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ABSTRACT 
 
 

 Carbon Nanotube (CNT) is an emerging form of carbon nanostructure, vastly 

expanding its utility for several applications ranging from electronics to tribology. CNT 

is an excellent material for electron field emission due to its high aspect ratio, robust 

mechanical and chemical properties, high thermal conductivity, and ability to withstand 

high temperature and ion bombardment. This research is focused on the fabrication and 

characterization of a novel CNT field emission cell with a built-in electron beam source 

for electron excited amplified field emission. In brief, reliable and consistent process 

techniques have been developed to grow aligned CNTs under different growing 

conditions using MPCVD. This process was integrated in the fabrication of monolithic 

lateral field emission cell (FEC) in diode configuration with a built-in electron beam 

source. Field emission behaviors with and without activation of the built-in electron beam 

were characterized. A high voltage of 1.8 kV was applied to generate the bombarding 

electron beam on the FEC. The emission current of the FEC increases markedly with the 

activation of the electron beam source due to impact ionization and direct interaction with 

the FEC CNT cathode. The emission behaviors were confirmed by F-N plots. It was 

found that ~ 10 times current amplification was achieved. These results demonstrate the 

feasibility of a novel means of power generation using electron stimulated impact 

ionization field emission. 
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CHAPTER I 

 

INTRODUCTION 

 

Carbon Nanotubes 

Carbon nanotubes (CNTs) are allotropes of carbon with a nanostructure that can 

have a length-to-diameter ratio greater than 1,000,000 [1]. These cylindrical carbon 

molecules have novel properties that make them potentially useful in many applications 

in nanotechnology, electronics, optics and other fields of materials science, as well as 

extensive use in arcology and other architectural fields. They exhibit extraordinary 

strength and unique electrical properties, and are efficient conductors of heat. The nature 

of the bonding of a nanotube is described by applied quantum chemistry, specifically, 

orbital hybridization. The chemical bonding of nanotubes is composed entirely of sp2 

bonds, similar to those of graphite. This bonding structure, which is stronger than the sp3 

bonds found in diamond, provides the molecules with their unique strength. [1] 

 The discovery of nanotubes remains a contentious issue. Many believe that 

Iijima's report in 1991 is of particular importance because it brought carbon nanotubes 

into the awareness of the scientific community as a whole. Carbon nanotubes have been 

produced and observed under a variety of conditions prior to 1991. A paper by Oberlin, 

Endo, and Koyama published in 1976 clearly showed hollow carbon fibers with 

nanometer-scale diameters using a vapor-growth technique [2]. Additionally, the authors 

show a TEM image of a nanotube consisting of a single wall of graphene. Later, Endo 

has referred to this image as single-walled nanotubes [3]. Carbon-based nanostructured 
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materials still continue to attract a disproportionate share of research effort because of 

their wide-ranging applications. Potential applications of CNTs include microcathodes 

for vacuum field emission displays [4], electron source for vacuum electronics [5], 

microwave power amplifier [6], gas sensors for chemical sensing[6], scanning probe for 

atomic force microscope [7], wires for quantum electronics [8], hydrogen storage for fuel 

cells [9], electrodes for discharge tubes[10], electrochemical capacitor for high 

power[11], nonvolatile random access memory for molecular computing[12], 

nanotweezers for microelectrochemical systems (MEMS) [13] and semiconductor for 

solid state nanoelectronics [14].  

 There has been a tremendous amount of work studying defect-free nanotubes, 

including single or multiwalled nanotubes (SWNTs or MWNTs). A SWNT is a hollow 

cylinder of graphite sheet with hexagonal structural feature whereas a MWNT is a group 

of coaxial SWNTs. A SWNT can be visualized as a hollow cylinder, formed by rolling 

over a graphite sheet, as shown in Figure 1.1. Three typical nanotubes can be obtained: 

zigzag (n, 0), armchair (n, n) and chiral (n, m) where n>m>0 by definition [1]. The 

detailed structure of nanotubes is mentioned elsewhere [15]. In addition to defect-free 

nanotubes, observed structures also include the capped and bend, branched, and helical 

MWNTs [1], and the bent, capped and toroidal SWNTs [1]. Most of these structures are 

believed to have topological defects such as pentagon or heptagon incorporated into the 

nanotubes of hexagonal network. Till date, different methods to synthesize CNTs have 

been reported by different groups, which has mentioned in appendix B. 

 

 



 3

 

 

 

 
Figure 1.1: 3D model of three types of single-walled carbon nanotubes. By rolling a 
graphite sheet in different directions, these typical configurations can be obtained: zigzag 
(n, 0), armchair (n, n) and chiral (n, m) where n>m>0 by definition. In this specific 
example, they are (10, 0), (10, 10) and (7, 10) respectively. 
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Vacuum Field Emission 

 We have mentioned that CNT has potential applications in vacuum field emission. 

So what is vacuum field emission? Field emission (FE) is the emission of electrons from 

the surface of a condensed phase into another phase due to the presence of high electric 

fields. If this phenomenon takes place under vacuum then it is called Vacuum Field 

Emission (VFE). In this case, electrons quantum-mechanically tunnel through the surface 

potential barrier (work function) into vacuum [16]. VFE devices are sometimes referred 

to Vacuum Microelectronics (VME) devices. These devices capitalize on the electron 

transport through vacuum [16]. Figure 1.2 shows the basic structural difference between 

the solid state MOS transistor and vacuum triode transistor. Some of the advantages of 

VFE devices over solid-state are: 

• Electrons travel through vacuum with less energy dissipation than solid-state 

semiconductor devices. 

• Insensitive to temperature and radiation. Whereas in solid-state microelectronic 

devices, signal and device performance degradation are one of the major concerns 

because of electron scattering transport in the semiconductors. 

• Switching speed is extremely fast, limited by speed of light ~ 3 x 108 m/s. In case 

of solid-state microelectronic devices it is limited by the carrier saturation 

velocity, ~ 1 x 105 m/s in Si and GaAs, and ~2 x 105 in GaN. 

• High output power. 
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Figure 1.2: Schematic cross section of (a) solid-state MOS transistor and (b) vacuum 
triode transistor. 
 

 

 To date, fabricated and proposed field emission devices (FEDs) have been largely 

divided into two categories: vertical and lateral. Lateral field emitters are easier to 

fabricate over vertical field emitters with attractive design versatility of electrode 

geometry and has attractive applications for low turn-on field devices [17]. In addition, 

due to small inter-electrode overlapping area, the device input capacitance of lateral 

FEDs is inherently small [17]. As a result, lateral devices are able to draw significant 

amount of research attention. Figure 1.3 shows both the lateral and vertical devices 

grown by Vanderbilt University using CVD diamond and CNTs as emitter.  

Spindt and coworkers, in 1968 developed micro field emitter array (FEA) by thin 

film deposition of molybdenum (Mo) cones on Si substrate. Later, to take the advantages 

of the advances in photolithography and micro fabrication technology, the work on FEA 

was extended to silicon microtips. But higher cost of fabrication and high cathode 

sensitivity to the contaminations made both types of FEAs less applicable. As a result, 

researchers have been looking for other field emission cathode materials, mainly 

allotropes of carbon such as diamond, carbon nanotubes and etc. 
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Figure 1.3: SEM micrograph of typical (a) vertical field emission devices with CVD 
diamond as emitter, (b) vertical field emission devices with CNTs as emitter and (c) 
Lateral field emission devices with CVD diamond as emitter by Vanderbilt. 
  

 

 Due to its low or negative electron affinity (NEA), diamond is one of the 

promising candidates as a cold cathode emitter. The conduction band edge of hydrogen-

terminated diamond lies above the vacuum level. As a result, low threshold field of 3-40 

V/µm for a current density of 10 mA/cm2 can be achieved with diamond as emitter [18]. 

Great interests have been shown in CVD diamond for VME applications partly due to the 

ability of depositing diamonds by low pressure chemical vapor deposition (CVD) 

technique. Typical diamond microtips fabricated by Vanderbilt University are shown in 

Figure 1.3 (a) and (c). 

 On other side, CNTs have displayed extraordinary electro-mechanical properties, 

thermal and chemical stability. Most importantly, due to high aspect ratio, CNTs has been 

shown to be excellent field emitters with low turn on and threshold field. Although The 

work function of CNT is relatively high (5.5 eV), the sharp nanotips help electrons to 

overcome the surface potential barrier at low microscopic field due to high field 

enhancement at the tips. Figure 1.3 (b) shows the CNT vertical field emission devices. In 

addition, CNTs are the center of researchers’ attention for numerous VME applications 

(a) (b) (c)
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because of its ability to deliver high current density in excess of 1 A/cm2 [19]. An 

overview of carbon nanotubes’ property can be found in Appendix A. 

 

 

Objective of the research 

 The scope of this study is limited to electron field emission of multi-walled 

carbon nanotubes (MWNTs) grown by microwave plasma enhanced chemical vapor 

deposition (MPCVD). The research was mainly focused on: 

• Selective growth of CNTs using cobalt (Co) catalysts on patterned substrate. 

• Studying the change in CNTs structure by changing growth parameters. 

• Synthesis of CNTs by MPCVD. 

• Implementation of electron beam lithography (EBL) to get micro patterned device 

structure. 

• Characterization of the fabricated CNT field emitter cell in diode configuration. 

• Characterization of the fabricated CNT field emitter cell under the influence of 

electron beam as external stimulator. 
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Organization of the thesis 

The thesis consists of five chapters and appendices: 

• Chapter 1 gives an introduction on carbon nanotubes and vacuum field emitter 

devices. In addition, the objective of this research is mentioned. 

• Chapter II gives a detail elaboration on synthesis of CNTs under different 

growing conditions. 

• Chapter III contains the study of field emission and electron beam amplified field 

emission. 

• Chapter IV provides summary and conclusion of the studies described in 2nd and 

3rd chapters. 

• Chapter V provides recommendations for future works of this research. 

• Appendices 

Α . Structure and Properties of Carbon Nanotubes. 

B. Growth mechanism and Synthesis of CNTs. 

C. Electron beam lithography. 
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CHAPTER II 

 

SYNTHESIS OF CNTs 

 

Introduction 

 This chapter explores the effect of various growth parameters on CNT synthesis. 

In past, several groups have studied the control of CNT orientation and synthesize by 

CVD for various catalysts [20-21], gas sources [22-23] and substrates [24]. The roles of 

different catalyst particles, reaction temperature and reaction gases in CNT synthesis 

have been studied [25-26]. In our previous studies, MPCVD was successfully used to 

synthesize multi-walled vertically aligned CNTs by using CH4-H2 gas mixture [27]. It 

was found that microwave power and working temperature affect the growth rate [27]. In 

this part of the research, the influence of important parameters including gas flow rate, 

buffer layer thickness, growth temperature, applied microwave power, pretreatment time, 

growth time and substrate biasing, on the alignment and morphologies of the synthesized 

CNTs were studied systematically. 

 

Experiment 

Five sets of experiments were performed to examine the role of different physical 

parameters on the growth of CNTs. The physical parameters were varied and their values 

listed in Table 1. For all set of experiments, an ASTEX 1.5 kW MPCVD system 

equipped with induction heater for substrate heating was used to grow CNTs. Highly 

doped N+ type silicon substrates (100) of resistivity 0.002-0.0035 Ω-cm were first coated 
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with a thin layer of titanium (Ti) followed by the catalyst, cobalt (Co), with a shadow 

mask using DC magnetron sputtering under a vacuum of ~5x10-5 Torr [22]. The Ti acts 

as a diffusion barrier layer for the catalysts to prevent the formation of silicide at high 

temperature [28]. 

The first experiment, samples A1-A6, can be divided into three groups having two 

samples each with the same thickness of buffer-catalyst (Ti-Co) layer. The samples from 

each group were subjected to different working temperature, while the remaining 

parameters were kept unaltered. In exp. 2, sample B1-B4, the thickness of buffer catalyst 

layer was kept constant and N2 was introduced. There is another important difference 

between exp. 1 and 2. In the first experiment the substrates were pretreated only by H2 

plasma, whereas, in the second experiment there was no plasma treatment but heat 

treatment in H2 environment for longer period of time. The intension was to study the 

effect of these two changes on CNT synthesis. In experiments 3-5, the samples were 

subjected to plasma as well as heat treatment in sequence. In addition, a negative bias of 

100 volt was also applied to the substrates. Each of the experiments consists of 4 samples 

with catalyst (Co) thickness 4 nm, 10 nm, 15 nm and 20 nm respectively while the buffer 

layer (Ti) thickness was kept constant at 20 nm. In the third and fourth experimental set, 

no physical parameters were changed except the order of the experiments. In experiment 

3, H2-N2 plasma was turned on after the pretreatment time followed by the bias and 

methane (CH4) introduction initiate CNT synthesis for 10 min. But in the next two set of 

experiments this order has been modified. The bias was applied right after the 

pretreatment and then the H2-N2-CH4 plasma was turned on to initiate the CNT growth. 

Last, in the fifth experiment higher microwave power of 1 kW was applied.  
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Experimental Results and Discussions 

The CNT morphologies such as vertical alignment, average tube diameter, height 

and amorphous carbon (a-C) nanoparticles content of all the samples were observed and 

analyzed with a Hitachi 4200 scanning electron microscope (SEM).The growth 

mechanism of CNTs is believed to occur via decomposition of the carbonaceous gas 

molecules at the surface of catalyst nanoparticles, and diffusion of carbon atoms through 

the nanoparticles [28]. Throughout the experiments hydrogen was used to dilute the 

hydrocarbon (CH4) to reduce the amorphous carbon deposition on the tips of CNTs. In 

experiment 1, the effects of the growth temperature, and different catalyst and buffer 

layer thicknesses were investigated. Samples A1-A6 were all pretreated with H2 plasma 

for 5 min at the respective growth temperature. It has been shown that plasma 

pretreatment prior to CNT growth is important in synthesizing aligned CNTs due to the 

formation of uniform catalytic nanoislands [21, 17]. In addition, the H2 plasma 

pretreatment also tend to reduce accumulation of a-C nanoparticles on the CNT walls 

during the initial synthesis stage, resulting in CNTs with better quality [4, 17]. 

As observed in Figure 2.1, the as-grown CNTs are generally well aligned and 

contain few carbon nanoparticles. The catalyst layer thickness just varied by 2 nm. Since 

tube diameter is dependent on thickness of catalyst layer, there is a small change in 

average diameter, from 10 nm to 30 nm. Among the three groups, the thicknesses of the 

buffer-catalyst layer were varied while keeping all the other parameters constant. 

Consequently, appropriate buffer layer thickness for the 2 nm thick catalyst layer is found 

to be 10 nm. Among the three groups in the first experiment, sample A3 and A4 have 

better physical alignment. The working temperature was found to play a crucial role. 



 12

Specifically, it affects CNT’ height and alignment. It has been observed that the CNTs 

grown at higher temperature, i.e. 700 0C are shorter than those grown at 650 0C. On the 

average, samples synthesized at 650 0C have 2 – 5 µm taller nanotubes than those of at 

700 0C. Here, two different temperatures were applied with the intension to find out the 

more appropriate value to grow well aligned nanotubes. Overall in experiment 1, sample 

A3 has the best alignment with height and diameter 10 µm and 20 nm respectively. 

 

 

   
 

   
 
Figure 2.1: SEM images of CNTs with different catalyst thickness and temperature (Exp. 
No. 01). 
 

 In experiments 2 - 5, heat treatment was introduced and longer time was required 

to breakdown the catalytic thin film into nanoparticles. Due to longer pretreatment time 

thicker buffer layer was used to prevent silicide formation. In addition, N2 was introduced 

at lower pressure to investigate the combine influence on the growth mechanism of 

CNTs. In the second experiment, the samples were only heat-treated in H2 ambient 

A1 A2 A3

A5A4 A6
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without plasma pretreatment for 15 min. It was found that at higher concentration of N2, 

ball-like carbon particles were obtained (Figure 2.2-B3).  

 

 

  
 

  
 
Figure 2.2: SEM images of CNTs with different N2 flow rates (Exp. No. 02). Sample B1, 
B2 and B3 were exposed to 5, 10 and 15 sccm of N2 respectively. Sample B2 and B4 
were subjected to same parameters/growth condition, except the later one had longer heat 
pretreatment time. Inset shows the high magnification image of the same sample. 
 

   

 However, at low N2 concentration CNTs were obtained but granular ball-like and 

amorphous carbon also appeared in the mix, Figure 2.2-B1, B2 and B4. Furthermore, 

sample B4 has more granular and sheet-like amorphous carbon structure at the top 

compared to sample B2 due longer heat treatment time. This phenomenon can be 

explained from the growth model for a tip-type CNTs. According to this model carbon 

precipitation takes place on the opposite surface of the catalyst particle to form the 

B1 B2 

B3 B4 
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nanostructure while the particle remains on the top throughout the growth and bigger the 

particle size, poorer the nanostructure’s alignment [28]. Presence of such catalyst 

particles can easily be noticed on the tips of the samples. 

 It seems that only heat pretreatment is not enough to grow aligned CNTs, so from 

the next experiment onwards both types of pretreatments were introduced. It has also 

been observed that at lower pressure (13 Torr), the plasma at 1 kW microwave power was 

relatively unstable compared to the higher pressure (20 Torr) used in experiment 1. In 

experiments 3-5, a negative bias of 100 V was applied to the samples during the MPCVD 

growth. It has been shown that the effect of a negative bias on the substrate is beneficial 

for achieving highly aligned and dense CNTs [29]. It is clear from the SEM images that 

sample C1; Figure 2.3 the one with the thinnest catalyst layer has much better aligned 

CNTs with almost no nano-carbon or ball-like particles on the top surface. However the 

carbon contamination increases from sample C1 to C4. The thicker Co layer which 

resulted in bigger and heavier nanoparticles after the pretreatment [4, 21] might have led 

to poorer vertical alignment of the CNTs. It has also been observed that carbon 

contamination on top of CNTs can be reduced by turning off the carbon containing gas 

few seconds before switching off the plasma, because H2 plasma etches away the 

deposited nanocarbon particles once the gas flow of carbon feedstock is stopped [28]. It 

is believed that due to the applied bias [30] and very short plasma pretreatment time [31, 

32], for samples C1-C4 with different catalyst layer, the CNTs are found to have almost 

the same height, 20µm, almost uniform diameters, ranging from 35 – 45 nm and 

moderate aligned. 
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Figure 2.3: SEM pictures show the effect of catalyst film thickness (Exp. 03) on the 
structure on the CNTs. The buffer layer thickness was kept same (refer table 1 for more 
details). Inset shows the high magnification image of the same sample. 

 

 

In experiments 4 and 5, the experimental order was modified with the 

expectations to achieve taller and well aligned nanotubes. Specifically, the negative bias 

was applied right after the H2 heat pretreatment followed by H2-N2-CH4 plasma to initiate 

the CNTs growth. Whereas in the previous experiments, H2-N2 plasma was started after 

the pretreatment, followed by the bias and lastly CH4 was introduced to initiate the 

growth. The variation in the experimental order was designed to observe changes, if any, 

in the CNT structure and alignment. 

 

 

C1 C2 

C3 C4 
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Figure 2.4: SEM micrograph of the synthesized CNTs at lower power, 400 watt (Exp. 
04). The order of the experiment can be given as; PT  HT BIAS H2/N2/CH4 
PLASMA. Inset shows the high magnification image of the same sample. 

 

 

In the fourth experiment, the CNTs are found to be much more aligned and almost 

no nano-carbon particles on the top (Figure 2.4-D1, D2, D3 and D4). Furthermore, the 

CNTs are found to have almost the same height, 50µm but non-uniform diameters, 

ranging from 30 – 50 nm for samples D1-D4 with different catalyst thickness. Whereas in 

the third experiment, the CNTs are not well aligned, shorter in length by at least 20µm 

and contain lots of nano-carbon particles. These significant changes are observed most 

probably due to the change in the experimental order [30] as mentioned before.  

  

 

D1

D3 D4 

D2 
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Figure 2.5: SEM micrograph of the synthesized CNTs at higher power, 1000 watt (Exp. 
05). The order of the experiment was same as the previous one. Inset shows the high 
magnification image of the same sample. 
 

 

 In the fifth experiment higher microwave power of 1kW was applied. It is 

observed that CNT quality differs with the catalyst size (Figure 5-E1, E2, E3 and E4), i.e. 

thinner catalyst layer improves the CNT alignment. Also the average diameter and height 

change dramatically with different catalyst thickness. Sample E1 has almost the same 

diameter and height as previous experiment, sample D1-D4. It is proposed that the 

growth of CNTs for lighter particle size may be invariant of the applied microwave 

power. Since the nanoparticles remain at the top throughout the growth, bigger and 

heavier nanoparticles may require more precise parameters such as higher microwave 

power and heavier plasma gas to synthesize aligned CNTs [28].  For the rest, E2-E4 the 

height ranges from 5 – 15 µm and diameter from 50 – 80 nm. This difference in height 

E1 E2 

E3 E4 
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and diameter is most likely due to the higher momentum of the particles in the stronger 

plasma which give rise to a greater bombardment energy and temperature to melt more 

catalytic nanoparticles to form bigger islands [33]. 

 

 

Table 1: Specific details of the synthesis parameters used to grow CNTs. The parameters 
include buffer/catalyst thickness, temperature (T), pressure (P), power (E), flow rates, 
plasma treatment (PT), heat treatment (HT), growth time and bias. 
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CHAPTER III 
 

FABRICATION OF LATERAL CNT FIELD EMISSION ENERGY 
CONVERSION CELL 

 

Introduction 

In previous section we have reported growing vertically aligned CNTs by 

controlling the thickness of the catalyst, using microwave plasma enhanced chemical 

vapor deposition (MPCVD). This chapter describes how CNT emitters were synthesized 

selectively on a single chip as electron emitters for both a field emission cell and an 

external electron beam source. The goal of this work is to study how electron emission of 

a field emission cell (FEC) can be stimulated by an external electron beam hitting the 

emitting CNTs. The probability of the electron tunneling can be greatly increased by 

several methods, e.g. local field enhancement through sharp emitting tips [35], work 

function lowering material coating [36] or supply of external energy to lower the surface 

potential barrier [37, 38, and 39].  

 In this work, an energized electron beam was used to supply the external energy 

to the emitting CNTs by bombarding electrons [17] to achieve amplified emission 

current. This concept is very much similar to photofield emission in terms of electron-

hole pair generation. Briefly, in the photoemission process, if an electron absorbs the 

energy of one photon and has more energy than the work function, it is ejected from the 

material [28]. If the photoemission process is combined with an applied field, the 

effective work function of the cathode can be reduced, resulting in much higher emission 

current [38]. It is well-known that field emission, a quantum mechanical tunneling 

process, is a surface phenomenon which depends on the potential barrier of the solid-
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vacuum interface involving extraction of electrons by intense electric field [16]. It is also 

known that if an electron with energy greater than the bandgap energy (EG) hits a 

semiconductor, it breaks semiconductor-semiconductor bond and generates electron-hole 

pairs [39, 40] and if they are pulled out of the material by an applied electric field then 

amplified emission current is achieved. But if there is no field to extract the generated 

electron then it recombines again and during this process it emits a photon [41, 42], 

Figure 3.1. If the electron is exited to higher energy level in conduction band then it first 

comes to the lowest energy level in conduction band by emitting a phonon and finally 

jumps back to valance band to recombine. Whereas in metal, there is no electron-hole 

pair generation by the external excitation, instead the electrons from the Fermi level 

moves up to higher energy state and then comes back to the lower energy state by 

emitting a phonon under the absence of electric field. The surface potential barrier of 

CNTs [35] being higher than other emitters, ~5 eV, the electrons couldn’t overcome the 

potential height easily without electric field. So, the conduction band electrons generated 

by external energy, tunnel into vacuum only under an appropriate applied field, as 

illustrated in Figure 3.2 (d) and (e). The bandgap energy of semiconducting CNTs being 

relatively small, less than one electron volt, it’s comparatively easy to generate more 

charge carriers in conduction band than any other emitters [1, 28]. As a result, under the 

same applied field more electron tunnel from CNTs to vacuum and hence higher current 

in the FEC is noticed. 
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Figure 3.1: (a) Field emission cell with Vc = 0 but under energized electron beam. 
Corresponding energy band diagram of (b) metal and (c) semiconductor FEC cathode 
bombarded by external e-beam 
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Figure 3.2:  (a) Field emission cell with Vc > Vturn-on under energized electron beam. 
Energy band diagram of (b) metal and (c) semiconductor FEC cathode without energized 
electron beam; Energy band diagram of (d) metal and (e) semiconductor FEC cathode 
bombarded by external e-beam 
 

 

Device Fabrication 

The CNT emitters were synthesized on polished aluminum nitride (AlN) as the 

base substrate. The fabrication process began with a coating of 1 µm thick polysilicon 

layer on AlN using low-pressure CVD followed by a 50 nm thick chromium (Cr) 

deposition using DC magnetron sputtering under a vacuum of ~5x10-5 Torr, as shown in 
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Figure 3.2. Conventional photolithography was first performed to pattern the anode of the 

field emission cell and the external cathode. Next, wet Cr etching followed by polysilicon 

removal from the exposed area were performed using fluorine based reactive ion-etching 

(RIE) to get the device structure. After that, a second lithography was performed to 

pattern 100 µm thick lines for FEC and external e-beam CNT cathodes. Electron beam 

lithography (EBL) technique was used for higher precision, details of which can be found 

in appendix C. Later, 50 µm of titanium (Ti) as metal line, followed by 12 µm of cobalt 

(Co) was deposited as CNT growth catalyst. After resist removal in acetone, CNTs were 

synthesized using standard MPCVD process detailed elsewhere [34]. Figure 3.3 and 3.4 

shows the 3-dimentional and cross sectional view of the device structure respectively. 

 

 

 
 
Figure 3.3: 3-D view of the device fabrication. (a) After polysilicon deposition on ALN, 
(b) after Cr deposition, (c) after Cr and polysilicon etching, (d) after e-beam patterning, 
catalyst deposition and CNT synthesis. 
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Figure 3.4: Cross sectional view of the device fabrication. (a) After polysilicon deposition 
on ALN, (b) after Cr deposition, (c) after Cr wet etching, (d) polysilicon etching and (e) 
after e-beam patterning, catalyst deposition and CNT synthesis. 
 

 

Experiment 

 A schematic diagram of the complete test circuit is shown in Figure 3.5. A 

computerized data acquisition system equipped with labview program (National 

Instruments) was used to measure emission current (I) across Ra and Rc as a function of 

the applied potential (V). I-V characteristics were determined according to the Fowler-

Nordheim field emission theory [43]. Generally the F-N equation closely approximates 

current-voltage behavior of relatively highly doped semiconductors and is frequently 

used to calculate field enhancement factor, material work function, etc. Here an 

approximation by Spindt et al. [44, 45] was used for the current I in terms of the operating 

voltage V, local field conversion factor β (m-1) and work function Ф (eV), which is given 

by [45]: 

I = aV2 exp (-b/V)     ……………………………..………..(1) 

Where, 
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and A and B are dimensionless constants, A = 1.54 x 10-6 and B = 6.87 x 107. Whereas β 

is expressed as the ratio of field enhancement to the anode-cathode distance, 

anodecathode

tip

d
K

−

=β      ……………………………………..… (4) 

 Where, Ktip = E/ (V/d), represents the geometrical enhancement of electric field E 

(V/m) at the emitter tip. In the higher voltage regime, current is simply proportional to 

the square of the applied voltage [45] (I=aV2). 
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Figure 3.5: Schematic diagram of the complete electrical test circuit of the AFE device. 
 

 

 The fabricated single chip CNT amplified field emission (AFE) device was 

examined under Hitachi 4200 field emission scanning electron microscope (SEM), Figure 

3.6. The CNTs were found to have an average diameter of ~20 nm and they are spaghetti-

like. Field emission tests were performed at room temperature in a vacuum chamber 

evacuated to a base pressure of ~10-6 Torr. Three different test configurations were 

performed to characterize and electron emission from the FEC and external e-beam CNT 

cathodes. 
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Figure 3.6: SEM micrograph of the AFE device structure. Top image shows high 
magnification inclined view of the CNTs. 
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Results and Discussions 

 Before imposing the external e-beam source on the FEC CNT cathode, I-V 

characteristics of the external source was determined with zero bias (Vc = 0 )at the FEC 

cathode, Figure 3.7. In this circuit configuration, two different current components across 

Rc (IExtC) and Ra (IExtA) were measured as a function of the applied voltage. Field 

emission behavior is also confirmed by the corresponding F-N plots. Since the FEC 

cathode is closer to the external e-beam source than the FEC anode, most of the emitting 

electrons were captured by the FEC cathode. Due to this interference to the anode 

current, a change in the slopes of F-N plots is observed.  Overall, the external e-beam 

delivered a total current (IExt=IExtC + IExtA) of ~12.5 nA to the FEC at 1.8 kV. Next, 

characterization of the FEC without external e-beam stimulator was performed, Figure 

3.8. The FEC showed a turn-on field of ~2.7 V/µm for 1 nA of emission current (IFEC) 

and increased exponentially to 4.5 nA at ~3.0 V/µm. I-V curve is plotted and the linearity 

of the corresponding F-N plot suggests field emission behavior is observed. Then, 

external e-beam source was imposed on the FEC CNT cathode and its potential was 

slowly varied from zero to 300 V while the external e-beam source was constantly 

operating at negative 1.8 kV, Figure 3.9 and 3.10. It can be noticed that, due to constant 

impact ionization the turn-on field of the FEC CNT cathode has reduced to 2.1 V/µm, 

Figure 3.11. Before the FEC cathode turns on, the current through Rc (IExtC) is due to the 

electrons collected by that cathode. IExtC slowly reduces with increasing FEC cathode 

bias, Figure 3.9 and 3.11. The reason being the net potential between external e-beam 

cathode and the FEC cathode decreases with increasing Vc, resulting in lesser current in 
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Figure 3.7: (a) Characterization of external e-beam source with FEC off. (b) 
Corresponding energy band diagram. (c) Corresponding I-V characteristics, inset shows 
the F-N plots.  
 

 

 

Figure 3.8: (a) Characterization of FEC w/o external e-beam bombardment. (b) 
Corresponding energy band diagram. (c) Corresponding I-V characteristics, inset shows 
the F-N plot. 
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Figure 3.9: (a) Characterization of FEC: External e-beam ”on” and FEC biased but before 
turn-on, (b) Corresponding energy band diagram. 
 

 
 
Figure 3.10: (a) Characterization of FEC: External e-beam ”on” and FEC turned-on, (b) 
Corresponding energy band diagram. 
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Figure 3.11: Comparison of Emission Currents; Current vs. Voltage (I-V) characteristics 
with different testing conditions. Inset shows the F-N plot of the corresponding emission 
data. 
 

 

the circuit or in other words, with the increase in Vc, the tunneling barrier width 

also increases (W6 > W5) causing less electron tunneling through the potential barrier. 

Figure 3.9 (b) clearly explains this phenomenon, where Ec’ is the field with increasing Vc. 

But when the FEC turns on, another current component starts flowing within the FEC 

(IAC). So now, the current through the Rc is the resultant of these two current components 

(IExtC~IAC). For simplicity it is assumed that current direction is same as that of electron 

flow. After the turn-on of the FEC, IAC increased rapidly in an exponential manner with 

increasing FEC cathode bias and the resultant current changed its direction, Figure 3.11. 

This results in an exponential increase in anode current. Figure 3.10 (b) shows the 

tunneling of electrons across FEC potential barrier. 
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When operated in the AFE configuration with the external e-beam source biased 

at 1.8 kV, a total current (Ia) of 48 nA was delivered to the circuit at 300 V FEC cathode 

bias. Ia can be expressed as the sum of three different current components, i.e. Ia = IextA + 

Ig + IFEC, where Ig is the current due to the excess electron-hole pair generated by 

energized electron beam and it is assumed that IExtC is negligible small at maximum FEC 

cathode bias. Further, current gain is given by the ratio of amplified FEC current after 

turn-on (Ig + IFEC) to the basic FEC current without external electron (IFEC). Amplified 

FEC current is calculated by subtracting IextA from the total current (Ia). Amplified FEC 

current (Ig + IFEC) at 300 V is computed to be 45 nA which gives a current gain of 10. 

This gain clearly indicates that the amplified field emission behavior has been achieved 

successfully. In all the cases the emission behaviors are verified by corresponding F-N 

plots. 

In AFE configuration, due to excess electron-hole pair generation by the 

energized electron beam source, the Fermi level moves closer to the conduction. As a 

result the work function of FEC CNT cathode has reduced. The new work function or 

sometimes called effective work function can be calculated as follow: 

To start with let us consider the F-N equation [45]: 
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where, 

J (A/cm2): Current density, 
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Ф (eV): Work function, 

I (A): Emission current, 

A (cm2): Emission area, 

K1 = e3 / 8πh = 1.54 x 10-6 AeVV-2, 

K2 = 4(2me)1/2 / 3eħ = 6.83 x 107 eV-3/2Vcm-1, 

and F is the local electric field which is given by, 

EF β=      ……………………………………….…………(6) 

where E = V/d (V/cm) is the macroscopic field, V (V) is the applied voltage between two 

planar parallel electrodes separated by a distance d (cm), and β is the field enhancement 

or amplification factor.  β is determined by the geometrical shape and the surroundings of 

the emitter, such as surface contaminants and defects [16].  

Taking natural logarithm on both sides of Eq. 4 and substituting F, we have: 
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By comparing Eq. 6 with an equation of a straight line (y = mx + c), we have: 

Slope of the F-N plot (m) = 
β
φ 2
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Now if, mFE(w) and mFE(w/o) be the slopes of F-N plots, Figure 3.12 (b), for with and 

without external stimulator then their ratio is given by (assuming β doesn’t change), 
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Figure 3.12: (a) Current vs. Voltage characteristics of with and without external 
stimulator. (b) F-N plots of the corresponding emission data. 

 

 

Usually the surface potential barrier or work function (Ф) of multiwalled CNT is ~5 eV 

[35]. So, Eq. 9 gives, ФFE(w) = 3.46 eV.  

Consequently it is concluded that the proposed amplified field emission behavior has 

been achieved. 
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CHAPTER IV 

 

SUMMARY AND CONCLUSIONS 

In the first part of the research, multiwalled vertically aligned CNTs have been 

successfully synthesized by using MPCVD method which has been regarded as one of 

the most promising candidates for the synthesis of CNTs. It is observed that many 

physical parameters such as different gas combinations and flow rates, buffer layer 

thickness, order of pretreatment, variations in growth temperature, microwave power and 

growth time can influence the CNT growth. There exists a particular ratio of hydrocarbon 

to hydrogen which highly affects the alignment and quality of CNTs. With the 

hydrocarbon fraction ranges from 8-13 %, the length of the CNTs ranges from 10-50 µm 

while the diameters are ~ 40 nm. The applied microwave power, thickness of the buffer 

layer and the catalyst film also play an important role. Proper pretreatment order, time 

and temperature reduce the amount of nano-carbon particles deposition, and keep the 

catalytic particles active during the growth period. A negative bias was also applied 

successfully to grow more aligned CNTs. Turning off the carbon containing gas few 

seconds before turning off the plasma helps to get cleaner CNTs. Overall, the 

encouraging results demonstrated thus far in this discussion show that aligned CNTs can 

be grown under different conditions by MPCVD method. The findings from the set of 

experiments can be extremely helpful to implement CNTs successfully in practical 

applications such as vacuum microelectronics devices and sensors. These important 

findings are implemented in developing CNT field emission cell with built-in electron 

beam source.  
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.In this part, a single chip CNT field emitter with integrated metallic anode was 

fabricated and their field emission property was first tested without any external 

stimulator. Later it was investigated that how the electron emission process can be 

stimulated using another electron beam that hits the emitting CNTs. Higher electric field 

was used to generate the bombarding electron beam source. The emission current of the 

FEC increases markedly with the external e-beam stimulator due to the impact ionization 

of the external e-beam with the FEC CNT cathode. I-V curves were plotted and the 

emission behaviors were confirmed by the corresponding F-N plots. It was found that 

almost 10 times higher current was achieved energized electron beam source. Overall, 

these results demonstrate the feasibility of a novel means of power generation using 

electron stimulated impact ionization field emission. 
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CHAPTER V 

 

RECOMMENDATIONS 

 Preliminary results of CNT synthesis by microwave plasma-enhanced CVD 

(MPCVD) and CNT field emission cell with built-in electron beam source have shown 

good field emission behavior and current amplification. However there is a tremendous 

scope of improvement in the performance of the electrodes. The present studies can be 

further extended to include the following: 

 

• Transmission electron microscopy (TEM) analysis of the CNTs – to analyze the 

actual tube diameter, number of shell/ walls, defects and amorphous carbon 

incorporation. 

• Raman spectra of the synthesized CNTs. 

• The effect of different catalyst such as Ni, Fe and Pd on the morphology, Raman 

spectra and field emission characteristics. 

• Study the catalyst after pretreatment to obtain well aligned CNTs. 

• Applying higher DC bias by the modification of the PECVD system to help taller 

and more vertically aligned CNTs. 

• Optimization of the gaps between the electrodes to achieve higher current 

amplification. 

• Synthesize more vertically aligned CNTs to get more stable emission current. 

• Enhancement of the quantum efficiency of the AFE cell. 
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• Cleaning treatment on CNTs – to reduce amorphous carbon contaminations which 

help to get better emission. 

• Determine the quantum efficiency of the FEC. 

• Investigate the potential use of the electron beam stimulated amplified field 

emission for energy conversion application. 
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APPENDIX A 

 

Structure and Properties of Carbon Nanotubes 

CNTs are carbon nanostructured materials, which have been widely regarded as 

an emerging material for nanoscale science and engineering research. The advantages of 

using CNTs as emitter can be understood by their structure and properties [1, 15, and 28], 

as listed below: 

 

A. Structures 

• Bonding: sp2 hybrid orbital allows carbon atoms to form hexagon and sometimes 

pentagon or heptagon units by in plan σ bonding and out-of-plane π bonding. 

• Defect-free nanotubes: Tabular structure of carbon atoms of hexagonal network. 

Tube curvature results in σ-π rehybridization or mixing. 

• Defective nanotubes: Occasionally pentagons and heptagons are incorporated into 

a hexagonal network of carbon atoms to form bent, branched, coroidal, and 

helical or capped nanotubes. The mechanical and electrical properties of CNTs 

are highly depending on their diameter and structural defects. 

 

B. Properties: 

• Electrical: Defect-free nanotubes behave like either semiconductor or metallic 

with quantized conductance due to electron confinement along the tube 

circumference, whereas pentagon or heptagons will generate localized states. 
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• Optical and optoelectronic: One-dimensional band structure and direct band gap 

make nanotubes ideal for optical applications with wave length ranging between 

300 to 3000 nm. 

• Mechanical and electromechanical: σ-π rehybridization gives nanotubes the 

maximum Young’s modulus of over 1 TPa and tensile strength of over 100 GPa. 

It gives extremely good responses to strain and metal-insulator transition. 

• Magnetic and electromagnetic: Electron orbits circulating around nanotubes give 

rise to many interesting phenomenon such as metal-insulator transition and 

quantum oscillation. 

• Chemical and electrochemical: High specific surface facilitate molecular 

absorption, doping and charge transfer on nanotubes, which indirectly enhance 

electronic properties. 

• Thermal and thermoelectric: Nanotubes display highest thermal conductivity 

(inherited from graphite) whiles the quantum effects are observed at low 

temperature. 

 

Table A.1 provides some of the important properties of CNTs and compares them with 

that of undoped diamond and silicon. 
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Table A.1: Important properties of CNTs 
 
Physical Properties CNTs [47] Diamond [48,49] Si [48,49] 

Young’s Modulus (TPa) ~1 ~1.22 0.15 

Tensile Strength (GPa) ~200 > 1.2 3.7 

Thermal Conductivity 
(W/cmK) ~20 ~20 ~1.5 

Density (g/cm3) ~1.4 3.52 2.32 

Resistivity (Ω-cm) ~10-4 1012-1016 
(undoped) 

2.3 x 105

(undoped) 

Electron Affinity (eV) ~4.8 NEA / Small 4.05 

Energy Band Gap (eV) ~0.7-0.9 ~5.45 1.12 
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APPENDIX B 

 

Growth Mechanism of Carbon Nanotubes 

The way in which nanotubes are formed is not exactly known. The growth 

mechanism is still a subject of controversy, and more than one mechanism might be 

operative during the formation of CNTs. There are several theories on the exact growth 

mechanism for nanotubes. One theory [50] postulates that metal catalyst particles are 

floating or are supported on graphite or another substrate. It presumes that the catalyst 

particles are spherical or pear-shaped, in which case the deposition will take place on 

only one half of the surface (this is the lower curvature side for the pear shaped particles), 

as shown in Figure B.1. The carbon diffuses along the concentration gradient and 

precipitates on the opposite half, around and below the bisecting diameter. However, it 

does not precipitate from the apex of the hemisphere, which accounts for the hollow core 

that is characteristic of these filaments. For supported metals, filaments can form either 

by "extrusion (also known as base growth)" in which the nanotube grows upwards from 

the metal particles that remain attached to the substrate, or the particles detach and move 

at the head of the growing nanotube, labeled "tip-growth". Depending on the size of the 

catalyst particles, SWNT or MWNT are grown. This mechanism is based on in-situ TEM 

observations [51].  
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Figure B.1: Visualization of a possible carbon nanotube growth mechanism. 
 

 

Synthesis of Carbon Nanotubes 

In this section, different techniques for nanotube synthesis are briefly explained. 

They are generally produced by three main techniques, arc discharge, laser ablation and 

chemical vapor deposition. Though, scientists are researching to find more economic 

ways to produce these structures. 

 

Arc Discharge: 

 This method creates nanotubes through arc-vaporization of two carbon rods 

placed end to end, separated by approximately 1mm, in an enclosure that is usually filled 

with inert gas (helium, argon) at low pressure (between 50 and 700 mbar) [52]. A basic 

schematic of a typical arc-discharge system is shown in Figure B.2. Recent investigations 

have shown that it is also possible to create nanotubes with the arc method in liquid 

nitrogen [53] and in a magnetic field [54]. A direct current of 50 to 100 A driven by 
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approximately 20 V creates a high temperature discharge between the two electrodes. 

The discharge vaporizes one of the carbon rods and forms a small rod shaped deposit on 

the other rod. Producing nanotubes in high yield depends on the uniformity of the plasma 

arc and the temperature of the deposit form on the carbon electrode [52]. 

 

 

 
 

Figure B.2: Schematic of a typical arc-discharge system 
 

 

Laser Ablation: 

 In 1995, Smalley's group [55] at Rice University reported the synthesis of carbon 

nanotubes by laser vaporization. The laser vaporization apparatus used by Smalley's 

group is shown in Figure B.3. A pulsed [56, 57], or continuous [58, 59] laser is used to 

vaporize a graphite target in an oven at 1200 °C. The main difference between continuous 

and pulsed laser, is that the pulsed laser demands a much higher light intensity (100 

kW/cm2 compared with 12 kW/cm2). The oven is filled with helium or argon gas in order 

to keep the pressure at 500 Torr. A very hot vapor plume forms, then expands and cools 
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rapidly. As the vaporized species cool, small carbon molecules and atoms quickly 

condense to form larger clusters, possibly including fullerenes. The catalysts also begin to 

condense, but more slowly at first, and attach to carbon clusters and prevent their closing 

into cage structures [60]. Catalysts may even open cage structures when they attach to 

them. From these initial clusters, tubular molecules grow into single-wall carbon 

nanotubes until the catalyst particles become too large, or until conditions have cooled 

sufficiently that carbon no longer can diffuse through or over the surface of the catalyst 

particles. It is also possible that the particles become that much coated with a carbon 

layer that they cannot absorb more and the nanotube stops growing. The SWNTs formed 

in this case are bundled together by van der Waals forces [60] 

 

 

 
 

Figure B.3: The laser vaporization apparatus used by Smalley's group. 
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Chemical Vapor Deposition: 

 CVD carbon nanotube synthesis is essentially a two-step process consisting of a 

catalyst preparation step followed by the actual synthesis of the nanotube. It is achieved 

by putting a carbon source in the gas phase and using an energy source, such as plasma or 

a resistively heated coil, to transfer energy to a gaseous carbon molecule. Commonly 

used gaseous carbon sources include methane, carbon monoxide and acetylene. The 

energy source is used to "crack" the molecule into reactive atomic carbon [1, 61]. Then, 

the carbon diffuses towards the substrate, which is heated and coated with a catalyst 

(usually a first row transition metal such as Ni, Fe or Co) where it will bind. Carbon 

nanotubes will be formed if the proper parameters are maintained. Excellent alignment 

[61], as well as positional control on nanometre scale [62], can be achieved by using 

CVD. Control over the diameter, as well as the growth rate of the nanotubes can also be 

maintained. A schematic of plasma enhanced CVD (PECVD) system, owned by 

Vanderbilt University to grow CNTs is shown in Figure B.4. 
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Figure B.4: Schematic of plasma enhanced CVD (PECVD) system. 
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APPENDIX C 

 

Electron Beam Lithography 

 Electron beam lithography (often abbreviated as e-beam lithography) is the 

practice of a lithography process by scanning a beam of electrons in a patterned fashion 

across a surface covered with a film, called the resist ("exposing" the resist) and of 

selectively removing either exposed or non-exposed regions of the resist ("developing"). 

Just like optical lithography, electron lithography also uses positive and negative resists, 

which in this case are referred to as electron beam resists (or e-beam resists). E-beam 

resists are e-beam-sensitive materials that are used to cover the wafer according to the 

defined pattern. 

 A typical EBL system consists of the following parts [63, 64]:  1) an electron gun 

or electron source that supplies the electrons; 2) an electron column that 'shapes' and 

focuses the electron beam; 3) a mechanical stage that positions the wafer under the 

electron beam; 4) a wafer handling system that automatically feeds wafers to the system 

and unloads them after processing; and 5) a computer system that controls the equipment. 

A picture of a EBL system is shown in Figure C.1. 

 The primary advantage of electron beam lithography is that it is one of the ways 

to beat the diffraction limit of light and make features in the nanometer regime. This form 

of maskless lithography has found wide usage in mask-making used in photolithography, 

low-volume production of semiconductor components, and research & development. On 

the other hand, the key limitation of electron beam lithography is throughput, i.e., the 

very long time it takes to expose an entire silicon wafer or glass substrate. A long 
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exposure time leaves the user vulnerable to beam drift or instability which may occur 

during the exposure. Also, the turn-around time for reworking or re-design is lengthened 

unnecessarily if the pattern is not being changed the second time. 

 

 

 
 

Figure C.1: A typical Electron Beam Lithography system. 
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