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PREFACE 

 

OVERVIEW OF THE DISSERTATION 

 

This dissertation is aimed at comparing the effects of different experiences on 

human visual object recognition. Functional specialization occurs in the visual object 

recognition system in terms of selectivity for certain categories (e.g., faces, letters, 

scenes, and body parts) over others in different regions of the ventral occipitotemporal 

cortex, as well as specific behaviors associated with different categories. A number of 

factors have been proposed to explain the functional specialization, yet few empirical 

studies addressed the unique contribution of different factors. In this dissertation I 

investigated the role of recognition experience by comparing the effects of two types of 

categorization training. The use of novel objects allowed me to control for stimulus 

properties and higher-level factors (emotional, social, and linguistic processing). I found 

that different training experiences resulted in different changes in behavior and neural 

activity. 

This dissertation begins (CHAPTER I) with a review of the functional 

specialization for object categories, with an emphasis on faces and letters. I describe the 

different proposed factors affecting category selectivity in the brain, and discuss the 

difficulties associated with testing the contribution of individual factors using real-world 

objects. I then discuss the use of novel object training as a useful tool in answering this 

research question, and the study of more than one type of training as a valuable way to 

extend the tool.  



 x 

Following the review of this literature, CHAPTER II reports a novel-object 

training paradigm inspired by Gauthier et al. (1997, 1998, 1999, 2002) to address one 

facet of the problem: can different recognition experiences with one set of novel objects 

lead to qualitatively different behavioral and neural consequences? Two groups of 

participants went through training procedures designed to mimic experience with either 

faces or letters. The face-like group learned to categorize novel objects at a subordinate 

level, similar to how people discriminate among faces in person identification. The letter-

like group learned to recognize, at the basic level, multiple novel objects presented in 

spatially organized clusters with coherent font-like styles, similar to how people process 

letters when reading a text. The two training procedures led to different behavioral 

phenomena associated with face perception (e.g., a smaller basic-level advantage and 

holistic and configural processing effects) and letter perception (e.g., a larger basic-level 

advantage and faster recognition of objects in a string).  

CHAPTER III reports the effects of the two types of training on fMRI activity. 

The face-like group showed enhanced activations around the right fusiform face area. 

The degree of change also correlated with the magnitude of the configural processing 

effect found in the behavioral post-training test. The letter-like group did not show 

enhanced activations in the letter-selective region as predicted. Instead, activations for 

this group changed in a more distributed manner. A greater emphasis was put on the 

medial parts of the ventral occipitotemporal cortex after training. These medial parts also 

showed a preference for object presentation in the periphery of the visual field, and for 

basic-level categorization relative to subordinate-level categorization. 

I conclude my dissertation with CHAPTER IV in which I discuss the implications 



 xi 

concerning the role of experience in forming functional specialization in the visual object 

recognition system. I also discuss how the comparison of multiple types of training can 

help answer broader questions concerning perceptual expertise. 
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CHAPTER I 

 

ACCOUNTING FOR CATEGORY SELECTIVITY IN THE VISUAL OBJECT 
RECOGNITION SYSTEM 

 
 

One of the most well-known and difficult questions in vision science is how the 

human visual system recognizes a wide range of objects so efficiently. One recipe for 

such achievement may be functional specialization, in that different neural substrates are 

best at processing different aspects of the visual input. Perhaps the most well-known 

example is the separation between the “what” and “where” pathways, i.e., the ventral 

visual stream focusing on form and object recognition, and the dorsal visual stream 

concentrating on spatial vision (Goodale et al., 1991, p.457; Haxby et al., 1991). Apart 

from this distinction, research has further revealed that within the ventral visual pathway, 

different regions are responsible for different categories of objects (see review in Grill-

Spector & Malach, 2004). The functional organization of the object recognition system 

underlying such category selectivity remains a matter of intense debate. 

This chapter will first review the findings of category selectivity in the visual 

object recognition system, with an emphasis on face and letter perception, two heavily 

studied cases of expert object perception. The chapter will then evaluate theories of 

category selectivity and discuss the difficulties in testing the theories. This chapter will 

conclude by stating that one promising way to approach the question is to compare the 

effects of different novel object training procedures, a basis of this dissertation. 
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Category selectivity in visual object recognition system 

The suggestion of functional specialization within the visual recognition system 

first came from neuropsychological findings of double dissociations between, for 

instance, deficits in face vs. non-face perception, scene vs. non-scene perception, and 

word vs. non-word perception (see review in Farah, 2004). With the advance of 

neurophysiological and neuroimaging research, it has been revealed that within the object 

recognition system located in the ventral visual pathway, different substrates respond 

with some selectivity to different objects over others, including faces (Allison et al., 

1994a; Bentin et al., 1996; Kanwisher et al., 1997; Puce et al., 1996; Xu, 2005), scenes 

and buildings (Epstein et al., 1999; Epstein & Kanwisher, 1998), body parts (Downing et 

al., 2001), tools (Chao et al., 1999; Noppeney et al., 2006), and letters and words (Cohen 

et al., 2000; Gauthier et al., 2000b; Hasson et al., 2002; James et al., 2005; Polk et al., 

2002; Puce et al., 1996). 

Face and letter selectivity probably represent the best examples of object 

selectivity as they are frequently studied and contrasted. In recent years, a growing 

number of studies have highlighted behavioral and neural differences between the brain 

regions recruited by the two categories, as reviewed below. 

 

Selectivity for face perception 

The earliest indication of face selectivity in the object recognition system comes 

from studies of patients with impaired face perception but less impaired or normal ability 

to recognize non-face objects (see reviews in Farah, 2004; McNeil & Warringtion, 1991; 

Young, 1992). EEG studies have shown that visual presentation of a face elicits more 
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activity than other objects (e.g., flowers, cars, hands, furniture) at posterior channels at 

about 170 ms after stimulus onset (Bentin et al., 1996; Rossion et al., 2000). Intracranial 

recordings and brain imaging studies have confirmed that a right (sometimes bilateral) 

ventral occipitotemporal area, including parts of the fusiform gyrus, is more strongly 

activated by faces than over a dozen other object categories (Allison et al., 1994a; 

Downing et al., 2006; Kanwisher et al., 1997; Puce et al., 1996; Tarkiainen et al., 2002). 

This area has been named the “fusiform face area” (FFA) for its preference for face 

processing. 

A few behavioral signatures have also been suggested to differentiate between 

processing for faces and non-face objects. Face recognition is associated with a much 

smaller basic-level advantage than object perception. For instance, people can identify a 

face (e.g., as “Elvis Presley”) as fast as they can say it is a face (Tanaka, 2001). In 

contrast, objects are generally categorized faster at the basic level (e.g., bird) than at a 

subordinate level (e.g., robin) (Rosch et al., 1976; Tanaka, 2001). Another phenomenon 

is the inversion effect, where recognition performance suffers more from inverting a face 

than a non-face object (Yin, 1969). Besides, faces seem to be processed in a more holistic 

manner. One demonstration is the part-whole effect (Tanaka & Farah, 1993), where 

judging which of two face parts appeared in a previously presented face is easier when 

the face parts are in the context of a whole face than when they are presented in isolation. 

Another indicator is the composite effect (Young et al., 1987), where identifying one half 

of a composite face (formed with top and bottom halves of different faces) is harder when 

the other, inconsistent half is aligned with the relevant half than when the two halves are 

misaligned. Subsequent studies that filtered out the effect of response bias confirmed the 
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effect (Gauthier et al., submitted). It is also found that the probability of identifying a 

whole face is greater than the sum of the probabilities of identifying its two halves (Yovel 

et al., 2005), again suggestive of the holistic nature in face processing. 

 

Selectivity for letter perception 

The indication of selectivity for letter perception began with a case study of a patient 

suffering from a left inferior occipitotemporal lesion and the inability to recognize letters and 

words, while having no trouble speaking, writing or recognizing other visual material (Bub 

et al., 1993). This deficit, called pure alexia, was interpreted as a specific deficit in 

processing orthographic codes, or word forms. Since then word forms have been regarded as 

perceptual units with distinct representations, and a visual word form system has been 

proposed for the parsing of letter strings into familiar units for further analyses (Carr & 

Pollatsek, 1985; Warrington & Shallice, 1980). Recent neuroimaging studies have identified 

a visual word form area (VWFA) in the left inferior occipitotemporal region, including parts 

of the left fusiform gyrus, which may be responsible for such processes (Cohen et al., 2000). 

This area has been suggested to be responsible for reading-specific processing of an ordered 

string of letters or graphemes, invariant to changes in location, case, and font (Cohen & 

Dehaene, 2004; Cohen et al., 2002; Dehaene et al., 2004; Dehaene et al., 2002; McCandliss 

et al., 2003), although alternative interpretations exist (Price & Devlin, 2003; Vigneau et al., 

2005; Vinckier et al., 2007). 

Meanwhile, there is evidence for the role of a left inferior occipitotemporal region 

in processing letters outside of the word context. For example, intracranial recordings in 

bilateral posterior fusiform gyrus have found a larger N200 component for letterstrings 
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(in the form of words, pronounceable pseudowords, or consonant strings) than for cars 

and butterflies (Allison et al., 1994b; Nobre et al., 1994). Neuroimaging studies have 

revealed higher activations for consonant strings compared with textures and faces (Puce 

et al., 1996), with faces and buildings (Hasson et al., 2002), and with digit strings (Polk 

et al., 2002). Some findings further suggest that the left occipitotemporal region also 

plays a crucial role in single letter processing. An EEG study showed that at posterior 

channels an early negative component occurring at about 170 ms after stimulus onset was 

enhanced with single, familiar characters compared with unknown characters or 

pseudoletters (Wong et al., 2005). An MEG study has also shown an early component at 

about 150-200 ms that is larger for single letters than geometric shapes (Tarkiainen et al., 

1999). A PET study revealed a correlation between the activity level in the left 

occipitotemporal region and the performance of discrimination between letters and 

symbols (Garrett et al., 2000). In addition, fMRI studies have shown higher activations in 

the left fusiform gyrus for letters than for oblique lines (Longcamp et al., 2003), Chinese 

characters (James et al., 2005), and objects and faces (James & Gauthier, 2006).  Further, 

higher activations have been found for letters compared with faces in a bilateral 

occipitotemporal region (Gauthier et al., 2000b) and in the left occipitotemporal region 

when attention was paid to letters compared with colors and symbols (Flowers et al., 

2004). Finally, higher activations have been shown for letters and words in one’s familiar 

than unfamiliar writing system, indicating the role of experience in forming letter 

selectivity (Baker et al., 2007; Wong et al., submitted). 

Importantly, single letter processing has been shown to recruit separate neural 

substrates from word and letterstring processing. A recent study found that a fusiform 



 6 

region anterior to the VWFA showed selectivity for single letters but not letter strings, 

while a region overlapping with the VWFA showed selectivity for strings but not single 

letters (James et al., 2005). Overall, the finding of letter-selective areas with different 

visual controls provides strong evidence for the pivotal role of the left inferior 

occipitotemporal region in visual processing of letters. 

Finally, work conducted in our own and other labs has also found a number of 

behavioral phenomena specific for letter processing. One phenomenon is that expert letter 

perception is associated with an increase in the basic-level advantage. While all observers 

show a basic-level advantage with novel characters (i.e., faster at recognizing a character 

as a “B” than as a “B in Arial”) just like other common objects, this basic-level advantage 

becomes even larger for those who are experts with the characters in the writing system 

(Wong & Gauthier, in press). Letter perception has also been shown to be sensitive to 

regularities in font (Gauthier et al., 2006; Sanocki, 1987, 1988, 1991) and orientation 

(Jolicoeur, 1990), such that recognition of letters in a string is faster when the letters are 

in the same than different fonts or orientations.  

 

Contrasting face and letter selectivity 

In summary, face and letter selectivity are associated with very different neural 

activity patterns and behavioral signatures. Face perception tends to activate the middle 

fusiform region with a right preponderance, whereas letter perception tends to activate a 

more lateral region in the inferior temporal gyrus with a left preponderance. Face 

perception has a smaller basic-level advantage than common objects, whereas expertise 

with letter perception is related to an increase in such an advantage. Face perception is 
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suggested to proceed in a holistic manner. Letter perception involves rapid recognition of 

multiple instances and is affected by contextual factors like regularity in orientation and 

fonts. 

Why would there be different recognition behaviors and neural selectivity patterns 

for different categories such as faces and letters? One would think that this question 

would be easy to answer given our understanding of the organization of the visual object 

recognition system. Theoretical accounts of the organization of the ventral 

occipitotemporal cortex have suggested factors that affect object selectivity. However, as 

discussed later, there is no satisfactory answer to the question yet, due to the insufficient 

empirical work that tests the unique contributions of different factors. The explanation of 

different face- and letter-selective areas, therefore, would be an important step in our 

pursuit of understanding object selectivity and the organization of object recognition 

system in general. 

 

Theories about object selectivity 

In recent years different theoretical views have emerged to explain existing data 

on object selectivity. They can be summarized as module-based, feature-based, and 

process-based views. These theories focus on different aspects of the issue and offer 

some ideas on how to characterize the different areas selective for faces and letters. Two 

questions will be emphasized. First, why is there selectivity for faces and letters? Second, 

why are the areas selective for faces and letters different?  
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Module-based view 

According to this view, there are in the ventral stream several domain-specific 

modules for important categories, while the rest of the region is a general area 

responsible for the recognition of all other objects (Downing et al., 2006; Kanwisher, 

2000; Spiridon & Kanwisher, 2002; Yovel & Kanwisher, 2004). Support for this view 

comes from the finding that certain ventral areas show a high degree of category 

selectivity. For example, areas selective for faces, scenes, and body parts respond 

significantly higher to their preferred category than to each of 18 other categories 

(Downing et al., 2006). It should be noted, however, that even in these areas, responses 

are not all or none. Instead, there is a gradation from the highest to the lowest responses 

across categories, suggesting that these areas are highly selective but not completely 

domain-specific.  

Concerning the finding of graded and overlapping activity for different categories, 

it has been argued that standard imaging studies have a low spatial resolution, such that 

the measured activity is a result of pooling across distinct neural populations that respond 

exclusively to a category (Peelen & Downing, 2005). On this account, fMRI techniques 

with a higher resolution are expected to be able to reveal the activity of ‘true’ modules. 

This idea gains initial support from the finding that the areas selective for faces and body 

parts, though close to each other, can be dissociated using high-resolution fMRI 

techniques (Schwarzlose et al., 2005). A recent high-resolution fMRI study showed that 

within the FFA defined by standard-resolution fMRI, some voxels showed a higher 

selectivity for faces than other voxels (Kalanit Grill-Spector et al., 2007). It should be 

noted that, even with such a high resolution (1 × 1 × 1-mm voxel size), the most face-
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selective voxels still show some activity to other categories relative to scrambled images. 

It remains to be seen if the high selectivity will still be observed with a larger number of 

control categories included. Also, it may be difficult to explain why in that study some 

voxels are selective for categories like novel sculptures for which a module would not be 

expected.  

It is speculated that objects that recruit domain-specific modules do so because 

they meet three special conditions: (1) they are critical for survival over the course of 

evolution; (2) they are frequently encountered during one’s life span; and (3) they are 

highly constrained in their geometry, i.e., “the visual appearance of exemplars of the 

stimulus class is highly constrained” (Downing et al., 2006, p.7). 

How well does the module-based view explain the existence of face-selective and 

letter-selective areas? Face perception meets the above-mentioned conditions well. Letter 

perception, however, probably does not meet the first condition. Writing appears too 

recent a human accomplishment (since about 5400 years ago) for evolutionary forces to 

cause development of a letter-selective area from scratch. It could be that evolution 

modified existing object recognition devices to create a letter area in 5400 years (or 270 

generations). But to argue for such a case one has to show that the ability to read was 

critical for natural selection, and significantly increased the chance of survival over the 

majority of human population throughout the 5400 years. It is doubtful whether 

evolutionary significance is involved in the emergence of a letter-selective area. 

Regarding why different areas are selective for faces and letters, the module-

based view apparently does not offer a specific answer.  Nevertheless, one can infer from 

the conditions listed above that the reason may be related to the differences in our 
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experience with faces and letters and to their physical properties. Exactly what 

differences in experience and physical properties are involved requires further 

investigation.  

 

Feature-based view 

This account suggests that the ventral stream is organized in terms of continuous 

object-form topography, such that neighboring neural substrates represent similar features 

or dimensions (Carlson et al., 2003; Cox & Savoy, 2003; Haxby et al., 2001; Ishai et al., 

1999; O'Toole et al., 2005; K. Tanaka, 1996, 2003). Contrary to the module-based view, 

the feature-based view stresses that there is no absolute neural specialization for certain 

object categories. Instead, object representations are widely distributed and overlapping. 

An object may cause large responses in certain areas and low responses in others, but 

both the large and small responses are important parts of the population coding for the 

object. Support comes from findings that response patterns across different regions of the 

ventral temporal cortex contain diagnostic information for discriminating among different 

object categories (e.g., faces, houses, cats, chairs, shoes etc.). Even regions with high 

selectivity for certain objects (e.g., faces in the FFA) contain diagnostic information for 

categorization among non-preferred objects (Haxby et al., 2001). It has also been found 

that how much object categories are confused with each other in terms of physical 

properties is correlated with how much the categories are confused in terms of fMRI 

response patterns in a wide region of the ventral temporal cortex (O'Toole et al., 2005). 

From these results it is claimed that all parts of the ventral temporal cortex are equally 

important in representing a particular object category. 
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If indeed different parts of the object recognition system are equally useful for 

representing different objects, irrespective of activity level, then it would not be very 

meaningful to examine the origin and importance of the category-selective areas. 

However, regions within the ventral temporal cortex that prefer certain categories (e.g., 

FFA and the parahippocampal place area, PPA) have greater discriminatory power for 

categorization involving the preferred objects compared with other objects (O'Toole et 

al., 2005; Spiridon et al., 2006). Also, the activity in focal areas like the FFA is correlated 

with behavioral measures of expertise (Gauthier & Tarr, 2002). These all indicate that 

representations of objects are not fully distributed. 

Similarly to the module-based view, the feature-based view does not readily 

explain why strong selectivity occurs for categories like faces and letters but not for many 

other objects. One can speculate, however, that since faces and letters are much more 

frequently seen than many other objects, neurons that prefer relevant features may 

gradually be tuned to respond more to faces and letters. And concerning why areas 

selective for faces and letters are different, the most straightforward explanation would be 

that these two categories have very different physical properties. 

 

Process-based view 

This view argues for a process map in the ventral temporal cortex, in which 

different substrates support different computations and are thus best suited for different 

recognition demands (Bukach et al., 2006; Gauthier, 2000; Tarr & Gauthier, 2000). The 

central notion in this theory is that it is “recognition demand” and “experience” that 

determine which neural substrates are selectively recruited for a certain object. Different 
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object categories are associated with different recognition demands, and through 

experience, perhaps through feedback from parietal and frontal cortices (Freedman et al., 

2001), the system learns to recruit the best neural substrates to fulfill the different 

demands associated with an object category. Recognition demand in this context refers to 

the task one needs to accomplish for successful recognition. Examples of such demands 

can include distinguishing among similar objects, finding similarities among dissimilar 

objects, encoding objects in terms of spatial layout, etc. The strongest support for a role 

of experience in accounting for category selectivity comes from studies of face 

selectivity. The process-based view suggests that the FFA is involved in fine-grained, 

subordinate-level discrimination, and faces tend to selectively activate this area because 

faces are among the few categories that require subordinate-level discrimination. 

Accordingly, other object categories can also activate the FFA to a high extent when 

subordinate-level discrimination is involved. Indeed, it has been found that the FFA 

shows higher activity with subordinate-level identification of non-face objects compared 

with basic-level categorization (Gauthier et al., 1997). In addition, selectivity has also 

been shown in the FFA for objects in domains of real-world expertise that involve 

subordinate-level categorization, such as birds for bird watchers and cars for car experts 

(Gauthier et al., 2000a; Xu, 2005; but see Grill-Spector, Knouf, & Kanwisher, 2004). 

Furthermore, after one learned to identify computer-generated, novel objects in fine 

detail, the FFA began to develop selectivity for the novel objects, with correlations 

between the activity level and behavioral measures of holistic processing (Gauthier & 

Tarr, 2002; Gauthier et al., 1999; Rossion et al., 2004; but see Kanwisher, 2000). In 

addition, interference has also been shown between car and face processing for car 
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experts but not car novices, providing further evidence for the use of overlapping 

substrates for faces and objects that share a similar recognition demand of subordinate-

level discrimination (Gauthier et al., 2003). 

Recently a separate line of research has examined one dimension along which 

recognition demand varies. It was revealed that in the ventral occipitotemporal cortex 

areas selective for different object categories correspond to the distribution of areas 

preferring foveal vs. peripheral presentation (Hasson et al., 2003; Hasson et al., 2002; 

Levy et al., 2001; Levy et al., 2004). For instance, face- and letter-selective areas are 

situated at more lateral regions (closer to the left and right boundaries of the brain). These 

same regions also have a foveal bias, i.e., a preference for object presentation at the 

fovea. On the contrary, scene-selective areas are in the more medial regions (closer to the 

midline of the brain). These regions respond more to object presentation in the periphery 

of the visual field. Based on this finding, a continuum was suggested such that at one 

extreme substrates mainly represent foveal regions with higher cortical magnification, 

enabling high-resolution object analyses; at the other extreme substrates represent 

peripheral regions with a lower cortical magnification and thus suitable for coarse 

analyses and large-scale integration (Malach et al., 2002). Accordingly, recognition of 

object categories with different resolution demands should be associated with different 

cortical areas through experience (Hasson et al., 2003; Malach et al., 2002).  

According to process-based view experience plays an important role in the 

development of object selectivity. This is similar to one of the conditions for the 

development of a domain-specific module suggested by the module-based view: faces 

and letters develop selectivity because we have extensive experience with both categories 
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during our lifetime. The process-based view goes further to distinguish between different 

types of experience. Faces and letters recruit different areas because our experiences with 

these categories are different. Our recent work has begun to compare face and letter 

perception. For example, while face perception typically demands categorization at a 

subordinate level (discriminating among faces with similar parts in the same general 

configuration), letter perception requires basic-level categorization (distinguishing 

between letters with different parts from each other) (Wong & Gauthier, in press). It has 

been suggested that because of the demand for subordinate-level categorization, face 

perception and similar types of object expertise may thus rely on mechanisms that are 

“holistic”, in the sense that experts tend to process all the parts of a face, even when 

instructed to selectively attend to only one part (Gauthier et al., submitted; Young et al., 

1987). In addition, face experts appear to rely on configural or relational information 

(e.g., the distance between parts) more than they do for other objects (Tanaka & Sengco, 

1997). On the other hand, experience with letters is unique in that letters mostly occur in 

spatially organized clusters (as in a text where letters are well aligned and have a regular 

size and style). Such regularities in font can facilitate the recognition of letters at the 

basic level (Sanocki, 1987, 1988, 1991), in a similar way as voice regularity can facilitate 

the recognition of speech (Dupoux & Green, 1997; Mullennix et al., 1989). In our recent 

work, this “font-tuning” effect was shown to be associated with expert but not novice 

perception of Roman letters and Chinese characters (Gauthier et al., 2006). Hence, the 

different recognition demands and experiences associated with face and letter perception 

can be important factors for the different areas found to be selective for faces and letters. 
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Difficulty in studying individual factors 

The theories and the body of empirical studies have improved our understanding 

of object selectivity in human visual system. Whether the category selectivity found 

provides sufficient support for domain specificity in the ventral stream is still under 

debate, but it is believed that object representations in the ventral occipitotemporal cortex 

are at least not completely distributed. Category-selective areas not only have higher 

activity but also contain more diagnostic information for their preferred categories. 

Different factors have been suggested to explain the recruitment of different areas for 

different object categories. Physical properties of the objects, recognition demand, and 

experience are some of the important factors. 

So, going back to the question raised in the beginning, do we now understand why 

the areas selective for faces and letters are different? There are several possible answers. 

It can be because faces and letters have very different physical properties. Another 

possibility is that these differences are caused by the different recognition demands that 

characterize face and letter recognition. Another important factor not addressed by the 

theories above is that faces and letters are associated with different higher-level 

functions. Face perception has close links to emotional processing and social cognition, 

while letter perception is tightly tied with different language-related processes like 

reading, speaking, and writing. It is plausible that the need to connect to the higher-level 

areas may have constrained the locations of the face- and letter-selective areas. It is 

unknown whether all these factors are necessary to account for the different face- and 

letter-selective areas, or which factor is the most important. Such a problem also applies 

to comparisons involving other areas such as those selective for body parts and scenes. 
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The difficulty in evaluating the unique contribution of a particular type of factors 

on object selectivity comes from the fact that real-world object categories differ in 

multiple ways. It is interesting and informative to know that physical properties of objects 

correlate with neural activity patterns, and locations of category-selective areas seem to 

overlap with the eccentricity map. But these studies are all correlational, with a number 

of other confounding factors not controlled. 

 

The study of the effects of experience with object training 

Training with novel objects 

Recently there are a number of fMRI training studies using novel objects. They 

have demonstrated a way to study the unique contributions of particular factors in object 

selectivity. The training studies focused on the effect of experience, and the use of novel 

objects allowed a test of the effect of experience, with less confounds from processing 

beyond visual object processing. The “Greeble” training studies are among the first of 

them (Gauthier & Tarr, 2002; Gauthier et al., 1999; Rossion et al., 2004).  

The first fMRI training study of object expertise used novel, complex objects to 

test the hypothesis that specialization of the FFA stems from expertise with faces 

(Gauthier et al., 1999). Participants learned to categorize 20 novel objects (Greebles – see 

Figure 1A) at an individual level in naming and name-verification tasks with feedback. 

Participants also learned labels to categorize the Greebles at higher level of abstraction, 

for example at the family level (defined by the central body shape of each object) or their 

gender (defined by the orientation of the four parts, all up or down). Greeble stimuli are 

highly distinctive and include highly redundant information diagnostic for each level of 
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categorization. That is, Greeble family can be determined by the shape of the central 

body, which can be captured in a relatively local part of the contour for this shape. 

Greeble gender can be perfectly determined by the upward or downward pointing 

orientation of any of the four protruding parts. Finally, individual Greebles can be 

individuated on the basis of any of several local features, as each part of each Greeble is 

unique within the set. Participants were scanned in repeated fMRI sessions before, 

during, and after the training with entirely novel Greebles. Training led to a decrease in 

the basic-level advantage (i.e., individuation became as fast as family categorization). 

Neurally, training increased activity in the right fusiform face area (FFA) during 

matching of upright Greebles compared to inverted Greebles. Passive viewing of 

Greebles also showed increases in FFA activity, compared to common objects. 

Behaviorally, Greeble experts showed modest increases in configural and holistic 

processing of untrained Greeble exemplars, and holistic processing was correlated with 

activity in the FFA (Gauthier & Tarr, 2002). Only the temporal lobe was imaged, and the 

only other areas showing increases in expertise were the left and right occipital gyrus, in 

area LOC (Talairach Coordinates: 48, -72, -6 and -43, -78, -4), and a face-selective 

region of the anterior right temporal lobe (41, -30, -16). The results are consistent with 

several studies of real-world expertise (e.g., with cars and birds) where objects of 

expertise recruit the FFA, and the FFA response is strongly correlated with behavioral 

measures of expertise (Gauthier et al., 2005; Gauthier et al., 2000a; Grelotti et al., 2005; 

Xu, 2005). This similarity may not be surprising, as Greeble training, unlike any of the 

other trainings reviewed below, was designed to model real-world expertise (Gauthier & 

Tarr, 1997; Gauthier et al., 1998), for example by using discrete stimuli with unique 
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features and by using a training criterion (decrease in basic-level advantage) that is a 

hallmark of real-world expertise (Tanaka & Taylor, 1991). It was concluded that face 

selectivity is a result of prolonged experience in performing fine-detailed discrimination 

with an object category, and thus similar behavioral and neural patterns can be developed 

for other objects (Bukach et al., 2006; Gauthier, 2000). 

 

 

 
 
 
 
Figure 1. Stimuli used in different object training studies. Adapted from (A) Gauthier et 
al., 1998, (B) Moore et al., 2006, (C) Yue et al., 2006, (D) Op de Beeck et al., 2006, and 
(E) Weisburg et al., 2006. 
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Similar training-induced changes in the face-selective regions have been found 

with a different object set and training procedure (Moore et al., 2006). Participants 

trained for 10.5 hours with one of two categories of complex 3D novel objects (Figure 

1B). Training used both categorization and discrimination tasks, and practice holding 

objects in memory for delayed matching. Two object categories (trained and untrained) 

were counterbalanced across participants. Following training, participants performed 

better in a working memory task with trained than untrained objects, and showed an 

inversion effect for trained objects only. During fMRI, participants matched two objects 

shown sequentially. The trained category led to higher activations than the untrained 

category in dorsolateral prefrontal cortex (DLPFC), posterior occipitotemporal cortex 

(OTC – Talairach coordinates: -35, -67, -4), and intraparietal sulcus (IPS) during working 

memory encoding and maintenance. Region of interest analyses also showed expertise 

effects of the same magnitude in the LOC and FFA (although more variable in the FFA), 

only during encoding. However, the changes did not correlate with behavioral measures 

of expertise. 

Yue et al. (2006) also attempted to induce face-like training effects by training 

participants to discriminate 'blobs' (Figure 1C) in a match-to-sample task for 8 hours. A 

very specific behavioral marker of expertise was used, based on the hypothesis that face 

(but not object) representations retain the original spatial frequency and orientation 

information. Behaviorally, sensitivity to spatial frequency content was observed for faces 

but not for blobs, even in blob experts. Neurally, the FFA showed sensitivity to spatial 

frequency content of both faces and blobs, regardless of expertise. The right LOC was the 

only region reported to show a larger response to blobs with expertise, although it 
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showed no sensitivity to spatial frequency content. A potential problem with this study is 

that participants were trained with blobs from one part of a shape space and tested for 

expertise effects on a completely non-overlapping part of that space (see Fig1b). Thus, 

transfer across trained and tested objects could have been mainly domain-general rather 

than domain-specific. Whereas transfer to untrained exemplars is a hallmark of 

perceptual expertise, it is useful to test experts with transfer exemplars that are part of the 

trained shape space, and to use control stimuli not expected to show domain-specific 

effects. At least two studies of extant expertise do not report any expertise effect in the 

visual system, and in both cases test objects were from an unfamiliar domain (antique 

cars shown to modern car experts, Grill-Spector et al., 2004; see also Rhodes et al., 

2004). 

A recent discrimination training study (Op de Beeck et al., 2006) was perhaps 

more successful in creating categories of novels objects (smoothies, spikies and cubies – 

see Figure 1D) that should reduce transfer to control objects. Participants performed a 

match-to-sample task with increasingly similar objects for 10 hours with only one of 

these categories. Although there was some learning for untrained categories, there was 

reliable training-specific improvement in shape discrimination. fMRI scans were 

performed before and after training, using a color change detection task with trained and 

untrained objects. More voxels preferred the trained to untrained classes after training. 

While area LO and posterior fusiform showed a preference for trained than untrained 

classes after training, the right FFA and V1/V2 did not. Interestingly, analyses of changes 

in distributed patterns of selectivity showed that experience produced qualitative changes 

in the spatial distribution of responses, rather than simply increasing the signal in voxels 
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that showed stimulus selectivity in novices. This suggests that pre-existing biases for 

object geometry may not play a large role in determining the end point of expert 

responses. 

Finally, one more training study is reviewed here, although its design departs even 

more from those which use identity, discrimination or categorization training. In this 

study, learning involved real interactions with novel objects (Weisberg et al., 2006). 

Participants were trained for 4 ½ hours to use novel objects made of construction toys 

(Figure 1E) so as to manipulate other items (e.g., crushing paper cup, lifting and 

transferring items between containers, etc.). Performance (in terms of time spent to finish 

each action task) improved within and across sessions. Before and after training, 

participants matched objects with different views of both trained and untrained objects 

during fMRI. Activity increased after training for both trained and untrained objects in 

the left middle temporal gyrus, IPS, and premotor cortex. In the anterior part of each of 

these regions however, increases were specific to trained objects. Also, activity increased 

(for both trained and untrained objects) in the medial part of the fusiform gyrus (thought 

to respond more to tools) but decreased in the lateral part (known to prefer faces and 

animate objects). Thus, like most other studies, this work shows some generalization 

from trained to untrained objects, although in this case different trained objects were as 

structurally different as different objects from the trained and untrained groups. This 

work reveals that experience with objects that are from the start easily discriminated, and 

which does not involve discrimination training but rather associations of functional 

information with each object can nonetheless lead to changes across the brain including 

in visual areas.  
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The need to go beyond one type of training  

The fMRI training studies with novel objects have offered a promising way in 

showing the effect of experience on object recognition. These studies have shown, for 

example, that face-selective regions are not recruited exclusively for face processing 

only. Instead, given the right kind of experiences (like those in the Greeble studies), 

behaviors and neural activity associated with face-like perception can also be shown with 

non-face objects. In addition, higher-level processing (like processing of functional 

information of objects) can also be associated with an object category and affect what 

neural substrates are recruited for them. 

Despite the success of these studies, I would argue that to better illuminate the 

unique contributions of a single type of factors, it is necessary to compare two or more 

types of training in a single study. First, these different training studies produced different 

results and it is hard to pinpoint the reason given the many differences in the stimuli (see 

in Figure 1) and procedure used.  For instance, subordinate-level training results in 

behavioral expertise effects correlated with FFA activity increase in the Greeble study 

(Gauthier et al., 1999) but did not work as well in other studies (Moore et al., 2006; Op 

de Beeck et al., 2006; Yue et al., 2006). It could be that only objects that look animate 

like Greebles can result in FFA activations after training. Or the requirement to identify 

individuals with names may be the key. While Gauthier et al. (1999) and Moore et al. 

(2006) used names and found training effects in the FFA, Yue et al., (2006) and Op de 

Beeck (2006) used a match-to-sample task with no names introduced and did not obtain 

any training effect in the FFA. It is also possible that the ‘family’ and ‘gender’ levels in 

the Greebles study created a “human” context, making one treat the Greebles more like 
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persons. These are just a few possible reasons among many. This demonstrates that even 

in novel object training, multiple factors (in terms of stimulus properties, recognition 

demand, semantic context, etc.) can account for a specific training result. With over one 

type of training in a study, one can specifically manipulate one type of factors while 

better controlling possible confounds. For example, it would be good to introduce 

different experiences using the exact same objects with no semantic context to probe the 

effect of task demand more directly, with stimulus properties and semantic association 

controlled. 

Another reason for the need to introduce more than one type of training in a study 

is that to understand the functional specialization of the whole object recognition system 

one cannot just study one type of object selectivity. Because Gauthier et al., (1999) found 

Greeble expertise to engage the FFA, several studies have queried training effects in this 

region. With more understanding of selectivity for other categories, it is good to start 

studying regions other than the face-selective areas. Weisberg (2006) made a good step in 

studying the selectivity for tools, but again it would be more fruitful to be able to show 

how in one study different types of training lead to different selectivity patterns. 

Little imaging research has been conducted to contrast two types of training with 

novel objects. The closest study is one probing the neurophysiological correlates of 

categorization training at the basic and subordinate levels (Scott et al., 2006). Fifteen 

participants learned in six sessions to categorize one of two bird types (owls and wading 

birds) at the basic level (e.g., owl) and the other type at a subordinate level (species, e.g., 

snowy owl) such that categorization speed at the subordinate level approached that at the 

basic level. Before and after training they performed subordinate-level matching with the 
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birds while an EEG was recorded. Accuracy improved only for the bird type trained at 

the subordinate level, and learning generalized to new exemplars of the same species as 

well as new species of the same type. Whereas the N170 component was enhanced 

regardless of training level, a later N250 component increased only for the bird type 

trained at the subordinate level. These results showed both similarities and differences in 

categorization training at different levels of abstraction. The study demonstrated a good 

way to study the effect of a specific factor (levels of categorization).  

 

Summary and implications 

The origins of object selectivity in the visual object recognition system have been 

a matter of intense debate. Although different types of factors have been suggested to 

account for such selectivity, it is difficulty to pinpoint the unique contribution of any 

single type of factors. Training studies with novel objects represents a promising 

approach to the research question, especially if the effects of different training procedures 

can be directly compared within a study, something that has not been commonplace. 

This dissertation will capitalize on the success of previous Greeble training 

studies and go beyond them by examining the effects of different types of training on 

activity in the visual object recognition system. It has been shown that different object 

categories (e.g., faces, cars, birds and Greebles) can activate a common area (the FFA) 

apparently because of a common recognition demand (subordinate-level categorization). 

The current study will extend to other parts of the object recognition system by testing 

whether the same set of novel objects will recruit different areas with different 

recognition experiences during training. The specific question of interest is: Is 
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recognition experience alone sufficient to account for the different areas selective for 

faces and letters? CHAPTER II reports the specifics of the training paradigm and the 

behavioral effects, and CHAPTER III reports the neural training effects. 



 26 

CHAPTER II 

 

BEHAVIORAL CONSEQUENCES OF OBJECT RECOGNITION EXPERIENCES 
MIRRORING FACE AND LETTER RECOGNITION 

 

Introduction 

Face and letter perception probably represent the most frequently studied and 

contrasted cases of expert object recognition. As described in CHAPTER I, face and 

letter perception have been associated with different behavioral and neural signatures of 

expertise. One theory about the organization of the ventral visual object pathway posits 

that the different neural substrates recruited for different object categories is the result of 

prolonged experience in fulfilling different task demands associated with different 

categories (Bukach et al., 2006; Gauthier, 2000). Accordingly, the different experiences 

associated with letters and faces may be sufficient to explain the different behaviors for 

letter and face perception. Specifically, face perception requires fine-detail discrimination 

among individuals within a homogeneous set, whereas letter perception requires one to 

rapidly perform less detailed basic-level categorization for multiple instances 

simultaneously (Wong & Gauthier, in press). However, faces and letters are also 

drastically different in other aspects. Faces and letters contain completely different 

stimulus properties, and are associated with different higher-level processes (e.g., social 

and emotional processing for faces, phonological and linguistic processing for letters). 

To directly test the contribution of different recognition experiences to the 

different selectivity patterns found for faces and letters, I adopted a training paradigm 

inspired by the Greeble training studies (Gauthier & Tarr, 1997; Gauthier et al., 1999; 
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Gauthier et al., 1998) and extended it. Two types of training experiences, mirroring face 

and letter perception respectively, were introduced to two groups of participants on the 

same set of objects. A set of novel, computer-generated objects (‘Ziggerins’) were 

presented during one of the two training procedures that mirrored the experience of face 

and letter recognition. With the same set of novel objects used across the two training 

procedures, the study allowed a relatively pure test of the effect of recognition experience 

on neural activity, without the confounds caused by differences in physical properties and 

higher-level processing associated with familiar objects. 

 “Face-like” training was defined as learning to discriminate objects that share a 

common part structure. This sort of training was designed to model real-world 

subordinate-level object and face expertise (Tanaka, 2001; Tanaka & Taylor, 1991) and 

has been used before and shown to result in a variety of behavioral and neural effects that 

are typically elicited by faces (Gauthier & Tarr, 2002; Gauthier et al., 1999; Rossion et 

al., 2004; Scott et al., 2006).  

“Letter-like” training was defined as learning to categorize objects based on 

common part structures (at the basic level). It is expected that successful training should 

result in an enhancement of the basic-level advantage (based on Wong & Gauthier, in 

press) and higher ability in making use of regularities at the subordinate level (Gauthier et 

al., 2006; Sanocki, 1987, 1988, 1991). Thus, while the goal of letter perception, in the 

context of reading expertise, requires distinguishing objects at the basic level, the letter 

input differs from typical object input in that it offers regularities in style (font, shape, 

size) that can be used for more efficient basic-level access (Gauthier et al., 2006; Wong 

& Gauthier, in press). 
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Letter-like training of this sort has not been implemented before, although related 

behavioral and neural expertise effects have been demonstrated with Chinese characters 

(Gauthier et al., 2006; Wong & Gauthier, in press; Wong et al., submitted). Following the 

strategy of Greeble training that caused recruitment of face-like processing without 

modeling all aspects of our rich experience with faces, the letter-like training 

implemented in this study did not try to model all aspects of reading experience either. 

For instance, mapping of objects onto a phonological system is purposefully not part of 

this training. In that sense, the operationalization of this training represents a hypothesis 

about whether some, but not all, aspects of our experience with letters are important for 

specialization of the letter- and string-selective areas in the ventral system. Importantly, 

we would expect that other areas engaged by words, such as the visual word form area 

and the brain-wide network involved in reading, require more “reading-like” training. 

While this study was inspired by the two different types of expertise that are face and 

letter perception, it was unclear to what extent we could get all of the training details 

right so as to achieve behavioral and neural outcomes which are truly “face-like” and 

“letter-like”. Indeed, one lesson from the literature review is that it remains very difficult 

to define what aspect of the training is sufficient or necessary for a given training 

outcome. In that spirit, a more realistic goal is to create two training experiences with the 

same category of objects that can result in different processing strategies and ultimately, 

result in the recruitment of different neural substrates. 

As discussed before, existing work has not conclusively answered why faces and 

letters activate selectively different areas in the ventral occipitotemporal cortex. Some 

theories also do not predict whether the areas selective for faces and letters would be 
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recruited respectively for the two types of training. For instance, the module-based view 

notes the importance of experience on the recruitment of a module, but does not 

explicitly state whether and why different types of recognition experience results in 

different modules. The feature-based view would be consistent with different results. If 

feature representations in the ventral occipitotemporal cortex are fixed, then the two types 

of training would result in the same area recruited because of the same object set used. 

Alternatively, if different types of recognition experience can change the features 

extracted even for the same objects, then activation of two areas would be expected. The 

process-based view would predict recruitment of different areas as long as recognition 

demand is one of the organizing principles of the ventral occipitotemporal cortex. Results 

of the proposed study, therefore, can offer important constraints for existing theories of 

the organization of the visual object recognition system. 

 

Overview of the Study 

The object set 

One main challenge of the current study was to create a set of stimuli suitable for 

both face-like and letter-like training. Face-like training (or Greeble-like training) 

requires structurally similar objects to be discriminated. Whereas different Greeble 

families have different body shapes (Figure 1A), they share a part structure. In earlier 

work (Wong & Gauthier, in press) we have argued that letter-expertise develops at the 

basic level, and can make use of regularities in style, which requires objects that can be 

grouped into different basic levels but share stylistic properties. The main challenge was 

thus to preserve important constraints of the Greeble training while building into the 
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object set stylistic properties as well as more variability at the family level than there was 

with Greebles, as necessary for letter-like training.  

The stimuli used were novel objects (“Ziggerins”) composed of a limited set of 

volumes similar to the "geons" described in Biederman’s recognition-by-components 

theory (Biederman, 1987). The asymmetric, inanimate, three-dimensional Ziggerins were 

designed in order to reduce their visual similarity to faces and letters, so that they would 

less likely be associated with faces or with letters a priori. They were created in such a 

way to allow categorization at different levels of abstraction (see Figure 2). The set 

contained six ‘classes’ that differ from each other in the composing parts, representing six 

different basic-level categories. Within each class, Ziggerins shared a similar basic 

structure and differed in the detailed manifestations of the parts (‘styles’). The styles 

applied to all classes such that there were 12 styles each with the six classes of Ziggerins. 

The inclusion of styles was important for the letter-like training as described below. 

 

Training 

The letter-like training was designed to mirror the experience of letter perception. 

Letter-like training required discrimination among different classes of Ziggerins and thus 

basic-level categorization. The different classes and styles in the Ziggerin set were 

analogous to the different letter identities in different fonts in letter perception. As seen in 

Figure 2, each row represents Ziggerins in different styles within a class, similar to the 

different fonts for a particular letter. Each column represents the different classes with the 

same style, corresponding to different letters in the same font. On the other hand, a large 

part of letter-like training involved presentation of different classes of Ziggerins in the 
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same style presented in a matrix, similar to how letters are presented during reading. 

Importantly, this was not word recognition or orthography training. Even though the 

Ziggerins were presented in clusters, recognition was always required for individual 

Ziggerins only. The learning of Ziggerin sequences should be minimized, as there were 

no names given to any sequence of Ziggerins and the order of Ziggerins were randomized 

during training. 

The design of face-like training was based on previous Greeble training studies 

(Gauthier & Tarr, 1997, 2002; Gauthier et al., 1999; Gauthier et al., 1998; Rossion et al., 

2004), with a few differences. First, the current study used a different set of objects from 

the Greeble study. Second, the Ziggerins in the current study, with different parts across 

classes, formed a more heterogeneous set than the Greebles that share the same first-order 

configuration of parts (compare Figures 1A and 2). This was because in the current study, 

the same objects were used also for letter-like training and thus had to include several 

classes. The heterogeneity of the Ziggerin set could lower the demand for subordinate-

level categorization and reduce the chance of obtaining face-like training effects as seen 

in previous Greeble studies. Therefore, to impose a greater demand for subordinate-level 

categorization in face-like training, special arrangements were made to the non-targets in 

different training tasks (as described in more detail later). For example, in one of the 

training tasks where participants had to choose one out of two alternative Ziggerins that 

match a label, the non-target could be another Ziggerin within the same class as the 

target, or the exact same target Ziggerin with just a random part of it slightly rotated or 

moved upwards or downwards. This was expected to raise the demand for detailed 

categorization, since the targets and non-targets would be more similar and the 
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participants would have to attend to all parts of a Ziggerin. Finally, an additional task was 

added to face-like training to further emphasize the demand for within-class 

discrimination. The task involved selecting one out of two Ziggerins that matched with a 

label (an individual Ziggerin’s name). This task has been used successfully in previous 

subordinate-level training with other objects like birds and cars (Tanaka et al., 2005). 

Overall, the face-like training was designed to match previous Greeble training as closely 

as possible while allowing for comparisons with the letter-like training procedure in this 

study.  

To summarize, the two types of training differed in three main ways. The first 

difference was the level of categorization. Letter-like training required discrimination 

among different classes of Ziggerins and thus basic-level categorization. Face-like 

training emphasized more detailed, subordinate-level discrimination among Ziggerins of 

different styles within each class. Secondly, to mirror the fact that letter recognition often 

requires rapid recognition of spatially organized clusters of letters presented, letter-like 

training also required participants to recognize multiple Ziggerins presented within 

spatially organized clusters in the same style. Certainly, during face perception there are 

situations when individual persons have to be picked out from the crowd. But this is 

relatively infrequent compared with the frequency at which letters occur in words and 

texts.  Therefore during face-like training Ziggerins did not appear in clusters. Thirdly, 

during letter-like training when the Ziggerins appear in clusters they were always in the 

same style. This style regularity did not occur during face-like training as the Ziggerins 

did not occur in clusters. 

Overall, as a first study contrasting face-like and letter-like training, the current 
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study introduced differences in the recognition experience between the two types of 

training, while minimizing the effects of stimulus differences and higher-level cognitive 

factors. Note that the goal of this study was to recreate face-like and letter-like expertise 

by manipulating recognition experiences, rather than to study the effect of one particular 

factor (e.g., level of categorization) in the consequent recruitment of neural substrates. 

Compared with previous studies that contrast face and letter expertise, this study went a 

large step forward by excluding the effects of stimulus differences and high-level factors. 

Therefore, instead of trying to equate everything but one factor between the face-like and 

letter-like training, a number of differences in experience was allowed.  

 

Pre- and post-training tests 

The behavioral pre- and post-training tests were used to assess the effects of the 

two types of training. The critical task for assessing the effect of training was the 

sequential matching task, which measured categorization performance at the basic and 

subordinate levels. While objects are typically recognized more efficiently at the basic 

than subordinate level, it has been shown that performance at the two levels are not 

different for perception of faces (Tanaka, 2001). Also, Greeble training has been shown 

to lead to a reduction of the basic-level advantage over the subordinate level (Gauthier & 

Tarr, 1997; Gauthier et al., 1998). In contrast, a larger basic-level advantage over the 

subordinate level has been shown for familiar vs. unfamiliar characters (Wong & 

Gauthier, in press). It was therefore expected that whereas the face-like training would 

lead to a reduction of the basic-level advantage for post-test compared with pre-test, the 

letter-like training would lead to an increase of the basic-level advantage. In other words, 
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the letter-like training should lead to a larger improvement in basic-level performance 

than the face-like training, whereas the face-like training should lead to a larger 

improvement in subordinate-level performance than the letter-like training. This task was 

the only post-test task introduced before training. 

Two other tasks were used to tap into other possible effects of face-like and letter-

like training. A part-matching task was used to measure any changes in holistic 

processing for the two groups. The task has been used in previous studies and revealed 

greater holistic processing for face perception and subordinate-level expertise (Gauthier 

& Tarr, 2002). The part-matching task required selective attention to parts of an object, 

providing a measure of the effect of the irrelevant part on matching of the target part. It 

has been shown that after Greeble training, there is an increase in the influence of the 

irrelevant part on target part matching, as indicated by the better performance when both 

the target and bottom parts led to the same response (both same or both different) than 

when the parts led to different responses (Gauthier & Tarr, 2002). This congruence effect 

has been used as an operational definition of holistic processing, because even when the 

irrelevant part should be ignored it nonetheless affects target part matching. Also, a larger 

congruence effect has been found with faces when the top and bottom halves were 

aligned than misaligned. This alignment effect indicates sensitivity to configurations of 

parts in an object. 

Finally, a triplet naming task was introduced to measure the degree in which 

regularity in styles facilitates object recognition at a basic level, which has been 

suggested as one behavioral marker of expert letter perception (Gauthier et al., 2006). 

The triplet-naming task is devised to measure the facilitation of style regularity for object 
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recognition and how it changes after training. It has been shown that recognition of letters 

in a string is more efficient when the letters are of the same font as opposed to mixed 

fonts (Sanocki, 1987, 1988, 1991). Our previous work has shown that such font regularity 

effect is greater for someone who is familiar with the characters in a writing system than 

someone who is not (Gauthier et al., 2006).  

It should be noted that these two tasks were introduced after the training. The 

main reason was that including them before training would have resulted in a very long 

pre-training test period (5.5-6 hours). Participants would have been likely to learn a lot 

during this period and this could have greatly reduced the differences between the two 

training groups.  

 

Methods 

Participants 

Participants were 36 undergraduate students, graduate students, or employees of 

Vanderbilt University. Eighteen participants (12 females, age M = 24.06, SD = 5.92) 

were assigned to the face-like training group, and 18 (ten females, age M = 23.33, SD = 

5.63) to the letter-like training group. All reported normal or corrected-to-normal vision, 

and none have been exposed to the set of Ziggerins before. They were each compensated 

for $12 per hour for their time in behavioral training and testing.  

 

Stimuli and material 

All testing was conducted on Mac computers using Matlab (MathWorks, Natick 

MA) with the Psychophysics Toolbox extension (Brainard, 1997; Pelli, 1997). Seventy-
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two novel objects (Ziggerins) were created (six classes each with 12 styles) using Carrara 

5 software (MetaCreations). The six classes differed from each other in the parts involved 

and the general spatial relations among the parts. The 12 styles were formed by variations 

of parts along three shape dimensions (Figure 2 & Table 1). Note that the same style 

variations applied to all classes. For example, Ziggerins in the first column of Figure 2 

belonged to different classes but were in the same style.  

While the Ziggerins were designed to contain classes corresponding to basic-level 

categories and styles analogous to font variations of each letter, it is important to ensure 

that the class structure and style variations are readily recognizable. For this purpose a 

card-sorting task was conducted. Thirteen people (who did not participate in subsequent 

training) were asked to sort 72 cards (each with one Ziggerin) in three ways. First, they 

were allowed to freely sort the cards into categories with no restriction on the number of 

categories or the number of cards in each category. Four out of the 13 people sorted the 

Ziggerins into six categories corresponding exactly to the six classes during free sorting, 

and others broke the Ziggerins down into more categories (from 7 to 18) such that each 

category contained Ziggerins of different styles within one class. Secondly, they were 

told that the Ziggerin set was supposed to contain six classes each with 12 members, and 

were asked to sort the cards accordingly. Twelve out of 13 people identified the class 

structure perfectly, and the remaining person made a mistake in two out of the 72 

Ziggerins. Thirdly and lastly, they were asked to sort the 12 members within each class 

such that the same style across different classes were aligned (i.e., to display the cards 

like Figure 2). Twelve out of 13 people identified the styles perfectly, with the remaining 

person making a mistake in two of the Ziggerins. Several people were asked on what 
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basis they performed the sorting, and they reported the difference in the general structure 

as the basis for class variations and could list the dimensions at which cross section 

shapes differed as the basis for style variations. Overall, a person seeing the Ziggerins for 

the first time can readily recognize the class structure and style variations. 

 

 

 
 
Figure 2. The Ziggerins. (A) The whole set, with the rows representing the six classes 
and the columns representing the 12 styles. The stars indicate the six styles selected 
for training for half of the participants. The unselected styles were the transfer set for 
this participant. The Ziggerin images at the lower right corner are enlarged in (B). 
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During training each participant only half of the Ziggerins (six styles, with styles 

1, 4, 6, 7, 9, 12 for half of the participants and styles 2, 3, 5, 8, 10, 11 for the other half) 

were used during training, while only the transfer Ziggerins (those not used in training) 

were used during pre- and post-training tests, and both trained and transfer Ziggerins 

were used during fMRI scans. The training set and the transfer set was assigned such that 

different levels of each dimension were equally represented within each set.  

The Ziggerins were rendered with realistic lighting and shading, and given a 

yellow plastic texture on a white background. Each object image was about 4 × 4 cm 

large (a visual angle of about 4 degrees from a viewing distance of 60 cm).  

Names (e.g., Xedo, Kimo) were assigned for the classes and individuals randomly 

for each participant. The letter-like group learned six class names for the 36 Ziggerins in 

 
Table 1. Formation of the 12 styles based on differences in cross section shapes. The 
style numbers correspond to the 12 columns (from left to right) in Figure 2.   
 

Style Shape 
(1 = round; 
2 = octagon; 
3 = square) 

Size 
(1 = varying; 
2 = constant) 

Aspect ratio 
(1 = thick; 
2 = thin) 

1 1 1 1 
2 1 1 2 
3 1 2 1 
4 1 2 2 
5 2 1 1 
6 2 1 2 
7 2 2 1 
8 2 2 2 
9 3 1 1 
10 3 1 2 
11 3 2 1 
12 3 2 2 
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the training set (Figure 3B). The face-like group learned individual names for 18 of the 

36 Ziggerins (Figure 3A). The 18 Ziggerins with individual names were selected from six 

classes, each with three individuals. The selection was counterbalanced across 

participants.  

 

Face-like Training 

In ten hour-long training sessions, the face-like training required the participants 

to recognize the Ziggerins at an individual level by learning the names for 18 of the 36 

Ziggerins in the training set. The remaining 18 Ziggerins served as distractors in different 

tasks as described later. Participants started with two classes in the first training session, 

 

 
 
 
Figure 3. An example training set for each type of training. (A) Face-like group 
learned 18 names, three for each class. (B) Letter-like group learned to categorize the 
36 objects into six classes. 
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with two more classes added in the second session, and the final two added in the third 

session. Each session included three tasks: naming, verification, and matching (Figure 4). 

In all tasks both accuracy and speed were stressed. At the end of each block, the average 

accuracy and speed for the block were shown to inform the participants of their progress. 

To motivate the participants, from session 4 onwards participants also saw, after each 

block, a rank table showing performances for the 10 best blocks for each task. 

Participants were encouraged to break their record by improving both their speed while 

maintaining near-perfect accuracy. 

 

 

 
 
Figure 4. The tasks in face-like training: (A) In the naming task, participants had to 
press the key for the first letter of a Ziggerin’s name. (B) In a verification task, 
partcipants had to judge if a Ziggerin matched with a label. (C) In a matching task, 
participants had to judge which one of the two Ziggerins matched with the label. 
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Naming 

Participants learned to recognize the Ziggerins with individual names. In each 

trial a fixation cross appeared at the centre of the screen for 250 ms, followed by a 

Ziggerin image until response (Figure 4A). Participants had to type the first letter of the 

name (e.g., “P” for “pimo”). Labels of 18 Ziggerins (in six classes each with three styles) 

were learned. The remaining 18 Ziggerins in the trained set were also shown as 

distractors in 10% of the trials and participants had to type the space bar to indicate that 

they had no names. Upon an incorrect response both the Ziggerin image and its name 

were shown until participants pressed the space bar to continue. In the first block of each 

session both the Ziggerin and its name were shown and participants were encouraged to 

take as much time as necessary to study the Ziggerin and the name before responding. 

There were 360 trials in each session. In session 1, six Ziggerins with names were shown 

for 54 times each, and the other six Ziggerin distractors within the same classes were 

shown for 6 times each. In session 2, 12 Ziggerins with names were presented for 27 

times each, and the other 12 Ziggerin distractors within the same classes were shown for 

3 times each. In sessions 3-10, 18 Ziggerins with names were shown for 18 times each, 

and the other 18 Ziggerin distractors within the same classes were shown for 2 times 

each. 

 

Verification 

Participants judged if a label matched the image of a Ziggerin. Each trial began 

with a fixation for 500 ms and then a label presented for 1000 ms, followed by a blank 

screen for 200 ms and a Ziggerin image until response (Figure 4B). Participants pressed 
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the “1” or “2” key on the number pad to indicate a “same” or “different” judgment. In 

“different” trials, the Ziggerin shown was either within the same class as the target 

Ziggerin, or one of those extra Ziggerins created by taking the target Ziggerin and 

moving a part of it to create a slight configural change. Upon an incorrect response 

participants would see the Ziggerin image and the correct answer until participants 

pressed the space bar to continue. There were 288 trials in each session. In session 1, six 

Ziggerin names appeared in 24 “same” and 24 “different” trials each. In session 2, 12 

Ziggerin names appeared in 12 “same” and 12 “different” trials each. In sessions 3-10, 18 

Ziggerin names appeared in eight “same” and eight “different” trials each. 

 

Matching 

Participants had to choose the target Ziggerin (out of two alternatives) that 

matched with a label. In each trial, a fixation cross appeared for 500 ms. Then a label 

appeared for 1000 ms, followed by a blank screen for 200 ms and then two Ziggerin 

images side by side until response (Figure 4C). Participants had to indicate the position of 

the target Ziggerin that matched the label by pressing “1” (for the left) or “2” (for the 

right). In 25% of the trials neither Ziggerins were the target and participants had to press 

the space bar. A distractor that did not match the label was either another Ziggerin within 

the same class, or the same as the target with just a part of it moved slightly. Upon an 

incorrect response both the Ziggerin images and the correct answer were shown as 

feedback until participants pressed the space bar to continue. There were 288 trials in 

each session. In session 1, six Ziggerins appeared as the target in 36 trials each. In session 

2, 12 Ziggerins appeared as the target in 18 trials each. In sessions 3-10, 18 Ziggerins 
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appeared as the target for 12 trials each. In all sessions there were 72 trials where both 

Ziggerins were distractors. 

 

Letter-like Training 

During the ten hour-long training sessions, the letter-like training participants 

learned to rapidly recognize a series of Ziggerins (six classes in six styles) at the class 

level. To match with the number of objects introduced in the first three sessions during 

face-like training, the letter-like training group started with two styles of each class of 

objects in the first training session, with two more styles added in the second session, and 

the final two styles added in the third session. Each session contained three different 

tasks: naming, verification, and matrix scanning. Similar to face-like training, in all tasks 

both accuracy and speed were stressed. At the end of each block, the average accuracy 

and speed for the block were shown to inform the participants of their progress. To 

motivate the participants, from session 4 onwards participants also saw, after each block, 

a rank table showing performances for the 10 best blocks for each task. Participants were 

encouraged to break their record by improving both their speed while maintaining near-

perfect accuracy. 

 

Naming 

This was the same task as the naming in face-like training, except that participants 

in the letter-like group learned to name the Ziggerins at the class level. The presentation 

sequence was the same as the naming task in the face-like group. There were 360 trials in 

the first three sessions. As it was easy to learn six names, from session 4 onwards there 
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were only 216 trials per session, to leave more training time for the harder matrix 

scanning task (as described later). In session 1, 12 Ziggerins appeared for 30 times each. 

In session 2, 24 Ziggerins appeared for 15 times each. In session 3, 36 Ziggerins appeared 

for ten times each. In sessions 4-10, 36 Ziggerins appeared for 6 times each. 

 

Verification 

This was the same task as the verification in face-like training, except that the 

labels were class names instead of individual names. There were 288 trials in each of the 

first three sessions, and the number was reduced to 216 trials from session 4 onwards to 

leave more training time for the matrix scanning task. In session 1, 12 Ziggerins appeared 

in 12 “same” and 12 “different” trials each. In session 2, 24 Ziggerins appeared in six 

“same” and six “different trials” each. In session 3, 36 Ziggerins appeared in four “same” 

and four “different” trials each. In sessions 4-10, 36 Ziggerins appeared in three “same” 

and three “different” trials each. 

 

Matrix scanning 

Participants learned in this task to rapidly perform class-level judgment on a large 

number of Ziggerins with a coherent style, similar to what often occurs for letter 

perception (Figure 5). Participants pressed the space bar to begin each trial. A matrix of 

Ziggerins then appeared. In order to provide a scanning experience similar to left-to-right, 

top-to-bottom letter perception in reading, participants were told to do the following: 

“Each time you will see a 6-row-by-10-column array of objects. The upper left 

object will be your first target. Scan the matrix from left to right, top to bottom until you 
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find your target. The object that immediately follows it will be your new target. Keep 

scanning the matrix until you find this new target. And the object that immediately 

follows it will be your next target. Continue this process until you get to the end of the 

matrix. Press the space bar as soon as you get to the end. After pressing the space bar you 

should type in the first letter of the last target you are searching for." 

 

 
 
Figure 5. An example trial in the matrix scanning task in letter-like training. Participants 
started with the top left Ziggerin as the target and searched through the matrix from left 
to right, top to bottom for that target. Once they found the target they would have to 
change their target to the Ziggerin immediately after. The pink ovals represent the 
targets and the arrows represent the target shifts. 
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There were five to seven target shifts on each trial. There were 84 trials in each of 

the first three sessions, and 112 trials for sessions 4-10. The 1036 matrices used in the 

whole training process were carefully generated with the following considerations: (1) 

Each duplet and triplet combination should occur as frequently as every other 

combination to avoid learning of particular sequences. (2) Each Ziggerin should have an 

equal chance of becoming the final target. (3) Each Ziggerin should occur as frequently 

as every other Ziggerin. (4) The same number of matrices should be devoted to each 

style. To meet these criteria 1000 sets of 1036 matrices were generated in random and the 

set of 1036 matrices that best matched the above criteria were selected for training for all 

participants. The order of matrices presented were pseudo-randomized for each 

participants, such that only two styles were shown in the first session, with two more 

added in the second session and two more added in the third session. 

 

Pre- and post-training tests 

In these tests the transfer set of 36 Ziggerins not shown during training were used 

to assess training effects.   

 

Sequential matching 

Participant judged if two sequentially presented images contained the same or 

different individual Ziggerins (individual judgment), or if they contained Ziggerins in the 

same or different class (class judgment). To demonstrate the meaning of a “class”, before 

the task the participants were shown a sheet containing all the Ziggerins (similar to 

Figure 2), and were told that objects within each row formed a class. In each trial 
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participants viewed a fixation cross for 500 ms and then the first image for 800 ms, 

followed by a pattern mask for 500 ms and then a second image (Figure 6). Participants 

had to press “1” and “2” for “same” and “different” responses respectively. Depending on 

the block participants made class or individual judgment. For class judgment, a “same” 

trial would have two Ziggerins in the same class presented and a “different” trial would 

show two Ziggerins in different classes. For individual judgment, a “same” trial would 

present two identical Ziggerins while a “different” trial would show two Ziggerins from 

the same class but with different style. To encourage matching of objects and not images, 

one Ziggerin was always larger than the other (three sizes were used: 3.2 × 3.2, 4 × 4, 4.8 

× 4.8 cm), and participants were asked to ignore size differences. Speed and accuracy 

were both emphasized. No feedback was given. There were 432 class-level and 432 

 

 
 
Figure 6. An example trial in sequential matching task. The two images in a trial were 
always different in size. (A) An individual-level trial where one had to make a “different” 
response. (B) A class-level trial where one had to make a “different” response. Note that 
the two Ziggerins in a trial were always of different sizes. 
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individual-level trials (half same half different), separated into 12 blocks of 72 trials, with 

class-level blocks alternating with individual-level blocks. Participants were notified at 

the beginning of each block which task would be required, and the words “same class?” 

or “same individual?” were presented above the images throughout a trial to remind them 

of the task. 

 

Part-matching 

This task was used to measure the holistic and configural effects after training. In 

this task two composites (each with the top half of one Ziggerin and the bottom of 

another) were presented sequentially and participants had to judge if the target parts (tops 

or bottoms) of the two composites were the same or different. Composites were made of 

the tops and bottoms from Ziggerins in the same class but different styles (Figure 7A) or 

from Ziggerins in different classes (Figure 7C). Participants viewed a fixation cross for 

500 ms and then the first composite for 400 ms. A mask then appeared for 3000 ms, 

followed by the second composite. A cue on the top (or bottom) appeared at the last 500 

ms of the mask and during the second composite. Participants had to indicate by key 

press if the top (or bottom) halves of the two composites are the same within 1000 ms. 

No feedback was given.  

Apart from the between-participant Group variable (face-like, letter-like), there 

were three main within-participant variables. One variable was distractor difference level. 

In half of the trials, the distractor parts could come from Ziggerins in the same class with 

different styles (within-class distractor changes, see Figures 7A and 7B). In other trials, 

the distractor parts could come from Ziggerins in different classes (between-class 
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Ziggerin changes, see Figure 7C). Another variable was alignment, i.e., the halves of the 

second composite could be either aligned (Figures 7A and 7C) or misaligned (Figure 7B). 

The third variable was congruency, i.e., whether the target parts and the distractor parts of 

the two composites would lead to compatible responses (e.g., both same or both different, 

see Figures 7B and 7C) or not (e.g., target parts same and distractor parts different, or 

target parts different and distractor parts same, see Figure 7A). Half of the trials had top 

target matching and half bottom target matching. Half of the trials were “same” trials and 

 

 
 
 
Figure 7. Three example trials of the part matching task, all requiring top matching. 
(A) A trial where the top and bottom of the second composite were aligned. It was 
an incongruent trial as the tops differed but the bottom parts were the same. (B) A 
trial where the top and bottom of the second composite were misaligned. It was a 
congruent trial as both the tops and the bottoms were the same. (C) A trial where the 
distractor parts (bottoms) of the two composites differed in class. It was a congruent 
trial as both the tops and the bottoms were different. 
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half were “different” trials.  

The Distractor Difference Level × Alignment × Congruence × Target Part × 

Same/Different design resulted in 32 conditions, each with 18 trials, leading to a total of 

576 trials. The different types of trials were intermixed, and presented in 8 blocks of 72 

trials. 

 

Triplet recognition 

This is for testing if style regularity facilitates Ziggerin perception after the two 

types of training (Figure 8). Participants first viewed a mask for 1 sec and then three 

Ziggerins simultaneously for a certain duration (calibrated for each participant to avoid 

ceiling and floor performance) followed by a 200-ms mask. Then six Ziggerins were 

shown, two at each position, until response. Participants had to judge which one of the 

two alternatives was the Ziggerin that appeared in that location in the first display. They 

had to select the upper or lower alternative by typing the upper or lower arrow keys, and 

they had to respond to the leftmost location first, followed by the middle and the 

rightmost positions. Accuracy was emphasized and participants could take as much time 

as needed. No feedback was given. The three objects were always in different classes 

with either the same or mixed styles. 

There were two phases in this task: (1) Calibration phase – A staircase procedure 

was introduced with 10 blocks of 12 trials to find the presentation time of the three 

Ziggerins at which average performance lingered around 2.25 Ziggerins recognized. The 

presentation time started at 600 ms for all participants, and the step size changed from 

220 ms at 600ms or above to 20 ms at 100 ms or below. (2) Experimental phase – In this 
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phase the three Ziggerins were presented at a constant presentation time decided in the 

calibration phase for 360 trials. In both phases, half of the trials had the three Ziggerins in 

the same style (Figure 7A), while half had them in three different styles (Figure 7B). 

 

Predictions 

 It was expected that both face-like and letter-like groups would improve in terms 

of response time and accuracy in all tasks during training. 

However, different effects were predicted for the groups in the pre- and post-

training tasks. For the sequential matching task, it was expected that before training, both 

groups would show a comparable basic-level advantage, i.e., matching should be faster 

and more accurate for the basic than subordinate level. After training, the face-like group 

 

 
 
Figure 8. The triplet recognition task. (A) An example trial with all the Ziggerins in 
the same style. (B) A trial with the three Ziggerins in three different styles. 
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should show a smaller basic-level advantage, as the group was trained at the subordinate 

level and thus should improve more at that level. The letter-like group, in contrast, should 

show a larger basic-level advantage, since the group was trained at the basic level and 

should improve more at that level. 

The part matching task was performed only after training. The face-like group 

was expected to show a larger holistic effect and a larger configural effect than the letter-

like group. The face-like group should have a higher tendency to process all the Ziggerin 

parts as well as the configurations between them. Therefore, part matching should be 

faster and more accurate when the distractor part led to the same response as the target 

part. And this congruency effect should be larger when the target and distractor parts 

were aligned as opposed to when they were misaligned. The letter-like group should not 

develop as strong a tendency to process all Ziggerin parts. Neither should the group 

develop sensitivity to configurations between the Ziggeirn parts. So the letter-like group 

should show less or no holistic or configural effect. 

In the triplet recognition task, the letter-like group was expected to show their 

sensitivity to the regularity in style, i.e., they should recognize the Ziggerin triplets more 

accurately when the Ziggerins were in the same style as opposed to mixed styles. The 

face-like group was not expected to develop this sensitivity and thus style regularity 

should have no effect for them. 
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Results 

Face-like training 

Participants improved in both accuracy and response time as training proceeded in 

all three tasks as detailed below (Figure 9, Appendices A to C). 

In the naming task (Figure 9A), a Session × Ziggerin Type (with / without names) 

ANOVA showed a main effect of Session in RT [F(9,153)=55.67, p≤.0001]. No 

interaction was found. Accuracy was very high (>90%) throughout the whole training. 

In the verification task (Figure 9B), an ANOVA showed a main effect of Session 

[RT: F(9,153)=36.73, p≤.; d’: F(9,153)=5.19, p≤.0001]. The effect of Session was also 

significant in bias [F(9,153)=4.45, p≤.0001]. At the beginning, participants were biased 

to respond “same” and became less and less so as training proceeded. 

In the matching task (Figure 9C), performance improved in terms of both speed 

and accuracy, A Session × Target Presence ANOVA revealed a significant main effect of 

Session [RT: F(9,153)=29.41, p≤.0001; Proportion correct: F(9,153)=4.55, p≤.0001]. No 

effect of and interaction with Target Presence was found. 

 

  
 
Figure 9. Group performance during face-like training. In general responses became faster 
as training proceded. Error bars represent 95% confidence intervals for the Session effect. 
 
 



 54 

Letter-like training 

Participants improved steadily in all three tasks during training (Figure 10, 

Appendices D to F). 

In the naming task, responses became faster as training proceeded, as shown by a 

significant Session effect in ANOVA on RT data [F(9,153)=27.06, p≤.0001]. Accuracy 

was high (>95%) for all sessions.  

In the verification task, participants also got faster with more sessions completed, 

as shown by a significant Session effect [F(9,153)=18.83, p≤.0001]. Accuracy was high 

(d’>3.6) in all sessions. No change in bias was observed [F(9,153)=1.19, p>.30]. 

In the matrix scanning task, participants improved in both speed and accuracy, as 

indicated by the one-way ANOVA results [RT: F(9,153)=92.72, p≤.0001; Proportion 

correct: F(9,153)=4.57, p≤.0001]. 

 

 

 
 
Figure 10. Group performance during letter-like training. In general responses became 
faster as training proceded. Error bars represent 95% confidence intervals for the Session 
effect. 
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Sequential Matching 

The first two blocks (one class-level and one individual-level) were for practice 

and only trials after them were included in the analyses. 

In the sequential matching task, both groups performed better in class than 

individual judgment before training, but they showed opposite changes after training, as 

indicated by the correct response time and sensitivity data (Figure 11). For the face-like 

group, the performance difference between class and individual judgments shrank after 

training. For the letter-like group, however, this difference rose numerically with training. 

For the response time data, a Group (face-like, letter-like) × Pre/Post × 2 Level 

 

 
 
Figure 11. Response times (A) and sensitivity measures (B) for class and individual 
judgments. Both face- and letter-like groups responded faster in class than individual 
judgments before training. After training, the face-like group showed a reduction in the 
advantage of class over individual judgments, while the letter-like group showed the 
opposite trend. Sensitivity measures also showed a similar numerical pattern.  Error bars 
represent the 95% confidence interval for the Pre/Post × Task interactions in each group. 
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(class, individual) ANOVA showed a main effect of Pre/Post [F(1,34)=94.13, p≤.0001] 

and a main effect of Level [F(1,34)=41.43, p≤.0001]. Most importantly, there was a 

three-way interaction, confirming that the two groups displayed different changes in 

performance across judgments after training [F(1,34)=4.00, p=.054]. Separate ANOVAs 

revealed a Pre/Post × Level interaction for the face group, indicating a reduction of the 

class-level advantage over the individual level after training [F(1,17)=6.34, p=.022]. The 

letter-like group did not show a significant interaction, despite a numerical increase in the 

class-level advantage with training [F(1,34)=1.02, p=.326]. Scheffé tests (p<.05) showed 

that responses were faster at the class than individual levels for both groups during both 

pre- and post-training tests. Also, the letter-like group was faster at the class level than 

the face-like group after training but not before. 

Sensitivity (d’) measures showed a similar trend, although the Group × Pre/Post  

Level interaction did not reach significance [F(1,34)=2.21, p=.146]. Only the main effect 

of Level was significant [F(1,34)=166.05, p≤.0001]. Note that sensitivity was already 

close to ceiling before training. 

 

Part matching 

Part matching was only performed after training. Data from two participants in 

the face-like group and four in the letter-like group were discarded because of low overall 

accuracy (<57%). Sixteen additional participants who had no experience with the 

Ziggerins were recruited to perform this task as control participants. Separate analyses 

were performed for trials in which distractors could change at an individual level and for 

trials in which distractors could change at a class level. 
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Distractor changes at the individual level. As seen in Figure 12, all groups showed a 

congruency effect, but while the face-like group showed it in both response time and 

sensitivity, the letter-like and control groups showed it only in sensitivity. In addition, the 

congruency effect of the face-like group was sensitive to the alignment of Ziggerin parts, 

with a larger congruency effect when the parts were aligned than misaligned. 

 

 
 

Figure 12. Response times (A) and sensitivity measures (B) for part maching where 
distractors changed at the individual level. Note that this task was performed only after 
training. The face-like group showed a congruency effect only when the parts were 
aligned. The letter-like group and control group did not have any congruency effect. 
Sensitivity measures revealed a main effect of congruency. Error bars represent the 
95% confidence intervals for the congruency effect in each group. 
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An Alignment (aligned or misaligned halves) × Congruency (congruent or 

incongruent halves) ANOVA on response time was conducted for each group. There was 

an Alignment × Congruency interaction for the face-like group [F(1,15)=6.131, p=.026], 

indicating the presence of a congruency effect only for aligned but not misaligned parts. 

The letter-like and control groups, however, showed a main effect of Alignment [Letter-

like: F(1,13)=5.711, p=.033; Control: F(1,15)=3.710, p=.073] but no effect of 

congruency nor interaction between alignment and congruency [ps>.246 and .698 for the 

two groups respectively]. However, a Group × Alignment × Congruency ANOVA only 

revealed a moderately significant three-way interaction [F(2,43)=2.478, p=.0958]. 

Similar pattern of results were obtained when we split the congruent and incongruent 

conditions into different target-distractor matching trials (Appendix G). 

Sensitivity data showed a Congruency effect in each of the three groups [Face-

like: F(1,15)=5.658, p=.031; Letter-like: F(1,13)=5.992, p=.029; Control: 

F(1,15)=18.845, p=.0006]. The control group also showed a significant Alignment effect 

[F(1,15)=4.213, p=.058]. No Alignment × Congruency interaction was found in any 

group [ps>.22]. A Group × Alignment × Congruency ANOVA revealed no interaction 

effects with Group. 

 

Distractor changes at the class level. As seen in Figure 13, there was no congruency 

effect for either response time or sensitivity for the face-like and letter-like group. The 

control group, however, showed a congruency effect in both aligned and misaligned trials 

(in terms of sensitivity and response time respectively). 
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Alignment × Congruency ANOVAs on response times showed significant 

Alignment effects for all groups [Face-like: F(1,15)=19.357, p=.0005; Letter-like: 

F(1,13)=17.258, p=.001; Control: F(1,15)=20.246, p=.0004]. The control group also 

showed a moderately significant Alignment × Congruency interaction [F(1,15)=2.812, 

 

 
 
Figure 13. Response times (A) and sensitivity measures (B) for part matching where 
distractors changed at the class level. Responses were faster for aligned than 
misaligned trials for all groups. The control group showed a congruency effect for 
algined trials in terms of response time and a congruency effect for misaligned trials in  
terms of sensitivity. Error bars represent the 95% confidence intervals for the 
congruency effect in each group. 
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p=.114], with a larger congruency effect for misaligned trials. However, the sensitivity 

data for the control group showed the opposite results, with a larger congruency effect for 

aligned trials [Alignment × Congruency interaction: F(1,15)=4.742, p=.0458]. Therefore, 

it is hard to conclude whether the congruency effect was larger for aligned than 

misaligned trials. Sensitivity data showed no significant effects for the face-like and 

letter-like groups. Group × Alignment × Congruency ANOVAs revealed no interaction 

effects with Group.  

 

Triplet recognition 

The letter-like group recognized the triplets better than the face-like group, as 

shown by the shorter triplet duration required to attain a general performance level of 

around 2.25 Ziggerins correct per trial during the calibration blocks (Figure 14A). A one-

way ANOVA confirmed this observation, showing a significant Group effect 

[F(1,35)=6.929, p=.013]. This was, however, the only difference between the two groups. 

During the experimental blocks, neither group showed any difference in performance 

between trials with a regular style and trials with mixed style (Figure 14B). A Group 

(face-like, letter-like) × Regularity (regular or mixed style) ANOVA showed no main 

effect or interaction. 
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General Discussion 

These results confirm that it is possible to train people to become experts in two 

qualitatively different ways for the same set of objects. 

Face-like training resulted in effects similar to face processing (Gauthier et al., 

submitted; Tanaka, 2001; Tanaka & Farah, 1993). It also extended effects obtained 

before with Greeble training (Gauthier & Tarr, 1997, 2002; Gauthier et al., 1998) to 

objects that are definitely not face-like in geometry, being asymmetric and inanimate 

looking. There was a reduced basic-level advantage, with more improvement in 

individuation than in class categorization. Note that the basic-level advantage still existed 

 

 
 
Figure 14. Performance in the triplet recognition task. (A) The threshold duration set 
during the calibration block. The letter-like group needed a shorter duration to recognize 
2.25 objects than the face-like group.  Error bars represeent the 95% confidence interval 
for the group difference. (B). The averaged number of Ziggerins recognized per trial for 
trials with regular vs. mixed styles. Neither group showed any difference between 
regular and mixed styles. Error bars represent the 95% confidence interal for style 
regularity differences. 
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after training, i.e., performance was still better at the class than individual level, contrary 

to the equivalent performance at both levels after Greeble training. This is likely because 

participants had to learn individuation for a heterogeneous Ziggerin set. Due to the need 

to accommodate letter-like training with the same set of objects, the training set contained 

six distinct classes. Still it is impressive that individuation training can significantly 

reduce the basic-level advantage with 10 hours of training in total for six distinct basic 

levels. 

Another effect of the face-like training was an increase in holistic and configural 

processing. In the part matching task in which one had to perform matching on half of an 

object, the face-like group found it harder to selectively attend to the target part without 

being affected by the other, distractor half. This holistic effect, the tendency to consider 

all the parts of an object despite selective attention instructions, was larger when the 

target and distractor parts were aligned than misaligned, indicating a development of 

sensitivity to configuration of Ziggerin parts. This confirms the idea that experience in 

individuating a set of objects, be it faces, cars, birds, or Greebles, causes the objects to be 

processed in a more holistic and configural manner. Importantly, the letter-like training 

group had a smaller holistic effect with a magnitude similar to that of the control group, 

and did not show any configural effect at all. Therefore, it is not the exposure to objects 

with the geometry of the Ziggerins that led to the face-like training effects. Instead, the 

demand for individuation may be the crucial factor for the similar training effects across 

Greeble and Ziggerin training studies. 

Letter-like training showed a trend for an increased basic-level advantage, 

opposite to face-like training effects, an effect characteristic of letter expertise (Wong & 
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Gauthier, in press). Letter-like training also led to a speed advantage, compared to face-

like training, in recognizing triplets of Ziggerins, similar to what has been found for 

characters in a familiar writing system (Gauthier et al., 2006). An intuitive explanation is 

that the effect came from domain-specific changes due to basic-level categorization 

training with the Ziggerins. Alternatively, because this task was not performed with 

control objects from an untrained category, the training effect could be solely due to the 

transfer of domain-general strategies from the matrix scanning task during training to the 

triplet recognition task. However, this appears unlikely, as the letter-like group performed 

class judgment on individual Ziggerins in the sequential matching task faster and more 

accurately than the face-like group after training (Figure 11). 

Another effect expected after letter-like training was style tuning. During training 

participants scanned through over 1000 matrices each with 40 Ziggerins presented 

simultaneously in the same style. With this experience, participants were expected to 

develop some kind of sensitivity to the regularity of styles, and make use of that to 

facilitate performance in the triplet recognition task when the three Ziggerins were in the 

same styles compared with different styles. This prediction was drawn based on the font 

tuning effects shown before with characters in a familiar writing system (Gauthier et al., 

2006). However, no style tuning effect was found after letter-like training. There are at 

least two probable reasons. First, the triplet recognition task may not be sensitive enough. 

Since there were only three Ziggerins in each trial, the cost of disrupting style regularity 

may not be sizeable enough to be observable, especially given that on average a 

participant took just 200 ms to recognize over 2.3 Ziggerins. Second, the styles applied to 

the Ziggerins may not be the ‘right’ kind of styles that the visual system would tune to. 
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Note that in Gauthier et al. (2006), experts did not just show tuning effects for any kind 

of font changes. Tuning was found for changes in the aspect ratio of character parts (e.g., 

the size of the loop relative to the pole in ‘b’), but not for visually obvious changes in fill 

and slant. It is unclear why different types of font changes can lead to different degrees of 

tuning effects. 

The results of the letter-like training are encouraging, as letter-like training has 

never been implemented before. It was unclear how much training would be needed to 

produce sizeable effects. Besides, since the same set of objects had to be used for face-

like training also, the number of classes was restricted to a small number (six in this 

case). In this sense the letter-like training introduced here was less demanding than the 

basic-level categorization demand with letters as there are far more than six characters in 

natural writing systems.  

Overall, the current findings demonstrate that, with careful control of object 

geometry and processing beyond object recognition, one can produce differential 

behavioral consequences by introducing different training experiences. 
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CHAPTER III 

 

NEURAL CONSEQUENCES OF OBJECT RECOGNITION EXPERIENCES 
MIRRORING FACE AND LETTER RECOGNITION 

 

Introduction 

It has been shown that Ziggerin training modeling some aspects of experience 

with faces and letters resulted in behavioral markers for face-like and letter-like expertise 

respectively. This chapter focuses on the changes in neural activity as a result of the two 

types of training. The main questions are: would the two types of training result in 

different neural changes in the occipitotemporal regions, and if so, would the activity 

patterns correspond to neural signatures for face and letter selectivity? 

Half of the training participants who have participated in the behavioral testing 

were also scanned using fMRI both before and after training. To know whether face-like 

and letter-like training would lead to enhanced fMRI activity in the face- and letter-

selective regions respectively, the fusiform face area (FFA), letter area (LA) and the 

parahippocampal place area (PPA) were localized and their responses to the Ziggerins 

were compared before and after training. 

Apart from probing the training effects in the specific regions of interest, an 

increasingly common practice is to look at a wider range of regions involved in object 

recognition (e.g., Op de Beeck et al., 2006). One specific question addressed in this study 

concerns the training effects in regions with different eccentricity biases. It has been 

suggested that face expertise imposes a higher individuation demand than letter expertise 

(Wong & Gauthier, in press). It has also been suggested that a higher demand for 
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resolution tends to recruit more lateral regions of the ventral occipitotemporal cortex that 

shows a bias for representation at the center of the visual field (Hasson et al., 2002; Levy 

et al., 2001; Malach et al., 2002). Accordingly, face-like training should recruit more 

lateral regions with a larger central presentation bias than letter-like training. To 

understand the relationship between the two types of training effects and the regions with 

different eccentricity biases, separate scans were also introduced to localize regions 

preferring presentation at the center, middle, or periphery of the visual field. 

 

Methods 

Participants 

Eighteen of the 36 participants who took part in the behavioral training also 

participated in two fMRI sessions, one before and one after training. Nine were from the 

face-like group (six females, seven right-handed, age M = 22.11, SD = 1.32) and nine 

from the letter-like group (five females, six right-handed, age M = 21.22, SD = 1.22). 

They each received $12 for each behavioral session and $25 for each fMRI session. All 

 

 
 
Figure 15. Sequence of training and testing sessions. During the pre-training scan, 
participants first went through two eccentricity runs and then six Ziggerin runs. During the 
post-training scan, they went through the same Ziggerin runs and then three localizer runs. 
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participants had normal or corrected to normal vision, and reported no history of 

neurological disorders. The sequence of training and testing sessions for each participant 

is shown in Figure 15. 

 

Stimuli and Material 

Anatomical 2D and 3D high-resolution T1-weighted images were acquired with 

conventional parameters on a 3T Philips Intera Achieva scanner at the Vanderbilt 

University Institute of Imaging Science. All testing was conducted on Mac computers 

using Matlab (MathWorks, Natick MA) with the Psychophysics Toolbox extension 

(Brainard, 1997; Pelli, 1997). The stimuli were presented on an LCD panel and back-

projected on a screen. Participants viewed the stimuli through a mirror mounted on top of 

an RF coil above their head.  

The eccentricity runs used 80 grayscale pictures of familiar objects (Figure 16A). 

Each type of stimuli was presented either at a central circle (1.4° in diameter), in a middle 

ring (2.5° inner diameter and 5° outer diameter), or in a peripheral ring (10° inner 

diameter and 20° outer diameter). The Ziggerin runs used 72 Ziggerin (36 in trained set 

and 36 in transfer set) and 36 familiar object images (in six classes: beds, boats, cars, 

chairs, lamps, and teapots) (Figure 16B). The localizer runs used 144 grayscale images 

including 36 faces (half female), 36 familiar objects (those not used in the eccentricity 

and Ziggerin runs), 36 Roman letters (a, b, d, e, f, g, h, k, m, n, p, q, r, s, t, u, w, and y in 

two fonts), and 36 pseudoletters (formed by taking each Roman letters and rearranging 

the strokes) (Figure 16C). In both localizer and Ziggerin runs, each image spanned a 

visual angle of 4°. 
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(A) 

 
(B) 

 
(C) 

 
 
 
Figure 16. The conditions in the eccentricity (A), Ziggerin (B), and localizer (C) 
runs. Note that the stimuli in the center and middle conditions in (A) are enlarged for 
visualization. 
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Procedure 

The first fMRI session was performed after the pre-training sequential matching 

task, and the second fMRI session was performed after the post-training sequential 

matching. A block design was used throughout the experiment, with different types of 

stimuli presented in separate blocks. In all runs, participants were required to perform a 

one-back image repetition task. They had to press a button with their right index finger on 

a response box attached to their hand when they saw two identical images presented 

consecutively. No response was required on a non-match trial. The ratio of match to non-

match trials was 1:11. Each trial began with a blank for 275 ms followed by the stimulus 

for 725 ms. 

In each eccentricity run, each of the three conditions (center, middle, periphery) 

appeared in six blocks of 10 sec, separated by 6 sec of fixation. Twelve seconds of 

fixation were also inserted at the beginning and the end of each run.  

In each Ziggerin run, there were three conditions (Ziggerin-within, Ziggerin-

between, object control). In the Ziggerin-within condition, each block contained only 

Ziggerins within a class, while in the Ziggerin-between condition, each block contained 

Ziggerins across different classes. So the Ziggerin within condition required within-class 

discrimination whereas the Ziggerin-between condition required between-class 

discrimination. Between-class discrimination was also required in the object control 

condition, as each block contained familiar objects from different categories. Each 

condition appeared in six blocks of 12 sec in each run, separated by 6 sec of fixation. 

Twelve seconds of fixation were inserted at the beginning and the end of each run. Three 

runs were devoted to trained Ziggerins and three runs were devoted to transfer Ziggerins, 
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and the run order was counterbalanced across participants. 

In each localizer run, each of the four conditions (faces, objects, letters, 

pseudoletters) appeared in four blocks of 16 seconds. Eight-sec fixations were inserted at 

the beginning and end of each run, and after each cycle of the four conditions. In all runs, 

the presentation of stimuli was randomized within blocks, and the presentation of blocks 

was counterbalanced across runs. 

 

Imaging parameters and analyses 

Imaging was performed using a 3-Tesla, whole body GE MRI system and a 

birdcage head coil located at the Vanderbilt Medical Center (Nashville, USA). The field 

of view was 19.2 × 19.2 × 10.2 cm, with an in-plane resolution of 64 × 64 pixels and 34 

contiguous axial scan planes per volume (whole brain), resulting in a voxel size of 3 × 3 

× 3 mm. Images were collected using a T2*-weighted EPI acquisition (TE=25 ms, 

TR=2000 ms, flip angle=60) for blood oxygen-level dependent (BOLD) based imaging. 

High-resolution T1-weighted anatomical volumes were also acquired using a 3-D fast 

spoiled grass (FSPGR) acquisition (TI=400 ms, TE=4.18 ms, TR=10 ms, FA=20). The 

functional data were analyzed using the Brain Voyager™ (http://www.brainvoyager.com) 

multi-study GLM (general linear model) procedure and in-house programs written in 

Matlab™ (http://www.themathworks.com). Data preprocessing included slice scan time 

correction, 3D motion correction, temporal filtering (3 cycles/run high-pass), and spatial 

smoothing (6 mm FWHM Gaussian). A GLM analysis computed the correlation of 

predictor variables or functions with the recorded activation data (criterion variables) 

across scanning sessions. The predictor functions were based on the blocked stimulus 
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presentation paradigm of the particular run being analyzed and represented an estimate of 

the predicted hemodynamic response during that run. To properly model the 

hemodynamic response, the predictors were represented as the stimulus protocol boxcar 

functions convolved with the appropriate gamma function (Δ=2.5, τ=1.25) estimate of a 

typical hemodynamic response (Boynton et al., 1996). To increase power, statistical 

parametric maps were computed only for gray matter within a pre-set search region 

(Talairach coordinates: x= -70 ~ 70, y= -20 ~ (-100), z= -2 ~ -32), in order to focus on the 

occipital and posterior temporal regions in both hemispheres. Regions of interest (e.g., 

face-selective regions) were identified at both group and individual levels. At the group 

level, activations for different conditions in the localizer runs were compared using 

random effects analyses at the group level with a threshold of p<.001 (uncorrected) and a 

cluster threshold of three contiguous 3-mm isometric voxels. At the individual level the 

same conditions were compared using fixed effects analyses with a threshold of 

p(FDR)<.05 and a cluster threshold of three contiguous 3-mm isometric voxels. FDR 

(False Discovery Rate) is a method of correcting for multiple comparisons by controlling 

for the expected proportion of false positive voxels among those that are above threshold 

(Genovese et al., 2002). For analyses of the Ziggerin runs, since trained and transfer runs 

showed similar results in different analyses they were collapsed in the subsequent reports 

of results. 

 

Predictions 

Figure 17 shows the major predictions of the pre- and post-training scans. The 

fusiform face area (FFA) and the left letter-selective area (LLA) were expected to show 
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different training effects for the two groups. Whereas face-like training was expected to 

result in an increase in fMRI activations in the FFA but not in the LLA, letter-like 

training was expected to enhance activity in the LLA but not in the FFA. Since the face-

like group was trained to discriminate Ziggerins within a class, one exploratory question 

was if the training effect for this group would be stronger for the Ziggerin-within 

condition, where participants had to discriminate between Ziggerins in the same class, as 

opposed to the Ziggerin-between condition, where participants were required to 

discriminate between different classes of Ziggerins. Similarly, for the letter-like group, 

the training effect may be clearer for the Ziggerin-between condition than the Ziggerin-

within condition, since the group was trained on discrimination between classes of 

Ziggerins. The parahippocampal place area (PPA) was a control region and was expected 

to show no change in activity after training. 

Exploratory analyses were also conducted to study if there was any relationship 

between different eccentricity biases in different regions of the ventral occipitotemporal 

 

   
 
Figure 17. Predictions for the imaging results of the pre- and post-training scans. The 
face-like group was expected to show an increase in the activity of the fusiform face 
area (FFA) after training. The letter-like group, however, was expected to show an 
activity increase in the left letter-selective area (LLA). As a control region, the 
parahippocampal place area (PPA)  was expected to show little training effect for 
either group. 
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cortex, the preference for basic- vs. subordinate-level categorization in these regions, and 

the differential training effects for the face-like and letter-like groups. 

 

Results 

Behavioral results 

Eccentricity runs  

Performance was similar in different conditions (Figure 18A), as indicated by the 

lack of main effects of Group and Eccentricity (center, middle, periphery), or their 

interactions (all ps>.18 for both RT and proportion correct measures). 

 

Localizer runs 

Responses were slower for faces than for other stimuli (Figure 18B). A Group × 

Stimulus ANOVA showed a significant Stimulus effect [F(3,48)=5.48, p=.0025]. Scheffé 

tests (p<.05) revealed longer response times for faces than for each of the other stimuli, 

while there was no difference among objects, letters, and pseudoletters. Accuracy 

measures showed a significant Group × Stimulus interaction [F(3,48)=4.90, p=.0047]. 

Scheffé tests showed that only the difference between faces and pseudoletters in the 

letter-like group was significant (p=.051). 

 

Ziggerin runs  

Performances improved with training (Figure 18C). This was confirmed by a 

Group × Pre/Post × Run Type (trained, transfer) × Block Type (within, between, control) 

ANOVA, which showed a main effect of Pre/Post [RT: F(1,16)=9.57, p=.0070; 
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Proportion correct: F(1,16)=4.12, p=.0595]. No main effect of or interaction with Group 

was found. 

 

 
 
Figure 18. Behavioral performance in the (A) eccentricity, (B) localizer, and (C) 
Ziggerin runs. Error bars represent the 95% confidence interval for the eccentricity 
effect within each group in (A), the 95% confidence interval for the sitmulus effect 
in (B), and the 95% confidence for the pre/post effect in (C). 
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Other effects included a significant Block Type effect [RT: F(2,32)=20.13, 

p.0001; Proportion correct: F(2,32)=21.96, p.0001], but it interacted with Pre/Post 

[Proportion correct: F(2,32)=3.23, p=.0524] and Run Type [RT: F(2,32)=3.62, p=.0383]. 

Scheffé tests (p<.05) showed that, while accuracy followed the order of object control > 

Ziggerin-between > Ziggerin-within before training, performance improved such that 

Ziggerin-between became as accurate as the object control blocks. For the Block Type × 

Run Type interaction, responses were faster for trained than transfer runs only for 

Ziggerin-within blocks. There was also an interaction between Pre/Post and Run Type 

[RT: F(1,16)=3.94, p=.0647]. Responses were faster for trained than transfer runs after 

training but similar before training. 

 

Imaging results 

Four types of analyses were conducted. First, statistical parameter maps were 

generated to search for any voxels in the ventral visual stream showing significant 

training effects. Second, the face- and letter-selective regions were identified at the group 

level by comparing activity across conditions during the localizer runs. The training 

effects for the two groups in these regions of interest were compared. Third, the same 

analyses were conducted with the regions of interest identified at the individual level. 

Finally, the pattern of training effects over the whole ventral occipitotemporal cortex was 

examined by dividing the cortex into 32 regions of interest.  

 

Statistical parameter maps 

First, a search for ventral visual areas showing training effects was performed by 
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conducting a number of contrasts between activations for Ziggerins before and after 

training. Specifically, the following two contrasts were conducted for each group: (1) the 

substraction of the activity in the Ziggerin-within condition (compared with object 

control) during pre-scan from that during post-scan; and (2) the substraction of the 

activity in the Ziggerin-between condition (compared with object control) during pre-

scan from that during post-scan. At a threshold of p<.001 (uncorrected), no significant 

voxel was revealed with these contrasts in either group. Analyses of the interaction 

between Group and each of the above two contrasts were also performed. Again no 

significant voxel was revealed. 

The only significant training effect in an SPM was that for the Ziggerin-between 

condition when the two groups were collapsed, i.e., when the second contrast mentioned 

above was conducted averaging the two groups together. As shown in Figure 19, a region 

in the left posterior fusiform gyrus (pFs) was found at p<.001 (uncorrected). This region 

(size=88mm3) was not part of the fusiform face area, given the higher activity for objects 

than faces. The region showed a reduction in activations for both groups, to a similar 

degree in the Ziggerin-within condition and more so for the letter-like group in the 

Ziggerin-between condition. A Group (face-like, letter-like) × Block Type (Ziggerin-

within, Ziggerin-between) ANOVA confirmed the observation. There was a close-to-

significant Group × Block Type interaction [F(1,16)=4.045, p=.0615]. Scheffé tests 

(p<.05) showed that the training effects were similar between the groups for the Ziggerin-

within condition but larger for the letter-like group for the Ziggerin-between condition. 

One-sample t-tests showed that the training effect was significantly different from zero 

for the face-like group in the Ziggerin-within condition [t(8)=-2.963, p=.002] and was 
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close to significant in the Ziggerin-between condition [t(8)=-2.023, p=.076]. For the 

letter-like group the training effect was significant in the Ziggerin-between condition 

[t(8)=-4.713, p=.002] and did not reach significance for the Ziggerin-within condition 

[t(8)=-1.702, p=.127]. 

 

 
 
Figure 19. Training effects in the face/letter localizer runs and Ziggerin runs in a 
posterior fusiform (pFs) region. This region (indicated in white color) was found by 
comparing the activity for the Ziggerin-between condition before and after training 
with the two groups collapsed. The region showed a reduction in activity after training 
for both groups, but more so for the letter-like group in the Ziggerin-between 
condition. Error bars represent the 95% confidence interval for the stimulus variable in 
the localizer plot, and for the group variable in the Ziggerin plot. 
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Face- and letter-selective regions (group defined) 

The main hypothesis of this study was the increased activity in face-selective and 

letter-selective regions after face-like and letter-like training respectively. To test this 

hypothesis, the training effects of these regions of interest were measured. The right 

fusiform face area (RFFA) was localized at the group level using the (faces minus letters 

& objects) contrast. The left letter area (LLA) was localized using the (letters minus faces 

  

 
 
Figure 20. Training effects in the face/letter localizer runs and Ziggerin runs in different 
ROIs. For each ROI, the left graph shows the percent signal change during the localizer 
(F- faces; O – objects; L – letters; P- pseudoletters). The right graph for each ROI shows 
the changes (post minus pre) in BOLD signal for Ziggerins in the two groups. Error bars 
respresent the 95% confidence intervals for the stimulus variable in the localizer graphs 
and for the group variable in the Ziggerin graphs.  
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& objects) contrast. No left FFA or right LA was found even with a low threshold (p<.01 

uncorrected). As control regions, the left and right parahippocampal place areas (LPPA 

and RPPA) were also localized by the (objects minus faces) contrast. PPA has been 

shown to respond more to objects than faces (e.g., Epstein et al., 1999). Figure 20 shows 

the activity of these ROIs in the localizer runs and the training effects in the Ziggerin 

runs. 

The training effects for each region were measured by subtracting the activity for 

the Ziggerins (relative to control objects) before training from that after training. There 

was a larger training effect for the face-like group than the letter-like group in the RFFA. 

A Group (face-like, letter-like) × Block Type (Ziggerin-within, Ziggerin-between) 

ANOVA conducted on the training effects for each ROI confirmed this observation. The 

effect of Group was close to significant for the RFFA [F(1,16)=3.56, p=.0773]. One 

sample t-tests showed that the RFFA training effect was close to significant for the 

Ziggerin-within blocks in the face-like group [t(8)=1.866, p=.099] but not for the 

Ziggerin-between block or for either block in the letter-like group [ps>.30]. No other 

effects were significant in the other ROIs. 

Pearson product-moment correlations were computed between the training effects 

in these ROIs and behavioral signatures of learning across participants. The behavioral 

signatures include the difference in the basic-level advantage during the sequential 

matching task before and after training, and the configural effect during the part matching 

task. The only behavioral measure correlating with neural training effects was the 

configural effect obtained in the part matching task, in which one performed matching on 

a Ziggerin half while ignoring the other half. The configural effect was defined as the 
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difference in response time between the congruent and incongruent conditions when the 

parts were aligned compared with the difference when they were misaligned. In other 

words, it measured the sensitivity of the congruency effect, or holistic processing, to a 

change in configuration.  Figure 21 shows the correlations in different regions, separately 

for Ziggerin-within and Ziggerin-between conditions. The amount of configural effect 

was highly correlated with the amount of training effect in the RFFA, for both Ziggerin-

within [r=.73, p=.0006] and Ziggerin-between conditions [r=.70, p=.0013]. As shown in 

the scatter plots participants in the face-like group tended to have a larger configural 

  

 
 
Figure 21. Correlation between the configural effect found in the part matching task and 
the training effects in different ROIs. The face-like (in light blue diamonds) and letter-like 
(in plum dots) groups were analysed together. For each ROI, the left and right graphs 
show the correlation for the Ziggerin-within and Ziggerin-between conditions 
respectively. Only the RFFA shows a significant correlation between its training effect 
and the behavioral configural effect in both within and between conditions.  
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effect as well as a larger RFFA training effect than the participants in the letter-like 

group. There were no significant correlations in other ROIs, except for LPPA that 

showed a correlation between the configural effect and the training effect in the Ziggerin-

within condition [r=.47, p=.048]. As shown in the scatter plot the face-like group highly 

overlapped with the letter-like group in the LPPA, suggesting that this moderate 

correlation was not likely due to training but rather individual differences. Also, the 

training effect in the LPPA did not correlate with the configural effect in the Ziggerin-

between condition [r=.25, p=.32].  

Therefore, both the magnitude of the training effect and its correlation with 

configural processing indicates that face-like training resulted in more RFFA recruitment. 

 

Face- and letter-selective regions (Individually defined) 

It was expected that the training effects would be clearer with a more precise 

identification of the regions of interest, for instance, at an individual level. The analyses 

in the previous section were thus conducted on the RFFA, LPPA and RPPA identified in 

each participant. The LLA could not be identified for one-third of the participants even 

when a lower threshold was used (FDR <.10) and thus data for the region were not 

analyzed. Table 2 shows the Talairach coordinates of these regions for each participant. 

Figure 22 shows the training effects in these individually defined regions. 

Contrary to the group-defined ROI analyses, there was little training effect in each of 

these regions. A Group (face-like, letter-like) × Block Type (Ziggerin-within, Ziggerin-

between) ANOVA conducted for each region showed no significant effect in any of these 

regions [all ps>.16]. Planned comparisons showed that none of the training effects were 
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significantly different from zero [all ps>.15]. Correlation analyses showed findings 

consistent with the group-defined ROI analyses, with a significant correlation found 

between the configural effect (in response time) and the magnitude of the training effect 

in the individually defined RFFA in the Ziggerin-between condition [r=.462, p<.053]. 

None of the other correlations were significant (Table 3). 

 

 
Table 2. The Talairach coordinates and sizes (in mm3) of the right fusiform face area 
(RFFA), and the left and right parahippocampal place area (LPPA and RPPA) defined for 
individual participants. 
 

Face-
like RFFA LPPA RPPA 

Subject x y z size x y z size x y z size 
1 42 -47 -14 865 -30 -50 -6 917 24 -45 -11 790 
2 44 -38 -12 608 -29 -49 -11 993 29 -45 -4 855 
3 36 -42 -20 523 -27 -43 -14 930 26 -48 -10 766 
4 34 -44 -14 603 -26 -55 -10 899 24 -55 -8 928 
5 37 -53 -16 542 -32 -56 -11 910 26 -50 -5 870 
6 38 -40 -14 472 -27 -40 -12 840 28 -40 -11 960 
7 46 -50 -8 823 -27 -43 -8 860 33 -47 -18 865 
8 39 -42 -14 598 -28 -47 -9 931 23 -44 -9 836 
9 34 -39 -17 668 -32 -39 -15 883 24 -34 -11 988 

Average 38.9 -43.4 -14.6 634 -28.7 -46.9 -10.7 907 26.3 -45.3 -9.67 873 
Letter-

like RFFA LPPA RPPA 
Subject x y z size x y z size x y z size 

1 41 -50 -11 232 -26 -50 -10 777 30 -48 -10 916 
2 34 -56 -14 599 -30 -41 -10 705 29 -42 -13 884 
3 35 -39 -18 385 -27 -50 -11 516 23 -46 -8 527 
4 32 -50 -15 407 -23 -51 -13 421 24 -49 -10 464 
5 34 -47 -17 844 -33 -50 -11 959 27 -41 -9 878 
6 43 -49 -17 232 -28 -47 -16 670 23 -53 -9 667 
7 46 -49 -11 462 -30 -51 -13 973 34 -45 -13 931 
8 40 -46 -14 902 -28 -42 -12 882 27 -41 -13 933 
9 42 -48 -17 695 -28 -50 -10 964 26 -56 -8 910 

Average 38.6 -48.2 -14.9 529 -28.1 -48 -11.8 763 27 -46.8 -10.3 790 
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Ventral occipitotemporal cortex 

To better understand the training effects over the object recognition system in 

general, a set of 32 ROI boxes were used to target on different parts along the ventral 

occipitotemporal cortex (Figure 23A). These were 10×10×15-mm ROIs situated at 

different points along the anterior-posterior axis (y-coordinate =-35, -45, -55, or -65) and 

the medial-lateral axis (x-coordinate = -20, -30, -40, or -50 on the left and 20, 30, 40, or 

50 on the right). The location and extent of each ROI along the z-axis were adjusted for 

 

 
 
Figure 22. Training effects in the individually defined ROIs. TheThe left letter area 
could not be defined in the majority of participants. Error bars represent the 95% 
confidence intervals for the group variable. 

 
Table 3. The coefficients (r) and significance (p) of the correlations between the configural 
effect in the part matching task and the training effects in the individually defined RFFA. 
 

 Ziggerin-within Ziggerin-between 
  r p r p 

RFFA 0.383 0.116 0.462 0.053 
LPPA 0.212 0.398 0.163 0.519 
RPPA 0.071 0.779 0.192 0.445 
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each participant to ensure the best coverage of gray matter. 

One organizing principle proposed to characterize the occipitotemporal cortex is 

eccentricity bias (Hasson et al., 2002; Levy et al., 2001; Malach et al., 2002). It has been 

shown that the more medial parts of the ventral occipitotemporal cortex tend to prefer 

peripheral presentations whereas the lateral parts are more responsive to central 

presentations. It was thus suggested that the lateral regions are responsible for recognition 

tasks associated with a higher resolution demand than the medial regions that are more 

concerned with information integration rather than fine discrimination (Hasson et al., 

2002; Malach et al., 2002). However, this interesting claim has never been directly tested 

before. The current training paradigm provides an ideal condition to test this hypothesis, 

as discrimination demand was varied for a set of novel objects across the Ziggerin-within 

and Ziggerin-between blocks. 

To test the claim, the activations in the eccentricity runs and the Ziggerin runs 

before training were examined. Specifically, the activation pattern of the 32 ROIs for 

central and periphery presentations were compared with the activation pattern for within- 

and between-class discriminations.  

As shown in Figure 23A, there was a nice correspondence between the 

eccentricity and resolution demand patterns. Lateral regions preferred presentation at the 

center as well as within-class discrimination, whereas medial regions preferred 

presentation at the periphery as well as between-class discrimination. A Pearson product-

moment correlation coefficient was computed between the activity patterns in the 

eccentricity runs (Center minus Periphery) and the Ziggerin runs (Within minus 

Between) for each ROI set (at y=35, 45, 55 or 65) in each participant. Figure 23B showed  
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Figure 23. Relationship between eccentricity bias and preference for different 
discrimination demand. (A) Activations of the ventral occipitotemporal ROIs during the 
eccentricity and Ziggerin runs before training for all the participants (groups collapsed). 
At each point along the anterior-posterior axis (y-coordinate = -35, -45, -55, -65), there 
were eight ROIs covering the medial and lateral regions (x-coordinate = 50, 40, 30, 20, -
20, -30, -40, -50). The activation patterns during the eccentricity runs and Ziggerin runs 
corresponded well with each other. The medial regions preferred peripheral presentation 
as well as between-class discrimination, whereas the lateral regions preferred central 
presentation and more demanding, within-class discrimination. Error bars represent the 
95% confidence interval for the x-coordinate factor. (B) The average correlation between 
the eccentricity activity pattern and the pattern for within-minus-between activity in each 
ROI set. Asterisks indicate correlation values significantly different from zero. Error bars 
represent the 95% confidence intervals around the means. 
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the average correlations across all participants for each ROI set. The average correlation 

coefficients were 0.14, 0.38, 0.50, 0.60 for y=35, 45, 55 and 65 respectively. The 

coefficients for y=45, 55, and 65 were significant (all ps≤.0005) but that for y=35 was not 

(p=.17). This confirms the link between the eccentricity bias and discrimination demand. 

Figure 24 shows the training effects for the 32 ROIs. The patterns of training 

effects were different between the two groups. The letter-like group emphasized the 

medial regions more after training, as indicated by the positive training effect (activity 

increase) for the medial regions and the negative training effect (activity decrease) for the 

lateral regions. In contrast, the face-like group showed less clear emphasis on the medial 

regions, especially in the most anterior ROIs (y=-35) and in the right hemisphere. A 

Group (face-like, letter-like) × x-coordinate (50, 40, 30, 20, -20, -30, -40, -50) ANOVA 

was conducted for the ROI sets at each y-coordinate (-35, -45, -55, -65), separately for 

Ziggerin-within and Ziggerin-between conditions. There was a significant Group × x-

coordinate interaction for ROIs at y=-45 in both Ziggerin-within [F(7,112)=2.13, 

p=.0458] and Ziggerin-between [F(7,112)=2.22, p=.0377] conditions. Further analyses 

showed that the training effects were different across the medial and lateral regions only 

for the letter-like group [F(7,56)=4.75, p=.0003] but not for the face-like group 

[F(7,56)=1.18, p=.3238]. One-sample t-tests (p<.05) also showed that, for the letter-like 

group, there were positive training effects in some medial regions [(x,y) = (30,-45) and 

(20,-55) for Ziggerin-within] and negative training effects in some lateral regions [(x,y) = 

(40,-45), (50,-45), (40,-55), (50,-55), (-50,-65), (-40,-65), (30,-65), (40,-65), and (50,-65), 

all for Ziggerin-between]. The face-like group, however, only showed a positive training 

effect in one ROI [(x,y) = (50,-35)]. These results suggested more distributed training 
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effects for the letter-like group, with more recruitment of the medial regions. 

  

 
 
Figure 24. Training effects for the ventral occipitotemporal ROIs. The letter-like group 
showed more activity for the Ziggerins in the medial regions and less activity at the lateral 
regions after training. The face-like group didn’t show the same pattern, with relatively 
more balanced involvement of medial and lateral regions. Error bars represent the 95% 
confidence intervals for the x-coordinate factor. 
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To better probe the differential training effects for the medial and lateral regions, 

correlations were computed between the training effects and the distance from the 

midline of the brain. For example, one can look at the set of four ROIs in the right 

hemisphere (i.e., at x=20, 30, 40, 50) at y=-65. If letter-like training indeed caused a shift 

  

 
 
Figure 25. Correlation between the training effect (Post minus Pre) of an ROI and the 
distance of an ROI from the midline (absolute value of the x-cooridnate) for each of 
the four ROI sets (at y=35, 45, 55, 65) in each hemisphere (RH, LH). While the face-
like group (A) showed no significant correlations, the letter-like group (B) showed 
negative correlations for multiple ROI sets in both hemispheres (marked by asterisks). 
A negative correlation indicates that the training effect led to increases especially in 
ROIs closer to the midline. In other words, the letter-like group put a larger emphasis 
on the medial, periphery-biased regions after training than before. Error bars represent 
the 95% confidence interval around the mean. 
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of emphasis to the medial regions, then one should expect the training effect to be 

negatively correlated with the distance from the midline. In other words, the further away 

an ROI is from the midline, the more negative the training effect should be. The 

correlation analyses confirmed the observation of the shift of emphasis to the medial 

regions for the letter-like group (Figure 25). A number of significant, negative 

correlations were found for the letter-like group in both hemispheres, especially for the 

Ziggerin-between condition. For the face-like group, however, no significant correlation 

was obtained. 

 

General Discussion 

Different neural markers of training were shown for the two groups. Face-like 

training resulted in a more focal effect, with a larger involvement of neural substrates 

near to the right fusiform face area (RFFA). The activity in the group-defined RFFA was 

heightened after training for the Ziggerins. In addition, the RFFA was found to have its 

training effects correlated with the magnitude of the configural effects with Ziggerins. In 

other words, participants who showed a higher sensitivity to the configurations of 

Ziggerin parts after training also showed a larger training effect in the RFFA. This is 

consistent with findings of the Greeble training studies (Gauthier & Tarr, 2002). Thus the 

face-like training with Ziggerins has succeeded in creating neural changes similar to 

expertise shown for Greebles and faces. 

One aspect of the face-like training effects is worth our attention. The training 

effects were stronger in the RFFA defined at the group level than in the individually 

defined RFFA. The group-defined RFFA showed an increase in activity with training in 
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the Ziggerin-within condition and significant correlations with the configural effects in 

both Ziggerin-within and Ziggerin-between conditions. The individually defined RFFA, 

however, did not show any significant changes in activity, and showed a significant 

correlation with the configural effect only for the Ziggerin-between condition. This 

indicates that the training effect was not the strongest in the most face-selective voxels 

for each participant. As shown in Figure 26, the individually defined RFFAs for the 

participants in the face-like group clustered around the group-defined RFFA, though 

there was no perfect overlap (on average 20% of the group-defined RFFA overlapped 

 
 

 
 
Figure 26. The RFFA defined for all the participants as a group (enclosed by the white 
line) and the RFFAs defined for each individual in the face-like group (in different 
colors). The individually defined RFFA clustered around the group-defined RFFA. 
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with the individually defined RFFA). The average Talairach coordinates of individual 

RFFAs (38.9, -43.4, -14.6) were also very similar to those of the group RFFA (40, -44, -

18), with an average distance of 7.6mm. Therefore, it can be said that the face-like 

training effect overlapped the individually defined RFFA and was maximal at locations 

very close to the individually defined RFFA. This is different from the findings of 

previous Greeble studies (Gauthier et al., 1999) in which the individually defined FFA 

showed a clear increase in activity after training. 

There are at least two possible reasons of this pattern of results. It could be that 

this particular training with these particular objects could only engage a region near but 

not exactly overlapping with each individual’s RFFA. This could be because of the 

geometry of the inanimate Ziggerins. An alternative possibility is that participants in the 

face-like group have acquired an intermediate level of face-like expertise, translating into 

only a partial involvement of the FFA proper. As discussed before the participants had to 

learn subordinate-level discrimination for six Ziggerin classes instead of one 

homogeneous set of Greebles in a similar training period (~10 hours). This means that 

participants received less training on each Ziggerin class compared with the Greebles 

(about 1/6th of the training experienced with Greebles). It should be noted that, unlike in 

Greeble studies, the basic-level advantage still existed for the face-like group after 

training, i.e., performance was still better at the class than individual level during the 

sequential matching task. More training could lead to an even smaller basic-level 

advantage and activation changes closer to the center of the individually defined RFFA. 

Note that discrimination training with novel objects in Op de Beeck et al.’s (2006) study 

also led to training effects in regions close but not right in the RFFA. 
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Letter-like training resulted in a more distributed pattern of training effects. It did 

not lead to more recruitment of the letter-selective area. Instead, a redistribution of 

activity occurred after letter-like training, such that the medial parts of the ventral 

occipitotemporal cortex became more important than the lateral parts. It has been shown 

in past work (Hasson et al., 2002; Levy et al., 2001) and here that the medial regions of 

the ventral occipitotemporal cortex are more responsive to objects presented in the 

periphery than at the center of the visual field. The current study also showed that the 

medial extrastriate regions are more responsive to basic-level categorization 

(discriminating among different classes of the novel Ziggerins) while the lateral regions 

are more recruited during subordinate-level discrimination (discriminating among 

Ziggerins within the same class). It is thus intuitive to find that letter-like training, 

relative to face-like training, led to more recruitment of neural substrates for basic-level 

categorization than those for subordinate-level discrimination. 

There are several reasons for the lack of training effects in the letter-selective 

area. One plausible reason is that the current letter-like training was not demanding 

enough. There were only six classes of Ziggerins for participants to learn, much fewer 

than the number of basic characters or alphabets in most writing systems. The relatively 

easy task may be insufficient to push the participants to recruit the letter-selective neural 

mechanisms. It could be the same reason for the lack of style tuning effects during 

behavioral testing. If the training had been harder, the regularity in style could have been 

more useful for facilitating Ziggerin recognition and thus could have been extracted by 

the participants. The second plausible reason for the lack of training effects in the letter-

selective area is that the letter-like training did not provide sufficient conditions for the 
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acquisition of expertise in visual letter perception. The training captured certain aspects 

of letter recognition: participants were trained to recognize, at the basic-level level, a 

large number of instances presented in a spatially organized clusters with a coherent 

style. However, one feature of letter perception – its close association with other 

processes involved in reading and writing – was not captured. The Ziggerin training 

involved little linguistic processing, with no elements of orthography, phonology, and 

semantics introduced in the training. Neither was there any type of motor learning that 

normally comes with letter writing or typing. The sensorimotor interaction with letters 

was demonstrated in imaging studies showing activation of the motor network by letter 

perception, and activation of the letter-selective visual regions during letter writing 

(James & Gauthier, 2006). It could take the involvement of the linguistic and/or motor 

areas to induce a training effect in the letter-selective area. Another reason for the lack of 

training effects in the letter-selective area concerns the properties of the Ziggerins. They 

are three-dimensional objects with texture and shading and a drastically different 

geometry compared with two-dimensional letters and characters. Perhaps only objects 

similar enough to letters can activate the letter-selective area, which would mean that 

there are strong constraints on selectivity that have to do with object geometry. Recent 

studies have shown that characters of unfamiliar writing systems can activate the letter-

selective and word form areas to a similar degree as familiar letters (Reinke et al., in 

press). 

Overall, the face-like training increased recruitment of the face-selective area 

whereas the letter-like training did not affect the letter-selective region. Despite this, the 

current study succeeded in causing different patterns of neural activity changes as a result 
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of two different types of training experience. While this study reveals limitations in our 

current understanding of the factors that determine the specific recruitment of different 

neural substrates in visual expertise, it clearly establishes the role of experience in 

determining the recruitment of selective neural substrates in object recognition. 
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CHAPTER IV 

 

CONCLUDING REMARKS: IMPLICATIONS AND FUTURE DIRECTIONS FOR 
STUDYING THE EFFECT OF EXPERIENCE ON VISUAL OBJECT RECOGNITION 

 

Summary and overview 

This dissertation was aimed at augmenting our understanding of the role of 

experience on selectivity for different categories in the visual object recognition system. 

As discussed in CHAPTER I, while existing theories postulate different mechanisms to 

account for the category selectivity found in the object recognition system, relatively 

little empirical work has addressed the effects of specific factors. In the current study, the 

role of experience was examined more directly using a training paradigm in which two 

groups of participants were exposed to different types of training experiences on the same 

set of novel objects. This allowed a relatively pure test of the effect of experience with 

object geometry controlled. Also, the use of novel objects presumably minimized higher-

level processing (e.g., language, social and emotional processing) typically associated 

with real-world objects (e.g., letters, faces). This was a novel approach as previous 

studies have mostly focused on one type of training (Gauthier et al., 1999; Moore et al., 

2006; Yue et al., 2006). 

The two types of training compared here were designed to produce two kinds of 

perceptual expertise, namely face and letter expertise. Face and letter perception 

represent two very different cases of object perception, with different behavioral and 

neural signatures of expertise. Face and letter perception display drastically different 

behavioral phenomena and neural selectivity patterns. With such differences, the contrast 
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between face and letter perception present the ideal model for studying the role of 

experience. 

After the review of literature and motivation for this dissertation laid out in the 

first chapter, CHAPTERS II and III report the procedures for the two types of training 

and the behavioral and neural training effects. The face-like training was similar to the 

Greeble training studies which led to face-like behavioral phenomena and neural 

activations (Gauthier & Tarr, 1997, 2002; Gauthier et al., 1999; Gauthier et al., 1998; 

Rossion et al., 2002; Rossion et al., 2004). Face-like training was defined as learning to 

individuate a set of novel objects that share a configuration of parts, just like one has to 

discriminate very similar faces during person identification. Letter-like training, which 

has not been implemented before, was designed according to the hypothesis of the task 

demands associated with letter perception during reading (Wong & Gauthier, in press). It 

was defined as learning to rapidly recognize at the basic level a large number of items 

presented in a spatially organized cluster with a coherent style, just as letters appear in 

texts. 

Face-like training resulted in behavioral and neural effects consistent with 

findings from prior Greeble training studies. Training caused a smaller basic-level 

advantage as well as increases in configural processing effects. Besides, fMRI activity in 

the right fusiform face area (RFFA) was enhanced after training, and the magnitude of 

this enhancement was positively correlated with the magnitude of the configural 

processing effect. This is consistent with the correlation of RFFA activity with the 

amount of holistic processing found for Greebles after training (Gauthier & Tarr, 2002). 

While these effects of face-like training replicate prior findings, the importance of the 
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current study lies on the fact that it is the first time that such effects are obtained in 

contrast to a training group that received an equivalent exposure to the same objects. 

Unlike Greebles, the Ziggerins used in the current study were inanimate and 

definitely not face-like in geometry. Also, the Ziggerin set was much more 

heterogeneous, with six classes each with a unique set of parts. This means that 

participants were actually required to acquire face-like expertise in six basic-level 

categories. Given this, it is impressive that face-like training effects were obtained with 

only ten hours of training, similar to the time spent in Greeble training studies. 

Letter-like training resulted in some but not all of the effects associated with letter 

expertise. Behaviorally, letter-like training caused a trend of enhanced basic-level 

advantage, i.e., recognition performance improved at the basic but not at a subordinate 

level. This is consistent with our recent study showing a larger basic-level advantage for 

characters in a familiar writing system (Wong & Gauthier, in press). Besides, the letter-

like training group was faster than the other group in recognizing, at the basic level, 

triplets of Ziggerins. However, the letter-like group did not reveal any style tuning effect, 

and showed no changes in the activity of the letter-selective area. It is likely that the 

letter-like training in this study only introduced some but not all of the necessary factors 

to drive selectivity in the letter-selective area. Despite this, letter-like training resulted in 

a distributed pattern of neural changes, with more emphasis on the medial than the lateral 

regions in the ventral occipitotemporal cortex. These medial regions were also shown to 

be more responsive to object presentation in the periphery, and more active when one 

makes a basic-level judgment than a subordinate-level judgment. Therefore, the letter-

like training in this study may better be named “basic-level categorization training”, 
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which caused a larger basic-level advantage as well as more emphasis on neural 

substrates responsible for basic-level categorization. In this aspect, the current study is 

related to a recent bird training study (Scott et al., 2006), in which participants learned 

subordinate-level categorization with a kind of birds (e.g., owls) and basic-level 

categorization with another kind (e.g., wading birds). In that study, the basic-level 

training was easy (with only two categories) and thus regarded as the control condition to 

show that the subordinate-level training effects were not merely a result of exposure. The 

current study was different in that the basic-level training was much more demanding 

(involving six basic-level categories with novel objects and requiring fast recognition of a 

large number of objects). Therefore, while Scott et al.’s (2006) study did not show any 

effects unique to basic-level training, in the current study the letter-like/basic-level 

training led to behavioral and neural changes not found for the face-like training. 

 

Implications and future directions 

Process-map theory 

The results of this dissertation have important implications for our understanding 

of the origins of category selectivity in the visual object recognition system. Specifically, 

the study demonstrated how two different types of trainings led to qualitatively different 

patterns of selectivity for objects after training, when participants were tested in the same 

task with the same objects. The process-map theory provides a natural explanation of the 

mechanisms underlying the effect of experience (Bukach et al., 2006; Gauthier, 2000). 

According to this hypothesis, the ventral occipitotemporal cortex contains regions with 

different pre-existing biases, or preference for specific types of recognition demand. 
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When recognition of a certain object category imposes a particular recognition demand, 

the substrates that best fulfill the recognition demand would be used more. This could be 

accomplished by feedback from frontal areas to different parts of extrastriate cortex that 

process the same object in parallel in different manners. Upon prolonged experience with 

an object category under the same recognition demands, the visual areas that best meet 

the recognition demands may become associated with activity in areas that represent the 

physical properties of a category. Through this process, visual areas can come to 

demonstrate category-selectivity independently of the current task demands. 

While the process-map hypothesis was developed to explain how face-like 

expertise with non-face categories may recruit face-like processes and neural substrates, 

its applicability to the whole object recognition system has not been put to a real test. 

This dissertation confirmed the findings of previous studies, and went a step further by 

showing the interplay between recognition demands and experience over a wide range of 

regions in the ventral occipitotemporal cortex.  For instance, the current study 

demonstrated how, regardless of training, different ventral occipitotemporal regions bias 

for perception at different levels of categorization, and that these regions were in turn 

recruited to different extent for the two types of training, depending on the level of 

categorization required.  

Certainly it should be noted that while the current study succeeded in producing 

different effects with two types of training, it was not able to recreate all the behavioral 

and neural markers of letter-like expertise as expected. This does not mean that the 

process-map theoretical framework is necessarily inadequate – the process-map theory 

does not dictate the specific correspondences between training conditions and training 
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outcomes, although it does postulate that they exist. As we begin to understand additional 

organizing principles of the object recognition system, we may be in a position to more 

specifically predict the sufficient training conditions that can produce certain behavioral 

effects and recruit a given visual area. For letter selectivity to occur, it remains to be 

tested if stimulus geometry, task demand, association with linguistic and motor 

processing, or some or all of these factors, is necessary. The same question can be asked 

when one tries to explain selectivity for other object categories. The current paradigm 

demonstrates a fruitful approach to address such questions, much more directly than 

studies with common objects that confound geometry and past experience, or studies that 

involve only one type of training, in which training effects could result from exposure 

only.  

 

Organizing principles of the ventral occipitotemporal cortex 

Certainly gathering the sufficient conditions for creating selectivity for different 

categories is important. It may be even more valuable, however, to isolate specific 

principles with which the object recognition system is organized and dimensions along 

which processing of different categories vary. Two organizing principles of the visual 

object recognition system were revealed – level of categorization, and configural 

processing. 

Level of categorization has been implied as one dimension along which substrates 

in the object recognition system vary. An eccentricity-bias gradient has been shown, with 

the lateral parts of the ventral occipitotemporal cortex preferring object presentation at 

the center of the visual field and the medial part preferring presentation in the periphery 



 101 

(Hasson et al., 2002; Levy et al., 2001; Malach et al., 2002). It was suggested that the 

lateral regions preferring central presentations receive more visual input from the fovea 

and thus can handle recognition requiring a higher resolution. The current study provides 

the first empirical support for the link between eccentricity bias and preferred level of 

categorization: regions with a center bias are also more active for more subordinate-level 

discrimination, while regions with a periphery bias are more active for coarser, basic-

level discrimination. 

Another principle that distinguishes between the properties of different neural 

substrates in the ventral occipitotemporal cortex is configural processing. A link between 

configural processing and the fusiform face area (FFA) can be implied from the finding 

that face perception is associated with configural processing (Young et al., 1987) as well 

as higher FFA activity than other object categories (Downing et al., 2006; Kanwisher et 

al., 1997; Puce et al., 1996). More direct evidence for this link comes from studies 

showing a correlation between configural processing and FFA activity for Greebles 

(Gauthier & Tarr, 2002). The current study also revealed a positive correlation between 

the magnitude of configural processing and the magnitude of training effects in the 

RFFA, thus confirming the link between the FFA and configural processing. 

The discovery of the organizing principles of the ventral occipitotemporal cortex 

has very important implications for the study of functional specialization in the object 

recognition system. The nature of neuroimaging techniques may have encouraged 

researchers to focus on identifying localized regions for different categories and dividing 

the brain into multiple systems. However, postulating multiple systems to account for 

differences between categories is like re-description of data and does not allow 
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predictions to be made for new categories not studied before. A deeper understanding of 

category selectivity requires the understanding of its underlying mechanisms. The current 

findings suggest that it would be more accurate to regard the object recognition system as 

one single system within which many discrete and continuous functional dimensions 

interact, rather than as a collection of segregated, discrete compartments, or modules. A 

good future direction would be to discover more potential organizing principles of the 

object recognition system. This can be done with behavioral and modeling methods that 

contrast the computational demands of perception of different categories. 

 

Explaining perceptual learning in general 

This dissertation focuses on the experience-dependent changes in the object 

representations in the higher-level visual areas. In fact perceptual learning has been 

shown to occur at different points along the ventral visual pathway, from the early 

retinotopic areas to the higher visual areas that support object recognition directly (see 

reviews in Fahle, 2004; Fine & Jacobs, 2002; Kourtzi & DiCarlo, 2006). 

Perceptual learning studies involving “simple features” are often found to involve 

early visual areas. For instance, discrimination training with oblique orientation patterns 

led to increased human fMRI responses in V1 (Furmanski et al., 2004). A recent single 

cell recording study with monkeys showed that orientation discrimination training 

actually caused larger changes in V4 than in V1 (Raiguel et al., 2006). The changes 

involved sharpening of the tuning curves in neurons optimal for signaling small 

differences around the trained orientation. Sigman et al. (2005) illustrated the role of top-

down processes in the reorganization of visual pathway in a visual search task. After 
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learning to search for a target (e.g., T in a certain orientation) among distractors (Ts in 

other orientations), the early visual cortex was more active (and more correlated with 

performance) during the search for trained than untrained targets, whereas the lateral 

occipital, frontal and parietal areas were less active (and less correlated with 

performance) for the trained target search. Interestingly, the changes in the early visual 

cortex did not depend on whether the target was present or not, suggesting the 

modulation of top-down task demand. 

As described in CHAPTER I, training studies involving more complex objects 

tend to reveal changes in higher visual areas (see Figure 1 for stimuli in some of the 

studies). Several studies revealed that training to perform extremely fine discrimination 

among morphed or highly similar objects caused the lateral occipital complex (LOC) to 

increase its activity (Jiang et al., 2007; Op de Beeck et al., 2006) and to become more 

sensitive to shape changes (Jiang et al., 2007; Yue et al., 2006). Subordinate-level 

categorization training with Greebles resulted in enhanced activity in the fusiform face 

area (FFA), as well as in areas overlapping with the LOC (Gauthier & Tarr, 2002; 

Gauthier et al., 1999). Working memory training with novel objects made with polygons 

led to heightened activity not only in the LOC and FFA, but also in prefrontal and 

parietal areas (Moore et al., 2006). 

It is clear that there is no single locus of neural changes underlying perceptual 

learning. The most obvious difference among the findings is that some training changed 

the early visual areas while others led to changes in later stages of object recognition. 

There are also other differences. For example, orientation discrimination training can 

cause in some studies effects specific to the trained eye, indicating early visual area 
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changes (Karni & Sagi, 1991), but similar procedures can also lead to training effects 

generalizable across eyes, suggesting changes in later stages (Schoups et al., 1995). 

Another difference concerns the recruitment of the FFA. Although the FFA has been 

suggested to be associated with subordinate-level categorization (Gauthier, 2000; 

Gauthier et al., 1997), studies that emphasized fine discrimination among objects (Jiang 

et al., 2007; Op de Beeck et al., 2006; Yue et al., 2006) did not always find an increase in 

FFA activity. It is not surprising to see these differences among studies, given the variety 

of object geometries and training experiences. 

One attempt to offer a unifying account for the behavioral and neural effects of 

perceptual learning comes from the reverse hierarchy theory, or the RHT (Ahissar & 

Hochstein, 1998, 2004). The RHT asserts that perceptual learning results from the 

increased accessibility of task-relevant information in different neural substrates. Also, 

“perceptual improvement largely stems from a gradual top-down-guided increase in 

usability of first high- then lower-level task-relevant information” (Ahissar & Hochstein, 

2004, p.457). More specifically, easier training tasks with greater stimulus variability 

(e.g., in terms of position) tend to increase recruitment of the later stages in the visual 

pathways, while harder training tasks with smaller stimulus variability are learned at 

earlier visual areas. Accordingly, both stimulus characteristics and task demands play 

important roles in determining which part of the visual pathway would change upon 

learning. 

Here one can see the parallel between the challenge in explaining category 

selectivity in the object recognition system and that in accounting for different loci 

involved in perceptual learning. Multiple factors could contribute to the training effects 
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found in different neural regions in different studies, and empirical work is needed to 

tease apart the contributions of individual factors. In this sense, the type of training 

paradigm used in this dissertation would be a useful tool to bridge the fields of “simple 

feature” perceptual learning and of learning in complex object recognition. 

 

Final conclusions 

This dissertation reveals the unique contribution of recognition experience to the 

recruitment of different areas in the object recognition system. Manipulating training 

experiences with the same set of novel object resulted in face-like training effects 

consistent with previous findings in one case, and in the other case a distributed pattern of 

changes reflecting more emphasis on basic-level categorization. The comparison of two 

training procedures in one study demonstrated its power in probing individual principles 

that govern the organization of the ventral occipitotemporal cortex. It would be a fruitful 

approach in explaining not only category selectivity in the object recognition system but 

also mechanisms underlying perceptual learning in general. 
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Figure A. Changes in naming response times (msec) across sessions in face-like training  
(Blue – Ziggerins with names; Red – Ziggerins without names). 
 

APPENDIX A 

 

Individual response times and group average proportion correct in naming for face-like 

training. 
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Table A. Group average naming accuracy (proportion correct) across sessions in face-
like training. 
 
 
 

  With names Without names 
Session M SD M SD 

1 0.96 0.03 0.93 0.12 
2 0.94 0.04 0.91 0.13 
3 0.94 0.04 0.94 0.07 
4 0.97 0.03 0.98 0.04 
5 0.96 0.03 0.97 0.04 
6 0.97 0.02 0.97 0.03 
7 0.96 0.03 0.96 0.04 
8 0.97 0.02 0.97 0.03 
9 0.97 0.03 0.96 0.04 
10 0.97 0.02 0.98 0.02 
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APPENDIX B 

 

Individual response times and group average proportion correct in verification for face-

like training. 

 

 
 
Figure B. Changes in verification response times (msec) across sessions in face-like 
training. 
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Table B. Group average verification accuracy (d’) and bias across sessions in face-like 
training. 
 
 

  Sensitivity (d') Bias 
Session M SD M SD 

1 2.52 0.46 -0.41 0.17 
2 2.62 0.53 -0.44 0.10 
3 2.71 0.51 -0.47 0.21 
4 2.87 0.40 -0.44 0.19 
5 3.04 0.55 -0.40 0.20 
6 2.99 0.57 -0.36 0.19 
7 2.99 0.67 -0.33 0.22 
8 3.05 0.56 -0.33 0.20 
9 3.05 0.81 -0.26 0.21 

10 3.26 0.68 -0.27 0.14 
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APPENDIX C 

 

Individual response times and group average proportion correct in matching for face-like 

training. 

 

 
 
Figure C. Changes in matching response times (msec) across sessions in face-like 
training (Blue – target present trials; red – target absent trials). 
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Table C. Group average matching accuracy (proportion correct) across sessions in face-
like training. 
 
 

  Target present Target absent 
Session M SD M SD 

1 0.91 0.03 0.69 0.11 
2 0.92 0.03 0.65 0.15 
3 0.92 0.04 0.64 0.14 
4 0.93 0.03 0.68 0.14 
5 0.95 0.02 0.72 0.11 
6 0.94 0.03 0.72 0.11 
7 0.95 0.02 0.73 0.12 
8 0.95 0.02 0.74 0.12 
9 0.95 0.04 0.74 0.11 

10 0.96 0.03 0.74 0.12 
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APPENDIX D 

 

Individual response times and group average proportion correct in naming for letter-like 

training. 

 

 
 
Figure D. Changes in naming response times (msec) across sessions in letter-like 
training. 
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Table D. Group average naming accuracy (proportion correct) across sessions in letter-
like training. 

 
 

Session M SD 
1 0.97 0.03 
2 0.98 0.02 
3 0.98 0.02 
4 0.97 0.03 
5 0.97 0.03 
6 0.97 0.03 
7 0.97 0.03 
8 0.97 0.03 
9 0.96 0.04 

10 0.97 0.03 
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APPENDIX E 

 

Individual response times and group average proportion correct in verification for letter-

like training. 

 

 
 
Figure E. Changes in verification response times (msec) across sessions in letter-like 
training. 
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Table E. Group average verification accuracy (d’) and bias across sessions in letter-like 
training. 
 

  Sensitivity (d') Bias 
Session M SD M SD 

1 4.10 0.71 0.04 0.25 
2 4.11 0.60 -0.08 0.23 
3 4.00 0.69 -0.04 0.16 
4 3.88 0.66 -0.07 0.21 
5 3.82 0.74 -0.06 0.20 
6 3.76 0.72 -0.01 0.19 
7 3.61 0.83 -0.11 0.18 
8 3.85 0.91 -0.12 0.21 
9 3.76 0.89 -0.05 0.22 
10 3.62 0.75 -0.02 0.26 
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APPENDIX F 

 

Individual response times and group average proportion correct in matrix scanning for 

letter-like training. 

 

 
 
Figure F. Changes in matrix scanning response times (sec) across sessions in letter-like 
training. 
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Table F. Group average matrix scanning accuracy (proportion correct) across sessions in 
letter-like training. 
 
 

Session M SD 
1 0.88 0.06 
2 0.92 0.06 
3 0.94 0.04 
4 0.94 0.03 
5 0.93 0.05 
6 0.94 0.05 
7 0.94 0.04 
8 0.93 0.04 
9 0.93 0.06 

10 0.92 0.07 
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APPENDIX G 

 

Performance for the different target-distractor matching conditions in the part matching 

task 

The congruent and incongruent conditions were split for further analyses in the 

part matching task where distractor changes can occur at the individual level. A Three-

way ANOVA was conducted for response times with the factors of Group (face-like, 

letter-like), Alignment (aligned, misaligned), and Matching Conditions (Target same 

Distractor same, Target same Distractor different, Target different Distractor different, 

Target different Distractor same). The Group × Alignment × Matching Condition 

interaction was close to significant for response time [F(6,129)=1.996, p=.0708]. Scheffé 

tests (p<.05) on the aligned trials showed that, for the face-like group, responses were 

faster in target-same trials when the distractor parts were also the same compared with 

when the distractor parts were different. In target-different trials, responses were faster 

when the distractor parts were also different than when the distractor parts were the same. 

In other words, performance was better when the target and distractor parts led to the 

same correct response. Such a difference between congruent and incongruent trials was 

not found for the face-like group when the target and distractor parts were misaligned. 

Neither did it occur for the letter-like group or the control group, whether the target and 

distractor parts were aligned or not. The three-way ANOVA on proportion correct did not 

show a significant three-way interaction [F<1]. 
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Figure G. Response times (A) and proportion correct (B) for the different target-
distractor matching conditions in the part matching task when distractor changes 
occurred at the individual level. Error bars represent 95% confidence interval for the 
matching condition variable (matching conditions: T same D same = Target part same 
Distractor part same; T same D diff = Target part same Distractor part different; T diff 
D same = Target part different Distractor part same; T diff D diff = Target part 
different Distractor part different). 
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