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CHAPTER 1

INTRODUCTION

1 Motivation

Little disagreement subsists that modeling failure in brittle composites is of great im-

portance to fully realizing the potential gains such materials offer. Brittle composites,

such as carbon fiber reinforced polymers, often possess beneficial properties including

a high strength to weight ratio and high fatigue durability. These properties lend to

the usage of composites in modern, high-performance structures. However, without

a capability to model and predict failure, large factors of safety must be incorporated

into designs preventing optimum utilization of these materials. This leads to a high

demand for a failure modeling capability especially within the aerospace industry

where performance gains are paramount.

The creation of a predictive failure model for composite structures presents sev-

eral challenges. First, a wide variety of failure mechanisms can occur within the

microstructure of a composite material. These include diffuse microcracking within

the matrix, fiber/matrix debonding, delamination, fiber kinking, fiber buckling, and

fiber fracture [56]. This multiplicity of failure mechanisms interact contributing to

the ultimate global failure of a composite structure. Second, a size disparity exists

between the size scale of constituent materials where failure initiates and grows and

the total size of the composite structure. The small scale geometry of the intermin-

gled constituent materials cannot be resolved for an entire composite structure as

this would require excessive amounts of computer memory and computational power.
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A predictive model for failure in composite structures must address each of these

challenging aspects.

One of the main foci of this dissertation is predictive modeling of composite ma-

terials when subjected to fatigue loading. Composites are well-known to have high

fatigue durability, but they do fail in fatigue [33]. As such, designers must account

for fatigue failure which can be both sudden and catastrophic. A predictive model

for fatigue failures may aid designers to realize the full performance potential offered

by composites. Modeling fatigue failure in composites comes with an additional chal-

lenge. Much like the previously discussed spatial scale disparity, the duration of a

single loading cycle is often significantly shorter than the total lifetime of a composite

structure. If millions of loading cycles are required to induce global failure, explic-

itly modeling each cycle of loading would be computationally intractable. To model

fatigue failure in composites, the computational modeling community must treat the

temporal scale disparity alongside the other challenges of composite failure modeling

mentioned above.

The field of multiscale modeling addresses each of the stated challenges including

both the multiplicity of failure modes and the scale disparities in space and time.

Multiscale modeling takes as its aim the development of methodologies that link phe-

nomena occurring at different scales. The previously discussed scale disparity between

a composite structure and the small scale interplay of the composite’s constituents

provides an example of a problem with multiple spatial scales. An effective multiscale

method for modeling failure in composites should link the global structural response

to the multiplicity of microscale composite failure mechanisms in a computationally

tractable manner. If fatigue failure is considered, the scale disparity between a single

loading cycle and the lifetime of a structure provides an example of a problem with

multiple temporal scales. A tractable multiscale model for fatigue failure in compos-

ites must allow prediction of a composite structure’s fatigue life without requiring the
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resolution of millions of loading cycles. If such a multiscale approach can be devel-

oped, multiscale modeling provides a promising research path directly attacking the

most difficult aspects of modeling failure in composites.

This dissertation presents a multiple spatial scale methodology and a multiple

temporal scale methodology that address the problem of modeling failure in compos-

ites subjected monotonic and fatigue loadings. The spatial and temporal multiscale

methodologies are designed to operate simultaneously, treating at once the multiple

spatio-temporal scale problem. In addition, within the multiple spatial scale method-

ology, various failure modes can be naturally incorporated including fiber failure,

fiber/matrix debonding, matrix cracking, and delamination. To obtain computa-

tional tractability, a spatial order reduction and an adaptive time stepping technique

is devised. These reductions introduce some error, but high computational efficiency

is gained while still maintaining the important features of the problem. These new

multiscale methodologies attempt to directly address the challenges of modeling fail-

ure in brittle composites.

2 Research Objectives

The research objectives stated below are aligned to provide the basis for the devel-

opment of a new multiscale tool useful for simulating fatigue in composites within

aerospace applications. The primary research objectives for this dissertation are:

1. Devise reduced order spatial multiscale methodology for the simulation of failure

in brittle composites undergoing monotonic loading.

2. Devise a temporal multiscale methodology for the simulation of failure in brittle

composites undergoing fatigue loading.

3. Apply the new methodologies to modeling carbon fiber reinforced polymers

undergoing both monotonic and fatigue loadings.
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3 Dissertation Organization

The first research objective was addressed by the development of the symmetric re-

duced order homogenization methodology discussed in Chapter 2. This method is

developed specifically to allow computationally efficient concurrent spatial multiscale

modeling of brittle composite materials. In Chapter 2, the symmetric reduced order

homogenization method is described and verified against direct numerical simulations

of a heterogeneous particle reinforced material. The second research objective was

accomplished by the development of a novel multiple spatio-temporal methodology

that simultaneously accounts for the multiple spatial and temporal scales present in

modeling damage accumulation and failure in composites. A derivation of this mul-

tiple spatio-temporal technique is described in Chapter 3 along with numerical and

experimental validation of the approach. The final research objective was accom-

plished by initiating an extensive experimental and computational study of damage

accumulation in carbon fiber reinforced polymer composites undergoing both mono-

tonic and fatigue loadings. Advanced non-destructive experimental techniques such as

acoustic emission testing, X-ray radiography, and X-ray computed tomography were

used to great benefit in understanding damage accumulation in the CFRP materi-

als. The modeling techniques presented in Chapter 2 and Chapter 3 were calibrated

using independent experimentation and compared to the results from the experimen-

tal study. Chapter 4 provides an in depth description of the experimental program

and the model results. Since each chapter contains related but separate topics, an

introduction to each chapter provides a review of the relevant literature. Finally,

Chapter 5 contains conclusions and future research.
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CHAPTER 2

SYMMETRIC REDUCED ORDER COMPUTATIONAL HOMOGENIZATION

1 Introduction

Mathematical homogenization theory provides a rigorous mathematical framework

for modeling the response of heterogeneous materials. The mathematical theory was

formalized in the seminal works of Babuska [6], Bensoussan [10], Sanchez-Palencia [52]

and Suquet [58], among others. Since the development of the computational frame-

work for the mathematical homogenization theory by Guedes and Kikuchi [32], nu-

merous models based on the computational homogenization method (CHM) have

been proposed to predict the elastic and inelastic response of heterogeneous materials

including material failure.

The distinct feature of the computational homogenization method in modeling

the response of heterogeneous materials is in the evaluation of the constitutive re-

sponse at a material point of a macroscopic (homogenized) medium. In CHM, the

constitutive response of the equivalent homogeneous medium is evaluated by solv-

ing a microscale boundary value problem defined on a representative volume element

(RVE) of the heterogeneous microstructure. This approach decouples the effect of the

microstructural topology from the material behavior of the microconstituents, as well

as the conditions along the microconstituent interfaces. CHM simplifies the constitu-

tive modeling process since the response of the microconstituents tend to be simpler

to model, compared to phenomenological modeling of the combined microstructure-

material behavior effects. In the case of modeling the failure of heterogeneous mate-
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rials, a number of outstanding computational issues remain, including selection of the

boundary conditions for the RVE problem in the presence of defects [21, 63], evolution

of the RVE domain upon defect formation, size scale effects [27], and spurious mesh

dependency [9], among others.

One additional major challenge associated with the computational homogenization

method is the computational cost associated with solving nonlinear RVE problems

to evaluate the constitutive response of the macroscopic problem. This problem is

alleviated by one or a combination of two approaches. The first is the brute-force

parallelization of the multiscale problem, in which, the RVE problem evaluations

are distributed to a large number of compute nodes and evaluated in parallel [20].

The second approach is reduced-order evaluation of the RVE problem. Fast Fourier

transform [40], proper orthogonal decomposition [64], spectral method [1], bound-

ary element method [30], network approximation method [11], and transformation

field analysis (TFA) [7, 19], and other TFA-based computational methods [15, 25, 39]

have been effective in evaluating the inelastic response at the RVE level in a computa-

tionally efficient manner. In a recent study, eigendeformation-based homogenization

method (EHM) was proposed [46] to efficiently evaluate the RVE level response us-

ing a meso-mechanical model. This method is derived based on a generalization of

the transformation field analysis. By this approach, it is possible to account for the

interfacial debonding effects, in addition to nonlinear and failure processes within the

constituent materials of the heterogeneous microstructure.

This chapter provides a model reduction methodology for efficient evaluation of the

microscale boundary value problems of the computational homogenization method.

The presented approach addresses three of the main shortcomings of the TFA-based

model reduction methods with the the following novel contributions:

1. A new methodology for the determination of the order of the reduced model is

presented: The accuracy and efficiency of the reduced models clearly depend on

6



their order and ability to represent the failure modes within the microstructure.

A reduced-order model development strategy is devised to identify the model

order and the associated coarse graining at the microscale for accurate and

efficient representation of the failure modes.

2. The proposed reduced order model leads to a symmetric formulation: In the

presence of interfacial debonding, previous eigendeformation-based homogeniza-

tion formulations lack symmetry, which increases computational cost.

3. The proposed formulation eliminates the spurious residual stress effect upon

failure due to the coarse representation of the inelastic fields. Some of the

transformation field analysis based reduced order models (e.g., [25, 46]) lead

to spurious residual stress fields upon failure in the microscale. The spurious

residual stress fields pollute the macroscale problem by affecting local stress

redistributions.

The proposed reduced order methodology is implemented to model the failure re-

sponse of brittle composite systems, in which the failure is characterized by matrix

microcracking, delamination and debonding.

The remainder of this chapter is organized as follows: The statement of the multi-

scale problem and the associated macroscopic and microscopic boundary value prob-

lems are presented in Section 2. In Section 3, formulation of the symmetric reduced

order model for the microscale problem is provided. The computational algorithms

employed to evaluate the nonlinear reduced order model are discussed in Section 4.

Section 5 provides small scale and large scale numerical verification examples con-

ducted on a fiber reinforced matrix composite.
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2 Problem Setting

In this section, we present a summary of the microscopic and macroscopic boundary

value problems associated with the two-scale asymptotic homogenization method for

failure response of a heterogeneous body. The details of two-scale asymptotic homog-

enization in the presence of inelastic effects are reported in the literature (see e.g.,

Refs. [62]).

The problem setting and the multiscale heterogeneous body is illustrated in Fig. 1.

The heterogeneous domain, denoted by Ω, is parameterized by the macroscopic co-

ordinate vector, x. Ω is composed of the repetition of a small representative volume

element, Θ, which is parameterized by the microscopic coordinate vector, y. The size

scale ratio, ζ, between the characteristic lengths of the representative volume element,

Θ, and the macroscopic body, Ω is assumed to be very small, such that a first order

asymptotic decomposition of the displacement field is sufficient to accurately capture

the response of the material. The response fields are assumed to be periodic about

the representative volume element. The periodicity condition states that the value

of the response fields are the same at the opposing faces of a parallelepiped RVE

domain.

The following notation is employed throughout the chapter, unless otherwise

noted: Subscript roman indices denote 1, 2, or 3. Einstein summation convention

is adopted for repeated indices. Subscripts xi and yi following a comma denote dif-

ferentiation with respect to the macroscopic and microscopic coordinate vectors, re-

spectively. Differentiation within parentheses denotes symmetric differentiation with

respect to the indices. Bold characters denote tensor notation. Macaulay brackets

denote averaging over the RVE:

〈·〉 =
1

|Θ|

∫
Θ

(·)dy (1)
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 Microscale
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x 2 
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y = x / 
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S

Periodic microscale
boundaries

u(x,y,t)

Figure 1: Macro- and microscopic scales.

where, |Θ| is the volume of the RVE.

The displacement field of the heterogeneous body is expressed using a two-scale

asymptotic expansion:

ui (x,y, t) = ūi (x, t) + ζu1
i (x,y, t) (2)

in which, ū is the macroscopic displacement field, and; u1 is the variation of the

displacement field within the RVE.

2.1 Microscale Problem

In the presence of failure processes, u1 is described by the microscopic equilibrium

equation defined over the RVE (i.e., y ∈ Θ)

{
Lijkl (y)

[
ε̄kl (x, t) + u1

(k,yl)
(x,y, t)− µkl (x,y, t)

]}
,yj

= 0 (3)

in which, L is the fourth order tensor of elastic moduli, taken to be symmetric and

strongly elliptic, ε̄ = ∇s
xū the macroscopic strain tensor; ∇s

x(·) ≡ (·)(i,xj) denotes

the symmetric gradient operation with respect to macroscopic coordinates; and µ
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damage induced inelastic strains. In this work, the damage induced inelastic strains

are modeled using a scalar continuous damage mechanics model:

µij (x,y, t) = ωph (x,y, t) εij (x,y, t) (4)

in which, ωph ∈ [0, 1) is a history dependent variable, which represents damage within

the microconstituents, and ε is the strain tensor. Using the scaling relations provided

by the asymptotic decompositions with multiple spatial scales:

εij (x,y, t) = ε̄ij (x, t) + u1
(i,yj)

(x,y, t) (5)

Along the microconstituent interfaces, debonding is considered based on traction-

separation laws given as (y ∈ S)

tN (x,y, t)− [1− ωint (x,y, t)] kN (y) δN (x,y, t) ≤ 0; δN (x,y, t) ≥ 0 (6){
tN (x,y, t)− [1− ωint (x,y, t)] kN (y) δN (x,y, t)

}
δN (x,y, t) = 0 (7)

tT (x,y, t) = [1− ωint (x,y, t)] kT (y) δT (x,y, t) (8)

in which, ωint ∈ [0, 1) is a history dependent variable, which represents damage along

the interface; tN and δN are the components of the traction and displacement jump

normal to the interface, respectively; kN (y) and kT (y) the initial interface stiff-

ness in the normal and tangential directions, respectively, and; tT , δT the tangential

components of the traction and displacement jump along the interface, respectively.

The traction and displacement jump components are expressed in terms of the local

coordinate system formed by the normal and tangential directions at the interface

point.

The microscale problem, which is a nonlinear boundary value problem is solved

to evaluate the microscale displacement field u1 by imposing periodic boundary con-
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ditions along the exterior boundaries of the RVE while restricting the rigid body

motion. The microscale boundary value problem is quasi-static as indicated by the

lack of inertial terms in the governing equations. The present formulation is limited

to the cases for which the characteristic size of the RVE is small compared to the

length of the deformation and stress waves.

2.2 Macroscale Problem

The macroscopic displacement field is described by the macroscopic momentum bal-

ance equation defined over Ω:

σ̄ij,xj (x, t) + b̄i (x, t) = ρ̄ (x, t) ¨̄ui (x, t) (9)

in which, double dot over a field denotes twice differentiation in time; σ̄ denotes

the macroscopic stress tensor, evaluated by volume averaging of the stresses over the

domain of the RVE

σ̄ij (x, t) = 〈σij〉 (10)

The stress field is expressed as:

σij (x,y, t) = Lijkl (y)
[
ε̄kl (x, t) + u1

(k,yl)
(x,y, t)− µkl (x,y, t)

]
(11)

b̄ and ρ̄ denote the RVE-average body force/unit volume and the RVE-average den-

sity, respectively:

b̄i (x, t) = 〈bi〉 ; ρ̄ = 〈ρ〉 (12)

The boundary and initial conditions of the macroscale initial-boundary value prob-

11



lem are defined as

ūi (x, t) = ûi (x) ; x ∈ Ω; t = 0 (13)

˙̄ui (x, t) = v̂i (x) ; x ∈ Ω; t = 0 (14)

ūi (x, t) = ŭi (x, t) ; x ∈ Γu; t ∈ [0, to] (15)

σ̄ij (x, t)nj = t̆i (x, t) ; x ∈ Γt; t ∈ [0, to] (16)

in which, û, ŭ are prescribed initial and boundary displacements, respectively; v̂

prescribed initial velocity, and; t̆ prescribed boundary traction. The prescribed initial

and boundary conditions are assumed to be constant with respect to the microscopic

coordinate vector y.

3 Reduced Order Modeling of the Microscale Problem

The macroscale problem defined in Section 2.2 is coupled with the microscale prob-

lem defined in Section 2.1 through the macroscopic constitutive relationship (Eqs. 10

and 11). The evaluation of the macroscopic stress at each macroscopic material point

requires the solution of the microscopic RVE problem associated with that material

point. When the finite element method is employed to evaluate the macroscale prob-

lem, a nonlinear microscale problem must be evaluated to update the stress at each

integration point for each increment and iteration of every time step of the loading

history. This is a tremendous computational burden. In this section, a novel reduced

order model is derived to efficiently compute the microscopic response. To this ex-

tent, the microscale displacement field is decomposed into linear and damage induced

components:

u1
i (x,y, t) = Hikl (y) ε̄kl (x, t) + ũi (x,y, t) (17)
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in which, H is the third order elastic influence function obtained by substituting

Eq. 17 into Eq. 3 and solving the microscale problem in the absence of all inelastic

processes (i.e., ωph = ωint = 0). ũ is the displacement field induced by the damage

processes within the microconstituents and the interface:

ũi (x,y, t) =

∫
Θ

hph
ikl (y, ŷ)µkl (x, ŷ, t) dŷ +

∫
S

hint
im (y, ŷ) δm (x, ŷ, t) dŷ (18)

in which hph and hint are the phase damage and interface damage induced influence

functions. hph and hint are the particular solutions to the RVE problems obtained

by substituting Eq. 17 into Eq. 3 and solving the microscale problem in the presence

of phase damage (i.e., µ) and interface damage (i.e., δ), respectively. The governing

equations and the discrete approximations of the elastic and damage induced influence

functions are provided in Ref. [46] and will not be discussed herein. In this section,

we concentrate on the new model reduction methodology based on the microscopic

displacement field decomposition provided in Eqs. 17 and 18.

Substituting Eq. 17 into Eq. 3, premultiplying the resulting equation with hph,

and integrating over the domain of the RVE yields:

∫
Θ

hph
ipq (y, ŷ) {Lijmn (y) [Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)− µmn (x,y, t)]},yj dy = 0

(19)

in which, ε̃ = ∇s
yũ; A = I + G is the fourth order elastic strain concentration

tensor; I the fourth order identity tensor, and; G = ∇s
yH, the elastic polarization

tensor. The use of Eq. 19 secures a symmetric formulation as subsequently derived.

This is in contrast with the previous eigendeformation-based reduced order models,

which are non-symmetric [46]. Integrating by parts, applying divergence theorem and

employing the perodicity of the response fields over the domain of the RVE yields:

∫
Θ

gph
ijpq (y, ŷ)Lijmn (y) [Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)− µmn (x,y, t)] dy = 0 (20)
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where, gph = ∇s
yh

ph is the fourth order phase damage polarization tensor.

A second set of equilibrium equations are obtained by premultiplying the mi-

croscale equilibrium equation (Eq. 3) with hint, and following a similar procedure as

described above:

∫
Θ

gint
ijp (y, ŷ)Lijmn (y) [Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)− µmn (x,y, t)] dy = −tp (x, ŷ, t)

(21)

in which, gint = ∇s
yh

int is the third order interface damage polarization tensor. Sub-

stituting Eq. 4 into Eqs. 20 and 21 yields:

∫
Θ

[
1− ωph (x,y, t)

]
gph
ijqr (y, ŷ)Lijmn (y) ·

·
[
Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)

]
dy = 0

(22)

∫
Θ

[
1−ωph (x,y, t)

]
gint
ijp (y, ŷ)Lijmn (y) ·

·
[
Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)

]
dy = −tp (x, ŷ, t)

(23)

We introduce the following discretizations for damage fields ωph and ωint, and the

damage induced fields, µ and δ using mesomechanical shape functions

{ωph, µij} (x,y, t) =
n∑
γ=1

N
(γ)
ph (y)

{
ω

(γ)
ph , µ

(γ)
ij

}
(x, t) (24)

{
ωint, δ̂i

}
(x,y, t) =

m∑
β=1

N
(β)
int (y)

{
ω

(β)
int , δ̂

(β)
i

}
(x, t) (25)

in which, γ = 1, 2, . . . , n and β = 1, 2, . . . ,m; n and m denote the level of dis-

cretization within the phases and along the interface, respectively. δ̂ denotes the

displacement jump vector in the local coordinate system (i.e., δ̂(β) =
[
δN(β) δT (β)

]T
).

The phase, N
(γ)
ph , and interface, N

(β)
int , shape functions have compact support within
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subdomains of the phases and the interface

N
(γ)
ph (y) = 0 if y /∈ Θ(γ); Θ(γ) ⊂ Θ (26)

N
(β)
int (y) = 0 if y /∈ S(β); S(β) ⊂ S (27)

Employing Eqs. 24 and 25, ε̃ is expressed in terms of the damage induced strain

and displacement jump coefficients:

ε̃ij (x,y, t) =
∑
γ

P̃
(γ)
ijkl (y)µ

(γ)
kl (x, t) +

∑
β

R̃
(β)
ijp (y) δ̂(β)

p (x, t) (28)

in which, the coefficient tensors P̃ and R̃ are:

P̃
(γ)
ijkl (y) =

∫
Θ(γ)

gph
ijkl (y, y̌)N

(γ)
ph (y̌) dy̌ (29)

R̃
(β)
ijp (y) =

∫
S(β)

gint
ijq (y, y̌)N

(β)
int (y̌) êq (y̌) dy̌ (30)

where êq denotes the transformation vector between the global and local coordinate

systems along the interface.

Substituting Eqs. 24 and 25 into Eq. 22, premultiplying the resulting equation

with N
(η)
ph (ŷ), and integrating over the domain of the RVE yields (η = 1, 2, . . . , n):

n∑
∆=1

{[
1− ω(∆)

ph (x, t)
]∫

Θ(∆)

N
(∆)
ph (y) P̃

(η)
ijqr(y)Lijmn(y)

[Amnkl (y) ε̄kl (x, t) + ε̃mn (x,y, t)]dy

}
= 0

(31)

Similarly, substituting Eqs. 24 and 25 into Eq. 23, premultiplying the resulting

equation with N
(α)
int (ŷ) and integrating over the domain of the RVE yields (α =
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1, 2, . . . ,m):

n∑
∆=1

{[
1− ω(∆)

ph (x, t)
] ∫

Θ(∆)

N
(∆)
ph (y) R̃

(α)
ijp (y)Lijmn (y)

[Amnkl (y) ε̄kl (x, t) + ε̃mn(x,y, t)] dy

}
= −t̂(α)

p (x, t)

(32)

Substituting Eq. 28 into Eqs. 31 and 32 results in

n∑
∆=1

{[
1− ω(∆)

ph (x, t)
] [
C

(η∆)
ijkl ε̄kl (x, t) +

n∑
γ=1

F
(η∆γ)
ijkl µ

(γ)
kl (x, t)

+
m∑
β=1

J
(η∆β)
ijp δ̂(β)

p (x, t)

]}
= 0

(33)

∑
∆

{[
1− ω(∆)

ph (x, t)
] [
D

(α∆)
pkl ε̄kl (x, t) +

n∑
γ=1

J
(γ∆α)
klp µ

(γ)
kl (x, t)

+
m∑
β=1

M (α∆β)
pq δ̂(β)

p (x, t)

]}
= −t̂(α)

p (x, t)

(34)

where,

C
(η∆)
ijkl =

∫
Θ(∆)

P̃
(η)
qrij (y)Lqrmn (y)Amnkl (y)N

(∆)
ph (y) dy (35)

D
(α∆)
pkl =

∫
Θ(∆)

R̃
(α)
ijp (y)Lijmn (y)Amnkl (y)N

(∆)
ph (y) dy (36)

F
(η∆γ)
ijkl =

∫
Θ(∆)

P̃
(η)
qrij (y)Lqrmn (y) P̃

(γ)
mnkl (y)N

(∆)
ph (y) dy (37)

J
(η∆β)
ijp =

∫
Θ(∆)

P̃
(η)
qrij (y)Lqrmn (y) R̃(β)

mnp (y)N
(∆)
ph (y) dy (38)

M (α∆β)
pq =

∫
Θ(∆)

R̃
(α)
ijp (y)Lijmn (y) R̃(β)

mnq (y)N
(∆)
ph (y) dy (39)

in which, C(η∆), D(α∆), F(η∆γ), J(η∆β) and M(α∆β) are coefficient tensors. The inter-
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face traction coefficient, t̂(α) is:

t̂
(α)
i (x, t) =

∫
S(α)

N
(α)
int (y) t̂i (x,y, t) dy (40)

The relationship between the interface traction and the displacement jump is non-

linear. It is, therefore, not possible to derive explicit expressions for the relationship

between the traction and displacement jump coefficients. In this section, the relation-

ship between the pointwise tractions and displacement jumps are adopted to represent

the relationship between the traction and displacement jump coefficients. This ap-

proach has also been employed in a number of previous investigations (e.g., [39]). The

unilateral contact and adhesion conditions are expressed as

δN(α) (x, t) ≥ 0 (41)

tN(α) (x, t)−
[
1− ω(α)

int (x, t)
]
k

(α)
N δN(α) (x, t) ≤ 0 (42){

tN(α) (x, t)−
[
1− ω(α)

int (x, t)
]
k

(α)
N δN(α) (x, t)

}
δN(α) (x, t) = 0 (43)

The tangential adhesion condition is also written in a similar form as

tT (α)
ρ (x, t)−

[
1− ω(α)

int (x, t)
]
k

(α)
T δT (α)

ρ (x, t) = 0 (44)

Similar to the interface traction-separation conditions, the nonlinear evolution of

the phase and interface damage coefficients, ω
(γ)
ph and ω

(α)
int , are expressed in terms of

the field coefficients:

ωph = ωph (σij, εij, qa)→ ω
(γ)
ph = ω

(γ)
ph

(
σ

(γ)
ij , ε

(γ)
ij , q

(γ)
a

)
(45)

ωint = ωint

(
ti, δi, q

int
a

)
→ ω

(α)
int = ω

(α)
int

(
t
(α)
i , δ

(α)
i , qint(α)

a

)
(46)
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in which, q and qint are state variables defining the evolution of the phase and interface

damage variables, respectively, and;

[·](γ) (x, t) =

∫
Θ(γ)

N
(γ)
ph (y) [·] (x,y, t) dy; [·](α) (x, t) =

∫
S(α)

N
(α)
int (y) [·] (x,y, t) dy

(47)

Equilibrium equations (Eqs. 33 and 34), in addition to the interface conditions

provided by Eqs 41-44, and the evolution equations for the phase and interface damage

coefficients form the reduced order model. The reduced order model is solved to obtain

the unknown coefficients µ(γ) and δ̂(α).

The macroscopic stress tensor is expressed in terms of µ(γ), δ̂(α), and the macro-

scopic strain tensor by substituting Eq. 17 and 18 into Eq. 11 and using Eqs. 24

and 25 to obtain

σ̄ij(x, t) =
∑

∆

[
1−ω(∆)

ph (x, t)
][
L̄

(∆)
ijklε̄kl(x, t)+

∑
γ

P̄
(∆γ)
ijkl µ

(γ)
kl (x, t)+

∑
β

R̄
(∆β)
ijp δ̂(β)

p (x, t)

]
(48)

where, the coefficient tensors L̄(∆), P̄(∆γ) and R̄(∆β) are expressed as

L̄
(∆)
ijkl =

1

| Θ |

∫
Θ(∆)

N
(∆)
ph (y)Lijmn (y)Amnkl (y) dy (49)

P̄
(∆γ)
ijkl =

1

| Θ |

∫
Θ(∆)

N
(∆)
ph (y)Lijmn (y) P̃

(γ)
mnkl (y) dy (50)

R̄
(∆β)
ijp =

1

| Θ |

∫
Θ(∆)

N
(∆)
ph (y)Lijmn (y) R̃(β)

mnp (y) dy (51)

4 Computational Aspects

The implementation of the proposed reduced-order multiscale model is conducted in

two stages. The preprocessing stage consists of determining the model order, parti-

tioning of the RVE based upon the model order, and computing the coefficient tensors

associated with the reduced order model. The macroscopic analysis stage consists of
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evaluating the macroscale problem described in Section 2.2 using a numerical method.

In this study, the macroscopic analyses are conducted using the finite element method.

The commercially available finite element analysis program, Abaqus, is employed. Re-

duced order multiscale models and direct numerical simulations for the verification of

the proposed approach are conducted using the user supplied subroutine capabilities.

The remainder of this section discusses a novel strategy for selection of the model

order and partitioning of the RVE domain, as well as the numerical evaluation of the

reduced order model.

4.1 Reduced-Order Model Development Strategy

The proper partitioning of the RVE domain is critical to the efficiency and the accu-

racy of the proposed reduced order modeling approach. The partitioning of the RVE

consists of the selection of the number of phase (n) and interface (m) partitions, as

well as the domain of each phase (Θ(γ)) and interface (S(β)) partition. Theoretically,

as the number of partitions, n and m, increase, the accuracy of the reduced model

increases at the expense of additional computational cost. The accuracy of the re-

duced order model is also strongly affected by the selection of the partition domains,

Θ(γ) and S(β) for a given number of phase and interface partitions. Previous and cur-

rent investigations found significant variability in the performance of a reduced order

model based on the partitioning strategy. It is possible to adaptively select the or-

der of the reduced-order model based on a-priori error measures associated with the

state of the failure processes during the macroscopic simulations. Such a dynamic

partitioning strategy was proposed in Ref. [46]. The dynamic strategy resembles h-

version adaptive finite element modeling with goal oriented mesh adaptivity [43], or

multilevel-multiscale modeling, in which the heterogeneity within the process zones

are adaptively resolved [28]. The dynamic partitioning strategy, while rigorous, comes

with a significant increase in computational cost. The additional computational cost
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Figure 2: The partitioning and model reduction strategy. Failure profiles within the
RVE subjected to (a) uniform biaxial loading; (b) uniaxial in the lateral direction;
(c) uniaxial loading in the vertical direction; (d) shear loading along the positive
direction; (e) shear loading along the negative direction; (f) resultant partitions.

is due to error assessment and recomputation of the coefficient tensors during the

macroscopic analysis.

In this section, a novel static partitioning strategy is presented, in which, the RVE

domain partitions and the model order is identified prior to the macroscopic analysis.

The present approach provides a model selection strategy capable of accounting for the

failure modes within the microstructure using a small number of domain partitions.

The model selection strategy consists of identification of the failure paths within

the microstructure when subjected to a number of loading modes, and partitioning

the domain of the RVE as well as the interfaces by selecting each failure path as a

partition. The failure paths within the microstructure are identified by conducting

detailed RVE-level simulations. The RVE is subjected to uniform macroscopic strain

modes (e.g., uniaxial tensile or compression and shear). Figure 2 illustrates the

identification of the failure paths in a 2-D particle reinforced matrix under uniform

macroscopic axial and shear strains. The failure path due to each loading condition
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is marked as an individual partition as shown in Fig. 2e. RVE-level simulations were

conducted by applying Dirichlet conditions along the boundaries when determining

the failure paths. This, along with the unstructured finite element mesh leads to

unsymmetric failure paths despite symmetry in the RVE geometry. Periodic boundary

conditions are maintained along the RVE boundaries in the multiscale model.

The failure paths associated with different loading modes intersect each other as

demonstrated in Fig. 2. Hence, the phase partitions are allowed to overlap. The

phase shape functions, are selected to accommodate such an overlap. Let the domain

of the RVE be partitioned into n possibly intersecting subdomains, denoted by Θ(γ),

γ = 1, 2, . . . , n. The union of the subdomains spans the domain of the RVE:

Θ ≡
n⋃
γ=1

Θ(γ) (52)

The intersection between two partitions are denoted as Θ(γη) ≡ Θ(γ)∩Θ(η). A material

point within the RVE may lie in all n partitions or less. The intersections between

multiple partitions are defined by repetitive Greek superscripts: Θ(γην...) ≡ Θ(γ) ∩

Θ(η) ∩Θ(ν) . . .. The shape functions for the reduced order model, N
(γ)
ph , are chosen as:

N
(γ)
ph (y) =


1

i
if y ∈ Θ

(γ)
i

0 elsewhere
(53)

in which, i = 1, 2, . . . , n, and;

Θ
(γ)
1 ≡ Θ(γ)\

n⋃
η=1

Θ(γη) (54)

Θ
(γ)
2 ≡

n⋃
η=1

[
Θ(γη)\

n⋃
ν=1

Θ(γην)

]
(55)

The expressions for Θγ
3 . . .Θ

γ
n are derived analogously. The shape functions defined in
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Eq. 53 allow the possibility of intersecting shape functions, and satisfy the partition

of unity property:
n∑
γ=1

N
(γ)
ph (y) = 1; y ∈ Θ (56)

The interface shape functions are continuous across the partitions to satisfy the

continuity of tractions and displacement jumps across the interface partitions. Con-

sider the partitioning of the interface S into m overlapping subdomains S(α). The

interface shape function, N
(α)
int , is a linear combinations of standard finite element

shape functions corresponding to the nodes along the interface partition, S(α) [46]

N
(α)
int (y) =

∑
a∈S(α)

Na (y) ; y ∈ S (57)

in which, Na is the standard finite element shape function associated with the micro-

scopic finite element mesh node a.

4.2 Numerical Evaluation of the Reduced-Order Model

The evaluation of the reduced order model for the microscale problem constitutes

the macroscopic stress update at a macroscopic point. The reduced order model is

evaluated using the active set strategy to account for the contact conditions at the

interfaces.

Given: At a macroscopic material point x and at time t, the equilibrium state de-

fined by the macroscopic strain tensor tε̄; the inelastic strain and displacement jump

coefficients, tµ
(γ) and tδ̂

(α), respectively, where γ = 1, 2, . . . , n and α = 1, 2, . . . ,m;

state variables tq
(γ) and tqint

(α), which define the evolution of the phase and interface

damage state, tω
(γ)
ph and tω

(α)
int , respectively; as well as the change in the macroscopic

strain state, ∆ε̄ (taking an assumed strain approach in the numerical evaluation of

the macroscopic boundary value problem).

Compute: The current values (at time: t+∆t) of the inelastic strain and displacement
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coefficients, µ(γ) and δ̂(α), respectively; the current damage state, ω
(γ)
ph and ω

(α)
int ; state

variables, q(γ) and qint
(α) and the macroscopic stress, σ̄.

In this section, we will employ vector notation using the classical index contrac-

tions (e.g., L = {LIJ}) ← {Lijkl}). A left subscript t indicates the value of the

function at time t. A left superscript denotes iteration count. The eigendeformation

vector is defined as:

d =
{
µ(1), ...,µ(n), δ̂(1), ..., δ̂(m)

}T
(58)

The active set is defined as the set of all interface partitions in which normal dis-

placement jump coefficients are zero:

A =
{
α | α ∈ {1, ...,m} ; δN(α) = 0

}
(59)

We define the discrete system of nonlinear equations, Ψ, based on reduced order

model as:

Ψ (d) = K
(
ω

(γ)
ph , ω

(α)
int

)
d + f

(
ω

(γ)
ph

)
(60)

in which,

K
(
ω

(γ)
ph , ω

(α)
int

)
= Kt

(
ω

(α)
int

)
+

n∑
∆=1

[
1− ω(∆)

ph

]
K(∆) (61)

and,

K(∆) =



F(1∆1) · · · F(1∆n) G(1∆1) · · · G(1∆m)

...
. . .

...
...

. . .
...

F(n∆1) · · · F(n∆n) G(n∆1) · · · G(n∆m)

Ĝ(1∆1) · · · Ĝ(1∆n) H(1∆1) · · · H(1∆m)

...
. . .

...
...

. . .
...

Ĝ(m∆1) · · · Ĝ(m∆n) H(m∆1) · · · H(m∆m)


(62)

K(∆) are symmetric matrices since Ĝ(α∆η) = GT (η∆α), F(η∆γ) = FT (γ∆η) and H(α∆β) =
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HT (β∆α). Kt
trac is defined as

Kt =



0 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0

0 · · · 0 k̂(1) · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · k̂(m)


; k̂(α) =

(
1− ω(α)

int

)

k

(α)
N 0 0

0 k
(α)
T 0

0 0 k
(α)
T



(63)

The symmetry of K leads to this formulation being denoted as a symmetric formula-

tion. The solution of Ψ = 0 is evaluated by symmetric nonlinear solvers rather than

unsymmetric ones as has been the case in previous formulations. f is defined as

f
(
ω

(γ)
ph

)
=

n∑
∆=1

[
1− ω(∆)

ph

]
f (∆) (64)

and,

f (∆) =
{
C(1∆), ...,C(n∆),D(1∆), ...,D(m∆)

}T
ε̄ (65)

In the case of tensile loading throughout the interface, the active set is empty

(A = ∅), Ψ (d) = 0 solves the reduced order model. When A 6= ∅ a reduced system

of equations is defined:

ΨA (d) = KAdA + fA (66)

in which, dA and fA is constructed by removing each row which corresponds to δ
(α)
N

for each partition α in A, from d and f , respectively. KA is constructed by removing

each row and column, which corresponds to δ
(α)
N for each partition α in A, from K.

The rows removed from Eq. 60 form:

ΨĀ (d) = KĀdĀ + fĀ (67)
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The reduced order model is evaluated by ensuring ΨA (d) = 0 and ΨĀ (d) ≥ 0

are satisfied. The latter condition is necessary to ensure negative tractions upon

compressive loading along the interfaces. The computational algorithm to evaluate

the reduced order problem based on the active set strategy is provided in Box 1.

The algorithm is initiated by setting the working set, which approximates the active

set at (t + ∆t), to the active set at time t, as well as setting the eigendeformation

vector to td (Step 1). Within each iteration k, the test eigendeformation vector,
k
d̂ is

evaluated by a standard nonlinear root finding algorithm, such as Newton-Raphson or

quasi-Newton methods (Step 2a). In this chapter, a quasi-Newton SR1 method [42]

is employed to compute the roots of ΨkW . In this method, a symmetric-rank-one

matrix is added to an approximation of the Jacobian of ΨkW at each iteration of

the nonlinear solver. In practice, this update has been shown to provide very good

approximations of the Jacobian resulting in superlinear convergence. The advantages

of quasi-Newton methods are that they do not require an explicit formula for the

Jacobian and that the update can be performed on the inverse Jacobian alleviating

the need to solve a linear system of equations at each iteration. In this paper, the

algorithm is initialized with a finite difference approximation to the Jacobian. If the

computed normal displacement jump coefficients violate the impenetrability condition

(Steps 2b-c), the partition with the most severe violation is added to the working set.
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1. Initialize the algorithm by setting the initial guess for the eigendeformation
vector and for the active set:

k = 1; 0d = td; 1W = tA

in which, kW denotes the working set. The working set is an approximation
to the active set at iteration k.

2. Loop over the iterations k:

(a) Compute
k
d̂ by evaluating ΨkW

(
d̂
)

= 0 using a standard nonlinear

root finding algorithm.

(b) Loop over each interface partition, α, which is not in the working set
(i.e., α /∈ kW):

i. If the impenetrability condition at partition α is violated (i.e.,
k
δ̂

(α)
N < 0), compute the step size 0 < λ(α) < 1 for each interface

partition violating the impenetrability condition as:

λ(α) =

k−1
δ

(α)
N

k
δ̂

(α)
N −

k−1
δ

(α)
N

(c) If the step size is reduced (i.e.,
{
λ(α)

}
6= ∅):

i. Compute β = arg min
{
λ(α)

}
ii. Update the working set: k+1W = kW ∪ {β}
iii. k ← k + 1

iv. kd = λ(β)
(
k
d̂− k−1d

)
+ k−1d

v. Return to the beginning of the iteration loop

(d) Check if the unilateral conditions are violated in any partition within
the working set: (i.e., If any component of ΨkW̄ (d) < 0)

i. Compute β = arg min
(
ΨkW̄

)
ii. Update the working set: k+1W = kW − {β},
iii. k ← k + 1

iv. kd =
k
d̂

v. Return to the beginning of the iteration loop

(e) Update the eigendeformation vector: d = kd

(f) Update the active set: A = kW
(g) Exit the algorithm

End iteration loop

Box 1: The active set algorithm for evaluation of the reduced order model with unilateral
contact constraints.
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When the computed normal displacement jump coefficients do not violate the impen-

etrability condition, the unilateral contact constraints are checked within the active

set. If the unilateral contact conditions are violated (i.e., if the computed interface

traction coefficients are positive at partitions within the working set), the partition

with the most severe violation (largest positive interface traction coefficient) is re-

moved from the active set (Step 2d). When the unilateral contact constraints are

satisfied, the active set, the eigendeformation vector, the associated internal state

variables, and damage variables are updated (Steps 2e-g).

4.3 Two-Order Reduced Modeling

Reduced-order models fail to accurately capture the post-failure response of the rep-

resentative volume element. The failure is defined as the loss of load carrying capacity

along at least one loading direction. For instance, full damage within any one of the

failure paths along with interface debonding in the RVE illustrated in Fig. 2 cause

failure along the associated load direction. The reduced order models exhibit spurious

residual stiffness upon failure, which prohibits proper redistribution of the stresses

at the macroscopic scale. While increasing the model order diminishes the spurious

residual stiffness, this approach increases the computational cost.

We propose a two-order modeling scheme to eliminate the residual-stress fields

upon failure without significantly compromising the computational efficiency. In this

approach, the stresses are computed based on a high order model, whereas the dam-

age coefficients are evaluated using the low-order reduced-order model described in

Section 4.1. The stress-update procedure for the two-order reduced model is as fol-

lows:

1. Evaluate the eigendeformation vector, dlow, and damage coefficients, ω
(γ)
ph ; γ =

1, 2, . . . , nlow and ω
(α)
int ; α = 1, 2, . . . ,mlow for the low-order model using the

numerical procedure described in Section 4.2. nlow and mlow are the orders for
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the low-order model selected by the reduced-order model development strategy

described in Section 4.1.

2. Map the damage coefficients of the low-order model onto the high-order model

partitions. The mapping of the damage coefficients onto the high-order model

partitions is trivial when the high-order model is constructed by hierarchical

subpartitioning of the low-order model. In this study, each finite element within

the RVE domain constitutes a partition for the high-order model.

3. Evaluate the eigendeformation vector, dhigh, for the high order model by solving

the linear system:

dhigh = K−1
highfhigh (68)

4. Compute macroscopic stress (Eq. 48), using the eigendeformation vector of the

high-order model.

5 Numerical Verification

The capabilities of the proposed reduced order modeling methodology are verified

against direct finite element simulations. The verification study consists of (1) analysis

of an RVE response and assessment of the reduced order model predictions, and (2) a

three-point bending problem to assess the capabilities of the reduced order model in

capturing the overall failure response of macroscopic structures.

5.1 RVE Analysis

The multiscale methodology described in the previous sections is applied to develop a

meso-mechanical model for a 2-D composite matrix with a circular inclusion. Figure 2

illustrates the geometry of the microstructure. The evolution of damage within the

matrix and along the interface is modeled based on continuous damage mechanics
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models proposed in [46] for brittle composite constituents. The reinforcement is

assumed to behave elastically within the range of applied loads.

The capabilities of the proposed multiscale model in capturing the failure modes

for a range of loading conditions are verified by comparing the model simulations to

direct numerical simulation of the representative volume element. The finite element

mesh employed in these simulations is shown in Fig. 2. The characteristic material

length scale associated with the matrix constituent is assumed to be 1/8 of the RVE

size. The finite element mesh of the RVE is designed to have an average size of 1/8

of the RVE length scale to avoid numerical errors associated with mesh-sensitivity.

The multiscale model is developed based on the reduced order model development

strategy described in Section 4.1. The reduced order model is developed using the

biaxial tension, uniaxial tension and shear loading modes. The partitioning of the

reduced order model is shown in Fig. 2. The matrix phase and the interface are

modeled using 6 and 4 partitions, respectively. This model is referred to as SBU-4-6

in the remainder of this chapter.

The performance of model SBU-4-6 is compared to the results of the direct nu-

merical simulations for the biaxial, uniaxial and shear loading cases. The force dis-

placement diagrams in addition to the damage evolution in the interface and phase

partitions are shown in Figs. 3-5. In biaxial loading, the failure along the interface is

uniform and precedes the failure within the matrix phase. Upon interface debonding,

the failure within the matrix propagates in the vertical and lateral directions. The

evolution of damage within the matrix partitions and the interface clearly show that

the failure modes are accurately captured by SBU-4-6. A similar trend is observed

in model predictions when subjected to uniaxial (Fig. 5) and shear (Fig. 4) loading

conditions. The failure mechanisms are captured with good accuracy when compared

to the reference direct numerical simulations of the RVE.

Figure 6 illustrates the capability of the proposed reduced-order model in elimi-
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Figure 3: Stress-strain response and damage evolution within the RVE when sub-
jected to uniform biaxial loading.
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Figure 4: Stress-strain response and damage evolution within the RVE when sub-
jected to shear loading.
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Figure 5: Stress-strain response and damage evolution within the RVE when sub-
jected to uniaxial tensile loading in the lateral direction.

nating the spurious residual stresses in the post-failure regime. The spurious residual

stresses present due to the modeling errors associated with reduction of the model

order typically pollute the post-failure stress fields in the macroscopic analyses, since

this effect partially constrains stress redistribution. Figure 6 compares the predic-

tions of the proposed model along with the predictions of an eigendeformation-based

homogenization model (EHM (0+1) point model) proposed in Ref. [46] along with the

direct numerical simulations when subjected to uniform biaxial tension. The matrix-

reinforcement interface is assumed to remain continuously bonded throughout the

simulation. A 1-partition reduced order model, SBU-0-1, is adopted. The predictions

of the EHM (0+1) point model clearly demonstrate a residual strength upon failure

of the matrix partition, while SBU-0-1 eliminates the spurious residual stresses.

The values of the model parameters used in the reduced order model are different

than those of the direct numerical simulations. The objective of the proposed reduced

order model is to capture the failure mechanisms within the heterogeneous material in

a computationally efficient and accurate manner. The simulations conducted in this

section demonstrate that the main failure mechanisms are captured with reasonable

accuracy with the reduced order model. The model parameters for the reduced order
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Figure 6: Stress-strain response when subjected to uniform biaxial tensile loading.
The post-failure spurious residual stresses are eliminated with the proposed reduced
order model.

model are computed by minimizing the discrepancy between the ultimate strength

predicted by the proposed reduced order model and the direct numerical simulations

in a least square sense. From the validation perspective, the reduced order model can

be adopted to predict the response of heterogeneous systems by calibrating the ma-

terial parameters of the damage models directly, based on experimental observations.

A general discussion and methodologies for calibration and validation procedures for

multiscale models are discussed in Ref. [47].

5.2 Crack Propagation in a Beam Subjected to Three-Point Bending

We consider a three-point bending of a cracked composite plate. The predictions of

the SBU-4-6 model are compared to a fine scale finite element model, which consists

of 256 RVEs described in Section 5.1. The macroscale mesh for the multiscale model

consists of 256 4-noded quadrilaterals. The volume fraction of the circular inclusions

is 30%. The circular inclusions are assumed to be isotropic and linear elastic with

E = 200GPa and ν = 0.3. Damage processes are considered within the central third,

and the matrix material is assumed to be linear elastic in the remainder of the plate.
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The elastic properties of the matrix material are E = 60GPa and ν = 0.3. The initial

vertical matrix crack is assumed to extend 1/8th of the plate width.

Figures 7a and 7b illustrate the propagation of the initial matrix crack and damage

within the matrix as predicted by the direct numerical simulation and the SBU-4-6

model. In these simulations, the interface between the matrix and the inclusions are

assumed to remain fully bonded for the duration of the loading. The propagation

of the initial crack is arrested approximately halfway through the plate thickness

when shear cracks develop at the edges of the applied loading. Figure 7a shows the

damage state within the third phase partition depicted in Fig. 2b. A comparison of

the reaction force-applied displacement curves of the numerical simulation and the

proposed multiscale model is shown in Fig. 8. The reduced-order model slightly over-

predicts the strength of the composite plate. The errors associated with the SBU-4-6

are due to the blunting of the response fields across the failure paths within the

microstructure by the model-reduction methodology. SBU-4-6 successfully captures

the propagation and arrest of the initial crack and subsequent shear crack formation

with reasonable accuracy.

Figures 10a and 10b show the failure of the three-point bending plate in the

presence of interface effects. The direct numerical simulation with the fine mesh

shows that the path of crack propagation is significantly altered when the inclusion-

matrix debonding is considered. The path of crack propagation displays a more

jagged pattern with interaction between the matrix and interface cracks. Figure 10a

displays the state of interface damage across the macroscale. The extent of interface

damage is predicted by the SBU-4-6 model with reasonable accuracy. The comparison

of the applied force-deflection curve predicted with the proposed multiscale model

and the direct numerical simulations is shown in Fig. 9. The degradation effect

of interface debonding on the overall performance of the plate is predicted by the

proposed multiscale model with good accuracy.
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Figure 7: Damage profile of the 3-point bending beam specimen at the onset of
shear fracture in the absence of interface debonding effects: (a) The prediction of the
SBU-4-6 model. The contour represents the state of damage at phase partition 3;
(b) Damage distribution predicted by the direct numerical simulation.
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6 model and the direct numerical simulation in the absence of interface debonding
effects.
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Figure 10: The deformed configuration of the 3-point bending beam specimen in the
presence of interface debonding effects: (a) The prediction of the SBU-4-6 model.
The contour represents the state of interface damage; (b) Crack profile predicted by
the direct numerical simulation.
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It is important to ascertain the reduced order model’s computational performance,

but one should note that a running time comparison between the reduced order model

and the direct numerical simulation depends highly on the specific features of the

problem. In this case, the direct numerical simulation had a mesh containing approx-

imately 90,000 elements. With this configuration, the direct numerical simulation ran

over several hours in comparison to the SBU-4-6 model which ran in several minutes.

If the RVEs had more complex geometry requiring higher mesh density, the direct

numerical simulation would have had many more elements and thus a slower run-

ning time. However, if the same number of failure paths were used in constructing

a reduced-order model for the more complex microstructural geometry, the running

time of the reduced order model would remain more or less the same. In general,

increasing the number of elements required in meshing a single RVE increases the

relative performance of the reduced order model. Though even here, with such a

simple RVE, the performance was increased by an order of magnitude.
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CHAPTER 3

MULTIPLE SPATIO-TEMPORAL SCALE MODELING OF COMPOSITES
SUBJECTED TO CYCLIC LOADING

1 Introduction

A plethora of experimental investigations in the past few decades have shed light into

the failure mechanisms in fiber reinforced composites subjected to cyclic loading (e.g.,

[16, 31], among many others). From the modeling perspective, continuum damage

mechanics and fracture mechanics models are typically employed to describe failure

under cyclic loading. Fracture mechanics based approaches rely on incorporation of

distinct cracks at the scale of the structure [41], at the scale of the constituents [50],

or both [9]. A fracture mechanics based crack propagation criteria (e.g., Paris law)

and a numerical methodology for crack propagation such as mesh refinement [35],

virtual crack closure [37], cohesive zone [38], or the extended finite element method

[36] are employed to describe fracture events within the composite material. In the

continuum damage mechanics approach, failure is described as the initiation and

growth of diffuse damage (e.g., microcrack density) typically represented using inter-

nal state variables. The evolution of diffuse damage as a function of loading history

is modeled within the nonlinear, path-dependent constitutive modeling context by

employing micromechanically-informed damage evolution models such as the critical

element model [51, 60] and others [2, 53, 55].

Modeling complex failure mechanisms and their interactions in composite struc-

tures subjected to cyclic loading is a multiscale problem in space and time. Multiple

spatial scales exist since many failure mechanisms initiate and grow at the scale
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of the composite constituents defined by the representative volume of the compos-

ite, whereas the overall failure is assessed at the scale of the structure or structural

component. Multiple temporal scales exist because of the disparity between the char-

acteristic loading period, which may be on the order of seconds, and the overall life

of the structure which may be on the order of years. The computational homogeniza-

tion method [32, 62] based on mathematical homogenization theory [6, 10, 52, 58] is a

powerful multiscale modeling approach, which has been applied to nonlinear solid me-

chanics problems involving multiple spatial scales including the failure of composite

materials.

Straightforward application of the computational homogenization-based model-

ing to evaluate the cyclic response of composite structures is prohibitive due to the

tremendous computational cost associated with solving a two-scale nonlinear prob-

lem in space for large number of time steps necessary to evaluate life under cyclic

loading. This difficulty is addressed using two approaches: (a) by introducing re-

duced order (meso-mechanical) models that can represent the small-scale response at

a fraction of the cost without significantly compromising the solution accuracy; and,

(b) by introducing cycle-stepping methodologies that eliminate the need to resolve to

resolve each load cycle throughout the life of the structure or structural component.

Reduced-order models based on transformation field analysis [19], proper orthogonal

decomposition [64], eigenstrains [23], and others [1, 29, 40] have brought significant

progress to reduced-order modeling in the presence of multiple spatial scales. The

previous chapter along with the recent work of Oskay and coworkers [17, 46] propose a

reduced order computational homogenization framework based on the eigendeforma-

tion idea which provides (a) the ability to model multiple failure mechanisms at the

microstructure including matrix and fiber cracking, and interfacial debonding; and,

(b) a hierarchy of reduced order models that can be adapted to meet accuracy needs.

The tyranny of temporal scales is addressed by employing cycle-jump technique [48] or
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computational homogenization-based temporal multiscale modeling [22, 44, 45] that

has been employed in the context of single spatial scale continuum damage mechanics

and damage-plasticity models. More recently, Fish and coworkers applied cycle-jump

techniques to investigate the fatigue life of composites [24, 26]. Despite progress, com-

putational multiple spatio-temporal scale modeling for accurate, efficient and reliable

prediction of failure in composite structures subjected to cyclic loading conditions

remains to be a challenge.

In this chapter, a new multiple spatio-temporal scale model for prediction of cyclic

failure in composite materials is presented. The capabilities of the proposed model

are demonstrated using a suite of experiments conducted on graphite fiber reinforced

epoxy composites. The proposed model is devised using the computational homoge-

nization theory with multiple spatial and temporal scales. The idea of almost peri-

odicity of the response fields at the temporal scales [44] is employed to account for

the presence of irreversible damage fields that violate the commonly assumed period-

icity conditions of the response fields. The proposed model employs a reduced order

modeling approach at the spatial domain using the eigendeformation based homog-

enization with symmetric coefficients, and an adaptive time stepping strategy based

on the modified multistep method to efficiently evaluate the response of a structural

component by resolving only a fraction of the total number of cycles to failure. The

proposed multiscale model is calibrated based on a suite of experiments conducted on

graphite fiber reinforced epoxy (IM7/977-3) composite specimens under monotonic

and cyclic loads, and validated against an independent set of experiments. The novel

contributions found in this chapter are two-fold: To the best of the authors’ knowl-

edge, this is the first attempt to concurrently employ computational homogenization

method with multiple temporal and spatial scales for failure modeling of heteroge-

neous materials subjected to cyclic loading. The second-order adaptive time stepping

methodology proposed for adaptive error control in time provides improvements in
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accuracy compared to the first order time stepping approaches commonly employed

in the context of cycle jump and temporal homogenization.

The remainder of this chapter is organized as follows: Section 3.2 describes the

multiple spatio-temporal problem setting. In Section 3.3, the computational approach

used modeling cyclic failure behavior of composites is formulated. Section 3.4 and

3.5 provide the implementation details and the verification of the proposed modeling

approach, respectively. Section 3.6 describes the experiments for calibration and

validation of the computational approach, the calibration procedure of the material

parameters based on the experimental data, and the validation of the model.

2 Problem Statement

We consider the progressive failure of a composite structure subjected to cyclic loading

conditions. Let Ω ⊂ Rd be the domain of a heterogeneous body, where d = 1, 2 or

3 denotes the number of space dimensions. Ω is composed of the repetition of a

small periodic representative volume element (RVE), θ ⊂ Rd, composed of two or

more distinct constituent materials as illustrated in Fig. 11. The governing equations
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describing the failure of the heterogeneous body are defined as (x ∈ Ω and t ∈ [0, tf ]):

∇ · σζη (x, t) + bζ (x) = 0 (69)

σζη (x, t) =
[
1− ωζη (x, t)

]
Lζ (x) : εζη (x, t) = Lζ (x) :

[
εζη (x, t)− µζη (x, t)

]
(70)

εζη (x, t) = ∇suζη (x, t) (71)

ω̇ζη (x, t) = f ζη
(
σζη, εζη, sζη

)
(72)

where, uζη denotes displacement field; σζη the Cauchy stress; εζη the total strain;

ωζη ∈ [0, 1) the scalar damage variable; µζη = ωζηεζη the inelastic strain tensor;

bζ the body force; and Lζ the tensor of elastic moduli obeying the conditions of

symmetry and positivity. The evolution of ωζη is typically nonlinear and history-

dependent, and is provided in the functional form as a function of strain, stress

and additional state variables, sζη. A superposed dot denotes the material time

derivative; x the position vector parameterizing the domain of the structure; t the

time coordinate; and, ∇ · (·), ∇(·) and ∇s(·) the divergence, gradient and symmetric

gradient operators, respectively. The boundary conditions prescribed on the body

consist of slowly varying and oscillating components as illustrated in Fig. 11.

uζηi (x, t) = ûη (x, t) ; x ∈ Γu; t ∈ [0, to] (73)

σζη · n = t̂η (x, t) ; x ∈ Γt; t ∈ [0, to] (74)

where, û and t̂ are the prescribed displacements and tractions on the boundaries

Γu and Γt, respectively (Γ = Γu ∪ Γt and Γu ∩ Γt = ∅); and, n is the unit normal

to Γt. The period of oscillations is taken to be slow enough that inertial forces

are insignificant and the response remains quasi-static. The superscripts ζ and η

indicate that the response fields fluctuate in space and time, respectively. Double

superscript indicates a response field that fluctuates in both time and space. The
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spatial fluctuations arise due to the fluctuating material properties within the RVE,

whereas temporal fluctuations are due to the fast oscillatory component of the loading.

The fluctuating spatio-temporal response is represented by introducing microscopic

and microchronological scales parameterized by y = x/ζ and τ = t/η, respectively;

and, 0 < ζ � 1 and 0 < η � 1 are scaling parameters. The original response fields

that fluctuate in space and time are expressed as:

φζη (x, t) = φ (x,y(x), t, τ(t)) (75)

where, φ denotes an arbitrary response field. The macroscopic spatial derivatives of

a response field are obtained through the chain rule:

∇φζ (x) = ∇xφ (x,y) +
1

ζ
∇yφ (x,y) (76)

in which, ∇x(·) and ∇y(·) are gradient operators with respect to macroscopic and

microscopic coordinates, respectively. All response fields are assumed to be locally

periodic with respect to the microscopic coordinates within the RVE throughout the

deformation process: φ (x,y) = φ (x,y + kŷ), where, ŷ denotes the periods of the

microstructure; and k is a d×d diagonal matrix with integer components. We consider

the following spatial homogenization operator:

φ̄ ≡ 〈φ〉y =
1

|Θ|

∫
Θ

φ dy (77)

where, |Θ| denotes the volume of the RVE.

The macrochronological derivative of a response field is expressed using the chain

rule as:

φ̇η (t) = φ̇ (t, τ) = φ,t (t, τ) +
1

η
φ,τ (t, τ) (78)

where, a comma followed by a subscript variable t and τ denotes the partial time
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derivative with respect to the macrochronological and microchronological coordinates,

respectively. In contrast to spatial variability, local periodicity is not a valid assump-

tion for the response fields that vary in time. This is due to the presence of irreversible

mechanisms associated with damage accumulation during a load cycle. The response

fields are therefore assumed to be almost periodic, which implies that at neighboring

points in a temporal domain homologous by the load period, the change in the value

of a response function is small but does not vanish [22, 45]. Let:

〈φ〉τ =
1

τ0

∫ τ0

0

φ(x,y, t, τ) dτ (79)

denote the temporal averaging operator; and, τ0 denote the period of scaled cyclic

load (τ ∈ [0, τ0]). In the rate form, the almost periodic temporal homogenization

operator is [44]:

˙̃φ(t) ≡M(φ),t = φ̃,t(t) + φap(t) (80)

which satisfies the weak convergence property with respect to an arbitrary homoge-

nization operator, (̃·); and, φap = 〈φ,τ 〉τ/η. Following the ideas of spatial homoge-

nization theory, the natural choice for the temporal homogenization operator is the

temporal averaging operator provided in Eq. 79. From the computational perspec-

tive, it is more convenient to choose a fixed-point operator that has the distributive

property (i.e., φ = ψξ → φ̃ = ψ̃ξ̃) as evidenced by the ensuing formulation. In this

study, φ̃(x,y, t) = φ(x,y, t, 0) is adopted.

3 Computational Model

This section describes the multiscale spatio-temporal modeling approach to evaluate

the failure response of heterogeneous bodies subjected to cyclic loading governed by

Eqs. 69-74. The eigendeformation-based homogenization method with symmetric

coefficients [17] is employed to address the multiple spatial scales, whereas temporal
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homogenization with almost periodic fields is employed to efficiently predict the life

of a structure without resorting to full cycle-by-cycle analysis. The cyclic damage

evolution law employed to idealize the failure response of composite constituents is

presented.

3.1 Multiple Scale Model

We start by expressing the displacement field of the heterogeneous body using a

two-scale asymptotic expansion:

u (x,y, t, τ) = ū (x, t, τ) + ζu1 (x,y, t, τ) (81)

in which, ū and u are the macroscopic and microscopic displacement fields, respec-

tively. The governing equations are decomposed into macroscopic and microscopic

problems through asymptotic analysis of the governing equations, which consists of

substituting Eq. 81 into Eqs. 69-74, and collecting the same order terms of the re-

sulting decompositions. The two leading order equilibrium equations are:

O(ζ−1) : ∇y · σ (x,y, t, τ) = 0 (82)

O(1) : ∇x · σ (x,y, t, τ) +∇y · σ1 (x,y, t, τ) + b (x,y) = 0 (83)

where, ∇x · (·) and ∇y · (·) are divergence operators with respect to macroscopic and

microscopic spatial coordinates, respectively; and, the body forces are assumed to

remain constant in time for simplicity. The first and second order stress fields are:

σ (x,y, t, τ) = [1− ω (x,y, t, τ)]L (y) :
[
ε̄ (x, t, τ) +∇s

y(u1) (x,y, t, τ)
]

(84)

σ1 (x,y, t, τ) = [1− ω (x,y, t, τ)]L (y) :
[
∇s

x(u1) (x,y, t, τ)
]

(85)
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in which, ∇s
x(·) and ∇s

y(·) are symmetric gradient operators with respect to the

macroscopic and microscopic spatial coordinates, respectively; and, ε̄ = ∇s
x(ū) is the

macroscopic strain tensor.

Applying Eq. 78 to the damage evolution equations and collecting the same order

terms yield:

O(η−1) : ω,τ = f 0 (σ, ε, s) (86)

O(1) : ω,t = f 1 (σ, ε, s) (87)

where, the evolution functions f 0 and f 1 are derived based on the prescribed evolution

law f .

The boundary data applied to the heterogeneous body is composed of a slowly

varying and a periodic oscillatory component:

ûη (x, t) = û0 (x, t) + û1 (x, τ) (88)

t̂η (x, t) = t̂0 (x, t) + t̂1 (x, τ) (89)

Applying spatial averaging (Eq. 77) to the O(1) equilibrium equation (Eq. 83),

exploiting the local periodicity of the stress fields in space, and applying the almost pe-

riodic temporal homogenization operator yields the macroscale equilibrium equation.

The resulting equilibrium equation along with the spatio-temporally homogenized

first order stress field, and the boundary conditions provide the macrochronological-

macroscopic boundary value problem.

Macrochronological - Macroscopic Problem: Given: average body force, b̄,

boundary data û0 and t̂0, and the solution of the macrochronological-microscopic
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problem; Find the macroscopic displacement field, ˜̄u, such that (t ∈ [0, tf ]):

∇x · ˜̄σ (x, t) + b̄ (x) = 0; x ∈ Ω (90a)

˜̄σ (x, t) =
〈
(1− ω̃)L (y) :

[
˜̄ε+∇s

y(ũ1)
]〉

y
; x ∈ Ω (90b)

˜̄u = û0(x, t); x ∈ Γu (90c)

˜̄σ(x, t) · n = t̂0(x, t); x ∈ Γt (90d)

Applying the temporal homogenization operator to the O(ζ−1) equilibrium equa-

tions (Eq. 82) along with the constitutive equation for the leading order stress (Eq. 84),

and employing periodic boundary conditions for the microscale displacement field, the

macrochronological-microscopic boundary value problem is obtained.

Macrochronological-Microscopic Problem: At a fixed macroscale material point

x̆ ∈ Ω; Given: macroscale strain, ˜̄ε, and the tensor of elastic moduli, L; Find the

displacement field, ũ1, such that:

∇y ·
{

(1− ω̃)L (y) :
[
˜̄ε+∇s

y(ũ1)
]}

= 0; y ∈ θ (91a)

˙̃ω(x̆, t) = f 1 (σ̃, ε̃, s̃) + ωap(x̆, t); y ∈ θ (91b)

ũ1 periodic on y ∈ ∂θ (91c)

The macro- and microscopic problems associated with the fast time scale at a fixed

slow time coordinate, t, are obtained based on similar algebra, but without applying

the temporal homogenization operator to the governing equations and considering

the damage evolution equation with respect to the fast time scale (i.e., Eq. 86).

The resulting microchronological - macroscopic and microchronological - microscopic

problems are stated as follows:

Microchronological - Macroscopic Problem: At a fixed macrochronological time
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t̆ ∈ [0, tf ], Given: average body force, b̄, boundary data, û and t̂, and the solution

of the microchronological-microscopic problem; Find the macroscopic displacement

field, ū, such that (τ ∈ [0, τ0]):

∇x · σ̄
(
x, t̆, τ

)
+ b̄ (x) = 0; x ∈ Ω (92a)

σ̄ =
〈
(1− ω)L (y) :

[
ε̄+∇s

y(u1)
]〉

y
; x ∈ Ω (92b)

ū = û(x, t̆, τ); x ∈ Γu (92c)

σ̄ · n = t̂(x, t̆, τ); x ∈ Γt (92d)

Microchronological-Microscopic Problem: At a fixed macroscale material point

x̆ ∈ Ω and a fixed macrochronological time t̆ ∈ [0, tf ]; Given: macroscopic strain, ε̄,

and the tensor of elastic moduli, L; Find the microscopic displacement field, u1, such

that:

∇y ·
{

(1− ω)L (y) :
[
ε̄+∇s

y(u1)
]}

= 0; y ∈ θ (93a)

ω,τ (x̆,y, t̆, τ) = f 0 (σ, ε, s) ; y ∈ θ (93b)

u1 periodic on y ∈ ∂θ (93c)

The macrochronological and microchronological problems are coupled through the

almost periodic rate operator that defines the evolution of the temporally homoge-

nized response fields (i.e., Eq. 91b). Therefore, the evolution of the macrochronologi-

cal fields at each macrochronological time coordinate requires the solution of the mi-

crochronological problem associated with that time coordinate. The macroscale prob-

lems at the macrochronological and microchronological time scales are coupled with

the respective microscale problems through the constitutive relationship (Eq. 92b).

The evaluation of the macroscopic stress at each macroscopic material point requires

the solution of the microscopic RVE problem associated with that material point.
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When the finite element method is employed to evaluate the macroscale problem, a

nonlinear microscale problem must be evaluated to update the stress at each integra-

tion point for each increment and iteration of every time step of the loading history.

This is a significant computational burden.

Reduced Order Spatial Homogenization

We employ the eigendeformation-based reduced order homogenization method with

symmetric coefficients (sEHM) to reduce the computational cost associated with eval-

uating the coupled nonlinear micro- and macroscopic problems. sEHM is introduced

in chapter 2 and a brief summary is provided herein. The premise of sEHM is to

devise a low-cost approximation to the nonlinear microscale boundary value problem

defined over the representative volume elements based on the idea of precomputing

certain microstructural information (e.g., concentration tensors, localization opera-

tors, influence functions) through linear elastic simulations prior to the analysis of

the macroscale structure.

The microscale displacement field is expressed as:

u1 (x,y, t, τ) = H (y) : ε̄ (x, t, τ) +

∫
Θ

h (y, ŷ) : µ (x, ŷ, t, τ) dŷ (94)

in which, H is the elastic influence function (a third-order tensor) obtained by sub-

stituting Eq. 94 into the microscale problem, and evaluating the microscale problem

in the absence of damage; and h is the phase damage induced influence function

provided by the particular solutions to the RVE problems obtained by substitut-

ing Eq. 94 into the microscale problem, and solving the microscale problem in the

presence of phase damage (i.e., µ). The governing equations and the discrete approx-

imations of the elastic and phase damage induced influence functions are provided in

Ref. [46]. Meso-mechanical shape functions are employed to discretize damage and
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damage induced inelastic strain fields:

{ω,µ} (x,y, t) =
n∑
γ=1

N (γ) (y)
{
ω(γ),µ(γ)

}
(x, t, τ) (95)

in which, N (γ) are the phase shape functions. We consider a partitioning of the RVE

domain into n non-overlapping subdomains, θ(γ), such that θ(γ) ∩ θ(∆) = ∅ if γ 6= ∆.

The phase shape functions are taken to be piecewise constant functions forming a

partition of unity within the RVE:

N
(γ)
ph (y) =

 1 if y ∈ θ(γ)

0 elsewhere
(96)

and, ω(γ) and µ(γ) are damage variable and inelastic strains averaged over the parti-

tion, θ(γ). Substituting Eqs. 94-96 into the microscale problem (Eqs. 93), and consid-

ering variational arguments (see Ref. [17]), the governing equation of the microscale

problem is reduced to the following algebraic form:

n∑
∆=1

{[
1− ω(∆)

] [
Â(α∆) : ε̄+

n∑
γ=1

B̂(α∆γ) : µ(γ)

]}
= 0 ∀α = 1, 2, . . . , n (97)

in which, Â(α∆) and B̂(α∆γ) are coefficient tensors computed as a function of the

influence functions, H and h as well as the elastic properties, L. The expressions

for Â(α∆) and B̂(α∆γ) are found in Eqs. 35 and 37 where (Â(α∆))ijkl = C
(α∆)
ijkl and

(B̂(α∆γ))ijkl = F
(α∆γ)
ijkl in this case. The macroscopic stress tensor is expressed in

terms of the partition average damage variable and inelastic strains as:

σ̄ =
n∑

∆=1

[
1− ω(∆)

] [
L̄(∆) : ε̄ +

n∑
α=1

P̄(∆α) : µ(α)

]
(98)

in which, L̄(∆) and P̄(∆α) are coefficient tensors whose expressions are found in Eqs. 49-
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Figure 12: Effect of the cyclic damage sensitivity parameter, p, on the cyclic stress-
strain relationship.

50. The macrochronological counterparts of the reduced order microscopic equilib-

rium and macroscopic stress are obtained by applying the almost periodic temporal

homogenization operator to Eqs. 97 and 98.

3.2 Cyclic Damage Model

Continuum damage mechanics (CDM) is employed to describe the evolution of dam-

age within a phase partition (i.e., ω(γ)). In contrast to monotonic CDM models, the

evolution law is allowed to accumulate damage at subcritical loading levels to permit

sensitivity to cyclic loading. Such a model previously employed in Refs. [24, 44], is

adopted in this study:

ω̇(γ) = gp
dΦ
(
υ(γ)
)

dυ(γ)

〈
υ̇(γ)
〉

+
where 0 ≤ g =

Φ
(
υ(γ)
)

ω(γ)
≤ 1; γ = 1, 2, . . . , n (99)

where, p is the cyclic damage sensitivity parameter; 〈·〉+ denotes MacCauley brack-

ets; Φ the damage evolution law under monotonically increasing loads; and υ(γ) the

damage equivalent strain:

υ(γ) =

√
1

2
ε(γ) : L(γ) : ε(γ) (100)
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in which, L(γ) is the tensor of elastic moduli of the constituent occupying θ(γ); and,

ε(γ) is the average strain within partition, γ. The damage evolution under monotonic

conditions is idealized based on a smooth evolution law:

Φ
(
υ(γ)
)

=
arctan

(
a(γ)υ(γ) − b(γ)

)
+ arctan

(
b(γ)
)

π
2

+ arctan (b(γ))
(101)

where, a(γ) and b(γ) are material parameters associated with the constituent occupying

domain θ(γ).

The cyclic damage sensitivity parameter, p, which controls the rate of damage

accumulation with respect to a load cycle as illustrated in Fig. 12, is taken to be of

the form:

p(γ) = c
(γ)
0 + c

(γ)
1 υ(γ)

max + c
(γ)
2 (υ(γ)

max)2 (102)

c
(γ)
0 , c

(γ)
1 , and c

(γ)
2 are parameters that account for the sensitivity of fatigue strength

to the maximum applied loading. A quadratic form is chosen to model the fatigue

behavior observed in the experiments. υ
(γ)
max is the maximum value of the damage

equivalent strain during the history of the material point as defined below.

υ(γ)
max(t) = max

T

{
υ(γ)(T ) | 0 ≤ T ≤ t

}
(103)

Applying the chain rule in the time domain (Eq. 78) to the damage evolution

equation (Eq. 99), collecting the terms based on the order of the temporal scaling pa-

rameter, η, and applying the temporal homogenization operator to the O(1) equation

yields:

ω(γ)
,τ = f 0 = gp

dΦ
(
υ(γ)
)

dυ(γ)

〈
υ(γ)
,τ

〉
+

(104)

ω̃
(γ)
,t = f 1 = gp

dΦ
(
υ̃(γ)
)

dυ̃(γ)

〈
υ̃

(γ)
,t

〉
+

(105)
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Microchronological Problem:
Given: Coefficient tensors, L̄(∆), P̄(∆α), Â(α∆) and B̂(α∆γ); average body force,
b̄, boundary data û and t̂
Find : at a fixed macrochronological time t̆ ∈ [0, tf ] the macroscopic displacement
field, ū, which satisfies (τ ∈ [0, τ0]):

Equilibrium : ∇x · σ̄
(
x, t̆, τ

)
+ b̄ (x) = 0; x ∈ Ω

Constitutive Equation: σ̄ =

n∑
∆=1

[
1− ω(∆)

] [
L̄(∆) : ε̄ +

n∑
α=1

P̄(∆α) : µ(α)

]
n∑

∆=1

[1− ω(∆)
]Â(α∆) : ε̄+

n∑
γ=1

B̂(α∆γ) : µ(γ)

 = 0 ∀α = 1, 2, . . . , n

Damage Evolution: ω(γ)
,τ = f0 = gp

dΦ
(
υ(γ)

)
dυ(γ)

〈
υ(γ)
,τ

〉
+

Boundary conditions: ū = û(x, t̆, τ); x ∈ Γu

σ̄ · n = t̂(x, t̆, τ); x ∈ Γt

Box 2: The microchronological system of equations for evaluation of a single load cycle.

4 Computational Implementation

Boxes 2 and 3 summarize the microchronological- and macrochronological-reduced

order multiscopic problems, respectively. Given the coupling terms, the micro- and

macrochronological problems are evaluated using the nonlinear finite element method.

A commercial finite element software (Abaqus) along with the user material subrou-

tine utility (UMAT) is employed to solve these problems. In this section, we focus

on the implementation details of the coupling between the micro- and macrochrono-

logical problems. The proposed solution strategy is implemented with an adaptive

macrochronological time stepping methodology.
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Macrochronological Problem:
Given: coefficient tensors, L̄(∆), P̄(∆α), Â(α∆) and B̂(α∆γ); average body force, b̄,
boundary data, û0 and t̂0; the almost periodic damage function, ωap.
Find : the displacement field, ˜̄u, which satisfies (t ∈ [0, tf ]):

Equilibrium : ∇x · ˜̄σ (x, t) + b̄ (x) = 0; x ∈ Ω

Constitutive Equation: ˜̄σ =
n∑

∆=1

[
1− ω̃(∆)

] [
L̄(∆) : ˜̄ε +

n∑
α=1

P̄(∆α) : µ̃(α)

]
n∑

∆=1

[1− ω̃(∆)
]Â(α∆) : ε̄+

n∑
γ=1

B̂(α∆γ) : µ̃(γ)

 = 0 ∀α = 1, 2, . . . , n

Damage Evolution: ˙̃ω(x, t) = f1 + ωap = gp
dΦ
(
υ̃(γ)

)
dυ̃(γ)

〈
υ̃

(γ)
,t

〉
+

+ ωap(x, t); y ∈ θ

Boundary conditions: ˜̄u = û0(x, t); x ∈ Γu

˜̄σ(x, t) · n = t̂0(x, t); x ∈ Γt

Box 3: The macrochronological system of equations for evaluation of a macroscale time
step.

The overall solution strategy for the evaluation of the coupled multiscale system

is illustrated in Fig. 13. Consider a discretization of the macrochronological time do-

main, {t0 = 0, . . . , ti−1, ti, ti+1, . . . , tk = tf} in which ti denotes the ith macrochrono-

logical time step:

ti =
i∑

j=1

∆tj ≤ tf (106)

where, ∆ti = ti − ti−1 and t0 = 0. A driver program (implemented in the Python

programming language for compatibility with Abaqus) controls the execution of the

solution procedure. At each macrochronological time step, the time step size as well as

the almost periodic damage field are estimated and passed to the macrochronological

- multiscopic problem, which is evaluated for macrochronological response fields. The

macrochronological response fields provide the initial state of the microchronological

- multiscopic problem at fixed time ti due to the particular choice of the tempo-

ral homogenization operator. The point-wise value of the almost periodic damage

field, ω
(γ)
ap , at the current time step is computed and passed to the driver routine for
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Python Driver

Compute: 

for each macrochronological
time step,    

Macrochronological - 
Multiscopic Problem

Microchronological - 
Multiscopic Problem

Compute: ˜̄σ, ˜̄ε, ˜̄u, ω̃(η)

σ̄(x, ti, τ),

ε̄(x, ti, τ), ū(x, ti, τ),

ω(η)(x, ti, τ)

˜̄σ, ˜̄ε, ˜̄u, ω̃(η)

Compute:

ω(η)
ap (x, t)

ω(η)
ap (x, t)

ω(η)
ap (x, t)

ti−1 ≤ t < ti∆ti

ti

Figure 13: Implementation strategy of the coupled micro- and macro-chronological
problems.

computation of the next time step size.

4.1 Adaptive Macrochronological Time Stepping

The proposed solution algorithm outlined in Fig. 13 requires the resolution of k cy-

cles throughout the loading history, which are evaluated by the microchronological

problem (Box 2). The accuracy and efficiency of the proposed approach is based on

the appropriate selection of the macrochronological time steps, as well as the accu-

rate approximation of the evolution of the almost periodic component of the damage

field. In this study, the almost periodic damage fields are approximated based on a

modified quadratic multistep method [13], whereas the macrochronological time step

size is chosen adaptively based on a maximum damage accumulation criterion. It

is assumed that damage accumulation is primarily due to cyclic loading and slow

loading component remain smooth during the loading history.
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Let D′(t) be a matrix of almost periodic damage rate fields:

D′(t) =


ω

(1)
ap (x1, t) · · · ω

(n)
ap (x1, t)

...
. . .

...

ω
(1)
ap (xng , t) · · · ω

(n)
ap (xng , t)

 (107)

in which, ng denotes the total number of integration points within the macroscopic

domain; xg denotes the value of the function at integration point g. Considering a

smooth damage growth between macrochronological steps i−1 and i+1, the evolution

of D′(t) is approximated by a linear function around ti:

D′(ti + ∆t) ≈ Pi(∆t) ≡ bi + ci∆t; ∆t ∈ [−∆ti,∆ti+1] (108)

The coefficients of the linear approximations are obtained by imposing the following

conditions on Pi:

Pi(0) = D′(ti) (109)

Pi(−∆ti) = D′(ti−1) (110)

Substituting Eqs. 109, and 110 into Eq. 108, the rate of the almost periodic damage

fields is obtained as:

D′(ti+1) ≈ P(∆ti+1) = D′(ti) +
∆ti+1

∆ti
(D′(ti)−D′(ti − 1)) (111)

Let ∆Di+1 define the matrix of cyclic loading induced damage accumulated be-

tween time ti and ti+1. Employing the linear approximation provided by Eq. 108

yields:

∆Di+1 ≈
∫ ∆ti+1

0

Pi(∆t)d∆t = ∆ti+1D
′(ti) +

∆t2i+1

2∆ti
(D′(ti)−D′(ti − 1)) (112)
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The macrochronological step size (∆ti+1) is chosen such that the maximum damage

accumulation within a step does not exceed a threshold value:

‖∆Di+1‖max ≤ ∆Dmax (113)

where, ∆Dmax is the damage accumulation threshold, and ‖·‖max denotes the matrix

max norm.

The loss of load carrying capacity during a microchronological problem following

a long macrochronological step indicates a possible underestimation of damage ac-

cumulation during the macrochronological time step. This is due to the deviation

of the damage accumulation from the piecewise quadratic approximation within the

time step. When failure is observed, the previous macrochronological step size is

shortened, and the previous macrochronological time step is repeated. The time step

shortening is repeated until desired accuracy of the time-to-failure is achieved. The

overall algorithm is presented below:

1. Initialize algorithm: i = 0.

2. Evaluate macrochronological step (Box 3).

3. Evaluate microchronological problem at t = 0 (Box 2).

4. Set i = 1; ∆t1 = ητ0, where ητ0 is the duration of one load cycle; D′(t1) = D′(0).

5. Evaluate macrochronological step.

6. Evaluate microchronological problem at t = t1.

7. Set i = 2

8. While i ≤ k:

(a) Calculate ∆ti using Eq. 113.

(b) Calculate D′(ti) using Eq. 111.

(c) Evaluate macrochronological step.

(d) Evaluate microchronological problem at t = ti.

(e) If {failure event & ∆ti/ti ≥ tol }:
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i. ∆ti ← max (ητ0, c∆ti) and go to step (b).

(f) Else if {failure event & ∆ti/ti < tol }:
i. Structural failure: Stop algorithm.

(g) i← i+ 1

9. End.

The proposed algorithm is initiated by evaluating two macrochronological time

steps and two microchronological problems that corresponds to the first two load

cycles, noting that a single load period is denoted by ητ0. The almost periodic field

is taken to vary linearly between the first and second load cycles, and quadratically

between the remaining macrochronological time steps. 0 < c < 1 is the step cutback

factor when a failure event is detected. The failure event is defined as a loss of load

carrying capacity of the structure, detected as lack of convergence that occurs during

the evaluation of the microchronological problem. The macrochronological time step

size cannot be smaller than a single load period (= ητ0). Structural failure is taken

to occur when the failure event is detected, and the ratio of the current macrochrono-

logical time step size and the current macrochronological time is less than a specified

tolerance (tol) value. The cutback iterations when a failure event is detected are

controlled by the Python driver program, which employs the restart capability of

Abaqus to iterate the evaluation of macro- and micro-chronological problems until

convergence.

4.2 Improved Adaptive Stepping Criterion

An improved adaptive step size criterion can be developed by considering adaptive

Runge-Kutta methods used in solving initial value problems. Adaptive Runge-Kutta

methods estimate the truncation error by comparing an order n method to an order

n − 1 method while adapting the step size according to this estimate. In similar

manner, we consider a smooth damage growth between macrochronological steps i
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and i+ 1 of one order less than Eq. 108 (i.e. a constant function).

D′(ti + ∆t) ≈ Pi(∆t) ≡ bi; ∆t ∈ [0,∆ti+1) (114)

bi is attained by imposing Eq. 109 on Eq. 114.

Pi(0) = D′(ti) = bi (115)

We reach an expression for Pi.

Pi(∆t) = D′(ti) (116)

In parallel with Eq. 112, the matrix of cyclic loading induced damage accumulated

between times ti and ti+1 is approximated by integrating Eq. 116 from 0 to ∆ti+1.

∆Di+1 ≈
∫ ∆ti+1

0

Pi(∆t) d∆t = D′(ti)∆ti+1 (117)

Let ∆D2
i+1 be the second order approximation to ∆Di+1 in Eq. 112 and ∆D1

i+1 be the

order one approximation of ∆Di+1 in Eq. 117. The step size is adaptively chosen so

that the difference between ∆D2
i+1 and ∆D1

i+1 is less or equal to a tolerance denoted

tol.

tol ≥
∥∥∆D2

i+1 −∆D1
i+1

∥∥
max

=
∆t2i+1

2∆ti
‖D′(ti)−D′(ti−1)‖max (118)

Assuming equality in Eq. 118, a closed form expression is reached for the step size

∆ti+1.

∆ti+1 =

√
2 tol ∆ti

‖D′(ti)−D′(ti−1)‖max

(119)

To utilize the new adaptive stepping criterion within the previously stated algorithm,

replace Eq. 113 in step 8a with Eq. 119. Eq. 119 is ill-defined if ‖D′(ti)−D′(ti−1)‖max =

0. Therefore, if ‖D′(ti)−D′(ti−1)‖max < ε, Eq. 113 is solved instead to determine
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∆ti+1. ε is a small numerical parameter.

5 Model Verification

The proposed adaptive macrochronological time stepping strategy is verified by com-

paring the performance with direct cycle-by-cycle simulations. In the direct cycle-by-

cycle analysis, each load cycle throughout the loading is resolved, without resorting

to the multiple temporal scale strategy. The simulations were conducted on a uni-

directionally fiber-reinforced matrix unit cell. The fiber is taken to remain elastic

throughout the loading period, whereas the damage accumulates within the matrix

as a function of loading cycles. The failure response in the matrix phase is approx-

imated using a 4-partition reduced-order model. A uniform tensile strain is applied

transverse to the reinforcement direction. The strain amplitude is varied between

zero and the maximum strain throughout the loading history.

Figure 14 illustrates the variation of the damage variables within the unit cell as

a function of applied loading cycles. Only two of the four matrix partitions show ap-

preciable damage. The proposed model simulations are conducted by setting ∆Dmax

= 0.5%, 1%, and 2%. A cutback factor of 0.5 is employed (c = 0.5). The proposed

adaptive time stepping strategy required 109, 68, and 43 resolved microchronological

load cycles for ∆Dmax = 0.5%, 1%, and 2%, respectively, compared to 900 cycles

resolved in the direct cycle-by-cycle approach. The proposed model captures the fail-

ure response with reasonable accuracy, with excellent accuracy observed for ∆Dmax

= 0.5%.

The efficiency of the proposed approach is further illustrated by conducting simu-

lations when the unit cell is subjected to a slightly smaller loading amplitude . In this

analysis, the cycle-to-failure of the first partition is 677 (in contrast to 377 of the previ-

ous simulations). The simulations are conducted for 1800 cycles. Figure 15 illustrates

the variation of damage variables within the unit cell as a function of applied loading
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Figure 14: Comparison of the cyclic damage accumulation computed using the direct
cycle-by-cycle approach and proposed multiscale model with adaptive time stepping.
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Figure 15: Comparison of the cyclic damage accumulation computed using the direct
cycle-by-cycle approach and proposed multiscale model with adaptive time stepping
with smaller loading amplitude.
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Figure 16: Comparison of the cyclic damage accumulation computed using the di-
rect cycle-by-cycle approach and the multiscale model with improved adaptive time
stepping.

cycles as computed by the reference simulations and the multiple spatio-temporal

model with adaptive time stepping methodology. The total resolved cycles of the

proposed adaptive time stepping strategy remain largely the same (∆Dmax = 0.5%,

1%, and 2% are 118, 72 and 47 respectively), pointing to significant computational

advantage in high cycle failure conditions.

5.1 Improved Adaptive Stepping Criterion Verification

In Fig. 16, the improved adaptive stepping criterion is verified by comparing three

different values of tol to a direct cycle-by-cycle simulation for the same loading case

used in Fig. 14. The three values of tol were chosen to produce similar accuracy to the

three values of ∆Dmax in Fig. 14 (i.e. 0.5%, 1%, and 2%). The selected tol values were

0.001, 0.002, and 0.004, respectively. When comparing the new adaptive time stepping

criterion with tol = 0.001 to ∆Dmax = 0.5%, the same accuracy was maintained while
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resolving only 53 loading cycles as compared to resolving 109 loading cycles with the

previous adaptive stepping criterion, a significant computational savings.

6 Cyclic Response of IM7/977-3 Composites

The capabilities of the proposed multiple spatio-temporal methodology are assessed

through the investigation of graphite fiber-reinforced epoxy composites (i.e., IM7/977-

3) subjected to cyclic loading. This section presents the experiments conducted to

study the cyclic response of the composite; calibration of the model parameters based

on monotonic and cyclic experiments, and; validation of model predictions based on

acoustic emission testing.

6.1 Experiments

A suite of experiments was conducted to calibrate the material parameters and assess

the validity of the proposed multiscale model. Composite specimens with three sepa-

rate layups of unidirectional laminae were tested under uniaxial monotonic and cyclic

loading conditions: (a) Zero degree specimens consist of eight unidirectional plies with

fibers oriented parallel to the loading direction; (b) Ninety degree specimens consist

of sixteen unidirectional plies with the fibers oriented perpendicular to the loading

direction; and (c) Quasi-isotropic specimens with the layup of [+45, 0,−45, 90]2s.

Specimen configurations are summarized in Table 2. The mean fiber volume fraction

of the specimens is 65.6%, which was determined based on acid digestion testing. The

results of experiments conducted on zero and ninety degree specimens are employed

in the calibration of the parameters of the proposed multiscale model, whereas the

quasi-isotropic specimens are employed in the validation analyses.

Acoustic emission (AE) was used to detect failure events within the quasi-isotropic

layups. In-situ AE activity was recorded on a Micro-II Digital AE System produced

by Physical Acoustics Corporation. In the AE technique, the stress waves produced
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Table 1: IM7/977-3 specimen dimensions

Fiber Number Length Width Thickness
Orientation Of Plies [mm] [mm] [mm]

0◦ 8 250 13 1
90◦ 16 177 25 2

Quasi-Iso. 16 250 25 2

(a)

(b)

(c)

Figure 17: Failure profiles when subjected to monotonic loading. (a) Zero-degree
specimens; (b) ninety degree specimens; (c) quasi-isotropic specimens.

by the sudden release of strain energy during localized failure events are identified

and recorded as hits. Appropriate signal conditioning parameters are identified based

on an AE calibration study prior to testing. A threshold wave amplitude of 48 dB

enables the separation of all valid failure events from ambient noise.

The first set of experiments conducted is on unidirectional unnotched tension

specimens tested under monotonic displacement control on an MTS universal testing

machine according to ASTM Standard D3039 [3]. A grip pressure of 500 psi was

applied to prevent slipping without crushing the composite. One axial and one trans-

verse strain gage were mounted on each specimen to determine Poisson’s ratio. A

one-inch extensometer was used to accurately measure the axial stiffness. All mono-
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Table 2: Calibrated elastic parameters of the composite constituents; observed and
simulated elastic parameters of the overall composite.

Layup Young’s Modulus, E Failure Strength, σf

[GPa] [MPa]

0◦ 158 (13)1 2,841 (296)
90◦ 8.644 (0.712) 63 (14)

Quasi-isotropic 60.7 (2.2) 872 (30)
1 standard deviation in parantheses.

tonic tests were conducted at a constant displacement rate of 1.27 mm/min. Thirteen

zero degree specimens, seventeen ninety degree specimens, and seven quasi-isotropic

specimens were subjected to uniaxial tension up to failure to ensure repeatibility.

A moderate degree of modulus and strength scatter is observed in the experiments.

Figure 17 illustrates the failure patterns, which show destructive fiber failure in the

zero degree specimens, matrix-dominated failure in the ninety degree specimens, and

combined matrix and fiber failure in the quasi-isotropic specimens. All non-zero plies

in the quasi-isotropic specimens showed matrix-dominated failure, while the zero de-

gree plies showed fiber failure. The elastic and strength properties observed in the

experiments are summarized in Table 2. A Poisson’s ratio of 0.316 with a standard

deviation of 0.039 was observed by placing a strain gage perpendicular to the loading

on the 0◦ specimens. The shear modulus, G12, was determined to be 4.66 MPa with

a standard deviation of 0.61 using additional tension experiments conducted on com-

posite specimens with a +/-45◦ layup according to the procedure described in ASTM

D3518 [5].

The next set of experiments consisted of constant amplitude load-controlled cyclic

tests that were conducted according to ASTM D3479 [4]. Cyclic testing was per-

formed with a constant maximum stress amplitude, an R-ratio of 0.1, and a loading

frequency of 5 Hz. The maximum applied stress amplitude for the 90◦ specimens

was varied between 45% and 55% of the average monotonic ultimate stress of the

layup configuration. The 90◦ specimens failed by matrix cracking across the width of
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Figure 18: RVE and partition structure for IM7/977-3.

the specimen. The quasi-isotropic layup was tested with a maximum applied stress

amplitude of 17% of the ultimate stress of the corresponding layup.

6.2 Model Calibration

The domain of the microscopic problem (i.e., RVE) is a unidirectionally fiber rein-

forced matrix as illustrated in Fig. 18. The diameter of the fiber is set to ensure that

the volume fraction in the RVE equals the experimentally measured volume fraction of

65.6%. We employ a 4-partition reduced order model to evaluate the failure response

within the composite constituents. The matrix is represented using three partitions,

whereas the fiber response is idealized using a single partition. The domains of each

partition within the RVE are illustrated in Fig. 18.

The elastic response of the 977-3 resin is taken to be isotropic, with the Young’s

modulus and the Poisson’s ratio of the material denoted by Em and νm, respectively.

The IM7 fiber is taken to be transversely isotropic with five elastic parameters: Ef
1,

Ef
2, Gf

12, νf
12, and νf

23, where the 1-direction is along the fiber length. The Poisson’s

ratios were obtained from the literature (νf
12 and νf

23 from [12] and νm from [31]). The

remaining elastic parameters (i.e., Ef
1, Ef

2, Gf
12, and Em) were calibrated against the

linear regions of the stress-strain curves recorded in the monotonic experiments. The
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Table 3: Elastic parameter optimization

Em [GPa] Ef
1 [GPa] Ef

2 [GPa] Gf
12 [GPa] νm νf

12 νf
23

3.55 263.00 13.00 27.50 0.35 0.32 0.20

Ec
1 [GPa] Ec

2 [GPa] Gc
12 [GPa] νc

12

Experiment 158.00 8.64 4.66 0.316
Model 158.00 8.64 4.66 0.33

Superscript c indicates a composite material property.

calibrated elastic parameters of the composite constituents and the experimentally

observed and simulated elastic parameters of the overall composite are summarized

in Table 3.

The damage model employed in this study includes seven parameters. Four of the

seven parameters (i.e., αm, βm, αf , and βf) determine the evolution of damage when

subjected to monotonic loading conditions, whereas the remaining three parameters

(i.e., cm
0 , cm

1 and cm
2 ) determine the sensitivity of damage evolution to cyclic loading.

Experiments conducted under cyclic tensile conditions indicate that failure initiates

within the matrix. Fibers are taken to be insensitive to cyclic failure at the loading

amplitudes considered in this work. The superscripts m and f denote matrix and fiber

phases respectively. The matrix parameters are employed in modeling failure in the

three matrix partitions, whereas the fiber parameters are employed in modeling the

fiber partition.

αm and αf are regularization parameters that control the abruptness of the ulti-

mate failure within the matrix and fiber phases, respectively. The values of αm and αf

are chosen to avoid numerical difficulties associated with sudden failure events, while

accurately capturing the characteristics of the stress-strain response. βm and βf are

material parameters that control the ultimate strength of the matrix and fiber, re-

spectively. The experimentally observed stress-strain response of the zero and ninety

degree specimens are employed in the calibration process. The failure in the zero

degree specimens is dominated by fiber failure, whereas matrix cracking dominates
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Figure 19: The tension experiments are compared to the calibrated model response.

failure in the ninety degree specimens subjected to monotonic loading. βm and βf

are identified by minimizing the discrepancy between the experimental and simulated

stress-strain curves. The calibrated model parameters are αm = 0.05, βm = 32.0,

αf = 0.05, and βf = 340.0. Figure 19 illustrates the experimentally observed and

simulated stress-strain curves based on calibrated material parameters for zero de-

gree and ninety-degree specimens. The mean ultimate strength and strain-at-failure

for zero degree specimens based on experiments are 2841 MPa and 0.0180, respec-

tively. The mean ultimate strength and strain-at-failure for ninety degree specimens

based on experiments are 63 MPa and 0.00728, respectively. The calibrated model

yields 2846 MPa and 0.0186 for zero degree loadings and 67 MPa and 0.00822 for

ninety degree loadings, which are in close agreement with the experiments.

The cyclic failure of the matrix is characterized by the three remaining parameters:

cm
0 , cm

1 and cm
2 . The calibration of the cyclic loading sensitivity parameters is con-

ducted by employing the stress-life curves obtained from experiments in which ninety

degree specimens are subjected to cyclic loading in the tensile direction. In the exper-

iments, the maximum amplitude of the cyclic loading was varied between 360 MPa
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Figure 20: Experimentally observed and simulated stress-life curves of the ninety
degree specimens.

and 520 MPa, while keeping the R-ratio constant (=0.1). The three parameters are

calibrated by minimizing the discrepancy between the experimental and simulated

cycles to failure under three different loading amplitudes. A least squares nonlinear

optimization algorithm is employed in the identification of the optimal parameters.

The calibrated values of c0, c1, and c2 are 8.243, −2.227× 10−2, and 2.192× 10−5, re-

spectively. Figure 20 illustrates the experimentally observed and simulated life curves.

The calibrated model is in close agreement with the experimentally observed mean

stress-life curve, which is expressed in terms of a power law fit. We note that the

experiments display a substantial scatter around the power law fit for this material.

6.3 Model Validation

The capabilities of the proposed multiple spatio-temporal modeling approach are

validated by comparing the predictions of the calibrated model with experiments

conducted on quasi-isotropic specimens subjected to monotonic and cyclic loading

conditions. A quarter of the specimen geometry is discretized due to symmetry with

top eight plies explicitly modeled.
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Figure 21 illustrates the experimental and simulated stress-strain response of the

quasi-isotropic specimens subjected to monotonic tensile loading. The experimentally-

observed mean strength and strain-to-failure are 872 MPa and 0.0144, respectively.

The proposed multiscale model predictions of the strength and strain-to-failure are

872 MPa and 0.0151, which are in excellent agreement with each other. The simu-

lations revealed progressive failure within the matrix of individual off-axis plies as a

function of loading. The ultimate failure is due to fiber failure in the 0◦ plies. The

predicted failure pattern is in close agreement with the experimental observations.

Figure 22 shows the results of the acoustic emission testing of a monotonically loaded

specimen in terms of hits as a function of applied stress magnitude. The acoustic

emission data shown is indicative of the response of a typical specimen. The distinct

failure events predicted by our simulations are indicated as well. The orientation of

the ply in which the failure event occurs is also shown in Figure 22. All of the failure

events were in the matrix with the exception of the final event. Since the proposed

multiscale model is calibrated to the mean response of all specimens, the provided

comparison is qualitative. Despite variations, the progressive nature of the matrix

damage accumulation, as well as the initiation of damage is well captured by the

proposed multiscale model.

We further assessed the validity of the proposed model by comparing the model

predictions to experiments on quasi-isotropic specimens subjected to cyclic loading

conditions. A sinusoidal load with a peak magnitude of 17% of the mean ultimate

failure load of the quasi-isotropic specimens (872 MPa) and an R-ratio of 0.1 is ap-

plied. The objective of the investigation is to assess the capability of the proposed

model in capturing the distinct failure events that occur within the matrix material

as a function of the applied load cycles. In our simulations, the first four distinct

failure events occurred at 11766, 27794, 38817 and 46694 cycles, respectively. Each

of these failure events was an individual off-axis ply losing load carrying capacity due
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Figure 21: Comparison of experimental and predicted stress-strain curves of the quasi-
isotropic specimens subjected to monotonic tensile loading.

to a matrix crack extending the entire width of the specimen. The first failure event

was in a ninety degree ply, the second and third events were in fourty-five degree

plies, and the fourth event was in a minus fourty-five degree ply. Figure 23a shows

the acoustic emission testing results in terms of total hits as a function of the number

of loading cycles. The failure events predicted by the proposed multiscale model are

indicated in Fig. 23a. Figure 23b plots the numerical derivative of total hits with

respect to the total number of accumulated load cycles. The figures illustrate that

the time-to-failure for major recorded failure events coincide with those predicted

by the simulations. Despite close correlation with the acoustic emission testing, the

predictive capability of the proposed model is qualitative. Additional experimental

investigations that quantitatively link the failure events that occur during the cyclic

loading are needed to fully assess the validity of the proposed approach.
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CHAPTER 4

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF
PROGRESSIVE DAMAGE ACCUMULATION IN CFRP COMPOSITES

1 Introduction

Damage and failure prediction cannot be achieved using computational modeling

alone since such models rely on experiments for parameter calibration and validation.

Several in-situ and post-mortem nondestructive inspection (NDI) methods, such as

acoustic emission testing (AE), X-ray radiography, and X-ray computed tomography

(CT), are instrumental in characterizing some aspects of damage progression and

model validation. AE uses piezoelectric sensors to passively detect acoustic signals

emitted by the material during damage propagation [34, 49]. The most advantageous

characteristic of AE is that the sensors detect damage during testing in a range that

cannot be distinguished by typical instrumentation such as load cells, strain gauges,

and displacement transducers. X-ray radiography is a common NDI method, in which

a two dimensional image is recorded on an imaging plate as energy is passed through

a stationary material [56, 61]. In-plane delaminations can be easily detected due to

the variation of X-ray absorption between the material and the void. The difficulty

with X-ray radiography is the inability to characterize damage as a function of spec-

imen thickness. X-ray computed tomography provides an ultra-high resolution three

dimensional image through the thickness of a material [57]. As X-ray CT equipment

has become more readily available, this technique is being used for nondestructive

evaluation of composites [54]. The primary advantage of X-ray CT for composite

materials is that delaminations, transverse matrix cracks, and fiber fracture can all
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be adequately characterized [18, 59].

This chapter presents a two-part study on the progressive damage accumulation

in carbon fiber reinforced polymer (CFRP) composites. The first part details failure

under monotonic loading conditions. The second part of the study addresses fatigue

loadings. A multiscale computational homogenization model [17] is employed to nu-

merically characterize the progressive damage mechanisms of fiber fracture, matrix

cracking, and delaminations as a function of loading. An experimental program using

the combination of AE, X-ray radiography and X-ray CT techniques are employed

to experimentally characterize the progression of damage throughout the loading his-

tory and assess the validity of the model predictions. A key contribution is that the

sequencing and rate of failure at each ply of laminated composite specimens up to

the sub-microstructure scale are established based on the combined experimental and

computational investigation.

The remainder of this chapter is organized as follows: Section 4.2 details the

experimental program including the material fabrication, testing procedures and the

NDI methods. Section 4.3 describes the investigation of monotonic loads. Section 4.4

presents the investigation of fatigue loadings.

2 Experimental Procedures

A series of monotonic and fatigue tension tests were conducted on the graphite fiber

reinforced epoxy, IM7/977-3. In-situ acoustic emission monitoring was conducted in

order to characterize damage propagation with increasing load. X-ray radiography

and X-ray computed tomography were used periodically to visually inspect the type,

location, and extent of internal damage.
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2.1 Material Fabrication

Quasi-isotropic panels were hand laid from unidirectional preimpregnated IM7/977-3

graphite epoxy. They were cured in an autoclave at a temperature of 177◦C and a

pressure of 689 kPa. After cure, the panels were cut into multiple test specimens

with nominal dimensions of 25.4 mm x 2 mm x 254 mm. The specimens consisted

of 16 plies with [+45, 0,−45, 90]2s layup. The mean and standard deviation of the

fiber volume fraction were determined to be 66.6% and 2.5%, respectively, by acid

digestion testing.

2.2 Testing

Two sets of monotonic tension tests were conducted on an MTS universal testing

machine according to ASTM D3039 [3]. The first set was conducted at a constant

displacement rate of 1.27 mm/min to obtain the average mechanical properties of 0◦

and 90◦ unidirectional composite specimens. The second set of tests was conducted

on a quasi-isotropic specimen in order to thoroughly characterize the quantity and

location of damage progression as a function of load. The specimen was instrumented

with one 25 mm extensometer and two piezoelectric acoustic emission sensors. The

specimen was loaded and unloaded six times (at 300 MPa, 400 MPa, 620 MPa, 710

MPa, 845 MPa and failure) such that each loading was higher in magnitude than

the previous loadings. Non-destructive imaging was used to evaluate the damage

accumulation after each loading. The final loading caused complete failure of the

specimen. A low displacement rate of 0.127 mm/min was used to better capture

acoustic emission events as a function of time.

Tension tests with fatigue loading were conducted on an MTS universal testing

machine according to ASTM D3479 [4]. The tests were conducted on three quasi-

isotropic specimens in order to thoroughly characterize the quantity and location of

damage progression as a function of the number of loading cycles. The tests were
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conducted at a loading frequency of 5 Hz, an r-ratio of 0.1, and a maximum stress

amplitude of 143 MPa. 143 MPa is 18% of the maximum strength (795 MPa) of an

independently tested quasi-isotropic specimen.

2.3 Acoustic Emission

Acoustic emission (AE) testing was used to detect failure events within the composite

material. In-situ AE activity was recorded on a Micro-II Digital AE System produced

by Physical Acoustics Corporation. When a material experiences local failure, it

releases strain energy which produces a stress wave in the specimen. The AE system

detects this acoustic energy and records it as a hit. Prior to testing, an AE calibration

study was performed to define the appropriate signal conditioning parameters. It was

found that an amplitude threshold of 48 dB enabled the detection of all valid material

failure events without recording ambient noise. As recommended by the equipment

manufacturer, the AE timing parameters used for this study were Peak Definition

Time = 400 µs, Hit Definition Time = 800 µs, Hit Lockout Time = 200 µs, and

Maximum Duration = 100 ms.

2.4 X-ray Radiography

The monotonically loaded quasi-isotropic specimen was loaded to ultimate failure

in increments. Once each load level was achieved, the specimen was unloaded and

examined using a 160 kV Philips X-ray system (0.4 mm focal spot) and General

Electric CR Tower Computed Radiography system using IPS imaging plates and 50

micron sampling. The imaging parameters were 26 kV, 3 mA, and 30 s, with a

source-to-detector distance of 48 inches. Prior to X-ray examination, the edges of the

specimen were exposed to zinc iodide, an opaque penetrant, which was absorbed into

all cracks and voids adjacent to the specimen edge. The optimum view of damage was

achieved using the General Electric Rhythm image processing software where a level
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III contrast enhancement filter was applied to each X-ray image using noise reduction

and latitude correction.

X-ray radiography was also used to evaluate the state of damage accumulation

for the fatigue loadings at 1500, 25000, 50000, and 100000 loading cycles. Once

the chosen number of loading cycles was reached, the specimen was removed from

the tensile testing machine and examined using the Philips X-ray system with the

previously described procedures and settings.

2.5 X-ray Computed Tomography

For the monotonically loaded specimens, once the planar X-ray showed a significant

amount of damage, the specimen was also examined using an X-Tek HMX160 CT

system. The main components included an X-ray source, a rotation stage on which

the sample was fixed, and an X-ray detector. The maximum resolution, at highest

magnification, was approximately 5 µm. A Molybdenum target was used. The source

voltage and the source current were 90 kV and 90 µA, respectively. The specimen

was clamped vertically approximately 33 cm from the X-ray source. The sample

translates and rotates over 360◦ with a step size of 0.5◦. Averages of eight projection

images (1024 x 1024 pixels) were collected at each position. The raw image data was

reconstructed using CT Pro software. A three dimensional structure of the damaged

specimen was visualized in order to evaluate the damage through the thickness of the

specimen using 3D surface rendering techniques.

3 Investigation of CFRP Composites Under Monotonic Loadings

3.1 Computational Model

The geometry, finite element discretization, and boundary conditions considered in

the macroscale specimen model are illustrated in Fig. 24. The length, width, and

thickness of the numerical model were 6 mm, 25 mm, and 1 mm, respectively. The
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Figure 24: Quasi-isotropic virtual specimen.

discretization of the model consisted of 26,560 trilinear hexahedral elements. Each ply

was explicitly modeled along the thickness direction with 16 elements discretizing the

thickness of the specimen layup. Only the top half of the specimen was discretized

due to symmetry of the specimen. A small part of the specimen along the length

(L=6 mm) was modeled to reduce the computational cost of the failure simulation.

Periodic boundary conditions were imposed along the y-direction to eliminate spuri-

ous boundary effects due to submodeling. The numerical specimen was chosen long

enough to avoid the interaction of damage effects between the top and bottom edges.

The specimen was loaded by increasing the average distance between the top and

bottom edges using constraints. The magnitude of the applied stress was taken to be

the total constraint force required to maintain the specified average distance between

the specimen ends divided by the cross sectional area of the specimen.

3.2 Multiscale Failure Modeling

Computational homogenization (CH) with multiple spatial scales [32] was used to

model the mechanical response and failure in the composite specimens. In the com-

putational homogenization method the constitutive response at the material point

of a macroscopic (i.e. specimen) model is provided by numerically evaluating a mi-

croscale model of the representative volume or a unit cell of the composite. Spatial
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Figure 25: The unit cell for IM7/977-3 with 66% fiber volume fraction.

averaging (i.e. homogenization) of the microscale response yields the constitutive

relationship between macroscopic stress and deformation. Therefore, no explicit con-

stitutive form is assumed to describe the composite level response. Since damage

is considered directly at the scale of the constituents, damage modes such as fiber

cracking, transverse matrix cracking, and delamination are a natural consequence of

the microscale response and explicitly evaluated within the multiscale model.

The requirement of evaluating a full microstructure model in CH typically leads to

very high computational costs. In this study, we employ the eigendeformation-based

reduced order homogenization method with symmetric coefficients (EHM) [17] to

efficiently evaluate the response at the scale of the microstructure. The EHM model

employs transformation field analysis [19] to reduce the computational complexity,

by precomputing certain information (e.g., localization operators, influence functions,

and concentration tensors) regarding the microstructure response through evaluating

linear elastic unit cell problems before analyzing the macroscale structure.

The unit cell of the CFRP composite material within a single ply is shown in

Fig. 25. The unit cell consists of the unidirectional fiber and the epoxy resin. Consider

the partitioning of the unit cell domain into n parts within which the strains and

damage are assumed to be spatially constant. Let D(α) be a scalar damage variable

indicating the state of damage within part α associated with the constitutive law in
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Eq. 120.

σ(α) = (1−D(α))L(α) : ε(α) (120)

ε(α) and σ(α) are the average strain and stress within part α, L(α) is the tensor of

elastic moduli of the constituent material occupying part α, and ”:” denotes the

double inner product of two high order tensors. The evolution of D(α) as a function

of loading is modeled as:

D(α) = Φ(υ(α)
max) (121)

where υ
(α)
max is defined as:

υ(α)
max(t) = max

0≤τ≤t
{υ(α)(τ)} (122)

in which υ(α) is the damage equivalent strain in part α:

υ(α) =

√
1

2
ε(α) : L(α) : ε(α) (123)

The phase damage evolution equation function is modeled using a two-parameter

arctangent law:

Φ(υ(α)) =
arctan(a(α)υ(α) − b(α)) + arctan(b(α))

π
2

+ arctan(b(α))
(124)

in which a(α) and b(α) are material parameters controlling the brittleness of failure

and material strength, respectively. Figure 26 schematically illustrates the effect of

parameters a(α) and b(α) on constituent material response. The macroscale stress

of the overall fiber reinforced composite ply is expressed in terms of the macroscale

strain, ε̄, the phase averaged damage induced inelastic strains (or eigenstrains), µ(α),

and the average phase damage, D(α), as:

σ̄ =
n∑

∆=1

{(
1−D(∆)

)(
F(∆) : ε̄+

n∑
α=1

H(∆α) : µ(α)

)}
(125)
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Figure 26: Stress-strain curves produced by the two parameter arctangent law: (a)
a(α) is varied while b(α) is set to maintain constant failure stress (b) b(α) was varied
while maintaining constant a(α).

The eigenstrains, µ(α), are obtained by solving the following nonlinear system of

equations:

n∑
∆=1

{(
1−D(∆)

)(
A(α∆) : ε̄+

n∑
β=1

B(α∆β) : µ(β)

)}
= 0, α = 1, ..., n (126)

The coefficient tensors A(α∆), B(α∆β), F(∆), and H(∆α) are expressed as:

A(η∆) =

∫
Θ(∆)

P(η)
ᵀ (y) : L(y) : (I + G(y)) dy (127)

B(η∆γ) =

∫
Θ(∆)

P(η)
ᵀ (y) : L(y) : P(γ)(y)dy (128)

F(∆) =
1

|Θ|

∫
Θ(∆)

L(y) : (I + G(y)) dy (129)

H(∆γ) =
1

|Θ|

∫
Θ(∆)

L(y) : P(γ)(y)dy (130)

P(∆)(y) =

∫
Θ(∆)

gph(y, ŷ)dŷ (131)

where Θ and Θ(α) are the domains of the RVE and the domain of part α, respectively,

and gph and G are the damage-induced and elastic polarization functions computed
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Figure 27: Partitioning of the unidirectionally reinforced composite unit cell.

from particular solutions of the unit cell problem. Subscript ᵀ denotes the transpose

operator.

The partitioning of the unit cell employed in the present investigation is shown

in Fig. 27. The partitioning is achieved to capture the three dominant failure modes

of fiber fracture, transverse matrix cracking, and delamination. Parts 1, 2, and 3

in Fig. 27 capture the fiber fracture, transverse matrix cracking, and delamination,

respectively. Part 4 is common to transverse matrix cracking and delamination. Intro-

duction of this part is an effective way to treat intersecting failure paths. With this

partitioning scheme, the microscale reduced order model incorporates the relevant

damage modes.

3.3 Calibration of the Model Parameters

The elastic and damage properties of the constituent materials (i.e. fiber and matrix)

were calibrated using experiments conducted on 0◦ and 90◦ unidirectionally stacked

specimens, as well as experimental data available in the literature. In the model, a

uniform distribution of fibers was assumed. The variability seen in the 0◦ calibration

experiments is partially due to nonuniform fiber distribution, but as the primary

concern in this work is tensile loading, it is assumed the effect of nonuniform fiber

distribution is limited.

The 977-3 resin was taken to be isotropic with elastic modulus, E(m), and Poisson’s

ratio, ν(m). The IM7 fiber was assumed to be transversely isotropic with elastic

material properties denoted as E
(f)
1 , E

(f)
2 , G

(f)
12 , ν

(f)
12 , and ν

(f)
23 . The Poisson’s ratios of
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the resin and fiber were set as ν(m) = 0.35 [31], ν
(f)
12 = 0.32, and ν

(f)
23 = 0.20 [12]. The

constituents’ elastic moduli, E(m), E
(f)
1 , E

(f)
2 , and G

(f)
12 , were calibrated by minimizing

the discrepancy between the composite elastic moduli of 0◦ and 90◦ specimens and the

simulated elastic moduli of the homogenized composite. The constituent moduli were

determined as E(m) = 3.55 GPa, E
(f)
1 = 263 GPa, E

(f)
2 = 13 GPa, and G

(f)
12 = 27.5

GPa which were in close agreement with previous investigations [12, 31].

The model parameters that define damage accumulation are a(m) and b(m) for the

matrix and a(f), and b(f) for the fiber. The damage accumulation parameters are

calibrated based on the set of experiments conducted on unidirectional 0◦ and 90◦

specimens. The constituent parameters are identified by minimizing the discrepancy

between experimentally observed stress-strain response and numerical predictions of

the multiscale model in the least squares sense. The calibrated and experimentally

observed stress-strain response of the 0◦ and 90◦ specimens are displayed in Fig. 28.

The 90◦ layup failure response was dominated by matrix failure whereas the 0◦ spec-

imens fail by fiber fracture. The matrix and fiber damage accumulation properties

were therefore separately calibrated based on 90◦ and 0◦ response, respectively. The

matrix parameters were calibrated to the maximum observed strength among the

experimental scatter since the failure originates at the largest flaw within the resin

along the free edge. The fiber parameters were calibrated so that the model response

equals the average experimental strength observed in the 0◦ specimens. The cali-

brated model parameters were a(m) = 0.002, b(m) = 2.8, a(f) = 0.05, and b(f) = 340.

3.4 Results and Discussion

Figure 29 shows the cumulative hit and cumulative energy as a function of applied

stress amplitude measured in the AE testing at each load increment. Cumulative

energy weighs each recorded hit based on the magnitude of the strain energy re-
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Figure 28: The stress-strain response of the calibrated model compared with experi-
mental data: (a) specimens with 90◦ layup and (b) specimens with 0◦ layup.

leased during the damage event. When the specimen is unloaded and reloaded, the

cumulative hits and energy remained relatively flat until the past maximum loading

magnitude was exceeded indicating insignificant cyclic damage accumulation with an

exception between the loadings of 620 MPa and 710 MPa. Damage growth initiated

within the specimen indicated by an increase in the AE hits around 400 MPa. Dam-

age within the specimen progressively accumulated with an increasing rate until the

ultimate failure by fiber fracture in the 0◦ plies. In contrast with damage events at

lower loading magnitudes, the acoustic emissions at failure were audible without any

listening aides.

While AE testing provides qualitative information about the progressive nature

of damage accumulation, the type and location of failure associated with an acoustic

hit is less clear. The frequency and amplitude of recorded waves does provide some

degree of information on the nature of the failure event such as fiber fracture and

matrix damage [14], but more detailed information such as damage in individual

plies is difficult to gather from AE measurements alone. X-ray radiography and X-ray

computed tomography provides a nondestructive snapshot of the location and type

of accumulated damage within the specimen. An X-ray radiograph of the pristine
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Figure 29: Loading stress versus (a) Cumulative AE hits and (b) Cumulative AE hit
energy.

specimen was taken before loading and additional radiographs were taken after each

loading (i.e. 300 MPa, 400 MPa, 620 MPa, 710 MPa, and 845 MPa). As illustrated

in Figure 30, the cracks were visualized in light color in the X-ray radiographs due

to the presence of the dye penetrant. Since the dye-penetrant could diffuse into the

specimen through cracks originating at the specimen edges, only edge cracks could

be visualized in the radiographs. No substantial cracks were visible for the first two

loadings of 300 MPa and 400 MPa other than minor edge flaws. At a loading of 620

MPa, visible cracks appeared with orientations both perpendicular and ±45◦ to the

length of the specimen. Between 620 MPa and 710 MPa, the number and length

of cracks increased. Just before ultimate failure, a large delamination was clearly

observed on the lower left side of the specimen (Fig. 30f). Smaller delaminations

were clearly observed on both sides of the specimen.

X-ray computed tomography was employed to obtain a 3-D visualization of the

extent and mechanisms of damage within the specimen. Figure 31 illustrates the

3-D tomographic image of the specimen at 710 MPa and 845 MPa. Extensive 45◦

and 90◦ cracks are evident as well as delaminations along the length of the specimen
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Figure 30: X-ray radiographs after loading to (a) 0 MPa (b) 400 MPa (c) 620 MPa
(d) 845 MPa.
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(a) (b) (c)

Figure 31: 3D tomographic images of damage in the specimen at a loading of (a) 720
MPa (b) 845 MPa (c) 845 MPa.

edge. Figure 32 illustrates the layer-by-layer damage profile observed using the X-ray

computed tomography imaging technique. The 0◦ ply shown in Fig. 32a exhibited

some degree of debonding in the fiber direction. In contrast to the radiography,

the tomographic images are able to capture damage zones away from the edges that

are not exposed to the dye-penetrant (Fig. 32a). The 90◦ ply at the center of the

specimen developed extensive matrix cracking extending across the specimen’s width

along with rounded delaminations at the specimen edges. The 45◦ ply (the top ply

of the specimen) shown in Fig. 32c developed extensive cracking across the specimen

width along with triangular delaminations developing at the specimen edges. The

large delamination shown in the radiograph of Fig. 30d cannot be seen in Fig. 32 since

the tomographic images were taken over a smaller region of the specimen outside of

the large-scale delamination.

The calibrated computational model described in Section 3.1 was employed to

gain further understanding of the progressive damage accumulation in the composite

specimen. The model provides a more complete picture of the damage response than
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Figure 32: Computed tomography scans after loading to 845 MPa: (a) 0◦ ply (ply
11) (b) central 90◦ ply (c) top 45◦ ply.

the experiments alone. Figure 33a shows the stress-strain response of the virtual

specimen under monotonic tensile loading. The predicted stress-strain response of

the overall composite is displayed alongside the cumulative hit versus stress curve

recorded by the AE system seen in Fig. 33b (the hits were summed over all loadings).

The ultimate strength of the specimen predicted by the model was 855 MPa which was

in excellent agreement with the experimentally observed strength of 872 MPa with

a standard deviation of 30 MPa. The strength of the particular specimen probed by

the NDI techniques was 846 MPa. The ultimate failure was caused by fiber fracture

in the 0◦ plies in the numerical investigation.

The first major compliance change takes place at approximately 380 MPa when

matrix cracking initiates in the ±45◦ plies. The compliance change in the virtual

specimen coincides with the initiation of acoustic emission hits illustrated in Fig. 29,

which occurs at approximately 400 MPa. The X-ray radiograph (Fig. 30b) taken at

400 MPa displays insignificant damage within the specimen confirming the damage

initiation prediction of the model. The matrix cracks that initiated at the ±45◦ plies

rapidly propagate across the length of the specimen. Figure 34 demonstrates the initi-
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Figure 33: (a) Strain vs. stress for the virtual quasi-isotropic specimen (b) Stress vs.
cumulative hits for the experimental specimen.

ation and propagation of matrix cracks in the top 45◦ ply. The progression of damage

in the inner ±45◦ plies occurs less rapidly with cracking across the entire width of

the specimen forming when the loading reached 475 MPa. The difference in speed

of damage progression is due to the confinement of the inner ±45◦ plies compared

to the top ply, which retards crack growth when compared to the top layer. Matrix

cracking within the ±45◦ plies is followed by the initiation of damage within the 90◦

plies between 395 MPa (when damage first initiates in the 90◦ ply) and 409 MPa

(when damage initiates in all 90◦ plies). Cracking extended across the entire width of

the virtual specimen within the 90◦ plies between 472 MPa and 514 MPa. Figure 35

shows the progression of cracking in the 90◦ ply at the middle of the specimen. The

90◦ cracks clearly initiate from the specimen edges. Matrix cracking in the 0◦ plies

remains negligible until the loading reaches close to the ultimate failure strength of

the specimen. The predicted matrix cracking in the ±45◦ and 90◦ plies develops

more rapidly in comparison to the matrix cracking in the experimental specimen as

illustrated in Fig. 30b. This is partly attributed to the errors in the calibration of the

matrix properties which was conducted based on 90◦ unidirectionally reinforced spec-
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Figure 34: The damage contours corresponding to transverse matrix cracking at the
top ply of the specimen (45◦) at the applied stress level of (a) 388 MPa and (b) 394
MPa.

imen response. The failure in the calibration experiments initiated and propagated at

the most critical flaw (i.e. the weakest link) within the resin. The statistics generated

by the calibration experiments therefore capture the lower end of the strength and

ductility spectrum of the resin material. Nevertheless, the overall matrix cracking

pattern is in reasonable agreement with the experimental observations.

The initiation of delamination within the specimens occurs slightly after the ini-

tiation of matrix cracking. Small edge delaminations initiate between 385-416 MPa.

The edge delaminations continue to grow slowly until the loading reaches close to the

ultimate strength of the specimen. The rate of growth increases significantly as the

magnitude of the loading approaches the ultimate strength. This observation is in

close agreement with the high rate of increase in the AE hits at the later stages of

loading to the progression of delaminations as shown in Fig. 33b. X-ray radiographs

and tomographs confirm this observation. Figure 36 illustrates edge delamination

propagation in the 7th ply around the ultimate strength of the specimen. The failure

patterns predicted by the model shown in Figs. 34-36 are in good agreement with the

patterns observed in the tomographic images in Fig. 32.
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Figure 35: The damage contours corresponding to transverse matrix cracking at the
center of the specimen (90◦ ply) at the applied stress level of (a) 412 MPa and (b)
470 MPa.
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Figure 36: The damage contours corresponding to delamination near the middle of
the specimen (−45◦ ply) at the applied stress level of (a) 730 MPa and (b) 855 MPa.
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4 Investigation of CFRP Composites Under Fatigue Loadings

4.1 Computational Model

The geometry and finite element discretization considered in the macroscale speci-

men model are the same as the model for monotonic loads discussed in Sec. 3.1 and

illustrated in Fig. 24. The length, width, and thickness of the numerical model were

6 mm, 25 mm, and 1 mm, respectively. The discretization of the model consisted

of 26,560 trilinear hexahedral elements. Each ply was explicitly modeled along the

thickness direction with 16 elements discretizing the thickness of the specimen layup.

Only the top half of the specimen was discretized due to symmetry of the specimen.

A small part of the specimen along the length (L=6 mm) was modeled to reduce

the computational cost of the failure simulation. Periodic boundary conditions were

imposed along the y-direction to eliminate spurious boundary effects due to submod-

eling. The numerical specimen was chosen long enough to avoid the interaction of

damage effects between the top and bottom edges. The magnitude of the applied

stress was taken to be the total constraint force required to maintain the specified

average distance between the specimen ends divided by the cross sectional area of the

specimen. The constraint force was oscillated to produce a fatigue loading with an

r-ratio of 0.1 and a maximum stress amplitude of 143 MPa.

4.2 Multiscale Failure Modeling

In this study, we employ the multiple spatio-temporal scale methodology discussed

in chapter 3 to evaluate the damage accumulation and response of the CFRP quasi-

isotropic specimens. The unit cell of the CFRP composite material within a single

ply is taken to be the same as in Sec. 3.2. Consider the partitioning of the unit cell

domain into n parts within which the strains and damage are assumed to be spatially

constant. Let D(α) be a scalar damage variable indicating the state of damage within
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part α associated with the constitutive law in Eq. 132.

σ(α) = (1−D(α))L(α) : ε(α) (132)

ε(α) and σ(α) are the average strain and stress within part α, L(α) is the tensor of

elastic moduli of the constituent material occupying part α, and ”:” denotes the

double inner product of two high order tensors. The evolution of D(α) as a function

of the fatigue loading is modeled as:

D(α) = gp
dΦ(υ(α))

dυ(α)
〈υ̇(α)〉+ where 0 ≤ g =

Φ(υ(α))

D(α)
≤ 1 (133)

where p is the cyclic sensitivity parameter, 〈·〉+ denotes the MacCauley brackets, Φ

is the damage evolution law for monotonic loading, and υ(α) is the damage equivalent

strain defined as

υ(α) =

√
1

2
ε(α) : L(α) : ε(α) (134)

The monotonic damage evolution law is taken to be the arctangent law used for the

monotonically loaded specimens.

Φ(υ(α)) =
arctan(a(α)υ(α) − b(α)) + arctan(b(α))

π
2

+ arctan(b(α))
(135)

The cyclic sensitivity parameter p is taken to be:

p(α) = c
(α)
0 + c

(α)
1 υ(α)

max + c
(α)
2 (υ(α)

max)2 (136)

where c
(α)
0 , c

(α)
1 , and c

(α)
2 are parameters controlling the fatigue response of the mate-

rial. υ
(α)
max is defined as:

υ(α)
max(t) = max

0≤τ≤t
{υ(α)(τ)} (137)

The expressions for the macroscale stress and the reduced order microscale prob-
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lem are identical to those in Sec. 3.2 with the exception of the change in the damage

evolution law to capture damage accumulation associated with fatigue loading. The

adaptive macrochronological time stepping method in Sec. 4.1 of chapter 3 is utilized

with a ∆Dmax = 1%. The partitioning of the unit cell employed in the present investi-

gation is the same as that used for the monotonic loadings. With this partitioning, we

can distinguish between transverse matrix cracking, delamination, and fiber failure.

4.3 Calibration of Model Parameters

The elastic parameters and the monotonic arctangent damage law parameters a(α)

and b(α) were chosen to be equal to their values from the monotonic loading cali-

brations. The only remaining parameters are c
(α)
0 , c

(α)
1 , and c

(α)
2 which control the

fatigue response of the constituent materials. A least squares nonlinear optimization

algorithm was used to minimize the discrepancy between the mean stress life curve in

Fig. 37 and the calibrated model to determine the fatigue parameters for the matrix.

The mean stress life curve was determined from tension tests with fatigue loadings on

90◦ unidirectional specimens. This is the same mean stress life curve from Sec. 6.2 of

chapter 3 which should be referenced for further information regarding its determina-

tion. The fatigue parameters for the matrix parts were determined to be c
(α)
0 = 8.033,

c
(α)
1 = −6.232× 10−3, and c

(α)
2 = −4.35× 10−6. The fiber was assumed to accumulate

no damage due to fatigue loadings.

4.4 Results and Discussion

X-ray radiography provides a nondestructive image of the type and location damage

accumulating in the specimen. X-ray radiographs of the quasi-isotropic specimens

were taken after 1500, 37500, 72500, and 100000 loading cycles. Figures 38 and 39

show the radiographs from two of the three specimens. The two chosen specimens are

representative of the third. As illustrated in Figs. 38-39, cracks were visualized in light
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Figure 37: The calibrated fatigue response of unidirectional 90◦ specimens is com-
pared with a statistical curve fit of the experimental determined fatigue response.

color in the radiographs due to the presence of dye penetrant applied to the specimen

before the radiographs were taken. The dye-penetrant diffuses into the specimen

through cracks originating at the specimen edges, and hence, only edge cracks are

visualized in the radiographs. Few cracks were visible after the first 1500 loading

cycles as indicated in Figs. 38a and 39a. It is possible that the cracks that are visible

are manufacturing flaws as opposed to cracks that have developed during the first

1500 loading cycles. However, it is impossible to definitively draw this conclusion

from the given data. After 37500 cycles, new cracks have developed at the edges

of both ±45◦ and 90◦ plies. By 72500 loading cycles, new cracks have initiated at

the specimen edges along with lengthening of some of the cracks that were visible

at 37500 cycles. With few exceptions the cracks do not extend very far across the

specimen with almost no cracks reaching half of the specimens’ width. At 100000

cycles, the length and density of the cracks are nearly the same as at 72500 cycles.

No delaminations were seen in any of the specimens during the 100000 loading cycles.

The calibrated computational model described in Section 4.1 was used to gain
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Figure 38: X-ray radiographs of a fatigue specimen after (a) 1500 loading cycles (b)
37500 loading cycles (c) 72500 loading cycles (d) 100000 loading cycles.
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Figure 39: X-ray radiographs of another fatigue specimen after (a) 1500 loading cycles
(b) 37500 loading cycles (c) 72500 loading cycles (d) 100000 loading cycles.
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additional understanding of damage accumulation in CFRP quasi-isotropic specimens

subjected to fatigue loadings. We define a transverse matrix crack to be present at a

material point when the damage scalars D(2) and D(4), associated with parts 2 and

4 of the partitioned unit cell seen in Fig. 27, are greater than 0.99. A delamination

is defined as when D(3) and D(4) are greater than 0.99. A fiber failure is indicated

by D(1) > 0.99. Figs. 40 and 41 show the value of the damage scalar D(4). Blue

indicates a value close to zero and red indicates a value close to 1. At every material

point within this simulation D(4) goes to one after D(2), and hence, in Figs. 40 and 41

red indicates the presence of transverse matrix cracking. Figure 40 shows transverse

matrix cracking within the third ply from the top of the specimen which has an

orientation of −45◦, and Fig. 40 shows transverse matrix cracking within the seventh

ply from the top of the specimen which also has an orientation of −45◦. The cracking

within these plies was representative of that in the fifth ply which has an orientation

of 45◦. The top 45◦ ply showed less transverse matrix cracking than the internal

plies. At 1500 loading cycles, there was no cracking within the specimen mirroring

the behavior of the experimental specimens. After 37500 loading cycles, there was

transverse matrix cracking within the seventh ply, but no cracking had initiated within

any other ply. By 72500 cycles, transverse matrix cracking had initiated in all ±45◦

plies with the exception of the top ply. At 100000 cycles, matrix cracking had initiated

in all ±45◦ plies. As in the radiographs, cracking was limited to the area in close

proximity to the edges of the specimen even after 100000 loading cycles. At 100000

cycles, the simulation predicted no transverse matrix cracking in the 90◦ plies counter

to the experimental observations. There was no delamination or fiber failure present

in the simulation agreeing with the damage types seen in the X-ray radiographs.

The computational performance of the adaptive time stepping algorithm is shown

in Fig. 42. The x-axis is the number of resolved loading cycles and the y-axis is the

total number of loading cycles. As indicated in the figure, only 966 of the 100000
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Figure 40: Transverse cracking in third ply (−45◦) of the virtual specimen after
(a) 1500 loading cycles (b) 37500 loading cycles (c) 72500 loading cycles (d) 100000
loading cycles.
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(a) (b) (c) (d)

Figure 41: Transverse cracking in seventh ply (−45◦) of the virtual specimen after
(a) 1500 loading cycles (b) 37500 loading cycles (c) 72500 loading cycles (d) 100000
loading cycles.
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Figure 42: The performance of the adaptive macrochronological time stepping algo-
rithm over 100000 loading cycles.

loading cycles were resolved. This leads to an average performance of 103.5 loading

cycles per resolved cycle. This is a substantial savings in computational effort. For

the final 20000 loading cycles (cycles 80000-100000), the performance of the algo-

rithm increased to 216.2 loading cycles per resolved cycle. Without the adaptive time

stepping algorithm, it would be required to resolve all 100000 cycles of a nonlinear

multiscale finite element model with 26,560 elements. This would present a diffi-

cult computational barrier. The adaptive macrochonological time stepping algorithm

allowed this simulation to be run on a single processor in three weeks.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

1 Conclusions

This dissertation proposed a multiscale framework for modeling failure in brittle com-

posites subjected monotonic and fatigue loadings. Numerical testing verified the

framework which was subsequently validated with experimental testing on carbon

fiber reinforced polymers. More detailed conclusions regarding the multiscale frame-

work are presented below.

Chapter 2 presented a reduced order multiscale computational methodology for

failure analysis of heterogeneous materials. The proposed approach provides a novel

model development strategy for creating reduced-order models capable of efficiently

and accurately representing the failure modes within the microstructure without re-

course to a detailed finite element model of the RVE. A two-order modeling approach

was devised to eliminate spurious residual stresses upon failure allowing accurate

stress-redistribution within a macroscopic component. The resulting reduced-order

model possesses symmetry allowing efficient numerical evaluation of the microscale

problem. The reduced order model was verified against direct numerical simulations.

The proposed model captures the failure modes within the microstructure obtaining

good accuracy.

In Chapter 3, a multiscale computational framework for prediction of failure in

composite materials subjected to fatigue loadings was proposed. The reduced-order

multiple spatial scale approach in combination with the multiple temporal scale time
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stepping approach provides a high level of computational efficiency without a sig-

nificant loss in accuracy. This is critical to determining fatigue life in large-scale

composite structures. The experimentally calibrated model predicted the observed

early life failure events in carbon-fiber reinforced polymer specimens.

In Chapter 4, a comprehensive experimental/computational investigation was un-

dertaken to determine the nature of progressive damage accumulation in CFRP com-

posites subjected to monotonic loading. Acoustic emission, X-ray radiography, and

X-ray computed tomography inspection methods obtained a clear picture of the evo-

lution of transverse matrix cracking and delamination within experimentally tested

composite specimens as a function of the applied loading. The multiscale computa-

tional model was employed to gain further insight into the interaction and sequencing

of damage mechanisms which were difficult to capture using any of the experimental

techniques. The response mechanisms captured by the model predictions reasonably

agreed with the experimental observations.

An experimental and computational investigation was also conducted on CFRP

composites subjected to fatigue loadings in Chapter 4. X-ray radiography visualized

the evolution of transverse matrix cracking within the tested specimens as a function

of the number of loading cycles. A multiple spatial and temporal scale model was em-

ployed to simulate the accumulation of matrix damage within the CFRP specimens.

Considering the high level of scatter in the fatigue calibration data, the response of

the model showed reasonable qualitative agreement with the experimental study. The

adaptive time stepping algorithm significantly reduced the effort required in simulat-

ing fatigue loadings.

2 Future Work

Within the multiple spatial scale framework, the challenge remains that the resulting

homogenized macroscale problem shows spurious mesh dependency. The method-
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ologies proposed in this dissertation eliminate mesh-dependency in the microscopic

domain, but the homogenized macroscale problem remains local. For homogeneous

materials, the computational mechanics literature has extensively investigated local-

ization limiters that absolve spurious mesh dependency [8]. However, straightforward

application of nonlocal damage theory is impractical due to the significant associ-

ated mesh refinement. Future research will investigate enrichment-based nonlocal

formulations that eliminate mesh dependency without requiring a high level of mesh

resolution in the macroscale domain.

An aircraft experiences a wide range of temperature conditions throughout its life

and even within a single flight. The properties of a composite’s constituent materials

can vary significantly with temperature. These effects can be taken into account

within the microscale domain where constitutive laws sensitive to temperature effects

would replace the microscale constitutive laws presently utilized in the multiple spatial

scale algorithm. Also, the multiple temporal scale methodology would need extension

to account for temperature changes in macrochronological time.

The applicability of these methodologies should be extended from the specimen

scale to the structural scale. Several possibilities show promise in this effort including

the development of improved cycle stepping techniques that require fewer resolved cy-

cles as evidenced by the improved cycle stepping criterion in Chapter 3, Section 5.1.

Also, the extension of the proposed multiscale methods to shell elements would allow

more efficient representation of structures whose thickness is small compared to its

planar directions. In particular, this could be utilized for modeling laminated com-

posite aircraft skin. Another path involves utilization of parallel computing since the

reduced order microscale problems at the gauss points of the macroscale structure

can be solved simultaneously within a single time increment.

Statistical variation is an important consideration when trying to model fatigue

failure in composite materials. Both the constituent material parameters and the un-
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derlying microstructural geometry vary from specimen to specimen and even from one

part of a specimen to another. The scatter in the calibration experiments revealed

this statistical variability especially for fatigue loadings. In the future, the multi-

scale methodologies can be placed within a probabilistic framework that rigorously

addresses and predicts the statistical variation.
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Appendix A

PERIODIC MESHING OF REPRESENTATIVE VOLUME ELEMENTS

1 Introduction

In the EHM framework, a reduced order microscale problem determines the homoge-

nized macroscale material response. The reduced order microscale problem is deter-

mined by solving for the elastic and inelastic influence functions seen in Eqs. 17 and

18. These influence functions are created from particular solutions of a fully resolved

microscale problem. Periodic boundary conditions are applied to the representative

volume element of the material when obtaining the particular solutions. The sim-

plest method for applying periodic boundary conditions is to obtain a periodic mesh

of the RVE. A mesh is periodic if for every node on one side of the RVE, there is

a corresponding node on the other side. Periodic boundary conditions are enforced

upon the RVE by requiring the response of both nodes to be equal. The creation

of periodic meshes is not an automated process within the commercial finite element

software Abaqus, hence complicated RVE geometries render the task of creating a pe-

riodic mesh difficult. A freely available tetrahedral mesher, Tetgen, is used alongside

a new surface mesh creation program to allow easy periodic meshing of complicated

RVE geometries. Section 2 presents the capabilities of Tetgen. Section 3 explains the

creation of periodic surface meshes used for Tetgen input.

105



2 Tetgen

Tetgen is a tetrahedral meshing program created by the numerical mathematics and

scientific computing group at the Weierstrass Institute for Applied Analysis and

Stochastics in Berlin, Germany. Tetgen takes as its input a two dimensional sur-

face mesh of a three dimensional solid region. The interior of the surface mesh is

meshed with tetrahedrals using Delaunay tetrahedralization. In its default setting,

Tetgen will change the connectivity and add additional nodes to the input surface

mesh in order to produce a high quality mesh. However, if the surface mesh already

has good quality, there is little need to add nodes or change connectivity to produce

a high quality tetrahedral mesh. Tetgen has a setting that prevents any changes to

the input surface mesh, so assuming a high quality periodic surface mesh of trian-

gles can be produced of an RVE, Tetgen will produce the required periodic mesh of

tetrahedrals.

3 Surface Mesh Creation Program

A surface mesh creation program (SMCP) was written to aid in the process of creating

a periodic surface mesh of an RVE needed for Tetgen input. SMCP was written in

Python due to the python scripting interface provided by Abaqus. SMCP provides

the following functions pertaining to surface meshes.

Extract This function extracts surface meshes from Abaqus models according to the

name given to a surface in Abaqus. This function allows the user of SMCP to

draw the RVE geometry in Abaqus, mesh the geometry, extract pieces of the

surface mesh created by Abaqus, and finally, build a periodic surface mesh out

the of these pieces using other SMCP functions.

Move This function translates a surface mesh from one position to another. A

translation vector must be provided to the function indicating the magnitude
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and direction of the translation.

Copy This function makes a copy of a surface mesh.

Union This function allows two surface meshes to be combined into a single surface

mesh. A distance, d, must be provided to this routine. If the distance from

a node on one mesh to a node on the other mesh is less than d, then the two

nodes are merged into a single node in the combined mesh.

Mirror This function reflects a surface mesh through a plane. It takes as its input

a point in the plane along with a vector normal to the plane.

Output This function outputs a surface mesh to a Tetgen input file. After creating

a periodic surface mesh, this function is called so that Tetgen can mesh the

surface mesh’s interior with tetrahedrals.

Figure 43: Creation of periodic surface mesh using SMCP
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These functions can be easily combined to create a periodic surface mesh of an RVE.

This is done by first drawing and meshing the RVE geometry in Abaqus. The Abaqus

mesh will not be periodic, but this is of no concern. SMCP is then used to extract

surface meshes from the Abaqus mesh. After extraction, these meshes will be modified

and combined by the SMCP functions. It is usually a simple matter to obtain a

periodic surface mesh. Figure 43 shows a graphical representation where surface

mesh manipulations are used to obtain a periodic surface mesh of the matrix region

of a simple RVE. The upper-right-frontal section of the RVE was drawn in Abaqus

and meshed. The front, right, top, and interface surface meshes were then extracted

and unionized. Next, the combined mesh was copied and mirrored three times to

create a periodic surface mesh of the matrix region of the RVE. SMCP was also used

to create a periodic mesh of the more complicated RVE seen in Figure 44.

Figure 44: Periodic mesh of a RVE of a woven composite
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