
THE PREDICTIVE UTILITY OF KINDERGARTEN SCREENING FOR MATH 

DIFFICULTY: HOW, WHEN, AND WITH RESPECT TO WHAT 

OUTCOME SHOULD IT OCCUR? 

By 

Pamela M. Seethaler 

 

Dissertation 

Submitted to the Faculty of the 

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements for 

the degree of  

DOCTOR OF PHILOSOPHY 

in 

Special Education 

December, 2008 

Nashville, Tennessee 

 

Approved: 

Professor Lynn S. Fuchs 

Professor Daniel H. Ashmead 

Professor Donald L. Compton 

Professor Douglas Fuchs 

Professor Kimberly J. Paulsen 



 

 ii

TABLE OF CONTENTS 

 

Page 

LIST OF TABLES.................................................................................................................... iii 

Chapter 

I.     INTRODUCTION ...............................................................................................................1 

II.    METHOD..........................................................................................................................14 
        Participants........................................................................................................................14 
        Kindergarten screening measures.......................................................................................15 
             Computation fluency ....................................................................................................15 
             Number sense ...............................................................................................................18 
             Quantity discrimination ................................................................................................19 
        Outcome measures and MD designation ............................................................................20 
             Early math diagnostic assessment math reasoning and numerical operations.................20 
             Keymath-revised numeration and estimation.................................................................21 
             CBM computation and concepts/applications................................................................21 
             MD designation ............................................................................................................21 
        Interscorer agreement ........................................................................................................22 
        Procedure ..........................................................................................................................22 
        Data analysis .....................................................................................................................24 
             Reliability of the screening measures............................................................................24 
             Correlations among screening and outcome measures...................................................24 
             Logistic regression to predict MD.................................................................................24 
             ROC curves to contrast various models.........................................................................25 
 
III.   RESULTS.........................................................................................................................27        
        Descriptive statistics..........................................................................................................27 
        Technical adequacy of kindergarten screening measures....................................................28 
        MD prevalence as a function of mathematics outcome.......................................................36 
        ROC curves to contrast the predictive utility of logistic regression models ........................36 
 
IV.   DISCUSSION...................................................................................................................41 
 
Appendix 
 
A.     COMPUTATION FLUENCY MEASURE.......................................................................49 
B.     NUMBER SENSE MEASURE.........................................................................................50 
C.     NUMBER SENSE MEASURE SCORE SHEET ..............................................................55 
 
REFERENCES .........................................................................................................................56 



 

 iii

 
LIST OF TABLES 

 

Table                                                                                                                                           Page 

1.     Predictive Utility of Early Mathematics Screening Studies ..................................................6 
 
2.     Demographics of Final Participant Sample (n = 196).........................................................16 
 
3.     Means and Standard Deviations for Number of Problems Correct for Pilot Data  
        Collection..........................................................................................................................27 
 
4.     Means and Standard Deviations for Kindergarten (K) and Grade 1 Measures ....................30 
 
5.     Concurrent Validity: Correlations among Fall Kindergarten Screening and Criterion 
        Measures ...........................................................................................................................31 
 
6.     Concurrent Validity: Correlations among Spring Kindergarten Screening and Criterion 
        Measures ...........................................................................................................................32 
 
7.     Predictive Validity: Correlations among Fall Kindergarten Screening and Spring 
        Kindergarten Measures......................................................................................................33 
 
8.     Predictive Validity: Correlations among Fall Kindergarten Screening and Spring 
        Grade 1 Measures..............................................................................................................34 
 
9.     Predictive Validity: Correlations among Spring Kindergarten Screening and Spring 
        Grade 1 Measures..............................................................................................................35 
 
10.   Classification Indices for Logistic Regression Models for MD-Conceptual........................37 
 
11.   Classification Indices for Logistic Regression Models for MD-Operational.......................38 
 

 

 
 
 
 
 
 
 



 

 1

CHAPTER I 

 

INTRODUCTION 

 

Although not explicit in the federal definition (Individuals with Disabilities Education 

Act Amendments, 1997), an IQ-achievement discrepancy often forms the basis for a learning 

disability label. This identification procedure is problematic for children in kindergarten or first 

grade, however, because students in the early grades have not had sufficient exposure to 

academic curricula to demonstrate such a discrepancy. Further, possible biases in intelligence 

testing (Valencia & Suzuki, 2001) and the overrepresentation of minority students identified as 

having a learning disability (Ferri & Connor, 2005) question the validity of this “wait-to-fail” 

approach (Vaughn & Fuchs, 2003), for younger students as well as older ones. A call for an 

alternative to the IQ-achievement discrepancy model for identifying learning disability has been 

issued (e.g., the President’s Commission on Excellence in Special Education, 2001), and a 

response-to-intervention (RTI) approach represents one possible alternative.  

Implementing evidence-based academic interventions and documenting response (or non-

response) to these interventions are the major features of RTI (Marston, 2005). Students progress 

through levels of a prevention system, with increasing intensity, and only those students for 

whom standard forms of instruction are deemed insufficient receive formal evaluation for 

placement into special education. Although the Individuals with Disabilities Education 

Improvement Act (2004) allowed for identification of learning disability within a RTI 

framework, many questions remain unanswered concerning the standardized, large-scale 

implementation of this approach (Marston; Mastropieri & Scruggs, 2005).  
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Regardless of the diagnostic model (i.e., IQ-achievement discrepancy or RTI), accurate 

assessment of student performance is crucial. Teachers and diagnosticians require reliable and 

valid measures that document both level of performance and growth. For example, within most 

RTI models, the main focus of screening (i.e., conducted at one point in time, early in a student’s 

schooling) is to determine which students are at possible risk for academic failure if they do not 

receive additional intervention. The classroom progress of these students is then monitored with 

some sort of classroom-based assessment. Trend lines resulting from progress monitoring serve 

to predict future performance and become the basis for confirming or disconfirming a student’s 

actual risk for academic failure.  

Particularly with respect to students in the early grades, measurement tools that screen for 

the potential risk for developing learning disability represent an important focus of assessment. 

The earlier risk for future disability is identified, the earlier efforts can begin to prevent or 

minimize the effects of that disability. In the area of reading, for example, researchers have 

documented that poor phonemic awareness for young students predicts future reading difficulty 

(e.g., Berninger, Thalberg, DeBruyn, & Smith, 1987; Kaminski & Good, 1996; National Institute 

of Child Health and Human Development, 2000; Scarborough, 1998; Torgesen, 1998). Thus, 

early screening efforts to identify students with such a deficit allow for intervention; the goal is 

to prevent future reading difficulty. Even so, screening for future reading disability at an early 

age produces a set of false positives (i.e., students who seem to be at-risk based on the screen, 

but whose forecasted deficits disappear largely without additional intervention). Nevertheless, 

the construct of phonemic awareness continues to prove a strong predictor of reading ability.  

 By contrast, identification of a construct or set of skills that represents a strong predictor 

of future mathematics difficulty (MD) has yet to be identified. A 2005 issue in the Journal of 

Learning Disabilities focused on the early identification and intervention efforts for students 
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with (or at risk for) MD. In this issue, Gersten, Jordan, and Flojo (2005) summarized research on 

early identification for MD. They concluded that a screening instrument for 5- and 6-year-olds 

based on the skills of counting/simple computation or a sense of quantity/use of mental number 

lines may offer utility. These skills are both aspects of “number sense” (e.g., Dehaene, 1997; 

Okamoto & Case, 1996), which may serve as a predictor of mathematics performance for young 

children.  

 In contrast to phonemic awareness, which is a language ability that does not involve 

actual reading, number sense represents actual math knowledge. According to Gersten and Chard 

(1999), number sense involves the flexibility and ease with which a student mentally computes 

and intuitively relates mathematical concepts. The authors argued that number sense directly 

relates to mathematical performance and that screening measures based on this construct should 

yield predictive information regarding future mathematics ability. As Berch (2005) and Dowker 

(2005) pointed out, however, number sense is not clearly defined or easily operationalized. To 

illustrate this point, Berch listed 30 alleged components of number sense proposed by various 

researchers, ranging from “faculty permitting the recognition that something has changed in a 

small collection when, without direct knowledge, an object has been removed or added to the 

collection” (No. 1) to “can recognize gross numerical errors” (No. 16) to “process that develops 

and matures with experience and knowledge” (No. 30). Clearly, number sense means different 

things to different people. Even so, whether number sense drives arithmetic performance or 

whether increased arithmetic skill leads to deeper conceptual understanding and stronger number 

sense remains unknown. In spite of the ambiguous nature of number sense, screening measures 

that incorporate aspects of number sense such as counting skill or quantity discrimination may 

prove an effective means of forecasting which young students are at risk for MD (Gersten et al., 

2005). In the meantime, future research should continue to investigate and operationalize the 
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construct of number sense. Perhaps deficient number sense links directly to MD, with 

intervention leading to decreased probability of occurrence. Until research more clearly 

demonstrates the link between specific behaviors indicative of number sense and mathematics 

outcomes, however, this remains conjecture. 

When identifying the type of skills predictive of future mathematics performance, 

researchers must demonstrate aspects of technical adequacy and predictive utility. With respect 

to screening measures, adequate reliability of test scores indicates that scores are consistent and 

reasonably free from measurement error to serve as useful indicators of present level of 

functioning. Statistics for these indices include a method of rational equivalence such as the 

Kuder-Richardson formulas or coefficient alpha, the coefficient of stability, and the coefficient 

of equivalence (Gall, Gall, & Borg, 2003). Additionally, a test’s validity is based on the 

appropriateness of inferences made from the test scores (Salvia & Ysseldyke, 1991). As 

Cronbach and Meehl (1955) described, test validity can be examined in terms of criterion-

related, content, or construct validity. Criterion-related validation can be examined relative to 

both concurrent and predictive validity (Urbina, 2004) by examining the relationship between the 

screening measure and valid outcome measures administered at the same time as or a later time 

frame. A strong correlation suggests the screening measure has tapped the same underlying 

construct as the criterion measure. With respect to kindergarten mathematics screening 

instruments, the criterion is future mathematics difficulties. Finally, applying specific criteria to 

designate risk on the outcome and then comparing the predictions made with actual outcome 

yields information about the sensitivity and overall accuracy of the screening measure. The 

predictive utility of a screener represents perhaps the most compelling evidence for the 

usefulness of a measure in establishing risk status for eventual MD. 
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 Toward that end, researchers investigate the utility of screening young learners for 

potential MD. In the next section, we summarize prior work assessing MD risk for kindergarten 

students. We then describe how the present study extends the literature with respect to screening 

kindergarten students for MD risk and clarify the purposes of this study. 

Prior Work Determining MD Risk of Kindergarten Students 

 We identified 12 studies that targeted kindergarten students, included screening measures 

or outcome variables specific to mathematics performance and documented the predictive 

validity or predictive utility of the screening measures (Baker et al., 2002; Bramlett, Rowell, & 

Mandenberg, 2000; Chard et al., 2005; Clarke, Baker, Smolkowski, & Chard, 2008; Jordan, 

Kaplan, Locuniak, & Ramineni, 2007; Kurdek & Sinclair, 2001; Lembke & Foegen, 2005; 

Mazzocco & Thompson, 2005; Pedrotty Bryant, Bryant, Kim, & Gersten, 2006; Simner, 1982; 

Tiesl, Mazzocco, & Myers, 2001; VanDerHeyden, Witt, Naquin, & Noell, 2001). For each study, 

Table 1 documents the number of participants, grades at which screening and outcome 

assessment took place, screening and outcome measures, correlations between screeners and 

outcomes, and the predictive utility of measures, if so provided by the authors (i.e., sensitivity, 

specificity, and overall accuracy). 

Studies that screened children prior to entering kindergarten but did not include evidence 

of predictive validity or utility or did not include screening measures or outcome variables 

specific to mathematics performance were excluded. Screening measures for use with children 

prior to entering kindergarten tend to include more global measures of school “readiness” rather 

than specific measures of math-related skill (Costenbader, Rohrer, & Difonzo, 2000). Although 
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these measures may answer interesting questions concerning future overall academic 

performance, they may not specifically predict math performance. Thus, studies that screened 

pre-kindergarten children with readiness scales (e.g., Augustyniak, Cook-Cottone, & Calabrese, 

2004; Kelly & Peverly, 1992) did not meet selection criteria for the purpose of this paper and 

were read solely for background information. Additionally, although VanDerHeyden et al. 

(2004) included math-related screening measures with preschool participants, the authors did not 

examine the predictive utility of the measures. Finally, Magliocca, Rinaldi, and Stephens (1979), 

for example, studied the efficacy of a screening instrument for identifying at-risk kindergarten 

and first-grade participants, but did not include predictors or outcome variables specific to math 

performance. Studies such as these were excluded. 

As Table 1 shows, the majority of studies screened students in kindergarten and assessed 

mathematics outcome later that same year (Chard et al., 2005; Clarke et al., 2008; Lembke & 

Foegen, 2005; Pedrotty Bryant et al., 2006; Simner, 1982; VanDerHeyden et al., 2001) or the 

following year (Baker et al., 2002; Bramlett et al., 2000; Jordan et al., 2007; Simner; Tiesl et al., 

2001). Only three studies (Jordan et al., 2007; Kurdek & Sinclair, 2001; Mazzocco & Thompson, 

2005) allowed for greater than a year to elapse before assessing outcome. (Note: Three studies 

[Chard et al., 2005; Lembke & Foegen, 2005; Pedrotty Byrant et al., 2006] included samples of 

both kindergarten and first-grade students; we report results for the kindergarten samples only.) 

With the exception of Mazzocco and Thompson (2005) and VanDerHeyden et al. (2001), 

all studies provided data attesting the predictive validity of their respective screening measures. 

Correlations ranged from .27 to .72, with an average of .51. Five studies provided information 

regarding the overall accuracy, sensitivity, and specificity of math screeners, either with 

predictive validity correlations (Bramlett et al., 2000; Simner, 1982; Tiesl et al., 2001) or without 

(Mazzocco & Thompson; VanDerHeyden et al.). For these studies, the overall accuracy of the 
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screeners ranged from 59.8% to 89.4%. Sensitivity ranged widely, from 00.0% to 91.7%; 

specificity did not range as such (57.5% to 94.4%). Based on these data, screeners were more 

accurate in predicting students who would not develop MD than for specifying which students 

would develop MD.  

The majority of studies used single-skill rather than multiple-skill screeners. Two studies 

(Bramlett et al., 2000; Simner, 1982) used only one single-skill measure to predict mathematics 

outcome. Bramlett et al. presented students with randomly ordered numbers (i.e., from 1-20) on a 

sheet of paper, and students named as many numbers as possible in one minute; Simner had 

students write the 41 reversible numbers and letters from memory, exposing students to one item 

at a time for a period of 2.5 seconds. The remainder of the studies with single-skill screening 

measures used two or more measures to predict math outcome (Baker et al., 2002; Chard et al., 

2005; Clarke et al., 2008; Jordan et al., 2007; Kurdek & Sinclair, 2001; Lembke & Foegen, 2005; 

Pedrotty Bryant et al., 2006; VanDerHeyden et al., 2001); many of the measures used across 

studies assessed the same skill. For example, the ability to write numbers from dictation was 

assessed by Baker et al., Chard et al., and VanDerHeyden et al., in addition to Simner. Further, 

several studies measured students’ ability to judge the magnitude of a pair of numbers, i.e., to 

choose the bigger of two numbers (Baker et al.; Chard et al.; Clarke et al.; Lembke & Foegen; 

Pedrotty Byrant et al.). Requiring students to state numbers as they were presented visually, 

identifying the missing number in a sequence of numbers, and counting ability were key skills 

addressed across several studies, as well.  

In contrast to the single-skill screening measures, four studies incorporated multiple-skill 

screeners to their predictive models. Baker et al. (2002) used the Number Knowledge Test 

(Okamato & Case, 1996), an individually administered test of basic arithmetic concepts and 

applications. Mazzocco and Thompson (2005) used composite scores from a variety of 
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commercially published tests and subtests of math, reading, and visual-spatial ability to predict 

future mathematics performance. The authors selected items from the KeyMath-Revised (KM-R; 

Connolly, 1998), the Test of Early Mathematics Ability, 2nd Edition (TEMA-2; Ginsburg & 

Baroody, 1990) the Woodcock-Johnson Psycho-Educational Battery-Revised (WJ-R; Woodcock 

& Johnson, 1989) Math Calculations subtest, and the Stanford Binet (4th ed.) (Thorndike, Hagen, 

& Sattler, 1986) Quantitative Reasoning subtest to assess math abilities. Tiesl et al. (2001) 

required teachers to rate students’ mathematics performance levels with selected items from the 

Teacher’s Report Form (Achenbach, 1991) and the Conners’ Teacher Rating Scale (Conners, 

1997) short form. Finally, Jordan et al. (2007) combined results from five tasks (i.e., comprising 

counting skills, number knowledge, nonverbal calculation, story problems and number 

combinations) to yield a score for “Number Sense Core.” Students were assessed across six time 

points from fall of kindergarten to spring of first grade. Across studies, predictive validity was 

similar for the single- versus multi-skill screeners. Coefficients for the single-skill screeners 

ranged from .27 to .67, averaging .54; coefficients for the multi-skill screeners ranged from .36 

to .73, with an average of .55. Although some studies used both types of screeners, none 

specifically tested which type predicted various math outcomes with greater precision, in terms 

of decision utility.  

 The majority of studies used outcome variables reflecting mathematics performance on 

published tests (e.g., the Stanford Achievement Test, 9th ed. [SAT-9; The Psychological 

Corporation, 1995]; the WJ-R [Woodcock & Johnson, 1989] Calculations and Applied Problems 

subtests). Yet, authors also reported outcomes such as teacher rankings of kindergarteners’ 

readiness for first grade and June (of first-grade) report card grades in mathematics (Simner, 

1982); a teacher rating scale of general math proficiency (Lembke & Foegen, 2005); and 

professional judgments of academic difficulties (VanDerHeyden et al., 2001). Although some of 
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these outcomes related to conceptual understanding of mathematics concepts, such as the 

Number Knowledge Test, or to operational outcomes such as the Calculations subtest of the WJ-

R (Woodcock & Johnson), none of the studies specifically addressed whether development could 

be forecast more precisely for either type of outcome. This seems an important question to 

address, given the variability in kindergarten classrooms with respect to calculation skill. For 

example, if kindergarten students are not similarly exposed to curricula that emphasize written 

computation skills, a screening measure that comprises this skill seems unlikely to generalize 

across settings. Across studies, predictive validity seemed similar when outcomes such as 

published tests were used (average of .51) and when outcomes reflected teacher judgment 

(average of .54). In terms of decision utility data, the sensitivity of screening variables ranged 

widely, from 0.00% (i.e., VanDerHeyden et al.’s prediction of “Validation Problem”) to 91.7% 

(i.e., Mazzocco & Thompson’s 2005 prediction of composite scores on published tests). Authors 

did not directly address the issue of timed versus untimed mathematics screeners or outcomes in 

any of the previous studies.  

 Across these studies, we offer two observations. First, the majority of kindergarten 

screening studies conducted thus far assessed mathematical outcomes one year or less from the 

time screening occurred. Because kindergarten students vary in their experience with number 

concepts prior to commencing formal schooling, assessing math outcome before a substantial 

amount of mathematics instruction takes place potentially yields an inflated number of false 

positives. This is problematic in that too many false positives stress the resources available in 

school settings to provide remediation for students who truly need intervention. Waiting longer 

than one year before assessing math outcome allows students who have had less preschool 

exposure to number concepts to “catch up” to their peers via strong classroom instruction, and 

thus lowers the risk of mistakenly identifying those students as potentially MD. 
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 Our second observation concerns the predictive utility of kindergarten math screening 

tests. The majority of studies we reviewed relied on predictive validity correlational data as an 

indication of a measure’s ability to predict students’ risk for developing MD. Few studies, 

however, looked beyond predictive correlations to evaluate the sensitivity or specificity of math 

screeners. Although predictive correlations do provide a certain amount of support for the value 

of a kindergarten screening event, the decision utility data that could further attest a screener’s 

value are missing from the majority of previous work.  

How the Present Study Extends Previous Work 

In the present study, we sought to extend previous work on early math screening in 

several ways. First, by piloting the screening tests, we allowed for item response theory analyses 

to order the items by difficulty, eliminate items with poor discrimination, and establish an 

administration ceiling for the untimed portion of the assessment. This increased efficiency of 

administration. Second, we adopted a longer perspective than in most prior studies, screening the 

students in the fall and spring of kindergarten and subsequently retesting during the spring of 

first grade to investigate the accuracy of the screening measures in identifying students who 

develop math difficulties in first grade. By contrast, the majority of studies we reviewed allowed 

for one year or less of elapsed time before assessing student outcome. Third, in addition to 

providing evidence of the technical adequacy (i.e., reliability; concurrent and predictive validity) 

of the screeners, we also examined the math screeners’ predictive utility with respect to 

sensitivity and specificity. Few of the studies we reviewed provided this information. Finally, 

and in a related way, we extended previous research on the predictive utility of kindergarten 

math screeners by evaluating (a) the predictive accuracy of single- versus multi-skill screeners, 

(b) fall versus spring administration of kindergarten testing, and (c) conceptual versus 

operational outcomes. To our knowledge, no previous studies have addressed these specific 
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questions that shed light on the benefit of single- versus multiple-skill screening measures, the 

most opportune time in the kindergarten year to screen for MD (i.e., fall vs. spring), and whether 

conceptual or operational mathematics skill should be the focus of outcome.  

Our research questions included the following: What is the reliability of mathematics 

screening measures for kindergarten students? What are the concurrent and predictive validities 

of these measures, with respect to kindergarten and grade one performance on the EMDA (The 

Psychological Corporation, 2002a), the Estimation and Numerations subtests of the KM-R 

(Connolly, 1998), and First-Grade Math CBM Computation and Concepts/Applications (Fuchs, 

Hamlett, & Fuchs, 1989; 1990)? How do single-skill versus multiple-skill math screeners 

compare in terms of predictive efficiency? How accurate is fall versus spring kindergarten 

screening? And finally, Can first-grade mathematics development be forecast more precisely in 

terms of conceptual or operational outcomes? 

 

 

 

 

 

 

CHAPTER II 

 

METHOD 

 

Participants 
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 Twenty kindergarten teachers from five schools in a southeastern metropolitan school 

district were randomly selected from a pool of interested teachers to participate in the study. Two 

schools each had three participating teachers, two additional schools each had four participating 

teachers, and the remaining six kindergarten teachers were from one school. Ten of the 20 

kindergarten classrooms received Title-1 funding due to low socio-economic status of the 

enrolled student population in the school. From the 20 classrooms, 252 students returned signed 

parental consent and participated in the initial testing wave in the fall of kindergarten. Of the 

original 252 kindergarten students, 196 completed testing through the end of first grade (or the 

second year of kindergarten, if retained), an attrition rate of approximately 22% over the two 

years of the study (i.e., 20 students moved out of the school district before the end of the first 

year of the study, and 36 additional students moved during the second year). We used inferential 

statistics to compare the students who exited versus those who remained on demographic 

variables and screening scores. There were no significant differences except on the Number 

Sense multi-skill screener. The mean score of students who exited the study on this measure was 

12.91 (SD = 6.04); for those who remained, 15.65 (SD = 6.80). In this study, we report results for 

the sample of 196 students with complete data.  

Participating teachers provided demographic information on consented students’ date of 

birth, gender, subsidized lunch status, race, special education status, English language learner 

status, previous preschool experience, math ranking, and minutes of daily math instruction (i.e., 

by classroom). The average age of students at the onset of the study was 5 years 8 months 

(however, two students did not provide this data). Students received, on average, 49.08 minutes 

of daily math instruction (SD = 20.83). See Table 2 for the remaining demographic information 

for the sample. 

Kindergarten Screening Measures 
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 Two of the kindergarten math tests were multiple-skill screeners: Computation Fluency, 

which is group administered, and Number Sense, which is individually administered. Items for 

inclusion were determined from three sources: (a) from interviews with experienced kindergarten 

and first-grade teachers; (b) from examination of the existing literature base and the published set 

of kindergarten academic standards of the school district in which the study took place; and (c) 

from discussions with university professors familiar with elementary school kindergarten skills. 

Further, after piloting the measures with 90 kindergarten students to identify items with poor 

discrimination, we used WINSTEPS Rasch measurement software (Version 3.58.1) to eliminate 

or revise items that were inappropriate or ambiguous. We also used the results from the 

WINSTEPS Rasch software to order the items by difficulty and devise a ceiling rule for the 

administration of the individually administered screening measure. The ceiling rule allowed 

examiners to discontinue testing after five consecutive incorrect answers, shortening the 

assessment time for some students. 

Computation fluency. The first multi-skill measure, Computation Fluency, is a 5-min 

timed assessment of counting, addition, and subtraction fluency. It is administered in a  
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Table 2

Demographics of Final Participant Sample (n = 196)

Variable n %

Males 103 52.55

Subsidized Lunch 101 51.53

Race: African American 71 36.22

          Caucasian 86 43.88

          Hispanic 21 10.71

          Asian 11 5.61

          Kurdish 4 2.04

          Othera 3 1.53

Special Ed Diagnosis: None 170 86.73

          Learning Disability 1 0.51

          Speech/Language 12 6.12

          Gifted 11 5.61

          Otherb 2 1.02

English Language Learner 9 4.59

Known to Attend Preschool 99 50.50

Teacher Math Rating: Above Grade Level 49 25.00

          Grade Level 116 59.20

          Below Grade Level 31 15.80

Note: aOne student each was Indian, Samolian, or Iraqi. bOne student each 
was diagnosed as having a Visual Impairment or Developmental Delay.
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whole-class setting and includes 25 items (five items each of five problem types) presented 

randomly on one side of an 8 1/2- x 11-inch piece of paper. The five types of items are counting 

stars in a set; counting two sets of stars; subtracting crossed-out stars from a set; adding 

arithmetic combinations (presented without star icons); and subtracting arithmetic combinations 

(without star icons). This measure contains five rows of five problems each; the items are 

bordered in black to help delineate each problem. The examiner conducts a scripted 10-min 

whole-class lesson explaining how students respond to the five types of items and that they need 

to stop working (i.e., pencil held in the air) when the timer goes off. After this brief 

administration lesson, the examiner instructs students to answer as many problems as they can, to 

look for the easiest problems first, and then to go back to try the harder ones. The student is not 

penalized for number reversals or poorly formed written responses. Scores of correct responses 

(across the five types of items) in 5 min are recorded. We created two forms, identical in format 

but comprising different items.  

Computation Fluency is conceptually based on the Computation CBM probes for grades 

one through six as developed by Fuchs and colleagues (e.g., Fuchs, Fuchs, Hamlett, Phillips, et 

al., 1994; Fuchs & Fuchs, 2004). It resembles the Computation CBM probes in appearance; both 

Fuchs’s CBM probes and the Computation Fluency subtest include five rows of five items in a 

bordered grid design. Further, it samples computation items across the kindergarten curriculum, 

as do the CBM probes for grades one through six sample computation items for the 

corresponding grade level curriculum. Because it can be group administered, is brief in duration 

(i.e., 5 min), and easily scored, this measure has potential for use as screening and progress 

monitoring, as are the CBM probes at the higher grade levels. See Appendix A for an example of 

the Computation Fluency measure. 
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Number sense. The second multi-skill measure, Number Sense, is individually 

administered. It samples a greater number of mathematics skills at the kindergarten level, with 30 

items (3 items each of 10 types), ordered in difficulty from easiest to hardest, based on item 

response analyses of the pilot data. The 10 types of items are quantity discrimination, mental 

number lines, ordering numbers, estimation, patterns, counting backward, shape discrimination, 

number sentences, writing numbers, and one-to-one correspondence. The tester reads the 

directions from a script for each item to the student, and then allows up to 1 min for the student 

to respond or moves on as soon as the child responds. The student is provided a pencil and writes 

answers to items; as with Computation Fluency, the student is not penalized for misspelled or 

poorly formed written responses. The five pages of this measure each contain six items; the 

examiner holds a piece of cardstock over the items and slides the cardstock down to expose one 

new item at a time. The examiner scores each item immediately following the student’s response. 

Correct responses receive a score of 1; incorrect responses receive a score of 0. The examiner 

stops administering items after five consecutive scores of 0. The score is the number of correctly 

answered items.  

Number Sense, similar to the Concepts/Applications CBM probes developed by Fuchs 

and colleagues (Fuchs & Fuchs, 2004; Fuchs, Hamlett, & Fuchs, 1989), is a multiple-skill 

screener that samples grade-level skills. However, it differs from the Concepts/Applications 

CBM probes in that it is not designed for group administration, items are scored immediately 

subsequent to each response, and a ceiling rule limits the length of the test for some students. See 

Appendix B for a copy of the Number Sense measure and Appendix C for the scoring sheet. 

In the spring of 2005, Computation Fluency and Number Sense were piloted with 90 

kindergarten students in three public elementary schools. All three schools received Title-1 

funding; 46 (i.e., 51.1%) of the students in the pilot sample were female; 53 (i.e., 58.9%) of the 
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students were six years old at the time of testing (all others were five years old). Interscorer 

agreement was computed with 18 (i.e., 20%) of both the Computation Fluency and Number 

Sense protocols. A second scorer independently scored the 36 total tests; interscorer agreement 

for each subtest was calculated as the number of tests for which both scorers agreed on the score 

divided by 18. Interscorer reliability was .94 for Computation Fluency and 1.00 for Number 

Sense. 

Students’ average score on the Computation Fluency subtest was 13.77 (SD = 5.78) of a 

possible score of 25. Further, the data from the pilot group showed a normal distribution of 

scores that corresponded with ability level, indicating that individual differences in computation 

skill could be indexed with this measure. The average score for the pilot group on the Number 

Sense subtest was 18.98 (SD = 5.96) of a possible score of 30. These data similarly demonstrated 

a normal distribution of scores and slight negative skewness. See Table 3 for means and standard 

deviations for all classrooms in the pilot study. All teachers provided their students’ scores on a 

district-mandated kindergarten test (administered by the teacher during the same time frame) to 

allow comparison with the screening measures. The district test correlated .64 with Computation 

Fluency and .75 with Number Sense; the Computation Fluency measure correlated .69 with 

Number Sense. Coefficient alpha for this pilot study sample was .88 for Computation Fluency 

and .87 for Number Sense.  

Quantity discrimination. The third and single-skill kindergarten screening measure, 

Quantity Discrimination (QD; Chard et al., 2005), is a 1-min timed probe measuring students’ 

ability to name the larger of two numbers (ranging from 0 to 10), presented in 28 individual 

boxes across two pages. Clarke et al. reported test-retest reliability as .85-.99 and concurrent and 

predictive validity coefficients that ranged from .70 to .80. The QD measure was chosen because 
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it has demonstrated strong predictive capability for early mathematics skill (Clarke & Shinn, 

2004) for first graders and strong predictive capabilities for kindergartners (Chard et al).  

Outcome Measures and MD Designation  

Early math diagnostic assessment math reasoning and numerical operations. The EMDA 

(The Psychological Corporation, 2002a) is an individually-administered norm-referenced test for 

use with preschool to third-grade students. The test, which takes approximately 20 min to 

administer, comprises two sections. Math Reasoning measures skills such as counting, ordering 

numbers, identifying/comparing shapes, problem solving with whole numbers, patterns, time, 

money, graphs, and measurement. Students are shown a stimulus page corresponding to each 

item and orally respond to the examiner’s prompts. Numerical Operations measures one-to-one 

correspondence, number identification, number writing, calculation, and rational numbers. 

Students identify and circle numbers within a mixed set of numbers and letters; write numbers as 

prompted by the examiner; count a set of eight pennies and write the amount; and write answers 

to arithmetic computation problems. The items are ordered by difficulty, and basal and ceiling 

rules are provided. The test yields raw scores, percentile ranges, and standard scores. The EMDA 

examiner’s manual provides reliability coefficients ranging from .71 to .93. Correlations with the 

Wechsler-Individual Achievement Test (The Psychological Corporation, 1992b) are listed in the 

manual as .82 and .78, correlations with the Wide Range Achievement Test-Revised (Wilkinson, 

1993) as .67 and .77. The EMDA was selected for its appropriateness with young children, its 

ease of administration (i.e., advance degree not required), and its inclusion of skills similar to 

those of the screening measure.  

Keymath-revised numeration and estimation. The KM-R (Connolly, 1998) is an 

individually administered norm-referenced test for use with students from kindergarten through 

grade 12. Two subtests were used in this study: Numeration (i.e., concepts such as counting, 
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correspondence, sequencing numbers, and ordinal positions) and Estimation (i.e., estimation of 

rational numbers, measurement, and computation). As with the EMDA, test items are ordered by 

difficulty, basal and ceiling rules are provided, and raw scores, standard scores, and percentile 

ranks are available. The examiner’s manual reports alternate form reliability coefficients as .50 

to .70 for the subtests and .90 for the entire test. Correlations with the Total Mathematics Score 

of the Iowa Test of Basic Skills (Hoover, Hieronymous, Dunbar, & Frisbie, 1993) and the KM-R 

Numeration and Estimation subtests are reported as .67 and .43, respectively. The KM-R was 

selected for similar reasons as the EMDA; in addition, it was selected because it provides a 

measure of estimation.  

 CBM computation and concepts/applications. At the end of first grade (i.e., the second 

year of the study), we assessed participating students with First-Grade Computation and 

Concepts/Applications CBM probes (Fuchs & Fuchs, 2004; Fuchs, Hamlett, & Fuchs, 1989), 

which sample items from the first-grade curriculum. These items are presented to students in a 

25 item 3-min timed test for Computation and in a 22 item (approximately) 10-min test for 

Concepts and Applications. Each CBM test is scored as number of problems and number of 

digits correct. Each alternate form of each test contains a comparable number of items 

representing the same group of problem types, and data from these probes provide the basis of 

progress monitoring over time.  

 MD designation. Students received a designation of MD in one of two ways: scoring 

below the 16th percentile on either the EMDA Math Reasoning subtest or the EMDA Numerical 

Operations subtest at the end of first grade (or the end of the second year of kindergarten, if a 

student repeated kindergarten). We used the normative tables provided by the examiner’s manual 

for designating MD. 

Interscorer Agreement 
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Data were examined for interscorer agreement at each of three testing waves. After the 

first wave of testing (i.e., fall of kindergarten), a second scorer independently scored 

approximately 20% of all protocols. Interscorer agreement (computed by dividing the number of 

agreed points by the total number of points, across tests) ranged from 99.29 – 100.0%. This 

procedure was repeated after the second testing wave (i.e., spring of kindergarten). Interscorer 

agreement at this wave ranged from 98.96 – 100.0%. Following the third testing wave (i.e., 

spring of first grade), 100% of the testing protocols were rescored by a second scorer for 

accuracy, and all discrepancies were resolved by examining the original products. 

Procedure 

 Participating students were tested by the first author and by trained examiners. All 

examiners were graduate students with varying degrees of classroom experience; trained to 

acceptable levels of accuracy during practice sessions; and monitored by the first author 

throughout all testing waves. 

 We administered tests to students in three waves. During the first wave (i.e., fall of 

kindergarten), students were tested on three separate days. On the first day, students received one 

form of Computation Fluency in a whole-class setting as well as the individually administered 

Number Sense subtest. One-half of the students were randomly chosen to receive Form A of 

Computation Fluency; the other half, Form B. One week later, students were tested with both 

subtests of the EMDA and both subtests of the KM-R. The following week (i.e., two weeks had 

elapsed from the first day of testing), students received the alternate form of Computation 

Fluency; however, this time, it was administered on an individual basis. Students also received 

QD following the administration of Computation Fluency. 

 During the second testing wave (i.e., the final weeks of kindergarten), students were 

again tested across three weeks and on three separate days. The testing schedule was identical to 
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that of the first wave, with one exception: Both administrations of Computation Fluency were 

group-administered. 

The third testing wave occurred during the final weeks of the subsequent school year. For 

most students, this was the end of first grade. However, three students repeated kindergarten, so 

this wave occurred at the end of their second full year of kindergarten. At this point, students had 

dispersed from 20 classrooms in five public schools to 45 classrooms in 22 public schools and 

two local-area private schools. In the fall of this school year, parents received a letter reminding 

them of their consent and apprising them that their child(ren) would be tested again in the spring, 

for follow-up purposes. Teachers of these students were also contacted to schedule convenient 

testing times.  

As with the previous two testing waves, assessment occurred over three weeks and on 

three separate days. On the first day, students received one form of CBM Computation and CBM 

Concepts/Applications tests. One week later, testers administered the EMDA subtests and the 

KM-R Numeration subtest. (Because of a floor effect for the KM-R Estimation subtest when 

administered the previous times, and because one of the examiners administered this subtest 

incorrectly to a large group of students in the previous testing wave, we elected to omit this test 

from the final testing wave.) Finally, testers returned the following week to administer alternate 

forms of the first-grade CBM tests. All testing was conducted individually at this wave. 

Data entry was conducted by two graduate students independently into two separate, but 

identical, Excel spreadsheets. The databases were compared for discrepancies, which were 

resolved by examining the original protocols. In this way, a final spreadsheet was created and 

imported into SPSS 16 for analyses. 

Data Analysis 
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Reliability of the screening measures. To examine the reliability of the kindergarten 

screening, we evaluated the internal consistency reliability (i.e., coefficient alpha) of both multi-

skill screeners and alternate form reliability (i.e., Pearson product moment correlation 

coefficients for Forms A and B) of Computation Fluency. 

Correlations among screening and outcome measures. We examined the concurrent 

validity of the three kindergarten screening measures (i.e., Quantity Discrimination, Computation 

Fluency, and Number Sense) by correlating the results from the fall and spring administrations 

with each mathematics outcome measure administered at the same time. Further, we computed 

Pearson product moment correlation coefficients for the fall administration of the screening 

measures and the spring administration of the outcome measures to examine the predictive 

validity from the beginning to the end of kindergarten. To assess predictive validity from the 

beginning of kindergarten to the end of first grade and from the spring of kindergarten to the end 

of first grade, we correlated the kindergarten fall and spring screening scores with the first-grade 

EMDA subtests, KM-R subtest, and CBM mathematics tests. 

Logistic regression to predict MD. We used logistic regression to evaluate the utility of 

the kindergarten screening measures for predicting MD status, separately for math reasoning 

(i.e., conceptual) and numerical operations (i.e., operational) outcomes. Binary logistic 

regression is used when the outcome variable is dichotomous (e.g., MD vs. not-MD); predictor 

variables (e.g., scores on the screeners) can be of any type. Logistic regression provides the 

percentage of variance in the outcome variable that is explained by the predictor variable(s), as 

well as a ranking of the independent variables’ relative importance. The output of a logistic 

regression analysis is a set of equation coefficients that allows for the calculation of the 

probability that a case is of certain class. Logistic regression is used rather than linear regression 

when the outcome is binary because logistic regression does not assume a linear relationship 
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between the predictor and outcome variables; normal distribution of the outcome variables or 

error terms; homogeneity of variance; or interval-level or unbounded predictor variables. 

Within the context of RTI, we were most interested in maximizing the number of 

students who truly required additional and intensive mathematics instruction (i.e., “true 

positives”) while limiting the number of those who did not (i.e., “false positives”). The set of true 

and false positives would comprise the set of students identified for secondary intervention. For 

this reason, we set the classification cutoff for the logistic regression models to be equal to the 

proportion of first-grade MD children in the sample. We used SPSS 16.0 statistical software to 

generate the logistic regression models, and entered the screeners independently to contrast their 

predictive capabilities.  

 ROC curves to contrast various models. We used measures of sensitivity, specificity, 

overall hit rate, and area under the ROC curve (AUC) to contrast the utility of various logistic 

regression models. First, sensitivity refers to the true positives, that is, the proportion of children 

correctly predicted by the model to be MD (in this study). Sensitivity is computed by dividing 

the number of true positives by the sum of true positives and false negatives. Second, specificity, 

or true negatives, by contrast, represents the proportion of children correctly predicted to be not 

MD. Specificity is computed by dividing the number of true negatives by the sum of true 

negatives and false positives. Third, the overall hit rate refers to the proportion of children 

correctly classified as either MD or not-MD, and represents the overall accuracy of a prediction 

model. Finally, the AUC is a plot of the true positive rate against the false positive rate for the 

different possible cutpoints of a test.  

 To contrast the predictive accuracy of logistic regression models, we used the AUC as a 

measure of discrimination (Swets, 1992). To illustrate this procedure, imagine that we had 

already placed children into their correct MD or not-MD group. If we then selected one child at 
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random from each group, we would assume that the child scoring higher on the kindergarten 

screeners would be the child from the not-MD group. The AUC represents the proportion of 

randomly chosen pairs of students for which the screeners correctly classified as MD versus not-

MD. It ranges from .50 to 1.00. The greater the AUC, the less likely that classification was due 

to chance. An AUC below .70 indicates a poor predictive model; .70 to .80, fair; .80 to .90, good; 

and greater than .90, excellent (e.g., Fuchs, Fuchs, Compton, Bryant, Hamlett, & Seethaler, 

2007). The output from ROC analyses includes confidence intervals for the AUC and a lack of 

overlap for the confidence intervals across models indicates significant difference in predictive 

accuracy for the models.  
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CHAPTER III 

 

RESULTS 

 

Descriptive Statistics 

 See Table 3 for the means and standard deviations of each test for each of the three 

testing waves. 

 

 

Technical Adequacy of Kindergarten Screening Measures 

Table 3

Means and Standard Deviations for Number of Problems Correct for Pilot Data Collection

n M (SD) M (SD)

Class #1 18 11.83 (5.02) 18.00 (5.35)

Class #2 11 10.45 (4.41) 15.36 (6.48)

Class #3 13 14.23 (6.62) 20.23 (5.60)

Class #4 15 16.60 (6.01) 19.53 (6.36)

Class #5 16 15.63 (5.32) 22.25 (4.97)

Class #6 17 13.64 (5.23) 18.36 (5.80)

Overall 90 13.77 (5.78) 18.98 (5.96)

Note: a number correct out of 25 items;  bnumber correct out of 30 items.

Computation Fluencya Number Senseb

K-Math Test
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 One purpose of this study was to evaluate the technical adequacy of the kindergarten 

screening measures. With respect to reliability of the scores, we evaluated inter-item consistency 

of both Computation Fluency and Number Sense with coefficient alpha, and content sampling 

consistency of the alternate forms of Computation Fluency. Because previous work had 

evaluated the reliability of the single-skill, Quantity Discrimination measure (e.g., Chard et al., 

2005; Clarke & Shinn, 2004; Lembke & Foegen, 2006; Pedrotty Bryant et al., 2006), we were 

interested in the reliability of only the two multi-skill screeners.  

We evaluated inter-item consistency for the fall administration of Computation Fluency 

as follows. Students received two forms of the measure (i.e., Forms A and B). Half of the 

students were randomly selected to receive Form A during the first (group) administration and 

Form B during the second (individual) administration; the remaining students received first Form 

B and then Form A. We then computed coefficient alpha for the four sets of data and averaged 

the results. We repeated this procedure in the spring of kindergarten, although at this wave, 

Computation Fluency was administered in a group format at both occasions. In this way, alpha 

for the fall administration of Computation Fluency averaged .88 and for the spring administration 

averaged .92. For the same set of students, coefficient alpha for Number Sense was .91 for the 

fall administration and .88 for the spring. 

 Alternate form reliability for Computation Fluency was determined by correlating each 

student’s score on Form A with his or her score on Form B. In the fall and spring testing 

occasions of kindergarten, correlations were significant and .54 and .77, respectively. Note that 

tests were administered both within a group and individually in the fall; by contrast, in the 

spring, all tests were group administered. To evaluate the degree to which the fall group and fall 

individual testing administration formats were related, we also examined the correlation between 
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students’ scores as a function of testing format; the scores correlated at a statistically significant 

.72. 

 To further examine the technical adequacy of the kindergarten math screeners, we 

examined the concurrent and predictive validity of the scores with various mathematics outcome 

measures. With respect to concurrent validity, Table 4 provides the zero-order correlations for 

the fall kindergarten screening and criterion measures; Table 5 provides the same information for 

the second wave of testing (i.e., spring of kindergarten). All correlations at both testing occasions 

were significant at the 0.01 (2-tailed) level. With the exception of correlations with the KM-R 

Estimation subtest, which ranged from .26 to .32 in the fall and from .35 to .41 in the spring, 

correlations for the kindergarten screeners with outcome measures ranged from .60 to .79 in the 

fall and from .55 to .74 in the spring.  

Similar to the concurrent validity correlations, all predictive validity correlations were 

significant at the 0.01 (2-tailed) level. See Tables 6, 7, and 8 for the zero-order correlations 

among fall and spring kindergarten measures, fall kindergarten and spring of first-grade 

measures, and spring of kindergarten and spring of first-grade measures, respectively. For the 

first set of test data (i.e., fall of kindergarten with spring of kindergarten measures), correlations 

ranged from .53 to .82, excluding those with KM-R Estimation, which ranged from .34 to .49. 

Furthermore, the predictive validity data were similar for all three kindergarten screeners with 

the math outcome measures. Regarding the predictive validity for the spring of first-grade math 

outcomes, there was not much difference in range for the fall versus spring kindergarten testing 

occasions. As Tables 7 and 8 show, predictive validity correlations ranged from .43 to .72 when  
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Table 4

Means and Standard Deviations for Kindergarten (K) and Grade 1 Measures

Measures M a (SD a ) M b (SD b ) M a (SD a ) M b (SD b ) M a (SD a ) M b (SD b )

CF1 (K Fall: Group) 7.55 (5.12) - - 16.27 (6.12) - - - - - -

CF 2 (K Fall: Ind) 11.22 (5.72) - - 17.58 (6.14) - - - - - -

CF Avg 9.38 (5.03) - - 16.92 (5.79) - - - - - -

NS 15.65 (6.80) - - 21.84 (5.57) - - - - - -

KM-R Num 4.71 (1.90) 103.54 (12.41) 6.39 (2.14) 109.31 (11.62) 9.20 (3.38) 106.76 (13.03)

KM-R Est 1.08 (1.12) - - 1.09 (1.42) - - - - - -

EMDA MR 12.42 (4.64) 99.92 (13.55) 17.46 (4.99) 106.68 (14.85) 22.77 (5.66) (98.27 (14.77)

EMDA NO 6.29 (2.01) 101.63 (11.38) 8.14 (1.81) 103.93 (11.99) 10.81 (2.34) 95.01 (14.72)

QD 16.45 (10.13) - - 25.89 (10.09) - - - - - -

CBM Comp, Form 1 - - - - - - - - 12.22 (4.77) - -

CBM Comp, Form 2 - - - - - - - - 12.94 (5.74) - -

CBM Comp, Average - - - - - - - - 12.58 (4.93) - -

CBM C/A, Form 1 - - - - - - - - 21.23 (4.22) - -

CBM C/A, Form 2 - - - - - - - - 20.31 (4.70) - -

CBM C/A, Average - - - - - - - - 20.77 (4.16) - -

Grade K Fall Grade K Spring Grade 1 Spring

Note: n = 196. a Raw score. b Standard score. CF1 = Computation Fluency, first administration; CF2 = Computation Fluency, 
second administration; CF Avg = average score of CF 1 and CF 2; NS = Number Sense; KM-R Num = KeyMath-Revised 
Numeration subtest; KM-R Est = KM-R Estimation subtest; EMDA MR = Early Mathematics Diagnostic Assessment Math 
Reasoning subtest; EMDA NO = EMDA Numerical Operations subtest;  QD = Quantity Discrimination; CBM Comp = Grade 1 
Curriculum-based Measurement Computation probe; CBM C/A = Grade 1 CBM Concepts and Applications probe.
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Table 5

Concurrent Validity: Correlations among Fall Kindergarten Screening and Criterion Measures

CF1 CF2 CFAvg NS QD
KM-R 
Num

KM-R 
Est

EMDA 
MR

EMDA 
NO

CF1 --

CF2 .72 --

CFAvg .92 .94 --

NS .58 .67 .68 --

QD .55 .67 .66 .71 --

KM-R Num .55 .59 .62 .67 .64 --

KM-R Est .26 .29 .30 .30 .31 .32 --

EMDA MR .60 .68 .69 .79 .66 .67 .39 --

EMDA NO .56 .59 .62 .68 .60 .61 .26 .62 --

Note: All correlations significant at the 0.01 level (2-tailed). CF1 = Computation Fluency, 
first administration; CF2 = Computation Fluency, second administration; CFAvg = averaged 
score of CF1 and CF2; NS = Number Sense; QD = Quantity Discrimination; KM-R Num = 
KeyMath-Revised, Numeration subtest; KM-R Est = KM-R Estimation subtest; EMDA MR 
= Early Math Diagnostic Assessment, Math Reasoning subtest; EMDA NO = EMDA 
Numerical Operations subtest.
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Table 6

Concurrent Validity: Correlations among Spring Kindergarten Screening and Criterion Measures

CF 1 CF 2 CFAvg NS QD
KM-R 
Num

KM-R 
Est

EMDA 
MR

EMDA 
NO

CF 1 --

CF 2 .79 --

CFAvg .94 .95 --

NS .67 .69 .72 --

QD .61 .64 .66 .68 --

KM-R Num .62 .60 .64 .68 .61 --

KM-R Est .35 .34 .36 .38 .34 .41 --

EMDA MR .71 .68 .74 .74 .64 .68 .49 --

EMDA NO .64 .62 .67 .55 .56 .58 .40 .66 --

Note: All correlations significant at the 0.01 level (2-tailed). CF1 = Computation Fluency, 
first administration; CF2 = Computation Fluency, second administration; CFAvg = averaged 
score of CF1 and CF2; NS = Number Sense; QD = Quantity Discrimination; KM-R Num = 
KeyMath-Revised, Numeration subtest; KM-R Est = KM-R Estimation subtest; EMDA MR 
= Early Math Diagnostic Assessment, Math Reasoning subtest; EMDA NO = EMDA 
Numerical Operations subtest.
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Table 7

Predictive Validity: Correlations among Fall Kindergarten Screening and Spring Kindergarten Measures

Fall Kindergarten CF1 CF2 CFAvg NS
KM-R 
Num

KM-R 
Est

EMDA 
MR

EMDA 
NO QD

CF1 .58 .52 .58 .54 .58 .48 .61 .51 .49

CF2 .67 .62 .67 .64 .66 .44 .68 .57 .62

CFAvg .67 .62 .68 .64 .67 .49 .70 .58 .60

NS .68 .63 .69 .82 .71 .40 .74 .56 .62

QD .64 .64 .68 .71 .68 .34 .65 .53 .75

Spring Kindergarten

Note: All correlations significant at the 0.01 level (2-tailed). CF1 = Computation Fluency, 
first administration; CF2 = Computation Fluency, second administration; CFAvg = average 
score of CF1 and CF2; NS = Number Sense; KM-R Num = KeyMath-Revised, Numeration 
subtest; KM-R Est = KeyMath-Revised, Estimation subtest; EMDA MR = Early 
Mathematics Diagnostic Assessment, Math Reasoning subtest; EMDA NO = EMDA 
Numerical Operations subtest; QD = Quantity Discrimination.
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Table 8

Predictive Validity: Correlations among Fall Kindergarten Screening and Spring Grade 1 Measures

Fall Kindergarten
KM-R 
Num

EMDA 
MR

EMDA 
NO CBM1 CBM2 CBMAvg C/A1 C/A2 C/AAvg

CF1 .58 .59 .56 .41 .45 .46 .42 .44 .46

CF2 .64 .65 .53 .45 .48 .50 .50 .50 .54

CFAvg .66 .67 .58 .46 .50 .52 .50 .51 .54

NS .72 .70 .55 .48 .55 .56 .62 .63 .67

QD .65 .66 .52 .43 .56 .53 .52 .56 .58

Spring Grade 1

Note: All correlations significant at the 0.01 level (2-tailed). CF1 = Computation Fluency, first administration; CF2 = 
Computation Fluency, second administration; CFAvg = average score of CF1 and CF2; NS = Number Sense; Num = 
KeyMath-Revised, Numeration subtest; MR = Early Mathematics Diagnostic Assessment, Math Reasoning subtest; 
NO = EMDA Numerical Operations subtest; CBM1 =  Gr 1 Curriculum-based measurement Computation probe, first 
administration; CBM2 = seond administration; CBMAvg = average score of CBM1 and CBM2;C/A1 = Gr 1 Concepts 
and Applications probe, first administration; C/A2 = second administration; C/Aavg = average score of C/A1 and 
C/A2; QD = Quantity Discrimination.
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Table 9

Predictive Validity: Correlations among Spring Kindergarten Screening and Spring Grade 1 Measures

Spring Kindergarten
KM-R 
Num

EMDA 
MR

EMDA 
NO CBM1 CBM2 CBMAvg C/A1 C/A2 C/AAvg

CF1 .60 .66 .59 .51 .53 .56 .55 .58 .61

CF2 .59 .62 .51 .45 .51 .52 .53 .55 .58

CFAvg .63 .68 .58 .51 .55 .57 .57 .60 .63

NS .70 .72 .55 .48 .56 .56 .66 .68 .72

QD .62 .62 .47 .44 .54 .53 .49 .54 .55

Spring Grade 1

Note: All correlations significant at the 0.01 level (2-tailed). CF1 = Computation Fluency, first administration; CF2 = 
Computation Fluency, second administration; CFAvg = average score of CF1 and CF2; NS = Number Sense; Num = 
KeyMath-Revised, Numeration subtest; MR = Early Mathematics Diagnostic Assessment, Math Reasoning subtest; NO = 
EMDA Numerical Operations subtest; CBM1 =  Gr 1 Curriculum-based measurement Computation probe, first 
administration; CBM2 = seond administration; CBMAvg = average score of CBM1 and CBM2;C/A1 = Gr 1 Concepts 
and Applications probe, first administration; C/A2 = second administration; C/Aavg = average score of C/A1 and C/A2; 
QD = Quantity Discrimination.          
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using the fall kindergarten test scores; from .44 to .72 when using the spring kindergarten test 

scores (i.e., using the averaged scores of the two forms of Computation Fluency).  

MD Prevalence as a Function of Mathematics Outcome 

 We determined MD prevalence for students based on their performance on criterion 

measures administered at the third testing wave, that is, the end of first grade. This allowed for 

approximately two academic years to elapse from the initial screening occasion to the final 

measurement of mathematics outcome. MD designation was operationalized as scoring below 

the 16th percentile on either the EMDA Math Reasoning subtest or the EMDA Numerical 

Operations subtest. The former focused primarily on conceptual skills and mental manipulation 

of whole numbers; students scoring below the 16th percentile on this subtest were designated 

MD-conceptual. In contrast, the EMDA Numerical Operations subtest measured students’ ability 

to identify numerical symbols and perform written calculations; students scoring below the 16th 

percentile on this subtest were designated MD-operational. Based on these criteria, 40 students 

(i.e., 20.41% of the sample) were MD-conceptual and 59 students (i.e., 30.10%) were MD-

operational. Twenty-one students (i.e., 10.71%) met criteria for both MD designations.  

 ROC Curves to Contrast the Predictive Utility of Logistic Regression Models  

 In Tables 10 and 11, we report the results of the logistic regression analyses for 

predicting MD status at the end of first grade, with respect to conceptual and operational 

outcomes. The tables show the predictive utility of the three kindergarten math screeners when 

administered to students in the fall and in the spring. Hit rate (i.e., overall accuracy), sensitivity, 

specificity, and area under the ROC curve (AUC) are included for each math screener. 

 For predicting MD-conceptual based on the fall-administered screeners (i.e., the top half 

of Table 10), the single-skill Quantity Discrimination measure resulted in a hit rate of 74.5%,  
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Table 10

Classification Indices for Logistic Regression Models for MD-Conceptual 

Outcome/Model B SE Wald p TN FN TP FP Hit Rate Sens Spec AUC SE CI

Fall Predictors

Quantity Discrimination -.206 .037 30.233 .000 113 7 33 43 74.5 82.5 72.4 .857 0.03 .797-.916
Constant 1.042 .386 7.288 .007

Computation Fluency (ind) -.245 .049 24.919 .000 108 7 33 48 71.9 82.5 69.2 .797 .033 .732-.862
Constant .912 .432 4.448 .035

Number Sense -.207 .035 35.007 .000 121 8 32 35 78.1 80.0 77.6 .841 .030 .783-.900
Constant 1.377 .446 9.525 .002

Spring Predictors

Quantity Discrimination -.168 .026 40.187 .000 126 9 31 30 80.1 77.5 80.8 .861 .035 .793-.929
Constant 2.303 .548 17.649 .000

Computation Fluency -.276 .045 37.657 .000 116 8 32 40 75.5 80.0 74.4 .860 .028 .806-.915
Constant 2.655 .611 18.890 .000

Number Sense -.315 .051 37.416 .000 124 7 33 32 80.1 82.5 79.5 .877 .028 .822-.931
Constant 4.887 .986 24.544 .000

ROC
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Table 11

Classification Indices for Logistic Regression Models for MD-Operational

Outcome/Model B SE Wald p TN FN TP FP Hit Rate Sens Spec AUC SE CI

Fall Predictors

Quantity Discrimination -.074 .018 16.314 .000 82 21 38 55 61.2 64.4 59.9 .690 .040 .612-.768
Constant .268 .298 .808 .369

Computation Fluency (ind) -.102 .031 10.627 .001 76 25 34 61 56.1 57.6 55.5 .639 .041 .558-.720
Constant .237 .350 .456 .499

Number Sense -.110 .025 19.028 .000 96 25 34 41 66.3 57.6 70.1 .696 .040 .619-.774
Constant .775 .388 3.987 .046

Spring Predictors

Quantity Discrimination -.062 .017 14.105 .000 95 26 33 42 65.3 55.9 69.3 .661 .043 .577-.745
Constant .701 .426 2.705 .100

Computation Fluency -.136 .030 21.114 .000 89 24 35 48 63.3 59.3 65.0 .722 .037 .649-.794
Constant 1.343 .484 7.703 .006

Number Sense -.130 .030 18.164 .000 87 24 35 50 62.2 59.3 63.5 .687 .041 .605-.768
Constant 1.914 .655 8.551 .003

ROC
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with sensitivity (82.5%) exceeding specificity (72.4%). The multi-skill screeners, Computation 

Fluency and Number Sense, resulted in similar fashion. Hit rates for those screeners were 71.9% 

and 78.1%, respectively, and sensitivity for both (82.5% and 80.0%) exceeded specificity (69.2% 

and 77.6%). The AUCs for the three fall screeners were .857, .797, and .841, which are deemed 

good (Fuchs et al., 2007). Confidence intervals for the AUCs overlapped, indicating that the 

models were not significantly different. Based on the fall screeners, 7 to 8 students who were 

designated MD-conceptual were missed (i.e., see “FN” column) and 35 to 48 students who were 

identified with the screeners as at risk did not the meet end-of-first-grade criterion for MD-

conceptual (i.e., see “FP” column). 

 For predicting the same MD-conceptual outcome, yet based on the spring-administered 

screening measures (i.e., the bottom half of Table 10), similar results were found. The single-

skill and multi-skill screeners resulted in hit rates ranging from 75.5% (Computation Fluency) to 

80.1% (both Quantity Discrimination and Number Sense). Quantity Discrimination resulted in 

higher specificity (80.8%) than sensitivity (77.5%); the multi-skill Computation Fluency and 

Number Sense showed the reverse, with sensitivity (80.0% and 82.5%, respectively) exceeding 

specificity (74.4% and 79.5%, respectively). AUCs ranged from .860 to .877, which are deemed 

good, and overlapping confidence intervals again attested to statistical equivalence across 

models. False negatives ranged from 7 to 9 with the spring administration of the screeners; false 

positives ranged from 30 to 40.   

 For predicting MD-operational status, the three screeners performed similarly in the fall 

and in the spring (see Table 11). Hit rates for Quantity Discrimination, Computation Fluency, 

and Number Sense based on fall screening were 61.2%, 56.1%, and 66.3%, respectively. Based 

on spring screening, the hit rates changed only slightly: 65.3%, 63.3%, and 62.2%, respectively. 

Sensitivity across both testing occasions ranged from 57.6% to 64.4%; specificity ranged from 
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55.5% to 70.1%. With the exception of the spring-administered Computation Fluency, which 

resulted in an AUC of .722 (deemed fair), the screeners’ AUCs were all less than .70 (deemed 

poor). Number of false negatives (i.e., missed students) ranged from 21 to 26 and number of 

false positives ranged from 41 to 61. The predictive utility of the three screening measures were 

statistically equivalent at both kindergarten testing occasions, based on overlapping confidence 

intervals of their corresponding AUCs. 

 Although there were no significant differences when looking separately at MD-

conceptual and MD-operational results (i.e., screeners performed similarly, irrespective of testing 

occasion, when predicting MD-conceptual or MD-operational status), there was a significant 

difference when combining the results. Specifically, the screeners predicted future MD status in 

terms of conceptual outcome with significantly greater accuracy than in terms of operational 

outcome. The AUCs for the three screeners when predicting MD-conceptual were higher than 

when predicting MD-operational; their non-overlapping confidence intervals indicated statistical 

significance. 
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CHAPTER 1V 

 

DISCUSSION 

 

 We evaluated the technical adequacy and predictive utility of one single-skill and two 

multi-skill measures for screening kindergarten students for risk for MD. The single-skill 

screener assessed students’ ability to discriminate larger numbers from pairs of numbers ranging 

from 0-10 in one minute. The multi-skill screeners assessed computational fluency and various 

mathematical concepts central to typical early mathematical development. Conceptual and 

operational math outcomes were assessed at the end of first grade, with MD operationalized as 

performance below the 16th percentile on nationally norm-referenced tests.  

 Previous studies had investigated the reliability and validity of the single-skill (i.e., 

Quantity Discrimination) screening measure (Chard et al., 2005; Clarke & Shinn, 2004; Lembke 

& Foegen, 2006; Pedrotty Bryant et al., 2006). Results from these earlier studies showed 

reliability, on average, to be about .90, with concurrent and predictive validity averaging 

approximately .60. Our results echo these findings with respect to validity. We found average 

validity correlations for this test to range from .57 to .63 with criterion measures (i.e., excluding 

the KM-R Estimation scores, for reasons mentioned previously). With the present study, we 

focused our attention on the technical adequacy of the two multi-skill kindergarten screeners 

(i.e., Computation Fluency and Number Sense), even as we considered the validity of the single-

skill Quantity Discrimination test.  

Reliability averages of the two multi-skill screeners were somewhat lower than what had 

been found previously for the single-skill screener (i.e., .78 and .86 for the fall and spring 

administrations, respectively), but these reliability estimates fall within an acceptable range 
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(Urbina, 2004). In terms of concurrent and predictive validity, however, figures for the multi-

skill screeners generally surpassed those of the single-skill screener. For example, with respect to 

fall-of-kindergarten to end-of-first-grade predictive validity, coefficients ranged from .55 to .72 

for the two multi-skill math screeners with outcome measures (i.e., vs. .52 to .66 for the single-

skill screener). Interestingly, the (average) predictive validity data for our three math screeners 

with respect to end-of-first grade math skill remained nearly the same from the fall to the spring 

testing occasions (i.e., .63 and .62, respectively). These validity estimates for the multi-skill 

screeners are higher than the average predictive validity of the kindergarten screening literature 

we reviewed (i.e., Baker et al., 2002; Bramlett, Rowell, & Mandenberg, 2000; Chard et al.; 

Clarke et al.; Jordan, Kaplan, Locuniak, & Ramineni, 2007; Kurdek & Sinclair, 2001; Lembke & 

Foegen; Mazzocco & Thompson, 2005; Pedrotty Bryant et al.; Tiesl, Mazzocco, & Myers, 2001; 

VanDerHeyden, Witt, Naquin, & Noell, 2001), which comprises an assortment of screening and 

outcome measures. Kindergarten math screeners from these earlier studies correlated (on 

average) .46 with future measures of mathematical performance. Because kindergarten students 

begin school in the fall with varying levels of developmental maturity, attention, or experience 

with paper-and-pencil tasks, it would be understandable if the relations among math screeners 

and criterion measures were stronger in the spring, once some of the variability due to unequal 

preschool experiences evens out. Our results did not demonstrate this, however. Predictive 

validity remained stable across the kindergarten school year, with respect to end-of-first-grade 

mathematics outcomes--a harbinger of the resulting overall accuracy of the screeners in 

predicting MD. 

Although it was not the sole focus of the present study, documenting the technical 

adequacy of the math screening assessments constituted an essential first step toward drawing 

conclusions about the screeners’ predictive utility. Practically speaking, if educators and 
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diagnosticians are to rely on a test to forecast future MD status, the test must demonstrate 

reasonable levels of score stability and consistency. Furthermore, inferences drawn from the 

test’s scores must be meaningful and justifiable (in this case, with respect to students’ early 

mathematics ability). As did previous evaluations of the Quantity Discrimination measure (e.g., 

Chard et al.), our data lend support to its technical adequacy as well as that of the multi-skill 

Computation Fluency and Number Sense screeners.  

 In addition to examining the kindergarten math screeners, however, we were particularly 

interested in aspects of the screeners’ decision-making utility. Only a handful of previous 

kindergarten screening studies looked beyond predictive validity correlations and directly 

analyzed the sensitivity or specificity of their screeners (Bramlett et al., 2000; Mazzocco & 

Thompson, 2005; Simner, 1982; Tiesl et al., 2001; VanDerHeyden et al., 2001). With the present 

study, we specifically questioned whether the predictive utility of our tests would differ as a 

function of item composition (i.e., single- vs. multiple-skill); the time of year screening occurred 

(i.e., fall vs. spring of kindergarten); or the focus of mathematical outcome (i.e., conceptual vs. 

operational). To our knowledge, no previous work has addressed these concerns. If educators are 

to accurately pinpoint students in need of intensive math intervention (i.e., in an attempt to 

prevent future MD), research should inform the practice of how, when, and with respect to what 

outcome this may best be accomplished. 

 First, with respect to how, we asked, Might a brief single-skill test of magnitude 

comparison forecast future math ability of kindergarten students just as well as, or perhaps better 

than, multiple-skill tests of varied early numerical concepts? Gersten et al. (2005) suggested that 

measures comprising items of counting/simple computation skill and quantity/use of mental 

number line may effectively screen young students for potential MD. Along these lines, we 

questioned whether a single aspect of “number sense” (i.e., such as quantity discrimination) 



 

 44

would prove sufficient as a predictor of MD. Alternately, to maximize effectiveness, we asked 

whether a screener comprising items of multiple early numeracy concepts would provide 

enhanced decision-making utility. To answer these questions, we compared the AUCs of the 

single-skill to the multiple-skill screeners, at both the fall and spring testing occasions, and with 

respect to two mathematical outcomes. Non-overlapping confidence intervals would indicate 

statistical differences between models.  

Our results showed no significant differences in predictive utility for single- versus multi-

skill screening, at fall or spring, for either math outcome. This is interesting, given that the 

predictive validity of the multi-skill screeners was generally higher than that of the single-skill 

screener. This highlights the importance of looking at the predictive utility of screening measures 

in addition to the simple predictive correlations. Our results indicate that a brief, timed measure 

of quantity discrimination is comparable to the multiple-skill screeners (which include more 

widely varied arithmetical and numerical items and take slightly longer to administer) in 

forecasting future MD. This is likely welcome news for kindergarten teachers who often have 

limited time and/or resources available to screen their classes of young learners. As a reminder, 

the single-skill quantity discrimination was a one-minute, timed probe; the multi-skill 

Computation Fluency screener was a 5-minute timed, group-administered test; and the multi-skill 

Number Sense test was untimed, individually administered, and took from 10 to 15 minutes per 

student to complete. Of course, separate from the issue of efficiency, the multi-skill screeners 

may provide teachers with better information for instructional planning than the single-skill 

screener. This is because sampling a wider variety of early mathematical skills, as the multi-skill 

screeners do, provide an opportunity for error analysis and for highlighting students’ specific 

numerical strengths and weaknesses. The single-skill screener, on the other hand, provides 

information on only one aspect of mathematical skill. 
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 Second, in terms of when, we asked, Do marked differences exist in decision-making 

utility when screening students in the fall versus the spring of kindergarten? This is important to 

know, for two related and competing reasons. On the one hand, studies show that screening for 

future reading disability at an early age produces a high proportion of false positives (Catts, 

1991; Johnson, Jenkins, Petscher, & Catts, 2008), stressing the school system to provide 

intervention to students who do not require that help. Thus, waiting a few months or even until 

the kindergarten year is complete may better identify students whose initial low performance 

results from developmental or experiential lag rather than true MD. If this were the case, one 

would expect to uncover a significant difference in predictive accuracy from the fall to the spring 

testing occasions. On the other hand, refraining from screening students for MD until the spring 

of kindergarten (or even later), with the belief that fall screening is not trustworthy, denies 

students of months of intervention time that could well serve to offset or prevent extreme math 

deficits. To address this dilemma, we compared the AUCs of the fall versus the spring math 

screeners with respect to the same two end-of-first grade mathematical outcomes. Our results 

showed no statistical differences in predictive utility from the fall to the spring testing occasions, 

underscoring the potential value of beginning early, in the fall of students’ kindergarten year, to 

identify young learners in need of mathematical intervention. In spite of this, the large numbers 

of false positives (i.e., ranging from 30 to 48 and from 41 to 61 for conceptual and operational 

outcomes, respectively) suggest that delaying screening until after kindergarten may be prudent. 

This issue should be pursued in future work. 

 Third, with respect to what outcome, we asked, What should we look for in terms of MD? 

Should educators and diagnosticians consider conceptual mathematical deficits as a hallmark of 

MD at the end of first grade, or conversely, should the focus be on operational deficits? Prior 

work shows that elementary-aged students with MD show marked deficits in computational 
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fluency and difficulty with number processing (e.g., Jordan et al. 2003; Mazzocco, 2007). Yet, it 

is plausible that students as young as 5 and 6 years may simply not have had sufficient or 

comparable formal instruction with paper-and-pencil tasks such as counting, addition, or 

subtraction facts. As such, choosing a math outcome to designate MD which focuses on 

operational skill for students at this young age (i.e., such as written number combinations or 2-

digit addition and subtraction items) may prove less useful than one that focuses on early 

numeracy concepts more likely to have been taught with early math curricula (i.e., such as shape 

identification or the meaning of “more than” or “less than”). Our results supported this. When we 

contrasted predictive models with conceptual versus operational mathematical outcomes, we 

found those with conceptual outcomes to be statistically better than those with operational 

outcomes, regardless of type of screener (i.e., single- or multi-skill) or time of testing (i.e., fall or 

spring). During the fall or spring of kindergarten, AUCs for our screening models ranged from 

.80 to .88, indicating “good” predictive utility for conceptual outcome using the EMDA Math 

Reasoning subtest. By contrast, during the same time frames, AUCs ranged only from .64 to .72, 

indicating “poor” predictive utility for operational outcome using the EMDA Numerical 

Operations subtest. This suggests that we can predict future computational deficits less 

accurately than conceptual deficits, at least when screening learners in the kindergarten year. 

 In summary, single-skill and multiple-skill screening measures produced good and 

similar fits at both fall and spring of kindergarten, in terms of forecasting conceptual 

mathematics outcome at the end of first grade. Yet, with respect to operational outcome at the 

same time, the single- and multi-skill screeners produced similar but significantly less accurate 

fits. Although our results lend tentative support to the potentiality of screening students as young 

as kindergarteners for future MD, additional study is needed to increase the overall accuracy of 

this task. That is, regardless of the predictive model used, we found an unacceptably high 
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proportion of students misidentified as false positives and/or false negatives. This weakens the 

decision-making utility of the screeners and raises concerns about one-time universal screening 

within an RTI framework. Similar findings are accruing in reading (e.g., Jenkins, Hudson, & 

Johnson, 2007; Johnson, 2008). This suggests the potential need for a multiple-gating screening 

procedure, in which a cut-point on the universal screen is set to minimize false negatives, and 

then a more thorough conventional assessment or a dynamic assessment or short-term progress 

monitoring is conducted among the subset of students who failed the universal screen. In 

reading, Compton, Fuchs, Fuchs, & Bryant (2006) showed how such a multiple-gating screening 

procedure, using six weeks of short-term progress monitoring at the beginning of the first grade 

could eliminate false positives and false negatives. Future work should investigate the potential 

of multiple-gating kindergarten screening procedures to identify risk of MD more precisely. 

As readers interpret findings, however, at least four limitations to the study should be 

considered. Three pertain to the participants; one to the nature of the screening measures. First, 

participants were selected from only one school district in a southeastern metropolitan area. 

Sampling students from a more diverse and representative population would provide for greater 

generalizability of results. Second, although our attrition rate was within reason, 22%, it is 

unclear how results may have been affected had the 56 students who moved remained through 

the end of first grade. We however note that on the fall kindergarten multi-skill Number Sense 

screening measure, students who remained through the end of first grade scored significantly 

higher than those who exited. This finding raises questions about whether results would change 

if the exiters had remained. Even so, the students who exited and those who remained were 

demographically comparable. Moreover, they were mathematically comparable, as indexed on 

the other two screeners. Third, consented students represented less than half of the classroom 

population, questioning whether results would remain stable had more families/students agreed 
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to participate. Finally, we did not address the issue of timed testing in this study. The single-skill 

quantity discrimination screener and the multi-skill Computation Fluency screener were timed; 

the multi-skill Number Sense screener was untimed. Additionally, neither subtest used to 

determine MD status was timed. Students were aware when they were completing assessments 

with timed limits, and for some students, timing may have been a distraction or a stressor. Yet, as 

shown with some reading tests (e.g., Fuchs, Fuchs, Hosp, & Jenkins, 2001), fluency may be an 

important way of drawing distinctions among students’ skill levels, abilities, and potential. In 

any case, we cannot state whether timed tests makes a difference in predictive utility for students 

at this age. 

To address these limitations, future research should employ a more representative sample 

and should systematically vary timed versus untimed administration of screening measures. 

Additionally, future research should evaluate how the use of our multi-skill measures for 

progress monitoring might enhance teachers’ instructional planning and student learning. Finally, 

and in a related way, the role of multiple-gating screening processes should be investigated as a 

means of lowering the rate of false positives and false negatives. 
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Appendix A � Computation Fluency 

 

COMPUTATION FLUENCY Score:____/25

Form A

Name:________________________________

Date: ________________________________

2 + 3 = _____
*  *      
*  *      

______        

* *  +  * =    
_    _          

_____
4 - 2 = _____

Cross out 2 *.    
Ppppppppppppp
ppppppppppppp 

*  *  *  *   
_____

3 - 1 = _____

Cross out 4 *.    
Ppppppppppppp
ppppppppppppp 

* * * * *   
* * *     
_____

*  *      
*  *  *    

_____         

*** +  **  =   
__            

_____
0 + 4 = _____

*        
*        

_____         

2 + 2 = _____ 5 - 1 = _____

Cross out 1 *.    

Ppppppppppppp 

* * *     
_____

**** + *** =  
__            

_____

* + * * * * =  
__            

_____
3 - 3 = _____

Cross out 3 *.   
Ppppppppppppp
ppppppppppppp 

* * * * *   
* * * * *   

_____

1 + 4 = _____

*  *  *    
*  *  *    
*  *  *    

_____         

Cross out 0 *.    
Ppppppppppppp
ppppppppppppp 

*  *  *  *  * 
_____

****+**** = 
__            

_____
3 + 1 = _____

                           

*        
_____         

5 - 3 = _____
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Appendix B � Number Sense  

Score: _____/30

Name: _______________________________________________ 

Date: ________________________________________________

1) *
* 4 19
*

2)

3) 22 2 22 2

4)

5) _____ _____ _____ _____ _____

6) *   *   *   *   *   *   *   *   * _____
*   *   *   *   *   *   *   *   *

Age: _____________
NUMBER SENSE
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7) 2 8

8) 4 0

9) +  +  +  + +  +  + +

10)
0                                 10,11, ___                     20

11) _____ _____ _____ _____ _____

12) 4, 3, 2, _____

13) 7 2
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14) 2 4 3

15) 17 16

16)

_____ boys

17) 5  +  4  =  9 5  -  4  =  1

18)

X X  
         X  

X  X  X    
X
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19) +  +  + +  +  + +  + +  +  + +  +  +

20) *
*   * 8 5

*   *   *

21) 9, 8, _____

22) 15 16 14

23) 2  -  1  =  1 2  +  1  =  3

24)
0                                 10                  ___ 17 18   20
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25) 20 19 18

26) _____ _____ _____ _____ _____

27) rectangles

28) 17, _____

29)

_____ + _____ = _____

30)
0               5                10               ___             20
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Appendix C � Number Sense Score Sheet 

 

Now we're going to do some math activities.  
Scoring

Number Sense Score Sheet

Ceiling = 5  (Stop after 5 consecutive  scores of 0)

1 = correct response
0 = incorrect response

Q
ua

nt
ity

 
D

is
cr

im
in

at
io

n
M

en
ta

l N
um

be
r 

Li
ne

O
rd

er
in

g 
N

um
be

rs
Es

tim
at

io
n

Pa
tte

rn
s

C
ou

nt
in

g 
Ba

ck
w

ar
d

Sh
ap

e 
D

is
cr

im
in

at
io

n
N

um
be

r 
Se

nt
en

ce
s

W
rit

in
g 

N
um

be
rs

O
ne

-to
-o

ne
 

co
rre

sp
on

de
nc

e

1. 4

2. square

3. 22

4. (marks triangle)

5. 1,2,3,4,5

6. 18

7. 8

8. 0

9. +++

10. 12

11. 6,7,8,9,10

12. 1 

13. 2

14. 2,3,4

15. 17

16. 2 

17. (circles "5-4=1")

18. (draws 7 Xs)

19. ++

20. 5 

21. 7

22. 14,15,16

23. (circles "2+1=3")

24 16

25. 18,19,20

26. 10,20,30,40,50

27. 5 

28. 16 

29. 3+1=4

30. 15

Domain Scores

Ceiling Item

Raw Score
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