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CHAPTER I 

 

SIMIAN VIRUS 40: A PARADIGM FOR METAZOAN DNA TRANSACTIONS  

 

DNA replication: the duplication of genetic information 

 

 To facilitate passage of genetic information from generation to generation, 

cellular DNA must be duplicated once during the S phase of each cell cycle.  The 

process of DNA replication takes place in multiple steps.  First, the origin of replication 

(ori), an element of the DNA, is bound by a complex of proteins that mark origins to be 

replicated.  The protein-bound origin then recruits additional replication licensing factors 

creating a pre-replication complex that melts a small region of the DNA.  The initial 

melting of the origin allows a DNA helicase to unwind the double stranded DNA (dsDNA) 

duplex into single stranded DNA (ssDNA) thereby exposing the template bases of the 

DNA.  A complementary RNA primer is synthesized in the 5' to 3' direction onto the 

exposed ssDNA by a primase creating a RNA/DNA heteroduplex.  The 3' hydroxyl group 

of the RNA primer is then extended by DNA polymerases utilizing deoxyribonucleoside 

triphosphates to synthesize a nascent double strand DNA (dsDNA).  Torsional stress 

resulting from the unwinding of the DNA by the helicase is removed by type I 

topoisomerases, enzymes that transiently nick one strand of DNA and pass the second 

strand through the nick.  The complex of proteins that collectively replicate DNA is 

termed the replisome.  Replisomes moving away from the origin eventually converge 

with a second replisome replicating in the opposing direction, creating two identical 

copies of DNA, each containing a template and nascent strand. The fully replicated DNA 

is entangled or knotted upon replisome convergence and is subsequently untangled by 
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type II topoisomerases in a process termed decatenation.  Thus, DNA replication takes 

one DNA template and generates two identical copies of the template DNA.   

 

Primate DNA replication: origins ready, set, fire 

 

 Control of DNA replication timing and fidelity is essential.  One duplication of the 

genomic content occurs during each S phase of the cell cycle through an ordered series 

of events.  During late M or early G1 phases, cellular origins of DNA replication are 

bound by the origin recognition complex (ORC) (Figure 1A) (Mechali, 2010).  Binding of 

the ORC heterohexamer recruits cdc6 and cdt1 to replication origins (Figure 1B, C) (Bell 

and Dutta, 2002).  A pre-replication complex is finally formed when the MCM (2-7) 

heterohexamer ATPase is loaded at the origin bound by ORC, cdc6, and cdt1 (Bell et 

al., 2002) (Figure 1C).  After the MCM complex is bound, cdt1 and cdc6 leave the 

complex (Figure 1D, E).  To prevent reloading of MCM (2-7) onto ORC and re-replication 

of the genome during the subsequent phases of the cell cycle, cdt1 is either degraded or 

sequestered by its inhibitor geminin  (Masai, Matsumoto et al., 2010) (Figure 1D). 

  At the G1 to S phase transition, retinoblastoma (Rb) family proteins are degraded 

to release E2F family transcription factors that promote the transcription of several 

critical S phase proteins including cdc45, ribonucleotide reductase, and DNA 

polymerases (Cam and Dynlacht, 2003).  The subsequent high levels of cyclin 

dependent kinase (CDK) and cdc7-dbf4 kinase activities that propel the G1 to S 

transition result in the binding of cdc45 and the GINS heterotetramer to the pre-

replication complex on the origin (Figure 1F) creating an active cdc45-MCM(2-7)-GINS 

(CMG)  helicase (Masai et al., 2010).  Furthermore, phosphorylation events catalyzed by 

CDK and cdc7-dbf4 promote further binding of several replication factors including 
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Figure 1.  Eukaryotic replisome formation. 
(A) Cellular oris are bound by ORC.  (B, C) Cdc6 binds to ORC and recruits Cdt1 and MCM2-7.  (D, E) Cdt1 
and Cdc6 leave the pre-replication complex bound to the origin.  (F) Phosphorylation of the pre-replication 
complex promotes binding of Cdc45, GINS, and other replisome factors.  Adapted from Masai et al., 2010. 
Annu Rev Biochem. 79: 89-130. 
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TopBP1, CTF-4/AND-1, timeless, tipin, and MCM10 that link the CMG helicase to 

polymerase α/primase and polymerase ε (Figure 1F) (Masai et al., 2010).   

 The culmination of these biochemical events creates a fully functional replisome 

containing a multitude of activities at the ori.  The CMG helicase translocates 3' to 5' 

along ssDNA to unwind DNA (Figure 2A) (Kang, Galal et al., 2012).  Following 

unwinding, the ssDNA binding protein replication protein A (RPA) binds to the exposed 

ssDNA and protects it from endonucleolytic digestion by nucleases (Figure 2A).  In 

addition, the RPA bound ssDNA prevents reannealing of unwound DNA behind the 

helicase, thereby presenting the template ssDNA for DNA polymerase α/primase to 

synthesize an RNA primer and initial nascent DNA (Figure 2B) (Waga and Stillman, 

1998).  High-fidelity, processive DNA synthesis is performed by DNA polymerases ε and 

δ on the leading and lagging strands, respectively (Figure 2C) (Pursell and Kunkel, 

2008; Kunkel and Burgers, 2008).  The RNA primer and DNA synthesized by 

polymerase α/primase  are removed from nascent DNA by the combined strand 

displacement activity of polymerase δ and 5' ssDNA flap endonucleolytic activity of 

FEN1 (Figure 2C) (Balakrishnan and Bambara, 2011).  The RNA-free nascent DNA 

strands are then ligated together by DNA ligase I and untangled by topoisomerase I and 

topoisomerase IIα.   

 Another hurdle that the replisome must overcome is the higher-order compacted 

structure of eukaryotic genomes termed chromatin.  To compress the large eukaryotic 

genome into chromatin, DNA is wrapped around proteinaceous histone octamers 

composed of two molecules each of histones H2A, H2AB, H3, and H4 or their respective 

histone variants (Ruthenburg, Li et al., 2007).  The histones and their post-translational 

modifications must also be replicated during DNA replication.  For this function, 

chromatin remodeling and modifying factors that remove and replace histones are also 

contained in the replisome.  Thus, a functional replisome is capable of creating 
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Figure 2.  
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Figure 2. Cellular DNA polymerization. 
(A)  CMG unwinds DNA and loads RPA onto ssDNA.  (B) Bound RPA on the lagging strand is removed from 
the ssDNA by CMG and polymerase α / primase creates an RNA (zig zag) / DNA (smooth line) primer.  (C) 
Polymerase α / primase is displaced by RFC.  RFC loads PCNA at the ssDNA / dsDNA junction.  
Polymerase δ binds to PCNA at the ssDNA / dsDNA junction and polymerizes the lagging strand.  On the 
leading strand Polymerase ε synthesizes the nascent DNA. 
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continuous strands of chromatinized DNA that are topologically separated from one 

another. 

 

DNA repair: safeguarding the genome 

 

 Although replicative DNA polymerases exhibit extreme accuracy (around 1 base 

substitution per 106 to 108 basepairs (bps) (Kunkel, 2004)), DNA is constantly subject to 

damage from both endogenous and exogenous sources with several consequences.  

Various modifications to DNA including base adducts, DNA inter- and intra-strand 

crosslinks, and both single and double strand breaks (SSB and DSB, respectively) 

(Table 1) (Ciccia and Elledge, 2010) are repaired by a multitude of mechanisms that 

prevent accumulation of mutations and chromosome translocations during DNA 

replication.  Thus, DNA repair provides a safety net to prevent adverse cellular 

consequences, such as cellular senescence, cell death, or unregulated cell division, that 

are associated with increased mutation frequency in the genome. 

 A general theme in DNA repair is that DNA damage is detected by protein 

sensors.  Each sensor directs repair towards specific pathways that are able to remove 

or correct the type of damage on the DNA.  Although some proteins of a pathway or an 

entire pathway can be used in the repair of multiple types of DNA damage, DNA repair 

can be divided into six major branches: mismatch repair (MMR), base excision repair 

(BER), nucleotide excision repair (NER), SSB repair, interstrand crosslink (ICL) repair, 

and DSB repair.  MMR removes DNA replication associated errors.  Since polymerase α 

lacks proofreading exonuclease activity and polymerizes DNA at a much lower fidelity 

than do polymerases ε and δ, MMR provides a backup mechanism to remove errors 

created by this polymerase (Crouse, 2010).  This pathway is estimated to increase DNA 

replication fidelity by orders of magnitude to around 1 base substitution per 1010 bps 
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(Crouse, 2010) and is thus crucial for the prevention of nucleotide misincorporation by 

DNA polymerases.   

 On the DNA, base modifications can result from exogenous agents such as 

methyl methanesulfonate or reactive oxygen species emitted from the mitochondria.  

These lesions are removed by BER.  The oxidized base modification 8-oxo-dG has been 

estimated to occur at numbers ranging from 180 (Iyama and Wilson, 2013) to 400-1500 

(Ciccia et al., 2010) lesions per cell per day (Table 1).  Such base lesions can be 

removed through the action of one of several DNA glycosylases.  In doing so, BER 

leaves abasic sites in the DNA that are subsequently repaired by the combined actions 

of AP endonuclease, a DNA lyase, DNA polymerase β, and DNA ligase III (Iyama et al., 

2013).  Failure to repair base adducts by BER can result in nucleotide misincorporation 

across from the modified base or increased polymerase stalling.  Polymerase stalling 

can be particularly toxic as this event can coincide with replication fork breakage which 

is a DSB that is quite toxic to the cell.    

 NER repairs bulkier DNA lesions that distort the DNA helix.  These lesions are 

exemplified by intrastrand crosslinked thymidine dimers introduced by ultraviolet light 

(UV) irradiation.  Like modified bases, bulky nucleotide lesions need to be excised from 

the DNA and repaired.  Like the base modifications repaired by BER, these bulkier 

adducts can also arrest the DNA polymerase or cause nucleotide misincorporation 

across from the crosslinked DNA.  Thus, it is crucial that NER repairs these lesions prior 

to and during DNA replication.  NER can be elicited by two pathways.  The first, global 

genome NER, utilizes proteins that recognize the lesion in dsDNA, whereas the second 

utilizes stalling of transcriptional machinery to activate NER, termed transcription- 

coupled NER (Hoeijmakers, 2009).  Both pathways funnel repair toward a mechanism in 

which the DNA around the lesion is unwound by the TFIIH DNA helicase.  The bubble is 

then cleaved by ERCC1-XPF and XPG endonucleases leading to the selective removal 
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of the DNA strand containing the intrastrand crosslink (Hoeijmakers, 2009).  The 

resulting gap is filled by a DNA polymerase and the DNA is ligated.  Null or inactivating 

mutations to proteins that contribute to NER causes the UV sensitivity disorder 

xeroderma pigmentosum.  This disorder is characterized by high rates of skin cancer 

and developmental abnormalities.   

  An important byproduct of both the BER and NER pathways is the generation of 

nicked or gapped DNA.  This nicked or gapped DNA, a type of SSB, is actually the 

substrate for which SSB repair is elicited.  The SSB is initially recognized by poly-ADP 

polymerase 1 (PARP1) and poly-ADP polymerase 2 (PARP2).  PARP1 and PARP2 

subsequently ribosylate numerous substrates at the SSB including themselves and 

nearby histones in a process termed poly-ADP-ribosylation (PARylation) (Rouleau, Patel 

et al., 2010).  PARylation recruits factors including polymerases, nucleases, and ligases 

that can fill the DNA gap and repair the SSB (Rouleau et al., 2010).  Failure to repair a 

SSB can lead to the conversion of the SSB at the replication fork to a DSB when the 

replicative helicase unwinds the SSB.  This mechanism of DSB formation is similar to 

that observed when the replisome encounters a topoisomerase I cleavage complex 

caused by the topoisomerase inhibitor camptothecin, a common chemotherapeutic 

agent.  Furthermore, SSB repair is currently the target of several recent novel 

chemotherapeutics that target the initial step of the pathway, PARylation (Wang, Wang 

et al., 2012).  Hence, this pathway is highly relevant to cancer. 

  

DSB repair: strength in redundancy 

 

 Unlike the aforementioned pathways, DSB repair cannot be categorized into one 

catch-all pathway.  Multiple mechanisms are able to repair this type of damage.  This 

likely results from the numerous distinct ways that both strands of the DNA double helix 
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can be broken.  Several common cancer therapies that induce DSBs include ionizing 

radiation (X and gamma rays), topoisomerase I inhibitors (e.g., camptothecin), or 

topoisomerase II inhibitors (e.g., etoposide and teniposide).  Additionally, DNA 

replication itself can create a DSB when the replisome replicates through a SSB, with 

the separation of the DNA into individual strands generating an one-ended DSB.  DSBs 

are an extremely toxic type of damage to the cells as they can result in many types of 

mutation and chromosomal translocations.  Therefore to combat this type of damage, 

metazoan cells have evolved many mechanisms to repair DSBs.   

 Non-homologous end joining (NHEJ), homologous recombination (HR), 

microhomology-mediated end joining (MMEJ), and single-strand annealing (SSA) are 

independent pathways used by primate cells to repair DSBs (Ciccia et al., 2010).  

Despite having many DSB repair pathways, not each DSB repair pathway is created 

equal, with different pathways varying in repair efficiency and accuracy.  Furthermore, 

the preference for one pathway or another is tightly regulated by cell cycle dependent 

post translational modifications, chromatin state, and DNA substrate preferences.  Thus, 

multiple complex factors influence the outcome of repair and which pathway is used to 

repair a given DSB. 

 

NHEJ  

 NHEJ can be considered the work horse of DSB repair and functions to directly 

fuse the broken DNA ends (Figure 3) (Neal and Meek, 2011).  Although NHEJ is more 

prone to errors, often resulting in substitutions, small insertions, or small deletions at the 

site of DNA breakage, this pathway repairs the majority of DSBs during G1 and G2 and 

is active throughout the cell cycle (Shibata, Conrad et al., 2011; Jeggo, Geuting et al., 

2011).  Upon DSB formation, the abundant Ku70/Ku80 heterodimer (Ku) recognizes the 

broken DNA end with high affinity.  Binding of Ku protects the DNA end from processing 



12 
 

 
 
 
Figure 3. 
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Figure 3. Models of NHEJ and MMEJ. 
(A) Ku binds to termini of DSB protecting them from nuclease digestion.  (B) DNA-PKcs binds to Ku80 and 
Ku moves away from DSB termini.  (C) The kinase activity of DNA-PKcs auto-phosphorylates itself thereby 
exposing DSB termini.  (D) DSB ends are processed to remove base adducts by the 5' to 3' exonuclease 
Artemis and lyase activity of Ku.  DNA polymerases lambda and mu (Pol X) fill in any gaps that are created.  
(E) XLF, XRCC4, and Ligase VI ligate the broken DNA repairing the DSB.  (F) PARP1 or PARP2 promote 
PARylation of chromatin at DSB termini enhancing MRN binding to the end of the DSB.  The nuclease 
activities of Mre11 begin 5' to 3' end resection.  (G) CtIP binds to MRN promoting more processive 5' to 3' 
end resection creating a 3' tail at the DSB termini.  (H) Small tracts of complementary sequence are 
annealed.  Unannealed DNA is cleaved by nucleases, and DNA is ligated by Ligase III.  Adapted from Neal 
et al., 2011. Mutat Res. 711: 73-86. 
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by nucleases (Figure 3A) and recruits DNA-dependent protein kinase catalytic subunit 

(DNA-PKcs), a member of the PI3K-related kinase (PIKK) family.  The binding of DNA-

PKcs to Ku forms the DNA-PK holoenzyme and results in the movement of Ku away from 

the DSB ends allowing DNA-PKcs to contact them (Figure 3B) (Meek, Dang et al., 2008).  

Importantly, Ku binding to DNA-PKcs activates the kinase activity of DNA-PKcs, thereby 

promoting NHEJ (Figure 3B) (Meek et al., 2008).   

 DNA-PKcs phosphorylates a multitude of substrates at the site of the DSB and is 

essential for NHEJ (Meek et al., 2008).  DNA-PKcs also is the primary target of its kinase 

activity (Meek, Douglas et al., 2007; Neal, Dang et al., 2011).  With its kinase activity, 

DNA-PK determines whether NHEJ or another pathway repairs the DSB (Neal et al., 

2011).  This function is thought to occur through the auto-phosphorylation of multiple 

patches of residues on DNA-PKcs in trans that results in distinct outcomes of repair 

(Weterings and Chen, 2007; Neal et al., 2011).  The best characterized of these 

autophosphorylation patches on DNA-PKcs is the ABCDE cluster (residues from 2609-

2657 of DNA-PKcs) and PQR cluster (residues lying around 2023-2056 of DNA-PKcs) 

(Chen, Chan et al., 2005; Chen, Uematsu et al., 2007; Meek et al., 2007).   The ABCDE 

cluster is a substrate of ATM, ATR, and DNA-PKcs (Chen et al., 2007; Meek et al., 2007; 

Yajima, Lee et al., 2006). Phosphorylation of DNA-PKcs at the ABCDE cluster causes a 

conformational change in DNA-PK that allows DNA end processing by endo- and 

exonucleases such as Artemis  (Figure 3C) (Uematsu, Weterings et al., 2007; Meek et 

al., 2007; Shibata et al., 2011).  On the other hand, the PQR cluster is phosphorylated 

only by DNA-PKcs in vivo (Chen et al., 2007).  Auto-phosphorylation at the PQR cluster is 

hypothesized to protect the broken DNA end from nucleolytic processing (Uematsu et 

al., 2007; Meek et al., 2007).  Thus, DNA-PK is thought to function as a gatekeeper to 

the termini of DSBs.     
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 After DNA-PK activation, the break can be processed by Ku, polynucleotide 

kinase/ phosphatase, and the Artemis endonuclease to remove modifications from the 

break site (Figure 3D) (Neal et al., 2011).  Gaps in the DNA left after end processing are 

then filled utilizing DNA polymerases lambda and mu (Figure 3D), and the DNA is ligated 

together by XRCC4/ligase VI with the aid of NHEJ accessory factor XLF (Figure 3E) 

(Neal et al., 2011).  Like other DNA repair pathways, mutations inactivating components 

of NHEJ results in human disease, with mutations to DNA-PKcs, XLF, Artemis, or 

XRCC4/ligase VI causing radiosensitive-severe combined immunodeficiency disorder 

(RS-SCID) (Goodarzi and Jeggo, 2013).  The SCID phenotype is a result of the failure of 

essential functions of the NHEJ pathway in V-D-J recombination used to re-arrange 

antigen receptor genes.  Collectively, NHEJ is crucial to the repair of DSBs. 

 

MMEJ 

 During G1, an alternative pathway to NHEJ can also be used to repair DSBs and 

is termed MMEJ, also known as alternative-NHEJ.  MMEJ functions primarily in the 

absence of Ku, is even more error prone than NHEJ, and can generate large deletions at 

the site of breakage (Goodarzi et al., 2013).  Although much less is known about the 

proteins contributing to MMEJ, a subset of proteins that contribute to this pathway have 

been defined.  Similar to SSB repair, PARP1 and PARP2 can recognize and PARylate 

DSBs (Figure 3F).  PARylation at the DSB is hypothesized to promote decomposition of 

chromatin at the DSB site (Ciccia et al., 2010) and contribute to the recruitment of a 

complex containing Mre11-Rad50-Nbs1 (MRN) and CtBP-interacting protein (CtIP) to 

break sites (Figure 3G) (Haince, McDonald et al., 2008).  Upon MRN/CtIP binding to the 

DSB, the nuclease activities of this complex digest the 5’ end of the broken DNA 

(Stracker and Petrini, 2011), creating a short 3’ tail in a process termed end resection 

(Figure 3G).  Using unknown factors, the 3’ tail is then annealed using small regions of 
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homology, creating 5' flaps.  The un-annealed 5' flaps are excised from the DNA, and 

the annealed regions are ligated by ligase III to repair the DSB (Figure 3H) (Goodarzi et 

al., 2013).  This pathway is seldom used by the cell when NHEJ is functional and can 

generate large or small deletions due to the excision of the 5' flaps.  Therefore, the 

circumstances in which MMEJ is used in favor of NHEJ are not well understood. 

 

5' to 3' end resection: initiation of homology dependent repair 

 Unlike NHEJ and MMEJ, homology-directed repair by HR and SSA requires an 

intact sister chromatid to repair DSBs and is therefore only active during the S and G2 

phases of the cell cycle.  The ability of HR and SSA to utilize the replicated sister 

chromatid to repair DSBs endows these pathways with the unique ability to repair one- 

ended breaks created by broken DNA replication forks.  Homology-directed repair 

commences with the MRN/CtIP complex binding to the DSB, a process that may be 

linked to PARylation at the DSB by PARP1 and PARP2 (Figure 4A) (Haince et al., 

2008).  Processive 5' to 3' end resection that generates long 3' tails at the site of the 

DSB is a strict requirement for HR and SSA and is limited to S and G2 phases by CDK- 

dependent phosphorylation of CtIP at multiple residues (Sartori, Lukas et al., 2007; 

Huertas and Jackson, 2009; Yun and Hiom, 2009).  The phosphorylation of CtIP residue 

847 by S phase CDK/Cyclin kinase activities increases the nuclease activities of the 

MRN/CtIP complex, thereby restricting processive end resection to S and G2 (Figure 4B) 

(Huertas et al., 2009).  Initiation of resection in vitro utilizes the endonuclease activity of 

Mre11 to nick the DNA, creating a substrate for the 3' to 5' exonuclease of Mre11 

(Garcia, Phelps et al., 2011).  This initial 3' tail can be resected more vigorously by Exo1, 

a 5' to 3' exonculease, or the combined actions of the Bloom syndrome helicase (BLM)  

and endonuclease Dna2, which can cleave 5' flaps (Figure 4C) 
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Figure 4. 
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Figure 4. Homology-directed repair model. 
(A) PARylation at DSB termini enhanced MRN binding.  Initial 5' to 3' end resection.   (B) The CtIP/ MRN 
complex processively digests 5' strand of DSB creating a short 3' tail.  The interaction of Brca1 and CtIP 
during S and G2 phases may enhance end resection processivity by CtIP/MRN (Chapman, Taylor et al., 
2012).  (C) The 5' to 3' exonuclease Exo1 and BLM/ Dna2 complex promote the generation of lengthy 3' 
ssDNA tails at the DSB.  RPA protects 3' tails from nucleases.  (D) Rad52 binds to RPA bound ssDNA and 
anneals complementary DNA sequences thereby displacing RPA.  Non-complementary 3' tails are excised 
and the DNA is ligated by ligase III.  (E) Brca2 displaces RPA by loading Rad51 onto 3' tails.  (F) Rad51 
searches for homologous sequence and promotes strand invasion.  (G) SDSA - DNA polymerase(s) extend 
the invaded strand.  DNA helicases or dsDNA translocases including BLM (Bachrati, Borts et al., 2006), 
WRN (Opresko, Sowd et al., 2009), or Rad54 (Bugreev, Hanaoka et al., 2007) are able to processively 
resolve the D-loop releasing the strand invasion event.  Complementary sequences of the newly 
polymerized DNA is annealed by Rad52.  The gaps are filled by polymerases, and the DNA is ligated.  (H, I, 
J) HR - (H)  Rad52 anneals non-invaded 3' tail to the displaced strand of the D-loop.  Extension and ligation 
of the annealed strands creates a dHJ.  (I) dHJ dissolution by BTR resulting in exclusively non-crossover 
repair products.  (J) dHJ resolution by Mus81/Eme1/Slx4/Slx1 or Gen1 generates a mix of both crossover 
and non-crossover repaired products.  Adapted from Ciccia et al., 2010. Mol Cell. 40: 179-204. 
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(Nimonkar, Genschel et al., 2011).  The combined actions of all these nucleases create 

an extensively resected 3' tail that is the substrate for homology-directed repair. 

 

SSA 

 Following end resection, either HR or SSA can commence.  As 5' to 3' end 

resection progresses, the exposed 3' ssDNA tail is bound by the ssDNA binding protein 

RPA.  The RPA-bound ssDNA is the platform for numerous interactions with DNA 

replication and repair proteins (Figure 4C).  SSA is able to repair long 3' tails that have 

large amounts of sequence complementarity such as those found in repetitive DNA 

sequences (Ciccia et al., 2010).   Rad52 is able to anneal ssDNA in the presence of 

RPA (Figure 4D).  This activity of Rad52 allows it to anneal complementary sequence at 

the DSB to generate annealed 3' tails.  Similar to MMEJ, the 5' non-complementary 

flaps, if they exist, or other non-complementary DNA are removed by endonucleases, 

and any remaining gaps are filled and ligated, fully repairing the DNA.  This process can 

be deleterious on a fully replicated chromosome during G2 since non-complementary 

sequences between DNA repeats can be lost.  However, since the lagging strand can 

contain up to 100 bps of ssDNA behind the replication fork (Hashimoto, Puddu et al., 

2012), a one-ended DSB found on the leading strand of a replication fork might be able 

to be efficiently repaired by SSA.  Thus, SSA might be a relevant mechanism to repair 

replication associated DSBs. 

 

HR 

 Akin to the way RPA-bound ssDNA can be used to elicit SSA, RPA-bound 

ssDNA at a DSB also serves as the binding partner for breast cancer associated gene 2 

(Brca2) to transfer the recombinase Rad51 onto the 3' overhang (Figure 4E) (Moynahan 

and Jasin, 2010).  Upon Rad51 binding, Rad51 forms nucleoprotein filaments on the 
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ssDNA and, similar to RPA, is able to  protect the ssDNA (Schlacher, Christ et al., 2011).  

Utilizing the bound ssDNA, Rad51 catalyzes a search for complementary sequences on 

the sister chromatid.  When these sequences are found, Rad51 catalyzes strand 

invasion, creating a displacement loop (D-loop) (Figure 4F), and hydrolyzes ATP.  ATP 

hydrolysis by Rad51 causes the disassembly of the Rad51 filament (Holloman, 2011).  

The resulting D-loop can be extended by polymerases, creating complementary DNA 

sequences between the broken ends of the DSB (Figure 4F).  At this junction the D-loop 

can be dissociated by numerous DNA helicases and translocases, funneling homology-

directed repair towards synthesis dependent strand annealing (SDSA) (Figure 4G).  

When the D-loop is resolved, annealed, and re-ligated, SDSA creates exclusively non-

crossover products with gene conversion in the sequence extended by the DNA 

polymerase.  Therefore, SDSA is considered to be an extremely accurate type of 

homology-directed repair.   

 Alternatively, the second end of the DSB can be captured by utilizing the ssDNA 

annealing activity of Rad52.  When the annealed DNA is extended by a DNA 

polymerases and ligated, this process results in the in the creation of a double Holliday 

junction (dHJ) (Figure 4H).  A dHJ represents a topologically constrained, entangled 

molecule, and its resolution can generate both crossover and non-crossover gene 

conversion products.  Three distinct mechanisms are capable of resolving a dHJ in 

primates (Wechsler, Newman et al., 2011).  The first utilizes a complex of proteins 

termed BTR that can resolve dHJs into exclusively non-crossover products in a process 

termed dissolution (Figure 4I) (Wu and Hickson, 2003).  BTR consists of a helicase 

(BLM), a type I topoisomerase (topoisomerase IIIα), and two accessory factors (RecQ 

Mediated Genome Instability (RMI) 1, and RMI2) (Yin, Sobeck et al., 2005; Xu, Guo et 

al., 2008; Singh, Ali et al., 2008).  dHJs can also be resolved by the actions of Holliday 

junction resolvases, types of specialized endonucleases that nick opposing strands on 
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both Holliday junctions, thereby generating crossover and non-crossover products 

(Figure 4J).  Two separate dHJ resolvases exist in primates, one is composed of the 

Mus81/Eme1/Slx4/Slx1 heterotetramer and the other, Gen1, functions alone to resolve 

dHJs (Wechsler et al., 2011).   

 Classic HR, through the formation of a dHJ, is very accurate, and thus unlike 

NHEJ, does not lead to base substitutions, insertions, or deletions at the site of the DSB.  

In spite of this, HR can still lead to deletions and translocations in repetitive DNA 

sequences, so no DSB repair pathway is perfect.  With all the distinct ways to repair a 

DSB and the ubiquitous amounts of Ku in the nucleoplasm, a critical question begins to 

emerge: how does the cell know which DSB repair pathway to use at a given DSB?  

Perhaps, the answer lies in the immense cascade of DNA damage signaling that is 

elicited upon DNA breakage and replication stress.  

 

DNA damage signaling: big kinases for a complex job 

 

 DNA damage signaling is relayed by three kinases from the PIKK family: ataxia 

telangiectasia-mutated (ATM), ATM and Rad3-related (ATR), and DNA-PKcs.  These 

kinases share common features.  Each PIKK utilizes a sensor protein to recognize DNA 

damage.  DNA-PKcs utilizes Ku to identify DSBs, ATM utilizes the MRN complex bound 

to the DSB termini (Derheimer and Kastan, 2010), and ATR identifies ssDNA via ATR-

interacting protein (ATRIP) (Zou and Elledge, 2003). Additionally, these kinases can 

phosphorylate many of the same substrates (Matsuoka, Ballif et al., 2007) due to their 

shared consensus phosphorylation sequence, S/T-Q.   

 The best characterized example of a common substrate among these kinases is 

S129 of histone H2AX which can be phosphorylated by ATM, ATR, or DNA-PKcs to a 

form known as γH2AX (Lobrich, Shibata et al., 2010).  However, even with some 
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similarities, ATM, ATR, and DNA-PKcs have unique substrates that define and dictate the 

outcome of their activation.  Unlike the previously discussed DNA-PKcs, whose kinase 

action promotes only NHEJ, the series of events promoted by ATM and ATR kinase 

activation do not fall into one pathway of DNA repair.  ATM and ATR proteins have a 

central role in orchestrating repair and eliciting the cell cycle arrest known as a the DNA 

damage checkpoint during all phases of the cell cycle in response to DSBs and 

replication stress. Due to this, ATM and ATR can be considered as conductors of DNA 

repair.    

 

ATM: ataxia telangiectasia and beyond 

 

 Loss of the ATM protein results in the genetic disorder ataxia telangiectasia 

(McKinnon, 2012).  Ataxia telangiectasia patients display pronounced ataxia and are 

prone to lymphomas and leukemia.  Cells from patients with this disorder exhibit 

increased sensitivity to ionizing radiation (McKinnon, 2012), radio-resistant DNA 

synthesis (Painter and Young, 1980), slowed DSB repair (Berkovich, Monnat et al., 

2007), and  some DNA replication associated defects (Cohen and Simpson, 1980; 

Murnane and Painter, 1982).  ATM can be activated by oxidation (Guo, Kozlov et al., 

2010), MRN binding to DSBs (Falck, Coates et al., 2005), or changes in chromatin 

conformation, the latter of which is modulated by ATM interactor (ATMIN) (Bakkenist and 

Kastan, 2003; Kanu and Behrens, 2007).  In spite of the multitude of ways to activate 

ATM, DSB induction is the most well studied and is required for timely repair of DSBs 

(Berkovich et al., 2007).   

 Upon DNA breakage, MRN binds to DSBs (Figure 5A) and recruits ATM through 

an interaction of ATM with Nbs1 (Figure 5B).  The interaction of MRN with ATM at the 

DSB activates the kinase activity of ATM triggering auto-phosphorylation in-trans at 
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Figure 5.  ATM DSB signaling. 
(A, B)  MRN binds to DSB termini and recruits ATM to DSB.  (B) ATM kinase is activated.  ATM dimers 
dissociate into monomers (Bakkenist et al., 2003).  (C) ATM mediated phosphorylation activates Chk2.  
Chk2 phosphorylations promote cell cycle arrest and slowing of DNA replication.  (D) ATM phosphorylates 
histone H2AX at replication fork.  γH2AX binds to MDC1.  ATM phosphorylates MDC1 creating a binding site 
for RNF8.  RNF8 ubiquitinates H2AX, H2A, and numerous other factors at the DSB.  (E) γH2AX bound 
MDC1 interacts with Nbs1 and recruits more ATM to sites proximal to the DSB.  ATM bound to MDC1 
spreads ATM dependent phosphorylations on the chromatin creating more γH2AX-MDC1-ATM-RNF8 
complexes on the chromatin.  (F) Ubiquitinated H2A and H2AX is bound by RNF168.  RNF168 further 
ubiquitinates chromatin resulting in binding sites for Brca1 and exposing 53BP1 binding sites.  Adapted from 
Derheimer et al., 2010. FEBS Lett. 584: 3675-81. 
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S1981, resulting in monomerization of ATM dimers (Figure 5B) (Bakkenist et al., 2003).  

Following the initial activation, evidence from Xenopus laevis egg extracts suggests that 

ATM can be further activated by nucleolytic digestion at the DSB termini by Mre11 

(Jazayeri, Balestrini et al., 2008).  ATM then phosphorylates the effector kinase Chk2 on 

residue T68 (Figure 5C).  This phosphorylation event on Chk2 coincides with its 

activation.  Chk2 is able to phosphorylate numerous substrates with the end results of 

cycle arrest, slowed DNA replication, and DSB repair.   

 At the DSB site, ATM phosphorylates numerous proteins, including Kap1, 

resulting in opening of heterochromatin structure (Ziv, Bielopolski et al., 2006) and the 

histone variant H2AX (Lukas, Lukas et al., 2011).  Phosphorylated residue S129 of 

H2AX binds to mediator of checkpoint1 (MDC1) (Stucki, Clapperton et al., 2005).  MDC1 

is able to directly bind Nbs1 and thusly indirectly recruit more ATM to chromatin proximal 

to the DSB (Figure 5E) (Lukas et al., 2011).   At these proximal chromatin sites, ATM 

further phosphorylates H2AX, spreading the γH2AX mark (You, Bailis et al., 2007).  

γH2AX expansion creates multiple binding sites adjacent and proximal to the break for 

MDC1 on the chromatin (Figure 5E).  ATM phosphorylation of MDC1 enables the 

ordered recruitment of the E3 ubiquitin ligase RNF8 (Kolas, Chapman et al., 2007) 

followed by a second E3 ubiquitin ligase, RNF168 (Figure 5D) (Lukas et al., 2011).  

RNF8 and RNF168 promote the lysine 63-linked polyubiquitination of histones H2A and 

H2AX, further opening the chromatin structure (Figure 5D) (Lukas et al., 2011).   

 The ubiquitin modification directly recruits a complex containing Brca1 and 

Rap80 to DSBs (Figure 5F) (Chapman et al., 2012).  On the other hand, the opening of 

the chromatin structure by K63-linked polyubiquitination has been hypothesized to allow 

binding of 53BP1 to dimethylated histone H3 at lysine 79 (Figure 5F) (Chapman et al., 

2012).  53BP1 and Brca1 chromatin binding promotes antagonistic DSB repair 

pathways.  53BP1 promotes NHEJ, and Brca1 promotes homology-directed repair 
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(Chapman et al., 2012).  However, what aspects of 53BP1 and Brca1 mediate this 

antagonism are not fully understood. Additionally, ATM is able to phosphorylate 

numerous DNA repair proteins in both NHEJ and homology-directed repair (Ciccia et al., 

2010).  Thus, ATM is able to promote several major DSB repair pathways through its 

kinase activation, yet it is not required per se for either NHEJ or HR activity to occur 

(Rass, Chandramouly et al., 2013).   

 

Replication stress: ATR and the S phase checkpoint 

 

 Similar to ATM kinase signaling, the kinase activity of ATR has a wide variety of 

substrates and mechanisms to activate it.  Yet unlike ATM, null mutations in the ATR 

protein are lethal (Brown and Baltimore, 2000) and hypomorphic mutations in ATR 

cause the rare disorder Seckel syndrome, which is characterized by reduced head size 

and growth retardation (Nam and Cortez, 2011).  Supporting the role of ATR in directing 

the repair of stalled and broken DNA replication forks, Seckel syndrome cells 

demonstrate sensitivity to agents causing DNA replication stress (O'Driscoll, Ruiz-Perez 

et al., 2003), failed S phase checkpoint following DNA replication stress (Alderton, 

Joenje et al., 2004), and increased gapping and breakage at common fragile sites, loci in 

the genome prone to gaps and breaks on metaphase spreads (Casper, Nghiem et al., 

2002; Casper, Durkin et al., 2004).  ATR is primarily activated by accumulation of ssDNA 

in the genome; a circumstance that can occur due to DNA polymerase stalling or end 

resection during homology-directed repair of DSBs (Figure 6A-C).   

 ATR signaling is elicited by both replication stress and by DSBs.  Replication 

stress can be induced in many ways including nucleotide depletion with ribonucleotide 

reductase inhibitors (e.g., hydroxyurea), UV irradiation, or polymerase inhibition 

(aphidicolin).  A main contributor to ATR activation in response to replication stress is 
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Figure 6. ATR DNA damage signaling. 
(A)  Model of ATR activation at a stalled DNA replication fork.  (B, C) Models of ATR activation adjacent to a 
ssDNA / dsDNA junction (B) or near the termini of a resected DSB (C).  (B I) RPA bound ssDNA recruits 
ATR / ATRIP to ssDNA.  Rad17 loads 9-1-1 onto the ssDNA / dsDNA junction.  (B II) TopBP1 interacts with 
9-1-1 and activates ATR kinase activity.  (B III) ATR kinase phosphorylates numerous substrates including 
H2AX, MDC1, DNA polymerases, CMG, and Chk1.  Similar to ATM activation, ATR activation creates DNA 
damage repair centers that bind to RNF8, RNF168, Brca1, and 53BP1.  Chk1 kinase activity is directly 
activated by ATR phosphorylations.  Chk1 kinase activities promote cell cycle arrest, DNA replication arrest, 
and DNA repair.  (C I)  MRN and ATR-ATRIP bind to RPA bound ssDNA.  (C II)  MRN recruits TopBP1 to 
ATR.  (C III)  ATR kinase activity becomes activated with similar consequences to (B).  Panels (A) and (B) 
were adapted from  Cimprich et al,. 2008. Nat Rev Mol Cell Biol. 9: 616-27. 
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stalling of a replicative DNA polymerase on the leading strand (Figure 6A).  Under 

replication stress conditions, the CMG replicative helicase will continue to unwind the 

dsDNA.  The combined contributions of continued helicase activity and a stalled 

polymerase leaves a tract of ssDNA bound by RPA (Figure 6A).  RPA-bound ssDNA is 

the primary mechanism of recruitment of the ATR-ATRIP heterodimer to DNA (Zou et 

al., 2003) at both the DNA replication fork (Figure 6BI and BII) and 5' to 3' resected 

DSBs (Figure 6CII).   ATRIP directly interacts with RPA and ATR, and is needed for ATR 

recruitment to ssDNA (Figure 6BII) (Ball, Myers et al., 2005; Namiki and Zou, 2006).  

Although ATR is recruited to ssDNA, several more factors that bind independently of 

ATR are needed to fully activate ATR.   

 Prior to full ATR activation, the ATR activating protein TopBP1 must bind nearby 

the RPA-associated ATRIP/ATR hetero-dimer.  There are two mechanisms to 

accomplish TopBP1 binding nearby ATR at damaged DNA have been defined 

experimentally. In the first, RPA near the ssDNA/dsDNA junction binds to the repair 

clamp loader Rad17.  Rad17 facilitates loading of the ring-shaped Rad9-Hus1-Rad1 (9-

1-1) repair clamp at the ssDNA/dsDNA junction (Figure 6BI and II) (Zou, Cortez et al., 

2002).  9-1-1 directly interacts with TopBP1 and recruits TopBP1 to ATR where the ATR-

activating domain of TopBP1 activates the kinase activity of ATR (Figure 6BIII) 

(Kumagai, Lee et al., 2006; Mordes, Glick et al., 2008).  Alternatively, ATR activation can 

occur at regions adjacent to a DSB and far away from a ssDNA/dsDNA junction.  This 

mode of activation first requires 5' to 3' resection of the DSB to generate a 3' ssDNA tail 

that can be bound by RPA and subsequently bind to ATR (Figure 6CI and II).  MRN 

bound to the DSB is then able to recruit TopBP1 to ATR by using a TopBP1-interacting 

module in Nbs1 (Figure 6CIII) (Shiotani, Nguyen et al., 2013; Duursma, Driscoll et al., 

2013), thus activating ATR (Stiff, Reis et al., 2005).     
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 Activation of ATR kinase activity enables it to phosphorylate numerous 

substrates that arrest DNA replication, prevent late DNA replication origin firing, and 

facilitate DNA repair (Figure 6A and B) (Cimprich and Cortez, 2008).  One of these 

substrates is the checkpoint kinase Chk1.  Analogous to the manner in which ATM 

activates Chk2, phosphorylation of Chk1 by ATR activates the kinase activity of Chk1.  

However, unlike Chk2, Chk1 is an essential protein (Liu, Guntuku et al., 2000) that is 

required for normal G2/M checkpoint function (Antoni, Sodha et al., 2007).  Chk1 

phosphorylates the Cdc25 phosphatases and p53 to enforce the S phase checkpoint 

(Figure 6A and B) (Toledo, Murga et al., 2011) and regulate the activity of several DNA 

repair proteins (Bunz, 2011), replisome factors, and origin firing upon checkpoint 

activation (Cimprich et al., 2008). Thus, the ATR-Chk1 pathway is a key contributor to 

genome stability. 

 

The DNA damage checkpoint: a niche for small DNA tumor viruses 

 

 The S and G2/M checkpoints elicited by ATM and ATR signaling, collectively  

called the DNA damage checkpoint, provide the time needed to repair DNA.  This arrest 

prevents the cell from taking un-replicated or damaged DNA into mitosis, and, therefore, 

is able to prevent loss of genetic information or further breakage of the genome.  

Although the DNA damage checkpoint protects the host genome, it may present an 

opportunity for foreign DNA.   

 Viruses that require the host cell to enter S phase to replicate commonly have 

small genomes (typically <10 kilobases (kb)) and encode a limited number of proteins 

needed to encapsidate their genome and manipulate the cell (Levine, 2009).  Due to the 

limited genomic information carried by these viruses, they heavily rely upon host 

transcription and DNA replication factors to facilitate their own replication (DeCaprio and 
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Garcea, 2013).  The small DNA tumor viruses are a group of viruses associated with 

cancer in their hosts (Levine, 2009).  This group consists of several virus families 

including Papillomaviridae and Polyomaviridae (Levine, 2009).  These viruses have 

circular dsDNA genomes ranging from 5 to 8 kb (DeCaprio et al., 2013; DiMaio and 

Miller, 2006).  Papillomaviridae contains several important human pathogens including 

high risk human papillomaviruses (HPV) 16 and 18 associated with cervical cancer and 

head and neck cancer (Psyrri and DiMaio, 2008).  Similarly, Polyomaviridae also 

contains several members that cause disease (DeCaprio et al., 2013).  Notably, Merkel 

cell virus (MCV) is associated with Merkel cell carcinoma, whereas two other members, 

JC virus (JCV) and BK virus (BKV), are associated with progressive multifocal 

leukoencephalopathy (PML) and polyomavirus-associated nephropathy (PVAN), 

respectively, in immunocompromised patients (Gjoerup and Chang, 2010).  PML and 

PVAN cause severe complications and commonly result in death.  Collectively, the 

severe consequences that are associated with infection of several small DNA tumor 

viruses illustrate the need for a better understanding of the mechanisms by which these 

viruses replicate. 

  Although use of cellular machinery has its benefits, the reliance on cellular 

machinery by small DNA tumor viruses makes them subject to the rules that normally 

govern the cell, including cell cycle timing and cell death programs.  Therefore, these 

viruses have evolved to disrupt normal cell programming to enhance their own 

propagation.  To accomplish this, small DNA tumor viruses must first encourage the cell 

to enter S phase, a highly regulated process, and then arrest the cell in S phase.  

Polyoma- and papillomaviruses encode proteins that over-ride growth-dependent control 

of the G1 to S transition through Rb proteins to promote premature S phase entry 

(Levine, 2009).  S phase arrest or the viral pseudo-S phase is accomplished through 

activation of the DNA damage checkpoint (Weitzman, Lilley et al., 2010). However, 
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checkpoint activation provokes its own set of problems, including inhibition of cellular 

replication machinery and eventual cell death.  To prevent the ill effects of prolonged 

DNA damage checkpoint, these viruses inactivate the tumor suppressor p53 to disrupt 

the normal cellular stress programming (Levine and Oren, 2009) and utilize a subset of 

DNA replication proteins that are checkpoint resistant (Sowd and Fanning, 2012). 

 

Simian Virus 40: elegantly small 

 

 To control and disrupt the complex mechanisms of the cell cycle, polyomaviruses 

deploy one master protein, large T antigen (Tag).  The archetype Tag was initially 

discovered from tumors of rodents injected with the polyomavirus simian virus 40 (SV40) 

(Fanning and Zhao, 2009).   Originally identified as a contaminant in the cells used to 

produce the polio virus vaccine, SV40 natively infects the Rhesus macaque without overt 

disease or cytopathic effect.  In contrast, kidney cells of African Green Monkey display 

cytopathic effects when infected by SV40 (Levine, 2009).  SV40 is able to cause tumors 

in young hamsters infected with the virus (Fanning et al., 2009).  However, cellular 

transformation by the virus can only be elicited in an abortive infection in nonpermissive 

hosts (Fanning and Knippers, 1992).  Thus, unlike high risk HPVs and MCV, SV40 

appears to cause cancer only in nonpermissive hosts.   

 SV40 consists of a 5,243 basepair (bp) circular dsDNA genome with a genetically 

encoded discrete viral origin of DNA replication (Figure 7A).  Transcription of the viral 

genome emanates from a bidirectional promoter/enhancer from which all viral proteins 

are transcribed (Figure 7A).  Based on the direction of transcription and with reference to 

the order by which viral transcripts arise during infection, the genome can be divided into 

early and late regions.  The virion consists of a chromatinized viral genome encased in a 

non-enveloped proteinaceous capsid (Gjoerup et al., 2010).  The icosahedral capsid
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Figure 7. SV40 genome map. 
(A)  Genome features are marked with thick arrows for transcripts encoding proteins.  Early and late refer to 
the time during infection when the transcripts are heavily transcribed.  Adapted from Gjoerup et al., 2010. 
Adv Cancer Res. 106: 1-51. 
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  consists of VP1, VP2, and VP3.  Seventy-two pentamers of VP1 form the outer capsid, 

with each pentamer interacting with one internal VP2 or VP3 (VP2/3) (Liddington, Yan et 

al., 1991).  The internal VP2/3 makes contact with the viral genome (Stehle, Gamblin et 

al., 1996). 

 To enter the cell, VP1 on the viral capsid binds to glycan GM1 

(monosialotetrahexosylganglioside) and is endocytosed into the caveosome (Neu, 

Stehle et al., 2009).  The capsid is then trafficked to the endoplasmic reticulum where 

protein disulfide isomerases rearrange disulfide bonds on VP1 leading to partial 

disassembly of the capsid (Neu et al., 2009).  This series of events leads to release of 

the partially disassembled capsid into the cytoplasm where the newly exposed nuclear 

localization signal (NLS) of VP1 likely promotes nuclear entry (Neu et al., 2009).   

 Inside the nucleus the remaining capsid is hypothesized to be fully removed 

allowing transcription to occur on the chromatinized viral genome.  Chromatin 

remodeling generates a nucleosome-free region, allowing host proteins to bind the 

enhancer/promoter (Yaniv, 2009).  The early region of the viral genome is first 

transcribed into three differentially spliced transcripts that encode Tag, small t antigen, 

and 17k (Figure 7A).  These gene products collectively function to manipulate the cell 

and promote viral genome amplification.  Large amounts of early transcripts are made 

during the first 24 hours of infection after which Tag modulates a switch to robust 

genome amplification and increased transcription from the late region of the genome 

(Fanning et al., 1992).  Transcripts from the late region of the genome encode proteins 

that promote viral egress (Agno and VP4) and the viral capsid proteins (VP1, VP2, and 

VP3) (Figure 7A).  Collectively, transcription of the viral genome primes the cell for viral 

take over and ultimately its own demise. 
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Large T antigen: the Swiss army knife of proteins 

 

 Translation of the early transcripts encoding Tag drives viral infection forward 

toward viral DNA replication.  Tag is a modular phospho-protein that functions as the 

lynchpin of viral DNA replication (Figure 8A).  The N-terminal region contains a DnaJ 

domain that associates with Hsc70 to enable protein chaperone function implicated in 

viral DNA replication (Campbell, Mullane et al., 1997).  The linker between the DnaJ 

domain and origin binding domain (OBD) contains an LxCxE motif required to bind to Rb 

family proteins (Gjoerup et al., 2010).  The binding of the LxCxE within Tag to Rb, p130, 

and p107 in cooperation with the DnaJ domain disrupts Rb/E2F complexes, freeing E2F 

to function as a transcription factor (DeCaprio, 2009).  The E2F promoter complexes 

lacking Rb are actively transcribed, thus promoting the G1 to S transition (Cam et al., 

2003).  Several E2F-driven genes encode DNA replication and repair factors that are 

required for both cellular (Cam et al., 2003) and viral DNA replication.  Thus, the Rb-Tag 

interaction is crucial for viral DNA replication as it allows the virus to replicate even in 

quiescent or senescent cells (DeCaprio, 2009). 

 In addition to the LxCxE motif, numerous phosphorylation sites lie between the 

DnaJ domain and the OBD.  Residues 130 to 250 of Tag constitute the OBD.  This 

region specifically binds to the pentanucleotide repeats within the central palindrome of 

viral origin (Figure 8B) (Sowd et al., 2012).  The domain directly C terminal of the OBD is 

a helicase domain containing a AAA+ ATPase and zinc finger sub-domains (Sowd et al., 

2012).  Nested within the helicase domain of Tag is the binding site for p53  (Gjoerup et 

al., 2010).  Binding of Tag to p53 prevents p53 from functioning as a transcriptional 

activator following cellular stress and stabilizes p53 levels inside the cell (Levine et al., 

2009).  The interaction of p53 and Tag is thought to prevent many of the ill effects that 

are associated with prolonged checkpoint signaling and unscheduled S phase entry. 
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Figure 8. 
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Figure 8.  Large T antigen: master of viral DNA replication. 
(A) Domains of Tag.  Structured and unstructured domains are shown in yellow and white, respectively.  (B) 
Model of Tag double hexamer bound to the viral ori.  (C)  Diagram showing the factors used by the viral and 
host replisomes.  (D) Model of SV40 replication.  (D I) Hypophosphorylated Tag double hexamer bound to 
the origin initiates DNA replication.  (D II) Hypophosphorylated, coupled double hexamer initiates DNA 
unwinding.  (D III)  Residues S120 and S123 become phosphorylated and double hexamer uncouples.  (D 
IV) Tag hexamers converge and replicated genomes are decatenated (D V).  Figure adapted from Sowd et 
al., 2012. PLoS Pathog. 9: e1003283. 
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SV40 Chromatin Replication: a platform for discovery 

 

 SV40 can replace host ORC, Cdt1, Cdc6, Mcm2-7, Cdc45, GINS, AND-1, and 

Mcm10 cellular functions with one protein, Tag (Figure 8C).  Whereas the cell utilizes 

these 21 proteins and kinases that regulate them to create an ordered DNA replication 

cycle that prevents genome re-duplication, the deployment of Tag by SV40 as an origin 

recognition complex and replicative helicase (Figure 8C) circumvents several cellular 

limitations.  The limitations of S phase machinery include an inability of cellular 

machinery to re-duplicate the genome during S phase, to re-license origins during S 

phase (Bell et al., 2002), and to replicate large amounts of DNA during checkpoint 

signaling (Cimprich et al., 2008).  

 Similar to cellular replicative helicases, Tag replicative DNA helicase function is 

restricted to S phase by putative CDK2-cyclin A dependent phosphorylation on T124 

(Fotedar and Roberts, 1991; Moarefi, Small et al., 1993; Weisshart, Taneja et al., 1999; 

Adamczewski, Gannon et al., 1993).  To initiate viral genome replication, the OBD of one 

Tag monomer binds to the cis-acting pentanucleotide repeat within the central 

palindrome of  the viral ori (Chang, Xu et al., 2013).  This interaction is followed by the 

helicase domain binding to the AT rich or EP element within the ori (Figure 8B).  

Crystallographic data suggest that the interactions of the Tag monomer with the viral ori 

result in the binding of another monomer of Tag forming a dimer on the origin wherein 

the second monomer interacts with a hidden site GC site within the central palindrome 

(Chang et al., 2013).  Dimer bound to the origin is hypothesized to stimulate binding of 

four more molecules on the central palindrome, EP site, and AT sites forming a double 

hexamer on the origin (Figure 8B and D). The interactions between opposing OBD 

interfaces of the double hexamer (Figure 8B) are essential for viral DNA replication and 

are dictated by the phosphorylation state of Tag (Fanning, 1994).  Residues S120, S123, 
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and T124 of the linker between the DnaJ and OBD domains all lie in this interface and 

are phosphorylated at some point after initiation of viral DNA replication (Figure 8A) 

(Fanning et al., 1992).  However, only residue T124 of Tag can be phosphorylated on 

the viral origin to form a pre-replicative Tag double hexamer complex (Figure 8D) 

(Schneider and Fanning, 1988; Moarefi et al., 1993; Fanning, 1994; Weisshart et al., 

1999; Sowd et al., 2012) analogous to ORC/CMG bound eukaryotic origins.   

 Following initial origin melting by Tag, which is an ATPase independent event, 

Tag facilitates RPA binding to the ssDNA created at the melted origin of replication.  This 

process is performed through specific interactions of Tag and RPA mediated through the 

OBD and helicase domains of Tag and the RPA70 and RPA32 subunits of the RPA 

heterotrimer (Figure 9AI) (Jiang, Klimovich et al., 2006; Dornreiter, Erdile et al., 1992).  

Tag unwinds the DNA in an ATP-dependent manner creating more binding sites for the 

active loading of RPA.  Subsequently, through interactions of Tag with polymerase α/ 

primase (Huang, Weiner et al., 2010; Huang, Zhao et al., 2010; Zhou, Arnett et al., 2012) 

and RPA (Jiang et al., 2006), RPA is removed from the ssDNA (Figure 9AII and AIII) 

enabling pol/prim to create a RNA primer on the melted DNA, which is extended by 

polymerase α (Figure 9AIII and B2).  PCNA is loaded onto the RNA/DNA primer by RFC 

and in so doing displaces polymerase α (Figure 9B3 and B4) (Waga et al., 1998).  The 

homotrimeric ring PCNA bound to the ssDNA/dsDNA junction interacts with polymerase 

δ allowing processive DNA synthesis (Figure 9B4).   After initial DNA synthesis, the Tag 

double hexamer is hypothesized to become further phosphorylated at S120, a PIKK 

kinase consensus site (Shi, Dodson et al., 2005), and S123, allowing the double 

hexamers to become uncoupled (Figure 8DIII) and creating a classical bidirectional 

replication bubble containing both leading an lagging strands (termed early Cairns 

intermediate, Figure 8DIII) (Sowd et al., 2012).  
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Figure 9. Models of DNA polymerase function at the viral replication fork. 
(A)  Model of viral primosome function adapted from Huang et al., 2010. J Biol Chem. 285: 17112-22.  (A I)  
Arrows show direct interactions between Tag and polymerase α / primase and RPA that contribute to 
primosome function. (A II)  Tag removes RPA and positions polymerase α / primase onto ssDNA.   (A III) 
Polymerase α / primase makes a primer.  (B)  Model of lagging strand maturation. (B 1, 2) Described above.  
(B 3, 4) RFC displaces polymerase α / primase and load PCNA.  PCNA binds to polymerase δ.  (B 5, 6, 7) 
Polymerase δ synthesizes DNA.  DNA synthesized by polymerase α / primase is displaced by the strand 
displacement activity of polymerase δ creating a 5' flap.  This flap is removed by FEN1 and remaining RNA 
primer is degraded by RNAse H.  Model in (B) adapted from Waga et al., 1998. Annu Rev Biochem. 67: 721-
51. 
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 Similar to cellular DNA replication, DNA entanglements behind the replication 

fork known as pre-catenanes are removed by topoisomerase IIα and prevented by 

topoisomerase I (Nitiss, 2009).  Thus, the combined topoisomerase activities of 

topoisomerase I and IIα allow continuous replisome function.   The viral replisomes 

replicate around the viral genome and meet at a region opposing the viral ori creating a 

late Cairns intermediate (Figure 8DIV) (Tapper, Anderson et al., 1979).  At this point, the 

molecules are decatenated by topoisomerase IIα generating two topologically distinct, 

chromatinized dsDNA molecules (Figure 8DV) (Sundin and Varshavsky, 1981; Sundin 

and Varshavsky, 1980; Yang, Wold et al., 1987) that can be re-replicated by subsequent 

Tag binding cycles.  This process can generate hundreds of thousands of viral genomes 

during one prolonged S phase in a SV40-infected cell (Rigby and Berg, 1978). 

 The re-replication characteristic of SV40 DNA replication was previously 

exploited to replicate viral origin containing plasmid DNA in primate cellular extracts (Li 

and Kelly, 1985; Li and Kelly, 1984; Stillman and Gluzman, 1985).  Thereafter, these 

extracts were used to identify and purify human proteins whose functions were needed 

to replicate the viral origin in vitro (Waga, Bauer et al., 1994; Waga and Stillman, 1994).  

From these experiments, a set of 10 human proteins whose activities are necessary and 

sufficient to replicate naked supercoiled viral origin containing DNA into supercoiled DNA 

product were identified (Table 2).   

 

SV40 DNA replication in cellulo: not as simple as expected 

 

 Despite the simplicity of viral DNA replication in vitro, DNA replication presents 

additional obstacles to viral propagation, including a necessity to arrest the cell cycle in 

S phase.  Thus, the proteins that were originally identified to replicate the viral ori in vitro 

might only represent a subset of those actually needed to replicate the chromatinized 
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Table 2: Proteins sufficient to replicate SV40 genome in vitro. 
Adapted from Hassell et al., (1996). SV40 and Polyomavirus DNA Replication. DNA Replication in 
Eukaryotic Cells. M. L. DePamphilis. Plainview, NY, Cold Spring Harbor Press: 639-677. 
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viral genome in cellulo.  As such, it is highly likely that several other factors are still 

needed to achieve maximal replication efficiency inside the cell.  DNA-PKcs and ATM can 

phosphorylate Tag (Wang, Zhou et al., 1999; Shi et al., 2005).  ATM and ATR are 

strongly activated inside SV40-infected cells (Shi et al., 2005; Zhao, Madden-Fuentes et 

al., 2008; Rohaly, Korf et al., 2010).   Perhaps through the DNA damage checkpoint, 

such DNA damage signaling is able to elicit an indefinite S phase inside SV40 infected 

cells (Sowd et al., 2012).  Thus, a role for checkpoint signaling in cell cycle arrest inside 

SV40-infected cells seems probable. 

 S120 Tag is targeted for phosphorylation in an ATM dependent manner in cellulo 

(Shi et al., 2005), and phosphorylation at this site is crucial for viral DNA replication 

(Schneider et al., 1988; Virshup, Russo et al., 1992; Cegielska, Moarefi et al., 1994) .  

Yet in vitro, a strict requirement for dephosphorylated Tag at S120 is necessary for 

proper double hexamer activation (Cegielska et al., 1994; Virshup et al., 1992; Fanning, 

1994), and only the purified hypophosphorylated Tag (S120, S123, p124) with 10 

purified human DNA replication factors can generate supercoiled product (Waga et al., 

1994).  Collectively, these data imply that the hypophosphorylated version of Tag is 

competent to replicate viral DNA, but the regulation of phosphorylation at S120 by ATM 

or other PIKKs is crucial in cellulo.  How these two opposing mechanisms interact in 

cells remains unknown.  

 Beyond the phosphorylation of Tag, several studies have demonstrated that Tag 

foci co-localize with the foci of several proteins localizing to damaged DNA inside SV40-

infected cells.  One repair pathway, HR, seems to have an abundance of proteins 

recruited to Tag foci.  MRN (Zhao et al., 2008) and Rad51 (Boichuk, Hu et al., 2010) 

colocalize with Tag during SV40 infection, implying that homology-directed repair might 

be used during viral replication.  Furthermore, 53BP1 (Boichuk et al., 2010), Brca1 

(Boichuk et al., 2010), and γH2AX (Zhao et al., 2008) all localize to Tag foci inside 
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SV40-infected nuclei, suggesting that DNA damage signaling is induced by viral DNA 

replication.  These same Tag foci inside SV40-infected cells also co-localize with 

polymerase α/ primase (Zhao et al., 2008), RPA (Zhao et al., 2008), and EdU (Rohaly et 

al., 2010), indicating that they may be areas of active viral DNA replication.  Hence, 

SV40 might also be using other pathways to maximize viral DNA replication in cellulo 

beyond the 10 factors identified in vitro.  However, it remains unclear how the virus 

actually induces ATM and ATR activation. Additionally, the substrate of the DNA repair 

proteins at viral DNA replication centers is not clear.  Furthermore, whether the 

recruitment of the repair and signaling proteins is actually a result of viral DNA 

replication is the subject of debate.   

 

Hypotheses for the role of DNA damage signaling during SV40 infection 

 

 Several possible mechanisms have been suggested to activate ATM or ATR 

during small DNA tumor virus infection.  Based on the correlated timing of viral DNA 

replication, formation of Tag foci that colocalize with DNA damage signaling proteins, 

and activation of ATM and ATR during infection, an initial model proposed that viral DNA 

replication is associated with DNA damage and subsequent DNA damage signaling 

(Zhao et al., 2008).  In spite of the close relation of viral DNA replication and DNA 

damage signaling, this model had not been thoroughly tested using either 

polyomaviruses or papillomaviruses.  

 Another model for the activation of DNA damage signaling by SV40 is based on 

the finding that ectopically expressed Tag associates with Bub1, a protein required for 

the anaphase checkpoint (Lara-Gonzalez, Westhorpe et al., 2012), and leads to its 

degradation (Cotsiki, Lock et al., 2004; Hein, Boichuk et al., 2009).  Degradation of Bub1 

in Tag-overexpressing cells increased polyploidy, and the loss of the anaphase 
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checkpoint inside SV40-infected cells causes chromosomal DNA damage through 

chromosomal breakage during mitosis (Cotsiki et al., 2004).  However, the plasmids 

used in one of these studies to overexpress Tag contained the viral origin (Cotsiki et al., 

2004), raising the possibility that the increased DNA content observed might have 

stemmed from Tag mediated origin dependent DNA replication rather than from 

abrogation of the anaphase checkpoint.   

 Subsequent studies by the same group using CMV based overexpression of Tag 

from a retroviral system that lacked the viral origin of replication found that DNA damage 

signaling is activated following a week of selection for stable transductants that express 

Tag (Hein et al., 2009; Boichuk et al., 2010).  Contrary to Cotsiki et al., Hein et al., found 

a more subtle induction of polyploidy upon Tag overexpression (Hein et al., 2009).  

Given these results, the timepoints examined by these studies (168 h) do not correlate 

well with actual SV40 infection (72 h) (Boichuk et al., 2010; Hein et al., 2009). Another 

consideration arguing against the relevance of the Tag-Bub1 findings is the fact that 

activation of ATM and ATR by SV40 infection would prevent mitotic entry.  As such, how 

an SV40 infected cell would enter mitosis is difficult to imagine.  Collectively, it is difficult 

to determine from these results how the abrogation of the anaphase checkpoint 

contributes to DNA damage during actual SV40 infection.  

 A final proposal for the activation of DNA damage signaling during small DNA 

tumor virus infection is based on the observation that overexpression of helicases is able 

to elicit DNA damage signaling through the creation of large amounts of ssDNA.  Again, 

this model primarily stems from data gained using transfection or transduction to 

ectopically express viral replicative helicases,  HPV E1 or Tag (Sakakibara, Mitra et al., 

2011; Boichuk et al., 2010).  Wild-type HPV E1 expression, without the viral ORC E2, 

activated the DNA damage response, but E1 that lacked ATPase or DNA binding activity 

did not (Sakakibara et al., 2011).  However, unlike singular E1 expression, co-
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expression of E1 and E2 results in DNA damage signaling that is localized to a viral 

replication center, suggesting that in infected permissive cells, E1 and E2 elicit damage 

specifically at the viral replication center (Sakakibara et al., 2011).    

 Similarly, transduction of Tag expression vectors lacking the SV40 origin into 

cells suggested Tag activates ATM and ATR signals, generates DNA repair foci that 

colocalize with Tag foci, and induces genomic DNA damage (Boichuk et al., 2010).  

However, the timeline of the experiments (168 h) was again not relevant to SV40 

infection (72 h) (Boichuk et al., 2010).  Additionally, these experiments did not test the 

contribution of the viral origin to the timing of damage and damage to the host genome.  

In spite of this, both sets of experiments indicate that unregulated expression of a viral 

replicative DNA helicase elicits DNA damage signaling emanating from damage to the 

host chromosome.  The damage sustained by the host genome upon ectopic viral 

helicase expression is likely due to deregulated helicase unwinding in the absence of the 

viral ori at ssDNA/dsDNA junctions.  Deregulated helicase activity would generate 

substantial amounts of ssDNA that would be the substrate for ATR signaling and 

nucleases.  Yet, what aspects of helicase overexpression in the absence of the viral 

origin are relevant to permissive SV40 infection have not been determined. 

 

Experimental rationale and summary 

 

 Given that multiple mechanisms might contribute to the activation of DNA 

damage signaling during SV40 infection, I felt it was prudent to first study what aspect of 

infection is necessary to induce DNA damage signaling and determine if DNA damage 

signaling through ATM and ATR directly affects viral DNA replication.  This investigation 

was published in PLoS Pathogens (Sowd, Li et al., 2013) and immediately follows as 

chapter II.  In addition to Chapter II containing the PLoS Pathogens manuscript, I also 
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added the supporting figures from the manuscript to the main text and two figures of 

unpublished results.  The two unpublished figures contain experiments that directly 

support and build upon the conclusions of the PLoS Pathogens paper. 

 Chapters III and IV contain unpublished results that will be used to construct two 

papers.  A brief examination of how ATM and ATR influence the viral pseudo-S phase is 

presented in Chapter III.  Chapter IV explores what components of DSB repair localize to 

viral DNA replication centers.  Additionally, the impact of  ATM and ATR kinase activities 

on the localization DSB repair proteins inside SV40-infected cells is tested in Chapter IV.  

This chapter contains a fairly comprehensive amount of unpublished data.  

 Thus as a whole, the dissertation chapters that follow are an attempt to address 

two questions: 1. How DNA damage signaling is activated during a permissive SV40 

infection? 2.  What activities promote accurate replication of the viral genome?  While 

reading these chapters, it is important to keep in mind a few key points.  First, ATR 

functions during each cellular S phase to promote genome stability (Toledo et al., 2011).  

Second, ATM-deficient cells display some DNA replication abnormalities that may stem 

from interactions of ATM with replication factors (Gamper, Choi et al., 2012).  Third, ATM 

and ATR are conductors of DNA damage signaling and have widespread effects on the 

cell (Ciccia et al., 2010).  After the presentation of the results in chapters II-IV, I 

speculate in chapter V how the collective results of chapters II, III, and IV fit together. 

  



47 
 

CHAPTER II 

 

ATM AND ATR ACTIVITIES MAINTAIN REPLICATION FORK INTEGRITY DURING 
SV40 CHROMATIN REPLICATION 

 

Portions of chapter II were previously published in (Sowd et al., 2013). 

 

Introduction 

 

 Faithful duplication of the genome is vital for cell proliferation. In metazoans, the 

consequences of inaccurate genome replication include cell death, premature aging 

syndromes, neuro-degeneration disorders, and susceptibility to cancer (Ciccia et al., 

2010; Chu and Hickson, 2009). The DNA damage signaling protein kinases ATM and 

ATR, members of the PIKK family, act to ensure that cells with incompletely replicated or 

damaged DNA do not progress through the cell cycle (Ciccia et al., 2010). ATM and 

DNA-PKcs respond primarily to DNA DSBs that are associated with either MRN (Stracker 

et al., 2011) or Ku70/80 (Meek et al., 2008), respectively. Additionally, intracellular 

oxidation or alterations in chromatin structure can activate ATM kinase (Guo et al., 2010; 

Bakkenist et al., 2003).  In contrast, single-stranded DNA (ssDNA) bound by RPA 

activate ATR (Zou et al., 2003; Cimprich et al., 2008). When activated, ATM and ATR 

phosphorylate consensus SQ/TQ motifs in target proteins at sites of damage, e.g., the 

histone H2AX, which facilitates recruitment of repair proteins and activation of 

downstream kinases Chk1 and Chk2 that enforce the checkpoint (Cimprich et al., 2008; 

Matsuoka et al., 2007).  

 Failure to activate DNA damage checkpoints results in genome instability 

syndromes.  Mutations in the human ATM gene can cause the cancer-prone disorder 
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ataxia telangiectasia. Hypomorphic mutations in the ATR gene can cause the genomic 

instability disorder Seckel Syndrome, but complete loss of ATR results in cell death 

(Brown et al., 2000; Casper et al., 2002). The central roles of ATM and ATR in genome 

maintenance suggest the potential to manipulate their activity for cancer chemotherapy, 

fueling the development of potent small molecules that specifically inhibit ATM and ATR 

activities in cellulo (Hickson, Zhao et al., 2004; Reaper, Griffiths et al., 2011).  

 Interestingly, multiple animal viruses have evolved to manipulate DNA damage 

signaling pathways to facilitate viral propagation (Weitzman et al., 2010). Some viruses, 

e.g., herpes simplex virus, evade or disable DNA damage response pathways that result 

in inappropriate processing of viral DNA (Weitzman, Lilley et al., 2011; Weller, 2010). In 

other cases, viral infection appears to activate checkpoint signaling and harness it to 

promote the infection. HIV, papillomaviruses, and polyomaviruses induce and depend on 

ATM signaling for viral propagation (Lau, Swinbank et al., 2005; Moody and Laimins, 

2009; Sakakibara et al., 2011; Wallace, Robinson et al., 2012; Dahl, You et al., 2005; 

Jiang, Zhao et al., 2012). However, mechanistic understanding of how these viruses 

activate damage signaling and exploit it for viral propagation is limited.  

 SV40, a polyomavirus that propagates in monkey kidney cells, has served as a 

powerful model to study eukaryotic replication proteins and mechanisms in vivo and in 

vitro (Bullock, 1997; Borowiec, Dean et al., 1990; Waga et al., 1994; Sowd et al., 2012; 

Fanning et al., 2009). Checkpoint signaling proteins are dispensable for SV40 DNA 

replication in vitro, yet in infected cells, ATM or ATR knockdown, over-expression of 

kinase-dead variant proteins, or chemical inhibition of checkpoint signaling clearly 

decreases or delays SV40 chromatin replication (Shi et al., 2005; Zhao et al., 2008; 

Rohaly et al., 2010; Sowd et al., 2012). To determine how checkpoint signaling facilitates 

viral replication in SV40-infected primate cells, we have utilized small molecule inhibitors 

of the PIKK family members ATM, ATR, and DNA-PK to suppress checkpoint signaling 
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in host cells during three specific time windows after SV40 infection. Characterization of 

the resulting viral DNA replication products reveals that inhibition of ATM or ATR, but not 

DNA-PK, reduced the yield of unit length viral replication products and caused 

accumulation of aberrant viral DNA species.  ATM inhibition led to unidirectional SV40 

DNA replication and concatemeric products, whereas ATR inhibition markedly increased 

broken SV40 DNA replication forks.  Our results strongly suggest that unperturbed viral 

chromatin replication in infected cells results in double strand breaks, activating 

checkpoint signaling and fork repair to generate unit length viral replication products. 

 

Results 

 

SV40 chromatin replication activates DNA damage signaling  

 Replicating SV40 chromatin in infected cells has been visualized by fluorescence 

microscopy in prominent subnuclear foci that co-localize with Tag and several host 

proteins essential for viral DNA replication in vitro, suggesting that these foci may 

represent viral chromatin replication centers (Tang, Bell et al., 2000; Zhao et al., 2008; 

Sowd et al., 2012). However, SV40 infection activates ATM and ATR signaling, and 

several DNA damage signaling and repair proteins, e.g., MRN, γH2AX, ATRIP, Rad51, 

Brca1, FancD2 and 53BP1, co-localize with Tag at these foci (Zhao et al., 2008; Shi et 

al., 2005; Boichuk et al., 2010; Rohaly et al., 2010), implying a link between SV40 

replication and damage signaling. On the other hand, interaction of ectopically 

expressed Tag with the spindle checkpoint protein Bub1 can induce cellular 

chromosome breaks (Hein et al., 2009), indicating that Tag interference with host mitotic 

checkpoint proteins may suffice to damage genomic DNA in uninfected cells.  

 As a first step to assess a potential link between SV40 chromatin replication and 

DNA damage signaling, viral replication centers in SV40-infected BSC40 monkey cells 
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were characterized in detail.  Chromatin-bound Tag was visualized in subnuclear foci as 

expected and colocalized with newly replicated DNA that had incorporated the 

deoxynucleoside EdU (Figures 10A, 11A).  Chromatin-bound PCNA, DNA polymerase δ, 

and the clamp-loader RFC, host proteins that are essential for viral DNA replication in 

vitro, colocalized with Tag foci in both BSC40 and human U2OS cells at 48 hours post 

infection (hpi) (Figures 10A, 11B-D and 12B-D).  In contrast, Cdc45 and polymerase ε, 

essential components of the host replisome that colocalized with replicating chromatin in 

mock-infected BSC40 and U2OS cells (Figures 11E and 12C, D), were virtually excluded 

from viral replication centers (Figures 11F, G and 12C-E).  The results strongly suggest 

that in infected cells, these chromatin-bound Tag foci represent sites of viral, rather than 

host, chromatin replication.  

 To determine whether SV40 DNA replication itself induces DNA damage 

signaling in the absence of viral infection, the plasmids pMini SV40-wt, and its 

replication-defective variants lacking Tag helicase activity (D474N) (Zhou et al., 2012), 

or containing a single base pair insertion that inactivates the viral origin (In-1) (Cohen, 

Wright et al., 1984), were transfected into BSC40 monkey cells (Figure 10B). As 

expected, all three plasmids expressed Tag, but only the SV40-wt plasmid replicated 

(Figure 10C, D). SV40-wt elicited phosphorylation of Chk1 and Chk2 more robustly than 

either of the replication-defective constructs (Figure 10D, compare lane 1 to lanes 2-3). 

Moreover, prominent γH2AX foci, a marker of DNA damage signaling in chromatin 

(Lobrich et al., 2010), colocalized with chromatin-bound Tag in viral replication centers in 

SV40-wt transfected cells (Figure 10E). In contrast, the few γH2AX foci detected in cells 

transfected with the replication defective plasmids did not colocalize with Tag (Figure 

12E).  Thus, in the context of transfected cells, viral DNA replication, but not SV40-

driven Tag expression, is sufficient to induce DNA damage signaling, suggesting that 

DNA breaks in replicating viral chromatin may activate checkpoint signaling.
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Figure 10. 
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Figure 10. SV40 chromatin replication results in DNA damage signaling. 
(A) Representative images of chromatin-bound Tag and host DNA replication proteins in SV40- and mock-
infected (inset) BSC40 cells at 48 hpi.  (B) Features of the SV40 genome and the insertion site of pMini 
vector (Zhou et al., 2012). Mutation of Tag residue 474 from D to N abrogates helicase activity (Zhou et al., 
2012). The defective SV40 origin mutant, In-1, features an insertion of a single GC bp in the center of the 
viral origin allowing Tag binding, but not origin activation (Cohen et al., 1984). (C, D, E) BSC40 cells 
transfected with the indicated pMini SV40 plasmids were analyzed by (C) western blot after 24 h, (D) 
Southern blot of low molecular weight DNA after 48 h (Hirt, 1967; Zhou et al., 2012), or (E) 
immunofluorescence microscopy of chromatin-bound proteins. In (D), SV40 or Mitochondrial probe signal is 
denoted by SV40 or Mito, respectively. Scale bars in (E), 10 μm. 
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Figure 11.
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Figure 11. Viral replication centers co-localize with host DNA replication factors in SV40-infected 
BSC40 cells.  
(A - G) Merged images of chromatin-bound Tag and the indicated host DNA replication factors from mock- 
or SV40-infected BSC40 cells at 48 hpi. Top image for each replication protein is a mock-infected cell. Both 
images in (E.) are mock-infected cells.  The fluorescence intensity in arbitrary units (AU) along the line 
shown in the merged image is graphed in the right panel. Scale bars, 10 μm.



55 
 

 
Figure 12.   
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Figure 12. Host DNA replication proteins co-localize with Tag in SV40-infected U2OS cells.   
(A - E) Representative images of chromatin-bound Tag and the indicated host DNA replication proteins from 
SV40-infected U2OS cells at 48 hpi. The fluorescence intensity in arbitrary units (AU) along the line shown 
in the merged image is graphed in the right panel. Scale bars, 10 μm.   
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Inhibition of ATM disrupts viral DNA replication centers 

 To determine the temporal requirements for ATM activity during infection, we 

exposed infected cells to the specific ATM chemical inhibitor Ku-55933 (Hickson et al., 

2004) during the early phase (virus entry, Tag expression, host DNA synthesis), late 

phase (viral DNA replication, late gene expression, and virion assembly), or throughout a 

48-hour infection (Figure 13A). Infected cells exposed to the Ku-55933 solvent, DMSO, 

served as a positive control. Mock-infected cells not treated with inhibitor served as a 

negative control. As previously observed, ATM activity was stimulated by infection, as 

indicated by phosphorylated Nbs1 and Chk2 in western blots (Figure 13B, compare lane 

1 to lane 5), reduced by the presence of Ku-55933 in either the early or late phase of 

infection (Figure 13B, compare lanes 2, 3 to lane 1), and nearly abolished by the 

presence of Ku-55933 throughout infection (Figure 13B, lane 4).  Notably, only inhibition 

of ATM during viral DNA replication resulted in robust DNA-PKcs activation denoted by 

auto-phosphorylation of residue S2056 (Figure 13B, lane 3). 

 To assess the impact of ATM inhibition during each phase of infection on viral 

chromatin replication, we visualized viral replication centers and DNA damage signaling 

in each infected cell population using immunofluorescence microscopy (Figure 13C). In 

infected cells exposed to DMSO, the normal, brightly stained viral replication centers 

with colocalized Tag, EdU, and γH2AX were observed (Figure 13C). When Ku-55933 

was present only during the early phase of infection, about half of the cells displayed 

normal replication centers with colocalized Tag, EdU and γH2AX foci (Figure 13C and 

D).  However, aberrant pan-nuclear staining of Tag, EdU, and γH2AX predominated 

when Ku-55933 was present during the late phase or throughout infection (Figure 13C 

and D).  Taken together, these results demonstrate that ATM activity is beneficial but not 

essential during the early phase of infection, whereas it is vital for the assembly and/or 

stability of viral replication centers during the late phase of infection. 
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Figure 13. ATM inhibition during viral DNA replication disrupts viral replication centers. 
(A) Experimental scheme for treatment of cells with inhibitor during phases of a 48 h SV40 infection. Early: 
inhibitor present from -0.5 to 20 hpi. Late: inhibitor present from 20 to 48hpi. DMSO and Full: solvent or 
inhibitor, respectively, present from -0.5 to 48 hpi. (B) Western blot of cells treated with Ku-55933 as 
described in (A). (C) Immunofluorescence of cells treated with Ku-55933 as described in (A) and fixed at 48 
hpi. Scale bars, 10 μm. (D) Tag staining patterns, as in (C), were quantified.  Graph in (D) shows the 
average of 3 independent experiments.  
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Inhibition of ATM activity reduces the quantity and quality of viral replication 
products  

 The links between ATM activity, repair protein recruitment, and SV40 replication 

centers led us to hypothesize that inhibition of ATM might affect not only the level, but 

also the nature of the viral DNA replication products.  To investigate this possibility, we 

used southern blotting to analyze total intracellular DNA from SV40-infected BSC40 cells 

that had been treated with DMSO or the specific ATM inhibitor Ku-55933 (Hickson et al., 

2004) throughout infection (Figure 14A).  Inhibition of ATM reduced the level of 5.2 kb 

viral DNA products migrating as form I (supercoiled), form II (nicked), and form III 

(linear), relative to that in the DMSO-treated control infections (Figure 14A, compare 

lanes 1-4 to 5-8).  However, ATM inhibition also caused accumulation of high molecular 

weight SV40 DNA products too large to enter the gel (Figure 14A, compare lanes 3, 4 to 

lanes 7, 8).  These large products failed to migrate into the gel after restriction digestion 

with enzymes that cut host DNA but not SV40 DNA. In contrast, most of these products 

collapsed into unit length linear SV40 DNA after digestion with an enzyme that cleaves 

SV40 DNA once (Figure 15A), indicating that the large DNA products contain head-to-

tail repeats of unit length viral DNA. 

 To quantify the data in Figure 14A, the signal in SV40 monomer bands (forms I, 

II, and III) in each sample was normalized to that of mitochondrial DNA (Mito) in the 

same sample. This normalized monomer signal in each sample was then compared to 

that of the normalized monomer bands in the positive control at 72 hpi. (Figure 14A, lane 

4) and graphed in Figure 14B. The graph reveals that ATM inhibition reduced unit length 

SV40 product by at least 5-fold compared to the DMSO control infections (Figure 14B).  

Quantification of the concatemeric SV40 DNA in each sample relative to that of the total 

SV40 signal in the same sample revealed that ATM inhibition increased accumulation of 

viral DNA concatemers by an order of magnitude compared to that in the DMSO control 
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Figure 14.
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Figure 14. Ku-55933 treatment during viral DNA replication increases aberrant DNA structures. 
(A) Southern blot of DNA from SV40 infected BSC40 cells in the presence of DMSO or Ku-55933. DMSO or 
Ku-55933 was present from 30 min prior to infection until cell collection timepoint. M represents Mock-
infected cells. (B) Each normalized monomer SV40 form I, II, and III product in (A) was graphed as a fraction 
of the corresponding normalized monomer produced at 72 hpi in the DMSO control infection. (C) Graph of 
the percentage of DNA products represented by concatemers in panel (A).  (D) Scheme for treatment of 
cells with inhibitor during defined periods of a 48 h SV40 infection.  Early: inhibitor present from -0.5 to 20 
hpi. Late: inhibitor present from 20 to 48hpi. DMSO and Full: solvent or inhibitor, respectively, present from -
0.5 to 48 hpi.  (E) Southern blot of SV40 DNA replicated in the presence of Ku-55933 during phases of a 48 
h infection in BSC40 cells as explained in (D). (F) Quantification of total and monomeric SV40 DNA signal 
normalized to DMSO control from southern blots as in (E). (G, H) Graph of DNA structures (monomer: G 
and DNA Structure: H) accumulating on southern blots as in (E). Graphs in (F - H) represent 3 to 4 
independent experiments.   
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samples (Figure 14C). Thus, inhibition of ATM throughout infection reduced monomeric 

and increased concatemeric SV40 DNA products. 

 Total intracellular DNA was extracted from infected BSC40 cells exposed to Ku-

55933 during the three time windows, as diagrammed in Figure 14D. The purified DNA 

was separated by gel electrophoresis and analyzed in southern blots (Figure 14E). 

Inhibition of ATM either early or throughout infection reproducibly reduced the level of 

total viral DNA and monomeric DNA products by 50-80% relative to that generated in the 

DMSO-treated control infection (Figure 14E, F). Similarly, in the late phase of infection, 

inhibition reduced viral DNA monomers to a level comparable to that observed when 

ATM was inhibited during the early phase, yet total viral DNA was only insignificantly 

decreased compared to DMSO-treated cells (Figure 14E, F). SV40 monomers 

comprised about 80% of the total viral DNA signal in samples from infected cells 

exposed to DMSO or Ku-55933 during early phase (Figure 14G). In contrast, monomers 

comprised only 64% of the total signal in samples treated with Ku-55933 late or 

throughout infection (Figure 14G). When Ku-55933 was applied either during the late 

phase or throughout infection, the fraction of total viral DNA in concatemers increased 

10- and 11-fold, respectively, relative to the fraction in DMSO-treated infected cells 

(Figure 14H). The fraction of total SV40 DNA migrating greater than 20-kb linear (20 kb) 

also increased in cells treated with Ku-55933 late or throughout infection, relative to that 

in DMSO-treated control infections (Figure 14H).  

 To confirm these findings in a different cell background, the temporal 

requirements for ATM activity were also determined in SV40-infected human U2OS 

cells, with similar results (Figure 15B-E). Taking the results together, we infer that SV40-

infected cells require ATM signaling, primarily during the late phase of infection, to favor 

production of unit-length genomes rather than aberrant products.    
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Figure 15. Aberrant DNA structures accumulate in ATM-inhibited SV40-infected U2OS cells. 
(A)  Total DNA extracted at 48 hpi from SV40-infected BSC40 cells treated with Ku-55933 during the 
indicated phases of infection, as in figure 21D, was analyzed by southern blot. Lanes 1-5: DNA digested with 
XbaI and SacI.  Lanes 6-10: DNA digested with BglI. (B) Southern blot of DNA replicated in SV40-infected 
U2OS cells in the presence of ATM inhibitor during the indicated phases of infection. (C) Quantification of 
SV40 signal in monomeric forms and the whole sample in each lane, normalized to the corresponding 
signals in the DMSO solvent lane as in panel B.  (D, E) Fraction of signal in monomer forms (D) or in the 
indicated DNA structure (E) in DNA extracted at 48 hpi from cells treated with Ku-55933 during the indicated 
phases of infection as in panel B. Values in (C - E) represent the average of 3 to 4 independent 
experiments. 
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ATM inhibition increases rolling circle DNA replication and strand invasion 

 To better understand how the aberrant viral replication products arise, we 

compared replication intermediates generated with and without Ku-55933 during the late 

phase of infection. The total DNA was first digested with a restriction nuclease that 

cleaves SV40 once in the viral origin (BglI) or once in the region of termination (BamHI). 

Neutral two-dimensional (2d) gel electrophoresis was then used to separate viral 

replication intermediates from the accumulated non-replicating unit-mass SV40 DNA, 

followed by southern blotting using the whole SV40 genome as the probe (Friedman and 

Brewer, 1995). Replicating viral DNA is present in the form of circular, converging forks 

known as Cairns intermediates (Figure 16B). The digestion of Cairns intermediates with 

BglI or BamHI results in double Ys or bubbles, respectively (Figure 16A, B). In the BglI-

cleaved DNA from DMSO-treated control infections, the bubble arc was absent and the 

unit-mass viral DNA migrated in the 1n spot as expected (Figure 16A-C). Also as 

expected, an intense double Y arc indicative of converging forks and an X structure 

signal indicative of hemi-catenanes or Holliday junctions were observed (Figure 16C). In 

addition, the simple Y arc signal revealed some unidirectional replicating forks (Figure 

16C) that can be most easily explained by rolling circle replication. When BamHI-cleaved 

DNA from DMSO-treated infected cells was analyzed by 2d gel electrophoresis, the 

bubble arc was detected and the double Y arc was absent, as expected (Figure 16D). 

Similar to BglI digestion, both an X structure and a weaker simple Y arc were present 

(Figure 16D). 

 In contrast, the pattern of BglI-digested viral replication intermediates generated 

in the presence of Ku-55933 displayed a much fainter double Y arc and a more intense 

simple Y arc (compare Figure 16E with C). Similarly, X structures, and D-loops/complex 

branched intermediates (red star) were more prominent when ATM was inhibited 

(compare Figure 16E with C), consistent with increased Holliday junction formation
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Figure 16. 
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Figure 16. ATM inhibition increases recombination and unidirectional replication. 
(A) Diagram of neutral 2d gel electrophoresis arcs generated from digested SV40 DNA. (B) Replicating viral 
DNA extracted from unperturbed SV40-infected cells consists primarily of circular, late replication 
intermediates called late Cairns intermediates. Digestion of late Cairns intermediates with BglI yields large 
double Ys, whereas BamHI digestion yields large bubbles. (C, D, E, F) Southern blot of neutral 2d gel of 
BglI-cleaved DNA replicated in the presence of DMSO (C, D) or Ku-55933 (E, F) during the late phase of a 
48h SV40 infection in BSC40 cells. DNA was cleaved within the viral origin of replication with BglI (C, E) or 
the region of fork convergence with BamHI (D, F). The red star denotes an arc representing strand invasion 
events (D-loops) or highly branched molecules (Preiser, Wilson et al., 1996; Backert, 2002). On the simple Y 
arc in (F), S denotes a replication stall point near the viral origin of replication. Dashed boxes denote regions 
of each arc quantified in (H) and (I). (G) Concatemers of SV40 DNA that accumulated when ATM was 
inhibited can arise by either replication- (top) or recombination- (bottom) dependent rolling circle replication. 
Digestion of replication-dependent rolling circles with BglI or BamHI results in simple Ys of all sizes. 
Digestion of recombination-dependent rolling circles creates D-loops of all sizes. (H) Graph of DNA signal 
present on simple Y, double Y, X structure, or D-loop arc divided by DNA signal in the double Y arc from 
DNA digested with BglI. (I) Graph of DNA signal from BamHI digested DNA in simple Y, bubble, X structure, 
or D-loop arc divided by DNA signaling in the bubble arc. Each graph in (H) and (I) represents the average 
of 3 to 4 independent experiments. 
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 between replicating rolling circles (Preiser et al., 1996; Backert, 2002). Likewise, 

BamHI-cleaved replication intermediates from Ku-55933-treated infections displayed a 

robust simple Y arc and a corresponding decrease in the bubble arc (Figure 16F).  

Moreover, the intense X structure and D-loop arcs were retained (Figure 16F). These 

patterns suggest that inhibition of ATM sharply increased the frequency of rolling circle 

replication (Figure 16G). Quantification of the signal present in the simple Y, X structure, 

D-loop, and double Y arcs from BglI-digested DNA (Figure 16C, E boxes) showed that 

ATM inhibition increased the abundance of simple Ys, X structures, and D-loop arcs 

relative to the double Y arc by six, three, and eight-fold, respectively, from three to four 

independent experiments (Figure 16H). Analogously, quantification of BamHI-digested 

DNA (Figure 16D, F boxes) revealed ATM inhibition increased the quantities of simple 

Ys, X structures, and D-loop arcs relative to the bubble arc (Figure 16I). We conclude 

that the ATM inhibitor Ku-55933 increased both rolling circle replication and strand 

invasion events at the expense of bidirectional SV40 chromatin replication. 

 

Caffeine inhibits SV40 chromatin replication  

 The importance of ATM activity in SV40 chromatin replication suggested the 

possibility that other checkpoint kinases might also contribute to viral infection. To further 

explore this question, we treated SV40-infected BSC40 cells with caffeine, a less 

selective inhibitor of both ATM and ATR in vitro and of the S/G2 checkpoints in vivo 

(Sarkaria, Busby et al., 1999).  Of note, caffeine is structurally unrelated to the more 

potent Ku-55933 and ATR inhibitors (Hickson et al., 2004; Reaper et al., 2011). As 

expected, caffeine inhibited phosphorylation of Chk1 and Chk2 when present during the 

late phase or throughout infection (Figure 17A, B) but also hyper-activated DNA-PK 

(Figure 17B, compare lane 1 with lanes 2-4) (Chen et al., 2005). Caffeine reduced the 

level of total viral DNA products in SV40-infected BSC40 cells to less than 1% of the 
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Figure 17. Caffeine inhibits ATM and ATR activities in SV40-infected BSC40 cells.  
(A)  BSC40 cells were treated with caffeine during the indicated phases of a 48 h SV40 infection. (B, C) 
Western blots of cell lysates from SV40-infected BSC40 cells exposed to caffeine as depicted in (A).    
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control level when caffeine was present throughout infection (Figure 18A, B). Exposure 

to caffeine late or throughout infection reduced the fraction of total viral DNA signal in 

monomers (form I, II, III) and increased the fraction in concatemers and other aberrant 

products (Figure 18A, C, D). Similarly, in SV40-infected U2OS cells, caffeine reduced 

total viral replication products and increased the fraction of aberrant products (Figure 

18E-H). The results further confirm a role for ATM activity in SV40 chromatin replication 

in infected cells and suggest that ATR and/or DNA-PK activity may stimulate viral 

replication.  

 

DNA-PKcs activity is dispensable for SV40 chromatin replication  

 Although SV40 infection did not activate DNA-PK, it was activated in infected 

cells exposed to Ku-55933, ATRi, or caffeine, as evidenced by DNA break-dependent 

auto-phosphorylation of DNA-PK at S2056 (Chen et al., 2005). To test for a potential role 

of DNA-PK activity in viral chromatin replication, SV40-infected BSC40 cells were 

exposed to small molecule inhibitors of DNA-PK during the early or late phase, or 

throughout infection, and total intracellular DNA was analyzed by southern blotting 

(Figure 19A-C). When DNA-PK was inhibited with either Nu7441 or Nu7026, the levels 

of viral monomer and aberrant viral DNA products closely resembled those in SV40-

infected BSC40 cells (Figure 19D). Moreover, inhibition of DNA-PK had little or no effect 

on viral replication centers (data not shown). Thus, it is unlikely that DNA-PK has a 

major role in viral chromatin replication in unperturbed infected cells. 

 

Inhibition of ATR decreases SV40 DNA replication  

 The role of ATR kinase activity in infection was directly examined by treating 

SV40-infected BSC40 cells with a specific small molecule inhibitor of ATR, VE-821 

(ATRi) (Reaper et al., 2011), during three different time windows of infection (Figure 
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Figure 18. ATM and ATR inhibition increases aberrant DNA product accumulation.  
(A, E) Southern blots of total DNA extracted from BSC40 (A) or U2OS (E) cells treated with caffeine during 
phases of SV40 infection as described in Figure 24A. (B, F) Quantification of signal in SV40 monomer forms 
or total DNA in caffeine-treated BSC40 (B) or U2OS (F) cells, normalized to that in DMEM solvent. (C, D, G, 
H) SV40 signal in monomer forms (C and G) or aberrant DNA structures (D and H) accumulated in caffeine-
treated BSC40 (C and D) or U2OS (G and H) cells, divided by the total SV40 DNA signal in respective lane. 
Bars in (B - D) and (F - H) represent the average of 3 to 4 independent experiments. 
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Figure 19. DNA-PKcs activity is dispensable in unperturbed SV40 infection.  
(A)  Experimental scheme for treatment of BSC40 cells with DNA PK inhibitors during phases of a 48 h 
SV40 infection.  (B, C)  Southern blots of DNA extracted from BSC40 cells treated as in (A) with Nu7026 (B) 
or Nu7441 (C).  (D) Quantification of SV40 replication products as in (B, C). 
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20A). As expected, ATRi caused a third of the cells to lose viability over 48 h, but SV40-

infected and mock-infected cells were equally sensitive (Figure 20B). SV40 infection 

activated Chk1, as indicated by phosphorylation of Ser317 (Figure 20C, compare lane 1 

with lane 5), and ATRi effectively suppressed ATR activation during each time window 

(Figure 20C, lanes 2-4).  Additionally, the presence of ATRi during any phase of SV40 

infection induced DNA-PK activation (Figure 20D, lanes 2-4). 

 Viral DNA replication strongly elicits ATR activation, which is required for SV40-

induced S-phase arrest.  To determine whether ATR has other roles in directly 

promoting viral DNA replication beyond the S phase checkpoint, the DNA replication 

products from the four cell populations and mock-infected cells were analyzed by 

southern blotting and quantified relative to mitochondrial DNA in the same samples. In 

the presence of ATRi, the level of total viral DNA replication products declined markedly 

relative to that in DMSO-treated control infections, amounting to only 10% of the control 

when ATRi was present for the full 48 h (Figure 21B, C). In cells exposed to ATRi during 

the late phase or throughout infection, the fraction of viral DNA products in monomers 

(forms I, II and III) dropped, whereas that in concatemers and other aberrant products 

rose (Figure 21B-E and Figure 22A). Analysis of viral replication products from SV40-

infected U2OS cells exposed to ATRi demonstrated a similar requirement for ATR 

activity (Figure 22B-D). Taken together, these results indicate that infected cells require 

ATR activity before, as well as during viral chromatin replication, for normal 

accumulation of viral genomes.  

 

Chk1 inhibition decreases viral DNA replication 

 ATR activation following DNA damage results in the activation of the downstream 

kinase Chk1.  The kinase activity of Chk1 is essential for S phase arrest in response to 

replication stress, and Chk1-inhibited or -depleted cells demonstrate many of the same 
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Figure 20.  ATRi inhibits ATR activity in SV40-infected BSC40 cells.  
(A) Exposure of SV40-infected BSC40 cells to ATRi during defined phases of a 48 h infection.  (B)  WST-1 
viability assay of SV40-infected BSC40 cells treated with ATRi as described in (A). Values were normalized 
to SV40-infected cells in the presence of DMSO. Error bars represent four independent experiments.  (C, D) 
Western blot of cell lysates from SV40-infected BSC40 cells exposed to ATRi as indicated.   
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Figure 21.  ATR is crucial for SV40 chromatin replication. 
(A)  Scheme for application of ATRi during phases of a 48 h SV40 infection.  (B) Southern blot of DNA 
replicated in BSC40 cells when ATRi was present during phases of a 48 h SV40 infection described in (A).  
(C) Graph of total viral or SV40 monomer DNA signals normalized to SV40 DNA replicated in the presence 
of DMSO from southern blots as shown in (B).  (D, E) Graph of monomer (D) or aberrant (E) structure(s) 
accumulated as a result of ATR inhibition from southern blots as shown in (B).  Each bar in (C-E) shows the 
average from 3 to 4 independent experiments. 
 



75 
 

 
 
 
 
Figure 22.  ATR is needed for efficient viral DNA replication in U2OS cells.  
(A) Southern blot analysis of total DNA from BSC40 cells treated with ATRi during the indicated phases of 
infection as in figure 21A. Lanes 1-5: DNA digested with XbaI and SacI. Lanes 6-10: DNA digested with BglI. 
An equal amount of unit length SV40 DNA was loaded in each lane using the data in figure 21C.  (B) Total 
DNA from SV40-infected U2OS cells treated with ATRi as in Figure 21A was analyzed by southern blotting.  
(C) Quantification of SV40 signal in total and monomeric SV40 DNA forms from infected U2OS cells treated 
with ATRi, normalized to the corresponding signals from infected cells treated with DMSO.  (D) Fraction of 
total SV40 signal in the indicated DNA structures in infected U2OS cells exposed to ATRi.  Bars in graphs in 
(C, D) represent the average of 3 to 4 independent experiments. 
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defects of ATR inhibition or knockdown (Toledo et al., 2011).  The latter characteristic of 

ATR and Chk1 is not exhibited by ATM and its downstream kinase Chk2 (Bunz, 2011). 

Therefore, to test if the contribution of Chk1 to the S phase checkpoint was crucial for 

viral DNA replication, the Chk1 inhibitor UCN-01 (Busby, Leistritz et al., 2000) was 

exposed to SV40-infected BSC40 cells during phases of a 48 h SV40 infection (Figure 

23A).  At 48 hpi, viral and cellular DNA were extracted and subjected to southern blotting 

(Figure 23B).  The presence of UCN-01 during any phase of infection resulted in a 

decrease in the amount of viral monomer (Form I, II, and III) and total viral DNA 

replication products (Figure 23B, C).  SV40-infected cells exposed to UCN-01 during 

viral DNA replication or throughout infection decreased viral DNA replication products to 

9% and 8% of DMSO, respectively (Figure 23C).  Unlike ATR inhibition, Chk1 inhibition 

during viral DNA replication or throughout infection did not result in the accumulation of 

any aberrant product (Figure 23B, E).  These data are consistent with a Chk1 kinase 

activity being essential for viral DNA replication.    

 

Broken and/ or stalled forks accumulate in ATR inhibited SV40-infected cells 

 The structures of viral replication intermediates generated in the presence and 

absence of ATR kinase activity were characterized by using neutral 2d gel 

electrophoresis and southern blotting. As expected, BglI-digested SV40 replication 

intermediates from control infections displayed a strong double Y arc indicative of 

converging forks, X structures, and a weaker simple Y arc with both legs of similar 

intensity (Figure 24B).  In contrast, BglI-digested replication intermediates from ATRi-

treated cells yielded a novel pattern (Figure 24C).  Although the double Y and X 

structure arcs closely resembled those in the DMSO control, the simple Y arc displayed 

much greater intensity in the leg closer to the 1n linear DNA (Figure 24B and C, 

enlarged box) than in the other leg closer to 2n linear DNA.   



77 
 

 
 
 
 
Figure 23.  Chk1 is crucial for SV40 DNA replication in cellulo. 
(A)  Experimental scheme for treatment of BSC40 cells with UCN-01 during phases of a 48 h SV40 infection.  
(B) Southern blots of DNA extracted from BSC40 cells treated as in (A) with UCN-01.  In the left panel, equal 
numbers of cells were loaded in each lane.  In the right panel, equal quantities of monomer were loaded in 
each lane.  (C) Graph of total viral or SV40 monomer DNA signals normalized to SV40 DNA replicated in the 
presence of DMSO from southern blots as shown in (B).  (D, E) Graph of monomer (D) or aberrant (E) 
structure(s) accumulated as a result of Chk1 inhibition from southern blots as shown in (B). In (E), none of 
the bars are significantly different from the DMSO control.  Each bar in (C-E) shows the average from 3 
independent experiments. 
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Figure 24.  ATR or Chk1 inhibition results in fork stalling and breakage of converging forks. 
(A) Top Panel: Schematic of replication intermediate migration patter on a neutral 2d gel generated from 
digested SV40 DNA.  Bottom Panel: Map of the SV40 genome showing BglI and BamHI sites.  (B, C, D, E, 
F, G) Southern blot of neutral 2d gel electrophoresis of BglI- (B, C, D) or BamHI-cut (E, F, G) DNA from 
SV40-infected BSC40 cells exposed to DMSO (B, E), ATRi (C, F), or UCN-01 (D, G) during the late phase of 
SV40 infection as described in figure 29A. Dashed boxes denote regions of each arc quantified in (H).  (H) 
Graph of DNA signal from BglI digested DNA in X structure, double Y, right leg of the simple Y, or left leg of 
the simple Y arc divided by DNA signaling in the X structure arc. Each bar in (H) represents the average of 3 
independent experiments.
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 This pattern is not consistent with rolling circle replication, which generates a 

uniformly intense simple Y arc (Figure 16) or with two stalled replication forks, of which 

one breaks, creating an asymmetric simple Y (Pohlhaus and Kreuzer, 2006). The 

observed pattern is also inconsistent with one normal replication fork and one slower 

moving fork, which would converge asymmetrically to generate a cone-shaped signal 

between the X structure arc and the Y arc (Lopes, Cotta-Ramusino et al., 2001). 

However, the new pattern observed could arise if one fork stalls prematurely (Figure 25, 

I, II), while the other fork progresses until it encounters the stalled fork and then breaks, 

generating a broken late Cairns intermediate (Figure 25, III, IV) (Friedman et al., 1995). 

Close inspection of the intense leg of the Y arc reveals that its intensity is uneven, 

suggesting that it may arise from a series of closely spaced break sites along the Y arc 

(Figure 24C). If the break sites reside 2.5 kb or less from the BglI cleavage site, the 

intensity of signals would be greater in the right leg of the simple Y arc, as observed 

(Figure 24C, box). This interpretation predicts that if replication products from the ATRi-

treated infection were digested with BamHI, which cleaves 2.5 kb from the BglI site, the 

sites of breakage, and hence greater signal intensity, should shift to the left leg of the 

simple Y arc, closer to the 2n linear DNA (Figure 24A, F). Indeed, this shift was 

observed (compare Figure 24C with F), confirming that when the moving replication fork 

encountered a fork that had stalled in the presence of ATRi, the moving fork broke 

(Figure 25).  

 

Chk1-inhibited cells amass broken and/ or stalled forks 

 The large decrease in viral DNA replication products observed when ATR or 

Chk1 is inhibited during viral DNA replication (Figures 21 - 23) suggests that decreased 

Chk1 activity in the presence of ATRi is responsible.  To determine whether reduced 

Chk1 activation underlies the increase in broken, stalled replication forks when ATR is 
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Figure 25.  
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Figure 25. ATR inhibition results in replication fork stalling and breakage. 
Diagrams of replication intermediates on a simple Y arc produced when ATR was inhibited. BamHI (green) 
and BglI (orange) sites are denoted by colored lines. I. Replication initiates at the origin and proceeds 
bidirectionally producing theta replication intermediates. II. Replisomes continue replication until one 
encounters a replication block (red triangle) causing one stalled fork. III. The stalled replication fork is closest 
to orange BglI site (viral origin of replication). The functional replisome continues replication and converges 
with the stalled replication fork. IV. One-sided DSB forms at the replicating fork of late Cairns intermediate 
shown in (III) as it translocates toward the stall site. V. Simple Y created by digestion of the broken late 
Cairns intermediate shown in (IV) with BglI or BamHI. VI. Diagram of the predicted outcome of the simple Y 
shown in panel (V) following neutral 2d gel electrophoresis and southern blotting. The stall point on the 
simple Y arc (light green circle) corresponds to the simple Y in panel (V). 



82 
 

inhibited, DNA replicated in the presence of UCN-01 for the final 28 h of a 48 h SV40 

infection was examined by neutral 2d gel electrophoresis and southern blotting.  BglI-

cleaved DNA from Chk1-inhibited, SV40-infected cells migrated in a pattern akin to that 

observed after ATR inhibition, in a simple Y arc with a prominent right leg  (Figure 24D).  

The uneven intensity in the right leg of the simple Y arc  is indicative of stalling and 

breakage of replicative viral DNA when Chk1 is inhibited (Figure 25).  BamHI-digested 

DNA replicated in the presence of UCN-01 displayed intensity on the opposite leg of the 

simple Y arc (Figure 24G).  Quantification of the signal within defined regions of the 

double Y, two legs of the simple Y, and X structure arc (Figure 24B, C, D, red boxes) 

revealed that inhibition of ATR or Chk1 increased the intensity of the right leg of the 

simple Y arc 3.1 and 3.3 fold, respectively, relative to DMSO (Figure 24H).  Thus, these 

results imply that the inhibition of downstream Chk1 kinase activity when ATR is 

inhibited is sufficient to account for the breakage of the unstalled fork when ATR is 

inhibited (Figure 25). 

 

DNA-PKcs, ATM, and ATR activities can partially compensate for each other in 
SV40 DNA replication 

 The similarity of the 2d gels when ATR or Chk1 are inhibited suggested to us that 

similar mechanisms might contribute to the generation of replication products when 

ATM, ATR, and DNA-PKcs are inhibited.  Furthermore, the degree of overlap between 

kinase substrates for ATM, ATR, and DNA-PKcs opens the possibility that these kinases 

might substitute for each other when only one PIKK is inhibited (Tomimatsu, Mukherjee 

et al., 2009).  The increased activation of DNA-PKcs observed when either ATM or ATR 

are inhibited (Figures 13, 17, 20) suggests that NHEJ might contribute to aberrant 

product formation or repair the DNA as a last resort backup pathway when ATM or ATR 

directed pathways fail.  Seldom used repair pathways can be difficult to observe when 
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the predominant repair pathway is active (e.g., MMEJ vs NHEJ (Goodarzi et al., 2013)).  

Thus, the combined inhibition a major DNA repair pathway along with a more seldom-

used pathway can exacerbate the repair defect beyond the level observed when only the 

major pathway of repair is inactivated.  This method can reveal the second, lesser used 

pathway of DNA repair.  In the case of ATM, ATR, or DNA-PKcs inhibition, inhibition of 

multiple kinase activities might allow further distinction among the roles of these kinases 

in directing repair of the broken replication forks observed in figures 16 and 24.   

 To this end, ATM, ATR, or DNA-PKcs were inhibited alone or in combination 

during viral DNA replication (20-48 hpi) in BSC40 cells.  As previously observed, either 

ATR or ATM inhibition alone decreased viral DNA replication and increased aberrant 

products (Figure 26A - D).  On the other hand, DNA-PKcs inhibition had no effect on viral 

DNA replication or aberrant product accumulation (Figure 26A - D).  Combined ATM and 

ATR inhibition with Ku-55933 and ATRi did not further decrease total viral DNA 

replication beyond ATR inhibition alone (Figure 26A, B).  However, the presence of Ku-

55933 and ATRi during viral DNA replication resulted in a substantial increase in 

aberrant products, decreasing forms I, II, and III to just 37% of the total DNA signal 

(Figure 26B).  Concatemers increased from 11-fold the level observed in DMSO when 

ATM was inhibited alone to 22 fold of DMSO when ATM and ATR were inhibited (Figure 

26A, D).  Additionally, the 20 kb product increased to roughly 8% of the total DNA 

products when ATM and ATR were inhibited together (Figure 26D). 

 The combined presence of Ku-55933 and Nu7026 during viral DNA replication 

had no additional effect on viral DNA replication beyond sole inhibition of ATM (Figure 

26A, B), but decreased monomeric viral DNA products in favor of concatemers (Figure 

26A, C, D).  Concatemers increased to 29% when ATM and DNA-PKcs were inhibited 

compared to 16% when only ATM was inhibited (Figure 26D).  On the other hand, 

combined exposure of ATRi and Nu7026 to SV40 infected cells increased viral DNA 
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Figure 26. ATM, ATR, and DNA-PKcs have partially overlapping functions in SV40 DNA 
replication. 
(A) Southern blot of DNA extracted from SV40-infected BSC40 cells treated with combinations of DMSO, 
ATRi, Ku-55933, and / or Nu7026 during the late phase of a 48 h infection as illustrated in figure 29A.  The 
middle panel shows a longer exposure of a portion of the southern blot pictured in the top panel.  (B).  Graph 
of total viral or SV40 monomer DNA signals normalized to SV40 DNA replicated in the presence of DMSO 
from southern blots as shown in (A).  (C, D) Graph of monomer (C) or aberrant (D) structure(s) accumulated 
as a result of multiple PIKK inhibition from southern blots as shown in (A). In (B - D), bars for DMSO, ATRi, 
and Ku-55933 show the average of 6 to 7 independent experiments. In the same panels, the bar for Nu-
7026 shows the average of 4 independent experiments; Whereas, bars for combinations of inhibitors (Ku-
55933 / ATRi, Nu7026 / ATRi, and Ku-55933 / Nu7026) show the average of 3 independent experiments.
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replication by 1.8 fold of singular inhibition of ATR (Figure 26A, B).  Despite the increase 

in viral DNA replication, no effect on aberrant product formation beyond that observed 

upon sole inhibition of ATR alone was found for the combined inhibition of ATR and 

DNA-PKcs (Figure 26A, C, D).  Collectively, these results indicate that some functional 

overlap exists between ATM and the related ATR and DNA-PKcs kinases.  Additionally, 

Figure 26 suggests that DNA-PKcs and ATR do not have overlapping functions in the 

repair of replicating viral DNA.   

 

Discussion  

 

 This study presents several lines of evidence that SV40 harnesses host DNA 

damage signaling for quality control of viral chromatin replication. We show that viral 

DNA replication in cultured cells is sufficient to induce DNA damage signaling at viral 

replication centers (Figures 10, 11, 12), suggesting that DNA lesions may arise in 

unperturbed replicating viral DNA.  Importantly, damage signaling is vital to maintain viral 

replication centers (Figures 10, 13).  Furthermore, suppression of ATM and/or ATR 

signaling increases the level of aberrant viral replication products at the expense of unit-

length viral DNA (Figures 14 - 16, 18, 21 - 23, 26), implying that viral replication-

associated damage in infected cells requires ATM and ATR signaling to promote repair 

of viral replication forks.  Our results indicate that the defective replication intermediates 

resulting from inhibition of ATM (Figures 14, 15), ATR (Figures 21, 22), and Chk1 

(Figures 23) are distinctive (Figure 27). Furthermore, our data suggest that ATM, ATR, 

and DNA-PKcs are partially redundant in repairing one-ended DSBs (Figure 26).  Taken 

together, our results support a model in which ATM, ATR, and Chk1 serve different but 

complementary roles in orchestrating repair at viral replication forks (Figure 27).
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Figure 27. Model of ATM and ATR functions in SV40 DNA replication. 
(I) Tag initiates viral DNA replication at the viral origin of replication (blue) and the two replication forks 
progress bidirectionally (red arrowheads). For simplicity, proteins are not shown. (II) Viral DNA replicates 
quickly until the forks converge to form a late Cairns intermediate (III), which slowly completes replication. 
(IV) Topoisomerase IIα decatenates fully replicated DNA molecules, yielding two form I daughter molecules. 
(V) When ATM is inhibited, a one-ended double strand break at a replication fork leads to loss of the 
replication machinery, while the other fork continues to replicate DNA, generating a rolling circle (VI). (VII) 
ATM and to a lesser extent ATR kinase activity facilitates the repair of one-ended double strand breaks. 
(VIII) When ATR or Chk1 is inhibited, a stalled replication fork remains stable until a functional replication 
fork approaches it, generating a broken replication intermediate (IX). (X) Chk1 kinase activity facilitates 
convergence of moving fork with the stalled fork. We suggest that in the presence of ATM, ATR, and Chk1, 
repair proteins act on the defective intermediates V and IX to reassemble an intermediate with two functional 
forks. 
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DNA damage signaling nucleates the assembly of SV40 replication centers  

 SV40 chromatin replication centers resemble over-sized host DNA damage 

response foci (for a comparison, see Figure 1 in ref (Zhao et al., 2008)), where diverse 

damage signaling and DNA repair proteins assemble on chromatin at a DNA lesion and 

dissociate when repair is completed (Ciccia et al., 2010; Lukas et al., 2011). Many of the 

same signaling and repair proteins are found at both viral replication centers and host 

damage response foci (Moody et al., 2009; Jiang et al., 2012; Shi et al., 2005; Zhao et 

al., 2008; Rohaly et al., 2010; Boichuk et al., 2010; Hein et al., 2009; Dahl et al., 2005). 

However, unlike the prominent viral replication centers, the punctate host damage 

response foci encompass megabase regions of chromatin, raising the question of how 

SV40 mini-chromosomes give rise to large subnuclear foci. The size of SV40 replication 

centers increases with the number of incoming viral genomes and with time post-

infection in permissive primate cells (Zhao et al., 2008), suggesting that our ability to 

detect viral replication centers depends on the ability of each infected cell to generate 

104 - 105 daughter genomes (Rigby et al., 1978). Moreover, unperturbed viral replication 

centers display nascent ssDNA (Sowd, unpublished) and DNA breaks (Sowd et al., 

2013) that are likely responsible for activating checkpoint signaling, analogous to lesions 

that nucleate host damage response foci. 

 A major difference between SV40 replication centers and host damage response 

foci is that checkpoint signaling does not inhibit the viral replication machinery, whereas 

Chk2 phosphorylation of the purified host replicative helicase Cdc45/Mcm2-7/GINS 

inhibits its helicase activity in vitro (Ilves, Tamberg et al., 2012) and Chk1 inhibits Cdc45 

recruitment to chromatin to initiate replication in vivo (Liu, Barkley et al., 2006). Based on 

these considerations, we suggest that SV40 replication centers serve as hubs where 

host replication and repair factors efficiently service many client viral genomes in close 

proximity. These hubs are nucleated and maintained by the assembly of the ATM and 
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ATR signaling complexes at sites of viral replication stress, followed by recruitment of 

downstream repair factors (Ciccia et al., 2010). Of note, all of the host proteins needed 

for SV40 DNA replication in vitro (Bullock, 1997; Borowiec et al., 1990; Waga et al., 

1994) also function in host DNA repair (Bullock, 1997; Lydeard, Lipkin-Moore et al., 

2010; Waga et al., 1994; Hashimoto et al., 2012). Thus, SV40, although it encodes only 

a single essential replication protein, has evolved a remarkable strategy to generate viral 

replication compartments.  

  

ATM signaling orchestrates reassembly of viral replication forks, reducing  
unidirectional replication forks 

 Knockdown or inhibition of ATM in polyomavirus-infected cells reduced 

production of unit length viral genomes (Shi et al., 2005; Dahl et al., 2005; Zhao et al., 

2008; Jiang et al., 2012). Since these studies evaluated only unit-length viral DNA, the 

aberrant viral replication products generated by unidirectional replication forks were 

overlooked (Figures 14, 15, 16). Interestingly, total intracellular DNA from unperturbed 

infected CV1P cells contains head-to-tail SV40 DNA repeats of 50 to 100 kb at very late 

times after infection (Rigby et al., 1978).  These observations indicate that concatemers 

may be a normal product of viral replication, and suggests that inhibition of ATM activity 

might simply increase the frequency of unidirectional replication, advance its timing, or 

both. 

 Although replication-associated breaks may be a rare event during unperturbed 

viral DNA replication, the large number of replicating viral genomes would facilitate their 

detection, particularly when ATM activity is suppressed. Yet surprisingly, when 

undigested total intracellular DNA from an ATM-inhibited infection was analyzed by 2d 

gel electrophoresis, bidirectional replication arcs were still observed (see Appendix), and 

unit length monomeric viral DNA remained the predominant product when ATM was 
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inhibited (Figures 14, 15), supporting the notion that bidirectional DNA replication does 

not stop when ATM is inhibited.  These observations can be most simply explained by a 

model in which theta-form SV40 replication intermediates (Figure 27, I-III) randomly 

break, giving rise to a few unidirectional forks that amplify the break by generating 

concatemers and branched concatemers (Preiser et al., 1996; Backert, 2002) (Figure 

27, V, VI). Our data suggest that ATM kinase activity is required for repair of one-ended 

replication-associated DSBs to reassemble bidirectional replication intermediates (Figure 

27, VII) (Petermann and Helleday, 2010; Hashimoto et al., 2012; Munoz-Galvan, Tous et 

al., 2012).  Additionally, upon ATM inhibition, further concatemer formation is 

suppressed by ATR and DNA-PKcs activation (Figure 26).  These data suggest that ATR 

and to a lesser extent DNA-PKcs kinase activities are able to facilitate the repair of one-

ended DSBs (Figure 27, VII).  Therefore, we propose that ATR directs the repair of a 

fraction of replication-associated breaks in cells with functional ATM (Figure 27, VII). 

 It is interesting to consider a possible role for unidirectional viral replication and 

its large concatemeric products in the tumorigenic activity of SV40, and more broadly of 

polyoma- and papillomaviruses. Concatemeric genomes of Merkel cell carcinoma virus 

and HPV are often integrated into human chromosomal DNA in tumors associated with 

these viruses (Chang and Moore, 2012; DeCaprio, 2009; DiMaio and Liao, 2006). The 

integration events and the consequences of long-term viral oncogene expression are 

primary risk factors for such cancers. It seems likely that in infected cells under 

conditions of insufficient ATM activity, the level of viral concatemers would rise. With 

inadequate ATM activity, breaks in host chromosomal DNA would also be less frequently 

repaired through accurate, homology-dependent repair. Thus, it is possible that viral 

DNA concatemers generated under conditions of insufficient DNA damage signaling 

might be inaccurately joined with broken host chromatin, contributing to viral 

tumorigenesis (Chia and Rigby, 1981). 
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How does ATR-Chk1 signaling orchestrate SV40 replication fork convergence? 

 SV40 chromatin replication is highly sensitive to inhibition of either ATR or Chk1 

throughout a 48 h infection (Figures 21 - 23). One consequence of ATR inhibition is that 

infected cells continued to cycle throughout infection, rather than arresting in late S 

phase where viral DNA replication would be favored (Rohaly et al., 2010) (see 

Appendix). However, the most prominent SV40 replication defect induced by ATRi and 

UCN-01 was the tendency of converging replication forks to stall and break (Figure 24). 

Since Chk1 is activated directly by ATR kinase activity (Liu et al., 2000), we think that 

the failure of Chk1 to phosphorylate one or more of its substrates results in the 

increased fork stalling and breakage observed in our studies (Figure 24).  Our data imply 

that after initiating replication at the viral origin, one replisome encounters an unknown 

replication block at variable positions in the viral genome (Figure 25, I and II, red 

triangle). Since the two sister Tag helicases need not remain coupled after initiation, they 

can proceed asynchronously as they replicate the viral genome bidirectionally (Sowd et 

al., 2012; Moarefi et al., 1993; Schneider, Weisshart et al., 1994; Weisshart et al., 1999; 

Yardimci, Wang et al.). Thus, the functional, unstalled replisome continues replication 

until it approaches the stalled fork (Figure 25, III). We suggest that without ATR or Chk1 

activity, the unstalled fork cannot converge with the stalled fork and breaks, yielding the 

pattern observed on the simple Y arc (Figure 24C, D, F, G, 25, IV-VI). Consistent with 

this interpretation, fork convergence represents a slow step during unperturbed SV40 

DNA replication in infected cells and occurs in a ~1 kb region around the BamHI site 

(Tapper, Anderson et al., 1982; Tapper and DePamphilis, 1980; Tapper et al., 1979), 

suggesting that specialized host proteins and Chk1-dependent modifications may be 

needed to complete replication. 
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 Our observation that ATRi and UCN-01 renders SV40 fork convergence prone to 

DNA breakage is reminiscent of common fragile sites in the human genome, which 

suffer gaps and breaks in Seckel Syndrome cells that express defective ATR alleles and 

upon Chk1 knockdown (Casper et al., 2004; Durkin, Arlt et al., 2006). Thus, SV40 and 

other small DNA tumor virus genomes may harbor a potential fragile site in the DNA 

region where the two viral replication forks converge.  Consistent with this speculation, 

C-terminal truncation of the polyomaviral T antigen encoded in the “fragile site” could 

render an integrated viral genome replication-defective and perhaps more tumorigenic 

(Shuda, Feng et al., 2008; Chang et al., 2012; Gjoerup et al., 2010; An, Saenz Robles et 

al., 2012).  Similarly, the viral “fragile site” where replication forks converge would 

correspond to common viral genome breakpoints in integrated high risk papillomaviral 

genomes in cervical cancer (Schwarz, Freese et al., 1985; Kadaja, Isok-Paas et al., 

2009; Woodman, Collins et al., 2007). 

 

ATM, ATR, and DNA-PKcs:  Collaborating for genome maintenance 

 Recent studies have suggested that ATR and DNA-PKcs kinase activities may 

become crucial when ATM activity is lost or inhibited in cancer cells (Toledo, Murga et 

al., 2011; Riabinska, Daheim et al., 2013).  The examination of viral DNA replication 

when ATM and ATR or DNA-PKcs were inhibited together indicates a portion of 

replication-associated DNA breaks can be dealt with utilizing pathways that are 

promoted by ATR or DNA-PKcs (Figure 26).  Since ATR or DNA-PKcs inhibition alone 

lead to a minor increase and no increase in concatemers, respectively, our data suggest 

that the pathways facilitated by these PIKKs are not as prevalent in cells with fully 

functional ATM (Figure 27, VII).  The activation of DNA-PKcs that coincides with ATM 

inhibition raises the possibility that DNA-PKcs and NHEJ might be able to repair a subset 

of broken viral DNA replication forks.  This mode of NHEJ repair has been associated 
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with the aberrant metaphase spreads observed in FancD2 deficient cell lines (Adamo, 

Collis et al., 2010).  Even with some capacity to repair broken DNA replication forks, the 

repair catalyzed by DNA-PKcs and NHEJ is likely highly error-prone.   

 On the other hand, differences underlying repair of replication-associated DSBs 

by ATM and ATR facilitated pathways are not well understood.  ATM activation elicits the 

recruitment of numerous proteins that serve as hubs for the recruitment of repair factors 

(Lukas et al., 2011) and relaxation of chromatin structure (Ziv et al., 2006).  Viral DNA is 

heavily transcribed and is likely enriched in histone modifications associated with 

euchromatin.  Thus, it is difficult to understand how relaxation of chromatin structure 

would contribute to viral DNA replication fidelity.  ATR also is able to perform many of 

the same recruitment functions, including γH2AX spreading at damaged DNA through 

TopBP1 binding to MDC1 (Wang, Gong et al., 2011) and RNF8 recruitment to MDC1 

(Marteijn, Bekker-Jensen et al., 2009).  Thus, both ATR and ATM can promote the 

recruitment of Brca1 and 53BP1 to damaged DNA. 

 A key difference between ATM and ATR is the DNA substrates that activate the 

kinases.  In the context of SV40 DNA replication, a plausible initiating event to generate 

a one-ended break is replication through a SSB (Figure 27, V).  A DSB on the leading or 

lagging strand can dramatically change the efficiency of ATR activation. Breakage of the 

lagging strand would more efficiently activate ATR due to the larger amount of ssDNA 

contained on the lagging strand (Hashimoto et al., 2012).  Yet, the leading strand likely 

contains little to no ssDNA (Hashimoto et al., 2012), and replication through a SSB on 

the leading strand would therefore be more likely to less efficiently activate ATR.  On the 

other hand, ATM would be robustly activated by breakage of either the leading or 

lagging strand because both would recruit MRN with similar efficiencies to the DSB. For 

that reason, ATM activation by a replication-associated break, like a DSB induced by 

ionizing radiation, would likely be immediate, whereas ATR activation would have a time 
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delay (Ciccia et al., 2010).  In keeping with previous observations (Derheimer et al., 

2010), we suggest a model wherein the lack of ATM kinase activity at broken replication 

forks might slow the repair of the DSB.  Slowed repair kinetics would give enough time 

for the functional viral fork to generate repeats of DNA that are difficult to repair correctly 

using homology-directed repair promoted by ATR (Figure 27, V).  Further 

experimentation will be required to determine the mechanisms that underlie the defects 

in DNA replication observed when ATR or ATM are inhibited. 
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CHAPTER III 

 

ATM AND ATR KINASES PROMOTE S PHASE ARREST DURING SV40 INFECTION 

 

Introduction 

 

 Small DNA tumor viruses include several important human pathogens that cause 

either fatal illnesses or are associated with cancer (DeCaprio et al., 2013; Psyrri et al., 

2008).  The two primary families of this group are Polyomaviridae and Papillomaviridae.  

These families share several characteristics in that they each have small (5-8 kb) 

circular, supercoiled dsDNA genomes that encode multifunctional viral proteins required 

for viral replication.  In spite of the multitude of activities that are mediated by the 

polyomavirus Tag (Gjoerup et al., 2010) and papillomavirus E1, E2, E6, and E7 (DiMaio 

et al., 2006) proteins, these viruses require cellular S phase to replicate their genomic 

content (Sowd et al., 2012; Moody and Laimins, 2010).   

 To accomplish S phase arrest, both virus families activate the DNA damage 

response kinases ATM and ATR (Sowd et al., 2012; McFadden and Luftig, 2013).  ATR 

and ATM phosphorylate and activate the cellular checkpoint kinases Chk1 and Chk2, 

respectively (Ciccia et al., 2010).  In turn, Chk1 and Chk2 phosphorylate p53 and the 

Cdc25 family of phosphatases to promote cell cycle arrest (Deckbar, Jeggo et al., 2011).  

However, in cells infected with polyomaviruses or papillomaviruses, p53 is inactivated 

(Levine, 2009).  A mechanistic understanding of how the infected cells arrest is poorly 

elucidated. 

 Polyomavirus SV40 is a useful model for examining the cellular mechanisms 

exploited by small DNA tumor viruses (DeCaprio et al., 2013; Rozenblatt-Rosen, Deo et 

al., 2012) and the functions of cellular DNA replication machinery (Waga et al., 1998).  
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SV40 activation of the DNA damage response (Sowd et al., 2013) and S phase arrest 

(Rohaly et al., 2010) has been particularly well characterized.  DNA damage signaling 

emanates from viral DNA replication (Sowd et al., 2013), and ATR kinase activation is 

crucial for SV40-induced S phase  arrest (Rohaly et al., 2010).  Even with this progress, 

the individual contributions of the ATM-Chk2 and ATR-Chk1 pathways to S phase 

checkpoint function in SV40 infection are not well understood.   

 In this study, we used specific inhibitors of ATM (Ku-55933 (Hickson et al., 

2004)) and ATR (VE-821 (ATRi) (Reaper et al., 2011)) to define the contribution of ATM 

and ATR kinases to S phase checkpoint function during discrete phases of SV40 

infection. We found that the ATM-Chk2-mediated checkpoint is needed only during a 

portion of SV40 infection, whereas the ATR-Chk1 S phase checkpoint is needed 

throughout viral infection. These results shed further light on how small DNA tumor 

viruses use DNA damage signaling during their lytic life cycles. 

 

Results 

 

ATM kinase activity contributes to S phase arrest in the early phase of infection 

 ATM kinase activity contributes to the cell cycle checkpoints that follow DNA 

damaging agents such as ionizing radiation (McKinnon, 2012).  As such, we 

hypothesized that the ATM-Chk2 pathway during SV40 infection might contribute to 

virus-induced S phase arrest.  Thus, the state of the cell cycle was examined in SV40-

infected cells treated for different periods of times with the ATM inhibitor Ku-55933 

(Sowd et al., 2013).  BSC40 cells were infected and exposed to Ku-55933 during an 

early (-0.5 - 20 hpi: viral entry, early gene transcription, G1 to S transition) or late (20 - 

48 hpi: viral DNA replication and egress) phase or throughout the 48 h infection (full) 

(Figure 28A).  SV40-infected cells exposed to the inhibitor solvent, DMSO, served as the 
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Figure 28.  ATM and ATR contribute to S phase arrest during SV40 infection in BSC40 cells. 
(A) Experimental scheme for treatment of cells with inhibitor during phases of a 48 h SV40 infection. Early: 
inhibitor present from -0.5 to 20 hpi. Late: inhibitor present from 20 to 48hpi. DMSO and Full: solvent or 
inhibitor, respectively, present from -0.5 to 48 hpi. (B) Representative images of fixed and then permeablized 
BSC40 cells.  Prior to fixation cells were incubated for 5 minutes with 10 µM EdU.  Scale bar represents 
10µm.  Note: Cells in G1 do not stain for CenpF or contain EdU pulse label.  S phase cells have EdU pulse 
label whereas G2 cells lack EdU pulse label, but contain nuclear CenpF.  Mitotic cells have cytoplasmic 
CenpF and condensed chromatin.  (C, D) Graphs of the stage of the cell cycle of cells exposed to Ku-55933 
(C) or ATRi (D) as in (A).  Cell cycle stage was determined as described in (B).  In (C) and (D), all G1 and S 
bars are significantly different (p<0.05 two tailed student’s t test) than DMSO or Mock controls except those 
denoted NS (not significant).  Graphs in (C) and (D) show the average of 3 independent experiments. 
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positive control for S phase arrest, and uninfected cells were used determine the state of 

the cell cycle in an asynchronous population of cells (Figure 28A).  To determine the 

state of the cell cycle at 48 hpi, each population of cells was exposed to a 5 minute EdU 

pulse-labeling followed by fixation and immunostaining for CenpF and a Click reaction 

for detection of EdU incorporation.  On the basis of the fluorescent signal intensities for 

CenpF and EdU, the stage of the cell cycle could be determined (Figure 28B) (Lobrich et 

al., 2010; Liao, Winkfein et al., 1995; Zhu, Mancini et al., 1995).  As expected, a 

substantial percentage of mock-infected cells were in G1 and S phase (Figure 28C).  

Upon SV40 infection in the presence of DMSO, ~90% of SV40-infected BSC40 cells 

arrested in S phase, consistent with checkpoint activation (Figure 28C).  The presence 

of Ku-55933 during the early phase of infection resulted in an approximately 25% 

increase in the number of cells in G1 with a corresponding decrease in S phase cells 

relative to DMSO-treated SV40-infected cells (Figure 28C).  Inhibition of ATM during the 

late phase of infection had only a minor effect on SV40-induced S phase arrest (Figure 

28C), whereas ATM inhibition throughout infection increased the G1 cell population to 

59% of cells, a percentage similar to asynchronous mock-infected BSC40 cells (Figure 

28C).  Taken together, the results suggest that the ATM-Chk2 pathway of checkpoint 

induction is required during the early phase of infection for efficient S phase arrest.   

 

ATR enforces S phase arrest during all phases of SV40 infection 

 Since ATM function in viral induction of S phase arrest is required only during a 

particular phase of viral infection, we thought that the same might be true for ATR.  To 

determine if ATR kinase activity was necessary to promote S phase arrest, BSC40 cells 

were infected with SV40 in the presence or absence of ATRi during three time windows 

(Figure 28A).  These ATRi- or DMSO-treated populations of cells were labeled with EdU 

and fixed for immunostaining with CenpF.  Again, SV40 infection in the presence of 
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DMSO induced a strong S phase arrest, whereas mock-infected cells demonstrated an 

asynchronous cell cycle (Figure 28D).  Similar to early ATM inhibition, ATR inhibition 

early during infection increased the percentage of G1 cells by ~24% (Figure 28D).  

However, inhibition of ATR during viral DNA replication or throughout infection 

substantially increased the fraction of cells in G1 to levels similar to those found in 

asynchronous mock-infected cells (Figure 28D).  We conclude that ATR is essential 

during all phases of infection for the induction of the S phase arrest by SV40.   

 

Discussion  

 

The SV40 pseudo-S phase: an ATM/ATR collaboration 

 ATM and ATR kinases phosphorylate and activate Chk2 and Chk1, respectively, 

resulting in S phase arrest (Bunz, 2011).  Our results imply that ATM and ATR kinases 

contribute differently to the S phase arrest occurring during SV40 infection.  Whereas 

ATM activity is only needed during the early phase of SV40 infection (Figure 28C), ATR 

kinase is needed throughout infection to activate Chk1 and enforce the S phase 

checkpoint (Figure 28D).  It is possible that the number of replicating viral genomes early 

during viral infection (0-20 hpi) does not provide sufficient replication stress to elicit the 

ATR-Chk1 kinase activity required to arrest cells in S phase.  Yet during timepoints with 

robust viral DNA replication, the amount of ATR-Chk1 activation is sufficient to induce 

cell cycle arrest in S phase.   

 Our data suggest that the ATM-Chk2 and ATR-Chk1 pathways lead to S phase 

arrest early in infection, and the ATR-Chk1 pathway alone arrests cells in S phase later 

during SV40 infection (after 20 hpi).  A model has been proposed wherein ATR-

dependent p21 accumulation inhibits S phase CDK activity during SV40 infection 

(Rohaly et al., 2010).  However, we have not been able to observe p21 accumulation at 
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any timepoint during SV40 infection (see Appendix).  Therefore, it appears that the virus-

induced S phase arrest may be due to the degradation or sequestration of Cdc25 family 

members by Chk1- and/ or Chk2- dependent phosphorylation (Boutros, Lobjois et al., 

2007).  Thus, it will be interesting to determine how S phase arrest occurs during SV40 

infection. 
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CHAPTER IV 

 

ATM ACTIVITY INHIBITS DNA-PKcs ACTIVATION AND LOCALIZATION TO  
VIRAL REPLICATION CENTERS DURING SV40 INFECTION  

 

Introduction 

 

 A diverse set of protein functions is required to ensure the timely, accurate 

duplication of the genome.  Amongst the well-known polymerase, helicase, ligase, and 

topoisomerase activities (Waga et al., 1998; Masai et al., 2010) of the replisome is the S 

phase checkpoint kinase, ATR.   ATR along with related kinases ATM and DNA-PKcs, 

which are members of the PIKK family, regulate DNA damage signaling in response to 

various endogenous and exogenous stresses (Ciccia et al., 2010).  ATR kinase function 

is primarily activated by DNA replication stress through the capacity of the ATR/ATRIP 

complex to sense stretches of RPA-bound ssDNA (Zou et al., 2003).   In conjunction 

with ATR, ATM and DNA-PKcs function to promote DNA repair and are primarily 

activated in response to DSBs (Ciccia et al., 2010).  To identify DSBs, ATM and DNA-

PKcs rely on MRN and Ku, respectively (Goodarzi et al., 2013).  DNA-PKcs kinase 

activation solely influences the pathway used to repair the DSB and promotes NHEJ 

(Neal et al., 2011).  On the other hand, activation of either ATM or ATR is accompanied 

by activation and recruitment of numerous factors that influence DNA repair and arrest of 

both the cell cycle and DNA replication (Ciccia et al., 2010). 

 Several DNA repair proteins are also used as part of the cellular DNA replication 

process.  Amongst these factors is an abundance of activities from the HR pathway.  

Depletion of factors from this pathway is associated with various DNA replication 

defects, including slowed DNA synthesis (Davies, North et al., 2007), instability of 
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nascent DNA strands (Schlacher et al., 2011), anaphase bridges owing to un-replicated 

DNA entering mitosis (Chan, North et al., 2007; Chan, Palmai-Pallag et al., 2009; 

Laulier, Cheng et al., 2011), and increased genome breakage in both the presence and 

absence of replication stress (Franchitto and Pichierri, 2011; Hashimoto et al., 2012; 

Wechsler et al., 2011).  Several of these characteristics are reminiscent of the defects 

observed in Seckel syndrome cells, which harbor hypomorphic mutations in the ATR 

gene providing a possible link between HR and DNA damage signaling (Alderton et al., 

2004; Casper et al., 2004; O'Driscoll et al., 2003).  HR function has been primarily 

demonstrated to repair DSBs that are formed during S phase, with NHEJ repairing the 

majority of DSBs during other phases of the cell cycle (Goodarzi et al., 2013).   

 Classic models of DNA replication do not hypothesize DSBs to form as an 

consequence of metazoan genome replication.  However, recent evidence examining 

expression of common fragile sites in the human genome, which are prone to gaps and 

breakage upon replication stress, suggests that replisome convergence may be a source 

of DNA breakage during chromatin replication (Debatisse, Le Tallec et al., 2012).  

Similar to studies of cellular DNA replication, recent evidence suggests that 

polyomaviruses and papillomaviruses might utilize a more complex milieu of DNA 

replication factors than previously anticipated (Zhao et al., 2008; Boichuk et al., 2010; 

Moody et al., 2009; Gillespie, Mehta et al., 2012; Sowd et al., 2013).  Yet unlike cellular 

DNA replication, infection of cells by polyomaviruses and papillomaviruses is 

accompanied by intense ATM and ATR activation (Zhao et al., 2008; Orba, Suzuki et al., 

2010; Jiang et al., 2012; Moody et al., 2009; Sakakibara et al., 2011).  Additionally, viral 

DNA replication is resistant to DNA damage checkpoint signaling (Sowd et al., 2012).   

 ATM and ATR kinase activities are required to facilitate the repair of replication-

associated breaks on viral chromatin during SV40 DNA replication (Sowd et al., 2013).  

SV40 also has been used to identify and characterize numerous cellular DNA replication 
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factors (Waga et al., 1998; Sowd et al., 2012).  Thus, DNA damage signaling and repair 

proteins used by SV40 DNA replication might represent a set of factors employed during 

normal cellular DNA replication to prevent replication-associated DSBs.   

 To further clarify the role of DNA damage signaling and repair during SV40 

infection, we determined the subnuclear localization of several factors involved in DSB 

repair in SV40 infected cells.  Small molecule inhibitors of ATM and ATR were used to 

examine the localization of NHEJ and HR proteins during SV40 infection in the presence 

and absence of DNA damage signaling.  We show that viral replication centers 

selectively recruit homology-directed repair and exclude NHEJ factors.  Our results 

indicate that ATM kinase but not ATR kinase activity is required for the proper 

localization of several HR factors and suppression of DNA-PKcs kinase activation at viral 

DNA replication centers.  Our results lend further insight into mechanisms influencing the 

decision to repair DSBs by HR or NHEJ during S phase.  

 

Results 

 

Viral replication centers colocalize with homology-directed repair 

 Previous studies have examined the localization of several DNA repair factors 

with ill-defined functions in SV40 infected cells (Zhao et al., 2008; Boichuk et al., 2010).  

Several of these factors, including MRN, Rad51, FancD2, and Brca1 function in 

homology-directed repair (Ciccia et al., 2010) and might act to repair broken DNA 

resulting from viral DNA replication (Sowd et al., 2013).  To further define what activities 

of DSB repair are recruited to or localized near viral DNA replication centers, the nuclear 

localization of chromatin-bound homology-directed repair proteins, which includes SSA 

and HR factors, was examined in SV40-infected BSC40 and U2OS cells using 

fluorescence microscopy.   
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 CtIP, whose activities are required for homology-directed repair, formed intense 

foci that colocalized with Tag in SV40-infected BSC40 and U2OS cells (Figure 29A).  

Furthermore, the Rad51 loader Brca2, the single-strand annealing protein Rad52, and 

the dHJ dissolvase BTR (BLM, RMI1/2, and Topoisomerase IIIα) colocalized on 

chromatin with viral DNA replication centers in infected BSC40 and U2OS cells (Figure 

29B-G).  Examination of the localization of the BTR component BLM during a 60 h time 

course of SV40 infection in BSC40 cells revealed that BLM colocalization with viral DNA 

replication centers was greatest at times >24 hpi (Figure 30) when viral DNA is actively 

being replicated (see Figure 14A, DMSO).  This timeframe of BLM colocalization 

correlated well with EdU incorporation at Tag foci (Figure 30) and is reminiscent of that 

found for MRN and Tag colocalization in SV40 infected cells (Zhao et al., 2008).  Similar 

timing of colocalization was displayed for RMI1/RMI2, topoisomerase IIIα, Brca2, and 

CtIP (data not shown) suggesting that localization of homology-directed repair to viral 

replication centers is a characteristic of HR repair factors in SV40-infected cells.   

 

NHEJ proteins do not localize to Tag foci in SV40-infected cells 

 Similar to HR protein recruitment to viral replication centers, SV40 infection 

induces ATM and ATR DNA damage signaling in a time frame that closely mirrors viral 

DNA replication.  Thus, a related PIKK, DNA-PKcs, might be activated with similar 

kinetics during SV40 infection.  To assess the level of DNA-PK and DNA-PKcs kinase 

activation during viral infection, steady-state levels of DNA-PK factors and signaling in 

extracts of SV40-infected BSC40 cells were determined by immunoblotting over a 60 h 

time course (Figure 31).  These blots revealed that ATR and ATM began to 

phosphorylate substrates Chk1 and Chk2, respectively, at 24 hpi (Figure 31A).  ATM 

and ATR kinase activities were greatest from 36 through 48 hpi, after which they began 

to decline (Figure 31A, compare lanes 4, 5 to lane 6).  On the other hand, DNA-PKcs 
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Figure 29. SV40 DNA replication centers colocalize with HR proteins. 
(A - G) Images of chromatin bound Tag and the indicated HR factors from SV40-infected BSC40 (I) or U2OS 
(II) cells at 48 hours post infection.  Vectors for expression of HA-topoisomerase IIIα or Flag-RMI2 were 
transfected 24 h prior to infection.  Scale bars represent 10 μm. 
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Figure 30.  BLM colocalization with Tag correlates with SV40 DNA replication. 
(A)  Representative micrographs of chromatin-bound BLM, Tag, and Alexa Fluor 647 conjugated EdU from 
SV40-or mock-infected BSC40 cells at the indicated timepoints.  Merge shows EdU and BLM only.  Scale 
bars represent 10 μm. 
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kinase activation was observed most strongly at 48 hpi and more weakly at 36 and 60 

hpi, as assessed by DNA-PKcs autophosphorylation at S2056 (Figure 31B, compare lane 

1 to lanes 4-6).  The phosphorylation state of T2609 on DNA-PKcs, a residue 

phosphorylated by ATM, ATR and DNA-PKcs following DNA damage (Chen et al., 2005; 

Chen et al., 2007; Uematsu et al., 2007; Yajima et al., 2006; Meek et al., 2007), did not 

change during viral infection (data not shown, see Figure 34E).  The total protein levels 

of Ku70, Ku80, and DNA-PKcs were stable throughout 60 h of SV40 infection (Figure 

31A, B, compare lanes 1-6).  Thus, these results show that the timing of DNA-PKcs 

kinase activation during SV40 infection does not correlate well with viral DNA replication.  

 To determine whether the limited DNA-PKcs kinase activation observed at 48 hpi 

was associated with localization of the DNA-PK holoenzyme to viral DNA replication 

centers, chromatin-bound NHEJ proteins Ku70, Ku80, and DNA-PKcs were examined by 

fluorescence microscopy at 48 hpi in SV40-infected BSC40 and U2OS cells.  DNA-PKcs, 

Ku70, and Ku80 showed little preference for binding at or near viral DNA replication 

centers in both BSC40 and U2OS cells (Figures 32 and 33).  Auto-phosphorylated DNA-

PKcs on S2056 was not abundant in SV40-infected cells at 48 hpi and did not associate 

with viral DNA replication centers (Figures 32B and 33B).  Close inspection of viral 

replication centers revealed that DNA-PKcs and Ku70/80 appeared to be excluded from 

Tag foci (Figures 32 and 33, arrows, enlarged boxes).  Lines tracing through viral 

replication centers confirmed that intense Ku70/80 and DNA-PKcs foci did not colocalize  

with Tag (Figures 32 and 33).  These results are consistent with previous findings 

demonstrating that DNA-PKcs kinase activity is not required for SV40 DNA replication 

(Sowd et al., 2013).  Instead, viral DNA replication appears to be resistant to DNA-PKcs 

activation and NHEJ function, but not ATM, ATR, or homology-directed repair.
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Figure 31.  DNA-PK components are stable throughout SV40 infection. 
(A - B)  Western blots of cell lysates from SV40- or mock-infected BSC40 cells at the indicated timepoints.   
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Figure 32. Factors that promote NHEJ do not co-localize with Tag in SV40-infected BSC40 cells. 
(A, B)  Representative pictures of chromatin-bound Tag or DNA-PK from SV40- or mock-infected BSC40 
cells at 48 hpi.  Merged images shows DNA-PKcs, Ku, and Tag.  Bottom panel of (A) and (B) shows an 
enlargement of the region of the boxed area.  Arrows in point to area on line  in which DNA-PK exclusion is 
more easily observed.  The fluorescence intensity in arbitrary units (AU) along the line shown in the merged 
image is graphed in the right panel.  Scale bars represent 10 μm. 
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Figure 33.  NHEJ proteins are not localized to viral replication centers in SV40-infected U2OS 
cells. 
(A, B)  Representative images of chromatin-bound Tag or DNA-PK from SV40- or mock-infected U2OS cells 
at 48 hpi.  Merged images shows DNA-PKcs, Ku, and Tag.  Bottom panel of (A) and (B) shows an 
enlargement of the region of the boxed area.  Arrows in point to area on line  in which DNA-PK exclusion is 
more easily observed.  The fluorescence intensity in arbitrary units (AU) along the line shown in the merged 
image is graphed in the right panel.  Scale bars represent 10 μm. 
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ATR inhibition does not disrupt viral DNA replication centers 

 ATM and ATR phosphorylate a plethora of targets at damaged DNA including 

factors that influence HR and NHEJ (Matsuoka et al., 2007; Chapman et al., 2012).  The 

vigorous activation of ATM and ATR that accompanies viral DNA replication (Figure 31) 

suggests that the kinase activities of these enzymes might influence the factors or 

activities of the factors localized to viral DNA replication centers.  As such, ATM and 

ATR kinases might indirectly compromise NHEJ function at viral replication centers.  Yet 

prior to testing this hypothesis, a more thorough understanding of effects of ATR 

inhibition on viral replication centers was required.  ATM inhibition disrupts viral DNA 

replication centers and results in aberrant Tag staining pattern (Zhao et al., 2008; Sowd 

et al., 2013).  Furthermore, expression of a dominant-negative kinase-ablated ATR or 

inhibition of ATR at any point during SV40 infection precluded the S phase arrest 

normally observed in SV40-infected cells (Rohaly et al., 2010) (Figure 28).  Therefore, I 

reasoned that a more limited exposure to ATRi might be more appropriate to compare 

the effects of ATM or ATR inhibition on viral DNA replication centers.   

 To determine the timing of aberrant replication center formation upon exposure of 

SV40-infected cells to the specific ATM inhibitor Ku-55933 (Hickson et al., 2004), the 

chromatin-bound Tag staining pattern was monitored by immunofluorescence 

microscopy from infected cells when Ku-55933 was added to the medium during the final 

4, 8, 16, and 24 h of a 48 h infection.  Cells stained with DMSO demonstrated intense 

Tag foci that accompany infection, with a smaller percentage of cells showing a weak, 

aberrant Tag staining pattern (Figure 34A, B).  However, the presence of Ku-55933 for 4 

h prior to the 48 hpi timepoint increased aberrant, dispersed Tag staining to on average 

23% of cells (Figure 34A).  Inhibition of ATM during the final 8 h of a 48 h infection 

resulted in 49% of cells displaying a dispersed Tag staining pattern that lacked viral 

replication centers (Figure 34A, B).  Further exposure to Ku-55933 beyond 8 h caused 
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no further increase in the dispersed Tag staining pattern (Figure 34A).  The percentage 

of cells displaying a weak Tag staining remained stable for Ku-55933 exposures of less 

than 16 h (Figure 34A).  At exposures of 24 h or greater, the weak Tag staining began to 

increase (Figure 34A and data not shown).  These data suggest that the presence of Ku-

55933 for as little as 8 h is sufficient to produce aberrant Tag replication center patterns.  

Therefore, an 8 h exposure to ATRi was utilized to limit cell cycling of SV40-infected 

cells in the presence of ATRi. 

 To determine whether ATR contributes to viral replication center stability, cells 

were infected with SV40, and ATM or ATR were inhibited during the final 8 h of a 48 h 

infection using Ku-55933 and VE821 (ATRi) (Reaper et al., 2011), respectively.  At 48 

hpi, the cells were processed for immunostaining of chromatin-associated proteins.  

Again, infection in the presence of DMSO had no effect on viral DNA replication centers, 

and Ku-55933 induced replication center dispersion (Figure 34B).  The presence of ATRi 

for as little as 8 h increased the percentage of cells lacking noticeable Tag foci  (weak) to 

58% on average, but no effect on Tag staining patterns was observed (Figure 34B and 

35).  We conclude that ATR inhibition does not affect Tag replication centers in the same 

manner as ATM inhibition. 

 

Inhibition of ATM or ATR kinase activity increases DNA-PK activation 

 Inhibition of ATM or ATR for extended periods during SV40 infection accompany 

robust DNA-PKcs activation during SV40 infection (Sowd et al., 2013).  To test whether 

the presence of Ku-55933 or ATRi during a shorter period of infection inhibited 

ATM/ATR and corresponded with increased DNA-PK activation, protein lysates from 

SV40- or mock-infected BSC40 cells treated with DMSO, ATRi, or Ku-55933 during the 

final 8 h of a 48 h SV40 infection were subjected to immunoblotting.  Again, ATR and 

ATM phosphorylation of Chk1 and Chk2, respectively, increased in DMSO-treated, 
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Figure 34. Unlike Ku-55933, the presence of ATRi does not affect viral DNA replication centers. 
(A) Graph of Tag staining patterns of SV40-infected BSC40 cells treated with Ku-55933 for the last 0, 4, 8, 
16, 24 h of a 48 h SV40 infection.  No points on weak line are statistically significant from SV40 infected 
cells treated with DMSO during the final 24 h of a 48 h infection (0 h Ku-55933).  All data points on the 
dispersed and normal staining pattern lines are significantly different than the 0 h Ku-55933 control (p < 
0.05).  Each data point on the graph represents the average of 3 independent experiments.  (B) Tabulated 
Tag staining patterns of SV40-infected cells exposed to DMSO, Ku-55933, or ATRi during the final 8 h of a 
48 h infection.  Table shows the average of 3 independent experiments.  (C - E) Western blots of cell lysates 
extracted from SV40-infected BSC40 cells exposed to DMSO, ATRi, or Ku-55933 from 40 - 48 hpi (C, E) or 
cells treated with the indicated amounts of NCS for 30 minutes (D).
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SV40-infected cells relative to mock-infected cells (Figure 34C, compare lane 1 to 4).  

The presence of ATRi during the final 8 h of infection inhibited Chk1 phosphorylation 

(Figure 34C, compare lane 1 to 2).  However, Ku-55933 treatment from 40 - 48 hpi 

resulted in only a minor decrease in Chk2 phosphorylation relative to SV40-infected cells 

in the presence of DMSO (Figure 34C, compare lane 1 to 3).  Notably, the 

phosphorylation of ATM substrate Nbs1 was decreased in the presence of Ku-55933 

(Figure 34C, compare lane 1 to 3).  Importantly, Ku-55933 effectively inhibited the 

phosphorylation of Chk2 following exposure to the radiomimetic drug neocarzinostatin 

(NCS) (Figure 34D, compare lanes 1 - 3 to 4 - 5).  This latter result confirms that Ku-

55933 effectively inhibits ATM and suggests that the residual Chk2 phosphorylation is a 

result of ATM phosphorylating Chk2 prior to Ku-55933 exposure (Chk2 half-life > 6 h 

(Antoni et al., 2007)).  As determined by S2056 phosphorylation, DNA-PKcs was weakly 

activated by SV40 infection (Figure 34E, compare lane 1 to 5), yet inhibition of either 

ATR or ATM during the final 8 h of a 48 h SV40 infection elicited robust DNA-PKcs auto-

phosphorylation on S2056 (Figure 34E, compare lane 1 to 2, 3).  SV40 infection or 

inhibition of ATM or ATR during SV40 infection had only minor effects on the 

phosphorylation of DNA-PKcs residue T2609, a reported ATM, ATR, and DNA-PKcs 

target (Figure 34E) (Chen et al., 2007; Uematsu et al., 2007; Yajima et al., 2006).  These 

data imply that ATM and ATR kinases might prevent DNA-PKcs activation during SV40 

DNA replication. 

 

ATM kinase activity prevents DNA-PK activation at the viral replication center 

 The increased DNA-PKcs activation observed as a consequence of ATM or ATR 

inhibition might correspond to a change in the distribution of DSB repair factors to SV40 

DNA replication centers.  To examine whether DNA damage signaling during SV40 

infection influences the association of DNA repair factors with viral DNA replication 
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centers, the subcellular localization of several HR and NHEJ proteins was assessed by 

immunofluorescence microscopy of SV40-infected BSC40 cells.  As observed 

previously, an EdU pulse and chromatin-bound Rad51, CtIP, and BLM but not DNA-PK 

co-localized with Tag at 48 hpi in DMSO-treated BSC40 cells (Figure 35A, B, C).  Again 

in cells with Tag staining, viral DNA replication centers were unaffected by ATR inhibition 

(Figure 35 A, B, C).   The EdU signal was more intense in ATRi-treated cells than in 

DMSO-treated cells (Figure 35A, compare DMSO to ATRi fluorescence signal intensity).  

Furthermore, the HR proteins Rad51, CtIP, and BLM colocalized with Tag and EdU 

pulse labeling when ATR was inhibited (Figure 35A, B).  In spite of increased Ku70 focus 

intensity following ATRi treatment (Figure 35C graph), activated DNA-PKcs and Ku70 still 

did colocalize with Tag (Figure 35C). Examination of DNA-PKcs and Ku80 localization 

yielded identical results to those observed for Ku70 (data not shown). 

 The presence of Ku-55933 during the final 8 h of a 48 h SV40 infection revealed 

weaker Rad51 staining that still co-localized with the dispersed Tag immunostaining 

(Figure 35A).  Similar to ATR inhibition, the EdU signal remained co-localized with Tag 

when ATM was inhibited (Figure 35A).  Also, the EdU fluorescent signal was increased 

by ATM inhibition (Figure 35A).  However, unlike Rad51, HR proteins CtIP and BLM no 

longer colocalized with the dispersed Tag signal when ATM was inhibited (Figure 35B). 

Consistent with the immunoblotting results, DNA-PK was strongly activated upon ATM 

inhibition during the final 8 hr of a 48 h SV40 infection (Figure 35C, DNA-PKcs pS2056).  

Furthermore, the fluorescent signals from immunostains of DNA-PKcs pS2056, Ku70, 

DNA-PKcs, and Ku80 co-localized with Tag in the presence of Ku-55933 (Figure 35C, 

see enlargement and data not shown).  Taken together, these results indicated that ATM 

kinase activity has a major role in preventing DNA-PK activation at replicating viral DNA 

at Tag foci. 
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Figure 35. 
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Figure 35.  ATM inhibition affects the localization of DNA repair proteins during SV40 chromatin 
replication. 
(A) Immunofluorescence microscopy of the indicated factors from SV40- or mock-infected BSC40 cells 
treated with DMSO, ATRi, or Ku-55933 during the final 8 h of a 48 h SV40 infection.  Prior to fixation at 48 
hpi, non-chromatin bound proteins were extracted from cells.  The fluorescence intensity in arbitrary units 
(AU) along the line shown in the merged image is graphed in the right panel.  Scale bars represent 10 μm. 
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Discussion 

 

Our data demonstrate that through the action of ATM and ATR kinases, SV40 

recruits a complex set of DNA repair activities to viral DNA replication centers.  This 

study presents several lines of evidence suggesting that ATM kinase activity during viral 

DNA replication modulates the preference for homology-directed repair over NHEJ.    

We show that viral DNA replication centers selectively colocalize with HR factors but not 

NHEJ proteins (Figures 29, 30, 32, and 33).  Additionally, DNA-PKcs, whose kinase 

activities are required for NHEJ, is not robustly activated by SV40 infection (Figure 31), 

supporting the idea that proteins or DNA structures present at replicating chromatin 

might obstruct the NHEJ pathway.  Importantly, DNA damage signaling is vital to 

maintain viral replication centers (Figures 34).  Aberrant viral DNA replication centers 

only formed following ATM kinase inhibition during viral DNA replication, suggesting that 

ATM promotes the stable recruitment of repair factors to the replication center.  

Furthermore, we present data that ATM kinase activity, but not ATR kinase activity is 

required for the colocalization of CtIP and BLM, but not Rad51 with Tag (Figure 35).  

Additionally, inhibition of ATM kinase activity alone prevented NEHJ association and 

activation at the viral DNA replication center (Figure 35), indicating that ATM and not 

ATR activity prevents NHEJ at the replicating DNA.  Collectively, our results lend support 

to the hypothesis that ATM and ATR activities promote different aspects of repair during 

viral DNA replication.   

 

ATM activation blocks DNA-PKcs function at viral DNA replication centers 

 The prevention of DNA-PK recruitment to viral DNA replication centers and 

kinase activation during SV40 DNA replication is reminiscent of the effect of the cell 

cycle on NHEJ function.  DNA-PKcs kinase function is markedly decreased during S 
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phase in response to several DNA-damaging agents (Chen et al., 2005).  Perhaps this 

decrease in DNA-PK function results from the activation of homology-directed repair 

during S phase (Sartori et al., 2007; Huertas et al., 2009; Yun et al., 2009), thereby 

resulting in an increased competition between MRN/CtIP and Ku for binding to and 

processing of exposed ends of the DSB.  As both MRN/CtIP and Ku possess activities 

that promote repair of DSBs by either HR or NHEJ, respectively (Chapman et al., 2012), 

binding one protein (e.g., Ku) prior to the other (e.g., MRN/CtIP) might channel repair in 

one direction or another.  However, such a model does not explain how ATM kinase 

activity influences the observed lack of recruitment of DNA-PK or CtIP/BLM to viral DNA 

replication centers (Figure 35).   

 ATM is not required for homologous recombination (Rass et al., 2013), but its 

activity influences the repair kinetics of DSBs (Berkovich et al., 2007). Therefore, a more 

plausible model for how ATM activity mediates DNA repair at viral DNA replication 

centers may be that ATM kinase activity activates or promotes stable association of 

factors that function in homology-directed repair (Matsuoka et al., 2007; Derheimer et al., 

2010).  Such a mechanism might be able to prevent DNA-PK activation.  ATM directely 

phosphorylates several candidates, including both CtIP (Li, Ting et al., 2000) and BLM 

(Ababou, Dutertre et al., 2000).  However, the number of substrates phosphorylated 

following DNA damage by either ATM and ATR is enormous (Matsuoka et al., 2007).   

 A second possibility is that ATM kinase activation results in the recruitment of a 

protein to viral DNA replication centers that blocks DNA-PK activation.  Brca1 is to be 

recruited to DSBs in an ATM-dependent manner (Derheimer et al., 2010) and localizes 

to viral DNA replication centers (Boichuk et al., 2010).  Thus, Brca1 binding adjacent to 

the DSB may promote MRN/CtIP binding and subsequent DSB end resection preventing 

DNA-PK activation (Chapman et al., 2012).  Further effort will be required to distinguish 
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the intricacies of ATM signaling that promote homology-directed repair at the viral 

replication center and prevent DNA-PK activation and subsequent NHEJ.  
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CHAPTER V 

 

PERSPECTIVES AND FUTURE DIRECTIONS 

 

Introduction 

 

 Our studies of SV40 DNA replication have resulted in three discoveries that have 

helped shed light on both the mechanisms of viral and cellular DNA replication.  First, we 

identify that viral DNA replication is associated with increased DNA damage signaling 

and repair factor accumulation at the viral DNA replication center, marked by Tag 

(Figures 10-12, 29-31).  This primary result implies that unperturbed viral and likely 

cellular DNA replication requires DNA repair to efficiently replicate viral and cellular 

genomes, respectively.  The type of damage (e.g., base modifications, inter-strand 

crosslinks, intra-strand crosslinks, or DSBs) that requires ATM- and ATR-directed DNA 

repair is debatable.   

Second, we expand on this preliminary finding by demonstrating that ATM kinase 

prevents accumulation of DSBs during viral DNA replication, likely by promoting 5’ to 3’ 

end resection at the DSB termini (Figures 14-16, 26, 35).  If and how ATM contributes to 

cellular DNA replication has been the subject of debate (Gamper et al., 2012).  

Furthermore, what aspect of ATM signaling might channel DNA repair toward one 

pathway or another has remained elusive (Rass et al., 2013; Berkovich et al., 2007).  

Thus, the identification of a defect in 5’ to 3’ end resection recruitment, a key step in 

homology-directed repair, with a subsequent activation of NHEJ at the DSB (Figures 34, 

35) implies that ATM is able to directly influence DSB repair at unmodified replication-

associated DSBs. 
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Third, the insights gained from viral DNA replication pertaining to the ATR-Chk1 

pathway are the first molecular verification of DNA replication fork-associated breakage 

upon inhibition of the ATR-Chk1 pathway in the setting of metazoan cells (Figures 21-

25).  The results pertaining to ATR and Chk1 kinase activities indicate that the ATR-

Chk1 pathway is not required for the repair of one-ended DSBs (Figure 26), delineating 

the ATM and ATR mediated pathways from one another.  Yet, our data, consistent with 

previous data obtained in Saccharomyces cerevisiae (Lopes et al., 2001), demonstrate 

that viral replication fork convergence is a source of replication fork stalling and 

breakage that necessitates ATR-Chk1 phosphorylation to orchestrate this pathway.   

The three aforementioned discoveries will be further discussed along with 

implications on how cellular DNA is repaired by ATM and ATR signaling.  Additionally,  

the use of ATM and ATR kinase inhibitors as anti-virals against human small DNA tumor 

virus infections or chemotherapeutic agents for cancer treatment will be examined.  

Overall, we suggest that our observations are the result of the failure to repair DNA 

lesions by MMR, NER, or BER causing increased numbers of modified bases or SSBs in 

the viral genome that might necessitate ATM and ATR mediated DNA repair pathways.    

 

DNA damage signaling induction by viral DNA replication 

 

 The timing of SV40 DNA replication and DNA damage signaling inside infected 

cells is closely correlated (Zhao et al., 2008).  I have elaborated upon this finding by 

further expanding the list of cellular components found at or near the SV40 DNA 

replication center (Figures 10 -13, 29).  Contrary to initial insights (Boichuk et al., 2010; 

Hein et al., 2009), large, irregular Tag foci and DNA damage signaling at the Tag foci 

were not observed in the absence of a functional viral origin of replication or viral 

helicase (Figure 10 B - D).  Differentiating our studies from previous work (Boichuk et al., 
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2010; Hein et al., 2009) was the use of the SV40 origin, SV40 early promoter, and times 

after transfection that correlate well with actual viral infection (Figure 10).  Our 

experiments suggest that the Tag foci are the viral DNA replication centers.  

Furthermore, we conclude that viral DNA replication is a prerequisite for DNA damage 

signaling in the context of transfection and likely permissive infection.   

 These data are inconsistent with Tag expression in the absence of viral DNA 

replication being able to activate DNA damage signaling to form intense γH2AX foci 

during the timeframe of permissive infection.  However, in the absence of the viral origin, 

it is difficult to rule out the possibility that prolonged Tag expression has adverse effects, 

due to a failure to perform its normal functions.  This might explain how deregulated 

expression of polyomaviral Tag (Boichuk et al., 2010; Hein et al., 2009) and HPV E1 and 

E2 (Sakakibara et al., 2011; Fradet-Turcotte, Bergeron-Labrecque et al., 2011) proteins 

might contribute to increased tumorigenesis in abortive infection.  However, in the 

context of permissive infection, our experimental data raise questions about the 

relevance of the Bub1-Tag interaction as a cause of genomic instability. 

  

The DNA damage checkpoint and SV40 

 

 In SV40-infected cells, the activation of ATM or ATR should arrest cells in S or at 

the G2/M transition.  Cell cycle arrest during SV40 infection depends on ATR signaling 

(Okubo, Lehman et al., 2003; Rohaly et al., 2010).  Therefore, we suggest that upon the 

G1 to S transition in SV40 infected cells, the combined contributions of premature S 

phase entry and broken DNA, produced during viral DNA replication, should provide 

enough replication stress that ATR kinase activity does not decrease during viral DNA 

replication.  This concept is implied by the increasing ATR activity that occurs between 
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24 and 48 hpi (Figure 31) and the complete reliance of SV40 DNA replication on ATR 

signaling during the late phase of SV40 infection (Figure 28).  

 However, why both ATM and ATR kinase activities are required for proper S 

phase arrest prior to 20 hpi is not well elucidated from our studies (Figure 28).  The 

decrease in total SV40 DNA replication when ATR or ATR were inhibited early during 

SV40 infection is consistent with both ATM and ATR kinase function being crucial to 

virally-induced S phase arrest (Figures 14, 21, 22).  A plausible explanation for the 

different contributions of ATM and ATR to S phase arrest during SV40 infection might be 

that the type of DNA damage elicited prior to 20 hpi differs from that which accumulates 

during robust viral DNA replication.  For instance, early during infection (0 - 20 hpi), 

premature entry into S phase is likely to have a larger contribution to ATR and ATM 

activation than would be observed at later time points (greater than 20 hpi).  Another 

possibility is that the amount of activation needed to reach the threshold to activate a cell 

cycle checkpoint requires signaling of both ATM and ATR prior to 20 hpi during SV40 

infection.  After 20 hpi, the viral DNA is actively being replicated, and the amount of 

replication stress from viral fork convergence (Figures 24, 25) emanating from viral DNA 

replication centers might sufficiently activate ATR to facilitate the S phase checkpoint.  

Importantly, these models are not mutually exclusive.   

 One might address how DNA damage signaling affects the early phase of 

infection by arresting cells in G1, S, or G2/M followed by SV40 infection.  The arrested  

cell populations could be infected in the presence or absence of ATM or ATR inhibitors 

from 30 minutes prior to infection through 20 hpi.  Such experiments would allow the 

differentiation of replication stress via forced G1 to S transition and maybe even 

premature mitosis.  However, the circumstances that activate ATM and ATR as a result 

of SV40 DNA replication (20 hpi and beyond) cannot be determined by this line of 

experimentation.  The mechanisms that contribute to DNA damage signaling inside 
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SV40-infected cells after 20 hpi are likely elicited by cellular DNA replication.  Thus, the 

DNA replication-dependent activation of ATM and ATR that occurs after 20 hpi may be 

more important to understanding the types of DNA replication-associated damage 

contributing to the control of cellular genome stability than DNA damage signaling 

produced in the early phase of infection (during Tag accumulation and Tag mediated G1 

to S transition).    

 

ATR and ATM function: insights from a virus 

 

 Due to the ability to activate a cell cycle checkpoint, ATM and ATR kinase 

activities are implied to have an indirect role in viral DNA replication.  The finding that 

aberrant structures and intermediates (Figures 14, 15, 16, 18, 21, 22, 24, 26) amass 

when either kinase is inhibited during viral DNA replication demonstrates the crucial role 

of each kinase in orchestrating viral DNA replication.  Our direct examination of the DNA 

replication intermediates by 2d gel electrophoresis from SV40-infected cells when ATM, 

ATR, or Chk1 kinase is inhibited (Figures 16, 24) lends new insights into the DNA 

replication defects of viral and cellular replication.  Although we observe pronounced 

defects in viral DNA replication, our studies do not determine what aspect of viral DNA 

replication actually initiates the kinase activities of ATM and ATR. 

 Based on the differences in aberrant product accumulation and DNA breakage 

products (Figures 14-16, 21, 22, 24, 26), the type of DNA damage that requires ATM or 

ATR signaling during unperturbed viral (and likely cellular) DNA replication is likely 

distinct.  Our data indicate that replicating SV40 DNA breaks upon replication fork 

convergence in ATR-inhibited cells (Figure 25), but due to the nature of rolling-circle 

replication, the site of breakage could not be assessed in ATM-inhibited cells.  Analysis 

of genome replication by 2d gel electrophoresis from Saccharomyces cerevisiae 
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harboring mutations that abrogate the functions of ATR or Chk1 orthologs suggests that 

ATR and Chk1 are needed to prevent fork stalling and breakage upon DNA replication 

stress (Lopes et al., 2001).  Knockdown of ATR or Chk1, but not ATM, in human cells 

results in expression of common fragile sites in the human genome with and without 

replication stress (Casper et al., 2002; Durkin et al., 2006).  Common fragile sites are 

late replicating regions of the genome (Le Tallec, Dutrillaux et al., 2011; Letessier, Millot 

et al., 2011) associated with ultrafine anaphase bridges during mitosis (Chan et al., 

2009).  Collectively, we suggest that the ATR-Chk1 pathway is required for some aspect 

of fork convergence (Figure 27, step X), perhaps as a result of fork slowing and stalling 

upon viral fork convergence (Tapper et al., 1982; Tapper et al., 1980; Tapper and 

DePamphilis, 1978).  I hypothesize that the defect in fork convergence may be separate 

from the S phase checkpoint defect that occurs when the ATR-Chk1 pathway is 

inhibited.  Therefore, I propose that the Chk1 phosphorylation targets that promote 

replication fork convergence are likely DNA repair and DNA replication proteins rather 

than factors that promote cell cycle progression.  

 

Models for ATR and ATM prevention of replication-associated breaks 

 

 Substrates of the ATR-Chk1 pathway that mediate fork convergence are not the 

only component that requires a more thorough understanding.  Mechanisms defining 

how DNA breaks upon fork convergences are lacking in the metazoan system.  

However, models suggest that upon replication stress, unidirectional replication forks 

stall and regress to form Holliday junctions (Petermann et al., 2010; Ray Chaudhuri, 

Hashimoto et al., 2012).  Regressed forks (Holliday junctions) accumulate in both yeast 

harboring mutations in either ATR and Chk1 orthologs after exposure to hydroxyurea, 

implying a link between the ATR-Chk1 pathway and fork regression (Lopes et al., 2001; 
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Sogo, Lopes et al., 2002; Raveendranathan, Chattopadhyay et al., 2006).  At the stalled 

replication fork, the regressed fork is then hypothesized to be cleaved by Holliday 

junction resolvases resulting in an one-ended DSB (Petermann et al., 2010; Petermann, 

Orta et al., 2010).   

 Although an attractive model which explains fork breakage upon replication fork 

convergence when ATR or Chk1 activity is decreased (Figure 27), we do not support a 

model whereby aberrant cleavage of regressed replication forks occurs.  Stalled DNA 

replication forks remain stable during viral fork convergence and the unstalled fork 

breaks when the ATR-Chk1 pathway is inhibited (Figures 24, 25), which is inconsistent 

with the model put forth by Petermann and Helleday.  Perhaps more importantly, data 

pertaining to Holliday junction resolvases is not consistent with any sort of promiscuous 

replication fork cleavage during S phase in the absence of ATR-Chk1 kinase signaling.  

This statement is supported by the mechanisms that regulate cellular Holliday junction 

resolvase function.  First, Mus81/Eme1, the endonuclease proposed to cleave stalled 

replication forks in yeast and humans, is activated by a DNA damage induced Chk1-

dependent phosphorylation in Schizosaccharomyces pombe (Dehe, Coulon et al., 2013).  

Second, Holliday junction resolvases are not active during S phase in yeast or human 

systems.  CDK-dependent phosphorylations that occur during G2 and M phases are 

required for the Holliday junction resolvase activity of Gen1 and Mus81/Eme1/Slx1/Slx4 

(Matos, Blanco et al., 2011; Matos, Blanco et al., 2013; Dehe et al., 2013).  Lastly, the 

activation of Mus81 endonuclease activity that follows DNA damage is required for 

efficient repair of replication-associated DSB and loss of this function results in cell death 

(Hanada, Budzowska et al., 2007), implying that Chk1 activation of Holliday junction 

resolvases, like Mus81/Eme1, may be crucial for efficient replication fork recovery after 

replication stress.   
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 A second pathway that could function in viral (and cellular) DNA replication fork 

convergence is catalyzed by the Fanconi anemia pathway of inter-strand DNA crosslink 

repair (Moldovan and D'Andrea, 2009).  The viral DNA replication center colocalizes with 

several factors that are known to function in inter-strand crosslink repair and HR, a sub-

pathway of inter-strand crosslink repair.  Similar to ATR and Chk1 inhibition or 

knockdown, defects in either pathway result in increased expression of common fragile 

sites (Franchitto et al., 2011; Debatisse et al., 2012), ultrafine anaphase bridge formation 

(Chan et al., 2009; Chan et al., 2007; Laulier et al., 2011), and genome breakage during 

unperturbed DNA replication (Hashimoto et al., 2012; Chu et al., 2009; Moldovan et al., 

2009; Wechsler et al., 2011).   These data suggest that HR and Fanconi anemia 

pathways are used during every cell cycle to promote genome integrity.  Thus, these 

pathways might represent viable substrates of ATR and Chk1 in fork convergence.  

 The Fanconi anemia pathway is activated at stalled forks (Moldovan et al., 2009).  

Furthermore, the Fanconi anemia pathway is activated by ATR dependent 

phosphorylations (Andreassen, D'Andrea et al., 2004) indicating that inter-strand 

crosslink repair is a key substrate of ATR-Chk1 kinase signaling.  Therefore to implicate 

the Fanconi anemia pathway in SV40 replication fork convergence, FancM or Faap24, 

proteins which initiate inter-strand crosslink repair (Moldovan et al., 2009), could be 

knocked down in SV40 infected cells.  SV40 genomic DNA could then be extracted from 

FancM, Faap24, and control knock down cells and subjected to 2d gel electrophoresis 

and southern blotting.  If FancM knockdown phenocopies ATR inhibition, then we can 

conclude that the Fanconi anemia pathway is used to facilitate fork convergence and 

maybe even remove of the replisome. 

 To more broadly address what DNA repair factors influence fork breakage of the 

unstalled fork upon replication fork convergence when ATR-Chk1 signaling is 

decreased, we suggest the use of neutral sucrose gradients to isolate replicating viral 
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chromatin (Su and DePamphilis, 1976; Otto and Fanning, 1978).  This technique can be 

combined with mass spectrometry technologies to identify differences the proteins 

associated with replicating viral chromatin in the presence or absence of robust 

ATR/Chk1 kinase signaling.  We support the notion that replicating viral chromatin will 

contain different repair factors when Chk1 is inhibited.  Importantly, neutral sucrose 

gradients and mass spectrometry might enable the identification of the crucial Chk1 

kinase substrate needed to prevent fork stalling and breakage of the unstalled fork.  

Chk1 exhibits a weak consensus phosphorylation sequence (Blasius, Forment et al., 

2011), thus the aforementioned technique circumvents problems associated with 

identification of Chk1 phosphorylation sites based on consensus amino acid sequence.  I 

believe that SV40 may reveal the secrets of the mechanisms that promote cellular 

replication fork convergence. 

 The repair of DSBs induced by ionizing radiation (IR) is slowed in AT cells 

compared to normal cells, implying that some portion of DSB repair necessitates ATM 

kinase activity (Berkovich et al., 2007).  With that in mind, it may be possible that the 

type of break sustained by the viral replication fork, whether it be on the leading or 

lagging strand, determines whether ATM or ATR is required to repair the broken DNA.  

Additionally, ATM and ATR signaling might activate or recruit a different set of factors to 

replicating chromatin.  Even with the differences observed in the amount of DNA 

undergoing rolling circle DNA replication when ATM or ATR were inhibited, how the DNA 

initially forms a rolling circle is unclear.  A probable explanation is that replication through 

a SSB forms a DSB (Petermann et al., 2010).  Examination of  viral genome replication 

when SSB repair is inhibited using PARP inhibitors such as Olaparib (Menear, Adcock et 

al., 2008) would allow this question to be definitively answered.  Importantly, ATM-null 

cells are particularly sensitive to PARP inhibition (Radhakrishnan, Bebb et al., 2013).  

Thus, examination of SV40 DNA replication when both ATM and SSB repair are 
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inhibited might enhance an understanding of the defects that accompany viral 

concatemer formation and help address the molecular aspects of the synthetic lethality 

that occurs upon ATM and PARP inhibition in p53 null cell lines. 

 

Viral replication centers: hubs of homology-directed DNA repair 

 

 SV40 DNA replication centers recruit a diverse set of proteins and functions 

(Rohaly et al., 2010; Sowd et al., 2012; Zhao et al., 2008; Boichuk et al., 2010).  Prior to 

my studies, the contribution of these proteins, particularly ATM and ATR, to viral DNA 

replication was not well elucidated.  My results indicate that ATM activity at the viral 

replication center correlates with reduced DNA-PKcs activation at Tag foci (Figures 13, 

35).  Mechanisms promoting this phenomenon are not well understood inside the 

infected cell.  Additionally, the aspects of DNA damage signaling during cellular DNA 

replication that prevent DNA-PKcs activation at replicating DNA are poorly elucidated.  

Notably, mutation of PIKK phosphorylation sites on Ku70/80 has no effect on NHEJ or 

HR (Neal et al., 2011), implying that ATM and ATR kinase activities do not directly 

control Ku70/80 binding to DNA.  Although ATM and ATR phosphorylate DNA-PKcs at 

residue T2609 (Chen et al., 2007; Uematsu et al., 2007; Yajima et al., 2006), 

phosphorylation of T2609 is not robust during unperturbed SV40 infection (Figure 34), 

which is consistent with decreased phosphorylation of this residue during cellular S 

phase (Chen et al., 2005).  The phosphorylation of T2609 on DNA-PKcs occurs 

somewhat more prominently when ATR or ATM is inhibited (Figure 34), supporting the 

model proposed by Meek et al. whereby phosphorylation of this residue is a step during 

NHEJ (Meek et al., 2007).  Perhaps phosphorylation of other residues on DNA-PKcs by 

ATM or ATR controls NHEJ at areas of robust DNA replication, but the model pertaining 
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to the ABCDE patch of DNA-PKcs regulating NHEJ is not consistent with recent data and 

current models of the regulation of DSB repair (Neal et al., 2011). 

 Another possibility that might prevent DNA-PK activation and subsequent NHEJ 

at replicating viral and perhaps cellular DNA is the large amounts of ssDNA at the site of 

breakage that can occur during S phase.  This ssDNA could be attributable to the tracts 

of ssDNA on the lagging strand of the replication fork (Hashimoto et al., 2012), leading 

strand polymerase stalling and subsequent fork breakage, or even increased 5' to 3' end 

resection during S phase (Goodarzi et al., 2013).  Large tracts of ssDNA at the DSB 

were found to be more weakly bound in vitro by Ku70/80 (Foster, Balestrini et al., 2011).  

Weakened Ku binding might prevent NHEJ at replication forks.  However, this 

mechanism does not explain why ATM and not ATR kinase signaling affected Ku and 

DNA-PKcs recruitment to viral DNA replication centers (Figure 35).  The effect of Ku-

55933 on the localization of Ku and DNA-PKcs in SV40-infected cells makes it more 

probable that 5' end resection mediated by CtIP/MRN and BLM/Exo1/Dna2 plays a 

major role in the prevention of NHEJ during viral genome amplification (Figure 35).  

Since the proteins that promote 5' end resection are recruited to viral DNA replication 

centers in an ATM-dependent manner (Figure 35), 5' end resection of broken viral DNA 

represents a plausible explanation for the lack of DNA-PK at Tag foci.  ATM and ATR 

signaling is associated with more stable recruitment of repair enzymes to damaged DNA 

(Ciccia et al., 2010).  Thus, the stabilization and/or activation of DNA repair enzymes 

might be primarily mediated by ATM during viral DNA replication.  CtIP is a substrate of 

ATM signaling (Li et al., 2000), but several other ATM substrates likely influence end 

resection (Matsuoka et al., 2007).  Additionally, FancD2, a DNA interstrand crosslink 

repair protein that colocalizes with Tag in SV40-infected cells (Boichuk et al., 2010), 

affects DNA-PK activation at cellular replication forks (Adamo et al., 2010). Thus, several 

mechanisms are possible that might affect Ku70/80 binding in an ATM-dependent 
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manner.  A greater understanding of the difference in substrate preferences of ATM and 

ATR might aid in determining how NHEJ is prevented during viral and cellular DNA 

replication. 

 Despite the observed defects in DSB repair localization upon ATM inhibition 

(Figure 35) and DNA replication when ATM or ATR are inhibited (Figures 14, 15, 16 18, 

21, 22, 24, 26),  it is not known what DNA repair pathways contribute functionally to 

preventing aberrant viral DNA structures or general viral DNA replication (Figure 27, I-IV, 

VII).  Colocalization at replicating viral DNA does not imply function, therefore functional 

studies using SV40-infected cells in which homology-directed repair is decreased need 

to be performed.  Such experiments will allow us to determine if homology-directed 

repair, HR and SSA, actually affects concatemer formation and gross viral DNA 

replication in SV40-infected cells in a manner similar to ATM inhibition.  To address this 

aspect, abrogation of homology-directed repair by CtIP knockdown in SV40-infected 

cells could be employed.  Additionally, it may be prudent to verify that the decreased 

localization of homology-directed repair proteins to viral replication centers upon ATM 

inhibition (Figure 35) corresponds reduced binding to the viral genome as measured by 

chromatin immunoprecipitation.  Such experiments will aid in elucidating the roles of the 

repair pathways utilized by the virus and cellular DNA replication.   

  

Are ATM and ATR good drug targets for anti-virals and chemotherapeutics?  

  

 Specific inhibitors of crucial steps in DNA replication and repair, similar to those 

used in these studies, have paved the path for science to investigate essential pathways 

contributing to genome maintenance.  More importantly, insights gained from 

experiments with inhibitors of DNA replication and repair have allowed clinicians to use 

DNA replication or repair inhibitors as chemotherapeutic agents in a clinical setting.  We 



132 
 

observed distinct SV40 DNA replication defects associated with ATM or ATR-Chk1 

inhibition (Figure 27) providing further evidence of the possible effectiveness of inhibition 

of DNA damage signaling during DNA replication.  Both ATRi (VE-821) and Ku-55933 

possess great possibilities for use as chemotherapeutic agents when combined with 

more potent inducers of DNA damage (e.g., topoisomerase inhibitors or ionizing 

radiation) (Hickson et al., 2004; Reaper et al., 2011).  Like many other common 

chemotherapeutics, ATRi and UCN-01 target actively proliferating cells, due to the heavy 

reliance of S phase cells on ATR-Chk1 signaling and the S phase checkpoint (Toledo et 

al., 2011).  Similarly, when combined with DNA damaging agents, ATM inhibition further 

exacerbates chromosomal aberrations that accumulate as a consequence of DSB 

formation (Choi, Gamper et al., 2010).   

 In theory, ATM and ATR may represent useful targets for chemotherapeutics and 

anti-virals against persistent infections of BK virus or JC virus in immunocompromised 

patients.  In spite of this, inhibition of DNA damage signaling has some major 

drawbacks.  ATM kinase inhibition results in more severe phenotypes than loss of the 

ATM gene itself implying that we do not understand the pathways that ATM controls as 

well as was first expected (Choi et al., 2010).  Prolonged ATR inhibition is severely toxic 

to cells, leading to chromosomal aberrations and decreased colony forming ability 

(Toledo et al., 2011; Reaper et al., 2011; Couch, Bansbach et al., 2013).  Furthermore, 

neither ATM, ATR, or Chk1 inhibition completely stops the production of unit length viral 

products (Figures 14, 15, 21, 22, 23), implying that infectious virus is still produced from 

infected cells albeit at lower levels.  Although treatment of immunocompromised BK 

virus or JC virus patients with Ku-55933 or ATRi might work to lower the viral load inside 

the patient, these drugs would need to be administered either persistently or in pulses 

(e.g., 2 - 8 h with drug, 1 week off drug) throughout the rest of the patient's life.   
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 Based on cellular phenotypes of ATR-inhibited or ATR-null cells (Wright, Keegan 

et al., 1998; Brown et al., 2000), persistent ATRi treatment would likely kill the patient.  

Although persistent Ku-55933 might be possible, the accumulation of recombinogenic 

viral concatemers (Figures 14, 15) and chromosomal aberrations (Choi et al., 2010) 

would likely make the patient prone to carcinogenesis.  Therefore, I suggest that pulses 

of ATRi and/or Ku-55933 be administered to immunocompromised JC virus or BK virus 

infected patients to decrease viral DNA replication (Figure 26) and possibly viral load.  

Importantly, these two drugs could likely be administered in a similar manner for use as 

chemotherapeutics.  However, the aforementioned limitations for the use of ATRi and 

Ku-55933 as anti-virals still apply to their use as chemotherapeutic agents.   

 Further studies of the downstream pathways promoted by ATM and ATR during 

SV40 DNA replication will aid in the discovery of new druggable targets for use as anti-

virals and chemotherapeutic agents.  Notably, the ATM and ATR pathways are essential 

for both viral genome and host genome stability, therefore knowledge gained from my 

research is readily applicable to DNA repair mechanisms and both polyomavirus and 

cellular DNA replication. I suggest that it will be highly beneficial to continue to study 

SV40 as both a model for small DNA tumor virus DNA replication and cellular genome 

replication. The insights gained from the study of SV40 regarding DNA replication, cell 

cycle regulation, and transcription are likely only the tip of the iceberg.  Thus, I firmly 

believe that future work using viral systems in conjunction with multi-cellular and yeast 

eukaryotic systems will continue to define the mechanisms exploited by viruses and in 

cancer.  
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CHAPTER VI 

 

MATERIALS AND METHODS 

 

Cells and SV40 infection 

 BSC40 and U2OS cells were cultured in complete Dulbecco’s modified Eagle’s 

medium (DMEM supplemented with 10% fetal bovine serum) at 37°C with 5% CO2. For 

indirect immunofluorescence, cells were grown on an 18 x 18 mm glass cover slip 

(Fisher) in 35 mm dishes. Prior to SV40 infection, equal numbers of cells were plated 

into dishes. A duplicate dish was counted to determine total cell number, and cells were 

infected with DMEM containing SV40 at a multiplicity of infection of 10 (BSC40) or 115 

(U2OS) focus forming units/cell. Mock infections were performed in parallel, by using, an 

equal volume of DMEM lacking virus.   

 

WST-1 viability assay 

 BSC40 cells were plated into wells of a 96 well plate and treated with ATRi as 

described in materials and methods under the inhibitors and treatments subheading. At 

48 hpi, WST-1 assay was performed according to manufacturer protocol (Roche). To 

obtain the viability of ATRi treated SV40-infected or mock infected cells compared to 

SV40-infected cells in the presence of DMSO (Viability (% of DMSO), the OD of mock or 

SV40-infected cells in the presence/ absence of ATRi was divided by the OD generated 

from SV40 infected cells in the presence of DMSO.     

 

Plasmids and transfection 

 pMini SV40-wt and pMini SV40-D474N were as previously described (Zhou et 

al., 2012). The In-1 mutation (Cohen et al., 1984; Virshup et al., 1992) was introduced by 



135 
 

standard site-directed mutagenesis into pMini SV40 wt and verified by DNA sequencing. 

pMini SV40-In-1 contains a single G-C base pair insertion at position 1 of the SV40 

genome, abrogating the BglI site.  

 For transfection, 2 ug of supercoiled pMini SV40-wt or mutant plasmid was 

transfected into a semi-confluent 35 mm plate of BSC40 cells using Fugene HD (Roche) 

as per manufacturer protocol.  For ectopic expression of HA-topoisomerase IIIα or Flag-

RMI2, 2ug of supercoiled pCMV-HA-Topoisomerase IIIα or pIRES-neo-Flag-RMI2 were 

transfected 24 h prior to SV40 infection as previously described. 

 

Low molecular weight DNA extraction 

 Equal numbers of cells transfected with pMini-SV40 plasmid were resuspended 

in 383 μL T10E (20 mM Tris pH 7.5 and 10 mM EDTA). SDS and RNAse A were added 

to a final concentration of 0.6% and 0.1 mg/mL, respectively. To ensure equal cell lysis, 

tubes were inverted ten times prior to addition of NaCl to a final concentration of 1M to 

bring the final volume to 500 μL. High molecular weight DNA was allowed to precipitate 

overnight at 4°C. DNA was spun at 17000xg for 30 min to pellet host genomic DNA. 

Equal volumes of supernatant were kept and twice extracted with saturated phenol (pH 

7.9) followed by one extraction with 24:1 chloroform: isoamyl alcohol. The resulting 

supernatants were precipitated with sodium acetate and ethanol.  DNA pellets were 

dissolved in T0.1E overnight and then digested with 20 U of DpnI overnight to digest 

unreplicated DNA. Following re-precipitation of DNA with sodium acetate and ethanol, 

DNA was dissolved in 25 μL of T0.1E per 5x105 cells. Equal volumes of DNA were 

loaded on gels for southern blots. 
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DNA Isolation 

 Total intracellular DNA was prepared from infected and mock-infected cells. For 

each experiment, all samples were prepared from an equal number of cells. Cell pellets 

were resuspended in 0.4 ml of TE (10 mM Tris pH 8.0, 1 mM EDTA).  SDS, RNase A, 

proteinase K, and Tris pH 7.5 were added to a final concentration of 0.4%, 0.2 mg/ml, 50 

ug/ml and 100 mM, respectively, in a total volume of 0.5 ml. Following overnight 

digestion at 37°C, each sample was extracted twice with Tris-saturated phenol (pH 7.9) 

and once with 24:1 chloroform: isoamyl alcohol. DNA was precipitated with sodium 

acetate and ethanol. DNA was allowed to dissolve in T0.1E (10 mM Tris pH 8.0, 0.1 mM 

EDTA) for 2 days, and then digested overnight at 37°C with 40 U of SacI-HF and XbaI 

(both from New England Biolabs).  Digested DNA was re-precipitated and then dissolved 

in 50 μL of T0.1E per 2.5 x 105 cells.  Equal volumes of DNA were loaded on gels for 

southern blots unless otherwise indicated.  

 

Immunoblots 

 Whole cell lysates were prepared as previously described [1], except that 1 mM 

NaVO4 and 5 mM NaF were added during lysis to inhibit phosphatases. Samples 

containing 10 µg of protein were analyzed by SDS-PAGE and western blotting. The 

following antibodies were used: anti-Tag (Pab101, [4]), anti-actin (I-19, Santa Cruz), anti-

Chk1 (G-4, Santa Cruz), anti-Chk1 pS317 (Cell Signaling), anti-Chk2 pT68 (Y171, 

Epitomics), anti-Chk2 (EPR4325, Epitomics), anti-Nbs1 pS343 (EP178, Epitomics), anti-

ATR (N-19, Santa Cruz), anti-DNA-PKcs (G-4, Santa Cruz), anti-Ku80 (C-20, Santa 

Cruz), anti-Ku70 (M-19, Santa Cruz), anti-DNA PKcs pS2056 (EPR5670, Epitomics), anti-

GAPDH (0411, Santa Cruz), and anti-DNA PKcs pT2609 (abcam). 
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Immunofluorescence microscopy 

 To visualize chromatin-associated proteins, soluble proteins were pre-extracted 

from cells, followed by fixation and immunostaining as described (Zhao et al., 2008). For 

EdU labeling of DNA, 10 µM EdU nucleoside in complete DMEM was added to cells for 

5 min. At 48 hpi, cover slips were processed for immunostaining and click reaction 

according to the manufacturer’s protocol (Invitrogen).  All micrographs were taken using 

an AxioObserver Z1 (Zeiss) equipped with a 63x Plan Apochromat (NA 1.4) oil objective 

(Zeiss) and an apotome (0.6 μm z slice) (Zeiss).  To quantify Tag staining patterns in 

SV40-infected BSC40 cells treated with Ku-55933 as in Figure 13D, aberrant and normal 

Tag staining patterns from 3 independent experiments, each with at least 50 cells, were 

counted and the average values were graphed.  To determine what phases of the cell 

cycle SV40-infected cells exposed to Ku-55933 or ATRi were in (Figure 28), the staining 

pattern of CenpF, EdU, and DAPI (Lobrich et al., 2010) in each cell was counted from at 

least 300 cells.  The average values were graphed in figure 28C and D. 

Primary antibodies used for immunostaining were anti-Tag (Pab101), rabbit anti-

Tag (in house), anti-γH2AX (JBW301, Millipore), anti-Cdc45 (Bauerschmidt, Pollok et al., 

2007), anti-PCNA (PC10, Santa Cruz), anti-polymerase δ p125 (C-2, Santa Cruz), DNA 

anti-polymerase ε (3C5.1, Santa Cruz), anti-RFC1 (H-300, Santa Cruz), anti-CtIP (H-

300, Santa Cruz), anti-Brca2 (ab-1, Calbiochem), anti-Rad52 (H-300, Santa Cruz), anti-

BLM (C-18, Santa Cruz), anti-RMI1 (Novus), anti-Flag (M-2, Sigma), anti-HA (abcam), 

anti-CenpF (abcam), anti-DNA-PKcs (G-4, Santa Cruz), anti-Ku80 (C-20, Santa Cruz), 

anti-Ku70 (M-19, Santa Cruz), and anti-DNA-PKcs pS2056 (EPR5670, Epitomics). 

Secondary antibodies used for immunostaining were anti-mouse conjugated to Alexa 

Fluor 488 (Invitrogen), anti-rabbit conjugated to Alexa Fluor 555 (Invitrogen), anti-goat 

conjugated to Alexa Fluor 555 (Invitrogen), anti-goat conjugated to Alexa Fluor 647 
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(Jackson ImmunoResearch), and anti-rat conjugated to Dylight 649 (Jackson 

ImmunoResearch). 

 

Use of PIKK Inhibitors 

 Ku-55933, kindly provided by Astra-Zeneca, was used as described (Zhao et al., 

2008; Hickson et al., 2004). Importantly, Ku-55933 did not inhibit sixty off-target kinases. 

It specifically inhibits purified ATM with an IC50 of 12.9 nM, whereas it inhibits the 

related kinases mTOR and DNA-PK with IC50 values of 2500 nM and 9300 nM, 

respectively, in vitro (Hickson et al., 2004). Caffeine (Sigma) was dissolved to 24 mM in 

DMEM and used at a final concentration of 8 mM to inhibit ATM and ATR (Sarkaria et 

al., 1999). ATRi and Nu7441 were generous gifts from Dr. David Cortez. ATRi dissolved 

in DMSO at 5 mM was used at a final concentration of 5 μM (Reaper et al., 2011).  ATRi 

selectively inhibits ATR with a Ki of 13 nM, whereas at least a 100-fold higher 

concentration is required in vitro to inhibit the related kinases ATM (Ki = 16000 nM), 

DNA-PK (Ki = 2200 nM), mTOR (Ki = 1000 nM), and PI3Kgamma (Ki = 3900 nM) 

(Reaper et al., 2011). Nu7441 was dissolved in DMSO to 2 mM and applied to cells at 1 

μM (Hardcastle, Cockcroft et al., 2005; Leahy, Golding et al., 2004). Nu7026 (EMD) was 

dissolved to 5 mM in DMSO and used at a final concentration of 10 μM (Veuger, Curtin 

et al., 2003).  UCN-01 was dissolved in DMSO to 300 µM and applied to cells at a final 

concentration of 300nM (Busby et al., 2000). 

 DMEM containing inhibitor or solvent was added to cells 30 min prior to infection. 

At time zero, DMEM with inhibitor or solvent was removed, and fresh warm DMEM 

containing inhibitor or solvent and SV40 was added to cells. Cells were gently rocked 

every 15 min during the first 2 hpi. At 2 hpi, complete DMEM containing inhibitor or 

solvent was added to each dish of cells. At 20 hpi, medium was aspirated and cells were 

washed once with PBS to remove residual inhibitor or solvent. Fresh medium containing 
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inhibitor or solvent was then added to cells and infections were allowed to proceed until 

the chosen endpoint. Solvent control treatments utilized the solvent concentration 

present in the inhibitor-treated medium.  To treat cells with inhibitors during the final 8 h 

of a 48 h SV40 infection, the same procedure was used except the media was removed 

from the cells at 40 hpi and replaced with fresh media containing either inhibitor or 

DMSO. 

 

Agarose gel electrophoresis  

 One-dimensional 0.6 - 0.7 % agarose gels in 1x TAE were electrophoresed at 10 

V/cm for 1.5 h. Neutral 2d gel electrophoresis was performed as previously described 

(Friedman et al., 1995) with the following modifications.  The first dimension of the gel 

was electrophoresed at 1 V/cm through a 0.4% 1x TAE for 22 h. 1x TAE was found to 

enhance separation of D-loop arc (data not shown).  The second dimension was 

electrophoresed at 5.5 V/cm through a 1.1% 1x TBE gel containing 0.5 ng/ml ethidium 

bromide for 5.5 h with circulation.   

 

Southern blotting analysis 

 Southern blotting was performed using radiolabeled probes for SV40 and BSC40 

mitochondrial DNA as described (Zhou et al., 2012). A probe for human mitochondrial 

DNA was generated by PCR amplification (primers: U2OS Mito-F ACG CGA TAG CAT 

TGC GAG AC; U2OS Mito-R CTT TGG GGT TTG GTT GGT TCG), followed by random 

priming. Hybridized blots were visualized using a Typhoon Trio laser scanning imager 

(GE Healthcare) and quantified using ImageQuant 5.2 (GE Healthcare).  

 Bands or arcs corresponding to each DNA structure of interest were quantified 

and the value from a region of the blot without signal, e.g. Mock for SV40 probe, was 

subtracted as background. To compare the level of a DNA structure after a given 
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treatment (e.g. DNA structure (% of Total DNA)), the total signals for the DNA were 

summed, and the signal of a discrete DNA structure (e.g. form I monomer) were divided 

by the total signal in the lane (e.g. [form I monomer signal] / [total signal in the lane]).  To 

quantify variations in replication between treatments, all SV40 DNA signals were 

normalized using the respective mitochondrial DNA signal. Normalized signals were then 

divided by the normalized signal present in the infected solvent control to yield the DNA 

signal (% of DMSO).  

 The southern blot signals from an equal area of each arc in neutral 2d gels were 

quantified (boxed areas in Figures 16C, D, E, F and 24 B - D).  Background signal in an 

area of equal size was subtracted, and the values for each arc were normalized to the 

value for the double Y (Figure 16H), bubble arc (Figure 16I), or X structure (Figure 24H). 

 

Statistics 

 Statistics were performed in Microsoft Excel using the data analysis package. 

Prior to t-test, single factor ANOVA analysis was performed. If ANOVA resulted in p < 

0.5, a two sample t-test assuming unequal variances was performed. One-tailed p 

values from student’s t test are denoted by the number of asterisk(s):  * p < 0.05     ** p < 

0.01     *** p < 0.001    **** p < 0.0001.   Unless otherwise noted on the graph, all one 

tailed p values were generated by comparing data from SV40 infection in the presence 

of inhibitor to that from SV40 infection in the presence of DMSO.  Unless otherwise 

indicated, bar graphs present the average of 3 to 4 independent experiments and error 

bars represent standard deviation.   
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APPENDIX A 

 

ATM AND ATR KINASE ACTIVITIES IMPEDE LINEAR PRODUCT FORMATION  
DURING SV40 DNA REPLICATION 

 

Introduction and Research Summary 

 

 The products of ATR and ATM DNA damage signaling were previously examined 

by 1d gel electrophoresis to identify aberrant DNA replication products that accumulated 

upon the inhibition of either ATM or ATR in SV40-infected cells (Sowd et al., 2013).  

Concatemers, head to tail repeats of the viral genome, were identified to be the primary 

aberrant replication product generated in either ATM or ATR inhibited SV40-infected 

cells (Sowd et al., 2013).  In this study no decrease in other more transient DNA 

replication structures (i.e. catenated DNA) was observed.  In spite of these observations, 

1d electrophoresis has one major problem: electrophoresis of a complex milieu of DNA 

intermediates cannot differentiate DNAs with different structures that migrate the same 

distance from the well (ie. Linear monomeric DNA (form III) from catenated supercoiled 

(form I) dimer (Cat I)) (Pohlhaus et al., 2006).  To combat this problem, previous studies 

of plasmid DNA replication in Xenopus laevis extracts have employed neutral 2d gel 

electrophoresis of undigested circular DNA to characterize DNA replication in the 

extracts and examine the effects topoisomerase inhibitors on the replication products 

(Lucas, Germe et al., 2001; Martin-Parras, Lucas et al., 1998).   

 In this technique, the first dimension of electrophoresis separates DNA on the 

basis of molecular weight, and the second dimension separates primarily by differences 

in DNA structure (Figure 36A).  We have utilized this technique to further characterize 

the defects that accompany viral DNA replication upon the inhibition of ATM, ATR, or 
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both kinases.  Our results reveal that compared to DNA replication in the presence of 

inhibitor solvent (DMSO), inhibition of ATM, ATR or both kinases increases the amount 

of large broken DNAs migrating greater than one linear genome length.  Several 

canonical and non-canonical DNA replication intermediates decreased in the presence 

of ATRi, Ku-55933, or both inhibitors including catenated forms (Cat I, Cat I/II, and Cat 

II/II).  Our results are consistent with ATM and ATR kinase activities having roles in 

promoting viral genome stability. 

 To further clarify the defects associated with ATM or ATR inhibition, BSC40 cells 

were infected with SV40 virus and exposed to specific small molecule inhibitors of ATM 

(Ku-55933 (Hickson et al., 2004)), ATR (ATRi (Reaper et al., 2011)), or combined 

inhibition (ATRi and Ku-55933) during the final 20 h of a 48 h SV40 infection.   

Undigested DNA from DMSO or inhibitor exposed SV40-infected cells was then 

subjected to 2d gel electrophoresis and southern blotting (Figure 36 B - E).  Viral DNA 

replicated in the presence of DMSO demonstrated the expected topological forms of 

circular DNA (Figure 36 A, B).  These forms included the prominent forms I and II 

monomer that can be easily visualized by 1d gel electrophoresis (Figure 36A, top panel)  

and several lesser forms (θ replication intermediates (bidirectional), nicked dimer (two 

unit length linear monomers fused together into a circle), and catenated forms) (Figure 

36B). Several of these minor intermediates of viral DNA replication were either 

indistinguishable from each other or migrated very closely to another by 1d 

electrophoresis (Figure 36B, top panel).  Importantly, the prominent θ replication 

intermediate arcs were both visualized (Figure 36B, bottom panel). 

 DNA extracted from ATR inhibited SV40-infected cells showed a smooth linear 

arc that extended beyond 15 kb form III (Figure 36C).  These large linear molecules 

were absent from DMSO treated SV40 infected cells and are indicative of the products 

of rolling circle replication (Figure 36A).  Additionally, southern blots from ATRi treated 
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Figure 36. 
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Figure 36.  ATM or ATR inhibition increases unidirectional replication forks and large linear viral 
replication products. 
(A) Diagram of undigested 2d gel electrophoresis of circular dsDNA (Lucas et al., 2001).  (B, C, D, E)  
Southern blots of the first dimension of a neutral 2d gel (top panel) or 2d gel (middle panel) from SV40-
infected BSC40 cells exposed to DMSO (B), ATRi (C), Ku-55933(D), or ATRi and Ku-55933 (E) during the 
last 28 h of a 48 h SV40 infection.  Bottom panel: Enlargement of the picture within the boxed area in middle 
panel.  Exposure of the bottom panel was increased to enhance visualization of θ and σ replication 
intermediates shown in (A). 
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cells demonstrated an arcs corresponding to both bidirectional (θ) and unidirectional (σ) 

replication (Figure 36C, enlarged box).  Head to tail dimers, cat I/II, and cat II/II were all 

substantially decreased when ATR was inhibited compared to DMSO (Figure 36, 

compare bottom panel in C to B).  Similarly, inhibition of ATM resulted in a strong arc of 

large linear products (> 15 kb) resulting from rolling circle DNA replication  (Figure 36D, 

middle panel).   Close examination of the replication intermediates from SV40 infected 

cells treated with Ku-55933 revealed that both a θ and σ replication intermediates were 

present in the replicating DNA consistent with ongoing bidirectional and unidirectional 

DNA replication (Figure 36D, bottom panel). Again, DNA from ATM inhibited cells had 

substantially decreased amounts of dimer and nicked catenated forms (Figure 36, 

compare D to B).   

 DNA from cells treated with both Ku-55933 and ATRi had a robust arc of linear 

intermediates greater than 5.23 kb (Figure 36E, middle panel).  Similar to DNA from 

ATM inhibited cells, this DNA had a prominent σ arc that continued to a rolling circle 

(Figure 36E, bottom panel, red box).  However, both forms II and I θ replication 

intermediate arcs were much weaker in DNA from ATR and ATM inhibited cells than 

from cells in which DNA was replicated presence of DMSO (Figure 36 bottom panel, 

compare red box in E to B).  The number of rolling circles also corresponded with a 

decrease in catenated products and dimer (Figure 36E, middle panel).  

 Consistent with previous results, comparison of the σ arcs generated from 

replication associated DSBs (Pohlhaus et al., 2006) from ATR and ATM inhibited cells 

demonstrated that the σ arc from sole ATR inhibition did not continue beyond 2n (Figure 

36C, D red box).  The absence of larger rolling circles is consistent with the tendency of 

viral DNA to stall and break upon ATR inhibition (Sowd et al., 2013).  Collectively, we 

conclude that ATM and ATR kinase function is crucial for the prevention of accumulation 

of broken linear DNA during viral DNA replication.   
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Materials and Methods 

 

 Cell culture, SV40 infection, DNA isolation, and inhibitor treatments were all as 

described in chapter VI.  2d gel electrophoresis was as described in the chapter VI with 

the following modification.  The second dimension of the 2d gel run for 7 h through a 

0.95% 1xTBE agarose gel.  
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APPENDIX B 

 

ELICITATION OF SV40 PSEUDO-S PHASE IS NOT MEDIATED BY P21  
DEGRADATION 

 

Introduction and Research Summary 

 

 To replicate the viral genome, small DNA tumor viruses, including the 

polyomaviridae and papillomaviridae families, require machinery present in cellular S 

phase.  The S phase arrest elicited by these viruses has been particularly well studied 

for members of polyomaviridae which contains human pathogens BKV, JCV, MCV, and 

the primate virus SV40.  In particular, primate polyomaviridae family members activate 

the cellular S phase arrest using DNA damage signaling through the two related DNA 

damage signaling kinases ATM and ATR (Orba et al., 2010; Okubo et al., 2003; Jiang et 

al., 2012; Sowd et al., 2013).  ATR was previously observed to play an essential role in 

the S phase arrest of SV40-infected cells through its ability to phosphorylate and 

stabilize a p53 splice variant (Rohaly et al., 2010).  This splice variant was found to 

activate transcription of the CDK inhibitor p21 thereby arresting cells in S phase (Rohaly 

et al., 2010).    

 In spite of this result, S phase arrest in response to high levels of ATR-Chk1 

kinase activities that follow DNA damage has been well established to rely upon the 

degradation or nuclear exclusion of Cdc25 family phosphatases (Boutros et al., 2007).  

In primates, Cdc25 family phosphatases contain three major members that 

dephosphorylate inhibitory phosphorylation sites on CDKs (Boutros et al., 2007).  Thus, 

these phosphatases promote cell cycle progression.  In response to DNA damage, 

Cdc25A and Cdc25B are degraded, whereas Cdc25C is excluded from the nucleus.  
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The results which follow are an initial attempt to verify the findings of Roholy et al., and 

determine the mechanism(s) which promote S phase arrest in SV40-infected cells. 

 To elucidate the effects of ATM and ATR signaling on p21 accumulation during 

SV40 infection, SV40-infected BSC40 cells were exposed to specific inhibitors of ATM 

(Ku-55933 (Hickson et al., 2004)) or ATR (VE-821 (ATRi) (Reaper et al., 2011)) during 

phases of a 48 h SV40 infection (Figure 37A).  These cellular populations were 

subjected to western blotting for proteins that fluctuate in cycling cells (Cyclin A, Cyclin 

B, Cdt1, and Geminin) or accumulate in cells arrested in S-G2 (Geminin and p21).  

Relative to mock-infected cells, SV40-infected cells in the presence of inhibitor solvent 

DMSO had high levels of Cyclin A, Cyclin B, and Geminin (Figure 37B, compare lane 1 

to lane 5).  The high cyclin A levels in SV40-infected cells compared to Mock-infected 

cells is consistent with S phase arrest, whereas the high geminin levels are indicative of 

cellular origin firing inhibition and cell cycle checkpoint (Masai et al., 2010).   The amount 

of p21 in these SV40-infected cells was substantially less than uninfected cells (Figure 

37B, compare lane 1 to lane 5).  Importantly, inhibition of ATM had no affect on p21 

levels in SV40-infected cells (Figure 37B, compare lane 1 to lanes 2-4).  Consistent with 

the failure to arrest in S phase observed Figure 28C, cyclin A levels were decreased by 

the presence of Ku-55933 during the early phase and throughout infection (Figure 37B, 

compare lane 1 to lanes 2, 4).  Notably, geminin levels were  decreased by ATM 

inhibition at any point during SV40 infection  (Figure 37B).   

 As ATR was found to have a large affect on the ability of SV40 infected cells to 

arrest (Figure 28D), p21 accumulation was examined in the populations of ATRi inhibited 

cells described in figure 37A by western blotting (Figure 37C).  Similar to ATM inhibition, 

inhibition of ATR had no effect on p21, with p21 still not accumulating during SV40 

infection (Figure 37C, compare lane 1 to lanes 2 - 4).  Again, populations of SV40-

infected cells that cycled upon ATR inhibition had lower levels of cyclin A (Figure 37C, 
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Figure 37.  p21 is not induced by SV40 infection. 
(A) Experimental scheme for exposure of cells to ATR or ATM inhibitor during phases of a 48 h SV40 
infection. Early: inhibitor present from -0.5 to 20 hpi. Late: inhibitor present from 20 to 48hpi. DMSO and Full: 
solvent or inhibitor, respectively, present from -0.5 to 48 hpi.  (B, C, D)  Western blots of cell extracts from 
SV40- or mock-infected BSC40 cells exposed to Ku-55933 (B) or ATRi (C, D) and blotted for the indicated 
proteins. 
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compare lane 1 to lanes 2 - 4).  Geminin levels in SV40-infected cells exposed to ATRi 

were greatly decreased to levels similar to  mock-infected cells implying that ATR 

depended phosphorylations might affect the accumulation of Geminin in SV40 infected 

cells (Figure 37C, compare lane 1 to lanes 2 - 4).  Examination of DMSO treated SV40-

cells for Cdc25B revealed that Cdc25B was not affected by SV40 infection (Figure 37D, 

compare lane 1 to lane 5).  Consistent with the well established abrogation of p53 

function in SV40 infected cells, our data indicates that p21 is not the mechanism that 

modulates S phase arrest in SV40-infected cells.  Additionally, my data suggests that 

Cdc25B degradation is unlikely the mechanism promoting S phase arrest in SV40 

infected cells.   

 

Materials and Methods 

 

 Cell culture, SV40 infection, western blots, and inhibitor treatments were all as 

described in chapter VI. 
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APPENDIX C 

 

SV40 LARGE T ANTIGEN IS PHOSPHORYLATED BY ATM AND ATR 

 

Introduction and Research Summary 

 

 DNA damage signaling through ATM and ATR dependent pathways has been 

demonstrated to phosphorylate numerous substrates (Matsuoka et al., 2007) collectively 

resulting in S phase arrest and facilitation of DNA repair (Ciccia et al., 2010).  The 

infection of cells with the polyomavirus SV40 was demonstrated to activate ATM and 

ATR, but not DNA-PKcs (Rohaly et al., 2010; Sowd et al., 2013; Shi et al., 2005).  

Notably, SV40 Tag was identified to be directly phosphorylated by ATM (Shi et al., 2005) 

and DNA-PKcs in vitro (Chen, Lees-Miller et al., 1991; Wang et al., 1999).  S120 of Tag is 

a consensus ATM, ATR, and DNA-PKcs known to modulate SV40 DNA replication 

(Fanning, 1994; Sowd et al., 2012).  The phosphorylation of this residue of Tag was 

previously demonstrated to fluctuate upon ATM knockdown in SV40 infected cells (Shi et 

al., 2005).  As a result of this, ATM function during SV40 infection was proposed be 

necessary to phosphorylate S120 of Tag, enhancing viral DNA replication (Shi et al., 

2005).  However, this phosphorylation event on Tag is known inhibit viral replication in 

vitro (Fanning, 1994) and several kinases are likely able to phosphorylate this site.  

 To investigate ATM and ATR phosphorylation of Tag, ATM or ATR were inhibited 

with Ku-55933 (Hickson et al., 2004) or VE-821 (ATRi) (Reaper et al., 2011) during 

phases of a 48 h SV40 infection (Figure 38A).  Infection in the presence of DMSO 

increased the level of S120 phosphorylation (Figure 38B).   Inhibition of ATM during 

early or throughout infection, decreased S120 phosphorylation greatly (Figure 38B, 

compare lane 1 to lanes 2, 4), whereas inhibition late more mildly decreased 
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Figure 38.  ATM and ATR phosphorylate residue S120 of SV40 Tag 
(A) Scheme for treatment of cells with inhibitor during phases of a 48 h SV40 infection. Early: inhibitor 
present from -0.5 to 20 hpi. Late: inhibitor present from 20 to 48hpi. DMSO and Full: solvent or inhibitor, 
respectively, present from -0.5 to 48 hpi.  (B, C) Western blots of cell extracts from SV40- or mock-infected 
BSC40 cells exposed to Ku-55933 (B) or ATRi (C) and probed for the indicated proteins.  In (B) and (C), * 
denotes nonspecific band. 
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phosphorylation S120 on Tag (Figure 38B, compare lane 1 to lane 3).  On the other 

hand, compared to SV40-infected cells exposed to DMSO throughout infection, ATR 

inhibition at any point during SV40 infection greatly decreased Tag phosphorylation on 

S120 (Figure 38C, compare lane 1 to lane).  These results imply that ATR is the main 

kinase that phosphorylates serine residue 120 of Tag.   

 However, caution should be taken when concluding this from Figure 38C.  Every 

ATRi treatment used in Figure 38C greatly decreases SV40 DNA replication (Figures 21, 

22) and decreases virally induced S phase arrest (Figure 28D) which would decrease 

ATM activation.  This decrease in ATM activation was observed upon ATRi treatment 

(Figure 20C), further substantiating this notion.  Compared to ATR inhibition, the 

presence of Ku-55933 early and throughout infection decreases SV40 DNA replication 

(Figure 14E, F) and decreases S phase arrest (Figure 28C).  Thus, these treatments 

cannot be interpreted for their effects on Tag phosphorylation as ATR signaling is 

affected by the decrease in viral DNA replication (Figure 13B).   

 However unlike other Ku-55933 treatments and all ATRi treatments, the inhibition 

of ATM late during SV40 infection does not affect viral DNA replication, S phase arrest, 

or ATR activity (Figures 13, 14).  Since inhibition of ATM during the late phase of 

infection partially decreases the phosphorylation of Tag on S120 (Figure 38B), our 

results indicate that other kinases, likely ATR or DNA-PKcs, phosphorylate Tag on S120.  

Based on this, we conclude that ATR and ATM phosphorylate Tag on S120 during 

unperturbed SV40 infection. 

 

Materials and Methods 

 

 Cell culture, SV40 infection, western blots, and inhibitor treatments were all as 

described in chapter VI.  
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