
 

 

GENETICS OF PLASMINOGEN ACTIVATOR INHIBITOR – 1: A POTENT BIOLOGICAL EFFECTOR 

OF CARDIOVASCULAR DISEASE RISK  

  

By 

Marquitta Jonisse White 

 

 

Dissertation 

Submitted to the Faculty of the  

Graduate School of Vanderbilt University 

in partial fulfillment of the requirements 

for the degree of  

DOCTOR OF PHILOSOPHY 

in 

Human Genetics 

December, 2014 

Nashville, Tennessee 

 

Approved: 

 Scott M. Williams, Ph.D. 

Melinda C. Aldrich, Ph.D. 

Dana C. Crawford, Ph.D. 

Bingshan Li, Ph. D.  

Jason H. Moore, Ph.D. 

Nancy J. Brown, M.D. 

 

 

 



ii 
 

 

 

 

 

 

 

 

To Mimi, for giving me more than I could ever repay 

To Godfather, for always encouraging me to follow my dreams 

and 

To my fiancé, Garric F. D. Smith, for being my Shield 

  



iii 
 

ACKNOWLEDGEMENTS 

 

This work was made possible by funding from the Center for Human Genetics Research at 

Vanderbilt University and the Institute for Quantitative Biomedical Sciences at Dartmouth College, as 

well as grants under the direction of Scott M. Williams and Jason Moore. I would like to thank my 

committee chair Bingshan Li and the members of my thesis committee Nancy Brown, Jason Moore, 

and particularly, my two Vanderbilt co-mentors Dana Crawford and Melinda Aldrich for their support 

and guidance. I would especially like to recognize and thank my primary mentor, Scott Williams, for 

his unwavering enthusiasm and support of my development into an independent researcher. He gave 

me the training and exposure to new ideas and collaborations that enhanced not only my repertoire 

as a statistical geneticist but also prepared me to be an active member of the scientific community. I 

would also like to thank my fellow Williams lab members, and the professors and students in the 

Human Genetics program for their support. In particular, I would like to thank Nuri Kodaman, Rafal 

Sobota, and Jackie Bartlett for their friendship, support, guidance, and advice.  

I would like to acknowledge my parents, Michael and Verice White, who have shown by 

example the rewards that come from perseverance and determination. I would like to particularly 

thank them for giving me my “village” of countless aunts, uncles, cousins, and extended family that 

have been my support system from day one. I would like to especially thank my three siblings for their 

love, strength, kindness, and unending faith in me. My sisters, Aisha and Viana, have always been 

there to love, support, challenge, tease, and torment me and I would be lost without them. And last, 

but certainly not least, I would like to acknowledge my future husband, Garric Smith. From the first 

day that we met, he challenged me to reach for the stars and dared me to chase my dreams. My love 

for him permeates every corner of my soul, and as I look back with fond remembrance on our past 

adventures, I can’t wait to greet the future with the one person who truly understands me.   



iv 
 

TABLE OF CONTENTS 

 

DEDICATION .....................................................................................................................ii 

ACKNOWLEDGEMENTS ..................................................................................................iii 

LIST OF TABLES ...............................................................................................................vi 

LIST OF FIGURES ............................................................................................................vii 

Chapter 

I. OVERVIEW .............................................................................................................1 

II. INTRODUCTION .....................................................................................................4 

A. Introduction and Background .............................................................................4 

A1. Cardiovascular disease and thrombosis.................................................4 

A2.  T-PA, PAI-1, and Fibrinolysis ................................................................6 

A3.   PAI-1 and Cardiovascular Disease Risk and Severity ..........................7 

A4.   Impact of genetic variation on PAI-1 levels ..........................................8 

A5.   Biological Effectors and Modifiers of PAI-1 levels ................................9 

B. Description of Study Population and Previous Studies 

B1. Description of HeART Cohort .................................................................11 

B2.  Previous Studies of PAI-1 in the HeART Cohort ...................................12 

B2a. Gender Specific effects on plasma PAI-1 ..................................12 

B2b. Epistatic effects on plasma PAI-1 ..............................................12 

C. Hypothesis and Specific Aims ............................................................................13 
Specific Aim I ................................................................................................13 
Specific Aim II ...............................................................................................14 

III. EXAMINING SINGLE VARIANT EFFECTS ON MEDIAN AND ELEVATED PAI-1  
LEVELS IN A GHANIAN COHORT ..............................................................15 

A.  Genetic Impact of Common SNPs on Median PAI-1 Levels .............................17 
Introduction ...................................................................................................17 
Materials and Methods .................................................................................19 

Subjects .............................................................................................19 
Genotyping Protocol ..........................................................................19 
Quality Control Procedures ................................................................20 

Statistical Analysis ........................................................................................21 



v 
 

Preliminary Analyses .........................................................................21 
Median Regression ............................................................................23 
Bioinformatic / Data Mining Investigation of Associating Markers ......24 

Results .........................................................................................................26 
Median Regression Analyses ............................................................26 
OLS Assessment of Significant Median Regression Results .............30 

Discussion ....................................................................................................32 

B. Genetic Impact of Common SNPs on the Upper Quartile of  
the PAI-1 Distribution .........................................................................................35 

Introduction ...................................................................................................35 
Materials and Methods .................................................................................36 

Subjects .............................................................................................36 
Genotyping Protocol ..........................................................................36 
Quality Control Procedures ................................................................36 

Statistical Analysis ........................................................................................37 
Preliminary Analyses .........................................................................37 
Upper Quartile Regression ................................................................37 
Bioinformatic / Data Mining Investigation of Associating Markers ......38 

Results .........................................................................................................38 
Discussion ....................................................................................................41 

IV. PRESENTATION OF A NOVEL APPROACH TO IDENTIFY CANDIDATE  
GENES BASED ON MULTI-LOCUS ASSOCIATION SIGNALS .............................45 
 
A. Presentation of Multi-lOcus based selection of Candidate Genes (MOCA) .......46 

Introduction ...................................................................................................46 
Materials and Methods .................................................................................48 

Subjects .............................................................................................48 
Genotyping Protocol ..........................................................................48 
Quality Control Procedures ................................................................49 

Description of MOCA ....................................................................................49 
Rationale ............................................................................................49 
General Summary of MOCA ..............................................................50 

Statistical Analysis ........................................................................................52 
Data Processing ................................................................................52 
SNP to Gene Region Mapping Protocol and Rationale......................57 
QMDR Protocol and Analysis Pipeline ...............................................58 

Results .........................................................................................................60 
Presentation of Regions Identified by MOCA .....................................60 
Evaluation of Pairwise Interaction Models defining  
Regions of Interest Identified by MOCA .............................................61 

Chromosome 5........................................................................61 
Chromosome 8........................................................................64 
Chromosome 17......................................................................66 
Chromosome 20......................................................................69 

Discussion ....................................................................................................72 

 
V. CONCLUSIONS AND FUTURE DIRECTIONS .......................................................78 



vi 
 

A. Summary ...........................................................................................................78 

B. Future Directions................................................................................................81 

APPENDIX .........................................................................................................................84 

REFERENCES ..................................................................................................................93 

  

 

 

           

 

  



vii 
 

LIST OF TABLES 

 

Table                    Page 

2-1     Biological and Environmental Effectors/Modifiers of PAI-1 .................................................. 9 

3-1.    Heart cohort gender-separated demographic and clinical characteristics............................ 22 

3-2.    Median Regression Results for Single Variant association with plasma PAI-1 levels .......... 27 

3-3.    Corresponding OLS Results for SNPs marginally/significantly associated  
          with Median PAI-1 levels ..................................................................................................... 31 
  
3-4.    Upper Quartile Regression Results for Single Variant association with PAI-1 levels ........... 39 

 
4-1.    Gender-separated demographic and clinical characteristics ............................................... 55 

4-2.    Pairwise interaction models significantly associated with PAI-1 levels ................................ 60 

4-3.    MOCA identified regions of interest that overlap with previously identified  
          CVD QTL loci in Humans .................................................................................................... 74 

  



viii 
 

LIST OF FIGURES 

 

Figure           

2-1.    Intrinsic and Extrinsic Coagulation Pathways ..........................................................5  
 
2-2.    Key bioregulators of the fibrinolytic system ..............................................................6  

3-1a.  Nature of the PAI-1 Distribution in the HeART Cohort .............................................23 

3-1b.  Nature of the PAI-1 Distribution in the HeART Cohort after Log-Transformation .....23 
 
3-2.    Manhattan Plot of SNP Association Analysis with Median plasma PAI-1 Levels .....28 

3-3a.  LocusZoom visualization of the region proximal to rs1071598 located in ARSB .....29 

3-3b.  LocusZoom visualization of the region proximal to rs61997065 located in CPA2 ....29 

3-3c.  LocusZoom visualization of the region proximal to rs10406453 located in LENG8 ..30 

3-4.    Manhattan Plot of SNP Association Analysis 
          with Upper Quartile of PAI-1 distribution ..................................................................40  
 
3-5.    Schematic of the Circadian Rhythm Pathway ..........................................................42 

4-1.    Schematic of MOCA approach ................................................................................52 

4-2.    Quantile-Quantile Plot of Residuals for use as  
          Dependent Variable in qMDR Analyses ...................................................................54 
 
4-3a.  Nature of the PAI-1 Distribution in Individuals included in SNP-SNP  
          Interaction Analyses .................................................................................................56 
 
4-3b.  Nature of the PAI-1 Distribution in Individuals included in SNP-SNP  
          Interaction Analyses after log-transformation ...........................................................56 
 
4-4.    Region of Interest on Chromosome 5 identified by MOCA ......................................62 

4-5.    Visualization of Model Entropy for rs3985058 – rs10064163 ...................................63 

4-6.    QMDR Graphical Presentation of rs3985058 – rs10064163 ....................................63 

4-7.    Region of interest on Chromosome 8 identified by MOCA .......................................64 

4-8.    Visualization of Model Entropy for rs962050 – rs1705447 .......................................65 

4-9.    QMDR Graphical Presentation of rs3985058 – rs10064163 ....................................66  

4-10.  Region of interest on Chromosome 17 identified by MOCA .....................................67 

4-11.  Visualization of Model Entropy for rs2270517 – rs9907759 .....................................68 

4-12.  QMDR Graphical Presentation of rs9907759 – rs2270517 ......................................69 



ix 
 

4-13. Region of interest on Chromosome 20 identified by MOCA......................................70 

4-14. Visualization of Model Entropy for rs2427254 – rs13042941 ....................................71  

4-15. QMDR Graphical Presentation of rs2427254 – rs13042941 .....................................72 

4-16. Chromosome 5 MOCA Identified Region of Interest  
         Compared to Previously Identified QTL Regions ......................................................75 

4-17. Visualization of Possible Biological connections between genes in the  
         Chromosome 5 Region of Interest and PAI-1 ...........................................................78 
 



1 
 

CHAPTER I 

 

OVERVIEW 

 

Cardiovascular disease (CVD) encompasses several disorders of the circulatory system that 

together serve as a leading cause of non-communicable disease death both in the United States and 

globally1. A common characteristic of CVD is thrombosis, and major thrombotic events are often 

associated with impaired fibrinolysis2. Fibrinolysis is mediated primarily by the interaction between 

tissue plasminogen activator (t-PA), which converts plasminogen to plasmin, and plasminogen 

activator inhibitor 1 (PAI-1), which inactivates t-PA3. Although both t-PA and PAI-1 are important for 

fibrinolytic balance, there has been more evidence that PAI-1 levels are correlated with CVD 

susceptibility, severity, and fibrinolytic potential4,5. PAI-1 is a critical modulator of fibrinolysis and 

greater understanding of its inter-individual variation may provide valuable information in the 

development of therapeutic intervention strategies for CVD patients. PAI-1 levels have been 

associated with increased risk/severity of CVD in multiple populations in several studies, but the 

underlying genetic architecture of PAI-1 variation remains poorly understood. While genetic studies 

have been performed to explain the variation in PAI-1 levels, the majority of these studies were 

performed in Caucasian and Asian cohorts. Even in the most assessed populations, studies have 

failed to explain most of the genetic effectors of PAI-1 even though heritability estimates are between 

0.42 and 0.716,7. African populations have some of the heaviest CVD disease burden worldwide, yet 

PAI-1 variation is poorly understood in these populations primarily because they have not been 

studied.  The focus of this dissertation is the investigation of the genetic mechanisms involved in PAI-

1 variation in both West African and Caucasian populations using single variant, gene-level, and 

pathway-level analyses. We hypothesize that the complex nature of PAI-1 variation will be better 

described through single and multivariate analysis at the single nucleotide polymorphism (SNP) level 
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that acknowledges and accommodates for the skewed nature of the PAI-1 distribution as well as the 

likelihood of the existence of genetic variants with non-uniform and possibly non-linear effects. We 

further postulate that significant gene and biological pathway level effects may play a role in variation 

in PAI-1 levels.  

The introduction and background of PAI-1 as a modulator of the fibrinolytic system, its role in 

the progression of thrombosis, and in the context of CVD risk and severity are presented in Chapter 

II, part A. In depth description of the study populations used in this dissertation as well as previous 

research performed in these cohorts are presented and the impact of these findings on the current 

study design are summarized in Chapter II, part B. Chapter II, part C summarizes preliminary 

research conducted in preparation to test the central hypotheses of the current study, as well as to 

compare and contrast previous strategies employed to investigate genetic variation in PAI-1 levels 

with those undertaken in this dissertation. Finally, Part D outlines the hypothesis and specific aims of 

this dissertation. 

To explore common genetic variation effecting PAI-1 levels, quantitative regression based 

analyses are performed in the HeART cohort in Chapter III. Part A identifies common variants that 

effect PAI-1 levels across its entire distribution by examining the effect of genetic variation on median 

PAI-1 levels. These studies highlight novel associations between single variants in the arylsulfatase b 

(ARSB),  carboxypeptidase A2 (CPA2), and leukocyte receptor cluster member 9 (LENG9) and 

median PAI-1 levels. Part B attempts to provide a more comprehensive look at PAI-1 variation by 

performing analyses directed at the upper quartile (75th percentile) of the PAI-1 distribution to uncover 

novel variants with significant impact on this clinically relevant portion of the PAI-1 phenotypic 

distribution. Upper quartile regression analyses led to the discovery of significant associations 

between single variants in exostosin glycosyltransferase 2 (EXT2) and period circadian clock 3 

(PER3). The discovery of a significant association with PER3 in the upper quartile supports previous 

evidence that the circadian pathway associates with regulation of PAI-1 levels in Caucasian 
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populations as well as model organisms. This finding provides evidence that while the significance of 

the circadian pathway as a whole may be generalizable across Caucasian and African populations, 

the effect of specific genes may be population specific.  

In Chapter IV, we present a novel approach, Multi-lOcus based selection of Candidate genes 

(MOCA) that integrates quantitative Multifactor Dimensionality Reduction q(MDR) analysis into a 

pipeline that exploits the information gained from multi-locus association analyses to prioritize gene 

regions likely to harbor functional variants associated with PAi-1 levels. MOCA operates under the 

premise that multi-locus effects play a significant role in variation of PAI-1 levels and incorporating 

multi-locus association analyses into the prioritization of genes for further evaluation following single 

locus analyses will increase our power to detect functional variants and enhance our ability to make 

direct biological/mechanistic connections between discovered variants and PAI-1. Our approach 

revealed four significantly associated multi-locus effects that localized to four loci located on 

chromosomes 5,8,17, and 20 identifying 28 novel candidate genes for PAI-1. Evaluation of the nature 

of the associated multi-locus models is presented in this chapter as well. Additionally, we highlight the  

utility of our approach by comparing MOCA identified regions of interest to previously discovered 

quantitative trail loci (QTL) for various CVD traits and/or biomarkers known to effect PAI-1 levels.  We 

conclude Chapter IV with an example of the utility of the MOCA approach by presenting possible 

biological connections between the putative candidate genes identified by the region of interest on 

chromosome 5 and PAI-1.   
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CHAPTER II 

 

INTRODUCTION 

 

A. Introduction and Background 

 

A1. Cardiovascular disease and thrombosis 
 
 Cardiovascular disease (CVD) does not describe a single condition, but refers to a number of 

different diseases that affect the peripheral blood vessels and/or the heart, with the most common 

form of CVD being ischemic heart disease. Two common, and sometimes severe endpoints of CVD, 

are stroke and myocardial infarction (MI). A stroke is an obstruction of blood flow to the brain, while 

MI is an obstruction of blood flow to the heart. Although sometimes used interchangeably, stroke and 

MI are two different phenomena that can both be characterized by thrombosis. Thrombosis, 

stemming from the Greek word thrombos, meaning “to clump”, is defined as the formation of a blood 

clot in an undamaged blood vessel. There are two coagulation pathways that lead to thrombosis, the 

intrinsic and extrinsic coagulation pathways3. The intrinsic pathway is activated by trauma to the 

blood vessel which results in the exposure of plasma to a foreign substance; examples would be 

collagen from a damaged vascular wall or high molecular weight kininogen. The extrinsic pathway is 

activated by the exposure of plasma to tissue factor, an integral membrane protein found in non-

vascular cells, after the vessel wall has been damaged. Though the pathways differ in their initiation, 

they converge at the production of tissue factor Xa, a key member of the prothrombinase complex. 

Prothrombinase converts prothrombin to thrombin, which is an essential step in clot formation. 

Thrombin then converts fibrinogen to fibrin. It is fibrin that creates the mesh that binds the blood clot. 

Clot formation plays an important and necessary role in minimizing blood loss after vascular injury.  
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Figure 2-1. Intrinsic and Extrinsic Coagulation Pathways. Biomarkers involved in both intrinsic 
and extrinsic coagulation processes are presented. Picture adapted from Kohler et al 20008. 
 

 

Under normal conditions, coagulation (clot formation) is carefully balanced by the process of 

fibrinolysis. Fibrinolysis is the process by which the insoluble fibrin mesh in blood clots is degraded by 

plasmin. Fibrinolysis stops clots from remaining in the circulatory system where they might cause 

harm to the body. Clots have the potential to break off and travel through the blood stream potentially 

causing damage by blocking blood vessels, a process known as embolism. Thrombosis occurs when 

there is an imbalance between the processes of coagulation and fibrinolysis; this could mean that 

blood clots are forming inappropriately or that the clots formed are not being properly degraded.  
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A2. Tissue Plasminogen activator (t-PA), Plasminogen Activator Inhibitor 1 (PAI-1) and 

Fibrinolysis 

 Major thrombotic events may be characterized by an imbalance in the relationship between 

clot formation and clot degradation. This imbalance could be instigated by a decrease in fibrinolysis. 

The fibrinolytic pathway is largely mediated by the relationship between tissue plasminogen activator 

(t-pa) and plasminogen activator inhibitor 1 (PAI-1)3. Fibrinolysis is initiated with the release of t-pa 

from endothelial cells following injury and in response to the presence of thrombin. T-PA then 

converts plasminogen to plasmin by cleaving the Arg561-Val562 peptide bond. Plasmin then 

degrades the fibrin clot, and any intact fibrinogen, into fibrin degradation products.  

 

 
Figure 2-2. Key bioregulators of the fibrinolytic system. Summary of the action of t-PA and PAI-1 

in the regulation of the fibrinolytic process. Picture retrieved from Kohler et al 20008. 
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The fibrinolytic pathway is regulated by PAI-1, which prevents excessive fibrinolysis by 

inhibiting t-PA. PAI-1 is an acute phase reactant protein synthesized by endothelial cells and 

hepatocytes that inhibits the action of t-PA by binding to the molecule and forming a complex3. Since 

PAI-1 is the principal inhibitor of t-pa, as well as urinary plasminogen activator, it plays an integral role 

in the regulation of the fibrinolytic pathway. Fibrinolysis is an important and dynamic process that 

performs the dual function of preventing the extension of clots beyond the site of injury and degrading 

fibrin clots that are no longer needed. It has been suggested that impaired fibrinolysis may be related 

to the clinical evolution of CVD, particularly coronary artery disease9.  

 Due to their significant impact on the regulation of the fibrinolytic system, both plasma PAI-1 

and t-PA are often used as biomarkers for fibrinolysis and as measures of fibrinolytic activity. It was 

discovered that increased plasma t-PA indicated an inhibition of fibrinolysis10,11. This may seem 

counterintuitive, as t-PA initiates fibrinolysis. This paradox is easily explained by the fact that free t-PA 

released into the blood rapidly forms a complex with circulating PAI-1 and these complexes have a 

longer half-life compared to free t-PA; therefore assays of t-PA antigen are mostly measuring inactive 

t-PA/PAI-1 complexes12,13. For the aforementioned reasons, increased plasma t-pa is highly 

correlated with increased plasma PAI-1 levels; in order to reduce redundancy in our analyses, this 

dissertation will focus exclusively on PAI-1 measurements as an indicator of fibrinolytic activity, and 

as a quantitative trait in all subsequent analyses.  

 

A3. Plasminogen Activator Inhibitor – 1 and Cardiovascular Disease Risk and Severity 
 
 Studies have also shown PAI-1 levels to be related to adverse outcomes in CVD patients, as 

well as healthy individuals. High plasma PAI-1 levels have been shown in many studies to be 

associated with increased risk of CVD in the form of higher susceptibility to atherothrombotic 

diseases such as myocardial infarction and coronary artery disease14-16. One such prospective study, 

The Caerphilly Study, found baseline PAI-1 levels to be significantly associated with the occurrence 
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of cardiovascular events, with a hazard ratio of 1.24 (95%CI:1.05 – 1.46, p=0.013)14. In a case control 

study involving 520 acute coronary syndrome cases, and 520 age and gender matched controls, 

plasma PAI-1 concentration (fifth quintile vs. the first quintile) was shown to be a significant (OR 5.3, 

95%CI:1.2 – 23.8, p <0.05) and independent risk factor associated with the future occurrence of 

major adverse cardiac events16. Additionally, increased PAI-1 expression in human atherosclerotic 

lesions has been reported17.  

 

A4. Impact of genetic variation on Plasminogen Activator Inhibitor - 1 levels 

 There is clear evidence that genetic factors play a role in the variation of PAI-1 levels. 

Numerous twin studies have investigated the heritability of PAI-1, and although the exact estimates of 

heritability differ among the different studies, all reported heritability estimates have been significant. 

A twin study performed in a cohort consisting of 464 healthy twins estimated heritability of PAI-1 to be 

0.4418. A Swedish study estimated the heritability of PAI-1 antigen to be 0.4219, while yet another 

study lists PAI-1’s heritability at 0.7120. It has also been shown in twin studies that there are genetic 

factors that influence variance in PAI-1 that are shared with those that influence BMI and 

triglycerides. 

 In addition to strong evidence from twin studies that genetic factors play a role in the variance 

of PAI-1 levels, a genetic variant in the PAI-1 promoter region, the 4G/5G variant, has been shown to 

be associated with plasma levels of PAI-121-23. Additionally, in a meta-analysis comprising 18 studies 

performed by Tsantes et al., the 4G allele was shown to be significantly associated with venous 

thrombosis (OR=1.15, 95%CI:1.33 – 2.54)24. Although the 4G/5G allele is the most studied, and 

validated, polymorphism effecting variation in the expression of PAI-1, it has been estimated to only 

explain 1-3% of the genetic variance25-27. This modest estimate suggests that the majority of the 

genetic factors that play a role in the variation of plasma PAI-1 are as yet undiscovered. Indeed, the 

variation in PAI-1 may be attributed to epistasis, genes in other pathways, or gene-environment 
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interactions. Several candidate gene studies have reported genetic associations between variants in 

the renin-angiotensin and bradykinin systems that were significantly associated with plasma t-PA 

and/or PAI-1 levels22,28-30. After verifying the impact of the 4G/5G variant on PAI-1 levels, a recent 

meta-analysis identified three additional variants located in the aryl hydrocarbon receptor nuclear 

translocator-like (ARNTL), peroxisome proliferator-activated receptor gamma (PPARG), and intestinal 

mucin-like (MUC3) genes, respectively31.    

 

A5. Biological Effectors and Modifiers of  PAI-1 levels 

 The etiology behind the expression of PAI-1 is complex, and variation in plasma PAI-1 levels is 

likely to be influenced by numerous genetic and environmental factors. There are several 

environmental/biological factors that have been shown to influence PAI-1 levels; among these are 

alcohol use, body size, gender, the presence of insulin resistance, and triglycerides (Table 2-1).  

 

Table 2-1. Biological and Environmental Effectors/Modifiers of PAI-1 

Biological 
/Environmental Effector 

of PAI-1 
Nature of Impact on PAI-1 Evidence 

Alcohol consumption 
Increased alcohol consumption associates 
with increased PAI-1 

Djousse, L. et al. 200030, 
Pieters, M. et al. 201036, 
Mukamal, K. et al. 200126 

Body Size (obesity / 
BMI) 

Increased PAI-1 levels correlate with 
obesity 

Appel, S. et al. 200527; Kenny, 
S. et al. 201328, Berberoglu, M 
et al. 200629 

Insulin Resistance 
Increased PAI-1 levels are a hallmark of 
disease in insulin resistant patients 

Bastard, J. et al. 200038, Ridker, 
P. et al. 20047; Juhan-Vague, I. 
et al. 200040 

Gender 

Gender-specific effects have been 
discovered between genetic variants and 
PAI-1 levels; gender impacts PAI-1 
correlations with CVD biomarkers 

Asselbergs, F. et al. 200649, 

Harslund, J. 200748; 
Asselbergs, F. et al. 200750 

Age 
Increasing age is correlated with increased 
PAI-1 expression 

Sobel, B. et al. 200646; Cesari, 
M. et al. 201045; Ardite, E. et al. 

201247 

Triglycerides 
Triglycerides stimulate PAI-1 production, 
and may modify the impact of other factors 
on PAI-1 expression 

Pieters, M. et al. 201036; Ma, L. 
et al. 200435; Brown, N et al. 
200141 
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Alcohol consumption and obesity are two biological factors that have been shown in humans 

and model organisms to effect PAI-1 levels32-36. Heavy alcohol consumption, defined as greater than 

seven alcoholic beverages per week, is associated with higher levels of PAI-1; it has been postulated 

that alcohol may lower the fibrinolytic potential through the activation of RAS either as a direct effect 

of acetaldehyde or by the inhibition of vasopressin release caused by volume depletion32,37,38. Obesity 

has been shown to be associated with increased PAI-1 production, as fat cells are a major source of 

PAI-139. Interestingly, it seems that the distribution of fat plays a critical role in this increase as 

subcutaneous adipose tissue produces less PAI-1 than visceral adipose tissue. A study by Sartori et. 

al cited that the 5‘ 4G/5G variant associated with PAI-1 levels in patients with central, but not 

peripheral, obesity40. Although several studies have shown a correlation between PAI-1 levels and 

obesity, it still remains unclear whether PAI-I levels increase in response to the presence of obesity, 

or if PAI-1 is causative41.  

Similar to obesity and alcohol consumption, triglycerides and insulin resistance have also been 

shown to be correlated with or modify the expression of PAI-1 levels in both model organisms and 

humans41-48. Triglyceride rich lipoproteins have been shown to stimulate PAI-1 production in vivo, and 

PAI-1 has been found to correlate with increased triglycerides in both mice and humans41,42,49. Other 

studies revealed that the correlation between PAI-1 and triglyceride levels is heavily influenced by 

PAI-1 4G/5G variant genotype47. Triglyceride levels have also been shown to influence the 

relationship between alcohol consumption and PAI-142. Elevated PAI-1 levels are a hallmark of 

disease etiology in insulin resistant patients, and insulin resistance has long been considered to be a 

major modulator of PAI-1 expression; it has been suggested that PAI-1 may be the common link 

between obesity, insulin resistance and cardiovascular disease50.  
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Age and gender associate with and/or modify associations between PAI-1 and other biological 

and/or genetic factors28,51-57.  Pai-1 has been hypothesized to contribute to CVD in the elderly via the 

age-related development of a prothrombic state in the fibrinolytic system; further research in model 

organisms has shown that PAI-1 expression in the heart increases as a function of time independent 

of insulin resistance 51,52. Gender is a potent modifier of the relationship between PAI-1 and genetic 

and biological variants55,56. The biological factors mentioned in this subsection, as well as other 

common CVD risk factors such as BMI, cholesterol and diet, may modify or confound the effect of our 

genetic variants on plasma PAI-1 levels, if their influence on PAI-1 is not addressed. We have 

therefore adjusted our analyses to account for these factors to the extent that we are able.  

 

B. Description of Study Population and Previous Studies 

B1. Description of HeART Cohort 

 The Hypertension and ARterial Thrombosis (HeART) study is a population based cohort of 

3431 subjects, consisting of  2375 urban and 1056 rural residents, recruited from the Brong Ahafo 

regional capital of Sunyani, Ghana between 2002-200358. To date, the HeART cohort represents one 

of the largest population-based studies of inter-individual variation in plasma PAI-1 levels for any 

ethnic group in sub-Saharan Africa. The cohort is approximately 60% female and includes individuals 

between the ages of 18 and 80. Recruitment for the cohort was based on word-of-mouth, without 

regard to chronic disease status, and includes only unrelated individuals. Subjects were excluded 

from the study if they showed signs of acute illness, were less than 18 years of age, or were first or 

second degree relatives of someone already enrolled in the study. Morning blood samples were 

collected from all participants. Demographic and medical information was also collected, as well as 

multiple measures of CVD risk, including BMI, fasting lipids, and fasting glucose. A subset of 992 

urban individuals with PAI-1 measurements were previously selected for candidate gene analyses 

aimed at investigating the genetic effects of variants in the RAS on variation in PAI-1 levels28,57. For 
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this dissertation, a subset of 1152 urban individuals from the HeART cohort, which included the 992 

previously genotyped individuals, was selected as our study population.   

 

B2. Previous Studies of PAI-1 in the HeART Cohorts 

B2a. Gender specific effects of polymorphisms on plasma t-PA and PAI-1 levels 

Previous studies performed in the HeART cohort found that gender affected the association of 

polymorphisms from genes in the renin-angiotensin and fibrinolytic systems, as well as 

polymorphisms in the PAI-1 gene59. After adjustment for non-genetic factors, the most significant 

genetic association with PAI-1 levels in males was with the rs4646972(TPA I/D polymorphism) 

(p=0.014). Alternatively, in females rs1799768 (PAI-1 4G/5G promoter polymorphism) was the most 

significant SNP (p=0.001). Tests of homogeneity of regression also showed differential effects of BMI 

(p=0.032) and triglycerides (p=0.011) on plasma PAI-1 levels between males and females, further 

emphasizing the complexity of PAI-1 levels as a phenotype and highlighting the universal association 

modifying effects of gender on variation in PAI-1 levels.  

 

B2b. Epistatic effects of polymorphisms on plasma  PAI-1 levels 

 Previous studies in the HeART cohort investigating epistatic interactions between 

polymorphisms in the renin-angiotensin (REN) and fibrinolytic systems28.  This study found the most 

significant interactions associated with plasma PAI-1 levels to be rs1464816 (REN G6567T) and 

rs4646972 (TPA I/D) in males (p=0.032), and rs3730103 (REN T9435C) and rs4646972 (TPA I/D) in 

females (p=0.001). The two locus interaction terms explained as much as 2.6% of the variance in 

PAI-1 protein levels, measured by r2, as compared to previous single SNP analyses that explained 

less than 1.3% of the variance59. These results provided evidence of significant genetic effects that 

would not have been detected using single SNP analyses alone.  
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C. Hypothesis and Specific Aims 

 

Hypothesis: Common genetic variants are associated with variation in plasma PAI-1  

levels, and these effects can be uncovered via analyses at the single 

nucleotide polymorphism (SNP), multi-locus (SNP-SNP interactions) and 

gene levels.  

 

Specific Aim I. Identify significant associations between common SNPs and PAI-1 levels in the 

HeART Cohort. 

a. Identify significant single locus effects on median PAI-1 levels 

b. Identify significant single locus effects on the upper quartile of PAI-1 levels 

  The Illumina Infinium HumanExome chip will be supplemented with ~10,000 common SNPs 

chosen from based on putative association with PAI-1 variation, and used to genotype 1152 

individuals from the HeART cohort. Quantile regression analyses will be performed in the HeART 

cohort to identify significant genetic effects on the median and upper quartile of PAI-1 measurements. 

Ordinary Least Squares (OLS) regression analyses will be performed on SNPs showing evidence of 

significant effects identified through median regression analyses, and the sensitivity and specificity of 

the two tests will be compared. All regression analyses will be adjusted for gender, BMI, age, 

triglycerides, and genotype at the PAI-1 4G/5G promoter variant. Bonferroni correction will be used to 

correct for multiple testing bias. SNPInfo, a comprehensive bioinformatic web-based algorithm, will be 

used to predict the possible functional impact of associated SNPs. 

Specific Aim II. Presentation of a Novel Approach to incorporate multi-locus association 

signals into selection of Candidate genes for Prioritization in Future Studies 

a. Presentation and application of a novel approach, MOCA, to identify regions likely to harbor 

functional variants associated with phenotype 
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1. Evaluate and characterize significant intragenic interactions discovered as a result of 

the MOCA approach 

We present MOCA (Multi-lOcus based selection of Candidate genes), an novel approach that 

integrates quantitative multifactor dimensionality reduction (qMDR) analyses into a pipeline that 

exploits multi-locus association effects to identify genic regions predicted to harbor candidate genes 

with functional effects on PAI-1. MOCA operates under the premise that multi-locus association 

signals will “tag” candidate genes for prioritization more effectively than single variant signals. By 

incorporating qMDR analysis into our approach to generate multi-locus association signals, which we 

then assign to gene regions, we will be able to localize association signals to regions that encompass 

a few genes which we will then select to include in further analyses of PAI-1 as a necessary next step 

after single variant level analyses. Although the main aim of MOCA is to identify regions of interest to 

identify candidate genes, this approach also allows for the possibility of identifying significantly 

associating true (synergistic) epistatic effects. In the event that such effects are identified, we will 

evaluate and characterize these effects. This approach will provide novel information about the nature 

of the underlying genetic architecture of PAI-1 that will be used to  further elucidate genetic factors 

affecting variation in this potent CVD biomarker. 
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CHAPTER III 

 

EXAMINING SINGLE VARIANT EFFECTS ON MEDIAN AND ELEVEATED PAI-1 LEVELS IN A 

GHANIAN COHORT 

 

Overview parts A and B 

 PAI-1 is a major modulator of the fibrinolytic system, and is associated with cardiovascular 

disease (CVD) susceptibility and severity. Although heritability estimates for PAI-1 are large, the few 

genes associated with it explain only a small portion of inter-individual phenotypic variation. 

Additionally, most genetic studies of PAI-1 levels have been performed in European descent 

populations, and the few studies that have been performed in African populations assessed only a 

small number of variants. Almost all genetic studies have employed ordinary least squares (OLS) 

regression to assess the impact of genetic factors on mean PAI-1 levels. For studies of PAI-1 it has 

been standard practice to log-transform PAI-1 and employ OLS regression models to detect 

significant effects even when transforming the data does not normalize the distribution. In extremely 

large sample sizes (e.g., those used for meta-analyses) strong effects are still detectable using this 

approach. However, most single cohort genetic studies have moderate sample sizes, and it is 

probable that most single variants will have small to moderate effects on PAI-1 variation making OLS 

less than an ideal analytical strategy. 

In Chapter III, to address the inferential limitations of previous studies,  non-parametric 

methods were used to evaluate the effect of approximately 39,000 SNPs on PAI-1 levels in a 

Ghanaian cohort.  Part A investigates SNP effects on median PAI-1 levels using median regression, a 

non-parametric alternative to OLS. We also reassessed our significant associations using OLS to 

determine if violation of the normality assumption impacts findings in our data. Significant 

associations between non-synonymous SNPs and median PAI-1 were detected in arylsulfatase  B 
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(ARSB), carboxypeptidase A2 (CPA2), and leukocyte receptor cluster member 9 (LENG9).  We found 

that although both median regression and OLS returned comparable effect sizes, OLS models had 

universally higher standard error rates and larger p-values due to misspecification of the model; if 

inference had been based on OLS regression analyses our associated variants would not have been 

detected after correction for multiple testing.  

Elevated PAI-1 levels, in particular, have been shown to associate not only with susceptibility 

to CVD, but also with increased disease burden via recurrent adverse events.  Part B assesses the 

impact of SNP genotype on the upper quartile of PAI-1 distribution using quantile regression, a 

model-free alternative to OLS that does not assume a uniform effect of SNPs across the phenotypic 

distribution.  Nineteen SNPs were significantly associated with variation in the upper quartile. Of 

particular note was an association with rs10462021 (p= 2.07 x 10-6), a missense variant located in 

period circadian clock 3 (PER3) because a recent meta-analysis in Caucasian populations identified 

another circadian clock gene, aryl hydrocarbon receptor nuclear translocatior-line gene (ARNTL) 

significantly associated with PAI-1 levels.  There was no overlap between the variants that were 

significantly associated with median PAI-1 and those associated with the upper quartile of the 

distribution, revealing for the first time to our knowledge, the presence of quantile-specific effects on 

PAI-1 in an African cohort. 

These studies revealed novel associations with median and elevated PAI-1 levels , and 

provide evidence for the generalizability of the circadian pathway’s effect on PAI-1 levels. They also 

highlighted the utility of employing non-parametric methods when standard analytical methods are not 

appropriate for a particular study, and demonstrated the possible impact of model misspecification on 

statistical inference.  The latter may, at least partially, explain why moderately sized studies have 

been unable to identify the genetic variants responsible for the majority of the genetic impact on PAI-1 

variation. 
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A. Genetic Impact of common SNPs on Median PAI-1 levels in the HeART cohort 

 

Introduction 

 Cardiovascular disease (CVD) describes multiple conditions of the circulatory system 

that overlap in terms of environmental and genetic risk factors, symptoms, and disease etiology. It is 

responsible for approximately 48% of all non-communicable disease (NCD) related deaths 

worldwide1. Thrombosis is a major factor in the etiologies of several cardiovascular diseases, 

including myocardial infarction (MI) and stroke, and represents an excellent target for the prevention 

and treatment of this disease burden60,61.  Fibrinolysis, the dynamic process by which fibrin is cleaved 

by plasmin to promote clot degradation and inhibit thrombus formation, mediates thrombotic events62. 

The impairment of the normal fibrinolytic balance, due, at least in part, to increased plasminogen 

activator inhibitor-1 (PAI-1) levels predicts thrombotic risk and severity63. Although several studies of 

plasma PAI-1 levels indicate a positive correlation between increased PAI-1 and increased 

susceptibility to thromboembolism, atherosclerosis, myocardial infarction, and by proxy, most CVDs, 

the nature of the relationship between PAI-1 and CVD risk remains controversial, and as yet 

undefined5,64-76.  

PAI-1 is a biomarker of fibrinolytic activity, and its levels are heavily influenced by genetic 

variation6,7,77,78. The most studied, and to date, strongest single genetic variant impacting PAI-1 levels 

is the 4G/5G promoter polymorphism which has been shown in several studies to influence circulating 

PAI-1 levels in a dose dependent manner with carriers of the 4G allele exhibiting higher levels of 

mean circulating PAI-179. However, this variant alone does not account for all variation in PAI-1 levels 

attributed to genetic factors, and there is evidence that other variants, either in PAI-1 or in other 

genes, with more moderate effect sizes also play a significant role in the variation of PAI-1 levels79-81.  

The majority of studies aimed at uncovering the genetic factors affecting PAI-1 have been conducted 

in Caucasian and/or Asian populations, including several recent meta-analyses and GWAS 
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studies31,82,83. A few studies have been performed in African populations as well, most notably using 

individuals from the HeART Cohort, a population-based cohort from the Brong Ahafo region in 

Sunyani, Ghana28,48,57. The African based studies, however, were candidate gene analyses focused 

on the individual or combined impact of only a few single nucleotide polymorphisms (SNPs) selected 

based on a priori biological knowledge. This approach ensures focused attention on markers that are 

likely to have a significant effect on phenotype, but is unable to identify novel variants not previously 

known to affect PAI-1 variation.  

Another common, and possibly limiting, factor in all previously performed analyses is the use 

of standard linear regression, or ordinary least squares (OLS) regression, to determine the “overall” 

impact of SNP genotype on PAI-1 levels. This approach, though standard in genetic association 

studies, may not be the most appropriate analysis due to the highly skewed nature of the PAI-1 

distribution. The non-normality of the PAI-1 distribution in most analyzed cohorts also violates the 

assumption of normality required of standard linear regression84. Furthermore, the use of the mean as 

a measure of the overall behavior of the dependent variable in the presence of extreme outliers, 

another characteristic of the PAI-1 distribution, is also problematic as this may lead to incorrect 

inference85. A more appropriate measure of the overall behavior of the PAI-1 distribution in response 

to SNP genotype, is the median of the distribution. Median regression is a non-parametric method 

that parallels OLS regression, but is robust to non-normality, heteroskedasticity, and outliers in the 

phenotypic distribution, and measures the effect of SNP genotype on the median of the dependent 

variable as opposed to mean 84,86,87.  

 In this report, we evaluated the effect of SNP genotype on variation in PAI-1 levels using 

median regression analyses in a Ghanaian cohort genotyped for approximately 39,000 common 

SNPs. We also explicitly tested the effect of violation of OLS assumptions and model misspecification 

on statistical inference by performing complementary OLS regression analyses of variants 

significantly associating with PAI-1 in median regression analyses. We also employed 
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bioinformatic/data mining techniques to assess the putative functional impact of significant SNPs and 

present possible biological connections between significant loci and PAI-1 levels. 

 

Materials and Methods 

 

Subjects 

The Hypertension and ARterial Thrombosis (HeART) cohort consists of approximately 3400 

urban and rural residents of the Brong Ahafo regional capital of Sunyani, Ghana recruited between 

2002 and 2005, is one of the largest collections of PAI-1 measurement and lipid biomarker in a West 

African population, to date. HeART cohort ascertainment, DNA collection, biomarker measurement 

protocols, inclusion, and exclusion criteria have been previously described in detail elsewhere48.  Our  

study cohort consisted of 1105 unrelated urban individuals selected from the HeART cohort. 

Selection criteria for our cohort included 992 individuals who had been previously genotyped and 

assessed in PAI-1 genetic studies28,57 (n= 992) as well as an additional 113 subjects from the 90th 

percentile of the plasma PAI-1 distribution (urban residents only) of the total HeART cohort.  Inclusion 

criteria for the study cohort were the availability of a viable DNA sample and demographic /clinical 

data including age, body mass index (BMI), triglycerides and PAI-1 measurements; clinical and 

demographic data was directly measured as described by Williams et al48. 

 

Genotyping Scheme 

DNA from the study cohort was genotyped using the Illumina Infinium HumanExome BeadChip 

(Exome Chip) platform (Illumina, Inc., San Diego, CA). The Exome Chip provides focused coverage 

of the exonic regions of the genome using approximately 240,000 markers. This coverage was further 

supplemented by 8,439 common variants selected to provide focused coverage of target genes with 

previous evidence of association with variation in PAI-1 levels.  
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Quality Control Procedures 

PAI-1 measurement Quality Control Criteria 

As mentioned above specific protocols for biomarker measurement have been described 

elsewhere, protocols specific to PAI-1 measurement will be briefly summarized here. Due to the 

circadian rhythm defined variability in PAI-1 levels, PAI-1 concentrations were measured from blood 

samples collected between 8:00 and 10:00 AM local time. PAI-l levels were measured using a 

commercially available enzyme-linked immunoassay (TriniLIZE PAI-1 Antigen Assay, Tcoag, Bray, 

Ireland). The sensitivity of this assay is 0.5 ng/ml PAI-1; any measurements below this threshold were 

converted to 0.25 ng/ml PAI-1 (0.5 x test detection limit) as per the suggestion of the assay 

manufacturer. Duplicates were randomly assessed for quality assurance; for instances in which 

duplicate readings were concordant (within the same quintile of the PAI-1 distribution) an average 

value was determined for the specified sample. Non-concordant duplicate samples were reassessed; 

if concordance was not reached upon reassessment then the sample was removed from the study. 

 Study Participants and SNP Quality Control Criteria 

Study participants were evaluated for genotyping efficiency and completeness of demographic data 

and biomarker measurements. Subjects with genotyping efficiency less than 95% and/or  missing 

demographic and/or biomarker data were excluded from the study. After quality control procedures, 

1053 individuals (441 males, 612 females) remained. A total of 39,124 common variants (minor allele 

frequency (MAF) ≥ 0.05) markers were extracted from the Exome Chip genotype data. Quality control 

criteria for the selected common variants included genotyping efficiency ≥ 95% and Hardy-Weinberg 

equilibrium p value < 0.001. After quality control procedures were completed, 38,871 variants 

remained for inclusion in downstream analyses. All quality control procedures were carried out using 

the PLINK software package88. MAF and HWE p-values are presented for SNPs found to be 

significantly associated with median PAI-1 levels in Appendix Table 1.  
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Statistical Analysis 

Preliminary Analyses 

Family data was collected and utilized as a part of the inclusion criteria for all participants of 

the HeART cohort (individuals had to report that both parents and both sets of grandparents were 

native to Ghana), making the probability of population stratification on the basis of hidden 

substructure due to admixture low. However, as an added precaution, we explicitly tested for the 

presence of population stratification within our dataset using the STRUCTURE software program89. 

STRUCTURE analysis was performed using 8521 common variants genotyped in the HeART 

participants as well as the JPT+CHB, YRI, and CEU HapMap populations. STRUCTURE runs used 

an admixture model with correlated allele frequencies with a burn-in period of 8,000 runs with 500 

subsequent iterations. Individuals from the HapMap populations were assigned to their corresponding 

predetermined clusters and used as founder populations in the STRUCTURE analysis to detect 

possible admixture or misclassification of HeART participants. As expected, STRUCTURE analysis 

revealed no significant evidence of population stratification within our dataset Appendix Figure 1. 

Prior to association testing, the distributions of demographic and biological variables were 

assessed in males and females, separately, to determine if any significant differences existed 

between genders. These comparisons are presented in Table 3-1. Normality of continuous traits was 

evaluated using the Shapiro-Wilkes test (p < 0.05). For normally distributed continuous variables 

(Shapiro-Wilkes test p > 0.05) the Student’s t test was used to assess mean differences between 

genders. In cases of non-normality (Shapiro-Wilkes test p < 0.05) the Wilcoxon rank sum test was 

used. For discrete variables, such as genotype at the PAI-1 4G/5G promoter variant, the Chi-square 

test was used to determine if significant differences existed between genders. All aforementioned 

preliminary assessments were performed using the STATA 11 statistical package90.  
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Table 3-1. Gender-separated demographic and clinical characteristics. 

 
Males (n=441) Females (n=612) P-Value1 

Age (years) 44.02(12.47) 43.22(10.75) 0.523 

Body Mass Index (kg/m2)* 24.21(4.29) 27.08(5.44) <0.001 

Triglycerides (mg/dL)* 94.45(52.85) 93.89(56.24) 0.489 

serum PAI-1 levels (ng/mL)* 7.96(8.90) 8.84(11.02) 0.930 

PAI-1 4G/5G 
genotype 

4G/4G 20 34 

0.2642 4G/5G 108 171 

5G/5G 260 332 
 

*; mean (standard deviation) untransformed variables are presented 
1 
P-values are from the Wilcoxon Rank Sum test unless otherwise indicated. 

2 
P-values are derived from the Chi-square test of association. 

 

 Prior to association testing, the distribution of PAI-1 levels were assessed for normality and 

found to be non-normal (Shapiro-Wilkes test p < 0.001).  Non-normality of the distribution persisted 

after the data was log-transformed. Graphical presentation of the nature of the distribution of PAI-1 

measurements (ng/ml) before and after log-transformation in our study cohort is presented in Figures 

3-1a. and 3-1b.  
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Figure 3-1a. Nature of the PAI-1 Distribution in the HeART Cohort. 

 
 
 
 
 

Figure 3-1b. Nature of the PAI-1 Distribution in the HeART Cohort after Log-Transformation.  
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 Although log-transformation was unable to normalize the PAI-1 distribution in our cohort, log 

transformed PAI-1 measurements were still used as the dependent variable in our analyses for two 

reasons 1.) to maintain the standard currently employed  in the field, and 2.) because the non-

parametric median regression analyses that will be used for association analyses is invariant to 

monotonic transformations (i.e. logarithmic transformation)85. 

  

Median Regression Analysis   

 The non-normal and heavily skewed nature of the PAI-1 distribution in our cohort, which 

persisted after log-transformation, violates the assumption of normality characteristic of OLS 

regression85.  This violation can cause model estimates to be distorted and ultimately lead to incorrect 

model inference. Therefore, median regression was used as an alternative. Median regression is a 

non-parametric regression method that is robust to deviations from normality and the presence of 

extreme values and heteroskedasticity in the data84. Generally defined, there are two main 

differences between linear regression and median regression. Linear regression uses linear methods 

to minimize the sum of the squared error and describes the impact of the independent variable(s) on 

the mean of the dependent variable, while median regression minimizes the sum of the absolute 

value of the error term and assesses the median of the dependent variable87. 

To investigate significant associations between common variants from the ExomeChip and log-

transformed PAI-1 levels, median regression analyses were performed using the quantreg package in 

the R software suite91. Regression models were adjusted for age, gender, BMI, triglycerides, and 

genotype at the PAI-1 4G/5G variant. Triglyceride levels were log transformed prior to model inclusion 

because the raw measures were not normally distributed (Shapiro-Wilkes test p < 0.05). Single 

variant results were visualized using Manhattan plots created using the qqplots package in R92. In 

instances where a significant association was found between single variants and PAI-1, enhanced 

images of the regions proximal to the associating variants were generated using the LocusZoom 
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online tool93. A significant number of variants in our dataset were in moderate to high linkage 

disequilibrium (LD), violating the assumption of independence employed by the standard Bonferroni 

correction used to control for multiple testing; this would have made the test overly conservative in 

our dataset. As an alternative, False Discovery Rate (FDR) was used to correct for multiple testing, 

and a q of 0.1 was used to determine the FDR threshold value94. A total of 38,871 single SNP 

association tests were performed; with q=0.1 the FDR significance threshold for this magnitude of 

tests is p< 2.57x10-6.   

Median regression has been shown to exhibit greater sensitivity in detecting linear and non-

linear effects than its parametric counterpart, OLS regression; particularly in instances of smaller 

effect sizes85. In order to explicitly test this phenomenon in our study, we constructed OLS regression 

models to evaluate the reported associations for SNPs that were revealed to be significant by median 

regression. OLS regression models were adjusted for age, gender, BMI, triglycerides, and genotype 

at the PAI-1 4G/5G variant. OLS regression analyses were performed in STATA1190. 

SNPs were coded additively to test the effect of the minor allele for all regression models. In 

cases where there were fewer than five individuals in a genotype group, SNPs were coded 

dominantly for the effect of the minor allele; the homozygous minor and heterozygote genotype 

groups were combined into one class and compared to the homozygous major genotype. SNP coding 

and genotypic distributions are outlined in further detail in Appendix Table 2.  

 

Bioinformatic / Data Mining Investigation of Associating markers 

Information from bioinformatic / data mining analyses aimed at determining possible functional 

consequences associated with significant variants was assessed with SNPinfo95. SNPinfo is a 

comprehensive web-based database that incorporates several independent algorithms to provide 

functional predictions for specified genetic variants. Specifically, the Function SNP Prediction 

(FuncPred) pipeline in SNPinfo incorporates the usage of several software tools/web servers such as 
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PolyPhen96, SNPs3D97, MATCH98, and ESEfinder99 to assess the possibility that assessed SNPs may 

affect biological function (i.e. protein structure/stability, exon splicing, transcription, etc.).    

 

Results 

 

Median Regression Analyses 

 Three non-synonymous single nucleotide polymorphisms (SNPs) remained significantly 

associated with circulating PAI-1 levels after both FDR and Bonferroni correction. These were 

rs1071598 (p = 1.09 x 10-7), rs61997065 (p = 3.56 x 10-7), and rs10406453 (p=2.58 x 10-7), located 

on chromosomes 5, 7, and 19, respectively (Table 3-2, Figure 3-2). Of the three significantly 

associated variants, rs1071598, a missense SNP located in the arylsulfatase B (ARSB) gene, and 

rs10406543, a missense variant in leukocyte receptor cluster member 9 (LENG9) displayed a similar 

trend on median PAI-1 levels (rs1071598 β = -0.442, rs10406543 β = -0.467) (Table 3-3). In contrast 

rs61997065, in carboxypeptidase A2 (CPA2), displayed a strong positive effect on median PAI-1 

levels associated with increased copies of the minor allele (β = 0.503) (Table 3-3 ). With the 

exception of rs10406453 on LENG8, none of the three significantly associated variants were in high 

LD with nearby markers (Figures 3-3a-c). 
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Table 3-2. Median Regression Results for Single Variant association with plasma PAI-1 levels 

Chr. Gene SNP Beta1 SE2 

95% Confidence 
Interval P-value 

LL UL 

4 SLC7A11 rs4479754 -0.293 0.064 -0.418 -0.168 4.67E-06 

5 ARSB rs1071598 -0.442 0.083 -0.604 -0.280 1.09E-07* 

7 CPA2 rs61997065 0.503 0.098 0.311 0.695 3.56E-07* 

19 LENG9 rs10406453 -0.467 0.090 -0.643 -0.290 2.58E-07* 

19 LENG8 rs1035451 -0.375 0.080 -0.532 -0.219 2.90E-06 
 

Results that remained significant after FDR correction are highlighted in bold; only a subset of significant results are presented 
above (p-value ≤ 10

-5
) 

 

1
Beta coefficient from median regression model represents the effect of the minor allele; model covariates: age, gender, BMI, 

triglycerides, and PAI1 4G/5G variant genotype. 
2
SE; Standard error; robust standard errors are reported above. 

LL= 95% Confidence Interval lower limit; UL= 95% Confidence Interval upper limit 
*Effect remained significant after Bonferroni correction (threshold = 1.29E-06) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



28 
 

Figure 3-2. Manhattan Plot of SNP Association Analysis with Median plasma PAI-1 Levels. 

Note: Only markers on chromosomes 1-22 are presented above; regions from the X chromosome, Y chromosome, pseudo-
autosomal region of the X chromosome, and mitochondrial markers have been excluded. Statistically significant markers are 
labeled in bold. Red Line represents FDR significance threshold (2.57 x 10

-6
) 
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Figure 3-3a. LocusZoom visualization of the region proximal to rs1071598 located in ARSB 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3-3b. LocusZoom visualization of the region proximal to rs61997065 located in CPA2 

 

rs1071598  
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Figure 3-3c. LocusZoom visualization of the region proximal to rs10406453 located in LENG8 

 
Note(Figures 3-3a-c): Linkage disequilibrium key is only shown for regions in which there are 
genotyped variants in at least marginal LD with the associated variant. 
 

 

OLS assessment of Significant Median Regression Associations 

 An important assumption of standard linear regression is that the dependent variable is 

normally distributed. Due to the characteristically skewed nature of PAI-1 distributions evident in 

several studied populations, PAI-1 is generally log-transformed in an attempt to bring the distribution 

closer to normality31. To explicitly test whether there was an impact on model inference using log-

transformed PAI-1 as the dependent variable in OLS, we tested the five SNPs discovered to be 

significantly or marginally associated (p < 10-5) with PAI-1 through median regression using standard 

linear regression models adjusted for age, gender, BMI, triglycerides, and PAI-1 4G/5G variant 

genotype (Table 3-3). For each SNP the reported effects trended in the same direction as that shown 
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in median regression; however in every model, the standard error reported by OLS was greater than 

that reported by median regression. This resulted in larger 95% confidence intervals and larger p-

values reported for each SNP, indicating the increased sensitivity of median regression in a skewed 

data set (Table 3-3). As further proof of principal, we also decided to evaluate the genetic impact of 

the PAI1 4G5G promoter polymorphism (rs1799768) which has been shown in multiple populations to 

have a strong impact on PAI-1 levels (REF). The effect of rs1799768 is linear in nature, and as 

expected, association results from regression models using linear (rs1799768 effect size: 0.25; p-

value: 1.30 x 10-4) and median (rs1799768 effect size: 0.27; p-value: 1.84 x 10-4) were highly 

concordant. 

 

Table 3-3. Corresponding OLS Results for SNPs marginally/significantly associated with 

Median PAI-1 levels.  

Chr. Gene SNP Beta1 SE2 

95% Confidence 
Interval P-value 

LL UL 

4 SLC7A11 rs4479754 0.233 0.062 -0.356 -0.111 2.28E-04 

5 ARSB rs1071598 -0.429 0.142 -0.708 -0.151 0.003 

7 CPA2 rs61997065 0.376 0.137 0.107 0.645 0.006 

19 LENG9 rs10406453 -0.253 0.095 -0.434 -0.065 0.008 

19 LENG8 rs1035451 -0.326 0.107 -0.535 -0.117 0.002 
 

Results that remained significant after FDR correction are highlighted in bold. 
 

1
Beta coefficient from median regression model represents the effect of the minor allele; model covariates: age, gender, BMI, 

triglycerides, and PAI1 4G/5G variant genotype. 
2
SE; Standard error; robust standard errors are reported above. 

LL= 95% Confidence Interval lower limit; UL= 95% Confidence Interval upper limit 
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Discussion 

Susceptibility to major thrombotic events is increased by unbalanced or impaired fibrinolysis 

which is heavily impacted by variation in PAI-1 levels. We hypothesized that common variants 

significantly impact inter-individual variation in PAI-1 levels. Our results identified three novel variants 

that remained significantly associated with median PAI-1 after adjustment for environmental 

covariates and correction for multiple testing. We also explicitly tested the effect of assessing log-

transformed PAI-1 levels, where transformation did not bring the distribution to normality, in a 

moderately sized study cohort. We revealed a significant impact on model inference due to the 

violation of key assumptions of OLS regression and misspecification of the model; if OLS regression 

had been employed as our primary analytical method as it is in many studies of PAI-1 levels we 

would not have discovered key associations with SNPs that may alter the structure or function of 

genes with plausible biological connections to PAI-1. 

Of the three SNPs that associated with median PAI-1, rs1071598 was the most significant. 

Located within the fourth exon of ARSB, rs1071518 is responsible for a valine to methionine amino 

acid change at position 376 (V376M) that is classified as probably benign by PolyPhen (algorithm 

within SNPInfo) in terms of its effect on ARSB protein function. Although there is no strong evidence 

that this SNP affects ARSB protein function, the V376M substitution may have a potentially significant 

effect on structural stability. The substitution of a methionine residue for valine is predicted to cause 

over packing of protein cores as methionine is a much larger residue than valine, and may be of 

importance for ARSB protein stability. SNPInfo also revealed that rs1071598 is located within two 

base pairs of a putative exon splice enhancer motif, perhaps affecting the relative frequency of ARSB 

splice variants.   

ARSB has been implicated in the mediation of reactive oxidative species (ROS) production 

and the activation of ROS-mediated inflammation cascades through interaction with Carrageenan 

(CGN). CGN is known to induce inflammatory responses in mammals and has been used in model 
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organisms to assess anti-inflammatory therapies100. There is also evidence that ARSB has the ability 

to both replicate and mediate the effects of hypoxia in human tissue101. PAI-1 was recently identified 

as a hypoxia inducible gene, and has long been established as an inflammatory biomarker102. The 

mutual relationship with inflammatory response between ARSB and PAI-1 presents a potential 

connection between genetic variants located in ARSB and PAI-1 levels. 

The CPA2 variant, rs61997065, the only significant association with increased median PAI-1, 

causes a valine to isoleucine substitution at position 67 (V67I). This SNP is proximal to a predicted 

exon splice enhancer motif, indicating a possible biological role in exon splicing. CPA2 is a digestive 

exopeptidase found primarily in the pancreas with evidence of expression in extrapancreatic tissues, 

including the brain, in both humans and rats103,104. Previous studies revealed a possible regulatory 

role of extrapancreatic CPA2 in the renin-angiotensin system (RAS) via differential processing of 

Angiotensin I 105,106. There are multiple sources of evidence for functional links between the RAS and 

the fibrinolytic system in humans107-112. Additionally, genetic variants of the RAS have been previously 

discovered to be associated with mean PAI-1 levels in Caucasian and African populations 28,29,55,57,79.  

Finally, rs61997065 located in the only exon of LENG9, causes an amino acid substitution 

from histidine to arginine at position 153 (H153R) that is predicted to have benign effect on protein 

function.  LENG9 encodes a protein that is a part of the leukocyte receptor complex (LRC), an 

extended gene region on chromosome 19 that is comprised of a large set of genes that encode 

immunoglobulin superfamily receptors 113. Although LENG9 has been mapped to the LRC, its function 

has not been explicitly investigated, and the relationship between variation at this locus and PAI-1 

remains unclear, making the interpretation of this association difficult.  

Although clearly impacted by genetic variation, PAI-1 levels have a complex genetic 

architecture that can be revealed using a variety of analytical tools and by comparing diverse 

populations. Our study identified novel variants associated with PAI-1 levels overall, and to our 

knowledge is the only study to interrogate a large number of SNP effects on PAI-1 levels in an African 
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population.  We also explicitly show that this approach is better able to identify significant 

associations . Standard regression may be appropriate for studies with extremely large sample sizes, 

such as those seen in meta-analyses, when some model assumptions are violated. For individual 

studies with modest sample sizes such as ours, and a number of other previous studies of PAI-1 

levels in various populations, the impact of performing “standard” analyses when they are not the 

most appropriate for that specific study can be significant. If we had only employed OLS regression in 

our study, then the novel variants that we discovered, several of which had predicted functional 

impact in genes with plausible biological ties to PAI-1, would not have passed multiple testing 

correction. With the heavy emphasis on controlling Type I error (false positives) by using p-values for 

model inference, it is highly likely that these effects would not only have been missed in this study but 

also may have been excluded from future studies114. 
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B. Genetic Impact of common SNPs on the Upper Quartile of the PAI-1 Distribution 

 

Introduction 

 While median regression is superior to OLS regression in the context of our study population, 

as demonstrated by the studies performed in part A of this chapter, both analyses assume that the 

relationship between SNP genotype and PAI-1 variation is uniform across the phenotypic distribution. 

There is no theoretical justification or prior knowledge to support this assumption, and recent 

evidence from genetic studies of other biological traits highlight the possibility that genetic variants 

exhibit quantile-specific effects 115-117. The idea of variable effects of genetic variants on different 

subsets of the phenotypic distribution has begun to be evaluated in genetics studies over the past few 

years. One such study design employed by geneticists involves sampling from the extremes or “tails” 

of the phenotypic distribution to maximize the probability of finding associations.  This study design 

ignores any possibility of non-uniform SNP effects across the phenotypic distribution, but is intended 

to serve two other purposes:  1) it increases the power of statistical tests to detect associating 

variants by amplifying any possible genetic signals, and 2) it allows for the identification of variants 

that have a significant effect on individuals with the most severe affliction. This latter point may not, 

however, generalize to the impact of genetic variation on the phenotype as a whole.  

Quantile regression provides direct estimation of genetic effects on specified regions of the 

phenotypic distribution, and when targeted to the extremes of the phenotypic distribution, operates 

under the same premise of extreme sampling85. The utility and versatility of quantile regression is 

especially highlighted in instances where extremes of a phenotypic distribution are correlated with a 

particular clinical endpoint, such as in the case of plasma PAI-1 levels. Elevated PAI-1 levels are 

associated with CVD susceptibility and risk of adverse events4,46,65; therefore, evaluation of the 

relationship between SNP genotypes and PAI-1 levels that is not limited to the average of the 

phenotypic distribution may provide novel clinically relevant information. 
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To provide comprehensive evaluation of the impact of genetic variants on a clinically relevant 

portion of the PAI-1 distribution, we performed quantile regression targeting the upper quartile of PAI-

1 measurements. We then compared our results to those outlined in part A of this chapter to 

determine if significantly associating effects on the upper quartile were quantile-specific, and used 

bioinformatic data mining techniques to predict the functional impact of discovered associations.     

 

Materials and Methods 

 

Subjects  

 A detailed description of subject recruitment, and ascertainment of demographic data and 

biomarker measurements can be found in Chapter III, part A.  

 

Genotyping Scheme 

 Study cohort genotyping protocols are described in detail in Chapter III, part A.  

 

Quality Control Procedures 

 Quality control procedures pertaining to preliminary processing of  PAI-1 levels, assessment of 

DNA quality and genotyping performance are explicitly outlined in Chapter III, part A. Briefly, quality 

control thresholds for study inclusion were genotyping efficiency ≥ 95% (subjects and SNPs), MAF ≥ 

0.05. Quality control exclusion criterion was a HWE p < 0.001.  MAF and HWE p-values of SNPs 

significantly associated with the upper quartile of PAI-1 are presented in Appendix Table 3. 
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Statistical analysis 

Preliminary Analyses 

Preliminary analyses aimed at assessing differences in demographic and clinical factors 

between the genders, as well as the nature of the PAI-1 distribution both before and after log-

transformation are presented in Chapter III, part A. As in the analyses performed in Chapter  III, part 

A, log-transformed PAI-1 levels will be used as the dependent variable in this study. 

 

Upper Quartile Regression 

Quantile regression has become increasingly popular in human genetics studies as it provides a non-

parametric method, invariant to logarithmic transformations of data, which can incorporate covariate 

adjustment into analyses of the effects of genetic variants. Recent applications of quantile regression 

at the extremes of the phenotypic distribution in other complex traits suggest that the impact of 

genetic variants on phenotype may be different, and in some cases stronger, depending on the 

quantile of the distribution being assessed85,118. Because the upper extremes of the PAI-1 distribution 

have been shown in previous studies to associate with clinical outcomes, we performed upper 

quartile regression analyses to assess the impact of single variants within this target region of the 

PAI-1 distribution.  

Quantile regression analyses, with robust standard errors, were performed using the quantreg 

package in R on the upper quartile of the PAI-1 distribution92. Regression models were adjusted for 

age, gender, BMI, triglycerides, and PAI-1 4G/5G variant genotype. Results were visualized via 

Manhattan plots created using the qqplots package in R92. SNPs were coded as described above 

(Chapter III, part A, Statistical analysis sub-section). Genotypic distribution of SNPs found to be 

significantly associated with the upper quartile are presented in Appendix Table 4. An FDR threshold 

of p < 2.57x10-6 was calculated as described in Chapter III, part A and used to determine statistical 

significance. 
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For gene regions that were found to contain more than one associating variant that passed 

multiple testing correction, pairwise LD was assessed between associating markers in this region 

using Haploview119.  

 

Bioinformatic / Data Mining Investigation of Associating markers 

Significant variants were evaluated for putative functional consequences using the web-based 

SNPInfo database95. The specific algorithms within the program that were utilized in this study are 

fully described in Chapter III, part A. 

 

Results 

 

Quantile regression analyses were performed in the upper quartile (75th percentile) of the PAI-

1 distribution. Analyses were adjusted for gender, age, BMI, triglycerides, and 4G/5G variant 

genotype. Nineteen variants were significant after correction for multiple testing (Table 3-4, Figure 3-

3).  

The most significant effect in the upper quartile of the PAI-1 distribution was due to rs4755779 

located on chromosome 11 (p= 1.44 x 10-10), while the strongest positive and negative effects on PAI-

1 were due to rs10462021 (β = -0.434) located on chromosome 1, and rs116307792 (β =0.249) 

located on chromosome 3, respectively (Table 3-4). Of note, a 72.6kb region on chromosome 11 

containing both the pleckstrin homology-like domain, family B, member 1 (PHLDB1) and trehalase 

(TREH) genes (PHLDB1/TREH gene region) harbored three SNPS that were significantly associated 

with PAI-1 in the upper quartile; two of which, rs7389 and rs519982, remained significant after 

correction for multiple testing.   

 



39 
 

 

Table 3-4. Upper Quartile Regression Results for Single Variant association with PAI-1 levels 
 

Chr. Gene SNP Beta1 SE2 

95% Confidence  
Interval P-value 

LL UL 

1 COL16A1 rs72887331 -0.277 0.053 -0.381 -0.172 2.64E-07* 

1 FHAD1 rs12126178 -0.133 0.026 -0.184 -0.083 2.64E-07* 

1 PER3 rs10462021 -0.434 0.091 -0.613 -0.256 2.07E-06 

2 PLECKHB2 rs6713972 -0.234 0.037 -0.308 -0.161 5.14E-10* 

3 -- rs13314993 0.212 0.041 0.132 0.293 2.85E-07* 

3 -- rs33483 0.202 0.045 0.113 0.291 9.48E-06 

3 SLC15A2 rs116307792 0.249 0.047 0.158 0.340 1.08E-07* 

5 ADAMTS12 rs61757473 -0.375 0.063 -0.500 -0.252 3.26E-09* 

5 RAPGEF6 rs61757473 -0.178 0.039 -0.254 -0.103 4.43E-06 

6 TAGAP rs35263580 -0.198 0.033 -0.263 -0.133 4.14E-09* 

7 -- rs2023783 -0.432 0.079 -0.586 -0.278 4.97E-08* 

9 DBH rs4531 -0.195 0.038 -0.270 -0.120 4.19E-07* 

9 NMRK1 rs35472028 -0.274 0.059 -0.391 -0.158 4.19E-06 

11 EXT2 rs4755779 -0.213 0.033 -0.277 -0.148 1.44E-10* 

11 

PHLDB1 / TREH rs7389 -0.252 0.049 -0.349 -0.155 3.70E-07* 
PHLDB1 / TREH rs2077173 -0.256 0.055 -0.363 -0.149 3.05E-06 

TREH rs519982 -0.259 0.051 -0.360 -0.158 5.75E-07* 

12 OR1OP1 rs76940436 -0.268 0.046 -0.359 -0.177 1.00E-08* 

12 P2RX7 rs34219304 -0.302 0.062 -0.423 -0.181 1.09E-06* 

14 FAM161B rs34834232 -0.258 0.053 -0.361 -0.155 1.13E-06* 

14 NID2 rs2273430 -0.239 0.050 -0.338 -0.141 2.32E-06 

16 C1QTNF8 rs73494080 -0.283 0.057 -0.395 -0.170 9.82E-07* 

17 -- rs4796217 -0.211 0.046 -0.301 -0.121 4.94E-06 

17 CEP95 rs9910506 -0.327 0.066 -0.457 -0.198 8.70E-07* 

17 SECTM1 rs113432525 -0.276 0.060 -0.394 -0.157 5.63E-06 

19 ERVV-1 rs10403404 -0.201 0.045 -0.289 -0.114 7.60E-06 

19 PDE4C rs1444689 0.224 0.050 0.125 0.322 9.16E-06 

22 C22orf43 rs75824255 0.185 0.040 0.106 0.263 4.92E-06 
 

Results that remained significant after FDR correction are highlighted in bold; only a subset of significant results are presented 
above (p-value ≤ 10

-6
) 

 

1
Beta coefficient from median regression model represents the effect of the minor allele; model covariates: age, gender, BMI, 

triglycerides, and PAI1 4G/5G variant genotype. 
2
SE; Standard error; robust standard errors are reported above. 

LL= 95% Confidence Interval lower limit; UL= 95% Confidence Interval upper limit 

*Effect remained significant after Bonferroni correction (threshold = 1.29E-06) 
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Figure 3-4. Manhattan Plot of SNP Association Analysis with Upper Quartile of PAI-1 

distribution  

 
Note: Only markers on chromosomes 1-22 are presented above; regions from the X chromosome, Y chromosome, pseudo-
autosomal region of the X chromosome, and mitochondrial markers have been excluded. The three most significant markers are 
labeled in bold. Red Line represents FDR significance threshold (2.57 x 10

-6
). Loci with more than one significant variant are 

signified by a box. Noteworthy significant associations are labeled in bold. 
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Discussion 

Upper quartile analyses revealed 19 associating variants; of particular note among these 

associating markers were 1.)  two non-synonymous SNPs located in genes with a credible 

connections to PAI-1, rs4755779 in EXT2 and rs10462021 in PER3, respectively, and 2.) three SNPs 

located in the PHLBD1/TREH gene region on chromosome 11.  

The EXT2 SNP, rs4755779, is a missense variant that causes a methionine to valine 

substitution at position 42 (M42V) predicted to have a benign effect on protein function by SNPinfo. 

EXT2 encodes a protein involved in heparin sulfate biosynthesis, and has been associated with 

hereditary multiple exostoses and Type 2 diabetes120-122. There is a plausible biological connection 

between EXT2 and PAI-1 via heparin-binding growth factors (HBGF); HBGFs have been implicated in 

the modulation of PAI-1 expression. In particular, HBGF-1 has been shown to inhibit PAI-1 

expression in human umbilical vein endothelial cells123.   

 Rs10462021, a missense variant in PER3 responsible for a histidine to arginine 

substitution at position 1149 (H1139R), is predicted to have an effect on protein function although the 

nature and mechanism of this effect remains unclear. PER3 is a member of the circadian rhythm 

pathway and has been shown to affect inflammatory response through increasing the secretion of 

inflammatory cytokines124. Previous studies in model organisms also report an association between 

PER3 and susceptibility to CVD; specifically, transgenic PER3 knockout mice show increased 

susceptibility to arteriosclerotic disease125. The identification of rs10462021 in PER3 is particularly 

noteworthy due to the recent discovery of variants in another prominent member of the circadian 

rhythm pathway, aryl hydrocarbon receptor nuclear translocator-like gene (ARNTL), that are 

significantly associated with plasma PAI-1 levels in a recent meta-analysis performed in Caucasians 

31. PER3 and ARNTL are major regulators of the circadian clock mechanism, a transcriptional timing 

apparatus governed by multiple positive and negative feedback loops126 (Figure 3-4). The interaction 
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between the PER3/CRY and ARTNL/CLOCK heterodimers is particularly noteworthy due to the 

substantial evidence of activation of the PAI-1 promoter by ARNTL/CLOCK and its direct impact on 

PAI-1 expression81,127. 

 

Figure 3-5. Schematic of the Circadian Rhythm Pathway. 

 
Note: Figure above was adapted from Stow et al. 2011

128
                                  . 

 Significantly associated with mean PAI-1 levels in Caucasian populations 
 Significantly associated with PAI-1 levels in the current study of Ghanaians 

 

The discovery of significantly associated variants in two separate genes, ARNTL and PER3, 

belonging to the same biological pathway in both African and Caucasian populations highlights the 

possibility of population-specific vs. universal gene effects. The individual gene effects of PER3 and 

ARNTL on PAI-1 variation may be population specific, but the involvement of the circadian rhythm 

pathway may be generalizable. A difference in allele and genotype frequencies at the PER3 variant, 

rs10462021, may be responsible, in part, for a population-specific effect on PAI-1 levels at this locus. 

A previous study by Ciarleglio et al. investigating patterns of genetic variation in human circadian 

rhythm genes revealed a significant difference in allelic and genotypic distributions of rs10462021 
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between Ghanaian (some of which overlapped with our cohort) and European American (EA) 

participants; the A allele was more prevalent in the Ghanaian population (freq. = 0.96) than in the 

European American population (freq. = 0.83) 129. There was no significant  difference between allelic 

or genotypic frequencies for this variant between Ghanaian and African American participants129. 

These results indicate that, although there may be population-specific gene effects, these effects may 

function through a common physiological pathway.  

In addition to uncovering associations with variants in several novel genes, a 72.6kb region on 

chromosome 11, containing two genes PHLBDI and TREH, contained multiple variants associated 

with the upper quartile of PAI-1. Of the three variants identified in the PHLDB1/TREH gene region, 

two SNPs, rs519982 and rs7389, passed correction for multiple testing.  These three SNPS are all in 

high linkage disequilibrium (LD) with each other (0.94 < r2 < 0.97), indicating that these variants 

represent a single association signal. Therefore, functional predictions are virtually impossible. 

However, we can speculate based on the putative individual SNP functions. Rs519982 is located in a 

region predicted to contain a transcription factor binding motif 14.9kb upstream of the TREH start 

codon. Its predicted location in a transcription factor binding site proximal to the TREH gene boundary 

may have functional implications as variation at comparable loci have the potential to effect gene 

expression. The second SNP in the PHLDB1/TREH gene region, rs7389, is a located in the 3’ UTR of 

PHLDB1 that is predicted to affect microRNA (miRNA) binding site activity; miRNAs are single 

stranded RNA molecules that can inhibit protein translation130. Although there is little evidence of a 

direct connection between TREH/PHLBD1 and PAI-1, the three genes do share some overlapping 

characteristics, as well as disease associations. Similar to PAI-1, TREH has been identified as a 

stress response gene and has been shown to associate with susceptibility to Type 2 diabetes131-134. 

Likewise, both PHLDB1 and PAI-1 have been implicated in the etiology of glioma135,136.  

Elevated PAI-1 levels, in particular, are associated with increased susceptibility to CVD and in 

some cases severity of disease2,4,137. Performing upper quartile analyses allowed an explicit test of 
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the association between single variants and elevated PAI-1 levels and revealed novel associations 

which did not overlap with the significant effects on median PAI-1 presented in Chapter III, part A, 

demonstrating the quantile-specific genotype-phenotype relationships between SNPs and variation in 

PAI-1. Performing upper quartile analyses provided us with additional insight into a clinically relevant 

subset of the PAI-1 distribution, which has been understudied, especially in West African populations. 

Increasing our understanding of the impact of genetic variation on PAI-1 levels at the higher end of 

the distribution may aid in the development of targeted therapies that may not be effective in the 

general population, but will have a significant impact on a subset of the population already at 

increased risk of CVD. Additionally, the discovery of PER3’s association with upper quartile PAI-1 

levels provides further evidence not only of the involvement of circadian pathway members in PAI-1 

regulation, but also indicates that the effects of the circadian pathway may be generalizable between 

Caucasian and West African populations, even if the specific gene effects differ.  
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CHAPTER IV 

 

PRESENTATION OF A NOVEL APPROACH TO IDENTIFY CANDIDATE GENES BASED ON 

MULTI-LOCUS ASSOCIATION SIGNALS 

 

Overview 

Identification of candidate genes likely to harbor functional variants that impact phenotype is a 

logical next step in unraveling the convoluted interplay between genetic variants that characterize 

complex disease. We present a novel approach that incorporates standard gene prioritization 

methods from GWAS, candidate gene, and QTL mapping study designs that can be applied to SNP 

level data to aid in the selection of candidate genes likely to harbor functional variants with biological 

connections with a given phenotype. We evaluated our results to find pairwise models that were 

identified as the “best” model for multiple gene regions; the summation of these gene regions defines 

our new loci of interest, and analogous to QTL mapping, we then identified all genes within this region 

as candidate genes for PAI-1. In addition to identifying novel candidate genes to aid us in prioritizing 

future studies, we also identified four statistically significant synergistic interaction effects ( p < 0.001) 

associated with PAI-1 levels. We performed a preliminary evaluation of the novel candidate genes for 

PAI-1 variation that we identified using our novel approach and present possible biological / 

mechanistic connections. A review of current literature revealed that all four of our identified regions 

of interest not only contained genes with intuitive biological connections to PAI-1, but each region was 

found to lie within at least one previously discovered QTL region for cardiovascular disease related 

traits such as early onset myocardial infarction or biomarkers related to variation in PAI-1 such as 

triglycerides or body weight. We go on to further interrogate one of our identified loci of interest 

(located on chromosome 5) to demonstrate the intuitive connections to be found between genes 
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within this region of interest and PAI-1. We also characterized the four statistically significant pairwise 

effects identified by qMDR that were used to define our regions of interest.   

 

A. Presentation of Multi-lOcus based selection of Candidate Genes (MOCA) 

 

Introduction  

One of the major goals of human genetic studies is to discover significant associations 

between genetic markers and complex disease/traits. Arguably, the most challenging problem facing 

researchers in this endeavor is elucidating the connections between discovered variants, their 

biological mechanisms, and their impact on phenotype. One method of incorporating information 

gained from single variant analyses in a way that is more biologically translatable is to map them to 

the nearest gene(s) and then consider the gene as a candidate for further evaluation in the context of 

a  given phenotype. This method recognizes that the identified SNP is not likely to be the causal 

variant but is in LD with the true variant, and that this variant(s) may lie within or near the same gene 

as the identified marker. Examination of the entire gene region may reveal other SNP-level 

associations  and perhaps uncover a biological connection with variation in phenotype at the gene 

level. Three widely practiced methods used to identify candidate genes in complex disease are 1.) 

genome wide association studies 2.) candidate gene studies (genes chosen based on biological 

knowledge) and 3.) genome-wide linkage analyses (quantitative trait loci (QTL mapping)); all of which 

have certain weaknesses when applied to complex disease. 

Genome-wide association studies (GWAS) perform large numbers of agnostic single variant 

tests (SNP-level) to determine association between these variants and a given phenotype. Significant 

variants are then mapped by their chromosomal location to the nearest gene; this gene is then 

considered to be a putative candidate gene for the phenotype of interest and further studies may be 
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performed within the gene region in an attempt to discover biological links between the new candidate 

gene and phenotype. This method suffers from several weaknesses; 1.) the SNP may not lie within or 

near a gene region, making gene assignment problematic, 2.) the SNP may lie within a gene region 

but the observed effect with phenotype is due to its influence on another gene outside of the region in 

which it is physically located, 3.) unless multiple transcripts overlap, each significant SNP association 

will only yield one new candidate gene to be interrogated and perhaps most significantly, 4.) recent 

evidence in multiple phenotypes has shown that epistasis (SNP-SNP interactions) may play a more 

important role in variation in complex phenotypes than single variants138,139.  

Candidate gene studies use prior biological knowledge to select a small subset of genes with 

proven or plausible mechanism regarding a given phenotype. Variants within the selected genes are 

then evaluated for association with phenotype, and those found to have significant associations 

undergo further investigation into possible functional effects at the gene level, as the connection 

between gene and phenotype was already established a priori. The major weakness of this approach 

is that it does not allow for the discovery of novel candidate genes; genes are chosen for study 

because they already showed evidence of connection with the phenotype. 

Another classic method of identifying candidate genes that may harbor biologically functional 

variants associated with phenotype is linkage analysis, which in recent years has been extended to 

genome-wide linkage analysis. Linkage analysis has historically been used to identify quantitative trait 

loci predicted to harbor genes associated with a given phenotype within families. Linkage analyses 

have been largely successful when applied to monogenic (Mendelian) disorders, and in recent years 

has been applied to complex traits such as CVD. Unfortunately, when applied to more complex 

phenotypes, interpretation of QTL analyses becomes daunting as identified regions tend to be 

expansive, harboring as many as 100-200 genes140,141. And as with candidate gene and GWAS 

studies, QTL for complex traits discovered via linkage analyses also suffer from lack of replication. A 

recent example of this is the variable results obtained from genome-wide linkage analysis studies 
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performed to identify QTL in atherosclerotic disease regulating traits142. Over 40 QTLs have been 

identified for atherosclerosis, but only three of these have replicated; additionally, it is worth noting 

that most of the single variant associations identified through GWAS did not fall within any previously 

identified atherosclerosis QTL142. 

CVD is a complex disease due, in part, to impaired or unbalanced fibrinolysis, the process by 

which clots are degraded, which is heavily regulated by PAI-12,4. Genetic impact on PAI-1 levels has 

been primarily studied using methods that assess the marginal effects of single SNPs in several 

populations; however, the loci discovered using this study design explain only a small portion of the 

inter-individual variation.  A first step beyond single SNP analyses is to identify regions of interest 

more precisely and prioritize them for more intensive study. We present a novel approach, Multi-

lOcus based selection of CAndidate genes (MOCA) that incorporates the unconventional usage of the 

quantitative Multifactor Dimensionality Reduction (qMDR) algorithm as a part of an pipeline to identify 

regions of interest harboring putative candidate genes to be prioritized for inclusion in future studies.  

MOCA has the advantage over standard single variant based methods in that it uses multiple SNPs 

within a region to effectively localize regions  of interest.  

 

Materials and Methods 

 

Subjects  

 A detailed description of subject recruitment, and ascertainment of demographic data and 

biomarker measurements can be found in Chapter III, part A.  

 

Genotyping Scheme 

 Study cohort genotyping protocols are described in detail in Chapter III, part A.  
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Quality Control Procedures 

 Quality control procedures pertaining to preliminary processing of  PAI-1 levels, assessment of 

DNA quality, genotyping efficiency (subjects and SNPs), HWE and MAF thresholds are outlined in 

detail in Chapter III, part A. In addition to these procedures, further processing of genotyped variants 

was required in preparation for downstream interaction analyses. The presence of LD between 

markers decreases the power of qMDR to detect significant interaction effects. In order to optimize 

qMDR performance and decrease redundancy in downstream statistical models, SNPs in high LD 

were filtered using the LD prune feature in PLINK88 according to the following protocol; for each 

chromosome a window of 50 SNPs was evaluated for pairwise LD using the correlation coefficient 

(r2), for every pair of SNPs determined to be in high LD ( r2 > 0.8) one SNP was removed, and the 

window was shifted by 5 SNPs along the chromosome and the procedure was repeated. After LD 

based SNP pruning, 34,418 SNPs remained for inclusion in interaction analyses. 

 

Description of MOCA 

Rationale 

 With the variable success of GWAS studies to explain more than a small portion of the 

variation in complex disease, recent years have seen a paradigm shift away from the notion that an 

as yet undiscovered subset of single common variants accounted for the majority of the genetic 

impact on complex diseases towards ideas that include the hypothesis that a greater portion of the 

heritability in complex traits is attributable to non-linear (epistatic) interactions between genetic 

variants. This has led to the development of numerous analytical techniques aimed at detecting and 

characterizing the effects of both linear and non-linear interaction effects with and without the 
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presence of significant marginal effects to provide a more comprehensive understanding of the 

genetic architecture underlying complex traits138,139.  

Single locus analysis using median regression (Chapter III, part A) identified three significant 

SNP-level effects. We then followed the standard procedure of mapping these variants to their 

associated genes by chromosomal position and attempted to draw connections between the 

aforementioned genes and PAI-1. Although these analyses revealed novel associations, in the 

context of gene discovery, we interrogated over 38,871 single variants and only identified three novel 

candidate genes for inclusion in future studies. Considering the possible importance of multi-locus 

effects (interaction effects) in contributing a significant portion of the heritability in complex disease, 

the standard associated SNP – to – gene approach in prioritizing candidate genes based on the 

results of association studies may not be the most inclusive approach. Single SNP analyses may not 

adequately capture associations in genic regions because the ability of a single SNP to indirectly 

capture functional variants is not as powerful as multiple SNP approaches; this would be  analogous 

to imputation using a single SNP vs imputation using a haplotype. Hence, multi-locus associations 

within a genic region may be more effective at tagging functional variants within that region. Given 

that we genotyped our samples using a gene based platform (HumanExome Chip) as described in 

detail in Chapter III, we have the ability to assess multiple variants within or proximal to genic regions 

throughout the genome. This approach, because it is gene based, also provides improved ability to  

define putative mechanisms. 

General Summary of MOCA 

We propose a novel approach, Multi-lOcus based CAndidate gene finder (MOCA), that 

incorporates quantitative Multifactor Dimensionality Reduction (qMDR) analyses as a part of a 

pipeline to identify and prioritize candidate genes obtained from multi-locus analyses in SNP-level 

data. QMDR is a powerful non-parametric method that can detect multi-locus effects, both additive 

and non-additive, in the absence of single site main effects. The traditional application of qMDR to 
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association studies is to identify the most informative interaction effect overall in a set of genotyped 

markers. By first mapping our SNPs to genic regions, and performing qMDR analysis within each 

region independently, we will create an environment in which qMDR is identifying the most 

informative genic model for overlapping subsets of the genome defined by gene regions. This will 

allow us to detect multiple regions harboring associating variants. When these independent results 

are then interpreted together, they will identify a larger region which may harbor additional gene 

regions of interest not discovered during qMDR analysis.  

To incorporate the intuitive connections between loci and phenotypes observed in candidate 

gene studies, we first mapped our 34,418 common SNPs (described in Chapter III, part A) to genes 

via their chromosomal location. We further extended each formal gene boundary by 500kb at the 5’ 

and 3’ end to capture putative regulatory regions, and then repeated our SNP to gene mapping 

procedure. To avoid the gene selection bias seen in candidate gene studies, we allowed SNPs to be 

mapped to multiple genes. To incorporate the agnostic SNP association characteristic of GWAS 

analyses, while acknowledging the likelihood that multi-locus (SNP-SNP) effects may be more 

informative in the context of complex disease association than single variants, we performed 

independent pairwise analyses within each gene region using qMDR to identify the most significant 

model for each gene region. Permutation testing was performed in each gene region separately and a 

significance threshold of cross validation consistency (CVC) = 10/10 and permutation p < 0.001 was 

used to judge significance of pairwise qMDR models. Genes regions in which the same pairwise 

model was significantly associated with PAI-1 levels were pooled to form one large overlapping 

region, and all genes falling within this region were considered to be putative PAI-1 candidate genes 

and were equally prioritized for inclusion in future analyses. Genes located within loci of interest were 

then preliminarily evaluated for plausible biological connections to PAI-1.  

 Although the main aim of MOCA is to aid in the identification and prioritization of candidate 

genes from SNP-level association studies, an additional benefit of the approach is the possible 
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discovery of strong truly intragenic epistatic (synergistic) effects on the phenotype of interest. These 

results can then be evaluated and potentially used to direct higher-order (three/four locus effects) or 

pathway level approaches. A schematic of the MOCA pipeline is presented below: 

 

Figure 4-1. Schematic of MOCA approach. 

 
Statistical analysis 

 Data Processing 

 MOCA integrates qMDR analyses as a part of a pipeline  to prioritize candidate genes from 

multi-locus association testing. QMDR is a non-parametric approach that can be applied to 

continuous traits that is able to detect interaction effects with and without the presence of significant 

main effects143. Although qMDR is optimized for the use of continuous phenotypic data, the algorithm 

is currently unable to adjust for the effects of covariates in the evaluation of interaction effects143. 

There are several demographic, genetic, and biological factors that are known to strongly impact 

variation in PAI-1 levels; BMI, age, gender, triglycerides, and genotype at the PAI-1 4G/5G promoter 

variant 33,34,41,42,44,47,51,55. In order to appropriately evaluate the effect of epistatic interactions on 
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variation in PAI-1, our model must incorporate and adjust for the aforementioned covariates. To 

accomplish this, prior to qMDR analysis, linear regression was performed using the following 

regression model: 

lnPAI-1 ~ Age x BMI x lnTRI x Gender x PAI-1 4G/5G genotype 

 

After performing linear regression, model residuals were recorded for use as the dependent 

variable in downstream qMDR analyses. Using regression model residuals as input for qMDR allows 

for the assessment of the trait of interest after accounting for the main effects of significant covariates. 

This procedure has been previously published and has been shown through simulation studies to be 

an effective method of accounting for the effect of potentially confounding variables in SNP interaction 

association analyses143. Normality of residuals was assessed using the Shapiro Wilkes test (p > 0.05) 

and was visually assessed using a Quantile – Quantile plot, with the normal distribution as the 

reference (Figure 4-1). 
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Figure 4-2. Quantile-Quantile Plot of Residuals for use as Dependent Variable in qMDR 
Analyses. 

 
 

It is important to note that in the calculation of residual values linear regression only considers 

observations with complete information available for all included model covariates. Due to the strong 

impact of the included regression model covariates on variation in PAI-1 levels, individuals who were 

missing demographic information for any of these factors and therefore unable to provide a residual 

score were excluded from qMDR analyses. After filtering of excluded individuals, 925 individuals (388 

males, 537 females), remained for inclusion in qMDR analyses, all of whom were from the 992 

previously studied cohort as only these had direct measures of the 4G/5G genotypes28,57. 

Distributions of demographic and biomarker measurements for these individuals were compared by 
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gender using the STATA 1190 software program and are presented in Table 4-1, and visualizations of 

the PAI-1 distribution (ng/ml) before and after log-transformation for these individuals are presented in 

Figures 4-3a and 4-3b.  

 

Table 4-1. HeART cohort gender-separated demographic and clinical characteristics. 

 
Males (n=388) Females (n=537) P-Value1 

Age (years)* 43.88 (12.56) 42.66 (10.80) 0.240 

Body Mass Index (kg/m2)* 23.91 (4.24) 26.62 (5.32) <0.001 

Triglycerides (mg/dL)* 97.22 (61.72) 85.26 (44.24) 0.013 

serum PAI-1 levels (ng/mL)* 6.74 (8.98) 6.89 (7.62) 0.013 

PAI-1 4G/5G 
genotype 

4G/4G 20 34 

0.2642 4G/5G 108 171 

5G/5G 260 332 
 

*; mean (standard deviation) untransformed variables are presented 
1 
P-values are from the Wilcoxon Rank Sum test unless otherwise indicated. 

2 
P-values are derived from the Chi-square test of association. 
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Figure 4-3a. PAI-1 Distribution in Individuals included in SNP-SNP Interaction Analyses.  

 

 

 

 
Figure 4-3b. PAI-1 Distribution after log-transformation in individuals included in SNP-SNP 
Interaction Analyses.  
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All data processing analyses were performed using the R software package unless otherwise noted91. 

We then recorded the residuals from the OLS regression to be used as the dependent variable in 

qMDR analyses.  

 

SNP to Gene Region Mapping Protocol and Rationale 

 As a first step towards identifying loci of interest that are likely to harbor variants associating 

with PAI-1 levels, we mapped our  genotyped variants (n=34,418) to 21,041 gene regions based on 

chromosomal location; these regions were constructed by extending formal gene boundaries defined 

by the UCSC genome browser144 500kb in the 5’ and 3’ directions. SNPs were assigned to gene 

regions using this protocol to target intragenic effects while also increasing the probability of capturing 

pertinent regulatory elements not located within the formal gene boundaries.  An additional benefit of 

this SNP-to-gene mapping scheme is that it increases the possibility that pairwise effects will tag 

multiple gene regions as their boundaries are likely to overlap; this will in turn result in the gene 

region defined SNP sets interrogated individually by qMDR to be highly overlapping as well.  

Our mapping strategy allows for the assignment of individual SNPs to multiple gene regions to 

prevent gene assignment bias and allow for the possibility that regulatory elements affecting one 

gene may lie within the boundaries of another. One caveat of allowing non-unique SNP assignment to 

genes is the redundancy that is introduced into the sets of markers assigned to gene regions. If two 

gene region boundaries are completely or largely overlapping, such that the same subset of SNPs 

are assigned to both, then redundancy will be introduced into the model as the same subset of 

variants will be tested multiple times, and multiple gene regions will report identical effects.  Due to 

the aforementioned redundancy, it is highly likely that we tested far fewer independent loci than the 

21,041 gene regions that were annotated.  
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QMDR Protocol and Analysis Pipeline 

As previously mentioned, qMDR analysis is an integral part of the MOCA pipeline. QMDR is an 

extension of the original multifactor dimensionality reduction (MDR) machine learning approach that is 

optimized to model epistatic interaction effects on quantitative traits145. A hallmark of the original MDR 

algorithm, which is used to evaluate epistatic interaction in dichotomous phenotypes, is the use of 

constructive induction to identify multi-locus genotypic combinations associated with disease risk and 

then reduce them into a single new attribute that is used to model the relationship between this newly 

constructed attribute and case-control status. The major difference between the original MDR 

approach and qMDR is that the latter compares the mean value of each multi-locus genotype group 

to the overall mean to determine association with phenotype, while the former evaluates association 

with phenotype by comparing the case/control ratios of the multi-locus genotypic groups to a fixed 

threshold143,145. Specifically, qMDR incorporates constructive induction into the evaluation of epistatic 

interactions in the context of quantitative, or continuous, traits as described in Gui et. al.143 and 

summarized below: 

1. Assume that there are m SNPs in the dataset to be analyzed. To evaluate a J order interaction effect, a subset of J 
SNPs are selected from the m SNPs in the dataset 

 
2. Calculate the mean of the phenotypic trait for each multi-locus genotype combination defined by the J SNPs 

(genotypic mean) and compare this value to the overall mean calculated from the entire dataset. 
 

3. Label the genotypic mean as “high level” if it is greater than the overall mean; label all other genotypic means as 
“low level”. Once all genotype combinations have been labeled as described, a new binary attribute is constructed 
by pooling genotype groups based on their assigned level.  

 

After assigning genotype groups to either high or low levels for each J SNPs, differences 

between the mean phenotypic values of the two groups are compared using a Student’s T-test and 

the resulting t-statistic is used as the training score to select the best J order interaction model. 

QMDR uses an identical cross validation procedure to select the best overall interaction model and 

control for model overfitting as that incorporated into traditional MDR; the only difference is that 
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qMDR substitutes the training and testing scores in lieu of the training and testing balanced 

accuracies utilized in MDR143.  

We performed qMDR analyses to identify the best pairwise SNP-SNP model in each of the 

annotated 21,041 gene regions, independently. For each gene region, qMDR identified the most 

informative SNP-SNP model and reported the corresponding testing and training T-statistics, as well 

as the cross validation consistency (CVC). After qMDR identified the best fit model for each gene 

region, permutation testing (n=1000) was performed (within the specified gene region) to generate a 

model p-value. It is important to note that because SNPs were not uniquely mapped to gene regions,  

the same pairwise model may be the most parsimonious model for multiple gene regions. However, 

because qMDR assesses model fit by identifying the most informative model among a specific set of 

SNPs, there may be a difference in the significance reported for the same pairwise model among 

assigned gene regions. An example of this phenomenon is presented below: 

 

1. Assume that the pairwise model SNP_1 – SNP_2 was identified as the best fit model in a region that 
contained six genes with overlapping boundaries: 

 

Model 
Locus of 
Interest 

Gene 
T-statistic 
Training 

T-statistic 
Testing 

CVC P-value 

SNP_1 – SNP_2 Locus 1 

A 0.4128 0.4862 8/10 0.026 

B 0.4321 0.5024 9/10 0.003 

C 0.4569 0.5362 10/10 <0.001 

D 0.4569 0.5362 10/10 <0.001 
E 0.4569 0.5362 10/10 <0.001 

F 0.3658 0.2634 4/10 0.087 

 
2. QMDR will report identical statistics (T-statistics, CVC, p-value) when SNP sets for different gene regions are 

identical 

 
Gene  Mapped SNPs 

A snp1, snp2, snp3,snp4,snp5,SNP1, SNP2,snp6 
B snp5,SNP1, SNP2,snp6, snp123 

C snp4,snp5,SNP1, SNP2,snp6 

D snp4,snp5,SNP1, SNP2,snp6 

E snp4,snp5,SNP1, SNP2,snp6 

F 
snp5, SNP1, SNP2, snp6, snp123, snp54, snp29, snp07, 

snp36, snp456, snp678, snp2894, snp0893 
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The threshold to determine statistical significance of associations between pairwise effects and PAI-1 

is a CVC of 10/10 and a permutation p-value ≤ 0.001.  

 

Results  

Presentation of Regions Identified using the MOCA Approach 

MOCA analysis identified four loci of interest on chromosomes 5,8,17, and 20, which contained 

a total of 28 novel PAI-1 candidate genes. The pairwise interaction model used to identify these 

regions as well as the qMDR test statistics for each model is presented in Table 4-2 below.  

 

Table 4-2. Pairwise interaction models significantly associated with PAI-1 levels 

Interaction Model 
MOCA Regions of 

Interest
1
 

Gene Regions
2
 

Testing 
T- Statistic

3
 

Training 
T- Statistic

4
 

P-Value
5
 

rs3985058,rs10064163 
Chr. 5: 

111642442 - 113422334 

REEP5 4.6463 4.8973 < 0.001 
SRP19 4.6463 4.8973 < 0.001 
APC 4.6463 4.8973 0.001 

EPB41L4A-AS1 4.6463 4.8973 0.001 
SNORA13 4.6463 4.8973 0.001 
EPB41L4A 4.6463 4.8973 0.002 

rs925030,rs17054477 
Chr. 8: 

24684772-26545124 

CDCA2 3.9571 4.0736 < 0.001 
EBF2 3.9571 4.0736 < 0.001 

GNRH1 3.9571 4.0736 < 0.001 
KCTD9 3.9571 4.0736 < 0.001 
DOCK5 3.9571 4.0736 0.003 

rs9907759,rs2270517 
Chr. 17: 

7704731 - 8822516 

ARHGEF15 5.1776 5.4569 < 0.001 
AURKB 5.1776 5.4569 < 0.001 
CTC1 5.1776 5.4569 < 0.001 

LINC00324 5.1776 5.4569 < 0.001 
PFAS 5.1776 5.4569 < 0.001 

RANGRF 5.1776 5.4569 < 0.001 
SLC25A35 5.1776 5.4569 < 0.001 

rs2427254,rs13042941 
Chr. 20: 

60752426 - 62808862 

ADRM1 4.6456 4.8991 < 0.001 
HRH3 4.6456 4.8991 < 0.001 

LSM14B 4.6456 4.8991 < 0.001 
MIR1257 4.6456 4.8991 < 0.001 
OSBPL2 4.6456 4.8991 < 0.001 
PSMA7 4.6456 4.8991 < 0.001 
SS18L1 4.6456 4.8991 < 0.001 
TAF4 4.6456 4.8991 < 0.001 
CDH4 4.6456 4.8991 0.002 

 

Note: As per significance criteria, for all significantly associating gene regions presented above, the specified pairwise model 
was chosen as the best overall model and reported a CVC of 10/10. 
 

1
This is the total region identified by MOCA after combining the gene regions in which the specified model was statistically 

significant 
2
Gene regions in which the specified qMDR model was statistically significant 

3,4,5
qMDR model statistics calculated for each gene region separately 
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An immediately noticeable trend in Table 4-2 is the identical, or nearly identical, qMDR test 

statistics for gene regions located within the same locus of interest. This is a result of the mapping 

technique applied using MOCA that allows SNPs to map to multiple gene regions. This may result in 

a number of gene regions with highly overlapping and in some cases identical SNP sets. Because 

qMDR analyses were performed independently in each SNP set (assigned to a gene region) this 

would result in qMDR reporting identical or very similar model statistics. The statistics shown in the 

table above indicates that the SNP sets between genes in the same locus are in many instances 

identical. A complete list of the SNPs assigned to each significantly associated gene region can be 

found in Appendix Tables 5a-5d.    

Evaluation of Pairwise Interaction Models defining Regions of Interest Identified by MOCA  

Chromosome 5 

The pairwise model containing rs3985058 and rs10064163 (rs3985058 – rs10064163) 

identified a locus on chromosome 5 spanning a total of 1779.9kb (chr5:111642442 – 113422334) 

defined by six significantly or marginally associated gene regions (Figure 4-4). These gene regions 

included the receptor accessory protein 5 (REEP5),  adenomatous polyposis coli (APC), signal 

recognition particle 19kDa (SRP19), Erythrocyte membrane protein band 4.1 like 4A (EPB41L4A), 

EPB41L4A antisense RNA 1 (EPB41L4A-AS1), and small nucleolar RNA, H/ACA box 13on 

chromosome 5 (SNORA13). The rs3985058 – rs10064163 model was significantly associated with 

PAI-1 in five of the six assigned genes ( p ≤ 0.001), and marginally associated with PAI-1 in the sixth 

(EPB41L4A, p = 0.002 )(Table 4-2).  
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Figure 4-4. Region of Interest on Chromosome 5 containing possible novel PAI-1 candidate 
genes defined by the rs3985058 – rs10064163 interaction model 

 
Arrows indicate direction of gene transcription, blue lines indicate boundaries of region of interest. SNPs in the pairwise model 
are shown in blue bold print. 
 
 
 

  Both members of the pairwise model identifying the region of interest on chromosome 5 

(rs3985058 – rs10064163) were located outside of formal gene boundaries but were in an intergenic 

region between EPB4IL4A and APC. Further examination of the model revealed that the interaction 

between the two SNPs was highly synergistic with the interaction effect explaining 1.19% of the 

variation in PAI-1, while rs3985058 and rs10064163 explained only 0.16% and 0.15% of the variance, 

respectively (Figure 4-5).  

Double heterozygotes displayed the highest mean PAI-1 values (mean = 0.204 ng/mL) (Figure 

4-6).Linkage disequilibrium was measured between the two SNPs and they were determined to be 

unlinked (r2=0); this information together with the low amount of variance explained by each variant 

independently provide strong evidence that rs3985058 – rs10064163 is a true epistatic (non-additive) 

interaction.   
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Figure 4-5. Visualization of Model Entropy for rs3985058 – rs10064163 
 

 
 
 

 

 

 

 

 

 

 

 

Percentages inside boxes indicate the percent of variation in PAI-1 explained by the single SNP; percentage inside connecting 
line indicates the percentage of variance explained when both markers are considered together.  

 

 

 

Figure 4-6. QMDR Graphical Presentation of rs3985058 – rs10064163. 
 

 

 

 

 

 

 

 

 

 

 

Red line indicates the global average of PAI-1 measurements, regardless of genotype 
 

Numbers and bar height show the difference between the global average of PAI-1 and the genotype-specific average of PAI-2 
for a give genotype group. Bar width indicates the proportion of the sample that falls within the specified genotype group. 
Underscores after SNP name indicate the minor allele at the specified variant. 
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Chromosome 8 

 A 1860.4kb region on chromosome 8 was identified by the rs925030 – rs17054477 interaction 

effect. The locus of interest on chromosome 8 contained 5 gene regions; four of which reported 

significant associations between the rs925030 – rs17054477 model and PAI-1 levels, the exception 

was the dedicator of cytokinesis 5 gene (DOCK5) (p=0.003). The other gene regions included in this 

region were the cell division cycle associated 2 (CDCA2), early B-cell factor 2 (EBF2), gonadotropin-

releasing hormone 1 (GNHR1), and potassium channel tetramerization domain containing 9 

(KCTD9). 

 

Figure 4-7. Region of interest on Chromosome 8 identified by MOCA 

 

 
Arrows indicate direction of gene transcription, red lines indicate boundaries of region of interest. SNPs in the pairwise model 
are shown in blue bold print. 
 

 

In contrast to the pairwise model on chromosome 5, both rs17054477 and rs925030 are located 

inside genes within the locus of interest on chromosome 8. Rs17054477 is a missense SNP located 

in exon 15 of EBF2 that causes a glycine to serine shift. Additionally, rs17054477 is located proximal 

to a predicted exon splice enhancer site; though the variant is predicted to be benign by PolyPhen. 

Rs925030 is located in an intronic region inside DOCK5, and to our knowledge has no predicted 
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functional effects. The interaction between rs17054477 was synergistic in nature (percentage of 

variance in PAI-1 explained by rs17054477 – rs925030 = 0.29%) as depicted in Figure 4-8. LD was 

measured between the two SNPs to determine if they each represented an independent signal, and 

testing showed that rs925030 and rs17054477 were in complete linkage equilibrium (r2 = 0). Further 

evaluation of the model revealed that the largest genotypic group (individuals heterozygous at 

rs925030 and homozygous for the major allele ( C allele) at rs17054477) had decreased PAI-1 as 

compared to the global mean. The most exaggerated decrease in mean PAI-1 compared to the global 

mean, and also to all other genotype groups was seen in subjects who were homozygous for both 

minor alleles; however, this should be interpreted with caution as there were only three individuals in 

that genotypic category. 

 
 
Figure 4-8. Visualization of Model Entropy for rs925030 – rs17054477 

 
 

Percentages inside boxes indicate the percent of variation in PAI-1 explained by the single SNP; percentage inside connecting 
line indicates the percentage of variance explained when both markers are considered together.  
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Figure 4-9. QMDR Graphical Presentation of rs962050 – rs1705447 

 

Red line indicates the global average of PAI-1 measurements, regardless of genotype 
 

Numbers and bar height show the difference between the global average of PAI-1 and the genotype-specific average of PAI-2 
for a give genotype group. Bar width indicates the proportion of the sample that falls within the specified genotype group. 
Underscores after SNP name indicate the minor allele at the specified variant. 

 

 Chromosome 17 
  
 The significant pairwise interaction between rs9907759 and rs2770517 pinpointed a 1117.8 kb 

region on chromosome 17 that included seven significantly associating genes. These genes were 

Rho guanine nucleotide exchange factor (ARHGEF15), aurora kinase B (AURKB), CTS telomere 

maintenance complex component 1 (CTC1), long intergenic non-protein coding RNA 324 

(LINC00324), phosphoribosylformylglycinamidine synthase (PFAS), RAN guanine nucleotide release 

factor (RANGRF), and  solute carrier family 25, member 35 (SLC25A35). In contrast to results in 

previous regions, while rs9907759 and rs2770517 were both located within genic regions inside the 

locus of interest on chromosome 17, neither was the single best model for the genes in which they 

reside. Rs9907750 is located in an intronic region of the dynein, axonemal, heavy chain 2 (DNAH2) 
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gene, while rs2770517 is located in an intronic region of the lysine (K)-specific demethylase 6B 

(KDM6B) gene. Interestingly, qMDR analyses in both DNAH2 and KDM6B reported multiple “best 

models”, including the rs9907759 – rs2770517 interaction effect. This indicates that both of these 

regions may be harboring several pairwise effects of the same intensity and qMDR was unable to 

classify any one model as “best”. In instances such as this, qMDR will randomly select one of the 

“best” models and use this to calculate model statistics (T-statistics, CVC, pvalue). In the KDM6B 

gene region, the rs9907759 – rs2770517 interaction reported a CVC of 7/10, and permutation p-value 

= 0.085; and in DNAH2 the model showed a CVC of 6/10 and a p-value of 0.056. 

 

Figure 4-10. Region of interest on Chromosome 17 Identified by MOCA. 

 
Arrows indicate direction of gene transcription, purple lines indicate boundaries of region of interest. Dotted line arrows denote 
genes in which the rs99007759 – rs2770517 was not significantly associated with PAI-1.  SNPs in the pairwise model are shown 
in purple bold print. 
 

 

LD analysis to measure the correlation between rs9907759 and rs2270517 was performed and 

confirmed that the two SNPs were not in linkage disequilibrium with each other (r2 = 0) and provided 

further evidence that the observed multi-locus effect between them was truly an interaction effect. 

The nature of the rs9907759 – rs2270517 effect, as those seen in chromosomes 5 and 8, was found 

to be synergistic, explaining 0.72% of the variation in PAI-1 while individually rs9907759 and 
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rs2270517 explained only 0.13% and 0.04%, respectively (Figure 4-10). The highest PAI-1 

measurements, compared to the global average of PAI-1, were seen in double homozygotes (major 

allele) as shown in Figure 4-11.  

 
Figure 4-11. Visualization of Model Entropy for rs2270517 – rs9907759 
 

 
 

Percentages inside boxes indicate the percent of variation in PAI-1 explained by the single SNP; percentage inside connecting 
line indicates the percentage of variance explained when both markers are considered together.  
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Figure 4-12. QMDR Graphical Presentation of rs2270517 – rs9907759 

 
Red line indicates the global average of PAI-1 measurements, regardless of genotype 
 

Numbers and bar height show the difference between the global average of PAI-1 and the genotype-specific average of PAI-2 
for a give genotype group. Bar width indicates the proportion of the sample that falls within the specified genotype group. 
Underscores after SNP name indicate the minor allele at the specified variant. 

 

 

 Chromosome 20 

 The last locus of interest identified by MOCA was a 2056.4kb region on chromosome 20 that 

was localized via the significant pairwise interaction between rs2427254 and rs13042941 (rs2427254 

– rs13042941). Containing nine novel candidate genes, the locus identified on chromosome 20 is the 

largest of the regions identified through the MOCA pipeline. The genes found in this region included 

the adhesion regulation molecule 1 (ADRM1), histamine receptor H3 (HRH3), the LSM14B, SCD6 

homolog B (LSM14B), microRNA 1257 (MIR1257), osysterol binding protein-like 2 (OSBPL2), 

proteasome subunit, alpha type 7 (PSMA7), synovial sarcoma translocation, SS18L1, TAF 4 RNA 

Polymerase II, TATA Box binding protein associated factor (TAF4), and cadherin 4, type 1, R-

cadherin (CDH4). The rs2427254 – rs13042941 model was significantly associated with PAI-1 in all 
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the aforementioned genes with the exception of CDH4 (p = 0.0002) (Table 4-2). Rs2427254 is 

located in an intronic region of SS18L1, while, as seen in the previous model, rs13042941 is not 

located in any of the genes that identified rs2427254 – rs13042941 as the single “best” model. 

Rs13042941 is a missense SNP that causes a threonine to alanine shift, located in the laminin alpha 

5 (LAMA5)  gene. This gene identified multiple models as the “best” model, and rs2427254 – 

rs13042941 was among these; however the model was not significantly associated with PAI-1 levels 

in  this gene region (CVC = 8/10, p = 0.012) when evaluated using our conservative significance 

threshold (CVC = 10/10, p <0.001).  

 

Figure 4-13. Region of interest on Chromosome 20 identified by MOCA. 

 
Arrows indicate direction of gene transcription, green lines indicate boundaries of region of interest. Dotted line arrows denote 
genes in which the rs2427254 – rs13042941 was not significantly associated with PAI-1.  SNPs in the pairwise model are shown 
in purple bold print. 
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Figure 4-14. Visualization of Model Entropy for rs2427254 – rs13042941 

 
Percentages inside boxes indicate the percent of variation in PAI-1 explained by the single SNP; percentage inside connecting 
line indicates the percentage of variance explained when both markers are considered together.  

 

QMDR analysis revealed that the rs2427254 – rs13042941 model effect was highly 

synergistic, with the interaction explaining 0.56% of the variance in PAI-1 levels as seen if Figure 4-

14. RS13042941 displayed the highest main effects (0.45% of the variance in PAI-1 was explained by 

this SNP in the rs2427254 – 13042941 model). LD analyses were performed to determine if the two 

SNPs in the model were acting independently of each other, and tests confirmed that the two SNPs 

were not in LD (r2=0). The largest difference between the genotype group specific means and the 

global mean was seen in individuals who were heterozygous at rs13042941 and homozygous major 

at rs2427254; this group displayed lower mean PAI-1 measurements than the global average as 

depicted in Figure 4-15 below. 
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 Figure 4-15. QMDR Graphical Presentation of rs2427254 – 13042941.. 
 

 
Red line indicates the global average of PAI-1 measurements, regardless of genotype 
 

Numbers and bar height show the difference between the global average of PAI-1 and the genotype-specific average of PAI-2 
for a give genotype group. Bar width indicates the proportion of the sample that falls within the specified genotype group. 
Underscores after SNP name indicate the minor allele at the specified variant. 

 

 

Discussion  

  We presented a novel approach that incorporated multi-locus association analyses through 

the use of qMDR to prioritize novel candidate genes for further analyses of PAI-1 variation as an 

important step in addition to single SNP analyses in our data. Using this approach we were able to 

identify four regions of interest on chromosomes 5, 8,17, and 20 and select 28 candidate genes 

based on the association results from four pairwise SNP-SNP models. This approach represents a 

much more inclusive method for prioritizing genes as compared to methods that rely on single variant 

association analyses such as those performed in Chapter III. One caveat of this approach is that as 
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with linkage analyses to identify QTL, MOCA highlights regions of interest not necessarily single 

genes. Because multiple gene regions can report the same multi-locus signal it is impossible to 

discern, without performing functional studies, which gene(s) within a region of interest is truly 

responsible for the association that is being detected. However, unlike genome-wide linkage peaks 

which can span 1-2cm and contain 100’s of genes as well as immense “gene deserts”, our method 

produces smaller gene-centered regions, with the majority of the SNPs being able to be assigned to 

one or a few genes, making interpretation of results slightly more straightforward.  

 GWAS, candidate gene, and QTL mapping have all suffered from lack of replication of effects 

in the context of various cardiovascular disease phenotypes. After identifying loci of interest using 

MOCA, we ascertained the location of previously identified QTL loci of relevant CVD/PAI-1 

associated traits to determine if there was any significant overlap in identified regions. We discovered 

that all four of the regions identified by MOCA were located under QTL peaks for various CVD and 

PAI-1 related traits such as triglycerides, Type 2 diabetes, obesity, glucose, and early onset 

myocardial infarction146-158. A summary of these results are depicted in Table 4-3. 
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Table 4-3. MOCA identified regions of interest that overlap with previously identified CVD / 

PAI-1 associated Quantitative Trait Loci (QTL). 

 Previously Identified Quantitative Trait Loci 
for Cardiovascular Disease / or PAI-1 related Traits 

 MOCA Region of 
Interest 

QTL Region of Interest QTL Trait 
LOD 

Score
1
 

P
2
 Reference 

 C
h
ro

m
o
s
o
m

e
 

5
 

111642442 - 113422334 

101218797 - 127218797 Triglycerides 1.59 - 
Imperatore et 
al., 2000

142 

106101774 – 132101774 Body Mass Index 1.5 3.9E
-3

 
Feitosa et al., 

2002
143 

106101774 - 132101774 
early onset  

myocardial infarction 
- - 

Wang et al., 
2002

144 

C
h
ro

m
o
s
o
m

e
 

8
 

24684772-26545124 

21451041 - 47451041 Body Weight 1.3 - 
Wilson, SG et 

al., 2006
145 

22433395 - 38326352 HDL Cholesterol 1.2  - 
Arya, R et al., 

2002
146 

25441235 - 106103348 adiponectin level 1.6 - 
Tejero, NE et 
al,. 2007

147 

C
h
ro

m
o
s
o
m

e
 

1
7
 

7704731 - 8822516 

432538 - 13171261 Body Mass Index 2.25 7.0E
-4

 
Meyre, D et 
al., 2004

148 

1 - 13623317 
subcutaneous  

body fat 
1.86 - 

Norris, JM et 
al., 2005

149 

1260796 - 27260796 glucose level 3.74 1.7E
-5

 
Wiltshire, S et 

al., 2001
150 

C
h
ro

m
o
s
o
m

e
 2

0
 

60752426 - 62808862 

44053450 - 700535450 triglycerides 2.34 
 

Li, ND et al., 
2005

151 

39168716 - 65168716 Body Weight 3.16 6.9E
-5

 
Lee, HJ et al., 

1999
152 

36561838 - 35995245 Type 2 Diabetes 2.92 6.5E
-4

 
Luo, TH et al., 

2003
153 

 

Note: Above Information on QTL position and Study Statistics was obtained via the Human Genome Browser of the Rat 
Genome Database

158
 

1
 LOD score reported for QTL from specified study 

2
 P-value associated with LOD Score for specified study 

 

 

 A review of the gene regions contained within our MOCA selected regions of interest revealed 

several genes with intuitive biological connections with both PAI-1 and each other. As an example of 

the utility and efficacy of our method in prioritizing genes with plausible mechanism in connection with 

the variation in PAI-1 levels provide a preliminary examination of the interconnections between 

several genes identified by MOCA inside the loci of interest located on Chromosome 5. This region 

was chosen to highlight the efficacy of MOCA because the MOCA identified region fell within three 
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QTL regions for three traits that have been shown in previous studies in humans and animal models 

to associate with PAI-1 levels; body mass index, early onset myocardial infarction, and triglycerides 

(Figure 4-16). 

 

Figure 4-16. Chromosome 5 MOCA Identified Region of Interest Compared to Previously 
Identified QTL Regions. 

 

 
Note: QTL regions are defined using Rat Genome Database Nomenclature. 
SCL102_H: Human Triglycerides QTL 
BW263_H: Human Body Mass Index QTL 
MY125_H: Human Early-onset Myocardial Infarction QTL 
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 To showcase the efficiency of the MOCA approach we will evaluate the possible 

interconnections between the genes in the chromosome 5 region as this loci fall under the most 

clinically relevant CVD/PAI-1 QTL loci. REEP5 was discovered in 1991 to be tightly linked to the APC 

gene, and is used in predictive APC mutation carrier screening for familial adenomatous polyposis 

(FAP)159,160. Multiple forms of APC RNA transcripts have been discovered in various tissues in 

humans and model organisms; one of these transcripts has been shown to undergo an alternative 

splicing event at exon 14 that leads to the incorporation of the SRP19 gene161. After establishing the 

connection of REEP5 and SRP19 to APC, we then identified a connection between APC and PAI-1 

via triglyceride levels. Studies in model organisms indicate a strong connection between variation in 

APC and high serum triglyceride levels; elevated triglycerides are a known biological modulator of 

PAI-1 activity39,162. Another plausible connection between APC and PAI-1 is through the cyclic-

AMP/cAMP response element binding protein (cAMP/CREB) signaling pathway which has been 

shown to target PAI-1; the cAMP/CREB pathway has been shown to induce PAI-1 expression in the 

liver under various conditions and CREB itself has the ability to bind to the PAI-1 promoter and induce 

expression of PAI-1 under oxidative conditions163-165. Another plausible connection to PAI-1 was 

found with EPB4IL4A through its participation in the beta-catenin signaling pathway, of which PAI-1 is 

a direct transcriptional target; activation of beta-catenin induces PAI-l expression and promoter 

activity166. EPB41L4A, previously referred to as NBL4,  is an important component of the beta-catenin 

pathway; additionally, there is also evidence that APC is  a major regulator of this pathway167,168. We 

were unable to discern intuitive connections between SNORA13 or EPB41L4a-AS1 and PAI-1, but it 

is possible that the biological relationship between these two genes and PAI-1 is more subtle, and 

may be revealed under more direct scrutiny. A visualization of these plausible biological and 

mechanistic connections between and among the genes in the chromosome 5 loci of interest and 

PAI-1 is presented in Figure 4-16. 
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Figure 4-17. Visualization of Possible Biological connections between genes in the 
Chromosome 5 Region of Interest and PAI-1 

 
Genes are indicated by adjacent or encompassing circles, and arrows indicate possible directional relationships 
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CHAPTER V 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

A. Summary 

Cardiovascular disease (CVD) is a leading cause of mortality both in the United States and 

globally. CVD is a complex disease that describes several independent but etiologically 

overlapping disorders that are likely to be heavily influenced by both genetic and environmental 

factors. Major thrombotic events due in part to decreased or imbalanced fibrinolysis are a unifying 

characteristic among several major CVD’s and understanding the genetic factors that impact the 

fibrinolytic system has the potential to reveal information that may be applied to several CVDs. 

Utilizing PAI-1 levels as an endophenotype in the investigation of the genetic impact on CVD 

susceptibility has the advantage of revealing information that is more likely to be universal in its 

application to CVD and less affected by the specific disease etiology of any one cardiovascular 

phenotype. Although PAI-1 has been assessed as a biomarker of both fibrinolytic activity as well 

as CVD susceptibility and severity, the majority of the heritability of this potent biomarker remains 

unexplained. This issue is particularly evident in non-Europeans, where the few studies that have 

been done to date have been candidate gene studies that interrogated only a small number of 

variants, and may not have used the most appropriate methods to analyze the genetics of PAI-1. 

Studies presented in the previous chapters were aimed at elucidating the genetic architecture 

underlying PAI-1 variation in the current study and directing future research in the continued 

evaluation of PAI-1 as an endophenotype for CVD. 

There are several important points that were revealed by the studies presented in this 

dissertation. First, while many studies have assessed the impact of single variants on variation in 

PAI-1 levels in several populations, many of these are inconsistent. These inconsistencies may be 
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due in part to incorrect statistical inference due to the use of parametric methods that were 

inappropriate in the context of their respective study populations. We have demonstrated that 

when the characteristic non-normality of the PAI-1 distribution is not taken into account, there is a 

significant impact on the statistical results and corresponding inference obtained from applying 

standard parametric methods. The use of inappropriate parametric methods in the evaluation of 

genetic impact on PAI-1 levels may explain, in part, some of the inconsistencies of previous 

studies regarding single variant associations with PAI-1. Using median regression, a non-

parametric method well suited to the PAI-1 distribution observed in the HeART cohort, we not only 

revealed novel associations with PAI-1 levels we also provided a direct assessment of the impact 

of incorrect inference that would have resulted from our use of standard linear regression. This 

highlights the possibility that significant associations present in other studies may have gone 

unnoticed.  

 Secondly, although elevated PAI-1 levels have been shown to associate with increased CVD 

susceptibility and severity, few studies have conducted a comprehensive evaluation of genetic 

variation affecting this clinically relevant portion of the PAI-1 distribution. We provide, to our 

knowledge, the only study that explicitly tests the hypothesis of non-uniform SNP effects within the 

PAI-1 phenotypic distribution. Our efforts revealed significant associations with the upper quartile 

of PAI-1 values, but also highlighted the lack of overlap between markers associated with median 

PAI-1 and those associated with elevated PAI-1 levels. This illustrated for the first time that 

variants that impact PAI-1 levels at the upper extreme of the distribution may have only nominal 

impact on the distribution as a whole.  

 Thirdly, our association analyses in the upper quartile of PAI-1 revealed an association with 

PER3, an important regulator of the circadian clock pathway. This result was particularly poignant 

for two reasons; the first is that studies in animal models revealed a direct functional connection 

between the CLOCK-ARNTL heterodimer and activation of the PAI-1 promoter81, and the second 
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was that a recent meta-analysis in several Caucasian populations also identified ARNTL  as 

significantly associating with PAI-1. The interplay between PER3 and ARNTL is essential to the 

proper function of the Circadian clock pathway and the identification of two genes from the same 

pathway in different populations provides supporting evidence that there may be a generalizable 

Circadian pathway effect on variation in PAI-l, although specific gene-level effects within the 

pathway may be population specific.  

 Lastly, we presented a novel approach to prioritize the selection of candidate genes for further 

evaluation of genetic effects on PAI-1 as a necessary and logical next step to our single variant 

level analyses. We showed the utility of using multi-locus association signals to localize regions 

containing genes that not only contain evidence of variation associated with PAI-1 but are also 

likely to have intuitive biological connections with PAI-1 as well. We show the overlap between the 

regions identified by our approach, MOCA, and those identified by QTL mapping of cardiovascular 

disease and / or PAI-1 related traits/biomarkers. We also demonstrated the utility of our method 

not only in the selection of candidate genes for future studies but also in the detection of 

significantly associating pairwise interactions 
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B. Future Directions 

PAI-1 is a potent biomarker, known to be affected by both environmental and genetic 

factors, that is involved in a complex web of numerous biological processes in addition to its 

essential role in the fibrinolytic system. Our genetic association studies of PAI-1, while 

revealing novel genetic effects on variation in PAI-1 with evidence of plausible biological 

connections to PAI-1 expression, we were unable to test the integrity of our finding through 

replication in a similar population. We chose to study PAI-1 variation in a West African 

population to address a striking deficiency in the current knowledge base on variation affecting 

this potent biomarker of CVD. We selected as our study sample all urban participants of the 

HeART cohort with available 4G/5G genotype data. As previously mentioned, the HeART 

cohort is one of the largest population-based African cohorts with available PAI-1 

measurements; unfortunately it is also one of the only sources of information regarding PAI-1 

variation in Africa. Due to this fact we were unable to identify an appropriate replication cohort 

in order to validate the significant association effects that we uncovered in our studies.  

Therefore, while these studies have identified genes of interest, replication in a similar 

cohort is needed to confirm the validity of these findings. Additionally, our assessed markers 

overlap with variants assessed in GWAS of PAI-1 variation in non-African populations but the 

majority of associations that we report are unique; this fact is particularly troubling in reference 

to our significant associations detected using median regression analyses, as median 

regression analyses are analogous to linear regression when model assumptions are upheld. 

This inconsistency may be due to population-specific effects, false-positive results in our study, 

or could be a result of incorrect inference in previously studied cohorts that inhibited detection 

of these associations. Additional accompanying studies in non-African populations employing 

the non-parametric methods outlined in this dissertation, where appropriate, are required to 
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address these concerns, as well as assess the generalizability across multiple populations of 

the significant associations that we have identified.  

The identification of supporting evidence for a possible pathway-level effect regarding 

the Circadian clock pathway, through the discovery of a significant association with PER3 

revealed through upper quartile regression analyses, highlights the possible importance of 

pathway level effects on variation in PAI-1. There is evidence that effects at the pathway level 

may be more likely to generalize between populations as they may be more robust to 

differences in underlying genetic structure between populations, such as allele frequency 

differences and LD patterns. A thorough investigation of pathway level effects in several 

populations may lead to the discovery of universal effects on PAI-1 variation. This will require 

the use of analytical techniques that can incorporate differences in LD structure between 

populations, in the analysis of pathway based effects.   

As a part of our studies we presented, MOCA, a novel use of qMDR to select candidate 

genes based on multi-locus association signals. While our identified regions of interest fell 

within previously discovered QTL for CVD/PAI-1 related traits, and we were able to draw 

intuitive connections between our identified genes and PAI-1, we did not formally assess the 

power of this approach to prioritize genes versus those employed in GWAS and candidate 

gene study designs that rely on single variant association signals. Follow-up studies, perhaps 

involving simulation studies, are needed to formally assess the power of this approach under 

different underlying genetic models to determine if our results from using the approach are 

generalizable.  

The identification of significantly associated synergistic interaction effects highlights the 

need for formal evaluation of gene-gene and gene-environment associations in the 

investigation of PAI-1 variation. Our studies revealed pairwise effects in the absence of 

strongly associating main effects; this highlights the possibility that higher-order effects may 
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have a significant impact on variation in PAI-1 levels that may have been overlooked in 

previous studies. Another avenue worthy of further evaluation would be the investigation of 

haplotype effects in the regions identified via MOCA analysis to identify any significant 

haplotype effects that may impact PAI-1 levels. Sliding window haplotypes of all single variants 

within these regions may reveal novel inter- and intragenic haplotype effects. A truly 

comprehensive understanding of the variation in PAI-1 levels requires careful evaluation of 

pairwise and higher-order interaction effects, and the implementation of analytical methods 

that acknowledge the complexity of this CVD endophenotype. 
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Appendix Table 1. Hardy-Weinberg Equilibrium Estimates and allele frequencies of SNPs 
significantly associated with Median Plasminogen Activator Inhibitor-1 (PAI-1) levels 

Chr. Gene SNP 
Minor 
Allele 

Major 
Allele 

MAF1 
HWE  

P-value2 

5 ARSB rs1071598 T C 0.048 0.726 

7 CPA2 rs61997065 A G 0.045 0.466 

19 LENG9 rs10406453 T C 0.075 0.652 
 

1
 MAF; Minor Allele Frequency 

2
HWE P-value; Hardy-Weinberg Equilibrium P-value 

 
 
 
Appendix Table 2. Genotypic Distribution of SNPs significantly associated with Median Plasminogen 

Activator Inhibitor 1 (PAI-1) levels 
 

Chr. Gene SNP1 
Minor 
Allele 

Major 
Allele 

Genotype  
Distribution2 

mm Mm MM 

5 ARSB 
rs1071598 

T C 
1 98 954 

rs1071598_dom 99 954 

7 CPA2 
rs61997065 

A G 
3 89 961 

rs61997065_dom 92 961 

19 LENG9 rs10406453 T C 7 143 902 
 

1
Instances in which sample size was below 5 for any genoptype group, SNPs were recoded dominantly for the effect of the 

minor allele (homozygous minor and heterozygotes were combined) prior to regression analyses; _dom denotes dominant 
coding genotype distribution 
2
mm = homozygous minor, Mm = heterozygote, MM = homozygous major 
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Appendix Table 3. Hardy-Weinberg Equilibrium Estimates and allele frequencies of SNPS 
significantly associated with the Upper Quartile of Plasminogen Activator Inhibitor-1 (PAI-1) 
Distribution 

 
Chr. 

Gene SNP 
Minor 
Allele 

Major 
Allele 

MAF1 
HWE  

P-value2 

1 COL16A1 rs72887331 A C 0.141 0.610 

1 FHAD1 rs12126178 A G 0.131 0.177 

1 PER3 rs10462021 G A 0.070 0.473 

2 PLECKHB2 rs6713972 G T 0.088 0.029 

3 -- rs13314993 T G 0.077 0.272 

3 SLC15A2 rs116307792 G A 0.054 1.000 

5 ADAMTS12 rs61757473 C G 0.049 0.509 

6 TAGAP rs35263580 T C 0.053 0.113 

7 -- rs2023783 A G 0.070 0.475 

9 DBH rs4531 T G 0.146 0.901 

11 EXT2 rs4755779 G A 0.071 0.231 

11 
PHLDB1 / TREH rs7389 C A 0.232 0.339 

TREH rs519982 T C 0.230 0.163 

12 OR1OP1 rs76940436 T A 0.065 0.441 

12 P2RX7 rs34219304 A G 0.050 0.177 

14 NID2 rs2273430 C A 0.248 0.868 

14 FAM161B rs34834232 T A 0.114 0.359 

16 C1QTNF8 rs73494080 G T 0.051 0.105 

17 CEP95 rs9910506 A G 0.055 1.000 
 

MAF; Minor Allele Frequency 
2
HWE P-value; Hardy-Weinberg Equilibrium P-value 
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Appendix Table 4. Genotypic Distribution of SNPs significantly associated with the Upper 
Quartile of the Plasminogen Activator Inhibitor 1 (PAI-1) Distribution 

 

Chr. Gene SNP1 
Minor 
Allele 

Major 
Allele 

Genotype 
Distritution2 

mm Mm MM 

1 COL16A1 rs72887331 A C 23 251 779 

1 FHAD1 rs12126178 A G 23 230 800 

1 PER3 
rs10462021 

G A 
3 141 909 

rs10462021_dom 144 909 

2 PLECKHB2 rs6713972 G T 14 153 867 

3 -- rs13314993 T G 9 144 900 

3 SLC15A2 rs116307792 G A 3 108 942 

5 ADAMTS12 rs61757473      

6 TAGAP 
rs35263580 

T C 
6 100 944 

rs35263580_dom 106 944 

7 -- 
rs2023783 

A G 
3 142 908 

rs2023783_dom 145 908 

9 DBH rs4531 T G 23 261 769 

11 EXT2 rs4755779 G A 8 132 913 

11 
PHLDB1 / TREH rs7389 C A 50 384 610 

TREH rs519982 T C 47 390 616 

12 OR1OP1 rs76940436 T A 6 125 922 

12 P2RX7 rs34219304 A G 5 95 952 

14 FAM161B rs34834232 T A 17 207 829 

14 NID2 rs2273430 C A 65 387 591 

16 C1QTNF8 
rs73494080 

G T 
0 107 946 

rs73494080_dom 107 946 

17 CEP95 
rs9910506 

A G 
3 110 940 

rs9910506_dom 113 940 

20 DEFB132 
rs74420259 

A G 
3 112 937 

rs74420259_dom 115 937 
 

1
Instances in which sample size was below 5 for any genoptype group, SNPs were recoded dominantly for the effect of the 

minor allele (homozygous minor and heterozygotes were combined) prior to regression analyses; _dom denotes dominant 
coding genotype distribution 
2
mm = homozygous minor, Mm = heterozygote, MM = homozygous major 
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Appendix Table 5a. SNPs Mapped to Genes within the Chromosome 5 Region of Interest 

Chromosome 5 
Genes 

REEP5 SRP19 APC EPB41L4A-A SNORA13 EPB41L4A 

Mapped SNPs 

rs3985058 rs3985058 rs890757 rs255888 rs255888 rs255888 

rs10064163 rs10064163 rs3985058 rs34927 rs34927 rs34927 

rs469727 rs469727 rs10064163 rs7703522 rs7703522 rs7703522 

rs9326869 rs9326869 rs469727 rs1560058 rs1560058 rs1560058 

rs4705752 rs4705752 rs9326869 rs7719346 rs7719346 rs7719346 

rs17135515 rs17135515 rs4705752 rs13165201 rs13165201 rs13165201 

rs1318772 rs1318772 rs17135515 rs890757 rs890757 rs890757 

   
rs3985058 rs3985058 rs3985058 

   
rs10064163 rs10064163 rs10064163 

     
rs469727 

 

Appendix Table 5b. SNPs Mapped to Genes within the Chromosome 8 Region of Interest 

Chromosome 
8 Genes 

CDCA2 EBF2 GNRH1 KCTD9 DOCK5 CDCA2 

Mapped SNPs 

rs35475676 rs925030 rs35475676 rs35475676 rs4871930 rs35475676 

rs17053341 rs115875864 rs17053341 rs17053341 rs196864 rs17053341 

rs925030 rs17054477 rs925030 rs925030 rs35475676 rs925030 

rs115875864 rs2233701 rs115875864 rs115875864 rs17053341 rs115875864 

rs17054477  rs17054477 rs17054477 rs925030 rs17054477 

    rs115875864  

    rs17054477  
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Appendix Table 5c. SNPs Mapped to Genes within the Chromosome 17 Region of Interest 

Chromosome 
17 Genes 

ARHGEF15 AURKB CTC1 LINC00324 PFAS SLC25A35 RANGRF 

Mapped 
SNPs 

rs9907759 rs12941981 rs374230 rs307627 rs7219467 rs11650083 rs12942745 

rs1105813 rs3744263 rs61737334 rs2543540 rs11868946 rs4792002 rs4233018 

rs1106826 rs34873228 rs114366417 rs16956936 rs9903543 rs4239120 rs9907759 

rs57926692 rs1544724 rs78773193 rs839721 rs8066124 rs28743021 rs1105813 

rs8071598 rs1544725 rs634990 rs7219467 rs4791759 rs8069344 rs1106826 

rs4130668 rs307627 rs1376785 rs11868946 rs11653849 rs145035264 rs57926692 

rs2270517 rs2543540 rs61741130 rs9903543 rs9905906 rs9895916 rs8071598 

rs73233606 rs16956936 rs6495754 rs8066124 rs77431839 rs4792147 rs4130668 

rs8522 rs839721 rs2543540 rs4791759 rs11871543 rs7225107 rs2270517 

rs12453250 rs7219467 rs16956936 rs11653849 rs8070826 rs3027205 rs73233606 

rs7217873 rs11868946 rs839721 rs9905906 rs12942745 rs3027229 rs8522 

rs10852894 rs9903543 rs7219467 rs77431839 rs4233018 rs3027232 rs12453250 

rs9908139 rs8066124 rs11868946 rs11871543 rs9907759 rs1059476 rs7217873 

rs61747003 rs4791759 rs9903543 rs8070826 rs1105813 rs3826543 rs10852894 

rs11078718 rs11653849 rs8066124 rs12942745 rs1106826 rs3027238 rs9908139 

rs35421969 rs9905906 rs4791759 rs4233018 rs57926692 rs78390421 rs61747003 

rs11650083 rs77431839 rs11653849 rs9907759 rs8071598 rs9912921 rs11078718 

rs4792002 rs11871543 rs9905906 rs1105813 rs4130668 rs9891699 rs35421969 

rs4239120 rs8070826 rs77431839 rs1106826 rs2270517 rs11078738 rs11650083 

rs28743021 rs12942745 rs11871543 rs57926692 rs73233606 rs9890841 rs4792002 

rs8069344 rs4233018 rs8070826 rs8071598 rs8522 rs871841 rs4239120 

rs145035264 rs9907759 rs12942745 rs4130668 rs12453250 rs3744647 rs28743021 

rs9895916 rs1105813 rs4233018 rs2270517 rs7217873 rs73250854 rs8069344 

rs4792147 rs1106826 rs9907759 rs73233606 rs10852894 rs12601097 rs145035264 

rs7225107 rs57926692 rs1105813 rs8522 rs9908139 rs12936935 rs9895916 

rs3027205 rs8071598 rs1106826 rs12453250 rs61747003 rs370752 rs4792147 

rs3027229 rs4130668 rs57926692 rs7217873 rs11078718 rs74532943 rs7225107 

rs3027232 rs2270517 rs8071598 rs10852894 rs35421969 rs961 rs3027205 

rs1059476 rs73233606 rs4130668 rs9908139 rs11650083 rs7225835 rs3027229 

rs3826543 rs8522 rs2270517 rs61747003 rs4792002 rs74866427 rs3027232 

rs3027238 rs12453250 rs73233606 rs11078718 rs4239120 rs9893451 rs1059476 

rs78390421 rs7217873 rs8522 rs35421969 rs28743021  rs3826543 

rs9912921 rs10852894 rs12453250 rs11650083 rs8069344  rs3027238 

rs9891699 rs9908139 rs7217873 rs4792002 rs145035264  rs78390421 

rs11078738 rs61747003 rs10852894 rs4239120 rs9895916  rs9912921 

rs9890841 rs11078718 rs9908139 rs28743021 rs4792147  rs9891699 

rs871841 rs35421969 rs61747003 rs8069344 rs7225107  rs11078738 

rs3744647 rs11650083 rs11078718 rs145035264 rs3027205  rs9890841 

rs73250854 rs4792002 rs35421969 rs9895916 rs3027229  rs871841 

rs12601097 rs4239120 rs11650083 rs4792147 rs3027232  rs3744647 
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rs12936935 rs28743021 rs4792002 rs7225107 rs1059476  rs73250854 

rs370752 rs8069344 rs4239120 rs3027205 rs3826543  rs12601097 

rs74532943 rs145035264 rs28743021 rs3027229 rs3027238  rs12936935 

rs961 rs9895916 rs8069344 rs3027232 rs78390421  rs370752 

rs7225835 rs4792147 rs145035264 rs1059476 rs9912921  rs74532943 

rs74866427 rs7225107 rs9895916 rs3826543 rs9891699  rs961 

rs9893451 rs3027205 rs4792147 rs3027238 rs11078738  rs7225835 

rs2242373 rs3027229 rs7225107 rs78390421 rs9890841  rs74866427 

rs17854013 rs3027232 rs3027205 rs9912921 rs871841  rs9893451 

rs28446092 rs1059476 rs3027229 rs9891699 rs3744647   

 rs3826543 rs3027232 rs11078738 rs73250854   

 rs3027238 rs1059476 rs9890841 rs12601097   

 rs78390421 rs3826543 rs871841 rs12936935   

 rs9912921 rs3027238 rs3744647 rs370752   

 rs9891699 rs78390421 rs73250854 rs74532943   

 rs11078738 rs9912921 rs12601097 rs961   

 rs9890841 rs9891699 rs12936935 rs7225835   

 rs871841 rs11078738 rs370752 rs74866427   

 rs3744647 rs9890841 rs74532943 rs9893451   

 rs73250854 rs871841 rs961    

 rs12601097 rs3744647 rs7225835    

 rs12936935 rs73250854     

 rs370752 rs12601097     

 rs74532943 rs12936935     

 rs961 rs370752     

 rs7225835 rs74532943     

  rs961     

  rs7225835     

  rs74866427     

  rs9893451     
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Appendix Table 5d. SNPs Mapped to Genes within the Chromosome 20 Region of Interest 

Chromosome 20 
Genes 

ADRM1 HRH3 LSM14B MIRI1257 

Mapped SNPs 

rs78979746 rs78979746 rs944260 rs2427158 

rs6142884 rs6142884 rs78979746 rs2024714 

rs2427254 rs2427254 rs6142884 rs944260 

rs36106901 rs36106901 rs2427254 rs78979746 

rs6062133 rs6062133 rs36106901 rs6142884 

rs6142998 rs6142998 rs6062133 rs2427254 

rs77172131 rs77172131 rs6142998 rs36106901 

rs944895 rs944895 rs77172131 rs6062133 

rs76350903 rs76350903 rs944895 rs6142998 

rs2427283 rs2427283 rs76350903 rs77172131 

rs2427284 rs2427284 rs2427283 rs944895 

rs875379 rs875379 rs2427284 rs76350903 

rs114642987 rs114642987 rs875379 rs2427283 

rs13042941 rs13042941 rs114642987 rs2427284 

rs6062223 rs6062223 rs13042941 rs875379 

rs138657380 rs138657380 rs6062223 rs114642987 

rs4925386 rs4925386 rs138657380 rs13042941 

rs4925229 rs4925229 rs4925386 rs6062223 

rs78026347 rs78026347 rs4925229 rs138657380 

rs115914846 rs115914846 rs78026347 rs4925386 

rs3810553 rs3810553 rs115914846 rs4925229 

rs78287067 rs78287067 rs3810553 rs78026347 

rs114526073 rs114526073 rs78287067 rs115914846 

rs111509987 rs111509987 rs114526073 rs3810553 

rs6062251 rs6062251 rs111509987 rs78287067 

rs4635599 rs4635599 rs6062251 rs114526073 

  
rs4635599 
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Appendix Table 5d. SNPs Mapped to Genes within the Chromosome 20 Region of Interest 
cont’d. 

Chromosome 
20 Genes 

OSBPL2 PSMA7 SS18L1 TAF4 CDH4 

Mapped SNPs 

rs78979746 rs2024714 rs944260 rs4468878 rs237655 

rs6142884 rs944260 rs78979746 rs4925189 rs2426983 

rs2427254 rs78979746 rs6142884 rs2427158 rs3752252 

rs36106901 rs6142884 rs2427254 rs2024714 rs4468878 

rs6062133 rs2427254 rs36106901 rs944260 rs4925189 

rs6142998 rs36106901 rs6062133 rs78979746 rs2427158 

rs77172131 rs6062133 rs6142998 rs6142884 rs2024714 

rs944895 rs6142998 rs77172131 rs2427254 rs944260 

rs76350903 rs77172131 rs944895 rs36106901 rs78979746 

rs2427283 rs944895 rs76350903 rs6062133 rs6142884 

rs2427284 rs76350903 rs2427283 rs6142998 rs2427254 

rs875379 rs2427283 rs2427284 rs77172131 rs36106901 

rs114642987 rs2427284 rs875379 rs944895 rs6062133 

rs13042941 rs875379 rs114642987 rs76350903 rs6142998 

rs6062223 rs114642987 rs13042941 rs2427283 rs77172131 

rs138657380 rs13042941 rs6062223 rs2427284 rs944895 

rs4925386 rs6062223 rs138657380 rs875379 rs76350903 

rs4925229 rs138657380 rs4925386 rs114642987 rs2427283 

rs78026347 rs4925386 rs4925229 rs13042941 rs2427284 

rs115914846 rs4925229 rs78026347 rs6062223 rs875379 

rs3810553 rs78026347 rs115914846 rs138657380 rs114642987 

rs78287067 rs115914846 rs3810553 rs4925386 rs13042941 

rs114526073 rs3810553 rs78287067 rs4925229 rs6062223 

rs111509987 rs78287067 rs114526073 rs78026347 rs138657380 

rs6062251 rs114526073 rs111509987 rs115914846 rs4925386 

rs4635599 rs111509987 rs6062251 rs3810553 rs4925229 

 
rs6062251 rs4635599 rs78287067 rs78026347 

 
rs4635599 

 
rs114526073 rs115914846 

    
rs3810553 

    
rs78287067 

    
rs114526073 
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Appendix Figure 1a. Triangle Plot of STRUCTURE analysis results for GHAT study participants 

 

Note: Only founder individuals from the HapMap populations shown above were included in 
STRUCTURE analyses. The following populations are defined above as follows: 
GHAT=Current study cohort 
CEU = CEU HapMap individuals 
YRI = YRI HapMap individuals 
CHB + JPT = Combination of all CHB and JPT HapMap individuals 
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