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OVERVIEW 
 
 
 

 Two distinct and exclusive projects are combined for this doctoral 

dissertation, and are separated into two parts.  Part I describes the localization of 

ErbB-4 to membrane microdomains, and Part II reports the importance of the 

intracellular juxtamembrane region for ErbB-1 kinase activation.  Each part 

contains separate chapters for the introduction, methods and results, 

conclusions, and references.  
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ErbB-4 Localization to Membrane Microdomains
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CHAPTER I 

 

INTRODUCTION 

 

 ErbB-4 is the fourth member of the ErbB family of receptor tyrosine 

kinases.  Full-length ErbB-4 behaves as a typical receptor tyrosine kinase in 

terms of ligand binding, dimerization (both homo- and heterodimerization with 

other ErbB family members) and tyrosine phosphorylation.  In contrast to ErbB-1 

and ErbB-2, however, less is understood about the role of ErbB-4 in homeostasis 

and disease given that it is rarely expressed in immortalized cell lines.  

Furthermore, its proteolytically-generated intracellular domain fragment has 

functions distinct from that of the intact receptor.  This chapter focuses on the 

characteristics that distinguish ErbB-4 from the other ErbB receptors.   

 

ErbB-4 

   

Ligand-Dependent Activation and Signaling Pathways 

 ErbB-4 was originally identified as the receptor for heregulin in 1993 by 

Plowman, et al., and placed in the ErbB family of receptor tyrosine kinases based 

on a high degree homology with the other previously identified members, ErbB-1, 

-2, and -3 [1, 2].  It is now known that ErbB-4 is the receptor for multiple ligands, 

including the heregulins 1-4 (also neuregulins) [1, 3-5], betacellulin [6], epiregulin 

[7], and heparin-binding epidermal growth factor (HB-EGF) [8].  The crystal 
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structure of the ErbB-4 ectodomain, solved by Leahy and colleagues, revealed 

significant structural similarities in the ligand-unbound state of the ectodomains of 

ErbB-1, ErbB-3, and ErbB-4 [9], but to date there is no published structure of a 

ligand-bound ErbB-4 ectodomain.  This similarity in ectodomain structure 

explains why some ErbB-4 ligands also bind to ErbB-1 and/or ErbB-3.   

 In accord with canonical receptor tyrosine kinase signaling, ligand binding 

to the ectodomain of ErbB-4 results in tyrosine autophosphorylation [1] as well as 

tyrosine phosphorylation of downstream substrates such as phospholipase C-γ1 

[10], Shc [11, 12] and phosphatidylinositol 3-kinase (PI3K) [12], which are also 

phosphorylated by other ErbB receptors [13].  Quite interestingly, alternative 

splicing of the ErbB-4 cytoplasmic domain results in two populations of receptors: 

a 16-residue insert that contains a PI3K binding site, CYT-1, and another that 

lacks this insert, CYT-2 (Figure I-1).  No differences in ligand-stimulated 

proliferation were observed in cell lines expressing either the CYT-1 or CYT-2 

isoform [14].  However, this same group reported a difference in survival, 

depending on the isoform expressed, and expression of the CYT-1 isoform, but 

not the CYT-2 isoform, was found to protect cells from apoptosis [14].  Since 

PI3K phosphorylation of Akt regulates survival, this result is not surprising.  Both 

isoforms are found in normal breast tissue and in some breast cancer cell lines, 

such as T47D [15].    

  Intrinsically coupled to receptor activation is a mechanism for receptor 

inactivation, and this often includes a negative feedback loop initiated by ligand 

binding.  For ErbB-1, the receptor is rapidly internalized following ligand addition  
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Figure I-1: Schematic of ErbB-4.  Domains I-IV represent the ectodomain, with domains I and 
III (green) being the regions of ligand binding and domains II and IV (yellow) being the 
cysteine-rich regions involved in ectodomain dimerization.  The stalk region connects the
ectodomain to the transmembrane and is one site of alternative splicing as well as the
location of TACE cleavage (JM-a isoform only).  A second site of alternative splicing is in the
carboxyterminal (CT) domain.  At the extreme CT is a PDZ binding motif.  TM (black):
transmembrane domain; TKD (red): tyrosine kinase domain.  JM-a and JM-b and CYT-1 and 
CYT-2 splice isoforms are described in the text.  
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and degraded in response to ubiquitination by the E3 ligase Cbl [16].  However, 

Cbl does not regulate ErbB-4 stability [17].   

 ErbB-4 has been reported to be ubiquitinated in a non-Cbl manner, and 

this event is linked with decreases in its expression.  For example, 

overexpression of LRIG1 results in an increase in heregulin-dependent 

ubiquitination of ErbB-4 as well as a decrease in overall ErbB-4 levels [18].  

Overexpression of the E3 ligases Nrdp1 [19] and Aip4/Itch [20] also cause a 

decrease in ErbB-4 in a ligand-independent manner, and Aip4/Itch was shown to 

promote ErbB-4 ubiquitination [20].  In comparison to ErbB-1, ErbB-4 displays 

impaired internalization following heregulin addition [21].  However, the 

unanswered critical question is how ligand addition mechanistically promotes 

ErbB-4 ubiquitination, and why ErbB-4 internalization occurs at a slower pace 

than ErbB-1, i.e., why is it advantageous to retain a cell-surface activated ErbB-4. 

 

Proteolytic Processing by TACE and γ-Secretase 

 An unexpected finding occurred in experiments geared towards 

understanding the slow internalization of ErbB-4.  Treatment with the phorbol 

ester, 12-tetradecanolyphorbol-13-acetate (TPA), an activator of protein kinase C 

(PKC), results in phosphorylation-dependent inactivation of ErbB-1 kinase activity 

[22].  However, in the case of ErbB-4, TPA  promoted proteolysis of ErbB-4 in a 

PKC-dependent manner [10].  Two fragments were initially identified: a 120-kDa 

fragment arising from the ectodomain that is shed into the media, and an 80-kDa 

membrane-tethered intracellular domain fragment, termed m80 (Figure I-2) [10].  
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No physiological function has been assigned to the shed ectodomain fragment.

 Ectodomain proteolysis is also ligand-mediated, as treatment with 

heregulin promotes generation of the membrane-tethered fragment [23].  The 

membrane tethered fragment is tyrosine phosphorylated and interacts with Shc,  

PLC-γ1, and ErbB-2 [10, 24].  The membrane-tethered m80 fragment is also 

ubiquitinated [25], hinting that proteolysis may be a mechanism for receptor 

Figure I-2: Proteolytic processing of ErbB-4 by TACE and γ-secretase to yield the soluble 
E4ICD fragment. 
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inactivation.  The N-terminal cleavage site is located in the stalk region that 

connects the ectodomain to the transmembrane domain (Figure I-1) [24].  Early 

studies found that the ectodomain cleavage event is sensitive to metalloprotease 

inhibitors [25], and thereafter tumor necrosis factor-α converting enzyme (TACE) 

was identified as the sheddase that generates the membrane-tethered fragment 

[26].  TACE is a member of the ADAM (a disintegrin and metalloprotease) family 

of matrix metalloproteases and also cleaves a growing list of proteins, including 

the ErbB ligands [27], Notch [28] and CD44 [29].  While other members of the 

ADAM family, such as ADAM9, display sheddase activity towards other 

substrates, such as CD44 [29], no other members of the ADAM family have been 

shown to cleave ErbB-4 and ErbB-4 cleavage does not occur in TACE-null 

fibroblasts [26]. Interestingly, alternative splicing within the stalk region 

generates a metalloprotease cleavage-resistant isoform, termed JM-b, that has a 

shorter stalk region than the cleavable JM-a isoform [30].  No substrate-specific 

recognition sequence has been identified for TACE.  Instead, the length of the 

stalk region may determine a protein’s potential as a TACE substrate [31].  Of all 

the ErbB receptors, the stalk region of the JM-a ErbB-4 isoform is the longest, 

and TACE has not been shown to cleave any other ErbB receptors; however, the 

ectodomain of ErbB-2 is shed by a metalloprotease activity [32] or generated by 

alternate translation initiation [33].   

 Subsequent data defined a novel role for the m80 cleavage product 

distinct from that of the full-length receptor.  Following TACE cleavage of the 

ectodomain, transmembrane cleavage of the m80 fragment generates a soluble 
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intracellular domain (ICD) fragment, termed s80 or ErbB-4ICD [34, 35].  

Intramembrane proteolysis of ErbB-4 only occurs subsequent to ectodomain 

cleavage.  The enzyme responsible for intramembrane cleavage is the aspartyl 

protease complex γ-secretase, which also cleaves two well-known and important 

plasma membrane proteins: amyloid precursor protein (APP) and Notch [36, 37].  

Cleavage of APP by ectodomain sheddases and γ-secretase generates the Aβ 

fragment found in Alzheimer’s disease [36].  The function of the Notch ICD is 

well-characterized as a transcriptional co-activator with important roles in 

development [38].  The γ-secretase complex is minimally composed of 

presenilin-1 or -2, nicastrin, Aph-1, and Pen-2 [39-41].  Presenilin-1 or -2 

constitutes the catalytic enzyme portion of the complex [42], and nicastrin 

recognizes substrates by their lack of an ectodomain [43].  In addition to this 

function, nicastrin is involved in assembly and cell surface expression of the γ-

secretase complex, as are Aph-1 and Pen-2  [44]. 

 One lingering question is how this protease complex manages to cleave 

transmembrane proteins in the hydrophobic environment of the plasma 

membrane, because proteases generally require water for cleavage.  While a 

structure of the intact γ-secretase complex has not been solved, the structure of 

another transmembrane protease rhomboid has been solved by several groups 

(reviewed in ref. [45]), and lends great insight into how these transmembrane 

proteases function. Two transmembrane domains act as a lateral gate to allow 

the substrate to enter the catalytic core of the protease, where hydrolysis of 

water can catalyze proteolysis.  While rhomboid is a serine protease, the idea of 
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a gating mechanism for substrate access may be applicable to the γ-secretase 

complex as well.    

 A PDZ binding motif at the extreme carboxyterminal region of ErbB-4 

(Figure I-1) is also required for intramembrane proteolysis by serving to recruit 

the presenilin-1 subunit of the γ-secretase complex [46].  Mutation of the PDZ 

motif on ErbB-4 prevents generation of the soluble ICD fragment from the 

membrane-tethered fragment [46].   

  The parameters that must be fulfilled for ErbB-4 proteolysis by TACE and 

γ-secretase are still under investigation.  One study found that m80 interacts with 

ErbB-2 but not full-length ErbB-4 [24], suggesting that an ErbB-4:ErbB-2 dimer 

may be the substrate for ErbB-4 regulated proteolysis.  In addition to ligand 

binding, tyrosine kinase activity is required for proteolysis, as pretreatment with a 

tyrosine kinase inhibitor prevents cleavage of ErbB-4 [24].  The tyrosine 

phosphatase inhibitor, pervanadate, also promotes cleavage of ErbB-4, although 

pervanadate- and heregulin-stimulated cleavage are PKC-independent [23, 47].   

These two pieces of data indicate that kinase activity and/or tyrosine 

phosphorylation are required for ErbB-4 cleavage, but not understood is how 

ligand binding triggers ectodomain proteolysis of ErbB-4 in parallel with canonical 

receptor signaling.  Specifically, if tyrosine phosphorylation occurs within five 

minutes of ligand addition [2], but cleavage occurs optimally at 30-60 minutes 

[23], what additional steps are required to active cleavage of ErbB-4?  Two 

possibilities are re-localization of the protein or activation of downstream 

signaling pathways because the time course of cleavage is not likely to be 
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sufficient for regulation at the transcriptional level.  Also, cycloheximide treatment 

did not prevent ectodomain [10] or transmembrane proteolysis of ErbB-4 (Ni and 

Carpenter, unpublished data). 

 

Role of ErbB-4 Cleavage in Development and Disease 

 Generation of a soluble protein from a membraneous precursor increases 

the number of potential kinase substrates, since the ICD has been detected in 

the cytosol, nucleus, and mitochondria [34, 48].  Because γ-secretase-mediated 

ErbB-4 cleavage induces cell death of T47D breast cancer cells [34], many of the 

ICD-interacting proteins identified to date have some role in cell death, although 

a few studies have successfully linked E4ICD-associated target proteins to cell 

death. For example, E4ICD interacts with and tyrosine phosphorylates the E3 

ligase Mdm2 [49].  This E4ICD:Mdm2 interaction results in the ubiquitination of 

Mdm2, which translates to an increase in expression of the pro-apototic protein 

p53 [49].    

 A second interacting partner is the Yes-associated protein (YAP), a 

transcriptional co-activator that interacts with nuclear E4ICD via a WW domain 

[50, 51].  Overexpression of WWOX, another WW-domain-containing protein with 

cytosolic localization, results in a loss of the E4ICD:YAP interaction and retention 

of E4ICD in the cytosol [52].  However, the precise transcriptional target of the 

E4ICD:YAP complex was not identified, nor was it determined whether E4ICD 

phosphorylates YAP or WWOX. 
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 One link between E4ICD and cell death in mammary tissue has come 

from studies by Jones and colleagues.  Surprisingly, this group found that E4ICD 

contains a BH3 domain that induces E4ICD localization to the mitochondria in 

breast cancer cells [48].  E4ICD expression was correlated with an increase in 

cytochrome C release from the mitochondria, a hallmark of cell death.  

Furthermore, E4ICD-dependent apoptosis was inhibited by overexpression of the 

anti-apoptotic protein Bcl-2, similar to other BH3-containing proteins BAX and 

BAK [48].  While it was initially believed that ErbB-4-mediated cell death required 

nuclear localization and transcriptional activation of pro-apoptotic genes (or 

suppression of anti-apoptotic genes), mitochondrial localization represents an 

alternate mechanism by which ErbB-4 proteolysis promotes cell death. 

 Consistent with the fact that ErbB receptors promote mitogenic signaling, 

heregulin treatment results in increased DNA synthesis compared to NIH 3T3 

cells without ErbB-4 [21].  Also, HB-EGF promotes chemotaxis in NIH 3T3 cells 

stably expressing only ErbB-4 [8].  However, treatment with an ErbB-4 ligand 

also promotes differentiation of MDA-MD-453 breast cancer cells that express 

both ErbB-2 and ErbB-4 [2].  Loss of mammary gland differentiation and lactation 

are two phenotypes of an ErbB-4 conditional knockout animal [53], confirming the 

role of ErbB-4 in differentiation previously observed with a breast cancer cell line 

[1, 2].  Experimental data suggest a link between ErbB-4 cleavage and mammary 

gland differentiation.  Linggi, et al, detected an interaction between E4ICD and 

Eto2, a transcriptional corepressor of genes that regulate differentiation.  

Expression of the E4ICD inhibits Eto2 transcriptional repression [54].  E4ICD also 
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serves as a chaperone to shuttle the transcriptional activator STAT5A into the 

nucleus, whereupon STAT5A activates transcription of β-casein, a gene involved 

in lactation [55, 56].   

 The ErbB-4 knockout mouse is embryonic lethal at E10.5 due to defects in 

the development of the heart and brain [57].  Not coincidentally, the knockout 

animals both for TACE [58] and heregulin [59] also exhibit defects in heart 

development.  The fact that this phenotype is shared with ErbB-4 -/- mice may be 

due to ineffective TACE processing of the ligand rather than the receptor 

because, in the adult heart, only the non-cleavable (JM-b) isoform of ErbB-4 is 

expressed [30].    As described above, a conditional knockout mouse in which 

ErbB-4 is re-expressed in the heart displayed loss of mammary gland 

differentiation and lactation [53], and the role of E4ICD as a nuclear chaperone 

for STAT5A [55] may explain the importance of ErbB-4 proteolysis in the 

mammary gland development.   

 It was first thought that proteolytic liberation of the E4ICD was a means to 

promote cell death in breast cancer cells [34],  such that the intact ErbB-4 

signaled for cell growth while the cleavage fragment signaled for cell death.  

However, the story is undoubtedly more complicated and the true function of 

ErbB-4 and its cleavage fragment in normal and pathologic mammary tissues 

remains an unanswered question.  Precise function seems to be defined by 

isoform, cell type, and subcellular localization.  Nuclear ErbB-4 has been 

detected in medulloblastoma [60] and breast cancer [61], but these studies did 

not differentiate between the full-length receptor and the cleavage product.    
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 A recent study demonstrated that E4ICD is a negative regulator of 

astrocyte differentiation [62] and this is the only study to date proving that ErbB-4 

cleavage is biologically important. This role for E4ICD is mediated via interaction 

with the transcriptional co-repressor complex of TAB2 and NCoR.  Inhibition of 

ErbB-4 intramembrane cleavage or expression of the non-cleavable JM-b 

isoform prevents nuclear localization of TAB2, a step that is required for ErbB-4-

mediated co-repression activity, i.e., inhibits transcription of genes that promote 

differentiation of a precursor to an astrocyte [62].    This group went on to show 

that the cleavable JM-a isoform but not the non-cleavable JM-b isoform inhibits 

astrogenesis, thus defining a role for ErbB-4 in development [62].  This study 

defined a role for E4ICD in cell fate determination of neuronal precursors and 

implicated ErbB-4 proteolysis in potential brain pathologies, such as Alzheimer’s 

disease [62].    

    

Membrane Microdomains 

 

Current Theories 

 For many years, the fluid-mosaic model , in which proteins diffuse freely in 

the plane of the phospholipid membrane, was the accepted model for plasma 

membrane organization [63].  When the distribution of cholesterol in the 

membrane was considered, the idea of liquid-ordered and liquid-disordered 

phases emerged [64].  In 1997, Simons and Ikonen coined the term “lipid rafts” to 

describe cholesterol and sphingolipid-enriched regions of the plasma membrane 
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that serve to concentrate signaling molecules [65].  Given the surface area of the 

plasma membrane, it stands to reason that some mechanism must be in place to 

increase the chance interactions between proteins to efficiently propagate a 

signal transduction cascade.  The most significant roadblock for the lipid raft 

model has been an inability to directly visualize these structures in living cells.   

 In addition to the difficulty in imaging lipid rafts, there is also debate as to 

the size of lipid rafts, as well as whether lipid rafts are pre-formed structures that 

proteins migrate into or whether raft components cluster around pre-formed 

protein complexes.  Also poorly understood is what signals/sequences/domains 

exist on proteins to target them to lipid rafts.  Thus far, no raft-localization domain 

has been identified.  Post-translational modifications, such as palmitoylation, may 

promote localization to lipid rafts, but not all raft-localized proteins are 

palmitoylated or modified otherwise (reviewed in ref. [66]).   

 Caveolae are a type of lipid-enriched membrane microdomain that were 

first identified over 50 years ago due to the presence of invaginations in the 

plasma membrane, or “little caves,” detectable by electron microscopy.  This 

property makes caveolae distinct from lipid rafts and thus not subject to as much 

controversy. 

Techniques for Detection 

 No one technique is accepted for biochemical isolation of lipid rafts from 

cells.  One common way to extract raft-associated proteins relies on the relative 

insolubility of rafts in detergents, such as Triton X-100 and Brij 98 at 4°C, a 

technique pioneered by Deborah Brown (Figure I-3, reviewed in ref. [67]).  
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However, some proteins, such as ErbB-1, can be extracted from a lipid-raft 

fraction to a non-raft fraction by Triton X-100 [68].  Thus the detergent-insoluble 

fraction does not completely represent the lipid raft proteins found in a living cell.  

Also, there is an issue of whether detergents induce the formation of rafts. 

 A second method developed by Smart and Anderson is a detergent-free 

method that takes into account the relative buoyant density of cholesterol-

enriched regions of the plasma membrane [69].  By this technique, the raft-

associated proteins “float” to the low-density region of a continuous OptiPrep 

density gradient and the non-raft associated proteins remain in the lower higher-

density region of the gradient (Figure I-4).  While this technique yields a relatively 

pure raft fraction, it also requires a large amount of starting material.   

 Several live-cell imaging techniques are also designed to assess raft 

properties, as well as protein localization to lipid rafts.  One method to investigate 

lateral mobility of known raft-associated proteins is fluorescent recovery after 

photobleaching (FRAP), which can lend insight into the raft composition of cells 

by measuring the velocity of fluorescence recovery into the bleached region [70].  

Methods to assess raft localization of proteins in living cells include Förster 

resonance energy transfer (FRET) [71] or co-patching [72] with known raft-

associated proteins, such as GPI-anchored proteins.  As an alternative system to 

imaging rafts in intact cells, unilamellar vesicles that include physiological 

concentrations of cholesterol and sphingolipids are also employed [73].   

 Concomitant with defining the parameters that constitute protein 

localization to a lipid raft are methods to disrupt lipid rafts in order to compare 
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protein localization in both experimental conditions.  The typical method for raft 

perturbation is to deplete cholesterol from the membranes of cells with methyl-β-

cyclodextrin.  However, cholesterol depletion has also been shown have effects 

aside from lipid raft disruption [74].  Comparing protein localization to a lipid raft 

before and after cyclodextrin treatment is not ideal, but cholesterol depletion is 

the most widely used method for raft perturbation.   

 

ErbB Family Localization to Membrane Microdomains 

 All ErbB family members have been detected in some type of cholesterol-

enriched membrane microdomain.  Anderson and colleagues, using a detergent-

free technique,  were the first to reported that ErbB-1 localizes to caveolae, and 

EGF treatment promotes movement out of caveolar membranes [69, 75].  This 

finding seems counterintuitive because most proteins are thought to move into 

lipid rafts as a means to concentrate signaling molecules and thereby facilitate 

activation of signal transduction cascades.  It is possible that ligand-dependent 

ErbB-1 translocation out of rafts may represent a mechanism to prevent 

sustained activation of downstream pathways.   

 One study reported that raft-localized ErbB-1 is tyrosine phosphorylated 

[76], whereas another study concluded that ErbB-1 localization to lipid rafts 

prevents EGF binding [77], suggesting ligand-independent activation of raft-

associated ErbB-1.  Furthermore, cholesterol depletion promotes ligand-

independent tyrosine phosphorylation of ErbB-1, as well as activation of the 

Ras/MAPK pathway [78, 79].  ErbB-1 interacts with the raft-associated proteins 
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caveolin-1 [80] and phospholipid scramblase 1 [81], but direct phosphorylation of 

these proteins by ErbB-1 has not been reported. The second cysteine-rich region 

of ErbB-1 is required for localization to caveolae [82], and this region is 

conserved in ErbB-4.   In summary, many studies detect ErbB-1 in a membrane 

microdomain, but the data are conflicting in terms of how this localization 

regulates ligand binding, activation, and downregulation.   

 Even less is known about ErbB-2 and ErbB-3 localization to membrane 

microdomains.  ErbB-2 has been detected in membrane microdomains of 

fibroblasts and two breast cancer cell lines by a variety of methodologies [75, 83, 

84].  Most of the studies detected tyrosine phosphorylation of raft-localized ErbB-

2, but do not connect localization to function at the post-receptor level (i.e., 

activation of downstream substrates).  In one of the above studies, ErbB-2 and 

ErbB-3 were found to colocalize with the raft marker GM1 [83], but there are no 

other reports of ErbB-3 localization in or translocation in/out of membrane 

microdomains or the effect of ligand addition on this localization.     

 Only five reports of ErbB-4 localization to lipid rafts can be found in the 

literature.  The first study of heregulin-dependent trafficking of ErbB-4 into 

detergent-insoluble fraction was conducted in T47D breast cancer cells that lack 

caveolae and showed that ErbB-4 translocates to the Triton X-100-insoluble 

fraction within 10 min. of ligand addition [23].  A subsequent study showed that 

this translocation is also dependent on kinase activity, because pre-treatment 

with an ErbB tyrosine kinase inhibitor prevented heregulin-dependent ErbB-4 

translocation [24].  A second group showed ligand-mediated ErbB-4 movement 
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into a detergent-resistant fraction of cortical neurons with the same time course, 

and cholesterol depletion prevented ErbB-4  translocation [85].  In contrast, 

ErbB-4 appears to be constitutively localized to lipid rafts in cardiomyocytes, and 

heregulin treatment actually promotes translocation out of the lipid raft [86].  A 

study of ErbB-4 localization to lipid rafts is presented in the following chapter and 

compares heregulin-dependent ErbB-4 translocation to detergent-insoluble 

fractions and lipid rafts by three different methodologies [87].   Thus, the role of 

ErbB-4 raft localization in function seems to differ by cell type, and the use of 

different methodologies makes comparison between studies difficult.   

 

Regulation of RIP by Membrane Microdomains 

 While little information currently exists evaluating ErbB-4 translocation into 

or out of lipid rafts and whether this influences its proteolytic regulation, the 

importance of raft localization in APP processing has been investigated by 

several groups.  A study by Ehehalt, et al., determined that depletion of 

cholesterol shifted APP processing from β-secretase-mediated cleavage in lipid 

rafts to α-secretase-mediated cleavage outside lipid rafts [88].  In the context of 

Alzheimer’s disease, β-secretase cleavage followed by γ-secretase cleavage 

produces the Aβ peptide found in senile plaques [89].  These data suggest that 

lipid rafts on normal cells serve to segregate proteases from their substrates, and 

diseases, such as Alzheimer’s, may be associated with the mislocalization of 

substrates into lipid rafts.  Cleavage of prion protein has also been reported to 

occur in lipid rafts, as disruption of rafts abrogrates its cleavage [90].  
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 In addition to determining localization of substrates to lipid rafts, a great 

deal of work has analyzed the localization of proteolytic enzymes to lipid rafts.  

For example, β-secretase localizes to lipid rafts that do not contain caveolin [91], 

and the activity of this protease is influenced by the type of lipids in its local 

environment, with cholesterol and glycosphingolipids serving to increase activity 

[92].  Only a portion of total β-secretase is raft-associated [92, 93], and addition 

of a GPI-anchor to force localization of β-secretase to lipid rafts results in 

significantly increased cleavage of APP [93].  Components of the γ-secretase 

complex (presenilin-1, nicastrin, APH-1, and PEN-2 have also been found in lipid 

raft fractions from neurons [94], indicating that total APP cleavage, and cleavage 

of other γ-secretase substrates occurs in lipid rafts.  
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CHAPTER II 

 

ERBB-4 AND TNF-α CONVERTING ENZYME  
LOCALIZATION TO MEMBRANE MICRODOMAINS 

 

 

 Based on data that ErbB-4 translocates to the detergent-insoluble fraction 

in a heregulin-dependent manner [23], and the literature documenting localization 

of proteolytic machinery to lipid rafts for cleavage of APP [89], I hypothesized that 

ErbB-4 movement into lipid rafts is required for its proteolytic processing.  

However, reports from other groups indicated that ErbB-1 localization is highly 

influenced by detergents such as Triton X-100 [68], so the experimental 

approaches for this project were Triton X-100 insolubility, Brij 98 insolubility, and 

a detergent-free methodology.  This study employs two cell lines, T47D breast 

cancer cells, which express endogenous ErbB-4, and COS-7 cells stably 

expressing two isoforms of ErbB-4, JM-a (cleavable) CYT-2 or JM-b (non-

cleavable) CYT-2. 

 

Methods 

 

Cell Culture and Transfection 

 T47D and COS-7 cells were maintained in Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10% fetal bovine serum (FBS) at 37°C with 

5% CO2.  For generation of JM-a CYT-2 and JM-b CYT-2 ErbB-4 stable cell 
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lines, COS-7 cells were transfected with 2 μg DNA using Lipofectamine 2000 

(Invitrogen) per manufacturer’s instructions. Next, cells were selected with 500 

μg/ml G418 for 10 days, and then maintained in 200 μg/ml G418.  Wild-type and 

S674A ErbB-4 (JM-a CYT-2) stable cell lines were similarly generated.   

 

Separation of Detergent-Soluble and –Insoluble Fractions 

 For all treatments, cells were starved overnight in serum-free DMEM 

before treatment.  Cells were fractionated as previously described (Figure I-3) 

[23].  In brief, cells were lysed with cold TGH (1% Triton X-100, 10% glycerol, 50 

mM Hepes, pH 7.2, 100 mM NaCl, 10 mM 1,10-phenanthroline, 5 mM NaF, 1 

Figure I-3: Separation of detergent-soluble and -insoluble 
fractions using Triton X-100 or Brij 98. 
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mM Na3VO4, and Roche Complete-Mini protease inhibitor cocktail tablet) or BGH   

(TGH substituted with 1% Brij 98 in place of Triton).  Lysates were centrifuged at 

14, 000 x g for 10 min. at 4°C, and the resulting supernatant is the detergent-

soluble fraction.  The pellet was next washed with TGH and solubilized with RIPA 

buffer (1% deoxycholate, 1% Triton X-100, 0.1% SDS, 150 mM NaCl, 1 mM 

EDTA, 50 mM Tris-HCl, pH 7.4, and protease inhibitors).  The resulting 

supernatant is the detergent-insoluble fraction.  Equal volumes of each lysate 

were either subjected to SDS-PAGE followed by immunoblotting with TACE 

(epitope: 802-823, Calbiochem) or flotillin-1 (BD Transduction Laboratories) 

antibodies, or immunoprecipitated with ErbB-4 (C-18, Santa Cruz Biotechnology) 

and immunoblotted with ErbB-4 prepared as described elsewhere [21]. 

 

Detergent-Free Lipid Raft Isolation  

 Lipid rafts were isolated from five 150 mm dishes of confluent cells per 

treatment according to the method of Smart, et al. [69]. This technique, 

diagrammed in Figure I-4, involves separation of the plasma membrane fraction 

on a 30% Percoll gradient and flotation of the plasma membrane fraction on two 

density gradients: a continuous 20-10% OptiPrep gradient followed by a 

discontinuous 25%-15%-5% OptiPrep gradient.  Lipid rafts are contained at the 

5%-15% OptiPrep interface of the discontinuous gradient, in fraction 1.  Equal 

volumes of each lipid raft fraction were subjected to immunoblot analysis with 

ErbB-4, TACE, or flotillin-1 antibodies. 
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Figure I-4: Detergent-free lipid raft isolation, based on the technique developed by 
Smart, et al. PM: plasma membrane 



Results 

 

Heregulin-Induced ErbB-4 Translocation to a Triton X-100-Insoluble Fraction

 As previously reported [23], treatment of T47D cells with heregulin, but not 

the PKC activator TPA, promoted ErbB-4 translocation to a Triton-insoluble 

fraction (Figure I-5A).  To test the generality of this finding, two ErbB-4 isoforms, 

JM-a CYT-2 or JM-b CYT-2, were stably expressed in COS-7 cells. These 

isoforms were included because the JM-b species is reported to be resistant to 

ectodomain cleavage due to sequence changes around the cleavage site [30].  

As shown in Figure I-5B, heregulin treatment did not promote translocation to the 

Triton-insoluble fraction for either isoform compared to that obtained with T47D 

cells.  Thus, these data demonstrate that the ErbB-4 translocation to a Triton-

insoluble fraction is not a general phenomenon or that stable expression of ErbB-

4 leads to a result that is not generalizable.  While the composition of the Triton-

insoluble fraction is not known in detail, a lipid raft marker, flotillin-1, is present in 

this fraction in both cell types.  The mature form of TACE was detected in the 

Triton-insoluble fraction as a 100-kDa band in T47D cells (Figure I-5A), but not in 

the Triton-insoluble fractions derived from COS-7 cells (Figure I-5B).  This 

difference reflects endogenous proteins, not transfected proteins.  The enzyme 

furin processes immature 120-kDa TACE in the Golgi apparatus to a 100-kDa 

activated form [95].   
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Figure I-5: Heregulin-induced ErbB-4 translocation to a Triton X-100-insoluble fraction. 
T47D (Panel A) or COS-7 (Panel B) cells stably expressing JM-a or JM-b ErbB-4 were 
starved overnight, then treated with heregulin (20 ng/ml) or the phorbol ester TPA (100 
ng/ml) for 15 min.  Cells were separated into Triton X-100-soluble and –insoluble fractions as 
described in the Methods section. Equal volumes of soluble and insoluble fractions were 
either precipitated with anti-ErbB-4 (upper panels) or directly subjected to SDS-PAGE and 
blotted with antibodies directed against ErbB-4, TACE or flotillin-1.  ErbB-4 bands in the 
Triton-insoluble fraction were subjected to densitometric analysis, normalized for flotillin-1 
levels, and quantitated relative to untreated samples.  Asterisks indicate immature (upper 
arrow, 120 kDa) and mature (lower arrow, 100 kDa) forms of TACE (center panels). 
 

Effect of Cholesterol Depletion on ErbB-4 Localization 

 Since membrane microdomains are by definition enriched with cholesterol, 

one frequently used method to disrupt these microdomains is treatment with 

methyl-β-cyclodextrin (MβCD), which depletes cholesterol from membranes [96].  

T47D cells treated with MβCD displayed a loss of basal ErbB-4 in the Triton-

insoluble fraction (Figure I-6), but not when treated with α-cyclodextrin, which 

does not deplete cholesterol.  Interestingly, MβCD pretreatment did not 

significantly affect heregulin-stimulated ErbB-4 translocation to this fraction 
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Figure I-6: Cholesterol depletion does not 
inhibit heregulin-dependent translocation of 
ErbB-4 to a Triton-insoluble fraction. T47D 
cells were pretreated treated with either 
methyl-β-cyclodextrin (MβCD, 5 mM) or α-
cyclodextrin (α-CD, 5 mM) for 30 min. 
followed by heregulin (20 ng/ml) for an 
additional 15 min. and separated into Triton 
X-100-soluble and insoluble fractions.  The 
Triton-insoluble fractions were precipitated 
with anti-ErbB-4 and blotted for ErbB-4 
(upper panel).  Lysates were blotted for 
flotillin-1 expression (lower panel).     
 

(Figure I-6).  Therefore, ErbB-4 migration to the Triton-insoluble fraction of T47D 

cells does not represent association with a cholesterol-dependent microdomain. 

  

Constitutive ErbB-4 and TACE Localization to a Brij 98-Insoluble Fraction       

 A recent report compared ErbB-1 localization to lipid rafts using an array 

of detergents, including Triton X-100 and two detergent-free methods [68].  The 

data show that, in the absence of ligand stimulation, ErbB-1 segregates to a lipid 

raft fraction as determined by detergent-free methods or the use of Brij 98, but 

remains in a non-raft fraction when Triton X-100 is included.  Hence, the 

experiments in Figure I-5 were repeated with Brij 98.  Brij 98 and Triton X-100 

are both non-ionic detergents. When either T47D (Figure I-7A) or COS-7 cells 

expressing JM-a or JM-b ErbB-4 (Figure I-7B) were separated into Brij 98-soluble 

and -insoluble fractions, the resulting analysis revealed that, in both the absence 

or presence of heregulin stimulation, ErbB-4 was primarily associated with the 

Brij 98-insoluble fraction.  Only a small proportion of total receptor localized to the 

Brij-98 soluble fraction.  This is in marked contrast to the results obtained with 
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Figure I-7: Constitutive ErbB-4 and TACE localization to a Brij 98-insoluble fraction.  T47D 
(Panel A) or COS-7 (Panel B) cells stably expressing JM-a or JM-b ErbB-4 were treated and 
lysed as described in Figure I-5 with the following modification: 1% Brij 98 was used instead of 
1% Triton X-100.  Equal volumes of lysates were either immunoprecipitated with ErbB-4 
(Panel A, top) or directly subjected to SDS-PAGE and blotted with anti-ErbB-4, anti-TACE or 
anti-flotillin-1 as in Figure I-5.  Asterisks denote the mature (100 kDa) and immature (120 kDa) 
forms of TACE (center panels). 
 

Triton X-100.  Flotillin-1 was enriched in the Brij 98-insoluble fractions of T47D 

and COS-7 cells and equivalent amounts of mature TACE were found in the Brij 

98-soluble and Brij 98–insoluble fractions of both cell types (Figure I-7).   

 

Distribution of ErbB-4 Isoforms in Lipid Rafts Using a Detergent-Free Technique  

     Data from Figures I-5A and I-7A indicate that TACE localizes to both 

Triton- and Brij 98-insoluble fractions of T47D cells.  In these same cells, 

however, ErbB-4 localization to membrane microdomains is highly dependent on 

the detergent used for solubilization.  To rule out detergent-dependent effects, a 

detergent-free methodology developed by Smart, et al. [69] was employed.  

Consistent with the Brij 98 data, ErbB-4 was present in equal amounts in the raft 

fraction of control and heregulin-treated T47D cells (Figure I-8A).  The mature 
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form of TACE was constitutively present in this fraction (Figure I-8A), also in 

agreement with the data in Figures I-5A and I-7A.   

Figure I-8: Detergent-free lipid raft isolation.  (Panel A) T47D cells were starved overnight, 
treated with heregulin (20ng/ml) for 15 min. and lipid rafts isolated by the detergent-free 
method of Smart et al. (1995).  Equal aliquots of lipid raft fractions were blotted with anti-
ErbB-4 (upper panel), anti-TACE (center panel) and anti-flotillin-1 (lower panel).  (Panel B)
Lipid rafts from COS-7 cells expressing JM-a or JM-b ErbB-4 were isolated and analyzed for 
ErbB-4, TACE, and flotillin-1 localization as in Panel A. Results reflecting two experiments
analyzed in duplicate were normalized for flotillin-1 levels and quantitated on the right.   

 Detergent-free lipid rafts were also isolated from COS-7 cells containing 

JM-a or JM-b ErbB-4 isoforms.  The JM-a isoform migrated into the raft fraction 

after heregulin treatment (Figure I-8B).  In contrast, the JM-b isoform was 

constitutively present in the raft fraction and only slightly increased following 

heregulin addition (Figure I-8B).  Also detected were the m80 fragment in the JM-

a ErbB-4 raft fractions (in both T47D and COS7 cells) and 80- and 90-kDa 

fragments in JM-b ErbB-4 raft fractions (Figure I-8B, right panel).  The m80 

fragment represents the TACE cleavage product that is a substrate for γ-
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secretase-mediated intramembrane proteolysis [10, 34].  The m80 fragment was 

not detected in the Triton-insoluble fraction derived from T47D cells [23].  The 

identity of the 90-kDa fragment is not known, but others have detected a similar 

fragment recognized by an ErbB-4 extreme carboxyterminal antibody [97].  

Mature TACE was also present constitutively in the raft fraction of all cells 

analyzed (Figure I-8). 

 The intracellular juxtamembrane region of ErbB-1 contains a well-

documented PKC phosphorylation site [22], and a bioinformatic screen indicated 

that ErbB-4 likely contains a PKC phosphorylation site (Ser 679) in this region 

[98].  Mutations of this putative PKC phosphorylation site did not prevent TPA or 

heregulin-stimulated cleavage (data not shown), but this does not rule out other 

regulatory PKC phosphorylation sites.  Based on data that PKC phosphorylation 

of hematopoietic protein tyrosine phosphatase promotes localization to lipid rafts 

[99], the localization of wild-type and Ser679A ErbB-4 to lipid rafts was also 

compared.  However, both isoforms were constitutively localized to lipid rafts in 

the absence of heregulin addition (Figure I-9), and the effect of heregulin 

stimulation on localization was not tested.   
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Figure I-9: Comparison of wild-type and S679A ErbB-4 localization in the lipid raft fraction. 
Cells stably expressing either wild-type or S679A ErbB-4 (JM-a CYT-2) were subjected to 
detergent-free lipid raft isolation as in Figure I-8.  Raft (fraction 1), non-raft (fractions 2-4), 
and plasma membrane (PM) fractions were immunoblotted with either ErbB-4 (top panel) or 
flotillin-1 (bottom panel). 
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CHAPTER III 

 

CONCLUSIONS 

 

 Using three separate techniques, membrane microdomains were isolated 

from T47D cells that express endogenous ErbB-4 and COS-7 cells that stably 

express two ErbB-4 isoforms, JM-a CYT-2 and JM-b CYT-2.  T47D cells were 

chosen because a previous report demonstrated heregulin-stimulated cleavage 

and translocation of ErbB-4 to a Triton X-100-insoluble fraction in these cells [23].  

The ErbB-4 JM isoforms were also use for analysis in order to assess the role of 

ErbB-4 membrane microdomain localization in cleavage as the JM-b isoform is 

thought to be resistant to TACE cleavage [30].  For consistency, CYT-2 isoforms 

were used in conjunction with both JM isoforms.  Heregulin promoted movement 

of endogenous ErbB-4 to a Triton-insoluble fraction in T47D cells, but not ErbB-4 

expressed exogenously in COS-7 cells.   Depletion of cholesterol from T47D 

cells did not significantly affect heregulin-induced ErbB-4 translocation to the 

Triton-insoluble fraction, indicating that ErbB-4 movement into the Triton-

insoluble fraction is not cholesterol dependent.  Rather, this may reflect 

translocation induced by protein:protein interactions instead of protein:lipid 

interactions within a lipid raft [100].  ErbB-4 was present at high levels in the Brij 

98-insoluble fractions of all cells tested regardless of heregulin treatment (Figure 

I-7).  The effect of cholesterol depletion on protein association with the Brij 98-

insoluble fraction was not assessed.   
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 The data in Figure I-8 suggest that the cleavable and non-cleavable 

isoforms differentially associate with membrane microdomains.   Strikingly, only 

the JM-a isoform of ErbB-4 expressed in COS-7 cells displayed marked 

heregulin-stimulated translocation to lipid rafts isolated by a detergent-free 

method.  No significant difference was detected in heregulin-stimulated JM-b 

ErbB-4 migration into or out of membrane microdomains in COS-7 cells 

expressing this isoform.  Furthermore, no differences were detected in 

association of these isoforms with the detergent-insoluble fractions (Figure I-5 

and I-7).  Because T47D cells express both the JM-a and JM-b isoforms (K. 

Elenius, University of Turku, personal communication), a valuable experiment 

would be to selectively knockdown the JM-b isoform and compare ErbB-4 

localization in that experimental scenario.  No group has co-expressed ErbB-4 

isoforms in an ErbB-4-free background, so this experiment would determine 

whether one JM isoform influences the localization of another.  Alternately, both 

isoforms could be exogenously expressed in COS-7 or another recipient cell line. 

 An interesting finding of Figure I-8 is that an 80-kDa cleavage product was 

detected at high levels in the lipid raft fraction derived from T47D cells and COS-

7 cells expressing JM-a ErbB-4.  This fragment likely represents the membrane-

anchored m80 fragment, but could also be the soluble s80 (E4ICD) fragment 

associating with the membrane.  Was this fragment produced in the lipid raft, or 

did it migrate into the lipid raft post-cleavage?  A study by Vetrivel, et al., 

concluded that the membrane-anchored C-terminal fragment of APP migrates 

into detergent-insoluble membranes, where it is cleaved by the γ-secretase 
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complex [101].  It is possible that a similar phenomenon occurs for 

transmembrane proteolysis of ErbB-4, and the time course in this study did not 

allow for appreciable γ-secretase cleavage.  

 Also detected in the detergent-free lipid raft fraction of COS-7 cells 

expressing JM-b CYT-2 were 80-kDa and 90-kDa species that did not increase 

with heregulin treatment (Figure I-8).  Metalloprotease inhibitors were maintained 

throughout all steps of isolation, so it is unlikely that these cleavage fragments 

are an artifact generated post-lysis by TACE.  Of course, this does not rule out 

cleavage by other proteases. Määttä, et al., also detected a 90-kDa band in 

MCF-7 cells transfected with JM-b CYT-2 ErbB-4 and theorized that represents 

an N-terminal truncation fragment [97], but this fragment has not been 

characterized.     

 ErbB-4 expression and heregulin treatment did not alter TACE localization 

to membrane microdomains of either cell line.  Importantly, the mature form of 

TACE was the predominant form in all detergent-insoluble or lipid-enriched 

microdomains tested.  This finding suggests the potential for TACE activity in a 

membrane microdomain.  While several pieces of data point to the importance of 

lipid rafts for γ-secretase cleavage of substrates [89], this is the first report to 

localize the mature form of TACE, an α-secretase, to a membrane microdomain.

 I first proposed studying the role of ErbB-4 membrane microdomain 

localization as a potential regulatory step in ectodomain and transmembrane 

domain cleavage of the receptor.  While these data confirm that ErbB-4 is 

localized to a membrane microdomain, they provide no direct evidence that 
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ErbB-4 translocation to the Triton-insoluble fraction regulates cleavage.  It seems 

likely that the data obtained using the detergent-free methodology in Figure I-8 is 

the most accurate indicator of ErbB-4 localization in the intact membrane 

because detergent insolubility may not necessarily translate to raft association in 

a living cell.  ErbB-4 localization to membrane microdomains is highly influenced 

by cell type as evidenced by the difference observed between T47D and COS7 

cells plus previously reported data in neurons [85] and cardiomyocytes [86].   

Regulatory factors that influence membrane localization, such as phospholipid 

scramblase-1 for ErbB-1 [81], may be differentially expressed in each of these 

tissues, which would account for the discrepancies in ErbB-4 translocation 

amongst studies.  Alternatively, the techniques used to detect ErbB-4 

translocation in these cell types may not be comparable.  No group has 

incorporated fluorescent-based approaches to assess heregulin-dependent 

ErbB-4 localization to membrane microdomains.   

  Comparison of breast (T47D, SkBr3) and ovarian (OVCAR3, OVCAR429) 

cancer cell lines that express ErbB-4 revealed that only a subset undergo 

heregulin-induced cleavage, while all display tyrosine phosphorylation in 

response to heregulin binding [23].  All of these cell lines displayed TPA-induced 

cleavage, so the JM-a form is present [23].  I theorized that ErbB-4 localization to 

rafts may be different in cell lines that cleave ErbB-4 in response to heregulin and 

those that do not.  However, I did not detect heregulin-stimulated translocation of 

ErbB-4 into or out of lipid rafts derived from T47D, SkBr3, OVCAR3, and 

OVCAR429 cells using the detergent-free methodology (data not shown).   

 34



 The CYT-2 isoform was chosen as the cytoplasmic isoform for all raft-

localization experiments.  Both the JM-a CYT-1 and JM-a CYT-2 isoforms are 

similarly cleaved in response to TPA [97], but heregulin-stimulated cleavage has 

not been investigated.  Elenius and colleagues recently reported that the CYT-2 

isoform localizes to the nucleus better than the CYT-1 isoform [102].  It may have 

been valuable to compare localization of both CYT isoforms, not just the CYT-2 

lacking the PI3K binding site.  It is possible that signal transduction pathways 

initiated by PI3K binding to the CYT-1 isoform play a role in membrane 

microdomain localization.  It should be noted that T47D cells, which undergo 

heregulin-stimulated translocation to the Triton X-100-insoluble fraction [23], 

contain both CYT isoforms (K. Elenius, personal communication).  Because an 

antibody to distinguish the different isoforms is not available, the relative 

expression on the cell surface of each isoform cannot be estimated.  The JM-a 

CYT-2 isoform did migrate into the detergent-free lipid raft in response to 

heregulin (Figure I-8B).  If each isoform is expressed equally in T47D cells, then 

perhaps migration of one particular isoform into the raft fraction is not detectable 

in the context of this experimental approach.   

 Many of the same questions that were originally proposed at the beginning 

of this study remain.  One of those questions is where in the cell cleavage of 

ErbB-4 occurs.  While the shed ErbB-4 ectodomain has been detected in the 

media of cells [10], inhibition of heregulin-stimulated endocytosis prevents ligand-

dependent generation of the 80-kDa intracellular cleavage product [23].  

Therefore, it remains to be determined if ErbB-4 is cleaved while residing on the 

 35



cell surface or in an internalized vesicle with subsequent exocytosis of the 120-

kDa ectodomain fragment.  There is a precedent in the literature for cleavage of 

APP [103] and the neurotrophin receptor p75 [104] in a vesicle, and inhibition of 

internalization prevents Notch ectodomain cleavage [105].  Cleavage of APP and 

p75 has been shown to be regulated by localization to a lipid raft/detergent-

insoluble fraction [88, 106].  There are no reports of localization of these 

receptors to lipid rafts in an internalized compartment, but components of the γ-

secretase  complex have been found to reside in rafts derived from endosomes 

[94].  Because the detergent-free method separates the plasma membrane 

fraction from other intracellular membranes, it is possible that heregulin-activated 

ErbB-4 localizes to a raft in an internalized compartment, where it is cleaved by 

TACE and γ-secretase.   

 While TPA is routinely used to induce cleavage of many substrates, 

including ErbB-4, it is not known how this occurs mechanistically.  Inhibition of 

PKC combined with TPA treatment protects ErbB-4 from TPA-induced cleavage 

[10].  Therefore, the mechanism of TPA action is thought to be through activation 

of PKC, but a link between PKC activation and ErbB-4 cleavage has not been 

reported.  Although heregulin-stimulated cleavage requires kinase activation, 

TPA stimulated cleavage does not [24].  ErbB-4 interacts with PLC-γ-1 [10], 

which, through generation of the second messenger diacylglycerol, serves to 

activate PKC.  TPA treatment may circumvent this normal ligand-mediated and 

kinase-dependent process.  The potency of TPA as a PKC agonist may explain, 
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in part, the increased proportion of ErbB-4 receptors cleaved by TPA treatment 

compared to heregulin treatment [23]. 

 Alternatively, PKC may phosphorylate the sheddase or an adaptor protein 

that links ErbB-4 to its sheddase.  ERK-mediated phosphorylation of TACE at Thr 

735 is required for cell surface expression [107].  Seemingly contradictory, 

however, is the finding that deletion of the entire intracellular domain of TACE 

does not prevent proteolysis of TNF-α induced by TPA [108].  If phosphorylation 

is required for trafficking of TACE to the cell surface, then how is a mutant that 

lacks an intracellular domain able to be signaled to cleave its cell-surface 

substrate?  In addition to promoting shedding of many TACE substrates, 

treatment with TPA also induces internalization and downregulation of TACE 

[109].   

 The story of ErbB-4 proteolysis is far from complete.  Most of the focus in 

the field has been targets of the ICD fragment, both in the cytosol and the 

nucleus, that regulate cell growth and differentiation.  The finding that ErbB-4 

cleavage regulates neuronal cell fate determination [62] has finally assigned to 

ErbB-4 cleavage a biological relevance.  As future studies reveal new functions 

of ErbB-4 proteolysis in development and disease, it will be especially important 

to understand the precise mechanisms that initiate the rate-limiting steps of 

ErbB-4 cleavage.  Manipulating these steps may eventually provide a novel 

therapeutic approach for ErbB-4-associated diseases. 
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CHAPTER I 
 

INTRODUCTION 

 

 Epidermal growth factor (EGF) receptor, or ErbB-1, is the prototypical 

member of the ErbB family of type I receptor tyrosine kinases (RTK).  ErbB-1 

(170 kDa) is comprised of an ectodomain (100 kDa), a single transmembrane 

domain, and a 60 kDa intracellular domain (see Figure II-1).  The ectodomain 

can be divided into four structural subdomains: two subdomains, I and III, 

involved in ligand binding and two cysteine-rich subdomains, II and IV [2].  An α-

helical transmembrane domain connects the ectodomain to the intracellular 

domain (ICD).  Within the ICD are a juxtamembrane (JM) region, the tyrosine 

kinase domain (TKD), and a carboxyterminal (CT) region [2].    

Figure II-1:  Schematic of ErbB-1 domains.  Green: ligand-binding regions; yellow: cysteine-
rich regions; TM: transmembrane domain; JM: juxtamembrane region; TKD, tyrosine kinase 
domain; CT: carboxyterminal region. 

 

 The importance of each of these regions of ErbB-1 in dimerization and 

kinase activation are discussed in detail in this chapter.  Since ErbB-2, -3, and -4 

are similarly organized, the lessons learned from ErbB-1 may be applicable in 

part (ErbB-2, -3) or in full (ErbB-4). 
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Ligand-Dependent ErbB-1 Activation and Signaling Pathways 

 Transmembrane proteins receive signals to alter cellular processes from 

the extracellular environment and transmit those signals across the plasma 

membrane to effect changes inside the cell.  For ErbB-1, EGF-like ligands 

specifically associate with the receptor and a series of receptor conformational 

changes ensue in response to ligand binding, culminating in activation of 

mitogenic signaling pathways.  ErbB-1 serves as a receptor for several related 

growth factors, including EGF, transforming growth factor-α, betacellulin, 

amphiregulin, epiregulin, epigen, and heparin-binding EGF [1].  Ligand binding to 

regions I and III in the ectodomain induces a conformational change to convert 

the ErbB-1 ectodomain from a tethered, inactive conformation to an extended, 

active conformation, as determined by high-resolution crystal structures [5, 6].   

 This and further conformational changes result in intracellular tyrosine 

kinase activity and spawn a cascade of activated downstream signaling 

molecules.  Proteins containing a src homology-2 (SH2) or protein tyrosine 

binding (PTB) domain are recruited to sites of autophosphorylation in the ErbB-1 

carboxyterminal region and many are then phosphorylated by the ErbB-1 TKD 

[2].  This constitutes a receptor-proximal activation step.  For example, ErbB-1 

tyrosine phosphorylation of phospholipase C-γ1 (PLC-γ1) promotes results in 

PLC-γ1 hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (PIP2) to form the 

two second messengers inositol 1,4,5-trisphosphate (IP3) and diacylglycerol 

(DAG) which, respectively, promote release of calcium from the endoplasmic 

reticulum and activation of protein kinase C (PKC) [7, 8].  Receptor 
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phosphorylation also serves to recruit adaptor proteins to the cytosolic face of the 

plasma membrane.  For example, Grb2 also binds to ErbB-1 but is not 

phosphorylated [9], acting as an adaptor protein to facilitate ErbB-1 activation of 

Ras [10]. 

 Separate from a cell-surface signaling molecule, full-length ErbB-1 also 

translocates to the nucleus where it is required for activating transcription of 

several genes, including cyclin D1 and c-myb [11].  The mechanism of ErbB-1 

nuclear localization involves retrograde translocation from the endoplasmic 

reticulum (ER) by interaction with the translocon Sec61 [12].  Normally, this 

translocon functions as a pore to integrate newly synthesized transmembrane 

proteins into the ER membrane, but Sec61 can also remove misfolded proteins 

from their membrane environment through a retrotranslocation process termed 

ER-associated degradation, or ERAD [13].  Certain toxins, such as cholera toxin, 

exploit the ERAD pathway to gain access to the cytosol and nucleus [14], and a 

recent report suggests that the ER may also serve as a intermediate localization 

for cell-surface transmembrane proteins to reach the nucleus in a non-

membraneous state [12].  Knockdown of Sec61β by siRNA prevents both nuclear 

localization of ErbB-1 and EGF-induced cyclin D1 expression, revealing that the 

mechanism of ErbB-1-dependent cyclin D1 transcription relies on retrograde 

transport to the ER [12].   

 Since ErbB-1 activates an array of signaling pathways that result in cell 

growth and proliferation, controls exist to prevent sustained activation of the 

receptor.  The short-term mechanism for ErbB-1 inactivation is 
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dephosphorylation by protein tyrosine phosphatases ([15] and references 

therein).  The long-term mechanism for ErbB-1 inactivation is downregulation via 

clathrin-mediated endocytosis and lysosomal degradation [16-18].  Ligand 

binding promotes rapid internalization of ErbB-1, but not other ErbB receptors 

[19], and three fates exist for the internalized receptor: 1) recycling to the cell 

surface, 2) lysosomal degradation, and 3) transport to the nucleus.  

Internalization, however, does not necessarily translate to inactivation because 

signaling still occurs from endocytic vesicles [20, 21], and ErbB-1 activates 

transcription in the nucleus [12]. 

   

Activation of ErbB-1 in Tumorigenesis 

 Proteins involved in cell survival and proliferation are frequently 

overexpressed or mutated in malignant tissues.  ErbB-1 was first termed an 

oncogene in 1984 when Downward et al. identified similarities between the 

intracellular domain sequences of ErbB-1 and the avian erythroblastosis virus 

[22].  Overexpression of ErbB-1 is well-documented in a variety of tumor types, 

including non-small cell lung cancer (NSCLC) [23], head and neck squamous cell 

carcinoma (HNSCC) [24], colorectal cancer [25], pancreatic cancer [26],  renal 

cell carcinoma [27], ovarian cancer [28], and esophageal cancer [29].   

 In addition to overexpression, mutant forms of ErbB-1 have also been 

detected in glioblastoma multiforme, the most common mutation being a splice 

variant, ErbB-1vIII, that results in deletion of exon 3 [30].  Deletion of this region 

creates a constitutively active receptor, thus circumventing the need for ligand-
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dependent activation [30].  More recently, mutations within the tyrosine kinase 

domain (exons 18-21) of ErbB-1 were identified in lung cancer patients that 

render the receptor partially constitutively active and more sensitive to some 

small-molecule tyrosine kinase inhibitors (TKIs) [31-33].  The two most common 

mutations are Δ746-750 in exon 19 and L858R in exon 21 [23].  These and other 

TKD mutations in ErbB-1 have been detected primarily in Asian women non-

smokers with bronchiolar adenocarcinoma [23], while ErbB-1vIII has also been 

detected in squamous cell lung carcinoma in addition to glioblastoma [34].  Three 

mouse models have been developed that inducibly express mutant forms of 

ErbB-1 targeted to lung type II pneumocytes: L858R mutation, exon 19 deletion 

[35] and ErbB-1vIII [34].  The TKD mutant animals develop tumors after 

prolonged mutant ErbB-1 expression and these tumors are sensitive to ErbB-1 

TKIs [35].  Animals expressing ErbB-1vIII develop NSCLC, but these tumors are 

only sensitive to the irreversible TKI HKI-272 [34].   

 As can be imagined, inhibition of ErbB-1 represents a desirable avenue for 

treatment of cancer.  Currently, two modes of ErbB-1 inhibition are under 

investigation: TKIs and monoclonal antibodies.  The TKIs gefitinib (Iressa) and 

erlotinib (Tarceva) bind to the ATP binding site of ErbB-1.  Crystal structures of 

erlotinib [4] and gefitinib [36] bound to the tyrosine kinase domain of ErbB-1 

revealed that these 4-anilinoquinazolines bind to the open conformation of ErbB-

1 TKD, i.e., when the activation loop is exposed.  Lapatinib is a ErbB TKI that 

targets both ErbB-1 and ErbB-2 and, in contrast to erlotinib and gefitinib, binds to 

the closed conformation of the TKD when the activation loop is buried within the 
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ATP binding pocket [37].  The irreversible inhibitors EKB-569, HKI-357, and HKI-

272 act as Michael acceptors to form a covalent bond with a cysteine residue in 

the ErbB-1 binding pocket [23].   

 The monoclonal antibodies cetuximab (C-225, Erbitux) and panitumumab 

(ABX-EGF) target the extracellular region of ErbB-1 to block ligand binding and 

induce receptor internalization without activating the receptor [23].  The TKIs 

gefitinib and erlotinib are more effective clinically in lung cancer patients 

expressing ErbB-1 TKD mutations [38], whereas the monoclonal antibodies 

display better effectiveness in colorectal cancer [39, 40].   

 The ligands of ErbB-1, and not the receptor per se, may also be 

inappropriately in disease, which leads to sustained activation of the receptor 

[24].  Hence, assessment of ErbB-1 expression alone may not be an adequate 

prognostic marker for an increase in ErbB-1 activity in malignant carcinoma.  

Aside from classical activation by ligand binding, transactivation of ErbB-1 occurs 

through a variety of heterologous receptors or stimuli, such as G-protein coupled 

receptors, and these pathways could also contribute to disease [1].   

 

Dimerization of ErbB-1 

 Joseph Schlessinger first proposed that dimerization of ErbB receptors is 

a critical step in activation of the receptors [41].  Based on high-resolution crystal 

structures, it is now known that regions within the ectodomain [5, 42-44] and 

tyrosine kinase domains [3] dimerize subsequent to ligand binding.  Dimerization 

motifs are also found in the transmembrane domains of the ErbB receptors [45]; 
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however, the extent to which these mediate or are required for ligand-dependent 

receptor activation is not clear. 

 

Ectodomain  

In the absence of ligand, a critical dimerization arm present in ErbB-1 [5, 6], 

ErbB-3 [42], and ErbB-4 [44] is in a tethered conformation that is maintained by 

contacts between subdomains II and IV (Figure II-2).  The additional of ligand 

Figure II-2:  Conformational changes in the ectodomain associated with ligand binding.  In 
the absence of ligand, ErbB-1, -3, and -4 are in a tethered state.  Ligand binding to 
subdomains I and III induces a conformation change to an extended state.  Exposure of the 
dimerization arm in subdomain II facilitates ectodomain dimerization (right).  Adapted from 
Linggi and Carpenter [1]. 
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(i.e., EGF, TGF-α) to ErbB-1 induces a conformational change that results in 

exposure of the dimerization arm, located in the first cysteine-rich region 

(subdomain II), and promotes a back-to-back mode of extracellular dimerization 

[5, 6].  Although mutagenesis of the dimerization arm prevents EGF-induced 

receptor activation and mitogenesis [46, 47], exposure of the dimerization , while 

a necessary first step, is probably not sufficient for activation.  For example, 

deletion of the region just below the dimerization arm also inhibits ErbB-1 activity, 

indicating a role for those sequences in activation of the receptor [47].  This 

mode of ectodomain dimerization is well-accepted in the field, and no structural 

alternatives have been presented in the literature. 

 Biochemical experiments and crystal structures of the ErbB-1 ectodomain 

bound to ligand revealed that the stoichiometry of ligand:receptor is 1:1 [5, 6, 48], 

and that the ligand does not directly participate in dimerization (ligand-mediated 

dimerization).  The ligand simply induces the conformational changes necessary 

to facilitate receptor-mediated dimerization [5, 6].  In contrast to ErbB-1, -3, and -

4, ErbB-2 is found in an extended, pseudo-ligand-bound conformation in the 

absence of ligand [49].  ErbB-2 is an orphan receptor as no ligand binding step is 

required to induce the conformational change that exposes the dimerization arm, 

as is the case for the other ErbBs.  In fact, the constitutively extended 

conformation with the exposed dimerization arm allows ErbB-2 to rapidly 

dimerize with ligand-activated ErbB-1, ErbB-3, and ErbB-4.  The conformation of 

the ErbB-2 ectodomain may explain why overexpression of this protein is often 

oncogenic. 
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 Interestingly, biochemical experiments revealed that ErbB-1 vIII mutant 

receptor does not homodimerize [50].  Therefore, other regions of the receptor 

must contribute to activation since deletion of exon 3, a region that participates in 

ligand binding, is capable of ligand-independent activation.   

 

Transmembrane Domain 

 Originally identified in the TM domain of glycoporin A, the GXXXG and 

GXXXG-like motifs are associated with interactions between TM domains [51].  

All ErbB receptors (except ErbB-3) contain N- and C-terminal GXXXG-like 

dimerization motifs in their TM domains (see Figure II-3) [45].  Mutations of these 

putative dimerization motifs led to a theory of TM domain dimerization in which 

the C-terminal GXXXG-like motif in ErbB-1 mediates homodimerization [45], 

whereas the N-terminal GXXXG-like motif is involved in heterodimerization with 

other ErbB TM domains, such as ErbB-2 [52].   Mutation of Val664 to Glu in the 

TM domain of ErbB-2 results in constitutive activation of the receptor [53] by 

promoting dimerization [54], though not necessarily TM domain dimerization [45].  

A similar mutation (I658E) in the TM of ErbB-4 also results in a constitutively 

Figure II-3: Alignment of the ErbB 
transmembrane domains.  Yellow boxes 
denote GXXXG-like motifs classically 
associated with transmembrane domain 
dimerization. ErbB-2 V664 is underlined.
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active receptor, although this group did not compare dimerization of wild-type 

and I658E ErbB-4 [55].   

 

Tyrosine Kinase Domain 

 The tyrosine kinase domain of ErbB receptors is divided into two lobes, 

termed the N-lobe and the C-lobe, with a short connector between the two [56].  

This bi-lobed architecture is found in all protein kinases, although some receptors 

contain a larger linker between the N- and C-lobes [56].  In the absence of ligand 

or another activating element, kinases are in an inactive conformation, with the 

active site in the N-lobe occluded by the activation loop (A-loop) in the C-lobe 

[56].  Conformational changes that occur in response to ligand binding facilitate 

kinase activation, and most receptor tyrosine kinases require phosphorylation of 

a residue within the A-loop of the TKD for full catalytic activation [56].  For 

example, autophosphorylation of Tyr1163 within the A-loop of the insulin receptor 

induces a conformational change in the A-loop that exposes the ATP binding 

site, leading to subsequent catalytic activity [57, 58].  The ErbB family, however, 

is an exception to this general mechanism.  While there is a tyrosine residue 

(Tyr845) within the A-loop of ErbB-1 that is phosphorylated, this site is 

phosphorylated by Src  [59, 60].  This site is not known to be an 

autophosphorylation site.  However, in one study mutation of Tyr845 to 

phenylalanine reduced EGF-induced DNA synthesis [59], while a second report 

found this same mutation does not inhibit EGF-dependent ERK activation [61].  

This seeming contradiction has not been resolved.        
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 It is widely accepted in the field that, in addition to ectodomain 

dimerization, intracellular domain dimerization is also required for ErbB-1 tyrosine 

kinase activation.  Until recently, it was assumed, based on a crystal structure of 

the ErbB-1 TKD, that ErbB-1 intracellular dimerization occurs in a symmetrical 

fashion [4].  However, mutation of residues at the symmetrical interface failed to 

inhibit tyrosine kinase activity of full-length ErbB-1 [3].  A recent publication by 

Zhang, et al., instead describes an allosteric mechanism for intracellular kinase 

activation via asymmetrical dimerization of TKD monomers (Figure II-4) [3].   

Figure II-4:  Asymmetrical dimerization of 
ErbB-1 TKD.  The N-lobe of an acceptor 
monomer interacts with the C-lobe of a donor 
monomer. This allosteric interaction results in 
activation of the acceptor monomer. 

  Crystallographical studies combined with cell biological verification by 

Kuriyan and colleagues elegantly revealed that ligand binding promotes 

interaction of the N-lobe of an acceptor monomer with the C-lobe of a donor 

monomer, resulting in activation of the acceptor monomer (Figure II-4) [3].  This 

mode of interaction is similar to that of the cyclin-CDK complex, in which the 

donor is the cyclin-like monomer, and the acceptor is the CDK-like monomer [62].  
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Importantly, single point mutations at key residues in the dimer interface abolish 

EGF-induced tyrosine phosphorylation of full-length ErbB-1 expressed in cells 

[3].  Dimer interface residues in the N-lobe of the acceptor monomer are Pro675, 

Iso682, and Lys736, while contact residues in the C-lobe of the donor monomer 

are Iso917, Met921, Val924, and Met928 [3].  Mutation of any single N-lobe or C-

lobe contact residue theoretically forces that monomer to be a donor or acceptor, 

respectively.   

 

Intracellular Juxtamembrane Region of ErbB-1 

 Extending from the last residue of the transmembrane domain is the 37-

residue juxtamembrane region (Figure II-1), which is highly conserved amongst 

ErbB family members (Figure II-5). 

 

Structural Features of the Juxtamembrane Region 

 Attempts to determine a structure for the JM region of ErbB-1 using NMR 

and circular dichroism have been limited to peptides comprising the JM region 

[63, 64] or the N-terminal portion of the JM region with a transmembrane domain 

linker [65].  Using a peptide of R645-G697, which includes 15 residues of the 

Figure II-5: Alignment of 
ErbB JM regions. Yellow: 
conserved in all 4 proteins; 
grey: conserved in 3.  
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TKD, one group concluded, based on NMR data, that the JM region is relatively 

unordered in solution and forms three amphipathic helices connected by two 

unstructured regions in detergent micelles [63].   To date, no structure of the JM 

region together with the TKD or the complete ICD has been published, so the 

fold of the JM region may be different in the context of the full receptor than that 

observed using the TM and portions of the JM region. 

 Contained within the JM region of ErbB-1 are lysosomal [66] and 

basolateral sorting signals [67], a tripartite nuclear localization sequence [11, 68], 

as well as one PKC [69, 70] and two mitogen-activated protein kinase (MAPK) 

[71, 72] phosphorylation sites.  Calmodulin [73] and the α-subunit of Gs proteins 

[74] are also reported bind to the JM region of ErbB-1 in vivo and in vitro.  In 

detergent micelles, the dominant basolateral sorting signal is located in an 

unordered loop, the PKC phosphorylation site and calmodulin binding region are 

found in the first amphipathic helix, and the lysosomal sorting signal is located in 

the second helix [64].  PKC and calmodulin may compete for binding to the same 

site, as calmodulin binding does not occur when the JM region is phosphorylated 

by PKC, and PKC phosphorylation of the JM cannot be detected in the presence 

of bound calmodulin in in vitro studies [73].  Hence, a great deal of sequence 

information that potentially regulates functions, including receptor localization, 

inactivation, and degradation, is localized within the small region of the receptor.  

Furthermore, the significant degree of homology with other ErbB receptors 

suggests that these sorting signals and binding sites in the ErbB-1 JM region are 

also contained within ErbB-2, -3, and -4.   
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PKC Phosphorylation of Thr654 

 PKC phosphorylation of ErbB-1 was first reported in 1984 when it was 

determined that treatment with the phorbol ester TPA prevents EGF-induced 

tyrosine phosphorylation of the receptor [75] and promotes threonine 

phosphorylation of ErbB-1 [76].  Soon afterwards, two separate reports identified 

Thr654 within the juxtamembrane region as the major site of PKC 

phosphorylation [69, 70].  Subsequent studies sought to understand how PKC 

phosphorylation mediates receptor inactivation.  Several groups compared EGF 

binding to ErbB-1 before and after treatment with TPA; however, the results are 

conflicting and vary depending on the technique used.  For example, Rosner and 

colleagues found that phorbol ester treatment did not affect 125I-EGF binding 

using A431 cells [75], whereas Parker and colleagues observed a 3-fold 

decrease in EGF affinity for ErbB-1 purified from A431 cells and phosphorylated 

in vitro by PKC [77].  Davis also detected a decrease in EGF binding to both wild-

type ErbB-1 and T654A ErbB-1 expressed in CHO cells after pretreatment with 

TPA [78].  A phosphomimetic mutant, T654E, displayed no difference in EGF 

binding, tyrosine phosphorylation, or DNA synthesis as compared to the wild-type 

receptor in the absence of TPA [79].   

 Interestingly, platelet-derived growth factor (PDGF), the ligand for the 

PDGF receptor, also promotes ErbB-1 Thr654 phosphorylation, presumably 

through PDGF activation of PKC [80].  Importantly, EGF [81, 82] and TGF-α [83] 

also provoke Thr654 phosphorylation, indicating that a negative feedback loop 

exists involving ErbB-1 activation of PLC-γ1, which then hydrolyzes PIP2 to 
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generate the second messengers IP3 and DAG.  The latter activates PKC 

resulting in phosphorylation of ErbB-1 on Thr654 and other sites.   

 PKC phosphorylation of Thr654 has also been linked to receptor 

endocytosis.  Early studies showed that phorbol ester treatment (in the absence 

of ligand) induces internalization of wild-type ErbB-1 [84, 85], yet others observed 

that phosphorylation at Thr654 (i.e., pretreatment with phorbol ester) inhibits 

ligand-mediated receptor internalization [86].  A PKC-phosphorylated receptor is 

subjected to recycling following endocytosis but a non-phosphorylated receptor 

(T654A) is degraded [87]. Collectively, these data indicate that Thr654 

phosphorylation by PKC inhibits EGF-stimulated degradation of the receptor.  

However, the mechanism is still unclear, such as how a PKC-phosphorylated 

receptor is distinguished from a non-phosphorylated receptor. 

 The JM region of the ErbB receptors is unique compared to other tyrosine 

kinase receptors in that it contains a large stretch of basic residues immediately 

following the transmembrane domain.  One hypothesis is that these residues 

mediate an electrostatic interaction with negatively-charged phospholipids in the 

lipid bilayer, and this interaction promotes an inactive conformation of the TKD 

[88].   Calmodulin binding to a peptide representing this region in ErbB-1 

(residues 645-660) inhibits the electrostatic interaction of the peptide with 

phospholipids to potentially allow activation of intracellular kinase activity [65, 88].  

Relevant to PKC phosphorylation of Thr654 within this region, calmodulin does 

not bind a Thr654-phosphorylated ErbB-1 JM peptide [88], but this data has not 

been replicated in an intact cell.     
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 A conserved PKC phosphorylation site that results in receptor 

downregulation has also been identified at Thr686 in the JM region of ErbB-2 [89, 

90], but this site has not been studied as extensively as Thr654 in ErbB-1.  

Based on the consensus site for PKC phosphorylation, ErbB-4 contains a 

putative PKC phosphorylation site at Ser679 [91], five residues after the 

transmembrane domain; the positioning of this site is not conserved with ErbB-1 

and ErbB-2 (see Figure II-5) and has not been directly validated in the literature.   

PKC phosphorylation sites have also been identified in the juxtamembrane 

regions of the RTKs c-met [92, 93] and the insulin receptor [94] and result in a 

decrease in receptor tyrosine kinase activity when phosphorylated.   

 

Carboxyterminal Region of ErbB-1 

 The carboxyterminal region of all ErbB receptors is the exclusive site for 

tyrosine autophosphorylation.  The first sites to be identified in Erb-1 were 

tyrosines 1068, 1148, and 1173 [95], and later autophosphorylation was detected 

on tyrosine residues 992, 1045, and 1086 [96-98].   Subsequent studies of 

catalytically-inactive receptors (K721 mutation) co-expressed with carboxy-

truncated receptors revealed that autophosphorylation occurs in trans  [99, 100]. 

Quite interestingly, mutation of any one tyrosine to phenylalanine does not inhibit 

activation of downstream signaling molecules and induction of mitogenesis [101, 

102].  This is in direct contrast to the PDGF receptor in which, for example, PLC-

γ1 exclusively binds to tyrosine 1021 and Grb2 to tyrosine 716 of the PDGF-β 

receptor [103].  Hence mutation of any one of these residues in PDGF receptor 
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selectively turns off one signaling pathway while maintaining others, whereas the 

signaling properties of the same proteins are not affected by mutation of a single 

tyrosine residue in ErbB-1.   

 Aside from providing a docking site for SH2 or PTB-containing proteins, 

the carboxyterminal region of ErbB-1 may also play a role in receptor 

autoinhibition and internalization.  For example, deletion of the carboxyterminal 

region beginning at residues 1052, 1022, 991, and 973, but not 944, results in 

increased activation of target proteins [96], and a receptor truncated at residue 

973 displays higher activity towards ErbB-2 than the intact ErbB-1 [104].  The 

mechanism of autoinhibition has not been elucidated.  One theory is that the 

carboxyterminal region interacts with the ATP binding site [105].  By assessing 

FRET activity between a fluoresecent-tagged ATP analog and a C-terminal 

fluorophore on ErbB-1 ICD, Koland and colleagues demonstrated that tyrosine 

phosphorylation of the carboxyterminal residues of ErbB-1 abolishes the 

interaction between the extreme C-terminus and ATP observed with the inactive 

ICD [105].  An alternative theory is that a patch of acidic residues in the 

carboxyterminal region (residues 979-991) interacts with the basic residues in the 

juxtamembrane region (residues 645-660) to lock the TKD in an inactive 

conformation [106].  However, no structural information is available that validates 

or disproves either of these theories, as the TKD crystal structures reported to 

date omit the carboxyterminal region as well as the JM region.  

 Collectively, the last 5 years have yielded an immense amount of 

information about the conformational changes that occur in response to ligand 
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binding to create an active kinase.  Future studies will determine how these 

distinct regions interact with each other to both activate and inactivate the 

receptor, and also define the role of the transmembrane domain.  The data in the 

following chapter describe a role for the juxtamembrane region of ErbB-1 in 

allosteric tyrosine kinase activation.  Initially, I hypothesized that the 

juxtamembrane region negatively regulated tyrosine kinase activity upon PKC 

phosphorylation, but subsequent experiments led me to change the hypothesis.  

The current theory is that the juxtamembrane region is required for kinase 

activation.  
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CHAPTER II 

 

EPIDERMAL GROWTH FACTOR RECEPTOR JUXTAMEMBRANE REGION 
REGULATES ALLOSTERIC TYROSINE KINASE ACTIVATION 

 

 

Experimental Approach 

 

 The goal of this project is to identify the role of the ErbB-1 intracellular 

juxtamembrane region in kinase activation.  In the literature, several approaches 

have been adopted to define the importance of this region of ErbB-1 relative to 

kinase function.  Early studies incorporated juxtamembrane insertions [107] or 

deletions [108-110] in the full-length receptor to assess the effects of these 

modifications on kinase activity or binding to interacting proteins.  The advantage 

to this strategy is the ability to determine ligand-dependent effects.  Deletion of 

residues 645-660 (polybasic region) [108] or residues 670-674 [109] in the full-

length receptor resulted in loss of tyrosine phosphorylation, but no mechanistic 

information was determined.  Complicating the interpretation of experiments with 

the intact receptor is the fact that mutations with the juxtamembrane region result 

in a decreased population of cell-surface receptors [111].   

 A minimalist approach for the study of tyrosine kinase activation adopted 

by Kuriyan and others is to use the isolated tyrosine kinase domain [3, 4].  The 

limitation to this experimental strategy is that the contribution of other regions to 
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kinase activation cannot be determined, in addition to precluding study of ligand-

mediated activation.   

 I chose to study the role of the juxtamembrane region in tyrosine kinase 

activation using a fragment comprised of the entire intracellular domain in cells.   

This experimental approach is intermediary between use of the intact receptor in 

cells and the isolated TKD in vitro.  Other groups have used purified ICD 

fragments for in vitro studies [112-114], including creating point mutations in the 

ICD to assess the effect on activity [115, 116].  The drawbacks to this approach 

include the following:  the transmembrane domain may be necessary to properly 

orient intracellular domains; ligand-dependent activation cannot be assessed; 

and the soluble ICD interacts with proteins that the intact receptor does not 

normally contact, which may contribute artifactually to kinase activation.   

  

Methods 

 

Construction of ErbB-1 ICD and Mutants 

  Wild-type and ΔJM mutant ICDs were completely sequenced to ensure no 

secondary mutations occurred during PCR amplification.  Point mutants arising 

from wild-type or ΔJM ICD templates (T654A, T654D, I682Q, or V924R) were 

sequenced at the region of mutation.     

 All primer sequences for ICD mutants are located in Table II-1.  PCR was 

used to amplify the entire intracellular domain of ErbB-1 (residues 645-1186) 

from ErbB-1-EGFP (gift of Dr. Alexander Sorkin, University of Colorado Health 
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Sciences).  The forward primer included a HindIII restriction site, Kozak 

sequence and start codon; the reverse primer retained the stop codon 

immediately followed by an XbaI site.  The ErbB-1 ICD PCR product was cloned 

into a pFlag CMV 5.1+ vector (Sigma).  Site-directed mutagenesis (Quik-Change, 

Stratagene) was utilized to remove the stop codon and allow coding of the Flag 

epitope at the C-terminus, and the entire cDNA of ErbB-1 ICD-Flag was 

subjected to sequencing.  The Flag epitope did not influence ErbB-1 ICD 

expression or tyrosine phosphorylation (data not shown), and all experiments 

herein utilize the ErbB-1 ICD-Flag construct unless otherwise noted.  All point 

mutations (T654A, T654D, K721R, L834R, I682Q, V924R) were engineered into 

the ErbB-1 ICD-Flag construct by site-directed mutagenesis. 

 The sites for JM deletions were chosen based on the predicted structure 

of the JM region bound to micelles [63].  Specifically, the first deletion removes 

the first amphipathic helix, which contains the PKC phosphorylation site, and the 

larger deletion removes the first and second amphiphatic helices. Using ErbB-1 

ICD-Flag as the template, forward primers were designed that incorporate a 

HindIII restriction site, a Kozak sequence, and a start codon immediately 

preceding the desired first residue (E663 or Q677).  PCR-amplified cDNAs were 

digested with HindIII and ClaI and ligated into a similarly digested ErbB-1 ICD-

Flag.    

 To create a Myc-tagged ErbB-1 ICD, the ErbB-1 ICD cDNA was shuttled 

from the ErbB-1 ICD-pFlag CMV 5.1+ vector into the pcDNA4-Myc/His A vector 

(Invitrogen).  To prevent coding of the 6XHis tag at the C-terminus, a premature 
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stop codon was inserted between Myc and 6XHis by site-directed mutagenesis.  

Next, ErbB-1 ICD cDNA was shuttled from ErbB-1-Flag into the pcDNA4-Myc 

following digestion of both plasmids with HindIII and XbaI. 

 

 

utations and JM Deletions in Full-Length ErbB-1 

K721R, and V924R) were 

Table II-1:  Primer sequences used to generate ErbB-1 ICD and mutations. 

Forward Primer Reverse Primer

ErbB-1 ICD from EGFR-EGFP
GCCTGAAGCTTCACCATGCGA
AGGCGCCACATCGTTCGG

CATCTAGATCATGCTCCAATAAA
TTCACTGCTTTGTGGC

Mutation of stop codon in ErbB-
1 ICD in pFlag

GAATTTATTGGAGCAGCATCTA
GAGGATCCCGGGC

GCCCGGGATCCTCTAGATGCTG
CTCCAATAAATTC

T654A ErbB-1 ICD-Flag
CGGAAGCGCGCGCTGCGGAG
GCTGC

GCAGCCTCCGCAGCGCGCGCTT
CCG

T654D ErbB-1 ICD-Flag
CGGAAGCGCGACCTGCGGAG
GCTGC

GCAGCCTCCGCAGGTCGCGCTT
CCG

K721R ErbB-1 ICD-Flag
CCCGTCGCTATCAGGGAATTA
AGAGAAGCAAC

GTTGCTTCTCTTAATTCCCTGAT
AGCGACGGG

I682Q ErbB-1 ICD-Flag
CAACCAAGCTCTCTTGAGGCA
GTTGAAGGAAACTG

CAGTTTCCTTCAACTGCCTCAAG
AGAGCTTGGTTG

V924R ErbB-1 ICD-Flag
CATGATCATGCGCAAGTGCTG
GATGATAGACG

CGTCTATCATCCAGCACTTGCG
CATGATCATG

Δ645-662 ErbB-1 ICD-Flag

GCCTGAAGCTTCACCATGGAG
CTTGTGGAGCCTCTTACACCC
AGTGGAGAAGC

CGATGATCAACTCACGGAACTTT
GGG

Δ645-676 ErbB-1 ICD-Flag

GCCCGAAGCTTCACCATGCAA
GCTCTCTTGAGGATCTTGAAG
GAAACTG

CGATGATCAACTCACGGAACTTT
GGG

Insertion of stop codon after 
myc in pcDNA4-myc/His

CAGAAGAGGATCTGTAGATGC
ATACCGGTCATC

GATGACCGGTATGCATCTACAG
ATCCTCTTCTGAG

Primer sequences (5' to 3')

 

M

 Point mutations (T654A, T654D, I682Q, 

introduced into Flag-ErbB-1 (generously provided by Dr. Tony Burgess) by site-

directed mutagenesis, and primers used for these mutations in ErbB-1 ICD 

(Table II-1) were used here.  The strategy for introducing internal deletions into 

full-length ErbB-1 with an N-terminal Flag epitope is as follows.  First, an EcoRV 

cut site was introduced by site-directed mutagenesis at nucleotides that 
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correspond to H648.  Second EcoRV cut sites were added to this parental 

construct at nucleotides corresponding to either R662 or N676.  Digestion with 

EcoRV and ligation generated either Δ648-662 or Δ648-676 Flag-ErbB-1.  This 

cloning approach resulted in addition of two residues at deletion (Glu, Iso).  All 

primers used for making the internal deletions are listed in Table II-2, and 

constructs were sequenced at the site of mutagenesis.   

 

Table II-2:  Primer sequences used to delete residues 648-662 and 648-676 in Flag-ErbB-1. 

Ce

COS-7 and NIH 3T3 cells were routinely maintained in 10% FBS-

eriments in COS-7 

Forward Primer Reverse Primer
EcoRV648 
Flag-ErbB-1

CATGCGAAGGCGCGATATCGTTCGG
AAGC

GCTTCCGAACGATATCGCGCCTTCGCA
TG

EcoRV662 
Flag-ErbB-1

GAGGCTGCTGCAGGATATCGAGCTT
GTGGAGC

GCTCCACAAGCTCGATATCCTGCAGCA
GCCTC

EcoRV676 
Flag-ErbB-1

CCCAGTGGAGAAGCTGATATCCAAG
CTCTCTTG

CAAGAGAGCTTGGATATCAGCTTCTCC
ACTGGG

Primer sequences (5' to 3')

 

ll Culture and Transient Expression of ErbB-1 Constructs   

 

supplemented DMEM at 37°C with 5% CO2.  For ICD exp

cells:  2 ug of DNA was transiently transfected, using Lipofectamine 2000 

(Invitrogen) per the manufacturer’s instructions, into a 60-mm dish of COS-7 cells 

growing in 10% FBS/DMEM at approximately 80% confluency.  When cells were 

co-transfected with ICD constructs, 1 ug of each construct was transfected into 

each 60-mm dish of COS-7 cells such that the total DNA in each dish was 2 μg.  

The ratio of DNA:Lipofectamine 2000 was 1 μg DNA: 3.5 μl Lipofectamine 2000 

reagent in a final volume of 400 μl serum-free DMEM. 
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 Full-length ErbB-1 constructs were transiently transfected into NIH 3T3 

cells as described [3].  The ratio of DNA:FuGENE6 was 1.5 μg DNA: 4.5 μl 

For ICD experiments, transfected cells were harvested either 24 hrs. post-

er [1% Triton X-100, 10% glycerol, 50 mM 

. with 

FuGENE6 per well of 50% confluent 6-well plates of NIH 3T3 cells. 

 

Immunoprecipitation and Blotting   

 

transfection, lysed with TGH buff

Hepes (pH 7.2), 100 mM NaCl, 5 mM NaF, 1 mM Na3VO4, and Roche Complete-

Mini protease inhibitor cocktail tablet] as described [117].  Lysates were 

precipitated with anti-FlagM2 (Sigma), anti-EGFR (1005, Santa Cruz 

Biotechnology), or anti-ErbB-4 prepared as described elsewhere [19].  

Immunoprecipitates were subjected to immunoblotting with PY99 (Santa Cruz 

Biotechnology).  To confirm equal expression, blots were stripped with 2% SDS, 

100 mM β-mercaptoethanol, and 62.5 mM Tris-HCl (pH 6.8) for 20 min. at 60°C, 

then reprobed with anti-FlagM2, anti-EGFR (Upstate Biotech) or anti-ErbB-4.  

Densitometric analysis was performed using NIH ImageJ software.  All results 

were normalized for expression levels and quantitated relative to wild-type. 

 For expression of full-length ErbB-1, NIH 3T3 cells were transfected for 40 

hrs., starved for 60 min. with serum-free DMEM, and then treated for 5 min

50 ng/ml EGF (R&D) at 37°C.  Lysis was performed with TGH as described 

above, and 100 μg of each lysate was directly subjected to immunoblotting with 

either EGFR PY1173 (Santa Cruz Biotechnology) or EGFR antibodies after 

separation by SDS-PAGE.   

 74



 For co-immunoprecipitation assays, COS-7 cells were lysed 24 hrs. post-

transfection with TGH and pre-incubated with Protein G-Sepharose beads 

In vitro kinase assays were performed essentially as described elsewhere 

cted with 2 ug of each ICD were lysed and 

(Invitrogen) to eliminate non-specific binding.  Next, pre-cleared lysates were 

precipitated with anti-FlagM2 and blotted with anti-Myc (9E10, Santa Cruz 

Biotechnology) or precipitated with anti-Myc and blotted with anti-Flag.  Blots 

were then stripped and re-probed with anti-EGFR.  Whole-cell lysates were also 

blotted with anti-EGFR to confirm expression.  Densitometric analysis was 

performed as for phosphotyrosine blots.  Background binding of the Myc epitope 

to the FlagM2 antibody was subtracted; no non-specific binding to Protein G-

Sepharose beads was detected (data not shown).  Results are expressed 

relative to wild-type ErbB-1 ICD-Flag co-transfected with ErbB-1 ICD-Myc. 

 

In Vitro Kinase Assays  

 

[118].  Briefly, cells transiently transfe

ICDs precipitated with anti-FlagM2.  Immunoprecipitates were washed twice with 

TGH buffer and once with kinase assay buffer (25 mM Hepes, pH 7.4, 10 mM 

MgCl2, 2.5 mM MnCl2, 50 μM Na3VO4, and 0.5 mM DTT), then resuspended with 

100 μl kinase assay buffer.  Next, 10 μl of immunoprecipitated protein was 

incubated for 15 min. at room temperature with 25 μM ATP containing 62 μCi/ml 

[γ-32P]-ATP in a total reaction volume of 40 μl.  The reaction was quenched by 

addition of Laemmli buffer, boiled for 10 min. and separated by SDS-PAGE.   
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Immunostaining and Imaging of ErbB-1-Transfected Cells 

 NIH 3T3 cells were plated in MatTek dishes (MatTek Corporation) and 

transfected with ErbB-1 mutants as described above.  After 24 hrs., the cells 

were fixed in 4% paraformaldehyde for 15 min., followed by blocking with 3% 

bovine serum albumin (BSA) in phosphate-buffered saline (PBS) for 15 min. at 

room temperature.  Fixed cells were next stained with anti-Flag (rabbit polyclonal 

antibody, 5 μg/ml, Sigma-Aldrich) for 15 min. at 4°C in the blocking buffer.  After 

15-min. incubation with goat anti-rabbit Alexa-488-conjugated secondary 

antibody at 4°C, cells were imaged with a LSM510 confocal microscope and a 

Plan-Neofluar 40X oil immersion lens.  The fluorophore was excited at 488 nm 

with an argon laser.  

 

Results 

 

Tyrosine Phosphorylation of the ErbB-1 ICD 

 To understand the contribution of the JM region to ErbB-1 receptor 

activation, a construct containing the entire ErbB-1 ICD (residues 645-1186) was 

engineered (Figure II-6A).  When expressed in COS-7 cells, the ICD migrated at 

approximately 60-kDa and was tyrosine phosphorylated (Figure II-6B) in a 

manner dependent on its intrinsic kinase activity as revealed by mutagenesis of 

Lys721, a residue required for ATP binding in the kinase domain (Figure II-6C).  

The ErbB-4 ICD, which is generated by regulated intramembrane proteolysis of 

the full-length ErbB-4 receptor [119], is included for comparison and is similarly 
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tyrosine phosphorylated (Figure II-6B), as previously reported [118].  The data of 

were stripped and reprobed with the indicated antibodies to detect either ErbB-4 ICD or 

(data not shown).  Asterisks (*) denote IgG.   (B) Tyrosine phosphorylation of PKC-site 

 

Zhang, et al., show that high concentrations of purified ErbB-1 TKD promote 

auto-activation [3].  However, tyrosine phosphorylation of the ICD occurs within a 

milieu of intracellular proteins, thus avoiding the potential artifact of aggregation-

induced activation exhibited by the purified TKD.  It also seems clear that the 

expressed ICD is relatively stable because antibodies recognizing different 

regions of the protein were used for analysis, and no major degradation products 

were detected.  Also, no aggregation of the ErbB-1 ICD was detected by 

Figure II-6:  Tyrosine phosphorylation of ErbB-1 ICD.  (A)  Lysates of COS-7 cells 
transfected with ErbB-4 or ErbB-1 ICDs were precipitated with the indicated antibodies 
followed by western blotting with a phosphotyrosine antibody (PY99, upper panel).  Blots 

ErbB-1 ICD.  Similar results were obtained when lysates were directly blotted with anti-PY99 

mutants.  The indicated ErbB-1 ICD constructs were expressed as in (A), precipitated with 
anti-ErbB-1, and blotted with anti-PY99 (upper panel), stripped, and reprobed with anti-
FlagM2 (lower panel).  “Relative pY” refers to the tyrosine phosphorylation (pY) relative to 
wild-type after normalizing for expression levels.   
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immunostaining (data not shown). 

 

Role of Thr654 Phosphorylation in Kinase Activation 

 To test whether modification of Thr654 influences activity of the ICD, 

T654A and T654D mutants were produced.  Compared to the wild-type ICD, the 

T654A mutant ICD displays a 2.7-fold increase in tyrosine phosphorylation, while 

tyrosine phosphorylation of the phosphomimetic T654D mutant is decreased 2-

fold (Figure II-6C).  Phosphorylation of the T654A mutant is increased 8-fold 

relative to the T654D mutant.  These results are consistent with data showing 

that phosphorylation of ErbB-1 at Thr654 results in a decrease in tyrosine kinase 

activity [120] and may imply that a population of wild-type ICD is phosphorylated 

on T654.  Also, the data indicate that Thr654 modulates activity of the kinase 

domain within the context of the ICD fragment and that the mechanism does not 

require the presence of the ectodomain or transmembrane domain. 

 Based on in vitro interactions between a basic peptide comprising JM 

Figure II-7: Effect of sphingosine treatment on 
tyrosine phosphorylation of ErbB-1 ICD.  COS-7 cells 
were transiently transfected with ErbB-1 ICD or left 
untransfected, and then treated 24 hrs. post-
transfection with vehicle (-) or 2 μM sphingosine (+) 
for 30 min at 37°C. Lysates were precipitated with 
anti-EGFR followed by blotting with anti-PY99 (upper 
panel) or anti-EGFR (lower panel).  Sphingosine (2 
μM) was maintained in lysis and immunoprecipitation 
buffers of sphingosine-treated samples. 
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id micelles, it has been proposed that an 

lectrostatic interaction may regulate ErbB-1 kinase activation [88].  A similar 

rane could potentially result 

 

osphoThr654 

were deleted in the ICD: Δ645-662 and Δ645-676 (Figure II-8A). The first shorter 

deletion removes the polybasic region and the larger deletion removes most of 

residues 645-660 and phospholip

e

interaction of the ErbB-1 ICD with the plasma memb

in membrane-localized aggregation, which might promote constitutive kinase 

activation of the ICD.  However, no decrease in wild-type ICD tyrosine 

phosphorylation occurred after treatment with 2 μM sphingosine (Figure II-7), 

which prevents the electrostatic interaction of JM peptides with phospholipids [65,

88]. 

 

JM Deletions Result in a Significant Loss of Kinase Activity 

 The preceding data suggested that phosphorylation of Thr654 alters 

kinase activity by either of two mechanisms:  (1) phosphorylation at Thr654 

promotes an autoinhibitory interaction of the JM region with the kinase domain, 

or (2) the JM region positively modulates the kinase domain and ph

prevents the interaction.  To test these possibilities, segments of the JM region 

the JM region.  When expressed in cells, the data revealed that tyrosine kinase 

activity is decreased by approximately 95% in vivo and 65% in vitro for the Δ645-

662 mutant and about 95% for the Δ645-676 mutant in vivo and in vitro (Figure II-

8B, C).  This result demonstrates that the presence of the JM region is critical for 

maximal kinase activation.   



 The difference in the level of kinase activity detected for the two JM 

mutants also suggests that elements in both the N-terminal half of the JM, 

including the basic cluster and Thr654, and the C-terminal JM sequence 

participate in regulation of kinase activity.  The studies of Zhang, et al., identify 

Figure II-8: Tyrosine phosphorylation of JM deletion mutants. 
(A) JM residues in ErbB-1.  Basic residues are shaded and Thr654 bolded as in Fig. II-6. 
Arrows denote the N-terminal residue of the two JM deletions in the ICD, Δ645-662 and 
Δ645-676.  Asterisk (*) indicates the N-terminal residue of the TKD construct employed by 

(B)
were transiently transfected into COS-7 cells.  Cell lysates were precipitated with anti-

assay comparing phosphorylation of ΔJM mutants to wild-type and K721R ICDs.  Afte

Zhang, et al. [3], and Stamos, et al. [4], for crystallography. Indicated ICD constructs 

FlagM2 and blotted with anti-phosphotyrosine (PY99) or anti-FlagM2. (C) In vitro kinase 
r 

expression in COS-7 cells, lysis, and precipitation with anti-FlagM2, the immunoprecipitates 
were incubated with [γ- P]-ATP (upper panel), as described in Materials and Methods. 
Lysates were probed with anti-FlagM2 to confirm equal expression (lower panel). 

32
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Gly672-Ala677 as a likely element in the C-terminal JM region that participates in 

kinase activation, particularly Pro675 [3]. 

 

Contribution of the JM Region to Allosteric Kinase Activation 

 To address whether the JM region contributes to allosteric kinase 

 

 

l 

 

reported with the isolated TKD monomers having the same mutations [3].  One 

explanation for the decreased phosphorylation detected when I682Q and V924R 

activation, point mutations were engineered in the ICD at residues required for  

contacts at the asymmetric kinase dimer interface, I682Q in the N-lobe or V924R 

in the C-lobe of separate monomers [3].  The C-lobe V924R mutant can act only

as an acceptor monomer, and the N-lobe I682Q mutant can function only as a 

donor to allosterically activate the acceptor monomer [3].  An experimental 

advantage of utilizing these mutations is that neither the N- nor the C-lobe point

mutants homodimerize, thus any observed kinase activation is a result of 

asymmetrical dimerization of these mutants when expressed as individua

monomers.   

 Compared to the wild-type ICD, the I682Q and the V924R ICD mutants 

were inactive when expressed alone (Figure II-9, lanes 3, 4).  When co-

expressed with a kinase-deficient K721R donor ICD, the V924R C-lobe acceptor 

mutant ICD was active (Figure II-9, lane 6).  Co-expression of a C-lobe V924R 

acceptor ICD with an N-lobe I682Q donor ICD also resulted in kinase activation 

(Figure II-9, lane 5).  This level of activation is approximately 20% of that

obtained with wild-type ICD monomers (lane 1), which is comparable to that 

 81



ICDs were co-expressed is that these mutants can only act as donors or 

acceptors, respectively, whereas both the N- and C-lobes of wild-type ICDs are 

ble to participate in a dimer.  These results confirm that the critical contacts 

n to be required for 

a

between the N- and C-lobes of monomers previously show

allosteric kinase activation in the isolated TKD and the intact receptor [3] are 

preserved in the context of the ICD.   

 The results in Figure II-8 suggest, as one possibility, that the JM region 

may contribute to contacts at the asymmetric dimer interface and thereby 

influence kinase activation.  Using these mutants, the capacity of the ΔJM 

mutants to act as donors or acceptors in allosteric kinase activation was 

assessed.  To test ability of ΔJM mutants to act as acceptors, cells were co-

transfected with either a ΔJM mutant also containing a C-lobe V924R mutation, 

Figure II-9: Allosteric activation of ErbB-1 ICDs.  Left panel: Cartoon of ICD mutants and 

K721R mutation; green text, acceptor monomer; blue text, donor monomer.  Right panel: 

expressed (lanes 5, 6).  Lysates were precipitated with anti-FlagM2 and blotted with either 
anti-PY99 or anti-FlagM2. 

predicted associations in co-expression experiments.  Corresponding data lanes (right panel) 
are listed in brackets.  Circles, V924R C-lobe mutation; stars, I682Q N-lobe mutation; X, 

Acceptor (V924R) and donor (I682Q) monomers were expressed alone (lanes 3, 4) or co-
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to act as an acceptor monomer, and an N-lobe I682Q single mutant donor 

monomer (Figure II-9B, lanes 3 and 8).  As a positive control, a V924R acceptor 

monomer (with an intact JM region) was co-expressed with an I682Q donor 

(Figure II-9B, lane 1).  The data in Figure II-9B show that, compared to the 

positive control (lane 1), deletion of residues 645-662 decreases acceptor 

function by approximately 80% (lane 3), while deletion of residues 645-676 

of a V924R acceptor mutant with either ΔJM donor mutant resulted in tyrosine 

phosphorylation of the acceptor V924R monomer (Figure II-10, lanes 5, 10), 

completely abrogates the capacity of that ICD to act as an acceptor monomer 

(lane 8).   

 Subsequently, the capacity of the ΔJM mutants to function as donor 

monomers was examined using a C-lobe V924R mutant as an acceptor 

monomer.  To make certain the ΔJM mutants possess donor functions only, an 

N-lobe I682Q mutation was engineered into each ΔJM construct.   Co-expression 

though at levels lower than the positive control, i.e., an I682Q donor with an 

intact JM region (lane 1).  The Δ645-662 mutant demonstrated 40% of the 

positive control donor activity (lane 5), while the Δ645-676 mutant had 20% of the 

positive control activity (lane 10).  This result indicates that the ΔJM mutants can 

still act as donors, but at a lower efficiency.   

 It is possible that the JM region facilitates but is not necessary for 

allosteric kinase activation.  However, the kinase activity of the Δ645-676 mutant 

ICD was not rescued when a kinase-deficient K721R donor was over-expressed 

10-fold relative to the Δ645-676 mutant ICD (data not shown), indicating that an  
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Figure II-10: Ability of JM mutants to act as acceptor or donor monomers. Upper panel: 
Cartoon of potential interactions of donor (I682Q) and acceptor (V924R) monomers with
ΔJM mutants containing additional N-lobe (I682Q) or C- lobe (V924R) mutations. Lower
panel:  ΔJM mutants having N- or C-lobe mutations were co-expressed with acceptor 
(V924R) or donor (I682Q) monomers with intact JM regions.  Tyrosine phosphorylation was 
assessed as in Figure II-9.  

intact JM region must be present in an acceptor monomer and cannot be 

overcome by a concentration-dependent increase in the interaction of acceptor 

and donor monomers.   These data lead to the conclusion that the 

juxtamembrane region is essential for formation of an activated kinase acceptor.    
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Capacity of JM Mutants to Associate with a Wild-Type ICD 

 Since the ΔJM mutants are inactive, particularly as acceptors, in tyrosine 

kinase activation, the following experiments were performed to assess their

capacity to interact with wild-type ICDs.  This interaction of ΔJM and wild-type 

ICDs follows the strategy employed in Figures II-9 and II-10.  Cells were co-

transfected with Myc tagged wild-type and Flag tagged wild-type or Flag tagged 

ΔJM ICD constructs.  All tags were placed at the carboxyterminus of each 

construct.  Subsequently, lysates were precipitated with anti-Myc and blotted with 

anti-Flag.  As a control for non-specific tag recognition, cells were singly

transfected with the Myc or Flag tagged constructs (Figure II-11A, lanes 1-4).   A 

low level of cross-reaction of the Flag epitope with the Myc antibody was 

 

 

tagged wild-type and ΔJM mutant ICDs were transfected individually or co-transfected with 

Protein G-Sepharose beads, then precipitated with anti-Myc and blotted with anti-FlagM2.   

and precleared lysates were precipitated with anti-Myc followed by blotting with anti-FlagM2.  
Expression was assessed as in (A).   

Figure II-11.  Failure of ΔJM and T654D ICD mutants to interact with wild-type. (A)  Flag-

wild-type-Myc ICD as described in Materials and Methods.  Lysates were precleared on 

The blot was stripped and re-probed with anti-EGFR.  Lysates were also blotted with anti-
EGFR.  (B)  T654D ICD-Flag was transfected with or without wild-type ICD-Myc as in (A), 
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detected (lanes 2-4), and this background was subtracted from subsequent co-

Myc-tagged wild-type ICD, this Flag-tagged phosphomimetic mutant displayed a 

significantly decreased interaction with the wild-type ICD (Figure II-11B, lanes 4, 

 

 

 

precipitation assays (lanes 5-7).  The results in Figure II-11A show that 

interaction of Δ645-662-Flag ICD with wild-type-Myc ICD was reduced by 50% 

compared to wild-type-Flag ICD (lanes 5, 6), while the data in lane 7 show that 

the Δ645-676-Flag ICD interaction with wild-type-Myc ICD was decreased by 

90%.  The same results were achieved when transfected lysates were 

precipitated with anti-Flag and blotted with anti-Myc (data not shown).   These 

data demonstrate that deletion of the JM region attenuates the association of the 

N-lobe of an acceptor with the C-lobe of a donor. 

   The data in Figure II-6C show that the T654D mutation in the JM region 

abrogates kinase activation of the ICD.  In a co-precipitation experiment with 

5), indicating that phosphorylation at Thr654 inhibits monomer:monomer 

associations.   

Role of JM Region in Allosteric Activation of Full-Length ErbB-1 

 The above data collectively demonstrate that the JM region is vital for 

allosteric kinase activation in the ICD.  This experimental model system allowed

for large deletions within the JM region without concern for cell-surface 

expression.  However, findings with fragments of a protein do not always reflect a 

general mechanism that is utilized by the intact receptor in a ligand-mediated

fashion.  Therefore, the experiments in Figures II-9 and II-10 were repeated 
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using full-length ErbB-1 with an N-terminal Flag epitope [5].  As a control, donor 

(I682Q) and acceptor (V924R) mutants in the context of intact ErbB-1 were 

expressed in NIH 3T3 cells as described [3], and EGF treatment resulted in 

tyrosine phosphorylation of these mutants only when co-expressed  (Figure II-

13A).  These data indicate that co-expression of donor and acceptor mutants 

does not alter EGF-dependent activation.  Previous experiments with the ICD 

resulted in a lower level of phosphorylation of the co-expressed donor (I682Q) 

and acceptor (V924R) ICD mutants compared to wild-type ICD (Figure II-9), 

similar to the published report using the isolated TKD [3].  Zhang, et al., did not 

 the JM region that are part of the stop transfer sequence were 

cluded, so the two deletion mutants are Δ648-662 and Δ648-676 ErbB-1.  All 

expression by 

co-express the donor (I682Q) and acceptor (V924R) full-length receptor mutants, 

so the decrease in phosphorylation in the ICD (Figure II-9) and TKD [3] mutants 

compared to wild-type may be compensated for in full-length ErbB-1 by other 

regions of the molecule. 

 To aid in membrane insertion and stability, the first three charged residues 

(R645-R647) of

in

ΔJM deletion constructs were assessed for cell-surface 

fluorescence microscopy using anti-Flag (Figure II-12) and Texas Red-

conjugated EGF and cell sorting with anti-Flag (data not shown).  Detection of 

the Flag epitope confirms cell-surface expression whereas Texas Red-EGF 

binding verifies that the ΔJM deletions are capable of binding EGF. 
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 The ability of the ΔJM ErbB-1 mutants to act as donors was assessed by 

co-expression of ΔJM,I682Q double mutants either alone (Figure II-13B, lanes 5-

6 and 9-10) or with acceptors containing an intact JM region (lanes 7-8, 11-12).   

Consistent with the data obtained using ICD fragments, the Δ648-662,I682Q 

ErbB-1 donor mutant retains activity when co-expressed with a V924R ErbB-1 

acceptor mutant, and the level of EGF-stimulated tyrosine phosphorylation was 

similar to phosphorylation of the positive control (Figure II-13B, lanes 4 and 8).   

cells, then stained using anti-Flag with an Alexa-488-conjugated 

Figure II-12.  Comparison of cell-surface expression of ErbB-1 
mutants.  The indicated constructs were transfected into NIH 3T3 

secondary antibody.  Fixed samples were analyzed for cell-surface 
ErbB-1 expression by confocal microscopy using a 40X objective. 
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Figure II-13: Role of JM region in allosteric activation of EGF-treated ErbB-1.  (A) NIH 3T3 

starved for 60 min. in serum-free media, then treated with EGF (50 ng/ml) for 5 min. 

with an intact JM region. 

cells were transiently transfected with the indicated constructs.  Forty hrs. later, cells were 

Lysates were immediately blotted with either ErbB-1 (upper panels) or phosphosite-specific 
ErbB-1 PY1173 (lower panels).  Panels (B) and (C) represent experiments assessing the 
ability of JM deletions to act either as donors (B) or acceptors (C).  It should be noted that 
the larger deletion, Δ648-676, had dramatically reduced expression compared to mutants 
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This result is especially important because it verifies cell-surface expression, 

ligand binding, and activation of the Δ648-662,I682Q ErbB-1 mutant equivalent to 

the control.  In contrast, the larger deletion displayed marked reduction in 

phosphorylation (lanes 9, 10).  Although Δ648-676 ErbB-1 acceptor and donor 

mutants were detected on the cell surface by anti-Flag staining (Figure II-12), 

analysis by flow cytometry revealed that cell surface expression of Δ648-676 

ErbB-1 is significantly less than that of wild-type ErbB-1 (data not shown).  This 

decrease in cell-surface expression is by no means unexpected due to the large 

region deleted.  Because the JM linker between the TM domain and the TKD has 

been removed, the TKD is now directly adjacent to the plasma membrane.  This 

may present a steric hindrance to efficient membrane insertion or sequences in 

the deleted region may be required for processing to the cell surface.  Since the 

shorter deletion does reach the cell surface, this would imply that the region 

defined by residues 663-676 may be required for trafficking the intact receptor to 

the cell surface.  Already identified in this region are basolateral sorting signals 

[67]. 

 In agreement with the hypothesis that the JM region facilitates interactions 

required for allosteric kinase activation, deletion of the JM region in the intact 

receptor abrogated acceptor functions for both ΔJM constructs (Figure II-13C, 

lanes 8, 12).  The loss in tyrosine phosphorylation for the ΔJM ErbB-1 mutants is 

greater than 80% that of the positive control.  This result confirms the 

conclusions drawn from experiments using the ICD by showing that deletion of 
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the JM region prevents ligand-stimulated activation in the transmembrane 

receptor.   

 

 

 

 

 

 

 

The results obtained in this experiment were not as striking as deletion of the JM 

 It was hypothesized that PKC phosphorylation inhibits the interactions

required for allosteric kinase activation based on three pieces of information: 1) 

PKC phosphorylation of T654 results in decreased kinase activation [69]; 2) the 

phosphomimetic T654D mutant ICD exhibited a 50% reduction in tyrosine 

phosphorylation compared to wild-type (Figure II-6B); and 3) the phosphomimetic

mutant displayed a 50% decrease in interaction with a wild-type ICD (Figure II-

11B).  Thus, the ability of T654A and T654D ErbB-1 mutants to act as donors

and acceptors was assessed in the intact receptor.   

The data in Figure II-14 demonstrate that the T654A ErbB-1 mutant is a 

better donor than the positive control as measured by tyrosine phosphorylation in 

response to EGF stimulation (Figure II-14A, lanes 4, 8).  This finding is consistent 

with the T654A ICD mutant that displays a significant increase (about 2.7-fold) in 

tyrosine phosphorylation compared to the wild-type phosphorylation (Figure II-6). 

However, mechanistically it is not clear how preventing PKC phosphorylation of

the donor N-lobe affects activity of the acceptor monomer in the Kuriyan model of 

allosteric kinase activation.  No difference in tyrosine phosphorylation of the 

I682Q donor mutant and the T654D,I682Q donor mutant was detected (Figure II-

14A, lanes 4, 12), indicating that, in contrast to the T654A mutant, the 

phosphomimetic mutation did not affect donor activity. 

 Next tested were the capabilities of T654 mutants to act as acceptors. 



region.  As shown in Figure II-14B, the T654A/V924R ErbB-1 acceptor mutant 

was a slightly better acceptor than the positive control (lanes 4, 8), and the 

acceptor function decreased slightly with the T654D/V924R acceptor mutant 

(lane 12).  These data are not sufficient to conclude that phosphorylation of T654 

disrupts the asymmetric dimer in the intact receptor stimulated with EGF.    

Figure II-14.  Comparison of T654A and T654D ErbB-1 mutants as donors (A) 
and acceptors (B).  The indicated constructs were co-expressed in NIH 3T3 
cells and tyrosine phosphorylation assessed as in Figure II-13.   
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Effect of ErbB-1 Tyrosine Kinase Inhibitor on T654A ICD Activity 

 Several reports in the literature describe how mutations in the ErbB-1 TKD 

-dependent decrease in 

experiment supports the idea that the JM region has an influence on the ATP 

COS-7 cells were transiently transfected with either wild-type or T654A ICD and treated 24 h 

affect binding of ATP and the ATP analog TKIs such as gefitinib (Iressa) and 

erlotinib (Tarceva, reviewed in ref. [23]).  In an effort to understand why the 

T654A ErbB-1 ICD had a nearly 3-fold increase in tyrosine phosphorylation as 

compared to wild-type ICD, COS-7 cells expressing T654A ICD were treated with 

increasing concentrations of erlotinib for 60 min. and tyrosine phosphorylation 

assessed.  The data in Figure II-15 reveal a dose

Figure II-15:  T654A ICD displays increased sensitivity to erlotinib (Tarceva).   

later with the indicated concentrations of erlotinib for 60 min.  Lysates were precipitated with 
anti-ErbB-1 and blotted with either anti-PY99 (upper panel) or anti-ErbB-1 (lower panel).  Right 
panel: quantitation of results.  Numbers in bars indicated percent decrease in tyrosine 
phosphorylation compared to untreated controls (0). 

tyrosine phosphorylation for T654A ICD, with a significant decrease in tyrosine 

phosphorylation at lower concentrations of inhibitor than wild-type.  This 

 93



binding site and thereby kinase activity.  Further experiments are necessary to 

test if the T654A mutant has a higher affinity for ATP like the TKD mutations, but 

it is intriguing that mutation at a site distal to the ATP binding site affects 

sensitivity to an ATP analog. 
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CHAPTER III 

 

CONCLUSIONS 

 

 Several RTKs, excluding the ErbB receptors, contain one or more tyrosine 

for kinase inactivation exists for the related receptors FLT3 [127], c-fms [128] and 

most likely PDGF receptor-β [121], as well as the ephrin receptors EphB2 [129] 

and EphA4 [130].   

 In contrast, PKC phosphorylation of the ErbB-1 and ErbB-2 JM region 

promotes kinase inactivation [69, 89, 90].  The insulin receptor contains three JM 

residues in the JM region that must be phosphorylated in trans for complete 

kinase activation [121].  Gain-of-function, oncogenic mutations in the JM region 

  

 

domain is in a constitutively open and active conformation.   A similar mechanism 

of the RTK Kit are frequently found in patients with gastrointestinal stromal 

tumors (GIST) [122], hinting at a consistent autoinhibitory role for the JM region.

In fact, 67% of GIST patients harbor mutations in the Kit JM region [123], 

compared to ErbB-1 in which ICD mutations have only been detected in the TKD 

[23].  The crystal structure of the intracellular domain of Kit revealed that the JM

region interacts in cis with the A-loop of the TKD to lock the protein in an inactive 

conformation [124].  Autophosphorylation of a critical tyrosine residue in the Kit 

JM region destabilizes the closed conformation, allowing for activation of kinase 

activity [124], and mutations in the JM region disrupt the autoinhibitory interaction 

of the JM region with its TKD [125, 126].  Thus, in Kit JM mutants, the kinase 
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tyrosine residues, but none of these contribute to regulation of kinase activity 

[121].  Hence, the role of the JM region in kinase activity is not conserved 

amongst all RTKs, and the data presented in the previous chapter indicate the 

JM region of ErbB-1 has a distinct function from that of Kit, i.e., that the ErbB-1 

M region promotes rather than inhibits kinase activity and phosphorylation of 

T654 destabilizes this relationship.  Unclear, however, is how phosphorylation of 

T654 within the JM region attenuates activation.  It was initially proposed that the 

JM region serves as autoinhibitory region similar to that of Kit, and T654 

phosphorylation stabilizes the auto-inhibited state.  By that logic, deletion of the 

JM region should result in an increase in tyrosine phosphorylation similar to the 

results with the T654A mutant ICD.   In direct contrast to that theory, the data in 

the previous chapter clearly demonstrate that the JM region is not responsible for 

autoinhibition.   

 In the experiments evaluating the capacity of T654D ErbB-1 to act as an 

acceptor, only a slight decrease in tyrosine phosphorylation of the 

phosphomimetic mutant was detected compared to the positive control (Figure II-

14).  This modest decrease in activity does not correspond to the 50% reduction 

in tyrosine phosphorylation of the T654D ICD mutant (Figure II-6).  In the full-

length system, EGF-stimulated tyrosine phosphorylation of the T654D mutant 

with no acceptor or donor mutations was not tested.  In a parallel experiment, I 

attempted to validate T654 phosphorylation of wild-type ICD after TPA treatment 

by immunoblotting with a PKC phosphosite-specific antibody and by mass 

spectrometery, but both were unsuccessful.  The antibody recognized TPA-

J
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treated T654A ICD in addition to 

is questionable.  Due to the large stretch of lysines and arginines flanking T654, 

traditional trypsin digest was igestion with Glu-C (cleaves 

eptide bond C-terminal to Glu) did not yield a fragment containing T654. In data 

ngth receptor in a ligand-dependent manner (Figure II-13).   

wild-type ICD, so the specificity of this reagent 

not an option.  D

p

not presented, a T654D ICD acceptor (V924R) mutant was co-expressed with a 

ΔJM donor (I682Q) mutant to test whether T654 phosphorylation affected 

allosteric kinase activation.  The ΔJM mutant was used as a donor because its 

lower molecular weight allows for comparing phosphorylation of each ICD 

expressed.  Again, only a slight decrease in tyrosine phosphorylation of was 

detected when T654D was expressed as an acceptor compared to the positive 

control.  Collectively, these data suggest that T654 phosphorylation may not 

completely disrupt acceptor N-lobe interactions with the donor C-lobe.    

 The critical finding that initiated this study was the loss of kinase activity 

with the ΔJM mutants (Figure II-8).  These data strongly suggested that the JM 

region in some way facilitates intracellular kinase activity.  By first expressing the 

entire ICD of ErbB-1 in cells, the contribution of the JM region in the formation of 

an active kinase was assessed. The data presented in the preceding chapter 

indicate that the JM region is essential for maximal allosteric activation of ICD 

kinase activity (Figure II-10).  Extending these experiments to incorporate the 

intact receptor revealed that the requirement for the JM region is preserved in the 

context of the full-le

 While other studies have demonstrated that deletion of portions the JM 

region (residues 645-657) abrogates kinase activity in the intact receptor [108, 
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131], this is the first report to elucidate the mechanism by which the JM region 

regulates kinase activation. The study of Zhang et al., which includes residues 

672-682 of the JM region, showed that Pro675 within the JM region of an 

acceptor TKD interacts with Val956 in the C-lobe of a donor TKD, and a P675G 

TKD mutant has diminished activity in vitro [3].  However, this proline residue is 

contained in our Δ645-662 ICD construct.  Therefore, this study defines residues 

distal to Pro675 in allosteric kinase activation, implicating new residues within the 

JM region. 

 No crystallographic studies include the complete juxtamembrane or 

carboxyterminal regions [3, 4], so the contribution of these regions to the 

allosteric mechanism of activation remains poorly defined.  While the study by 

Kuriyan’s group made a significant advance in understanding how kinase 

activation of ErbB receptors is initiated, several questions remain.  First, what 

other structural changes must occur for complete activation?  Trimers were ruled 

out as a mode of oligomerization [3], so how does the donor monomer become 

an active kinase?  Is the donor monomer able to also act as an acceptor?  What 

is the structure of an active dimer?  How is the kinase inactivated?  The data 

presented here indicate that the JM region facilitates formation of an active 

kinase, but does the carboxyterminal region also contribute to the mechanism of 

activation?  Lemmon has used X-ray scattering in solution to measure structural 

changes of ErbB-1 ectodomain (personal communication), and this technique 

can differentiate between intra- and inter-molecular interactions.  This approach 

would be valuable to ask where the JM region of the acceptor monomer connects 

 98



the donor monomer, as well as the location of the carboxyterminal region in 

context of the asymmetrical dimer.   

 Previous studies using peptides representing the polybasic JM region of 

ErbB-1 identified an acidic region in the C-lobe of the TKD that interacts with the 

polybasic JM peptide [106].  Deletion of the polybasic region results in an inactive 

receptor [131], consistent with our findings.  Therefore, this may be the region in 

the donor monomer makes contacts with the JM region from an acceptor 

monomer to facilitate allosteric kinase activation. 

 A related issue is to determine how the mutations in the ErbB-1 TKD in 

lung cancer alter the structure of the ErbB-1 TKD to increase affinity for TKIs.  

Yun, et al., recently reported crystal structures of wild-type and L858R ErbB-1 

TKD  bound to gefitinib (ErbB-1 TKI) and AEE788 (dual ErbB-1/vascular 

r 

endothelial growth factor receptor TKI) [36].  Not surprisingly, this group found 

that the L858R mutant, which lies in the A-loop, bound gefitinib with a 20-fold 

higher affinity and displayed a 50-fold increase in activity in vitro compared to 

wild-type [36].  As expected, the L858R mutant TKD was crystallized in an active 

conformation [36].   

 My data indicate that a T654D/L834R (alternative numbering) double 

mutant in the context of the ErbB-1 ICD has elevated tyrosine phosphorylation 

similar to that of L834R alone (data not shown). If the L858R mutant is in a 

constitutively active conformation, this conformation may circumvent the need fo

intracellular dimerization for kinase activation, although one study detected 

cross-linked dimers of full-length L858R ErbB-1 in a lung cancer cell line in the 
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absence of EGF stimulation [132].  A relevant experiment would be to investigate 

whether oncogenic mutations in the TKD, such as L858R and Δ746-750, 

influence allosteric kinase activation using the experimental strategy in this and 

Kuriyan’s study [3].  In other words, does introduction of an N-lobe (donor) or a 

C-lobe (acceptor) mutation in the context of the L858R mutation abrogate basal 

or EGF-stimulated activity?  If ICD dimerization is not required for transition to the 

active conformation, then the dimer interface mutants will not affect activity of the 

oncogenic mutants. 

 The study comparing phosphorylation of wild-type and the T654A mutant 

ICDs after treatment with the tyrosine kinase inhibitor (TKI) erlotinib yielded 

insight into the possibility that the JM region interacts with the TKD of the ICD 

because mutation at a site distal to the kinase active site affected not only basal 

kinase activity, but also sensitivity to the TKI.  In an attempt to understand why 

TKD mutations L858R and Δ746-750 are more sensitive to TKIs, kinetic analysis 

revealed that mutant ICDs have higher affinity for ATP and kinase activity 

towards an exogenous substrate [116].  While no human mutations in the JM 

region of ErbB-1 have been reported, analysis of this activating T654A mutant 

will potentially advance the knowledge of the fold of the ICD and how one region 

interacts with another either in cis or in trans on an adjacent monomer to facilitate 

activation.  It is still unclear mechanistically why this mutation is more active than 

the wild-type. 

 By far the most important finding of this project is that the JM region is 

able to modulate activity of the kinase.  The unusual mechanism of allosterically 
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regulating kinase activity presents an interesting alternative for traditional TKIs.  

The current TKIs are most effective in patients harboring activating mutations in 

sic region.  One downside to 

cidating how the JM region participates in activation, and 

ErbB-1 TKD, but that population of patients only represents a small subset of all 

tumors that overexpress ErbB-1, so other approaches for inhibiting activity of 

wild-type receptors are necessary. Inhibitory molecules that target to the JM 

region of ErbB-1 and not the active site may be therapeutically advantageous 

since the JM region of other RTKs, such as Kit, have a divergent function in 

kinase activation and do not contain the polyba

targeting the JM region is that so many other pieces of information are contained 

within this relatively small region, and the importance of these other signaling 

entities are not fully undersood. 

 With over 30 years of research on ErbB-1, it is fascinating that the basic 

mechanisms of activation are still being uncovered.  The structural study by 

Kuriyan’s group last year made great strides in understanding how kinase 

activation is initiated intracellularly in addition to disproving the generally-

accepted dogma of symmetrical TKD dimerization.  This study fills in another gap 

of knowledge by elu

serves to open “old” doors towards understanding how each of the regions in the 

intracellular domain cooperate to form an active kinase. 
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