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CHAPTER I

INTRODUCTION

This thesis presents a systemic study of the structural semantics of model-based design. Structural semantics

have a long history in computer science, and were studied early on under the moniker language syntax.

This early work gave us regular and context-free languages, as well as tools for generating parsers from

simple descriptions of language grammars. These efforts were a key step in the formal specification of

programming languages [1]. In practice, these advances made it possible to design programming languages

with sophisticated syntax, without spending significant design cycles on parser implementation. However,

the applications of syntax in traditional programming language design seems to have stopped here. Most

modern programming languages are implemented so that parsing is the first tier in a multi-tiered analysis

process. The second tier is typically a type check, which is based on the formal descriptions of type systems.

Unlike syntax, research on type systems continues to evolve in many different directions. This seems to

makes sense in programming languages, because language syntax is primarily a user-interface issue. Parsing

simply renders the program in a form suitable for further analysis.

Jumping ahead to the mid-1980’s, model-based design began to evolve as a means to specify and imple-

ment embedded, distributed, and heterogeneous software systems. Model-based design collects together a

number of principles addressing the design of such systems. We shall discuss model-based design in much

more detail in the next chapter. At this juncture let us briefly mention that domain-specific modeling lan-

guages (DSMLs) play an important role in model-based design. DSMLs are programming languages tailored

to some problem niche. At first glance this distinction may appear to make little difference. A program-

ming language has the same basic parts regardless of its intended scope. However, deeper inspection shows

that there are essential differences that must be taken into account. This thesis explores the impact of

domain-specificity on the structural semantics of DSMLs.

There are two significant differences between the structural semantics of DSMLs in model-based design,

and the language syntax of traditional general-purpose languages (GPL). First, DSML structural semantics

encode essential properties of the problem domain, while GPL syntax does not. For example, imagine that

one is to design an embedded system, and does so using the C language to create a program P . It is quite

clear that the syntactical correctness of the program P reveals little information about the correctness of the

implementation. Contrarily, if one uses a dataflow-like DSML to create a program P ′, then the syntactical

correctness of P ′ might formally witness freedom from deadlock. Thus, aligning the programming language

with the problem domain yields languages where syntactic correctness is some reflection of behavioral cor-

rectness. In this sense, the structural semantics encode high-level invariants relevant to all possible solutions

in the problem domain.

1



If the intent of language syntax is purely to provide a user-interface, then strong restrictions on expres-

siveness of syntax are essential. For example, regular and context-free languages impose strong restrictions

on syntax, but result in programs that are easily parsed for later stages of program analysis. However, in

model-based design syntax is intended to prune away bad solutions. Often times domain-specific invariants

can not be expressed with simple regular or context-free languages. Thus, expressiveness is the second dif-

ferentiator of DSML and GPL structural semantics. The structural semantics of DSMLs must be sufficiently

expressive to capture meaningful invariants of the problem domain.

These two observations show that the structural semantics of DSMLs represents an important open

problem. In this thesis we provide an encompassing formalization of structural semantics that also addresses

metamodeling and model transformations, which are an integral part of the model-based approach. Fortu-

nately for us, model-based design provides many opportunities for utilizing structural semantics. Thus, there

are a number of interesting applications: (1) Proving the correctness of model transformations presupposes

a formal definition of model structure. Our results provide an important step toward this goal. (2) Satis-

faction of structural invariants may ensure properties like schedulability or deadlock-freedom, in which case

well-formedness amounts to a proof of these properties. From this perspective, it is reasonable to develop

algorithms that automatically construct well-formed models. An engineer might begin with a malformed

description of a system, and then automatically convert this malformed description to a well-formed model.

This conversion procedure can be viewed as repairing the errors in the model. (3) Adaptive systems and

dynamic architectures are systems that evolve over many possible models. Using structural semantics, it is

possible to ensure that a such systems always evolve through well-formed models.

This thesis proceeds as follows: The second chapter reviews model-based design and the roles that

DSMLs play in this process. The third chapter develops the formal foundations for the structural semantics

of DSMLs. The fourth chapter applies this formalism for automated theorem proving, and the fifth chapter

applies the formalism for the use in dynamic architectures.
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CHAPTER II

BACKGROUND

Introduction

Today’s software systems pose unique challenges to traditional software engineering methodologies. First,

the demands placed on software systems continue to evolve in both the functional and non-functional realms,

and along many interacting axes: architectural, temporal, and, physical. Second, the shear scale of software

continues to grow, both on a per node basis, and in the number of distributed nodes that compose a system.

Third, non-engineering disciplines, such as the legal field, are impacting design choices in poorly understood

ways. For example, the recently enacted HIPAA law will impact how medical records can be digitally stored

and accessed[2]. On one hand, this trifecta validates exactly what software engineers have always argued:

Software must be designed methodically; off-the-cuff implementations will almost surely fail. On the other

hand, engineering approaches that focus on sequential systems isolated in a comfortable computational

environment are not sufficient for methodically designing today’s large-scale and heterogeneous software

systems.

The term model-based design encompasses a spectrum of engineering approaches, all of which address the

complexity of modern system design. Most model-based approaches share a central dogma: The application

context must be defined before architecting a solution. By application context we mean a description of the

world in which the solution will operate. Typically the application context includes the temporal properties

of computation, the concurrency and synchronization properties of communication, and the conditions under

which deadlock or other malevolent behaviors arise. These attributes are specific to the context, and affect

any solution placed in the application context. Particular model-based tools metaphorize the application

context differently. The application context may be viewed as a platform, actor class, model of computation,

or domain-specific modeling language. The authors of [3] argue that all of these perspectives are essentially

the same. Nonetheless, it is useful to think in terms of one (or more) of these metaphors. In this chapter

we review model-based design from the perspective that an application context can be represented with a

domain-specific modeling language (DSML).

Embedded and heterogeneous systems were the genesis for model-based design, but the approach has

wider applicability to software engineering as a whole. A secondary purpose of this review is to present

model-based design to the software engineer from the perspective of domain-specific modeling languages.

We chose this perspective because the field of programming languages is already familiar to many software

engineers. DSML design can be viewed as an extension of traditional language design. These extensions

permit the application context to be described as a sort of programming language; programs that adhere to
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the language correspond to systems that are well-behaved when immersed in the application context. The

engineer’s job is to select or construct a DSML that captures the essential characteristics of the application

context. In the next section we discuss the benefits of the language view in more detail. Section II.3 presents

the formal foundations of DSML semantics. Section II.4 describes how DSML programs can be executed

(simulated) on traditional machines. Section II.5 examines syntax and compiler construction. We conclude

in Section II.6. Through out this chapter we emphasize concrete code examples, providing the reader with

tangible snapshots of a number of model-based tools.

The Benefits of the Language View

In the simplest sense, a software system is a list of instructions and data executed on a machine. Of course,

a list of instructions is just a carefully crafted list of data that adheres to the syntax of the programming

language in which it was written. Thus, reiterating the observation that many have made before, a program

is just a list of data. A program alone is meaningless without a machine to execute it, but when coupled

with such a machine, a complex dynamical system emerges. Programming languages allows us to represent

complex dynamical systems, in a compact form, as syntactically correct data [4].

The traditional data/machine view is a useful one, but in its unaltered form, it does not work well for

distributed, embedded, and heterogeneous systems. Traditional programming languages are based on Turing

machines, and this has significant drawbacks: First, Turing-like machines do not match the actual dynamics

that distributed and embedded systems exhibit [5]. For example, the Turing machine must be extended to

model the communication delays or unreliable channels experienced by a distributed system. Additional

extensions are needed to capture the continuous dynamics experienced by embedded systems that sense

and manipulate a physical environment [6]. Second, Turing-like machines are so expressive that it may be

impossible to know if certain software requirements have been met. For example, the Halting Problem is

undecidable for Turing machines. Deadlock-freedom is closely related to the halting problem, and is often

undecidable. Thus, if a software system must be deadlock-free, then it may be unsafe to design such a system

with the expressiveness of a Turing machine, for which the problem is undecidable (or intractable).

Model-based design addresses these issues by supporting the data/machine paradigm for many distinct

types of machines. It also provides tools for defining new machine types and programming languages for those

machines. In the model-based community the machine types are called models of computation (MoCs), and

the programs are called models. Thus, a model is a structural (syntactic) artifact that defines a dynamical

system when coupled with a particular MoC. The programming languages for particular MoCs are called

domain-specific modeling languages (DSMLs) because they target only some machine types. This approach

offers software engineers “methods and syntaxes that are closer to their application domain” [7]. This

encourages the engineer to use the MoC that best reflects the reality of the environment in which design
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must take place.

From the perspective of traditional software engineering, many of the techniques for DSML construction

are similar to traditional programming language construction. DSMLs are created according to the following

recipe: First, a mathematical description of an abstract machine (MoC) is developed. Second, an implemen-

tation of the abstract machine on a traditional Von Neumann architecture is constructed. This is similar to

implementations of the Java Virtual Machine (JVM) on various platforms [8]. Third, a modeling language

with a well-defined syntax is defined using tools similar in spirit to BNF-based (Backus-Naur Form) parser

generators. Fourth, techniques, e.g. syntax-directed translation[9], and patterns, e.g. the visitor pattern

[10], are used to translate a model into a set of instructions for the abstract machine. Since the machine

has an implementation on existing architectures, the model can be simulated for the purpose of analysis or

converted into a final native-code implementation.

Despite these similarities, there are some deep theoretical differences between traditional language design

and today’s model-based DSML design approaches. First, as we have already discussed, DSMLs support

many different notions of computation. Second, DSMLs extend the expressiveness of syntax. Historically,

syntaxes have been chosen for their ease of use and ease of parsing. Resounding figures, like Djikstra and

Hoare, argued for both these properties, and history bares their mark [1]. The model-based community uses

syntaxes to filter out behaviorally incorrect models, or as a first-pass before verification [11]. The trade-off

is often made that syntaxes with high parsing complexity are tolerated in exchange for the ability to detect

badly designed systems early. We now describe these issues in more detail, beginning with extensions to

formal notations of computation.

Models of Computation

The traditional Turing machine, which contains a finite state controller with an infinite tape, must be

rethought for today’s engineering landscape. This is not because software systems run on drastically different

hardware architectures (there are some exceptions) where the Turing model is invalid; rather software systems

run in drastically new environments with drastically new requirements. For example, the Object Management

Group (OMG), which maintains standards for the widely-used Universal Modeling Language (UML), defines

a standard for specifying distributed data-centric applications. The following list enumerates some of the

two-dozen possible requirements that can be placed on distributed applications (See the data distribution

service (DDS) specification [12]):

1. Deadlines - A reader in the network requires a new piece of data within every T units of time.

2. Reliability - A reader demands how much of the known data must be delived to that reader; impacts

overall resource usage in the network.
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3. Lifespan - A writer places an expiration date on data; after this time, the data is no longer valid.

Software with these requirement must be understood as both temporal and concurrent. However, pro-

viding a suitable formal definition of time and concurrency is not easy. For the remainder of this section we

will explore various formal notions of time and concurrency as extensions to the traditional untimed Turing

machine.

Representing Time

The concept of time is an integral component of modern system requirements. In order to know if the require-

ments have been met, we must first get an idea of how a software system evolves across time. Traditionally,

the temporal properties of software are measured with profilers like ATOM [13]. However, profilers cannot

decide if timing requirements have been met without performing an unbounded number of analyses. A more

conservative approach is to estimate the worst-case execution time (WCET), but WCET is highly correlated

with implementation choices [14]. For example, the precise cache replacement policy affects WCET. We

could fix all of these implementation details at the beginning of the engineering process, but this is contra-

dictory to almost all modern engineering approaches wherein a design evolves from a high-level specification

to a low-level implementation.

Methodologically, software should be designed with certain timing characteristics, instead of just mea-

suring those characteristics a posteriori. However, as we have already discussed, traditional programming

languages do not support the programmatic specification of timing properties, because the underlying ma-

chine model does not include a notion of time. This has been addressed by changing the underlying machine

model to include a precise notion of time. Programs, which are just data interpreted by the machine, define

dynamical systems with precise temporal properties. One such widely-adopted extension is timed-automata,

but before we discuss this, let us recall some basic definitions. Consider that all physical machines have finite

state; ignoring time, we can describe a machine as a finite state automaton (FSA) AF = 〈Q,Q0, QF ,→,Π〉

over an input alphabet Σi and output alphabet Σo:

1. Q is a finite set of states

2. Q0 ⊆ Q is a set of initial states

3. QF ⊆ Q is a set of final states

4. →⊆ Q× Σi ×Q is a transition relation where s α→ s′ indicates that the system transitions to s′ when it

is in state s and observes α.

5. Π : Q→ Σo is a mapping from states to observations.

In this case, we can imagine that the input alphabet Σi contains the basic instructions and data recognized

by the machine. A program is fed, instruction-by-instruction and datum-by-datum, to the automaton AF .
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In response, the machine transitions through a sequence of states s0 → s1 → . . . → sn and we observe a

dynamical system that looks like the sequence Π(s0),Π(s1), . . . ,Π(sn).

The timed-automata formalism extends this model, allowing states to modulate clocks, which count the

passage of time [15]. Clocks may also be reset, so that they forget the elapsed amount of time. To be more

precise, a set of clocks is a set of variables X that can be evaluated by a clock valuation v, assigning a

positive real value to each clock. A transition may be taken if a certain input letter has been observed and

the current clock valuation satisfies the guard of the transition, where a guard is conjunction of terms of the

form (c < q), (c ≤ q), (q < c), and (q ≤ c) for c ∈ X, q ∈ Q+. The guard of a transition is satisfied for a

valuation v if each term (v(c) op q) is valid in R, where op ∈ {<,≤, >,≥}. Let Φ(X) be the set of all such

guard terms. A timed-automaton AT = 〈V, V 0, V F , X,E,Π〉 over an input alphabet Σi and output alphabet

Σo is given by:

1. V is a finite set of locations

2. V 0 ⊆ V is a set of initial locations

3. V F ⊆ V is a set of final locations

4. X is a finite set of clock variables

5. E ⊆ V × (Σi ∪ ε)×Φ(X)×P(X)× V is a set of switches 〈s, a, g, λ, s′〉 where the system may transition

from s to s′ if it observes the input letter a (or no input letter if a = ε) and the clock valuation v satisfies

g. If the transition occurs, then the clocks λ ⊆ X are reset to the value 0.

6. Π : V → Σo maps locations to observations.

Without delving too far into the theory of timed-automata, we can build an intuition for how this

extension allows us to develop software in new ways. Let us imagine that we have a machine that supports

several instructions:

1. add Ri, Rj , Rk causes Rk ← Ri +Rj

2. mul Ri, Rj , Rk causes Rk ← Ri ×Rj

3. load Ri, C causes Ri ← C, where C is a data value

Figure 1 shows a partial abstract machine, modeled as a timed-automaton, that reads the above assembly-

language and modifies its state accordingly. The machine initially begins in a state where all registers have

value 0 (Ri = 0). In the first round of fetching (FETCH1) the machine can accept the data LOAD, but this

will take between qmin
F and qmax

F units of time, as measured by the clock x1. The range [qmin
F , qmax

F ] captures

the time it takes to fetch an instruction; this can be viewed as temporal non-determinism. After the load

instruction is accepted, the machine expects a pair of data (Ri, Cj), indicating which register should receive

what data. Though a different state and transition must exist for every possible pair, the figure shows such

a state and transition for the pair (R1, C1). This transition is guarded by a range for the latch time qL.

After this time, the system goes to the state R1 = C1, Ri 6=1 = 0.
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ε
FETCH1

x1 := 0

LOAD,
qmin
F ≤ x1 ≤ qmax

F

x1 := 0
LOAD1

R1, C1

qmin
L ≤ x1 ≤ qmax

L

x1 := 0

R1 = C1

Ri = 0

0

Figure 1. An abstract machine with a precise notion of time.

Given an abstract model such as this, a program consists of sequence of timed events of the form (di, ti)

where di ∈ Σi and ti ∈ R+. A pair (di, ti) denotes that the ith instruction and/or data is fed to the machine

at time ti. If the machine accepts this sequence of timed events, then the untimed program can be executed

with the specified timing properties. The set of all programs the machine M can accept is the language

L(M). Typically the programmer does not specify timing information for every instruction. Instead, the

programmer may define a function f using an untimed sequence of instructions/data (f ≡ d0, d1, . . . , dn),

and then augment the basic CALL instruction with a requested timing range: CALL f [tmin, tmax]. This

augmentation means that the call to function f is valid if there exists an accepted sequence of timed events

that have the same instructions/data di, but execute within the time interval [tmin, tmax]. In another words,

CALL succeeds if ∃(di, ti)i∈I ∈ L(M), tn − t0 ∈ [tmin, tmax]. Since the abstract machine model is precise,

it is possible to algorithmically decided if such a timing property is satisfied. No performance evaluation is

necessary.

Though we have carried this example through with timed-automata, the same process can be repeated for

other abstract machines. For example, this approach was applied to time-triggered architectures by defining

a virtual machine, called the E Machine, that executes an extended assembly language [16]. The E machine

includes assembly instructions that start periodic tasks (schedule j, for a task j) and suspend tasks for

a specified amount of time (future n, aj , for n a unit of time, aj an address in j). The authors of this

work also developed a high-level language called Giotto that is compiled into timed assembly code for the E

machine. Once in this form, schedulability of the programs can be checked [17].
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Representing Concurrency

The previous examples extended computing to incorporate time, but not necessarily concurrency. Notice

that a timed-automaton can be completely sequential, while still associating timing information with the

sequential steps. Mathematically, we can explain how concurrently running automata interact by defining a

product operator that converts a set of concurrent automata into a single monolithic automaton. This single

automaton contains enough states and transitions to capture all the possible ways that each concurrent

automaton could evolve with respect to the others. This is also a problem: The product automaton generally

contains a combinatorial number of states and transitions, which makes it difficult to analyze and difficult

for engineers to understand.

Finding the ideal means to express concurrency has been a research goal for decades. One approach is

to build software from data transformers that consume and emit data through wire-like connections [18].

This approach is motivated by highly current hardware systems, which process data this way. For example,

Figure 2 shows a simple one-bit adder (without a carry-in). The sum of the two bits (i1, i2) is just the

exclusive-OR and the carry-out is the logical AND of the bits. We imagine that bits arrive on the inputs

i1
o

c

i2

Figure 2. Example of concurrency in hardware notations.

and then flow through the wires to the XOR and AND gates. These gates read the data, process it, and

then pass data onto the output wires. Notice that data can move simultaneously on different wires, so

that the XOR and AND gates can produce outputs simultaneously. (The fan-out on the wires duplicates

data.) Software systems using this approach are called dataflow graphs, dataflow process networks, or process

networks, depending on the exact details of the computation. The computational objects are often referred

to as processes, dataflow operators, actors, or nodes. The communication wires between nodes are similarly

termed connections, channels, links, or edges. The process network view is attractive for several reasons:

1. States in an automaton are, by default, mutually exclusive and hence sequential. Processes in a network,

by default, run in parallel and are thus concurrent.

2. The communication mechanism uses private point-to-point connections that cannot be modified by other

processes. This eliminates the strange interactions that occur with shared variables.

3. Only data passes between processes; not control. Each process encapsulates its own control loop.
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The behavioral properties of process networks depend heavily upon the properties of the processes and

channels. For example, if we decide that processes are connected by infinite FIFOs, block on reads, and do

not block on writes, then the system will always calculate the same results regardless of when individual

processes read and write data. The proof of this relies on some technical assumptions about processes, and

is due to G. Kahn [19]. Consequently, such dataflow systems are called Kahn Process Networks (KPNs).

Amazingly, KPNs are immune to most of the problems that plague concurrent programming.

Unfortunately, KPNs cannot be implemented because they require infinite memory. However, there are

many classes of process networks that can be implemented. Most of these are obtained by starting with the

KPN model, and then bounding the FIFOs while requiring all processes to consume and produce data in

some predictable fashion. For example, processes might always consume n units of data to produce m units

of data, regardless of the particular data. In general, once the communication mechanism is bounded, the

system becomes less immune to concurrency, unless the process behaviors are restricted in a corresponding

way.

It is possible to define the semantics of classes of process networks using (concurrent) automata theory,

but this is not the most intuitive formalism. It is more natural to imagine that processes map sequences of

data “tokens” to sequences of data “tokens”. We make this more precise following the notation presented

in [20]. Let Σ be an alphabet containing the possible data values that appear on connections. The set Σ∗

contains all finite sequences of data (Kleene closure of Σ), and the set ΣZ+ = {f |f : Z+ → Σ} contains all

infinite sequences of data. Let S = Σ∗ ∪ΣZ+ be the set of all finite and infinite sequences of data tokens. A

process P : S → S maps sequences to sequences.

The internal state of a process can be completely abstracted away by defining the mapping appropriately.

Consider the classic example of a system that remembers if it has seen an even or odd number of a particular

input a. An automaton would do this using at least two states. A process has access to the entire input

history, so it is not necessary to model this state. For example, take Σ = {a, b} and Peo such that the

ith element in the sequence Peo(S) is a if there are an even number of a tokens in the input subsequence

[s0, s1, . . . , si]. Otherwise, the ith element is b. We must also consider the empty sequence ⊥ that contains

no data. Define Peo(⊥) = ⊥. The process has access to the entire to sequence, so we do not need to describe

how Peo remembers the number of a tokens seen.

Peo(⊥) = ⊥

Peo([a]) = [b]

Peo([a, b, b, a]) = [b, b, b, a]

The properties of process networks depend heavily on the properties of individual processes. The most

important properties of processes relate similar input sequences to similar output sequences. A sequence S
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is a prefix of a sequence S′, written S v S′, if si = s′i, 0 ≤ i < len(S). 1 The empty sequence ⊥ is a prefix

of every sequence. A process P is monotonic if whenever X v Y , then P (X) v P (Y ). The example process

Peo is such a process. Without a property like monotonicity, it may be impossible to know the output of

a process without feeding it an arbitrarily large amount of data. It is often the case that processes exhibit

a stronger property called continuity. A process P is continuous if for every ascending chain of sequences

C = {X0 v X1 v . . .} then P (
∨
C) =

∨
P (C), where

∨
Y denotes the least upper bound of a set of

sequences Y with respect to prefixes.

Processes, such as the AND gate, read from more than one input channel. We handle this by extending

processes to map from an n-tuple of sequences to an m-tuple of sequences, i.e. P : Sn → Sm. It is also useful

to define a projection operator (or projection process) πi,n : Sn → S that extracts the ith sequence from

an n-tuple of sequences, i.e. πi,n((S0, S1, . . . , Sn−1)) 7→ Si. Using projections, an entire process network

can be represented as a set of equations that constrain the behaviors of each process in the network. The

solutions to these equations yield the legal global behaviors of the network. To calculate the response of the

network to a set of input sequences, we view the inputs as fixed constraints and solve for the internal/output

sequences {X0, X1, . . . , Xn−1} that satisfy these constraints. Figure 3 shows an example of a process network

P1

P2

P3 P4

I1

I2

X3

X4

X2
X0

X1

X0 = P1(I1)

X1 = P2(I2, X4)

X2 = P3(X0, X1)

X3 = π0,2 ◦ P4(X2)

X4 = π1,2 ◦ P4(X2)

Figure 3. Example of a process network and its associated constraint system

and its associated constraint system. Solving these constraints can be tricky. For example, by substitution

X2 = P3(X0, P2(I2, π1,2 ◦ P4(X2))) is a function of itself. A solution to this constraint must be a fixed point

of the form X2 = f(X2; I1, I2), where f is parameterized by I1, I2. In general, we can view an entire network

as a solution to a fixed point equation of the form X = F (X, I), where I is a fixed set of input sequences
1By this definition, if S and S′ are both infinite, then si = s′i, i ≥ 0 therefore S = S′.
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and X = {X0, X1, . . . , Xn−1}.

This mathematical model lends itself to concurrency for several reasons. First, if the network contains

continuous processes, then the response to a set of input sequences can be calculated iteratively by first

feeding the set I of external input sequences into the network with all the internal sequences initialized to

the empty sequence Xi = ⊥. The processes calculate a new set of sequences X1
i using the initial value ⊥

for all of the internal inputs. This procedure is iteratively repeated; in the next iteration, each process uses

the results from the previous iteration as inputs, i.e. Xj+1 = F (Xj , I). The procedure terminates when

two consecutive iterations produce the same sequences, i.e. Xk
i = Xk+1

i , 0 ≤ i < n. In this case, Xk is

the fixed point of the equation X = F (X, I). Amazingly, this constructive process can be implemented by

concurrently running processes that send data across the channels until the entire network stabilizes [21].

Thus, we can actually view a network of processes much like a circuit that stabilizes after some transient

period of communication. (Analogously, some networks will not stabilize in finite time.) Verifying properties

of process networks works in a similar manner. For example deadlock (also called causality) can be detected

by an iterative procedure that analyzes how individual process consume and produce data tokens. An elegant

exposition of causality analysis can be found in [22].

Comparing process networks with automata shows that there are some advantanges of expressing concur-

rency with processes. The behaviors expressed by concurrent automata include every possible interleaving

modulo a particular synchronization mechanism. The process network model allows us to move away from

this, by viewing the computational objects (processes) as inherently concurrent instead of inherently mutu-

ally exclusive. This view provides benefits at both the implementation and verification levels. Automata

typically communicate via synchronous broadcast: When a state emits an event this event is instantaneously

observed by all other automata in the system. Implementing synchronous broadcast requires sophisticated

distributed algorithms [23]. Verification of deadlock in concurrent automata may require analysis over all

the product states, while many classes of process networks admit a simple analysis of token consumption

and production rates. This is not an argument against automata. There also exist classes of process net-

works where many properties are undecidable. Additionally, automata are an intuitive imperative style of

specification that continues to prove useful. Nevertheless, there are certainly situations where the process

network viewpoint is appropriate.

Simulating MoCs

A purely mathematical description of an MoC is necessary, but not sufficient for model-based design. In

particular, engineers need something more tangible, e.g. derived algorithms that check model properties. At

the very least, we expect to be able to simulate models on conventional machines. This is typically done by

constructing a program that manipulates MoC-specific quantities, as represented in a traditional machine.
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For example, a timed-automaton can be simulated like a traditional FSM, except that the simulator must

manage the clocks and evaluate guards. It is important to remember that the length of time it takes to

simulate a model may bare little or no resemblance to the predicted temporal properties of that model within

the MoC. This is not surprising, considering that a simulator does not implement a MoC, but approximates

it. With this caveat in mind, there are several approaches to MoC simulation, each of which leverages

traditional software engineering principles.

Simulating Transition Systems

The best approach to simulation depends on the particular MoC. Automata-based MoCs can be readily

simulated, because they are already defined in terms of execution steps (evaluate guards/change state); i.e.

they are operational definitions [24]. In fact, advances in automata-based specification languages have made

it possible to simultaneously specify the operational semantics of an MoC and simulate that specification.

Two key insights make this possible: First, most automata-like structures can be reformulated into a very

simple structure called a transition system (TS). A transition system is a structure T = 〈Γ,→〉, where

1. Γ is a set of configurations (or locations or states)

2. →⊆ Γ× Γ is a binary relation on configurations.

3. If (q, q′) ∈→, then the system can transition from state q to state q′.

Plotkin’s influential notes on structural operational semantics(SOS) [24] show how various operational se-

mantics can be rendered as transition systems. Interestingly, reformulating an arbitrary structure into a

transition system requires generalizing the notation of state. For example, Plotkin points out that an FSA

can made into a transition system if Γ = Q×Σ∗
i , where Σ∗

i is the set of all finite strings over Σi. Squeezing

an FSA in a TS yields a TS with an infinite number of configurations (|Γ| = |Q| + |ℵ0|), even though Q is

a finite set. Thus, correctly defining the notion of configuration is essential to applying the TS formalism.

However, this simple example shows that producing the correct reformulation is both practically and the-

oretically non-trivial. Gurevich, in his work on abstract state machines (ASM) [25], generalized the notion

of configuration so that it could easily encompass many different structures. Specifically, he proposed that

configurations should be algebras over a fixed signature Υ, and a system transitions from one algebra to

another.

An algebra A is a structure A = 〈U,Υ〉, where U is called the universe of the algebra, and Υ is called the

signature of the algebra. A signature names a set of operations (function symbols) f1, f2, . . . , fn, and defines

the number of arguments (arity) required by each operation. The expression arity(fi) denotes the arity of

function symbol fi; clearly arity(fi) ≥ 0 must hold. An operation of the algebra is a mapping from an

arity(fi)-tuple of U to U ; fi : Uarity(fi) → U . Let C(U,Υ) be the class of all algebras defined over universe
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U with signature Υ. An abstract state machine A over (U,Υ) is a transition system with Γ ⊆ C(U,Υ). The

particular operations of the algebra form the state, so two states s, s′ differ if there exists an operation fi

and a tuple t ∈ Uarity(fi) such that fs
i (t) 6= fs′

i (t). The notation fs
i (t) indicates the operation fi applied to

t in algebra s.

Given this generalization, it is possible to implicitly define complex ASMs in a programmatic style. The

language ASML[26] allows ASMs to be characterized by a set of statements of the form:

1. “if conditional then update”, where

2. conditional is a term fi(x1, x2, . . . , xarity(fi)) that yields a boolean value when evaluated against the

current state s

3. update is a pair (fj(y1, y2, . . . , yarity(fj)), u) such that u ∈ U .

If the current state is s, and fs
i (x1, x2, . . . , xarity(fi)) evaluates to true, then the system may transition to

a new state s′. In s′ all the operations are the same as in s, except for operation fj that maps the tuple

(y1, y2, . . . , yarity(fj)) to u. A single update changes exactly one operation at exactly one tuple, which is the

smallest possible change that makes two states different. Let l = (y1, y2, . . . , yarity(fj)), then:

(fs
i (x1, x2, . . . , xarity(fi)) = true)⇒ (s, s′) ∈→,

where s′ =


fs′

k 6=j = fs
k

fs′

j (l′ 6= l) = fs
j (l′)

fs′

j (l) = u

, and s′ ∈ Γ
(II.1)

To illustrate this, we will specify the execution rules of a timed-automaton as an implicitly defined

ASM using ASML. We begin by describing the members of the universe U . By default, ASML adds many

members to U including the real numbers (Double2), the integers (Integer), and {true, false} (Boolean).

Specification 1 lists the necessary ASML code that extends the universe U . Lines 1-3 declare that U contains

Spec 1. Extending the universe U for timed-automation

1: enum LocationName
2: enum InputLetter
3: enum Clocks
4:

5: class Transition
6: l as LocationName
7: lp as LocationName
8: i as InputLetter
9: r as Set of Clocks
10: var g as Map of (Map of Clocks to Double)
11: to Boolean

2Actually, the type Double is 64-bit floating point.
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three new subuniverses, each of which contains a finite number of (enumerated) elements. We do not need

to actually enumerate the distinguished elements at this point. The LocationName subuniverse is a reservoir

of names for discrete states. The InputLetter subuniverse is a reservoir of letters for input alphabets Σi.

Finally, the Clocks subuniverse contains names for clock variables. We call these reserviors, because a single

automaton does not need to use every element in each subuniverse, just as it does not need to use every

integer in Z. However, we can rely on U to contain the needed elements. Our usage of the term reservior

is similar in spirit to the usage of the term reserve in [25]. A reserve contains names for objects that may

be dynamically introduced into a running ASM, though this example does not dynamically introduce new

elements into the universe.

Transitions are more complex structures, but we can easily handle them with ASML. Line 5 declares a new

subuniverse called Transition. (Note that the keyword class implies some additional technicalities.) Each

member of this subuniverse is a 5-tuple of the form (l, i, g, r, l′), with the obvious relationship to transitions in

timed-automata. One important detail is the representation of the guard g. Recall that a guard is evaluated

against a clock valuation v : X → R+, which maps clocks to nonnegative reals. Mathematically, this means

that a guard maps clock valuations to booleans. For example, consider a guard x ≤ 12, where x is a clock.

This guard is really a mapping g : (X → R+)→ B, such that ∀v, g(v) 7→ (v(x) ≤ 12). In ASML a (partial)

function from set X to Y is identified with the notation Map of X to Y. Thus, lines 10-11 identify g as map

from clock evaluations to booleans. The reader may ignore the keyword var. The purpose of this keyword

is to allow us to make g a partial function over the relevant valuation, which changes as the automaton

executes.

The actual state of the system is captured by operations of the signature Υ. However, not every operation

contributes to state; ASML automatically provides many non-state operations, e.g. addition over integers.

The keyword var identifies operations that do contribute to state. Contrarily, we can use the keyword const

to denote an operation that does not effect state. Specification 2 lists the key members of Υ. Line 12

Spec 2. Extending the signature Υ for timed-automata

12: var v = { clki → 0.0 | clki in clocks }
13: var crnt = any qi | qi in q0
14: const time = new Transition(empty,e,{→},{},empty)

defines the unary clock valuation operation, which initially maps every clock to zero. The notation m = {

x → y } specifies that m maps value x to value y. Similarly, crnt is a nullary function that identifies the

current discrete state of the system. Line 13 initializes crnt to some discrete state from the set of initial

states q0. The ASML keyword any implements a non-deterministic choice, and picks some qi from the set

of initial states. Finally, time is a special transition in every timed-automaton. At every choice point, the
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system may take a “regular” enabled transition, or it may take the time transition. If the system takes the

time transition, then all clocks are incremented by a fixed amount ε. This discretization is an artifact of

simulating a continuous system on a discrete machine. The time transition is a permanent part of every

timed-automaton, so it is marked as constant.

The kernel of the simulator examines the enabled transitions available from the current state, and then

takes one. Taking a transition may cause a change in state, which means that the operations v and crnt are

updated. The key is to specify the rules for changing this state. Specification 3 shows the rules for finding

the enabled transitions and taking one of those transitions. Lines 16-19 collect up the enabled transitions

Spec 3. Kernel of simulation engine

15: TakeATransition()
16: let takeTrans = any tj | tj in ({ tr | tr in transitions
17: where tr.l = crnt and (exists (ai,ti)
18: in input where ( ai = tr.i and ti = v(t)))
19: and (tr.g(v) = true) } union {time})
20:

21: if (takeTrans.l = empty) then
22: v := { clki → v(clki)+epsilon | clki in clocks }
23: else crnt := takeTrans.lp
24: v := { clki → 0.0 | clki in takeTrans.r } union
25: { clki → v(clki) | clki in clocks − takeTrans.r }

and then non-deterministically choose one. An enabled transition tr is one that starts at the current state

(tr.l = crnt), satisfies the time guard (tr.g(v) = true), and for which there exists an input pair (α, τ) that

satisfies the trigger of a transition. The set input contains all the input pairs used during the simulation. A

transition tr is triggered by a pair (α, τ) if α = tr.i and τ = v(t), where t is mapped to the current time. (t

is a clock that is never reset.) The time transition is unioned with the enabled transitions, and then one is

non-deterministically chosen and placed in takeTrans. Lines 21-25 update the state. If takeTrans is the time

transition, then the current valuation v is updated to a new map v′(x) 7→ v(x) + ε, effectively incrementing

every clock by ε units of time (Line 22). The ASML notation := indicates a state update. If takeTrans is not

the time transition, then the current discrete state is updated to takeTrans.lp (Line 23), and the valuation

v is updated by setting v(x) 7→ 0 for each clock x in the reset set takeTrans.r.

The final piece of the simulator indefinitely takes transitions. A timed-automaton can always take

the time transition, so the simulator does not terminate (except by the user’s request). Specification 4

shows the main simulation loop. In ASML we can just “call” the procedure TakeATransition; really this

procedure call represents the composition of ASMs. The keyword step causes all the of the updates of the

form expr1 := expr2 to be applied simultaneously. ASML does not sequentialize updates, but performs

many updates of the form of Equation II.1 at once. Thus, the specification does not require discrete state
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Spec 4. Main simulation loop

26: Main()
27: step while true
28: step TakeATransition()
29: step UpdateGuardMaps()
30: WriteLine(v + “: ” + crnt )

to change (Line 23) before clock resets occur (Line 24). The last point that deserves explanation is the

UpdateGuardMaps of Line 29. This procedure redefines the guard maps after each transition, so that they

are defined for the current valuation v. This is necessary because maps must be explicitly enumerated in

ASML, and we cannot enumerate a complete guard map, as it has an infinite domain. Instead, we continually

redefine each guard map g with respect to the current valuation v.

Though some effort is required, the basic timed-automata semantics can be described with a 30 line

specification. In order to actually simulate a specific timed-automaton, we must add the necessary data

to the specification. ASML allows a specification to be split across multiple lexical units, so we can keep

the simulator as a pure abstract unit, and then add the model-specific data in a different file. Following

the terminology of [27], this file is called the abstract data model. Specification 5 lists the data model for

the simple automaton of Figure 4. Lines 10-12 define the UpdateGuardMaps for this specific data model.

loc1 loc2

 a1; true
 {z}

loc3

 a2; x < 12
 {x,y}

Figure 4. Timed-automaton represented by Specification 5.

Otherwise, the data model3 is quite close to the original mathematical definition of a timed-automaton in

Section II.2. After a data model and simulator have been combined, the model can be immediately simulated.

Figure 5 shows a single partial simulation trace.

Simulating Process Networks

Specifying the simulation semantics of process networks can be a challenging task. (This can also be true for

automata-based MoCs, e.g. hybrid automata.) There are two challenges to simulator development: First,

the simulator must be able to determine how processes will respond to a partial sequence of data tokens.
3To save space, we have left out the elements of the enumerations in Lines 1-3 of Spec 1. These are also included in the data

model.
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Spec 5. The data model for a simple timed-automaton

1: const epsilon = 0.1
2: q = {loc1,loc2,loc3}
3: q0 = { loc1 }
4: input = { (a1,0.3), (a1,0.4) (a1,0.5), (a2,5.0), (a2,12.1) }
5: clocks = { x,y,z,t }
6: transitions = [
7: new Transition( loc1,a1,{ v → true }, {z},loc2),
8: new Transition( loc2,a2,{ v → (v(x) < 12.0)}, {x,y},loc3) ]
9:

10: UpdateGuardMaps()
11: transitions(0).g := { v → true }
12: transitions(1).g := { v → v(x) < 12.0 }

Second, the simulator must contain a constructive procedure that correctly calculates the fixed point of a

given process network. A typical simulation engine does not provide a control loop for every process, but

uses a single thread of control that processes may borrow for short intervals. This permits the simulator

to micromanage the evolution of each process, which is often necessary to efficiently direct the network

towards a correct fixed point. The order and duration that processes gain control is called a schedule. A

correct schedule effectively sequentializes a process network and is also the iterative procedure that leads

a particular network to its fixed point. Thus, a simulator is an algorithm that generates the appropriate

iterative procedure (schedule) for the arbitrary network it simulates.

Process networks are categorized by the difficulty of producing a schedule. Some classes can be statically

scheduled, meaning a correct schedule can be calculated using only the topology of the network and the

rules governing how processes consume and produce data [28]. Statically schedulable networks correspond

to systems where the actual data values do not significantly impact how much data the processes consume

and produce. Contrarily, dynamically schedulable networks may adjust the number of tokens they consume

and produce based on the exact data values carried by the tokens. These networks cannot be scheduled

without knowing the exact values of the data sequences. As a result, a simulator must continually adjust

the schedule as external stimulus arrives [29].

Besides calculating the schedule for the entire network, the simulator must also calculate the individual

(partial) responses of each process to a (partial) input stream. This too can be challenging because process

behaviors can be idiosyncratic. The authors of [20] give an example of a monotonic process that produces

different outputs depending on whether it is presented with a finite or infinite sequence. Mathematically,

this process is easy to specify and has nice properties, but programmatically it is highly anomalous. The

heterogeneous modeling and simulation framework Ptolemy II addresses these issues by providing an abstract

18



{ t→0.0, z→0.0, y→0.0, x→0.0}: loc1

{ t→0.1, z→0.1, y→0.1, x→0.1}: loc1

{ t→0.2, z→0.2, y→0.2, x→0.2}: loc1

{ t→0.3, z→0.3, y→0.3, x→0.3}: loc1

{ t→0.4, z→0.4, y→0.4, x→0.4}: loc1

{ t→0.4, z→0.0, y→0.4, x→0.4}: loc2

{ t→0.5, z→0.1, y→0.5, x→0.5}: loc2

Figure 5. Simulation of Specification 5 with ASML

semantics for process network simulation [3]4. An abstract semantics is a structured set of rules governing

how process networks are described to the simulation framework. These rules allow the simulator to generate

schedules for process networks with minimal additional work from the software engineer. Additionally, the

framework restricts process behaviors to those that can be described programmatically.

Ptolemy II’s abstract semantics addresses this by requiring processes (called actors in Ptolemy II) to be

specified by a set of firing rules. An actor fires by consuming input data and/or producing output data.

A firing rule characterizes the conditions necessary for an actor to fire. A firing rule R is an m-tuple of

sequences, (r0, r1, . . . , rm) where m is the number of inputs exposed by an actor. A rule is satisfied by an

m-tuple of input sequences (I0, I1, . . . , Im) if each sequence ri is a prefix of the corresponding input sequence,

ri v Ii, 0 ≤ i < m. The sequences ri are usually expressed as patterns where the pattern [∗] is a prefix of any

sequence with one token. For example, an actor with three inputs may have a firing rule R = ([∗, ∗],⊥, [1]).

Such an actor would fire only if the first input had at least two tokens, the second input had zero or more

tokens, and the third input had the data value 1 as its first token. An actor may have a set of firing rules

{R1,R2, . . . ,Rk} and fires if at least one rule is satisfied. The number of tokens produced by an actor can

be similarly described. Process networks with these types of firing rules are called dataflow process networks.

Ptolemy II is implemented in Java, and basic actors are implemented by subclassing the AtomicActor class

[30]. This class introduces a number of important methods that a simulator can use to gather information

about the actor. There is an initialize method that is called once per simulation, and initializes the actor’s

internal state. It can also provide the simulator with an outline of the firing rules. We should mention that

actor interfaces are more complex than simple channel readers/writers; they have typed and named ports.

Consider a SimpleActor with two inputs a, b and one output c. We can specify that SimpleActor initially

requires two tokens on a, one token on b, and produces three tokens on c by adding the following code to

the initialize method:

a tokenConsumptionRate.setToken(new IntToken(2));

b tokenConsumptionRate.setToken(new IntToken(1));

c tokenProductionRate.setToken(new IntToken(3));

4Ptolemy II also supports the simulation of discrete and hybrid automata.
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The Token object encapsulates basic data values, hence IntToken(3) contains the integer value 3. By

setting the appropriate token consumption and production members, the simulator can estimate the firing

rule. This is an estimation because the consumption parameters do not indicate whether specific data values

are required. To provide this functionality, each actor has a prefire member that returns true if the actor

can fire, and false otherwise. The prefire member can test the values of the data tokens.

public boolean prefire() throws ... {
return b.hasToken(0) && ( ((IntToken)b.get(0)).intValue() == 1 );

... }

This code in the prefire method requires the port b to have the integer value 1. As a simplification, the

reader may ignore the argument 0 passed to the get and hasToken functions.

The Ptolemy II abstract semantics separates actor functionality between three methods: prefire, fire,

postfire. The prefire method determines if the actor can fire. The fire method gets and sends tokens, but

should not modify the internal state of the actor. Finally, the postfire method modifies internal state and

may present a new firing rule to the simulator. As the simulator proceeds it will call the prefire method

exactly once, the fire method zero or more times, and the postfire method exactly once. There is good

reason for this: Sometimes finding a fixed point requires the simulator to test how an actor responds to

different input values, necessitating many calls to the fire method per simulation step. If the fire method

changes the internal state, then the actor is irrevocably advanced many times. By removing state changes

from the fire method, the simulator can test how the actor responds to different data values without the

actor remembering these tests. Unfortunately, not all actors can be implemented this way. Actors that do

not follow this rule cannot be used in classes of process networks that require this rule.

Each dataflow class may put restrictions on the firing rules, the data that passes between actors, the

channel properties, and the separation of state. Ptolemy II encapsulates these rules within a director. This

permits a “plug-and-play” approach to simulation: The user models a network independently of the class,

and then plugs in a director that simulates the network with respect to some class. Of course, some actors

may break the rules of a class, and cannot be simulated by the corresponding director. Actors that can be

simulated under many classes are called behaviorally-polymorphic actors. It was shown in [31] that dataflow

classes can be modeled as a type system (lattice), such that if an actor can be correctly simulated in one

type (class) of dataflow, then it can be correctly simulated in all subtypes of that dataflow class. These

software engineering techniques allow simulators and actors to be reused correctly and with minimal effort

from the engineer.

Figure 6 shows how all of these tools have been put together to effectively simulate a classic problem in

software engineering, the Elevator Problem [32]. Even simple versions of the elevator problem are wrought

with details concerning when and how buttons, indicators, and elevators respond. In this simplified version

of the problem we focus on how process networks can effectively model the concurrency in the system. Our
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Figure 6. The Elevator problem in Ptolemy II

simplified view of the elevator problem is as follows:

1. A building has n floors with one elevator,

2. The elevator repeats the procedure:

a. If the elevator’s direction is up, then it moves up until it reaches the top floor, at which point it

moves down.

b. If the elevator’s direction is down, then it moves down until it reaches the bottom floor, at which

point is moves up.

3. The elevator starts at the bottom floor and so it has the direction up.

4. Each floor has an up/down panel. The elevator stops at floor i if the ith up/down panel has been pressed

in the direction the elevator is going and the elevator is at the ith floor.

5. The elevator has a request panel with buttons {floormin, . . . , f loormax}. The elevator stops at the ith

floor if it is at the ith floor and the ith request button has been pressed.

Concurrency appears in a number of places. Each floor has an up/down button that can be pressed

independently of the elevator’s request panel. Meanwhile, the elevator moves between floors. With process

networks we can naturally describe the movement of the elevator as a data token that moves between floor

actors. The center column of actors in Figure 6 shows three Floor actors, each connected to the other. The
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floors pass the elevator around, which is a list of the form [dir, f1, f2, . . . , fm]. The first element in the list

specifies the direction of the elevator, and the remaining elements in the list are the unsatisfied floor requests.

Each floor actor must remember if the elevator is stopped at that floor, and in which direction the elevator

was going. Thus, the Floor class has the following private members:

private boolean hasElevator = false;

private boolean sawGoingUp = false;

The ith floor actor has two elevator input ports inFromAbovei, inFromBelowi and two elevator output

ports outToAbovei, outToBelowi. Each inFromAbovei can receive the elevator from outToBelowi+1, and

each inFromBelowi can receive the elevator from outToAbovei−1. (This holds, except for the top and

bottom floors, which have some inputs unconnected.) Given the specification of the elevator, we can write

the firing rules for the floors. If the elevator was not seen going up, then it most come from below. The firing

rule for this state is (⊥, [∗]). If the elevator was seeing going up, then the next time it will come from above,

so the firing rule is ([∗],⊥). If the floor has the elevator, then it will send it out with no inputs, i.e. (⊥,⊥).

The elevator starts at the bottom floor, so initially the first firing rule will always apply. We subclass the

intialize member to contain:

inFromAbove tokenConsumptionRate.setToken(new IntToken(0));

inFromBelow tokenConsumptionRate.setToken(new IntToken(1));

Similary, the postfire method presents the correct firing rule to the simulator.

if (hasElevator) {
inFromAbove tokenConsumptionRate.setToken(new IntToken(0));

inFromBelow tokenConsumptionRate.setToken(new IntToken(0));

}
else if (sawGoingUp) {

inFromAbove tokenConsumptionRate.setToken(new IntToken(1));

inFromBelow tokenConsumptionRate.setToken(new IntToken(0));

}
else {

inFromAbove tokenConsumptionRate.setToken(new IntToken(0));

inFromBelow tokenConsumptionRate.setToken(new IntToken(1));

}

Each floor has its own up/down panel, as shown by the left-hand column of UpDown actors. The panels

can be pressed independently from each other. The ith UpDown actor has one output port upDownControli,

which sends out the state of the panel. The panel state can be “no buttons presssed”, “only down”, “only

up”, or “both buttons”. The ith panel has one input port requesti, however we do not require this port to

have any tokens for the panel to fire. When the port does have tokens, the panel sends its state through the

upDownControli port. In this way, the panel is always active, but it only sends its state when explicitly

requested. Thus, the fire method contains the code:

if (request.hasTokens(0)) {
request.get(0);

upDownControl.send(0, new IntToken(panelState));

}
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The button panel inside the elevator is represented by the FloorSelector actor, which works in essentially

the same way as the up/down panels. We connect a single floor selector actor the every floor, because it

is shared across all the floors. When the elevator first arrives at a floor it sends a request for the status

of the corresponding up/down panel and the floor selector. It then waits for the requests to arrive. The

floor selector sends a (possibly empty) list of all the current floors selected. The request phase requires an

additional state variable in the floor actor that records if the fire method should send the elevator out or send

requests to the panels. Before the ith floor sends the elevator, it appends any new requests to the elevator

token and deletes any requests that were satisfied by arriving at the ith floor.

Using the process network approach, we model concurrency by creating actors for each entity in the system

and channels between communicating entities. We set the firing rules to capture when entities are active

with respect to the state of the system. By using the Ptolemy II abstract semantics, we can easily extend

the framework and correctly simulate the system. The rectangle in the upper-left hand corner represents

the particular director5 that we have chosen for simulation. Figure 7 shows some simulation results. This

approach to the elevator problem has been studied in detail using Petri Nets [33], which can be considered

as a class of process networks with a particular firing rule.

Initially at floor 1 going up

Floors requested: {1, 2}
Reached floor 1 going up

Floors requested: {1, 2}
Picked up passengers going up

Dropped off passengers at this floor

Outstanding requests at floor 2

Reached floor 2 going up

Floors requested: {3}
Skipped passengers going down

Dropped off passengers at this floor

Outstanding requests at floor 3

Reached floor 3 going down

Floors requested: {}
Picked up passengers going down

Dropped off passengers at this floor

No outstanding requests

Reached floor 2 going down

Floors requested: {1, 2, 3}
Skipped passengers going up

Dropped off passengers at this floor

Outstanding requests at floors 1, and 3

Figure 7. Simulating the elevator problem in Ptolemy II

Domain-Specific Compilers

We began this discussion by noting that programs are just syntactic constructs that can be executed by ma-

chines. We then extended the fundamental notion of a computing machine to include time and concurrency,

and we showed how these machine classes can be simulated on traditional machines. We complete the circle

of ideas by describing how programming languages are designed for extended computational classes. The

key ingredients of a programming language for arbitrary MoCs are the same as those of traditional languages

[34].
5This is the dynamic data flow (DDF) director.
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1. a syntax describing well-formed programs

2. an editor for constructing programs

3. a compiler that translates programs into simulator instructions

As we have seen before, these ingredients will be extended in various ways to suit the increased complexity

imposed by today’s design problems. As a matter of terminology, the model-based community uses the

term model for the object that is traditionally called a program. This terminology emphasizes that models

may execute on totally different machines from a traditional program, even though we may be able to

(approximately) simulate models on traditional machines. In another words, models are intended to model

phenomena beyond the scope of Von Nuemann-like architectures, while programs are targeted for this class

of architectures.

Describing Syntax

Traditional programming languages evolved under pressures to move from assembly-based programming

towards higher-level and methodologically sound languages. This evolution took two forms: syntactic and

semantic. Syntactically, programming languages evolved to provide more complex notational mechanisms

beyond lists of assembly instructions. Semantically, the language primitives evolved to represent many

possible sets of assembly instructions, instead of a single instruction.

Pioneers in language design emphasized two properties of language syntax: (1) Syntax should be spec-

ified precisely. (2) Algorithms should exist that easily parse the syntax [1]. Foundational work on regular

expressions and grammars showed that syntax can be defined precisely, and parsers can be automatically

generated from these definitions. Modern programming languages are usually specified as BNF grammars,

and these correspond to context-free languages. Beyond a handful of constructs (e.g. declaration of vari-

ables before their use) context-free languages support most of the syntactic flexibility found in mainstream

languages. Furthermore, restrictions on the BNF grammars lead to efficient parser implementations (e.g.

LALR, shift-reduce parsers) [34]. These technologies have solidified themselves as the de facto approach

for syntax specification. Consequently, most language evolution occurs on the semantic side. For example,

even Djikstra’s famous argument against goto statements is an argument on the semantics of goto; not its

syntactic representation [35].

Unlike traditional programming languages, model-based design continues to evolve syntax, because many

models are naturally represented as graphs and well-formed models correspond to graphs with complex struc-

tural constraints. Figure 8 shows a typical embedded system model using a process network-like notation.

Assume that a process fires when every input has a token, and a process produces a token on every output

when it fires. In this case, the connections in the model also indicate data dependency; a process p depends

on q (written q → p) if there is a directed path from q to p in the model. Under these assumptions, a
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Figure 8. Example of a model represented as a directed graph

network deadlocks if a process depends on itself (p→ p). Thus, models should be constrained so that cycles

are disallowed.

Handling these sorts of constraints requires an expressiveness of syntax not found in traditional ap-

proaches. In the interest of space, we will show that this constraint does not correspond to a regular

language. The reader may continue the analysis for context-free languages. The first step in the analysis

is to provide an encoding of a directed acyclic graph as strings from an alphabet. In order to simplify the

problem, we will throw out all syntactic adornments, and consider strings that list the edges of a graph in

an arbitrary order. Figure 9 shows several example graphs. A digraph is encoded as a string by arbitrarily

III. Disjoint Paths

II. Long path

I. Simple cycle

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4

w1
w2

w3

Figure 9. Several digraphs; graph I is not in the language, but II and III are in LDAG.

ordering the edge relation, and then listing the vertices incident on each edge. For example, the simple cycle

of Figure 9.I could be encoded as w1w2 w2w3 w3w1; another possibility is w1w2 w3w1 w2w3. For simplic-

ity, we will ignore graphs with orphans, i.e. vertices with no edges. A permutation of the vertex labels

v1v2 v3v4 . . . vn−1vn corresponds to a set of disjoint 2-paths; Figure 9.III is an example of such a graph. Let

V be a set of vertices, and define LDAG(V ) to be the language of directed acyclic graphs on V vertices:

1. LDAG(V ) ⊆ Σ∗, where Σ = V

2. ∀u ∈ LDAG(V ), 2
∣∣∣∣ |u|
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3. ∀u ∈ LDAG(V ), G(u) = (V (u), E(u)) is acyclic, where V (u) =
⋃|u|

i=1 ui and E(u) =
⋃ |u|

2
i=1(u2i−1, u2i).

Property 1 states that the alphabet of the language is exactly the vertex labels. Property 2 requires each

string to have even length, because there are always two vertices per edge. The most important property is

3, which associates a graph with a string u and requires this associated graph to be acyclic.

The next task is to check if the language is regular. Already, we have some intuition that the language

is not regular, so the first plan of attack is to check if it fails the well-known Pumping Lemma, which states

the following: If L is a regular language then ∃n > 0 such that ∀u ∈ L where |u| ≥ n, u can be written as

the concatenation of substrings x, y, z ∈ Σ∗, (u = xyz) such that:

1. ∀i ≥ 0, xyiz ∈ L, (i ∈ Z+)

2. |y| > 0

3. |xy| ≤ n.

It is easy to see that this language will not fail the Pumping Lemma, or extensions thereof [36]. If a graph is

acyclic, then deleting an edge, i.e. setting i = 0, will not make the graph cyclic. We can always decompose

the string representation of an acylic graph with more than 3 edges (n = 6) into three parts: x = u1u2,

y = u3u4, z = u5 . . . u|u|. In this case, duplicating the edge u3u4 an arbitrary number of times will not make

the graph cyclic. Thus, the Pumping Lemma is not helpful for reasoning about LDAG(V ).

In order to show that LDAG(V ) is not regular, we must make the more difficult argument that there does

not exist any deterministic finite state automaton (DFA) that accepts the language. This can be done with

the Myhill-Nerode Theorem that uses an equivalence relation ≡L over the strings of an arbitrary language

L:

1. ≡L ⊆ L2 is reflexive, symmetric, and transitive

2. x ≡L y if ∀z ∈ Σ∗, (xz ∈ L)⇔ (yz ∈ L)

The theorem states that there exists a DFA that recognizes L iff ≡L contains a finite number of equivalence

classes; a review and some extensions of this theorem can be found in [37]. In order to capture the language

of all finite directed acyclic graphs, we choose the vertex set to be a countably infinite set ∆ (|∆| = |ℵ0|). Let

G be any acyclic digraph without orphans, and let s(G) be any string u ∈ LDAG(∆) such that G(u) = G.

Consider any two acyclic graphs G and H where G contains two vertices v1, v2 such that:

1. v1 6= v2 ∈ VG

2. v1, v2 /∈ VH

3. (v1, v2) ∈ EG

We notice that s(G) 6≡L s(H) because s(G)v2v1 /∈ LDAG(∆) but s(H)v2v1 ∈ LDAG(∆). We can always

find an infinite number of distinct finite labeled digraphs G and H that satisfy (1)-(3), therefore ≡L has an

infinite number of equivalence classes and LDAG(∆) is not a regular language. Another approach the proof
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is to analyze a particular equivalence class; the set of all strings u such that G(u) is isomorphic to a graph

of disjoint 2-paths. These strings are just permutations of |u| vertices, and it can be shown that no DFA

with |u| states can correctly distinguish the language of disjoint paths from graphs with cycles. Thus, for

any DFA with n states, it will not correctly identify finite DAGs with at least n vertices. In the interest of

space, we do not present this alternative proof here.

It is possible to extend syntax to capture complex structural constraints encountered in model-based

design. We accomplish this by noting that traditional syntax is defined over a particular algebraic structure

called the free monoid. The free monoid MF over Σ is an algebra with universe U whose elements are

generated by Σ, and has a binary operator ◦ that concatenates elements of the alphabet into strings. In

another words the “string” σ1σ2σ3 can be viewed as repeated applications of the concatenation operator,

e.g. (σ1 ◦ σ2) ◦ σ3. Additionally, MF has a distinguished element ε called the identity element, and satisfies

the following axioms:

1. Associativity: ∀σ1,2,3 ∈ U, (σ1 ◦ σ2) ◦ σ3 = σ1 ◦ (σ2 ◦ σ3)

2. Identity: ∀σ ∈ U, ε ◦ σ = σ = σ ◦ ε

In this case, ε is the empty string. A natural extension is to construct syntax from a general algebra, and

not just this particular class of algebras. We have explored this by generalizing syntax to sets of terms over

the term algebra[38] of an arbitrary signature Υ. Though the next chapter fully describes these results, we

briefly summarize this now. We associate a set of operators with the concepts of the language [39]. For

example, directed graphs utilize vertices and edges. Associate a unary function symbol v for the concept of

vertex, and a binary function symbol e for the concept of edge. The term algebra TΣ({v, e}) contains all

terms, i.e. all possible ways to apply v, e to each other and members of Σ. A model is just a subset of these

terms. A language of models M is a subset of the powerset of terms: M ⊆ P(TΣ(Υ)). Thus, we might

describe the graph in Figure 9.I as the set of terms {v(w1), v(w2), v(w3), e(w1, w2), e(w2, w3), e(w3, w1)} from

TΣ({v, e}). Notice that this encoding removes the artifact that edges had to be ordered in a string.

Just as with regular and context free languages, we need algorithms that decide if models (sets of terms)

are well-formed. Deductive logic provides a natural framework for reasoning about sets of terms, because it

allows us to derive new terms from old ones. A particular model m ∈ M is well-formed, if well-formedness

can be derived using some predetermined consequence operator ` (inference procedure) with axioms that

characterize well-formed models. This replaces the DFA or pushdown automata (PDA) of regular and context

free languages with a tunable inference procedure and axioms that characterize the well-formed structures of

the language. We can adjust the expressiveness of language syntax by selecting the appropriate consequence

operator. We use the term structural semantics instead of syntax, because the formal foundations may be

arbitrarily expressive.

These extensions provide a formal underpinning for the syntax of models, but they do not suggest a
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Figure 10. Example metamodel for hierarchical finite state machines.

particular syntactic notation for describing syntax (e.g. BNF grammars). The model-based community has

employed a notation for defining syntax based on a subset of the Unified Modeling Language (UML) called

class diagrams [40]. A class diagram that defines the syntax of a language is called a metamodel. UML-

based metamodeling can be formalized using the extensions just described, though it has long been used

without a formal characterization of the associated structural semantics. With this in mind, we informally

summarize metamodeling with UML class diagrams. As the name suggests, a class diagram enumerates a

set of classes. Each class encapsulates named members that are also typed. For example, Figure 10 shows a

metamodel that describes the syntax of a hierarchical state machine language using the particular notation

of Meta-GME [41]. The boxes in the model are class definitions, and class members are listed under the

class names. For example, the Transition class has Trigger and Action members, both of type field (or

string). The metamodel also encodes a family of graphs by associating some classes with vertices and other

classes with edges. The State and StartState classes correspond to vertices; instances of the Transition

class are edges. The diagram also declares which vertex types can be connected together, and gives the edge

types that can make these connections. The solid lines passing through the connector symbol (•) indicate

that edges can be created between vertices, and the dashed line from the connector to the Transition class

indicates that these edges are instances of type Transition. The diagram encodes yet more rules: Lines

that end with a solid diamond (♦) indicate hierarchical containment, e.g. State instances can contain other

states and transitions. Lines that pass through a triangle (4) identify inheritance relationships, e.g. a

StartState inherits the properties of State.

Metamodels may also include more complicated constraints. For example, multiplicity constraints specify

that vertices of type tv must have between nmin and nmax incident edges of type te. In Figure 10 all

multiplicity constraints contain the entire interval [0,∞), denoted 0..∗. More complicated constraints, e.g.

graphs must be acyclic, can be denoted via a constraint language. The Object Constraint Language (OCL)

is commonly paired with UML class diagrams to denote complex constraints. OCL is a strongly-typed first-
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order calculus without side effects [42]. For example, the following side-effect free helper method can be used

to check for cycles:

Descendants( children : ocl::Bag ) : ocl::Bag

if(children.count( self ) < 2) then

Bag{self} + self.connectedFCOs("dst") ->

iterate( c ; accu = Bag{} | accu +

c.Descendants(children + Bag{self}) )

else( children ) endif

The Descendants method can be called on any vertex of any type in the model. The special identifier

self refers to the object on which the method was invoked. Cycles are collected by passing a multiset

(called a Bag in OCL) of previously seen vertices through recursive invocations of Descendants. Initially,

a vertex v is passed an empty bag: v.Descendants(Bag{}). If v has been seen only zero or one times, then

all of its immediate children are iterated over using the expression self.connectedFCOs(“dst”)→iterate; the

placeholder c is the iterator “variable”. Each immediate child is passed the current bag of visited vertices

unioned with the current vertex. In this case, the method returns a multiset union of all vertices reachable

from the current vertex and its immediate children. If the current vertex is already in the bag two or more

times, then it may be in a cycle, so the passed in bag is immediately returned ending the recursion. Using

the helper method, we require every vertex in the graph to satisfy the following invariant:

self.Descendants(Bag{}).count( self ) < 2

This invariant only checks if the initiating vertex is contained twice in its descendants, but the invariant is

checked for every vertex. This correctly detects cycles even in multigraphs.

Traditional language design employs parser generators or compiler compilers to automatically generate

software that parses a particular syntax. These tools have been generalized by the model-based community

to support metamodels and complex constraints on metamodels. The adjective metaprogrammable is used to

describe tools that can conform themselves to a particular metamodel. For example, the metaprogrammable

model editor called GME (Generic Modeling Environment) can reconfigure itself to construct models that

adhere to a particular metamodel [43]. Figure 11.I shows the result of reconfiguring GME with the hierar-

chical automata metamodel of Figure 10. Several models from other DSMLs are also shown. Double-clicking

on a state (blue circle) causes GME to open a window that contains the internal states and transitions of

a state. The full GME metamodeling language supports many more features including ports, which are

the structural representation of interfaces, and multiple aspects, which partition a modeling language into

multiple dependent views.

Semantic Analysis

The final component of an MoC-specific compiler is the code generator. In traditional language design the

parsing phase of the compiler produces an abstract syntax tree, and the semantic analysis phase of the
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Figure 11. Example models in the metaprogrammable modeling environment GME: I. FSA model II. As-
sembly code model III. Access control model IV. Synchronous dataflow model

compiler walks this tree and emits code. (Some consider code emitting as a separate phase.) Most of the

software engineering effort occurs in this later phase, because the many intricacies of the language prevent

automatic generation of this component. The same problem occurs for MoC-specific compilers/interpreters.

Additionally, the semantic analysis phase walks a generalized graph, not just a tree. The earliest method-

ological approaches to semantic analysis emphasized generic well-structured APIs (application programming

interfaces) that simplified traversal of arbitrary model structure. For example, GME provides such a C++

API called BON (Builder Object Network) that represents model elements as instances of three classes:

Atom, Model, and Connection. (BON also provides classes for additional structural features, but these are

beyond the scope of this review.) Instances of Atom correspond to vertex-like elements that do not have

any further substructure, while instances of Model correspond to elements with substructure. Instances of

Connection correspond to edge-like modeling elements. The API provides a suite of methods to traverse the

BON representation of a model. For example, we can get all of the outgoing edges from an Atom a.

std::set<BON::Connection> connections = a->getOutConnLinks();

Similarly, we may collect all the elements in the substructure of a Model m.

std::set<BON::FCO> subelements = m->getChildFCOs();

Note that the class BON::FCO is an abstract superclass of the basic model elements. Using this API, we

can easily traverse the containment hierarchy of an arbitrary model.

Common traversal methods, like the one above, can be generalized into well-known software engineering

patterns, e.g. the Visitor Pattern. The BON API supports a number of these patterns, thereby improving
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void GetHierarchy (BON::Model m, std::set<BON::FCO>& substructs) {
//Add the current model

substructs.insert(m);

//Iterate over each child

std::set<BON::FCO> subs = m->getChildFCOs();

for (std::set<BON::FCO>::iterator i = subs.begin(); i != subs.end(); ++i) {
substructs.insert(*i);

if (BON::Model(*i)) GetHierarchy (BON::Model(*i), substructs);

}
}

the reusability and maintainability of code, while decreasing the time to produce a working compiler. A sig-

nificant evolution of the API approach occurred through the development of the Unified Data Model (UDM)

[44]. UDM generates a custom API from a metamodel by converting elements of the class diagram into C++

classes. Attributes become typed members in the generated classes, and methods for accessing/mutating

attributes and traversing model connections/hierarchy are automatically generated. This allows the software

engineer to leverage the C++ type system when developing a domain-specific compiler.

The API approaches are effective for implementation, but less useful for high-level specification of the

semantic analysis phase. Ideally we would like to specify the compiler backend without appealing to the

implementation details of the underlying API. This goal has been pursued for traditional compiler construc-

tion, where it can be assumed that the parser produces an abstract syntax tree (AST). The authors of [45]

view the semantic analysis phase as a set of patterns that are matched against an input AST. They provide

a language for abstractly describing subtree patterns along with actions that should be executed in response

to those patterns. In this way, the compiler backend can be generated from the pattern/action descriptions.

This not only reduces coding effort, but also provides a high-level specification of the compiler backend.

Clear specification of the compiler backend is essential for domain-specific languages. In model-based

design the compiler output is often used as input to formal verification tools. If the compiler produces

incorrect output, then the results of downstream verification tools may be inaccurate. For example, behav-

ioral properties of timed-automata can be checked with verification tools such as IF [46] or Uppaal [47].

The verification results faithfully capture the properties of an input model only if the compiler produced

an accurate timed-automaton representation of that model. Thus, it is critical to provide some notion of

compiler correctness. Admittedly, this correctness problem is still open; in fact Hoare identifies it as a grand

challenge for computing [48]. Nevertheless, approaches based on high-level compiler specification seem the

most feasible.

The model-based community views compiler specification as a model transformation problem. LetM and

M′ be two sets of models. A model transformation is a mapping τ :M→M′. Notice that a compiler S can

be viewed as a model transformation τS . If the compiler S generates C code, then the codomain of τS is just

MC , the set of all syntactically well-formed C programs. Model transformations are typically specified using
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graph rewriting rules, which are a generalizations of the subtree matching patterns used in [45]. Abstractly,

a graph rewriting rule or production is a pair of graphs (L,R). A rule can be applied if the input graph

(host graph) G contains a subgraph S(G) that is isomorphic to L. In this case, S(G) is removed from G and

a subgraph S′ isomorphic to R is put in its place. By “replacing” S(G) with S′, we implicitly mean that

S′ is reconnected into G in some manner. This mechanism is called the embedding, and the flexibility of

the embedding mechanism affects the expressiveness of the graph rewriting system [49]. Despite this, most

practical graph rewriting systems opt for simpler and more intuitive embedding mechanisms. A comparison

of existing graph rewriting tools can be found in [50].

A model transformation may be viewed as a set of graph rewriting rules. A mapping τ converts an input

model to an output model by repeatedly applying rewriting rules until no more rules can be applied. This

procedure encounters problems similar to those of process networks. Is the transformation determinate,

i.e. does it produce the same result regardless of the order in which the rules are tested? Does it have a

finite fixed-point, i.e. does the transformation terminate? These questions are difficult to answer because,

in general, rewriting rules are neither commutative nor associative so the order of application cannot be

ignored. Some approaches to analysis of graph rewriting systems can be found in [51] [52].

Model transformations have been successfully applied to a number of DSMLs. A particularly relevant ex-

ample was presented in [53] where the authors developed a domain-specific compiler from the well-established

Stateflow/Simulink DSML to C using model transformations. We will present a scaled-down version of this

work that generates C code from a finite state acceptor (FSA) language, also using model transformations

to implement the compiler. In particular, we will use the Graph Rewriting and Transformation (GReAT)

language [54], which was used by the authors of [53]. GReAT is integrated with the GME tool-suite, and

permits simple descriptions of rewriting rules in terms of input and output metamodels.

Figure 12 shows the “input” metamodel of the transformation. (We can expect that all models fed to

the compiler will conform to this metamodel.) Input models consist of finite state acceptors. An instance

of FSA contains instances of the State and Transition classes. In order to simplify the rewriting rules,

we have separated the initial states and acceptor states into two subclasses: Initial and Acceptor. This

simplification does not permit acceptor states that are also initial. Instances of the Event class enumerate

members of the input alphabet Σ. The attribute guard of a transition is a textual field that names one of

the Event instances.

The output metamodel encodes a structured subset of C needed to implement FSAs. We will present

this metamodel by working backwards from the generated code. The generated C code is based on a well-

known and efficient technique for implementing automata in C [55]. Specification 6 outlines the approach

in pseudocode. Two enumerations encode the states and events of the automaton (Lines 1,2). A variable

called currentState stores the current state of the automaton, and it is initialized to the initial state Sk (Line
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Figure 12. Metamodel of the input language; a finite state acceptor (FSA) languge.

4). The program must have a mechanism to read events from the environment; we assume that a class

EventStream exists to accomplish this task (Line 3). Most of the work is done in the while loop (Line 7)

that repeatedly reads an event from the environment and stores it in the variable currentEvent. The loop

contains nested switch statements; the outer switch chooses a case using the currentState (Line 8), and

contains a case statement for every state of the automaton (e.g., Line 9). Each outer case contains an inner

switch that chooses a case using the currentEvent. The inner switches contain case statements for each

possible transition that the automaton can take from the corresponding state. The labels of the inner cases

are the EVENT enumeration elements that guard the transitions. For example, if an automaton had the

transition S1 Ei→ Si, then the code would have the inner case shown in Line 11. This case correctly updates

the currentState to the new state Si (Line 12). This encoding scheme effectively implements a transition

table by using the efficient switch statement. Though not shown, each inner switch contains a default

case that breaks the simulation loop. This halts the machine if an improper sequence of events is presented.

Using the structure of the C code as a guide, we obtain the metamodel shown in Figure 13. This metamodel

almost exclusively relates classes by containment; a reflection of the fact that it encodes a C abstract syntax

tree. The root of the AST is an instance of FSAProgram, which contains exactly one child node of type

Declarations and one of type SimLoop. The Declarations node contains one or more children of type Variable

and one or more children of type Enumeration. The Variable class has an attribute type for specifying the

type of the variable. Each instance of Enumeration contains 1 or more instances of EnumElement. Thus,

the Declarations subtree contains all the parts for defining the necessary variables and enumerations that

implement a FSA. The SimLoop subtree is necessarily more complicated. In particular, the SimLoop must

know which variable corresponds to the EventStream and which corresponds to the currentState. This is
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Spec 6. Pseudocode for executing a finite state acceptor.

1: enum STATES { S1 = 0, S2, . . ., Sn };
2: enum EVENTS { E1 = 0, E2, . . ., Em };
3: EventStream evStream;
4: int currentState = Sk;
5: int currentEvent;
6:

7: while (evStream.read(currentEvent) ) {
8: switch (currentState ) {
9: case S1 :
10: switch (currentEvent) {
11: case Ei :
12: currentState = Si ; break;
13: case Ej . . . } break;
14: case S2 . . . }
15: }

handled by a feature of GME called a reference association. A reference association is much like a reference

in traditional languages; it “points” to another object in the model (program). The SimLoop node contains

exactly one instance of EventStreamVar, which is a reference to a variable. Presumably, the EventStreamVar

instance will refer to the actual variable that should be used to read events from the environment. Similarly,

the SimLoop instance contains a CurrentEventVar, which refers to the currentEvent variable. (In GME

the reference association is indicated with a directional association with rolename refers.) The rest of the

metamodel describes how switch, case, and variable assignments can be nested. In order to provide user

feedback a case statement may contain an instance of the Message class, which is a placeholder for a printf

statement.

The output metamodel closely resembles the set of C code ASTs corresponding to FSA implementations.

It is a simple exercise to generate actual code from such an AST model, and we can be (fairly) sure that such

a generation procedure is correct. The more complicated task is the transformation of a FSA model into a

C AST model. Figure 14 shows the graph rewriting rule that fills the STATE enumeration with elements.

In order to understand this rule, we must describe GReAT in more detail. Graph transformation tools

locate all subgraphs of the input that are isomorphic to rule patterns. Unfortunately, subgraph isomorphism

is computationally difficult (NP-complete), so it must be implemented carefully. GReAT’s approach is to

provide rules with context vertices; rules only match subgraphs that include the context vertices. Context

vertices are passed into a rule via “input ports”. The rule in Figure 14 is passed two context vertices,

as indicated by the two input ports labeled FSAIn and StatesIn. The context vertices are actually typed

instances of metamodel classes; they can be cast to particular types by making connections from the ports to

class instances. For example, the connection from FSAIn to an instance called iFSA of type FSA casts the
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Figure 13. Metamodel of the output language; a structured subset of C.

context vertex FSAIn to an FSA instance. The instance name iFSA is used to refer to the context vertex

locally within the rule, and is not the actual name of the instance. As the names imply, this rule is provided

with the FSA instance of the input model and STATES enumeration instance of the output model.

A GReAT rule finds all subgraphs that contain the context vertices and are isomorphic to the submodels

drawn in solid lines. In particular, this rule generates a match for each instance of State contained in iFSA;

the matching State instance is locally named iState. The instances submodels in dotted lines represent

objects that are added to the input/output graphs. In this case, for each state in the FSA a corresponding

EnumElement is instantiated and put inside of the STATES enumeration. GReAT provides a useful feature

called crosslinking that allows temporary marking of vertices in the input/output graphs. The dotted

line from iState to iNewElem creates a temporary edge between the matched state and the newly created

enumeration element. This crosslink allows the transformation engine to “remember” each state/element

pair. Once the new enumeration element is created, it has a default name. This name will be used for

code generation, so it should be set to something more appropriate. GReAT provides attribute mappings for

modifying the values of instance attributes. Figure 14 contains an attribute mapping called SetNames, which

sets the name of each enumeration element to STATE sname, where sname is the name of the corresponding

State instance. This simple rule performs a number of actions that would otherwise have to be coded. The

declarative backbone of the graph transformation approach allows compact rules to accomplish many tasks.

Figure 15 shows the rule that creates the basic structures of the C code. A MainProgram is created, which

contains a Declarations section and a SimLoop section. The essential variables and enumerations are declared,

and the outer Switch and SwitchVar are created. Recall that the simulation loop must know which variable is

the currentEvent and which is the eventStream. The rule creates an instance of CurrentEventVar, a reference
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Figure 14. Graph rewriting rule that creates the STATE enumeration elements.

to a variable, and creates a refers association from the CurrentEventVar instance to the currentEvent variable

in the declarations section. This way, the simulation loop has a reference to the correct variable. A similar

mechanism specifies the appropriate eventStream variable to the simulation loop. The SetTypes attribute

mapping sets the typenames of the C variables. This rule can be executed if a single instance of FSA is

found in the input graph. Since there is exactly one instance of FSA, the rule fires exactly once. Finally,

notice that this rule contains “output” ports. These ports pass matched/created vertices out of the rule so

they can be used as context vertices for other rules. The iFSA instance, States and Events enumerations

are passed out. These vertices will be used as context vertices for the rule in Figure 14.

Passing context vertices between rules provides a natural way to sequence rules together. Figure 16

shows how rules can be explicitly sequenced in a dataflow-like fashion. The oblong labeled BuildMainObjects

encapsulates the rule of Figure 15. It exposes three outputs ports that pass out the FSA instance, and the

enumerations. The oblong labeled BuildStateEnum encapsulates the rule in Figure 14; it is passed the FSA

instance and the STATES enumeration provided by the BuildMainObjects rule. The BuildEventEnum rule

is almost identical to BuildStateEnum, but fills in the EVENTS enumeration and requires the EVENTS

enumeration for context. Rules cannot execute until they have their context, and rules without data depen-

dencies can be executed in parallel or sequenced in an arbitrary order. For example, one can imagine that

BuildStateEnum and BuildEventEnum are applied concurrently. There is one important caveat. Unlike true

dataflow systems, rules do have non-local effects because they all operate on the same global graphs. There-

fore, the order of execution may affect the outcome, even if rules do not have explicit data dependencies.

Finally, GReAT allows rules to be hierarchically grouped into blocks. Thus, we can group these rules into
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Figure 15. Rule creates the declarations, loop, and main switch objects.

one large block called BuildDeclarations. Blocks also have interfaces for passing context vertices. By default,

all the rules inside the block execute before any vertices are passed out of the block. In the interest of space,

the remaining transformation rules are included in Appendix A.

For the sake of completeness, we will briefly describe how C code is generated from an AST model. After

an FSA model is transformed into an AST model, an API-based traverser walks the AST model and emits

C code to a file. The AST model is already a tree structure (with the exception of references), so a simple

depth-first walk of the model suffices to generate code. The fragment below shows part of the code generation

procedure written with the BON API in C++.

bool Component::WriteCode (BON::FCO n, NODETYPES nt, NODETYPES pt) {
switch (nt) {
...

case AST CASE:

if (!ProcessCase(n,pt)) return false;

break;

case AST ENUM:

writeFile << "enum " << n->getName() << " { ";

if (!ProcessElements(n)) return false;

writeFile << " };\n"; break;

case AST ELEM:

writeFile << n->getName(); break;

...

}
return true;

}

The WriteCode method is passed a node from the AST model (n) and an enumeration value that describes

the type of the node (nt). The type of the parent of n is also provided (pt). The method contains one

switch statement with a case for each node type. For example, if n is an enumeration node (identified by

the constant AST ENUM ), then the method outputs the C fragment: enum NAME {, and recursively calls
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Figure 16. Sequencing and encapsulation of the graph rewriting rules as a block.

WriteCode on the enumeration elements via the ProcessElements method.

bool Component::ProcessElements (BON::FCO enumeration) {
std::set<BON::FCO> elems = BON::Model(enumeration)->getChildFCOs("EnumElement");

for (iterator fit = elems.begin(); fit != elems.end(); ++fit) {
if (!WriteCode(*fit,AST ELEM,AST ENUM)) return false;

...

... writeFile << ", ";

} writeFile << enumeration->getName() << " Count"; return true;

}

This method collects all the enumeration elements in the set elems and then iteratively calls WriteCode on

each element. WriteCode simply prints the name of the enumeration element and returns. Each element

is separated by a comma and a final “count” element is appended to the enumeration. Thus, the actual C

code produced looks like: enum NAME { V1 = 0, V2, ..., Vn, NAME Count };. The remaining AST node

types are handled in a similar fashion. Appendix A shows example output of the code generator.

Even though this example code generator is quite simple, it is not entirely trivial. Needless to say, without

graph transformations this code generator would have been even more complicated. The transformation

approach allows us to minimize the amount of code necessary to implement the semantic analysis phase.

Additionally, formal verification techniques may make it possible to verify that the transformation is correctly

implemented.

The transformation approach also supports reuse of model transformations through function composition.

For example, given modeling languages MA,MB ,MC and transformations τA,B : MA → MB , τB,C :

MB → MC , we may construct a new map τA,C : MA → MC defined by τA,C = τB,C ◦ τA,B . The new

map τA,C transforms models from languageMA toMC viaMB . Function composition allows reuse of the

maps τA,B and τB,C . At first glance, it may appear that this style of reuse is purely academic. However,

model-based design employs this style of reuse extensively, precisely because it simultaneously supports many

different languages and abstraction layers. We show a concrete example of this in the discussion.
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Discussion and Conclusion

The genesis of model-based design was the heterogeneity and resource constraints of embedded and dis-

tributed systems. As a result, the literature surrounding model-based design may seem foreign to traditional

software engineers. However, as we have shown, most concepts in model-based design are systematic ex-

tensions of well-established design techniques. Additionally, these extensions will have broader impact as

the “traditional” software realm evolves to become more like embedded and heterogeneous systems. This

is already happening on two fronts. First, traditional software applications (e.g. word processing, spread

sheets) are being recast into service-oriented and data-centric architectures where it is natural to impose

complex non-functional requirements related to time and network usage. (This was discussed in the in-

troduction with DDS.) Second, next-generation processor architectures, like the CELL [56], are condensed

heterogeneous systems. Exploiting the power of these processors will require dramatic changes to traditional

software design techniques so that the inherent heterogeneity is utilized. These issues have been extensively

explored in [57].

As we have shown, the DSML perspective provides a convenient metaphor for extending existing tech-

niques in software engineering. However, the are other metaphors that also have significant utility; Platform-

based design[58] is one such alternative. Platform-based design describes the application context with a set

of components. Components are simultaneously structural and behavioral: They have interfaces and are

connected together through these interfaces. A platform includes structural rules restricting how compo-

nents can be connected. Components also encapsulate behaviors, and interact with each other through

their interconnections. This viewpoint deemphasizes the separation between the structural and behavioral

semantics. What we call models are referred to as platform instances, and are instantiations of components

and component interconnections. Platform-based design differs from other views by emphasizing semi-

automatic/automatic system synthesis from high-level specifications [59]. The Metropolis[60] projects aims

to develop tools for automatic synthesis between generic platforms.

We now conclude by viewing a classic design problem through the eyes of model-based design. Figure

17 shows the classic sketch of simple communication protocol between a sender and a receiver. As usual,

the flowchart is intended to be a clear high-level specification of the following communication protocol: The

sender broadcasts an Ack while the receiver waits for the Ack. The waiting receiver times out every 10ms,

though it returns to the waiting state after this timeout. If the receiver observes the Ack, then it broadcasts

a Nack. Similarly, after the sender announces an Ack it waits 10ms for a Nack. If Nack does not arrive

in this interval, then the sender broadcasts the Ack again. At the very least, we would like to know if the

sender and receiver can reach the Done boxes in the flowchart, assuming they both start at the same time.

Traditionally, there are two approaches to this design problem. The first approach is to immediately code an

approximation of this flowchart, and then test it. We need not mention that this first technique is doomed to
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Figure 17. Simple example of a communication protocol.

failure. The second approach is to be more precise about the meaning of the diagram. For example, we might

decide that hierarchical concurrent finite state machines (HFSMs) provide a more precise characterization

of the concurrency in the model. This might lead us to diagram in Figure 18.

This HFSM representation contains two implicit “clock” automata that emit time tick events. This

representation discretizes time, because there are no time events that occur within a hypothetical interval.

The fact that we used two clocks instead of one clock suggests that we assume the clocks are not synchronized.

However, in order to make this precise we must define the synchronization mechanism between the automata.

There are many possible choices, none of which are inherently right or wrong. However, these choices

drastically affect analysis of the high-level models. For example, if we choose the synchronous product of

finite state transducers (FSTs) as the composition mechanism, then the HFSM is equivalent to the flattened

transducer in Figure 19.

This transducer has the property that from the state start (S1, A, T1, B) the acceptor state (S3, A, T3, B)

is always reachable from all future states. However, had we chosen a different composition mechanism, such

as an asynchronous product (shuffle product), then the analysis would have yielded a different result. In

the asynchronous case, it is always possible for the sender and receiver to miss each others messages, so

there is path from the start state for which the acceptor state is not reachable. Which prediction accurately

reflects reality depends on how the final system will be implemented. However, this presents a paradox:

Choosing the right high-level specification depends on knowledge of the implementation, but the high-level

specification is supposed to precede implementation.

Software engineers argue that design choices must be carefully contemplated, usually within the frame-

work of a design methodology. Traditionally, a design choice refers to a decision about the architecture of
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a point design. However, the above example shows that there are other design choices that affect the entire

class of possible designs. These choices are equally important, because they influence whether analysis and

verification at the pre-implementation phases reflect the properties of the future implementation. Using the

enhancements of model-based design we can capture “meta-level” design choices, as shown in Figure 20.

Each oval represents the structural semantics of a DSML. The top oval is the flowchart language, and the

row beneath lists various hierarchical automata structures. On the left there is a hierarchical FSM language,

in the center is a hierarchical timed-automata language (HTA), and on the right is a hierarchical hybrid

automata language (HHA). The meta-level design choices define how a flowchart model is projected onto

these other languages. We can explicitly characterize these choices by writing modeling transformations

between the languages. For example, the transformation that assigns a unique automaton to each clock

of the flowchart is shown by the arrow labeled locally asynchronous clocks. Similarly, the transformation

that creates one unique global clock is shown by the arrow labeled external global time events. If we prefer

to consider time as dense and globally synchronized, then we would consider possible projections onto the

HTA language. If time is dense but clocks tick at different rates, the we would consider projections onto the

HHA language. For each hierarchical language, the semantics of concurrency is defined in terms of product

operators that transform a hierarchical model into a flat automaton structure. Figure 20 shows the flat-

tened automata languages below their hierarhical counterparts, and shows model transformations from the

hierarchical version to the flat version. These transformations capture the ways that concurrent automata

interact. As the diagram shows, there is not one unique way to view concurrency, but a spectrum of possi-

bilities. Finally, code and analysis models can be easily generated from the simple flattened languages, and

then tested or verified using tools based on the corresponding formalism. (See Section II.3.)

The framework of Figure 20 permits the systematic exploration of meta-level design choices. The domain-

specific language is the key ingredient that allows this framework to emerge. Given a flowchart model m, we

s1 s2 s3

/ack nack/

10msA/ack

t1

t2 t3

t4

10msB/

 /

ack/

/nack

A

/10msA

B

/10msB

Sender SenderTimer

Receiver ReceiverTimer

Figure 18. One possible representation of the protocol using HFSMs.
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can explore the impact of meta-level choices by choosing a sequence of transformations τ1, τ2, . . . , τn where

the domain of τ1 is the flowchart language and the codomain of τn is the syntax of simulation instructions

for a simulator. Then, by composition, (τn ◦ . . . ◦ τ2 ◦ τ1)m yields a simulation artifact. The sequence of

maps captures the meta-level choices, and the simulation artifact captures the final outcome of these choices.

Notice that the number of semantic variants of a language is equal to the number of unique paths from the

language to a leaf. In general, this is combinatorial in the number vertices in the diagram. This fact alone

shows why it can be quite difficult for a designer to make the right meta-level choices. At the same time,

it means that a particular τi may appear in an exponential number of semantic variants, yield significant

reuse of the DSMLs. In conclusion, the model-based approach uses the DSML to capture the properties

of a particular application context at a particular level of abstraction. Model transformations link DSMLs,

providing a reusable framework for exploring meta-level design choices.
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Figure 19. Interpretation of the specification assuming synchronous product.
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CHAPTER III

FORMALIZING STRUCTURAL SEMANTICS

Introduction

Model-based design has emerged as a powerful approach to modern system design. Two core principles

lie at the heart of its success: First, accidental complexity can be reduced using domain-specific languages

and tools. Second, essential complexity can be incrementally controlled through domain-specific abstrac-

tions [61][62][11]. Accidental complexity arises from the semantic mismatch between domain-specific concepts

and implementation languages. For example, embedded systems often employ simple hardware-like models

of concurrency wherein data is emitted and consumed by software components. Traditional software tech-

niques require these concurrency concepts to be rewritten in terms of threads with mutexes and semaphores,

even though thread-based concurrency is a drastically different concurrency model. This mismatch can be

a major source of accidental complexity [63]. The model-based approach is to rapidly prototype domain-

specific modeling languages (DSMLs) that support the precise concepts (e.g. concurrency concepts) needed

for the problem domain. This reduces accidental complexity.

Essential complexity increases as a system approaches implementation. During implementation, details

absent from the higher-level system specifications (or abstract models) are introduced. For example, an

abstract model may utilize an ideal unbounded FIFO. Any implementation augments the ideal FIFO with

additional details bounding its size. Implementation details of this sort introduce essential complexity that

must be handled with great care. Model-based design employs a “stack” of DSMLs (also called a platform

stack) to handle this [64]. The language at the top of the stack is an abstract, ideal view of the domain

semantics. The lower languages in the stack augment the semantics, adding necessary details. This approach

allows the engineer to define an abstract view of the system, and then gradually increase the complexity by

migrating the design down the platform stack. At each step, the more abstract model can be compared with

the more detailed model to ensure that the same functional and non-functional requirements are satisfied

(also called refinement verification) [65].

The domain-specific modeling language is the key ingredient for managing design complexities. A most

remarkable feature of a DSML is the extent to which model structure alone can be used to check model

properties and link DSMLs in a platform stack. For example, cycles or knots in a dataflow graph (a structural

property) may indicate a deadlock (a behavioral property) in the implementation [66]. DSMLs based on

concurrent automata can use transformations on structure (e.g. synchronous product, shuffle product, etc...)

to capture interaction and communication. For example, automata-like models can be transported to lower

levels in a platform stack by replacing many concurrent automata with a large flattened automaton. All
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of this can be done solely using model structure, i.e. without invoking the behavioral semantics of model

elements. In fact, the quest for a fundamental theory of model transformations has driven the field in many

interesting directions[67].

Even when structure is not enough to reason about models, it still plays an important role: It is the

supporting skeleton on which other styles of semantics are built. For example, Plotkin-style structural

operational semantics (SOS) make explicit reference to structure [68][69]. Other approaches use model

structure as input to a mathematical execution machine [70]. Even some denotational approaches define

denotations on top of the model structure [71]. Model-based tools support the rapid definition of rich

structures through metamodeling, and model transformation tools, such as GReAT[72] and Viatra[73], utilize

the metamodel descriptions of structure.

Despite the fundamental role of structure in the model-based approach, it remains largely unformalized

(along with other a number of other concepts [74][75]). To address this and other issues, we present a

mathematical formulation of structure, giving a precise tool-independent definition that is amendable to

formal analysis. This work also provides a formal understanding of model transformations and metamodeling,

yielding a complete picture of the structural basis of model-based design. In this sense, we broaden the

term structural semantics to include the semantics of model transformation and metamodeling. Section

III.2 presents our formalization, leaving some key parameters free for later specialization. We begin by

formalizing the set of all structurally well-formed models that belong to a DSML. We use these sets as

the basis for formalizing model transformations. Finally, we define metamodeling as a transformation from

models to sets of well-formed models. Section III.3 illustrates one specialization that leads to decidable

algorithms for analyzing domains and model transformations. We also show how our formalization can be

immediately applied to existing metaprogramable tools such as GME\GReAT. Section III.4 concludes with

a short discussion and plans for future work. This work is a continuation of work originally presented at the

ACM Conference on Embedded Software in 2006 [39].

The Formal Semantics of Domains and Domain Construction

The structural semantics characterizes the set of all well-formed mathematical structures of a particular

application context. We call this set of structures a domain, and a common domain is shown in the the

foreground of Figure 21.a. The basic building blocks of this domain are the the hardware components (ASICs

and cards) that can be plugged into the circuit board. Each block on the circuit board encodes a restriction

on the actual ASIC that can be placed in a particular location. For example, the block labeled CPU encodes

the constraint that a CPU, not a RAM module, must be placed at that point. Constraints can be more

complicated than simple placement rules. For example, Figure 21.a also requires that if a CPU of type A is

placed on the board, then a RAM module of type B cannot be placed on the board. A model is a description
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Figure 21. (a) Example of two domains. (b) A model from a digital signal processing domain.

that has no remaining degrees of freedom, e.g., every place on the circuit board has some hardware assigned

to it. A well-formed model is a model that satisfies all the constraints imposed on its construction. The set

of all well-formed models contains all the meaningful structures of a domain. It is important to note that

the set of well-formed models can be defined without giving a behavioral meaning to the constructs that

participate in the model. For example, we do not need to give any details about what CPUs, RAMs, and

buses do in order to check well-formedness of the circuit board models.

This example shows that a domain is a set models, models are built from some structural primitives, and

good models can be distinguished from bad models. Formally, a domain is characterized by the following

information:

1. a set Υ of concepts, components, or primitives from which models are built,

2. a set RΥ of all possible model realizations,

3. a set of constraints C over RΥ.

The model realizations in RΥ are all the ways that models can be built from the available primitives. A

domain’s set of well-formed models is the set of all model realizations that satisfy the constraints. We write

this set as

D(Υ, C) = {r ∈ RΥ | r |= C}. (III.1)
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The notation r |= C can be read as “r satisfies the constraints C”. The first essential issue in formalizing a

domain is to decide how the set of all model realizations RΥ relates to the set of concepts Υ. The relationship

between Υ and RΥ must capture the types of structures commonly encountered in embedded systems design.

For example, the background pane of Figure 21.a shows a diagram outlining the connectivity of components

in a data processing application. This typical domain bares similarities to labeled directed graphs (sets of

vertices, binary relations), as well as type systems (vertices can be rectangles or ellipses). Additionally,

structural concepts like hierarchy and attributes are commonly found in embedded system domains. The

primitive set Υ must be capable of encoding all of these concepts, and the set of all model realizations RΥ

must include all the ways that these concepts can be used together.

Though these general observations direct us towards candidate formalisms, they do not narrow down the

candidates to reasonably few possibilities. We propose that a candidate formalism should also satisfy the

following “non-functional” requirements:

1. Relevance - The formalism should capture, at least, the relevant structural concepts supported by today’s

DSML tools.

2. Scalability - It should be possible to “scale” the formalism to include new structural concepts introduced

as DSML methodologies evolve.

3. Expressiveness - The formalism should express a wide range of constraints on structure.

Let us provide some justification for these points. Research on DSML methodologies has been ongo-

ing for over a decade and has yielded tools and standards such as: the Generic Modeling Environment

(GME)[43], the Eclipse Modeling Framework (EMF)[76], the Graph Rewriting and Transformation (GReAT)

language[72], the Visual Automated Model Transformation (VIATRA) tools[73], the Meta Object Facility

(MOF) specification[77], and the Queries/Views/Transformations (QVT) specification[78] (to name a few).

A formalism that does not support most of the structural concepts provided by these tools will be moot for

most developers. Instead of discarding mature tools due to their informality, we should believe that a formal

underpinning can be discovered.

DSML tools and their related specifications continue to evolve at a rapid pace. For example, the Unified

Modeling Language (UML) standard has been under development since 1994 and is continually evolving via

the Object Management Group (OMG). MOF, which is now its second iteration, spun off from UML and

the two standards continue to impact each other. Besides specifications, new tools are also being produced.

For example, Microsoft is producing a domain-specific language toolkit for Visual Studio[79]. A number of

highly visible academic tools (e.g. Ptolemy II[3] and Metropolis[62]) are expanding platform-based design,

directly impacting DSML tools. Thus, a formalism must scale up with the growth of the field, otherwise it

risks becoming irrelevant.

Our notions of relevance and scalability are with respect to model structure: Do model elements have
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hierarchy, interfaces, or multiple aspects? The use of these structural mechanisms can be restricted by the

constraints C. By expressiveness, we mean the capabilities of the underlying constraint system to restrict

model structure. The expressiveness of the candidate formalism directly impacts the possible analyses that

can be performed on the DSML. For example, OCL (Object Constraint Language)[42] is a first-order calculus

used for constraining model structure. As such, OCL has the potential to make model well-formedness semi-

decidable. Thus, we may have to the adjust the expressiveness of the underlying formalism in order to

achieve analyzability. This is a common tactic used in embedded systems design.

Existing Candidate Formalisms

Regular and Context-free Languages Regular and context-free languages have a long history in

traditional language design, and are worth considering. If we were to apply this framework, we would choose

the modeling primitives to be an (infinite) alphabet Σ, i.e. Υ = Σ. The set of all model realizations would

be the set of all finite strings RΥ = Σ∗. Finally, the constraint system C would be either a finite state

acceptor (regular languages) or a pushdown automata (context-free languages). This framework has two

main drawbacks: First, strings are not an optimal encoding for relational structures. Second, the constraint

systems are not sufficiently expressive for capturing typical constraints.

Consider the dataflow system of Figure 21.b. Structurally, it resembles a labeled directed graph, where the

vertex labels distinguish dataflow components, and the edges denote the flow of data between components.

In fact, many domains are relational in the sense that some elements can “stand on their own” (e.g. vertices),

while other elements only exist between elements (e.g. edges, or arbitrary n-ary relations). Thus, as a litmus

test, consider representing arbitrary directed graphs (without orphans) as strings of the language LDG. Let

s ∈ LDG(Σ) if s ∈ Σ∗ is a string of even length. An orphan-less directed graph G with the vertex set V ⊆ Σ

is mapped to a string s(G) as follows: Let s(G) = ve1ue1 ve2ue2 . . . ven
uen

for any ordering of the edge

relation E = {(vi, ui)} ⊆ V 2. Similarly, a string s can be converted to a graph G(s) where V =
⋃|s|

i=1{si}

and E =
⋃ |s|

2
i=1{(s2i−1, s2i)}. Notice that LDG is the “simplest” language for capturing orphan-less digraphs,

in the sense that there are no syntactic adornments and no unnecessary restrictions are placed on LDG. It

is easy to see that the strings of all equally simple representations are in bijective correspondence. Thus,

LDG is worth studying as an exemplar of the formal language approach. One immediate observation is that

s(G) is not unique; in fact, there are a combinatorial number of possible representations of a digraph G.

This occurs because we force an unnecessary linear ordering on relations that do not need such an ordering.

The only way out is to arbitrarily choose some way to order edges, but this is not a particularly attractive

solution.

The expressive power of regular and context-free languages is also problematic. As an extreme example,

define a well-formed graph to be one that contains no path of length greater than two. By the definition
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of s(G), well-formed graphs correspond to even strings that do not repeat vertex labels. For example,

s(G) = v1v2v3v4v5v6 for the well-formed graph of Figure 22. Given a set of labels Σ, the language of orphan-

less 2-paths L2p(Σ) ⊂ LDG(Σ) is the set of all permutations of subsets of Σ. The language of all finite graphs

of orphan-less 2-paths is L2p(Σ) where Σ is countably infinite. By the Myhill-Nerode theorem[37], L2p is not

a regular language because it corresponds to an equivalence relation with an infinite number of equivalence

classes. Thus, regular languages will have trouble capturing the more complex graph-theoretic constraints

encountered in many DSMLs. Similar arguments hold for context-free languages (e.g. recognition of acyclic

digraphs). Of course, the limitations of regular and context-free languages are well-known in traditional

language design. Traditionally, the more complicated constraints of a programming language are pushed

into later phases of the compiler, i.e. into the type system and semantic analysis phase. This solution does

not work for our situation, because our goal is to capture all of the structural constraints of a DSML in an

explicit and tool-independent fashion.

Extensions of Graph Structures Relational structures play an important role in the structural se-

mantics of model-based design. Often there is an underlying graph structure present in DSMLs. Thus,

we might directly employ a graph theoretic framework to formalize model structure. Take Υ = ∆ where

|∆| = |ℵ0| is a countably infinite set of vertex labels. Then, the possible model realizations are given by

the set of all finite graphs with vertices from ∆: G = {(V,E)|V ⊂ ∆, E ⊆ V 2} and V is finite. The major

drawback of this approach is that it does not easily capture other relational components of DSMLs, of which

there are many.

A range of relational concepts can be found in the metamodeling languages currently used to specify

DSML structure. Figure 23 shows an example UML-like metamodel that contains many interesting relations.

(We will discuss metamodeling in more detail later.) Informally, the boxes represent classes; classes can have

attributes, which are typed member fields. In UML notation, the class called EdgeClass relates instances of

ClassB, and also has an attribute. Graph structures called attributed graphs have been created to capture

these concepts. Notice that edges will have to be distinguished by labels, because two edges between the

same vertices may have different values for their attributes. Following the notation of [80], an edge-attributed

graph (E-Graph) is a combination of graph nodes V1, data nodes V2, graph edge labels E1, node-to-data edge

v1 v2 v3 v4 v5 v6

Figure 22. A graph containing only 2-paths
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labels E2, and edge-to-data labels E3. Because edges are distinguishable, a set of functions (sourcei)i∈{1,2,3}

and (targeti)i∈{1,2,3} designate the source and destinations of the various edge types. Thus, a graph G1 is

a structure:

G1 =

〈
V1, V2, E1, E2, E3,

(sourcei)i∈{1,2,3}, (targeti)i∈{1,2,3}

〉
.

This definition does not capture the types of the attributes, necessitating a further extension. Following

the notation of [81], an algebra D is introduced D = 〈D, (fj)j∈J〉 where the universe D contains all possible

data values of attributes, and the operations fj are useful operations on data values. For example, the

universe D = Z ∪ B ∪ Σ∗ contains integers, booleans, and strings over an alphabet Σ. D contains a set

S of distinguished elements called sorts, which give names to the relevant subsets of D. For example, if

S = {int, bool, string}, then Dint = Z, Dbool = B, and Dstring = Σ∗. Given this algebra, the data vertices

V2 are those elements of D that are members of the relevant sorts, i.e. V2 =
⋃

s∈S Ds. A typed attributed

graph is:

G2 =

〈 D,S, V1, E1, E2, E3,

(sourcei)i∈{1,2,3}, (targeti)i∈{1,2,3},

(fj)j∈J , sort

〉
.

where sort : S → P(D) maps each sort name to the corresponding subset of D. We dropped V2 because it

is defined by the information D,S, sort.

These extensions incorporate attributes, but not other common relations. In the interest of space, we

shall consider just one more relation, the containment relation. Containment allows instances to have

internal structure. Referring back to the metamodel of Figure 23, the edge from ClassA to RootClass

(terminating with a diamond symbol) indicates that instances of RootClass contain instances of ClassA.

Containment allows substructures to be encapsulated within model elements; it is a form of information

hiding. Hierarchical graphs extend graphs so that vertices can contain graphs. Following the notation of

[82], let H be the set of all hierarhical graphs. A hierarchical graph GH contains a set F of frame edges and a

mapping contents : F → H that assigns a hierarchical graph contents(f) to each frame edge f ∈ F . At first

RootClass ClassA

bAttribute: bool

ClassB

sAttribute: string

ClassC

zAttribute: integer

EdgeClass

bAttribute: bool

src

dst

isAPort

isAPort

Figure 23. Example metamodel with many relational concepts
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glance this definition appears circular, but it can be defined inductively as to avoid any circularity. Combining

this extension with typed attributed graphs, let HTAG be the set of all hierarchical typed attributed graphs,

then:

G3 =

〈 D,S, V1, E1, E2, E3, F

(sourcei)i∈{1,2,3}, (targeti)i∈{1,2,3},

(fj)j∈J , sort, contents

〉
.

These extensions still do not handle all structural concepts. For example, ports, which are projections of

internal structure onto the external structure, are not handled. Figure 21.b shows ports on the dataflow

components. Edges that cross hierarchy, like those found in representations of StateChart models, are also

problematic.

These graph-theoretic extensions can be useful for expanding model transformation techniques that are

based on graph rewriting rules. In fact, many of the aforementioned extensions were proposed by researchers

in the model/graph transformation community, where the emphasis is on the underlying graph structure.

However, our goal is to present a general theory for the structural semantics of model-based design. From this

perspective, there is no reason to shape the general theory around just one of the many relational structures

found in DSMLs. As we have shown with G1, G2, and G3, too much emphasis on graphs contradicts our

scalability requirement.

Instances of ADTs One final candidate that we examine comes from the long history of abstract

datatypes (ADTs) in object oriented programming[83]. Our focus is on the structural aspects of models, so

we view classes as very simple ADTs without operations. (If operations were specified in the classes, they

would be ignored.) In this case, the modeling primitives are the sets of basic datatypes and descriptions of

the ADTs:

Υ = 〈Sbasic, SADT , (Ds)s∈Sbasic
, nfields, field〉.

The set Sbasic defines the basic datatype names (the set of sorts) from which ADTs can be built, e.g.

Sbasic = {int, bool, string}. The sets (Ds)s∈Sbasic
(the carriers) contain the values of the basic datatypes,

e.g. Dint = Z, Dstring = Σ∗. The set SADT contains the names of ADTs, e.g. SADT = {Thing,Buyer} as

shown in Figure 24. The operation nfields : SADT → Z+ maps each ADT to the number of fields in the

ADT: nfields(Thing) 7→ 3, nfields(Buyer) 7→ 2. The mapping field : SADT × Z+ → Sbasic describes the

basic type of the ith field of ADT t. For example field(Thing, 1) 7→ string, field(Buyer, 2) 7→ bool. Given

this information, we can construct the set At of all possible instances of an ADT t:

At =
nfields(t)∏

i=1

Dfield(t,i)

For example, the set of all Buyer instances is the Cartesian product ABuyer = Dstring × Dbool. A model

realization may contain an arbitrary number of instances of each ADT, so the set of all model realizations
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is the Cartesian product of the powersets:

RΥ =
∏

t∈SADT

P(At)

This basic construction may be extended to allow duplicates of the same instance (using multisets with

multiplicities), or distinguishable duplicates (using unique IDs). The major drawback of this approach is

the difficulty of incorporating any relations. Again, there is no consistent mechanism for incorporating

relations of arbitrary arity. However, this approach and the previous approaches all provide some insights

that we will utilize in our formalism. In particular, we will convert a metamodel into a signature Υ, and

then construct the term algebra generated by an alphabet Σ over Υ. The generated signature precisely

captures the relational structures of a domain, generalizing the binary relations that are emphasized by the

graph-theoretic approach. The terms of the term algebra generalize the strings found in the formal language

approach. A model realization a set of terms, and the set of all model realizations is the powerset of terms.

This incorporates the powerset construction found in the ADT approach.

Algebraic Approach

Mathematically, we must find a formalization that naturally captures the possible complex relations between

model elements. We chose a simple, yet flexible, algebraic approach that can handle the structural concepts

typically found in model-based design: Model primitives are represented as function symbols and model

realizations are subsets of the term algebra generated by these function symbols. (This description uses

the language of modern algebra, see [84].) We begin with an example to illustrate this approach. Figure

21.b shows a model that belongs to a domain for Digital Signal Processing (DSP) systems. We will work

backwards from this single model to the domain of all DSP models. To begin, we must extract the primitive

concepts used to build DSP systems. Examining Figure 21.b, we see that this model has inputs and outputs

at the far left and right side, as well as a number of DSP primitives (FFT, phase/magnitude extraction,

and signal demultiplexing), which can be instantiated multiple times. The zoomed in box shows that the

primitives have interfaces, which are sets of uniquely identifiable ports. In order to capture these concepts,

Thing

description: string

price: int

refurbished: bool

Buyer

fullname: string
paid: bool

Figure 24. Some classes as ADTs
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we will describe a set of n-ary function symbols for encoding the modeling concepts. Table 7 lists the basic

concepts of the DSP domain written as n-ary function symbols.

Table 7. Set of modeling concepts for DSP domain.

Υ =



insig(X) : X is system-wide input signal

outsig(X) : X is system-wide output signal

prim(X) : X is a basic DSP operation

iport(X,Y ) : X has an input port called Y

oport(X,Y ) : X has an output port called Y

inst(X,Y ) : X is an instance of the DSP operation Y

flow(X1, Y1, X2, Y2) : Data goes from oport Y1 on X1 to iport Y2 on X2

The function symbols clearly encode the important concepts needed to build DSP models. However, in

order for the function symbols to encode actual models we need a set of constants that stand for distin-

guishable model elements. For example, in Figure 21.b there is a DSP block called FFT. We capture this by

writing prim(FFT), where the name FFT is a constant from some underlying set of constants. Mathemati-

cally, prim(FFT) is called a ground term (or just term). A model is a set of ground terms where each ground

term expresses information about some particular constants, using the function symbols. Table 8 shows a

partial encoding of the DSP model as ground terms1. Notice that terms can be arbitrarily nested, naturally

expressing relations over relations.

Table 8. A partial encoding of Figure 21.b with ground terms.

Primitives prim(FFT), prim(Splitter), prim(Phase)

Ports iport(prim(FFT), Real), . . . , oport(prim(FFT), Imag)

Inputs insig(In1), insig(In2)

Outputs outsig(Ab1), outsig(Ph1), . . . , outsig(Ph2)

Instances inst(FFT, prim(FFT)), . . . , inst(AbsPhase1, prim(Phase))

Flows flow(insig(In1), insig(In1), inst(FFT, prim(FFT)), iport(prim(FFT), Real)), . . .

A single model is a set of ground terms, therefore the set of all model realizations RΥ contains all possible

sets of ground terms that can be formed from Υ and a set of constants from some (infinite) alphabet Σ. We

will make this more precise using the language of algebra. Assume an underlying vocabulary V that provides

function names (symbols), then Υ is a signature; a partial function from function names to the non-negative

integers, Υ : V → Z+. The set domΥ is the set of function symbols used to encode models, and the integer
1In order to simplify the encoding, we assume that every input/output is also a port with the same name as the input/output.
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assigned to each symbol is the corresponding arity of the function. An Υ-algebra A = 〈A,Υ〉 is a structure

where A is a set called the universe of the algebra, and Υ is a signature. Each function symbol f in the

signature denotes a mapping f : AΥ(f) → A from an Υ(f)-tuple of the universe back to the unverse.

Given a signature Υ and an alphabet Σ, there exists a special algebra TΥ(Σ) called the term algebra

generated by Σ with the following properties:

Definition 1. Let Υ be a signature and Σ be an alphabet, then the term algebra TΥ(Σ) is defined by the

following:

1. 〈Σ〉 = TΥ(Σ)

2. imf ∩ Σ = ∅

3. f(t1, . . . , tΥ(f)) = g(t′1, . . . , t
′
Υ(g)) iff f = g, tk = t′k for 1 ≤ k ≤ Υ(f).

The notation 〈Σ〉 = TΥ(Σ) can be read “Σ generates TΥ(Σ)”. A subset X of the universe A generates

an algebra A if every member of the universe can be reached by repeated applications of functions to the

elements of X. The term algebra is special, because two functions return the same value iff the functions are

the same and their arguments are the same. This means that every element of the universe can be uniquely

identified by writing the unique term that produces the element: e.g. inst(AbsPhase1, prim(Phase)) is some

unique element. This property means that it is unnecessary to explicitly define the universe of a term algebra;

instead we can just write terms. The set of all model realizations is the powerset of terms.

Definition 2. The set of model realizations RΥ for a signature Υ is given by RΥ = P
(
TΥ(Σ)

)
.

The set of model realizations RΥ contains many model realizations. In fact, given one function symbol f

of arity one and one constant α, Tf ({α}) contains a countably infinite number of models. (Consider that all

the natural numbers can be generated by 0 and succ(·), the successor operation.) As a result, RΥ may contain

many models that combine the functions symbols in ways contrary to our intensions. Consequently, we need

a mechanism for deciding whether sets of terms are well-formed or malformed. Preferably, the formalization

of well-formedness should support formal analysis. One natural candidate is the representation of formal

logics via consequence operators. A consequence operator `, in the sense of Tarski, is a mapping from sets

of terms to sets of terms, i.e. `: P(TΥ(Σ))→ P(TΥ(Σ)). Given a set T of ground terms and a set of axioms

Θ, then T `Θ T ′ yields all the ground terms T ′ that can be derived from T by repeated applications of the

axioms Θ and the inference rules of the underlying logic. We will also write T ` t, where t is a single term,

indicating that t ∈ T ′. Classical consequence operators are extensive, isotone, and idempotent, though we

will make use of nonmonotonic consequence operators that do not have the isotone property.

We propose a simple decision procedure, using consequence operators, to separate well-formed models

from malformed models. Add a new function symbol wellform(·) to the signature Υ, then a model M is

well-formed if ∃x ∈ TΥ(Σ),M `Θ wellform(x). M is well-formed if there is some ground term of the form

54



wellform(x) that can be derived from M . The axioms Θ capture the ways that wellform(·) terms can be

derived, and vary from domain to domain. Sometimes it is easier to characterize the malformed models,

in which case we augment Υ with a malform(·) symbol. A model is well-formed if ∀x ∈ TΥ(Σ),M 0Θ

malform(x), i.e. if it is impossible to prove any malform(·) term from M . In this case, the axioms Θ

capture the ways that models can be malformed. Notice that consequence operator allows us to adjust

the expressiveness of the entire constraint system, and the axioms Θ capture the constraints of individual

domains.

A domain has the following parts: An alphabet Σ, a signature Υ, called the domain signature, a signature

ΥC , called the constraint signature, and a set of constraints C for deriving model well-formedness. ΥC , an

extension of Υ, contains all the necessary symbols for deriving well-formedness. By “extension”, we mean

that ΥC contains at least the symbols of Υ, and assigns the same arity to those symbols: dom Υ ⊂ dom ΥC

and Υ = ΥC |domΥ. Domains are subdivided into two disjoint classes: positive and negative. Positive domains

must include the unary symbol wellform in ΥC ; a model is well-formed if any ground term of the form

wellform(·) can be deduced. Negative domains must include the unary function symbol malform in ΥC ; a

model is well-formed if no ground term of the form malform(·) can be deduced.

Definition 3. A domain D is a structure of the form 〈Υ,ΥC ,Σ, C〉. Υ and ΥC are signatures with functions

symbols from V, agreeing at their overlap. Σ is an alphabet, and C is a set of axioms over the terms TΥC
(Σ).

A domain is positive if ΥC(wellform) 7→ 1; it is negative if ΥC(malform) 7→ 1.

This scheme allows domains to be analyzed. For example, Figure 25 illustrates how two domains can be

compared with each other. Consider the case of two positive domains D1, D2 with identical Υ signatures
P(TΥ(Σ))

⊢C1
⊢C2

TW = {wellformed(x)|x ∈ TΥ∪ΥC1
∪ΥC2

}

D1

D2

r1

r2

Figure 25. Two positive domains of same signature are related by the wellform symbol

and agreeing2 constraint signatures ΥC . The upper plane shows the well-formed models of each domain
2The signatures assign the same arity to symbols of the same name.
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as a subset of the powerset of terms. Each well-formed model in Di infers one or more terms of the form

wellform(x) under the consequence relation `Ci
, as shown on the lower plane. Let TW be all the terms of

the form wellform(x). Two domains can be compared by working backwards from TW in the following way:

Check if there exists a model realization r ∈ RΥ such that ∃w ∈ TW , r `C1 w, but ¬∃u ∈ TW , r `C2 u. If

there exists such an r, then the domains cannot be equal because r is well-formed in the first domain and

not in the second. If there does not exist such an r, then D1 ⊆ D2. In this case, check the opposite direction

for an r′ such that ¬∃w ∈ TW , r′ `C1 w and ∃u ∈ TW , r′ `C2 u. Again, if no such r′ can be found, then

D(Υ1, C1) = D(Υ2, C2). A similar comparison can be made for negative domains. If an appropriate style of

logic is selected (i.e. an appropriate consequence relation) then domain equivalence is decidable.

Proposition 4. Two positive domains D1, D2 are equivalent (written D1
∼= D2) iff RΥ1 ∩ RΥ2 6= ∅ and

there is no model r ∈ RΥ1 ∩RΥ2 such that

∃w ∈ TW , r `Ci
w and ∀u ∈ TW , r 0Cj

u for i 6= j ∈ {1, 2}.

This is not a particularly deep proposition, but it shows how domain equivalence can be translated into the

language of consequence operators. A number of other important properties can be written in the language

of logic: Is a domain non-empty, i.e. does it contain at least one well-formed model? Does there exist a

well-formed embedding of a model realization r, i.e. can a malformed model be converted into a well-formed

model? In the second half of the chapter we specialize our framework using a consequence operator for which

these problems are decidable.

Transformational Semantics and Model Transformations

The model in Figure 21.b describes a computational apparatus that operates on a continuous stream of

data. Though the meaning of this diagram may appear obvious because of the way the model is drawn, we

cannot rely on this obviousness as a definition of how a model defines a system. Instead, we must explain

precisely how DSP models define computational systems. In practice, this is done by specifying a code

generator that produces an implementation from a model. A code generator might map models from the

DSP domain to models of a C++ domain. Thus, meaning is affixed to a domain by specifying a mapping

from models in one domain to models in another domain. In the model-based community semantics specified

with transformations are called transformational semantics. We shall choose a more context-neutral term

and call any mapping between model realizations an interpretation.

Definition 5. An interpretation J K is a mapping from the model realizations of one domain to the model

realizations of another domain.

J K : RΥ 7→ RΥ′ (III.2)
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A single domain may have many different interpretations, and these form a family of mappings (J Kj)j∈J .

For some model r ∈ RΥ, we denote the jth interpretation of r as JrKj . The interpretations capture the

(dynamic) semantics of a domain. For example, verification tools map a non-trivial class of models onto

the boolean domain {true, false}. We can think of this verification tool as an interpretation J KV erify

that maps models onto a domain containing exactly two models. Similarly, simulators map models onto

execution traces. The set of all traces can be collected together into a domain of well-formed traces, and

a simulator can be expressed as the mapping J KSim onto this trace domain. (Trace domains often have

interesting constraints that separate the well-formed traces from the malformed ones [85].) Notice that

there is no difference between transformational semantics and model transformations. Any framework that

supports model transformations also supports specification of transformational semantics. We can now define

a DSML:

Definition 6. A domain specific modeling language (DSML) L is a pair comprised of its domain and

interpretations.

L =
〈
D, (J Kj)j∈J

〉
. (III.3)

This definition differs from those presented elsewhere [43] because we expose the components of the

structural semantics, while ignoring all together the “concrete syntax”. But, other than this emphasis, there

is little conceptual difference between our definition and others.

Every domain has at least one interpretation, which is its structural interpretation. Let ΥB contain two

nullary function symbols {true, false}, and let the set of well-formed models be
{
{true}, {false}

}
. The

structural interpretation of a domain J Kstruc is a mapping onto RΥB
according to:

JrK =

 {true}, (r |= C)

{false}, (r |6= C)
(III.4)

The structural interpretation maps a model r to the true model if r satisfies its structural constraints.

Otherwise r is mapped to false.

The framework of formal logic can also be used to specify interpretations. Recall that a model is just

a set of ground terms. Given a model r and some axioms τ , we can deduce more terms with `τ . If τ is

correctly defined, then the new ground terms G′, where r `τ G
′, yield the transformed model. We will make

this more precise by first defining a transformation.

Definition 7. A transformation T is a three tuple:

T = 〈Υ,Υ′, τ〉 (III.5)

where Υ,Υ′ are disjoint signatures, and τ is a set of axioms over TΥ∪Υ′(Σ).

57



A model r ∈ RΥ is transformed to a model r′ ∈ RΥ′ by first finding the largest set of deductions ψ, such

that r `τ ψ. The resulting set of deductions is projected onto the term algebra of Υ′, producing a model

purely in RΥ′ .

Definition 8. Given a transformation T , a transformational interpretation J KT is a mapping:

J KT : RΥ → RΥ′ , JrKT 7→
(
ψ ∩ TΥ′

)
, where r `τ ψ. (III.6)

Interpretations that preserve the structural semantics of domains are particularly important to embedded

system design. These structure preserving maps posses the weakest property that one would expect a

correct transformational semantics to posses. These maps are also important in correct-by-construction

design [86][87][88].

Definition 9. An interpretation preserves the structural semantics (is structure preserving) if, whenever a

model r is well-formed, the transformed model JrKT is also well-formed:

∀r ∈ RΥ, (r |= C)⇒ (JrKT |= C ′) (III.7)

It should be mentioned that the verification of weak properties, such as structure preservation, is still a

major open problem in the model transformation community. Our approach allows some of these properties

to transcribed into formal logic, and then proved with an existence proof: Find an r ∈ RΥ such that

∃w ∈ TW , r `C w, but ∀u ∈ T ′W , JrKT 0C′ u. If no such r exists, then the map is structure preserving.

Again, this process may be decidable if a decidable logic is chosen for `, and τ is written correctly.

Proposition 10. Given a transformation T between two positive domains D1, D2, then T is structure

preserving iff ¬∃r ∈ RΥ1 such that

∃w ∈ TW1 , r `C1 w and ∀u ∈ TW2 , JrKT 0C2 u

Domains and transformations between domains are specified with the same underlying mathematical

apparatus. This unification allows the introduction of metamodeling in a mathematically consistent fashion,

as we shall show next.

Metamodels and Metamodeling

DSML structures and interpretations provide the most basic foundations for model-based design. In this

section we formalize more advanced DSML design principles using our formalization as a foundation. Specif-

ically, we formalize the metamodeling process by which new domains are rapidly defined via the construction

and interpretation of metamodels. A metamodel is a model that belongs to a special DSML called a metamod-

eling language. The metamodeling language provides an interpretation that maps metamodels to domains.

58



src

0..*

dst 0..*

0..*
0..*

StartState

fieldAction :

fieldTrigger :

Transition

boolIsAndState :

State

Figure 26. MetaGME metamodel for HFSM.

This process allows users to concisely “model” their domain, and then generate the domain concepts and

constraints from the model.

Figure 26 shows a metamodel for hierarchical finite state automata written in a UML notation [40]. The

boxes in the model are class definitions, and class members are listed under the class names. For example,

the Transition class has Trigger and Action members, both of type field (or string). The metamodel

also encodes a graph class by associating some classes with vertices and other classes with edges. The State

and StartState classes correspond to vertices; instances of the Transition class are edges. The diagram

also declares which vertex types can be connected together, and gives the edge types that can make these

connections. The solid lines passing through the connector symbol (•) indicate that edges can be created

between vertices, and the dashed line from the connector to the Transition class indicates that these edges

are instances of type Transition. The diagram encodes yet more rules: Lines that end with a diamond (�)

indicate hierarchical containment, e.g. State instances can contain other states and transitions. Lines that

pass through a triangle (4) identify inheritance relationships, e.g. a StartState inherits the properties of

State.

This example illustrates two important points about metamodeling languages. First, a small metamodel

can define a rich domain that may include a non-trivial inheritance hierarchy, a graph class, and other

concepts like hierarchical containment and aspects. Metamodels are concise specifications of complex do-

mains. Second, the meanings of metamodeling constructs are tedious to define, and the language appears

idiosyncratic to users. This problem is compounded by the fact that competing metamodeling languages

are “defined” with excessively long standards: The GME manual [41], much of which is devoted to meta-

modeling, is 224 pages. The Meta Object Facility (MOF) language, an OMG standard used by MDA and

UML, requires a 358 page description [77]. These long natural language descriptions mean that tool imple-

mentations are likely to differ from the standards, and that the standards themselves are more likely to be

inconsistent or ambiguous.
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We hope to alleviate some of these problems by formalizing the metamodeling process. A metamodeling

language Lmeta is a DSML with a special interpretation J Kmeta (called the metamodeling semantics) that

maps models to domains:

Lmeta = 〈Dmeta, (J Kmeta)〉 (III.8)

The interpretation JrKmeta maps a model realization r to a new domain. There is one technical caveat:

Interpretations map from models of one domain to models of another domain. In order to make a mapping

from models to domains, we need to create a domain of domains that provides a structural encoding for

domains. A domain of domains is created by first choosing a class of formulas F that are to be used

for describing the constraint axioms of every domain. Next, we construct a domain DF and a bijection

δ : ZV+×ZV+×P(F)→ DF that maps two signatures and a set of formulas to a model in the special domain

DF . The notation ZV+ is the set of all partial functions from V to Z+, i.e. the set of all signatures. Note that

for the domain of domains we will fix a particular Σ and `. This approach allows us to specify metamodeling

languages transformationally, as shown in Figure 27. The domain Dmeta represents a metamodeling language

Dmeta

metamodel

meta-metamodel

rm

rmm

Tmeta

DF

dm

dmm

δ−1(dm)

δ−1(dmm)

Dm = 〈Υ, ΥC , Σ, C〉

D′
meta = 〈Υ′, Υ′

C , Σ, C ′〉

Dmeta
∼= δ−1(dmm)

metacircularity

Figure 27. Abstract view of the metamodeling process

with some arbitrary notation for describing domains (e.g. UML). Tmeta is a transformation that converts

models in Dmeta to a structural representation of a domain in DF . The transformation Tmeta encodes the

semantics of the metamodeling language. For example, the metamodel rm is transformed to the model

dm by applying the interpretation JrmKTmeta . The actual domain defined by a metamodel is recovered by

the inverse function δ−1 that recovers a domain from a model in DF . Thus, the domain defined by the

metamodel rm is discovered by applying δ−1(JrmKTmeta). Our formalization also allows us to describe the

notion of metacircularity precisely. Intuitively, a metamodeling language is metacircular if there exists a

metamodel in the language that defines the language. Formally, a metamodeling language is metacircular if

there exists a well-formed metamodel rmm such that Dmeta
∼= δ−1(JrmmKTmeta). The model rmm is called

the meta-metamodel, as shown in Figure 27. This can be imagined geometrically: The set of all well-formed

metamodels forms a decision boundary in RΥmeta . A metamodeling language is metacircular if there exists

a metamodel that reconstructs the decision boundary of the metamodeling language.
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Applications of Structural Semantics

We have provided a structural semantics for model-based design. Next, we examine the applicability of

our approach to existing model-based tool suites. We will apply our methods to the Model-Integrated

Computing (MIC) tool suite [43] by producing an algebraic definition for each of its components. These

components include a metamodeling facility (MetaGME), a modeling editor (Generic Model Environment

(GME)), and a model transformation tool (Graph Rewriting and Transformation (GReAT) tool). Our

algebraic specification of these components captures the structural semantics of the tool suite independently

from the software implementation of the individual tools. With the algebraic definitions in hand, we can

associate objects in the software tools (models, metamodels, and transformations) with mathematical entities

in the algebraic formulation of the tool suite.

For the remainder of this chapter we will focus our attention on tool suites. However, this is not the

only application of structural semantics. We have extended the algorithms found in logic programming

to constructively analyze domains and transformations. Our analysis tool, called FORMULA, is based

on a nonmontonic extension of Horn logic. FORMULA (FORmal Modeling Using Logic Analysis) is a

fully constructive theorem prover for a class of stratified axioms. FORMULA’s extension of algorithms

for nonmonotonic logic yields a fascinating intersection of modeling and formal methods. More details on

FORMULA can be found in [89].

Formalizing Model-Integrated Computing

Before we apply our framework to MIC, we must choose the style of logic for expressing constraints. This is

the most important degree of freedom, because it adjusts the expressiveness of the resulting specialization.

In particular, the consequence operator affects the algorithmic complexity of checking model well-formedness

and calculating the properties of domains and transformations. In order to provide a reasonable degree of

expressiveness, while maintaining some analyzability we shall write axioms in an extended form a Horn logic.

First, let us review some basic definitions, beginning with basic Horn logic. Formulas are built from

terms with variables and logical connectives. There are different approaches for distinguishing variables from

constants. One way is to introduce a new alphabet Σv that contains variable names such that Σ ∩ Σv = ∅.

The terms TΥC
(Σ) are called ground terms, and contain no variables. This set is also called the Herbrand

Universe denoted UH . The set of all terms, with or without variables, is TΥC
(Σ∪Σv), denoted UT . Finally,

the set of all non-ground terms is just UT − UH . A substitution φ is term endomorphism φ : UT → UT

that fixes constants. In another words, if a substitution φ is applied to a term, then the substitution can be

moved to the inside φf(t1, t2, . . . , tn) = f(φt1, φt2, . . . , φtn). A substitution does not change constants, only

variables, so ∀g ∈ UH , φ(g) = g. We say two terms s, t ∈ UT unify if there exists substitutions φs, φt that
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make the terms identical φss = φtt, and of finite length. (This implies the occurs check [90] is performed.)

We call the pair (φs, φt) the unifier of s and t. The variables that appear in a term t are vars(t), and the

constants are const(t).

A Horn clause is a formula of the form h ⇐ t1, t2, . . . , tn where h is called the head and t1, . . . , tn are

called the tail (or body). We write T to denote the set of all terms in the tail. The head only contains

variables that appear in the tail, vars(h) ⊆
⋃

i vars(ti). A clause with an empty tail (h⇐) is called a fact,

and contains no variables. Recall that these clauses will be used only to calculate model properties. This is

enforced by requiring the heads to use those function symbols that do not encode model structure, i.e. every

head h = f(t1, . . . , tn) has f ∈ (ΥC − Υ). (Proper subterms of h may use any symbol.) This is similar to

restrictions placed on declarative databases[91]. We slightly extend clauses to permit disequality constraints.

A Horn clause with disequality constraints has the form h⇐ t1, . . . , tn, (s1 6= s′1), (s2 6= s′2), . . . , (sm 6= s′m),

where si, s
′
i are terms with no new variables vars(si), vars(s′i) ⊆

⋃
i vars(ti). We can now define the meaning

of a Horn clause. The definition we present incorporates the Closed World Assumption which assumes all

conclusions are derived from a finite initial set of facts (ground terms) I. Given a set of Horn clauses Θ, the

operator ̂̀Θ is called the immediate consequence operator, and is defined as follows:

M ̂̀
Θ = M ∪

{
φ(hθ) | ∃φ, θ, φ(Tθ) ⊆M and∀(si 6= s′i)θ ∈ θ, φsi 6= φs′i

}
where φ is a substitution and θ is a clause in Θ. It can be proved that I `Θ I∞ where I ̂̀Θ I1 ̂̀Θ . . . ̂̀Θ I∞.

The new terms derivable from I can be calculated by applying the immediate consequence operator until

no new terms are produced (i.e. the least fixed point). Notice that the disequality constraints force the

substitutions to keep certain terms distinct. Nonrecursive Horn logic adds the restriction that the clauses of

Θ can be ordered θ1, θ2, . . . , θk such that the head hθi of clause θi does not unify with any tail t ∈ Tθj for all

j ≤ i. This is a key restriction; without it, the logic can become undecidable. Consider the recursive axiom

Θ = {f(f(x)) ⇐ f(x)}. Then {f(c1)} `Θ {f(c1), f(f(c1)), . . . , f(f(f(. . . f(c1) . . .)))} includes an infinite

number of distinct terms.

The above definition shows that Horn logic corresponds to a classical consequence operator. It is clearly

extensive, isotone, and idempotent. However, it imposes too much of a restriction on the structure of

domains. We can extend Horn logic by introducing a pseudo-negation that is commonly called negation-as-

failure (NAF). The extensions allows terms in the tail to be “negated”, e.g. h ⇐ ¬t. The interpretation

is that we may conclude h if t cannot be proved. Thus negation is equivalent to the failure of inference

of certain terms. It turns out that this small change has a resounding affect on the corresponding theory.

The consequence operator loses the isotone property, placing it in the fascinating area of nonmonotonic

logic[92][93][94]. In the interest of space, we shall leave the reader with this informal description of negation-

as-failure.

Finally, we allow term restrictions to be placed on domains. A term restriction forces all well-formed
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models to use a finite set of terms of the form f(. . .) that are explicitly enumerated. For example, if a

domain has a signature Υ = {(f, 1), (g, 2)}, and we wish to place term restrictions on f , then we may write

∀m,m ∈ D(Υ, C) ⇒ (m ∩ {f(x)|x ∈ TΥ(Σ)}) ⊆ {f(c1), f(c2)}. This restriction indicates that if a model

m is well-formed then every term of the form f(x) ∈ m has either x = c1 or x = c2 for c1, c2 ∈ Σ. We

will simplify this notation by writing3 restrict(f, {f(c1), f(c2)}). Note that Horn logic has already been

implemented in programming languages like Prolog, usually with the SLD resolution algorithm [95]. For

simple problems, like checking model well-formedness, we can directly use these existing tools. However,

most of the analysis problems we encounter (e.g. domain equivalence) require more sophisticated tools. The

theorem prover FORMULA was developed for analyzing DSMLs. Prolog also includes an implementation

of NAF, but it must be used carefully as it may be unsound. However, we haven taken care to ensure that

our descriptions can be soundly evaluated by Prolog implementations of NAF.

MiniMeta: A Formalized MIC Tool Suite

We now present a formalized MIC tool suite called MiniMeta. As the name implies, MiniMeta is a scaled down

version of MIC. MiniMeta uses a simpler metamodeling language called eMOF, the essential meta-object fa-

cility [96], but does not include all of the MetaGME features. The eMOF language is the kernel of MetaGME

and many other metamodeling languages, including MOF and UML. The architecture of MiniMeta is shown

in Figure 28. The boxes correspond to domains, boxes with extruding arrows correspond to transformations.

Figure 28. The architecture for the MiniMeta Tool Flow.

3We write constants in the typewriter font to distinguish them from function symbols.
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The ovals are models, and each model is drawn in the domain that contains it. MiniMeta contains two spe-

cial domains, eMOF and MiniGReAT, as well as two special transformations called the eMOF Interpretation

and the MiniGReAT Interpretation. These four objects constitute the “meta” level of the architecture. The

eMOF domain defines the set of well-formed metamodels, and the eMOF Interpretation converts a meta-

model to a model in the domain of domains over Horn formulas, i.e. DHorn. Similarly, the MiniGReAT

domain defines the set of well-formed transformation models, and the MiniGReAT Interpretation converts

a transformation model into a model in DHorn. The structural conversion operator δ−1 generates the cor-

responding domains or transformations from models in DHorn. In the figure, the Horn domain and the

structural conversion operator are crosshatched to indicate that these parts of the framework are generic,

and do not depend on the details of eMOF/MiniGReAT. The eMOF and MiniGReAT domains serve as inter-

faces to the domain and transformation authoring facilities. Though we are free to construct these domains

however we wish, we will define the eMOF domain in accordance with UML class diagram concepts, and the

MiniGReAT domain with graph transformation concepts, so that our formalization can be easily linked to

existing tools. Also notice that we have not included a “meta-metamodel” for eMOF. This is because the

eMOF domain “bootstraps” the metamodeling facility, so it must be defined purely in Horn notation. Of

course, a meta-metamodel for it may exist, but this can only be constructed after the eMOF domain and

eMOF interpretation have been defined. It is possible to write a metamodel for the MiniGReAT domain,

though this is not necessary.

Once the domain and transformation authoring facilities have been defined, users can apply MIC by

constructing DSMLs, transformations, and models of their own. To construct a DSML, the user builds a

metamodel, which is a member of the eMOF domain. Such a metamodel is shown as the gray oval labeled

Architectural Metamodel in Figure 28. Though not shown in the diagram, a graphical editor like GME typi-

cally helps the user to build such a model. Once complete, the metamodel is converted to a domain via the

eMOF Interpretation, which transforms the metamodel into a structurally represented set of Horn clauses.

The structural conversion operator recovers the actual domain from the Horn model, and this is shown as the

Platform-independent modeling language in the figure. A similar path occurs for transformations: The user

builds a model of a transformation, then transforms this model to the Horn domain. The actual transfor-

mation is recoved with a structural conversion, yielding, for example, the Platform Mapping transformation.

The user then constructs models in the user-defined languages, and applies transformations between these

models. In the figure, PIM (platform-independent model) is transformed to PSM (platform-specific model).

The metalevel of the architecture provides the necessary facilities to produce DSMLs, platform stacks, and

platform mappings. We now formalize each of these components.
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Defining the eMOF Domain

The eMOF notation is based on the Unified Modeling Language (UML), which is also standardized by the

OMG. This notation supports the following essential concepts: classes, associations, attributes, containment,

and inheritance. Since UML is usually drawn in a graph-like notation, we will imagine some concepts to be

annotated vertices and others to be annotated edges. (The actual encoding may be more complicated than

just unary and binary relations.) Table 9 lists the vertex-like primitives. The first column describes the

Table 9. Table of Vertex Primitives for MiniUML Metamodels

Vertex Primitives UML Example

Class
A class is primitive part of a metamodel that can have Con-

tainment, Attribute Containment, Association Endpoint,

Inheritance edges incident on it. Every class has a name.

src dst

Containment

Inheritance

Attribute
Containment

Association
Endpoint

ClassName

Association Class
An association class is a primitive on which Containment,

Association, Attribute Containment, and Inheritance edges

can be incident. Every association class has a name.

Containment

Inheritance

Attribute

Containment

Association

ClassName

Attribute Class
An attribute class is a primitive on which Attribute Con-

tainment edges can be incident. Every attribute class has

a name and a type which can be boolean, string, or enu-

meration. Attribute classes of type enumeration may have

a list of enumeration values.

Attribute

Containment

{Item1, Item2, Item3, Item4}EnumList:

{Bool, String, Enum}Type :

ClassName

Connector
A connector has exactly two Association Endpoint edges

and one Association edge incident on it.

src

dst

Association
Endpoint

Association

primitives and any rules dictating the use of those primitives. The second column depicts a typical use-case

of the primitives using UML-like notation. Table 10 provides similar data for the edge-like primitives.
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Table 10. Table of Edge Primitives for MiniUML Metamodels

Edge Primitives UML Example

Containment
An edge that must terminate on a Class.

Class_A

Class_B

Attribute Containment
An edge that must start on an Attribute Class.

{Item1, Item2, Item3, Item4}EnumList :

{Bool, String, Enum}Type :

Attribute_B

Class_A

Association
An edge that must start on a Connector and

end on an Association Class.

Class

Association Endpoint
An edge that must start on a Connector and

end on an Association Class. Association end-

points have a incidence that can be either

source or destination.

srcClass

Inheritance
An edge that cannot form a directed cycle con-

sisting only of inheritance edges.

Class_A

Class_B
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These tables describe how primitives are composed into metamodels, but they do not describe how

metamodels encode domains. Thus, even at the metamodeling level, we strictly maintain a separation

between the metamodel structural semantics (the legal metamodels) and the metamodeling semantics (how

metamodels encode domains). At this point we are only describing the structural semantics of metamodels,

which we do by characterizing the malformed models, i.e. using the malform symbol. Some constraints

are easy to describe; for example the attribute primitive has a type that can only be one of the values

{bool, string, enum}. We encode this constraint by placing a term restriction on the type symbol.

(type, 1) ∈ Υ,

restrict(type, {type(bool), type(string), type(enum)})

The incidence property on an association endpoint is another example of a term restriction. A more

interesting constraint comes from the acyclic nature of inheritance, or, more precisely, from the nature of

cycles themselves. When we say “no cycles”, we really mean an infinite list of Horn constraints: “no self-

loops”, “no cycles of length two”, “no cycles of length three”,. . ., ad infinitum. Because we require the logic to

be acyclic (no recursion), we cannot faithfully encode properties with an infinite number of equivalence classes

(distinctly different structural incarnations). The reader familiar with logic programming might object to

this claim, because standard Prolog permits a concise description of cycles using lists; other languages permit

descriptions without lists, but using recursion. The key difference is that Prolog reasons about single models

of finite size. Thus, the length of lists may be bounded or the recursion may terminate because proofs are

made over finite models (closed world assumption). However, when we solve analysis problems, such as “find

some well-formed model with size greater than one”, we must find the existence of model within a infinite

number of possible models. The acyclic Horn logic ensures that this search procedure only needs to consider

a finite number of models from the domain. Thus, the only way to properly encode an acyclic inheritance

hierarchy is to approximate the “no cycles” constraint for a finite range of cycle lengths from 1 to n. Let

the symbol inheritance(x, y) denote an inheritance edge from x to y. This auxiliary symbol is placed in

the constraint signature ΥC . Similarly, let ipath3(x, y, z) and ipath4(x, y, z, w) indicate directed inheritance

paths of length three and four. The following axioms allow us to calculate inheritance paths of these lengths:

{(inheritance, 2), (ipath3, 3), (ipath4, 4)} ⊂ ΥC

ipath3(x, y, z)⇐ inheritance(x, y), inheritance(y, z), (x 6= y 6= z),

ipath4(x, y, z, w)⇐ ipath3(x, y, z), inheritance(z, w), (w 6= x 6= y 6= z).

An inheritance path of length three is made up of two inheritance edges across three distinct vertices. The

disequality constraints x 6= y 6= z require the vertices in the path to be distinct. Three such constraints are

needed to ensure that all three vertices are distinct. The four-path is defined by the presence of a three-path

and a new edge that extends the three-path by one unique vertex. This process can be continued to define

any path of finite length. A cycle of length n > 2 is defined by the presence of a path of length n and an
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inheritance edge that connects the end of the path to the beginning. The definitions for icycle1, icycle2,

icycle3 and icycle4 are shown below:

{(icycle1, 1), (icycle2, 2), (icycle3, 3), icycle4, 4)} ⊂ Υc

icycle1(x)⇐ inheritance(x, x)

icycle2(x, y)⇐ inheritance(x, y), (x 6= y)

icycle3(x, y, z)⇐ ipath3(x, y, z), inheritance(z, x)

icycle4(x, y, z, w)⇐ ipath4(x, y, z, w), inheritance(w, z)

Finally, an inheritance hierarchy is malformed (imalform) if there is any such cycle.

(imalform, 1) ∈ ΥC

imalform(icycle1(x))⇐ icycle1(x)

imalform(icycle2(x, y))⇐ icycle2(x, y)

imalform(icycle3(x, y, z))⇐ icycle3(x, y, z)

imalform(icycle4(x, y, z, w))⇐ icycle4(x, y, z, w)

The rest of the constraint axioms for eMOF are shown in Appendix B.3. Note that this particular encoding

of the domain constraints uses much pseudo-negation. We have done this to reduce the number of constraints

that must be written. However, for efficiency purposes, it is better to minimize the amount of negation that

is used. At this point, we have formalized the eMOF domain with axioms written in an extended form of

Horn logic. This constitutes a tool-independent and precise definition of the eMOF domain.

The Horn Domain DHorn

The next step in the formalization process is to write the transformation Tmeta from the eMOF domain to

the Horn domain. Before we can do this, we must define the domain of domains for Horn logic. Note that

all domains, including DHorn, will be defined over a fixed alphabet Σ such that Z+ ⊂ Σ. Furthermore, there

exists some subset of Σ, called ΣF , that is bijectively related to the vocabulary of function names V, via

a bijection δf . This bijection allows a function symbol to be translated into a constant for the purpose of

representation. A similar bijection δV must exist between a subset of Σ, called ΣV , and the set of variable

names used by the class of Horn formulas FHorn. Choose Σ so that ΣF ∩ΣV = ∅. Table 11 lists the function

symbols and constraints placed on the Horn domain. The table also informally describes what the inverse of

an encoded term yields with respect to signatures and formulas. Note that we have not included a symbol

for encoding term restrictions. These will be encoded by axioms with empty tails. The relationship between

Horn models and domains is formalized by providing a mapping δ : ZV+ × ZV+ × P(FHorn)→ DHorn from a

domain (signatures and constraints) to the domain of domains. This mapping is defined with the following

structural induction over 〈Υ,ΥC ,Σ, C〉:
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Definition 11. The structural representation function δ is given by the following induction:

1.

δ(Υ,ΥC , C) 7→ δ(Υ) ∪ δ(ΥC) ∪ (
⋃
s∈C

δ(s))

2.

δ(Υ) 7→
⋃

f∈ domΥ

def(sig, δf (f),Υ(f))

3.

δ(ΥC) 7→
⋃

f∈ domΥ

def(con, δf (f),Υ(f))

4.

si ∈ C, si =


H ⇐ ¬L′1, . . . ,¬L′m,

L1, . . . , Ln, (vj1 6= vj2),

. . . , (vjk
6= vjk

)

 , δ(si) 7→



axiom(i, δ(H)) ∪⋃
L′∈si

tail(i, neg(δ(L′)) ∪⋃
L∈si

tail(i, δ(L)) ∪⋃
(v 6=u)∈si

tail(i, neq(δ(v), δ(u)))

5.

δf(t1, t2, . . . , tn) 7→ mapΥ(f)+1(δf (f), δ(t1), . . . , δ(tn))

6.

δ(x) 7→ var(δv(x)) where x is a variable. δ(c) 7→ c where c is a constant.

The well-formed models in the Horn domain cannot be defined entirely with Horn logic. Three constraints

require additional operators that add integers (+) and compute subterms (v). The first constraint states

that the arity of a mapn(x, . . .) term must match the arity of the function symbol x.

malform(mapn(x, y1, . . . , yn−1))⇐

 mapn(x, y1, . . . , yn−1),

def(t, x, y), (n 6= y + 1)


The second constraint requires that variables introduced in the head of a clause must have been introduced

in the tail of the clause. To express this constraint we introduce a subterm relation v such that a term t′ is

a subterm of a term t if t′ appears in an argument of t or an argument of some subterm of t.

vargood(v, x)⇐ axiom(x, h), tail(x, t), (var(v) v h), (var(v) v t)

malform(axiom(x, h))⇐ axiom(x, h), (var(v) v h),¬vargood(v, x)

The final constraint prohibits pseudo-negation in the head of a clause, as pseudo-negation does not have

meaning in the head.

malform(axiom(x, h))⇐ axiom(x, h), (neg(h′) v h)

Though these axioms are not written in the strict Horn logic that we previously defined, they do not

significantly impact algorithms that deduce formal properties of domains.
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Domains viewed as two signatures and a family of axioms have an equivalence (=) between them that

only takes into account the equivalence of their notation: Di = Dj if Υi = Υj , ΥCi
= ΥCj

, and sp = s′p for

each sp ∈ Ci, s
′
p ∈ Cj . This equivalence is a weak form of equivalence that depends on a common indexing

of the axioms for Di and Dj . It holds that (Di = Dj)⇒ (Di
∼= Dj), but the converse does not hold.

Proposition 12. Fix Σ, V, δf , and δV . The representation function δ is a one-to-one and onto function

from domains with Horn axioms to the set of well-formed Horn models DHorn(ΥHorn, CHorn).

We briefly sketch the proof. Any well-formed Horn model corresponds to a well-formed (possibly empty)

set of signatures and to a well-formed set of extended Horn formulas. Thus, δ is an onto function. Given

two domains Di and Dj , if δ(Di) = δ(Dj), then the domains must have the same signatures and a common

indexing of identical axioms, therefore Di = Dj . Thus, δ is a bijection and there exists an inverse δ−1 that

maps Horn models to domains defined with Horn formulas.
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Table 11. Encoding of concepts in the Horn Domain.

The Horn Domain

Define. def(x, y, z) defines a function symbol y with arity z in a signature x. If the
same symbol appears in multiple signatures, then the arity of the symbol must be the
same in every signature. There may be two signatures, one for Υ (sig) and one for
ΥC (con).

{(def, 3), (sigtype, 1)} ⊂ ΥHorn

restrict(sigtype, {sigtype(sig), sigtype(con)})
malform(def(x, y, z))⇐ def(x, y, z) ∧ def(x′, y, z′), (z 6= z′)
malform(x, y, z)⇐ def(x, y, z),¬sigtype(x)

The inverse representation function δ−1 of a term def(x, y, z) yields a symbol
definition of the form (y, z) ∈ Υx.

Mapn. mapn(x, y1, y2, . . . , yn−1) converts an n-ary term to prenix form. The symbol
name x must be defined with a def . The domain definition provides a finite number
k of map symbols.

{(map2, 2), . . . , (mapk, k)} ⊂ ΥHorn

malform(map2(x, y1))⇐ map2(x, y1),¬def(t, x, z)
...
malform(mapk(x, y1, . . . , yk−1))⇐ mapk(x, y1, . . . , yk−1),¬def(t, x, z)

The inverse representation function δ−1 on mapn(x, y1, . . . , yn−1) yields a literal
of the form δ−1

f (x)(δ−1(Y1), . . . , δ−1(y1)).

Axiom/Tail. axiom defines the head of an axiom and assigns it a unique identifier.
tail adds a tail literal to an axiom by referring to the axiom’s unique identifier. Each
tail must be added to an axiom that has been defined with axiom. Every axiom
identifier must be unique.

{(axiom, 2), (tail, 2)} ∈ ΥHorn

malform(tail(x, y))⇐ tail(x, y),¬axiom(x, z)
malform(axiom(x, y))⇐ axiom(x, y), axiom(x, z), (y 6= z)

Given axiom(x, h) and tails tail(x, t1), . . . , tail(x, tm), the inverse representation
function δ−1 yields a clause with the corresponding head and all tails conjuncted
together: δ−1(h)⇐ δ−1(t1), . . . , δ−1(tm).

Neg/Neq/Var. neg(x) indicates the negation of literal x. neq(x, y) indicates the
disequality x 6= y. var(x) indicates that x is a variable.

{(neg, 1), (neq, 2), (var, 1)} ⊂ ΥHorn

The inverse representation function δ−1 of neg(x) yields the negated term ¬δ−1(x)
and neq(x, y) yields the disequality δ−1(x) 6= δ−1(y). Finally, δ−1(var(x)) yields a
variable δ−1

v (x).

71



eMOF Transformation onto DHorn

A metamodeling semantics is defined by a transformation from eMOF metamodels to Horn models: Tmeta =

〈ΥeMOF ,ΥDHorn
, τmeta〉. For the purpose of illustration, we will make this transformation as simple as

possible: Every class named x in the input metamodel becomes a unary function symbol x(n) in the Horn

model, where the single argument n indicates that an object called n is an instance of x. For example, the

automata metamodel in Figure 26 contains a class called state (i.e. the term class(state)). This term will

be translated to a term in the Horn model that adds a unary function symbol state to the domain signature:

def(sig, state, 1). Similar to classes, association classes become ternary function symbols, where the first

argument is the name of association instance, the second is the name of the source object, and the third

is the name of the destination object. Attribute classes become binary function symbols, where the first

argument identifies the object that contains the attribute instance, and the second argument identifies the

value of the attribute instance. The transformation contains the following clauses:

τmeta ⊃


def(sig, x, 1)⇐ class(x)

def(sig, x, 2)⇐ attribute(x, y)

def(sig, x, 3)⇐ assocClass(x)

Converting metamodeling concepts to function symbols is the simple part of the transformation. The core of

the transformation must produce domain constraints that faithfully implement the metamodel. For example,

a model is malformed if it assigns an improper value to an enumeration attribute. In order to introduce

this constraint, we generate a function symbol enumvalue, that contains all the enumeration values for all

enumeration attributes using term restrictions. Additionally, for each enumeration attribute, we generate

a constraint consisting of a head and two tail terms that requires each attribute instance to use one of the

enumerated values. These are generated with the following transformation:

def(sig, enumvalue, 2)⇐ attribute(x, enum).

axiom

(
enum(x, y),map3(enumvalue, x, y)

)
⇐ enum(x, y) ∧ attribute(x, enum).

axiom

(
attribute(x, enum),malform(map3(x, var(y), var(z)))

)
⇐ attribute(x, enum).

tail

(
attribute(x, enum),map3(x, var(y), var(z))

)
⇐ attribute(x, enum).

tail

(
attribute(x, enum), neg(map3(enumvalue, x, var(z)))

)
⇐ attribute(x, enum).

Assume that the IsAndState attribute of Figure 26 is a enumeration containing the constants andState and

orState. The metamodeling transformation would produce the following encoding of the this attribute in

the Horn model:
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def(sig, IsAndState, 2), def(sig, enumvalue, 2),

axiom(enum(IsAndState, andState),map3(enumvalue, IsAndState, andState)),

axiom(enum(IsAndState, orState),map3(enumvalue, IsAndState, orstate)),

axiom(attribute(IsAndState, enum),malform(map3(IsAndState, var(y), var(z)))),

tail(attribute(IsAndState, enum),map3(IsAndState, var(y), var(z))),

tail(attribute(IsAndState, enum), neg(map3(enumvalue, IsAndState, var(z))))

Finally, applying the inverse representation function yields the following axioms:

{(IsAndState, 2), (enumvalue, 2)} ⊂ Υ

restrict

 enumvalue,

 enumvalue(IsAndState, andState),

enumvalue(IsAndState, orState)




malform(IsAndState(y, z))⇐ IsAndState(y, z),¬enumvalue(IsAndState, z)

Appendix B.1 includes some additional components of the eMOF transformation. This completes the full

formalization of the eMOF metamodeling facility. We would have to repeat a similar formalization for the

graph transformation language Mini-GReAT. However, formalizing MiniGReAT does not require any new

techniques, so we omit its description.

Implementing MiniMeta with GME/GReAT

In this section we construct an implementation of MiniMeta using existing tools. The implementation will

be performed so that each object constructed within a software tool can be mapped to a formal entity

in the MiniMeta tool suite. The first feature that we need to implement is a model editor for constructing

eMOF metamodels, and for checking well-formedness of metamodels. GME already provides a metamodeling

facility, called MetaGME, that converts a metamodel into a domain-specific model editor. GME is not

formalized and its informal semantics may change from version to version, but it represents a decade of work

with over 200,000 lines of C++ code. Thus, there is significant motivation to reuse these tools. This reuse

can be done safely by informally defining the eMOF domain with a MetaGME metamodel. This MetaGME

description is shown in Figure 30. GME will generate an eMOF model editor that allows us to construct

models that “look like” eMOF. Figure 31.a shows an example of an eMOF metamodel constructed within

GME.

At this point we can construct eMOF-like objects, but we have not defined how they are mapped to true

eMOF models (which are subsets of the eMOF term algebra). We compensate for this by extending GME

with an analysis component that converts a GME eMOF model into a set of ground terms. The ground terms

are loaded into an embedded Prolog engine along with the formal definition of the eMOF domain (transcribed

into Prolog syntax). The SLD resolution procedure of Prolog is used to formally prove that the GME model
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is well-formed. Prolog works well for this task, because it only has to reason about a single model, as opposed

to an entire domain. Additionally, GME includes a COM-based extension mechanism, so it is trivial to add

this component to the model editor. Prolog provides a simple foreign language interface, so it is also trivial to

utilize the proving engine. Figure 29 shows the implementation of our formal metamodeling facility. Figure

Figure 29. Detailed view of MiniMeta metamodeling facility implementation using MetaGME, GME, and
and embedded Prolog Engine.

31.b shows the analysis component. The Translation to definite clauses list shows the conversion of the

eMOF metamodel into ground terms (also called definite clauses in Prolog). Each of the translated ground

terms is added to the knowledge base of the Prolog engine. The proving engine is then queried to prove

malform(X). If this cannot be proved, then the GME model is well-formed. If malform(X) can be proved

then the model is malformed. In this case, all solutions are displayed to this user; each solution identifies

some problem in the model. In Figure 31.b, the engine is unable to prove malform(x), so the model is

well-formed. We modified the metamodel of Figure 31.a, and added an inheritance edge from Interface to

Input, thereby creating an inheritance cycle of length 2. Figure 32 shows how this inheritance cycle was

correctly detected by the analysis component. This implementation illustrates how existing tools can be

readily used to build a formal metamodeling facility. Additionally, our tool architecture introduces a new

level of flexibility not found in the existing metaprogrammable tools, because the eMOF domain specification

is not hard coded into the tool and can be easily modified.
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Figure 30. A MetaGME metamodel of the eMOF Domain.

(a) (b)

Figure 31. (a) An eMOF metamodel in GME of DSP domain. (b) Translation of metamodel to definite
clauses and verification that metamodel is well-formed, using a Prolog engine.
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Figure 32. Results of check after inheritance cycle is added to DSP metamodel.
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The next feature to implement is the generation of new domains and model editors from eMOF metamod-

els. This functionality is also implemented with the help of an embedded Prolog engine, but is necessarily

more complex. Figure 33 shows the implementation of the domain generation facility. Assume that a user

has constructed an eMOF metamodel of domain X in GME. This metamodel is shown in the GME eMOF

domain in the figure. The domain generator component (upper-right) translates the eMOF metamodel onto

ground terms and loads these into another embedded Prolog engine. Additionally, the eMOF tranformation

axioms (transcribed into Prolog syntax) are loaded into the engine, and a forward chaining procedure de-

duces the Horn model. The Horn model is extracted from the Prolog engine, and the inverse representation

function δ−1 is applied. This results in the signatures and constraint axioms for domain X. The signatures

and axioms are automatically converted to Prolog syntax and saved to an external file. At this point, a

formal procedure has generated a formal definition of domain X, but we still need to generate a model

editor. A model editor is generated by applying a graph transformation (written in GReAT) to the eMOF

metamodel.

Figure 33. Implementation of the domain generation facility using MetaGME, GME, GReAT, and an
embedded Prolog engine.

This graph transformation converts the eMOF metamodel to a similar MetaGME metamodel. The

converted metamodel is shown in the MetaGME domain in the figure. Next, the MetaGME interpreter

generates the modeling environment for domain X from the MetaGME metamodel. At this point, we can

construct models in GME that look like domain X models, but we must also be able to check these models
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against the formal definition generated by the domain generator. This is accomplished by automatically

generating a conversion tool that converts GME models in domain X to ground terms, as shown in the

lower-right hand side of Figure 33. This tool loads the ground terms from an X model into a Prolog engine,

along with the generated Prolog description of domain X, and then proves well-formedness of a model. This

closes the loop and reconnects the tool suite to the formal definitions. Though the details of this process

are involved, users need only click one button and all the steps are automatically carried out. Figure 34

shows the domain generation component. The list labeled Input Model shows the translation of the input

metamodel onto ground terms. Below this list are options for selecting the types of objects generated by

the component. If all of the options are checked, then the domain generator performs the entire process

described above. The lists on the right-hand side show the terms in the generated Horn model. Appendix B.2

shows the generated domain definition of the eMOF metamodel in Figure 31.a. This metamodel describes a

language for constructing hierarchical dataflow graphs.

After the domain generator completes, domain models can be constructed using GME. Figure 35 shows

a DSP model created with GME under the DSML generated from Figure 31.a. As was the case with

metamodeling, a well-formedness checking tool is attached to the newly generated GME domain. This

tool loads the formal definition of the domain into a Prolog engine and converts the domain model into

definite clauses, which are then checked for well-formedness. Figure 36 shows the result of activating the

well-formedness checking tool on the DSP model of Figure 35. The tree-view titled Translation to Definite

Clauses shows the translation of each model element into a corresponding set of ground terms. The tree

is organized according to the model hierarchy. Interestingly, the tool reports that the model is malformed.

This occurs because we augmented the DSP metamodel of Figure 31.a with an additional constraint that

disallows a short-circuit of an input with an output. The connection from I2 to O2 is such a short-circuit.

Our eMOF domain allows complex constraints to be directly annotated on a metamodel. Figure 37 shows

the annotated constraint in DSP metamodel. After the domain generator converts the diagrammatic part of

the metamodel into Horn clauses, it adds any annotations to the domain definition. Our approach combines

the advantages of metamodeling with constraint languages in a consistent fashion. All of the features get

translated into the same underlying formalism.
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Figure 34. Invocation of the domain generator component.

Figure 35. An example DSP model created using the DSML generated in Figure 31.a
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Figure 36. Results of checking the DSP model against the formal domain definition

Figure 37. Annotation of the DSP metamodel with an additional constraint
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Discussion and Conclusion

In this work we have explored the structural foundations of model-based design. We developed a generic

structural semantics and applied this semantics to a specific model-based framework. Beyond this, there are

other interesting directions to explore. For example, domains restricted to Horn constraints can be analyzed

with algorithms based on backwards chaining and constructive negation[92]. We have developed a tool called

FORMULA (Formal Modeling Using Logic Analysis) that implements Horn-based analysis algorithms for

domains. FORMULA is fed a set of domains (signatures and Horn constraints) and may then be queried

to prove a property θ. By property, we mean a set of terms with variables from TΥC
(Σ ∪ ΣV ). A model r

satisfies the property is there exists a substitution φ such that r ` φ(θ). For a given property θ, FORMULA

will construct a model r and substitution φ such that r ` φ(θ), or it will report that no such model exists.

This can be used to prove domain equivalence and structure preserving maps. Since the proof procedure

is constructive, it may also be useful for generating well-formed models from smaller, possibly malformed,

submodels (embeddings). The user may construct a malformed submodel, and then use the tool to find a

well-formed version of this submodel.

Our formal structural semantics has some interesting implications on current model-based tool suites.

It is well-known that the basic concepts (classes, associations, etc...) in metamodeling languages are not

sufficient to encode more intricate structural constraints. For example, imagine a dataflow language where it

is illegal to directly short system inputs with system outputs within the same dataflow graph. This type of

constraint cannot be specified using only eMOF constructs. The typical solution used by metamodeling tools

is to annotate metamodels with a constraint language like OCL (Object Constraint Language). With our

approach, metamodels are translated into constraints, so additional constraints can be injected directly into

the resulting interpretation of the metamodel. This provides a consistent view of metamodels and constraint

annotations: They are just two different ways of describing domain constraints.

To varying degrees, descriptions of model-based frameworks (e.g. MDA, UML, MOF, and MetaGME)

use the term meta-metamodel synonymously with the definition of the metamodeling language. However,

we have shown that a meta-metamodel is not a definition of the metamodeling semantics. Rather, it is

a consequence of the metamodeling semantics, and this is why it can be automatically discovered. This

recognition is more profound than just misuse of terminology, because many metaprogrammable modeling

tools are hard-coded with a particular metamodeling language. If the metamodeling semantics is viewed as

just another model transformation, then there is no reason to hard-code a tool around a particular “meta-

metamodel”. The fundamental concepts that should be fixed are the way primitives are composed into

models (e.g. via a term algebra) and the style of logic used to write constraints and transformations. Tools

built up from this foundation could simultaneously support many different metamodeling languages, and new

metamodeling languages could be arbitrarily created without rewriting the tool. Even without rebuilding
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tool infrastructure, metamodels should be viewed as formal entities, and as such, it should be possible to

migrate them across different tools while preserving their structural semantics.
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CHAPTER IV

AUTOMATED MODEL CONSTRUCTION AND ANALYSIS

Preliminaries - Metamodels, Domains, and Logic

This chapter describes constructive techniques, similar to those found in logic programming, for reasoning

about domain-specific modeling languages (DSMLs) defined with metamodels. Before we proceed, we must

describe how a metamodel can be viewed as a formal object that characterizes the well-formed models

adhering to that metamodel. We will refer to the models that adhere to metamodel X as the models of

metamodel X. In order to build some intuition for this view, consider the simple DIGRAPH metamodel of

Figure 38. The models of DIGRAPH consist of instances of the Vertex and Edge classes such that Edge

Vertex Edge
src

dst

Figure 38. DIGRAPH: A simple metamodel for labeled directed graphs

instances “connect” Vertex instances. In anther words, DIGRAPH characterizes a class of labeled directed

graphs. Thus, a model might be formalized as a pair G = 〈V ⊆ Σ, E ⊆ V × V 〉, where Σ is an alphabet of

vertex labels. If Σ is fixed, then the set G of all models of DIGRAPH is: G = {(V,E)|V ⊆ Σ, E ⊆ V 2}.

This is the classic description of labeled digraphs, and at first glance it might appear possible to extend this

description to characterize the models of arbitrary metamodels. Unfortunately, UML-like metamodels[77][40]

contain a number of constructs that deny a simple extension of graph-based descriptions. The UNSAT

metamodel of Figure 39 illustrates some of these constructs. First, classes may have non-trivial internal

RootClass ClassA

bAttribute: bool

ClassB

sAttribute: string

ClassC

zAttribute: integer

EdgeClass

bAttribute: bool

src

dst

1..3 1..2

isAPort

isAPort 1..*

0..*

Figure 39. UNSAT: A complex metamodel with no finite non-trivial models
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instOfB_4

instOfB_5

instOf B_7

instOf B_6

instOfA_3

instOfB_6

instOfB_7

instOfA_3

instOfA_2

instOfA_1

instOfRoot

instOf B_8

instOfC_1

instOfB_8

instOfC_2

Figure 40. Model that (partially) adheres to the UNSAT metamodel

structure. For example, classes of UNSAT have typed member fields (called attributes). An instance of

ClassA has a boolean field named bAttribute. Classes also inherit this structure, e.g. an instance of ClassC

has two attributes, bAttribute and zAttribute, via inheritance. Instances may contain other instances with

constraints on the type and number of contained instances. An instance of ClassA must contain between 1 and

3 instances of ClassB. Second, internal instance structure can be “projected” onto the outside of an instance

as ports. The containment relation from ClassA to RootClass has the isAPort rolename, requiring that all

contained instances of ClassA appear as interfaces on the outside of the containing instance of RootClass.

Figure 40 shows a model with containment and ports. The hollow oblong shapes denote instances that can

contain other instances, and the small squares with white arrows on the oblongs’ borders denote ports. For

example, the outermost container instOfRoot is an instance of the RootClass and contains three instances

of ClassA. Each ClassA instance appears as a port on the far right-hand side of instOfRoot. Containment

and ports are a useful form of information hiding, but they also complicate matters because ports permit

edges to cross hierarchy. For example, the edges in Figure 40 connect instances of ClassB together even

though these instances are not contained in the same parent. Furthermore, the edges are actually contained

in the RootClass instance, even though the endpoints are not. The third major complication arises because

edges are not simple binary relations. In UNSAT, edges are instances of EdgeClass, and so each edge has a

member field named bAttribute. In general, edges must be distinguishable (i.e. labeled), otherwise it would

not be possible to reliably determine the values of member fields. In fact, the UML-notation (correctly)

implies that edges are ternary associations between an edge label, source label, and destination label.

Graph-based formalisms have been used extensively by the model transformation community, and provide

reasonable approximations of model structure for the purpose of transformation. However, in this work we
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do not focus on model transformation, but rather we explore techniques for reasoning about all the details

of metamodel and model structure. One approach to characterizing realistic model structure might be

to combine all existing graph extensions and consider models to be hierarchical [82], typed, attributed [81]

hypergraphs with labeled edges. However, even this would not handle all aspects of modern metamodeling

languages, and it would produce a brittle and unwieldy formalism. In [39] we present an alternative approach

to model structure based on formal logic, which we briefly outline now. In order to present our view,

we begin with the concept of a domain (in the sense of domain-specific modeling languages). A domain

D = 〈Σ,Υ,ΥC , C〉 is a quadruple where Σ is an (infinite) alphabet for distinguishing model elements, Υ is a

finite signature for encoding model concepts, ΥC is a finite signature for encoding model properties, and C

is a set of logical statements (constraints) for deriving model properties. A model realization is set of terms

from the term algebra[84] TΥ(Σ) over signature Υ generated by Σ. The set of all possible model realizations

is P(TΥ(Σ)), i.e. all subsets of terms. We will use the notation (f, n) ∈ Υ to indicate that function symbol

f of arity n is a member of the signature Υ.

Example 13. The domain of labeled digraphs DG has the model realizations given by the signature Υ =

{(v, 1), (e, 2)} and a countably infinite alphabet (|Σ| = |ℵ0|). These two symbols encode the concepts of vertex

and edge. Vertices are encoded using the unary function symbol v and edges are encoded using the binary

function symbol e. Some model realizations include:

1. M1 = { v(c1), v(c2), e(c1, c2) }, a 2-path from a vertex c1 to a vertex c2.

2. M2 = { v(c3), e(c3, c4) }, a dangling edge starting at vertex c3.

3. M3 = { v(e(c5, c6)), v(v(c7))}, a structure that is not a graph at all.

where the symbols written in typewriter font indicate members of the alphabet.

The term algebra easily captures arbitrary n-ary concepts and permits concepts to be combined in

complex ways. Example 13-3 shows that function symbols can be arbitrarily nested. This example also

shows that not all model realizations combine the modeling concepts in ways that match our intentioned

meaning of the symbols. Example 13-1 describes a simple 2-path, but 13-2 describes a dangling edge because

vertex c4 is not in the model. Example 13-3 does not correspond to a graph in any obvious way, but is still

a legal member of P(TΥ(Σ)).

The set of model realizations of a domain contains all possible ways that the concepts can be used together.

In fact, with a single operator f of arity greater than or equal to one, and an alphabet with at least one

element, a countably infinite number of terms can be generated. (Consider a successor operation succ and

Σ = {0}.) Thus, for all non-trivial cases the number of possible model realizations is uncountably infinite.

Therefore P(TΥ(Σ)) will typically contain many model realizations that use the function symbols contrarily to

our intentions. In order to counteract this, we must define a set of model properties, characterized by another

signature ΥC , and a set C of logical statements for deriving model properties. For simplicity, we assume that
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ΥC simply extends the signature of Υ (i.e. ΥC ⊃ Υ). For example, the property of directed paths could be

captured by: ΥC = {(v, 1), (e, 2), (path, 2)} and C = {∀x, y, z (e(x, y) ∨ path(x, y)) ∧ e(y, z) ⇒ path(x, z)}.

The symbol path(·, ·) encodes the concept of a directed path between two vertices. The single logical

statement in C defines how to derive the paths in a digraph. They keyword derive is important, and there

are some subtle points to be made about derivation.

Classically, the notion of a derivation is represented by a consequence operator, written `, which maps sets

of terms to sets of terms `: P(TΥC
(Σ)) → P(TΥC

(Σ)). A consequence operator encapsulates the inference

rules of a particular style of logic, and may make use of additional axioms to derive terms. In our framework,

the set C is the set of axioms that the consequence operator may use. Given a model M (i.e., a set of terms),

M `C M ′ denotes the set of terms M ′ that can be discovered from the terms M and the axioms C. A term

t can be derived from a model M if t ∈M ′. We will simply write M ` t to denote that t ∈M ′. Notice that

the consequence operator generalization does not require terms to be viewed as predicates. For example,

given the simple graph M1 of Example 13-1, we can derive the term path(c1, c2), but this term does not

evaluate to a boolean value. Classical consequence operators, in the sense of Tarski, correspond to closure

operators and are extensive, isotone, and idempotent [84]. Later, we will discuss the consequence operators

of nonmonotonic logics where the isotone property does not hold. The history of mathematical logic is rich

and diverse; we will not summarize it here. Instead, we will focus on particular applications and limit our

discussion to those applications. For the reader unfamiliar with this area, it suffices to remember these two

points: First, consequence operators capture the derivation of terms. Second, terms are not predicates.

Among the properties that can be encoded using ΥC and C, we require at least one property to be defined

that characterizes if a model is well-formed. We permit well-formedness to be defined either positively or

negatively. A positive domain includes the function symbol wellform(·) in ΥC , and a model M is well-

formed if ∃x ∈ TΥC
(Σ), M `C wellform(x). In another words, a model is well-formed if a term of the

form wellform(x) can be derived for some x. A negative domain is characterized by the function symbol

malform(·) such that a model is well-formed if ∀x ∈ TΥC
(Σ), M 0C malform(x). In another words, a

model is well-formed if it is not possible to prove malform(x) for any x. At first glance it may appear

that the positive domains have weaker definitions than negative domains. In fact, this depends on the

expressiveness of the underlying logic of `. For example, if the logic has a “negation” (which is not the usual

propositional negation) then we can define wellform(x) ⇔ ∀y ¬malform(y) for some arbitrary x. On the

other hand, if the logic is restricted, then the positive domains may be strictly weaker than the negative

domains.

A domain captures the set of possible model realizations and provides a mechanism to discern the good

models from the bad ones. From this perspective, the set of all metamodels also defines a domain Dmeta

that characterizes all well-formed metamodels. Let the set V be a fixed vocabulary of function symbols and
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the sets Σ and Σv be two fixed disjoint countably infinite alphabets. Let SIG(V) = {Υ|Υ : V → Z+}, be

the set of all partial functions from V to the positive integers, i.e., the set of all possible signatures. Finally,

let F(Υ,ΥC) be the set of all formulas that can be defined over terms composed from function symbols of

Υ,ΥC with constants from Σ and variables from Σv. These parameters allow us to characterize the set of

all domains ∆F that can be defined with a particular style of logic1:

∆F =
⋃

Υ∈SIG(V)

⋃
Υ⊂ΥC∈SIG(V)

⋃
C⊆F(Υ,ΥC)

(Σ,Υ,ΥC , C)

A metamodeling language is a pair (Dmeta, τmeta) where τmeta : Dmeta → ∆F maps metamodels to domains.

In [39] we show how the mapping can be constructed for realistic metamodel languages. With this approach,

we can extract a precise set of domain concepts and constraints from a metamodel by applying the mapping

τmeta. Here we overload the notation D to also represent the set of all well-formed models characterized by

the domain D.

Given these preliminaries, we now turn our attention to the analysis of domains. For example, we might

like to know: Does a domain contain any non-trivial finite models?. It turns out that this fundamental

question is difficult to answer for UML-like metamodels. Consider the UNSAT metamodel of Figure 39. If a

model of UNSAT contains anything at all, then it contains an instance of RootClass. However, an instance of

RootClass must contain at least one instance of ClassA, which in turn must contain at least one instance of

ClassC. So far the constraints pose no problem. However, the inheritance operator declares that ClassC is a

subclass of ClassA, so ClassC inherits the property that each instance must also contain at least one instance

of ClassC. This leads to an infinite regress, so there exists no non-trivial finite model of UNSAT. This can be

seen in Figure 40, which is a finite model that almost adheres to UNSAT, except that the instance instOfC 2

does not contain another instance of ClassC. The degree to which we can reason about metamodels depends

on the expressiveness of the constraint logic. We now turn our attention to a well-known decidable subset

of first-order logic, Horn Logic.

Analysis of Nonrecursive Horn Domains

The simplest class of logic we examine is nonrecursive Horn logic[94]. Admittedly, this class is too small for

characterizing most realistic domains, but the algorithms for manipulating this logic serve as a foundation

for the more expressive logic that we describe in the next section. We begin by recalling some definitions.

Formulas are built from terms with variables and logical connectives. There are different approaches for

distinguishing variables from constants. One way is to introduce a new alphabet Σv that contains variable

names such that Σ ∩ Σv = ∅. The terms TΥC
(Σ) are called ground terms, and contain no variables. This

1Technically, we should include the property that all ΥC signatures contain wellform(·) or malform(·). We have left this
out as it unnecessarily complicates the definition of ∆F
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set is also called the Herbrand Universe denoted UH . The set of all terms, with or without variables, is

TΥC
(Σ∪Σv), denoted UT . Finally, the set of all non-ground terms is just UT −UH . A substitution φ is term

endomorphism φ : UT → UT that fixes constants. In another words, if a substitution φ is applied to a term,

then the substitution can be moved to the inside φf(t1, t2, . . . , tn) = f(φt1, φt2, . . . , φtn). A substitution

does not change constants, only variables, so ∀g ∈ UH , φ(g) = g. We say two terms s, t ∈ UT unify if there

exists substitutions φs, φt that make the terms identical φss = φtt, and of finite length. (This implies the

occurs check is performed.) We call the pair (φs, φt) the unifier of s and t. The variables that appear in a

term t are vars(t), and the constants are const(t).

A Horn clause is a formula of the form h ⇐ t1, t2, . . . , tn where h is called the head and t1, . . . , tn are

called the tail (or body). We write T to denote the set of all terms in the tail. The head only contains

variables that appear in the tail, vars(h) ⊆
⋃

i vars(ti). A clause with any empty tail (h⇐) is called a fact,

and contains no variables. Recall that these clauses will be used only to calculate model properties. This is

enforced by requiring the heads to use those function symbols that do not encode model structure, i.e. every

head h = f(t1, . . . , tn) has f ∈ (ΥC − Υ). (Proper subterms of h may use any symbol.) This is similar to

restrictions placed on declarative databases[91]. We slightly extend clauses to permit disequality constraints.

A Horn clause with disequality constraints has the form h⇐ t1, . . . , tn, (s1 6= s′1), (s2 6= s′2), . . . , (sm 6= s′m),

where si, s
′
i are terms with no new variables vars(si), vars(s′i) ⊆

⋃
i vars(ti). We can now define the meaning

of a Horn clause. The definition we present incorporates the Closed World Assumption which assumes all

conclusions are derived from a finite initial set of facts (ground terms) I. Given a set of Horn clauses Θ, the

operator ̂̀Θ is called the immediate consequence operator, and is defined as follows:

M ̂̀
Θ = M ∪

{
φ(hθ) | ∃φ, θ, φ(Tθ) ⊆M and ∀(si 6= s′i)θ ∈ θ, φsi 6= φs′i

}
where φ is a substitution and θ is a clause in Θ. It can be proved that I `Θ I∞ where I ̂̀Θ I1 ̂̀Θ . . . ̂̀Θ I∞.

The new terms derivable from I can be calculated by applying the immediate consequence operator until

no new terms are produced (i.e. the least fixed point). Notice that the disequality constraints force the

substitutions to keep certain terms distinct. Nonrecursive Horn logic adds the restriction that the clauses of

Θ can be ordered θ1, θ2, . . . , θk such that the head hθi of clause θi does not unify with any tail t ∈ Tθj for all

j ≤ i. This is a key restriction; without it, the logic can become undecidable. Consider the recursive axiom

Θ = {f(f(x)) ⇐ f(x)}. Then {f(c1)} `Θ {f(c1), f(f(c1)), . . . , f(f(f(. . . f(c1) . . .)))} includes an infinite

number of distinct terms. Let FNH(Υ,ΥC) be the set of all sets of Horn clauses defined over signatures

Υ,ΥC with alphabets Σ,Σv.

We call domains specified with formulas from FNH nonrecurive Horn domains (abbreviated NHD). The

first problem we wish to solve is the membership problem for positive NHDs.

Definition 14. The membership problem for positive NHDs: Given a positive NHD D, does there exists a

finite model M ⊂ UH(D) such that M `C wellform(x) for some x. The notation UH(D) indicates the set
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of ground terms defined by the signature Υ of D.

The membership problem for positive NHDs is the easiest problem to solve. We will solve it by actually

constructing a model M for which a wellform(·) term can be derived. This is possible because nonrecursive

Horn logic has an important property called monotonicity : If a model M derives terms M ′, and another

model N contains M , then N must derive at least M ′. In symbols, M ⊆ N and M `Θ M ′, N `Θ N ′,

then M ′ ⊆ N ′. This property implies that an algorithm only needs to examine the “smallest” models that

could derive a wellform(·) term. Our algorthims are similar to those found in logic programming, but with

some necessary augmentations. Typically, logic programs are provided with a set of initial facts that form

the closed world. Our problem is to figure out the set of facts such that if the logic program were initialized

with these facts, then the desired outcome (e.g. deriving a wellform(·) term) would occur. This distinction

means that our algorithms cannot rely on the fact that the closed world contains a finite number of ground

terms, because these terms are not yet known. It turns out that although there are an infinite number of

“small” models, these models can be partitioned into a finite number of equivalence classes; these classes

can be exhaustively examined.

We have developed a theorem prover called FORMULA (FORmal Modeling Using Logic Analysis) which

implements these techniques. Figure 41.a shows a positive NHD of directed graphs, called CYCLE, using

FORMULA syntax. Line 1 declares the two function symbols v (for vertex) and e (for edge). The keyword in

marks these as input symbols, i.e. elements of the signature Υ. The remaining symbols are used to calculate

properties of an input model, and are marked priv for private symbols, i.e. elements of ΥC . The theorem

prover will never return a model that contains a private symbol. Well-formed models of the CYCLE domain

must contain either a directed 3-cycle or 4-cycle. Lines 7,8 define the properties of 3-cycles and 4-cycles

based on the properties of 3-paths and 4-paths. For example, a 3-cycle exists if there is a 3-path on vertices

X,Y, Z and there is an edge from Z to X. (Note that the variable names are local to each clause.) Notice the

use of disequality contraints in the definition of 3-paths and 4-paths in Lines 10-13. These constraints ensure

that the paths contain unique vertices. Finally, Lines 16-18 define the derivation of wellform(·) terms.

The first step towards generating a well-formed model is to determine the derivation steps that lead

to wellform(·) terms. This is done via an augmented form of backwards chaining. First, some definitions

are necessary. We call two terms s, t isomorphic if there exists a substitution φ such that φ is a term

monomorphism (one-to-one map), φ s = t, and φ−1 is also a substitution. Clearly it holds that s = φ−1 t.

Given a set of terms T , let IT be an equivalence relation on terms such that (s, t) ∈ IT if s and t are

isomorphic. It is easy to see that IT is an equivalence relation, because composition of monomorphisms

yields another monomorphism. A goal term g is a term (with variables), and a solution M is a set of ground

terms such M `Θ M ′ and ∃φ,∃t ∈ M ′ (φ g = t). In another words, a solution is a model that derives

a ground term unifying with the goal. The terms derived from the solution M are all ground terms, so,
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1: in v arity 1; in e arity 2;
2: priv path3 arity 3; priv path4 arity 4;
3: priv cycle3 arity 3; priv cycle4 arity 4;
4: priv useless arity 1; priv useless2 arity 1;
5: priv wellform arity 1;
6:

7: cycle3(X,Y,Z ) <= path3(X,Y,Z ), e(Z,X );
8: cycle4(X,Y,Z,W ) <= path4(X,Y,Z,W ), e(W,X );
9:

10: path3(X,Y,Z ) <= e(X,Y ), e(Y,Z ),
11: !=(X,Y ), !=(X,Z ), !=(Z,Y );
12: path4(X,Y,Z,W ) <= path3(X,Y,Z ), e(Z,W ),
13: !=(W,X ), !=(W,Y ), !=(Y,Z );
14:

15: useless(X ) <= useless2(X );
16: wellform(X ) <= useless(X ), e(X,Y );
17: wellform(X ) <= cycle3(X,Y,Z );
18: wellform(X ) <= cycle4(X,Y,Z,W );

 useless2(X) 

 useless(X) 

 wellform(X) 

 e(X,Y) 

 cycle3(X,Y,Z) 

 cycle4(X,Y,Z,W) 

 path4(X,Y,Z,W) 

 path3(X,Y,Z) 

Figure 41. (Left) CYCLE: a positive NHD in FORMULA syntax. (Right) Backwards chaining graph
generated from goal wellform(X).

without lost of generality, it can be assumed that the unifier is (φ, idUT
). Let terms(D) be the union of all

terms in the domain definition, (i.e. union of all heads and tails). Given a set of goals G and a domain D,

let [t] be the equivalence class of t in Iterms(D)∪G. A backwards chaining graph B(G) over a set of goal terms

G is defined inductively as follows:

1. For each g ∈ G, [g] ∈ VB(G).

2. For all clauses hθi
⇐ t1, . . . , tm in Θ such that [hθi

] ∈ VB(G), then [ti]1≤i≤m ∈ VB(G) and there exists a

directed “AND” edge ([hθi ], {[ti]}1≤i≤m) ∈ EB(G).

3. For all clauses hθi ⇐ t1, . . . , tm in Θ such that hθi unifies with some tail tθj and [tθj ] ∈ VB(G) then

[hθi
] ∈ VB(G) and there exists a directed edge ([tθj

], [hθi
]) ∈ EB(G).

The right-hand side of Figure 41 shows the backwards chaining graph generated by the single goal term

wellform(X). There a significantly fewer vertices in the graph than terms in the domain definition, because

many terms are isomorphic. B(G) has several properties, though we will not prove them here. B(G) is finite

because the domain D has a finite number of clauses, and B(G) is acyclic because D is nonrecursive. Unlike

typical backwards chaining, the sinks in the graph are not ground terms, because their are none, but are

terms with function symbols completely in Υ. Any sinks without this property are pruned from the graph.

For example, the useless(·) and useless2(·) terms are pruned, because there are no ways to derive these

terms from Υ terms. The vertices and edges in dotted lines are the pruned part of the graph. If a solution

exists then there must be a directed path from every [g]g∈G vertex to a non-pruned sink using non-pruned
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edges. This holds because a solution contains only ground terms, which impose stronger restrictions on the

unifier morphisms, than those imposed by the construction of B(G).

The backwards chaining graph captures the various paths from the goal to possible solutions, and each

path must be walked until a solution is found or it is confirmed that no solution exists. A path can be

“unrolled” one at a time (as in SLD resolution[97]), or a tree can be constructed capturing every possible

walk. We choose the latter in order to support other uses of FORMULA. Figure 42 shows the unrolling of the

Figure 41 into a solution tree. The tree has a root with a single AND edge having an endpoint on each goal

term g. Every goal term g attached to the root receives an edge for each v ∈ B(G) such that g unifies with v.

For example, Figure 42 shows the vertex wellform(V 0) connected to the wellform(V 1). This edge indicates

that wellform(V 0) unifies with wellform(V 1). The tree construction algorithm always standardizes apart

unifying terms by instantiating them with unique variables. wellform(V 1) has two distinct paths in the

backwards chaining graph, and each of these are unrolled into two subtrees of the wellform(V 1) vertex. If

a clause has disequality constraints, then these appear as constraints on the edges in the solution tree.

ROOT

 wellform(V0) 

 wellform(V1) 

 cycle3(V1,V3,V4) 

 path3(V1,V3,V4)  e(V4,V1) 

!=(V4,V3) !=(V4,V1) !=(V3,V1) 

 e(V1,V3)  e(V3,V4) 

 cycle4(V1,V6,V7,V8) 

 path4(V1,V6,V7,V8)  e(V8,V1) 

!=(V8,V6) !=(V7,V6) !=(V8,V1) 

 path3(V1,V6,V7)  e(V7,V8) 

!=(V7,V6) !=(V7,V1) !=(V6,V1) 

 e(V1,V6)  e(V6,V7) 

Figure 42. Solution tree generated from backwards chaining graph of Figure 41
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The solution tree is viewed as a constraint system over terms. As the tree is walked, equations concerning

terms are collected. A unification of terms s, t can be converted to a system of equations over variables. For

example g(X,Y ) unifies with g(Z,Z) if X = Y = Z. Clearly any unifier (φs, φt) must have φs(X) = φs(Y ) =

φt(Z). The correct equations are calculated by an inductive procedure as motivated in [97]. The constraint

system is represented as a forest of union-find trees; a unification s, t yields a set of equations {si = ti}, which

is converted to operations on the forest: for each equation si = ti perform join(find(si), find(ti)) where

the find(x) operation creates the vertex labeled x if x does not already exist. For example, there is one

non-trivial union-find tree in Figure 43 resulting from the unification of wellform(V 0) with wellform(V 1),

which joins V 0 and V 1. As terms are added to the forest, so are their subterms. Dependency links are

maintained between vertices, where a term t is dependent on a term s if s is a subterm of t. An operation

fails if the dependency edges form a cycle, essentially indicating that a multi-step unification fails. The

dependency edges in Figure 43 are gray and labeled “depends”. Disequality constraints are implemented

as “Not equal” edges between vertices. Notice that all terms in the same union-find tree share the same

constraints and dependencies. As trees are joined, all the constraints are moved up to the root. For example,

in Figure 43 all constraint edges terminate on the JOIN vertex. Thus, a disequality constraint fails if a vertex

is unequal to itself, or a join operation moves the source and destination of a disequality edge onto the same

join vertex. As the algorithm walks the solution tree, it performs operations on the constraint system. As

soon as the constraint system becomes inconsistent, the algorithm restarts on an unexplored combination

of subtrees. FORMULA maintains all possible restart configurations, and only fails after all restarts have

been tried. Let W be the sequence of vertices visited in a walk of the solution tree. Then CS(W ) is the

constraint system produced by that walk.

After a consistent walk W has been found, the constraint system CS(W ) can be converted into a set of

ground terms. Notice that the sinks (ignoring disequality edges) in the constraint system are those terms for

which all other terms are dependent. In fact, our construction guarantees that the sinks are just variables

or ground terms. Let sinks(CS) be the sinks of a consistent constraint system CS defined as follows: A

union-find tree T ∈ CS is a sink tree if the root has no outgoing edges, or only has outgoing disequality

edges. If no leaves of the sink tree are ground, then pick a leaf and place it in sinks(CS). Choose any

substitution φmin such that φmin(X) 7→ cX ∈ (Σ− const(D)), where cX is a unique constant not appearing

anywhere in the domain definition. If a variable X is in the same union-find tree as a ground term tg, then

φmin(X) 7→ tg. The values of all other variables are calculated transitively to form the full substitution φsol.

Finally, the candidate solution MW for walk W is

MW =

( ⋃
v∈W

φsol(tv)

)
∩ TΥ(Σ)

where tv is the term of a vertex v in the walk W of the solution tree. MW is a proper solution if no model

terms of the form f(t1, . . . , tn), where f ∈ Υ, are removed by the intersection with TΥ(Σ). Such a term would
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 e(V4,V1) 

JOIN

depends

V4

depends

V0

V1
V3

Not equal Not equal

 e(V3,V4) 

depends

depends

Not equal

 e(V1,V3) 

dependsdepends

 path3(V1,V3,V4) 

depends

depends

depends

 cycle3(V1,V3,V4) 

depends

depends

depends

 welform(V0) 

depends

 welform(V1) 

depends

Figure 43. Constraint system shown as a forest of union-find trees.

be thrown out if it contains a subterm ti built from symbols of ΥC−Υ. In this case, the candidate solution is

discarded and another walk through the solution tree is attempted. Applying this algorithm to the constraint

system of Figure 43 gives sinks(CS) = {V 0, V 3, V 4}. Let φmin(V 0) 7→ c0, φmin(V 3) 7→ c1, φmin(V 4) 7→ c2.

By transitivity, φsol(V 1) 7→ c0, and all variables are accounted for. Applying φsol to each vertex on the left-

hand walk of Figure 42 gives a candidate model MW = {e(c0, c1), e(c1, c2), e(c2, c0)}, which is a correctly

constructed 3-cycle. It is not difficult to prove:

Theorem 15. A positive NHD has a non-trivial finite model iff there exists a walk W such that CS(W ) is

consistent and the candiate model MW is proper.

These algorithms can also be used to construct well-formed models with particular embeddings. Let

γ : UH 7→ UH be a term endomorphism (i.e. a homomorphism over model terms). A model M ′ can

be embedded into a model M , written M ′ ≤ M , if there exists a one-to-one term endomorphism (i.e. a

monomorphism) such that γ(M ′) ⊆ M . Constructive techniques that can produce embeddings allow us to

sketch a model that might be malformed, but produce a well-formed version that still contains the original

model. This can be quite useful for users who do not understand all of the particular constraints of a

modeling language, and would like the computer to correct mistakes. Consider the top-left graph of Figure

44. This star graph (S4) is malformed with respect to the CYCLE domain, because it contains neither a

3-cycle nor 4-cycle. However, with a slight modification to the algorithms above, a new model can be built

that is well-formed and contains an embedding of the star graph. Let D be a domain and let an input model
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MI be a finite subset of model terms TΥ(Σ). Choose any one-to-one map α : Σ→ Σv that uniquely relates

c1
c2

c3

c4

c1
c2

c3

c4

c5

c6

c7

c1

c2

c3

c4 12

11 Join

Join

3

8

Join

Join Join
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7

5

6
0

1

4

9
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Join

11

T3

1

6
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3
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5

49

Join

12

2

7

Figure 44. (Left) A malformed input model (top), a well-formed embedding, and a minimal embedding
(bottom). (Middle) Initial constraint system showing only sink trees and disequality constraints. (Right)
Minimized constraint system.

constants to variables in Σv. Clearly α induces a monomorphism φα : TΥ(Σ)→ TΥ(Σv) from terms without

variables to terms that only have variables. We will use this monomorphism to encode the input model as

a Horn clause. Pick any function symbol f /∈ ΥC and add it ΥC with arity |consts(MI)|, i.e. the arity of f

is equal to the number of constants in the input model MI . Add the following clause θMI
to D:

θMI

·= f(α(c1), α(c2), . . . , α(cn))⇐
∧

tm∈MI

φα(tm)
∧
i 6=j

(α(ci) 6= α(cj))

where 1 ≤ i, j ≤ n = |consts(MI)|. Recall from the previous algorithms, that a solution is constructed by

defining a substitution φsol that is determined by the sink variables sinks(CS(W )). Consider any solution

to any goal set G where f(α(c1), . . . , α(cn)) ∈ G. By construction, the restriction of φsol to sinks(CS(W ))

yields a one-to-one map. In the construction above, all pairs of variables induced by MI have disequality

constraints, so α(consts(MI)) ⊆ sinks(CS(W )) for any consistent walk W 2. Therefore, the restriction of any

φsol to the terms TΥ(α(consts(MI))) must be a monomorphism. Thus, γ = (φsol ◦ φα) gives the embedding

of MI in any proper solution MW for a consistent walk W .

Theorem 16. Given an input model MI and a positive NHD D, augmented with f and θMI
. Any proper

solution to a goal set G, where f(α(c1), . . . , α(cn)) ∈ G, contains an embedding of MI .

In particular, let the goal set G = {f(α(c1), . . . , α(cn)), wellform(X)}, where the variable X is not in

the image of α, then any solution to G contains MI and is well-formed. The middle-left graph of Figure 44

shows FORMULA’s construction of a well-formed version of the star graph in the CYCLE domain.

The default embedding produced by FORMULA is not particularly elegant. It contains a star juxtaposed

with a 3-cycle. This solution was constructed because φsol assigns a unique constant to each sink variable,
2This is a slight simplification. There will be some representative sink variable for each variable in the image of α.
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yielding a maximal solution with respect to the number of constants. A smaller solution can be found by

manipulating the final constraint system CS(W ) so that the number of sink variables are reduced. This can

be accomplished by merging sink trees, which is legal if the trees do not have disequality constraints between

them. The middle graph of Figure 44 shows the sink trees of the constraint system after producing the

middle-left embedding. The root of each tree is in bold, and disequality constraints between trees are shown

as bold edges. These are the only types of edges between trees, because sink trees do not have dependency

edges between them. A minimal solution can be formed by partitioning the root vertices into a minimal

number of independent sets. This is a computationally hard optimization problem related to the independent

set problem. The right side of Figure 44 shows the optimized constraint system, which contains only four trees

(and four sink variables). The roots of the optimized constraint system form a clique, therefore no further

optimization is possible. The bottom-left graph shows the optimized solution generated by FORMULA,

wherein the star and 3-cycle have been merged in an ideal fashion. Note that this process yields a minimal,

but not neccessarily minimum model. Finding a minimum model requires minimizing all possible consistent

walks of the solution tree.

Extensions, Tools, and Future Directions

We have shown that the constructive reasoning of UML-like metamodels is a rich area of study, both the-

oretically and algorithmically. In the interest of space we have used directed graphs as our toy example.

However, these techniques can be applied to much more complicated metamodels, and with practical ap-

plications: Metamodel composition is the process of constructing new domain-specific languages by com-

bining existing metamodels. Two metamodels, mm1 and mm2, can be syntactically combined with an

operator ◦, such as class equivalence[98], and the syntactic composition can be converted into a domain

Dcomp = τmeta(mm1 ◦mm2). The membership problem for the domain can then be solved, thereby deciding

if the metamodel composition is semantically meaningful. Other problems, like the construction of embed-

dings, correspond to the automatic construction of useful models that satisfy the domain constraints. Model

transformations can also be incorporated into our framework, and then constructive techniques can be used

to prove that the transformation always produces well-formed output models from well-formed input mod-

els. This is the weakest form of correctness one could imagine, but checking these properties has remained

mostly open. There is already precedent for the use of Prolog engines to transform a particular input model

MI to an output model MO, as is done by Viatra2[73]. A particular input/output pair (MI ,MO) can then

be compared to check for mutual consistency (e.g. via bisimulation). However, checking properties of the

overall transformation is more difficult, though our approach can handle it as long as the transformation

is restricted to an appropriate class of logic. The verification goal resembles Hoare’s notion of a verifying

compiler [48].
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This brings us to questions of expressiveness. How expressive is Horn logic and how far can it be taken?

This question has driven our development of FORMULA, which we now summarize. Positive NHDs are not

particularly expressive, but they are an essential starting point for developing constructive techniques for

more expressive domains. The next step in the progression is to solve the membership problem for negative

NHDs. Recall that negative domains characterize the malformed models with the symbol malform(·), and

a model M is wellformed if ∀x,M 0C malform(x). Negative NHDs can express domains not representable

by positive NHDs, because of the universal quantification over malform(x). Notice that the solution tree

for a goal G = {malform(x)} contains all equivalence classes of malformed models, and the malformed-

ness property is monotonic in models. With these observations, the membership problem can be solved

by repeating this procedure: Prune all leaves in B({malform(x)}), except for one symbol f ∈ Υ. If

malform(x) can be proved on the corresponding pruned solution tree, then by monotonicity, no wellformed

model can contain a term unifiying with f . If malform(x) cannot be proved, then a wellformed model

M = {f(·, . . . , ·)} has been found. This test is repeated (at least once) for each f ∈ Υ; due to unification

issues, it may be repeated multiple times for non-unifying f -terms. This procedure is also implemented in

FORMULA.

A further increase in expressiveness can be obtained by extending the Horn logic so that a tail can

contain a “negated” term ¬ti. (For example, the UNSAT domain (Figure 39) can be defined with this

extension.) Loosely, a negated term is a constraint requiring that a solution M 0C ti. Theoretically,

this extension approximates the power of full first order logic, but remains decidable (under additional

restrictions on its use). It turns out that this simple extension corresponds to a nonmonotonic logic, and

has deep theoretical and algorithmic repercussions. Our major challenge has been the development of

constructive techniques for domains written in Horn logic extended with negation. These techniques are also

implemented in FORMULA, and extend existing work on nonmonotonic inference[94][93] to deal with the

particulars of UML-like metamodels. Theoretically, these extensions must be handled carefully in order to

maintain the soundness and completeness of the theorem prover. Algorthmically, our approach combines the

aforementioned algorithms with state-of-the-art SAT solvers to construct models. In conclusion, a reasonable

level of expressiveness can be obtained.

A common criticism of theorem proving is the requirement of the user to understand the underlying

mathematics. We have addressed this issue by developing an automated conversion from metamodels to

domain definitions. This approach is described in [39], and supports metamodeling in the well-known Generic

Modeling Environment (GME) toolsuite[43]. Furthermore, because the theorem prover is constructive, the

results of the prover are concrete models that can be automatically imported back into the GME modeling

environment. This closes the loop, providing constructive reasoning about models and metamodels without

leaving the comfort of the modeling toolsuite (for most of the common queries). Our future work is to apply
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these techniques to analyze model transformations, including those specified with the Graph Rewriting and

Transformation (GReAT) language[72] that is also part of the GME toolsuite.

97



CHAPTER V

STRUCTURAL INTERFACES FOR ADAPTIVE SYSTEMS

Introduction

Frameworks based on domain-specific modeling languages (DSMLs)[43] and platform-based design[99] have

a history of success in the embedded software realm. DSMLs/platforms capture, among many things, the

computation and communication mechanisms of a class of systems. A well-defined class of systems can then

be used to disambiguate software specifications. For example, a typical software specification might contain:

Refresh the client’s data from the server every 1s.

Without definitions to disambiguate this specification, the system is ill-defined: Does the client contact the

server after exactly one second has passed or at least one second? How long is a second? Is it an approximate

second with respect to the discrete clock ticks of the client? Perhaps a global continuous timeline is assumed.

The answers to these questions influence implementation decisions (e.g. “Do we need a time synchronization

algorithm?”), and so they indirectly determine whether or not the final implementation is correct. Loosely

speaking, a DSML or platform is a set of parameters that removes the ambiguities from system specifications.

An engineer’s first task in the design process is to select the appropriate DSML/platform; only then can

specification begin. (We shall use the term DSML from hereon, though platform can be used interchangeably.)

Besides precision, there are other major advantages to the DSML approach: Each DSML provides a rich

set of formal methods, simulation engines, verification tools, and code generators. By choosing a DSML, the

engineer inherits a tool set tailored to the problem domain. Also, DSMLs can be ordered by the degree to

which details are abstracted away. Highly abstract domains are useful for system specification, while less

abstract domains are closer to the final implementation. A system is initially specified with a highly abstract

domain, and then incrementally migrated to less abstract domains, via model transformations or platform

mappings, until a final implementation is produced. We shall refer to any description of a system in the

context of a DSML as a model, regardless of the degree of abstraction.

The typical software life-cycle begins with an abstract modelMn belonging to an abstract DSMLXn. This

abstract model is analyzed and simulated, usually to check functional requirements. A model transformation

J Kn
n−1 maps models from Xn to the less abstract DSML Xn−1, where Mn−1

.= JMnKn
n−1 is a more concrete

model. This process repeats until an implementation model M0 is produced. Finally, code is generated from

M0 into a language like C, the result of which is compiled and deployed.

The model-generate-deploy (MGD) life-cycle works well for a number of embedded systems domains,
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but not all. For example, the topology of an ad hoc sensor network changes. Adaptive control systems

adiabatically evolve essential control parameters. Modal and adaptive software systems switch their running

behavior between a number of predefined scenarios. Interestingly, we can still view these systems through

a model-based lens in the following way: A snapshot of the system at a point in time corresponds to some

high-level model, but not necessarily the initial high-level model of the system. Thus, a system transitions

through a number configurations, each of which is concisely described by some high-level model belonging

to the DSML.

We combine our model-based view with ideas from adaptive software systems[100] to create a reusable

mechanism for implementing adaptive systems. First, notice that a single “pass” through the MGD tool

flow yields an implementation from the perspective of a single model. We shall denote a single pass by the

composite map J Kn
0 = J K10 ◦ J K21 ◦ . . . ◦ J Kn

n−1. Thus JMKn
0 denotes the system generated from model M

by transforming it through n levels of abstraction plus a final transformation to code (i.e. the zeroth level).

Our goal is to compress the entire MGD tool flow so that it fits onto an embedded platform, allowing the

embedded system to dynamically calculate JMKn
0 for any model provided to it. This provides a substrate

for adaptation: A controller C (called the adaptor) monitors the state of the embedded platform P , and

decides when the platform (called the adaptee) should modify its implementation. When C decides to adapt

the platform, it sends a new model M ′ to P , and P calculates JM ′Kn
0 to determine its new implementation.

In this way, existing tools and specification techniques can be reused to implement adaptation.

Our discussion has oversimplified the problem somewhat. Figure 45 shows a more complete picture

of an embedded platform extended with adaptive capabilities. We shall describe this system in terms of

components[101], which utilize the object oriented concepts of encapsulation and interface[102]. A component

is a black box that encapsulates functionality, except for a number of exposed interfaces. From the outside

of a component, an interface provides a set of ports for pushing data into the system and extracting data

from the system. For example, the right side of Figure 45 shows the Data Interface as a white box with

a dashed border. Each port of the interface has a name and a direction (given by an arrow). Ports that

lay outside of the shaded component boundary are exposed, and arrows that point towards (away) from the

component consume (produce) data with respect to the external environment. Thus, data may be pushed

into the component via the Push Token In port or extracted from the component via the Get Token Out

port. Interfaces also expose ports on the inside of the component. From the inside of the component, the

Get Token In and Num Tokens In ports provide access to the data acquired through external interactions.

An interface may perform non-trivial mediation between the external and internal sides of the interface. For

example, the Data Interface might manage a queue that stores pushed tokens.

Interfaces mediate interactions for a number of purposes, e.g. causality[22] and timing[103] interfaces

were recently presented. In this chapter we introduce a novel type of interface, called a structural interface,
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Figure 45. Interfaces and subcomponents of an adaptive component.

for mediating the exchange of model structure between components. The structural interface is an essential

part of our adaptive substrate, as shown on the left-hand side of Figure 45. The interface accepts arbitrary

model structure through the exposed Put Model port. On the inside, the interface passes only well-formed

models, via the Get Model port, to a Model Store subcomponent that stores the model. It also provides

internal notification signals for triggering an overwrite of the store (Write) and generation of a new imple-

mentation (Adapt). The Generator subcomponent implements the generation facility. Finally, the Executor

subcomponent executes the current implementation and accesses the data interface. These interfaces and

subcomponents implement the map J Kn
0 using well-studied design principles.

The structural interface guards the adaptive component from dangerous interactions. For example, feed-

ing the component a meaningless model would destroy its functionality. The interface protects the component

by transforming a model M , put in from the outside of the interface, into a well-formed model M ′, given

to the inside of the component. This is a non-trivial form of mediation provided by the structural interface.

Section V.2 introduces the formal foundations of DSML structural semantics presented last year[39]. This

formalization is key to generating structural interfaces from DSMLs specified using metamodels. The me-

diation performed by a structural interface depends on the intended style of adaptation. In this paper we

develop the concept of a structural interface. We proceed as follows: In Section V.3 we show that interfaces

can be denotationally characterized with a general trace semantics, and we describe an important class of

interfaces implementing scenario-based adaptation. Section V.4 proves that a DSML has a unique interface

with respect to this scenario-based adaptation. Additionally, we show how to generate the interface for

structural semantics defined with a nonmontonic Horn logic. We conclude in Section V.5.
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Structural Semantics

The work presented here relies heavily on our earlier presentation of the structural semantics of DSMLs.

The structural semantics provides the basic mathematical framework for defining the objects that pass

through structural interfaces. Traditional programming languages are characterized by the syntax and the

semantics of the language. Historically, syntax has been viewed from the perspective of regular or context-free

languages. Interestingly, most languages are neither regular nor context-free because a number of common

constructs cannot be represented with these formalisms. For example, the language L = {wcw | w ∈ (a|b)∗}

is neither regular nor context-free[34]. This language corresponds to the restriction that an identifier w must

be declared before its use. (The first w is the declaration, c is some code, and the second w is the use of the

identifier.) This fact has not bothered designers of traditional languages, because more complex constraints

can be checked during later phases of the compiler. For example, type-systems manipulate objects that are

more complex than finite strings. Thus, many complex constraints can be pushed into the type-system.

However, this piecemeal approach to structure is not effective for model-based design. Figure 46 shows a

prototypical model of an embedded system. Semantically, the boxes might represent n-ary maps, concurrent

actors, or sequential functions. The arrows might be composition of maps, queues, or function calls. Struc-

turally, the model is akin to a directed graph, but far more complicated. Vertices are compound objects with

multiple labeled connection points. Vertices and edges are typed and can contain data members (attributes).

DSMLs also utilize a number of relational concepts beyond graph-like edges, including containment relations,

aspect membership, and hierarchy-crossing edges. Furthermore, many DSMLs necessarily impose non-trivial

constraints on the arrangement of structure. For example, if we interpret the arrows of Figure 46 as instan-

taneous data dependencies, then a cycle in the model implies deadlock. From this perspective, Figure 46 is a

structurally malformed model. Constraints such as these cannot be captured with context-free languages, or

have cumbersome translations into context-free languages. A piecemeal approach is also insufficient, because

this does not support sound reasoning about model languages and model transformations.

In [39] we presented an approach to formalizing the structural semantics of arbitrary DSMLs. We use this

as a foundation for structural interfaces. A domain is the set of all well-formed model structures that belong
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Figure 46. An example of model structure.
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to a DSML. An arbitrary domain is characterized by three pieces of information: (1) The set Υ of ingredients

for building structure. (2) The set RΥ of all structures that can be built from the basic ingredients. (3) A

set of constraints C that defines the subset of RΥ containing only well-formed models. We call the elements

of RΥ model realizations, which may or may not be well-formed. Notice that traditional language syntax

is also characterized by this same information. For example, take Υ = Σ to be a finite alphabet. Then

RΥ = Σ∗ is the Kleene closure of Σ, and C = A is a deterministic finite automaton or pushdown automaton

that accepts only well-formed strings. Thus, our approach differs by how this information is specified.

Instead of a finite alphabet as the basic ingredient, we use a signature of an algebra and a countably

infinite set of constants Σ. The details of the signature depend on the DSML. Let V be a countably infinite

set of function symbols, then a signature Υ is a partial map Υ : V → Z+ that assigns an arity to each

function symbol in dom Υ. We can also write a signature as a set enumerating the symbol-arity pairs. For

example, a simple domain of directed graphs (digraphs) might have Υ = {(v, 1), (e, 2)}, where the function

symbol v takes one argument and the function symbol e takes two arguments. Informally, a term is an

arbitrarily deep mixing of function symbols and constants that respects arities. A model realization is a

set of terms. For example, a digraph with vertices c1 and c2 and edge (c1, c2) could be represented as

R = {v(c1), v(c2), e(c1, c2)}. The constants of Σ (e.g. c1, c2) stand for distinguishable elements of a model,

and the function symbols endow these elements with information. Thus, by writing v(c1) we have denoted

that c1 stands for a vertex. The n-ary relations of a domain are easily captured by selecting the correct

arities. For example, given a model realization R, the vertex set is V = {x|v(x) ∈ R} and the edge set

(a binary relation) is E = {(x, y)|e(x, y) ∈ R}. Notice that the values returned by v(·) or e(·, ·) are not

explicitly defined. Formally, these functions are implicitly defined by the term algebra[38] over Υ generated

by Σ. This algebra is written TΥ(Σ) and has the following properties:

1. Σ generates the algebra: TΥ(Σ) = 〈Σ〉.

2. Functions never return a member of Σ: ∀f ∈ dom Υ, im f ∩ Σ = ∅.

3. If applications of f and g yield the same value, then f and g are the same function symbols applied to

the same arguments: f(t1, . . . , tΥ(f)) = g(s1, . . . , sΥ(g))⇒ (f = g, ti = si).

Formally, a term is a member of the term algebra, and every term can be uniquely identified by an application

of functions and constants. This unique readability property means that the actual values of the functions

are irrelevant and every term algebra TΥ(Σ) is isomorphic to every other such algebra. With this in mind,

the set of all model realizations is the set of all possible sets of terms: RΥ = P(TΥ(Σ)).

The term algebra allows all function symbols and constants to be combined in every conceivable way.

This makes it an ideal construction, because all well-formed models are guaranteed to be in RΥ regardless

of how we intend to encode models. There is also a downside. There are many members of RΥ that use the

function symbols contrarily to our intensions. For example, R = {v(e(c1, c2))} is also a member of the term
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algebra for the digraph domain, but it does not correspond to a digraph. Thus, we need a set of constraints

over RΥ that determines the subset of RΥ containing all well-formed models.

Choosing a constraint language is essential, because it can make or break the decidability of structural

properties. An elegant choice would utilize our encoding of models as terms. Fortunately, formal logic

provides a fully compatible framework via consequence operators. A consequence operator `Θ is a mapping

from sets of terms to sets of terms `Θ: P(TΥ(Σ)) → P(TΥ(Σ)) where Θ is a set of axioms and R `Θ R′

denotes the set of all terms R′ that can be derived from R using the axioms Θ. We will write R `Θ t to

denote that a term t ∈ R′ can be derived from R. We use consequence operators in the following way: Call a

signature Υ′ an extension of Υ if Υ′ is also a signature and Υ ⊆ Υ′. Constraints are given by a pair (C,ΥC)

where C is a set of axioms and ΥC is an extension of Υ that contains a unary function symbol not in Υ. If

this symbol is wellform(·), then a model realization R is well-formed if ∃x ∈ TΥC
(Σ), R `C wellform(x).

A model is well-formed if it is possible to derive any term of the form wellform(·). Contrarily, ΥC may

contain the symbol malform(·) and R is well-formed if it is impossible to derive a malform(·) term:

∀x ∈ TΥC
(Σ), R 0C malform(x). We can tune the expressiveness of the structural semantics by choosing

the consequence operator. Algorithmically, consequence operators correspond to repeated applications of

inference procedures, which are usually well-known and readily available.

The combination of algebra and logic proves useful for formalizing other aspects of model-based design.

For example, a model transformation τ corresponds to a map between the model realizations of two domains

τ : RΥ → RΥ′ . Additionally, τ can be defined with a set of transformation axioms, and then the consequence

operator calculates the transformation. From there, metamodeling can be described as a special transforma-

tion τmeta from a metamodel domain to the domain of all domains. Thus, a formal basis can be constructed

for a large portion of a model-based tool framework. We have implemented this using the Generic Modeling

Environment (GME)[43]. Using GME, a user can construct a metamodel annotated with constraints, and

then the resulting formal description of the domain can be automatically generated. Additionally, we have

developed an automated theorem prover called FORMULA (FORmal Modeling Using Logic Analysis) for

proving properties of domains and transformations.

Metamodeling is a common method for defining the structural semantics of DSMLs. We will now describe,

in detail, a metamodel that will be used as a running example throughout this chapter. Figure 47 shows

an example metamodel DF, written in the notation of UML class diagrams. DF defines the structure of

a digital signal processing (DSP) language. Figure 46 is an example model belonging to the DF domain.

(Actually, DF allows cycles, so Figure 46 is well-formed with respect to this metamodel.) The box labeled

DSPObject represents the class of dataflow processing elements. Instances of DSPObject are shown as

blocks (e.g. the block labeled FFT ) in Figure 46. Dataflow elements provide an interface with input ports

for accepting data, and output ports for emitting data. Structurally, interfaces appear as sets of labeled
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DSPObject

InterfaceIOConn

Input Output

DataType

type: = enum

items: = {bool,string,int,real}

src

dst

InputsAreInside

malform(input(X)) <= input(X),

                     !contains(X,Y);

InputsAreConnected

malform(input(X)) <= input(X), contains(X,Y),

                     !iOConn(N,W,X);

NoShortCircuit

malform(iOConn(X,Y,Z)) <= 

     iOConn(X,Y,Z), contains(X,W),

     contains(Y,W), contains(Z,W);

Figure 47. DF - A dataflow metamodel with constraint annotations

connection points contained within DSPObject instances. The ports are shown as white arrows on the left

and right hand sides of the DSPObject instances (Figure 46). The DF metamodel defines ports using three

classes: Interface, Input, and Output. Instances of Input (Output) correspond to input (output) ports. The

triangle symbol in DF declares that Interface is a superclass of Input and Output. Edges terminating in

black diamonds indicate containment, so Interface instances are contained in DSPObject instances. This

rule also applies to the subclasses of Interface. Similarly, DSPObject instances can contain more DSPObject

instances, permitting arbitrarily deep hierarchy in the dataflow systems.

Ports are usually typed to restrict the data values that can be received or produced. Structurally,

types correspond to additional information tagged onto port instances. These data tags (or class fields) are

represented by attribute classes, of which DataType is an example. The data encapsulated by attributes

are also typed, and so the DataType class contains a type field describing the type of the data encapsulated

by instances. (This requires some meta-level thinking.) In this example, a DataType instance encapsulates

a type identifier from a known list of types. Thus, the type of DataType is enumeration, written type: =

enum. The items field contains the possible values of the DataType enumeration: bool, string, int, or real.

Finally, ports can be connected together, as shown by the arrows of Figure 46. The metamodel explains that

instances of the IOConn class are edges that start and end on instances of Interface, and the actual edge is

contained in a DSPObject instance. The shaded annotations (right-hand side) add more constraints to the

definition of well-formed DF models. We shall describe these constraints in more detail later.

A metamodel is a concise mechanism for specifying the complex structural semantics of DSMLs, such

as those found in embedded systems. Without a formal foundation for these diagrams, it would be difficult

to effectively reason about realistic DSMLs. Our approach converts this diagram into a model signature Υ,

a constraint signature ΥC extending Υ, and a set of constraints C for deciding if a model is well-formed.

Constraint annotations are viewed as added axioms, which are combined with the constraints generated from

the diagram. Thus, we can utilize existing descriptions of DSML structure in an automated fashion.

104



Time-Model Dynamics

Using the structural semantics, we can now be more precise about the mediation capabilities of a structural

interface. Figure 48 zooms in on the structural interface of Figure 45. At every point in time, the struc-

tural interface contains an encoding of the high-level model that describes the current configuration of the

component. At time t0 this model is the initial high-level model M t0 . A some point in time ti, an adaptor

requests a change in implementation by putting a new model Ma into the interface. In Figure 48, the initial

model is a triangle graph (K3), but the adaptor puts a star graph (S4) into the interface. Notice that the

term-algebraic encoding of the model is used as a communication protocol. In fact, our approach generates

a customized protocol from a metamodel, reducing communication overhead. The actual data transmitted

is shown under the star graph.

In the most general sense, the interface implements a mapping I : RΥ ×RΥ → RΥ. The model provided

to the inside of the component at time ti is M ti = I(M ti−1 ,Ma), where Ma is the model put into the

interface by the adaptor, and M ti−1 is the previous configuration. Additionally, the interface guards the

inside of the component from malformed models. Assuming M ti−1 is well-formed, then the interface must

return a well-formed model M ti to the inside of the component, even if Ma is malformed. This implies that

if the initial model is well-formed, then the component’s configuration will always be reflected by some well-

formed model. We write R |= C (read “R satisfies C”) if a model realization R satisfies the well-formedness

constraints C.

Definition 17. Let D = 〈Σ,Υ,ΥC , C〉 be a domain. A structural interface ID has the following properties:

1. ID : RΥ ×RΥ → RΥ

2. ∀X,Y ∈ RΥ, (X |= C)⇒ (ID(X,Y ) |= C)

In Figure 48, the interface I returns the complete graph K4 to the inside of the component, i.e. I(K3, S4) =

K4. Presumably, K3 and K4 are well-formed models for this domain.

Notice that M ti may contain many of the same terms as M ti−1 . Practically, this occurs often, so it is

useful to rephrase the interface in terms of the model elements that changed between M ti and M ti−1 . We

call this a ∆-interface. Given an interface I, the associated ∆-interface assigns a pair (∆+(X,Y ),∆−(X,Y ))

to each input pair (X,Y ) according to the following:

∆+(X,Y ) = I(X,Y )−X (V.1)

∆−(X,Y ) = X − I(X,Y ) (V.2)

where the subtraction operation is set-subtraction. The ∆+ set contains all new terms added to X, and the

∆− set contains all terms taken away from X. It is easy to see that

I(X,Y ) =
[
X ∪∆+(X,Y )

]
−∆−(X,Y )
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Embedded Platform (Adaptee)

Structural__Interface

{v(c1),    v(c2),

 v(c4),    v(c3),

 e(c1,c2), e(c1,c3),

 e(c1,c4)}

 = {v(c1), e(c1,c2),

    e(c1,c3), e(c1,c4)}

 = { }

Figure 48. A general ∆-interface acting on an input model

holds, so no information is lost by using the ∆-interface. Figure 48 shows the two sets ∆+, ∆− for the

adaptation from K3 to K4. These sets can be viewed as control inputs to the generator and model store

subcomponents of the adaptee.

The main objective is to actually calculate an interface ID from a domain D. Clearly, there is not a

unique interface ID. In fact, different interfaces capture different assumptions about how components re-

spond to adaptation requests. Thus, the interface-generation problem is under-specified until details about

the permissible time-model dynamics are provided. This brings us to the usual problem: How do we describe

the time-model dynamics independently of the interface? We use the well-known approach of traces. Traces

provide a denotational mechanism for describing dynamics, while interfaces provide an operational mecha-

nism. An interface is “correct” with respect to traces if the set of traces generated by an interface matches

the “correct” trace set. Let us be more specific.

Definition 18. Given a domain D, a model trace ρ is an infinite sequence of well-formed models from D:

1. ρ : Z+ → RΥ

2. ∀i ∈ Z+, ρ(i) |= C

We call T a trace semantics or a set of traces, if for every well-formed model R in D, there is some trace

that begins at R.

Lemma 19. A domain D and a structural interface ID defines a trace semantics Tr(ID) according to the

following induction:

1. Tr(ID)0 = {ρ | dom ρ = [0, 0] and ρ(0) |= C}
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2. Tr(ID)i>0 =

ρ
∣∣∣∣∣∣∣∣∣∣

dom ρ = [0, i],

ρ �[0,i−1] ∈ Tr(ID)i−1,

∃Y ∈ RΥ ρ(i) = ID(ρ(i− 1), Y )


3. Tr(ID) = Tr(ID)∞

We also call the set Tr(I) the set of traces generated by I. This set contains all the possible sequences

of adaptations that can be reached by starting from any well-formed initial model, and putting any model

realization into the structural interface. The base case of the induction, the set Tr(I)0, contains all sequences

of length 1 that start at a well-formed model. From there, sequences of length 2 are those maps defined on the

interval [0, 1] such that the restriction of the map to the interval [0, 0] (written ρ �[0,i−1]) is in Tr(I)0. Also,

the value of the sequence at location 1 is given by I(ρ(0), Y ) for some Y ∈ RΥ. In general, the sequences are

grown by finding all the traces of length i, and then collecting all the possible extensions to length i+1. The

lemma is easily proved, because by Definition 17 I(ρ(0), Y ) is well-formed. By induction, every element of a

sequence is well-formed. Therefore, the set Tr(I)∞ is a set of traces according to Definition 18. With these

definitions, we can describe the time-model dynamics for a domain D by characterizing the trace set TD.

This denotational definition does not immediately yield an interface. However, an interface that implements

these dynamics has the property that Tr(ID) = TD. We will now describe the time-model dynamics for a

number of important system classes.

Scenario-based Adaptation

Many system classes define adaptation with respect to a predefined set of scenarios. These classes include

modal systems, hierarchically layered alternatives, and adaptive software systems. From the adaptor/adaptee

perspective, systems differ by (1) how the adaptors pick the current scenario, (2) how scenarios overlap

in the adaptee. Figure 49 shows a typical example of scenario-based adaptation for the purposes of fault

mitigation. The dataflow graph in the lower-half of Figure 49 captures the computational structure of an

embedded platform. The platform intentionally contains a certain amount of redundancy. Under “normal

operation” the platform uses the computational path modeled by dataflow elements {a0, a1, a2, a3}. The

upper-half of the figure shows an automata-based fault adaptor. This adaptor monitors the behavior of

the adaptee for indications that a subcomponent has failed. If failure event e1 is detected, then dataflow

element a0 or a1 has failed. The fault adaptor invokes a predefined scenario M1 that mitigates the fault

by reconfiguring the adaptee to use the path {b0, b1, a2, a3}. In this case, the scenarios are not disjoint

with respect to model structure. Simpler forms of modality are accomplished by defining the ith mode (or

scenario) to be a unique submodel Ri ∈ RΥ. The overall system model R is the disjoint union of the

scenarios, R =
⋃̇

iRi. Assume that adaptees are initialized with the overall system model Mall containing

the possible scenarios. The time-model dynamics always puts the adaptee into a model strictly smaller than
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Mall. Thus, we have our first requirement on the model traces for scenario-based adaptation:

Definition 20. A domain D exhibits a scenario-based time-model dynamics if the allowed model traces

satisfy:

∀ρ ∈ T , ∀i ∈ Z+, ρ(i) ≤ ρ(0)

where models are ordered by set inclusion. This definition correlates precisely with the notion of a scenario.

In fact, if the time-model dynamics of a domain satisfies this property, then the scenarios can be directly

reconstructed from the traces. Assuming the models Mall are finite, it must be that im ρ ⊆ {R′|R′ |=

C,R′ ≤ ρ(0)}. Practically, model structures are always finite, hence the number of possible scenarios is

finite. (Of course, the state space associated with the behavioral semantics of a model is often infinite. But,

we are dealing with structure here.)

Though concise, this basic trace semantics does not reflect how interfaces react to particular inputs. We

now extend the trace semantics to model the response of the interface to sequences of adaptation requests.

Let α be a sequence of adaptation requests, i.e. α : Z+ → RΥ. This sequence represents the models put into

the interface, which may be malformed. Let (α, ρ) be a pair such that α(i) denotes the adaptation request

provided to the platform at time ti, and ρ(i+1) denotes the result of that request. Call a set TIO of extended

traces, the IO trace semantics. (“IO” stands for input/output.) Notice that the basic trace semantics can be

recovered by a projection operator πρ. Let πρ(TIO) = {ρ|(α, ρ) ∈ TIO}. Sometimes it is convenient to extract

all the traces that start at a particular initial condition. Let πρ(0)=R(TIO) = {(α, ρ)|ρ(0) = R, (α, ρ) ∈ TIO}.

The projections πα and πα(0)=R are defined analogously.

Definition 21. A set of extended traces TIO is an IO trace semantics with respect to domain D if:

1. πρ(TIO) is a trace semantics.
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Figure 49. Example of scenario-based adaptation
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2. ∀R |= C, ∀α : Z+ → RΥ, α ∈ πα(πρ(0)=R(TIO))

The first property requires the projection of the extended semantics to be a proper trace semantics. The

second property requires the extended trace semantics to define the response of the system to every possible

adaptation input sequence, starting from every possible initial condition.

Most scenario-based systems also make the following assumption about adaptation history: Whenever an

adaptor submits the same adaptation request, the adaptee configures itself to the same model. For example,

in Figure 49, if the adaptor demands fault mitigation M1 multiple times, then the adaptee complies the

same way by configuring itself to {b0, b1, a2, a3}. Again, we do not mean that the system loses its state, but

that the commands to the reconfiguration engine, as provided by the structural interface, are the same each

time the same model is pushed into the interface. We call this property adaptation-repeatable.

Definition 22. Given a domainD and an IO trace semantics TIO overD, then trace semantics is adaptation-

repeatable if TIO satisfies:

∀R |= C, ∀(α1, ρ1), (α2, ρ2) ∈ πρ(0)=R(TIO), αk(i) = αk′(j)⇒ ρk(i+ 1) = ρk′(j + 1),

where i, j ≥ 0, k, k′ ∈ {1, 2}

Pulling all of these properties together, we now define the traces semantics found in most styles of scenario-

based adaptation.

Definition 23. Given a domain D, a trace semantics is scenario-regular if the following hold:

1. TIO over D is adaptation-repeatable

2. Whenever a request corresponds to a known scenario, the system chooses that scenario.

3. Whenever a request Ma corresponds to an unknown scenario, there exists a greatest known scenario Mk,

such that Mk ≤Ma.

We have already discussed the first property. The second property is intuitive: Imagine that the fault

adaptor in Figure 49 puts the submodel given by M1 into the interface. In this case, M1 is a known scenario,

and is the model that the interface should provide to the inside of the component. Unfortunately, we do

not have space to describe all the existing frameworks that satisfy these properties. In the authors’ opinion,

these proceed naturally from the intented meaning of a “scenario” or “mode”, but presented from our model-

based perspective. For tool examples, see the modal models of Ptolemy II [30], the modes of Giotto [17], the

hierarchical alternatives of DESERT [104], and the fault adapators of ARMORs[105].

Though the first two properties capture existing intuition, the third property is new. It explains how

a scenario should be selected when the adaptee is provided with an unknown adaptation request. Existing

tools do not deal with this eventuality, but our structural interfaces can. Property 3 provides the skeleton

for deriving meaningful structural interfaces for scenario-based adaptation. In the next section we show how

to calculate an interface that satisfies these properties.
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Calculating Scenario-Regular Interfaces

In this section we show how to construct an interface I such that TrIO(I) = TIO, where TIO is the

denotational semantics of a scenario-regular model dynamics1. In order to simplify the proofs, we will make

the assumption that the scenarios given by a model Mall are all the well-formed submodels (as opposed to

just some of the well-formed submodels). Generally, the structural semantics of a domain can be defined to

force this. We now show that a scenario-regular trace semantics has a nice underlying algebraic structure.

Lemma 24. Let TIO be an adaptation-repeatable semantics over domain D. Let R∗Υ be the set of all

well-formed models of D. Then, there exists a function Γ(X,Y ) : R∗Υ ×RΥ → RΥ such that:

∀(α, ρ) ∈ TIO,∀i ≥ 0, ρ(i+ 1) = Γ (ρ(0), α(i))

Proof. For every (α, ρ) ∈ TIO define ∀i ≥ 0,Γ(ρ(0), α(i)) = ρ(i+1). The trace semantics defines the response

for every possible adaptor starting from every possible well-formed model M t0 . Thus, for every well-formed

model M t0 and every model realization R, there is a trace (α, ρ) with α(0) = R and ρ(0) = M t0 . Hence, Γ

is defined over the proper domain. Assume Γ is not well-defined. It is possible that there exists (α, ρ) and

(α′, ρ′) such that ρ(0) = ρ′(0), α(i) = α′(j) and ρ(i+ 1) 6= ρ(j + 1) for some i, j. However, this is impossible

as TIO is adaptation-repeatable. Thus, Γ is well-defined.

This lemma tells us that a scenario-regular semantics is completely determined by a function Γ parameterized

by the initial model of the trace. Actually, this result only uses the property of adaptation-repeatable.

When we include the definition of scenario-regular (Definition 23), we find that Γ defines a family of interior

operators over RΥ. Interior operators are foundational in modern algebra, so this is an important result.

Lemma 25. Let TIO be a scenario-regular semantics over domain D. For each R |= C, define ΓR(X) =

Γ(R,X) to be a unary function formed by fixing the first coordinate of Γ at R. Then, every ΓR(X) is an

interior operator with range in the interval [R, ∅], and hence satisfies:

1. ΓR(ΓR(X)) = ΓR(X) (Idempotent)

2. ΓR(X) ≤ X (Contractive)

3. X ≤ Y ⇒ ΓR(X) ≤ ΓR(Y ) (Isotone)

4. ∅ ≤ ΓR(X) ≤ R (Bounded)

Proof. By construction of Γ(X,Y ), the unary map ΓR(X) takes X to a known scenario. Thus, ΓR(ΓR(X)) =

ΓR(X), because by Definition 23, a known scenario is mapped to itself. Also, by Definition 23, if X is an

unknown scenario, it is mapped to a smaller known scenario; ΓR is contractive. Furthermore, since X is

mapped to itself or X is mapped to a greatest well-formed model below X, the maps are isotone. Finally,

by Definition 20, ΓR(X) ≤ R, and ΓR(X) cannot be smaller than ∅.
1We extend Tr(I) to TrIO(I) in the obvious way, without further discussion.
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Combining these facts, the scenarios of a model R define a lattice LR = 〈[R, ∅],∧,∨,>,⊥〉 where the

meet (∧) and join (∨) operations are defined in the usual way from the underlying partial order ≤. The

interior operator ΓR takes any model realization X ∈ RΥ and pushes it into this lattice. In fact, Definition

23 requires that X be pushed to a unique greatest element in the lattice. This puts an interesting restriction

on the structure of LR. First, if X has no intersection with the interval, then the only solution is to

map it to ∅. Similarly, if X is a known scenario, then it is mapped to itself. However, if X ∈ [R, ∅],

but is an unknown scenario, then the least upper bound of all known scenarios under X must be unique:∨
{Y |ΓR(Y ) = Y, Y ≤ X} ≤ X. Figure 50 illustrates the properties of a such a lattice.

The rectangle represents the set of all model realizations RΥ, and the gray “bag” in the center represents

the lattice generated by some well-formed model R. The black circles are the known scenarios of R and

the white circles are unknown scenarios. The dotted lines indicate the result of ΓR. Consider the unknown

scenario labeled C. ΓR(C) takes C to the greatest known scenario under C, which is unique for this lattice.

However, the gap in the lattice, labeled D, has a number of equally large known scenarios directly under it.

This violates the requirement that the greatest known scenario exists and is below the unknown scenario.

(In this case, the greatest scenario exists, but is incomparable to D.) Thus, the example lattice does not

R

∅

LR

A ⊃ R

Γ
R (A)

B

ΓR(B)

C

Γ
R
(C

)

D
Γ
R (D) =?

E
∩
R

=
∅

ΓR(E)

Figure 50. Lattice generated by the adaptation scenarios of R

correspond to scenario-regular adaptation. Additionally, if the lattice is scenario-regular, then ΓR has no

degrees of freedom, and Γ(X,Y ) is uniquely determined by the structural semantics of D.

Theorem 26. Given a domain D, there exists at most one scenario-regular semantics TIO where the

scenarios are the well-formed submodels of a model. Furthermore, Γ(X,Y ) is unique.

This theorem provides the foundation for an automatic construction of structural interfaces. First, the

user defines a domain D by constructing a metamodel Mmeta with existing modeling tools. Second, the

user creates a model M t0 belonging to D, capturing the adaptation scenarios. Again, this can be done with
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existing tools. At this point, we apply a series of analyses to create the structural interface:

1. Extract the structural semantics from the metamodel Mmeta by applying τmeta(Mmeta). The result of

this extraction is a tool-independent definition of the domain D.

2. Check that the initial model M t0 is well-formed with respect to D.

3. Prove that the LR lattices of D have the proper structure.

4. Generate the interface I(X,Y ) = ΓMt0 (Y ) implementing the interior operator for the lattice LMt0 . By

construction of I and uniqueness of the semantics TrIO(I) = πρ(0)=Mt0 (TIO).

Steps 1 and 2 have been described in[39]. Step 3 is a more difficult step, and depends on the consequence

operator used to define well-formedness. Step 4 generates an interface specific to the embedded system

modeled by M t0 . It can also be viewed as a partial evaluation[106] of Γ(X,Y ) by fixing X = M t0 . We

now show how to perform steps 3 and 4 for the cases where well-formedness is defined with a nonmonotonic

consequence operator corresponding to an extension of Horn logic.

Interfaces from Horn Logic with Negation

In our previous work on structural semantics we used an extension of Horn logic to capture the nonmontonic

nature of many modeling languages. Informally, nonmonotonic logics have the property that new facts can

be proved from less information. This does not happen in classical logic. Given some information X ⊆ Y ,

then the facts provable from X are a subset of the facts provable from Y , i.e. X ` X ′, Y ` Y ′ then X ′ ⊆ Y ′.

Consider, once again, the DSP system of Figure 46. It is well-formed with respect to the metamodel of

Figure 47, which means that we cannot prove any term of the form malform(·) from the encoding of this

model into a set of terms Y . ∀t, Y 0 malform(t). However, if we delete the edges going from the FFT

element to the Splitter element, then the model becomes malformed. The Splitter element will never receive

any data, and the system is not schedulable. The encoding of Figure 46 minus these edges yields a strictly

smaller set of terms X ⊂ Y . Nonetheless, ∃t,X ` malform(t), so a new fact is proved from fewer facts.

A well-studied form nonmonotonic logic is Horn logic extended with a pseudo-negation. Before we describe

this, let us recall some definitions of Horn logic using function symbols.

Well-formedness rules are described with axioms, which are formulas built from terms with variables

and logical connectives. There are different approaches for distinguishing variables from constants. One

way is to introduce a new alphabet Σv that contains variable names such that Σ ∩ Σv = ∅. The terms

TΥC
(Σ) are called ground terms, and contain no variables. This set is also called the Herbrand Universe

denoted UH . The set of all terms, with or without variables, is TΥC
(Σ ∪ Σv), denoted UT . Finally, the set

of all non-ground terms is just UT − UH . A substitution φ is term endomorphism φ : UT → UT that fixes

constants. In another words, if a substitution φ is applied to a term, then the substitution can be moved to
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the inside φf(t1, t2, . . . , tn) = f(φt1, φt2, . . . , φtn). A substitution does not change constants, only variables,

so ∀g ∈ UH , φ(g) = g. We say two terms s, t ∈ UT unify if there exists substitutions φs, φt that make the

terms identical φss = φtt, and of finite length. (This implies the occurs check is performed.) We call the

pair (φs, φt) the unifier of s and t. The variables that appear in a term t are vars(t), and the constants are

const(t).

A Horn clause is a formula of the form h ⇐ t1, t2, . . . , tn where h is called the head and t1, . . . , tn are

called the tail (or body). We write T to denote the set of all terms in the tail. The head only contains

variables that appear in the tail, vars(h) ⊆
⋃

i vars(ti). A clause with an empty tail (h⇐) is called a fact,

and contains no variables. Recall that these clauses will be used only to calculate model properties. This is

enforced by requiring the heads to use those function symbols that do not encode model structure, i.e. every

head h = f(t1, . . . , tn) has f ∈ (ΥC − Υ). (Proper subterms of h may use any symbol.) This is similar to

restrictions placed on declarative databases[91]. We slightly extend clauses to permit disequality constraints.

A Horn clause with disequality constraints has the form h⇐ t1, . . . , tn, (s1 6= s′1), (s2 6= s′2), . . . , (sm 6= s′m),

where si, s
′
i are terms with no new variables vars(si), vars(s′i) ⊆

⋃
i vars(ti). We can now define the meaning

of a Horn clause. The definition we present incorporates the Closed World Assumption which assumes all

conclusions are derived from a finite initial set of facts (ground terms) I. Given a set of Horn clauses Θ, the

operator ̂̀Θ is called the immediate consequence operator, and is defined as follows:

I ̂̀Θ = I ∪
{
φ(hθ)

∣∣∣∣ ∃φ, θ, φ(Tθ) ⊆ I and ∀(si 6= s′i)θ ∈ θ, φsi 6= φs′i

}
where φ is a substitution and θ is a clause in Θ. It can be proved that I `Θ I∞ where I ̂̀Θ I1 ̂̀Θ . . . ̂̀Θ I∞.

The new terms derivable from I can be calculated by applying the immediate consequence operator until

no new terms are produced (i.e. the least fixed point). Notice that the disequality constraints force the

substitutions to keep certain terms distinct. Nonrecursive Horn logic adds the restriction that the clauses of

Θ can be ordered θ1, θ2, . . . , θk such that the head hθi
of clause θi does not unify with any tail t ∈ Tθj

for all

j ≤ i. This is a key restriction; without it, the logic can become undecidable. Consider the recursive axiom

Θ = {f(f(x)) ⇐ f(x)}. Then {f(c1)} `Θ {f(c1), f(f(c1)), . . . , f(f(f(. . . f(c1) . . .)))} includes an infinite

number of distinct terms.

Clearly, ` is monotonic for classical Horn logic. We now extend the logic with negation to support

nonmonotonicity. We should mention that a proper mathematical formulation of negation was one of the

most important problems in logic programming. In this discussion we will avoid many complications by only

describing a restricted form of nonmonotonicity corresponding to stratified logic programs. For more details

see[94]. Consider the following Horn clause with negation:

malform(x)⇐ f(x),¬g(x)

where f, g ∈ Υ are model symbols. Informally, this clause is satisfied if we find an occurrence of f(x), but
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we cannot find a corresponding occurrence of g(x). It is essential to know that no other clauses generate

terms of the form g(x), otherwise we might conclude malform(x), which could lead to the conclusion g(x),

which invalidates the fact that g(x) could not be found. Also notice that only tail elements can be negated.

Let Θ be a set of clauses in the following normal form:

h⇐ t1, . . . , tn, (s1 6= s′1), . . . , (sm 6= s′m),¬r1, . . . ,¬rp

All the terms in the tail ti = f(. . .), rj = f ′(. . .) have function symbols f, f ′ ∈ Υ, and there is at least one

positive term in the tail (n ≥ 1). Additionally, the variables in h occur in nonnegated terms, and h = g(. . .)

is a constraint term: g ∈ (ΥC−Υ). Let T+
Θ = {ti} and T−Θ = {rj}. For this form, the immediate consequence

operator can be rewritten to include negation.

I ̂̀Θ = I ∪

φ(hθ)

∣∣∣∣∣∣∣
∃φ, θ, ∀φ′ φ(T+

θ ) ⊆ I and (φ′ ◦ φ)(T−θ ) ∩ I = ∅ and

(φ′ ◦ φ)si 6= (φ′ ◦ φ)s′i


A valid substitution φ is one that does not fix any negative variables, but after φ is applied to T−Θ , there

exists no other substitution φ′ that maps a negative term to a known fact. This reasoning is sound due to

our previous requirements on the form of Θ.

Given these definitions, consider the following extended Horn clauses:

1. Let θ1 be malform(x)⇐ f(x), g(x), h(x)

2. Let θ2 be malform(x)⇐ f(x), g(x),¬h(x)

3. Let θ3 be malform(x)⇐ f(x),¬g(x),¬h(x)

where Υ = {(f, 1), (g, 1), (h, 1)} and (malform, 1) ∈ ΥC . If the constraint set is C1 = {θ1}, then the domain

D1 is monotonic in the malform property. Therefore, for any initial model M t0 that is well-formed, all of its

submodels are well-formed. Hence, D1 trivially satisfies the uniques property. Next, consider C2 = {θ2}. The

initial model M t0 = {f(c1), g(c1), h(c1)} is well-formed, but the submodel X = {f(c1), g(c1)} is malformed,

because the lack of h(c1) activates the malformedness rule. There are two equally sized models smaller

than X that are well-formed (M1 = {f(c1)}, M2 = {g(c1)}), so the uniqueness property is not satisfied.

An scenario-regular interface cannot be generated from domain D2. Finally, let C3 = {θ3} and consider

M t0 = {f(c1), f(c2), h(c1), h(c2)}. This model is well-formed, but the submodel X = M t0 − {h(c1)} is not.

However, there is a greatest well-formed model under X, namely X ′ = M t0 − {f(c1), h(c1)}, because the

smallest corrective action is to remove f(c1). This domain is scenario-regular.

The problematic domains have malformedness clauses containing two or more positive terms and at least

one negative term. However, there are cases where these clauses are not problematic. Consider C4 = {θ2, θ3}.

In this domain, there is not a unique least upper bound below the malformed model {f(c1), g(c2)}. θ2

suggests that we remove either the f or g term. However, if the g term is removed, then θ3 activates,
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requiring removal of the f term. This leaves the empty model, which is strictly smaller than the model

obtained by removing the f term. Intuitively, clause θ3 breaks the ambiguity introduced by θ2.

This intuition can be formalized into a procedure that checks if a domain is scenario-regular. The notation

(M,φ) |= Θ indicates that φ is a substitution that satisfies clause Θ for model M .

Definition 27. Given clauses θ1 and θ2 in normal form, θ2 covers θ1 if:

1. ∃∅ ⊂ S+ ⊂ T+
1 such that ∀(M,φ) it holds that

2. (M,φ) |= θ1 ⇒ ∃φ′ (M − φ(S+), φ′) |= θ2

When this property holds, a larger upper bound can be produced by removing φ′(T+
2 ). This property

can be calculated using unification and subsumption algorithms. Though there is not space to prove it here,

the following theorem checks if a domain is scenario-regular:

Theorem 28. A domain D, with Θ = C in normal form, is scenario-regular iff ∀θ ∈ reduce(Θ), |T+
θ | = 1.

The map reduce(Θ) is defined inductively:

1. reduce0(Θ) = Θ, and reduce(Θ) = reduce∞(Θ).

2. if θ ∈ reducei and |T−θ | = 0, then reducei+1(Θ) = reducei(Θ)− {θ}.

3. if θ1, θ2 ∈ reducei and θ2 covers θ1, then reducei+1(Θ) = reducei(Θ)− {θ1}.

This algorithm eliminates all malformedness rules that are purely monotonic, and all rules that are

disambiguated by the covering relation. If the resulting set is empty, or every clause has exactly one positive

term (e.g. θ3 in the example), then the domain is scenario-regular. Additionally, the set reduce(Θ) can be

directly converted into a ∆-interface, where only the ∆− set is non-empty. If the reduction is non-empty,

then every remaining clause has the form malform(. . .) ⇐ t,¬r1, . . . ,¬rn. This can be converted into

the clause −t ⇐ t,¬r1, . . . ,¬rn where −t indicates that t is removed from the original set of facts. The

immediate consequence operator can be adjusted to represent removal. Call −reduce(Θ) the set of clauses

rewritten in “removal form”. Then we have the following:

∆−(M t0 , Y ) 7→ Y ′, where (Y ∩M t0) `−reduce(Θ) Y
′ (V.3)

I(M t0 , Y ) 7→ (M t0 −∆−(M t0 , Y )) (V.4)

Hence I(M t0 , Y ) = ΓMt0 (Y ) and correctly implements the denotational semantics of a scenario regular

interface. Returning to the metamodel of Figure 47, this represents a scenario-regular domain: If a dataflow

edge is deleted, and that edge is connected to an Input, then the DSPObject and all of its contents are deleted.

This may leave some outgoing edges dangling, which are also deleted. The process continues iteratively, until

the model is well-formed. The consequence operator `−reduce(Θ) implements precisely this iteration. Thus,

we have a formal basis for robustly implementing the scenario-based adaptation of Figure 49 using structural

interfaces.
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Conclusions and Future Work

We outlined an approach for automatically constructing an adaptive substrate for embedded systems. The

general approach involves miniaturizing the tools for model-based design so that existing mechanisms of

system construction can be used for on-the-fly for adaptation. An essential piece of this approach is a

structural interface for pushing new configurations into the adaptive component. This interface must guard

the delicate insides of a component from accidental or malicious attempts at misconfiguration. In order

to accomplish this we have introduced a number of novel concepts relating DSML structure, defined via

metamodels, to structural interfaces. First, model structure can be converted to a communication protocol

for interacting with the interface. Second, DSML structure can be analyzed to determine if a theoretically

sound form of mediation exists with respect to the intended time-model dynamics (i.e. style of adaptation).

Third, we have thoroughly analyzed this approach for a common form of adaptation based on scenarios.

Unfortunately, this has left little space to describe our implementation techniques, which we summarize

now. First, communication can be made more efficient by encoding sets of terms with a compact represen-

tation. For example, function symbols can be indexed, so that only indices are exchanged. More complex

compression can be used if the embedded platform has resources to perform the encoding/decoding. Second,

the clauses of −reduce(Θ) take a restricted form, permitting rapid calculation of the well-formed submodel.

For example, the RETE-based algorithms are effective for these types of clauses[107]. RETE networks do

make a space/time tradeoff, and this can be adjusted depending on the embedded platform. Third, we have

implemented our analysis algorithms with the FORMULA theorem prover. This prover can convert domain

definitions into the necessary normal form, but this (as usual) is computationally hard. However, it only

needs to be done once and off-line.

Our work is continuing in two directions. First, we are studying other forms of adaptation that are

not scenario-based. For example, the work on service-oriented architectures (SOA) for wireless sensor nets

exhibits interesting dynamics. Second, we are developing techniques for implementing the remaining compo-

nents of the adaptive substrate. There exist two extremes to this subproblem. First, we may know nothing

about how changes in model structure are reflected during code generation. If this is the case, then with

scenario-based adaptation, we can partially evaluate the generated code for a number of scenarios. We

analyze the various implementations for commonalities, and package them so that size and cost of recon-

figuration is minimized. In the other extreme, we may know that smaller scenarios access strictly smaller

amounts of the same code base. In this case, the code generated from the overall model can be instrumented

with additional control structure to efficiently implement adaptation.
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APPENDIX A

TRANSFORMATION FROM FSA TO C

Transformation rules

This appendix completes the FSA to C transformation example. The next step in the transformation is to

create an assignment that initializes the currentState variable to the intial state. Figure 51 shows the rule

that accomplishes this. It locates the initial state in the input FSA and then uses the crosslink created in

Figure 14 to extract the associated enumeration element. It then creates a new assignment in the SimLoop

that initializes the current state variable to the initial state enumeration element.

iFSA

FSA

iInitial

Initial

MainProgram

FSAProgram

iInitElem

EnumElement

iLoop

SimLoop

iInitAssign

Assignment

iAssignVar

SwitchVar

iValue

CaseLabel

iCurrentState

Variable

type: enum

FSAIn

MainIn

csIn

lnkStateEnum
lnkState

refers

refers

SetAssignName

string assignName("SET_");

assignName.append(iCurrentState.name());

assignName.append("_TO_");

assignName.append(iInitEnum.name());

iInitAssign.name() = assignName;

Figure 51. Finds the initial state and creates an assignment that initializes the currentState variable

The next step in the transformation is to create a unique case block for each instance of State. Figure 52

shows the transformation logic. An empty switch block is placed inside each of the new case blocks. This

switch block will contain a case for each instance of Transition that starts on the corresponding state. The

empty switch is passed out for processing by other rules. This rule also uses the previously created crosslinks

to find the EnumElement linked to a State.

At this point in the transformation, every state has a corresponding case block, and inside of this case is

an empty switch that switches on the currentEvent variable. Given a State instance s and the corresponding

Switch instance w, we wish to find every transition s
e→ s′. For each of these, we must add a case to w

with label e, and this case must assign s′ to the currentState variable. Figure 53 shows the transformation

117



that accomplishes this. Because of the semantics of GReAT, this rule only works for non-loop transitions,

i.e. s 6= s′. Figure 54 shows the rule that handles loop transitions. Note that these two rules use a new

construct called a guard. A guard is boolean expression that can be attached to a rule; GReAT discards

all matches that do not evaluate to true with respect to all guard expressions. The guard permits GReAT

to find the Event instance e corresponding the trigger of a Transition. Recall that a Transition instance

has a string attribute (also) called guard. Thus, we must locate the Event instance with the same name as

the string attribute on the Transition instance. A guard expression allows us to filter matches so that we

only consider Transition-Event pairs where the string attribute on the guard of the Transition matches the

name of the Event. Notice that by subclassing State into Initial and Acceptor, we avoid a number of guard

expressions. We could have added an enumeration attribute to State that would capture these distinctions,

but the GReAT rules would have been more complicated.

iFSA

FSA

iState

State

MainProgram

FSAProgram

iStateElem

EnumElement

iLoop

SimLoop

iMainSwitch

Switch

iStateCase

Case

iTranSwitch

Switch

iSwitchVar

SwitchVar

iCaseLabel

CaseLabel

iCurrentEvent

Variable

type: enum

FSAIn

MainIn

ceIn

switchOut

lnkStateEnum
lnkState

lnkState

lnkCase

refers

refers

SetCaseName

string caseName("Case_");

iStateCase.name() = caseName.append(iState.name());

iCaseLabel.name() = iStateElem.name();

Figure 52. Creates a case and empty switch block for each State instance.

The final rule is one of the simplest. It introduces user feedback into the generated code. Whenever

the automaton transitions to an acceptor state, a simple message is displayed to the user. The message

declares that the input sequence was accepted and identifies the accepting state. This rule relies on the

lnkState-lnkCase crosslink (created in Figure 52) to find the case block associated with each acceptor state,

i.e. instance of Acceptor. Figure 55 shows this rule.

Figure 56 shows the sequencing of the GReat rules. Recall that if a rule contains smaller rules, then

the smaller rules complete before downstream rules execute. This semantics is important, because the rules

inside of the BuildSimulator rule depend on the fact that the state and event Enumeration instances have

already been constructed. This is ensured by placing the BuildStateEnum and BuildEventEnum rules inside

of the BuildDeclarations rule.

Figure 57 shows an example FSA. State S1 is the initial state, while state S3 is an acceptor state. The
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FSA contains two events, named a and b. Figure 58 shows the result of applying the transformation to the

FSA in Figure 57. This tree shows the hierarchy of the generated model. When viewed from this perspective,

it is easy to see how close the generated model is to the final C code. The actual code produced by the code

generator is shown in the next section. In the interest of space the EventStream class is not shown. Finally,

Figure 59 shows the result of executing the FSA with some input. Note that the “accept” message is delayed

by one event.
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iTransition

Transition

guard: string

iState

State

iDestState

State

iDestEnum

EnumElement

iNextState

CaseLabel

iFSA

FSA

iTrigger

Event

iTriggerEnum

EnumElement

iStateSwitch

Switch

iTransCase

Case

iTransLabel

CaseLabel

iUpdateStateVar

Assignment

iCurrentState

Variable

type: enum

iUpdateVariable

SwitchVar
type: enum

stateIn

switchIn

csIn

src dst

type

lnkState
lnkStateEnum

refers

lnkEvent
lnkEventEnum

refers

refers

MatchGuardEvent

string trigName(iTrigger.name());

return !trigName.compare(iTransition.guard());

SetObjectNames

iTransCase.name() = iTriggerEnum.name();

string assignName("SET_");

assignName.append(iCurrentState.name());

assignName.append("_TO_");

assignName.append(iDestEnum.name());

iUpdateStateVar.name() = assignName;

Figure 53. Creates non-loop transitions
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iState

State

iTransition

Transition

iDestEnum

EnumElement

iNextState

CaseLabel

iFSA

FSA

iTrigger

Event

iTriggerEnum

EnumElement

iStateSwitch

Switch

iTransCase

Case

iTransLabel

CaseLabel

iUpdateStateVar

Assignment

iCurrentState

Variable

type: enum

iUpdateVariable

SwitchVar
type: enum

stateIn

switchIn

csIn

src

dst

type

lnkState
lnkStateEnum

refers

lnkEvent
lnkEventEnum

refers

refers

MatchGuardEvent

string trigName(iTrigger.name());

return !trigName.compare(iTransition.guard());

SetObjectNames

iTransCase.name() = iTriggerEnum.name();

string assignName("SET_");

assignName.append(iCurrentState.name());

assignName.append("_TO_");

assignName.append(iDestEnum.name());

iUpdateStateVar.name() = assignName;

Figure 54. Creates loop transitions

iFSA

FSA

iAcceptor

Acceptor

iAcceptorCase

Case

iAcceptMessage

Message

messageText: string

FSAIn
lnkCase

lnkState

SetMessageText

string messageStr("Accepted input at state ");

messageStr.append(iAcceptor.name());

iAcceptMessage.messageText() = messageStr;

Figure 55. Builds feedback messages
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EVENTSOut

CEVarOut

CSVarOut

MainOut

FSAOut

STATESOut

BuildMainObjects

FSAIn

STATESIn

BuildStateEnum

EVENTSIn

FSAIn

BuildEventEnum

CEVarOut

CSVarOut

MainOut

FSAOut

BuildDeclarations

CEVarIn

CSVarIn

MainIn

FSAIn

FSAOut

BuildSimulator

CEVarIn

CSVarIn

MainIn

FSAIn

CSVarOut

SwitchOut

StateOut

BuildStates

CSVarIn

SwitchIn

StateIn

FSAOut

BuildNonLoops

StateIn

SwitchIn

CSVarIn

BuildLoops

CSVarIn

MainIn

FSAIn

InitStateVar

FSAIn

BuildMessages

Figure 56. Sequencing of transformation rules

Figure 57. Example FSA acceptor
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Figure 58. Partial C abstract syntax tree generated from example FSA.

Input event [0 to 1]: b

Input event [0 to 1]: b

Input event [0 to 1]: b

Input event [0 to 1]: a

Input event [0 to 1]: b

Input event [0 to 1]: b

Input event [0 to 1]: a

Input event [0 to 1]: b

Accepted input at state S3

Input event [0 to 1]: a

Input event [0 to 1]: a

Input event [0 to 1]: b

Accepted input at state S3

Input event [0 to 1]:

Figure 59. Simulatation of generated FSA model
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C Code generated from FSA

#include "EventStream.h"

// ------- FSA Enumerations ------- //

enum STATES { STATE S1 = 0, STATE S3,

STATE S2, STATES Count };
enum EVENTS { EVENT a = 0, EVENT b,

EVENTS Count };

// ------- FSA Variables ------- //

int currentEvent;

EventStream eventStream(EVENTS Count);

int currentState;

// --- FSA Simulation Loop ---- //

void main() {
currentState = STATE S1;

while(eventStream.read(currentEvent)) {
switch (currentState) {
case STATE S2:

switch (currentEvent) {
case EVENT a:

currentState = STATE S3;

break;

case EVENT b:

currentState = STATE S2;

break;

default:

return;

break; }
break;

case STATE S3:

printf("Accepted input at

state S3\n");
switch (currentEvent) {
case EVENT a:

currentState = STATE S2;

break;

case EVENT b:

currentState = STATE S1;

break;

default:

return;

break; }
break;

case STATE S1:

switch (currentEvent) {
case EVENT b:

currentState = STATE S1;

break;

case EVENT a:

currentState = STATE S2;

break;

default:

return;

break; }
break;

default:

return;

break; }
} printf("HALT\n"); }

Figure 60. C code generated from AST model of an FSA
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APPENDIX B

SPECIFICATION OF META-LEVEL COMPONENTS

Partial eMOF Tranformation

The equations below calculate which types can contain other types, including containment capabilities en-

dowed by inheritance edges. These equations handle containment of both classes and association classes.

axiom(containment(x, ipath(h, y)), map3(cancontain, var(x), var(y))) ⇐ containment(x, y), ipath(h, y).

tail(containment(x, ipath(h, y)), map2(x, var(x))) ⇐ containment(x, y), class(x), ipath(h, y).

tail(containment(x, ipath(h, y)), map4(x, var(x), var(z), var(w))) ⇐ containment(x, y), assocClass(x),
ipath(h, y).

tail(containment(x, ipath(h, y)), map2(h, var(y))) ⇐ containment(x, y), class(h), ipath(h, y).

These equations are similar to the inheritance cycle equations of the eMOF domain. They are added to the

domain description to prevent containment cycles.

axiom(cloop, malform(map3(contains, var(x), var(x)))) ⇐ true.

tail(cloop, map3(contains, var(x), var(x))) ⇐ true.

axiom(ccycle2, malform(map3(contains, var(x), var(y)))) ⇐ true.

tail(ccycle2, map3(contains, var(x), var(y))) ⇐ true.

tail(ccycle2, map3(contains, var(y), vvar(x))) ⇐ true.

The entire eMOF transformation is specified with about 200 transformation axioms. These axioms handle

all the ways that containment, associations, attributes, and inheritance interact.
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Example of Generated Domain in Prolog

%% Signature symbols

:- dynamic

output/1, dSPObject/1, interface/1, input/1,

malform/1, enumvalue/2, dataType/2, contains/2,

ccyle3/2, cancontain/2, iOConn/3, cpath3/3,

canconn/3.

%% Enumeration attribute values

enumvalue(’DataType’,’Bool’).

enumvalue(’DataType’,’String’).

enumvalue(’DataType’,’Int’).

enumvalue(’DataType’,’Real’).

%% Domain constraints

%% Attributes

malform(dataType(Y,V)) :- dataType(Y,V), dataType(Y,W), (V \== W).

malform(dataType(Y,V)) :- dataType(Y,V), \+interface(Y), \+input(Y), \+output(Y).

malform(iOConn(N,X,Y)) :- iOConn(N,X,Y), \+canconn(’IOConn’,X,Y).

%% Connection rules

canconn(’IOConn’,X,Y) :- interface(X), interface(Y).

canconn(’IOConn’,X,Y) :- input(X), interface(Y).

canconn(’IOConn’,X,Y) :- output(X), interface(Y).

canconn(’IOConn’,X,Y) :- interface(X), input(Y).

canconn(’IOConn’,X,Y) :- interface(X), output(Y).

canconn(’IOConn’,X,Y) :- input(X), input(Y).

canconn(’IOConn’,X,Y) :- input(X), output(Y).

canconn(’IOConn’,X,Y) :- output(X), input(Y).

canconn(’IOConn’,X,Y) :- output(X), output(Y).

%% Containment rules

malform(contains(X,Y)) :- contains(X,Y), \+cancontain(X,Y).

cancontain(X,Y) :- iOConn(X,Z,W), dSPObject(Y).

cancontain(X,Y) :- interface(X), dSPObject(Y).

cancontain(X,Y) :- dSPObject(X), dSPObject(Y).

cancontain(X,Y) :- input(X), dSPObject(Y).

cancontain(X,Y) :- output(X), dSPObject(Y).

malform(dataType(Y,Z)) :- dataType(Y,Z), \+enumvalue(’DataType’,Z).

malform(contains(X,X)) :- contains(X,X).

malform(contains(X,Y)) :- contains(X,Y), contains(Y,X).

cpath3(X,Y,Z) :- contains(X,Y), contains(Y,Z), (X \== Y), (X \== Z), (Y \== Z).

ccycle3(X,Z) :- cpath3(X,Y,Z), contains(Z,X).

malform(ccycle3(X,Y)) :- ccycle3(X,Y).

%% Additional annotations

malform(iOConn(X,Y,Z)) :- iOConn(X,Y,Z), contains(X,W), contains(Y,W), contains(Z,W).
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eMOF Domain

Table 12. Encoding of eMOF vertex primitives

Class. class(x) denotes a class named x.

(class, 1) ∈ Υ

Association Class. assocClass(x) denotes an association class named x.

(assocClass, 1) ∈ Υ

Attribute Class. attribute(x, y) denotes an attribute named x of type y. enum(x, y)
indicates that attribute x can take the enumerated value y.

{(attribute, 2), (enum, 2)} ⊂ Υ
restrict(type, {type(bool), type(string), type(enum)})

An attribute must have a proper type. Also, an attribute cannot have an enum
list, unless it is an enum attribute.

malform(attribute(x, y))⇐ attribute(x, y),¬type(y)
malform(enum(x, y))⇐ enum(x, y),¬attribute(x, z)
malform(enum(x, y))⇐ enum(x, y), attribute(x, z), (z 6= enum)

Connector. connector(x) denotes a connector named x. A connector is good
(conngood(x)) if it has the appropriate edges, and every connector must be good.

(connector, 1) ∈ Υ, (conngood, 1) ∈ ΥC

conngood(w)⇐
(
connector(x), assocEnd(x, y, src),
assocEnd(x, z, dst), association(x,w)

)
malform(connector(x))⇐ connector(x),¬conngood(x)

127



Table 13. Encoding of eMOF edge primitives

Containment. containment(y, x) denotes the containment relationship of y in x.
A Containment edge must terminate on a Class. It may begin on another Class or
Association Class.

(containment, 2) ∈ Υ
malform(containment(y, x))⇐ containment(y, x),¬class(x)
malform(containment(y, x))⇐ containment(y, x),¬class(y),¬assocClass(y)

Attribute Containment. attrCont(y, x) indicates an attribute containment rela-
tionship of y in x. An attribute containment edge must begin on an Attribute. It may
terminate on a Class or Association Class.

(attrCont, 2) ∈ Υ
malform(attrCont(y, x))⇐ attrCont(y, x),¬attribute(y)
malform(attrCont(y, x))⇐ attrCont(y, x),¬class(x),¬assocClass(x)

Association. association(x, y) denotes an association relationship from Connector x
to Assocation Class y. This is the only relationship allowed.

(association, 2) ∈ Υ
malform(association(x, y))⇐ association(x, y),¬connector(x)
malform(association(x, y))⇐ association(x, y),¬assocClass(y)

Association Endpoint. assocEnd(x, y, z) indicates an association endpoint relation
from Connector x to Class y with incidence z. z must a member of the closed unary
relation incidence.

{(assocEnd, 3), (incidence, 1)} ⊂ Υ
restrict(incidence, {incidence(src), incidence(dst)})
malform(assocEnd(x, y, z))⇐ assocEnd(x, y, z),¬connector(x)
malform(assocEnd(x, y, z))⇐ assocEnd(x, y, z),¬class(y)
malform(assocEnd(x, y, z))⇐ assocEnd(x, y, z),¬incidence(z)

Inheritance. inheritance(y, x) indicates the inheritance relationship y inherits from
x. An inheritance relationship can start and end on a Class or Association Class.
There should be no directed cycles consisting only of inheritance edges.

(inheritance, 2) ∈ Υ, (imalform, 1) ∈ ΥC

malform(inheritance(y, x))⇐ inheritance(x, y),¬class(x),¬assocClass(x)
malform(inheritance(y, x))⇐ inheritance(x, y),¬class(y),¬assocClass(y)
malform(imalform(x))⇐ imalform(x)

See Section III.4 for the definition of axioms concerning imalform.
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[45] Emmelmann, H., Schröer, F.W., Landwehr, L.: Beg: a generation for efficient back ends. In: PLDI
’89: Proceedings of the ACM SIGPLAN 1989 Conference on Programming language design and im-
plementation, New York, NY, USA, ACM Press (1989) 227–237

[46] Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The if toolset. In: SFM. (2004) 237–267

[47] Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal. In: SFM. (2004) 200–236

[48] Hoare, T.: The verifying compiler: A grand challenge for computing research. J. ACM 50(1) (2003)
63–69

[49] Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., eds.: Handbook of graph grammars and com-
puting by graph transformation: vol. 2: applications, languages, and tools. World Scientific Publishing
Co., Inc., River Edge, NJ, USA (1999)
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