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CHAPTER I 

 

INTRODUCTION 

 

Focus 

 

Under a narrow range of continuous culture conditions, the budding yeast 

Saccharomyces cerevisiae strain CEN.PK exhibits a robust respiratory oscillation with a 

period around 3 to 5 hours.   The work presented in this dissertation focuses on this 

rhythmic phenomenon and the question, “What is the relationship between the cell 

division cycle and this respiratory oscillation?”  This dissertation constitutes a series of 

steps within a much larger quest to fully understand the nature of biological rhythms in 

yeast.  Although not specifically addressed here, other questions that motivate this 

research are, “Is the respiratory oscillation evidence of an endogenous biological clock?” 

and “Does this biological rhythm in yeast exist in nature, i.e. outside of the tightly 

controlled laboratory conditions of continuous culture?”  To pursue answers to these and 

other related questions, a number of techniques and investigations involving the 

production and perception of light are used.  In fact, every chapter of this dissertation 

revolves around the use of light for exploring the biology of yeast in some way; from 

developing bioluminescent yeast that report gene activity, to studying effects that visible 

light has on yeast respiration and growth, to developing a low cost fluorescent excitation 

light source for use in microscopy.  Important concepts for understanding this material 

and their contexts are addressed in the following sections of this introduction. 
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The Cell Division Cycle 

 

 The cell division cycle (a.k.a. the cell cycle) is the process of replication and 

division whereby one cell makes a duplicate of itself through a highly coordinated series 

of events.  The cycle is divided into four phases and is described here in terms of the 

budding yeast Saccharomyces cerevisiae.  G1 is a growth phase during which the cell 

grows in size and builds up stores of carbohydrates.  Once a critical size is obtained and 

the surrounding environment is deemed suitable for cell division, the cell passes a 

critical point in G1 called Start where the cell irreversibly commits to one round of cell 

division.  The passage of Start is accompanied by the upregulation of certain cell cycle 

genes like the G1 cyclins (CLN1, CLN2, CLN3) as well as other genes (like POL1) 

needed for the next phase of the cell cycle, S phase.  During S phase, all of the 

chromosomes are duplicated in a very tightly controlled process.  During S phase, S. 

cerevisiae forms a small bud on its periphery, which continues to get larger through the 

rest of the cell cycle.   After DNA synthesis in S phase, the cell enters a second growth 

(or gap) phase called G2, in which the cell and bud continue growing and making 

preparations for mitosis.  M phase, or mitosis, is the portion of the cell cycle in which the 

newly synthesized genetic material moves to the growing bud and is concluded by 

separation of the bud (the daughter cell) from the mother cell.  After mitosis is complete, 

both mother and daughter cells reenter G1, the only phase of the cell cycle in which a 

bud is not evident.  If conditions are favorable, the mother and daughter cells can begin 

the cell division cycle again.  However there are reasons why a yeast cell may postpone 

cell division when in G1. 

 For haploid yeast cells, the presence of mating pheromone from the opposite 

mating type (e.g. α-factor to MATa cells) arrests progression through G1 prior to Start.  

This cell cycle arrest ensures that the two nuclei that fuse during mating each contain 
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only one copy of each chromosome and that a proper diploid cell arises [1].  Mating 

pheromone can therefore be used in a laboratory setting to artificially arrest yeast cells in 

G1 and then later release them from this block by removing the pheromone.  This 

procedure results in a synchronized cell cycle for the majority of the population and 

allows researchers to collect/study many cells in similar phases of the CDC.  Unequal 

sizes of mothers and daughters after cell division, however, cause synchronized cells to 

have different G1 durations and therefore lose synchrony after one to three cycles [2].   

 Another reason yeast may postpone cell division and instead “choose” to 

continue living in G1 is that the nutritional conditions of the environment are poor.  Yeast 

must harvest high-energy molecules (e.g. sugars) from their environment as well as 

other nutritional requirements that they cannot produce themselves (e.g. organic 

nitrogen, sulfur, potassium).  When these nutrients become low, yeast sense their 

depletion and respond by slowing their growth rate and extending the time the cells 

spend in G1 [3].  Longer G1 intervals slow the rate at which the culture as a whole 

divides.  Eventually the cells arrest in G1 altogether until the limiting nutrients are 

returned.  When cells completely arrest in G1 due to depleted nutrients (usually carbon), 

the cells are referred to as quiescent or G0 denoting that they have exited from the CDC 

[4].  Reintroduction of nutrients (carbon) returns the quiescent cells to G1 and the CDC 

resumes.  The methods that yeast use to sense nutritional conditions of their 

surroundings and relay these conditions to mechanisms that regulate growth are largely 

unknown and are likely multifaceted, but one cell cycle related protein believed to play a 

role in glucose regulation of the cell cycle is Cln3p, a G1 cyclin that regulates the 

expression of other G1 cyclins (e.g. Cln1p and Cln2p) which in turn (along with Cdc28p) 

regulate progression through Start [5].   

 A third reason cells may delay progression through G1 and forego commitment 

to cell division is insufficient cell size.  There is a critical size that cells must attain during 
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G1 before being allowed to pass Start, however this critical cell size is somewhat 

variable, dependent on nutritional composition of the media [6] as well as overall growth 

rate of the culture [7].  As a result, newly budded daughter cells, which are smaller than 

their mothers, generally spend longer in G1 attaining the critical mass than their mothers 

[2].  This unequal mother-daughter growth rate results in yeast cultures dividing 

asynchronously. 

 

Biological Rhythms and Clocks 

 

 Biological clocks (the most well-known being the circadian clock) are biological 

pathways that measure time, allowing organisms to synchronize and ultimately optimize 

their behavior and physiology with respect to the rhythmic changes in the environment.  

In addition to providing advantages of anticipating changes to the external environment, 

biological timing systems also permit synchrony and coordination of metabolic processes 

and gene regulation within the organism that provide optimum energy usage and 

temporal separation of mutually unfavorable reactions or reaction conditions [8, 9].  

Scientists have found circadian clocks in cyanobacteria and in nearly all eukaryotes 

investigated, strengthening the claim that for an organism, the capability of measuring 

time on a day-length scale is an advantage [10].  But despite the circadian clock’s virtual 

ubiquity, differences in genes and mechanisms for prokaryotes, plants, animals, and 

fungi point to no clear clock progenitor. 

 Interestingly for one of the most genetically well-characterized eukaryotes, the 

budding yeast Saccharomyces cerevisiae, researchers have yet to find evidence for a 

circadian clock.  Despite this apparent clock deficiency, S. cerevisiae does display some 

rhythmic behavior and has historically been pivotal for understanding two different 

biological rhythms: the glycolytic oscillator with a period ranging from 1 to 70 minutes 
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[11] and the cell division cycle with a period ultimately dependent on strain, nutrition, and 

other factors [12].  Recently, attention has been given to another yeast biological rhythm 

with a period ranging from 40 minutes to 5 hours (or more) manifested under certain 

continuous growing condition in bioreactors (a.k.a. chemostats or fermentors) [13-18].  

This specific biological rhythm that manifests during continuous culture is the primary 

focus of this dissertation and is referred to as the Yeast Respiratory Oscillation, or YRO, 

in this work.  The YRO is described in detail in a later section; but briefly, it displays 

several robust outputs under continuous culture including oscillating levels of dissolved 

oxygen, redox state, and concentrations of various metabolites [13-18].  Under some 

conditions, the respiratory oscillation manifests spontaneously and hampers industrial 

use of continuous culture by reducing the efficiency of bioreactor outputs [19].  The 

specific nature of this ultradian oscillation (an oscillation with a period much shorter than 

a day) and the mechanisms that permit the culture to exhibit respiratory (and sometimes 

cell cycle) synchrony remain to be clearly identified and are important questions to 

industrial users of S. cerevisiae, researchers who use S. cerevisiae as a model 

organism, and investigators of biological rhythms, alike. 

 Some have suggested that the YRO comprises a biological clock allowing cells to 

“tell time” but these arguments are based on the oscillations generated in the artificial 

continuous culture conditions of bioreactors and have yet to be shown to exist in nature 

[13, 16, 20].  That is not to say that the YRO is not a biological rhythm or oscillation.  

Oscillations in biological systems (and other systems comprised of networks) are 

common and often form spontaneously when three conditions are met: 1) input, energy, 

or a motivational force that is available to drive a change, 2) feedback to control the rate 

of change or the amount of change, and 3) a delay in the onset of the feedback control 

such that some regulated limit or “desired level” of a variable is overshot before the 

feedback system can affect the level of the variable [21].  These parameters account for 
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the oscillatory behavior of a wide variety of systems, both biological and non-biological, 

e.g. predator-prey balance, factory assembly lines, stock markets, temperature 

regulation of buildings, and biochemical pathways within cells such as glycolysis.  In fact, 

many biological pathways with feedback regulation exhibit some degree of oscillatory 

behavior.  Such oscillations often reduce the efficiency of the system/pathway making 

the rhythmic activity of the system undesirable; therefore in such situations, natural 

selection has sought to dampen these rhythms, often by reducing the amount of “delay” 

before feedback [22].  In fact, factors that affect any of the three conditions for oscillation 

affect the rhythm itself (e.g. period, shape, amplitude, phase, etc.).  In some cases 

naturally occurring oscillations have been reinforced by natural selection, and have 

presumably formed the basis for biological (e.g. circadian) clocks where the resulting 

rhythms could serve as a signal for properly timing other biological processes and 

behaviors, allowing anticipation of environmental rhythmic phenomena [22].  

Determining whether the YRO is one such oscillation that has been reinforced by natural 

selection to serve as a “clock” is beyond the scope of this work; however, the material 

presented here will hopefully shed additional light on the debate and offer counterpoints 

to consider regarding this question.  As mentioned above, biological pathways with 

delayed feedback regulation are notorious for oscillating, and energy metabolism 

pathways for the production and allocation of ATP within cells are rife with such 

regulation. 

 

Energy Metabolism in Yeast 

 

 When S. cerevisiae grows in the presence of excess glucose, as would be the 

case with bursting fruit in the wild, the cells rapidly divide and ferment glucose to ethanol 

even in the presence of oxygen [23].  This phenomenon of fermentation in the presence 
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of oxygen is called the Crabtree effect [24] and is found in only certain species of yeast, 

S. cerevisiae being one [25].  Although some respiration takes place during this rapid 

fermentation, S. cerevisiae demonstrates a strong preference for energetically less 

favorable fermentation until glucose levels become very low, after which they undergo a 

genetically widespread metabolic retooling and then grow slowly, oxidatively 

metabolizing the ethanol as a carbon source [23, 26].  Carbon source transition is called 

a diauxic shift and the one between sugar (glucose) and ethanol is accompanied by a 

general environmental stress response involving hundreds of genes as well as a slowing 

in cell division rate [4, 23, 27].  It is believed that about the time fleshy fruits appeared on 

earth, yeast evolved this Crabtree strategy to protect their food sources from other 

microbial competitors for which ethanol was toxic and could not serve as a nutrition 

source [26].  After exhausting their supply of ethanol and other non-fermentable carbon 

sources (e.g. acetate, glycerol), yeast undergo another massive genetic and metabolic 

transition.  They enter a state of protective dormancy called quiescence (G0) in which 

they arrest as unbudded cells, reduce transcription rate, inhibit protein degradation, 

constrain protein synthesis to ~0.3% of that in log phase, and await a new sugar supply 

[4].   

 The Crabtree effect occurs as a long-term or short-term phenomenon and is 

sometimes called respiro-fermentative metabolism because both respiration and 

fermentation occur at the same time (Fig. 1.1).  The long-term Crabtree effect that 

describes the fully adaptive, aerobic fermentation of rapidly growing yeast in the 

presence of abundant glucose is thought to be the result of S. cerevisiae’s limited 

respiratory capability when glucose levels exceed some threshold.  The short-term 

Crabtree effect occurs as a fermentative burst when excess glucose is added to a non-

fermenting yeast culture, and is thought to result from an overflow response at the level 

of pyruvate due to temporary saturation of respiratory capability (Fig. 1.1) [25].  Under  
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Figure 1.1.  A schematic depicting simplified respiro-fermentative metabolism in S. 
cerevisiae where pathways for fermentation and respiration operate simultaneously.  
Glucose goes through glycolysis and is broken down into pyruvate which is both 
metabolized into acetaldehyde for fermentation and into Acetyl-CoA entering the citric 
acid cycle for respiration.  The high energy state of the NADH produced from these 
reactions is both captured for ATP production by electron transport in mitochondria, as 
well as used to power the conversion of acetaldehyde into ethanol during fermentation.  
Ethanol can then (or later) be converted back to acetaldehyde and then to actyl-CoA 
where it can be respired.   
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lower oxygen concentrations of limited glucose, an opposite phenomenon from the 

Crabtree effect, called the Pasteur effect [28], is seen where fermentation is suppressed 

and respiration is favored due to the greater affinity of the enzyme which shuttles 

pyruvate to respiration (pyruvate dehydrogenase) for pyruvate than the enzyme that 

shuttles pyruvate to fermentation (pyruvate decarboxylase) [25].  So the pathway(s) of 

energy metabolism yeast use at any one time largely depend(s) on the levels of nutrients 

and metabolites (e.g. sugar, nitrogen, oxygen, ethanol, etc.) in the environment. 

 The ability to sense levels of metabolites and nutrients in the environment is of 

vital importance for regulating energy metabolism at the level of transcription as well as 

at the level of enzyme activity.  Catabolite repression is one method in which gene 

expression is regulated, whereby transcriptional activators or repressors bind 

metabolites or nutritional molecules (e.g. glucose) and either upregulate or downregulate 

transcription of relevant genes (e.g. those for sugar uptake, respiration, or 

gluconeogenesis) accordingly.  A more rapid response to metabolic cues can come from 

catabolite inactivation, where the presence of a molecule (e.g. glucose, ATP, cAMP, 

etc.) affects the activity of certain key enzymes of related pathways, such as by affecting 

the enzyme’s phosphorylation status [25].  Both catabolite repression and inactivation 

are examples of feedback regulation which often include delays in their responses, 

hence providing the framework for oscillations of metabolite concentrations or pathway 

utilization to develop.  As mentioned earlier, when such oscillations are detrimental for 

growth, viability, or effective pathway regulation, natural selection has often sought steps 

to minimize these rhythms.  When yeast grow in the wild on limited substrates, the 

availability of glucose and other nutrients constantly changes as the yeast consumes the 

nutrients.  Such constantly changing variables (such as the diminishing motive force for 

change) can work to destabilize or dampen oscillations [21], thus in conditions where 

nutrient concentrations are constantly decreasing, it stands to reason that fewer 
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measures may have been needed by evolving yeast to counter detrimental oscillatory 

consequences from delayed feedback regulation under these natural conditions.  

However, what if yeast are grown in an unnatural situation in which the supply of 

nutrients to the culture is maintained at a constant level?  Under such unnatural 

conditions, the measures that yeast may have developed to dampen metabolic 

oscillations could prove inadequate to quench them. 

 

Bioreactors and Continuous Culture 

 

 A bioreactor (sometimes called a fermentor or chemostat) is a continuous culture 

apparatus that maintains a microorganism culture in a near steady-state level of 

exponential growth in which one component of the media is the growth-limiting factor 

(Fig. 1.2A) [23, 29].  Within the reactor’s vessel, a specified volume of aerated media 

sustains yeast growth in much the same way batch growth occurs, but unlike batch 

growth, the growth environment (including pH, temperature, nutrition, biomass, and 

metabolic byproducts) is kept relatively constant by continually monitoring and adjusting 

variables like pH and temperature in addition to constantly introducing fresh media at a 

steady rate while removing culture (i.e. media, cells, and byproducts) from the vessel at 

the same rate.  As a result of these conditions, an inoculated culture grows to a 

concentration that the limiting component of the media allows and from that time onward, 

the growth rate is determined by the rate at which fresh media is supplied [29].  That is, 

growth rate (µ) equals the dilution rate (D) and thereby, both are equal to the natural log 

of 2 divided by generation time (i.e. divided by the average cell division time) [30].   

 µ
 

  Equation 1 
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Figure 1.2.  The bioreactor is a continuous culture vessel in which yeast can exhibit 
respiratory oscillations.  A. shows a bioreactor (New Brunswick Bioflo 110) which is 
capable of controlling temperature, pH, agitation, air flow, and dilution rate of continuous 
culture.  B. is an example of the longer period YRO characteristic of the strain CEN.PK 
grown in continuous culture.  C. is an example of the shorter period YRO that forms for 
the strain IFO0233 grown in continuous culture.  The YRO in B. has stable amplitude 
and has a period of about 5 hours.  The YRO in C. has a stable period of about 40 min 
but its amplitude and midpoint are not stable in this example.    
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As a result, the average cell division cycle time can be calculated for continuous culture 

by rearranging the terms in equation 1, and can ultimately be controlled by the user by 

controlling the dilution rate (the rate at which media is supplied to and removed from the 

continuous culture). 

 average cell division time
D

  Equation 2 

 Under traditional bioreactor operation (i.e. for non-oscillating conditions or strains 

of yeast) a steady-state is achieved where metabolite levels remain virtually constant 

and gene expression involved in metabolism is stabilized [23].   This stability has proven 

useful in the field of genomics and proteomics where researchers need to control 

environmental growth conditions and growing states of cells [29].  The importance for 

continuously fed bioreactors in the industrial sector is also growing.  As transgenic 

technology improves to provide new medicines, fuel sources, and biopolymers, systems 

that allow rapid, uninterrupted production of these products are of great commercial 

importance.  These are reasons it is necessary to fully understand microorganism 

behavior in bioreactors, especially when non-steady-state situations arise such as the 

YRO and cell division oscillations demonstrated in laboratory and industrial bioreactors.   

 

The Yeast Respiratory Oscillation 

 

 Under a range of specific conditions of glucose-limited, aerobic continuous 

culture in bioreactors, spontaneous perturbations of the steady-state can lead to 

oscillations in various metabolite concentrations in the media that are sometimes 

accompanied by (and possibly reinforced by) subpopulations of synchronously dividing 

cells [31].  The most often and most easily observed oscillating metabolite in the 

continuous culture is the dissolved oxygen concentration, which reflects the culture 
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alternating between respiro-fermentative metabolism and respiration (Fig. 1.2B, C) [16, 

18, 32].  We call this phenomenon the yeast respiratory oscillation (YRO), but it also 

goes by other names including the yeast metabolic cycle (YMC) [16] and the energy 

metabolism oscillation (EMO) [18]. 

 Researchers have investigated the YRO for decades (e.g. see [33, 34]) however 

controversy remains regarding specifics of the timing mechanism involved,  

synchronizing cues that permit population stability, and the importance of cell division 

synchrony to the YRO.  Some of the contention stems from different oscillatory periods 

research groups observe in their bioreactors [35-37].  Those that use a specific yeast 

strain and culture conditions outlined by Satroutinov, et al. [38] report short DO 

(dissolved oxygen) oscillations between 40 and 50 minutes (Fig. 1.2C) [13-15, 32, 38]; 

while others using different strains and conditions report longer period DO oscillations on 

the order of 4 to 5 hours (Fig. 1.2B) (or longer for very slow dilution rates) [16-18, 39].  

Some have claimed that the longer period ultradian rhythm is merely a reflection of a cell 

division oscillation [35] and is fundamentally different from the shorter period rhythm, but 

others defend the longer rhythm as a more robust and significant occurrence than the 

40-minute rhythm [36].  Regardless of their perspective, some members in both camps 

agree on two things.  One is that the oscillation consists of yeast synchronously 

alternating between respiro-fermentative (reductive) and respiratory (oxidative) states.  

The other is that the oscillation is a legitimate, biological phenomenon that points to a 

yeast ultradian clock; i.e. an endogenous oscillator that allows a yeast cell to temporally 

separate sensitive DNA replication from reactive oxygen species produced during 

respiration, thus having adaptive significance [15, 16, 40].  Researchers speculate that 

such a clock, with modest temperature compensation ability might be a yeast’s attempt 

to emulate benefits from a circadian clock while retaining capability for rapid cell division 

[14, 16].  However, it remains unclear whether the YRO is the result of an endogenous 
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oscillator (an ultradian clock) that ticks in all yeast or whether the phenomenon is simply 

an artifact or harmonic that propagates from feedback regulation that is stabilized by the 

conditions of continuous culture.  Aside from one study where yeast cultures were grown 

in batch on the slowly digestible carbohydrate trehalose (which was digested at a 

relatively steady rate into glucose molecules), the YRO has not been demonstrated 

outside of continuous culture conditions [41].  An aerobic environment where glucose is 

limiting but supplied at a slow, steady rate seems to be required for the YRO to manifest.   

 A generalized model describing the YRO is as follows.  Glucose that is constantly 

introduced into the continuous culture is immediately metabolized by the highly dense 

culture of slowly growing yeast [16].  This glucose feeds into the respiratory and other 

pathways to provide ATP to the cells, however the percentage of glucose that goes to 

respiration depends on two things: 1) the capability of respiration to occur (which 

depends on availability of oxygen, suitable NAD+/NADH ratio, sufficient respiratory 

machinery like cytochromes, etc.), and 2) the ATP levels and energy demands of the 

cells.  At times when lower levels of respiration can adequately satisfy the cell’s ATP 

demands, some of the consumed glucose is shuttled to storage carbohydrates like 

trehalose and glycogen as well as to the fermentative pathway (hence respiro-

fermentative metabolism) [18].  If respiration is inhibited for some reason, more of the 

glucose is sent to the fermentative pathway.  On the other hand, when ATP demands 

increase, more glucose is directed to respiration than glucose-storage or fermentation 

pathways.  And, if ATP requirements become greater than both respiration and 

fermentation can sustain from the media-supplied glucose, then the cells mobilize their 

storage carbohydrates to increase levels of intracellular glucose [18].  Therefore, the 

YRO is an oscillation where cells spend most of their time storing glucose in an ATP 

satisfied state but a recurring demand on ATP (or inadequate glucose level) requires the 

cells to spend their carbohydrate stores increasing intracellular glucose and respiration 
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rates.  This results in the observed dissolved oxygen oscillation along with oscillating 

levels of a whole host of other metabolic and redox factors (e.g. NADH vs. NAD+, 

storage carbohydrates, intracellular glucose, extracellular ethanol, and acetate). [16, 18]  

 The cell division cycle oscillates along with the YRO [13-18].  But it remains 

unclear whether the CDC plays a part in the YRO’s stability/existence, or whether the 

CDC synchrony observed during the YRO is merely an output of the oscillating energy 

metabolism (or an unidentified “clock”).  One hypothesis is that the CDC falls into 

lockstep with the YRO because slowly growing cells in G1 delay progression through 

Start due to the low glucose levels in the environment and within the cell, and the 

synchronous release of glucose from carbohydrate stores (during a particular phase of 

the YRO) satisfies Start-related nutritional requirements allowing cells to simultaneously 

progress through Start after the intracellular glucose surge.  As a result of a large 

population of cells synchronously progressing through S, G2, and M phases of cell 

division, CDC-related metabolic influences (e.g. energy demands, pathway preferences, 

byproduct formation, etc) could then in turn feed back on the regulation of the YRO, thus 

allowing the cell division rate (determined by the dilution rate of the culture) to influence 

the period and stability of the YRO. 

 Because the CDC, energy metabolism, and responses to environmental and 

nutritional cues are highly regulated at the transcriptional level, it is not surprising that 

more than half of the yeast genome has been found to have periodic expression with the 

YRO [16].  For some genes, this periodic coordination supports the hypothesis that the 

YRO is the result of an ultradian clock (an endogenous oscillator), similar to the 

circadian clock but operating on a more rapid timeframe [15, 16].  However, it is also 

possible that the rhythmic expression of more than half of the genome could simply be 

due to gene regulation that accompanies two things: 1) a synchronized cell division cycle 

under these conditions, and 2) environmental/nutritional sensing of an oscillating 
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environment dependent on an hourglass-like metabolic timer of glucose storage and 

usage.  It would therefore be the coincidence of an oscillating environment that 

manifests under the artificial growth conditions of continuous culture that results in 

rhythmic gene expression rather than a predictive, endogenous clock controlling these 

genes. 

 

Reporters of Temporal Changes in Gene Expression 

 

 Measuring regular changes within organisms over time is necessary for 

understanding their biological rhythms.  Prior to advances in molecular biology, circadian 

biologists were limited to observing behavioral, morphological, or physiological rhythms 

[40].  Later, advances in biochemistry allowed scientists to examine cellular extracts and 

characterize rhythmic occurrences of certain substances.  It was not until genetically 

encodable reporters of temporal changes were developed that genes for circadian 

systems were found in simple single-celled organisms like cyanobacteria [42].  

Observing rhythms in living organisms that lack behavioral and morphological complexity 

requires molecular tools capable of revealing intracellular changes as they happen.  It 

has been through the use of in vivo genetic reporting systems that we can now witness 

an organism’s rhythmic gene activity and characterize biological oscillations on a 

molecular scale.   

 The bioluminescent reaction catalyzed by the enzyme luciferase has become a 

useful genetic reporting system for monitoring promoter activity in circadian studies of 

mammals, insects, plants, cyanobacteria, and filamentous fungi.  The eukaryotic 

luciferase from fireflies emits light when the 62-kDa protein catalyses the oxidation of a 

bioluminescent substrate “luciferin” (in the presence of O2, ATP, and Mg+2) into 

oxyluciferin (and ADP and CO2) [43].  The light emission is therefore an immediate and 
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measurable indication of the enzyme’s activity that can be transgenically coupled to an 

organism’s endogenous regulation of transcription for a specified gene.  The relatively 

short half-life of luciferase (~2-4 hours, depending on the host organism) allows its 

expression to dynamically reflect transcription on a faster time scale than longer-lived 

reporters like βGal, CAT, or GFP [43, 44].  Additionally, luciferase does not need 

excitation from an external light source as do GFP and other fluorescent reporters.  

Therefore, issues of photobleaching, autofluorescence, phototoxicity, and biological 

responses to light can be avoided with a luciferase reporter.    

 Molecular tools for characterizing subcellular spatial expression and constraints 

of yeast proteins have revolutionized our understanding of where proteins reside within 

yeast, for example using spatial reporters like GFP-fusion proteins [45].  Similarly, 

quantum leaps in circadian biology of other eukaryotes have been made using luciferase 

reporters and similar protein fusions to characterize when genes and proteins are 

expressed [46].  Therefore a valuable opportunity exists for using luciferase to 

characterize the timing aspects of gene expression in yeast or to visualize gene 

expression in situations where GPF is inadequate.  Consequently, I developed luciferase 

reporters for yeast that provide real-time gene expression data during the YRO.   

  

Significance of these Studies 

 

 The work presented here is important on two levels:  1) from a broad perspective, 

these investigations pursue questions that concern the larger fields of cell cycle 

regulation, microbial communication and environmental sensing, chronobiology, and 

industrial uses for S. cerevisiae, and 2) more narrowly, these investigations target the 

yeast and YRO research communities by providing additional tools to study rhythmic 

gene expression of yeast, as well as attempting to resolve differences between the two 
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types of reported YROs (i.e. the longer period YRO ranging from 3 to 5+ hours and the 

shorter period YRO of about 40-50 min).   

 For this work, luciferase reporters of promoter activity were developed for S. 

cerevisiae to investigate real-time rhythmic activity of gene expression during the YRO 

and the cell division cycle (Chapter II).  From the luminescent reporter data of these 

studies, cell-cycle landmarks were determined for the longer period YRO and a 

relationship between the phase resetting capability of the YRO and CDC was shown 

(Chapter II). A model describing the interaction between the YRO and CDC was 

proposed (Chapter II) and then later tested (Chapter III).  The effects of metabolic 

signals (e.g. ethanol, acetaldehyde, and oxygen) on the YRO were tested and all 

showed similar phase resetting characteristics (Chapters II and IV) implicating those 

metabolites in possible signaling pathways that regulate and maintain the YRO.  The 

large amplitude and ~3.5 to ~5 hour period characteristic of the longer period YRO was 

shown to be strengthened by the rhythmic participation of synchronized cell division 

(chapter III) and could be disrupted by either blocking the CDC (chapter III) or by 

exposing the oscillating culture to visible light (chapter IV).  Light was further shown to 

interfere with yeast respiration and growth rates, and caused S. cerevisiae to upregulate 

the production of pigments, most likely carotenoids to protect the cells from the 

damaging effects of visible light.  And finally, diminishing respiration during the YRO by 

exposing the culture to light, caused the period of the longer period YRO to shorten from 

3.5+ hours to as little as 70 min, which puts the oscillation on a similar timeframe with 

that of the shorter period YRO reported by others.  This observation might show how 

these two YROs may be related.   

 Until the YRO is demonstrated in “the wild” or on an individual cellular scale 

outside of continuous culture, the phenomenon of oscillating respiratory phases will 

remain an academic curiosity with limited application to the understanding of yeast as 
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they exist in nature.  Such evidence remains the primary obstacle for demonstrating that 

S. cerevisiae has an endogenous timekeeping system like other organisms with 

circadian clocks.  However this deficiency does not diminish the importance of 

researching the YRO.  Independent of its possible existence in nature, the YRO can 

continue to be used as a tool to investigate other, physiologically relevant questions 

regarding cell cycle regulation, communication, environmental sensing, metabolic 

control, and cellular coordination.  Additionally, the YRO can be potentially exploited by 

industry, by taking advantage of the synchrony of gene expression that accompanies the 

cell cycle to harvest products from continuous culture in phase with their rhythmic 

production, thereby increasing yields of natural or heterologous yeast products [47]. 
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CHAPTER II 

 

REAL-TIME LUMINESCENCE MONITORING OF CELL-CYCLE AND RESPIRATORY 

OSCILLATIONS IN YEAST1 

 

Introduction 

 

 Measuring regular changes within organisms over time is essential for 

understanding rhythmic biological phenomena and the design principles of biological 

circuits [48]. Historically, such measurements were limited to observing behavioral, 

morphological, or physiological parameters [40]. Later biochemical advances allowed 

scientists to assay cellular extracts for the rhythmic occurrence of specific molecules. All 

of these methods are labor intensive, relatively low-throughput, and/or require the 

destruction of the organism (e.g., to make a cell extract). Even modern assay techniques 

such as microarrays require the destruction of biological samples. However, the use of in 

vivo genetic reporting systems allows us to witness an organism’s rhythmic gene activity 

in real time and to characterize biological oscillations at a molecular level. For example, 

the field of circadian rhythms (period ~24 h) was revolutionized by the application of 

luminescence reporting of clock-controlled promoter activities as a non-invasive real-

time assay [42, 49-51]. These luminescence reporting applications have extended to 

high-throughput screening of circadian mutants [52, 53] and traps for clock-controlled 

promoters and enhancers [54, 55]. 

                                                           
1  The work presented in Chapter II was published as Robertson, J.B., C.C. Stowers, 
E.M. Boczko, and C.H. Johnson (2008) Proc. Natl. Acad. Sci. U. S. A. 105:17988-93. 
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 For circadian applications in eukaryotic cells from filamentous fungi to plants to 

animals, the luminescence reporter of choice has been firefly luciferase [49-51, 56-58]. 

The luciferase gene can be coupled to an endogenous promoter and used as a 

genetically encodable, non-invasive reporter of the promoter’s activity. Firefly luciferase 

(Luc) is a 62-kDa protein that catalyses the oxidation of the bioluminescent substrate 

“luciferin” in the presence of O2, ATP, and Mg+2; the energy released by this reaction 

produces an electronically excited state, which then emits a photon [49]. Light emission 

is therefore an immediate and measurable indicator of luciferase activity. The relatively 

short half-life of luciferase (~2-4 h) allows its expression to dynamically reflect 

transcriptional activity on a faster time scale than longer-lived reporters such as GFP, 

βGal, or CAT, [43, 44, 49]. Additionally, luciferase does not require excitation from an 

external light source as do fluorescent reporters, thereby avoiding complications such as 

photobleaching, phototoxicity, and endogenous responses to light. Most importantly for 

applications to yeast, luciferase reporters circumvent the problematic autofluorescence 

that stems from complex media components, dense cultures, or intense excitation 

needed to detect low concentrations of fluorescent reporters.  

 Molecular tools for characterizing subcellular spatial expression and localization 

of yeast proteins have revolutionized investigations of where proteins reside within 

yeast, e.g., by using GFP-fusion proteins [45]. However, even though luciferase has 

often been the reporter of choice for temporal events such as circadian rhythms, it has 

not yet been applied as a real-time, non-invasive reporter in yeast. Rhythmic 

phenomena in yeast include the cell division cycle (CDC) and the yeast respiratory 

oscillation (YRO). The former phenomenon is intrinsic to all cells, but detection of the 

YRO has been limited to several strains of Saccharomyces cerevisiae growing under 

specific conditions of continuous culture. While the phenomenon has been known for 

decades [33], laboratories are only now beginning to elucidate the mechanisms 
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underlying its stability and maintenance of population synchrony [13, 16, 59]. A 

coincidence between the CDC and the YRO has been described [16, 34] but the 

relationship between these two rhythmic phenomena is unclear [35, 36]. 

 In this chapter, we modify firefly luciferase to function as a rapid, continuous, 

real-time reporter of promoter activity for cell-cycle regulated genes in populations of 

yeast and use this reporter as a gauge of gene activity during the CDC and in 

undisturbed, dense cultures that are exhibiting the YRO. This reporter provides an 

inexpensive, dependable read-out of a synchronized yeast population’s phase in the 

CDC, and thus can serve for some experiments as an alternative to the labor-intensive 

and/or costly methods of microscopy, FACS, microarray, or blotting. Moreover, we use 

this novel yeast reporter to probe the interdependency of the CDC to the YRO and show 

that there is a direct correlation between premature induction of cell division and phase 

resetting in the YRO under the conditions we tested.  

 

Results and Discussion 

 

 The half-life of native firefly luciferase in mammalian cells ranges from 1.4-4.4 h 

[58, 60]. While this rate of turnover is adequate for measuring circadian oscillations that 

occur over a ~24 h time course, cycles in yeast (e.g. the CDC and YRO) occur more 

rapidly, on the order of 40 min to 12 h or more depending on conditions [38, 39]. A 

reporter with a 1-4 h turnover would not be adequate for accurately reporting oscillations 

occurring over time spans of 0.5-6 h [49]. Therefore, for measuring more rapid changes 

in promoter activity, we developed a luciferase reporter with a shorter half-life by 

modifying the coding region of firefly luciferase to include the destabilizing PEST 

sequence from the CLN2 gene of S. cerevisiae [44]. This modification shortened the 

half-life of luciferase's activity in yeast from ~3 h to 35 min (Fig. 2.1). This destabilized 
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Figure 2.1. Half-life of luciferase activity in yeast is shortened from 3 h to 35 min by the 
addition of a PEST destabilizing sequence to the 3’ end of the coding region of the firefly 
luciferase gene (Luc). Luminescence was continually measured from yeast cultures 
transformed with galactose-inducible/glucose-repressible reporters with or without a 
PEST sequence (PGAL1-LucPEST or PGAL1-Luc respectfully). Luciferase transcription was 
induced by addition of galactose to the media at time -60 min for all cultures. Cultures 
with destabilized reporters (Xs and triangles) showed a lower amount of expression 
compared to cultures with unmodified reporters (squares and diamonds). Transcription 
and translation of luciferase was repressed at time 0 min by the addition of glucose and 
cycloheximide in cultures with the destabilized reporter (black triangles, n=4) and with 
the unmodified reporter (black diamonds, n=4). Plotted points are averages. S.D. error 
bars are not shown because they were not large enough to be seen beyond the 
symbols. Similar cultures were not repressed at time 0 (grey squares and Xs). 
Luminescence from all repressed cultures dropped after time 0, but cultures with the 
destabilized luciferase reporter (black triangles) dropped much faster than cultures with 
the unmodified luciferase reporter (black diamonds); half-lives were calculated as 3 h for 
Luc and 35 min for LucPEST. Cultures that were not repressed at time 0 (gray squares 
and Xs) continued to increase their luminescent output over the course of the 
experiment. Luminescence was graphed on a log scale and time was graphed in 
negative minutes before repression and positive minutes after repression. 
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 Luc also showed a lower level of background expression and a level of induction over 

background that was 13 times greater than the unmodified Luc, providing a greater 

dynamic range than the unmodified version.  

 Luciferase can be used as an accurate reporter of the yeast CDC by expressing 

the destabilized Luc under the control of a cell cycle regulated promoter. POL1 encodes 

the largest subunit of DNA polymerase α [61] and is transcribed during the late G1 to 

early S phase of the cell cycle [62]. The reporter gene was fused to the POL1 promoter 

(PPOL1-LucPEST) and integrated into the genome of the MATa, bar1 strain LHY3865. 

These yeast, released from cell-cycle arrest with alpha factor, showed at least five 

noticeable oscillations of luminescence with a period of about 70 min (Fig. 2.2A). The 

luminescence signal increased with time as the cell density of the culture increased, but 

the amplitude of the oscillation dampened. When the luminescence data were detrended 

by subtraction of the luminescence trace from a third order polynomial trendline, the 

ongoing oscillation became more apparent (Fig. 2.2B). A similar result is obtained when 

luminescence data from a separate, asynchronously growing culture of the same yeast 

were used to detrend the data from the synchronized culture (Fig. 2.3). This 

luminescence oscillation of the synchronized culture coincided with the period of the 

microscopically determined population budding percentage (bud index) that was taken 

for 3 h; the luminescence rhythm phase-leads the rhythm of bud index by about 10 

minutes (Fig. 2.2B). These data indicate that the luminescence rhythm (reflecting PPOL1 

activity) is a good reporter of CDC phase and period. 

 The YRO is characterized by a robust oscillation of dissolved oxygen (DO) 

concentration [13, 16, 18, 20, 34, 38, 39, 63] as well as some degree of synchronous cell 

division [13, 16, 34, 39]. DO can be monitored continuously and automatically with an 

electrode, but DO electrodes can only be used in relatively large volumes of liquid 

cultures. Luminescence reporting technology can potentially allow intracellular O2 levels  
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Figure 2.2. Luminescence from PPOL1-LucPEST oscillates with the CDC. A. 
Luminescence from a yeast culture transformed with PPOL1-LucPEST was recorded over 
time. The culture was arrested with α-factor for 3 h and released (A, black line). Overall 
luminescence from the culture increased over time as cell density increased roughly 
following a trend described by a 3rd order polynomial (A, gray line). The influence of 
growth was detrended from the data by subtracting the polynomial from the 
luminescence of the synchronized culture (B, black line). The difference was then 
compared to the oscillation of cell division calculated by microscopically scoring bud 
index (B, gray line) (n= 3-5 samples of >100 cells ea. per timepoint, from the same 
synchrony experiment, +/-S.D.). 
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Figure 2.3. Plot of detrended luminescence from Fig. 2.2 using data of a separate, 
asynchronously growing culture of the same yeast strain. A. Luminescence from yeast 
cultures transformed with PPOL1-LucPEST was recorded over time. One culture was 
arrested with α-factor for 3 h and released (black line) while another culture of similar 
volume and density was allowed to grow asynchronously (gray line). Overall 
luminescence from both cultures increased over time as the culture density increased. 
However, only the synchronized culture showed an oscillation of luminescence. B. The 
influence of growth on luminescence signal was removed by data detrending via the 
subtraction of luminescence of the asynchronous culture from that of the synchronized 
culture in panel A. This detrended line was then compared to the oscillation of cell 
division calculated by microscopically scoring bud index, i.e. the bud percentage in the 
population (gray points and line). 
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to be monitored under a wider range of culture conditions. Luciferase is an oxygen-

dependent enzyme that maintains a relatively stable light output when [O2] remains 

above 5% (~25% atmospheric saturation), declines gradually as [O2] falls below 5%, and 

plummets at [O2] below ~2% [64, 65]. Because DO oscillates between ~2-10% (~10-

50% atmospheric saturation) over the course of the YRO, the medium is periodically 

depleted of one of luciferase's cofactors. The interval of relative hypoxia inhibits 

luciferase activity, thereby "masking" promoter activity information. To develop a 

luciferase reporter for the O2 decrease during the YRO, we (i) used unmodified Luc for 

its greater stability, and (ii) fused Luc to the constitutively expressed [66] promoter for 

actin (PACT1-Luc). Fig. 2.4 shows that the luminescence from yeast transformed with 

PACT1-Luc closely matches that of the DO trace. An immunoblot of yeast cells collected 

over one cycle of the YRO reveals a relatively constant amount of an antiluciferase-

reacting protein. These immunoblot results confirm that PACT1 is driving relatively 

constant expression of Luc and the correlation of dim luminescence with low DO levels 

supports the conclusion that the luminescence signal disappears at low O2 levels. 

Therefore, the PACT1-Luc reporter could be used as a genetically encodable, in vivo 

monitor for low O2 levels in situations where a DO probe is not practical–e.g., in colonies 

or very small culture vessels. 

 Can luciferase reporters be used to study gene expression during the YRO? 

Under some conditions, yeast cells divide in synchrony during the YRO (see below and 

also [16, 39]), and mRNA levels of various genes oscillate in or out of phase with the DO 

oscillation, as monitored by microarrays [13, 16] or northern blots [18]. Microarray/blot 

methods are informative, but they are expensive, labor intensive, and are limited by the 

frequency of sampling over the YRO. We tested the PPOL1-LucPEST luminescent 

reporter in continuous, oscillating cultures of strain CEN.PK to determine whether it 

could report promoter activity and cell cycle position continuously in real time without the  
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Figure 2.4. The PACT1-Luc reporter can be used to monitor intervals of low oxygen 
tension during the YRO. A. Six cycles of the YRO showing DO (black trace) and 
luminescence from PACT1-Luc (gray trace). The two cycles highlighted in the gray box are 
shown in panel B. B. Total protein was prepared from cell samples taken at various 
phases of the YRO (timepoints 1-12). DO is plotted as % atmospheric saturation. (360° 
= 3.75 h in this experiment.) C. Reporter protein concentration shows stable expression 
over the YRO. Immunoblots of total protein using anti-Luc and anti-actin (loading control) 
antibodies show that Luc protein concentration is stable across the oscillation when 
driven by the actin promoter, even during the hypoxic mask. The lane marked Luc is a 
control of 20 ng of purified luciferase. The absence of luminescence signal during the 
hypoxic mask therefore is likely due to low O2 levels rather than a change in reporter 
protein concentration. 
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need for sampling. Fig. 2.5A shows 7 consecutive cycles of the YRO over 35 h. In each 

cycle, luminescence peaks soon after DO rises and then gradually decays. Samples 

were taken from one cycle of the YRO and assayed for bud index. The luminescence 

signal from PPOL1-LucPEST followed the budding percentage except for recurring times 

of culture hypoxia (Fig. 2.5B). The luminescence traces can be roughly corrected for the 

intervals of hypoxia (Fig. 2.6)–with this correction, the bud index rhythm clearly phase-

lags that of PPOL1-LucPEST luminescence. Therefore, as long as the luminescence data 

are corrected for the hypoxic masking, the data are very similar to those shown for PPOL1-

LucPEST in yeast cells that are synchronously dividing under conditions in which O2 is 

not limiting (Fig. 2.2). 

 Different cell-cycle promoters can be used in conjunction with LucPEST to 

identify different CDC phases during the YRO. CLN2 is a gene that is maximally 

expressed in late G1 phase just prior to transition to S [67] while PIR1 is a gene whose 

transcription peaks during the M to G1 transition [66]. Therefore, expression of these two 

genes occupies opposite ends of the G1 phase. When the promoters for these genes 

are fused to LucPEST (PCLN2-LucPEST and PPIR1-LucPEST) and integrated into 

CEN.PK, they produce two distinctly different expression patterns in continuous, 

oscillating cultures, revealing characteristic landmarks of the cell division cycle within the 

YRO (Fig. 2.7). In a separate analysis of the YRO using data drawn from analyzing 

population budding percentages and cell concentrations, we find that the YRO of 

CEN.PK yeast can be optimally modeled as two populations of cells that synchronously 

divide 180° out of phase with one another, one CDC occurring every 2 YROs (Chris 

Stowers and Erik Boczko, unpublished results). Our data with luminescence reporters 

(and bud index, Fig. 2.4) are consistent with the “two antiphase populations" model. Fig. 

2.7 illustrates how a model in which each population’s short S/G2/M phase may be  
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Figure 2.5. Luminescent PPOL1-LucPEST reporter in yeast undergoing respiratory 
oscillations in continuous culture. A. The reporter shows real-time POL1 promoter 
activity (RLU) over 35 h (A, gray line) of the YRO. Oscillating DO concentration (A, black 
line) measured continuously with a DO electrode tracks the YRO. B. Samples were 
removed from the oscillating culture at different phases during the gray highlighted 
section of panel A and cells were scored for bud index to show that luminescence from 
the PPOL1-LucPEST reporter corresponds with a rhythm of cell division in the population 
(n=3-9 samples/timepoint, ± S.D.). Luminescence (gray) and DO levels (black) are also 
shown for comparison (100% DO = media saturated by atmospheric O2). Hypoxia masks 
the luminescence signal when DO concentration drops below ~40% saturation. (360° = 5 
h in this experiment.) 
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Figure 2.6. The data of Fig. 2.5 are double plotted here to underscore the transitions 
from cycle to cycle including an extrapolation of luminescence during the hypoxic mask 
(extrapolation shown as dashed line). Dissolved oxygen concentration is graphed in 
percent of atmospheric saturation and time is double-plotted in degrees of period (360° = 
5 h). Bud index data collected over one cycle are double-plotted. 
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Figure 2.7. Luminescent reporters driven from 3 different promoters in continuous 
cultures show distinctly different patterns of expression over the YRO. A. Peak 
luminescence from three separate cultures, each expressing a Luc reporter for a 
different promoter (each trace was normalized to 100 RLU for comparison). Three YRO 
cycles (which comprise 1.5 cell divisions for a single cell) are graphed. The peak of 
PCLN2-LucPEST luminescence (green) corresponds with exit from G1 and entrance into S 
phase of the CDC. The peak of PPIR1-LucPEST luminescence (red) corresponds with exit 
from M phase and entrance into G1. Luminescence from PACT1-Luc (blue) indicates 
intervals of relative hypoxia. (360° = 3.75 h in this experiment.) B. Model of how two 
populations of cells occupy the culture and how their positions in the CDC are 
diagramed relative to the time axis of A and to each other (see Fig. 2.8 for a 
deconvolution of the two populations). Transitions between G1 and S/G2/M were 
determined from the peaks of the luminescence profile from A (vertical dashed red and 
green lines). The time of one predicted cell division is indicated by the black bracket. 
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roughly centered in the middle of the other population’s long G1 phase and that the 

hypoxic mask occurs during a time when both populations are in G1 phase (see Fig. 2.8 

for correction of the hypoxic mask and deconvolution of the two populations). These two 

reporters and the cell cycle transitions they delineate demonstrate that for each 

population, G1 occupies about 70% of the cell cycle and S/G2/M occupies about 30% 

during the YRO. 

 Acetaldehyde and ethanol may serve as synchronizing agents for oscillating 

respiration in continuous cultures because they are rhythmically released from yeast 

cells and they can strongly reset the phase of the YRO [59, 63]. We wanted to know 

whether these phase altering substances also alter the timing of cell division associated 

with the YRO. Phase response curves (PRCs) to injections of 1mM acetaldehyde or 1 

mM ethanol into oscillating cultures of CEN.PK/PPOL1-LucPEST were measured with 

regard to the DO oscillation (Fig. 2.9). Fig. 2.10A shows that both stimuli induce strong 

Type 0 resetting [63, 68]. Independent of the phase of injection, either acetaldehyde or 

ethanol produces an immediate, but temporary, depletion of O2 in the culture as the 

metabolite is consumed (Figs. 2.10B, 2.9), whereas the resuming DO rhythm displays 

phase-dependent shifts (Figs. 2.10A, 2.10D, 2.9). For example, injection at phases 

between 0°~45° and 270°~405° have small effects on phase; injections between 

45°~135° cause increasingly larger phase delays; injections between 180°~270° cause 

progressively smaller phase advances (Figs. 2.10A, 2.9). 

 To ascertain CDC activity during the phase resetting experiment, luminescence 

from PPOL1-LucPEST was recorded following perturbations with acetaldehyde or ethanol. 

The data for acetaldehyde are summarized in Fig. 2.10B by showing the reporter’s initial 

response to acetaldehyde over a full cycle of 360° (data for ethanol are similar but not 

shown). The normalized luminescence traces for each of the acetaldehyde injections 

following the 0° injection were aligned with the peak of the 0° injection for comparison.  
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Figure 2.8.  
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Figure 2.8. Data of Fig. 2.7 showing extrapolation of promoter activity during the hypoxic 
mask and deconvolution of the two hypothetical populations responsible for the 
luminescent signals. A. Peak luminescence from three separate cultures, each 
containing a luciferase reporter for a different promoter, was normalized to 100 RLU for 
comparison. Three cycles of the YRO (that comprise 1.5 cell divisions per cell) are 
graphed. The peak of PCLN2-LucPEST luminescence (green) corresponds with exit from 
G1 and entrance into S phase of the CDC. The peak of PPIR1-LucPEST luminescence 
(red) corresponds with exit from M phase and entrance into G1. Luminescence from 
PACT1-Luc (blue) indicates intervals of relative hypoxia. Dotted red and green lines 
connect the respective traces at the boundaries of the hypoxic masks to show likely 
promoter trends during these times. B. We hypothesize that two populations of cells 
occupy the culture and their positions in the CDC are diagramed relative to the time axis 
of panel A and to each other (360° = 3.75 h). The contribution of these two predicted 
populations to the overall luminescence signals of the PCLN2-LucPEST and PPIR1-
LucPEST reporters are illustrated in panels C and D. C. The first population in the 
culture completes cell division at approximately phase 620° of the YRO (approximately 
720° of the YRO is required for one full cell division cycle to be completed). Transitions 
between G1 and S/G2/M were determined from the peaks of the luminescence profile 
from A (vertical dashed red and green lines). D. The second population in the culture 
undergoes cell division out of phase with the first population. In this population, the CDC 
also takes 720° of the YRO to complete. 
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Figure 2.9. Examples of data used to generate the phase response curve (PRC) for 
acetaldehyde in Fig 2.10A (data for ethanol are comparable but not shown). Four 
representative DO traces (blue) for phase resetting experiments are depicted where 1 
mM acetaldehyde was injected at the phase points indicated by vertical arrows (at 
phases 45°, 135°, 225°, and 270° of the period). Phase point “0°” is defined as the time 
when DO begins to rise from hypoxia. The red traces duplicate the cycles prior to 
injection in order to project the DO trace in the absence of an injection. The phase shift 
that resulted for each case was measured during the first cycle after injection (gray 
boxes) and the intensity and direction of the effect is shown by horizontal arrows.  
 

  

36 
 



 

Figure 2.10. Phase responses of the YRO to 1 mM acetaldehyde or 1 mM ethanol. A. 
shows a double-plotted phase-response curve (PRC) to ethanol (blue) or acetaldehyde 
(red) relative to a DO oscillation. Phase shifts are plotted in degrees of period with 
advance shifts plotted as positive values and delay shifts as negative values (see 
Fig. 2.9 for raw data that illustrate the method of calculation). (360° = 4.0 h for the 
acetaldehyde PRC experiment and 3.75 h for the ethanol PRC experiment.) B. 
Luminescence responses of the PPOL1-LucPEST reporter to acetaldehyde treatments at 
the indicated phase points. The peak luminescence for each oscillation during which an 
acetaldehyde injection was made was normalized to 100 RLU and aligned with the peak 
of the 0° treatment. Treatments at phases 0° or 45° showed virtually no difference in 
luminescence aside from a brief hypoxic mask. Treatments made after phase 45° 
showed progressively increasing levels of PPOL1-LucPEST luminescence rebounding 
from the hypoxic mask as compared to the controls without treatment. C. Bud index in 
response to 1mM acetaldehyde injection made at phase 540° of the YRO (blue arrow). 
Bud index is the mean of 3-6 samples at each time point of >100 cells/sample (± S.D.). 
The red line is the bud index trend from 0-360°; the dotted red line projects this trend 
onto the next period. D. shows a strong correlation between the amount of rebounding 
POL1 induction after treatment and the magnitude of phase shift caused by the 
treatment. For comparison to luminescence, the phase shift in panel D is plotted on a 
monotonic 0° to -360° scale rather than the -180° to +180° scale of panel A. 
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The initial trend and shape of all of the luminescent PPOL1-LucPEST traces are virtually 

the same prior to injection, denoted in Fig. 2.10B by the group of multicolored lines 

following the same decay pattern after their peak. For traces of injections after 0°, a 

noticeable hypoxic mask occurs soon after injection followed by a return of the signal. 

Interestingly, when the signal returns from the hypoxic mask of the early treatments at 0° 

or 45° (black and red traces), the luminescence signal returns to the same level that it 

would have attained if no injection had occurred, indicated by the red trace rejoining the 

trend of the black and multicolored traces; these are the same phases at which 

practically no resetting of the YRO occurs (Fig. 2.10A,D). However, as injections occur 

progressively later in the cycle (e.g. at 90° (green), 135° (yellow), etc.) the luminescence 

signal rebounds to a significantly higher level than in the no-injection controls. 

 These results implied that some cells enter premature replication as a result of 

acetaldehyde/ethanol injections. If this were true, the percentage of budded cells in the 

culture should increase shortly after an injection. We confirmed this novel prediction by 

examining samples across two cycles of the YRO in which acetaldehyde was injected at 

phase 540° (the first cycle in Fig. 2.10C (0-360°) serves as an unperturbed control). 

Following the injection, ~25% of the culture prematurely buds (Fig. 2.10C), as predicted 

by the LucPEST data of Fig. 2.10B. The data in Fig. 2.10A-C suggest a clear correlation 

between (i) phases at which the acetaldehyde/ethanol stimulate new rounds of the CDC 

and (ii) phase shifts of the DO oscillation (Fig. 2.10D). 

 Some researchers have concluded that the YRO may be the result of an 

endogenous self-sustained ultradian oscillator that functions analogously to the longer 

period circadian oscillators that regulate many cellular events including cell division [13, 

16, 20]. That conclusion is based at least in part on yeast strains and conditions that 

exhibit YROs that cycle with periods as short as 40 min, and may reflect different 

underlying mechanisms than the ones investigated in this study. With our strains and 
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conditions, the YRO has a period of ~4-5 h (as reported by other investigators [16, 18, 

39]. Under the latter conditions, the data support an alternative hypothesis, namely that 

there are two populations of dividing cells in antiphase whose CDC rate and G1 duration 

are constrained by the dilution rate of the continuous culture environment [3] so that the 

CDC and the YRO appear to be linked [34]. We hypothesize that one population signals 

to the other its position in the cell cycle through non-fermentable metabolites like 

acetaldehyde and ethanol or possibly the hypoxia that results from their consumption. As 

a result, the YRO is the product of a balanced population structure and environmental 

signaling under our continuous culture conditions. 

 Responses to phase-shifting substances/signals disclose important clues to the 

mechanism of the oscillation itself. For example, do these substances synchronize cells 

in the population, thereby sustaining a robust oscillation in the presence of noise? 

Acetaldehyde and ethanol are potential YRO synchronizing signals [59, 63] and their 

resetting efficacy is phase-dependent (Fig. 2.10). Moreover, this phase shifting is 

correlated with premature induction of cell division during the oscillation, thereby 

initiating new cell division and thus resetting the CDC’s “timer.” Very late in the 

oscillation (e.g. 270°-315°), introduction of the potential signal has little effect on the 

phase of the YRO and this correlates with the phase in the natural state of the system at 

which cells are secreting the greatest amount of non-fermentable carbon compounds 

into the medium [16, 18]. We hypothesize that during the early phases of the YRO (e.g. 

0°-45°, immediately after the secretion of carbon compounds), cells that could have 

responded to the endogenous signal have done so, and have committed to cell division, 

entering a fermentation-preferring state (Fig. 2.11). Therefore the culture is deprived of 

“signal sensitive” cells that are capable of responding to new signal. Only the few 

straggling cells that narrowly missed the commitment to cell division and have since 

matured in the intervening time are potentially responsive to an injection of acetaldehyde  
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Figure 2.11. The two-population signaling model of the YRO illustrates the underlying 
cell-division/phase resetting relationship hypothesized to be responsible for the data of 
Fig. 2.10. Population 1 is shown in the top half of the figure and population 2 is shown in 
the bottom half. Green and red signal traces for both populations indicate luminescence 
levels from PCLN2-LucPEST and PPIR1-LucPEST representing onset of S and G1 phases 
respectively. Cell cycle phase for each population is shown by red (G1) and green 
(S/G2/M) horizontal bars. Black circles of increasing size in G1 portions of the bars 
represent cells maturing over time (e.g. by gaining mass, storing carbohydrates, etc). G1 
cells of population 1 mature over time and reach a replication-capable state (indicated by 
the black bracket on the left); however the cells delay replication due to the absence of 
signals in the medium that allow the passage through the G1/S checkpoint or “gate.” 
Meanwhile cells in population 2 progress through cell replication (S/G2/M) in a 
fermentation-preferring state, thereby gradually producing non-fermentable carbon 
compounds (e.g. ethanol) that peak near the end of M phase. These compounds (blue 
arrow pointing up) serve directly or indirectly as an extracellular signal to open the G1/S 
“gate” for the waiting cells of population 1. This signal(s) permits the cells of population 1 
to commit to cell replication. As population 1 completes replication, its cells also produce 
a signal (blue arrow pointing down). This second signal has no effect on the G1 cells of 
its own population (indicated by the short, black bracket on the right) however the 
second signal opens the gate for cells of population 2, allowing them to begin replication. 
Underneath population 2’s cell cycle bar is an alternative CDC bar that shows how 
population 2’s replication cycle is altered if a premature signal is administered at the 
point of the dashed blue arrow. An artificial signal (such as the experimental injection of 
acetaldehyde or ethanol) prematurely administered during the G1 phase of either 
population can elicit the cell-replication response from only those few cells that have 
matured in the population up to that point. Since the number of mature cells continues to 
increase the longer the population remains in G1, greater numbers of cells begin 
replication as a result of the premature signal the later in G1 the acetaldehyde/ethanol is 
administered. Because the luminescence signal of PPOL1-LucPEST reflects the initiation 
of replication, progressively later injections of acetaldehyde/ethanol cause concomitantly 
larger luminescence emissions (Fig. 2.10B). 
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or ethanol. If left unperturbed, increasing numbers of cells become capable of 

committing to cell division due to acquisition of required storage carbohydrates, and 

concomitantly become responsive to signals such as acetaldehyde or ethanol (and/or 

currently unidentified signals?). Premature injection of ethanol or acetaldehyde into the 

culture later in the YRO causes drastically larger phase delays because it interrupts the 

accrual of replication-competent cells, spurs early cell division, and thus desensitizes 

that group to the next endogenous signal that occurs. Missing this endogenous signal 

causes a delay. Afterwards, the prematurely induced population produces its own 

endogenous signal and continues the cycle from that phase. 

 The principles and mechanisms upon which the YRO depend are likely to have 

biological relevance in nature, e.g., in colonies or dense films of yeast on substrates 

such as grapes. With the aid of luminescent reporters of gene regulation and metabolism 

such as the ones described here, future investigations will hopefully reveal evidence of 

cell-cell signaling and environmentally regulated cell division synchrony. We show here 

that the use of luminescence reporters for real-time measurements of promoter activity 

allow non-invasive measurement of yeast CDC events in batch and continuous cultures. 

This reporter system also uncovered a linkage in our culture conditions between 

resetting the phase of the YRO and the induction of new rounds of cell division. The 

precision and ease of continuous monitoring of CDC-regulated promoter activity is just 

one example of the utility of this system. The reporting system presented here does 

have limitations; for example, the necessity for O2 restricts Luc’s ability to report under 

hypoxic conditions. However, we take advantage of this apparent limitation to develop a 

reporter that accurately monitors the episodes of hypoxia that recur during the YRO. 

Additionally, the 35 min half-life of LucPEST restricts its usefulness for investigating 

shorter-period (e.g., 40 min) metabolic oscillations such as those described from the 

strain IFO 0233 [13, 20, 38, 63]. Nevertheless, further refinements of Luc (e.g. codon 

42 
 



optimization and/or additional degradation signals) may enable the reporting of shorter-

period oscillations. We envision the application of luminescent reporters in yeast to the 

assay of rapidly changing gene expression, in vivo oxygen monitoring, and further 

investigation of yeast rhythms. 

 

Materials and Methods 

 

Naming Conventions 

 For purposes of naming, plasmid designations begin with a lowercase “p” 

followed by relevant labels. When a luminescent reporter is mentioned in the text, it is 

labeled simply with a capital “P” (promoter) followed by the gene name for the promoter 

driving the version of the luciferase gene used. For example “pRS315-Kan-PPOL1-

Luc(A4V)PEST” refers to a plasmid made from the pRS315 backbone and contains a 

kanamycin resistance cassette and the modified luminescent reporter driven by the 

POL1 promoter. However in the text, a yeast strain transformed with this plasmid would 

be said to have the PPOL1-LucPEST reporter. 

 

Bioluminescent Reporter Construction 

 The plasmid pGL3-ADH1term was generated by replacing the SV40 late 

terminator of pGL3-Basic (Promega) with the S. cerevisiae ADH1 terminator from 

pFA6a-GFP(S65T)-HIS3MX [69]. The ADH1 terminator was PCR amplified from pFA6a-

GFP(S65T)-HIS3MX using the forward primer 

TTCATCTCTAGAGGCGCGCCACTTCTAAAT that contained an XbaI site overhang and 

the reverse primer GGACGAGGCAAGCTAAAC that annealed immediately downstream 

from the terminator and a BglII site. The PCR product was digested with XbaI and BglII 
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and ligated into pGL3-Basic which had been digested with XbaI and BamHI to remove 

its SV40 late terminator. 

 The PEST sequence from CLN2 of S. cerevisiae (3’ terminal 534 nucleotides) 

was amplified by PCR from genomic DNA of strain SEY6210 [70] using the forward 

primer GAATAAGCTTGCATCCAACTTGAACATT that contained a HindIII site overhang 

and the reverse primer GAAGTTCTAGACTATATTACTTGGGTATTGCC that contained 

an XbaI site overhang. These sites were used to clone the PEST PCR product into 

pFA6a-GFP(S65T)-HIS3MX for maintenance (designated pFA6a-CLN2PEST). 

 Gene SOEing [71, 72] was used to fuse the PEST sequence from pFA6a-

CLN2PEST to the 3’ end of the luciferase ORF of pGL3-ADH1term just prior to the stop 

codon. Gene SOEing was performed as described by Wurch et al., 1998 [72]. 

Specifically, the luciferase component of the fusion was generated from pGL3-

ADH1term using the forward primer GCTAGCCCGGGCTCGAGATC and the reverse 

primer AATGTTCAAGTTGGATGCCACGGCGATCTTTCC. The forward primer 

annealed upstream from the luciferase start codon and included an XhoI site. The 

reverse primer included an overhang with homology to the 5’ end of the PEST 

sequence. The PEST portion of the fusion was generated from pFA6a-CLN2PEST using 

the forward primer GGAAAGATCGCCGTGGCATCCAACTTGAACATTTCG and the 

same reverse primer that was used to amplify the PEST sequence from the genomic 

source mentioned above. The forward primer contained an overhang with homology to 

the 3’ end of luciferase, and the reverse primer contained an XbaI site overhang. The 

two PCR products were agarose gel-purified (Qiagen), mixed in equimolar (10 nM) 

concentrations, and were fused using 10 rounds of PCR without primers. The Luc-PEST 

fusion was amplified by a final PCR reaction involving flanking primers (i.e. the XhoI-

containing forward primer of the previous luciferase-generating PCR and the XbaI-

containing reverse primer of the previous PEST-generating PCR) and cloned into pGL3-
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ADH1term using XhoI and XbaI, replacing the original luciferase ORF to create the 

plasmid pGL3-PEST-ADH1term. 

 The region of DNA containing the luciferase-PEST fusion and the ADH1 

terminator was amplified by PCR from pGL3-PEST-ADH1term using the forward primer 

AAGTAACTGCAGATGGAAGACGTCAAAAACATAAAGAAAGGCCCG and the reverse 

primer GACGATAGTCATGCCCGGG. The forward primer annealed at the beginning of 

the start codon of luciferase and included a mismatch that mutated the fourth amino acid 

from adenine to valine to introduce an AatII site. The forward primer also included a PstI 

overhang. The reverse primer annealed downstream of ADH1term and a SalI site. This 

PCR product was cloned into the yeast shuttle vector pRS315 [73] using PstI and SalI to 

create the versatile destabilized-luciferase expression vector pRS315-Luc(A4V)PEST for 

S. cerevisiae. A similar luciferase expression vector (pRS315-Luc(A4V)) without the 

PEST sequence was constructed in the same way by using pGL3-ADH1term as the 

PCR template instead of pGL3-PEST-ADH1term. 

 Promoters of interest (POL1, CLN2, ACT1, GAL1, PIR1) were amplified by PCR 

using yeast genomic template from strain SEY 6210 and primer pairs that targeted 

nearly all of the intergenic region upstream of the gene of interest. The forward primers 

contained an overhang that included either the PstI or XmaI restriction site. The reverse 

primers contained an overhang that included an AatII site and the first 4 amino acids of 

luciferase. Specific primers used to amplify the promoters are listed in Table 2.1. The 

resulting PCR products (promoters) were individually cloned into pRS315-

Luc(A4V)PEST and/or pRS315-Luc(A4V) to make complete luciferase reporter 

constructs that could be maintained in yeast. The “promoter-Luc(PEST)-terminator” 

portion of the constructs was also moved to other pRS vectors (e.g. pRS314, pRS303, 

pRS306, pRS424) when different selection markers were needed or when the luficerase  
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Table 2.1: Primers used for amplifying promoter regions for different genes 
 

Promoter Forward Primer (PstI or 
XmaI) 

Reverse Primer (AatII) 

POL1 AAGTAACTGCAGTGCATTTTTCTTA
AAGAAATATAAC 

ATGATTGACGTCTTCCATTTTCCACTGTTTA
TTATATGCCT 

CLN2 TTCACTCCCGGGATTCGCCTCTATG
CTCCTTC 

ATGATTGACGTCTTCCATTGTCTGTCGTTAA
ATTTAATGAATG 

ACT1 TTCACTCCCGGGTAAGTAAATAAGA
CACACGCGAG 

ATGATTGACGTCTTCCATTGTTAATTCAGTA
AATTTTCGATC 

GAL1 AAGTAACTGCAGGGCATTACCACCA
TATACATATCC 

ATGATTGACGTCTTCCATTATAGTTTTTTCT
CCTTGACGTTA 

PIR1 TTCACTCCCGGGATATGCCAAATTT
AGAAAGCC 

ATGATTGACGTCTTCCATTTTCTAGAATATA
CTATTAGGGGAG 

GPH1 AAGTAACTGCAGGTCATAAAAAGTA
ACTTACAATGC 

ATGATTGACGTCTTCCATTGTTCAAAATTAT
TATAAGTTGA 
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reporter needed to be stably integrated into the host’s genome or over-expressed on 2-

micron plasmids [73]. These rearrangements were made with PstI or XmaI and SalI. 

 The yeast integration vectors pRS303 and pRS306 were modified for selection 

on G418 antibiotic by introducing the kanamycin resistance gene from pFA6a-KanMX6 

[69]. This was done in a three-step process. First, the Kan resistance gene was cloned 

from pFA6a-KanMX6 into pRS315-PGPH1-Luc(A4V)PEST using NotI and BamHI, creating 

pRS315-Kan -PGPH1-Luc(A4V)PEST. This plasmid served as a backbone for the 

introduction of several promoters of interest by swapping out the GPH1 promoter with 

the one of interest (e.g. ACT1, PIR1, CLN2, etc) using XmaI and AatII. Then the entire 

region containing the Kan resistance gene, promoter of interest, destabilized luciferase, 

and the ADH1 terminator was cloned into either pRS303 or pRS306 using NotI and SalI 

or EcoRI and SalI. This pRS315-Kan intermediate was necessary due to an 

inconvenient AatII site in pRS303 and pRS306 that prevented the direct introduction of 

promoters of interest into them. This was later overcome by removing the native AatII 

site from pRS303 and pRS306 by digesting the plasmids with AatII, blunting the 

digestion with Klenow fragment, and ligating the blunt ends back together. These 

modified pRS integration vectors were designated pRS303d and pRS306d for the 

purposes of this investigation. 

 

Luciferase Reporter Stability Assay 

 Cultures of strain SEY 6210 (MATα leu2 ura3 his3 trpl lys2 suc2) [70] containing 

either the pRS315-PGAL1-Luc(A4V) or pRS315-PGAL1-Luc(A4V)PEST plasmids/reporters 

were inoculated in 30 ml of supplemented minimal media lacking leucine and containing 

raffinose and luciferin [6.5 g/L Difco yeast nitrogen base w/o amino acids, 20 g/L 

raffinose, 15.6 mg/L uracil, 15.6 mg/L tryptophan, 15.6 mg/L histidine, 15.6 mg/L 

adenine, 23.6 mg/L lysine, and 50 µM beetle luciferin (potassium salt; Promega E1602)]. 
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They were grown at 28°C with constant agitation for the duration of this experiment. 

When cultures reached OD600 0.8, they were subdivided into 5 ml aliquots in scintillation 

vials. At time minus 60 minutes, luciferase biosynthesis (under the control of the GAL1 

promoter) was induced with 0.25 ml of 40% galactose. Luminescence measurements 

were taken with a Zylux Femtomaster FB12 luminometer every 20 minutes until time 0. 

At time 0, luciferase biosynthesis was repressed by the addition of 0.4 ml of a 25% 

glucose and 125 µg/ml cycloheximide mixture. Bioluminescent measurements were 

taken periodically for two hours after repression. Of the 6 vials for each reporter, two 

vials were used as controls: one was never induced with galactose and the other was 

never repressed with glucose/cycloheximide. The remaining 4 replicates were both 

induced and repressed. 

 

Cell Cycle Synchronization of LHY3865 

 Strain LHY3865 (MATa ura3 leu2 bar1) (kindly provided by Dr. Linda Breeden, U. 

of Washington) was stably transformed with pRS303Kan-PPOL1-Luc(A4V)PEST by 

homologous recombination of the entire linearized plasmid (NheI digestion) into the 

genomic HIS3 locus. From a dense overnight culture in YPD, 250 µl was added to 100 

ml of YPD (initial OD600 = 0.05). The culture was grown at 28°C with agitation for 4.5 h 

(until OD600 = 0.18). 10 ml of this culture was moved to a 50 ml flask and treated with 15 

µM α-factor (BioChemika 63591) and incubated for 3 h at 28°C with agitation. The 

remaining culture that was not treated with α-factor was centrifuged at 2000 rpm for 15 

min at room temperature in a Beckman TJ-6 centrifuge. 50 ml of the supernatant was 

collected and treated with 15 µg/ml of proteinase E (Sigma P-6911) and 50 µM beetle 

luciferin (potassium salt; Promega E1602) to be used as conditioned media. α-factor 

treated cells were collected and washed three times with 10 ml of conditioned media. 

The final washed pellet was resuspended in 10 ml of conditioned media and moved to a 
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50 ml flask. The synchronized culture was incubated with stirring on a magnetic stir-plate 

at 28°C in a dark-box. Bioluminescence from the luciferase reporter was monitored 

continuously by a Hamamatsu HC135-01 photomultiplier positioned 1 inch from the 

culture. 100 µl samples were collected from the culture and frozen every 10 min for 3 h 

to determine changes in bud index over time. 

 

Respiratory Oscillations and Monitoring Luminescence  

 The continuous culture apparatus consisted of a 3L New Brunswick Scientific 

Bioflow 110 reactor equipped with two Rushton type impellers operated at 550 rpm 

agitation, 900 ml/min air flow, 30° C, pH 3.4 (by 2N NaOH). 

 Dense 20 ml starter cultures of stably transformed luminescent CEN.PK113-7D 

(MATa) (provided by Dr. Peter Kötter, U. of Frankfurt) were grown in YPD overnight and 

inoculated into 850 ml of media consisting of 10 g/L anhydrous glucose (Sigma 

G71528), 5 g/L ammonium sulfate (Sigma A2939), 0.5 g/L magnesium sulfate 

heptahydrate (Sigma M2773), 1 g/L Yeast Extract (Becton Dickinson 288620), 2 g/L 

potassium phosphate (Sigma P5379), 0.5 ml/L of 70% v/v sulfuric acid, 0.5 ml/L of 

antifoam A (Sigma 10794), 0.5 ml/L 250 mM calcium chloride, and 0.5 ml/L mineral 

solution A. Mineral solution A consisted of 40 g/L FeSO4• 7 H2O, 20 g/L ZnSO4• 7 H2O, 

10 g/L CuSO4• 5 H2O, 2 g/L MnCl2 • 4 H2O, 20 ml/ L 75% sulfuric acid. 

 Oscillations were obtained as described by Tu, et al., 2005 [16]. Briefly, cells 

were grown in the Bioflow 110 in batch culture until they consumed the limiting media 

component and DO returned to ~95%-100%. The dense culture was then starved for 4-

12 h before beginning continuous culture with the media described above at a dilution 

rate of 0.08-0.09/h. 

 Luminescence was monitored as follows. Once oscillations formed, 5 µM beetle 

luciferin potassium salt (Gold Biotechnology LUCK-300) was injected into the culture 
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during the hypoxic phase of an oscillation, and then maintained in the culture at this 

concentration either by adding luciferin to the feeding media or by constantly supplying a 

steady drip of a chilled, concentrated luciferin stock (0.66 mM) using a Harvard 

Apparatus syringe pump. The latter method proved to show more stable luminescence 

for experiments lasting several days as luciferin tended to degrade over time in the 

acidic media. Luminescence from the Bioflow 110 was constantly observed and 

recorded by running a closed loop of culture in transparent tubing from the Bioflow 110 

into a dark box in front of a Hamamatsu HC135-01 photomultiplier, and then back into 

the culture vessel with a circuit time of about 30 s (fig. 2.12).  

 

Extract Preparation and Immunoblot 

 From an oscillating culture of CEN.PK113-7D stably transformed with 

pRS303dKan-PACT1-Luc(A4V), 15 ml samples were collected from the Bioflow 110 

effluent at either 15 or 30 min intervals across one oscillation (12 samples total). Each 

collection was immediately centrifuged at 2000 rpm for 5 min at 4°C in a Beckman 

Coulter Allegra™ X-22R centrifuge to pellet the cells. The supernatant was discarded 

and the pellet was flash-frozen on a mixture of dry ice and ethanol, and then transferred 

to -80°C for long-term storage. All samples were simultaneously thawed on ice and 

washed at 4°C in 4 ml TMG (10 mM Tris-Cl pH 8, 1 mM MgCl2, 10% glycerol, 200 mM 

NaCl, 0.1 mM DTT). The cells were resuspended in 1 ml of cold TMG + proteinase 

inhibitor cocktail (1 tablet per 7.5 ml, Complete Mini EDTA-free protease inhibitor 

cocktail, Roche 04693159001). 300 µl of yeast resuspension from each sample was 

mixed with an approximately equal volume of glass beads (Sigma G8772) in 1.5 ml 

screw-cap tubes. The twelve yeast samples were simultaneously lysed on a MP Bio 

FastPrep-24 by three applications of 4.0 m/s agitation for 30 sec with 5 min on ice 

between each agitation cycle. Approximately 90% lysis was confirmed by microscopic  
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Figure 2.12. Configuration of apparatus for measuring luminescence continuously over 
the YRO. Arrows show direction of media flow from peristaltic pumps (triangles in 
circles). Media was gradually fed to the Bioflow 110 (bioreactor) (at ~2L/day) while an 
equal volume of culture (media + cells) was removed at the same rate. A separate, 
faster pump continually moved a stream of culture from the reactor and into a black box 
where it was monitored by a photomultiplier apparatus before returning to the bioreactor. 
The circuit time from bioreactor to black box and back was ~30 s. Luminescence was 
continuously recorded by a computer. 
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inspection. The lysate was separated from the beads by piercing the bottom of each 

tube with a 26.5 gauge needle, inserting each tube into a clean microcentrifuge tube, 

and centrifuging them at 10,000 rpm for 20 seconds at 4°C. The lysate was centrifuged 

at top speed at 4°C for an additional 30 min and the supernatant containing the soluble 

protein was aliquoted into clean tubes. 

 The protein concentration from each sample was quantified by Bio-Rad protein 

assay (BioRad 500-0006). 10 µg of total protein from each sample was mixed with SDS 

PAGE loading buffer (with DTT), boiled for 10 m, and loaded into the wells of 10% 

acrylamide gels for SDS-PAGE. A luciferase control of 20 ng of purified firefly luciferase 

(Sigma L1792) was loaded in one lane of the gel. Protein from gels was transferred to 

nitrocellulose membranes for immunoblotting. Membranes were blocked in 0.2% I-

Block™ (Applied Biosystems T2015) in PBST for 1 h at room temperature, then 

incubated overnight in primary antibody at 4°C. Membranes were washed 4 times for 15 

min in PBST, incubated in secondary antibody for 2 h at room temperature, and then 

washed again as before. Membranes were treated with HRP substrate (Pierce 32106) 

for 3.5 min and exposed to X-ray film for various exposure durations. The antibodies and 

concentrations used are as follows: 1:2000 polyclonal anti-luciferase (Sigma L0159) was 

detected with 1:4000 donkey anti-rabbit IgG HRP conjugated secondary antibody 

(Promega W401B). Polyclonal anti-yeast actin at 1:2000 (Santa Cruz 1615) was 

detected with 1:10,000 donkey anti-goat HRP conjugated secondary antibody (Santa 

Cruz 2020). 

 

Phase Response Curves  

 An oscillating culture of CEN.PK113-7D stably transformed with pRS303dKan-

PPOL1-Luc(A4V)PEST was allowed to establish a stable period and monitored for at least 

4 oscillations before injection of acetaldehyde or ethanol. 850 µl of 1M acetaldehyde 
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(Sigma 00070) or 1M ethanol (~1 mM final concentration) were injected into the Bioflow 

110 at phase points 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315° allowing at least 3 

oscillations between injections. Phase 0° was defined as the time when dissolved 

oxygen started to rise from hypoxia. Phase shifts were determined from measuring the 

difference between (1) the time of the DO trough in the cycle after the injection (ignoring 

the immediate hypoxic response from the injection) and (2) the time of the DO trough in 

the extrapolated control (i.e., where the DO trough was projected to occur in the 

absence of an injection based on the 3 cycles prior to injection, see Fig. 2.9).  
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CHAPTER III 

 

TESTING A TWO-POPULATION MODEL FOR THE PARTICIPATION OF 

ALTERNATING CELL DIVISION CYCLES IN THE  

YEAST RESPIRATORY OSCILLATION 

 

Introduction 

 

The yeast respiratory oscillation (YRO) is a robust biological rhythm that 

manifests in some strains of S. cerevisiae under a narrow range of aerobic, glucose-

limited conditions of continuous culture.  For the strain CEN.PK, using conditions 

outlined previously [16, 74], the YRO has a stable period ranging from 3-5 h that largely 

depends on dilution rate and other conditions (e.g. pH) of the continuous culture [39, 75].  

During this oscillation, yeast alternate between phases of respiro-fermentative 

metabolism and respiration, causing oscillations of intracellular and extracellular levels of 

metabolites (e.g. O2, CO2, ethanol, NADH) as well as transcription of over half of the 

genome [16, 18].  A correlation between the cell division cycle (CDC) and the yeast 

respiratory oscillation (YRO) has previously been shown where about 50% of the cells in 

the culture synchronously progress through the CDC during each cycle of the YRO [16, 

74].   However, the importance of this relationship to the persistence of the rhythm and 

the nature by which it exists are still unknown.   

 There are three possibilities regarding the relationship between the CDC and the 

YRO.  The first is that the relationship is merely a coincidence.  This is highly unlikely for 

the strain CEN.PK since the association between the CDC and YRO is very 

reproducible.  Moreover, treatments that reset the YRO’s phase also result in a wave of 
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newly dividing cells at the same time [74], supporting the existence of a non-coincidental 

linkage between the CDC and YRO.   

The second possibility regarding this relationship is that it is one of oscillator and 

output, where one phenomenon is (or is part of) an endogenous oscillator (capable of 

maintaining a self-sustained, stable oscillation) and the other is merely an output of the 

oscillator.  For example, some researchers have proposed that the YRO could be a part 

of a metabolic timer, responsible for rhythmic events seen during continuous culture, and 

synchronous cell division could be a mere output of this oscillator [16, 36, 76].  The 

reverse example is also possible; where the CDC is the core biological oscillation and 

the 3 to 5 hour YRO seen in CEN.PK is merely a reflection (or perception) of CDC-

related metabolic preferences in continuous culture [35].  Either of these relationships 

between oscillator and output is possible, but both imply that there is little to no feedback 

between the two phenomena. 

A third (and more likely) possibility is that the relationship between the CDC and 

YRO is one of interdependency.  This scenario is similar to two coupled oscillators 

where the CDC and YRO are both legitimate biological oscillators; but on their own, 

each is weak and quickly dampens.  However, separate outputs from the rhythmic CDC 

and YRO could influence the other such that the coupling provides reinforcement which 

strengthens the overall oscillation of the union.  Observations described in chapter II 

using cell cycle regulated luciferase reporters to track cell division following YRO 

perturbation are consistent with such an interdependent relationship [74]. 

In this work, we used firefly luciferase under the control of cell cycle regulated 

promoters (for various phases of the cell cycle), to demonstrate cell cycle landmarks 

within the YRO, namely the G1/S and M/G1 boundaries.  As a result, cells in G1 could 

be distinguished from those that were actively dividing [74].  The luminescent CDC 

reporters also revealed a direct correlation between phase resetting of the YRO by 
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artificially delivered metabolites (e.g. ethanol and acetaldehyde) and premature induction 

of new cell division in a YRO-phase-dependent manner.  These results demonstrated an 

interrelationship between the YRO and CDC.  The observations from this previous study 

can most easily be envisioned as two distinct populations of cells (each comprising 

approximately half of the cells in the continuous culture) dividing 180° out of phase with 

each other such that the overlapping of these long, alternating CDCs provides the timing 

mechanism for the oscillations observed, and the YRO (with a period of one half of the 

CDC period) provides synchronizing signals that keep the CDC in phase (Fig. 2.11) 

We took the approach of first modeling the data in a simple way, because there 

was no need to put forward a complex model if a simple one would do as well.  In this 

chapter, we further investigate the relationship between the CDC and YRO by testing 

aspects of the alternating two-population model under a more targeted study.  We used 

a luminescent CDC reporter to track a “population” of cells under oscillating continuous 

culture, and used a conditional knockout of a CDC-dependent gene to observe the 

effects of the YRO when the CDC is removed from (or added to) the oscillation/culture.  

The results from these experiments show that for CEN.PK under the conditions tested, 

the two-alternating population model was too simple to fully explain the complexity of the 

YRO/CDC relationship but that the long period and large amplitude of CEN.PK’s 

respiratory oscillation is dependent on the CDC, and quickly dampens without it.   

 

Results and Discussion 

 

The YRO Period is pH-dependent 

The existence of two “discrete” populations of cells can be tested by looking for 

examples of YROs where the dilution rate remains the same, but the YRO’s period 

stably changes to something other than roughly half of the period of the average cell 
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division cycle.  In such a way, the “strength” of the separation between (or attractors 

within) the populations can be tested. The pH of the continuous culture has been 

reported to alter the YRO period at constant dilution rates in some cases [75] and I 

therefore tested under our continuous culture conditions whether the period of the YRO 

was a function of the extracellular pH. 

An oscillating culture was established with a dilution rate of ~0.095/h at a pH of 

3.4.  The average cell division time for this dilution rate was about 7.3 hours (7 h and 18 

min) and the YRO had a period of 3.26 hours (3h and15 min), i.e. within 23 min of being 

half of the cell division time (Fig. 3.1).  When the pH of the culture was raised by 

perfusion of NaOH, the period immediately lengthened, even though the dilution rate and 

optical density (OD600) of the culture remained unchanged (and therefore the cell cycle 

time was presumably unaffected).  A pH of 4.3 resulted in YRO periods of about 4 hours, 

and a pH of 5 produced periods close to 5 hours (Fig. 3.1).  Increasing the pH to 6 

destroyed the oscillation.   

These results show that the YRO period does not have to fall close to half of the 

average cell division time, and that there may be a range of permissible YRO periods 

that can maintain the oscillation.  Environmental conditions aside from nutrition can 

influence the YRO’s period despite the stabilizing effect that a constant dilution rate has 

on cell division time, suggesting that the cell division rate alone does not provide the 

timing mechanism for the YRO.  This does not disprove the existence of multiple 

populations signaling to each other through respiratory metabolites; however it does rule 

out the existence of two “distinct” (equal) populations of dividing cells where cells in one 

population (and their daughter cells) always remain with that group of dividing cells.  In 

other words, a model where synchronously dividing groups of cells signal via the YRO to 

each other could still be valid as long as those cells (and/or their offspring) whose 

division times did not conform to the rhythm of the YRO-related signals could migrate 
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Figure 3.1.  The YRO period is affected by pH.  A. The YRO is shown by the oscillating 
dissolved oxygen levels (blue) and its period at the given time is shown in hours by the 
green line.  As pH is raised in a stepwise manner (red line), the period of the YRO 
lengthens in response and remains stable for the duration of the treatment.  At pH 6, the 
YRO destabilizes.  B. Average periods (in minutes) for oscillations at different pH.  Error 
bars are ± 1 S.D. 
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from one population to another as needed in order to participate in the next oscillation.  

The boundaries that separate the populations are therefore rather weak under certain 

circumstances and cells can move between populations when factors distort the 

CDC/YRO relationship.  

 

The Population Structure of the YRO is More Complex than Simple Alternating 

Populations of Dividing Cells 

 If the YRO is comprised of groups of cells that synchronously divide as a result of 

a YRO-related signal (that occurs during the DO trough), but cells can move between 

groups when their cell cycle times do not conform with the timing of the YRO signal, then 

the population structure of the YRO may be more complicated than alternating 

populations of dividing cells.  We used cell-cycle arrested CEN.PK with a CDC-regulated 

luminescent reporter to follow what became of cells that entered the YRO at a similar 

phase by injecting them into an oscillating culture of non-luminescent CEN.PK.  

Therefore, the luminescent cells become a “reporter” for the behavior of dividing, non-

luminescent yeast in the bioreactor.  Do such cells wait for a YRO-related signal before 

synchronously dividing?  Do they assimilate into the YRO by dividing every other 

oscillation of the YRO as would be predicted by the alternating-population model 

proposed previously?  If the CDC occurs once for every two YROs, then injecting a 

synchronized set of cells into the oscillating continuous culture should result in the 

injected “tracer-cells” synchronously dividing every other YRO (see Fig. 3.2A for 

experimental design and prediction).  On the other hand, the population structure within 

the bioreactor may be more complex than modeled, and cell size differences may play a 

larger role in determining cell cycle duration than previously envisioned.  Some larger  
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Figure 3.2.  Experimental design and predictions of injecting a luminescent cell cycle 
reporter strain that has been arrested in G1 into a continuous culture of a non-
luminescent strain exhibiting the YRO.  A batch culture of CEN.PK113-7D containing 
PPOL1-Luc(A4V)PEST was arrested in G1 by carbon-limited growth for 36 hours 
(represented in the figure by the flask), and was either used directly or size-selected for 
3 µm cells, depending on the experiment.  These arrested, luminescent cells (comprising 
about 0.2% of the number of cells in the continuous culture) were injected at phase point 
720° (green dashed line) into a continuous culture of non-luminescent CEN.PK113-7D 
undergoing the YRO (black oscillating trace).  The rationale of this experiment is that the 
injected, arrested cells should assimilate into that sub-population of the continuous 
culture population for which their cell cycle state was most similar and begin dividing in 
time with that oscillating sub-population.  A. Prediction: if the “alternating population” 
model is true, and cells within each of the two sub-populations together undergo 
synchronous cell division every other YRO period, then the cell-cycle-dependent 
luminescence should stay low for the period in which the cells are injected and should 
peak every other YRO period following that. The luminescence prediction is shown by 
the red trace.  Alternative outcomes are also possible (B-D). B. The predicted result (in 
red) if the arrested sample is comprised of cells that divide every oscillation of the YRO 
and begin to divide right after injection.  C. The predicted result (in red) if the arrested 
sample is comprised of cells that divide every oscillation of the YRO but wait for the 
presence of a signal that occurs during the trough of the YRO before beginning cell 
division.  D. A similar prediction as C. if the cells delay entry into the cell division cycle 
for two YRO periods.  However, other alternatives are also possible, such as cells 
delaying entry into the cell cycle for 3 or more YRO periods. 
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cells may divide every YRO while other smaller cells may require two or more YRO 

periods to complete cell division.  Fig. 3.2B-D shows alternative expectations from 

luminescent “tracer cells” if some cells in the bioreactor can divide every YRO period 

rather than every other one. 

 We grew a batch culture of CEN.PK113-7D containing the destabilized luciferase 

reporter under the control of the POL1 promoter which is maximally expressed during 

late G1 and early S phase of the cell cycle [62, 74].  This culture was grown to stationary 

phase in similar media to that for which oscillating yeast in continuous culture are grown 

(at this time, ~95% of the cells were arrested in G1).  At the same time, a stable YRO 

was established in a continuous culture of CEN.PK113-7D (without the luminescent 

reporter) (Fig 3.3A).  A sample of the cell cycle arrested luminescent yeast comprising 

about 1/600 of the cell density of the non-luminescent oscillating culture was injected 

into the continuous culture at a phase point shortly after the DO trough (Figs. 3.2 and 

3.3C).  A low ratio of arrested, luminescent cells (~0.2%) to oscillating, non-luminescent 

cells (~99.8%) was used so that the injected cells would not perturb the oscillation but 

would still be bright enough to report the CDC timing of the population into which they 

assimilated.   The experimental design and expected result (according to the alternating 

population model) is shown in Fig. 3.2A.  If the starved, luminescent cells were G1-

arrested/prolonged similarly to the carbon-limited G1-arrested/prolonged cells awaiting 

the YRO-related signal for synchronous progression into the CDC, then the injected cells 

should serve as tracers for the oscillating CDC population into which they were injected.   

 After injecting the luminescent cells, a small rise in luminescence was observed 

due to the background level of luciferase in the injected cells (Fig.3.3C, blue trace).  

After about 90° (about 1 hour) into the period following the injection, a rapid increase in 

POL1 expression was observed, indicating that the arrested cells were passing Start and 

beginning cell division.  However, a noticeable 2-fold jump in POL1 expression was  
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Figure 3.3.  Injection of a luminescent cell cycle reporter strain that has been arrested in 
G1 by starvation into continuous culture of a non-luminescent strain exhibiting the YRO.  
The results from two experiments are shown.  Traces in blue show results for the 
experiment where injected cells were not size-selected (non-elutriated).  Traces in red 
show results for the experiment where injected cells were size-selected for 3 µm by 
centrifugal elutriation. A. shows the oscillating dissolved oxygen concentrations for the 
experiments.  The x-axis is time in degrees of period where the YRO periods from both 
experiments were normalized to 360°.  The y-axis is DO in percent atmospheric 
saturation of culture media.  B. shows the size makeup of the injected cells from each 
experiment.  Samples of 100 cells from each group were microscopically scored for size 
to the nearest µm.  C. shows the normalized luminescence from the PPOL1-
Luc(A4V)PEST reporter for both non-elutriated and elutriated experiments.  Cells were 
injected near 720° at the black arrow.  The x-axis is time in degrees of period and aligns 
with the time scale of panel A.  The y-axis is normalized luminescence in relative light 
units (RLU), where the maximum luminescence for the recorded duration was scaled to 
100 RLU.  For the non-elutriated experiment (blue), the maximum luminescence 
occurred at 1122°, and for the elutriated experiment (red) it occurred at 2204°.  360° = 
232 min for non-elutriated (blue) experiment, and 360° = 260 min for the 3 µm elutriated 
(red) experiment. 
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observed following the first DO trough when the suspected YRO-related cell cycle signal 

occurred.  Interestingly, the CDC-regulated luminescent signal did not skip any of the 

following respiratory oscillations as was predicted by the alternating population model.  

Rather, the luminescent signal for the remaining oscillations showed a stable,  

intermediate amplitude with the characteristic shape of the PPOL1-Luc(A4V)PEST 

reporter. 

These results only partially supported the alternating population model in that a 

portion of the injected cells waited until the YRO trough occurred before beginning to 

divide (a mix between the alternative predictions shown in Fig 3.2B and C), which 

provides evidence that there is a YRO related signal that affects cell cycle timing.  The 

remainder of these results did not support the model.  It is likely that the substantial 

increase in POL1 activity soon after injection (prior to the DO trough) was the result of a 

small portion (estimated to be ~5% from microscopic observation prior to injection) of the 

sample that was not arrested, or was due to the largest cells from the injected sample 

that were ready to undergo cell division prior to arrest and therefore they did not wait for 

a “signal” to proceed with division.  The size makeup of the injected cells ranged from 3 - 

6 µm (Fig. 3.3B).  It is possible that the size of the arrested cells played a substantial role 

in determining the G1 duration for oscillating cells.  In particular, the fact that no 

oscillations were skipped (aside from perhaps the first cycle) implies that once cells have 

attained a size large enough for cell division, they are capable of dividing more rapidly 

than every other period of the YRO (i.e. faster than the average cell division time for the 

culture).  If so, the average cell division time of roughly 2 YRO periods could be 

explained by the larger cells dividing every YRO period (having a very short G1) while 

the smaller cells (e.g. daughters) require multiple (2+) YRO periods to attain the 

necessary size for division (thus having a very long G1).  
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To determine the extent to which cell size affected G1 duration during the YRO 

and whether the initial increase in POL1 regulated luminescence was the result of non-

arrested verses larger arrested cells, a similar experiment as above was performed 

except that the arrested, luminescent sample was size selected for 3 µm cells (the 

smallest of the arrested population) by centrifugal elutriation prior to injection into the 

continuous culture.  The arrested population from elutriation was quite uniform in size 

with 99% of cells being about 3 µm and all were arrested (no buds) (Fig. 3.3B).  If the 

small cell size of the arrested population affected the length of time it took for those cells 

to reach a cell-division-capable state, then a luminescence trace similar to the one 

predicted in Fig. 3.2D should have resulted.  As seen previously, a small increase in 

luminescence was observed following injection as a result of background luciferase in 

the cells (Fig. 3.3C, red trace).  Only a very slight increase in POL1 expression was 

observed afterward until two YRO periods had passed; after which time, luminescence 

from POL1 expression nearly doubled (at phase 1440° in Fig. 3.3C), and then more than 

doubled again following the next DO trough/signal (at phase 1800°) (similar to the 

predicted result shown in Fig 3.2D).  Therefore overall cell division was obviously 

delayed as a result of the small cell size (compared to the experiment where small cells 

were not explicitly selected).  Moreover, there was no alternating pattern of 

luminescence amplitude (high in one YRO, low in the next YRO, high in the next, and so 

on) that was predicted from the alternating population model, thus supporting the 

interpretation above that once cells reached a cell-division-capable size, they were able 

to divide more frequently than every other YRO.  The progressive increase of the peak 

amplitude of POL1 luminescence in successive YRO periods after cell division began 

(until equilibrium was reached) also supports this interpretation.     

One assumption of the alternating population model is that the poor nutritional 

quality of the continuous culture medium (or a secreted YRO-related cell division 
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delaying factor) plays a more influential role in governing G1 duration than cell size.   

Therefore the assumption is that insufficient nutrition (or the unknown factor) delays 

larger cells in G1 long enough for smaller cells of the same population to catch up in size 

before the YRO permits that group of cells to pass Start synchronously.  Under such a 

model, the long G1 durations due to slow growth on limited carbon would make mother-

daughter size differences negligible with regard to synchronous division during the YRO.  

From the evidence shown here, this former assumption was incorrect and cell size 

influences CDC periods during the YRO.  However, if a large enough portion of the 

culture still divided in phase with the YRO, then (1) whether the dividing cell population is 

solely composed of the larger cells dividing every YRO, or (2) whether the dividing cell 

population also includes smaller cells dividing over the course of multiple YROs, the 

CDC could still provide feedback to influence the YRO’s stability and characteristics.   

 

The Cell Division Cycle Influences the YRO’s Period and Amplitude 

 Numerous examples exist from many labs that show when yeast are grown 

under conditions that do not exhibit the YRO, initially synchronized CDCs rapidly 

become arrhythmic in the populations due to unequal CDC periods of larger and smaller 

cells [77-79].  The synchronizing effect of the YRO on the CDC (under continuous 

culture) has thus far been shown using microscopy, FACS, and cell cycle regulated 

luminescent reporters [16, 74, 76].  Studying the effect of the inverse relationship, i.e. 

that of the CDC on the YRO, is more challenging.  Cell cycle null mutations are not 

viable or only permit cells with the mutation to survive/grow in size.  Thus the 

division/growth required to generate the YRO in CDC-null strains are absent from the 

beginning.  Previous studies have made some headway toward this goal by observing 

the YROs exhibited by strains that have viable mutations that modulate but do not halt 

the cell cycle [76, 80].  For many of these mutations, the YRO’s period was shorter than 
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wild type by about half; however, it is difficult to determine the extent to which these 

mutations also affected the initiation of the YRO during startup, or the extent to which 

they are pleiotrophic.  An ideal tool for pursuing this relationship would be a CDC-

specific mutation that could be used to inactivate one essential CDC gene while the cells 

are displaying a stable YRO.  The CRE/lox system for conditionally inducing genetic 

recombination during culture is one such approach. 

 The CDC28 gene is essential to the cell cycle because its product is required for 

a cell to progress pass Start during G1 [81] as well as to progress from G2 to M phase 

[82]. Deletion of the gene prevents cell division, therefore a null mutation in CDC28 

results in a CDC-arrested strain [83].  Moreover, temperature sensitive (conditional) 

mutants of CDC28 have been well characterized.   They arrest cell division in G1 or G2 

at a restrictive temperature and become large and oddly shaped the longer they remain 

at the restrictive temperature [81, 84, 85].  We generated a conditional CDC28-null strain 

of CEN.PK in which CDC28 was flanked by loxP sites (floxed), and CRE recombinase 

(which mediates recombination between the loxP sites) was introduced under the control 

of the glucose-repressible/galactose-inducible GAL1 promoter.  When glucose is present 

in the media, the GAL1 promoter is repressed and CRE recombinase is not expressed.  

However, the absence of glucose and the presence of galactose activate the GAL1 

promoter, expressing CRE.  The recombinase then removes the CDC28 gene between 

the loxP sites leaving a single loxP site in its place.  We tested our floxed CDC28 strain 

on glucose and galactose media, confirming that our conditional null strain could not 

grow on solid galactose medium (Fig. 3.4A) and would become elongated and oddly 

shaped on transition to liquid galactose medium(Fig. 3.4B).  An isogenic strain that 

possessed wild-type CDC28 in addition to the floxed version grew well on solid 

galactose medium and retained normal appearance in liquid galactose medium.  Some 

of the cells of the floxed CDC28 strain however did exhibit the odd morphology when  
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Figure 3.4  Floxed CDC28 strain of CEN.PK113-7D and a rescued isogenic strain on 
glucose or galactose media.  A. The floxed CDC28 strain with CRE recombinase under 
the control of the GAL1 promoter grew well on solid glucose media but did not grow on 
solid galactose media.  Moreover, an isogenic strain with a wild type (i.e. non-floxed) 
CDC28 gene in addition to the floxed CDC28 gene and PGAL1-CRE grew on both glucose 
and galactose media.  B. Cellular morphology differences for two of the strains grown to 
stationary phase in glucose and galactose liquid media.  Each panel of B. shows four 
0.04 mm2 sections of a hemocytometer (delineated by white horizontal and vertical lines) 
viewed under a 100X objective.  Yellow horizontal bands across the panels are artifacts 
of the camera’s settings.  The strain containing WT CDC28 had normal cell morphology 
in glucose and galactose media.  However the strain with only floxed CDC28 had 
elongated, oddly shaped cells in both glucose and galactose media.  The odd 
morphology was more pronounced in cells grown in galactose, while only some (~35%) 
of the cells grown in glucose exhibited elongation and odd shape. 
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grown to stationary phase on glucose medium (Fig 3.4B).  This background was likely 

the result of a leaky GAL1 promoter that became de-repressed once the glucose in the 

media had been consumed, thus allowing some level of CRE to be expressed and 

CDC28 to be excised from some cells.   

 Before using the floxed CDC28 strain in continuous culture, a control was 

performed using CEN.PK with luciferase under the control of the GAL1 promoter to 

determine the extent to which the GAL1 promoter could be induced by galactose during 

the YRO as well as whether the galactose treatment would adversely affect the YRO.  A 

stable YRO was established with this luminescent strain and then a 30 min galactose 

treatment was delivered to the continuous culture by switching the medium  from one 

with glucose to one that contained galactose (Fig 3.5).  During the time of the galactose 

treatment, the DO of the culture increased since the cells were not conditioned to 

metabolize galactose at that time.  This DO response was similar to starving the culture 

of glucose (data not shown).  After the treatment, glucose medium was returned to the 

culture and the DO dropped, resulting in a slight phase shift of the oscillation, but the 

YRO forged onward.  The galactose-induced luminescence began to increase shortly 

after galactose treatment, peaking during the hypoxic mask or the early part of the 

following oscillation and then sharply diminishing afterward.  These results show that the 

GAL1 promoter could be conditionally controlled during the YRO and that the YRO 

suffered no significant perturbation from the galactose treatment.   

 A similar experiment was initiated with the floxed CDC28 strain; however, the 

complete consumption of glucose during batch phase prior to continuous culture 

apparently resulted in leaky expression of the GAL1 promoter, premature induction of 

CRE recombinase, and removal of CDC28 in some of the cells before continuous culture 

was even begun.  As a result, the portion of the culture that was affected was not able to 

undergo cell division after continuous culture was initiated and the YRO was not able to  
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form at the usual time (Fig. 3.6A).  After about 24 h of continuous culture, enough of the 

non-dividing cells were washed out and replaced by newly formed cells (from those 

unaffected by the leaky promoter) so as to enable short period, low amplitude 

oscillations.  As the culture continued to shift from non-dividing to dividing cells, the short 

period, low amplitude oscillations gradually transitioned to longer period, larger 

amplitude oscillations that were more characteristic of CEN.PK’s normal YRO.  This 

effect of premature CDC arrest as a result of a leaky GAL1 promoter turned on by 

depletion of glucose from the medium was overcome in a subsequent experiment by 

growing the floxed CDC28 strain in continuous culture from the beginning (i.e. 

circumventing the batch phase) (Fig. 3.6B).  Under these conditions, the constant supply 

of glucose minimized premature recombination and the YRO formed soon after the 

culture reached a saturating density (Fig. 3.6B, ~1250 min). 

 After a stable YRO had formed in the floxed CDC28 strain, galactose treatment 

was accomplished by switching the continuous culture medium from one with glucose to 

one containing galactose for 40 min (a similar protocol to that of the control in Fig. 3.5).  

As in the control in Fig. 3.5, the galactose treatment only caused a minor phase shift and 

had no acute effect on the stability of the YRO (Fig. 3.7, blue).  The effects of the 

galactose treatment were not expected to be immediate since the genetic rearrangement 

leading to the removal of the CDC28 gene requires up to 300 min (see Appendix A), and 

the endogenous level of CDC28p protein (which is reported to be stable and in excess 

[86]) would continue to permit cell division until it is degraded.  About 24 hours after the 

treatment, the period of the YRO began to shorten and the amplitude began to decrease 

(Fig. 3.7, at single arrow).  The period of the YRO eventually bifurcated into short period, 

low amplitude rhythms (at double arrow in Fig. 3.7) similar to those seen during the initial 

phases of YRO formation in Figure. 3.6A that ultimately damp to an undetectable level.  

The strain also contained an integrated luciferase reporter under the control of the  
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Figure 3.6  Establishment of the YRO for the floxed CDC28 strain of CEN.PK113-7D.  
A. Under traditional start-up conditions for generating the YRO, where cells are grown in 
batch prior to continuous culture, the YRO required about 24 hours of continuous culture 
before oscillations formed.  This was likely due to lack of glucose in the media (after it 
was consumed), causing a leaky GAL1 promoter to prematurely express CRE 
recombinase and remove the CDC28 gene from the growing cells.  The lack of cell 
division prevented the formation of the YRO until enough of the arrested cells had been 
removed from the culture and replaced by those that could divide.  Without sufficient cell 
division the initial YRO had a very low amplitude and short (80 min) period.  B. When 
leaky expression of CRE was minimized in the floxed CDC28 strain by a continuous 
supply of glucose (rather than growing in batch), the YRO formed almost immediately 
after culture saturation was reached and had both a typical period of about 3 h and large 
amplitude.   
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CDC-regulated POL1 promoter (PPOL1-Luc(A4V)PEST) used previously in Fig. 3.3.  

Except for the phases of hypoxia, luminescence reported the expression pattern of 

POL1 prior to and following galactose treatment.  The amplitude of the POL1 

luminescence rhythm in the culture began to decrease at about the same time that the 

period effects on the YRO became apparent (Fig. 3.7, pink trace at single arrow) and 

POL1 promoter activity was undetectable when oscillations ceased.  Microscopic 

observation of a culture sample taken after oscillations ceased revealed all cells had the 

CDC-arrested morphology shown previously in Fig. 3.4 (Fig. 3.7, inset).  These cells 

remained metabolically active with regard to respiration, as could be ascertained by the 

level of DO remaining near the midpoint of the former oscillation (if the culture had 

stopped respiring, the DO would have increased to the maximum level).  We conclude 

the cells were respiring, but they were not expressing discernable respiratory 

oscillations.   

 These experiments demonstrate that when the CDC is impaired, as at the 

beginning of the continuous culture in Fig. 3.5A and following the galactose treatment of 

Fig. 3.6, the YRO has a severely dampened amplitude and its period is much shorter.  

Although a non-cell cycle related effect to the YRO from the loss of CDC28 cannot be 

ruled out, these observations may indicate that the YRO cannot operate without the 

reinforcing influences that cell cycles provide.  However, when the arrested cells are 

replaced with those that can divide (Fig. 3.5A), the period and amplitude are 

strengthened in turn, demonstrating the importance of the CDC to the maintenance and 

characteristics of the YRO for CEN.PK.   

 

Summary 

We previously proposed a model describing the YRO/CDC relationship 

comprising two discrete populations of alternating, synchronously dividing cells that are 
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maintained by signals from rhythmic respiration/fermentation and cell cycle states 

(Chapter II and [74]).  I tested predictions of this model to determine whether the YRO 

could be so simply maintained.  I showed by manipulation of the medium pH that the 

YRO could achieve periods that differed from half of the average cell division time, ruling 

out the existence of discrete populations of cells that did not exchange between each 

other.  Secondly, I showed that our previous hypothesis of alternating populations of 

cells was insufficient to explain data from luminescent “tracer” cells used to label groups 

of dividing cells in the YRO.  Rather, it seems apparent that once cells achieve a 

sufficiently large size, they can divide more rapidly than once per two YRO periods 

(approximately the average cell division time for the culture).  Such rapidly dividing cells 

must account for less than half of the culture density to achieve the calculated average 

cell division time as well as account for the ~50% culture cell division observed in the 

cultures during each YRO period (Fig. 2.5).  Traffic between groups of dividing cells, in 

addition to a portion of the culture dividing every YRO period, could help explain the 

stability and uniformity that the YRO exhibits from oscillation to oscillation, and why 

perturbation to one oscillation does not have an “echo” in later oscillations.  Finally, I 

showed that cell division plays a significant role in YRO maintenance in agreement with 

our model, and that the CDC is not merely an output of an endogenous oscillator, but 

rather feeds back upon the respiratory oscillation and affects its stability.  As is the case 

for many biological phenomena, interrelationships among systems are often more 

complicated than initially believed.   

A more complex model is required to explain the YRO and the relationship it has 

with the CDC.  What is the specific population structure regarding cell cycle times within 

the culture?  What is the signal/mechanism by which cells delay their progression 

through G1 so that they can then simultaneously begin cell division?  How is the signal 

that results in the drop in DO during the YRO related to the cell cycle?  Aside from 
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nutrition and pH, are there other environmental factors that affect the YRO’s 

characteristics?  I intend to actively pursue these questions so as to obtain a model that 

more accurately reflects the relationship between the YRO and CDC.   

 

Materials and Methods 

 

Yeast Strain and Respiratory Oscillations 

 The yeast strain used for all of these experiments was CEN.PK 113-7D (MATa) 

kindly provided by Dr. Peter Kötter, University of Frankfurt, Frankfurt, Germany.  Unless 

otherwise stated, respiratory oscillations were obtained as described previously using 

CEN.PK 113-7D with or without luminescent reporters described previously [74].   

 

Elutriation of G1-Arrested Luminescent Yeast 

 A colony of CEN.PK113-7D that was stably transformed with the plasmid 

pRS303-Kan-PPOL1-Luc(A4V)PEST [74] was used to inoculate a 100 ml overnight culture 

in YPD media (1% yeast extract, 2% peptone, 2% dextrose) grown in a 500 ml flask at 

28°C with agitation.  This overnight culture was used to inoculate 5L of CEN.PK 

bioreactor media described previously [74] with the following changes: mineral solution A 

was added and the pH adjusted to 5 with NaOH prior to autoclaving, 50 µM ampicillin 

was added, and no antifoam was used.  The 5L culture was grown at 28°C in an 8L 

double side arm spinner flask, bubbled with filtered air and magnetically stirred for 36 h.  

After 36 h, 1L of this culture (OD600 = 7.1) was removed and saved for elutriation.  The 

remaining 4L was centrifuged in 250 ml bottles at 1000 r.p.m. for 5 min in a Sorval 

centrifuge.  The supernatant was vacuumed filtered through a 0.2 µm membrane to 

make cell-free conditioned starvation media.   
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 About 500 ml of the culture was size selected for the smallest cells (~3 µm) by 

centrifugal elutriation in a Beckman JE-5.0 rotor with a 40 ml chamber [87].  The cell-free 

conditioned starvation media was used to collect 500 ml (at a concentration of OD600 = 

0.075) of small cells from the elutriation rotor.  These cells were collected on the surface 

of a 0.2 µm membrane by vacuum filtration and resuspended in 1 ml of cell-free 

bioreactor media (bioreactor effluent from an oscillating culture of CEN.PK113-7D was 

collected, centrifuged, and the supernatant filtered through a 0.2 µm syringe filter).  5 µl 

were used to measure the optical density of the elutriated sample and 5 µl were used for 

microscopic determination of cell sizes in the sample.  The 1 ml elutriated sample of 

luminescent yeast had an OD600 of 37.5 and was directly injected into an 850 ml culture 

of oscillating (non-bioluminescent) CEN.PK113-7D with an OD600 of 26 (the ratio of 

elutriated, luminescent cells to oscillating, non-luminescent cells was about 1:600).  

Luminescence was monitored in continuous culture as described previously [74].   

 

Floxed CDC28 Strain Construction 

 The floxed CDC28 strain was generated by introducing three constructs into a 

ura3 strain of CEN.PK113-7D as described below.  A stable ura3 auxotrophic strain of 

CEN.PK113-7D was generated by selecting spontaneous ura3 mutants on YPD media 

plates containing 1 mg/ml 5-FOA (zymo research).  Stability of the mutation(s) was 

tested by growing cells without the selection pressure for several days and testing the 

inability to grow on supplemented minimal media plates lacking uracil (6.5 g/L Difco 

yeast nitrogen base w/o amino acids, 20 g/L glucose, 15.6 mg/L tryptophan, 15.6 mg/L 

histidine, 15.6 mg/L adenine, 23.6 mg/L lysine, and 23.6 mg/L leucine).  One clone that 

showed a stable ura3 phenotype was selected and designated CEN.PK113-7D/ura3, to 

which other constructs were added as described below.   
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 The CDC28 gene, including 300 bp of upstream intergenic DNA (containing the 

promoter), CDS, and 300 bp of downstream intergenic DNA (containing the terminator) 

was PCR amplified from genomic DNA (strain S288C) using a 5’ primer that added a 

BglII site to the 5’ end (gataagAGATCTATATATTTACAAGAAAAGCATGGC) and a 3’ 

primer that added an XhoI site to the 3’ end 

(ttcttgCTCGAGTTTGTCTTTTTCCTCTTCGCT).  This PCR product was used to replace 

the KanMX gene of the loxP-KanMX-loxP cassette of pUG6 [88] at the BglII and XhoI 

sites.  The portion of the pUG6/floxed CDC28 construct containing the floxed CDC28 

gene was moved to the luminescent reporter plasmid pRS303-Kan-PPOL1-Luc(A4V)PEST 

[74] by digesting both plasmids with NotI, agarose gel isolating the fragments of interest, 

and ligating them together.  The resulting construct (pRS303-Kan-PPOL1-

Luc(A4V)PEST/loxP-CDC28-loxP) was linearized by NheI and integrated into the HIS3 

locus of CEN.PK113-7D/ura3 by homologous recombination.  Transformants were 

selected on YPD plates containing 200 µg/ml G418. 

 The native CDC28 gene was then removed from this strain by replacing the 

native CDS with the hygromycin resistance cassette (HPH) from pYM24 [89].  This was 

done by PRC amplifying the HPH cassette from pYM24 using primers that each 

contained 50 bp overhangs of homology to regions just upstream and downstream of the 

intergenic regions used to flox CDC28.  This prevented HPH recombination from 

targeting the floxed version of CDC28.  Positive transformants were selected on YPD 

containing 200 µg/ml hygromycin. The 5’ primer used for HPH to CDC28 recombination 

was 

GAATTATCGTTCTCGAGATAGTTTTTATACAATACATATATATATATATAGACATGGA

GGCCCAGAATAC, and the 3’ primer was 

GTCAAAGAAGTTCAATTGAGGCCCCAGCATACAATGCGTTATTTCGTTTTCGAGCTC

GTTAAAGCCTTCG.  
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 A galactose-inducible CRE recombinase gene was added to the yeast strain as 

follows.  The PGAL1-CRE recombinase gene from pSH47 [88] was moved to the yeast 

integration vector pRS306 [73] by digesting both plasmids with KpnI and SacI, gel 

isolating the fragments of interest, and ligating them together.  The resulting plasmid was 

designated pRS306-PGAL1-CRE and was linearized with StuI and integrated into the ura3 

locus of CEN.PK113-7D/ura3.  Positive transformants were selected on supplemented 

minimal media lacking uracil.  Positive transformants were confirmed by an inability to 

grow on supplemented minimal media containing galactose instead of glucose, due to 

galactose inducing CRE which removed the essential floxed CDC28 gene (Fig. 3.4A) 

 

Galactose Promoter Induction during Continuous Culture 

 Yeast respiratory oscillations were achieved in continuous culture using either 

the floxed CDC28 strain of CEN.PK113-7D/ura3 described above or the galactose-

inducible luciferase reporter strain of CEN.PK113-7D containing pRS303-Kan-PGAL1-

Luc(A4V)PEST [74].  After stable yeast respiratory oscillations had formed, the 

galactose-inducible promoter of either strain was activated by switching the continuous 

culture medium (at the same infusion rate) to a similar medium that contained 2% 

galactose instead of 1% glucose, for 30 to 40 min. 
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CHAPTER IV 

 

LIGHT AFFECTS THE YEAST RESPIRATORY OSCILLATION THROUGH 

PHOTOSENSITIVE CYTOCHROMES 

 

Introduction 

 

 Circadian clocks are biological pathways that measure time on a roughly 24 hour 

timeframe, allowing organisms to synchronize and ultimately optimize their behavior and 

physiology with respect to the daily rhythmic changes in the environment.  Circadian 

timing systems provide two major advantages, 1) anticipation of recurring changes to the 

external environment such as light intensity, temperature, humidity, and food availability; 

and 2) synchronization and coordination of metabolic processes and gene regulation 

within the organism that provide optimum energy usage and temporal separation of 

mutually unfavorable reactions or reaction conditions [8, 9].  Scientists have found 

circadian clocks spanning organisms from simple prokaryotes like cyanobacteria to 

complex eukaryotes like humans; but despite the clock’s wide prevalence, differences in 

genes and mechanisms for prokaryotes, plants, animals, and fungi point to no clear 

clock progenitor suggesting that the clock has evolved independently several times.  

These two points (the clock’s virtual ubiquity and apparent independent origins) 

strengthen the claim that the capability of measuring time is an advantage worth 

preserving [10].  Interesting questions therefore arise when organisms like the budding 

yeast Saccharomyces cerevisiae are found that seem to lack circadian clocks.  Did 

these organisms’ ancestors once possess clocks?  Does a short lifecycle not favor a 

circadian clock?  Does the feast/famine lifestyle of organisms like yeast outweigh the 

costs of maintaining clocks?  Do such organisms possess alternative mechanisms to 
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achieve some advantages circadian clocks provide without having to have circadian 

clocks themselves?   

 One seemingly universal characteristic for all organisms with circadian clocks is 

the ability to sense light.  Although clocks from many organisms can be entrained by a 

variety of rhythmic environmental cues such as temperature [90], food availability [91], 

and tides [92], light has been found to be the strongest zeitgeber (time giver) across all 

kingdoms of life and often heralds changes in other rhythmic phenomena like 

temperature and humidity.  Additionally, the dependency on fixed carbon by primary 

producers (photosynthetic organisms) is directly tied to the availability of light and the 

producer’s ability to carry out physiological processes in the presence of light.  It is not 

surprising then, that photosynthetic organisms like plants and cyanobacteria have 

developed circadian clocks to anticipate the arrival of this rhythmic vital energy source.  

Similarly, light is important to much of the animal world for survival, but as a medium for 

vision and navigation rather than as a direct energy source.  Therefore, it is not 

surprising that animals have developed (or maintained) circadian clocks to anticipate the 

sun for reasons including food gathering, predator avoidance, reproduction, and 

directional orientation.  It is less obvious why organisms that are neither photosynthetic 

nor visual (like fungi) develop or preserve circadian clocks and light detection, but may 

include advantages that accrue from anticipating changes in temperature and humidity 

as well as avoiding the damaging properties of solar radiation itself [93].   

 The ability for an organism to detect or respond to light is dependent on 

pigmented macromolecules in the organism that receive light energy at specific 

wavelengths and undergo physical/chemical changes that have biochemical 

consequences.  Photosensitive macromolecules vary as widely in nature as biological 

uses for light itself, e.g. DNA repair enzymes like photolyases, light harvesting 

photosynthetic pigments like chlorophylls, and vision-related protein complexes like 
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rhodopsins.  During the evolution of circadian clocks, previously existing photosensitive 

macromolecules were often co-opted by the clock and provided the evolutionary 

template for a specialized clock-photoreceptor to develop [94].   As a result, there are 

evolutionary trends in clock-related photoreceptors, e.g. the photolyase-related family of 

cryptochrome photoreceptors that are used by both plants and animals, the 

phytochrome family of photoreceptors that are found in plants and cyanobacteria [94] 

and the blue light photoreceptor White-Collar-1 found in many fungi [95, 96].  S. 

cerevisiae does possess a photolyase [97]; however, despite the evolutionary trends in 

photoreceptors that span biological kingdoms, S. cerevisiae which apparently lacks a 

circadian clock, also appears to lack the well-characterized clock-related photoreceptors 

of other organisms (e.g. cryptochrome, phytochrome, white-collar 1, rhodopsin).   

 Why does S. cerevisiae not have a circadian clock when so many other 

eukaryotes (including other fungi) do?  One answer might be that for an organism with 

the lifecycle and lifestyle of yeast, maintenance of a circadian clock costs more than the 

advantages it provides.  The advantages of predicting 24 hour environmental cycles are 

arguably fewer to organisms with lifecycles shorter than a day.  Admittedly, this 

characteristic alone does not preclude the existence of clocks in cyanobacteria that can 

divide in less than 10 hours yet possess a well characterized circadian clock [98].  

However cyanobacteria are photosynthetic and sunlight is part of their nutritional 

requirement.  It is certainly advantageous for an organism to be able to predict the 

availability and quantity of its food sources (when availability regularly recurs).   

Yeast are not photosynthetic, rather their natural habitat provides a lifestyle that 

is more one of an unpredictable feast or famine.  Wild yeast tend to live most of their 

lives in a dormant/quiescent state (often as a spore) usually in close association with 

insects like fruit-flies and other diptera, relying on the insects to transport them to the 

surfaces of fruit where they remain dormant until the fruit bursts or is compromised by 
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other microbes [99].  The sudden availability of rich, sugary nutrients revives the yeast 

from their dormancy where they quickly multiply and consume the sugars and starches 

available [4].  Once the nutrients are depleted (or the yeast are carried away from the 

fruit by insects), the yeast return to their quiescent and/or sporulated state [4, 100].  

Therefore those yeast that live to experience multiple days and nights usually do so in a 

metabolically quiet form; and those yeast that actively grow and divide usually only live 

that way for a short time (one or two days).  For this type of lifestyle, a circadian clock 

may be more costly to maintain than it is worth, especially if yeast possess alternative 

mechanisms that provide similar advantages of a circadian timekeeping system but 

which are amenable to yeast’s short lifecycle and opportunistic fits of growth.   

Temporal organization of metabolic reactions within the organism is one 

advantage provided by a circadian clock, however the circadian clock is not the only way 

to achieve temporal coordination.  Other strategies could include a metabolic “hour-

glass” which is reset at the end of each cycle or an ultradian clock, similar to a circadian 

clock but operating on a timeframe shorter than a day and not exhibiting self-sustained 

oscillations in a constant environment.  Ultradian rhythms of oxygen consumption, 

metabolite production, and cell division have been studied for decades in S. cerevisiae 

grown under specific continuous culture conditions [33, 34, 38]. Plus, there is evidence 

that the metabolic coordination these rhythms provide yeast are advantageous for 

minimizing oxidative damage during DNA replication [16, 76] as well as surviving other 

stresses [17], at least under the conditions tested.  It is unclear whether these 

oscillations occur in yeast’s natural habitat (outside of the continuous culture bioreactors) 

and also whether these rhythms are due to an ultradian clock verses a metabolic “hour-

glass”. Nonetheless, they could potentially provide the yeast with a timekeeping 

capability that is accomplished in other organisms by a circadian clock, lessening the 

necessity to preserve a circadian timekeeping system during their evolution.   
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Anticipating external changes related to the day/night cycle is another major 

advantage provided by a circadian clock.  Sunlight can benefit some organisms but there 

is a trade-off since high-energy rays are detrimental.  For some organisms, the circadian 

clock regulates protection from the sun by gating activity of photosensitive processes 

(like DNA replication) to the night when high-energy rays are not present [101].  An 

alternative approach to protection from rhythmic changes in the environment is simply to 

adapt quickly to external changes as they are perceived rather than anticipated.  S. 

cerevisiae alters physiology/metabolism in response to such environmental 

changes/stresses as temperature, pH, nutrition, and UV-induced DNA damage [27, 102], 

but if yeast possess a way to rapidly sense and respond to visible light as well, then this 

could have lessened the necessity to preserve a circadian clock in yeast’s evolutionary 

past.   

In this investigation we examined the effects of visible light on the ultradian yeast 

respiratory oscillation (YRO) as well as the effects on the health/viability of yeast in 

general.   Our goals were to determine 1) if there is evidence of a light-entrainable 

circadian oscillator in S. cerevisiae, 2) if yeast can metabolically respond to visible light, 

3) if visible light is in fact harmful to yeast and 4) if yeast can protect themselves from 

light if it is harmful.  We show that visible light (blue and green light in particular) of an 

intensity less than natural sunlight significantly shortened the YRO’s period and 

amplitude and that no apparent circadian rhythm of this phenomena persisted during 

constant darkness.  Additionally, yeast exposed to light grew more slowly than similar 

cultures grown in the darkness and they upregulated the production of pigments in 

response to the light.    
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Results 

 

Yeast Response to Light in Continuous Culture 

Convincing evidence of circadian rhythms in S. cerevisiae has yet to be shown, 

despite the attempts by multiple labs for a number of years.  This lack of evidence could 

simply be due to the fact that S. cerevisiae does not possess a clock.  Alternatively, the 

species might possess a circadian clock, but demonstrating it has been hampered by not 

identifying appropriate outputs as well as complications arising from constantly changing 

nutritional and metabolic conditions during growth in a confined volume of medium.  We 

considered that one potential output from a circadian clock might be the respiration 

oscillation seen when certain yeast strains are grown in continuous culture [15, 16, 20, 

38].  The steady perfusion of new media into the culture during continuous culture, as 

well as the constant pH and temperature maintained by the system, would provide a 

stable environment for growth and hopefully overcome complications from the culture 

slowing and entering stationary growth as it does in batch or on plates.  We established 

a stable yeast respiratory oscillation in the strain CEN.PK and administered light of 

increasing intensities from cool white fluorescence bulbs for 12 hour durations, with 12 

hours of darkness in between (Fig. 4.1).  The YRO had a period of about 250 min in total 

darkness but white light caused the period of the oscillation to shorten and the amplitude 

to decrease (Fig. 4.1A,B), becoming more apparent with greater intensities of light (90-

300 µE/m2/s).  The lowest intensity of light applied (90 µE/m2/s) had only minor effects 

on period and amplitude; however, the brightest light applied (300 µE/m2/s) caused very 

short (~85 min) and unstable oscillations. Treating the culture with 300 µE/m2/s of light 

for longer than 16 hours destroyed the oscillation (Fig. 4.1A), but returning the culture to 

total darkness did eventually restore the  

  

85 
 



 
 
Figure 4.1.  The effects of visible light on the yeast respiratory oscillation.  A. The effect 
various intensities of light have on the YRO.  Oscillations were initiated in a culture 
grown in the dark until stable oscillations of dissolved oxygen formed (black line, left y-
axis).  Then 12-hour treatments of light were administered at intensities of 90, 180, and 
300 µE/m2/s (gray line, right y-axis) with 12 hours of darkness in between light 
treatments.  The final 300 µE/m2/s light treatment was maintained for 35 hours (only 30 
hours are shown).  Light of increasing intensity had an increasingly obvious effect on 
period and amplitude, and light treatment at the highest intensity destroyed the 
oscillation after 18 hours.  B. The average periods for oscillations occurring during the 
initial dark phase or during each of the different intensities of light for the YRO shown in 
A.  Each bar represents the average period in minutes of complete oscillations occurring 
during the treatment, error bars represent ± one standard deviation. The x-axis is 
arranged by light intensity in µE/m2/s, and the bar labeled 300* represents the average 
period for the second, longer 300 µE/m2/s light treatment.   
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oscillation about 20 hours later (data not shown).  To put these observations into 

perspective, typical light intensities that are found outside on a sunny day can exceed 

2000 µE/m2/s, while indoor (laboratory) light is often around 10-15 µE/m2/s.  It must be 

noted that for all applications of light or darkness, the temperature of the culture was 

maintained at 30°C (± 0.075°C) by a temperature controlled water jacket that surrounded 

the entire culture and was between the culture and the light sources. 

Determining the wavelengths of light that cause a biological response has proved 

valuable for elucidating the identity of photoreceptors for various biological phenomena 

in other organisms like plants [103] and filamentous fungi [95], so we tested the effect 

that red, green, and blue light had on the YRO by placing colored filters in the light path.  

An oscillating culture with a period of about 210 min was established and filtered light of 

different colors was administered for 12 hours with 12 hours of darkness in between. 

The nature of the filters used removed different portions of the spectrum from the light 

sources so light intensity varied among colors, however the sensitivities to the varying 

intensities of colored light were also informative.  Red light (100 µE/m2/s) had no effect 

on the YRO’s period and only very minor effects on amplitude, however dim green light 

(80 µE/m2/s) and very dim blue light (25 µE/m2/s) affected the YRO similarly to 

moderately bright white light (180 µE/m2/s) (Fig. 4.2A,B).   

The three 12-hr treatments of colored light (red, green, blue) were followed by 

two 12-hr treatments of unfiltered white light of sufficient intensity to cause noticeable 

effects to the YRO without compromising the oscillation’s integrity.  After these 5 days of 

12 hr light/12 hr darkness, the culture was allowed to free run in constant darkness to 

see if any circadian patterns of period or amplitude shortening were evident in the YRO.  

As can be seen in Fig. 4.2A and B, the YRO showed stable periods and amplitudes 

during this free run similar to those seen prior to light treatment, thus providing no  
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Figure 4.2.  The effects of colored light on the yeast respiratory oscillation.  A. The 
effects of colored light at different intensities on the YRO.  Oscillations were initiated in a 
culture grown in the dark until stable oscillations of dissolved oxygen formed (black line, 
left y-axis).  Then 12-hour treatments of light of different colors (red, blue, green) were 
administered (colored lines matching color of light, right y-axis) with 12 hours of 
darkness in between.  After the application of colored light, two 12-hour white light 
treatments were given.  Light intensities of each treatment are shown on the right y-axis 
as well as indicated by numbers under each of the colored or gray lines showing light 
treatment.  B. The average periods for oscillations occurring during the initial dark phase 
or during each of the different colored light treatments for the YRO shown in A.  Each 
bar represents the average period in minutes of complete oscillations occurring during 
the treatment, error bars represent ± one standard deviation. The subjective day bar 
pertains to the portion of the YRO indicated in dashed black lines of A, and represents 
the times when light would have reoccurred following the 12-hour light/dark cycle 
maintained for the previous 5 days.  These results show that red light has virtually no 
effect on the period or amplitude of the YRO compared to darkness and that blue light 
has a very strong effect.  At 1/7 the intensity, blue light is capable of reducing the period 
of the YRO to levels near that of white light.  Additionally, there is no evidence of 
circadian influences on the effects light has on the YRO. 
 

  

88 
 



evidence that a circadian clock influences this phenomenon.  The changes in the YRO’s 

period and amplitude are direct (and temporary) effects of the light on the organism. 

 

Cytochromes are the Suspected Photosensitive Macromolecules Responsible for Light 

Effects on the YRO 

Sensitivity to blue light is common in fungi [104] due to the photoreceptor White 

Collar-1, but S. cerevisiae lacks the WC-1 gene or any homolog [96].  However, one 

class of pigmented cellular components that yeast have which are known to absorb 

heavily in the blue region are the cytochromes which make up part of the electron 

transport system for ATP synthesis in the mitochondria (for absorption spectra for 

several cytochromes see [105, 106]).  Visible light has been shown to destroy/inactivate 

some of the cytochromes in mammalian cells, algae, and yeast [107] as well as impair 

yeast growth, respiration and membrane integrity by affecting the cytochromes [108, 

109]. These reports by others point to various cytochromes being candidate photo-

transducers for our observed changes in respiration oscillations.   

If the shortened period and reduced amplitude of the YRO are due to light’s 

inhibition/destruction of mitochondrial cytochromes, then it is likely that another method 

of inhibiting or destroying cytochromes (or their effectiveness as an electron transporter) 

would have a similar effect to light.  Sodium azide is a chemical that inhibits respiration 

by binding and inhibiting cytochrome c [110] and cytochrome oxidase [111] of the 

electron transport chain.  Various concentrations (4-20 µM) of sodium azide were 

injected into an oscillating culture of CEN.PK at various times in order to determine a 

working concentration for possible YRO perturbation, however only transient/acute 

effects to the dissolved oxygen oscillation were observed (data not shown).  It is likely 

that the acidic media of the culture (pH 3.4) converts the sodium azide into azoic acid, a 

volatile gas, which rapidly leaves the culture through the culture’s gaseous effluent.  To 
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compensate for the gaseous loss of azide and the constant dilution of continuous 

culture, we introduced sodium azide into the oscillating culture at a steady drip (3.4 

µmoles/hr) using a syringe pump.  Perfusion of azide in 12 hour treatments separated by 

12 hours with no azide showed similar effects to the YRO as 12 hour light/dark 

treatments (Fig. 4.3 A,B).  That is, sodium azide shortened the period and reduced the 

amplitude of the dissolved oxygen oscillation during times of treatment and the 

oscillation returned to its longer period and amplitude once the chemical’s delivery was 

stopped.   

Another way to demonstrate visible light’s effect on respiration is to record the 

changes in dissolved oxygen from a small batch culture as yeast respiration consumes 

the limited oxygen in the vessel either under conditions of darkness or illumination.  

Overnight cultures of CEN.PK were grown either in the light (~ 200 µE/m2/s) or darkness 

and then dilutions of these cultures were assayed for respiration rates while either being 

exposed to light (~ 250 µE/m2/s) or darkness.  Specifically, aliquots of light-grown or 

dark-grown yeast were placed into a finite volume (40 ml) of new media in a sealed 50ml 

flask (magnetically stirred) where the dissolved oxygen in the vessel was recorded over 

time.  Respiration of yeast that had previously been grown in the dark (dark-grown 

culture) and that were assayed in the dark exhibited a linear consumption rate of oxygen 

that was directly proportional to the amount of culture added to the assay media (Fig. 

4.4A).  However, respiration from the dark-grown culture of yeast showed a different 

trend of oxygen consumption rate once light was applied (Fig. 4.4B).  For the experiment 

showing this result, the dark-grown yeast were allowed to respire in the darkness for 15 

min to demonstrate a stable, linear trend of oxygen consumption, then light was applied 

for the remainder of the measurement.  After about 15 min of light treatment (at time = 

30 min), oxygen levels began to deviate from that which would be expected from the 

trend generated from measurements made during the first 15 min of respiration in the 

90 
 



 
 
Figure 4.3.  Sodium azide causes similar effects as white light on the yeast respiratory 
oscillation.  Separate oscillating 850 ml cultures were given two 12-hour treatments of 
either sodium azide at 3.4 µmoles/hour (top) or white light at 180 µE/m2/s (bottom), with 
12 hours in between treatments.  Both light and azide shorten the period and reduce the 
amplitude of the YRO and both show a transitional effect after initial administration of 
each treatment, but their effects on the YRO differ slightly as well.  Continual application 
of sodium azide begins to bifurcate the shorter oscillations later during the treatments, 
and the culture seems to recover more quickly from cessation of sodium azide treatment 
than from treatment of light. These results suggest that light causes longer lasting harm 
to respiration than azide. 
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Figure 4.4. Effects of light on respiration measured in batch cultures.  A. Samples of 
yeast from a starter culture grown over night in the dark (dark-grown culture) show linear 
rates of oxygen consumption over time proportional to the number of cells tested.  
Different amounts of the starter culture (0.25, 0.5, 1.0 ml, light blue, blue, and dark blue 
lines, respectively) were individually assayed in 40 ml of fresh media.  The trial involving 
0.25 ml of cells (light blue line) was only measured for 50 min.  B. Dark-grown yeast 
subjected to light after the first 15 minutes of dissolved oxygen measurement shows a 
decreasing rate of oxygen consumption over time (solid red line) compared to the 
projected rate of oxygen consumption had the culture remained in the dark (dotted red 
line). A sample of the same starter culture of dark-grown yeast as in A was measured for 
the first 15 min in the dark to establish a linear trend of respiration.  At time = 15 min 
(arrow), white light (250 µE/m2/s) was applied for the remainder of the assay.  Light 
increased the noise of the probe so the solid red line is the smoothed, 11-point moving 
average of dissolved oxygen measurements.  C. Samples of a starter culture of yeast 
grown for 30 hours under 200 µE/m2/s white light (light-grown yeast) show linear rates of 
oxygen consumption over time when assayed in 250 µE/m2/s of light (red lines) and 
show increased rates of respiration after 30 min of measurements in the dark (blue 
lines). Similar colored lines are replicates.  For experiments in C. the first 15 min of all 
samples were measured in the dark.  After 15 min (arrow), the samples labeled “light 
treated” (red lines) were exposed to 250 µE/m2/s white light for the remainder of the 
assay.  For light treated samples light increased the noise of the probe so the solid red 
lines are the smoothed, 21-point moving average of dissolved oxygen measurements. 
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dark (Fig. 4.4B).  Rather than taking 60 to 70 min to deplete the oxygen in the flask (as 

would be predicted based on initial respiration rates in the dark), the assayed sample 

required more than 130 min to deplete the oxygen in the flask under illumination.  In the 

converse experiment where overnight cultures of light-grown yeast were assayed for 

respiration rates in either the light or the dark, it was the cultures that were assayed in 

the light that showed the near linear consumption of oxygen, while light-grown cultures 

that were assayed in the dark increased their respiration rate after about 30 min in the 

dark (Fig. 4.4C).  These results support the hypothesis that light interferes with 

respiration via photosensitive substances (e.g. cytochromes) that are restored/repaired 

at a faster rate in the darkness.   

 

Rapid Depletion in Oxygen Tension Can Reset the YRO 

 The redox state of the culture is believed to play a vital role in the YRO 

alternating between a respiratory phase and a respiro-fermentative phase [16, 18, 32].  

As shown above, damage or impairment to the respiratory cytochromes of the cell 

resulted in a shortened respiration phase of the YRO (i.e. a shortened period and 

amplitude) and resulted in the culture more frequently returning to a respiro-fermentative 

mode of energy metabolism.  In addition, I have shown that the introduction of chemicals 

(metabolites) like ethanol and acetaldehyde have been shown previously to result in 

differing degrees of YRO phase resetting depending on the phase of the oscillation in 

which these substances are introduced (Chapter II) [74].  This phase resetting in 

response to artificial introduction of metabolites prematurely switches the YRO from a 

respiro-fermentative phase to a respiratory phase, characterized by an immediate drop 

in dissolved oxygen in the culture.  Based on these results (as well as the effects light 

and azide have on respiration in the YRO), we questioned whether rapidly depriving the 

culture of oxygen could have a similar phase resetting effect without the addition of 
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metabolites.  Perhaps the oscillating oxygen level in the culture could be an 

environmental signal that allows the YRO to remain synchronized.   

 A blend of air and nitrogen was bubbled into the continuous culture (as opposed 

to only air) to artificially replicate the characteristic dissolved oxygen troughs of the YRO 

at various phases of the YRO.  Simply reproducing these troughs in amplitude and 

duration by adjusting the extracellular oxygen concentration of the media had no phase 

resetting effect on the oscillation (Fig. 4.5).  That is to say, artificially lowering the 

dissolved oxygen in the bioreactor to about 20% (the DO concentration normally 

achieved during each trough of the YRO) for a duration of 20 min (the approximate time 

that the DO of the culture remains low during each trough of the YRO) had no phase 

resetting effect on the oscillation at any of the phase points tested.  However, extreme 

deprivation of oxygen in the culture by bubbling 100% nitrogen at 0.9 L/min (in place of 

air at 0.9 L/min) into the culture for 3 min did result in phase resetting at certain times 

during the YRO (Fig. 4.6A) similar to those by ethanol that we observed previously 

(Chapter 2) [74].  In other words, phase shifts similar to those caused by ethanol and 

acetaldehyde occurred only if the DO of the culture was artificially dropped to near 0% (< 

0.5%) for 3 min.   

Interestingly, bubbling 100% oxygen into the culture for 30 minutes at different 

phases had a similar, but smaller, phase resetting effect as removing oxygen from the 

culture by nitrogen (Fig. 4.6A,B).  The fact that both gases (N2 and O2) had similar phase 

resetting properties contradicted expectations regarding the role of oxygen in 

propagating the YRO, but there is one similarity between the administrations of both 

gases; namely, both treatments resulted in a sudden depletion of oxygen from the 

culture (nitrogen at the beginning of the treatment and oxygen at the end of the 

treatment).  We suspect that during the 30 min O2 treatment, the culture sensed the 

increased oxygen levels and gradually altered metabolism in response (perhaps either  
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Figure 4.5.  Artificially replicated DO troughs are not sufficient to reset phase of YRO.  
The YRO with a period of about 250 min (blue line) was periodically interrupted with a 
mixture of air and nitrogen gas in order to artificially drop the dissolved oxygen (DO) in 
the culture to levels near those experienced during regular DO troughs for 20 min 
(highlighted in red).  The treatments did not affect the phase or period of the YRO as can 
be seen by the recurring troughs at time intervals of 250 min.   
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Figure 4.6.  Phase responses of the YRO to treatments of hypoxia (by nitrogen gas) and 
hyperoxia (by oxygen gas).  A. A double-plotted phase-response curve (PRC) to onset 
of hypoxia by N2 (blue) or cessation of hyperoxia by O2 (red).  Phase shifts are plotted in 
degrees of period with advance shifts plotted as positive values and delay shifts as 
negative values.  A representative dissolved oxygen trace (black) show the YRO for 
reference.  Black arrows show phase points 96°, 186°, and 231° for the O2 PRC which 
are shown in more detail in B.  0° was defined as the time when dissolved oxygen 
started to rise from the YRO trough.  360° = 3.5 h for both PRC experiments.  B. 
Representative O2 treatments used to generate the O2 PRC in A.  At times of treatment, 
O2 gas was bubbled in place of air at a rate of 0.9 L/min for 30 min.  The phase point for 
which the PRC was generated was for the time when the culture was switched back to 
air, shown by black arrows.  Treatment at 96° caused no phase shift.  Treatment at 186° 
caused a phase delay.  Treatment at 231° caused a phase advance.   
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by increasing respiration rate, decreasing oxygen uptake rate, or decreasing the cellular 

levels of respiration machinery). The sudden removal of the O2 at the end of the 30 min 

treatment appeared to the yeast as a state of hypoxia based on the rates of respiration 

or oxygen transport/metabolizing capability to which the cells had become accustomed.  

The sudden lack of oxygen in this case had a similar effect as removing oxygen by 

nitrogen displacement; that is, both forced the cells to alter their metabolic strategy, 

resulting in phase resetting at certain phases of the YRO.  These results show that 

dissolved oxygen levels alone are not the environmental synchronizing signal that 

maintains the YRO, however intracellular oxygen level could be a downstream signal 

that plays a role in the redox-dependent switching of the energy strategy during the 

YRO.  

 

Light Slows Growth and Upregulates Pigment Production in Yeast 

 Light negatively affects respiration rates and ultimately reduces ATP production, 

so light should have a negative effect on growth rates as well.  Effects like these were 

reported 30 years ago [108] and experiments in our lab confirmed this effect (Fig 4.7A).  

Additionally we found that yeast cultures that were grown in the light turned pinkish-

orange after about 24 hours while their dark-grown counterparts remained white (Fig 

4.7B, and Fig. 4.8).  These light-induced pigmented yeast appeared similar to ade2 

strains of yeast, so we first thought the light had caused an ade2 mutation in our 

cultures.  However pink yeast inoculated into fresh media and grown overnight in the 

dark turned white, indicating that the coloration was not a permanent change/mutation.  

Moreover, these yeast also grew well on supplemented minimal media lacking adenine 

(and remained pink in the light) so the coloration was not the result of an ade2 mutation.   

Some yeast like Rodotorula mucilaginosa and R. glutinis are naturally pink due to 

high levels of carotenoids which protect them from oxidative stress [112, 113].  Light  
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Figure 4.7. Light causes yeast to grow more slowly and to produce pigments.  A. shows 
growth curves for yeast cultures grown in 250 µE/m2/s light (pink and light blue lines) or 
darkness (dark red and dark blue lines) with 50 µM diphenylamine (light blue and dark 
blue lines) or 0.05% methanol vehicle (pink and dark red lines).  Data points are 
averages, n=3.  Error bars are 1 standard deviation.  Cultures grown in the dark grew 
more rapidly than their light-grown counterparts, and DPA treated cultures only grew in 
the dark.  B. Yeast from the experiment in A. grown in the light without DPA produced a 
pink-to-orange pigment after 24-30 h growth while dark-grown cultures remain white.  
The three 10 ml cultures from each treatment were pooled, pelleted, and resuspended in 
3 ml water for photographing.  The column of wells on the left and right are the same, 
only their backgrounds differ (for contrast).  C. The absorption spectrum for the 
chloroform fraction extracted from light-grown and dark-grown yeast.  There is a strong 
shoulder at 450 nm characteristic of C40 carotenoids. [113, 114]     
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Figure 4.8  Yeast inoculated at a high enough density to overcome growth impairment 
by light remain white in the presence of DPA, having a similar color to yeast grown in the 
dark.  Yeast grown in the light without DPA turn a pinkish-orange color.   
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produces reactive oxygen species when it is absorbed by certain pigments like 

porphyrins [115] (such as those present in heme, cytochromes, and chlorophyll [116]), 

and carotenoids have been shown to protect against the damaging effects these reactive 

oxygen species produce [113, 117].  To investigate whether the pink pigment in the light-

exposed yeast was a carotenoid, we grew yeast in the presence of diphenylamine 

(DPA), a carotenoid synthesis inhibitor [118].  We predicted if the pink pigment in these 

yeast cultures was a carotenoid and that the carotenoid was protecting the yeast from 

direct photodamage or indirect light-induced oxidative damage, then treating a light-

grown culture with DPA would inhibit the pigment’s production and make the yeast more 

sensitive to light’s detrimental effects.  We subdivided a freshly inoculated culture 

(supplemented minimal media) into four treatment groups with three replicates each.  

Two of the treatments received 50 µM DPA and the other two received only the vehicle 

(methanol).  One of each treatment (DPA and vehicle) was grown in the dark, and the 

other was grown in 250 µE/m2/s light (Fig. 4.7A,B).  The cultures grown in the dark grew 

faster than their light-grown counterparts, and DPA only had a minor inhibitory effect on 

growth in the dark.  However, light-grown cultures that contained 50 µM DPA failed to 

grow at all during the course of the growth study.   

The pigment(s) from the yeast were extracted with methanol:chloroform (50:50) 

and phase separation with 1% NaCl showed the pigment(s) moved with the chloroform 

phase (as would be expected with hydrophobic pigments like carotenoids).  Spectral 

analysis of this chloroform extract showed a strong absorption peak/shoulder around 

450 nm (Fig. 4.7C) characteristic of many C40 carotenoids [113, 114] (e.g. β-carotene 

and torulorhodin).  The high absorption levels below 400 nm could be due to other, 

lighter polyenes (e.g. carotenoid precursors or degradation products).  It was later found 

that DPA treated cultures could grow to some degree in the light if initially inoculated 

with an amount of yeast large enough to overcome the growth inhibition from light.  Such 
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DPA treated cultures that grew in the light did not turn pink, but rather remained white 

like dark-grown cultures (Fig. 4.8), supporting the idea that the pinkish-orange pigment in 

the light treated cultures (without DPA) is a substance that DPA prevents from forming, 

namely a carotentoid.  

 

Pigment Production is not Limited to the CEN.PK Strain of Yeast 

 To determine whether other strains of yeast could also turn pinkish-orange when 

exposed to light (similarly to the CEN.PK strain), a variety of strains were grown on solid 

supplemented minimal media under light and dark conditions.  The strains that were 

tested consisted of those we had readily available from a variety of previous studies, and 

in no way constituted an exhaustive search for photo-induced pigment producing strains. 

These experiments were done first on a small set of differing strains to determine the 

prevalence of photo-induced pigment production.  The strains tested included 

CEN.PK113-7D (from Peter Kötter, Frankfurt Germany ), IFO0233 (from Robert Klevecz, 

Institute of the City of Hope Medical Center), SEY6210  [70], YKF201  [119], SK1 (from 

Angelika Amon, MIT), S288C [120], the yeast two-hybrid strain AH109 (from Clontech), 

the deletion collection background strain BY4741 [121], and S. paradoxus strain YPS138 

[122].  S288C, AH109, and BY4741 did not grow well under the conditions used to test 

growth in either the light or dark (after repeated attempts), so assessment for their 

viability and ability to change color in the light could not be made.  Alternative growth 

conditions that remain conducive to this assay need to be found before light-dependent 

phenotypes can be evaluated for these strains.  All of the remaining strains, however, 

showed impaired growth in the light, except SEY6210 (Fig. 4.9).  SEY6210 seemed to 

grow just as well in the light as in the dark and may have had a very faint pink tint to the 

cells that grew in the light.  The color change for CEN.PK113-7D and IFO0233 grown in 

the light was particularly noticeable, on the other hand (Fig. 4.9 A,B).  Interestingly, both  
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Figure 4.9.  Other strains of yeast besides CEN.PK also showed growth inhibition under 
white light, however only one other strain tested clearly showed the ability to turn 
pink/orange under the light.  Yeast that were spread equally on both left and right sides 
of plates were covered on the left side with opaque tape and grown at room temperature 
under 200 µE/m2/s white light from a cool white fluorescent bulb.  A glass dish containing 
1 in of distilled water was between the light source and plates to absorb heat from the 
bulb.  Plates contain S. cerevisiae strains except where noted: A. CEN.PK113-7D. B. 
IFO0233. C. S. paradoxus. D. SEY6210. E. SK1. F. YKF201.  Yeast grew better in the 
dark (left side) than in the light (right side), except for SEY6210 (D) which grew equally 
well in both light and dark.  Besides CEN.PK (A), the only other strain to clearly turn 
pink/orange under the light was IFO0233 (B), another yeast strain that exhibits the YRO 
in continuous culture.   
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of these strains that noticeably changed color in the light are strains that exhibit the YRO 

in continuous culture.  Whether this is a meaningful association or whether it is a 

coincidence remains to be seen.   

 

Discussion 

 

We have shown that S. cerevisiae (strain CEN.PK) can perceive light (primarily 

blue and green light) in a physiologically relevant way and that this light can affect 

yeast’s ability to respire in as little as 15 min, presumably by damaging the heme-

containing cytochromes that participate in electron transport for oxidative 

phosphorylation. Ultimately this effect on respiration has consequences to the yeast 

respiratory oscillation when this strain is grown in continuous culture.  Although the 

overall percent of time that the culture spent in the respiratory phase of the YRO was 

similar between light-treatment and dark-treatment (~7%), the times when the culture 

was exposed to light resulted in the YRO having shorter duration respiratory phases that 

recurred more frequently.  This effect was similar to that caused by treating the 

oscillating culture with sodium azide, an inhibitor of the electron transport chain, which 

supports the hypothesis that the period and amplitude effects on the YRO are caused by 

light interfering with the various cytochromes’ abilities to transport electrons to oxygen 

(the terminal electron acceptor) during respiration.  With a reduced capacity to respire, 

the cells’ energy demand would require increased fermentation, altering the NAD+/NADH 

proportions as well as perhaps requiring the cells to draw on their storage carbohydrates 

more frequently.  Storage carbohydrate levels and NAD+/NADH ratios are believed to 

play major roles in regulating the YRO’s switch between oxidative and reductive phases 

of the YRO [18].  A similar effect was seen in a temporary fashion when cells were 

suddenly deprived of O2.  Rather than the persisting effect of shorter periods and 
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amplitudes that continually inhibiting cytochromes caused, inhibiting respiration in an 

acute manner (by dropping O2 levels), resulted in a temporary effect, namely a phase 

shift at certain times of the oscillation.  One explanation for the phase dependency of this 

effect is that in early phases of the YRO when O2 depletion didn’t have an effect, the 

redox state of the cells (e.g. the NAD+/NADH ratio) already favored 

fermentative/reductive metabolism so no change between oxidative and reductive 

phases of the YRO could be made by removing oxygen [16].  In addition, the storage 

carbohydrate levels are generally low during the early phases of the YRO [18].   

The finding that light affects the YRO is relevant for more reasons than simply to 

warn YRO investigators to control for this variable.  The ease at which light can be 

added to or removed from continuous culture provides researchers another way to 

manipulate the YRO for research purposes.  There remains a debate as to why some 

yeast produce YROs with short (40 min) periods while others (like the ones studied here) 

have longer periods (3-5 h) [35-37].  Some argue that these are two separate 

phenomena with different underlying mechanisms, but perhaps the differences primarily 

lie in the strains’ intrinsic respiratory rates.  We have shown that light is capable of 

reducing the longer period YRO to something closer to that of the shorter period YRO, 

and hopefully through such techniques the two YROs can eventually be reconciled.  

These findings also warn of problems that may come from using fluorescent reporters to 

study the YRO, especially those that are excited by blue light like GFP.  Although the 

issue of fluorescence excitation was not specifically addressed in this investigation, it 

would be naïve to think that the blue wavelength excitation used to view live yeast does 

not impact their physiology.   

Finally, we showed that light inhibited growth in various strains of yeast, and that 

treating the CEN.PK and IFO0233 strains with light caused those yeast to upregulate the 

production of pigments which are most likely carotenoids.  It is quite interesting that both 
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of the strains that show the light-induced pigmentation effect can also manifest the YRO.  

It could be that qualities related to the formation of the YRO are also involved in the 

pigmentation under light, or that these phenotypes have coevolved.  With only two 

strains, coincidence cannot be ruled out.  We need to test other YRO-competent strains 

for pigment production under white light.   

The adaptive significance of the pigmentation (and/or respiratory) effect as a 

response to light has yet to be shown, but the absorption spectrum of the pigment 

(absorbing strongly in the UV to blue range) suggests that the pigments may protect the 

yeast from damaging rays present in or associated with visible light.  Experiments testing 

the ability of light-exposed yeast to survive UVB-irradiation compared to yeast grown in 

the dark do not show a significant fitness advantage for expressing the pigment, but 

relative fitness will be more closely investigated in a later study.  The primary 

achievement of this work was to show that yeast could perceive light in a manner 

relevant to the YRO and provide a glimpse into mechanisms by which this may occur.    

 

Materials and Methods 

 

Illumination during Continuous Culture 

 The YRO was established with the CEN.PK113-7D strain of Saccharomyces 

cerevisiae in continuous culture in a Bioflo 110 (New Brunswick) as described previously 

[74].  White light of 90, 180, or 300 µEinsteins/m2/s was applied to the Bioflo 110 culture 

vessel by placing 1, 2, or 3 compact cool white fluorescent lamps around the vessel’s 

water jacket.  When two lamps were used, the lamps were placed on opposite sides of 

the vessel.  When 3 lamps were used, two were placed on opposite sides and the third 

was placed in between the other two (forming a C shape around the vessel).  For 

colored light treatment, a single layer of Roscolux color filter (#74 for blue, #89 for green, 
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#19 for red; Rosco Laboratories, Stamford, CT) was wrapped around the water jacket of 

the Bioflo 110 and three compact cool white fluorescent lamps were used as described 

above.  For the red light treatment, in addition to the three compact cool white 

fluorescent lamps, a 60 watt incandescent lamp was positioned 6 inches from the filtered 

vessel.  Light intensity from these arrangements was measured in the Bioflo 110 with the 

headplate and culture removed.  Light intensity was measured using a Li-Cor quantum 

radiometer/photometer (LI-185B) and was the average of 8 measurements taken at 45° 

increments around the water jacked from the vessel’s interior.  

 

Batch Respiration Measurements 

 Eight 10-ml cultures of CEN.PK113-7D were grown for 24 h in 50 ml flasks 

shaking at 28°C.  Supplemented minimal media consisted of 6.5 g/L Difco yeast nitrogen 

base w/o amino acids, 20 g/L glucose, 23.6 mg/L leucine, 15.6 mg/L uracil, 15.6 mg/L 

tryptophan, 15.6 mg/L histidine, 15.6 mg/L adenine, and 23.6 mg/L lysine.  Four of the 

cultures were wrapped in aluminum foil (grown in the dark) and four of the cultures were 

unwrapped and exposed to 200 µE/m2/s of white light from a compact cool white 

fluorescent lamp (positioned overhead about 4 in. away).  After overnight growth, light-

grown cultures were pooled (40 ml total), gently centrifuged, and resuspended in 4 ml of 

fresh media, on ice.  The same was done for dark-grown cultures.  Batch respiration 

measurements were made at room temperature by adding 0.25 – 1.0 ml of the 

concentrated starter cultures described above to 40 ml of fresh supplemented minimal 

media in 50 ml flasks.  The mouth of the measurement flask was sealed with a #0 rubber 

stopper surrounding the dissolved oxygen probe (Vernier #DO-BTA).  The cultures were 

gently stirred magnetically during measurements.  Prior to measurements, the dissolved 

oxygen probe was calibrated to 0% DO with 2M Na2SO3 and to 100% DO in gently 

stirred media without yeast (stirred at the same rate as DO measurements).  DO 
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measurements were recorded over time with Logger Pro3 software (Vernier).  Light from 

a compact cool white fluorescent lamp was applied to cultures during DO measurements 

for designated experiments after the first 15 min of DO recording.  A 75 cm2 cell culture 

flask (Corning #25111-75) filled with room temperature distilled water was placed 

between the light source and the culture as an infrared screen.  Additionally, the DO 

probe (except for the tip) was covered with aluminum foil to reduce the noise that light 

added to the probe’s measurements.   

 

Phase Response Curves 

An 850 ml oscillating culture of CEN.PK113-7D was allowed to establish a stable 

period as described previously [74], sparged with 0.9 L/min air.  At various phase points 

described below the gas supply to the Bioflow 110 was switched from air to either 0.9 

L/min of 100% O2 (for 30 min treatments) or 100% N2 (for 3 min treatments).  Following 

gas treatment, the air supply was returned to normal (0.9 L/min air).  Phase 0° was 

defined as the time when dissolved oxygen started to rise from hypoxia. Phase shifts 

were determined from measuring the difference between (1) the time of the DO trough in 

the cycle after the gas treatment and (2) the time that the DO was predicted to reach the 

trough without a gas treatment extrapolated from the previous oscillation’s period.  

Phase response curves were normalized for 360° of period and were double-plotted for 

the beginning of N2 treatment (at 0°, 45°, 90°, 135°, 146°, 157.5°, 169°, 180°, 225°, 270°, 

and 315°) and the cessation of O2 treatment (at 51°, 96°, 141°, 186°, 192°, 208.5°, 231°, 

276°, 321°, and 366°). 

 

Growth Curves 

 An overnight culture of CEN.PK113-7D was grown in supplemented minimal 

media (described above), diluted 1/100 in 150 ml of fresh supplemented minimal media, 
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and aliquoted into twelve 50-ml flasks (10 ml culture into each).  Each 10 ml culture 

either received 5 µl of methanol (vehicle) or 5 µl of 100 mM diphenylamine dissolved in 

methanol (50 µM final concentration DPA).  The mouths of all flasks were covered with 

aluminum foil with 4 needle holes punched in each for air.  Three of the flasks with 

vehicle and 3 flasks with DPA were covered completely with foil.  All flasks were grown 

at 28°C with moderate agitation under 250 µE/m2/s white light from compact cool white 

fluorescent lamps positioned about 4 in. above the cultures (but cultures in foil were 

shielded from the light).  A 9 in. fan circulated air across all flasks to help maintain a 

uniform temperature.  Samples (100 µl) were taken from each flask periodically and 

analyzed in a Eppendorf BioPhotometer for optical density at 600 nm.    

 

Pigment Analysis 

 After 36 hours of growth, the three light-grown cultures treated with vehicle (from 

the growth curve experiment described above) were pooled, gently centrifuged, washed 

once with 50 ml of distilled water, and resuspended in 3 ml of distilled water.  The same 

was done for the other cultures from the growth curve experiment and these 

concentrated cultures were photographed in a 24-well dish.  Pigments were extracted 

from light-grown and dark-grown vehicle-treated cultures as follows.  Light-grown and 

dark-grown cells were diluted as needed to give pellets of equal weight, ~ 100 mg (i.e. 

some cells from the dark-grown culture were discarded since these cultures grew 

denser).  The pellets were mixed with an equal weight of glass beads (sigma #G8772) 

and resuspended in 500 µl of lysis buffer (10 mM Tris pH8, 1 mM EDTA, 100 mM NaCl, 

1% SDS, 2% Triton X-100).  Cells were chilled on ice then lysed by vortex for 10 min at 

4°C.   Lysates were separated from the beads by punching a hole in the bottom of both 

centrifuge tubes with a syringe needle (18 gauge), placing each tube (containing the 

hole and lysate) into a separate tube, and collecting the lysate by centrifuging the stack 
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for 10 sec at 1000 rpm.  The lysate was centrifuged for 5 min at 13,000 rpm and the 

supernatant was discarded.  The pellets were each resuspended in 1 ml of cold 

methanol/chloroform (50:50) with aggressive pipetting and vortexing.  Tubes were 

centrifuged at 13,000 rpm for 20 min at 4°C.  Supernatant from each tube (containing 

pigments) was moved to a new tube and an aqueous solution of 1% NaCl was added 

with vortexing until phase separation occurred (pigments followed the chloroform layer).  

Phases were separated by centrifuging at 13,000 rpm for 10 min at 4°C.  The aqueous 

phase from each tube was discarded and the chloroform phase was concentrated to ~ 

300 µl by speedvac.  Absorption spectrum of the concentrated chloroform phase was 

measured from 350 nm to 800 nm by a Shimadzu UV-160 spectrophotometer.   
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CHAPTER V 

 

LIGHT EMITTING DIODE FLASHLIGHTS AS EFFECTIVE AND INEXPENSIVE LIGHT 

SOURCES FOR FLUORESCENCE MICROSCOPY2 

 

Preface  

 

Firefly luciferase has previously been shown to be a useful tool for monitoring 

promoter activity in S. cerevisiae both in batch cultures and continuous culture (chapter 

II), however we are also currently working on another in vivo luciferase reporter for S. 

cerevisiae that reveals a cell’s (or a colony’s, or a culture’s) intracellular pH.  This is of 

particular importance because one of the factors believed to oscillate in the YRO is 

intracellular pH [38].  In addition, intracellular and extracellular pH changes have been 

implicated in cell-cell communication and colony-colony communication in yeast [123], 

therefore developing methods that reveal these effects in real time agrees with the focus 

of the work presented in this dissertation.   

The prototype bioluminescent pH reporter makes use of a pH-dependent 

Bioluminescent Resonance Energy Transfer (BRET) between two ends of a luciferase-

YFP protein fusion.  In a pH dependent manner, differing amounts of light generated 

from the luciferase reaction are passed to the YFP fluorophore, resulting in a ratiometric 

color change in the light emitted.  One of the early recognized caveats for using 

microscopy to visualize pH changes in colonies or groups of cells was the necessity of 

finding yeast (or cells of other types) that strongly expressed the reporter in the 

microscope’s field of view, in addition to having them in the proper focal plane, before 

                                                           
2 The material in chapter V following the preface is in press by the Journal of Microscopy (2009) 
by Robertson, J.B., Y. Zhang, and C.H. Johnson. 
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making the pH measurements.  Relying on the cells’ bioluminescence for indication of 

strong reporter expression and proper focus was not practical since such measurements 

require exposure times in excess of 1 min, as well as requiring the investigator to 

sacrifice luminescence intensity as a result of substrate consumption.  The better 

approach is to use the fluorescent quality of the reporter (YFP) to find strongly 

expressing cells and the proper focus for measurement.  But this approach, too, had 

drawbacks that needed to be overcome. 

Visualizing BRET by microscopy requires a photon-free environment due to the 

very low light levels emitted by single cells.  Stray light from non-sample sources 

increases noise to the measurement and can hide the BRET signal altogether.  

Therefore BRET microscopes must be shielded from light by a black box and 

measurements must be taken in the dark.  Using a traditional mercury lamp for excitation 

of the YFP in our lab was impractical since measurements would require the mercury 

lamp to be turned on and off repeatedly.  Leaving the lamp on but shuttered was not 

sensible because heat would build up within our box.  In addition, stray light would leak 

from the lamp through the lamp’s vent.  The solution was to devise a low cost LED light 

source that could excite YFP through the microscope and that could be instantly turned 

on and off from outside of the black box.  The material that follows describes this LED 

light source development. 

 

Introduction 

 

 Traditionally, broad-spectrum mercury gas discharge lamps have been used as 

sources for excitation in fluorescence microscopes. The advantage of this type of 

excitation is that mercury lamps provide bright, broad-spectrum excitation that is filtered 

to provide specific wavelength bands (although the "broad spectrum" emission of 
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mercury lamps is not uniformly distributed and is dominated by 7-8 strong peaks 

between 300 and 900 nm). While these lamps are the standard for microscopic 

fluorescence applications, they have a number of limitations. First, the wide range of 

emitted wavelengths includes ultraviolet (UV) light that is highly deleterious to living 

biological samples. With modern UV-blocking filters most of this excitation is excluded, 

but there is always a finite leak of UV that can decrease the viability of very sensitive 

tissues or cells [124]. For example, cell division is sometimes inhibited when irradiating 

cells with fluorescence excitation derived from mercury discharge lamps [125]. Second, 

the lifespan of a mercury discharge lamp is usually only 200-300 hours, and the intensity 

of these lamps decays progressively during this time [124, 126]. Third, gas discharge 

lamps require at least several minutes to reach an operating equilibrium after being 

turned on and lamp intensity can fluctuate during use. Therefore, once mercury 

discharge lamps are turned on, they are usually left on for hours to enable fluorescence 

measurements as needed without delay [127], thereby shortening lifetime. Fourth, these 

lamps generate a significant amount of heat and therefore introduce complications when 

used in a confined space [126]. Finally, mercury discharge lamps can explode, thereby 

damaging lenses and/or mirrors within the lamp housing [126]. 

 Light emitting diodes (LEDs) show great promise as alternative light sources for 

fluorescence microscopy [124, 126, 127]. Compared to the broad-spectrum emission of 

mercury discharge lamps (which then requires filters), LEDs traditionally have been 

designed to provide illumination at very specific wavelength bands from UV to infrared. 

However, current "white" LEDs have been designed to emit relatively broad excitation 

that can be filtered to provide specific wavelength bands as with mercury lamps ("white" 

LEDs tend to have a preponderance of blue emission, as seen in Figs. 5.1A and 5.2). 

Moreover, no UV emission is generated as a by-product in LEDs that are not specifically 

designed for UV emission. When turned on, LEDs can achieve full brightness within 
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microseconds with a constant intensity thereafter; upon being turned off, they extinguish 

immediately without a prolonged glow [127]. Previously the intensity of LED emission 

was rather dim, but new generation LEDs are much brighter and can additionally have 

lifetimes as long as 50,000 hours (or more). LEDs are relatively cool and therefore can 

be used in confined spaces. Not surprisingly, several companies now offer LED-based 

excitation systems for fluorescence microscopy to capitalize upon these advantageous 

characteristics of LEDs. However, since these commercially available LED fluorescence 

sources are designed to be capable of excitation at many different wavelength ranges, 

they are expensive. We have adapted a commercially available white LED flashlight for 

use as a source for fluorescence excitation. This light source has the advantages of LED 

light sources as itemized above and is effective for excitation in the range of 440-600 

nm, especially when coupled with CCD detection. 

 

Results and Discussion 

 

 We have a CCD-coupled microscope in a light-tight box for luminescence and 

BRET imaging [128] that we wanted to use for fluorescence applications but we needed 

to keep the box closed throughout imaging measurements; consequently the box could 

not be opened to change filters, open/close shutters, or focus the microscope. The 

characteristics of an LED source were attractive for our application, especially the low 

heat generation and the ability to immediately start and stop fluorescence excitation by 

simply turning the LED on and off rather than by using a remotely controlled shutter. 

However, the price of the commercially available LED sources was unappealing. Given 

that LED flashlights have been used to detect GFP in whole animals [129], we 

investigated whether a simple commercially available white LED flashlight could serve 

as an excitation source for fluorescence microscopy, thereby reaping the benefits of LED 
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excitation while avoiding the high cost of the excitation sources that have been 

commercially designed for this purpose. We therefore went to a local camping 

equipment store and purchased the brightest white single-LED flashlight on the shelf; in 

our case, this was an Inova Bolt 4.6 watt/6 volt flashlight for a price of approximately 

USA$ 50. The flashlight’s emission spectrum was measured with a fluorescence 

spectrophotometer (Quantamaster QM-7/SE, Photon Technology International, 

Birmingham NJ, USA) and showed strong emission in the 440-480 nm range (Figs. 5.1A 

and 5.2), which is a suitable excitation range for commonly used fluorescent probes 

such as: (i) the fluorescent proteins ECFP, EGFP, EYFP; (ii) the fluorescent pH indicator 

BCECF; (iii) fluorescein and its derivatives (e.g., FITC and various Alexa Fluors); and (iv) 

nuclear/nucleic acid probes like YO-PRO-1 and YOYO-1. The spectrum of the Inova Bolt 

flashlight also exhibited a dimmer emission extending into the red and could therefore be 

used for longer wavelength excitation in conjunction with a sensitive CCD detector. The 

manufacturer estimates the lifetime of the LED in this flashlight to be approximately 

50,000 hours. 

 The Inova flashlight is normally powered by two 3 V lithium batteries with an 

estimated lifetime of 2.5 hours, but as shown in Fig. 5.1B, we replaced the batteries with 

a dummy battery component that allowed us to connect the battery terminals to an 

inexpensive power supply operating at 6 V (we used a Tekpower DC Variable Power 

Supply # HY152A, which cost USA$ 40 from Amazon.com). The illumination of the LED 

is therefore controllable remotely from outside our light-tight box by turning on and off 

the power supply. A simple adaptor was also machined on a lathe from aluminum to 

connect the flashlight to our microscope's port for the fluorescence lamp housing (Fig. 

5.1B,C); however, the flashlight could also function effectively as an excitation source 

when simply held in place by a ring-stand and a clamp. Therefore, the mercury lamp  
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Figure 5.1. The LED flashlight as a tool for fluorescence microscopy. A. Emission 
spectrum from the flashlight from 400 nm to 650 nm. B. Disassembled flashlight 
excitation source showing the microscope adapter ring on the left, the commercial 
flashlight in the middle, and the 6 VDC dummy battery adapter on the right. C. The 
assembled flashlight excitation source. D. The LED flashlight excitation source (red 
arrow) attached to our Olympus microscope in the light-tight box.   
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       Wavelength (nm) 
 
Figure 5.2. The spectrum of the LED in the flashlight as supplied by the manufacturer. 
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(with its mirror and collector lens) was removed and replaced with the LED flashlight. 

There is no other difference in the optical train when the LED flashlight is mounted. The 

reflector within the flashlight acts to focus the beam in the same way as the mirror/lens 

within a mercury lamp housing. With the mercury lamp housing on the Olympus IX71 

inverted microscope replaced with our flashlight, the system appears as in Fig. 5.1D (a 

color CCD camera [an Olympus DP72] is coupled to the bottom port on the microscope 

and is therefore out of view). 

 This white LED flashlight source is less intense than a mercury source, but the 

fluorescence images shown in Fig. 5.3 were easily visible by eye. For excitation at 

470/30 nm ("30" = bandpass width at half peak height), the mercury source was 2X more 

intense than the LED source and at 500/20 nm, it was 4X more intense (Table 5.1). 

However, in conjunction with a CCD detector, comparable images were achieved using 

the LED flashlight source with a camera exposure of about 4-5 times the duration of that 

required by a 100 Watt mercury lamp. For example, the fluorescence images of Alexa 

Fluor 488-labeled actin filaments in raccoon uterine cells excited by the 100 W mercury 

lamp and captured with a 1 second exposure (Fig. 5.3A) are equivalent to those 

collected by a 5 second exposure with the LED flashlight source (Fig. 5.3B). As another 

example, we also used our LED source to excite the red autofluorescence of chlorophyll 

in the stem of a plant seedling (Figs. 5.3C & 2D). 

Therefore, for fluorescence microscopy using excitation in the most commonly used 

range of wavelengths, this flashlight system allows an effective way to reap the benefits 

of LED excitation. The total cost of this flashlight and power supply (~$ 90 total) was less 

than the cost of a single replacement lamp for a mercury discharge fluorescence source 

and has a predicted lifespan of ~300 X longer. This technology provides a way to 

economically add LED excitation capability to an existing mercury-discharge  
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Table 5.1.  Relative light intensities for LED vs. Mercury Sources.  Light intensities from 
the LED and mercury light sources were measured through the Olympus IX71 
microscope at the position of the sample using the excitation filters in the microscope. 
Light intensity was measured at the position of the sample with a LI-COR 185B Quantum 
Radiometer/Photometer by attaching the probe to a microscope slide mounted on the 
microscope.  The filter sets used for these measurements were the Chroma YFP filter 
set #410290 with excitation at half band pass 500/20, and Chroma ZsGreen filter set 
#42002 with excitation at half band pass 470/30.  Light intensity was measured in 
µEinsteins/m2/s. Three different microscopic objectives were used (4X, 10X, and 20X), 
with similar results. Note that the intensity of the LED source compared more favorably 
with the mercury source for blue excitation (470/30 nm) than for blue-green excitation 
(500/20 nm), presumably because of the large peak emission of the LED in the 450-475 
nm range. 
 
 

Source LED Mercury Ratio 
(Mercury:LED) 

Excitation 
Filter 500/20 470/30 500/20 470/30 500/20 470/30 

4x Objective 25 71 115 160 4.6 2.3 

10x Objective 28 83 110 155 3.9 1.9 

20x Objective 24 72 100 140 4.2 1.9 

Average 25.7 75.3 108.3 151.7 4.2 2.0 
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Figure 5.3.  Images from the LED-excitation system. A. Fluorescence of actin filaments 
in raccoon uterine cells labeled with phalloidin conjugated to Alexa Fluor 488 excited by 
the 100 W mercury arc lamp with a 1 s exposure. B. The same fluorescent object as in 
panel A except excited by the LED flashlight with a 5 s exposure. C. A bright field image 
of the stem from an Arabidopsis seedling. D. The same object as in panel C examined 
for chlorophyll autofluorescence excited by the LED flashlight source (5 s exposure). For 
panels A&B, the microscopic objective was 20X, and the fluorescence filters were EX 
470/30; EM 520/40 (Chroma ZsGreen filter set #42002); for panels C&D, the 
microscopic objective was 10X; for panel D, the fluorescence filters were EX 500/20; EM 
520LP (Chroma YFP filter set #410290). See Supplementary Material for more 
information about the spectrum and intensity of the LED source we used as well as 
information on the fluorescence filter sets. 
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fluorescence microscope. It may also be an excellent single-source solution for schools 

with limited resources to set up laboratory exercises involving fluorescence microscopy 

or research laboratories that wish to economize in the current challenging era of limited 

research budgets. 
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Supplementary Material 

 

Spectrum of LED light emission 

The spectrum from the Inova Bolt 4.6 watt/6 volt flashlight in Fig. 5.1A was 

measured using a Quantamaster QM-7/SE spectrophotometer with the light source 

introduced into the black chamber of the device through a 3 mm aperture at a right angle 

from the detector in order to minimize risk to the sensitive photomultiplier.  As a result of 

unequal reflection, parts of the spectrum in Fig. 5.1A may be underrepresented.  Fig 5.2 

shows the spectrum form the Inova Bolt provided by the manufacturer.  

 

Filter Sets Used 

Two different filter sets were used in this study.  Chroma ZsGreen1 #42002 has 

an excitation filter HQ470/30x, a dichroic Q495LP, and an emission filter HQ520/40m.  

The spectrum and specifications for this filter set can be seen at Chroma’s website: 

http://www.chroma.com/products/catalog/42000_Series/42002 
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The other filter set Chroma Yellow GFP LP (10/c Topaz) #41029 has an 

excitation filter HQ500/20x, a dichroic Q515LP, and an emission filter HQ520LP.  The 

spectrum and specifications for this filter set can be seen at Chroma’s website: 

http://www.chroma.com/products/catalog/41000_Series/41029 
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CHAPTER VI 

 

GENERAL CONCLUSIONS AND FUTURE DIRECTIONS 

 

Conclusions 

 

Impact, Principal Findings, and Achievements 

 The work presented here involved exploring various aspects of the yeast 

respiratory oscillation in relationship to the cell division cycle and mechanisms by which 

the YRO operates/persists.  The influences of respiratory capability and CDC synchrony 

contribute to the stability, amplitude, and period that are characteristic of CEN.PK’s 

YRO.  This work has potentially provided clues as to how the longer period YRO of 

CEN.PK may be similar to (and different from) the shorter period YRO of other strains by 

the degree to which the CDC can align with the YRO and the degree to which respiration 

can occur in these strains.  Additionally through this work, technical tools were 

developed that can aid other researchers in questions unrelated to these topics, thus 

expanding the impact this work has on the global community.  Materials developed in 

this work have already been requested by labs around the world, from Harvard to as far 

away as Europe and China.   

 The principal findings and achievements of this work are: 

• A destabilized firefly luciferase reporter was developed for monitoring promoter 

activity for genes of interest in vivo and in real-time.   

•  Cell cycle landmarks were established for the YRO using luciferase reporters. 

• A direct correlation was shown for phase resetting of the YRO to non-

fermentable metabolites and premature induction of new cell division. 
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• The methods by which the YRO and CDC communicate and maintain a stable 

interaction are more complex than two populations that alternate in cell division 

timing.   

• The CDC influences the period, amplitude, and ultimately the stability of the YRO 

for CEN.PK. 

• Visible light, primarily in the blue and green wavelengths, affect the period and 

amplitude of the YRO in CEN.PK, presumably by damaging the cytochromes 

needed for respiration.   

• Visible light inhibits growth in a number of strains of yeast and causes two in 

particular (CEN.PK and IFO0233) to turn pinkish-orange, presumably by 

upregulating the production of carotenoids.   

• A white LED flashlight was shown to be a low-cost, effective fluorescent 

excitation source for use with BRET and bioluminescent microscopy where 

mercury lamps are problematic.   

 

How Cell Division Synchrony May Be Achieved During the YRO 

 The cell division cycle oscillates along with the YRO (chapter II) [13-18].  And 

evidence from chapter III shows that the CDC plays a part in the YRO’s 

stability/existence (at least for the longer period YRO of CEN.PK), rather than the CDC 

synchrony being merely an output of the oscillating energy metabolism.  One way that 

the CDC might synchronize with the YRO is through a common nutritional molecule (e.g. 

glucose) that oscillates in the YRO and is required at a certain concentration to pass 

Start.  For instance, slowly growing cells in G1 delay progression through Start due to 

the low glucose levels in the environment and within the cell, however the synchronous 

release of glucose from carbohydrate stores (during a particular phase of the YRO near 
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the trough) satisfies Start-related nutritional requirements allowing the cells that have 

been held in G1 to simultaneously progress through Start. 

 There is no direct evidence for an increase of intracellular glucose levels during 

or near the YRO trough (such as from glucose assays or reporters), however we can 

infer this increase occurs by observing the response/expression of glucose-regulated 

genes during the YRO. Because the timing of this event occurs during the hypoxic mask, 

luciferase reporters unfortunately cannot detect this glucose spike.  However, publically 

available microarray data across three oscillations of the YRO that are online on the 

Saccharomyces cerevisiae Periodic Transcription Server (SCEPTRANS) [130] allows 

the construction of gene activity profiles for such glucose-regulated genes [16].  Fig. 6.1 

shows the microarray expression profile for four genes oscillating during the YRO: POL1 

– a CDC related gene that provides a familiar reference for the YRO shown in chapters II 

and III, ADH2 – a gene that is greatly downregulated by the presence of glucose [131], 

PMA1 – a gene that is upregulated by the presence of glucose [132], and CLN3 – a 

CDC-related gene believed to translate nutritional information into CDC regulation [5] .   

 As Fig. 6.1 shows, ADH2 expression sharply decreases at the same time that 

PMA1 and CLN3 sharply increase, followed later by an increase in POL1 expression 

showing entry into the cell cycle.  The increase of PMA1 expression is timed exactly with 

an increase of CLN3 expression.  The collective expression profile of these glucose-

regulated genes suggest that a large portion of cells in the YRO experience a 

simultaneous increase in glucose levels prior to commitment to cell division and that it 

could be this glucose bolus that permits synchronous cell division.  As a result of a large 

population of cells synchronously progressing through S, G2, and M phases of cell 

division, CDC-related metabolic influences (e.g. energy demands, pathway preferences, 

byproduct formation, etc) could then in turn feed back on the regulation of the YRO, thus  
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Figure 6.1.  Gene expression profiles by microarray for four genes during the YRO.  The 
graph was generated by the SCEPTRANS web tool using data from Tu, et al. [16].  
POL1 marks synchronous cell division with a pattern similar to that of the luminescent 
POL1 reporter shown in earlier figures.  PMA1 is a gene that is upregulated by glucose.  
ADH2 is a gene that is down regulated by glucose.  CLN3 is a gene that is believed to 
regulate cell cycle entry based on nutritional status of the cell.  CLN3 and PMA1 begin to 
rise at the same time as ADH2 begins to decrease each cycle, suggesting that the cell is 
exposed to increased levels of glucose at these times.  Shortly after, POL1 levels 
increase showing that cells have synchronously entered S phase.   
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allowing the cell division rate (determined by the dilution rate of the culture) to influence 

the period and stability of the YRO.   

 

Future Directions 

 

Determining whether the YRO is a legitimate natural phenomenon rather than an 

artifact of the continuous culture conditions within the bioreactor depends on 

demonstrating that it operates in yeast outside of the bioreactor, either on a single-cell 

level or in populations in a different setting (e.g. colonies on solid media).  It is possible 

that the YRO only occurs in the specialized conditions of the bioreactor.  On the other 

hand, it is possible that the YRO commonly exists on a single-cell level in a wide range 

of culture conditions; however the bioreactor simply allows individual cells’ YROs to align 

and become measurable in the laboratory.   Another idea is that the YRO may exist in a 

more natural setting when certain requirements (namely high cell density for the 

generation and dispersal of YRO related signals, low glucose/slow cell division, and the 

presence of oxygen) are met.  Colonies growing on solid media may provide these 

conditions. The luciferase reporter system developed in this work will be instrumental for 

these continuing studies.   

 

Pursuing the YRO on a Single-Cell Level 

The YRO does not manifest under all conditions of continuous culture.  The 

oscillation requires a specific range of pH, dilution rate, temperature, oxygen, light 

intensity, culture density, and growth rate in order to persist.  One question that remains 

to be answered is, “Under continuous culture conditions where the YRO is not 

observable for the culture as a whole, does the YRO still operate in uncoupled individual 

126 
 



cells?”  In other words, it is possible that in addition to the CDC, actively dividing cells 

also undergo their own individual YRO (each with its own period, etc) that is not coupled, 

transmitted, or communicated to other cells in the population. As a result, cultures of 

such uncoupled YROs would appear to be arrhythmic.  Whether this occurs could be 

investigated if individual cells were able to be continually monitored for rhythmic 

metabolism as they grew.  What is needed is a microscopically observable continuous 

culture device on a nano-scale where metabolism can be monitored.  We are 

investigating whether one micro-fluidic device in particular will suit these purposes.   

Figure 6.2 shows the basic shape and function of the micro-fluidic device.  It 

consists of a triangular chamber with small “c-shaped” traps in which inoculated yeast 

settle against a current of media.  The traps can be loaded with single cells or groups of 

cells, and their cell division followed over time by microscopic observation/photography.  

Once the traps are full, (from either growth or loading) continued cell division results in 

cells spilling over the sides and out through the effluent.  Therefore the device 

reproduces several features of continuous culture achieved in liter-scale bioreactors.  

Using the luciferase reporter either as an oxygen sensor or a promoter monitor, the cells 

can be individually observed for uncoupled (or coupled) rhythmic behavior (Fig. 6.2).   

We plan to also use these devices to search for diffusible signals which may be 

influencing the YRO or allowing cells to communicate their position in the oscillation with 

other cells in the culture.  The nature of the device is such that the direction of the media 

flow allows cells upstream of the flow to condition the media for cells that are 

downstream.  As a result, the downstream cells would be exposed to potential secreted 

signals/metabolites to which the upstream cells are not exposed, and there may arise an 

observable difference (e.g. entrainment) in rhythmic metabolism in the chamber.  

Another way the presence of diffusible/media-borne signals may be tested with these  

devices is to feed the cells in the nano-devices with cell-free bioreactor effluent from the  
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Figure 6.2.  A micro-fluidic device for growing small groups of cells in continuous culture 
on a nano-scale.  A. shows the entire triangular chamber.  Cells are loaded and then 
later fed from the single channel at the point of the triangle on the right.  The darker area 
toward the right is yeast.  The far left of the chamber shows 6 outflow channels.  B. 
shows the device at a higher magnification.  Left is bright field, Right shows 
luminescence from PGAL1-Luc yeast in galactose media.  The C-shaped traps are visible; 
however media is not being perfused through the device so the cells do not remain in the 
traps.  C. A diagram showing how media flows through the device (red arrows) and 
keeps cells (blue circles) in the traps (black boxes).  D. shows an even closer view of the 
device and cells.  Left is bright field and Right is luminescence from PGAL1-Luc yeast in 
galactose media.  Green bars indicate length as shown.   
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larger (liter-scale) bioreactor in which the YRO is taking place.  By continuous 

microscopic observation of cells exposed to the YRO-conditioned media, we could see 

whether the CDC (or metabolism) from cells outside of the YRO could be entrained with 

the media; and if so, we could observe the population structure that results.  A 

preliminary experiment where media from an oscillating bioreactor was washed over a 

bag of dialysis tubing containing cells with the luminescence CDC reporter PPOL1-

LucPEST showed that the YRO-conditioned media could entrain synchronous cell 

division in a culture of cells outside of the bioreactor (Fig. 6.3).  The micro-fluidic device 

will let us observe this synchronization microscopically, which may give additional spatial 

information, such as gradients of entrainment.   

  

Using the Luciferase Reporter to Observe Cells in Colonies 

 The YRO is not the only example of cellular communication in yeast.  Yeast 

growing in colonies have been reported to signal to other colonies through diffusible 

signals (like ammonia) to influence surrounding colonies’ growth [123].  It is also 

possible that the YRO occurs in cells growing in colonies.  We want to investigate such 

signaling among and within colonies using the luciferase reporters developed in this 

work.  GFP and other fluorescent reporters are not very useful for observing colonies of 

yeast due to the high degree of autofluorescence that arises from densely packed cells 

and solid media.  The luciferase reporter shows promise for revealing spatial gene 

expression within colonies for a variety of genes (Fig. 6.4).  One goal for future work is to 

develop microscopy techniques and conditions to use these reporters for monitoring 

temporal gene expression in colonies as well.  The most difficult challenges thus far 

have been obtaining samples that are bright enough to record over a short exposure 

time, keeping luminescent cells/colonies in focus long enough to photograph them, and 
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keeping the colony/agar from drying out during time-lapse.  The solution thus far has 

been to observe young/small colonies that are thin and rapidly growing.   

  

A Future for the YRO? 

 What does the future hold for researching yeast respiratory oscillations?  The 

answer largely depends on whether the YRO occurs in nature.  If the YRO is shown to 

occur under conditions more closely resembling a natural setting (i.e. outside of 

bioreactors) then increased interest in this field would likely follow.  Evidence of a 

naturally occurring YRO would open the field for questions regarding YRO-based clocks 

and their adaptive significance, but such evidence is not critical for the YRO to have 

future importance.  Even if the YRO only manifests in continuous culture, the rhythmic 

gene expression and partially synchronous cell divisions that accompany the YRO may 

provide useful applications for industrial production of yeast products.   

One can envision a scenario in which production or refinement of a desired 

product from yeast is hampered by the presence of a complicating protein, enzyme, or 

pathway naturally present in yeast.  For example, this complicating factor could be an 

interfering protease that degrades the product of interest or could be a substance that 

competes with the product of interest during affinity column purification.  If such a 

complicating factor provides an essential function to growth or health of the yeast, then a 

deletion strain that lacks the problematic factor would not solve the problem.  One 

potential solution would be to assay for the rhythmic occurrence of the problematic factor 

during the YRO and if a timeframe exists when the problematic factor is in low 

abundance, targeting production of the product of interest for that time window could 

circumvent complications that arise when both product and factor are present at the 

same time.  Pursuing this concept, continued research may allow industry to use the 

YRO as a tool for enhancing productivity in some circumstances [47].  
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Figure 6.3.  Luminescent yeast with the PPOL1-Luc(A4V)PEST reporter grown in a 
dialysis tube outside of the bioreactor show synchronous cell division when exposed to 
media from non-luminescent yeast expressing the YRO in a bioreactor.  A. shows the 
configuration of the apparatus used to monitor luminescence from cells grown in dialysis 
tubing.  Within the blackbox, one PMT (top) monitors light from the non-luminescent 
culture within the bioreactor exhibiting the YRO.  A second PMT (bottom) monitors light 
from luminescent yeast growing in two dialysis tubes within a 100 ml bottle that has 
culture from the bioreactor constantly running through it and back to the bioreactor.  B. 
The YRO was established using non-luminescent CEN.PK113-7D in a bioreactor (dark 
blue trace shows oscillating DO levels from the YRO, left y-axis in % atmospheric 
saturation).  The oscillating culture itself is not luminescent (shown by the light blue 
trace, right y-axis in CPM).  However, a culture of yeast containing the cell cycle 
luciferase reporter PPOL1-Luc(A4V)PEST grown in sealed bags of dialysis tubing 
immersed in culture from the oscillating bioreactor showed synchronized cell division 
(pink trace, right y-axis) after an initial growth phase for the first 3 oscillations.  
Redirecting media from the bioreactor to the dialysis chamber caused a perturbation in 
the oscillation at time 5500 min, but this effect was largely overcome after the third 
oscillation around time 6000 min.  Luminescence shown in pink and light blue traces 
cannot be directly compared with each other as measures of equal luminescence due to 
differing sensitivities of the separate photomultipliers used to record each sample 
simultaneously.   
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Figure 6.4.  Bioluminescent 2-day old colonies of yeast containing different luciferase 
reporters are visualized at room temperature by an inverted microscope with a 4x 
objective.  Light from bioluminescent yeast was photographed (yellow) and overlaid on 
the bright field exposure of the same sample to show locations within colonies where 
promoters for various genes are active.  A. PCYS3-Luc(A4V) shows areas of active 
cysteine biosynthesis (exposure time = 1 min).  B. PGPH1-Luc(A4V) shows areas where 
glycogen is being mobilized by glycogen phosphorylase (exposure time = 5 min).  C. and 
D. PPOL1-Luc(A4V) show areas of active cell division (exposure times = 5 min).  Green 
scale bars indicate 1 mm.  Luciferase reporters do not contain destabilizing PEST 
sequences and are expressed on high copy number (2 micron) plasmids for purposes of 
signal detection by microscopy.   
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APPENDIX A 

 

A LUCIFERASE REPORTER REVEALS THE RATE OF CRE RECOMBINASE 

INDUCTION AND ACTIVITY IN VIVO 

 

Introduction 

 

 The experiment shown here was part of an alternative approach to investigate 

population structure of the YRO that was abandoned due to complications.  However, 

this experiment is still valuable for providing data regarding the rate at which CRE 

recombinase functions to remove a segment of DNA flanked by loxP sites.  Such 

information is helpful for interpreting the results of experiments where galactose-

inducible CRE recombinase is used to inactivate/remove genes during continuous 

culture (e.g. Fig 3.7).  These results are included in the appendix and not chapter III 

because this experiment was conducted under different growth conditions than 

continuous culture and because the assay used a slightly different CRE recombinase 

construct from the one used in chapter III.  Although the experiment reveals a timeframe 

on which CRE recombinase can be created by the cells and then act to recombine loxP 

sites in batch culture, the timeframe on which this occurs in continuous culture may be 

different.  Ultimately the strain and the methods developed here can be further modified 

to conform to the conditions of growth and promoter expression for a variety of systems, 

e.g. continuous culture, colonies on plates, and in microfluidic devices. 
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Results 

 

 I modified the yeast strain CEN.PK113-7D to include CRE recombinase under 

the control of the GAL1 promoter, similar to the construct used in chapter III, with one 

notable difference.  The coding sequence of CRE was fused in frame to the coding 

sequence of the estrogen biding domain from the human estrogen receptor so that the 

enzyme would require the presence of estradiol in order to function (Fig. A.1A) [133].  

The estrogen binding domain reduces the amount of CRE activity when estradiol is not 

present [133], and was a feature that was important to the abandoned project.   

In addition to CRE recombinase, I modified the strain to include a specialized 

luciferase reporter (under the control of the ACT1 promoter) that contained a floxed 

interruption cassette so that luciferase would only be produced after CRE had removed 

the interruption cassette.  Specifically, the interruption cassette consisted of a floxed 

kanamycin resistance gene nested within a copy of the intron of S. cervisiae’s ACT1 

gene that was then inserted between amino acids 4 and 5 of the luciferase coding 

sequence. (Fig. A.1A).  Within yeast, the transcriptional terminator of the Kan resistance 

gene arrests transcription of the reporter before the 3’ portion of the ACT1 intron can be 

transcribed, thus preventing removal of the intron from the pre-mRNA, and preventing 

transcription of luciferase [133].  However, if CRE recombinase is present, it removes 

the Kanr gene from the genomic source by recombination at the loxP sites. The Kan 

resistance terminator is therefore removed and the intron (containing the remaining 

single loxP site) can be transcribed in full, along with the remaining 3’ portion of the 

luciferase reporter.  The intron containing the remaining loxP site is spliced out by the 

yeast’s native splicing machinery and produces an uninterrupted Luc coding sequence.  

Once this sequence of events has occurred, luciferase can be translated normally.   

134 
 



 

 
Figure A.1.  A luciferase reporter that contains a floxed interruption cassette shows the 
timeframe that CRE recombinase can act in vivo.  A. shows the features of the two 
constructs that were integrated into the genome of the yeast strain used for this 
experiment.  An interruption cassette consisting of a kanamycin resistance gene (blue) 
flanked by loxP sites (black arrows) and nested inside the intron of ACT1 (yellow) 
interrupts the coding sequence of luciferase (green) which is under the control of the 
constitutive ACT1 promoter.  The second construct consists of a fusion of the open 
reading frames of CRE recombinase (dark purple) and the human estrogen receptor’s 
estrogen binding domain (EBD)(light purple) under the control of the GAL1 promoter.  B. 
shows the luminescence traces for yeast with the constructs from A. treated with either 
galactose or glucose and either DMSO or estradiol.  The only culture that shows a 
drastic increase in luminescence is the one treated with galactose and estradiol (pink).  
The increasing luminescence (between 30 min and 5 h) reveals the timeframe of GAL1 
promoter induction, CRE recombinase’s transcription and translation, CRE removing the 
DNA that is flanked by the loxP sites, splicing out of the intron, and transcription and 
translation of luciferase in the culture.   
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The light that is produced from the enzyme shows that this sequence (GAL1 promoter 

induction, CRE production, recombination, splicing, and translation) has occurred, and 

the length of time it takes can be measured.   

I inoculated a culture of the yeast just described (1:20 dilution from an overnight 

culture) in yeast extract peptone media supplemented with 2% raffinose and 50  µM 

beetle luciferin, and grew this culture for 6 h at 28°C with agitation.  Prior to the assay, I 

subdivided the culture into four scintillation vials (1 ml each) and continued to culture the 

samples at 28°C with agitation in the dark.  At time zero, each sample was treated in one 

of the following ways: 2% galactose + 10 µM estradiol, 2% galactose + 1 µl DMSO 

(vehicle), 2% glucose + 1 µl DMSO, or no treatment.  Luminescent measurements of all 

cultures were taken periodically for 9 hours.  The results show that for the culture in 

which CRE was induced and functional (i.e. galactose + estradiol) luciferase activity 

began to increase in as little as 30 min but was not fully expressed until 5 hours later 

(Fig. A.1B, pink trace).  As expected, the presence of estradiol made a difference in 

whether luciferase was expressed or not (Fig. A.1B, pink vs. dark blue traces).   

 

Discussion 

 

     This experiment was a preliminary experiment to show that the combination of 

constructs within the yeast strain functioned and could serve as a temporal reporter of 

CRE activity.  As a preliminary experiment for a project that was not pursued, there are 

admittedly a number of controls that were not performed, including the rest of the 

combinations of galactose, glucose, estradiol, and vehicle.  Additionally, replicates of 

each culture were not measured so variability among samples could not be addressed in 

this experiment, but the experiment was repeated with different clones of the 

transformed yeast strain and all showed similar trends.  It should be noted that the 

136 
 



>90,000 RLU difference in luminescence seen between the galactose + estradiol sample 

and the other samples is a large difference for this assay and would not likely be the 

result of sample variability.   

 One should be cautious when using the timeframe of CRE activity that this 

experiment reveals to infer the timing of CRE activity from other experiments if the 

growth conditions or CRE constructs differ from those used here.  Even though the 

luciferase reporter was under the control of the actin promoter (which should be 

constitutively expressed), it is possible that the growth status or culture density 

influenced the luciferase activity and/or the CRE activity.  The assay was performed 

when the culture was predicted to be in late log phase or early stationary phase so that 

the change in luminescence signal over time would be more likely to reflect CRE activity 

rather than culture growth.  However, a growth influence on the luminescence signal can 

not be ruled out.  Additionally, the timeframe reported by this experiment also included 

the time needed for the yeast to remove the intron within the reporter, a step that is not 

needed for actual CRE recombinase activity, just for the processing of the reporter for 

this assay. 

 Because the conditions for which galactose-induced CRE used in chapter III 

differed significantly from those used here to test CRE’s timing, only very broad 

conclusions can be made about how quickly CRE can appear and act within continuous 

culture in a glucose medium (e.g. in chapter III).  A more curtailed experiment can be 

designed to answer such a question using a strain similar to the one described here that 

did not include the estrogen binding domain.  By following a protocol similar to the one 

used in Fig. 3.5 that showed the timing and extent of GAL1 promoter induction of 

luciferase directly, I could use the luminescence peak that follows a galactose treatment 

to measure the time it takes for CRE recombinase to be expressed and do its job during 

the yeast metabolic oscillation. 
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Materials and Methods 

 

Yeast Strain Used 

 The ura3 strain of Saccharomyces cerevisiae CEN.PK113-7D described in 

chapter III was used for this experiment.   

 

Construction of pRS306-PGAL1-CREEBD 

 A DNA sequence containing the GAL1 promoter, CRE recombinase fused to the 

estragen binding domain, and the CYC1 terminator was PCR amplified from pSH62-

EBD [133] using the 5’ primer aaagctggagctctagtacgg that added a SacI overhang and 

the 3’ primer acagatgcggccgcaaattaaagc that added a NotI overhang.  The PCR product 

was cloned into pRS306 using SacI and NotI.   

 

Construction of the CRE responsive luciferase reporter pRS303(d)-PACT1-Luc(Int/Kan) 

 The portion of pRS303(d)-Kan-PACT1-Luc [74] containing the promoter, luciferase, 

and terminator was moved to pRS303(d) [74] with XmaI and SalI in order to eliminate 

the kanamycin resistance gene from the construct.  The ACT1 Intron/kanMX floxed 

interruption cassette was PRC amplified from pRKO [133] using the 5’ primer 

aagtaagacgtcgtatgttctagcgcttgcac and the 3’ primer 

atgattgacgtcctaaacatataatatagcaacaaaaagaatg, each of which added an AatII overhang 

to the ends of the product.  The PCR product (the interruption cassette) was cloned into 

the coding region of pRS303(d)- PACT1-Luc using AatII.   

 

Luminescence Monitoring 

 Luminescence measurements were taken with a Zylux Femtomaster FB12 

luminometer at times 0, 0.5, 1.5, 2.5, 3.5, 5, and 9 hours. 
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APPENDIX B 

 

YEAST IN A PROTOTYPE MINATURE BIOREACTOR CAN EXHIBIT RESPIRATORY 

OSCILLATIONS 

 

 Before I had access to a large (3L) bioreactor in which to study the yeast 

respiratory oscillation, I designed a functional prototype of a miniature bioreactor with a 

working volume of 3-10 ml.  This work was abandoned after we began collaborating with 

Erik Boczko and developed methods for detecting yeast luciferase expression in his 

large bioreactor (Bioflo 110, New Brunswick), however applications for the economical 

homemade miniature version may exist.  Therefore, I present work relating to its 

development and capability here.   

 The requirements of a bioreactor for continuous culture are fairly simple: a stable 

temperature and pH, a steady flow of air, sufficient mixing, and a constant infusion of 

new media at the same rate at which culture is removed.  The ability to sterilize the 

bioreactor is also important.  Aside from the ability to control pH, these features were 

reproduced in a device consisting of a glass 15 ml test tube for the reactor vessel, a 5-

inch glass capillary micropipette to bubble air into the bottom of the vessel and provide 

agitation, two 4-inch stainless steel syringe needles (18 gauge) to deliver and remove 

media, one 1.5-inch syringe needle (21 gauge) as a gas vent, and a size-0 rubber 

stopper as a head plate (Fig. B.1).  The device was housed in an incubator for 

temperature control, however a custom-made water jacket was fashioned for the device 

for additional temperature stability and the capability for rapid temperature modification 

(Fig. B.2).   Air was supplied to the device by an aquarium air pump and fresh media 

was supplied by a 60ml syringe pump.  A relatively constant volume of culture was 

maintained in the vessel by setting the tip of the outflow syringe needle to the surface of  
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Figure B.1.  Simple components are used to build a miniature bioreactor.  A. shows the 
components needed (from left to right): A 15ml conical glass test tube, two long syringe 
needles, a glass capillary tube long enough to reach the bottom of the test tube, a short 
syringe needle, and a rubber stopper that fits the test tube. The ruler is shown for scale 
and only applies to panel A.  B. shows how the components fit through the rubber 
stopper (head plate).  To make pushing the components through the stopper easier, the 
rubber stopper was cut transversely to make a thinner head plate.   C. shows the 
assembled miniature bioreactor.  The flexible tubing that is seen in B and C is Tygon 
tubing (inner diameter = 1/32 in, outer diameter = 3/32 in) connected to the capillary that 
supplies air to the culture.    
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Figure B.2.  Bioluminescence is measured from an assembled miniature bioreactor (A) 
in a black box with its supporting components (B).  A 4-ml culture is injected into the 
reactor vessel through the gas vent needle and the syringe is removed, leaving the 
needle.  The tip of the 4-inch needle that serves as the media port is positioned below 
the surface of the culture.  The tip of the needle that serves as the waste port is 
positioned at the surface of the culture to remove any portion of the culture that exceeds 
that level.  The air tube (highlighted in yellow for visualization) is a glass capillary tube 
that supplies humidified air and agitation to the culture. Within a dark box (B), an opaque 
curtain separates two identical bioreactors.  Temperature controlled water flows through 
the glass water jacket that surrounds each reactor vessel and a temperature probe 
touching the culture vessel measures culture temperature.  Each reactor has a 
photomultiplyer tube positioned perpendicular to the culture to measure 
bioluminescence.  The dark box and its contents are housed within an incubator.   
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the culture and running an outflow peristaltic pump at a faster rate than the rate at which 

the syringe pump infused new medium.  If pH control was needed, the supplied medium 

could be buffered to the desired pH, but otherwise, the device was incapable of 

regulating pH.  The output used to demonstrate the YRO was bioluminescence from 

firefly luciferase driven by the GPH1 promoter (glycogen phosphorylase) expressed on 

low copy plasmids (pRS314-PGPH1-Luc(A4V)PEST) [74] by the yeast strain SEY6210 

[70] (Fig. B.3), however the luminescence may represent oscillating oxygen levels more 

than promoter activity. 

 

Materials and Methods 

 

Miniature bioreactor  

The miniature bioreactor consisted of a 15 ml conical glass test tube, two 4 inch 

18-gauge needles (septum penetration needles, Popper & Sons, inc., New Hyde Park, 

NY), a 5 inch glass capillary micropipette (VWR 53432-921), a 1.5 inch  21-gauge 

syringe needle (Becton Dickson 305167), and a size-0 rubber stopper that fits the test 

tube. 

 

Medium and Culture Conditions  

The medium consisted of supplemented minimal media lacking tryptophan and 

containing 6.5 g/L Difco yeast nitrogen base w/o amino acids, 20 g/L glucose, 15.6 mg/L 

uracil, 15.6 mg/L histidine, 15.6 mg/L adenine, 23.6 mg/L lysine, 23.6 mg/L leucine, and 

50 µM beetle luciferin (potassium salt; Promega E1602).  The 4 ml culture in the 

miniature bioreactor was inoculated with 50 µl of an overnight culture and grown at 30°C 

overnight with humidified air bubbling into the culture.  Continuous culture was initiated 

the next day at a dilution rate of ~0.085/h.   
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Figure B.3.  Rhythmic promoter activity recorded for yeast grown in the miniature 
bioreactor at a dilution rate of 0.085/h.  A. shows ninety-six hours of a spontaneous two-
hour ultradian rhythm from the yeast strain SEY6210 in continuous culture.  The strain 
was transformed with the destabilized luciferase reporter pRS314-PGPH1-Luc(A4V)PEST  
which reports transcription of glycogen phosphorylase.  Luminescence is in arbitrary 
units.  B. shows a chi-square periodogram constructed from baseline subtracted data 
from panel A and confirms that a two-hour period predominates the rhythm.  Peaks that 
rise above the red diagonal line represent periods with a significance value of 0.001.   
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