_3108 coproporphyrinogen III oxidase 

3.0 2.4 A1S_3119 glycyl-tRNA synthetase beta chain 
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2.6 2.4 A1S_3163 16S rRNA processing protein 

4.3 2.6 A1S_3200 phospho-N-acetylmuramoyl-pentapeptide transferase 

2.8 2.7 A1S_3201 phospho-N-acetylmuramoyl-pentapeptide transferase 

2.6 3.9 A1S_3214 cation efflux system protein 

2.5 2.9 A1S_3221 putative transport protein 

2.2 2.3 A1S_3328 

pyruvate decarboxylase E1 component of the pyruvate 

dehydrogenase complex 

2.0 3.0 A1S_3350 hypothetical protein A1S_3350 

2.6 2.4 A1S_3394 hypothetical protein A1S_3394 

 
 


