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INTRODUCTION 

 

Thesis Overview 
Viral invasion of the central nervous system (CNS) is a significant cause of 

morbidity and mortlity worldwide, particularly in young children (1). The nervous system 

presents a challenging site for viruses to access, with multiple physical and 

immunological barriers that limit pathogen invasion. To invade the CNS, viruses must 

access cell-surface receptors for binding and entry events. Virus-receptor interactions 

also govern tropism and often control disease type and severity. For many viruses, the 

identities of receptors and other cellular determinants of viral tropism remain elusive. 

Understanding where and how viral capsid components engage neural receptors and 

the effect of these interactions on tropism and disease may illuminate targets to prevent 

viral neuroinvasion. 

Mammalian orthoreoviruses (reoviruses) provide a highly tractable and well-

established system to identify mechanisms of viral entry into the CNS. Reoviruses are 

nonenveloped particles containing a 10-segmented, double-stranded (ds) RNA genome 

that replicate well in culture and can be altered via a robust reverse-genetics system (2, 

3). While reovirus causes similar age-restricted disease in many young mammals (4-6), 

most studies employ newborn mice. Following peroral or intracranial inoculation of 

newborn mice, reovirus displays serotype-specific patterns of tropism in the brain and 

concomitant disease (Fig. I-1). Serotype 1 (T1) strains infect ependymal cells lining the 

ventricles of the brain and cause a non-lethal hydrocephalus (7). In contrast, serotype 3 

(T3) strains infect specific neuron populations in the CNS and produce a fulminant, and 

often lethal, encephalitis (8). These differences in tropism and disease have been 

genetically mapped to the reovirus S1 gene using single-gene reassortant viruses (9). 

However, viral and host gene sequences that mediate either T1 or T3 tropism have not 

been defined. 

In Chapter I of my dissertation, I introduce key themes about mechanisms of 

neuroinvasion and the disease consequences of CNS infection. I describe fundamental 

knowledge and open areas of research pertaining to reovirus infection in the CNS and   
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Figure I-1: Reovirus exhibits serotype-dependent tropism and pathogenesis in the CNS. 
Serotype 1 (T1) and serotype (T3) reoviruses target different cell types in the CNS. Commonly 
infected regions in the mouse brain are depicted by colored overlay on a coronal brain section 
of a mouse (left panels) (Allen Brain Atlas). Representative micrographs of the lateral ventricle 
(middle panels) or cortex (right panels), with immunohistochemical detection of reovirus 
antigen (brown) and nuclei (blue). T1 reovirus strains (red, top panels) infect ependymal cells 
(red arrowheads) and cause non-lethal hydrocephalus, whereas T3 reovirus strains (blue) 
infect neurons (blue arrowheads) and cause lethal encephalitis. 3V, Third ventricle; LV, Lateral 
ventricle; C, Cortex; H, Hippocampus; Th, Thalamus. 
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expand on reovirus-receptor interactions. I conclude Chapter I with a summary of viral 

oncolytic therapies and highlight strengths and opportunities for improvement of 

reovirus oncolytics. In Chapter II, I describe the design and implementation of σ1-

chimeric reoviruses to identify sequences in the S1 gene that dictate neurotropism and 

virulence in the CNS. In these studies, I found that homologous sequences at the virion-

distal end of the viral attachment protein are responsible for neuron and ependymal cell 

targeting. In Chapter III, I identify sequences of the NgR1 reovirus receptor that are 

required for binding and post-binding functions and elucidate the viral ligand for NgR1, 

which is the σ3 outer-capsid protein, using a combination of genetic, biochemical, and 

structural approaches. Finally, in Chapter IV, I review conclusions from results 

presented in Chapters II and III, examine new questions raised by these studies, and 

discuss future directions of this work. Collectively, my dissertation research has 

unveiled viral and host sequences that contribute to neural cell targeting and will 

improve strategies and knowledge to design targeted oncolytic therapies. 

 

Multifunctional Virus Proteins 
Viruses rely on host cells for every step in the replication cycle. This dependency, 

combined with their small size and evolutionary pressure to replicate efficiently, 

promotes a requirement for multifunctional virus proteins. Multifunctional virus proteins 

are described as virus-encoded proteins that have several roles in the viral life cycle 

and may segregate these different functions to distinct viral domains or oligomerization 

states (10). In particular, viral capsid components are often multifunctional (10, 11). 

Capsid proteins have several essential functions, including self-assembly, genome 

encapsidation, and interaction with host receptors. They mediate diverse steps 

throughout the viral replication cycle, including cell adhesion, entry, replication, particle 

egress, and immune evasion. Capsid proteins must be sufficiently stable to withstand 

the environment but also susceptible to cell-cued conformational changes to permit 

entry. Moreover, specific capsid components, called viral attachment proteins, engage 

cellular receptors and dictate important functions in tropism and pathogenesis. 

Understanding how multiple functions are mediated by a single protein is the subject of 
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ongoing research and requires a coordinated and multidisciplinary approach combining 

structural, biochemical, and animal model systems.  

 

Viral Infections of the Central Nervous System 
Neuroinvasion by any pathogen in the central nervous system is a dangerous 

and often life-threatening condition. Children are significantly more at risk for CNS 

infections (1), and even short, self-limited infections can cause lasting neurological 

impairment. In the United States, viruses account for more infections of the CNS than 

do bacteria, protozoa, and fungi combined (12, 13). Despite these facts, mechanisms of 

viral neuroinvasion and pathogenesis are not well understood. Furthermore, viral 

infections of the CNS are underreported and treatment is often limited to supportive 

care. Not only are better prophylactics, diagnostic tests, and therapies needed to 

improve outcomes of viral CNS infections, but it is necessary to develop a mechanistic 

understanding of how viruses first invade the CNS and then produce disease at these 

specialized sites. 

 

Viral routes into the central nervous system 

To enter the CNS, viruses must bypass several complex mechanical and 

immunological barriers and use specific host factors, such as cell receptors, to establish 

and propagate infection. In general, viruses enter the CNS by one of two routes – 

hematogenously (via the blood) or neurally (via infection of peripheral or olfactory 

nerves). Some viruses demonstrate a preference, while others are capable of using 

both routes. Once in the blood, viruses must cross one of two additional barriers to 

access the brain parenchyma (Fig. I-2). The blood-brain barrier (BBB) and the blood-

cerebrospinal fluid (CSF) barrier (BCSFB) serve to regulate molecular exchange 

between the brain and the outside environment and contribute to the immune 

specialization of the brain.  

The BBB is formed at the interface of brain microvascular endothelial cells with 

specialized tight junctions and basement membranes and is supported by critical 

contacts with glial pericytes and astrocytes. For perspective, the microvasculature 

accounts for only 3% of the brain's volume, but it occupies a massive 15-25 m2 of  
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Figure I-2: Initial Barriers to Infection in the Brain. For T1 and T3 reovirus to exit the 
bloodstream and access ependymal cells and neurons, virus must first bypass several 
barriers. The blood-CSF barrier is present in specialized structures of the ventricle 
called the choroid plexus, which are depicted as thickenings of the ependymal cell layer 
(purple) in the top panel. Green, neurons and brain parenchyma; purple, ependymal 
cell; orange, brain microvascular endothelial cell; yellow, astrocyte foot; red, 
erythrocyte; blue, pericyte; teal, leukocyte; hatched black lines, tight junctions. 
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surface area in the average adult brain (14). This surface area is required for expedient 

glucose and oxygen exchange to energy-demanding neurons, but also serves as an 

entry point for viruses. The BCSFB is located in the choroid plexus adjacent to 

specialized ependymal cells that secrete CSF into the ventricles (Fig. I-2). The BCSFB 

displays significantly different barrier function, when compared to the BBB. At the 

BCSFB, fenestrations replace tight junctions between microvascular endothelial cells 

and blood bathes the stroma underlying ependymal cells (15). The BCSFB is thought to 

be a primary site of immune surveillance by patrolling leukocytes (16) and is 

hypothesized to be an entry point into the brain for many neurotropic viruses (17). 

To overcome these mechanical and immunological barriers, viruses can use 

transcellular, paracellular, or “Trojan horse” mechanisms. A transcellular mechanism 

involves bypass of tight junctions by directly infecting brain microvascular endothelial 

cells and release to the basolateral surface. Some viruses, such as HIV-1 (18), are 

thought to migrate directly between tight junctions in a paracellular transport 

mechanism. HIV-1 (19) and other viruses can use a “Trojan horse” mechanism to enter  

the CNS by transiting barriers within extravasating phagocytic cells. Bloodborne 

cytokines, free radicals, and matrix metalloproteinases can mediate an indirect barrier 

disruption and enhance virus entry into otherwise immune-protected CNS sites (20, 21). 

Collectively, viruses are not limited to one route or mechanism of entry into the CNS 

and often use several entry points. 

 

Inflammation and damage in the CNS 

Inflammation caused by infections in the CNS can affect the meninges 

(meningitis), brain parenchyma (encephalitis), or both (meningoencephalitis). The most 

common symptoms of CNS inflammation in patients include fever, headache, irritability, 

depression, photophobia, and loss of appetite. Meningitis is often suspected when 

patients feel neck stiffness. Encephalitis is suspected if a patient additionally presents 

with cognitive impairment, such as confusion, altered mobility, or lethargy. Severe 

complications of CNS infection can include seizures, paralysis, coma, and death. There 

are also several neurologic disorders that can occur after a virus has been cleared. For 

example, acute disseminated encephalomyelitis (ADEM) is an autoimmune disorder  
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usually initiated by viral infection and marked by rapid-onset inflammation and 

demyelination of neurons in the brain and spinal cord (22). 

 Several viruses can cause meningitis and encephalitis. The large majority of viral 

meningitis cases identified in the USA (~90%) are caused by enteroviruses (12), which 

also account for 10 to 20 percent of identifiable cases of viral encephalitis (23). Other 

commonly identified agents include herpes simplex virus 1 (HSV-1), varicella-zoster 

virus, Epstein-Barr virus, and influenza virus. Several less commonly identified viral 

agents of meningitis and encephalitis are limited by effective vaccination campaigns 

(e.g., measles virus, mumps virus, and rubella virus) or geographic distribution of their 

respective vector. For example, Colorado tick fever virus is transmitted by Dermacentor 

andersoni ticks that reside at 4,000 to 10,000 feet in poorly populated mountainous 

areas of the USA (24). Similarly, cases of La Crosse fever virus are generally restricted 

to wooded areas in the Midwest where the principal vector, the Aedes triseriatus 

mosquito, resides (25). It should be noted that the etiologic agents of aseptic meningitis 

and encephalitis often go unidentified, precluding a comprehensive understanding of 

pathogen contributions. 

  A diagnosis of viral encephalitis is based on patient history and physical exam 

findings, as described above. Additionally, magnetic resonance imaging (MRI), lumbar 

puncture, and/or electroencephalogram (EEG) can provide additional evidence of CNS 

involvement. At a macroscopic view, edema and focal lesions in the brain parenchyma 

are common and can be detected by MRI. The CSF is a relatively acellular, clear, non-

viscous liquid in healthy individuals, but inflammation caused by meningitis and 

encephalitis induces pleocytosis, or recruitment of inflammatory cells. Lumbar punctures 

are performed both to exclude biotic infections (e.g., bacteria, protozoa, and fungi) and 

examine the CSF for cellular infiltrates, total protein levels, and metabolite presence. 

While EEG’s are less specific to viral infections, analysis of electrical patterns in the 

brain can be informative. For example, severe cases of West Nile virus often present 

with abnormal EEG findings and demonstrate generalized electrical slowing across 

multiple brain regions (26). 

Viral infections of the CNS elicit a variety of inflammatory and cell-death 

pathways. Post-mortem analyses of lethal cases of viral encephalitis reveal viral antigen 
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in brain parenchymal cells (e.g., neurons, microglia, astrocytes, etc.) and inflammatory 

infiltration (e.g., CD4+ and CD8+ leukocytes, CD68+ macrophages/microglia, 

neutrophils, etc.) of the parenchyma. Inflammatory infiltration can be diffuse or exhibit 

concentrated foci such as perivascular cuffing and microglial nodules. Cell death is 

often evident and may be at sites overlapping with viral infection (27) or as an indirect 

result of inflammatory cytokines or other byproducts (28). Apoptosis, often detected via 

cleaved caspase-3 expression, is induced by diverse families of viruses, including 

alphaviruses (29), enteroviruses (30), and flaviviruses (31). Sites of damage, 

inflammation, and viral replication are often overlapping and dictated by viral tropism. 

Therefore, it is essential to understand mechanisms of neuroinvasion and tropism to 

fully appreciate viral pathogenesis. 

 
Mammalian Orthoreoviruses (Reoviruses) 

Reovirus background 

Reoviruses belong to the family Reoviridae. Reoviridae members are 

nonenveloped and encapsidate 9 to 12 linear dsRNAs within 1 to 3 protein shells with 

icosahedral symmetry. Many Reoviridae members are pathogenic. For example, 

rotavirus is a leading cause of gastroenteritis worldwide in young children, causing over 

215,000 estimated deaths in 2013 (32). Baboon reovirus initiates a fulminant 

meningoencephalitis in primates (33). Colorado tick fever virus causes neurologic 

disease in humans, although these infections are rare. Mechanisms of disease 

induction, particularly for neurotropic reoviruses, have not been fully elucidated. 

Reovirus displays a broad species tropism, causing age-restricted disease in 

many mammalian species, including mice, ferrets, rabbits, and pigs. While reovirus 

clinical manifestations in humans are only rarely thought to be severe (34-38), strains 

isolated from human stools during a gastroenteritis outbreak cause lethal disease in 

several immunocompetent animal model systems (39). Reovirus infection in animal 

models can initiate biliary inflammation, pneumonia, hydrocephalus, myocarditis, 

meningitis, and encephalitis (40). Additionally, reovirus induces loss of oral tolerance in 

mice to food antigens such as gluten, making it a potential trigger for human disorders 

like celiac disease (41). Finally, reovirus exhibits preferential cytotoxicity in cancer cells 
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and is being assessed in clinical trials as an oncolytic agent (42). Therefore, 

understanding mechanisms of reovirus pathogenesis and specific molecular interactions 

that dictate reovirus tropism could inform a diverse number of fields. 

 

Reovirus gene organization, virion structure, and reverse genetics 

Reovirus particles are nonenveloped with two concentric capsid layers, the inner 

core and the outer capsid, that encase ten segments of dsRNA (Fig. I-1 and I-3). Large 

(L), medium (M), and small (S) gene segments lack poly-A tails, contain 5' caps, and 

encode short, conserved untranslated regions (UTRs) at the 5' and 3' termini (Fig. I-4) 

(43, 44). Combined with flanking protein-coding sequences, UTRs are predicted to 

engage in end-to-end complementary stem-loop RNA interactions that resemble a 

“panhandle” and likely promote genome replication and packaging (45). With the 

exception of the S1 gene, which is bicistronic, reovirus genes are monocistronic and 

encode a single protein product. Eight structural (λ1, λ2, λ3, μ1, µ2, σ1, σ2, and σ3) and 

three non-structural viral proteins (σ1s, σNS, and µNS) are produced (Fig. I-4B). The 

outer capsid is primarily composed of repeating heterohexamers of σ3 and µ1 (Fig. I-3B 

and I-3C). Three monomers of µ1 interweave to form a pedestal on which three σ3 

molecules rest. At the 12 icosahedral vertices, σ33µ13 hexamers are interrupted by 

pentameric arrangements of λ2. It is at these five-fold axes of symmetry that the trimeric 

viral attachment protein, σ1, embeds into the virion in a small pore formed by abutting 

λ2 monomers.  

A robust reverse genetics platform allows recovery of altered reovirus strains to 

assess dsRNA and protein function in discreet stages of the viral replication cycle (3, 

46, 47). Briefly, 4 to 10 plasmids containing complementary DNA (cDNA) to all 10 

reovirus genes are transfected into a baby hamster kidney (BHK) cell line constitutively 

expressing the T7 RNA polymerase (BHK-T7). The T7 RNA polymerase combined with 

a 3' appended ribozyme stimulate transcription of reovirus mRNAs with authentic 5' and 

3' termini. Current and ongoing studies have pushed the limits of what is possible with 

reovirus reverse genetics (more detail in Chapter II discussion). 
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Figure I-3: Reovirus structure. (A) Resolution of reovirus proteins and dsRNA by 
SDS-PAGE. Reovirus “top component” consists of virion-like particles that do not 
encapsidate viral RNA. Virions, ISVPs, and core particles encapsidate 10 segments of 
dsRNA (L1-3, M1-3, S1-4) but contain different protein compositions. Note the 
accumulation of the δ-fragment of µ1/µ1C and the loss of σ3 in virion-to-ISVP 
conversion. Modified from (48). (B) The reovirus virion (49) is shown to scale with a 
model of the extended conformer of σ1 (grey) (50) or shown as a schematic (C). 
Reovirus proteins σ3 (blue), μ1 (green), λ2 (yellow), σ2 (red), λ1 (orange), λ3 (pink) are 
indicated where appropriate. 
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Figure I-4: Reovirus gene structure and organization. (A) Reovirus genes are 
dsRNA molecules with short 5’ and 3’ untranslated regions (UTRs). Shorter 5’ UTRs 
are 12-32 nucleotides and longer 3’ UTRs are 35-83 nucleotides in length. The open 
reading frame for prototype reovirus strains ranges from 1095-3867 nucleotides. Gene 
termini (< 200 nucleotides), which are predicted to function in packaging or replication 
signals, are more conserved than internal sequences. Modified from (40). (B) Genes 
and proteins present in reovirus virions. Nonstructural proteins are not included in virion 
particles. Modified from (40). OC, outer capsid; NS, nonstructural; C, core. 
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Reovirus lab strains 

 Reovirus strains are divided into one of three serotypes based on neutralizing 

antibody responses and hemagglutination-inhibition activity (51-54). In general, 

serotype 1 (T1) and serotype 2 (T2) strains are more genetically similar to one another, 

and serotype 3 (T3) strains are more divergent (55, 56). Most reovirus studies have 

focused on T1 and T3 prototype strains. Examples of prototype lab strains include T1 

Lang (T1L; T1+), T2 Jones (T2J), T3 Dearing (T3D), T3SA+ (T3+), and T3SA- (T3-). 

The σ1 viral attachment protein is the primary target of the neutralizing antibody 

response and thus dictates the serotype (54). 

 

Reovirus cell entry and replication 

The entry of reovirus into host cells has been elucidated primarily using non-

polarized, cultured cells, and little is known about mechanisms used by reovirus to infect 

polarized ependymal cells and neurons. Following receptor-mediated endocytosis in 

cultured cells, the majority of virus appears to enter using clathrin-dependent 

mechanisms (57), but other pathways can be used (58). Following endocytosis of 

reovirus, outer-capsid proteins σ3 and µ1 undergo acid-dependent proteolytic 

processing to generate infectious subvirion particles (ISVPs) (59, 60). ISVPs are 

characterized by loss of major outer-capsid protein σ3, cleavage of μ1 to the δ and φ 

fragments, and conformational rearrangement of the σ1 protein (Fig. I-3A) (59, 61). 

Further µ1 processing and loss of σ1 enables endosomal membrane penetration and 

release of the viral core into the cytoplasm (Fig. I-3A) (62-64). Fragments of µ1 entering 

the cytosol trigger apoptotic signaling (65).  

Once in the cytosol, transcriptionally active cores synthesize full-length, capped, 

message-sense RNAs for each gene segment (66, 67). These single-stranded (ss) 

RNAs are templates for translation and minus-strand synthesis to generate genomic 

dsRNA (68-70). Newly made proteins and 10 segments of dsRNA coalesce in an 

enigmatic process to generate progeny particles (71). Following genome replication and 

new particle assembly, reovirus progeny use both lytic and non-lytic pathways to exit 

infected cells (72, 73). In the CNS of infected mice, T1 reovirus induces ependymal cell 

damage and sloughing (4), and T3 reovirus induces apoptosis in neurons (27, 74). 



 

13 
 

Despite this knowledge, it is not known how reovirus exits cells in the brain and how 

viral egress contributes to pathogenesis and dissemination within the CNS. 

 

Reovirus S1 gene contributions to CNS tropism and disease 

Reovirus transmission occurs primarily through the fecal-oral route. Following 

oral inoculation of mice, reovirus establishes primary infection in intestinal epithelium 

and lymphoid tissue (75-77). Reoviruses spread systemically to several sites of 

secondary replication, including the CNS. Multiple gene products interact with host 

factors to promote efficient cell entry (78, 79) and neurovirulence (27). However, 

serotype-dependent differences in CNS spread, tropism, and disease caused by T1 and 

T3 segregate exclusively with the S1 gene (8, 9, 80), which encodes attachment protein 

σ1 and non-structural protein σ1s in alternate but overlapping reading frames. 

Viruses with a T1 S1 gene spread hematogenously to infect ependymal cells and 

cause hydrocephalus, whereas viruses with a T3 S1 gene spread by both 

hematogenous and neural routes to infect neurons, inducing apoptosis and lethal 

encephalitis (Fig. I-1) (27, 74, 80). The nonstructural σ1s protein is dispensable for both 

T1 (81) and T3 (82) replication in the brain, suggesting that this protein does not 

mediate serotype-dependent CNS infection. In contrast, the σ1 viral attachment protein 

is well-suited to mediate tropism differences. Serotype-dependent reovirus binding and 

infection of multiple non-CNS-derived cultured cells are phenotypes that track with the 

σ1 protein (83, 84). Moreover, T1 virus preferentially binds ependymal cells (85), and T3 

virus preferentially binds neurons (86). Collectively, these data suggest that the σ1 

protein mediates these disparate disease manifestations by binding distinct receptors 

on these cells. 

 

Attachment protein σ1 

While T1 and T3 σ1 proteins are structurally similar (87, 88), they share less than 

30% amino acid identity (89) and are the most serotype-divergent of reovirus proteins 

(55). The σ1 protein is a long, filamentous trimer that can extend ~ 40 nm away from the 

capsid, doubling the virion diameter (Fig. I-3B and I-5A). Viruses can incorporate 

between 0 to 12 trimers of σ1, and the number of σ1 trimers incorporated per virion   
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Figure I-5: Structure of reovirus attachment protein σ1 and its receptors. (A) A 
model of the reovirus attachment protein, σ1, is shown as a ribbon diagram (grey) with 
one monomer of the trimer surface-shaded (88). Receptor-binding sites are colored for 
T1-bound SA (red), T3-bound SA (blue), and JAM-A (green). N and C termini are 
indicated. The σ1 model was generated by linking two partial, but overlapping structures 
of σ1 (6GAP and 3S6X) and encompasses residues 27-455 of T3D. The tail domain 
embeds into the virion capsid. (B) Crystal structure insets of σ1 (grey) in complex with 
receptors. T3D σ1 bound to GM3 glycan (blue) (50) or JAM-A (green) (90); T1L σ1 
bound to GM2 glycan (87). 
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influences infectivity (91). Three σ1 subunits interweave to form multifunctional tail, 

body, and head domains (Fig. I-5). The σ1 trimer structure has an α-helical coiled-coil 

tail domain that is anchored to the virion (89, 92), followed by a body domain composed 

of β-spiral repeats interrupted by a short α-helix (50), and terminates in a head domain 

composed of three β-barrel motifs (50, 87). Despite identification and characterization of 

three receptors and their cognate receptor-binding domains in reovirus σ1 (Fig. I-5B), 

host determinants of the S1-mediated differences in neurotropism remain elusive.  

Similar to fusion proteins of enveloped viruses, the σ1 protein is thought to 

undergo conformational changes during entry. Virion-associated σ1 is observed 

extending from the reovirus virion in electron micrographs of negatively stained reovirus 

particles (48). However, subsequent to particle averaging, only a short λ2-embedded 

fragment of σ1 is detected. These data support the hypothesis that a flexible conformer 

of σ1 is displayed on virions. In contrast, EM reconstructions of ISVPs demonstrate 

additional density at intermediate distances extending from the λ2 vertices, suggesting 

an altered and perhaps extended conformer of σ1 is present on ISVPs (61). 

Furthermore, some σ1-specific antibodies differentially recognize virion- and ISVP-

associated σ1 (93, 94), indicating structural rearrangement of the epitope. The function 

of σ1 conformational changes in reovirus infection are not known. However, these 

changes may modify receptor-binding capacity (95, 96). 

 

Reovirus receptors and their function in viral tropism and pathogenesis 

Although multiple receptors have been identified for reovirus, cellular receptors 

engaged in the CNS by T1 or T3 reovirus have not been defined. Moderately conserved 

pockets at the base of both the T1 and T3 σ1 head domain engage junctional adhesion 

molecule A (JAM-A) (90, 97) to mediate hematogenous dissemination in mice (77). 

JAM-A expression is dispensable for reovirus replication in the brain following 

intracranial inoculation (77). Another reovirus receptor, Nogo receptor 1 (NgR1), is 

predominantly expressed in CNS neurons with a distribution that overlaps with sites of 

T3 neurotropism and, thus, it represents an attractive candidate for a T3-specific 

receptor (98). However, both T1 and T3 strains can use NgR1 to infect non-neuronal 
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cell types (98), suggesting it is not the sole cellular determinant of reovirus neuronal 

tropism.  

The only reovirus receptors known to be engaged in a serotype-specific manner 

are sialylated glycans. Glycans are not thought to directly mediate reovirus entry. 

Instead, glycans facilitate adhesion strengthening to cells, whereby reovirus transiently 

binds sialic acid (SA) with low affinity until a higher-affinity receptor like JAM-A is 

encountered (99). When compared with glycan-binding strains, T1 and T3 reoviruses 

engineered with mutations that specifically abrogate SA-binding capacity infect similar 

sites in the brain and produce similar yields (100, 101), leaving the viral and cellular 

determinants of reovirus neurotropism unclear. In the following section, I expand on 

reovirus receptor use, discussing structure-function relationships of the virus with known 

receptors and highlight their respective roles in tropism and pathogenesis. 

 

Sialylated glycans 

Many viruses use cell-surface carbohydrates as attachment factors to enhance 

infectivity. While carbohydrates terminating in SA are commonly bound, neutral-charge 

glycans and glycosaminoglycans promote adhesion strengthening for different viruses 

(102-104). SAs are a heterogeneous family of more than fifty monosaccharides that 

share a 9-carbon core (105). The complexity of the SA family stems not just from varied 

glycosidic linkages and chemical modifications, but also from the glycans and structures 

to which they are linked. As the most common terminal glycan on oligosaccharides 

anchored to proteins or lipids, SAs are expressed by all vertebrate cell types and 

mediate many important physiological processes such as cell-cell adhesion, protein 

stability, and macromolecular transport (105). The broad distribution and abundance of 

SA is likely why many different viruses, including reoviruses, have converged to interact 

with SA as a receptor. Most reovirus field-isolate strains engage SA as an attachment 

factor at the cell surface to mediate adhesion strengthening. The low-affinity interaction 

of reovirus with SA allows rapid on/off kinetics (99) and affords an opportunity for 

reovirus to sample nearby SAs and other cell-surface moieties to eventually engage in 

higher-affinity contacts with a receptor capable of mediating cell entry. Engagement of 

SA alone is not thought to yield a productive infection for reovirus. However, virus 
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binding to SA could fortuitously allow its uptake by an internalization event already 

underway.  

Despite similarities in sequence and structure, T1 and T3 σ1 use different 

domains to engage distinct sialylated glycans (Fig. I-5 and I-6A). For both serotypes, 

each σ1 subunit has an independent SA-binding site (50, 87). T1 reoviruses specifically 

bind the terminal α2,3-linked N-acetyl-SA on GM2 glycan (displayed on glycoproteins or 

GM2 ganglioside) in a shallow groove located on the σ1 head domain (87, 101). In 

contrast, T3 strains demonstrate more promiscuous glycan engagement and bind 

terminal α2,3-, α2,6-, or α2,8-linked SA using a deeper, larger groove located on the σ1 

body domain (50). Point mutations engineered in these binding grooves specifically 

abrogate glycan engagement and convert SA-binding strains (denoted by “+”) to non-

SA-binding strains (denoted by “-”). For example, two point mutations in the SA-binding 

groove of T1L convert a T1+ virus to a T1- virus (101). Multiple single amino acid 

polymorphisms in T3 σ1 generate T3- viruses in different genetic backgrounds (9, 50, 

106). These non-SA binding strains are colloquially referred to as “glycan-blind” and 

have been instrumental in defining the contribution of SA engagement to reovirus 

infection of specific cell types. 

SA binding is required for efficient reovirus binding and infection of many cell 

types in vitro. Most commonly, cellular glycan requirements for binding and infection are 

defined genetically using glycan-blind viruses and cell lines deficient in glycan 

expression or chemically using neuraminidase to remove terminal SAs and lectins to 

block virus access to SA. Reovirus demonstrates little to no SA requirement for infection 

of some cell types, such as L929 fibroblasts. Diminishing reovirus access to SA on 

these cells using any of these methods has a negligible effect on binding or infectivity, 

and different serotypes replicate comparably (50, 87, 107). However, infection of other 

cell types, such as primary murine embryonic fibroblasts (MEFs), is efficient only with 

T1 or T3 strains that exhibit intact glycan binding capacity (87, 107). SA engagement 

also can permit reovirus infection in a serotype-specific manner. For example, murine 

erythroleukemia T3cl.2 (MEL) cells are susceptible only to T3 glycan-binding strains 

(50). These cell-type specific differences in glycan requirement for infection are likely 

attributable to the relative abundance of other reovirus receptors present (87).  
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Figure I-6: Known reovirus receptors. (A) Sialylated glycan portions of GM2 (T1-
bound, red) and GM3 (T3-bound, blue) are shown in stick representation with the 
terminal SA glycan outlined in yellow or as schematics demonstrating glycan 
composition (SA, N-5-acetyl neuraminic acid; GalNAc, N-acetylgalactosamine; Gal, 
galactose; Glc, glucose). These glycan chains can be attached to lipids or proteins. 
JAM-A is shown as a ribbon tracing (a.a. 27-233) (108) (B) or as a schematic with the 
D1, D2, and cytoplasmic domains (CD) annotated (a.a. 28-299) (C). The approximate 
reovirus binding interface is indicated in (C) with an asterisk. NgR1 a.a. 27-311 are 
shown as a ribbon tracing from a front view with leucine residues highlighted in green 
(D) or a side view (E). (F) Schematic of NgR1 (a.a. 27-447). NgR1 is formed by eight 
canonical LRR domains, capped by non-canonical NT and CT domains (LR-NT and 
LR-CT, respectively). The most C-terminal domain (GPI-CT) is anchored to 
glycophosphatidylinositol (GPI). N and C termini are indicated. The plasma membrane 
is depicted as a grey bar. 
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Interestingly, most cell lines that demonstrate glycan-dependent reovirus infection are 

more efficiently bound and infected by T3 strains, and, to my knowledge, no cell line has 

been identified that is exclusively susceptible to infection by T1 strains, likely 

demonstrating a significant consequence of the more promiscuous SA-binding capacity 

of T3 reovirus. 

The function of SA engagement in reovirus-mediated cell signaling is unclear. 

Compared to T3-, T3+ virus induces more robust apoptosis in L929 fibroblasts, despite 

the two strains replicating comparably (107). Pre-incubation of T3+ virus with sialylated 

glycans or pre-treatment of cells with neuraminidase abrogates apoptosis induction to 

the level of T3-, under the conditions tested (107). It is not clear whether SA binding 

activates proapoptotic signaling pathways or alters other steps in viral infection like 

membrane lipid clustering, internalization, or virus disassembly, as has been observed 

for other viruses. For example, multivalent engagement of SA by influenza virus leads to 

clustering of lipid rafts (109). Such ligand-induced clustering activates the epidermal 

growth factor receptor (EGFR) and leads to influenza virus internalization (109, 110). 

While σ1 is capable of ligating multiple SA glycans simultaneously (50, 87), it is unclear 

whether multiple SA moieties are ligated by reovirus on the cell surface or whether SA 

ligation can mediate signaling processes in the absence of other receptors. 

SA engagement contributes to reovirus pathogenesis and disease outcome 

(106). T1 and T3 glycan-blind viruses induce less severe disease in the CNS, compared 

with their cognate glycan-binding viruses. Following intracranial inoculation, T1- induces 

significantly less severe hydrocephalus than T1+, but it reaches similar peak titers in the 

brain (101). Interestingly, ependymal infection is more localized to the inoculation site 

for T1-, suggesting that the virus may not efficiently disseminate through the ventricles 

(101). Reduced infectivity of T1- compared to T1+ also is observed in a human 

ependymoma cell line (101). A similar trend is true for T3 viruses. Following peroral 

inoculation, both T3+ and T3- viruses establish efficient replication in the intestine, but 

T3+ is detected sooner in peripheral sites like the spleen, liver, and brain, suggesting an 

advantage in dissemination efficiency (106). However, T3- reaches peak titers 

comparable to those of T3+ at later time points (106). In the CNS, T3+ often replicates 

to higher titers, induces more apoptosis, and is more neurovirulent than T3- (100, 106). 
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Cultured primary murine cortical neurons also are more susceptible to T3+ than T3- 

infection (100). However, while T3+ is more neurovirulent, both T3+ and T3- exhibit 

comparable CNS tropism. (100). Therefore, although diminished SA-binding capacity 

alters the virulence of T1 and T3 reovirus, the tropism remains unaltered, supporting a 

model whereby SA functions as an attachment factor and not as a tropism determinant 

in reovirus CNS infection. 

 
Junctional adhesion molecule A (JAM-A) 

In an effort to identify a neural receptor for reovirus, a cDNA library from a 

neuroblastoma cell line was transfected into non-susceptible COS-7 cells and screened 

for reovirus binding using T3- as the affinity ligand. Using this strategy, junctional 

adhesion molecule A (JAM-A) was identified as a receptor for reovirus (111).  

JAM-A is an immunoglobulin superfamily protein expressed by hematopoietic, 

endothelial, and epithelial cells, as well as some types of glial cells (112-115). It serves 

critical functions in the maintenance of tight junction integrity and immune cell migration 

across epithelial and endothelial barriers (116, 117). Many tight junction proteins and 

immunoglobulin superfamily proteins serve as receptors for a variety of viruses (118, 

119), suggesting their shared localization provides some type of selective advantage for 

viruses. As viruses must cross barriers formed by epithelial and endothelial cells to gain 

access to sites of secondary replication and spread systemically, use of tight junction 

proteins may be advantageous in establishment of viremia and spread within the host. 

JAM-A has two immunoglobulin-like extracellular domains, a single 

transmembrane domain, and a short cytoplasmic tail that functions in intracellular 

signaling (Fig. I-6B and C) (120). The membrane-distal immunoglobulin domain 

engages in homotypic and heterotypic interactions at the cell surface (120). Reovirus 

binds to JAM-A at this homodimerization surface via conserved residues within the head 

domain of σ1 (Fig. 1-5B) (90, 97). This interaction is serotype-independent; all 

prototype and field-isolate strains of the three reovirus serotypes tested to date use 

JAM-A as a receptor (97, 121). σ1 binds to JAM-A with a thousand-fold higher affinity 

than JAM-A for itself, which likely disrupts the homodimeric JAM-A interaction (90). 

Dimer disruption is a common mechanism to trigger cell adhesion molecule 
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internalization and intracellular signaling (122). Disruption of JAM-A dimers by σ1 could 

function similarly to induce signaling and recruit additional interaction partners to 

internalize reovirus.  

JAM-A plays an essential role in hematogenous dissemination of both T1 and T3 

reovirus from the intestine. Interestingly, primary replication of the virus in intestinal 

epithelium and other resident intestinal cells does not require JAM-A (77). Studies of 

reovirus infection using mice with tissue-specific expression of JAM-A revealed that 

hematopoietic expression of JAM-A is dispensable for the establishment of viremia 

(123). Additionally, disruption of endothelial cell tight junction integrity in vitro (73) or 

vasculature permeability in vivo (123) was not observed following reovirus infection. 

However, endothelial expression of JAM-A is required for both reovirus entry and 

egress from the bloodstream, suggesting that JAM-A-dependent uptake, amplification, 

and apical release of reovirus by polarized endothelial cells promotes viremia and 

systemic spread of reovirus (73, 123).  

Although JAM-A is required for hematogenous spread of reovirus, it is 

dispensable for neural dissemination. Intracranial or intramuscular inoculation of virus 

provides direct access to neural routes to study the influence of receptors on neural 

spread of reovirus. Following intramuscular inoculation of wild-type (WT) mice, T3 

reovirus infects sensory and motor neurons to travel the length of the spinal cord and 

reach the brain (124). Following intramuscular inoculation of mice with genetic ablation 

of JAM-A (JAM-A-/-), T3 virus titers increase in the spinal cord, suggesting that neural 

pathways of infection are intact (77). Furthermore, following intracranial inoculation, T3 

virus tropism, replication, and virulence in the CNS are comparable in WT and JAM-A-/- 

mice. Infection of cortical neurons cultured from JAM-A-/- mice also demonstrates that 

JAM-A is dispensable for neuronal infection. Collectively, these data suggest that JAM-

A does not mediate serotype-dependent neural spread or infection in the CNS. 

 
Nogo-66 receptor 1 (NgR1) 

Nogo-66 receptor 1 (NgR1) was first discovered as a mediator of reovirus 

infectivity in an RNA interference screen to identify host genes required for reovirus-

induced cytotoxicity (98). NgR1 is expressed on the cell surface of neurons in a pattern 
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overlapping with sites of T3 virus tropism in specific neural populations in the cortex, 

hippocampus, thalamus, and cerebellum (Fig. 1) (77, 125). With the postnatal onset of 

myelination, NgR1 ligands are expressed on myelinating oligodendrocytes that encase 

neural axons. NgR1 engages these ligands (e.g., nogo-A, myelin-associated 

glycoprotein (MAG), and oligodendrocyte-myelin glycoprotein(OMgp)), recruits a 

signaling complex, and suppresses axonal outgrowth in the adult brain (126). The timing 

of NgR1 occupation by oligodendrocyte ligands coincides with the onset of age 

restriction for reovirus infection (127, 128). Thus, it is possible that myelination may 

mechanically block reovirus access to neural receptors.  

NgR1 has a curled shape (Fig. I-6D-F) (129) characteristic of all leucine-rich 

repeat (LRR) superfamily proteins, many of which are involved in host detection of 

pathogens. For example, Toll-like receptors (130), NOD-like receptors (131), and the 

adaptive immune mediators in jawless vertebrates, variable lymphocyte receptors (132), 

all have the same LRR solenoid structure. NgR1 is composed of eight canonical LRR 

motifs capped on either end by non-canonical LRR motifs and a C-terminal domain 

linked to glycosylphosphatidylinositol (GPI) that anchors the protein to the cell 

membrane (Fig. I-6F). Like many LRR protein-ligand partners (130, 132), ligands in the 

CNS appear to bind the highly conserved, concave face of NgR1 (133).  

Ectopic expression of NgR1 allows infection of normally non-susceptible Chinese 

hamster ovary (CHO) cells (98). This infection is mediated by direct interaction of 

reovirus with NgR1, as demonstrated by diminished infectivity following receptor 

blockade via either pre-incubation of cells with NgR1-specific antibodies or pre-

incubation of virus with soluble NgR1 (98). Importantly, these competition assays 

significantly diminish reovirus infectivity in primary cultures of cortical neurons, 

suggesting that NgR1 serves as a neural receptor for reovirus. Reovirus virions but not 

ISVPs directly bind and use NgR1 as a receptor, suggesting that either σ3, which is lost 

during ISVP formation, or a virion conformer of σ1 interacts with NgR1 (98). Viral and 

receptor sequences required for binding and infection via NgR1 are not known. 

Moreover, it is not known whether reovirus competes with NgR1 ligands for binding 

surfaces. 
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Mechanisms of internalization, endocytic trafficking, and signaling initiated by 

reovirus binding to NgR1 also are not known. NgR1 lacks a cytoplasmic domain and 

likely is incapable of intra-neuronal signaling without cytoplasmic-domain-containing 

coreceptors. Under physiological conditions, NgR1 binds myelin-associated ligands and 

recruits two neural coreceptors to form a tri-partite complex that initiates RhoA 

activation and actin reorganization to prevent axonal outgrowth (134). NgR1 ligands 

expressed on oligodendrocytes include nogo A, OMgp, and MAG. The tripartite receptor 

complex on the neural cell surface includes NgR1, p75 neurotrophin receptor (p75 NTR) 

or TNF receptor superfamily member 19 (TROY), and LRR and immunoglobin-like 

domain-containing protein 1 (LINGO1) or adhesion molecule with immunoglobulin-like 

domain 3 (AMIGO3). Many other viruses use the Rho pathway during entry (135), but it 

is not known whether reovirus binding to NgR1 initiates signaling events or ligation of 

coreceptors. 

The overlapping expression of NgR1 in neural populations targeted by reovirus 

raises the possibility that NgR1 dictates T3-specific neurotropism (74, 77, 136). 

However, expression of NgR1 in CHO cells allows infection by both T1 and T3 strains 

(98). Such promiscuous infection by both serotypes is not observed following 

inoculation of murine cortical neurons in culture (77). T3 infects these neurons in an 

NgR1-dependent manner, whereas T1 infects neurons poorly, independent of NgR1 

expression (98). The contrasting infectivity profile in different cell types could be due to 

cell-specific modifications of NgR1. Alternatively, an additional factor that promotes 

entry by the respective serotypes, possibly glycans or coreceptors, may be differentially 

expressed in different cell types.  

 

Viral Oncolytic Therapies 
Cancer is the second leading cause of death worldwide, contributing to nearly 1 

in every 6 deaths (137). The main challenges to reduce cancer mortality arise from poor 

access to healthcare and persistence of harmful lifestyle risk factors. The World Health 

Organization has estimated that between 30% and 50% of current cancer cases could 

be avoided by lifestyle changes and that many other cases could be ameliorated if 

detected and treated earlier (137). However, many cancers are detected late and thus 
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are resistant to traditional treatment options (e.g., surgical removal, radiation therapy, 

and chemotherapy). Recent advances in understanding the genetic and epigenetic 

determinants of cancers has led to growing support for precision targeting. Here, 

therapies are tailored to the specific cancer and address cancer anatomic distribution, 

biomarker expression, and host immunity. 

Oncolytic viruses are a promising addition to the field of precision targeting. While viral 

infection has been hypothesized to modulate cancer for over 100 years (138), only 

recently have viruses been produced at clinical-grade quality to treat human cancers. 

Oncolytic viruses preferentially replicate in and kill cancer cells while sparing normal 

cells. This localized infection often stimulates a robust antitumor immune response, 

which can promote enhanced host recognition of malignant cells throughout the body 

(139). Several viruses are currently being evaluated as oncolytic therapeutics in clinical 

trials (see Table I-1 for reference). Only two viruses involved in clinical trials today are 

unmodified, coxsackievirus and reovirus. Other oncolytic candidates are genetically 

modified to alter cell-type specificity or immune responses. For example, gene deletions 

can attenuate viral virulence or replication in normal cells, transgenes can contribute 

tumor-specific antigens or immune stimulants, and promotor modifications or 

replacements can drive tumor-specific replication. The ability to improve target 

specificity, cell killing, and selective immune activation by already-oncolytic viruses 

makes these biological machines important tools in the fight against cancer. 

Only one viral oncolytic, called talimogene laherparepvec (Imylgic), is currently 

approved by the United States Food and Drug Association (FDA). Imlygic is an 

attenuated HSV-1 strain licensed since 2015 for direct intratumoral inoculation into 

metastatic melanomas (140, 141). Imlygic lacks two HSV-1 genes and expresses a 

regulatory cytokine transgene. These genetic manipulations contribute to decreased 

infection of normal cells, increased recognition of infected cells by the immune system, 

and enhanced recruitment and activation of antigen-presenting cells (APCs) (142-144). 

Despite encouraging pre-clinical and clinical results, Imlygic is limited in therapeutic 

intervention to direct intratumoral inocoulation of visible or palpable tumors, is not 

suitable for patients with impaired immune function, and has suboptimal killing of tumors 
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Table I-1: Summary of recent oncolytic virus clinical trials. 
 

 
 
*Oncolytic virus clinical trials listed on ClinicalTrials.gov as of April 2018 (actively 
recruiting or ongoing, at that time). Intravenous administration is listed as percent of 
total trials offering at least an option for intravenous administration. “Combination 
therapy” indicates viral therapy combined with one or more of the following treatment 
options: radiotherapy, chemotherapy, antivirals, stem cell therapy, and biologicals. 
Modified from (Twumasi-Boateng et al., 2018). 
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at sites distant from inoculation. Clearly, other viral therapeutic interventions are 

needed. 

Reovirus displays a natural predilection to infect transformed cells that was 

described in 1977 (145). In 1998, reovirus was first assessed in pre-clinical studies as 

an oncolytic vector (146). Intratumoral inoculation of reovirus efficiently reduced tumor 

burden in 80% of immunocompromised mice and 65% of immunocompetent mice (146), 

providing support for the use of reovirus as an oncolytic therapeutic. Since 2000, 26 

clinical trials using reovirus to target a variety of cancers in monotherapy or combination 

therapy have been completed or are ongoing in the U.S. alone (42). A single unmodified 

strain of reovirus, T3D, has been employed for these studies and is licensed as 

pelareorep under the trademark REOLYSIN®. Since reovirus rarely causes disease in 

humans and most patients have pre-existing anti-reovirus antibodies (147-152), reovirus 

T3D is well-tolerated. High infectious doses (≥ 1 ˣ 1010 PFU/dose) and repeated 

inoculations have proven safe by intratumoral and intravenous routes (42). When 

toxicities are observed in clinical trials of reovirus, it is most often limited to acute, low-

grade, flu-like symptoms with no lasting toxicities that have been attributed to the virus 

(42).  

Reovirus T3D has been used to treat many cancers, including those of the brain, 

spine, head and neck, breast, cervix, ovaries, prostate, skin, lung, and pancreas (42). 

Patient biopsies of tumors inoculated directly (147) or by intravenous routes (148) 

demonstrate viral replication and cell death in transformed tissues, while neighboring 

tissues are spared. In addition to direct lysis of infected cells, reovirus infection 

promotes a robust antitumor immune response. Inoculation stimulates production of 

cytokines and chemokines that recruit and prime immune cells in the presence of tumor 

antigens (153-156). Virus-primed, tumor-specific, cytolytic T cells and dendritic cells 

(DCs) promote antitumor immunity systemically by targeting transformed cells where 

virus infection is absent, enhancing the efficiency of innate immune cells, and even 

attacking cancer cells after remission, viral clearance, and tumor recurrence (154, 155, 

157). In this way, T3D and other oncolytic viruses can function as anti-cancer vaccines. 

Combined with the natural predilection of reovirus to kill cancer cells and 

stimulate a robust immune response, there are several characteristics of reovirus that 
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improve its capacity as an oncolytic. For example, cancer progression is often rated by 

the TNM staging system that characterizes the tumor (T), lymph node (N), and 

metastatic (M) extent of transformed cells. Most cancers are rated from stage I to stage 

IV. Stage IV cancer is characterized by metastasis from the original tumor site to other 

organs within the body and coincides with a substantial decrease in life expectancy. For 

example, from stage III to stage IV breast cancer, the expected 5-year survival rate 

drops precipitously from ~ 72% to ~ 22% (158). As cancer spreads, treatment options 

require harsher, more systemic approaches. Reovirus spreads efficiently by 

hematogenous routes (159), making it well-suited to target metastatic, or stage IV, 

cancers. Furthermore, JAM-A expression is a predictive biomarker for tumor 

proliferation, metastasis, and poor prognosis (160-165). While reovirus cell-killing 

capacity is not dictated entirely by JAM-A expression (166), the presence of a high-

affinity receptor like JAM-A acts as a homing beacon to snare virus for infection.  

Reovirus displays a propensity to infect Ras-transformed cells (146, 167, 168). 

Mutations in Ras proto-oncogenes are identified in ~ 30% of human cancers and Ras 

mutations are thought to arise early in tumorigenesis. In late stages of tumorigenesis, 

Ras mutations are found in up to 100% of some cancer types, such as pancreatic 

adenocarcinomas, which are often resistant to traditional therapies and have a 5-year 

survival rate at diagnosis of ~ 4% (169, 170). Reovirus functions well in combination 

therapy with established chemotherapies (42). For example, tumor vascularization is an 

important hallmark of cancer progression. Reovirus infection induces vigorous 

expression of chemokine interferon-γ-inducible protein 10 (CXCL10), which is 

synergistically enhanced by multiple chemotherapies (171). CXCL10, in turn, disrupts 

endothelial branching and angiogenesis (171). Manipulation of reovirus efficiency by 

targeting cancers with particular biomarkers and using combination therapies will likely 

improve outcomes and allow use of lower doses of toxic chemotherapies. 

While several strains of reovirus have been assessed in pre-clinical studies 

(172), the only approved therapy in clinical development is T3D REOLYSIN®. Several 

characteristics of T3D reovirus may be disadvantageous as an oncolytic. Foremost is 

the efficiency of T3 replication, which is inferior to that of T1 in many cell types (173-

175). Reovirus tropism can and should be manipulated by altering the selection of 
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receptors used. By directing virus to specific, transformed cell populations expressing 

certain receptors, on-target efficiency of reovirus oncolysis and anticancer immunity can 

be improved while limiting off-target infection of non-transformed cells. This application 

brings to light the importance of studying basic virology and mechanisms of receptor-

dependent tropism. 

 

Thesis Goal 
Despite identification and characterization of three distinct reovirus receptors 

(sialylated glycans, JAM-A, and NgR1), mechanisms that mediate serotype-specific 

tropism in the CNS have not been uncovered. The focus of my thesis is to define viral 

and receptor sequences required for T1 and T3 neurotropism and virulence. In Chapter 

II, I elucidate the viral sequences that dictate neurovirulence and neurotropism, and in 

Chapter III, I define viral and NgR1 sequences required for binding and infection. 

 

Significance 
Infections of the CNS cause life-threatening conditions like hydrocephalus, 

meningitis, and encephalitis. Even acute infections can dramatically and chronically 

impair neurologic function. Children are especially vulnerable to the detrimental 

consequences of viral infections of the CNS. It is imperative to understand the 

molecular underpinnings of what makes cells susceptible to virus infection. Work 

presented here seeks to define viral and host determinants of reovirus neural invasion 

and disease in mice. While reovirus is not a significant pathogen of humans, mounting 

reports of reovirus infections in humans raise concern that more virulent reovirus strains 

may emerge. Moreover, reovirus currently is being used in human clinical trials as a last 

resort to treat refractory cancers. Understanding what receptors are targeted by reovirus 

and perhaps elucidating the underlying differences between highly susceptible hosts 

(small, young mammals) and poorly susceptible hosts (adult mammals and humans) will 

inform diverse fields. These studies could 1) expand a collective understanding of viral 

pathogenesis in the CNS, 2) identify age- or species-specific interactions dictating 

susceptibly, 3) help prevent emergence of dangerous reovirus strains by identifying 

factors that contribute to neuroinvasion, and 4) lead to improved oncolytic strategies.
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THE FUNCTION OF REOVIRUS σ1 PROTEIN DOMAINS IN NEUROTROPISM AND 
VIRULENCE 

 
Introduction 

 The reovirus attachment protein, σ1, is predicted to mediate serotype-specific 

tropism in the CNS of young mammals. However, reported receptor-binding functions of 

σ1 (Fig. I-4) cannot individually explain serotype-specific patterns of infection and 

disease in the CNS (Fig. I-1). Known proteinaceous receptors of reovirus mediate 

serotype-independent infection (98, 121). Furthermore, JAM-A expression is 

dispensable for reovirus replication in the brain (77). Sialylated glycans are engaged in 

a serotype-specific manner. T1 and T3 viruses with abrogated glycan-binding elicit less 

disease in the CNS, however, they still infect predicted sites in the CNS (100, 101). 

Perhaps glycan-blind viruses are not sufficiently “blind” and are still capable of binding 

sialylated neural and ependymal receptors. Alternatively, unidentified host molecules 

may mediate infection at sites within the CNS.  

In this study, I used reverse genetics to engineer a panel of viruses expressing 

T1-T3 chimeric σ1 proteins to identify S1 gene sequences and encoded protein 

domains that dictate reovirus neurotropism and virulence in mice. I validated that 

chimeric σ1 proteins were expressed, encapsidated, folded, and functional to bind 

receptors and facilitate efficient viral replication in non-neuronal cells. I found that 

neurotropism and neurovirulence correlate with sequences in the T3 σ1 head domain. 

The reciprocal sequences of T1 σ1 track with infection of ependymal cells. Together, 

these findings indicate that homologous domains of the reovirus viral attachment protein 

coordinate distinct patterns of tropism in the CNS and suggest that the σ1 head domain 

engages unknown receptors that target virus to distinct cell populations. 

 

Results  
Design and recovery of chimeric σ1 viruses 

To elucidate determinants of reovirus neurotropism, I designed a panel of viruses 

that express different S1 genes in an otherwise isogenic T1 background. Four parental, 
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or control, S1 genes were used to establish well-characterized σ1-specific differences of 

the two reovirus serotypes and their respective glycan-binding capacities. T1+ and T3+ 

parental S1 genes (Fig. II-1B) encode σ1 proteins (Fig. II-1A) that efficiently bind 

glycan (87, 99) and dictate divergent patterns of tropism in the brain. Viruses with 

specific mutations introduced into the glycan-binding domains of T1+ (101) and T3+ 

(99) display diminished glycan-binding capacity and are called T1- and T3-, 

respectively.  

To define domains of T3 σ1 that mediate infection of neurons, I designed gain-of-

function constructs in which a T1 σ1 domain was exchanged with homologous T3 

sequences and concordantly, loss-of-function constructs in which a T3 σ1 domain was 

exchanged with homologous T1 sequences. I hypothesized that sequence exchange 

between serotypes at the two interdomain regions (located at the σ1 tail-body and body-

head junctions) would yield replication-competent viruses. Therefore, I used primary 

sequences and available crystal structures of T1 σ1 and T3 σ1 to identify sequences 

neighboring the interdomain regions that contain sequence or structural conservation. 

Using this information, S1 genes were designed to encode the approximate σ1 head, 

body, or tail domain of one strain exchanged with homologous sequences of the 

reciprocal strain (Fig. II-1B).  

Virus and S1 gene nomenclature are interchangeable and reflect the domain that 

was acquired. For example, T3 Head virus contains sequences of the T3 σ1 head 

domain appended to sequences of the T1 body and tail domains. The σ1s open reading 

frame remains intact within the overlapping σ1 tail domain of all S1 genes used in this 

study. Within a reovirus gene, terminal 5' and 3' sequences are predicted to bind with 

complementarity and function to promote efficient replication or packaging (44, 45, 176). 

Chimeric genes containing discordant termini were either modified at the 3' end to 

include extended 3' untranslated sequences of the parental gene (Fig. II-1B) or 

modified at the 5' end to express the native 5' untranslated region of the parental gene 

(Fig. II-1B). Following design, chimeric S1 genes were engineered using a combination 

of molecular cloning and de novo gene synthesis.  

Plasmids encoding parental or chimeric S1 genes were transfected together with 

the nine remaining T1 genes into BHK-T7 cells to produce recombinant virus strains as 
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Figure II-1: Chimeric σ1-encoding viruses used in this study. (A) Schematic of 
engineered σ1 proteins. A model of the σ1 trimer (adapted from Dietrich et al., JVI 2018) 
is shown as a ribbon diagram (left) or a simplified box schematic (right). T1 sequences 
(red; 1) and T3 sequences (blue; 3) are indicated for the tail, body, and head domains. 
T1 and T3 parental strains bind glycans (+) or contain mutations that abrogate glycan-
binding (-). Mutations that differ from T1+ and T3+ are indicated by arrowheads and noted. 
The schematic on the right indicates sequence origin of σ1 domains for each virus (T1-
red; T3-blue). (B) T1 (red) or T3 (blue) S1 gene elements are depicted for each virus. The 
approximate σ1 head, body, and tail domains are noted. Native untranslated regions 
(UTR) are shown for 5' and 3' gene termini. S1 genes of T1 Head and T3 Head viruses 
contain additional UTR sequences appended to the 3' termini. Amino acid boundaries are 
provided for chimeras and numbered by parental strain origin (1-470 of T1 and 1-455 of 
T3). Asterisks indicate the number of amino acids that differ from either T1+ or T3+ 
parental strains in the corresponding domain. NA; not applicable. 
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described (3, 46). BHK-T7 cell lysates yielded plaques on L929 cell monolayers for all 

viruses shown (Fig. II-1A and II-1B). However, despite several attempts, T1 Tail virus 

was not recovered. For other constructs, individual virus plaques were isolated and 

amplified in L929 cells for two passages before extraction of total RNA and sequence 

confirmation of the S1 gene.  

The S1 genes of most viruses were genetically identical to the input plasmid 

sequences. However, approximately half of the T3 Body virus clones contained a point 

mutation (T3 σ1-R183H) near the 5’ junction of T1 and T3 sequences (Fig. II-1A and II-
1B). This mutation coincided with higher viral titers, larger plaques, and enhanced 

replicative capacity (data not shown). Therefore, the S1 gene of T3 Body was modified 

to encode a histidine at T3-σ1 position 183 and recovered by reverse genetics. A point 

mutation also was identified in all propagated clones of T1 Head virus (T3 σ1-K26E) in a 

region of σ1 that is predicted to be embedded into the viral capsid (48, 177). Before 

introduction into mice, these chimeric strains were evaluated using several in vitro 

correlates of viral fitness.  

 

In vitro validation of chimeric virus function and fitness 

To determine whether σ1-chimeric reoviruses faithfully recapitulate properties of 

parental reoviruses and efficiently encapsidate chimeric σ1 proteins, equivalent particle 

numbers of each strain were resolved by SDS-PAGE. Proteins were visualized following 

colloidal blue staining, and the optical densities of bands corresponding to specific viral 

proteins were quantified. All viruses contain comparable levels of major large (λ), 

medium (μ), and small (σ) structural proteins (Fig. II-2A). Moreover, σ1-chimeric viruses 

do not demonstrate significant ISVP contamination, a correlate of particle instability that 

is discerned by the appearance of the δ fragment of μ1 and loss of σ3 (Fig. II-2A). 

However, T1 Head virus incorporates significantly less σ1 protein into virions (Fig. II-2A 

and II-2B), perhaps as a consequence of the T3-K26E mutation identified in the σ1 tail 

domain of this strain. Combined, these data demonstrate that reovirus particles can 

assemble and encapsidate chimeric σ1 trimers, and most viruses do so with an 

efficiency comparable to that of the parental strains. 

To determine whether chimeric σ1 proteins are correctly folded and displayed on 
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Figure II-2: Fitness correlates of chimeric σ1-containing viruses. (A,B) Incorporation 
of σ1 in virions. Purified virus particles (5 ˣ 1010) were resolved by SDS-polyacrylamide 
gel electrophoresis. Proteins were visualized following colloidal blue staining and imaged 
using an Odyssey fluorescence scanner. (A) A representative gel is shown. Bands 
corresponding to viral λ, μ, and σ proteins and molecular weight markers (kD) are 
indicated. (B) Optical density of bands corresponding to σ1 and μ structural proteins were 
quantified. Results from three independent experiments are expressed as the mean 
relative optical density of σ1 bands normalized to μ bands. Error bars indicate SD. The 
schematic on the left indicates sequence origin of σ1 domains for each virus (T1-red; T3-
blue). (C,D) Conformation-specific antibody neutralization of viral infectivity. L929 
fibroblasts were inoculated with the virus strains shown pre-incubated with vehicle or four-
fold dilutions of monoclonal antibodies 5C6 (C) or 9BG5 (D). Infected cells were 
enumerated 24 h post-inoculation by indirect immunofluorescence. Antibodies 5C6 and 
9BG5 recognize epitopes in the σ1 head domain of T1 or T3, respectively. Symbol color 
reflects the sequences present in the σ1 head domain (T1-red; T3-blue). Results are 
expressed as the mean percentage of infected cells relative to vehicle-treated samples 
for four fields of view per well in duplicate wells for three independent experiments. Error 
bars indicate SEM. Values that differ significantly from PBS-treated controls by one-way 
ANOVA and Dunnett's test are indicated (*, P < 0.05; **, P < 0.01; ***, P < 0.001). (E) 
Viral replication efficiency. L929 fibroblasts were inoculated with the virus strains shown 
at an MOI of 0.5 PFU/cell. At the times shown post-inoculation, viral titer in cell lysates 
was determined by plaque assay. Results are expressed as the mean viral yield from 
duplicate wells for three independent experiments. Error bars indicate SEM. Viral titers 
that differ significantly from those of T1+ at 60 h post-inoculation by one-way ANOVA and 
Dunnett's test are indicated (*, P < 0.05; **, P < 0.01; ***, P < 0.001). 
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the surface of virions, I assessed the capacity of conformationally specific σ1 antibodies 

to neutralize reovirus infectivity using a fluorescent focus unit (FFU) assay. Monoclonal 

antibodies 5C6 and 9BG5 recognize distinct epitopes that span subunits in the trimeric 

σ1 head domain of T1 and T3 reoviruses, respectively (94). Parental and σ1-chimeric 

reoviruses were pre-incubated with monoclonal antibody or vehicle and adsorbed to 

L929 cells. Cells were fixed at 24 h post-adsorption, stained with a reovirus-specific 

antiserum, and imaged to determine the percentage of infected cells. Viruses containing 

T1 σ1-head sequences (T1+, T1-, T1 Head, T3 Body, and T3 Tail) were efficiently 

neutralized by T1-specific 5C6 antibody, whereas viruses containing T3 σ1-head 

sequences (T3+, T3-, T1 Body, and T3 Head) were unaffected by increasing 

concentrations of 5C6 (Fig. II-2C). Similarly, the T3-specific antibody 9BG5 reduced 

infectivity of viruses containing T3 σ1-head sequences (Fig. II-2D), but even at high 

concentrations, 9BG5 did not diminish infectivity of viruses containing T1 σ1-head 

sequences. Notably, the efficiencies with which chimeric strains are neutralized by the 

5C6 and 9BG5 antibodies are comparable to those of parental strains expressing the 

same σ1 antibody epitope. Combined, these data suggest that chimeric σ1 trimers are 

natively folded and displayed on the virion surface.  

Reovirus strains are capable of efficiently infecting a broad range of cell types. 

However, they often do so in a strain-specific manner. In particular, reovirus infectivity of 

many cultured cell lines is dependent on serotype-specific engagement of sialylated 

cell-surface glycans (87, 99, 101). Unlike with many other cell lines, reovirus infection of 

L929 cells is largely glycan- and serotype-independent (99). To determine whether 

viruses with chimeric σ1 proteins replicate efficiently, L929 cells were adsorbed with 

equivalent infectious units, and viral titer was determined at multiple intervals post-

inoculation by plaque assay. All viruses tested replicated with comparable kinetics and 

reached similar peak viral titers (Fig. II-2E and II-2F). T3 Head and T3 Tail display 

replication kinetics similar to parental strains T1+ and T1-, and T3 Head virus even 

reached modestly, but significantly, higher titers than did T1+ at 60 h post-adsorption. 

T3 Body virus produced lower mean yields at early time points than its parental strain, 

T1+, but reached comparable yields at 60 h post-inoculation (Fig. II-2E). Similarly, T1 

Head and T1 Body viruses produced slightly lower yields at early time points compared 
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with their parental strain, T3+, but both chimeric viruses reached yields comparable to 

T3+ at 60 h post-inoculation (Fig. II-2F). Notably, T3- produced significantly higher titers 

than did T3+ at late time points in this assay, which may be a consequence of 

diminished cell viability following infection with T3+ (107). Together, these data 

demonstrate that σ1-chimeric viruses are capable of replicating with similar efficiency 

and producing equivalent or enhanced peak titers relative to parental strains.  

Reovirus strains display serotype-specific patterns of hemagglutination as a 

consequence of binding to different SA moieties on the surface of erythrocytes (101, 

178-181). The T1 glycan-binding site in the σ1 head domain mediates agglutination of 

human erythrocytes (87), whereas sequences in the T3 σ1 head domain do not 

contribute to hemagglutination. Instead, the glycan-binding site in the T3 σ1 body 

domain mediates less efficient agglutination of human erythrocytes and a serotype-

specific agglutination of bovine erythrocytes (182).  

To evaluate the functionality of SA-binding sequences conferred to chimeric σ1 

proteins, I assessed hemagglutination capacity of reovirus particles using human and 

bovine erythrocytes. T1+ agglutinated human erythrocytes efficiently (mean HA titer = 

1024), while disruption of the T1 glycan-binding pocket in the σ1 head domain of T1- 

virus resulted in a 64-fold reduction in HA titer (Fig. II-3A). Residual hemagglutination 

capacity of T1- is thought to be mediated by σ1 crosslinking non-SA moieties on the cell 

surface (101). T3+ agglutinated human erythrocytes with a mean HA titer of 32, which is 

32-fold less than that of T1+. Disruption of the T3 glycan-binding domain in T3- virus 

abolished agglutination of these cells. Two σ1-chimeric viruses (T1 Body and T3 Head) 

do not contain any predicted glycan-binding sequences and, as expected, these strains 

did not agglutinate human erythrocytes. T3 Tail virus contains a predicted T1 glycan-

binding domain and agglutinated human erythrocytes with an HA titer identical to that of 

T1+, suggesting that the T1 σ1 head domain functions efficiently to engage SA. Two 

σ1-chimeric viruses (T1 Head and T3 Body) incorporate sequences for both the T1 and 

T3 glycan-binding domains and were predicted to have identical hemagglutination 

profiles. However, T1 Head agglutinated human erythrocytes poorly (32-fold less than 

that of T1+ and 2-fold less than that of T3+), indicating an impairment in binding to 

human erythrocyte glycans. In contrast, the mean HA titer of T3 Body was 8-fold greater   



 

38 
 

 

 

 

 

 

 

 
 
 
Figure II-3: Chimeric viruses display distinct sialic-acid binding profiles. (A,B) 
Hemagglutination capacity of parental and σ1-chimera viruses. Schematics on left 
indicate the predicted hemagglutination capacity of σ1 head, body, and tail domains for 
each virus. Filled boxes (T1+, red; T3+, blue) indicate domains with predicted 
hemagglutination capacity. Grey boxes with central buttons indicate that the domain is 
not hypothesized to contribute to hemagglutination (T1+, red; T1-, pink; T3+, dark blue; 
T3-, light blue). Purified reovirus virions (1011) were serially diluted two-fold in PBS. 
Human (A) or bovine (B) erythrocytes were resuspended in PBS at a concentration of 
1% (vol/vol). Equal volumes of virus and erythrocyte mixtures were combined and 
incubated at 4°C for 4 h, and hemagglutination was assessed. Results are expressed 
as mean log2-transformed HA titer from three independent experiments. Error bars 
indicate SD. 
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than that of T1+ and 128-fold greater than that of T3+, suggesting a synergistic effect of 

the two glycan-binding domains (Fig. II-3A). 

Of the viruses tested, only T3+, T1 Head, and T3 Body contain T3 glycan-binding 

sequences and, therefore, these strains were hypothesized to specifically agglutinate 

bovine erythrocytes. T3+ and T3 Body viruses agglutinated bovine cells equivalently 

(Fig. II-3B), suggesting that the conferred T3 σ1 body domain is sufficient to mediate 

SA binding. However, T1 Head virus failed to agglutinate bovine erythrocytes. The 

combined impairment of T1 Head virus to agglutinate human and bovine erythrocytes is 

likely attributable to the decreased encapsidation of σ1 onto virions (Fig. II-2A and II-
2B). Together, these data indicate that four of the five chimeric σ1 proteins bind glycan 

receptors as predicted and provide validated tools to identify σ1 domains required for 

reovirus neurovirulence.  

 

Analysis of viral loads and disease initiated by chimeric viruses 

To define reovirus sequences that govern neurovirulence, I inoculated newborn 

mice intracranially with ~100 PFU of reovirus and monitored infected animals for 

symptoms of disease. Moribund animals were euthanized. T1- and T3- viruses were 

excluded from these studies to reduce the number of mice used, as these viruses 

display lethality at this dose comparable to their glycan-binding counterparts, T1+ (101) 

and T3+ (106), respectively. Inoculation with T1+ or T3 Tail virus caused no detectable 

disease, and all inoculated mice survived infection (Fig. II-4A). Following inoculation 

with T1 Head or T3 Body, one mouse in each cohort was euthanized as a consequence 

of significantly impaired weight gain over the course of infection. However, lethality 

following inoculation with these strains did not differ statistically when compared with 

T1+. In contrast, the majority of mice inoculated with T3+, T1 Body, or T3 Head 

displayed weight loss, lethargy, and neurological impairment. Neurological signs 

included agitated behavior, repetitive movements such as scratching or walking in 

circles, seizures, and ataxia, which are all consistent with reovirus-induced 

meningoencephalitis (36, 183). Some mice inoculated with T3+, T1 Body, or T3 Head 

either did not display detectable signs of disease or recovered from illness. Viruses that 

did not initiate statistically-significant lethal disease in newborn mice all express  
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Figure II-4: The σ1 head domain dictates reovirus neurovirulence and viral 
replication capacity in the brain. (A) Survival following intracranial inoculation. 
Newborn C57BL/6 mice (n = 16 to 18 for each virus strain) were inoculated intracranially 
with 100 PFU of purified virions of the strains shown. Mice were monitored for illness 
for 21 days and euthanized when moribund. Values that differ significantly from T1+ by 
log-rank test are indicated (*, P < 0.05; **, P < 0.01). (B) Viral titers in the brain following 
intracranial inoculation. Schematic on the left indicates sequence origin of σ1 domains 
for each virus (T1-red; T3-blue). An independent cohort of identically inoculated mice 
(n = 13 to 26 for each virus strain) were euthanized eight days post-inoculation, and 
viral titers in the homogenized right brain hemispheres were determined by plaque 
assay. Each symbol represents the viral titer of a single mouse. Data are log-
transformed and displayed with a linear x-axis scale. Median viral titer is indicated by a 
horizontal bar. Values that differ significantly from T1+ by one-way ANOVA and 
Dunnett's test are indicated (*, P < 0.05; ***, P < 0.001). 
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sequences corresponding to the T1 σ1 head domain, whereas viruses causing lethal 

disease express sequences corresponding to the T3 σ1 head domain. 

 To determine the replicative capacity of σ1-chimeric viruses in the brain, I 

inoculated mice intracranially with ~100 PFU of reovirus and euthanized infected 

animals 8 days post-inoculation to quantify viral titers in the right brain hemisphere by 

plaque assay. T1- was excluded from these studies to minimize the number of mice 

used but was previously shown to produce slightly lower titers than T1+ at this dose and 

time-point (101). Median and peak virus titers in the brain for all other strains were 

compared to those of T1+ to identify viruses that have enhanced replicative capacity at 

that site. For viruses expressing T1 σ1 head sequences (T1+, T1 Head, T3 Body, and 

T3 Tail), maximum titers ranged from 6.1 to 7.0 log10 PFU/brain, and median titers 

ranged from 5.0 to 6.3 log10 PFU/brain (Fig. II-4B). In contrast, viruses expressing T3 

σ1 head sequences (T3+, T3-, T1 Body, and T3 Head) displayed maximum titers 770 to 

12,000-fold higher than that for T1+ and ranged from 9.0 to 10.2 log10 PFU/brain, while 

median titers ranged from 7.2 to 9.0 log10 PFU/brain (Fig. II-4B). The broader 

distribution of viral titers in brain tissue observed for higher-replicating viruses may 

reflect differences in receptor utilization or sites targeted within the brain. Thus, viruses 

that express T1 σ1 head sequences produce lower viral titers in the brain and do not 

initiate significant disease, whereas viruses that express T3 σ1 head sequences 

produce higher viral titers in the brain and induce lethal disease (Fig. II-4A and II-4B), 

further implicating the σ1 head domain as the major determinant of reovirus 

neurovirulence. 

 

Analysis of chimeric virus neurotropism 

To test whether the σ1 head domain influences sites of viral replication in the 

brain, mice were inoculated with ~100 PFU of parental or chimeric reovirus strains and 

euthanized 8 days post-inoculation. The left-brain hemisphere was sectioned and 

stained with a reovirus-specific antiserum. With the exception of glial cells (identified by 

their dendritic morphology), which were sparsely infected by all strains, viral tropism 

was mutually exclusive to either ependyma or neurons for all tissue sections assessed 

(Fig. II-5). 
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 Following inoculation with T1+, T1 Head, T3 Body, or T3 Tail (all viruses that 

express T1 σ1 head sequences), reovirus antigen was detected in cells adjacent to the 

lumen of the lateral ventricle that lack extended processes (Fig. II-5). This staining 

pattern is consistent with both the location and morphology of ependymal cells, as is 

expected for T1+ tropism (7, 101). Following inoculation with T3+, T3-, T1 Body, or T3 

Head (all viruses that express T3 σ1 head sequences), reovirus antigen was detected in 

specific neuronal subsets throughout the brain (Fig. II-5), as described previously for 

T3+ (100). All neuronal subsets infected by T3+ also were infected by T3-, T1 Body, 

and T3 Head. In particular, pyramidal neurons of the cortex, neurons of the thalamus 

and hypothalamus, and Purkinje neurons of the cerebellum were targeted by viruses 

expressing a T3 σ1 head domain. These findings indicate that the σ1 head domain 

dictates the tropism of both T1 and T3 reovirus in the brain. 

 

Evaluation of glycan-independent infection of neurons 

Results obtained thus far demonstrate that the σ1 head domain of T3 reovirus is 

required for infection of neurons in the CNS and that glycan engagement by the T3 

body domain is dispensable for infection of these cells. To test this hypothesis directly, I 

quantified reovirus infection of cultured primary neurons with or without neuraminidase 

pre-treatment to remove cell-surface SA. Vehicle-treated neurons were poorly infected 

by T1+, T1-, T1 Head, and T3 Tail, moderately infected by T3-, T1 Body, T3 Head, and 

T3 Body, and most heavily infected by T3+ (Fig. II-6A and II-6B). These results 

demonstrate serotype-dependent infection of neurons (when comparing T1+ and T1- 

with T3+ and T3-) and SA-enhanced infection of neurons (when comparing T3+ with T3-

), as shown previously for the parental strains (77). Similar to viral replication efficiency 

in the brain, T1 Body and T3 Head infected neurons in culture as efficiently as T3-, 

which also lacks a functional T3 glycan-binding domain. Infectivity of cultured neurons  

with T1 Head and T3 Tail also mirrored in vivo replication capacity, with low-level 

infectivity similar to T1+ and T1-. Surprisingly, a virus that did not efficiently infect 

neurons in vivo, T3 Body, demonstrated enhanced infectivity in cultured neurons 

relative to the T1 parental strains. This trend of enhanced infectivity cannot be entirely  
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Figure II-5: Reovirus neurotropism is dictated by sequences in the σ1 head 
domain. Newborn C57BL/6 mice were inoculated intacranially with 100 PFU of purified 
virions of the strains shown. Mice were euthanized eight days post-inoculation, and 
brains were resected and hemisected along the longitudinal fissure. Right brain 
hemispheres were homogenized for determination of viral titer by plaque assay. Left-
brain hemispheres were fixed in formalin and embedded in paraffin. Coronal sections 
of the left-brain hemisphere were stained with reovirus-specific antiserum and 
hematoxylin. Low-magnification overview images at the depth of the hippocampus are 
shown. Regions corresponding to high magnification insets of the lateral ventricle and 
lateral thalamus are indicated in the overview micrographs by red or blue boxes, 
respectively. Representative sections are shown. Viral titers from the paired right brain 
hemispheres are displayed above the micrographs. Reovirus-infected ependymal cells 
(open red triangles), neurons (filled blue triangles), and glia (black arrowhead), all 
identified using morphological criteria, are indicated. 
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explained by the presence of T3 body domain sequences, as T1 Head virus does not 

show this trend. 

To determine the influence of SA on infection of primary neuronal cultures, 

neurons were treated with A. ureafaciens neuraminidase, which removes α2,3-, α2,6-, 

and α2,8-linked terminal SA residues, prior to infection. In contrast to vehicle-treated 

neurons, infectivity trends of neuraminidase-treated neurons precisely mimicked those 

observed from in vivo studies. Viruses containing T1 σ1 head sequences infected 

neuraminidase-treated neurons poorly (Fig. II-6C and II-6D). Of note, the diminished 

infectivity of neuraminidase-treated neurons by T3 Body virus suggests that infection of 

cultured neurons by this strain is dependent on binding to cell-surface SA. Viruses 

containing T3 σ1 head sequences (T3+, T3-, T1 Body, and T3 Head) infected 

neuraminidase-treated neurons robustly and comparably (Fig. II-6C and II-6D). T3-, T1 

Body, and T3 Head viruses displayed approximately two-fold enhanced infectivity of 

neuraminidase-treated neurons compared with vehicle-treated neurons. Collectively, 

these data demonstrate that the σ1 head domain controls serotype-dependent infection 

of neurons and provides additional evidence that glycan engagement is not required for 

infection of neurons in vivo.  

 
Discussion 

The reovirus S1 gene dictates serotype-dependent differences in neurotropism and 

disease, a finding first reported nearly 40 years ago (9). However, even as new 

functions are described for S1-encoded proteins, the mechanism by which S1 gene 

sequences dictate these differences in pathogenesis has remained elusive. In this 

study, I used a reverse genetics platform to engineer a panel of reoviruses that encode 

chimeric S1 genes to identify σ1 sequences that mediate serotype-specific differences 

in reovirus neurologic disease. I found that infection of neurons does not correlate with 

T3 sequences encoding the σ1s protein, the σ1 tail domain, or serotype-specific glycan 

engagement in the σ1 body domain. Instead, I discovered that sequences encoding the 

T3 σ1 head domain are required for infection of neurons in the murine brain (Fig. II-5). 

These same sequences also influence encephalitis induction and survival outcome (Fig. 
II-4B). Viruses expressing T3 σ1 head domain sequences replicate to high titer in the   
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Figure II-6: Infection of primary cortical neurons is primarily dependent on 
sequences in the T3 σ1 head domain. Cultured primary rat cortical neurons were 
treated with a vehicle control (A,C) or 40 mU/mL of neuraminidase (B,D), inoculated 
with reovirus at an MOI of 500 PFU/cell, fixed at 24 hpi, and stained with reovirus-
specific antiserum, an antibody to detect Tuj1, and DAPI. (A,B) Representative 
micrographs of reovirus-infected neurons (white staining) are shown. (C,D) Infected 
neurons were enumerated using indirect immunofluorescence. Results are expressed 
as mean number of infected neurons per field of view for six images per well in 
quadruplicate wells for five independent experiments. Error bars indicate SEM. Values 
that differ significantly from T1+ by one-way ANOVA and Dunnett's test are indicated 
(*, P < 0.05; **, P < 0.01; ***, P < 0.001). 
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brain, likely because of the greater number of cells targeted when compared with 

viruses expressing T1 σ1 head domain sequences (Fig. II-5). Using cultured neurons, I 

further demonstrate that this infection of neurons is strictly dependent on the T3 σ1 

head domain when cell-surface SA is removed (Fig. II-6B). Furthermore, I found that 

reciprocal sequences in T1 σ1 mediate infection of ependyma (Fig. II-5), lower viral 

brain titers (Fig. II-4B), and survival (Fig. II-4A) following intracranial inoculation of 

mice. These data establish that homologous sequences in the reovirus σ1 head domain 

coordinate infection at discrete sites in the CNS (Fig. II-7A and II-7B). 

It was not previously known whether reoviruses expressing chimeric genes 

derived from different serotypes could be recovered. Chimeric σ1 proteins have been 

expressed and purified from insect cell lysates (184), and the S1 gene of replication-

competent viruses has allowed insertion of transgenes, although transgene sequences 

are variably stable (47, 185, 186). Our study demonstrates that replication-competent 

reoviruses expressing chimeric S1 genes and gene products can be recovered and are 

genetically preserved over multiple generations. I was not able to recover a virus 

expressing the T1 σ1 tail domain appended to the T3 σ1 body and head domains (T1 

Tail). It is possible that the sequences chosen for T1 Tail construction would not allow 

proper protein folding. Alternatively, the viral RNA may contain an incompatibility 

between T1 and T3 sequences (45). Recently available structures of the T1 and T3 σ1 

tail domains (88) should allow improved design of future σ1-chimeric proteins. 

 Similar to other glycan-binding viruses, reoviruses use an adhesion-

strengthening mechanism of attachment to cells, in which low-affinity engagement of 

glycans adheres virus to the cell surface prior to ligation of a higher-affinity receptor 

capable of promoting internalization (99, 102, 111). Reovirus binding to SA is not 

thought to directly initiate viral entry, although there is some evidence that glycan 

engagement may influence post-binding signaling events (107). Our data are consistent 

with an adhesion-strengthening model of reovirus neurotropism. Viral titers in the brain 

and lethality are highest for T3+, a virus that engages glycans using the σ1 body 

domain. However, viruses with limited or absent T3 glycan-binding affinity (T3-, T1 

Body, and T3 Head) retain the capacity to target neurons for infection (Fig. II-5 and II- 
6A) and initiate lethal encephalitis (Fig. II-4A), albeit less efficiently than T3+. 
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Figure II-7: Sequences in the σ1 head domain dictate serotype-dependent 
patterns of viral tropism and neurologic disease in a glycan-independent manner. 
(A) Summary of key findings. The σ1 protein domain for each virus strain indicated is 
presented as a rectangle (red, T1; blue, T3). The legend on the right displays results 
as more similar to T1 (red box), more similar to T3 (blue box), mix between T1 and T3 
(hatched box), or absent (grey box) in the case of hemagglutination. (B) Model of 
serotype-dependent neurotropism. Viruses expressing T1 σ1 head domains infect 
ependyma, and we predict they would cause hydrocephalus with a higher inoculation 
MOI. Viruses expressing T3 σ1 head domains infect neurons and initiate a lethal, 
fulminant encephalitis. 
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T3 Body virus does not exhibit neurotropic capacity in vivo (Fig. II-5). However, 

this virus is capable of infecting cultured neurons using a SA-dependent mechanism 

(Fig. II-5A and II-5B). It is possible that T3 glycan engagement is sufficient to initiate 

infection of neurons in vivo at a level that was not detected or that in vitro-cultured 

neurons do not faithfully recapitulate in vivo receptor requirements. Interestingly, 

purified virion preparations of T3 Body may contain more ISVPs (indicated by the δ μ1 

cleavage product) compared with other contemporaneously purified viruses (Fig. II-2A). 

Cultured neurons are significantly more susceptible to ISVPs than virions (27), and 

while ISVPs are presumed to use receptors comparably to virions, ISVPs 

hemagglutinate more efficiently than virions, and ISVP infectivity is significantly more 

sensitive to neuraminidase treatment than virion infectivity (96). These data indicate that 

receptor requirements differ for reovirus virions and in vitro-prepared ISVPs. Thus, I 

hypothesize that T3 Body ISVPs enter neurons in the absence of a receptor engaged by 

the T3 σ1 head domain. 

Treatment of cultured neurons with A. ureafaciens neuraminidase diminishes T3+ 

virus infectivity to that of T3- virus and does not alter T3- infectivity (98, 100). 

Surprisingly, I observed that T3-, T1 Body, and T3 Head virus demonstrate a two-fold 

increase in infectivity of cultured neurons following neuraminidase treatment (Fig. II-6A 

and II-6B), despite the prediction that these viruses do not bind SA and should be 

unaffected by neuraminidase treatment. A nearly identical finding has been reported for 

HIV-1 in studies using both primary and cultured cells (187). It is possible that removal 

of SA from the cell surface in certain settings enhances the accessibility of σ1 to a T3 

head-specific receptor. 

How do sequences in the σ1 head domain mediate tropism? No currently known 

functions of σ1 account for the CNS tropism observed in our study. However, data 

reported here raise new questions. To efficiently infect either ependymal cells or 

neurons, reovirus must be able to traffic to, bind, and replicate within these cells. 

Because T1 and T3 tropism in the CNS is manifested following multiple different routes 

of inoculation, and cultured neurons recapitulate serotype-dependent differences in 

neurotropism (86) (Fig. II-6A), I do not think that trafficking to affected CNS cell types 

accounts for differences in tropism, as both T1 and T3 are capable of efficient 
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hematogenous dissemination and have been observed in and around microvasculature 

in the brain. While the σ1 head domain may function in post-binding/pre-entry 

replication steps to promote tropism differences, serotype-dependent binding to primary 

ependyma (85) and neurons (86) supports a receptor-dependent mechanism of target-

cell selection.  

In addition to JAM-A, GM2 glycan is bound by the T1 σ1 head domain (87). T1 

strains deficient in glycan engagement are altered in virulence but not in tropism within 

the CNS (101). While the GM2 glycan bound by T1 reovirus is appended to both 

proteins and lipids, the full array of host components expressing this glycan is not 

known. I hypothesize that T1 σ1 head sequences coordinate binding to a proteinaceous 

receptor, which may be engaged independent of or overlapping with the GM2-glycan 

binding site (Fig. II-7B). In the case of T3 σ1, the serotype-specific, glycan-binding 

domain is distant from the neurotropism-determining σ1 head domain (Fig. II-7B). Both 

T1 and T3 reovirus can spread by hematogenous routes to infect multiple organs, but 

T3 strains also spread via neural routes (80, 82, 188). I hypothesize that T3 σ1 head 

sequences engage a neural-specific receptor to initiate infection of neurons, which also 

may mediate neural dissemination from sites of initial infection.  

If the σ1 head domain binds a T1- or T3-specific proteinaceous receptor as we 

anticipate, then reovirus would have evolved two proximal binding sites at the virion-

distal end of a long filamentous protein, one site for JAM-A and one that determines 

CNS tropism. I hypothesize that this location might be advantageous to either provide a 

larger surface area for binding and concordantly promote a more affine interaction (189) 

or serve as a flexible probe to interrogate molecular contacts at the cell surface. Other 

viruses also display receptor-binding domains at the termini of an extended trimeric 

protein, further highlighting a shared design for viral adhesion to cells (190, 191). 

These studies contribute to an overall understanding of mechanisms of 

neuroinvasion and highlight the evolutionary pressure for RNA viruses to coopt viral 

proteins to serve multiple, critical functions in infection. By dissecting those functions, I 

have uncovered an important, serotype-specific determinant of reovirus neurotropism. I 

also consider this panel of viruses to be a useful toolbox to answer questions about the 

function of reovirus attachment in replication, dissemination, and tropism outside the 
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CNS. While reovirus does not cause disease in humans, it preferentially infects and kills 

cancer cells (167, 192, 193). A prototype T3 reovirus strain, licensed as Reolysin®, has 

been used in more than 30 clinical trials to date and shows both safety and potential 

efficacy in treatment of several different cancers, including those of the CNS (42). The 

reovirus σ1 protein shares a striking resemblance to the multifunctional attachment 

protein of adenovirus (194), another promising oncolytic. Adenoviruses expressing 

reovirus σ1 are viable and display reovirus-predicted tropism (191). By combining 

reovirus and adenovirus receptor-binding domains, a new class of tailored therapeutics 

can be envisioned. Such strategies to genetically manipulate the attachment functions 

of reovirus could improve cancer targeting and cell killing. Thus, understanding 

molecular determinants of reovirus tropism informs mechanisms of viral neuroinvasion 

and may contribute to tailored and improved oncolytic therapies.



CHAPTER III 
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DEFINING REOVIRUS AND NOGO RECEPTOR SEQUENCES REQUIRED FOR 
BINDING AND INFECTIVITY 

 
Introduction 

Reovirus displays serotype-specific tropism in the CNS. However, the molecular 

basis underlying differential cell targeting is not known. It is hypothesized that T1 

strains infect ependyma by engaging an ependymal receptor and T3 strains infect 

neurons by engaging a neural receptor. However, reovirus receptors have not been 

identified for these cell populations. NgR1 was first identified as a receptor that 

allows reovirus infection of normally non-susceptible CHO cells (98). While NgR1 is 

expressed at multiple sites in the body, it is most abundantly expressed in neurons of 

the CNS, where many of its functions have been described. In the adult CNS, NgR1 

binds myelin inhibitory proteins and neuronal coreceptors to prevent neuronal 

outgrowth. Importantly, blockade or removal of NgR1 inhibits reovirus infection of 

primary cultured cortical neurons (98). It is not yet clear whether NgR1 influences viral 

tropism or pathogenesis.  

NgR1 may serve as a neuronal receptor for T3 reovirus in a subset of CNS 

neurons. However, at least in overexpression systems, NgR1 is capable of mediating 

infection by both T1 and T3 reovirus strains. If NgR1 is a neuronal receptor, it is not 

clear how it functions in serotype-dependent patterns of infection, if it does at all. 

Furthermore, the structural and biochemical mechanisms underlying NgR1-dependent 

infection are almost entirely unknown. While soluble NgR1 protein is capable of 

immunoprecipitating reovirus virions but not ISVPs (98), the viral ligand is not 

known. ISVPs have lost σ3 and contain an altered conformer of σ1 (61), suggesting that 

one or both of these proteins binds NgR1. Understanding what sequences of NgR1 and 

reovirus are required for this interaction will enhance knowledge of how NgR1 mediates 

binding to structurally diverse proteins and may influence our understanding of reovirus 

neurotropism. 

To identify sequences of NgR1 necessary for interaction with reovirus, I 

conducted on-cell binding assays with altered NgR1 constructs I engineered. I 

determined that NgR1 serves as a specific receptor, as a related receptor homolog 
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(NgR2) does not mediate reovirus binding or infection. Using NgR1 gain-of-function 

chimeras and loss-of-function deletion mutants, I found that N-terminal sequences of 

NgR1 are necessary and sufficient to interact with reovirus virions. I also demonstrated 

that reovirus binding to NgR1 occurs independent of known N-linked oligosaccharides. 

To determine the viral ligand for NgR1, I collaborated with Dr. Jennifer Konopka Anstadt 

and Dr. B.V. Venkataram Prasad's lab at Baylor College of Medicine to visualize NgR1 

bound to reovirus particles by cryo-EM and conducted direct binding studies in 

collaboration with Dr. Jonathan Knowlton and Dr. Gregory Wilson. We found that 

reovirus outer-capsid protein σ3 interacts with NgR1. The σ3 proteins of both T1 and T3 

reovirus efficiently bind NgR1, providing further support that NgR1 does not mediate 

serotype-specific infection. Collectively, these data demonstrate that N-terminal protein 

sequences of NgR1 interact with σ3 on reovirus particles to promote efficient binding 

and infection in a mechanism that resembles native NgR1-ligand binding interactions 

(133). 

The second short data section in this chapter (“Elucidation of the NgR1 viral 

ligand, σ3”) was a collaborative project with individual efforts described here. Dr. 

Jennifer Konopka-Anstadt and I generated viral and receptor reagents necessary for 

cryo-EM experiments and collaborated on experimental design and interpretation of the 

results (Fig. III-6 and III-7). Single-particle cryo-EM was performed at Baylor College of 

Medicine, with special attention by Mr. Rodolfo Moreno and Dr. Liya Hu. Initial 

identification of direct NgR1-σ3 interactions was obtained by me with σ3 protein 

generously donated by Dr. Gregory Wilson. Results presented in Figure III-8 were 

obtained by Dr. Jonathan Knowlton and represent collaborative experimental design 

and interpretation by Dr. Knowlton and me. 

 

Results 
Identification of NgR1 sequences required for efficient reovirus binding and infectivity 

NgR1 shares sequence and structural homology with two proteins, NgR2 and 

NgR3 (Fig. III-1A) (195). These homologs display differential tissue expression and, in 

some cases, redundant functions (196-199). To determine whether NgR2 serves as a 

receptor for reovirus, I expressed NgR1 or NgR2 from normally non-susceptible CHO 
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cells and quantified reovirus binding to and infectivity of these cells. Both NgR1 and 

NgR2 were detected on the cell surface (Fig. III-1B), indicating receptor availability 

to interact with adsorbed reovirus. However, only NgR1-expressing cells 

bind reovirus (Fig. III-1C) and permit infection (Fig. III-1D). While binding and infectivity 

of NgR3-expressing cells remains to be determined, these data demonstrate that NgR1, 

and not NgR2, serves as reovirus receptor.  

NgR1 is N-glycosylated at two well-characterized sites in the central body 

domain, asparagine 82 and asparagine 179, and O-glycosylated at multiple less-well-

characterized sites in the C-terminal GPI linker domain. Glycosylation at residue 179 is 

dispensable for NgR1 binding to all native ligands reported to date, whereas 

glycosylation at residue 82 is necessary for efficient binding to MAG, OMgp and Lingo-1 

(133). Both NgR1 N-glycosylation sites display high-mannose glycans (129), which are 

populated by and terminate in mannose residues. Therefore, these glycans are not 

predicted to interact with known reovirus glycan-binding sequences. To determine 

whether NgR1 N-glycosylation is necessary for reovirus binding and infectivity, I altered 

residues N82 and N179 singly to alanine and expressed WT or mutant NgR1 in 

CHO cells. By immunoblot detection of whole-cell lysates, NgR1 mutants display 

predicted gel-shift migration patterns of ~2 kD per glycosylation site (Fig. III-2A). In a 

parallel experiment, transfected CHO cells were analyzed for cell-surface expression of 

NgR1 and binding by T3- reovirus particles by flow cytometry. I found that WT, N82A, or 

N179A NgR1 proteins are expressed by a high percentage of cells, approximately 96, 

77, and 83 percent, respectively (Fig. III-2B). Similarly, T3- reovirus bound to an 

equivalent, and overlapping, population of CHO cells (Fig. III-2C). These data suggest 

that NgR1 N-glycosylation is not required for efficient reovirus binding.  

It is not known whether NgR1 requires coreceptors to efficiently internalize 

reovirus. However, because NgR1 is GPI-anchored to the membrane, it cannot initiate 

intracellular signaling without cofactors. NgR1 normally functions in a complex 

of coreceptors and ligands (200-207). Since at least one of those coreceptors (Lingo-1) 

binds NgR1 in a glycosylation-dependent manner (133), I tested whether reovirus 

binding to to NgR1 is sufficient to mediate viral replication. CHO were transfected with 

WT, N82A, or N179A NgR1, adsorbed with T3- reovirus, and infected cells were 
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Figure III-1: NgR1 is a specific reovirus receptor. (A) NgR1 and NgR2 are structural 
homologs. Ribbon tracings of NgR1 (orange) (129) and NgR2 (grey) (195) (NT domain 
to LR-CT domain) are superimposed using UCSF Chimera software. (B-D) NgR2 is not 
a reovirus receptor. CHO cells were either mock transfected or transfected with cDNA 
encoding either NgR1 or NgR2 and incubated for 48 h. (B and C) Cells were treated 
with NgR1- or NgR2-specific antibodies prior to adsorption with 105 particles/cell of 
Alexa Fluor 546-labeled reovirus T3- on ice for 1 h. The percentage of cells either (B) 
expressing receptor or (C) bound by virus was determined by flow cytometry. Results 
are expressed as the mean percentage of positive cells for three independent samples. 
(D) Transfected CHO cells were adsorbed with 10 PFU/cell of reovirus T3- and 
monitored for infectivity 24 hpi by indirect immunofluorescence using reovirus-specific 
antiserum. Results are expressed as the mean FFU/field from 4 fields of view per well 
in triplicate wells. Error bars indicate SD. Values that differ significantly from mock by 
one-way ANOVA and Dunnett's test are indicated (*, P < 0.05; **, P < 0.01; ***, P < 
0.001). ns = not significantly different. 
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Figure III-2: NgR1 N-glycosylation is not required for reovirus binding. (A-D) CHO 
cells were either mock transfected or transfected with cDNA encoding WT, N82A, or 
N179A NgR1 and incubated for 48 h. (A) Glycosylation mutants demonstrate predicted 
gel shifts. Transfected CHO cells were lysed in protein dissociation buffer, and soluble 
protein was analyzed by SDS-PAGE and visualized by immunoblotting with either 
NgR1-specific antiserum (top panel) or α-tubulin-specific monoclonal antibody (bottom 
panel). (B and C) Transfected CHO cells were treated with antibodies specific for NgR1 
prior to adsorption with 105 particles/cell of Alexa Fluor 546-labeled reovirus T3- on ice 
for 1 h. The percentage of cells either (B) expressing receptor or (C) bound by virus 
was determined by flow cytometry. Results are expressed as the mean percentage of 
positive cells for three independent samples. (D) Transfected CHO cells were adsorbed 
with 10 PFU/cell of reovirus T3- and monitored for infectivity 24 hpi by indirect 
immunofluorescence using reovirus-specific antiserum. Results are expressed as the 
mean FFU/field from 4 fields of view per well in triplicate wells. Error bars indicate SD. 
Values that differ significantly from mock by one-way ANOVA and Dunnett's test are 
indicated (*, P < 0.05; **, P < 0.01; ***, P < 0.001). 
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quantified by indirect immunofluorescence 24 h post-adsorption. WT and N179A NgR1 

mediated efficient and equivalent infection of reovirus, whereas CHO cells transfected 

with NgR1-N82A displayed ~ 50% of the infectivity observed with WT or N178A NgR1 

(Fig. III-2D). These data may suggest a function for N82 glycosylation in post-binding 

steps. 

To define domains of NgR1 required to bind reovirus, I used complementary 

gain-of-function and loss-of-function approaches. The solenoid structure of NgR1 

resembles building blocks, in that repeated units stack via repetitive structural motifs 

(Fig. I-5D-F). This structure makes NgR1 particularly amenable to genetic manipulation 

(133, 198, 199). I engineered gain-of-function NgR1 constructs, in which sequences of 

NgR1 were replaced with sequences of NgR2. This chimera-generating strategy has 

been used successfully to identify chondroitin sulfate proteoglycan binding sequences in 

the LR-CT domains of NgR1 and NgR3 (199) and MAG binding sequences of 

NgR1 and NgR2 (198). The use of NgR1 deletion constructs demonstrates that the C-

terminal GPI-CT is dispensable for binding to most NgR1 ligands and that the central 

core of LRR domains (the N-terminal two-thirds of the protein) is required for 

interactions with most ligands (133). 

As chimeric or deletion proteins may not be effectively recognized by available 

NgR1 or NgR2 antibodies, modified proteins have been detected on the cell surface 

using an N-terminal myc tag. This small, 10-residue polypeptide is detected using 

commercially available antibodies and does not disrupt NgR1 binding to ligands (133). I 

first tested whether myc-tagged NgR1 could be expressed in CHO cells and whether 

the tagged protein can serve as an efficient docking and internalization receptor. While 

myc-tagged NgR1 is expressed well from cells (Fig. III-3A), this protein does not 

mediate efficient reovirus binding (Fig. III-3B) or infectivity (data not shown). Therefore, 

I instead used NgR1-specific antibodies to detect NgR1 deletion constructs on the 

surface and a combination of NgR1 and NgR2 antibodies to detect chimeric proteins on 

the cell surface. 

The 421-amino acid length of NgR1 can be divided into approximately equivalent 

thirds, from NT to LRR4, from LRR5 to LR-CT, and the independent, large GPI-CT 

domain (Fig. I-5). I engineered three gain-of-function constructs called NgR-A, NgR-B, 
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Figure III-3: N-terminal NgR1 myc-tag disrupts reovirus binding. (A and B) CHO 
cells were either mock transfected or transfected with cDNA encoding WT NgR1 or 
myc-tagged NgR1 and incubated for 48 h. Cells were adsorbed with 105 particles/cell 
of Alexa Fluor 546-labeled reovirus T3- on ice for 1 h prior to treatment with a myc-
specific antibody. The percentage of cells either (A) expressing receptor or (B) bound 
by virus was determined by flow cytometry. Results are expressed as the mean 
percentage of positive cells for three independent samples. Error bars indicate SD. 
Values that differ significantly from mock by one-way ANOVA and Dunnett's test are 
indicated (*, P < 0.05; **, P < 0.01; ***, P < 0.001). 
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and NgR-C with precise sequences defined in Table III-1 and depicted schematically in 

Figure III-4A. Following transfection of NgR1, NgR2, or chimeric receptor constructs 

into CHO cells, I assessed cell-surface receptor expression and reovirus binding by 

flow cytometry. Chimeric receptors are expressed at levels similar to or greater than that 

of NgR2 (Fig. III-4B). Only NgR1 and a construct encoding the N-terminal two-thirds of 

NgR1 were sufficient to confer reovirus binding to (Fig. III-4C) and infectivity of (data not 

shown) CHO cells. These data indicate that NgR1 receptor specificity is conferred in the 

main LRR body of the protein and that the GPI-CT does not directly mediate reovirus 

binding, similar to many other ligands of NgR1 (133, 199). 

In similar studies, I engineered loss-of-function NgR1 deletion mutants that lack 

the NT, GPI-CT, LR-CT, or LRR's 1-2, 3-4, 5-6, or 7-8 (Fig. III-5A) (Table III-1). 

Following transfection of WT or deletion mutant NgR1 into CHO cells, the cell-surface 

detection of all deletion constructs was less than that of WT NgR1 (Fig. III-5B). 

However, I found that deletion of the NT domain significantly diminished reovirus 

binding to cells, deletion of LRR 1-2 or 3-4 allowed moderate reovirus binding to cells, 

and deletion of more C-terminal domains had little-to-no effect on reovirus binding to 

cells (Fig. III-5C). Similar to results obtained using chimeric-NgR1 receptors, these data 

suggest that NgR1 C-terminal sequences are dispensable for binding to reovirus and 

indicate a function for N-terminal sequences in reovirus attachment. These data also 

suggest that NgR1 deletion constructs are not displayed in a way that can be 

recognized efficiently by NgR1 affinity-purified antibody. In parallel experiments, I 

assessed whether NgR1 deletion constructs mediate reovirus infection. Despite some 

receptors contributing to efficient cell binding, no deletion construct allowed infectivity 

(Fig. III-5D). These data suggest that NgR1 receptor engagement is not sufficient to 

permit infection and that additional functions of NgR1, contributed by receptor sequence 

or structural integrity, are required to promote infection. 

 

Elucidation of the NgR1 viral ligand, σ3 

To identify the viral ligand for NgR1, we visualized reovirus virions incubated 

alone or with NgR1 by cryo-EM. We hypothesized that NgR1 binds to a virion conformer 

of σ1 or σ3. Reovirus virions incubated alone were ~ 650 Å in diameter spherical 
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Table III-1: Nogo receptor sequences employed in these studies 
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Figure III-4: NgR1 chimeras reveal N-terminal sequences are sufficient for 
reovirus binding. (A) Schematics of protein domains for NgR1 (orange), NgR2 (grey), 
or chimeric proteins (orange and grey) are shown. (B and C) CHO cells were either 
mock transfected or transfected with cDNA encoding NgR1, NgR2, or chimeric 
NgR1/NgR2 proteins and incubated for 48 h. Cells were treated with antibodies specific 
for NgR1 and NgR2 prior to adsorption with 105 particles/cell of Alexa Fluor 546-labeled 
reovirus T3- on ice for 1 h. The percentage of cells either (B) expressing receptor or 
(C) bound by virus was determined by flow cytometry. Results are expressed as the 
mean percentage of positive cells for three independent samples. Error bars indicate 
SD. Values that differ significantly from mock by one-way ANOVA and Dunnett's test 
are indicated (*, P < 0.05; **, P < 0.01; ***, P < 0.001). 
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Figure III-5: NgR1 deletion mutants demonstrate C-terminal sequences are 
dispensable for reovirus binding but not infectivity. (A) Model of NgR1 deletions. 
NgR1 domains were sequentially deleted to engineer six unique mutants lacking either 
the NT domain, LRR 1-2, 3-4, 5-6, 7-8, or the LR-CT. NgR1ΔNT and NgR1Δ1-2 are 
shown for reference. (B-D) Deletions reveal different requirements for binding and 
infectivity. CHO cells were transfected with cDNA encoding WT NgR1 or the indicated 
deletion constructs and incubated for 48 h. (B and C) Cells were treated with NgR1-
specific antibody prior to adsorption with 105 particles/cell of Alexa Fluor 546-labeled 
reovirus T3- on ice for 1 h. The percentage of cells either (B) expressing receptor or (C) 
bound by virus was determined by flow cytometry. Results are expressed as the mean 
percentage of positive cells for three independent samples. (D) Transfected CHO cells 
were adsorbed with 10 PFU/cell of reovirus T3- and monitored for infectivity 24 hpi by 
indirect immunofluorescence using reovirus-specific antiserum. Results are expressed as 
the mean FFU/field from 4 fields of view per well in triplicate wells. Error bars indicate SD. 
Values that differ significantly from WT (B and C) or Mock (D) by one-way ANOVA and 
Dunnett's test are indicated (*, P < 0.05; **, P < 0.01; ***, P < 0.001). ns = not significantly 
different. 
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particles (Fig. III-6A). In contrast, reovirus virions incubated for 4 h with NgR1 are larger 

in diameter and display uneven, rough margins (Fig. III-6A), indicating that NgR1 binds 

particles with high occupancy. There are as many as 12 σ1 trimers on reovirus virions 

and 600 copies of σ3 (61). Collectively, these data suggest that σ3 is the viral ligand for 

NgR1.  

In preliminary cryo-EM experiments intended to optimize the reaction incubation 

conditions, reovirus was incubated alone or with purified JAM-A or NgR1 for an 

extended interval (> 48 h). Particles incubated alone or with JAM-A were unchanged, 

whereas particles incubated with NgR1 under these conditions displayed central 

lucencies and were sporadically damaged (Fig. III-6B). The diminished density of 

particles incubated with NgR1 for extended intervals resembles genome-less reovirus 

particles (208). This capsid disruption indicates that NgR1 may function in post-binding 

disassembly of reovirus particles to mediate capsid release to the cytosol. Further 

experiments are necessary to determine the effect of NgR1 on reovirus particle stability. 

To better visualize the location and orientation of NgR1 on the surface of reovirus 

particles incubated for short intervals with NgR1, we conducted 3D reconstructions of 

more than 500 particles incubated alone or with NgR1. In both datasets, particles of 

approximately equivalent diameter were visualized, suggesting that the extended NgR1 

density was lost during reconstructions. However, particles incubated with NgR1 display 

additional density in pores formed by adjacent µ13σ33 heterohexamers (Fig. III-7). At 

these pseudo six-fold axes of symmetry, a shallow electron density is observed in P2  

pores adjacent to λ2, and in P3 pores with continuous density to heterohexamers. 

These data indicate that NgR1 binds σ3 in shallow pockets of the capsid.  

While cryo-EM experiments suggested that σ3 may be the viral ligand for NgR1, 

the 3D reconstructions obtained thus far are at a resolution too low to demonstrate 

direct molecular interactions. Furthermore, while the density observed in the P2 and P3 

pores is likely NgR1, as it is not detected when particles are incubated with buffer alone, 

it is not sufficient to model the NgR1 structure with confidence. To confirm that NgR1 

and σ3 physically interact, we conducted immunoprecipitation studies using σ3 with 

soluble NgR1. The σ3 protein expressed alone is prone to aggregation and can form 

homodimers which bury some surfaces that are normally exposed on virions (209). 
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Figure III-6: NgR1 binds reovirus particles. Representative cryo-EM images of 
reovirus particles incubated alone, with JAM-A, or with NgR1 for (A) 4h or (B) more 
than 48 h. Receptor to predicted ligand interaction is a 1:5 ratio. Particles visualized at 
50K magnification. Scale bar, ~ 200 Å. Possible bound NgR1 molecules are indicated 
in (A) by arrowheads.  
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Figure III-7: Cryo-EM image reconstruction of NgR1 bound to reovirus. (A) Surface 
and cross-section views of the native reovirus virion (49). Reovirus proteins σ3 (blue), 
µ1 (green), λ2 (yellow), σ2/λ1 (red), and λ3 (pink) are shown. Representative P2 and 
P3 pores are marked with arrows. Insets demonstrate approximate regions for panels 
below. (B-E) Reovirus virions were incubated alone (B and D) or with Fc-tagged NgR1 
(C and E) and viewed at the particle surface (B and C) or via cross-section (D and E). 
Particle density is colored to match (A). Additional density attributed to NgR1 (grey) is 
located in P2 and P3 pores (C and E). (B-E) Resolution is ~ 16 Å. 
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Therefore, we first tested binding to stably complexed µ13σ33 heterohexamers. 

Antibodies directed against σ3 (10C1) or u1 (8H6) were used as positive controls to 

immunoprecipitate heterohexamers. An irrelevant receptor, coxsackievirus and 

adenovirus receptor (CAR), was used as a negative control for binding. 10C1, 8H6, 

and NgR1 efficiently immunoprecipitated heterohexamers, but CAR failed to do so 

(Fig. III-8C). These data support cryo-EM imaging results and demonstrate that NgR1 

is capable of binding reovirus outer-capsid proteins. 

To determine whether σ3 binds NgR1 in the absence of μ1, we performed 

additional immunoprecipitations, but used cellular lysates expressing radiolabeled σ3. 

By adding S4 reovirus cDNA and 35S radioisotope to mRNA-depleted rabbit 

reticulocyte lysates (RRLs), σ3 is the only synthesized protein and can be visualized 

by phosphor imaging. This technique has been used to express and detect folded σ3 

protein on a small scale (210). We assessed whether NgR1, 10C1, or CAR was 

capable of binding either T1 or T3 σ3 directly. Both NgR1 and 10C1 

immunoprecipitated σ3 of either serotype, but CAR did not immunoprecipitate σ3 (Fig. 
III-8D). As NgR1 is capable of mediating both T1 and T3 infection in vitro (98), the 

serotype-independence of this interaction is not surprising. In addition to full-length 

σ3, NgR1 also immunoprecipitated lower-molecular weight fragments of σ3, which 

may be translation-halted σ3 products. However, in addition to the start codon, T1 and 

T3 σ3 proteins both contain two in-frame, conserved AUG sites, and we suspect that 

the lower-molecular weight species represent alternate translation initiation ORFs. 

These data indicate that σ3 is sufficient to interact with NgR1 and suggest that NgR1 

binds more C-terminal sequences of σ3. 

 

Discussion 
In this study, I identified NgR1 sequences that mediate binding and infection of 

reovirus and contributed to the discovery of σ3 as the viral ligand for NgR1. Using on-

cell binding assays paired with infectivity assays, I determined that reovirus requires 

N-terminal protein sequences of NgR1 for efficient binding. Unexpectedly, I found that 

efficient binding does not strictly correlate with efficient infectivity (Fig. III-5). The 

discordance between these readouts suggests that NgR1 serves post-binding  
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Figure III-8: NgR1 binds reovirus outer-capsid capsid protein σ3. (A) Diagram of 
bead-bound and immunoprecipitate (IP) protein schemes used here. Soluble Fc-tagged 
NgR1 or CAR, or monoclonal antibodies 8H6 (µ1-specific) or 10C1 (σ3-specific) were 
immobilized onto protein G beads. Protein-conjugated beads were incubated with 
purified µ13σ33 heterohexamer or cell lysates expressing σ3. (B) Purified µ13σ33 
heterohexamer was visualized by native PAGE and colloidal blue stain (left panel) or 
SDS-PAGE and immunoblotting using reovirus-specific antiserum (right panel). (C and 
D) NgR1 immunoprecipitates capsid heterohexamer and σ3. Beads were conjugated 
with the proteins shown and incubated with (C) T1L µ13σ33 heterohexamer or (D) RRLs 
expressing radiolabeled T1L or T3D σ3. Following extensive washing, beads were 
boiled in protein dissociation buffer to release bound protein. Precipitated proteins were 
resolved by SDS-PAGE and either visualized by (C) colloidal blue staining or (D) 
phosphor imaging. Major reovirus species (µ1, µ1-C, and σ3) are labelled with black 
arrowheads. Other proteins, including antibody heavy (HC) and light chains (LC) and 
σ3 translation products are indicated by grey arrowheads. Molecular weights (kDa) are 
shown.  
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functions (e.g., interacting with coreceptors or mediating conformational change in the 

capsid) that promote infection. Reovirus particles incubated with NgR1 display short, 

adhered filaments (Fig. III-6), and cryo-EM reconstructions demonstrate an electron 

density intercalated at the pseudo six-fold axes of symmetry between neighboring σ3 

proteins. Further in vitro binding studies revealed that NgR1 immunoprecipitates µ13σ33 

heterohexamers that form the reovirus outer capsid and directly binds σ3 in a serotype-

independent manner (Fig. III-8). While there have been suggestions that capsid 

components other than σ1 can contribute to cell binding (78, 79, 211), we provide the 

first direct evidence of an underlying interaction.  

NgR1 interacts with a structurally heterogenous family of ligands and coreceptors 

to modulate axonal outgrowth (200-207). The central, conserved sequences of the LRR 

concave surface of NgR1 are required for many contacts with ligands and coreceptors 

(133). Similarly, we identified through three independent genetic approaches that N-

terminal sequences of NgR1 in the central LRR core contribute to efficient binding of 

reovirus. NgR1 molecules tagged at the N-terminus are significantly less efficient at 

ligating reovirus. Using gain-of-function NgR1 constructs, I demonstrated that the 

central core of NgR1 is sufficient to allow reovirus binding and infection when adjoined 

to sequences of NgR2 (Fig. III-4). Studies using NgR1 deletion mutants also indicate 

that residues more C-terminal of the fourth LRR may be dispensable for ligating 

reovirus. However, a chimera expressing NgR1 sequences more N-terminal to this site 

is not sufficient to allow reovirus binding. These data highlight the power of 

complementary genetic approaches to identify sequences important for molecular 

interactions and demonstrate that membrane-distal sequences of NgR1 likely bind 

reovirus.  

Following receptor engagement, virus structural proteins often undergo 

conformational changes that allow interactions with the cell membrane or promote 

signaling events essential for internalization. During infection of cultured cells, reovirus 

virions undergo acid-dependent proteolytic processing by host cathepsins. This process 

removes the σ3 protein and reveals the underlying membrane-penetrating μ1 protein. 

To my knowledge, no σ3 conformational changes have been reported for native protein 

in the absence of proteases. However, mutations identified in σ3 contribute to structural 
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changes and enhanced disassembly and infection efficiency (212-215). In preliminary 

experiments, we discovered that prolonged incubation of NgR1 with reovirus particles 

results in particle destabilization (Fig. III-6B) and even enhanced infectivity (216). While 

it has not been tested directly, these data suggest a function for NgR1 in σ3 structural 

rearrangements or capsid disassembly.  

The mechanism of NgR1-dependent internalization is not known. As NgR1 lacks 

a cytoplasmic domain and is incapable of initiating signaling on its own, it is likely that 

NgR1 engages other cell-surface receptors to allow reovirus infection. Specialized 

dynamic membrane domains called lipid rafts recruit and concentrate specific lipids, 

proteins, and glycans and function in internalization of many viruses, including multiple 

Reoviridae family members (217, 218). NgR1 preferentially distributes to lipid-rafts, 

similar to many other GPI-anchored proteins, and at these sites, NgR1 may coordinate 

interaction with coreceptors. I found that binding to NgR1 may not be sufficient to permit 

reovirus infection. Using on-cell binding assays, I determined that expression of C-

terminal NgR1 deletion mutants and the NgR1-N82A glycosylation mutant facilitate 

similar levels of virus binding relative to WT NgR1 but permit significantly less infection 

(Fig. III-3 and III-5). While these studies should be confirmed using direct in vitro 

binding to modified NgR1 constructs, these data suggest that NgR1 serves post-binding 

functions. I hypothesize that reovirus binding to NgR1 leads to recruitment of 

coreceptors that mediate reovirus endocytosis at lipid rafts. Future studies will identify 

the coreceptors and other cellular factors that promote NgR1 receptor-mediated 

endocytosis. 

We determined that NgR1 binds σ3, however, the affinity of this interaction is 

unknown and it is not clear whether NgR1 simultaneously interacts with other viral 

capsid components to mediate infectivity. EM reconstructions of reovirus incubated with 

NgR1 reveal density in the P2 and P3 pores formed by the reovirus outer capsid. 

However, at the resolution of these reconstructions (~ 16 Å), molecular contacts cannot 

be identified and the majority of the NgR1 fusion protein incubated with reovirus 

particles is lost during averaging. NgR1 density may be missing due to: 1) incomplete 

occupancy of pores, 2) asymmetry of binding, or 3) a flexible binding interaction. The 

NgR1 fusion protein used in these studies may be contributing to one or more of these 
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possibilities. Here, the full NgR1 protein (a.a. 27-447) was fused to a rabbit Fc by a 

flexible linker. Fc domains participate in homodimerization, and the NgR1 GPI-CT 

domain is thought to be highly flexible relative to the central LRR protein domain (129, 

219). This combination of multimeric complexes and flexibility are not conducive to 

traditional averaging techniques. To address these problems, I engineered a truncated, 

His-tagged construct of NgR1, which is currently being assessed for binding to reovirus 

particles by cryo-EM. NgR1 sequences of the GPI-CT are not required to promote 

reovirus binding and internalization (Fig. III-4) and I confirmed that truncated NgR1 

lacking the GPI-CT (a.a. 27-310) is sufficient to immunoprecipitate reovirus (data not 

shown).  

Independent of the construct used, NgR1 binding to σ3 may be impossible to 

effectively image by icosahedral averaging. Assuming NgR1 binds in the P3 pore, and 

using molecular modeling of NgR1 with σ3, I hypothesize that the NgR1 surface could 

interact with one or two σ3 monomers in a P3 and, due to steric hindrance, only one 

NgR1 may bind per pore (Fig. III-9). NgR1 could then select from three or six identical 

binding sites per P3 pore, making it impractical to use single-particle cryo-EM to 

determine the structure of the complex. Therefore, in tandem to modifying conditions of 

the cryo-EM experiments using whole virus particles, it is reasonable to pursue other 

strategies to identify residues required for ligand-receptor binding. NgR1 bound to 

purified heterohexamers could be visualized by either cryo-EM or crystallography. 

Recent advances in single-particle cryo-EM allow crystallographic resolution without 

many of the limitations of traditional crystallography (220). The molecular weight and 

uniformity of the μ13σ33 complex are amenable to cryo-EM, and if NgR1 does not bind 

μ13σ33 with full occupancy, class averaging could distinguish complexes bound to one, 

two, or three copies of NgR1. 

Data presented in this chapter identify both viral and receptor sequences 

required for critical steps in reovirus infection. By genetically manipulating NgR1, I 

determined that N-terminal sequences are necessary for interaction with reovirus. 

Complemented with cryo-EM image reconstructions and an understanding of NgR1 

presentation on the cell surface, these data are compatible with a new model of NgR1- 

dependent reovirus infection (Fig. III-9). Membrane-distal NgR1 sequences would be  
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Figure III-9: Proposed model of NgR1 binding to reovirus. (A) Surface view of the 
native reovirus virion (49). Reovirus proteins σ3 (blue), µ1 (green), λ2 (yellow), and 
σ2/λ1 (red) are shown. NgR1 (grey) (219) is modeled into a representative P3 pore. 
Box shows location of inset for panel (B). (B and D) Surface view or (C and E) cross-
section of either single-particle cryo-EM data (C and D) or NgR1 modelled with native 
reovirus particle (2CSE) (B, E). (F) Schematic of NgR1 orientation shown in (E) with 
the NgR1 GPI-CT, NT, and glycosylation sites N82 and N179 annotated. Cell membrane 
is not shown. 
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the first to encounter virus and embed within pores of the outer-capsid. This interaction 

could even promote early steps in particle disassembly, thereby promoting μ1 

interaction with cellular membranes and advancing the infectious cycle. 

 



CHAPTER IV 
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SUMMARY AND FUTURE DIRECTIONS 

 

Thesis Summary 

All viruses must overcome an initial, critical barrier to succeed in infection: the 

cell membrane. For nonenveloped viruses in particular, understanding the cascade 

of molecular interactions between virus and host that allows infection is an area of 

important research with many translational applications. Often, several receptors are 

engaged by the same virus on different cells to coordinate dissemination to sites 

distant from inoculation or on the same cell to enhance entry efficiency and 

modulate signaling events. As the first step in the viral life cycle, receptors serve 

multiple critical functions in the viral replication cycle, dictating species and cell 

tropism and governing disease type and severity. Therefore, viral receptor 

interactions are attractive targets for prophylactic and therapeutic intervention. 

Indeed, several clinically implemented antivirals inhibit receptor binding for 

significant human pathogens like human immunodeficiency virus (HIV), respiratory 

syncytial virus (RSV), influenza virus, and HSV.  

However, therapies for viral disease in the CNS remain limited, and treatment 

plans often consist entirely of supportive care. This therapeutic paucity is in part due 

to the intrinsic complexity of the CNS, which, in healthy individuals, selectively 

regulates molecule uptake and is resistant to entry of many drugs. Understanding 

interactions that permit initial viral entry into the CNS and promote replication in the 

brain is essential to prevent and treat these serious and often life-threatening 

infections. The primary goal of the research presented in this thesis was to identify 

viral and host sequences that mediate neuroinvasion by studying the reovirus-

receptor interface during infection of discrete cell populations within the CNS. 

Reoviruses display serotype-dependent tropism and disease in the CNS of many 

young mammals, a property that has been attributed to the σ1 viral attachment protein. 

The σ1 protein is structurally organized into head, body, and tail domains that display 

distinct functions. However, the specific protein sequences and coordinating functions 

that mediate serotype-dependent neurotropism were unclear. Using reverse genetics, I 
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engineered a panel of chimeric σ1-expressing reoviruses to identify sequences that 

contribute to infection in the CNS. I discovered that sequences forming the globular σ1 

head domain dictate viral tropism, replication capacity, and virulence in the CNS of 

mice. These studies further revealed that homologous protein domains coordinate 

serotype-dependent phenotypes. Thus, my work contributes new knowledge about 

mechanisms of neuroinvasion and will enhance the rational design of reovirus oncolytic 

therapeutics. 

In Chapter III of my thesis, I elucidated viral and host sequences required for 

reovirus engagement of the neuronally expressed receptor, NgR1. I found that N-

terminal protein, and not glycan, residues of NgR1 are required for reovirus binding and 

infection. In collaborative studies, I determined that NgR1 directly binds viral outer-

capsid protein σ3. Unexpectedly, I discovered that enhanced binding to NgR1-

construct-transfected cells does not strictly dictate infection, suggesting that post-

binding steps are mediated by NgR1 to facilitate productive infection. Collectively, 

studies presented in Chapter III enhance our understanding of how reovirus and NgR1 

interact to promote infection and raise new and interesting questions about this binding 

event and steps facilitated thereafter. 

 

Future Directions 
Determine function of the σ1 head domain in neuron binding and tropism 

The σ1 head domains of both T1 and T3 σ1 dictate infection of their respective 

target cell types in the CNS. However, the mechanism of this interaction, and direct 

evidence of it, has remained elusive. Early studies report differential binding of T1 (85) 

and T3 (86) strains to neurons and ependyma and used S1 single-gene reassortant 

viruses to conclude that the viral attachment protein dictates differential binding to target 

cells. Furthermore, the authors predict that these binding differences dictate infection of 

these cells. It is important to test this hypothesis with σ1-chimeric reoviruses.  
To determine whether the neural tropism of T3-σ1-head-containing viruses 

correlates with enhanced binding to neurons, several methods could be used. Systems 

to culture primary embryonic mouse and rat neurons for reovirus infection are well-

established and these cells display predicted serotype-specific patterns of infection (Fig. 
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II-6) (27, 98). Binding to in-plate cultured neurons could be assessed. Alternatively, 

brain slice cultures (221) or synaptosomes could be bound with reovirus and analyzed 

by microscopy or flow cytometry, respectively. In contrast to neurons, which are not 

amenable to flow cytometry, sub-cellular synaptosome fractions can be analyzed by 

flow cytometry, which would enable identification of receptors present on fractions 

binding more virus. Furthermore, reovirus (124) and many other viruses (222) are 

thought to enter neurons at the synapse and these subcellular fractions may 

concentrate T3-specific receptors.  
Unlike for T3 reovirus, serotype-specific model systems of T1 ependymal cell 

infection are not established. Cultured primary ependymal cells undergo autotomy, shed 

cilia, differentiate, and die. However, they remain viable in vitro for short intervals that 

might allow reovirus binding and infectivity studies (223). Alternatively, a number of 

ependymoma cell lines are available (224, 225), and the BXD-1425EPN ependymoma 

cell line is susceptible to T1+ infection (101). The capacity to infect these cells should be 

assessed using T1 and T3 glycan-blind viruses to identify a model system of T1-specific 

infection. Furthermore, once a model system is established, the contribution of T1-

specific glycans and other receptors can be more directly assessed. It is possible that 

the T1 σ1 head domain mediates infection of ependymal cells by binding GM2 attached 

to proteins or lipids and that T1- virus retains some residual binding to this receptor. 

Evidence that may support this hypothesis is the diminished, but significant, infection 

that T1- establishes in BXD-1425EPN cells (101). Alternatively, it is possible that 

sequences in the T1 σ1 head domain mediate binding to an ependymal receptor at a 

site distinct from GM2 glycan-binding sequences. 
 

Identify ependymal and neuronal receptors 

It is possible that currently known receptors may be coordinating unknown 

functions in neural and ependymal tropism. Alternatively, there may be additional key 

receptors that dictate infection of discrete CNS cell types. A variety of strategies have 

been used in attempts to identify ependymal and neuronal receptors used by reovirus. 

These techniques include bioinformatic expression analyses, glycan microarrays, 

screens of cDNA libraries from NT2 cells and JAM-A-/- mouse brain, and genome-wide 
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siRNA and CRISPR screens using cultured cells. Despite extensive efforts, T1 

receptors used on ependyma and T3 receptors used on neurons are not known. A few 

potential reasons why these techniques have not been successful thus far are that the 

cell-surface receptor is displayed in low abundance or not expressed in the model 

system, tissue-specific post-translational modifications in the receptor are required for 

infection, or ligation of multiple receptors is required for entry. Furthermore, cell lines 

may not recapitulate the complexities of primary neural and ependymal tissue, both of 

which are challenging to culture and scale for in vitro screens. Recent advances in 

model systems, including microfluidic systems, iPS cells, co-culture systems, and 

organoid models, should allow enhanced exploration of reovirus receptor use and entry 

mechanisms in systems that better recapitulate in vivo conditions. Furthermore, 

chimeric σ1 proteins can be used in affinity purification methods to identify glycan-

independent receptors. T3 Head and T1 Body viruses do not engage any known 

glycans and can be used as affinity ligands. 

 

Identify non-receptor-mediated determinants of tropism 

It is possible that σ1-head domain determinants of tropism occur independent of 

receptor use. Following inoculation in the footpad with 107 PFU of T1, T2, or T3 

reovirus, viral antigen is detected in peripheral motor and sensory neurons in newborn 

mice (124). T1 and T2 infection of motor neurons and interneurons is limited, but 

infection of sensory neurons, is comparable to T3 reovirus (124). Furthermore, reovirus 

entry is dependent on functional microtubules (226), and trafficking to the CNS from 

peripheral infection also requires functional microtubules in a fast-axonal transport 

mechanism (80). Molecular details of reovirus fast-axonal trafficking are not known, but 

it is possible that the σ1 head domain mediates a post-binding function in tropism by 

engaging transport molecules that direct virus to productive (T3) or non-productive (T1) 

endocytic pathways in neurons. The σ1 protein is shed in late endosomes during 

reovirus uncoating, and therefore, I do not think that sequences in the σ1 head domain 

could contribute to post-entry-dependent mechanisms of serotype-specific infection 

observed in the CNS. It would be informative to quantify reovirus binding, 

internalization, and trafficking in cultured motor and sensory neurons to define the step 



 

77 
 

at which T1 and T3 reoviruses differ. It should be noted that reovirus on-cell binding is 

not sufficient for infection (Fig. III-5). Early studies demonstrating differences in reovirus 

binding to neurons did not exclude SA-dependent binding (86) and SA binding is not 

required for infection of neurons (Fig. II-6). Therefore, binding to neurons may not be 

indicative of the capacity to efficiently infect neurons. Similar studies should be 

conducted to precisely identify the block to T3 infection of ependymal cells, once these 

T1-specific systems have been established. 

 

Design and test improved reovirus oncolytics 

 Only one strain of reovirus, T3D, is currently being assessed for the treatment of 

human cancers. Heterogeneity from natural or engineered reovirus isolates could 

improve oncolytic efficiency. Several aspects of reovirus biology are governable, 

including virion stability (96, 227), interaction with immune cells (228), cell targeting, 

immune stimulation or evasion (229-231), replication efficiency (173, 175), cell-death 

induction (172, 232), and more. In particular, reovirus receptor use should be 

manipulated to improve viral targeting to specific tumor biomarkers.  

Here, for the first time, we have engineered a reovirus capable of binding both T1 

and T3 glycans (T3 Body) (Fig. II-3). The exchange of T1 for T3 σ1 body sequences 

allows synergistic binding efficiency of T3 Body to erythrocytes (Fig. II-3) and even 

confers replication in MEL cells (data not shown), which are normally not susceptible to 

T1 reovirus infection (50). This gain-of-function is a proof of concept that σ1 chimeric 

viruses, and other new strains presented here, should be implemented in pre-clinical 

studies to assess relative targeting and oncolytic capacity for a battery of transformed 

cell lines. Promising oncolytic candidates should then be accelerated to clinical trials to 

assess safety and efficacy in combination therapies. 

 

Elucidate the function of NgR1 in tropism and disease 

 Blockade or ablation of murine NgR1 inhibits reovirus infection of cultured cortical 

neurons (98). However, preliminary data from experiments with mice deficient for NgR1 

(NgR1-/-) suggests that NgR1 is not a major contributor to T3 replication in the brain, 

and NgR1-/- mice still succumb to lethal T3 infection (233). These data indicate that 
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neuronal infection and inflammation still occur in NgR1-/- mice, although more detailed 

studies should be performed to determine the extent of reovirus tropism and disease. It 

is possible that NgR1 functions as a receptor in discrete neuronal populations. 

Moreover, NgR1 is expressed in several non-neural tissues (196). To elucidate whether 

NgR1 functions in tropism and pathogenesis, cohorts of WT and NgR1-/- mice should be 

inoculated by peroral, footpad, and intracranial routes with T1 and T3 strains. Viral titer, 

lethality, and tropism should be assessed in several tissues to determine if and where 

NgR1 contributes to pathogenesis. It is possible that a function for NgR1 will not be 

found in these studies. If that is the case, a pilot experiment using mice ablated for 

NgR1, NgR2, and NgR3 (NgR1-/-/NgR2-/-/NgR3-/-) (199) should be performed to rule out 

complementary receptor use. While NgR2 does not function as a reovirus receptor 

following transfection into CHO cells (Fig. III-1), NgR2 and NgR3 display some 

functional redundancy with NgR1 (198, 199) and may contribute to reovirus replication 

or pathogenesis in mice. 

 

Characterize the importance of NgR1:reovirus interactions in oncolytics and neuronal 

plasticity regulation 

Independent of NgR1 function in reovirus tropism and pathogenesis in mice, 

studies presented in Chapter III inform two important fields of study: viral oncolytics and 

neuronal plasticity. NgR1 was first identified as a reovirus receptor in an immortalized 

cell line originating from a cervical cancer and is expressed by several transformed cell 

lines (234). All studies presented in this dissertation used a human isotype of NgR1 

(hNgR1). Transfection of cDNA encoding murine NgR1 (mNgR1) into CHO cells or MEL 

cells does not result in productive infection (data not shown) for unknown reasons. It 

may be that hNgR1 serves as a reovirus receptor and mNgR1 does not, due to 

sequence polymorphisms between the two molecules. However, studies using cortical 

neurons cultured from NgR1-/- mice and blockade of mNgR1 on WT neurons (98) 

suggest a function for mNgR1. 

NgR1 expression should be profiled for human tumors and cancer cell lines to 

identify whether titration of NgR1 expression influences reovirus oncolysis. Furthermore, 

reovirus or reovirus capsid subunits should be assessed in competition assays with 
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known NgR1 ligands. These studies could provide clues about structural interactions of 

reovirus and NgR1. Moreover, interruption of NgR1-mediating signaling can improve 

disease progression or outcome for several neuropathies. Studies presented here may 

illuminate therapeutic options for scientists studying various NgR1-influencing maladies, 

such as spinal crush injury, Alzheimer’s disease, or multiple sclerosis.  

 

Identify mechanisms of NgR1-depedent reovirus internalization  

Much remains to be learned about how NgR1 permits reovirus infection. In 

studies described in Chapter III of my thesis, I found that binding to NgR1-expressing 

cells was not sufficient to permit reovirus infection (Fig. III-5), suggesting that NgR1 

serves post-binding functions. NgR1 lacks a cytoplasmic domain and therefore is not 

predicted to initiate intracellular signaling events alone. To modulate axonal plasticity, 

NgR1 recruits a complex of coreceptors that either directly mediate (201, 203, 235) or 

enhance (202, 205) intracellular signaling. I hypothesize that NgR1 structural changes 

induced by deletions may allow NgR1 binding to reovirus but prevent interaction with 

co-receptors important for reovirus internalization. It would be informative to assess 

whether known coreceptors of NgR1 are expressed in CHO cells and whether these 

receptors influence reovirus entry.  

Previous proteomic analyses have identified that at least one NgR1 coreceptor, 

p75, is expressed in CHO cells (236). Using siRNA knockdown, dominant-negative 

constructs, or chemical inhibitors, where appropriate, the contribution of p75, TROY, 

Lingo-1, and Amigo3 to reovirus infectivity of CHO cells and neurons should be defined. 

In parallel experiments, over-expression of NgR1 co-receptors in CHO cells may 

demonstrate enhanced infectivity and provide an alternative method to identify 

functional coreceptors. Membrane distribution of NgR1 and co-receptors should be 

visualized before and after reovirus binding to identify whether recruitment to specific 

membrane microdomains occurs. If reovirus infection is not altered by disruption or 

overexpression of the most well-characterized coreceptors of NgR1, others could be 

assessed, or an unbiased cross-linking approach or immunoprecipitations could be 

used to identify components of a receptor complex.  
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Receptors often effect structural changes in capsid or envelope proteins to 

promote viral entry. NgR1 may modulate the stability of reovirus particles (Fig. III-6) by 

binding and destabilizing σ3. The effect of NgR1 on reovirus virion stability should be 

assessed in vitro and in situ, by quantifying production of reovirus disassembly 

intermediates incubated with soluble NgR1 or NgR1-expressing cells, respectively. 

NgR1 deletion mutants that contribute to reovirus binding but not infectivity (Fig. III-5) 

also could be assessed, as these differences may be dictated by a failure of NgR1 to 

mediate structural rearrangements of σ3. 

Reovirus can use several methods of entry (57, 58). However, mechanisms of 

neuronal and NgR1-dependent entry are not known. To my knowledge, NgR1 is not 

thought to be internalized following receptor-ligand interactions in the CNS. A functional 

truncation peptide of Nogo-A is internalized into neuronal cells via a macropinocytosis-

dependent uptake into signalosomes that mediate RhoA activation (237). However, this 

mechanism occurs independently of NgR1 expression (237). Therefore, it is important 

to define reovirus uptake mechanisms and determine whether these internalized 

components mediate signaling events.  

 

Assess whether NgR1 is used by other neurotropic reoviruses 

Baboon orthoreovirus (BRV) is a fusogenic orthoreovirus that initiates lethal 

meningoencephalitis in baboons (33, 238). While BRV virions are structurally similar to 

reovirus (239), they lack a σ1-equivalent fiber protein. Receptors for BRV have not been 

reported. However, the σ3 homolog of BRV (σB) has been implicated as a potential 

ligand for receptors (239), due to its high-copy number and surface exposure. NgR1 

should be assessed for the capacity to mediate infection of BRV and the related human 

pathogen, Colorado tick fever virus.  

 
Conclusions 

 The work presented in my thesis has generated new knowledge about 

determinants of reovirus tropism, neuroinvasion, and disease. Studies presented here 

establish important strategies and tools to identify the precise mechanism of reovirus-

mediated neuropathogenesis. Collectively, results presented here enhance our 
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understanding of viral pathogenesis and inform diverse fields of study ranging from 

oncolytic therapeutics to interventions for several neuropathies. 

 

 

 



CHAPTER V 

82 

MATERIALS AND METHODS  

 
Cells and antibodies 

Spinner-adapted L929 fibroblasts were maintained in Joklik’s minimal essential 

medium (JMEM) supplemented to contain 5% fetal bovine serum, 2 mM L-glutamine, 

100 U/ml penicillin, 100 µg/ml streptomycin, and 0.25 µg/ml amphotericin B. BHK-T7 

cells were maintained as previously described (46). CHO K12 (ATCC CCL-61) cells 

were maintained in F12 medium (DMEM; Gibco) supplemented to contain 10% FBS, 

100 U/ml penicillin, 100 µg/ml streptomycin, and 0.25 µg/ml amphotericin B. High Five 

insect cells (ThermoFisher, B85502) were maintained in Express Five (ThermoFisher, 

10486025) serum-free medium and cultured at 27°C.  

Reovirus-neutralizing antibodies 5C6 (240) and 9BG5 (241) were purified from 

hybridoma cell supernatants using protein G chromatography (GE Healthcare) (94). 

Hybridoma cell lines are deposited at the Developmental Studies Hybridoma Bank 

(Iowa City, IA, USA). Reovirus polyclonal serum was collected from rabbits immunized 

and boosted with reovirus strain T1L or T3D. Sera from T1L- and T3D-inoculated 

rabbits were mixed 1:1 (vol:vol) and cross-adsorbed on L929 cells to deplete non-

specific antibodies. NgR1- and NgR2-specific antibodies were affinity-purified from goat 

polyclonal antiserum (AF1208 and AF2776, respectively; R&D Systems) and used at 

0.1 μg/mL for immunoblot and flow cytometry experiments. Tubulin β 3 (TUBB3)-

specific antibody was used to detect neurons (801201; BioLegend). Mouse monoclonal 

antibody DM1A was used at a 1:2000 dilution to immunoblot for α-tubulin. Mouse 

monoclonal antibodies 8H6 (σ3-specific) (242) and 10C1 (µ1/µ1δ-specific) (240) were 

used in NgR1 immunoprecipitation studies. Purified mouse monoclonal recognizing the 

human c-Myc epitope (EQKLISEEDL) was used at a 1:8000 dilution (clone 9B11; Cell 

Signaling Technology). All primary and secondary antibodies (Licor) were diluted in 

TBS-T for immunoblot studies. 
 

Viruses 
All viruses were recovered using plasmid-based reverse genetics (3, 46) to 

contain nine gene segments from reovirus strain T1L (46) and a unique S1 gene. 
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Unique S1 gene sequences are published with NCBI. The S1 gene of T1+ is of strain 

T1L. T1- differs from T1+ at two point-mutations (S370P and Q371E) (101). The S1 

gene of T3+ was designed to express the same primary protein sequence of strain 

T3C44-MA and was engineered by site-directed mutagenesis of cDNA encoding strain 

T3D S1 (accession no. EF494441) to encode five σ1 polymorphisms (V22I, I88T, I246T, 

T249I, and T408A) (182) and one σ1s polymorphism (P70S). T3- differs from strain T3+ 

at a single polymorphism (P204L).  
T1 Head, T1 Tail, and T3 Body S1 genes were synthesized (GenScript) with a 5’ 

T7 promotor site and 3’ sequences encoding an HDZ ribozyme and initially packaged in 

the pUC57 vector by Xba1 flanking sequences. Genes and flanking sequences were 

excised by restriction-enzyme digest (Xba-I-HF; NEB) and subcloned into existing Xba1 

sites of pBacPak8 (Clontech).  

T3 Head and T3 Tail S1 genes were engineered by sticky-ended cloning of T3 

S1 sequences into modified T1L-S1-pBacPak plasmids (modified from (46)). A 5’ NcoI 

and a 3’ NheI site were engineered by site-directed mutagenesis into T1L-S1-pBacPak. 

Primers encoding terminal NcoI or NheI sequences were used to amplify heterologous 

cDNA fragments of the T3+ S1 sequence. T1L sequences of the σ1 head or tail regions 

of S1 were excised by restriction enzyme digestion and replaced with PCR-amplified 

and NcoI/NheI-digested linear cDNA fragments encoding the T3+ σ1 head or tail. NcoI 

and NheI restriction sites in the newly-created chimeric gene were reverted to intended 

protein-coding sequence by site-directed mutagenesis. 

The T1 Body S1 gene was engineered similar to T3-Head and T3-Tail S1 genes, 

in that NcoI and NheI sites were introduced in the T3+-pBacPak plasmid and T3+ 

sequences corresponding to a body domain were excised by restriction enzyme digest 

and replaced using sticky-ended addition of T1-body sequences. However, T1-Body 

sequences were synthesized (GenScript). NcoI and NheI sites of the chimeric gene 

were removed by site-directed mutagenesis. 

Virus was purified from infected L929 cells by cesium chloride gradient 

centrifugation (48), and viral titers were determined by plaque assay (242) or 

fluorescent focus unit assay using L929 cells (described below). Particle number was 

estimated by spectral absorbance at 260 nm (1 OD260 = 2.1 ˣ 1012 particles/mL). 
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Reovirus virions were labeled with succinimydl ester Alexa Flour 546 (Invitrogen) to 

generate directly fluoresceinated particles. 

 

Quantification of σ1 abundance in virions by colloidal-blue stained acrylamide 
gels  

Purified reovirus particles (5 ˣ 1010) were incubated 1:1 (vol:vol) with 2X laemmli 

sample buffer containing 5% β-mercaptoethanol at 95° for 5 min and electrophoresed in 

16-cm long 10% polyacrylamide gels under laemmli buffer using the Protean II Xi 

system (Bio-Rad) at room temperature for 6 h at 37 mA. Gels were stained with colloidal 

blue (Invitrogen) and scanned using an Odyssey CLx imager (LI-COR) at 700 nm λ. 

Optical density (OD) of bands corresponding to σ1 and μ (includes μ1, μ1C, and μ2) 

proteins were quantified using ImageStudio software (LI-COR). Relative OD of σ1 was 

calculated per gel using the equation: Relative ODσ1 = [(σ1x – σ1blank) ÷ (σ1max − σ1blank)] 

ˣ 100, where raw OD values are reported for experimental lanes (σ1x), lanes containing 

the maximum σ1 intensity measured per gel (σ1max), and for lanes measured at the 

same relative electrophoretic mobility in the gel where virus was not loaded (σ1blank). 

Relative OD for μ (ODμ) was calculated similarly. Normalized σ1 per virus = relative 

ODσ1 ÷ relative ODμ. 

 

Assessment of reovirus replication by plaque assay 
L929 cells (2 ˣ 105) were adsorbed with reovirus in Dulbecco’s phosphate-

buffered saline (PBS) at an MOI of 0.5 PFU/cell at 37°C for 1 h, washed with PBS, and 

incubated in 1 mL of fresh medium. At various intervals, cells were frozen and thawed 

twice before determination of viral titer by plaque assay using L929 cells. Viral yields 

were calculated using the equation: log10(PFU/mL)tx − log10(PFU/mL)tx=0, where tx is the 

time post-infection.  

 
FFU neutralization with conformation-specific antibodies 

L929 cells were adsorbed with serial two-fold dilutions of virus in complete JMEM 

at 37°C for 1 h, washed with PBS, incubated in fresh medium at 37° for 24 h, washed 

with PBS, and fixed with cold methanol. Fixed cells were incubated with reovirus 
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polyclonal serum diluted 1:1000 in 0.5% Triton X-100, followed by incubation with Alexa 

Fluor 488-labeled secondary IgG. Cells were counterstained with DAPI and imaged 

using a Lionheart FX imaging system (BioTek). The percentage of infected cells was 

quantified using Gen5 software (BioTek), and the concentration of virus required to 

infect approximately 60% of cells (TCID60) was determined.  
Antibody neutralization efficiency was determined by incubating virus at a 

concentration of 1 TCID60 of virus with an equal volume of complete JMEM or four-fold 

serial dilutions of 9BG5 or 5C6 antibody at room temperature for 1 h, followed by virus 

adsorption to cells at 37°C for 1 h. Cells were washed, fixed, imaged, and enumerated 

as described above. The percent neutralization was determined using the equation: 

percent infection[mAb] ÷ mean percent infectionJMEM. 

 

Hemagglutination assay 
Purified reovirus virions were serially diluted two-fold in 0.05 mL of PBS. Viral 

concentrations used ranged from 5.0 ˣ 1010 particles in 0.05 mL to 2.4 ˣ 107 particles in 

0.05 mL. Bovine erythrocytes (Innovative Research) or human type O- erythrocytes 

(University of Pittsburgh Medical Center Blood Bank) were washed with PBS and 

diluted to 1% in PBS (vol:vol). Equal volumes (0.05 mL) of virus and erythrocyte 

mixtures were gently mixed in U-bottom assay plates and incubated at 4°C for 4 h. 

Hemagglutination (HA) was defined as a partial or complete shield of erythrocytes within 

the well. The lowest number of reovirus particles required to produce HA, termed HALow, 

is used to calculate the HA titer using the equation: HA titer = (5.0 ˣ 1010 reovirus 

particles) ÷ (HALow). 

 
Mice and rats 

C57BL/6J mice (Jackson) were used to establish breeding colonies in specific-

pathogen free facilities at Vanderbilt University and the University of Pittsburgh and 

experiments were performed using ABSL2 facilities and guidelines. Timed pregnant 

Sprague-Dawley rats (Charles River) were housed in specific-pathogen free facilities at 

the University of Pittsburgh before euthanasia and embryo resection. Experiments using 

mice and rats included approximately equivalent numbers of males and females. 
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All animal husbandry and experimental procedures were performed in 

accordance with U.S. Public Health Service policy and approved by the Institutional 

Animal Care and Use Committees at Vanderbilt University and the University of 

Pittsburgh.  

 

Infection of mice and histology  
Two to three litters of two-to-three-day-old C57BL/6J mice weighing between 1.4-

2.2 g were inoculated intracranially in the right cerebral hemisphere with 100 PFU of 

virus (± 3–fold) diluted in PBS using a 30-gauge needle and syringe (Hamilton). Viral 

titers of inocula were confirmed by plaque assay. For analyses of virulence, inoculated 

mice were monitored daily for symptoms of disease. Death was not used as an endpoint 

in these studies; moribund mice were euthanized. Qualifications for moribundity 

included severe lethargy or seizures, paralysis, or 25% body weight loss.  
For analyses of viral replication and immunohistopathology, mice were 

euthanized 8 days post-inoculation, and brains were excised and hemisected along the 

longitudinal fissure. The right-brain hemisphere was collected into 1 mL of PBS and 

frozen and thawed twice prior to homogenization using a TissueLyser (Qiagen). Viral 

titers were determined by plaque assay using L929 cells. The left-brain hemisphere was 

fixed in 10% neutral buffered formalin for at least 24 h, imbedded in paraffin wax, and 

cut into 5 μM thick sections. Using the BOND-MAX automated system (Leica), tissue 

was deparaffinized, incubated with Epitope Retrieval Solution 2 (BOND) at 100°C for 20 

min (followed by gradual, stepwise temperature reduction), blocked with Serum Free 

Protein Block (DAKO) at room temperature for 10 min, and incubated with reovirus 

polyclonal serum diluted 1:45,000 in Primary Antibody Diluent (BOND). Polymer Refine 

Detection reagents (BOND) were used to visualize reovirus antigen and nuclei using 

3,3'-diaminobenzidin-conjugated rabbit secondary IgG and a hematoxylin counterstain, 

respectively. Stained slides were scanned using a Lionheart FX imager. 

 
Cortical neuron culture 

Surfaces of 48-well tissue-culture grade plates were treated with Neurobasal 

medium (Gibco) containing 10 μg/mL poly-D-lysine (BD Biosciences) and 1 μg/mL 
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laminin (BD Biosciences) at 4°C overnight and washed three times with PBS. Plating 

medium (Neurobasal medium supplemented to contain 10% fetal bovine serum, 50 

U/mL penicillin, 50 μg/mL streptomycin, and 0.6 mM GlutaMAX [GIBCO]) was added to 

treated wells, and plates were incubated at 37°C until use. 
Cortices of embryonic day 17.5 Sprague-Dawley rats were isolated, separated 

from meninges, and collected in Hanks’ balanced salt solution-/- (HBSS) on ice. Cortices 

were incubated with 130 U/mL trypsin (Worthington) in HBSS at room temperature for 

30 min, washed twice with HBSS, and dissociated in 5 mL of plating medium by 

trituration with fire-polished borosilicate glass Pasteur pipettes. Debris was allowed to 

settle for 2 min, and the supernatant was transferred to 5 mL of plating medium for 

additional trituration. Cell viability was assessed by trypan blue exclusion, and 105 

viable cells were suspended in plating medium per well and incubated overnight. Plating 

medium was removed and cells were maintained in Neurobasal medium supplemented 

to contain 1X B27 supplement (Gibco), 50 U/mL penicillin, 50 μg/mL streptomycin, and 

0.6 mM GlutaMAX. Half of the medium was replaced every 4 days, and neurons were 

cultivated in vitro for 10-12 days prior to infection.  

 
Defining sialic-acid (SA) dependent and independent infectivity of cultured 

neurons 
Cultured cortical neurons were incubated with either vehicle control or 40 mU/mL 

of Arthrobacter ureafaciens neuraminidase (MP Biomedicals, LLC) diluted in complete 

Neurobasal medium at 37°C for 1 h. Neurons were washed with PBS and adsorbed with 

reovirus diluted in PBS with added calcium and magnesium at an MOI of 500 PFU/cell 

at 37°C for 1 h. The inoculum was removed, warm complete medium was added to 

cells, and cells were incubated for 24 h prior to fixation with 4% paraformaldehyde and 

0.2% glutaraldehyde in PBS at 37°C for 15 min. Fixation was quenched with 100 mM 

glycine in PBS, and cells were blocked with 5% bovine serum albumin in PBS.  
Fixed cells were incubated with reovirus polyclonal serum diluted 1:1000 in 0.5% 

Triton X-100, followed by incubation with Alexa Fluor 488-labeled secondary IgG. Cells 

were counterstained with DAPI, and neurons were identified by indirect 

immunofluorescence using a mouse anti-tubulin beta 3 (Tuj1) antibody (BioLegend) 
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diluted 1:1,000, followed by incubation with Alexa Fluor 546-labeled secondary IgG. 

Neurons were imaged at 4X magnification with 6 images/well in quadruplicate wells per 

virus per experiment using a LionHeart FX imager. DAPI-positive nuclei were 

enumerated using Gen5 software, and reovirus-positive neurons were manually 

counted.  

 

Receptor cDNA transfection and infection of CHO cells 
One day before transfection, CHO cells were seeded in 1 mL of completed F12 

medium at a density of 1 ˣ 105 cells/well in 24-well tissue culture plates. Apporximately 

0.5 µg of pcDNA3.1+ expression vector was combined with FuGene 6 (Promega, 

E2691) in Opti-MEM (Gibco) and incubated at RT for 20 min. Opti-MEM mixture was 

added dropwise to cell supernatants and cells were incubated for 48 h post-transfection 

at 37°C before infection or flow cytometry experiments. 

For infections, transfected CHO cells were inoculated with T3- diluted in PBS-/- at 

an MOI of 500 PFU/cell at 37°C for 1 h. Virus was removed and cells were washed with 

PBS and incubated in completed F12 medium. At 24 hpi, cells were fixed with cold 

methanol at -20°C for 30+ min. Fixed cells were stained with reovirus antiserum, anti-

rabbit Alexa Fluor 488, and DAPI and imaged manually. Infected cells (FFU) were 

counted per 20X field of view on a Zeiss Axiovert 200 fluorescent microscope. At least 

four fields of view were counted per well in triplicate wells.  

 

Flow cytometry assessment of reovirus binding or receptor expression 
Monolayers of mock- or cDNA-transfected CHO cells were washed with PBS, 

detached using CellStripper Dissociation Reagent (Corning), and quenched with an 

equal volume of PBS-/- supplemented to contain 2% FBS (FACS buffer). All further 

washes and dilutions were performed in FACS buffer in 1.5 mL tubes. Cells were 

pelleted at 1000 revolutions per minute (rpm) at 4°C for 5 min. Cells were washed, 

pelleted, and incubated with 105 particles of T3- reovirus/cell on ice for 1 h. Cells were 

pelleted to remove unbound virus, washed 3X, and incubated with NgR1 and/or NgR2-

specific antibodies or myc-specific antibodies on ice for 1 h. Cells were washed 3X and 

fixed in PBS-/- supplemented to contain 1% paraformaldehyde. Cells were analyzed 
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using a Fortessa flow cytometer (BD Bioscience) and results were quantified with 

FlowJo software. 

 

Expression and purification of the μ13σ33 heterohexamer 
Hi5 insect cells (1 L) were infected with 20 mL of third passage rBV expressing 

the T1L reovirus μ1 and σ3 heterohexamer proteins. Cells were incubated at 27°C for 

72 h, pelleted by centrifugation at 500g for 10 min, and resuspended in heterohexamer 

lysis buffer (150 mM KCl, 20 mM Tris pH 8.5, 2 mM MgCl2, 2 mM β-mercaptoethanol 

[BME], 3 mM PMSF, and completed with benzonase [1,000 units] and complete 

protease inhibitors [Roche] prior to use). Cells were lysed by emulsiflex and debris was 

cleared by ultracentrifugation at 31,200 rpm for 40 min at 4°C. The supernatant was 

loaded onto a MonoQ ion-exchange column and washed with buffer A (20 mM Tris pH 

8.5, 20 mM MgCl2, 2 mM BME) containing 150 mM NaCl. The heterohexamer was 

eluted with a linear buffer A gradient from 150 to 450 mM NaCl. Fractions containing μ1 

and σ3 were pooled and concentrated to 1 mL with a 30 kDa molecular weight cut-off 

(MWCO) centricon. Protein was diluted to 4 mL with buffer A lacking NaCl and mixed 

dropwise with ammonium sulfate buffer (4 M ammonium sulfate, 20 mM Tris pH 8.5) to 

a final concentration of 0.7 M ammonium sulfate. Protein was loaded onto a phenyl 

sepharose column and eluted with a linear buffer A gradient from 0.7 M to 0 M 

ammonium sulfate. Fractions containing heterohexamer were pooled and concentrated 

with a 30 kDA MWCO centricon. Protein was passed through a Superdex 200 size-

exclusion column equilibrated with buffer B (20 mM Bicine pH 9, 100 mM NaCl, 2 mM 

MgCl2, 2 mM BME). Heterohexamer fractions were pooled and concentrated to 1 

mg/mL. 

 

Production of 35S-labeled σ3  
Coupled in vitro transcription and translation reactions were conducted using the 

TNT coupled rabbit reticulocyte lysate system (Promega, L4610) according to the 

manufacturer’s instructions. Reactions were supplemented with [35S]-methionine (Perkin 

Elmer, NEG709A500UC) for radiolabeling and RNasin Plus RNase Inhibitor (N2611). 

Using pcDNA3.1+ encoding T1L or T3D S4 for in vitro transcription and translation, 
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reactions were incubated at 30°C for 30 min. Translation reactions were terminated by 

four-fold dilution in stop buffer (20 mM HEPES-KOH pH 7.4, 100 mM potassium 

acetate, 5 mM magnesium acetate, 5 mM EDTA, 2 mM methionine) supplemented with 

a final concentration of 1 mM dithiothreitol (DTT) and 2 mM puromycin. 

 

Immunoprecipitations; Native and SDS-PAGE, immunoblotting and phosphor 
imaging 

Immunoprecipitation: To immunoprecipitate proteins translated in vitro in RRLs, 

5 µg of mouse 10C1 or 8H6 monoclonal antibody or NgR1-Fc or CAR-Fc were 

incubated with σ3-expressing reactions at 4°C for 1 h with rotation. Samples were 

added to Protein G Dynabeads and incubated at 4°C for 1 h with rotation. The flow-

through containing unbound protein was resolved by native PAGE. Dynabeads were 

washed four times with Tris-buffered saline (20 mM Tris-HCl pH 7.5, 150 mM NaCl) 

containing 0.1% Tween-20, eluted with SDS sample buffer, and resolved by SDS-

PAGE.  

Native PAGE: Samples for native PAGE were diluted in 4X Native PAGE 

Sample Buffer (ThermoFisher, BN2003) and loaded into wells of 4-16% Native PAGE 

Bis-Tris acrylamide gels (ThermoFisher). Samples were electrophoresed using the blue 

native PAGE Novex Bis-Tris gel system (ThermoFisher) at 150V at 4°C for 60 min, 

followed by 250V at 4°C for 40 min. Light blue anode buffer was supplemented with 

0.1% L-cysteine and 1 mM ATP.  

Following electrophoresis, proteins were transferred to a polyvinylidene difluoride 

(PVDF) membrane (BioRad, 162-0177) at 25 V at 4°C for 2 h. Following transfer, the 

membrane was soaked in 8% acetic acid for 15 min, rinsed with ddH2O, and dried. The 

membrane was incubated with 100% methanol for 1 min, rinsed with ddH2O, blocked 

with 5% bovine serum albumin (BSA) diluted in PBS-/- and incubated with antibodies for 

immunoblotting. All native gels were electrophoresed with the NativeMark Protein 

Standard (ThermoFisher, LC0725) for molecular weight estimation. 

SDS-PAGE: Samples for SDS-PAGE were diluted in 5X SDS-PAGE sample 

buffer and incubated at 95°C for 10 min. Samples were loaded into wells of 10% 

acrylamide gels (BioRad, 4561036) and electrophoresed at 100V for 90 min. Following 
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electrophoresis, proteins were either stained with colloidal blue (ThermoFisher, LC6025) 

or transferred to nitrocellulose for immunoblotting. Immunoblot analysis was performed 

as described (243) and gels were scanned using an Odyssey CLx imaging system (Li-

Cor). 

Phosphor Imaging: Following electrophoresis, gels were incubated in 40% 

methanol, 10% acetic acid at RT for 1 h, washed three times with ddH2O, and dried on 

filter paper at 80°C for 2 h using a BioRad model 583 gel dyer. Dried gels were applied 

to a phosphor imaging screen for 12-36 h, followed by imaging using a Perkin Elmer 

Cyclone Phosphor System Scanner (B431200). Protein bands labeled with 35S-

methionine were analyzed using ImageJ software (244).  

 

Cryo-EM Reconstructions of NgR1 and reovirus 
Purified T3- reovirus virions were incubated with buffer alone, soluble NgR1-Fc, 

or JAM-Fc at RT for 4 h or >48 h and embedded in a thin layer of vitreous ice on holey 

carbon films (245). Frozen hydrated specimens were imaged using low electron dose 

conditions with JEOL 2010F or JEOL 3200 FSC cryo-electron microscopes equipped 

with direction detection cameras in the NIH-funded National Center for Macromolecular 

Imaging at Baylor College of Medicine. Image processing (~ 600 particles) and three-

dimensional reconstruction (~ 16 Å resolution) were conducted using EMAN2 software 

to visualize how NgR1 interacts with the reovirus capsid. 

 

Statistical analysis 
All statistical tests were conducted using Prism 7 (GraphPad Software). P values 

of less than 0.05 were considered to be statistically significant. Descriptions of the 

specific tests used are found in the figure legends, and differences are calculated 

relative to T1+ virus unless otherwise noted.  
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