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CHAPTER I 

 
 

INTRODUCTION 
 
 
Role of Leukocytes and Endothelial Cells in Disease 
 
 Inflammation is a natural response of the body to invasion by pathogens as well as 

tissue injury.  However, undesirable provocation of this response is a detrimental feature 

in a variety of diseases, such as atherosclerosis, asthma, rheumatoid arthritis, and multiple 

sclerosis1-3.  This immune defense mechanism is a complex process involving a number 

of cell types and molecular mediators which control their interactions.  The multi-step 

cascade is initiated by the recruitment of leukocytes, bone marrow-derived cells, from the 

circulation to the inflamed tissue site.  This process of transmigration from the blood is 

characterized by initial rolling and eventual attachment of the leukocytes to the 

endothelial cells which line the blood vessel walls.  A number of cell adhesion molecules 

(CAMs) on both leukocytes and endothelial cells facilitate these first steps as well as the 

extravasation of leukocytes into tissue, which is thought to occur by mechanical 

retraction of lateral endothelial junctions, among other proposed models4-6.  Once this 

process has occurred, the essential functions carried out by leukocytes in the 

decomposition of damaged tissue and the destruction of bacteria can now be part of a 

deleterious cascade which damages healthy tissue and surrounding structures through 

phagocytic and cytotoxic activities1,7,8.  Conventional therapies administered as anti-

inflammatory measures such as non-steroidal anti-inflammatory drugs (NSAIDs) and 

corticosteroids have mixed results in the clinic, and are often characterized by significant 

side-effects and far-reaching complications resulting from long-term usage.  Specifically-
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targeted therapeutic measures in current development are intended to interrupt one or 

more steps involved in the inflammatory sequence by the inhibition of key molecules, 

with the objective of preventing transendothelial migration.  The success of clinical 

diagnostic procedures and therapeutic strategies which employ this molecular level 

approach is contingent upon a detailed understanding of the myriad of mechanisms and 

mediators involved in specific inflammatory processes.   

 Decades of research in the pathogenesis of inflammatory diseases has revealed a 

number of therapeutically-significant CAMs, now classified into subsets based on their 

locations and functions.  The selectin family consists of three CAMs, all of which serve 

to facilitate leukocyte rolling along the endothelial lining.  P-selectin, expressed on 

platelets and endothelial cells, can be rapidly trafficked to the cell surface upon exposure 

to inflammatory stimuli, such as the cytokine TNF-α and various interleukins.  The 

therapeutic inhibition of P-selectin surface expression is under study9-11.  The interaction 

between leukocyte-expressed P-selectin glycoprotein ligand 1 (PSGL-1) and P-selectin is 

known to be highly involved in rolling processes12.  L-selectin is expressed on leukocyte 

subsets, and also binds with PSGL-1 on the same cell surface in an interaction that is 

thought to promote enhanced cell tethering.  It is also involved in lymphocyte homing 

and trafficking in Peyer’s patches through its interaction with mucosal addressin cell 

adhesion molecule 1(MAdCAM-1) in various lymphoid organs13.  E-selectin, a CAM 

exclusively expressed on endothelial cells, is thought to be a mediator for rolling of 

leukocytes along stimulated endothelium.  Primary ligands which interact with E-selectin 

are being studied extensively in the development of inhibitory therapies14-16. 
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 Integrins and immunoglobulin CAM subfamilies also have a critical role in 

inflammation.  The inhibitory targeting of these subtypes is a very active clinical research 

area.  Certain integrins are expressed exclusively on leukocytes.  Over 20 types have been 

classified, which are active upon the association of α and β subunits to form dimers.  

Their general role can be summarized by the mediation of interactions between 

leukocytes and extracellular matrix proteins and various counter-receptors on 

neighboring leukocytes and endothelial cells17,18.  The capacity of integrins to promote 

such activity is enhanced upon inflammatory activation of the host cell.  Of these many 

roles, the primary involvement of integrins in the inflammatory cascade is now known to 

be their binding to the Ig family of CAMs, which are expressed on multiple cell types in 

the vasculature17,18.  Primary integrins involved in these associations include lymphocyte 

function antigen (LFA-1) and membrane-activated complex (also called Mac-1), which 

aid in leukocyte recruitment by promoting tethering on the endothelial surface; LFA-1 

has another significant function in enhancing the response of lymphocytes to antigens19-

23.  Two other integrins, α4β7 and very-late antigen 4 (VLA-4, or α4β1), are expressed on 

lymphocytes and monocytes and govern rolling and adhesion processes of those cells 

along inflamed endothelium24,25.  LFA-1 and Mac-1 are counter-receptors for the 

IgCAMs intracellular adhesion molecules 1 and 2 (ICAM-1 and ICAM-2), respectively.       

The various roles of ICAM-1(CD54) on the endothelial surface are of major 

importance in inflammation.  For example, inhibition of ICAM-1 dependent signaling 

through the inhibition of the messenger protein kinase C was shown to inhibit 

lymphocyte transmigration26.  Other functions include regulation of the endothelial cell 

cytoskeleton through actin rearrangement27, as well as the formation of focal adhesion 
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complexes (FACs), which connect the cell’s internal cytoskeleton to the surrounding 

extracellular matrix28.  Several other roles for ICAM-1 have been proposed but require 

further investigation.  The other integrins mentioned, VLA-4 and α4β1, bind to vascular 

cell adhesion molecule 1(VCAM-1) and MAdCAM-1, respectively.  The role of 

MAdCAM-1 in lymphocyte homing was previously discussed, and relates closely to the 

role of VCAM-1 in many respects.  VCAM-1 (CD106) is a crucial component of 

inflammatory processes, as it is linked directly to processes which mediate endothelial 

cell shape, viability, and leukocyte transmigration.  These activities are conducted 

through the activation of NADPH oxidase, which has the additional VCAM-1 induced 

effect of reactive oxygen species (ROS) production in activated endothelium29-31.  The 

generation of low-level ROS by VCAM-1 induction has been hypothesized to be a 

transient, local signal, the scavenging of which could likely reverse many of the 

deleterious effects of VCAM-1 activation32.  However, further studies are necessary to 

probe this specific function more closely.  A third important immunoglobulin CAM is 

platelet-endothelial cell adhesion molecule 1 (PECAM-1), a protein involved in 

endothelial cell junction formation as well as homophilic leukocyte interactions.  It is 

through the latter that PECAM-1 (CD31) is thought to mediate the adhesion and 

transmigration of monocytes, neutrophils, lymphocytes, and eosinophils, making it an 

equally important targeting factor in the treatment of inflammation.  Indirect therapies 

may play an important role in the inhibition of PECAM-1 related processes, as various 

cytokines have been shown to enhance its affinity to leukocyte subsets7.  PECAM-1 also 

is connected through signal transduction to various cytoskeletal proteins such as α and γ-

catenins, important in endothelial junction formation33,34.   
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 A number of other clinically-important mediators of inflammation can also be 

found on the endothelium, particularly in junctions.  Three types of junctions have been 

classified: adherens, complexus adherents, and gap junctions1.  A variety of junction 

proteins await extensive characterization.  The functions of these proteins range from the 

recruitment of matrix metalloproteinases (MMPs) by the claudin junction protein35,36, to 

the lateral modulation of endothelial junctions by junction adhesion molecules (JAMs)1,6 

and cadherins (namely N- and VE-cadherins), which are thought to enhance leukocyte 

transmigration in their absence37.  It is not clear whether JAM-mediated interactions are 

primarily heterophilic or homophilic, nor is it clear if lateral translocation of all or some 

of the junctional proteins are a requirement for effective leukocyte extravasation7. 

 Leukocyte rolling, adhesion, and transmigration across endothelium is an 

essential defense mechanism, but is also a critical factor involved in the pathogenesis of 

various diseases.  Clinical interventions involving the inhibition of one or more CAMs 

and/or their corresponding ligands are believed to be effective treatment strategies for 

inflammatory diseases.  However, the results in clinical trials have been mixed at best, 

and warrant extensive further studies1.  There are a few explanations for the limited 

success of such therapies.  One is that early results observed in animal studies may not 

necessarily be applicable to human clinical trials.  In addition, certain inhibitory therapies 

may be effective for reasons different than those which were initially hypothesized, 

which would affect the use of one strategy in the management of another disease.  

Perhaps most importantly, one CAM, having been chosen for a certain function, may also 

participate in another unknown function which could be an impediment to successful 

inhibition.  However, there are a number of reasons which also suggest that this method 
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of treatment will be an effective one in the future.  The knowledge of the structure and 

functions of CAMs and other inflammatory mediators increases daily, and in many cases 

the function of a certain protein is a consistent feature in many disorders, making 

treatment planning easier.  The future of these therapies will rely on the development of 

techniques which probe the functions of a multitude of proteins in vivo, in order to 

develop small-molecule inhibitors and combinatorial treatment approaches which provide 

the highest probability of successful management of the disease.   

 

In Vivo Imaging of Inflammation at the Cellular and Molecular Levels 

 In the effort to elucidate the biological processes and key molecular players in 

inflammation, in vivo imaging techniques, beginning with intravital microscopy (IVM) 

have been used for over a century in an attempt to understand the processes of 

recruitment and extravasation.  While these methods provide the benefit of confirming in 

vitro observations obtained by reductionist and retrograde extrapolation approaches, they 

also have the potential to rapidly identify the biological activity of multiple molecular 

species at a time.  This may be especially useful in determining physiological and 

pharmacological effects of a given therapy, for example, when the effects of a small-

molecule inhibitor are known for one receptor but not various others.  IVM has been used 

with success in the past to visualize leukocyte-endothelial interactions38, with the 

transition to epifluorescence IVM to study such adhesions in the microvasculature in 

modern research39-42.  It was determined using IVM-based methods how lymphocytes 

migrated to certain lymphatic organs43.  Further work using IVM resulted in the now 
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widely-accepted concept that adhesion cascades with multiple complex steps dictate 

when and where leukocytes can access a given tissue44,45.   

 Techniques based on IVM used to probe leukocyte-endothelial cell interactions 

are not without drawbacks.  The inability of the illumination source to penetrate deep into 

tissue limited many studies to “in vivo” studies of prepared cremaster muscles46,47, bat 

wings48, ear chambers49, and other tissues with adequate optical translucency for imaging.  

An obvious caveat with such studies involved the fact that such dissections in themselves 

were pro-inflammatory stimuli that could compromise the validity of such observations 

as they apply to the in vivo immune response.  The developing needs of researchers in 

this regard resulted in the introduction of non-invasive techniques with enhanced tissue 

penetration for visualization of leukocyte activity.  These techniques included 

bioluminescence imaging and magnetic resonance imaging (MRI), and (single photon) 

computed tomography.  However, a major limitation was still inherent in the use of these 

methods in inflammation research.  The spatial and temporal resolution was not adequate 

to accurately probe cell-cell interactions in the circulation.  Furthermore these modalities 

did not permit the measurement of dynamic physiological parameters that might be used 

to assess the progression of an inflammatory disease, such as leukocyte velocity or the 

number of adhesions formed at a particular junction. 

The advent of widefield and confocal fluorescence microscopy adapted for in vivo 

imaging provided the resolution required in time and space to characterize inflammatory 

processes in substantial detail.  These techniques, in widespread use today for in vivo 

imaging in real-time, allow for non-invasive imaging of tissues.  However, these 

excitation techniques, which rely on high energy wavelengths to excite exogenously-
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administered fluorochromes, have a limited depth of field of about 100 μm in tissue.  

Furthermore, the high-energy excitation light is associated with phototoxicity risks as 

well as photobleaching of the injected species, which limits long-term imaging of in vivo 

inflammatory activity50-53.  Nevertheless, numerous significant studies unraveling the 

mechanisms of inflammation have been reported with these techniques, with 

considerations in experimental design to the above-mentioned factors.  An excellent 

example involves various studies of inflammation using a scanning laser ophthalmoscope 

(SLO), a confocal imaging modality adapted for in vivo imaging of the fundus.  This 

technique, introduced by Richard Webb of the Schepens Eye Institute53, is characterized 

by a lower intensity of light for excitation as opposed to conventional brightfield 

microscopy.  SLO employs a laser for illumination and a PMT for photon collection.  The 

laser illuminates the fundus point by point in a rapid rastering pattern that permits high-

resolution imaging of structures on the micron scale.  This intensity of light was 

demonstrated to be approximately 1% of the light needed by a brightfield 

ophthalmoscope to form a similar-quality image54-56.  Nishiwaki and colleagues 

introduced a technique for utilizing the SLO as a leukocyte tracking device to image their 

trafficking in various disease states57-59.  Acridine orange, a DNA intercalating dye with 

spectral properties similar to fluorescein, was employed to visualize the (nucleated) 

leukocytes in an endotoxin-induced uveitis (EIU) mouse model, a study tool used to 

simulate human inflammatory conditions.  Due to the very high resolution of the SLO, 

individual leukocytes were visible, and could be further distinguished as either free-

flowing leukocytes, or rolling leukocytes which adhere to and roll along the endothelium 

of the blood vessels.  Honda and colleagues would later take advantage of SLO imaging 
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technology to characterize leukocyte trafficking patterns in diabetes, and to study the 

contribution of leukocytes to retinal flow disturbances in the presence or absence of 

various endothelial surface proteins and other stimuli (such as VEGF)57-67.  With these 

studies, the retina was demonstrated to be an excellent tissue for studying inflammation 

non-invasively in vivo.  However, SLO and other confocal imaging strategies, while 

reducing the amount of excitation light, were still limited by spatial resolution as well as 

the eventual bleaching of flurophores which impede long-term studies.  

The limitations of single-photon imaging strategies was addressed with the 

introduction of multiphoton intravital microscopy (MP-IVM)68.  This modality is based 

on a principle of quantum physics, in which two photons of inadequate energy to excite a 

fluorophore arrive at the same time at a given point in space, to combine to excite a 

fluorophore as if it were a single, higher-energy photon.  For example, if two incoming 

photons of wavelength 1200 nm (relatively low-energy photons) arrive coincidentally in 

time and space, the fluorophore interacts with a “single photon” with twice the energy of 

the original two photons (i.e., 600 nm).  When this strategy is optimized with regards to 

the absorption and emission spectra of the fluorophore, infrared light (commonly from an 

infrared Ti:sapphire laser) can be harnessed for penetration of tissue to excite a 

conventional organic dye.  A penetration depth of over five-fold over classical confocal 

techniques was demonstrated with MP-IVM, for imaging of lymphocyte migration in 

vivo51,69,70.  The outlook for MP-IVM in elucidating various mechanisms of inflammation 

is promising.       
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Leukocyte and Cell Adhesion Molecule Detection Techniques 

 Current techniques for imaging inflammation have employed conventional 

organic fluorophores to track cells and CAM expression in vivo.  Dyes used to label 

leukocytes include acridine orange 16, sodium fluorescein, fluorescein derivatives such as 

calcein-AM, and indocyanine green.  Of these techniques, AO is the preferred dye, as it 

can be administered intravenously (as opposed to the labeling of donor leukocytes), and 

has spectral characteristics similar to fluorescein which makes it suitable for 

ophthalmoscopic devices already configured for fluorescein angiography.  In addition, 

AO can penetrate cell membranes and label nucleic acids.  This feature is used to label 

leukocytes, which have nuclear material and thus are preferentially labeled in 

fluorescence imaging compared to red blood cells and platelets.  However, there are 

several notable disadvantages with this technique.  First, since all nuclear material in the 

blood is stained, leukocytes cannot be distinguished from one another, since they all have 

nuclei, and in addition, endothelial cells also fluoresce, which can introduce difficulties in 

distinguishing adhesion formation from free-flowing leukocytes without high-resolution 

capabilities obtained with SLO.  The inability to distinguish multiple cell types is an 

impediment to characterizing individual components of an immune response in various 

pathologies.  However, since a majority (over 60%) of circulating leukocytes are 

neutrophils, AO fluorography can still provide an accurate assessment of neutrophil 

function in vivo.  Another challenge in using AO for in vivo studies is the low quantum 

efficiency (~20%) available, and the tendency of the dye to photobleach rapidly.  As a 

result, many murine studies involving AO were performed with constant venous infusion 

of AO60,62,71,72.  It is also important to note that AO is a carcinogen73 and thus cannot be 
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used in human studies.  Also, AO is phototoxic to lysosomes74, which adds to the many 

problems in performing long-term studies of inflammation.  Thus, an intravenously-

injected fluorescent probe capable of long-term in vivo targeting and imaging of 

leukocyte subsets with no immediate adverse effects on cell function is highly desirable 

in the development of techniques to study inflammation.                     

 Many CAMs and other molecular mediators of inflammation, such as cytokines, 

are just now being characterized.  As a result, imaging techniques to quantitatively study 

molecular expression and/or interactions are just beginning to be developed.  Methods 

used to study CAMs are primarily based on refinements of existing technology.  Ex vivo 

MRI of ICAM-1 in autoimmune encephalitis in mice was accomplished using a 

liposome-conjugated contrast agent.  Fluorescence microscopy was used to localize the 

areas of interest, to compensate for the spatial resolution constraints which impeded 

cellular-level studies75.  The technique employed in this study did not permit real-time 

monitoring of endothelial expression in vivo at high spatial resolutions, although it did 

highlight the ability of contrast agents to amplify signals due to inflammation.  Studies 

concerning the expression of VCAM-1 and ICAM-1 in oxazolone contact 

hypersensitivity were carried out using radiolabeled monoclonal antibodies76.  While a 

quantitative evaluation of antibody uptake could be used to evaluate molecular 

expression, acquisition of real-time quantitative data were not possible, and thus only a 

limited knowledge of the temporal component of molecular expression could be 

achieved.  A similar study involved the above technique, but was combined with IVM to 

visualize adhesions in further detail. Both radiolabeled antibody techniques were also 

limited by low signal to noise ratios76,77.  Weissleder and colleagues developed 
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magnetooptical probes based on antibody-conjugated paramagnetic nanoparticles and Cy-

5.5, a near infrared dye, for imaging of VCAM-1 in vivo78.  The same laboratory also 

developed a peptide-conjugated Cy-5.5 probe which was accumulated in cells expressing 

VCAM-179.  While both novel strategies improved on the spatial resolution limitations of 

previous techniques, neither gathered real-time data on VCAM-1 expression, but instead 

took snapshots at timepoints separated by hours.  Furthermore, in some experiments 

TNF-α, a potent inflammatory stimulant, was used to induce VCAM-1 expression, which 

leaves a question as to whether such a technique could adequately detect CAMs in 

inflammatory diseases in very early stages, an ideal time for treatment.    

 

Quantum Dot Nanocrystals for in vivo Imaging 

 Studies of inflammation have been performed with conventional fluorophores for 

IVM, paramagnetic conjugates for MRI, and radiolabeled conjugates for X-ray detection 

of molecular expression.  Limitations of these approaches include the inability to image 

multiple cell types or molecules at one time and low signal to noise ratios.  Probes which 

are capable of surface functionalization for targeting multiple species deep in tissue, and 

imaging them in real-time with high signal to noise ratios would facilitate the detailed 

study of leukocyte-endothelial cell interactions in inflammation.  The advent of 

semiconducting nanocrystals, or quantum dots (QD), has the potential to provide these            

features.  In the synthesis of QD, a nanometer-sized crystal (usually CdSe) is capped with 

a larger bandgap, secondary layer of ZnS for enhanced optical behavior.  The absorption 

of a photon of light by the semiconducting material and subsequent emission of a lower 

energy photon results in fluorescence.  For biological labeling, antibodies or peptide 
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sequences can be conjugated by traditional chemistry.  This feature has made QD a 

powerful option for use as a site-specific biomarker.  The optical properties of QD 

provide for size-tunable emission wavelengths; smaller QD are towards the blue emission 

spectrum, while larger QD are towards the red spectrum.  This property allows for the 

synthesis of a variety of QD having different emission wavelengths which make 

multispecies imaging in vivo a possibility.  Emission wavelengths of QD include deep 

infrared wavelengths, which allow for multiphoton excitation modalities for enhanced 

tissue penetration.  In addition, QD have quantum efficiencies beyond 60% in many cases 

and do not fade under continuous excitation, which make them highly desirable 

candidates in scenarios in which long-term imaging with high signal to noise ratios are 

needed.  Bioimaging applications of QD to date have included detailed imaging of 

tumors80-82, mapping of sentinel lymph nodes83, and in vitro and in vivo imaging of 

ligand-conjugated QD uptake in cells84,85.   

The unique properties of quantum dots make them suitable agents for in vivo 

imaging of leukocyte trafficking in the circulation and tissue, as well as real-time, long-

term imaging of CAM molecular expression.  QD can be imaged using conventional IVM 

or MP-IVM, making it a flexible technique, and the ability to image multiple species in 

inflammation will certainly yield high-impact discoveries involving molecular 

mechanisms of inflammatory disease and avenues for treatment.   

 
Objectives 
 

Inflammation is a complex process involving a number of cell types and 

molecular mediators.  Imaging techniques that are currently used to probe inflammatory 

activity for diagnostic and therapeutic purposes are limited by low signal to noise ratios 
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and an inability to image multiple species simulatenously.  Furthermore, continuous long-

term quantitative assessment of inflammatory mediators has not yet been performed with 

these methods.  Quantum dot nanocrystals offer a number of desirable optical properties 

which make them suitable candidates for monitoring live cell trafficking in vivo, as well 

as molecular expression in real-time.  We seek to develop quantum dot-antibody 

conjugates to continuously track specific leukocyte subtypes in the retinal 

microcirculation, an area in which the in vivo circulation can be non-invasively accessed.  

In addition, we will use quantum dot conjugates for real-time imaging of expression of 

inflammatory mediators at the molecular level.  Retinal imaging using fluorescence 

microscopy will be performed with these conjugates to assess leukocyte trafficking and 

the upregulation of the cell adhesion molecules PECAM-1 and VCAM-1 in health and in 

inflammatory diseases by experimental induction of uveitis and diabetes in mouse and rat 

models, respectively.  The overall objective of our work is to establish an imaging probe 

capable of application to various fluorescence imaging modalities such as brightfield 

microscopy, scanning laser ophthalmoscopy, and multiphoton intravital microscopy, for 

the purpose of examining multiple components of the inflammatory response at the 

cellular and molecular level.  It is hoped that such a technique will facilitate the 

identification of therapeutic targets and early diagnostic markers in disease.        
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Introduction 

 Inflammation is a complex process involving many mediators at the molecular 

and cellular level.  General indicators of inflammatory activity in the body involve 

leukocyte rolling and tethering along vessel walls, followed by emigration into tissue .  

While these steps are essential in natural immune defenses, undesirable inflammatory 

responses are thought to play a role in disease such as, for example, multiple sclerosis 

and diabetes .  Various strategies have been developed to probe cellular and molecular 

involvement in inflammation in vivo to observe processes as they actually occur in the 

body, reducing the need to develop accurate in vitro models which simulate the 

physiologic, geometric, temporal, and biological components of the disease.  In vivo 

imaging of inflammatory mechanisms involving cell adhesion molecules or leukocytes 

for the purpose of staging the course of the disease or developing treatment strategies is a 

challenging procedure.  Disadvantages of current techniques include limited optical 

accessibility to tissue, invasiveness , low or unstable signal intensity due to the use of 

organic fluorophores , or low spatial and temporal resolution achieved by the use of 

radiolabeled antibodies  or magnetic resonance probes .  Detailed in vivo studies of 

inflammatory activities at the molecular and cellular level would be enhanced by probes 

which permit specific, long-term, and continuous imaging.  Additionally, imaging 

strategies which can minimize the impact of tissue autofluorescence for a higher signal to 

background ratio are needed.  Imaging of quantum dots (QD) in the retinal circulation 

offer the promise of achieving these goals, due to the unique optical accessibility of the 

retina, as well as quantum dot optical properties, such as size-tunable emission 

6,7,45

1

46,47

59,63,67

76 78
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wavelengths, amenability to surface functionalization, and high-intensity fluorescence 

with a resistance to photobleaching . 84,85

 

Results 

 .In this study, we present a quantum dot -antibody conjugate-based approach for 

in vivo imaging of cell adhesion molecules and leukocyte subsets using fluorescence 

microscopy.  Continuous imaging was performed in rat retinal tissue, which provided a 

direct, minimally-invasive view of the circulation with sufficient optical quality to 

visualize vascular targets.  Compared to untreated controls, specific labeling of VCAM-1 

was evident in streptozotocin (STZ)-treated diabetic rat models.  Furthermore, detection 

of ex vivo neutrophils as well as endogenous, circulating quantum dot-labeled neutrophils 

was achieved, demonstrating the utility of quantum dot-based imaging for long-term 

imaging of leukocyte recruitment, proliferation, and interactions with the endothelium.   

 

In vivo detection of VCAM-1 in the retinal circulation 

 In order to determine the utility of quantum dot bioconjugates in detecting 

inflammatory mediators in diabetes in vivo, we systemically administered quantum dot-

antibody conjugates directed at rat VCAM-1, a cell adhesion molecule expressed on the 

luminal surface of the endothelial lining .  Quantum dots were conjugated to mouse 

anti-rat VCAM-1 antibodies, and blocked with Fc-specific mouse anti-rat F(ab)  to 

reduce nonspecific binding .  Long-Evans streptozotocin-induced diabetic rats and 

untreated rats were administered equal doses of VCAM-1-targeted and control 

bioconjugates through tail vein injection shortly before imaging by fluorescence 

76,77,86

2
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microscopy of the fundus .  Video sequences of the retinal circulation in diabetic rats 

indicated enhanced VCAM-1 levels relative to control (Figure 1).  Targeting of VCAM-1 

was evident within minutes after injection.  Injection of QD conjugates through the tail 

vein is observed as a fluorescent plug in the retinal circulation approximately 6 seconds 

later, which rapidly moves through the circulation.  As unbound conjugate is washed out 

of the circulation, conjugates bound to VCAM-1 are observed as QD-specific 

fluorescence emission due to “tethers” along the walls of the endothelium.  With 

increasing circulation time, VCAM-1 labeling accumulated on vessel linings in major 

veins as well as in the microcirculation.  No such accumulation was detected in untreated 

controls, and unbound conjugate was rapidly cleared.  The distribution of VCAM-1 was 

significantly weighted towards the microcirculation and veins.  As opposed to in vivo 

studies of VCAM-1 in TNF-α induced inflammatory models , which reported diffuse, 

dense staining along the vessel walls, we observed a more punctate distribution of 

VCAM-1 along the endothelium.   

88
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Figure 1: In vivo QD-labeling of VCAM-1.  STZ-treated and untreated Long-Evans rats were 

vo 
 

Validation of in vivo bioconjugate specificity to VCAM-1 

 We sought to validate our in vivo observations of VCAM-1 levels with high-

resolution ex vivo analysis, which involved high-magnification fluorescence microscopy 

and dual-laser scanning.  Retinal tissue scanning using a dual-laser, dual-PMT acquisition 

system provides for a macroscopic view of major arteries and veins, as well as the 

microcirculation, at a 5μm spatial resolution.  Comparative laser scanning analysis of 

1a 1b

1c 1d

administered 500 nM systemic doses of QD 605/anti-VCAM-1 conjugate and observed via in vi
fluorescence microscopy.  1a Background in QD605 channel prior to injection in diabetic rat 1b or
1c: Tethered VCAM-1 adhesions are detected by QD after unbound conjugate is cleared from the 
circulation.  Unbound conjugate is still visible in the background.  However, tethered QD are 
brightly visible and remain fixed along the vessel walls in STZ-treated rats.  1d After washout of 
QD/VCAM-1 conjugates, healthy rats had no visible tethers in the retinal circulation. 
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control and diabetic retinal tissues in the specific emission channel of the QD conjugate is 

indicative of enhanced VCAM-1 levels in STZ-treated tissue (Figure 2).  Densities of QD 

fluorescence throughout the retina indicated widespread VCAM-1 staining.  

In order to determine the specificity of the QD-VCAM-1 conjugates, we co-

administered maleimide-activated QD585 and QD565/isotype control IgG with the 

QD/VCAM-1 conjugate in both experimental groups, at equal concentrations of QD 

and/or antibody employed in the conjugation chemistry and dosage steps.  Analysis of 

retinal tissue by fluorescence microscopy confirms that the labeling of VCAM-1 by our 

QD conjugates is specific (Figure 2a-e).  Furthermore, increased expression of VCAM-1 

in diabetic retina is again confirmed using fluorescence microscopy.  These observations 

are consistent with in vitro studies suggesting that VCAM-1 expression on the endothelial 

cell surface is increased in high glucose medium89.   
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2a 2b 

2c 2d 

2d 2e 
 

Figure 2 Tissue labeling of VCAM-1 by QD conjugate. Retinal flat mounts were prepared from control and STZ-
treated rats after sacrifice for detailed analysis of VCAM-1 staining.  2a,b Retinal flat mounts from a control rat 
and diabetic rat administered QD/VCAM-1 via tail vein catheterization.  Tissue was scanned using a 532nm laser 
with PMT bandpass set to 670+/- 20nm (details in supplementary methods).  2c Fluorescence microscopy at 
1000X magnification of retinal vasculature in diabetic rat 1 hour after administration of QD655/VCAM-1.  
Positive endothelial staining of VCAM-1 is visible.  2d Healthy rat retinal vasculature is indicative of weak levels 
of VCAM-1 expression.  2e QD565/Isotype control fluorescence channel at 100X.  Fluorescence analysis indicates 
no significant Fc-region mediated antibody binding as indicated by lack of QD565-KLA IgG fluorescence.  2f 
Nonspecific QD585 uptake in retinal tissue of diabetic rats was negligible.   
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QD conjugate specificity to neutrophils and signal intensity 

 In addition to detecting tethered adhesion molecules on endothelial surfaces, our 

technique was also used to image cellular mediators of inflammation.  A key challenge in 

the imaging of circulating leukocyte subsets in vivo is the development of specific 

targeting methods.  Neutrophils, known to be crucial “first responders” in a number of 

inflammatory diseases, have well-known phagocytic functions in immune defense, and as 

a result in vivo tracking techniques have utilized radiolabeling or intracellular organic 

dyes as opposed to antibody-based techniques, in which nonspecific uptake of the 

conjugate could occur by certain leukocyte subsets .  To investigate if these 

mechanisms would impose limitations on QD conjugate usage during in vivo 

observations of leukocyte trafficking, flow cytometric analysis of lysed whole rat blood 

incubated with QD585-RP-1 Mab conjugates was performed.  RP-1 is an antigen 

reported for specificity to neutrophils in rat peripheral blood, but not other leukocyte 

subsets .  Leukocytes were readily distinguished by their scatter properties, and analysis 

of monocyte, lymphocyte, and granulocyte subpopulations indicate specific staining of 

polymorphonuclear cells exclusively, the vast majority of which consist of neutrophils in 

peripheral blood (Figure 3a).  Analysis of Percoll-isolated neutrophils incubated with 

QD-isotype control conjugates and nonspecifically-targeted QD indicated mean 

fluorescence levels similar to unlabeled neutrophils (Figure 3b).  QD-RP-1 conjugates 

provided enhanced signal detection relative to the positive control, phycoerythrin-RP-1 

(PE-RP-1).  PE has many applications in flow cytometry due to the fluorophore’s ideal 

spectral fit to flow cytometers equipped with a 585/42 bandpass filter, and its relatively 

high resistance to bleaching.  Our observations indicate that leukocytes labeled with QD 

2,90

91
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conjugates exhibit a 1-decade enhancement in fluorescence intensity compared to PE-

labeled leukocytes.  Furthermore, quantitative analysis of the ability of QD-RP-1 labeled 

neutrophils to adhere to tissue culture plastic upon Concanavalin A stimulation indicated 

adherence by 27% of total cells, within the established range suggested for the 

preservation of neutrophil function (Supplementary Methods).       

3a 3b 

 QD585/42 

Figure 3 Flow cytometric analysis of QD/RP-1 specificity to neutrophils in lysed whole blood.  3a: 
Mean fluorescence of neutrophils is almost 2 log decades higher than monocytes and lymphocytes 
when lysed whole blood is incubated with the QD/RP-1 conjugate.  3b: Neutrophil-gated population 
of lysed whole blood incubated with PBS (--), QD/isotype control antibody conjugate (--), 
QD/unconjugated only (--), PE-RP-1 (--), or QD/RP-1 (--).  QD/RP-1 fluorescence is log decades 
higher than controls, and is significantly higher than the PE conjugate.   
 
 
In vivo imaging of leukocytes in the retinal circulation 

 In vivo analysis of endogenously-labeled leukocytes indicates that QD are high-

intensity probes suitable for studies of leukocyte trafficking.  QD605-RP-1 was 

administered by tail vein catheterization to diabetic and control rats shortly following the 

conclusion of QD targeting of VCAM-1 in those animals.  A period of unbound 

conjugate washout reduced the background fluorescence at a sufficient level to 

commence analysis.  Labeled spheres appearing to have the shape and speed of 
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circulating neutrophils were observed in major vessels as well as the microcirculation, 

although at very low levels compared to detection performed using acridine orange 

fluorography (unpublished data) in diabetic and healthy rat models.  High velocity 

leukocyte movements through vessels were characterized by streaks (Figure 4a, 4b), 

whereas movements through the microcirculation were often sufficiently slow enough to 

be captured as spots by our technique.  No leukocyte rolling phenomena could be 

observed, although in the diabetic rat model, stationary or adherent neutrophils could be 

visualized in the periphery (Figure 4c, 4d).  Such an observation highlights the utility of 

QD for continuous imaging of leukocyte-endothelial cell adhesions, an application in 

which dye-based strategies are limited due to their fading characteristics.  Neutrophil-

mediated plugging of capillaries has long been linked to inflammatory complications in 

ocular pathologies such as retinal ischemia , and may be a significant factor in diabetes-

induced complications.  The ability to continuously image leukostasis suggests a useful 

role of QD-based imaging in staging the course of disease or assessing response to 

therapies.  Furthermore, the intensity of the specific QD-neutrophil signal raises a 

question as to whether the RP-1 antigen may be upregulated in diabetic-induced 

inflammation.  RP-1 was shown in previous studies to be upregulated in response to 

neutrophil activation , which suggests that the relative intensity of labeled neutrophils 

may be an indicator of activation; this in turn may be a determinant of adhesion potential.   

92
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4a 4b

4c 4d  
Figure 4 In vivo imaging of QD-labeled leukocytes in retinal vasculature.  QD605-RP-1 was injected 

 

tility of QD conjugates for ex vivo labeling and systemic reinfusion 

nistration of 

donor cells which have been genetically altered or stimulated to present a specific 

antigen, for the purpose of studying an evoked response under controlled conditions.    

We investigated whether quantum dots were suitable for these purposes by incubating 

donor rat neutrophils isolated using density gradient medium with QD565-peptide 

conjugates from Quantum Dot Corporation, which are nonspecifically endocytosed by 

by tail vein administration to an STZ-induced diabetic rat model, and imaged using metal halide and
xenon arc flash excitation sources.  4a,b A moving labeled neutrophil moves rapidly through a major 
vessel (in the direction of the arrows), leaving a streak. 100 msec exposure per frame with a 110 msec 
interval between frames.  Total magnification 40X.  4c,d Neutrophils appearing to be stagnant were 
observed for several consecutive frames in the diabetic model.  No stagnant cells were visible in 
untreated control retinas.  Total magnification 40X, 100 msec per frame.   
 
U
 

Various in vivo studies in immunology involve the systemic admi 
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cells.  Analysis of the labeled cells by flow cytometry and fluorescence microscopy 

indicated significant uptake of the QD-peptide conjugate, and intense labeling.  In vi

imaging of reinfused neutrophils revealed very few neutrophils initially; however, these

cells were visible in the microcirculation as well as major vessels.  We hypothesize that 

many reinfused cells may have been trapped in the pulmonary circulation for a period of 

20 minutes or more, as reported by other donor cell reinfusion studies

vo 

 

or 

ge in 

 could be useful as 

nonspe

, 

c 

93.  While this 

impeded the rapidity of our in vivo imaging technique, it is important to note that don

cells labeled nonspecifically by QD are, as expected, visible in the retinal circulation.  

Further studies comparing QD-peptide and acridine orange-labeled isolated neutrophil 

intensity and stability under long-term illumination in vitro indicated initial weak 

fluorescence and rapid fading of the acridine orange within 45 seconds, with QD-

internalized cells having several-fold higher initial intensities followed by no chan

signal intensity even after an hour of observation (Supplementary Figure I).  These data 

suggest that donor cells could be labeled by QD as an alternative to organic dyes for 

long-term imaging in which a high signal to noise ratio is required. 

In a related study, in order to investigate whether QD probes

cific probes for the identification of all leukocyte subsets, a procedure usually 

performed with the DNA intercalating dye acridine orange, lysed whole blood was 

incubated with QD conjugated to mouse anti-rat CD45 (leukocyte common antigen)

which is known to react equally well with all three leukocyte subsets.  Flow cytometri

analysis indicated that QD probes are more intense than acridine orange, and labeled all 

three leukocyte subsets in vitro (Supplementary Figure II).  This data suggests that QD 

probes could be substituted for acridine orange in various protocols, which may be 

 26 
 



desirable as the dye is characterized by a low quantum efficiency (<20%) as well as

tendency to rapidly photobleach

 a 

uptake of multiple QD-peptide complexes by the cells.   

The ability to label and image cell adhesion molecules and circulating cells in 

vivo is a major advancement in imaging techniques which seek to probe inflammatory 

events at the cellular and molecular level.  Our technique utilized quantum dots to 

demonstrate for the first time in vivo detection of VCAM-1 expression in diabetes.  As 

VCAM-1 levels were found to be enhanced compared to untreated controls, our studies 

support in vitro work which suggests a link between VCAM-1 levels and diabetic 

94. 

 

 
Figure 5 In vivo imaging of QD-labeled donor neutrophils.  Qtracker 565 was used to stain Percoll-
isolated rat neutrophils; the stained and washed neutrophils were then reinfused via tail vein.  In vivo 
sequences of Qtracker-labeled neutrophils are indicative of high signal to noise ratios, due to the 

0msec 100msec 300msec 

500msec 700msec 900 msec 

 

Discussion 
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complications.  Thus, our observations warrant further investigation into the spatia

temporal regulation of VCAM-1, and its potential as an early diagnostic marker of 

diabetes-induced inflammation.  Furthermore, our approach enabled the detection o

circulating as well as stagnant neutrophils in major vessels as well as the 

microcirculation.  We have shown that quantum dots are specifically-targe

high signal to background ratios, which make them suitable candidates to replace organic 

dyes in some in vivo imaging modalities.  In addition, a feature of semiconducting 

nanocrystals is size-tunable emission spectra, and the need for only one excitation s

of any wavelength below the emission peak.  Thus, quantum dots could be used in 

conjunction with in vivo fluorescence microscopy to characterize complex leukocyt

endothelial cell interactions using a multispectral imaging approach.  The method 

described in this study uses the optically transparent, readily accessible retinal imag

window to probe inflammatory events at the cellular level, avoiding relatively invasive 

approaches.  Our technique is widely applicable and accessible to a number of 

immunological laboratories which seek to probe leukocyte-endothelial interacti

cellular and molecular scales.  The QD bioconjugation techniques employed in this study 

used well-known and simple biochemical techniques readily-accessible to any molecular 

biology laboratory.  Furthermore, QD-based targeting can be utilized in a number of 

other imaging modalities, such as multiphoton intravital microscopy and scanning las

ophthalmoscopy, a high-resolution device which also takes advantage of the non-invasiv

retinal window for imaging the circulation.  The usage of QD in a research setting using 

animal models of disease will certainly provide a wealth of information concerning 

multiple molecular expression profiles in a variety of diseases.  Such multi-pronged 
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approaches which examine both the cells and molecules involved in disease on an in 

and in vitro level are likely to have a major impact on the development of detailed, early 

diagnostic techniques, as well as the identification of high-impact therapeutic routes.     

 

vivo 

ethods 

ion of Antibodies to Quantum Dots 

 dots emitting at 605nm and 655 nm 

were pu

se, 

r 1 

e.  

excess 

 of 

M

Conjugat

Maleimide-activated CdSe/ZnS quantum

rchased from Quantum Dot Corporation (Hayward, CA).  Antibodies to rat 

VCAM-1, CD45 (leukocyte common antigen), keyhole limpet antigen (KLA) as an 

isotype control IgG2a kappa, and RP-1 were purchased from BD Pharmingen (San Jo

CA).  Nanocrystals were conjugated to reduced antibodies using a modified protocol 

from the manufacturer.  Briefly, 125 uL of a 1 uM stock solution of nanocrystals in 

sodium borate buffer (pH 8.5) was reacted with 15 uL of 10 mM SMCC in DMSO fo

hour at room temperature.  500 uL of 1 mg/mL antibody in PBS with 0.1% sodium azide 

(pH = 7.4) was incubated with 25 uL of 14 mM 2-iminothiolane (Traut’s reagent) in 

sodium borate buffer at pH=8.0  (Pierce, Rockford, IL) for 1 hour at room temperatur

Reacted quantum dot and reduced antibody solutions were desalted over PBS-

equilibrated NAP-5 columns (Amersham Biosciences, Chicago, IL) to remove 

SMCC or Traut’s reagent.  Purified quantum dot and antibody fractions were then co-

incubated for 1 hour.  The reaction was quenched by reaction of solution with 13.9 uL

10 mM betamercaptoethanol, followed by a 30 minute incubation at room temperature.  

The conjugate was then stored at 4ºC overnight.  Reaction mixture was purified from 

unreacted antibody by size-exclusion chromatography using Superdex 200 gel slurry 
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(Pierce).  Conjugate concentrations were determined using a Nanodrop ND-1000 

Spectrophotometer using known extinction coefficients at a given measurement 

wavelength from Quantum Dot Corporation.  Final conjugate concentrations rang

1.5 – 2 uM.   

  

ed from 

Animal Preparation for In Vivo Imaging  

and euthanized according to standard 

and 

as 

g, 

 

he 

 

In vivo imaging of VCAM-1 and neutrophils 

 All animals were prepared, imaged, 

Vanderbilt University Institutional of Animal Care and Use Committee-approved 

protocols.  Male Long-Evans rats were purchased from Harlan (Indianapolis, IN), 

were divided into control and diabetic groups (n=3 per group).  Streptozotocin (STZ) w

purchased from Sigma-Aldrich (St. Louis, MO).  A solution of 65mg/mL STZ was 

prepared immediately before injection in 0.1mM sodium citrate buffer (pH=4.5).  

Diabetes was induced by intraperitoneal injection of 1uL of this solution per gram of 

body weight.  Blood glucose measurements were taken from a drop of tail vein blood 

dawn from pin prick to verify hyperglycemia in treated groups.  Prior to in vivo imagin

rats were anesthetized by intraperitoneal injection of 15/85% ketazine/xylazine.  Tail vein

catheterization was peformed for injection of quantum dot conjugates and controls.  Both 

pupils were dilated with 1 drop each of 2.5% phenylephrine hydrochloride and 1% 

tropicamide ophthalmic solutions.  For weight and blood glucose measurements of t

rats used, please refer to the Appendix.     
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 A Nikon TE2000U inverted fluorescence microscope (Nikon, Japan) was used for 

ima in

-

as 

-1 

 

, 

 

es for 

g g of the retinal vasculature.  Our technique was based on a previously-published 

experimental design for retinal imaging of tracers88.  Anesthetized and dilated rats were 

placed on a modified Ludl microscope stage.  The eye was placed on a +6 diopter plano 

concave lens (Edmund Optics) covered with a drop of Goniosol and embedded in the 

stage directly above a 4x or 10x Plan Apo objective.  For VCAM-1 imaging, an Exfo X

Cite 120 metal halide excitation lamp source (Exfo Life Sciences) was routed through a 

FITC HQ excitation filter, a CRX50V dichroic mirror (Nikon), and a 655/40 emission 

filter (Omega Optical, Rockingham, VT).  For neutrophil imaging, a Perkin Elmer FX-

5400 xenon arc flash lamp or the X-Cite 120 lamp were used.  The flash lamp source w

set to a 20 Hz pulse at 24 VDC using a function generator and DC power source.  

Excitation light was passed through the same filter configuration as used for VCAM

imaging, except that a 565/20 or 605/20 emission filter (both from Omega Optical) was

used.  Imaging was performed using either a Andor iXon 885 EMCCD 12-bit camera 

(Andor Bioimaging, Belfast, Ireland), a Hamammatsu C7780 36-bit color CCD camera

or a Roper Photometrics 512B.  Exposure settings were normally 100 msec for VCAM-1

or leukocyte tracking, with adjustments in gain and exposure time made as necessary 

using Image Pro Plus 5.1 software (Media Cybernetics) for the C7780 and 512B, or 

Andor iQ or iXon software for the 885 EMCCD.  Continuous sequences of 70-100 

frames were acquired in quick succession, with less than 110 msec between exposur

leukocyte tracking.  
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Ex vivo analysis of rat retina 

Animals were sacrificed with 150mg/kg sodium pentobarbital (Sleepaway) 

administered via tail vein catheter.  Eyes were extracted and either embedded and 

sectioned, or enucleated in 4% paraformaldehyde.  Retinal tissue was removed from 

enucleated eyes and prepared for fluorescence microscopy using a drop of Aqua Poly-

Mount solution.  A Nikon TE2000U inverted fluorescence microscope was used to 

analyze retinal tissue flat mounts and sections.  The C7780 used for in vivo imaging was 

also used for tissue analysis at various magnifications ranging from 100x – 1000x total 

magnification.  For whole retinal tissue analysis, tissue mounts were scanned by a 

Genepix 4000b microarray scanner (Axon Instruments) with 532 and 635 nm lasers, with 

dual PMTs configured with 530-595 and 670/10nm bandpass filter sets, respectively.                

 

Flow cytometry  

Whole blood was collected by cardiac puncture from male Long-Evans rats into BD 

Vacutainer tubes lined with K3EDTA.  Erythrocyte lysis was then peformed by 

incubation with BD PharMLyse at a 20:1 ratio of lysis buffer to whole blood for 15 

minutes in the dark at room temperature to obtain 500 uL of a diffuse red suspension of 

white blood cells.  Another fraction was set aside for isolation of pure neutrophils.  The 

solution was then centrifuged at 400g in a Allegra X-22R unit with swinging bucket rotor 

(Beckman) at room temperature.  The pellet was rinsed in 500 uL BD Pharmingen 

staining buffer (pH = 7.2) with 0.5% BSA, and 0.1% sodium azide as a metabolic 

inhibitor.  Each pellet was then resuspended and rinsed twice more with staining buffer.  

Each 500 uL suspension of leukocytes were incubated with the following: 50 nM each of 
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QD585/RP-1 conjugate, QD525/CD45 conjugate, and QD585/isotype control IgG 

conjugate, 1 ug PE/RP-1 conjugate, 5 ug/mL acridine orange in 0.9% isoosmotic saline, 

and 10 nM Qtracker 525nm conjugate.  A separate unlabeled fraction was also retained 

for analysis.  A purified fraction of neutrophils was obtained from rat whole blood by 

density gradient centrifugation on Percoll.  2 mL of whole blood was layered on a 

discontinuous 2-step Percoll gradient consisting of 4 mL 1.0815 g/mL layered on 4 mL 

1.1005 g/mL sterile medium in a 15 mL centrifuge tube.  The gradient was centrifuged at 

400g using a fixed-angle rotor (Allegra X-22R centrifuge, Beckman).  Mononuclear cells 

and platelets formed a band at the top of the gradient, with granulocytes in the middle, 

and erythrocytes at the bottom.  The pure granulocyte suspension was obtained using a 

Pasteur pipet and was estimated to be approximately 94% pure following lysis of 

contaminating erythrocytes.  Isolated neutrophils were washed twice in PBS (pH=7.4), 

and incubated with 50 nM QD585/RP-1 conjugate, 1 ug PE/RP-1, 50 nM QD585/isotype 

control IgG conjugate, and 50 nM QD585 which were activated but not conjugated to 

antibodies.  In addition, an unlabeled sample was retained.  All samples were analyzed 

using a BD LSRII multicolor flow cytometer equipped with UV, blue, or green 

wavelength lasers.  Bandpass filters were set at 585/42nm, 530/35nm, or 565/20nm.  

Analysis was prepared using Treestar Flowjo and BD FACSDiva software.           

 

Conclusions and Future Directions 

This work has outlined a quantum dot-based in vivo imaging technique for 

imaging inflammatory mediators at the cellular and molecular level.  Advantages of this 

approach include a high signal to background ratio, continuous digital acquisition, narrow 
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emission spectra, and a uniform excitation source for all size-tunable nanocrystals.  Our 

technique permitted imaging real-time molecular expression of VCAM-1, which plays a 

critical role in various diseases as well as endothelial cell homing in angiogenesis. 

Previous methods of imaging inflammatory mediators involved the use of radiolabeled 

antibodies and conventional organic fluorophores, which were limited by low signal to 

noise ratios, lack of specificity, and a challenge in facilitating long-term imaging 

applications.  The ability to detect molecular expression in inflammation using high 

intensity nanoscale materials is a significant achievement, as it permits the development 

of early detection strategies which may expedite therapeutic interventions before tissue 

damage.  The ability to also visualize ex vivo and in vivo labeled leukocyte subtypes will 

facilitate studies which seek to characterize individual components of an immune 

response in inflammatory disease.  Furthermore, it will aid in studying detailed 

leukocyte-endothelial interactions in a host of diseases.        

 Future work is directed at the development of higher-intensity quantum dot 

probes for improved imaging of inflammatory mediators in diabetes using our technique.  

Improvements will include the use of antibody fragments as opposed to whole antibodies 

which include the Fc portion, to maximize circulation time and reduce nonspecific 

binding without a blocking step.  Also, we will use our method to characterize molecular 

expression patterns for a variety of key adhesion molecules in diabetes.  This will be 

achieved by the use of a multispectral imaging apparatus which can be used in 

conjunction with our fluorescence microscopy setup in order to spectrally-delegate 

regions of a CCD chip devoted to different emission bands, customized to narrow 

quantum dot wavelengths.  With this data we will attempt to develop a more detailed 

 34 
 



understanding of the function, and spatial regulation of multiple endothelial cell surface 

markers in this disease, to develop more accurate early diagnostic tools and therapeutics.  

The technique presented here demonstrates the utility of quantum dot nanocrystals for 

high resolution imaging of inflammatory processes.    

 
APPENDIX A: SUPPLEMENTARY TABLES AND FIGURES 
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• Quantum dot-
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488 nm excitation:  

 
Figure I: Fluorescence microscopy time-lapse images of rat neutrophils labeled with 
either 10 nM QD565nm-peptide conjugates or the DNA intercalating dye acridine 
orange at 10 ug/mL of cell suspension.  The fluorescence peak of the filter 
configuration was 490 nm, the optimal spectra for acridine orange, but suboptimal 
for QD, which are more intensely excited at UV wavelengths.  Nevertheless, cells 
labeled with QD-peptide conjugates are more intense in all images, with acridine 
orange-labeled cells having low intensity and noticeable photobleaching after only 
30 seconds.  QD-peptide labeled neutrophil intensity was preserved for the entire 
hour of observation.  This observation has important implications for in vivo 
imaging of leukocytes, especially in situations where long-term observations of 
stagnant leukocytes are used in diagnosis and therapy efficacy assessments.   
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QD 585/42 

   
IIb 

   
IIa 

Leukocyte staining by Qtracker 565    Leukocyte Staining by QD/CD45 

Figure II: Flow cytometric analysis of lysed whole blood from Sprague-Dawley rats 
labeled with Qtracker 565 peptide conjugate and QD-CD45 (leukocyte common 
antigen) conjugate.  All three leukocyte subsets, monocytes (--), lymphocytes (--) 
and neutrophils (--) were labeled by the conjugates.  Qtracker, a peptide conjugate, 
required longer incubation times, but also had lower targeting efficiency than 
antibody conjugates.  Fluorescence intensity of labeled cells by both Qtracker (IIa) 
and QD/CD45 (IIb) was several log decades higher than unstained (not shown for 
clarity).  Either method may be a suitable alternative for applications in which ex 
vivo labeled cells are reinfused in vivo for imaging purposes.     
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IIIa IIIb

IIIc IIId 
  

Figure III: Additional in vivo fluorescence microscopy CCD sequence extractions of 
STZ-induced diabetic and untreated Long-Evans rats. IIIa,b Bright, punctate spots 
indicate immediate VCAM-1 staining by QD conjugates shortly after injection.  The 
QD conjugates, harnessed for their superior intensity properties compared to 
organic dyes, appear bright over background.  The ability to detect small molecules 
even at low expression levels has important implications for early-detection of 
inflammatory disease markers which signal upcoming diabetic complications. 
IIIc Untreated control rat.  Extraction of a CCD sequence showing enhanced 
brightness in vessels due to injection of conjugate.  IIId As unbound conjugate 
clears, no VCAM-1 tethers can be observed in the untreated control rat.  These 
observations reinforce the hypothesis that VCAM-1 expression may be used to stage 
inflammatory disease in the retina in the progression of diabetes. 
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IVa IVb 
 

IVc IVd 
 

Figure IV: Observation of retinal tissue sections in control and STZ-treated diabetic 
Long-Evans rats following administration of QD/VCAM-1 conjugate. IVa 400x oil 
immersion image of STZ-treated retina.  Dense staining was visible in the 
microcirculation in vivo, and the observation could be correlated to tissue studies.  
IVb 1000X magnification of a capillary bundle, densely stained with QD/VCAM-1. 
IVc,d Even with CCD gain adjustments and compensation, only very low levels of 
VCAM-1 were detected in non-treated retina.  These sections are representative of 
the brightest signal observed.  
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Va Vb   
 
Figure V: Observation of retinal tissue sections after administration of ex vivo –
labeled QD-peptide neutrophils in STZ-treated rat.  Labeled neutrophils are visible 
long after in vivo imaging, and can be used to track extravasation and endothelial 
interactions in tissue, for example, using 3D reconstructions based on z-stacks.  This 
image was taken using a Roper Scientific 512B 12-bit CCD with the Nikon TE2000U 
inverted fluorescence scope under 488 excitation with a narrow emission passband 
(565WB20, Omega Optical).     
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FITC – 
PECAM-1 
channel 

Quantum dot-
PECAM-1 
channel 

 
 
Figure VI: Detection of PECAM-1 on leukocytes and endothelial cells in tissue 
sections following in vivo administration of specifically-targeted QD conjugates. QD-
PECAM-1 (M-20) conjugates were prepared according to the aforementioned 
protocols and were injected in vivo in a mouse model of endotoxin-induced uveitis 
(EIU) in order to assess the distribution of the cell adhesion molecule on leukocytes 
and endothelial cells.  As an indicator of in vivo specificity, FITC-PECAM-1 (M-20) 
conjugates at an equal molar concentration were also injected.  Tissue analysis by 
fluorescence microscopy above indicates a punctate staining pattern for PECAM-1 
in the red (QD) channel that is not readily visible in the green (FITC) channel.  
Image processing and contrast enhancement reveal that FITC conjugates had 
indeed labeled the same punctate regions which the QD had labeled; this is shown in 
the inset maps.  However, FITC were not as intense so as to readily enable 
visualization in tissue.  This reflects on the fact that PECAM-1 is only weakly 
expressed on leukocytes.  Thus, detection of weakly-expressed cellular surface 
antigens can be enhanced with QD conjugates. 
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Table I: Descriptions of weight and blood glucose measurements for untreated and 
STZ- treated Long-Evans rats used in this study. 
 
Specimen Weight Blood Glucose (resting) 
Male Long-Evans treated 6/21/05 487g 266 mg/dL 
Male Long-Evans treated 6/21/05 #2 490g 252 mg/dL 
Male Long-Evans treated 4/27/05 309g 369 mg/dL 
Male Long-Evans untreated 4/18/05 555g 68 mg/dL 
Male Long-Evans untreated 4/14/05 562g 66 mg/dL 
Male Long-Evans untreated 4/5/05 480g 66 mg/dL 
 
 

 
APPENDIX B: Supplementary Methods 

 
Density Gradient Centrifugation of Sprague-Dawley Neutrophils  
for in vivo imaging and functional assays  

In order to separate rat neutrophils from whole blood, in a 15 mL polypropylene 

centrifuge tube, 2 mL of male adult Sprague-Dawley rat blood was layered upon a 2-step 

isoosmotic Percoll gradient which consisted of a 4 mL 1.0815 g/mL Percoll carefully 

pipetted on top of a 4mL 1.1005 g/mL Percoll layer.  Care was taken not to cause mixing 

or splashing at the interface of the gradient layers, as only a sharp change in density will 

promote isopycnic banding.  Two counter-balanced 15 mL centrifuge tubes containing 

the same Percoll layers were layered at the top with Percoll density marker beads, which 

have color-coded silica beads designed to separate by their respective densities following 

centrifugation, as a quality control agent and as an aid in finding the cell band of interest. 

 The Percoll gradients were then placed in a 22º fixed-angle rotor and centrifuged 

at 400xg for 30 minutes at room temperature (Allegra X-22R, Beckman Coulter).  

Mononuclear cells and platelets formed a band at the top of the gradient, with 

granulocytes in between the two gradient layers.  Erythrocytes were mainly situated at the 

bottom of the tube in a plug.  Using a small Pasteur pipet, the PMN band was carefully 
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aspirated by running the pipet along the side of the tube, taking care not to disrupt the 

gradient or encourage excessive mixing.  The granulocytes were then resuspended in 100 

mM PBS.   To ensure that no erythrocytes had contaminated the PMN layer, the 

suspension underwent erythrocyte lysis with 20 parts PharMLyse 1X lysis buffer to 1 part 

whole blood, for 15 minutes as room temperature in the dark, until a clear, red suspension 

was obtained.  Cells were rinsed three times with PBS to ensure complete removal of 

lysis buffer.  A sample of the suspension was analyzed by flow cytometry to confirm the 

concentration of neutrophils and the preservation of scatter properties.  The suspension 

obtained from this method was found to purify a 95% pure sample of neutrophils.       

 
 

Neutrophil functional assay: Adherence to tissue culture plastic 
 

Neutrophils adhere to endothelial cells in the initial steps leading to diapedesis.  

Should neutrophils be labeled on their cell surfaces, it is important to ensure that the cells 

maintain a key component in their function, which is reversible adherence to a substratum 

in response to chemotactic factors.  We sought to evaluate the general functional stability 

of QD-labeled neutrophils. 

 870,000 Percoll-isolated neutrophils were incubated with 50 nM QD/RP-1 

conjugate.  Cells were lysed with 20 parts BD PharMLyse ammonium chloride lysing 

solution to 1 part whole blood, and incubated in the dark for 15 minutes until a diffuse 

red solution was visible.  1 mL of a 2.3x106 cells/mL suspension was added to each of 

three 16-mm diameter wells of a 24 well plate.  Wells were incubated for 30 minutes in a 

37ºC incubator.  Wells were then rinsed 3 times with 100 mM PBS (pH=7.4), and blotted 

dry.  To each well 1 mL of 0.1% Triton X-100 was added, and the well plate was placed 
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on a shaker for 30 minutes.  The suspensions were then withdrawn, and cells were 

counted using a flow cytometer configured to detect neutrophil scatter properties.  The 

fraction of adherent cells to suspended cells was deemed acceptable if it was between 20-

27% of total.  Gallin and colleagues have found that using this technique, approximately 

20-30% of control neutrophils will adhere to polystyrene95.        
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